
POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Department of Electronics, Information and Bioengineering

Imputation of biochemical activity

associated with functional elements of

the genome produced by epigenomic

experiments

Laboratory of Data Science and Bioinformatics

Supervisor: Prof. Mark James Carman
Co-Supervisors: Prof. Marco Masseroli

Dr. Arif Canakoglu
Dr. Luca Nanni
Dr. Pietro Pinoli

Master Thesis of:
Francesco Guzzo, Matr 898035

Accademic Year 2018-2019

To my family...

Contents

Abstract xi

Sommario xiii

Ringraziamenti xv

1 Introduction 1
1.1 Research area . 1
1.2 Goals and research applications 2
1.3 Brief description of the work 3
1.4 Outline of the thesis . 4

2 Background 7
2.1 Biological background . 7
2.2 Epigenetics . 9
2.3 Signals processing . 11
2.4 Related works . 12

2.4.1 ChromImpute . 12
2.4.2 PREDICTD . 13
2.4.3 Avocado . 14

2.5 Metodologies . 15
2.5.1 Nearest neighbors regression 15
2.5.2 Matrix factorization 16
2.5.3 Tensor factorization 17

2.6 Research questions . 18

3 Investigating the data 21
3.1 ENCODE imputation challenge 21

3.1.1 Data structure . 21
3.2 Explorative data analysis 23

3.2.1 Data visualization 25
3.2.2 Data outliers . 28

3.3 Signal pre-processing . 29
3.4 Evaluation metrics . 30

3.4.1 Aggregating evaluation measures 31

v

4 K-Nearest Neighbor model 33
4.1 Similarities between samples 33

4.1.1 Aggregating similarities 36
4.2 KNN regression . 37

4.2.1 Assay based predictions 37
4.2.2 Cell based predictions 38
4.2.3 Rescaling Assay and Cell-based predictions 38
4.2.4 Predicting at different resolutions 40
4.2.5 Merging the predictions 42
4.2.6 Top-k Assay and Cell based predictions 44

5 Factorization models 45
5.1 Factorization models . 45

5.1.1 Objective function 45
5.2 Additive model . 46

5.2.1 Additive model parameter estimation 47
5.3 Matrix factorization . 48

5.3.1 Matrix factorization parameter estimation 49
5.4 Tensor factorization . 52

5.4.1 Tensor factorization parameter estimation 54

6 Experiments and results 57
6.1 Experiments set up . 57
6.2 KNN regression . 58

6.2.1 Assay and Cell based prediction 58
6.2.2 Transformed signals 62
6.2.3 Sweep over the parameters 64

6.3 Factorization models . 66
6.3.1 Hyperparameter tuning 67
6.3.2 Tensor factorization 69

6.4 Test set results . 70
6.4.1 KNN results . 70
6.4.2 Factorization models results 71
6.4.3 Comparing KNN and Factorization models 72

6.5 Imputation challenge . 73

7 Future work and conclusions 77

List of Figures

2.1 DNA double helix structure: from nucleotides to nucleo-
somes to chromosomes. Credit to [7] 8

2.2 Sequencing techniques . 10
2.3 Example of signal track. Taken from [15] 12
2.4 Multi scale deep tensor factorization. Credit to [3] 14
2.5 Tensor factorization . 17

3.1 Tensor data. Taken from [15] 22
3.2 Flat data cube. Taken from [15] 23
3.3 BedGraph format . 24
3.4 C03 signals distribution . 26
3.5 top1% C03 signals distribution with logarithmic scale . . . 26
3.6 Mean and std of the median values for each cell 27
3.7 Mean and std of the median values for each assay 27
3.8 (DNase-seq, ATAC-seq) against Chip-seq top1% scales with

logarithmic scale . 28
3.9 Average outliers value of top1% signals 29
3.10 Transformation fuctions . 30

4.1 Heatmap of the similiarity matrix of the training samples . 34
4.2 Zooms on high-similarity quadrants of the heatmap (Figure

4.1) . 35
4.3 Estimated similarity values 36
4.4 Signals C02M02,C02M18 chromosome 1, bp[6:8]1e6 39
4.5 Pearson correlation coeff. at different resolutions 41

5.1 Additive model . 47
5.2 Matrix factorization model 49
5.3 Tensor factorization model 53

6.1 Assay and cell-based predictions 59
6.2 Assay and Cell prediction at different resolution 60
6.3 Assay and Merge predictions 61
6.4 Assay and Cell top k nearest neighbours sweep 64
6.5 Sweep for the λRidge regularization hyperparameters 68
6.6 Trend of MSE on training and relative MSE on validation

set for Additive and Matrix factorization best runs 69

vii

6.7 Trend of relative MSE on validation and MSE on training
set for tensor factorization best run 70

6.8 Challenge first four rankings. Taken from [15] 73

List of Tables

4.1 Notation . 33

6.1 Performance of Assay and Cell-based predictions 59
6.2 (a) Assay-based predictions (b)Cell -based predictions at

different resolutions (10k, 100k, 1mln) 60
6.3 Merge between assay and cell predictions at different reso-

lutions . 62
6.4 Merge between predictions made with different transforma-

tion of the signals . 63
6.5 Merge comparison . 65
6.6 Comprehensive table for the kNN merge results 66
6.7 KNN test set results . 71
6.8 Hyperparameters recap . 71
6.9 Factorization test set results 72
6.10 KNN test set results comparison 74

Abstract

Epigenomics is the study of the modifications of the genome, i.e., the com-
plete set of DNA which encodes all the information necessary for the func-
tioning of an organism, that do not involve changes to the DNA sequence
itself. Such modification includes chemical modification of the histones
(the protein around which the DNA is packaged), DNA accessibility and
interaction between proteins and DNA.
Nowadays, thanks to huge improvements made in genome sequencing tech-
niques we have access to a vast amount of data that incorporates a variety
of biochemical activities coming from the different genes. This informa-
tion is critical in order to understand the different genetic variations and
mutations that may play a role to identify particular diseases, their initial
development and progression. Even though the sequencing is a very pow-
erful technique, it has its downsides; indeed, performing experiments that
measure the genomic features is expensive and technical challenges may
prevent a comprehensive characterization of the genome in determinate
settings.
To overcome this problem, a valuable method is the development of tech-
niques capable of predicting the outcome of those experiments and imput-
ing the biochemical activity in the form of signals which correspond to
data elements representing the DNA behavior. By imputing signals it is
possible to support existing experiments and predict the outcome of the
ones not yet performed.
In this thesis we develop new algorithms able to impute signals with high
precision and, taking as a baseline the previous works done in this research
area, attempt to outperform them. The first part of the work, exploiting
the data provided by the ENCODE Consortium, consists of data analy-
sis, data pre-processing and the implementation of a Nearest Neighbour
algorithm for signal imputation. The second part applies matrix factor-
ization and tensor factorization techniques, in an attempt to improve per-
formances and eventually extract potentially useful information from the
trained models.

xi

Sommario

L’epigenomica è la scienza che studia le modifiche del genoma, cioè il set
completo di DNA che codifica l’informazione necessaria per il funziona-
mento di un organismo che non coinvolge cambiamenti della sua stessa
sequenza. Questo tipo di cambiamenti include modifiche a livello chimico
degli istoni (proteine intorno alle quali il DNA è avvolto), all’accessibilità
al DNA e all’interazione tra proteine e DNA.
Al giorno d’oggi, grazie all’affinamento delle tecniche di sequenziamento
genomico, abbiamo accesso ad un vasta quantità di dati che incorpora un
grande varietà di attività biochimica proveniente dai geni. Questa infor-
mazione è fondamentale per comprendere a pieno le differenti mutazioni
genetiche, le quali giocano un ruolo importante nell’identificazione di speci-
fiche malattie, del loro esordio e sviluppo. Nonostante il sequenziamento
sia una tecnica molto efficace, essa presenta degli svantaggi; infatti, es-
eguire esperimenti che misurano le features del genoma è estremamente
dispendioso. Inoltre, numerose problematiche dal punto di vista tecnico
potrebbero prevenire, sotto determinate condizioni, una caratterizzazione
comprensiva del genoma.
Per superare questo ostacolo, una metodologia valida consiste nello sviluppo
di tecniche in grado di predire il risultato di tali esperimenti ed imputare
l’attività biochimica sotto forma di segnali, i quali costituiscono i dati che
rappresentano l’attività del DNA. Infatti, attraverso i segnali imputati è
possibile supportare i già esistenti esperimenti, predicendo l’esito di quelli
non ancora effettuati.
All’interno di questa tesi, riportiamo lo sviluppo di nuovi algoritmi in
grado di imputare segnali con un’alta precisione cercando di migliorare le
performance ottenute da alcuni algoritmi implementati precedentemente
in questo ambito.
La prima parte del lavoro, utilizzando i dati forniti dall’ENCODE Consor-
tium, verte sull’analisi dei dati, il loro pre-processing e l’implementazione
di un algoritmo per l’imputazione dei segnali basato sui Nearest Neigh-
bours. La seconda parte, invece, approccia il problema attraverso tecniche
di fattorizzazione per matrici e tensori, cercando di migliorare i risultati
già ottenuti ed, eventualmente, estrarre dai modelli trainati informazioni
potenzialmente utili.

xiii

Ringraziamenti

Ringrazio il mio relatore Mark James Carman e i miei corelatori Marco
Masseroli, Arif Canakoglu, Luca Nanni e Pietro Pinoli per avermi seguito
durante tutto il percorso della tesi.
Un ringraziamento speciale va alla mia famiglia che mi ha da sempre
sostenuto e incoraggiato.
Un rigraziamento importante va a Sara che mi ha sopportato, reso felice
in questi ulimi anni e aiutato in modo indispensabile durante la fine del
mio percorso universitario.
Un particolare ringraziamento va a chi ha seguito con me e reso lieto questo
percorso univeritario: il Consiglio dello Iench, Maffe, il Frys, Mazze, Ale,
Alessia e Daniele.
Ringrazio anche Matteo, per l’importante supporto epigenetico, ed Enrico,
Bruno, Andrea, Daniele, Attilio e tutti i miei amici senza i quali non sarei
arrivato dove sono ora.

xv

Chapter 1

Introduction

1.1 Research area

The term ”genome” refers to the complete set of DNA which encodes all
the information necessary to build the entire organism, e.g., the human
body. The units that compose the genome, which are therefore one of the
principal elements of interest for the genomics, are the genes, traditionally
seen as the regions of the DNA that carry the key information necessary
to synthesize a specific protein or a set of proteins.
Genomics is the area of research that studies how the components of the
humane genome work and interact between each other. Due to its critical
importance, the studies related to this research area have evolved very
rapidly across the last years, especially after the completion of the Hu-
mane Genome Project (HGP) in 2003, when scientists defined in detail
the complete set of human genes with information about their structure,
organization and function [1]. The amount of new information brought in
by this revolutionary project and the possibility to access the blueprint
of the structure and elements of the genome switched the attention of
the studies toward the analysis of the specific roles of the different func-
tional elements of the DNA, changing completely the meaning of the word
”gene”. Indeed, when speaking about the studies on genes (regions of the
genome) it is no more correct to just refer to the analysis of regions re-
quired to encode proteins, in fact, the aim of the research has now as a
target a broader variety of different functionalities related to the cellular
life. More in depth, it is now important to be able to create a map of the
different functional elements in the human genome, including: elements
that regulate the activity of the genes and elements that act at the protein
levels [2]. This type of research belongs to the field of epigenomics that
studies the alterations of the genome that do not cause the modification
of the original information embedded in the DNA, allowing to identify
which are the regions that are ”actively working” and to concentrate in
a targeted way the studies about the functionalities of those active genes.

Indeed, to map all the functional elements in the genome it is firstly impor-
tant to identify them, then to focus on the role they play in the cellular
life. According to this goal and studies, the National Human Genome
Research Institute (NHGRI) founded the Encyclopedia of DNA elements
(ENCODE) Consortium [2], which is an international collaboration, to in-
vestigate and identify, employing different epigenomic assays, functional
elements in the genome. However, building a comprehensive map of the
functional units and performing experiments that measure the genomic
features is, in fact, expensive, time consuming and technical challenges
may prevent the characterization of the genome in determinate settings
(e.g., not all the cellular types or tissues are available to be harvested),
so computer science methods integrate and support the research trying
to solve those problems, giving valuable indications by predicting where
potential areas of activity could occur across the genome. This thesis can
then be located in a research field that benefits from a symbiotic relation-
ship between epigenomics, which provides the raw data, and the computer
science world, which processes and extracts from it all the relevant paths
and information.

1.2 Goals and research applications

The raw data provided by the biological experiments, in order to be com-
patible with the computer science algorithms, is processed representing
how likely there will be activity in a certain region of the genome for a
certain cell or tissue, under a specific sequencing technique. The goal of
the thesis is to implement an algorithm able to learn from the available
data and predict with the best possible accuracy in which locations of the
target genome there will be potentially active regions. Indeed, the im-
putation task of this work is carried on joining the ENCODE Imputation
Challenge, with the aim of improving the performances of the previous
state-of-the-art models. The main factor we will concentrate on is, in fact,
to find a model that well fits the available data, introducing new ones or
applying reasoned changes to the existing ones.
Other than performances, another possible objective is to enable for future
works the possibility to extract meaningful information from the trained
models in order to give a better characterization of the imputed biological
activity.
Investigating the problem from a broader perspective, the ultimate long
term goal is to take part in the research project that aims at completing
the map of the functional elements of the genome.
From a biological point of view, the ability to understand the locus of
the functional elements brings in important information that can be ex-
ploited to perform precise experiments and gain more knowledge about
what all the genome functionalities are and how they affect the way cells

2

and the human body work. With the amount of data about human DNA,
scientists have more powerful tools to investigate the role that multiple ge-
netic factors, acting together and with the environment, play in complex
diseases such as cancer. In fact, thanks to studies on the genome, med-
ical researchers are able to develop more effective treatment, improved
diagnostics, evidence-based approaches for demonstrating clinical efficacy,
and better decision-making tools [1]. Ultimately, the research pace would
be sped up by considerably if the algorithms developed prove to be robust
and reliable, since manually producing experiments takes much longer than
training a model and imputing target instances.

1.3 Brief description of the work

The first step of the thesis involved partecipating in the ENCODE Im-
putation challenge [2]. The challenge provided us the data and a period
of time to work on an imputation algorithm and after that to submit our
predictions. Along with the challenge data, we were provided with the
results of the main baseline algorithm to compare with when trying to get
good performance: namely Avocado [3], that exploits a multi-scale deep
tensor factorization. Other than Avocado the other two baselines to look
at when speaking about algorithm performance are ChromImpute [4] and
PREDICTD [5]. The former trains an ensemble of regression trees. The
latter exploits PARAFAC tensor decomposition in order to perform im-
putation. Each of the methods will be discussed more accurately in the
following chapter.
The dataset is a tensor with three dimensions, the first one is composed
by different types of cells and tissues, the second is composed by different
assays that represent the techniques used to study the epigenomic state of
the given sample and the third one represents the base pairs of the genome.
Each value in the tensor reflects the outcome of the epigenetics technique
related to the given cell assay and base pair triple (both structure, origin
and meaning of the data will be analyzed more in depth in Chapters 2 and
3). During the period of the challenge, it was possible to just access train
and validation data with the test set being released after the publication
of the results.
To start to define the structure of the algorithm, the first step is to make
the data feasible to be used in an efficient way: memory wise each one of
the raw training samples is too heavy (around 11GB each) and, consequen-
tially, analyzing them becomes very time consuming. To solve the problem
a downsampling approach has been carried on. Moreover, in order to an-
alyze the data, a subset of the genome has been sampled to represent in
a compact way the meaningful information (this type of assumption also
speeds up by lot the process and allows to get a more comprehensive view
on the tensor). The aim of the data analysis is to understand both the

3

distribution of the values and the possible relations between different cells
and assays. The latter have been explored further by computing the Pear-
son correlation between each sample, allowing to estimate the similarities
between different cells and assays.
For what concerns the data normalization task, in order to smooth the
values of the samples, different transformations have been applied. The
data transformations and relative results will be discussed in Chapters
3, 6. After data preprocessing, the first model implemented is a Nearest
Neighbour (kNN) regressor that exploits the above similarities across the
assay and cell dimensions. The idea is to compute predictions employing
the information carried by the same assay across different cells and same
cell across different assays. Different merge techniques have been used in
order to efficiently include into the final prediction information coming
both from cells and assays. After performing imputations considering the
whole genome length, we investigated methods for finding similarities at
local resolutions, with the idea to try to predict independently consecutive
sections of the sample, always exploiting the same kNN algorithm, aiming
at including more information from the considered dimensions.
With another kNN approach we investigated whether or not rescaling the
samples could have been a useful way to improve the performance. The
idea behind the approach is to first try to predict the locus of the bio-
chemical activity, then the scale of the values of the identified regions.
The last techniques implemented are three factorization models: an addi-
tive model, a matrix factorization model and a tensor factorization model.
The objective is to catch, through different decompositions, key aspects of
the dimensions that compose the dataset. The capability of successfully
training the model gives the possibility to correctly characterize all the pa-
rameters and, consequentially, to enhance the quality of the predictions.

1.4 Outline of the thesis

The thesis is structured as follows:

• Chapter 2: Background analysis necessary to understand which are
the biological fundamentals of the research area. Moreover, we present
a more in depth explanation of what the baseline algorithms are and
how they work, plus the presentations of the main methodologies
used in this research and the different goals we wanted to achieve
exploiting each one of them.

• Chapter 3: In this section we describe more precisely the Encode Im-
putation Challenge, including the main problems that the challenge
brings, how to solve them and how the data is structured. Also, we

4

address how the data analysis task has been performed, the infor-
mation extracted from it and the data normalization problem.

• Chapter 4: In this chapter all the implemented techniques related to
the kNN model will be formalized in detail

• Chapter 5: In this chapter additive, matrix factorization and tensor
factorization models will be formalized in detail.

• Chapter 6: All the results achieved in and outside the challenge will
be reported along with the modalities with which all the experiments
have been carried out.

• Chapter 7: In this section will be included the conclusions of the
thesis, explaining the relevancy of the work, plus we describe the
possible future changes that can improve on what has already been
done and that can contribute to push towards the ultimate goal of
the epigenomic research area.

5

6

Chapter 2

Background

2.1 Biological background

The DNA is a molecule found inside a special area of the cell called the
nucleus; it contains all hereditary instructions necessary to guarantee the
correct functioning of all the activities inside the human body’s cells [6].
The information inside the DNA is represented by a code composed of
4 different elements (chemical bases): adenine (A), cytosine (C), guanine
(G), thymine (T). The order with which the bases are put in a the sequence
of DNA determines the information available to construct and maintain
the organism. The chemical bases pair up to form base pairs (A with T and
C with G) which are the main component of what is called a nucleotide,
the unit of the genome; multiple units are arranged into two long strands
that form a double helix, the DNA (Figure 2.1).

The DNA molecule is packaged into thread-like structures called chro-
mosomes (the chromosomes considered in this work are chr1 to chr22 and
chrX). Each chromosome is made up of DNA wrapped many times around
proteins called histones, forming nucleosomes that support its structure
[8]. Genes correspond to regions within the chromosomes that can be con-
sidered the basic unit of heredity, [9] coding the key information necessary
to guarantee the cells correct functionalities.
In order to transfer the information coded by the genes into practice, there
are two main phases that need to be mentioned to correctly understand
how the genome functional elements work, express themselves and how
they can be characterized from an epigenomic point of view [10]:

• Transcription: is the first step of gene expression where the DNA
double helix unwinds near the gene allowing the RNA to transcript
the information coded inside.

• Translation: the information gathered from the DNA is decoded

Figure 2.1: DNA double helix structure: from nucleotides to nucleosomes to chro-
mosomes. Credit to [7]

in order to build proteins, which perform critical cellular functions,
including the transcription itself and the regulation of the gene ex-
pression.

Having made clear the steps necessary to exploit the information inside
the genes, it is now important to understand that the ones that keep in-
structions necessary to synthesize proteins correspond just to 1% of the
genome; indeed, inside the 99% of the remaining regions, many sequences
are functional and do not code for proteins but perform and code infor-
mation critical for the cell; in particular, they regulate the gene’s activity
(e.g they can decide which gene must be active and which not across the
chromosome) [11]. Major examples of non coding regions that perform
regulatory activity are [12]:

• Promoters: Provide sites to bind the proteins apt to read informa-
tion from the DNA. Typically, the promoter regions can be located
ahead of the gene on the DNA strand.

• Enhancers: Provide binding sites for proteins that help activate the

8

transcription of the information coded into the DNA. It is possible
to locate the enhancers before or after the gene they are regulating,
sometimes they can be also found far away.

This kind of variety of possible functionalities that can be discovered can
play a key role in the process to understand in a comprehensive way how
the genome works and it is, indeed, the main reason why this research
area, and so the thesis, is pushing towards the complete mapping of the
DNA functional elements.

2.2 Epigenetics

The main way to study how these functionalities unfold across the genome
is through epigenetics.
Indeed, epigenetics studies all the DNA modifications that do not change
the DNA sequence but can affect gene activity [13]. There are, in fact,
chemical compounds, entailing epigenetic changes, regulating both activ-
ity modifications for a given gene. These chemical compounds constitute
the epigenome.
Epigenetics changes can help to understand if genes are active or not,
therefore, can determine, for example, the production of certain proteins
for a given cell, ensuring that only the necessary ones are produced. For
instance, proteins that promote bone growth are not produced in brain
cells [13]. Two common types of epigenetics modification, which are stud-
ied through out the assays composing the dateset exploited in this thesis,
are:

• DNA-Methylation: This process enables the turning off/silencing of
a gene in order to inhibit the production of proteins. It unfolds when
a methyl group is attached to the target segment of the DNA.

• DNA-Acetylation: This process increases the probability of nearby
genes to be transcribed and works by adding an acetyl group to the
target DNA segment.

The general technique that needs to be analyzed, in order to study the
effects of those epigenetic marks and understand the activity of the func-
tional units in the genome, is genome sequencing [14]. Sequencing simply
means determining the exact order of the bases in a strand of DNA. The
main idea behind the technique is to read mutiple segments of nucleotides
in the DNA and assemble them through sequence overlapping in order
to reconstruct a bigger section of DNA. The segment reconstruction can

9

be interpreted as a picture of the current state of the genome. If this
technique is paired with epigenetic modifications, the assay will allow to
understand, under specific conditions, which are for example the regions
where proteins interact with the DNA or where there is high chromatin
accessibility. In particular, the sequencing techniques used to perform the
assays [15] are the following (Figure 2.2):

(a) DNase-seq and ATAC-seq. Taken from [15]

(b) Chip-seq. Take from [16]

Figure 2.2: Sequencing techniques

• DNase-seq: Is used to understand which are the regions of the DNA
that have chromatin accessibility, which are basically fragments of
the genome that are accessible to regulatory proteins.

10

• ATAC-seq: Is used to investigate also the chromatin accessibility
but with a different process. In this case, instead of the enzyme
DNase-I, the sequencing is performed through an enzyme called Tn5
transposase. Both ATAC and DNase-seq result into a genome-wide
track that represent the state of chromatine accessibility.

• Chip-seq: is used to obtain genome-wide profiles of specific histone
modifications (the histone modification is defined as immunoprecip-
itation of the chromatine). Examples of histone modifications are
methylation and acetylation and they basically allow to analyze frag-
ment of DNA wrapped around the histone proteins.

2.3 Signals processing

Given a brief overview on the biological aspect of the thesis, is now impor-
tant to understand the nature of the data on which we are working on and
how the sequencing technique output is translated into a friendly format
for a computer scientist [17]. Starting from the begin, all the sequences
of DNA coming from the sequencing reads have the same length (e.g., 36
base pairs) and are, for the download and processing steps, encapsulated
into a tagAlign format [15]. The first step is the subsampling, where all
the reads, which are sequences of bases, are selected according to a certain
depth, which in this case is 30 millions. The 30 millions reads are then
aligned on the reference track of the genome GRch38, where, according
to the position of the considered read, the segment is associated with the
genome reference corresponding locus. The step is performed through the
BWA software for alignment [18]. Subsequently, only the first position
x on genome of each read is considered and extended in a window of 150
base pairs (x -75; x+75), where the number 150 corresponds to the average
distance expressed in base pairs between two nucleosomes. The next step
consists in defining a genome-wide pseudo background based on the num-
ber of counts available for each base pair, where the counts correspond to
the number of instances showcased by the aligned reads on the genome (the
reads can overlap, increasing the number of counts). Through a process
called Peak calling, the significance of each number of counts for each base
pair is defined with respect to the counts of the nearby base pairs with a
Poisson distribution. The specific count, which is considered significant if
a certain confidence level is met (the p-value needs to be less than a certain
threshold), will express weather or not, in the corresponding region of the
genome, there is evidence of a peak of biochemical activity. These last two
steps are performed using the MACS2 software [19].
The values of the signals, for each base pair, are then obtained through
the negative log10 of the Poisson p-value counts (negative log10 p-value

11

score provides a way to threshold the samples). The final tracks, which
correspond to confidence scores, provide a measure of statistical signif-
icance of the observed biochemical activity in the form of genome-wide
signals that correspond to each couple cell-assay of the dataset (Figure
2.3), where a dataset consists of signals generated from applying many
assays to different cell-lines.

Figure 2.3: Example of signal track. Taken from [15]

2.4 Related works

There exist already a lot of studies about different techniques that, starting
from the above generated signals, are feasible for the process of biochemical
activity imputation. Three are the main ones that have been used as
reference in this thesis: ChromImpute [4], PREDICTD [5], Avocado [3].

2.4.1 ChromImpute

The ChromImpute method consists in an ensemble regression-based ap-
proach to epigenomic imputation. The used dataset is composed by 127
different cells and tissues and 34 distinct assays. The largest part of the
cells (111 samples) comes from the Roadmap Epigenomics project, 16 come
from ENCODE Consortium. The 34 assays include 30 histone modifica-
tion, DNA-methylation, DNase I hypersensitivity, RNA-seq and histone
variant H2A.Z. The 34 genomic marks/assays are partitioned into 4 dif-
ferent tiers, each one of them includes a determined type of assay. The
partition establishes which cell-assay signals can be used in order to predict
a target track (e.g tier 1 assays are used just to impute tier 1 assays). Re-
specting the tier constraint, the algorithm main leverages on two different
type of sample:

• Same sample different mark: considering the same cell line with
different assays applied on.

• Different sample same mark information: considering the same ex-
periment performed across different cells.

Each predictor is a tree that integrates two type of feature combined to-
gether: in order to predict a target assay jt performed on a target cell it,
one group of feature will come from same cell it related to different assay

12

tracks from jt, the other one from same assay jt but performed on different
cells than it.
The tree, which integrates those features, is trained using each cell that
has the target assay available. The average of all the predictors results
will consists in the final prediction of the target signal Yij .

2.4.2 PREDICTD

The PREDICTD approach was applied on a dataset composed by 127
cells and 24 assays coming from the Roadmap Epigenomics project. The
whole tracks at 25bp resoultion compose a 3D tensor with dimension 127×
24 × BasePairs. The method, which is based on the PARAFAC tensor
decomposition, has two main group of parameters that need to be trained:
the biases and the latent factors, respectively defined with three vectors
and three matrices. Defined K,J, I respectively as the cardinality of cells,
assay, base pairs and k, j, i as the specific cell, assay and base pair, the
biases matrices c, a, g (cell, assay, genome) have dimensions K × 1, J × 1,
I × 1. Instead, the factor matrices C,A,G have dimensions K × L, J × L,
I × L with L equal to the number of latent factors. The different latent
factors are trained using stochastic gradient descent (SGD), by minimizing
the squared error (SE) objective function:

argminC,A,G,c,a,g
∑

j,k,i∈Strain

(Dtrain
j,k,i − [

L∑
l=1

Cj,l ∗Ak,l ∗Gi,l + cj + ak + gi])
2+

+λc‖C‖22 + λa‖A‖22 + λg‖G‖22
(2.1)

This objective function contains the Ridge regularization terms with
one lambda for each group of parameters. The training of the model is
partitioned into three steps where each one includes an hyper-parameter
tuning phase. In the first training step the base pair latent factors are
held frozen and just the cell and assay latent factors are updated; in this
case just 0.01% of the 25 base pair resolution signal is considered. After
the cell and assay latent factors have converged, the second step consists
in training the base pairs latent factors. Lastly, all the parameters are
carried through a comprehensive training phase. The training of the base
pair latent factors is based on the adaptive moment estimation (ADAM)
which is an extension to the stochastic gradient descent procedure to up-
date model weights iteratively from the training data [20]. It adapts the
parameter learning rates based on the average first moment and the aver-
age of the second moment of the gradients. None of the reported results for
the model consider the whole signal at 25 base pair resolution but rather
exploit a subsample of the genome called the ENCODE Pilot regions [21].

13

2.4.3 Avocado

The last considered algorithm, which is also the most recent, is Avocado.
It is the algorithm used as a baseline in the ENCODE imputation chal-
lenge and, as claimed in the reference publication [3], outperforms the two
previous approaches PREDICTD and ChromImpute. The dataset used
to perform the imputation task is composed by 127 cells and 24 assays,
part of a tensor of dimension 127×24×GenomeLength; the assays include
23 histone modifications and DNase sensitivity. The method consists in
a multi-scale deep tensor factorization (Figure 2.4). The first step is the
training of the latent factors which is, also in this case, performed trough
the ADAM optimizer, partitioned in two different steps, and executed
on just the ENCODE Pilot regions. First the cell and assay factors are
trained, then are held frozen starting with the training of the base pair
latent factors for each chromosome. Again the model is trained at last
considering all the parameters.

Figure 2.4: Multi scale deep tensor factorization. Credit to [3]

The two main differences between PREDICTD and Avocado are that,
the former combines the latent factors related to cells, assays and base pairs
in a straightforward way, linearly combining them with a generalized dot
product, while the latter inserts a deep neural network (DNN) in place of
the dot product for which the latent factors are concatenated in one input
vector. Moreover, for what concerns the latent factors of the base pairs,
instead of just using the 25 base pair (bp) resolution units of the genome,
Avocado employs three different sets of resolution which are 25bp, 250bp
and 5kbp. Finally, Avocado requires only ∼ 3.7 percent of the ∼ 92.2
billion parameters employed by PREDICTD’s tensor factorization model,

14

increasing the efficiency of the algorithm.

2.5 Metodologies

Here I will present from just a theoretical point of view the three main ap-
proaches that I have been used during the thesis to perform the imputation
task.

2.5.1 Nearest neighbors regression

The k-nearest neighbors is an instance based approach, which constructs
the predictions directly from the training instances themselves [22]. In-
deed, there is no actual model to train in order to build the knowledge
necessary for the predictions; the knowledge is constituted by the training
set itself. This kind of models implement a lazy learning scheme which is
an evaluation strategy that delays the evaluation of a new expression until
its value is needed, avoiding repeated calculations.
Given an unknown test instance, a distance function is exploited in order
to define which are the closest training samples to it; once the distances
are defined and the closest samples are located, they are used to predict
the class or the value of the test set sample. The two main aspects of the
k-nearest neighbor approach are: finding the appropriate distance func-
tion for the dataset and the correct number k of neighbors necessary to
get the best predictions. The most common distance measure used is the
Euclidean distance but, in order to define how close two samples are one
can use a similarity measure. In fact, similarity can be seen as an orthogo-
nal yet related concept to distance (strong similarity means small distance
and so the other way around). In this work, the similarity measure used,
in order to compute how close two samples are, is the Pearson correlation
coefficient :

ρxy =

∑n
i (xi − x) ∗ (yi − y)√∑n

i x
2
i ∗

√∑n
i y

2
i

(2.2)

where n is equal to the number of samples, xi is the i-th sample and x is
equal to the average of the samples.
The number k of neighbors needs to be selected carefully, if k is too small,
the prediction may be too sensitive to noisy points, if it is too big, the
algorithm might end up including training samples too dissimilar between
each other. The prediction of the algorithm can be related to both a
classification or regression problem; the imputation process is carried on
as a regression problem. The regression task involves, as the first step, the
location of the set K of the k -nearest samples to the test instance; then,
the prediction of the instance y can be performed as the average or the

15

weighted average of the nearest neighbors values:

y =

∑
x∈K x

|K|
(2.3)

y =

∑
x∈K ρxy ∗ x∑
(x,y):x∈K ρxy

(2.4)

2.5.2 Matrix factorization

Given a matrix R m×n with rank k � min{m,n} is it always possible to
express it as the product [23]:

R = UV T (2.5)

where the matrix U has dimension m × r, the matrix V has dimension
n×k and the rank of both row space and column space is k. Each column
of the matrix U or V is referred as s latent component and each row of the
matrix U or V is referred as a latent factor. Given ui the i-th latent fator
of matrix U and vj the j-th latent factor of the matrix V, each element rij
of the original matrix, as it follows from equation (2.5), can be expressed
as:

rij = ui · vj (2.6)

Matrix factorization models are widely used in the recommender sys-
tems world [24] and it is, indeed, useful to contextualize the algorithm
using a user rating matrix (URM), instead of a general R m× n, in order
to get a better intuition on what is the actual meaning of the decomposi-
tion and why it is valuable to factorize the input matrix.
So, an URM m×n, with each row i corresponding to a general user, each
column j corresponding to a general item and with each element (i, j) cor-
responding to the rating an user i has given to an item j, can be factorized
as the product of a m× r matrix U and a n× r matrix V with r being the
number of latent factors. The values in the matrix U represents the value
of affinity that a certain user i has towards certain characteristics of an
item j and the matrix V represents the membership value of a certain item
j for certain characteristics. It is then more likely that, if a user affinity
matches the item membership, the corresponding rating value (i, j) will be
higher. Exploiting this kind of model one can express the predicted rating
rij as:

rij =

k∑
l=1

uil ∗ vjl (2.7)

In order to define which are the parameters necessary to define the matrices
U and V, it is possible to formulate an optimization problem as:

min J =
1

2
||R− UV T ||2 (2.8)

16

The problem can be solved by training the parameters with a stochastic
gradient descent algorithm (SGD [25]) and once the objective function
is minimized, it will be possible to impute all the missing values of the
original matrix R (if it is a sparse matrix).

2.5.3 Tensor factorization

Figure 2.5: Tensor factorization

A tensor is a multidimensional array. More formally, an Nth-order
tensor is an element of the tensor product of N vector spaces, each one
with its own coordinate system [26]. The most general form of tensor de-
composition is the canonical polyadic decomposition (CPD) or PARAFAC
decomposition (Figure 2.5), which is also the one we employed in this work.
The key concept of this rank decomposition is to express the tensor as the
sum of a finite number of rank-one tensors [27].
Given a third order tensor X ∈ RI×J×K defined L as the number of latent
factors used for the decomposition, it can written as:

X =
L∑
l=1

al · bl · cl (2.9)

where al ∈ RI , bl ∈ RJ and cl ∈ RK are the rank one components of the
decomposed tensor.
The number of rank one components corresponds to the cardinality of the
tensor and will be composed by a number of elements equal to the number
of latent factors. In order to define a single element of the tensor xijk the
element-wise corresponding formulation is:

xijk =
L∑
l=1

ail ∗ bjl ∗ ckl (2.10)

Also in this case, the tensor decomposition, as the matrix factorization
algorithm, results very valuable in order to express the different elements
across the three dimensions, expressing them through characteristics in-
tegrated inside the trained latent factors parameters. The training of the

17

basic PARAFAC decomposition model can be performed with the mini-
mization of an objective function. An example is the one previously for-
malized for the state-of-the-art model PREDICTD (2.1).

2.6 Research questions

Given that the ultimate goal of the thesis is to perform the imputation
task with the best possible results, trying to outperform the above base-
line predictors (in particular the Avocado one), in this last section of the
background I will report which are the the main research questions and
expected goals that lead us to the selection of the aforementioned method-
ologies. The main and more general question concerns the way in which
we could exploit those methods in order to improve over the selected base-
lines. Taking as an example the KNN regressor, from both the theoretical
and implementation point of view, the method is simpler than a deep ten-
sor factorization and we decided to commit to it for two main reasons: (i)
we wanted to investigate something relatively novel in the research area
(ii) we wanted to understand if in harsh conditions like high sparsity, low
number of training data and challenging distribution of the test set (the
dataset will be carefully described in the following chapter), where train-
ing a model in order to achieve good performances can result at times
very difficult, a basic instance based method, which naturally extracts
the knowledge directly from the data, could be able to achieve similar or
even greater performances. Indeed, all previous state-of-the-art methods
worked training from datasets with lower sparsity, ensuring that the dis-
tribution of the test data with respect to the the training data was such to
allow a more efficient training of the model. Thus, the task of comparing
them with the kNN approach could turn out to be interesting and produc-
tive from a research point of view, providing a new possibility when there
is the necessity to impute for dataset under the above conditions.
The second adopted approach is the Matrix factorization (which can be
considered a ’superset’ of the additive model that will be also presented
in Chapter 5). Also in this case, the idea is to introduce an interesting
term of comparison for the tensor factorization models. As will be further
explained in the related Chapter 5, the idea behind the implemented algo-
rithm is to perform factorization of the cell and assay dimension multiple
times across the genome. Doing so, we wanted to better comprehend if
it was actually necessary to adopt the tensor decomposition model, fac-
torizing also across the genome dimension, or it is actually possible to
impute independently the value at each base pair from just training the
characteristics/latent features of the corresponding cell and assay dimen-
sion, achieving similar or even better performance.
Finally, we decided to employ the tensor factorization method based on
what both the Avocado and PREDICTD method introduced in their ap-

18

proach. We tried to showcase if the way in which their training task has
been carried out can actually lead to the best possible predictions. The
main question, specially for what concerns the PREDICTD algorithm, is
the choice to implement as biases three matrices c, a, g with dimensions
K × 1, J × 1, I × 1. Indeed, considering the fact that they trained their
model with over 1000 different samples, the idea of summarizing the ba-
sic characteristics of the genome into one single vector g, differentiating
the predictions by just summing the same constant values relative to the
current couple cell-assay across all the positions, can actually bring to the
loss of potentially useful information that can lead to achieve even better
performance. We did, in fact, try to understand if it is possible to summa-
rize more efficiently and with more accuracy the information of the dataset
(always with the PARAFAC decomposition) by structuring differently the
biases, considering one genome-wide vector for each cell and each assay.
Also, given the high number of latent factors in the PREDICTED model,
we wanted to understand weather or not adding to Ridge the Lasso reg-
ularization (Elastic net regularization [28]) term could have brought to a
natural selection of the most important parameters in the model, improv-
ing performances but also allowing an easier interpretation of the results.
Indeed, a more interpretable trained model could potentially lead to a bet-
ter understanding of important related biological features.
Instead, for what concerns the training phase of Avocado and PREDICTD,
the general idea of training separately the cell and assay from the base pairs
latent factors and then train them together can eventually lead the model
to learn for some parameters sub-optimal information. The algorithm, in
the first two steps, is, in fact, trying to optimize the objective function
updating the assay and cell factor considering the base pairs latent factors
with their original initialization (which does not represent any kind of in-
formation of the data). So, we questioned weather or not could have been
better to train all the parameters concurrently, stopping the model from
learning eventual ’false positive’ information prior to their final compre-
hensive training.
Here is an outline to better summarize the research questions that brought
us to employ the different methods with the relative adjustments: enu-
mitem

(RQ1) Given the structure of the available data, is it possible to outperform
factorization models with a kNN approach?

(RQ2) Can factorizing each element of the genome based on just cell and
assay with the matrix factorization model achieve good performances
and, consequentially, introduce an interesting term of comparison for
the previous baselines?

(RQ3) Is it possible to achieve more optimal solutions with the tensor factor-
ization model by adopting a new structure to summarize information

19

into biases?

(RQ4) Will training concurrently all the parameters and adopting the elas-
tic net regularization term for the base pair factors lead to better
performance and interpretability of the model?

The description of the implemented models, their comparison and the
answers to the above research questions will be provided in the following
chapters.

20

Chapter 3

Investigating the data

3.1 ENCODE imputation challenge

The Encyclopedia of DNA Elements (ENCODE) Consortium is an ongoing
collaboration of research groups founded by the National Human Genome
Research Institute (NHGRI) [29]. The goal of ENCODE is to build a com-
prehensive parts list of putative functional elements in the human genome
in order to lead towards a better understanding of: (i) basic genome biol-
ogy and (ii) the molecular and genetic basis of different diseases.
Since, as already stated in the introduction (Chapter 1), performing assays
on different cells or tissues is expensive the imputation of the biochemical
activity of the different parts of the genome in the form of signal vectors
is very valuable for biologists.
In order to push for further improvements of the quality of the predictions
generated with computer science imputation methods, the ENCODE Con-
sortium announced a challenge, The Encode Imputation Challenge, recruit-
ing researchers to develop a new algorithm able to impute the proposed
test set tracks, outperforming the current state of the art Avocado (Section
2.4).
The research problem of the thesis starts from joining the challenge and,
exploiting the provided data and baselines performances (Average pre-
dictor and Avocado), evolves trying to improve the developed algorithms
performances, even after the deadline imposed by the competition (15th
of August 2019).

3.1.1 Data structure

The data provided with the challenge comes form the ENCODE Consor-
tium and can be summarized with a three dimensional tensor with two
short axes and one long axis (Figure 5.3). The short axes represent 51 dif-
ferent cells or tissues on which the experiments have been perfomed and
35 different genomic assays including DNA-seq, ATAC-seq and Chip-seq
(Histone modification profiling experiments).

Figure 3.1: Tensor data. Taken from [15]

The long axis has a total of 3.031.042.417 elements/base pairs that corre-
spond to almost the entire human genome; the chromosomes involved are
chr1 to chr22 and chrX, excluding chrY and chrM.
Each element of the tensor identifies the evidence of biochemical activity
on a base pair for a given couple of cell and assay. The data cube can
be visualized in a more intuitive way through the metadata table (Figure
3.2) that gives a better understanding on how the problem should be in-
terpreted and approached.
Indeed, each element in the metadata table identifies a genome-wide signal,
which is the outcome of its corresponding assay performed on its corre-
sponding cell (Section 2.3). The data is composed by a total of 368 signals
that, considering the entirety of the dimensions fill the 20% of the table.
The data is provided already split into training T and test B set with re-
spectively 303 and 56 tracks. The former, also through hold out technique,
is split again into 267 training T and 45 validation tracks V. Each signal
in the data cube is provided as bigWig file, an indexed binary format de-
signed to very efficiently store epigenomic tracks, which main advantage
is allowing the representations of dense, continuous data in the genome
browser as a graph [30]. Indeed, this format allows to access just the
meaningful regions of the tracks and since the largest part of the signal is

22

Figure 3.2: Flat data cube. Taken from [15]

mainly composed by zeros, allows to focus the representation only where
the actual biochemical activity is present along the genome.

3.2 Explorative data analysis

The first step, necessary to get a good grasp of the problem, is to explore
the data trying to extract as much knowledge as possible, in order to have
a better understanding of how the signal imputation should be structured

23

and performed. Before getting into a more specific investigation of the
the signals, it is beneficial to get a general overview on what are the main
difficulties that can come along with the data provided by the Imputation
Challenge. In this regard, three main topics are worthy to be presented:
Data format, Data size and Sparsity of the data.

Data format

As already mentioned above, the bigWig files are very efficient from a
storage point of view but they are slow for operations that require rapid
repeated access to small chunks of the signal. The first step is then to
unpack them into a more friendly format as provided by numpy. The
process of unpacking consists of different steps. In the first step the big-
Wig files are transformed into a BedGraph file through the tool bigWig-
ToBedGraph available in the USCS Genome Browser [30]. BedGraph files
are line-oriented formats (Figure 3.3) that represent for each chromosome
the value associated to the specified range of base pairs, chromStartA to
chromEndB. The signals in the BedGraph format are then transformed
into numpy arrays.

Figure 3.3: BedGraph format

Data size

Each signal, after unpacking, is represented as a numpy vector with dimen-
sion 1 × Number of basepairs (∼ 3 billion) which corresponds to an huge
number of values. Indeed, a single signal is on average 10GB, making it
difficult to be easily managed. Computationally, standard tasks require
too much time in order to make the imputation problem feasible. More-
over, the whole tensor weights 303× 10GB and, in order to fit in memory,
would require to be partitioned in smaller chunks that have to be loaded
and stored many times to access the whole dataset, creating a bottleneck
for every operation and algorithm we try to implement.
Thus, in order to make the data more manageable the signals are down-
sampled to a 25 base pair resolution. Each bin of the signals corresponds
to the average value over 25 consecutive base pairs in the original track
(from now on, every reference to the genome length will consider the 25
base pair resolution). This process drastically reduces computational time
and allows to load without any problem more than one signal into memory.
In order to work in an even more efficient way, more types of sampling will
be presented in the thesis, each one suitable to carry out a specific task.

24

Moreover, the 25 base pair resolution signal is also the required format for
the Imputation Challenge submissions.

Sparsity of the data

The high percentage of missing values (80%) frustrates the implementation
of heavy training based techniques. This is why it is necessary to carefully
chose the number of parameters of our models, especially for what concerns
the number or latent factors for matrix and tensor factorization.
Moreover, the sparsity comes with the challenging distribution provided
by the ENCODE team of training, validation and test set tracks. The test
tracks (Figure 3.2) are grouped along specific cell-lines for which we have
basically no information. Indeed, there is often just one training signal
track, beside the test tracks, giving information about a particular cell-
line. The choice of this type of distribution adds further difficulty and
pushes for the development of an algorithm robust enough to work under
these conditions. This is in fact one of the novel factors introduced by the
challenge since all the previous algorithms were instead making sure to
train the model with a much larger minimum number of sample for each
cell/assay-line dimension.

3.2.1 Data visualization

After understanding which are the most challenging aspects related to the
data, the next step is to perform a more in depth investigation of the
training data itself, trying to get information useful to understand which
algorithm to implement and how to structure it properly. In order to
visualize how the different signals in the tensor are structured we used
violin plots. These plots show and allow to compare the kernel density
estimation of the underlying distribution of different variables. In this
case, they allow us to compare the distribution of values for a group of
designed signals.
The first step consists of showing the values that compose the different
signals, trying to put a focus on the ones meaningful for the imputation
task. Taking as example the 6 train signals from the cell line C03 of the
dataset, it is clear from the distributions in the plot (Figure 3.4) that the
majority of the values are zeros. Since what we are trying to impute are
the values that showcase biochemical activity in specific regions across the
genome, in order to get meaningful visualizations, it is better just to focus
on the top1% values of each signal. This should allow us to catch the
relevant differences between tracks considering different cell assay couples
(Figure 3.5).

From now on, for the following visualization I will take into considera-
tion just the top1% of the signals values. The main thing to be investigated
is weather or not the differences between the signals are strongly correlated

25

Figure 3.4: C03 signals distribution

Figure 3.5: top1% C03 signals distribution with logarithmic scale

to the intrinsic features of their biological components, cells and assays.
Indeed, a feasible way to perform this kind of analysis is to understand how
the average values vary across all the different cells and all the different as-
says. In order to do this, considering the top1% signals, two measures have
been exploited to characterize the different signals, the median (because
it is much less biased towards outliers than the average) and standard de-
viation. So, after summarizing each top1% signal with the median value,
we characterize each cell-line through a tuple (mean, std) where: (i) the
mean corresponds to the average of all the median values of the signals
belonging to that specific cell-line (ii) the std corresponds to the standard
deviation of all the median values of the signals belonging to that specific
cell-line. Once obtained, the tuples for each cell are represented through

26

out the barplot in Figure 3.6.

Figure 3.6: Mean and std of the median values for each cell

Figure 3.7: Mean and std of the median values for each assay

The same barplot has been extracted from the different assay lines
(Figure 3.7) in order to confront the two different dimensions of the tensor.

The two visualizations show that the mean of standard deviation of the
median value varies more across the different cell-lines than across the
different assays. This suggests that the regions of activity and their cor-
responding values should be more similar for signals related to the same
assay performed on different cells than for different assays applied on the
same cell-line. Thus, it is possible to assume that, the particular tech-
nique used to generate the signal has a more important role when trying

27

to discriminate the different tracks. Going more in depth, this kind of
assumption can get further support from the comparisons of the distribu-
tions of the signals related to the different assay groups (DNase-seq M02,
ATAC-seq M01) and histone modifications. Indeed, given two different
cell-line C02, C17 and, for each one, two signals related respectively to
an histone modification and ATAC-seq or DNase-seq, it is clear how the
difference in scale between the top1% values of the related tracks can be
massive (Figures 3.8).

(a) C02 Chip-seq and ATAC-seq (M01) (b) C17 Chip-seq and DNase-seq (M02)

Figure 3.8: (DNase-seq, ATAC-seq) against Chip-seq top1% scales with logarithmic
scale

3.2.2 Data outliers

It might be useful in the data investigation process to analyze the outliers
of the the different signals.
We have seen that there are meaningful differences in scale between the
DNase, ATAC-seq and other assays but the majority of the experiments
in the dataset are Chip-seqs so it might be useful to analyze the outliers in
the data from a more general perspective, without just focusing on two of
the 35 assays. Indeed, in case the discrepancy in scale is too big between
the different signals, it could be possible to rescale/normalize the dataset
and avoid values that could represent a problem for the imputation prob-
lems.
Big outliers may not have an important meaning from a biological point
of view, so predicting them wont be useful. From just a performance point
of view, those values could end up biasing the predictions on the valida-
tion and test sets. It is, indeed, valuable to investigate those values and a
possible way to do it is, always focusing on the top1%, to select, for each

28

signal, the average of all the values greater than Q3 + 1.5∗ IQR, where Q3

is the third quartile and IQR is the difference between the third quartile
and the first quartile (this should provide us information about the aver-
age outliers values in the dataset).

Figure 3.9: Average outliers value of top1% signals

Indeed, from Figure 3.9 it is clear how across the 267 signals of the
training set there are remarkable differences in the highest values of the
signals. So, in order to solve this problem and improve the quality of the
predictions, the dataset has been transformed as will be explained in the
following section.

3.3 Signal pre-processing

Other than the big differences due to the different nature of the experi-
ments we have seen how, also considering all the signals of the training
set, there are meaningful discrepancies in scale. Those may be produced
by the process of signal generation (Section 2.3); indeed, tracks, like the
ones we are working on, that encode statistical significance, such as the
-log10p-value of the signal compared to a control track, typically have a
higher signal-to-noise ratio [3], possibly increasing the number of outliers in
the tracks. So, to reduce their effect, we have decide to transform the data
using three different functions: logarithm (log), logarithm of the logarithm
(log log) and inverse hyperbolic sine (sinh−1) (Figure 3.10).

Once a prediction is computed, the result is properly reverted to the
original scale for the evaluation task. Given a signal Xij in the training set
with i and j, referring to the cell and assay and, given xijk denoting the
value of the signal at the k-th base pair, the transformations are applied

29

Figure 3.10: Transformation fuctions

to all signals in the dataset as follows:

• Log transformation:

x̃ijk = ln(xijk + 1) (3.1)

• Loglog transformation:

x̃ijk = ln(ln(xijk + 1) + 1) (3.2)

• Inverse hyperbolic sine:

x̃ijk = sinh−1(xijk) (3.3)

sinh−1(xijk) = ln(xijk +
√

1 + x2ijk) (3.4)

The aim of the transformation is to reduce the large values without reduc-
ing too much the differences between small values and actually meaningful
high values, otherwise, key information for the imputation would be lost
in the process.

3.4 Evaluation metrics

Along with the Imputation Challenge are provided nine evaluation mea-
sures that will be used in order to score the ranking of the different sub-
missions. The measures can be partitioned in two macro-groups: the ones
related to the mean squared error (MSE) and ones related to measuring
correlation between the ground truth and the prediction. The metrics are
the following [15]:

30

• MSE : Standard mean square error between true signal and predicted
signal.

• MSE1obs: Given the indexes of the top1% values of the true signal,
mean squared error between the true signal and the predicted signal
just considering the values associated to those positions.

• MSE1imp: Given the indexes of the top1% values of the predicted
signal, mean squared error between the true signal and the predicted
signal just considering the values associated to those positions.

• GWcorr : The Pearson correlation coefficient between the true signal
and the predicted signal.

• GWSpear : The Spearman correlation between the predicted and true
values.

• MSEProm: Similar to the global mean-squared error (MSE), but
averaging is done only across genomic regions that are annotated as
“promoters”.

• MSEGene: MSE computed across regions annotated as “genes”.

• MSEEnh: MSE computed across regions annotated as “enhancers.”

• MSEvar : MSE weighted by cross-cell-type variance. Computing this
measure involves computing, for an assay carried out in cell type x
and assay type y, a vector of variance values across all assays of type
y. The squared error between the predicted and true value at each
genomic position is multiplied by this variance (normalized to sum
to 1 across all bins) before being averaged across the genome.

3.4.1 Aggregating evaluation measures

Given the fact that the majority of the measures used in the challenge
to score the imputed tracks are based on the MSE, if we are trying to
optimize a prediction function and we need to chose an appropriate per-
formance measure that can be aggregated on the validation set, the most
obvious choice would be to optimize the average of the MSE between the
predictions and the true signals. So, defined the predicted signal Xij for a
couple cell assay (i,j) and the corresponding true track Yij , the aggregated
measure on the validation set would be:

avgMSE(X) =
1

|X|
∑

Xij∈X(predicted)

MSE(Xij , Yij) (3.5)

Where |X| is the size of the validation dataset.

31

The problem with optimizing the average MSE value is that, as ex-
plained in the Section 3.2, some signals have low variance and may be
relatively easy to predict, giving as a result low MSE values, while others
have high variance and the active regions showcase huge values so it could
be harder to predict with good accuracy. Thus, since we are averaging
the MSE, the final result would be very sensitive to the latter signals,
representing a problem because the overall performance of the teams in
the competition is computed by averaging the quality (the ranking w.r.t.
other teams) of the predictions on each predicted signal. Indeed, an high
average MSE could hide the fact that we are achieving good results on
the majority of the predicted samples because, on the few harder to pre-
dict signals, we are doing particularly bad, while, a relatively lower MSE,
could introduce a bias towards certain algorithms even if we are not do-
ing particularly well on each of the validation tracks. Thus, optimising
performance only for hard to predict signals at the expense of the easy to
predict ones could result in poor average rank performance. As a possible
solution, instead of averaging MSE directly, we could optimise the Fraction
of Variance Unexplained (FVU), which takes into account the variance of
the signal being predicted, in order to normalise the MSE:

FVU(Xij , Yij) =
MSE(Xij , Yij)

σ2(Xij)
(3.6)

where σ2(Xij) =
1

K
∑
k

(xijk − µ(Xij))
2 (3.7)

Alternatively, exploiting the results of the Avocado model, we can compute
the relative MSE values with respect to the predictions of the baseline

system, Y
(base)
ij :

relMSE(Xij , Yij ;Y
(base)
ij) =

MSE(Xij , Yij)

MSE(Xij , Y
(base)
ij)

(3.8)

Moreover, the relative MSE would be a much easier metric to interpret
if we want to really understand how far behind/ahead we are from the
baseline predictor. Note that, both FVU or relMSE are simply rescaled
versions of MSE where the scaling coefficient depends on the signal but
not the prediction (i.e. it is constant with respect to the model) and
thus, optimising for these evaluation functions, is no more difficult than is
optimising for MSE.
All the notation used in this chapter will be explained and formalized in
the next one in order to guarantee uniformity across the explanation of
the model.

32

Chapter 4

K-Nearest Neighbor model

Let’s start describing the model by defining the notation that will be used
in the following sections (Table 4.1):

Notation Description

I = 51 Number of cell types
i i− th cell type ∈ I
J = 35 Number of assays
j j − th assay type ∈ J
K = 121241707 Num. of genome locations (25 base-pair resolution)
Km = 1000000 One million genome locations (randomly sampled)
k k − th base pair ∈ K or Km
L Number of latent factors
l l − th latent factor ∈ L
Xij = {xijk}Kk=1 Signal for cell-type i, assay j
xijk ∈ R+ ∪ {0} Value of signal for cell-type i, assay j at position k

X(train) ⊂ {Xij}I J
i=1,j=1 Training dataset (subset of all cell+assay pairs)

Yij(θ) Predicted signal for cell i assay j using parameters θ
L(X,Y) loss function O(θ)
objective function given the parameters θ
µ(Xij) Mean of signal for cell i assay j
σ(Xij) Standard deviation of signal Xij

Zij = {zijk}Kk=1 Signal Xij normalized with z-score

zijk =
xijk−µ(Xij)
σ(Xij)

Value normalized using z-transform

x̃ijk = sinh−1(xijk) Value transformed using Inverse Hyperbolic Sine
ρ(Xij , Xi′j′) Peason correl. between Xij and Xi′j′

ρ(i′i) Estimated Pearson correl. between cells i and i′

ρ(jj′) Estimated Pearson correl. between assays j and j′

~ρw(Xij , Xi′j′) Pearson correl. between two signals at a given resolution w

Table 4.1: Notation

4.1 Similarities between samples

The preliminary step to the implementation of the KNN approach is to
define the different similarities between all the signals in the training set.
Other than computing the values necessary to describe the distance be-
tween the signals, defining how close a signal is to another can be very

Figure 4.1: Heatmap of the similiarity matrix of the training samples

helpful in order to further understand the different relationships between
assay-lines and cell-lines (how much we should rely on assay or cell di-
mensions in order to compute the prediction for a given target). First of
all, let us denote the mean and (population) standard deviation for each
signal as:

µ(Xij) =
1

K
∑
k

xijk and σ(Xij) =

√
1

K
∑
k

(xijk − µ(Xij))2 (4.1)

The correlation between each signal will be computed with the Pearson
correlation coefficient. Since the operation is invariant to scale, the output
values should be fairly reliable estimators of which are the active regions
along the genome and which ones are not. So, given two cell-assay couples
(i, j) and (i′, j′) and the related signals Xij and Xi′j′ ∈ X(train), with
i 6= i′ ∈ I and j 6= j′ ∈ J the similarity computation is formulated as

34

(a) Signals C•M02 (b) Signals C•M16

(c) Signals C•M22 (d) Signals C23M•

Figure 4.2: Zooms on high-similarity quadrants of the heatmap (Figure 4.1)

follows

ρ(Xij , Xi′j′) =

∑
k(xijk − µ(Xij))(xi′j′k − µ(Xi′j′))√∑

k(xijk − µ(Xij))2
√∑

k(xi′j′k − µ(Xi′j′))2
(4.2)

=
1

K
∑
k

zijkzi′j′k (4.3)

where zijk denotes the normalized signal value for the base pair k:

zijk =
xijk − µ(Xij)

σ(Xij)
(4.4)

35

The final result can be visualized through a clustermap of dimension
267 × 267 (Figure 4.1) where can be clearly seen how there are group of
signals similar to each other and, at the same time, very different from the
rest of the training set samples. What can give better information can be
zooming into the heatmap and analyze which are the signals belonging to
the different clusters identified. For this purpose, as an example, looking
at Figures 4.2 it is possible to understand that the signals belonging to the
same cluster most likely refer to a certain cell-line or a certain assay-line
(for the majority of the clusters), showcasing how an approach like the
KNN regression, that aims at exploiting signals on the same dimension to
predict a target, can achieve good performances. On top of that, the fact
that the majority of the clusters groups are due to similar signals belonging
to the same assay but different cells supports the results highlighted by
the analysis of the differences between signals distributions reported in the
section 3.2.1.

4.1.1 Aggregating similarities

(a) Assay by assay similarities (b) Cell by cell similarities

Figure 4.3: Estimated similarity values

In order to exploit the already presented similarities as distance mea-
sures between the training set signals and blind instances, is necessary to
estimate a value able to define how close a signal Xij ∈ X(train) will be
to the target Yi′j′ . Since the predictions in the KNN will be performed
exploiting signals along the same dimension (cell and assay) the estimated
value will correspond to the similarities between cells and assays, resulting
in two different similarity matrices, respectively of dimensions I × I and
J ×J (Figure 4.3). Practically, an efficient way to compute the similarity

36

between two cell-lines i and i′, is to simply average all the Pearson corre-
lation ρ(Xij , Xi′j) values for all the assays j such that Xij , Xi′j ∈ X(train):

ρ(i, i′) =

∑
j:Xij ,Xi′j∈X(train) ρ(Xij , Xi′j)∑

j:Xij ,Xi′j∈X(train) 1
(4.5)

Analogously, it can be computed the similarity between assays j and j′:

ρ(j, j′) =

∑
i:Xij ,Xij′∈X(train) ρ(Xij , Xij′)∑

j:Xij ,Xij′∈X(train) 1
(4.6)

4.2 KNN regression

The first approach of the thesis consists in performing a type of k-Nearest
Neighbour based Regression over the space of cell-types and assays. The
main idea is to exploit the estimated cell-by-cell and assay-by-assay simi-
larities (see Chapter 3) between the pairs of signals (in the training data)
and use those to construct the unknown signal via a weighted average of
the known signals.
It is a simple approach but fits the structure of the data and, considering
the high sparsity of the tensor which comes with a low total number of
signals, it is possible that an instance based method, using directly the
training data as the knowledge of the problem, can outperform the meth-
ods based on learning the model parameters from the training set. The
k-Nearest neighbour regression will be performed approaching the data
from two of the three dimensions of the tensor, the cell dimension and the
assay dimension. Indeed, trying to exploit the prior knowledge about the
similarities between the same assay applied on different cells and the other
way around can be an useful starting point able to deliver decent perfor-
mances. More specifically, for the weighted nearest neighbour regressor we
linearly combine various training signals together, weighting each signal by
the estimated similarity to the target signal coming from the cell-by-cell or
assay-by-assay similarity matrix. The predictions make use of all signals
X•j that involve the target assay j or all the signals Xi• that involve the
target cell i, weighting the contribution of each signal by the similarity
of the corresponding cell/assay-line to the cell/assay-line that needs to be
predicted.

4.2.1 Assay based predictions

The assay based predictions exploits the knowledge about all the signals
across the same assay-line in order to predict a target track that as well
belongs to that specific assay-line.
Given a target signal Yij with i ∈ I and j ∈ J the prediction is per-
formed through the weighted average of all the signals Xi′j ∈ X(train).

37

The weighted average is performed exploiting all the estimated similari-
ties ρi′i between the target Yij and the existent signals Xi′j in the training
set:

Y
(assay)
ij =

∑
i′:Xi′j∈X(train) ρi′iXi′j∑
i′:Xi′j∈X(train) ρi′i

(4.7)

4.2.2 Cell based predictions

The cell-based prediction is analogous in that and, given a target signal
Yij , it combines all the training signals Xij′ that have the same cell-type as
the target signal in order to build the prediction. It uses in the same way
the estimated similarities ρjj′ between each training signal’s assay and the
target assay to weight the contribution of each signal:

Y
(cell)
ij =

∑
j′:Xij′∈X(train) sim(j, j′)Xij′∑
j′:Xij′∈X(train) sim(j, j′)

(4.8)

In both the above assay and cell based predictions the approach has
been formalized considering the weighted average between all the samples,
but it is possible that considering all the available information across a
given cell-line i or assay line j could introduce noise in the final prediction
due to low-similarity value between a considered training sample and the
target signal. Indeed, the predictions can be restricted averaging only
the top-k most similar signals by replacing X(train) with an appropriately
chosen subset. See Section 4.2.6 for a more detailed explanation about the
different modalities that can be used in order to select the k parameter.

4.2.3 Rescaling Assay and Cell-based predictions

As seen from the visualizations in Chapter 3, the nature itself of some
cells or assays can generate a consistent difference in scale between the
different signals, so, there is no guarantee that tracks for different cell
types or more importantly for different assays, will be on the same scale as
one another (Figure 4.4). Since the most important task is, given a couple
cell-assay, to identify which are the active regions of the genome we used
a scale-free method (invariant to rescaling), Pearson correlation coefficient
in order to estimate the different similarities. However, when generating a
prediction, it is important that the scale of the predicted values agrees with
the one of the true values for two different reasons: identifying which gene
is active may not be meaningful enough if the scale doesn’t reflect correctly
the confidence with which there will be biochemical activity along that
section of the genome, plus, since the main measure used to evaluate the
prediction is the mean squared error, differences in the scale can penalize
significantly the final evaluation both in the challenge and with reference

38

Figure 4.4: Signals C02M02,C02M18 chromosome 1, bp[6:8]1e6

to the Avocado baseline. So, since it may be the case that the linear
combination of similar signals computed above does not have the correct
scale we tried to improve the scale of the predicted signal by modifying the
prediction rules from above to include an estimated scale factor as follows.
For the assay/cell-based prediction we would then have:

Y
(assay)
ij =

σ̂
(assay)
ij

∑
i′:Xi′j∈X(train) ρi′i

Xi′j
σ(Xi′j)∑

i′:Xi′j∈X(train) ρi′i
(4.9)

Y
(cell)
ij =

σ̂
(cell)
ij

∑
j′:Xij′∈X(train) ρjj′

Xij′
σ(Xij′)∑

i′:Xij′∈X(train) ρjj′
(4.10)

If the signals when averaged are normalized by their standard deviation,
predicting the scale of the target signal can be done using an unweighted
average of the standard deviations across the training signals for that cell-
type:

σ̂
(cell)
ij =

∑
j′:Xij′∈X(train) σ(Xij′)∑

j′:Xij′∈X(train) 1
(4.11)

Or likewise, an unweighted average across the signals for the same assay:

σ̂
(assay)
ij =

∑
i′:Xi′j∈X(train) σ(Xi′j)∑

i′:Xi′j∈X(train) 1
(4.12)

In this case, in order to normalize the signals, we are just using the
standard deviation; it might be possible that using the z-score transfor-
mation the performance can improve. The z-score transformation Zij of

39

the corresponding signal Xij can be obtained by normalizing each value of
the vector like follows:

zijk =
xijk − µ(Xij)

σ(Xij)
(4.13)

Once the z-score transformation is performed, in order to compute the
prediction, will also be necessary to estimate the average value µ̂ij of the
target signal we are going to predict. In order to do this the simplest
possibility could be to just average all the averages of the signals necessary
to perform the target assay or cell based prediction:

µ̂
(cell)
ij =

∑
j′:Xij′∈X(train) µ(Xij′)∑

j′:Xij′∈X(train) 1
(4.14)

µ̂
(assay)
ij =

∑
i′:Xi′j∈X(train) µ(Xi′j)∑

i′:Xi′j∈X(train) 1
(4.15)

The final prediction could the be computed like this:

Y
(assay)
ij =

σ̂
(assay)
ij

∑
i′:Xi′j∈X(train) ρi′iZi′j∑

i′:Xi′j∈X(train) ρi′i
+ µ̂ij (4.16)

The same formulation goes for the cell based prediction.
Besides the simple average prediction, in order to improve the quality of
the imputed track, it could be possible to learn a function to predict the
scale for the feature vector: (i, j).

4.2.4 Predicting at different resolutions

Up until this point we have assumed that the similarity between signals is
computed globally over the entire signal. Given that the human genome
is composed of 23 chromosomes which function somewhat independently
of one another, and, moreover, that signals along each chromosome are
correlated in space, it makes sense to investigate similarity measures that
are local to parts of the signal. The process will be identical to the com-
putation of the global similarity but will be repeated across the genome
several times depending on the selected resolution. So, the first step is
to define a partition of the genome that generates several sections, each
one corresponding to one of the three different resolutions/length segments
w ∈ {106, 105, 104} adopted, and then apply it to each sample track in the
training set X(train). The resolution we are working on is always consider-
ing the genome at 25 base pairs, so, considering its full length the actual
dimension of each segment would be: w ∈ {25 ∗ 106, 25 ∗ 105, 25 ∗ 104}.

40

Figure 4.5: Pearson correlation coeff. at different resolutions

Anyway, given the partition, it is now possible to investigate the similarity
between the different tracks for a certain section in the genome and so,
for each of the segments, to compute separately the Pearson correlation
coefficient. Considering two signals Xij and Xi′j′ the similarity between
the two will now be a vector of dimension Kw equal to:

~ρw(Xij , Xi′j′) = {ρ({xij1, ..., xijw}, {xi′j′1, ..., xi′j′w}), ...} (4.17)

The final result of the computation of all the similarities between all the
training samples is a matrix of dimension |X(train)| × |X(train)| × Kw . The
aggregation process performed in order to estimate the similarities between
different cell-lines and different assay-lines is carried on by averaging inde-
pendently for each section of the partition, following the same Equations
4.5 and 4.6 producing ultimately two matrices with dimension I×I× K25

w .
The same goes for the assays J :

~ρw(i, i′) = {ρw(i, i′)1, ..., ρw(i, i′)dK25
w
e} (4.18)

~ρw(j, j′) = {ρw(j, j′)1, ..., ρw(j, j′)dK25
w
e} (4.19)

The predictions are always performed across the assay or cell dimen-
sions exploiting the previous Equations (4.7), (4.8). It is possible to im-
prove the performance of the prediction through out the combination of
the local similarities with the global similarities. In fact, since local and
global information can be complementary (and local correlation values
might exhibit high variance), it might make sense then to smooth each
local estimates with the global correlation measure formulating the corre-
lation computation like follows:

~ρw(Xij , Xi′j′)
′
1 = α~ρw(Xij , Xi′j′)1 + (1− α)ρ(Xij , Xi′j′) (4.20)

41

Dot product similarity

An issue that arises when computing local correlation estimates is that
over relatively short windows (of size say w = 104), the signal can often
be flat, resulting in a very low or zero value for the standard deviation.
Whenever this occurs the correlation values for the section can become
either very large or undefined. To prevent this from occurring, a possible
solution is to modify the Equation 4.17 to use global estimates for the mean
and standard deviation when calculating correlation in each window. This
can be done very easily by first normalizing the entire signal using the
z-transform and then simply computing the dot-product for each section
of the normalised signal:

~ρw(Xij , Xi′j′) = {
w∑
k=1

zijkzi′j′k,
2w∑

k=w+1

zijkzi′j′k, ...} (4.21)

4.2.5 Merging the predictions

The next step in order to increase the prediction performances is to use at
the same time the information coming from both cells and assays, trying
to aggregate the track imputed by the assay and cell based predictions.
We tried to approach the merging task from two different perspectives: it
is possible to assume that the similarities in both assay and cell directions
are comparable or that the merge can be computed just from a linear
combination between the assay and cell predictions. The former tries to
normalize concurrently the similarities between cells and assays as follows:

Y
(assay+cell)
ij =

∑
i′:Xi′j∈X

sim(i, i′)Xi′j +
∑

j′:Xij′∈X
sim(j, j′)Xij′∑

i′:Xi′j∈X
sim(i, i′) +

∑
j′:Xij′∈X

sim(j, j′)
(4.22)

The latter aims at aggregating assay and cell based predictions by finding
a fixed coefficient alpha, combining them as follows:

Y
(aggregate)
ij = αY

(assay)
ij + (1− α)Y

(cell)
ij (4.23)

Adapting the α coefficient

Instead of using a fixed coefficient α for combining the assay-based and
cell-based predictions in Equation 4.23, it could be possible to adapt the
parameter for each target signal Yi,j , exploiting the knowledge extracted
from the training set with the estimated similarities cell-by-cell and assay-
by-assay. Indeed, we could allow the coefficient to vary based on the
amount of similar signals we get in each direction i and j for predicting
Yij :

αij =

∑
i′:Xi′j∈X(train) ρ(i, i′)∑

i′:Xi′j∈X(train ρ(i, i′) +
∑

j′:Xij′∈X(train) ρ(j, j′)
(4.24)

42

The idea behind the formula is to give more weight to the assay or cell
prediction according to two different factors: (i) if the summation of the
similarities between the target and train cell or assay is greater in on one
of the two dimensions, it will be more likely that the axis with the ”more
similar” signals will deliver better predictions (ii) if the amount of signals
is greater in one of the two dimensions (e.g. there are cases where there is
just one signal for a given cell-line) probably that dimension will be able
to capture a larger amount of information necessary to predict the target
signal.
A problem that can arise is that, trying to predict a target signal Yij , the
amount of signals X•j ∈ X(train) is much larger than the one of the signals
Xi• and at the same time the majority of the similarities ρ(i, i′) has a low
Pearson correlation coefficient, ending up valuing more a prediction that
combines a larger number of tracks but that are not that similar to the
target we need to impute.
It is then possible to define a fixed Kj and Ki subsets of the signals,
available in the training data for the same assay j and cell-line i of the
signal that we are predicting with Equation (4.23), redefining the way αij
is computed:

αij =

∑
i′:Xi′j∈Kj

ρ(i, i′)∑
i′:Xi′j∈Kj

ρ(i, i′) +
∑

j′:Xij′∈Ki
ρ(j, j′)

(4.25)

Then, considering Yij as the target signal, the sets Kj and Ki can be de-
fined as follows:

• threshold : include only signals Xi′j or Xij′ s.t. the ρ(i′i) or ρ(jj′)
similarity is higher than a threshold ε:

Kj = {Xi′j ∈ X|ρ(i, i′) ≥ ε}
Ki = {Xij′ ∈ X|ρ(j, j′) ≥ ε} (4.26)

• top-k : include only signals Xi′j or Xij′ s.t. the ρ(i′i) or ρ(jj′) are
the topK similarities:

Kj = {Xi′j ∈ X|ρ(i, i′) ≥ ε(i)ijk}

Ki = {Xij′ ∈ X|ρ(j, j′) ≥ ε(j)ijk} (4.27)

where ε
(i)
ij = sort({ρ(i, i′)|Xi′j ∈ X}) is the sorted list of cell-line

similarity values (from highest to lowest) for which the signal Xi′j is

present in the training data, and ε
(i)
ijk then denotes the kth highest

value in the list.

43

• top-k% : same as top-k above except that rather than restricting to
the top k values, we restrict to the top k% of the signals available
for that assay / cell-line.

4.2.6 Top-k Assay and Cell based predictions

As the last aspect of the KNN regressor approach, we consider to select the
k -nearest neighbors when performing the Assay and Cell based predictions
of equations (4.7), (4.8). Just considering as an example the Assay based
prediction, instead of imputing the target track Yij considering all the

signals Xi′j ∈ X(train), we consider the list ε
(i)
ij = sort({ρ(i, i′)|Xi′j ∈

X}), which is the sorted list of cell-line similarity values (from highest to
lowest), we restrict it to the top •% higher values, and we select those
couples (ρ(i′i), Xi′j) to predict the target instance. The same process can
be applied for the Cell based predictions. It is also important to say that
the •% of tracks used is fixed independently from which Yij track we are
going to predict. The best percentage will be selected based of the results
obtained on the validation set as will be shown in the Chapter 6.

44

Chapter 5

Factorization models

5.1 Factorization models

In this section I will describe how we approached the imputation task
through the other two algorithms mentioned in the background chapter
(2): matrix factorization and tensor factorization. These kind of models
fit the way the dataset is structured and they can, in fact, be considered
one of the main candidates to chose when the the data can be represented
as a three dimensional tensor and we want to predict the missing values.
Indeed, two of the presented state of art works employ the PARAFAC
tensor decomposition as the core of their algorithms.
Given the fact that previous methods were able to perform with success
the imputation task, we also decided to implement the same idea of de-
composing and characterize the information of the data, trying to improve
the current state of the algorithms. Thus, we introduced both a novel ap-
proach to the subject with a base-pair-wise matrix factorization and new
ideas about the structure of the PARAFAC tensor decomposition used by
the baselines.

5.1.1 Objective function

First of all, since the models will be trained through a gradient descent
technique, we need to define an objective function that we want to mini-
mize through the learning of the parameters.
Given the fact that the evaluation in the Imputation Challenge is carried
on by mainly exploiting metric based on the mean square error, the choice
is pretty straightforward. Indeed, defined with θ the parameters of the
model with respect to the training instances X(train), the loss function O
can be structured as the summation of the different MSE(Xij , Yij) between

the target tracks of the training set and the respective predicted signals:

O(θ; X) =
∑

(i,j)∈X

L(Xij , Yij(θ)) +R(θ) (5.1)

=
∑

(i,j)∈X

MSE(Xij , Yij(θ)) +R(θ) (5.2)

Here, R denotes the regularization function. The purpose of adding reg-
ularization here is to prevent overfitting of the learnt parameters. More
specifically, the regularization terms that will be adopted in the respective
methodologies are the Lasso regularisation term, Ridge and the Elastic net
regularization term. Across the training of the model we will not compute
the gradients over the overall objective function, instead, with a stochas-
tic gradient descent (SGD) approach we will try to update the parameters
based on one signal at a time; so the minimization of the O(θ; X) objective
function will be achieved through the minimization of the single compo-
nents of the summations. Thus, the objective function can be rewritten in
an more intuitive way as a summation over instance-wise objective func-
tions O(θ;Xij) for each signal Xij as follows:

O(θ; X) =
∑

(i,j)∈X

O(θ;Xij) (5.3)

where O(θ;Xij) = MSE(Xij , Yij(θ)) +
1

|X|
R(θ) (5.4)

Here, |X| denotes the number of training signals, i.e., distinct pairs (i, j)
in the training data.

5.2 Additive model

A preliminary step before matrix and tensor factorization is to try and
define an additive model, which considers just the biases of the matrix
factorization. The idea is similar to the KNN regressor one; indeed, the aim
is to combine the information coming from both assay and cell dimension
in order to predict a target signal Yij . In this case, instead of estimating
the similarities between cell and assay-lines and combine the signals, we
try to learn, throughout SGD, the average information that characterizes
each assay and cell across the genome.

Thus, for each cell i and each assay j we will have two vectors Ai and
Bj that, summed together, represent the prediction Yij (5.1):

Yij = Ai +Bj (5.5)

Where Ai ∈ RK and Bj ∈ RK are representative signals/biases for cell-line
i and assay j, respectively.

46

Figure 5.1: Additive model

5.2.1 Additive model parameter estimation

As already mentioned above, the objective function is based on the MSE
metric. Thus, considering the linear prediction function Yij = Ai +Bj for
a particular signal Xij the metric can be defined as:

MSE(Xij , Yij) =
1

K
∑
l

(xijk − yijk)2 =
1

K
∑
l

(xijk − (aik + bjk))
2 (5.6)

Where aik refers to the k-th base pair value of the genome in vector Ai
and so bjk for vector Bjk. The overall objective function and the objective
function for each sample of the training set will be then defined according
to equations (5.4) and (5.3). The regularization function applied to the
parameters of the model could be either L2 (Gaussian) or L1 (Laplace,
sparsity-inducing) norms. The latter may be more useful once the number
of parameters increases with matrix factorization or tensor factorization
(always depending on the number of chosen latent factors). So, we can
formalize two different regularization terms for the additive model:

R(θ) = L2(θ) = λ(
∑
i

∑
k

a2ik +
∑
j

∑
k

b2jk) (5.7)

R(θ) = L1(θ) = λ(
∑
i

∑
k

|aik|+
∑
j

∑
k

|bjk|) (5.8)

As already mentioned, the gradients will be computed considering
the single instances of the training set exploiting the objective function
O(θ;Xij). For the additive model, where the biases are the parameters,
for each training sample Xij , we will compute the gradients and update
the corresponding Ai and Bj vectors.
Base pair-wise, with respect to the parameter aijk and assuming the first

47

(L2) regularisation term, the derivative can be formalized as follows:

∂O(θ;Xij)

∂aik
= − 2

K
(xijk − (aik + bjk)) + 2

λ

|X|
aik (5.9)

= − 2

K
eijk + 2

λ

|X|
aik (5.10)

where, eijk = (xijk−(aik+bjk)) denotes the residual error in the prediction
at position k, and |X| corresponds to the cardinality of the set of training
instances. For the sparse regularisation term (L1) the partial derivative
can be formulated as follows:

∂O(θ;Xij)

∂aik
= − 2

K
eijk +

λ

|X|
∗ sgn(aik) (5.11)

Where sgn() denotes the sign function with values {−1, 0, 1} depending
on whether the argument is less-than, equal-to or greater-than zero.

Analogous partial derivatives can be derived with respect to bjk for the
two different regularisation terms:

∂O(θ;Xij)

∂bjk
= − 2

K
eijk + 2

λ

|X|
bjk (5.12)

∂O(θ;Xij)

∂bjk
= − 2

K
eijk +

λ

|X|
∗ sgn(bjk) (5.13)

In order to estimate the parameters Ai and Bj after the their initial-
ization, which will be explained in the experiment section (Chapter 6),
we update the values by stochastic gradient descent, iterating over the
signals Xij ∈ X(train) and performing a gradient update until the model
converges:

a
(t+1)
ik = a

(t)
ik − η

∂O(θ;Xij)

∂aik
(5.14)

b
(t+1)
jk = b

(t)
jk − η

∂O(θ;Xij)

∂bjk
(5.15)

Here η is the step-size/learning rate that needs to be set empirically to
guarantee convergence.

5.3 Matrix factorization

Next model, which is an extension of the additive one, is the matrix fac-
torization approach.
Most of the state-of-the-art models presented in chapter 2 consider the
base pairs of the genome as a valuable dimension that embeds part of the
information brought by the different signal tracks of the three dimensional

48

Figure 5.2: Matrix factorization model

tensor. In this case, we wanted to try to understand, as already introduced
in 2.6, weather or not all that information necessary to impute the signals
could instead be derived from just the characterization of the different
cells and assays across the entire genome K. A more intuitive way, useful
to comprehend how the method works, is to imagine the tensor not as a
single unit but as a series of K independent matrices I × J (Figure 5.2).
We aim, in fact, at summarizing the information kept inside each base
pair value for each signal into the assay and cell dimensions and, to do so,
each one the K matrices is decomposed through out matrix factorization.
Thus, given the target signal Yij , the prediction of the extended additive
model that includes also the interaction between cell-line i and the assay
j, can be formalized as follows:

Yij = Ai +Bj + CTi Dj = Ai +Bj +

L∑
l=1

CilDjl (5.16)

Here, L denotes the number of latent dimensions (probably only 2 given
the amount of training data available) and Ci ∈ RLK and Dj ∈ RLK are
factor matrices for the cell-line i and assay j.

5.3.1 Matrix factorization parameter estimation

Also in this case the objective function is based on MSE and follows the
equations (5.3), (5.4). Thus, the MSE for the true signal Xij and the

49

predicted signal Yij can be written as follows:

MSE(Xij , Yij) =
1

K
∑
l

(xijk − (aik + bjk +
L∑
l=1

cilkdjlk))
2 (5.17)

Where cilk and djlk correspond, respectively, to the (l, k) elements of the
matrices Ci and Dj relative to the current couple of cell and assay.
For the matrix factorization model, given the additional parameters, the
L2/L1 regularization terms can be expressed as follows:

L2(θ) = λ
∑
k

(
∑
i

a2ik +
∑
j

b2jk +
∑
l

(
∑
i

c2ilk +
∑
j

d2jlk)) (5.18)

L1(θ) = λ
∑
k

(
∑
i

|aik|+
∑
j

|bjk|+
∑
l

(
∑
i

|cilk|+
∑
j

|djlk|)) (5.19)

The partial derivative with respect to the additional parameter cilk,
depending on whether we are using L2 or L1 regularization, is expressed
as follows

∂O(θ;Xij)

∂cilk
= − 2

K
eijkdjlk + 2

λ

|X|
cilk (5.20)

∂O(θ;Xij)

∂cilk
= − 2

K
eijkdjlk +

λ

|X|
∗ sgn(cilk) (5.21)

where eijk denotes the residual error in the predicted value for position k
in signal Xij :

eijk = xijk − yijk = xijk − (aik + bjk +
L∑
l=1

cilkdjlk) (5.22)

Analogous partial derivatives can be formalized with respect to djlk for
the two different regularization terms:

∂O(θ;Xij)

∂djlk
= − 2

K
eijkcilk + 2

λ

|X|
djlk (5.23)

∂O(θ;Xij)

∂djlk
= − 2

K
eijkcilk +

λ

|X|
∗ sgn(djlk) (5.24)

Finally, we define the update of the parameters:

c
(t+1)
ilk = c

(t)
ilk − η

∂O(θ;Xij)

∂cilk
(5.25)

d
(t+1)
jlk = d

(t)
jlk − η

∂O(θ;Xij)

∂djlk
(5.26)

The bias update is performed accordingly to equations (5.26).

50

L1 regularisation

For the L1 case, they way the update of the parameters unfolds is different,
since the sign of the regularization term in the gradient depends on the
sign of the parameter. This means that the direction of the regularisation
component changes as we pass from one side of the axis parameter = 0
to the other. Thus, to implement the gradient step properly (and ensure
that the learnt model is sparse), we need to prevent the gradient step from
crossing the axis and changing the sign of the parameter. This can be
done by simply checking whether the sign of the parameter has swapped
(from -1 to 1 or vice-versa) after the update, and setting the parameter to
zero if it has:

if [sgn(a
(t+1)
ik) == −sgn(a

(t)
ik)] then a

(t+1)
ik := 0 (5.27)

Pseudo-code for the Gradient Descent Algorithm

Algorithm 1 provides pseudo-code implementing the SGD search for the
parameters: θ = {A,B,C,D}, A ∈ RIK, B ∈ RJK, C ∈ RILK and
D ∈ RJLK of the linear model Yij = Ai + Bj + CTi Dj . Note that in
the algorithm are reported both L1 and L2 regularization parameters but,
depending on how many parameters/latent factors will be used in the
actual implementation we will decide weather or not to exploit just the
Ridge regularisation term. Moreover, along with the regularization, both
initialization of the parameters and convergence criteria of the stochastic
gradient descent will be analyzed more in depth into the experiment and
result chapter 6.

51

Algorithm 1 Stochastic Gradient Descent for Matrix Factorization

Input: X(train), λ, isLasso, η(0),maxIterations
Output: θ = {A,B,C,D}
1: A(0), B(0), C(0), D(0) ← Initialize
2: t← 0
3: while t < maxIterations && notConverged do
4: for all Xij ∈ X(train) do
5: for k ∈ {1, ...,K} do
6: eijk ← (xijk − (aik + bjk))

7: a
(t+1)
ik ← a

(t)
ik − η

(t) ∂O(θ(t);Xij)
∂aik

8: b
(t+1)
jk ← b

(t)
jk − η

(t) ∂O(θ(t);Xij)
∂bjk

9: c
(t+1)
ilk ← c

(t)
ilk − η

(t) ∂O(θ(t);Xij)
∂cilk

10: d
(t+1)
jlk ← d

(t)
jlk − η

(t) ∂O(θ(t);Xij)
∂djlk

11: if isLasso then
12: if sgn(a

(t+1)
ik) == −sgn(a

(t)
ik) then

13: a
(t+1)
ik ← 0

14: end if
15: if sgn(b

(t+1)
jk) == −sgn(b

(t)
jk) then

16: b
(t+1)
jk ← 0

17: end if
18: if sgn(c

(t+1)
ilk) == −sgn(c

(t)
ilk) then

19: c
(t+1)
jlk ← 0

20: end if
21: if sgn(d

(t+1)
jlk) == −sgn(d

(t)
jlk) then

22: d
(t+1)
jlk ← 0

23: end if
24: end if
25: end for
26: end for
27: t++;
28: end while=0

5.4 Tensor factorization

As an alternative to the kNN and MF approaches, the state of the art
model PREDICTD makes use of a PARAFAC tensor decomposition to
predict the unobserved signal Yij by factorizing the training data X(train).
As already explained in Section 2.4 they do employ three factor matri-
ces, one per dimension, and three matrices of biases with one values per
component in the different dimensions.

52

Figure 5.3: Tensor factorization model

For the ENCODE problem, where the genome dimension is many or-
ders of magnitude longer than the other dimensions (indeed, the provided
tensor describes 700 signals less than the one used by PREDICTD), it
is easier and more meaningful to interpret the decomposition trying to
identify a number of latent signals that characterize the whole training
set tracks and that can be linearly combined based on the current cou-
ple cell-assay for which we want to predict the test instance. More for-
mally, the decomposition comes as a weighted combination of latent signals
{Z1, ..., ZL}, Zl ∈ RK (Figure 5.3):

Yij =

L∑
l=1

w
(i,j)
l Zl =

L∑
l=1

ailbjlZl (5.28)

Where the weight w
(i,j)
l = ailbjl used to combine the signals is assumed

to be estimated during the training phase along with the latent signal pa-
rameters. Thus, we see that the PARAFAC tensor decomposition is in
fact predicting an unobserved signal as a linear combination of latent sig-
nals that need to be estimated. This is not that dissimilar from the kNN
model, but in this case the signals being composed are latent and must
be learnt from the data. Moreover, we can extend the basic PARAFAC
tensor decomposition model by adding the bias components. The biases,
in this case, are not just a single value for each assay-cell-base pair like
in the PREDICTD model but are structured differently, equal to the ones
that we used in the Matrix Factorization model. It is also worth noticing
that in this case, unlike the MF, the parameters of the factor matrices
are not independent from each other and it is, indeed, possible to extract

53

potentially useful information on the training set tracks by analyzing the
latent signals. On top of that (given also the length of each latent track),
can be very beneficial to induce sparsity by introducing the L1 regulariza-
tion on the latent signals Zl, in order to make each additive latent signal
as simple (and thus interpretable) as possible.
So, we can write the new biased tensor factorization model as:

Yij = Z
(1)
i + Z

(2)
j +

L∑
l=1

ailbjlZ
(3)
l (5.29)

where we have used Z with different superscripts to denote the three types
of signals (assay bias, cell-line bias and latent signal) that are combined
to produce a prediction.

5.4.1 Tensor factorization parameter estimation

Considering always the same objective function (Equations (5.3), (5.4)),
the MSE for the true signal Xij and the predicted signal Yij can be written
as:

MSE(Xij , Yij) =
1

K
∑
k

(xijk − (z
(1)
ik + z

(2)
jk +

L∑
l=1

ailbjlz
(3)
lk))2 (5.30)

Where z
(1)
ik ∈ Z

(1)
i , z

(2)
jk ∈ Z

(2)
j adn z

(3)
lk ∈ Z

(3)
l . For what concerns the

computation of the gradients, what differs from the matrix factorization
approach are the partial derivatives with respect to the parameters ail and
bjl. Taken as example the one related to ail, the derivative for both L1
and L2 regularization can be expressed as follows:

∂O(θ;Xij)

∂ail
= − 2

K
bjl

K∑
k

eijkz
(3)
lk + 2

λ

|X|
ail (5.31)

∂O(θ;Xij)

∂ail
= − 2

K
bjl

K∑
k

eijkz
(3)
lk +

λ

|X|
∗ sgn(ail) (5.32)

The same goes for the bjl parameters:

∂O(θ;Xij)

∂bjl
= − 2

K
ail

K∑
k

eijkz
(3)
lk + 2

λ

|X|
bjl (5.33)

∂O(θ;Xij)

∂bjl
= − 2

K
ail

K∑
k

eijkz
(3)
lk +

λ

|X|
∗ sgn(bjl) (5.34)

The derivatives for the other parameters, biases and latent signals are com-
puted the same as for the matrix factorization model (Equations (5.10),

54

(5.21)).
Specific explanations for the initialization, training and convergence of all
the models presented in this chapter will be given in the following Chapter
6.

55

56

Chapter 6

Experiments and results

6.1 Experiments set up

In this chapter I will describe the different experiments performed and the
relative results obtained.
The first step is to clarify what data format we did use in order to per-
form the experiments and how we got there. As already specified, the
dataset is a tensor with dimensions I ×J ×K where, for each couple (i,j),
corresponds a genome wide signal Xij . These signals were provided by
ENCODE in the bigWig, format so we had to download them and convert
them into the bedGraph format and then into numpy format (see section
3.2). Each array corresponds to a signal with 3 billion positions so, we
had to downsample them at the 25 base pair resolution in order to make
them fit into memory and to drastically reduce the computation time for
the different experiments. Further transformations of the data have been
done, but they will be analyzed in relation to the particular technique they
are used for.
In this chapter I will report sequentially pairs of experiments with their
relative results, partitioning them into three macro-groups, each one rel-
ative to the respective model: (i) kNN regressor (ii) additive plus matrix
factorization model (iii) tensor factorization model. Reported all the rel-
evant results and how we have obtained them, I will proceed to confront
the different methods, comparing the results and trying to answer the dif-
ferent research questions proposed in chapter 2. At the end I will also
mention the results we managed to achieve in the ENCODE imputation
challenge, what predictions submitted before the deadline, and confront
the local results with the challenge results.
All the different performances will be expressed through out the relative
MSE measure reported in chapter 3, averaging off the relative MSE for
all the target tracks in order to get a global measure, both for validation
and test sets. Indeed, we thought this could have been the best metric
to present the different performances, allowing us to be unbiased towards

outliers when delivering a global measure for one technique and, at the
same time, to understand the performances relative to a fixed baseline.
Here is again formalized the relative MSE computation:

relMSE(Xij , Yij ;Y
(base)
ij) =

MSE(Xij , Yij)

MSE(Xij , Y
(base)
ij)

(6.1)

Other than the relative MSE, for each prediction, we reported also
seven of the remaining measures used in the challenge, presented in section
3.4 (also in this case we will refer to performances relative to the baseline).
The considered baseline is the performance of the Avocado model; indeed,
it is the one which was declared to achieve the best performance among
the ones known from the literature. Moreover, ENCODE provided the
predictions on the validation tracks with the model trained on just the
training set and the predictions on the test tracks with the model trained
with training and validation sets, allowing us to perform local comparisons
with our algorithms.

6.2 KNN regression

In this section I will refer to experiments and results related to the kNN re-
gression model. The three main prediction methods that will be discussed
are the assay prediction (4.7), the cell prediction (4.8) and the merge based
on aggregation of predictions (4.23) (the merge based on the concurrent
combination of assay and cell predictions (4.22) has been consistently out-
performed across different evaluations so will not be reported).
These different methods will be analyzed with data at the original scale
and then transformed in order to understand if there actually are mean-
ingful differences between the approaches. The similarity values used, in
order to perform the weighted sum of the signals for the assay and cell
prediction, are the estimated ones between different cell-lines and different
assay-lines (Figure 4.3(a), 4.3(b)). In the whole process, I will firstly show
the results related to the validation set signals, combining the training
signals, in order to show the main steps and decisions that led towards the
best technique found; secondly, I will present and confront the results of
the best methods got so far on the test set, combining both training and
validation tracks.

6.2.1 Assay and Cell based prediction

The evaluations presented in Figure 6.1 and Table 6.1 represent the results
obtained with the assay and cell based predictions expressed through the
different relative measures. According to their equations, we have per-
formed the weighted sum of all the signals related to the assay line j or
cell line i, exploiting the estimated similarities.

58

Figure 6.1: Assay and cell-based predictions

Assay Cell

Metric MSE 2.702 28.631

gwcorr 0.939 0.617

gvspear 1.154 0.521

MSEprom 3.08 202.46

MSEgene 2.84 47.253

MSEenh 3.689 61.19

MSE1obs 2.365 1.673

MSE1imp 3.475 254.792

Table 6.1: Performance of Assay and Cell-based predictions

The signals are not normalized and it is immediately clear that the
assay based predictions consistently outperform the cell based predictions
both for the correlation measures and the MSE measures. The outcome
of these evaluations confirms the assumptions made during the analysis of
the distribution of the signals (section 3.2); indeed, the bigger difference
in scale existing between the signals related to the same cell i and different
assays j influences negatively the predictions. The similarity value is, in
fact, not able to fully capture the extent of the scale difference, making
the predictions biased towards the outliers with huge values. Moreover,
this type of results confirms the necessity of weighting through the k most
similar signals, without exploiting all the tracks available on the current
cell-line i.

59

Assay and Cell-based prediction at different resolutions

(a) Assay (10k, 100k, 1mln) (b) Cell (10k, 100k, 1mln)

Figure 6.2: Assay and Cell prediction at different resolution

(a) (b)

10k 100k 1mln

Metric MSE 3.087 2.847 2.782

gwcorr 0.939 0.944 0.940

gvspear 1.105 1.132 1.149

MSEprom 3.459 3.242 2.928

MSEgene 3.239 3.0 3.802

MSEenh 4.359 3.89 3.802

MSE1obs 2.689 2.511 2.446

MSE1imp 4.02 3.642 3.561

10k 100k 1mln

Metric MSE 11.167 14.024 15.401

gwcorr 0.617 0.620 0.615

gvspear 0.670 0.611 0.58

MSEprom 81.320 83.999 96.110

MSEgene 18.126 21.649 24.209

MSEenh 22.573 29.387 33.511

MSE1obs 1.797 1.714 1.661

MSE1imp 83.989 112.267 125.973

Table 6.2: (a) Assay-based predictions (b)Cell -based predictions at different resolu-
tions (10k, 100k, 1mln)

To investigate further in detail the assay and cell predictions we tried
to exploit the similarities across the genome at different resolutions (4.17).
Understanding weather or not we were generalizing too much adopting
global similarities for signals with a considerable amount of positions was
an important step to take in order to be sure about committing time into
the development of the correct algorithm. So, given three different reso-
lutions for the 25 base pair signals (10k, 100k, 1mln), we estimated the
cell-cell similarity and assay-assay similarities exploiting the distinct seg-
ments coming from the partitions. The prediction has been performed by
weighting the corresponding segments of the genome, at the chosen reso-
lution, using the respective similarity matrices.
The outcome of the experiments (Figure 6.2, Table 6.2) suggests that
performing locally the predictions improves significantly the cell based
predictions. Indeed, specially for the 10k resolution case there are big
improvements across all the different measures. Instead, from the assay
prediction point of view, so far still the best one, there are no improve-
ments. There is in fact a slightly decrease in performances with respect to
the global prediction.
In order to check if it was necessary to explore the similarities at even
smaller resolutions or continue committing on the development of the

60

genome-wise techniques, we decided to investigate weather or not merging
”local similarity” predictions could outperform merging ”global similarity”
predictions.

Introducing the Merge prediction

Given the results of the assay and cell based prediction, from global to lo-
cal similarities, I will present now the outcome of the evaluation performed
with the merge imputed tracks.
First of all, it is important to compare, at global resolution, the results
between the assay prediction and merge prediction trying to understand if
the latter can deliver more accurate imputations that the former. Looking
at the plot 6.3 it is clear how, except for the MSEprom and MSE1imp,
the merge technique delivers better imputations than the assay based pre-
diction. The results considered to make the comparison are relative to
tracks imputed according to the linear combination of the same assay and
cell predictions considered in Table 6.1 in order to ensure a meaningful
comparison between the techniques. The α coefficient of equation (4.23)
has been computed, for each target track Yij , according to equation (4.25)
with Ki and Kj sets computed with the top-k% = 20% (equation (4.27).

Figure 6.3: Assay and Merge predictions

From this point and up to section 6.2.3 all the results related to the
merge technique will refer to the same top-k% = 20% parameter used to
compute the α aggregation coefficient.
Since the above merge technique is, so far, the best one according to the
relative metrics, we confronted its results with the performances related to
the imputed signals produced through out the merging of assay and cell
predictions at different resolutions.
Looking at the Table 6.3, it is possible to understand how, lowering the
resolution from 1 million base pairs to 10 thousand base pairs, the results
get worse and, also for what concerns the comparison between the global
merge and 1 million resolution merge, there are not relevant differences,

61

so, we stopped investigating further into local similarities between signals.
The lack of meaningful differences in the evaluation is probably due to the
fact that the signals are mainly flat; indeed, lowering the resolution would
not increase the information available but just continue computing more
and more similarities between vectors with zero standard deviation.

Merge

Settings Resolution Global 1mln 100k 10k

Metric MSE 2.175 2.20 2.253 2.436

gwcorr 0.974 0.975 0.976 0.962

gvspear 1.207 1.215 1.198 1.192

MSEprom 4.147 4.045 4.155 4.696

MSEgene 2.339 2.342 2.401 2.625

MSEenh 3.683 3.741 3.8 4.194

MSE1obs 1.534 1.578 1.632 1.765

MSE1imp 3.832 3.758 3.876 4.31

Table 6.3: Merge between assay and cell predictions at different resolutions

Also in this case, the merge techniques for the 10k, 100k and 1mln reso-
lutions have been performed with same process and same hyperparameters
as the global merge one, ensuring a meaningful comparison between the
results.
Given the outcome of the comparison, from now on, all the considered
predictions will refer only to global weighting of the signals.

6.2.2 Transformed signals

As already explained in the relative section 3.2, three different transfor-
mation techniques have been applied to the dataset in order to solve the
problems related to the differences in scale between the signals: sinh−1,
log, and log log. In the following section, I will report the results obtained
with the best technique found so far (merge prediction) according to the
different transformation of the dataset. The final aim is to understand
which one of the different functions can lead to better results and, conse-
quentially, fits better the values of the signals.
The results obtained with the merge technique are reported in the Table
6.4 and it is clear how the accuracy of the prediction drastically improves.
Indeed, the MSE, which is the main metric we looked at, goes from 2.175
down to 0.976. So, we can assume that all the three transformations solve
the problem related to the difference of scale in the dataset. Indeed, the
big improvement in performance can be also justified by the fact that the
KNN techniques work much better when the data is normalized and the

62

values are on the same scale.
The log and log log transformations are worse than the sinh−1. The log log
flattens all the signals for values greater than 25, solving the problem of
large values, but, at the same time, canceling meaningful differences in
scale between the active regions. The log is quite similar to the sinh−1

transformation but the difference in performance can be brought back to
the fact that, even if they penalize in the same way high values and low
values, they treat differently the numbers in the range from ∼5 to ∼25,
which correspond to the meaningful values for the majority of the signals
in the dataset.

Merge

Settings Transformation - sinh−1 log loglog

Metric MSE 2.175 0.976 1.176 1.278

gwcorr 0.974 1.094 1.005 942

gvspear 1.207 1.179 1.165 1.130

MSEprom 4.147 0.957 1.173 1.291

MSEgene 2.339 0.964 1.174 1.28

MSEenh 3.683 0.980 1.157 1.27

MSE1obs 1.534 0.991 1.272 1.389

MSE1imp 3.832 0.985 1.241 1.375

Table 6.4: Merge between predictions made with different transformation of the
signals

Given the fact that the sinh−1 allowed us to obtain, for each one of
the different metrics, results on the validation set better than the Avocado
baseline, we can assume with relative confidence that this is the transfor-
mation that better fits the data. Hence, every evaluation from now on
will make use of a sinh−1 transformed dataset, both for KNN and factor-
ization models. This kind of function has already been used by Avocado
and PREDICT in order to transform their data; however, the signals they
worked on were generated by exploiting different assays and with a slightly
different process (the depth of the different reads was different in the se-
quencing techniques, section 2.3), so the comparison between the different
functions, applied to our data, could have still revealed meaningful differ-
ences.
Since all the attempts made with the rescaling techniques, which were
aimed at solving the same problem, as presented in subsection 4.2.3, were
outperformed by the implementation of the sinh−1 transformation, they
will not be mentioned in this result section.

63

6.2.3 Sweep over the parameters

Established the correct transformation for the data, the last step is to
research the correct number of k nearest neighbour that needs to be used to
impute the tracks for assay and cell-based predictions. Tuning the number
k can, in fact, lead to better merged prediction results. Indeed, especially
for same cell-line signals, even if there are not anymore big differences in
scale, there might still be relevant dissimilarities between different assays
like DNase-seq and Chip-seq.

(a) Cell: relMSE sweep 10 to 50% (b) Cell: relGWcorr sweep 10 to 50%

(c) Assay: relMSE sweep 10 to 50% (d) Assay: relGWcorr sweep 10 to 50%

Figure 6.4: Assay and Cell top k nearest neighbours sweep

Thus, starting from the cell prediction, we did sweep for different num-
ber of k, expressing the percentage of signals involved to perform the im-
putation for every validation track, going from 10% to 50% top similar
signals along the current i ∈ I. In order to check the outcome of the
sweep, we did plot the results for the two main metrics of the two macro-
groups: relative MSE and relative GWcorrelation (Figures 6.4(a), 6.4(b),
respectively). The same process has been done for the assay predictions,
also sweeping from 10% to 50% of the top similar signals along the line
j ∈ J .
For what concerns the cell prediction, k = 50% leads to the best results
found so far, which are also better than the k = 100% cell based prediction
with sinh−1 transformation on the data. This outcome confirms the fact
that using the top-k most similar signals can allow to achieve better results,
avoiding to introduce noise in the predictions due to natural differences
between the different types of assays relative to the same cell. Analyzing,

64

instead, the sweep for the assay prediction, even if the k= 50% give the
best results, it still does not outperform the k=100% assay prediction with
sinh−1 transformation, showcasing how it is, in any case, more valuable to
use all the information available along the assay-line dimensions.
Comparing the previous merge prediction with the new one, which com-
bines the best top-k assay and cell predictions and leaving unchanged the
parameters for the aggregation, we indeed notice how the performances
on the validation increase on all the different relative evaluation metrics
(Table 6.5).

Merge

Settings Assay-Cell top-k 100%-100% 100%-50%

Metric MSE 0.976 0.950

gwcorr 1.094 1.096

gvspear 1.179 1.175

MSEprom 0.957 0.948

MSEgene 0.964 0.938

MSEenh 0.98 0.962

MSE1obs 0.991 0.945

MSE1imp 0.985 0.968

Table 6.5: Merge comparison

Other than the sweep on the assay and cell predictions, we tried also to
perform a sweep over the parameters used to compute the merge predic-
tion. Up to now, in order to determine the α parameter for the aggregation,
we defined the Ki and Kj set of signals just considering the 20% more sim-
ilar ones across the corresponding cell line i and assay-line j. Thus, we
performed a sweep on the top-k% parameter used to build the Ki and Kj

sets, going from the 10% top similar signals to the top 50% similar signals,
in order to understand weather or not, changing the way the predictions
are dynamically aggregated, positively affects the accuracy of the predic-
tions. After the sweep, the result confirmed that the top 20% for Ki and
Kj set of signals is the optimal parameter. So, given the outcome of the
sweep, we can consider the result in table 6.5 as the best one related to the
KNN regressor. Moreover, the final result on the validation does indicate
that, looking at relMSE, we are 5% better than Avocado, which is a good
result at support to our approach.
Here we have the Table 6.6 that resumes all the best results relative to the
different techniques and parameters presented so far, including also the
best method.

65

Merge

Settings Assay-Cell top-k 100%-100% 100%-100% 100%-100% 100%-50%

Resolution Global 1mln Global Global

Transformation - - sinh−1 sinh−1

Metric MSE 2.175 2.200 0.976 0.950

gwcorr 0.974 0.975 1.094 1.096

gvspear 1.207 1.215 1.197 1.175

MSEprom 4.147 4.045 0.957 0.948

MSEgene 2.339 2.342 0.964 0.938

MSEenh 3.683 3.741 0.980 0.962

MSE1obs 1.534 1.578 0.991 0.945

MSE1imp 3.832 3.758 0.985 0.968

Table 6.6: Comprehensive table for the kNN merge results

6.3 Factorization models

The experiments for the factorization models have all been carried out as
follows. First I train on the training set and predict on the validation
set to tune the hyperparameters. Second, fixed the hyperparameters, I
retrained on training set plus validation set signals in order to predict
for the test set instances. It is important to mention that, in order to
reduce the required computation time, the experiments related to tuning
hyperparameters have not been performed on the entire tracks but on a
randomly selected subset of one million of base pairs selected from all
the chromosomes. This type of approach is similar to the one adopted
by Avocado and PREDICTD (section 2.4) which, in fact, only used the
ENCODE Pilot regions [21] genomic locations in order to represent the
signals, train and make predictions with their model. Those correspond
to 1% of the genome length, that is about 1 million base pairs at 25 bp
resolution. Thus, since we did sample about the same number of base pairs
and half of the Pilot regions are also randomly selected, we believe that
the results obtained through the sampled signals are reliable to obtain an
unbiased estimate of performance for selecting the hyperparameter values.
Moreover, executing several times the training of the model to sweep over
the hyperparameters, exploiting the signals at 25 base pairs resolution,
is unfeasible from the computational time point of view (considering the
current implementation and approach). Training the matrix factorization
model with the complete signals takes, in fact, around 30h to converge
with a relatively high learning rate parameter.
The technique used to train the models, as already mentioned in chapter

66

5, is the stochastic gradient descent, which checks at each epoch the MSE
on the training set and the relative MSE on the validation set to make
sure the model is learning information and converging to an optimum.
For what concerns the iterative method, it is also important to mention
that for all the training phases, in order to converge to the best result
without the risk of overfitting, we used the early stopping technique [31].
Hence, when training on the training set to tune the hyperparameters,
we stopped training when the relative MSE on the validation set started
increasing. When training with both training and validation set to predict
the test set signals, we stopped when the improvement of the relative MSE
on the validation set, between two consecutive epochs, turned negative or
fell below than 0.001.
Before starting the training phase, we initialized all the parameters for
additive, matrix and tensor factorization, accordingly to the same method
used by the state-of-the-art PREDICTD model, with values extracted from
an uniform distribution between −0.33 and +0.33.
In the following subsection we will analyze the results obtained, through
the hyperparameters tuning on the validation set, for the additive and
matrix factorization models.

6.3.1 Hyperparameter tuning

Here, we will analyze the hyperparameters tuning for the additive and
matrix factorization models. In order to perform the optimization task,
we employed the grid search technique [32].
Prior to the sweep, a learning rate η equal to 106 was chosen for all the
factorization techniques and its decay epoch by epoch can be expressed
like follows: ηt+1 = ηt ∗ ηdecay with ηdecay = 1− 1e−6.
For the additive model (equation (5.5)) we used Ridge regression regular-
ization terms with one coefficient for both assay and cell biases parameters,
λbias. We searched the hyperparameter space for λbias = 1∗10−i or 5∗10−i

with i ∈ [4..9], and the best relMSE value found is 0.95 for λbias = 5e−7

(Figure 6.5(a)).
For the matrix factorization model (equation (5.16))we optimized as fol-
lows: Firstly we set the number of latent factors L equal to 2 (we saw that
increasing then number of latent factors was decreasing the performance
of the model). Secondly, we decided to employ, always with Ridge regu-
larization, two different regularization coefficients: one for the biases and
one for the latent factor parameters, respectively λbias and λfactor.

67

(a) Additive model λbias sweep. Best λbias = 5e−7

(b) Matrix factorization model (λbias, λfactor) sweep. Best
(λbias, λfactor) = (5e−7, 5e−7)

Figure 6.5: Sweep for the λRidge regularization hyperparameters

The hyperparameter space for both coefficients was equal to the one of
the additive model; indeed, λbias, λfactor = 1∗10−i or 5∗10−i with i ∈ [4..9]
(Figure 6.5(b)). The best relative MSE found is 0.96 for λbias = λfactor =
5e−7, which is also in this case around 5% better than the Avocado model.
In the following graphs (Figure 6.6) it is possible to see the trending of
both relative MSE on the validation set and MSE on the training set
for the additive model and matrix factorization best runs, respectively
with 39 and 43 epochs necessary to converge (until relative MSE started
increasing).

68

(a) Additive: MSE (Train) (b) Additive: relMSE (Validation)

(c) MF: MSE (Train) (d) MF: relMSE (Validation)

Figure 6.6: Trend of MSE on training and relative MSE on validation set for Additive
and Matrix factorization best runs

6.3.2 Tensor factorization

In order to set hyperparameters for the tensor factorization model we also
used the one million length samples of the full genome tracks at 25 base
pair resolution, still stopping the training once the relative MSE on the
validation started increasing. Given the parameters used to impute the
signals (equation (5.28)) we decided to use two coefficients λRidgebias and

λRidgefactors for the Ridge regularization, adding a third one λLassolatent, coefficient
for the Lasso regularisation term, applied exclusively for the latent signals
parameter update. Indeed, as already explained in section 2.6, given the
high number of base pairs latent factor parameters, the idea was to add
a regularisation term, the elastic net in this case, to increase the sparsity
in the latent signals, also making an eventual interpretation of the results
easier and more meaningful.
For the training phase, due to the nature of the gradients computed with
respect to the assay and cell factors (equation (5.32)), we had to adapt the
learning rate η dependently on the parameters we were going to update.
Indeed, we set η = 106 for the biases and latent signals updates and η = 1
for the assay and cell factors update; the learning rate decay has remained
the same for both: ηt+1 = ηt ∗ ηdecay with ηdecay = 1− 1e−6.

The tuning of the remaining hyperparameters, λRidgebias , λRidgefactors, λ
Lasso
factors

and number of latent factors L has been performed manually, obtaining
the best run with the followings: L = 5, λRidgebias = λRidgefactors = 5e−7 and

λLassofactors = 1e−6. Along with those hyperparameters the training task con-
verged at relative MSE = 0.97 on the validation, still performing better
that the Avocado baseline.

69

Looking at the graphs 6.7 it is possible to see the trend with which MSE
for the training set and the relative MSE for validation were decreasing
before converging.

(a) TF: MSE (Train) (b) TF: relMSE (Validation)

Figure 6.7: Trend of relative MSE on validation and MSE on training set for tensor
factorization best run

6.4 Test set results

In this section we will analyze and compare the result obtained on the test
set instances by predicting through out the different models explained so
far. Also, to evaluate the performance on the test set, we will still use all
the metrics introduced by ENCODE.

6.4.1 KNN results

The predictions with the KNN model have been executed with the same
modality as for the validation set, averaging across tracks coming from
both training and validation set. We will analyze the results obtained from
the techniques used to predict the tracks submitted for the Imputation
Challenge. In particular, three set of predictions, which are generated
starting from sinh−1 transformed data (the best transformation), have
been tested on the blind instances. The first one, which is the best model
obtained through sweeping on the validation set, is the merge between the
top-100% assay based prediction and the top-50% cell based predictions;
instead, the other two have been chosen trying to reason about the nature
and distribution of the test set. Indeed, the sweep over the parameters
could have led us to overfit the predictions on the validation set, so we
decided as well to submit the merge prediction that aggregates top-100%
assay and cell based prediction, also considering that it still performs better
than Avocado on the validation. Moreover, given the fact that there is
very little information exploitable from the cell dimension when predicting
for the test tracks, we decided to submit as well just the top-100% assay
prediction. The results are in table 6.7 and will be discussed after reporting
the results for the factorization models.

70

Merge Assay

Settings Assay-Cell top-k 100%-100% 100%-50% 100%-None

Metric MSE 0.914 0.913 0.887

gwcorr 1.295 1.292 1.320

gvspear 1.289 1.284 1.304

MSEprom 0.903 0.902 0.857

MSEgene 0.899 0.898 0.867

MSEenh 0.882 0.882 0.876

MSE1obs 0.984 0.982 0.958

MSE1imp 1.518 1.513 1.484

Table 6.7: KNN test set results

6.4.2 Factorization models results

As already explained in section 6.3, the results on the the test set for the
factorization models have been produced by training the models on both
the training and validation set composed by genome-wide signals, exploit-
ing the hyperparameters found (Table 6.8) on the validation set by training
with the one million length subset of the tracks. Also, the technique used
to converge is still the early stopping and it is again performed looking
at the relative MSE on the validation set. The algorithms converge once
the improvement between two consecutive epochs is negative or less than
0.001.

Add. MF TF

HyperParam η 106 106 106/1

ηdecay 1− 1e−6 1− 1e−6 1− 1e−6

L − 2 5

λRidgebias 5e−7 5e−7 5e−7

λRidgefactors − 5e−7 5e−7

λLassofactors − − 1e−5

Table 6.8: Hyperparameters recap

While the time necessary to train the models on the one million tracks
was negligible, in this case on the full dataset, additive, matrix factoriza-
tion and tensor factorization models training time was equal respectively
to: 15h, 31h and 116h. The results obtained on the test set are summa-
rized in Table 6.9 and will be commented and compared with the KNN

71

ones in the following subsection.

Add. MF TF

Metrics MSE 1.063 1.044 1.009

gwcorr 0.896 0.979 1.011

gvspear 0.757 0.730 0.727

MSEprom 1.139 1.034 1.030

MSEgene 1.095 1.017 1.013

MSEenh 1.219 1.015 1.017

MSE1obs 1.046 1.069 1.067

MSE1imp 1.753 1.407 1.594

Table 6.9: Factorization test set results

6.4.3 Comparing KNN and Factorization models

The intuition regarding the possibility of the KNN model outperforming
the Avocado baseline (section 2.6) has been proven correct. The high
number of missing values plus the little information on the cell dimension
for the test set tracks defines, in fact, very difficult conditions to success-
fully train a tensor factorization model. An instance based method has
showcased to be more effective at exploiting the little information avail-
able in the data in order to make predictions on the blind set of signals.
The best prediction came from the assay based model, which manged to
achieve very good evaluations for both the MSE and correlation group of
measures, performing 10% better than Avocado in terms of MSE (0.887)
and 30% better in terms of GWcorr (1.320). The merge techniques still
outperformed the baseline but got worse result than the assay based tech-
nique. Thus, the attempt to integrate the information available for the
test set cell-line tracks ended up adding noise to the predictions instead of
actually improving the quality.
While the KNN got good results for the specific task, the factorization
models fell short, without succeeding in outperforming the Avocado pre-
dictions, even if the performances achieved by the tensor factorization are,
indeed, very close (1.009 relative MSE). Anyway, given the fact that an
instance based model managed to outperform a deep tensor factorization
model, in order to really obtain reliable comparisons between the base-
line and our implementations and then, state that our solutions for the
problem do not actually represent a viable way to improve the accuracy of
the imputations, it could be beneficial to try and learn the model starting
from a different dataset, more similar to the one used to train and evaluate
Avocado.

72

6.5 Imputation challenge

Figure 6.8: Challenge first four rankings. Taken from [15]

In this last section, I will report the results we managed to achieve
joining and submitting for the ENCODE Imputation Challenge.
By the time of the challenge deadline, the only developed model was the
KNN regressor, so, we submitted three different sets of predictions coming
respectively from the three methods mentioned in section 6.4.1. The test
set was not available before the publication of the results since the signals
still needed to be generated by the challenge organizers at the time of the
deadline.
According to their evaluation measure, we managed to achieve rank 4
(Figure 6.8) with the submission generated from the merge technique that
aggregates the top-100% assay prediction and the top-50% cell prediction.
The latter, on their ladder, also managed to outperform the assay based
prediction which, with our local relative MSE evaluation measure, results
instead as the top performing technique on the blind dataset. It is impor-
tant to note that the prediction made through out the rank 4 technique
is not quite the same as the one presented in section 6.4.1. In order to
generate the prediction, we not only exploited the training and validation
set but also the predictions of the Avocado model on the test set (i.e., the
Avocado imputed runs which had been made available by ENCODE in or-
der to use them). Nevertheless, according to our scoring, the improvement
in performance is quite minimal and the assay prediction still remains the
best method. The comparison is reported in the following Table 6.10,
where the line Signals defines the pool of tracks used in order to make the
prediction (Training T , Validation V , blind tracks imputed with a given
method x Bx).

73

Merge Assay

Settings Signals T, V,Bavocado T, V T, V

Assay-Cell top-k 100%-50% 100%-50% 100%-None

Metric MSE 0.898 0.913 0.887

gwcorr 1.357 1.292 1.320

gvspear 1.319 1.284 1.304

MSEprom 0.877 0.902 0.857

MSEgene 0.879 0.898 0.867

MSEenh 0.874 0.882 0.876

MSE1obs 0.976 0.982 0.958

MSE1imp 1.557 1.513 1.484

Table 6.10: KNN test set results comparison

Thus, the discrepancy between the two different evaluations is probably
due to the different process with which ENCODE decided to score the
different imputations. While our process is more straightforward, directly
comparing the prediction with the baseline, the way in which they compute
the performances of the different techniques submitted by the participating
teams is composed of five distinct steps [15], which are as follows:

1. For each predicted signal on the blind test set all the introduced
measures are calculated for 10 different bootstraps. Each bootstrap
samples with replacement the chromosomes in order to obtain a sig-
nal that represents about 90% of the genome.

2. The performances of each bootstrap are evaluated with all the met-
rics for each couple cell-assay, for each team. Doing so, every team
will have 10 different evaluations for each one of the metrics for each
instance of the test set. Each one of this single evaluations is then
transformed into a single score value combining the results obtained
for all the metrics with the sum over all nine normalized ranking
measures of ln(r/(N+1)), where r is equal to the rank obtained by
the team with respect to the others for the relative metric, in one of
the bootstraps on a given assay-cell prediction. Now, for each assay-
cell type, all the teams will have 10 different single scores related to
the different bootstraps.

3. The 10 scores, for each cell-assay, are then combined as follows to
define a unique evaluation w.r.t. to the other teams: a rank is as-
signed based on the score of the second best bootstrap (e.g. on a
given test sample the team will be first if the score associated to the

74

second best bootstrap is the lowest, there can be ties). This is done
in order to define a ranking for each cell-assay.

4. In order to compute a unified score across all the cell-assay couple,
the ranks, coming from step 2 (so 10 ranks for each cell-assay), are
averaged for each bootstrap as follows: ri/(N + 1) with ri equal to
the current bootstrap rank on the i-th cell-assay and N equal to the
number of participants. Now, each team will have 10 different global
scores that will result in 10 different ranks.

5. As in step 3 the global rank of a team will be given by the second
best of the 10 ranks coming from step 4.

This procedure allows, after step 4, the possibility that a systems ranks
highly because it scores well on second bootstraps despite having poor per-
formances on all other. Indeed, considering a similar scenario, this could
easily explain the discrepancy between our evaluation and their evaluation
on the test set.

75

76

Chapter 7

Future work and conclusions

In this work we aimed at developing a new algorithm able to perform im-
putation of signals representing the activity of epigenetic markers (assays)
for different cell-lines at different regions across the genome. While we
wanted to introduce something novel from the modelling point of view,
in order to ensure reliable performances, we also aimed at outperforming
the previous state of art baseline Avocado. More specifically, the goal
of the imputation task, according to the research area, consists in being
able to reproduce the results of specific assays performed using sequenc-
ing epigenetics techniques on a given set of cells or tissues. To do so,
we joined the Imputation Challenge announced by the ENCODE Con-
sortium, getting access to a three dimensional tensor already partitioned
into training, validation and blind test sets that we used in this work to
train models and evaluate predictions. First, an accurate analysis of the
data was performed (chapter 3) in order to understand the distribution
of the values across the signals, the major differences between signals due
to their natural components and if it was necessary to transform the data
in order to get feasible conditions for the imputation task. Starting from
the challenge, we first implemented a kNN regression method (chapter 4),
believing that the relatively simple algorithms could fit the data better
than factorization techniques. The implemented approaches relied on ex-
ploiting the information available on the same target signal cell-line and
assay line, performing a weighted average of the selected tracks, using as
similarity between signals their Pearson correlation.
After the end of the challenge, we continued to investigate other methods
to decompose the dataset based on both matrix factorization and tensor
factorization in order to impute with greater accuracy the blind instances
proposed by ENCODE(chapter 5). The aim in developing this approaches
was to try to understand weather or not, on this particular dataset, the
KNN instance based method could be more effective than factorization
models and the state-of-the-art Avocado method (which itself also exploits
tensor factorization). The results obtained (chapter 6), showcased how the

assumption made regarding the KNN technique was correct. Indeed, it did
outperform the factorization models and Avocado both on our evaluation
measures, and during the challenge, managing to achieve rank 4 on the
ladder.
This result is relevant because it offers a faster and more accurate tech-
nique than the factorization methods when trying to impute over dataset
structured like the one provided (high sparsity and low information on the
test tracks), which is, indeed, a possible scenario considering the fact that
there are some cells for which we have not a consistent amount of exper-
iments, not all the cells can be retrieved in order to perform sequencing
and that, in any case, performing those techniques in the laboratory can
be very expensive.
On the other hand, our factorization models, even if they achieved very
close performances, did not manage to outperform the Avocado baseline.
Despite this fact, since the dataset we worked on was not optimal for train-
ing tensor and matrix factorization, in order to reliably establish that the
solutions we found for the factorization techniques are not optimal, would
be beneficial to train and test our models with a dataset similar to the one
used by Avocado. Another approach that can be related to the improve-
ment of the factorization methods accuracy can be to try to optimize the
training phase by exploiting techniques like ADAM, which could allow us
to adapt dynamically the updates depending on the considered parameter,
possibly improving the performances obtained.

78

Bibliography

[1] National Human Genome Research Institute. What is the Human
Genome Project? url: https://www.genome.gov/human-genome-
project/What.

[2] Encyclopedia of DNA elements Consortium. GenoMetric Query Lan-
guage System. url: https : / / www . encodeproject . org / help /

project-overview/.

[3] Jacob Schreiber et al. “Multi-scale deep tensor factorization learns
a latent representation of the human epigenome”. In: bioRxiv (2018).
doi: 10.1101/364976. eprint: https://www.biorxiv.org/content/
early / 2018 / 07 / 08 / 364976 . full . pdf. url: https : / / www .

biorxiv.org/content/early/2018/07/08/364976.

[4] Jason Ernst and Manolis Kellis. “Large-scale imputation of epige-
nomic datasets for systematic annotation of diverse human tissues”.
In: Nature Biotechnology 33 (Feb. 2015), 364 EP -. url: https:

//doi.org/10.1038/nbt.3157.

[5] “PREDICTD PaRallel Epigenomics Data Imputation with Cloud-
based Tensor Decomposition”. In: Nature Communications 9.1 (2018),
p. 1402. doi: 10.1038/s41467-018-03635-9. url: https://doi.
org/10.1038/s41467-018-03635-9.

[6] National Human Genome Research Institute. Deoxyribonucleic Acid
(DNA) Fact Sheet. url: https://www.genome.gov/about-genomics/
fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet.

[7] National Human Genome Research Institute. NHGRI. url: https:
//www.genome.gov/.

[8] U.S. National library of medicine. What is DNA? url: https://
ghr.nlm.nih.gov/primer/basics/dna.

[9] U.S. National library of medicine. What is a gene? url: https:

//ghr.nlm.nih.gov/primer/basics/gene.

[10] U.S. National library of medicine. How do genes direct the pro-
duction of proteins? url: https://ghr.nlm.nih.gov/primer/
howgeneswork/makingprotein.

79

https://www.genome.gov/human-genome-project/What
https://www.genome.gov/human-genome-project/What
https://www.encodeproject.org/help/project-overview/
https://www.encodeproject.org/help/project-overview/
https://doi.org/10.1101/364976
https://www.biorxiv.org/content/early/2018/07/08/364976.full.pdf
https://www.biorxiv.org/content/early/2018/07/08/364976.full.pdf
https://www.biorxiv.org/content/early/2018/07/08/364976
https://www.biorxiv.org/content/early/2018/07/08/364976
https://doi.org/10.1038/nbt.3157
https://doi.org/10.1038/nbt.3157
https://doi.org/10.1038/s41467-018-03635-9
https://doi.org/10.1038/s41467-018-03635-9
https://doi.org/10.1038/s41467-018-03635-9
https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet
https://www.genome.gov/
https://www.genome.gov/
https://ghr.nlm.nih.gov/primer/basics/dna
https://ghr.nlm.nih.gov/primer/basics/dna
https://ghr.nlm.nih.gov/primer/basics/gene
https://ghr.nlm.nih.gov/primer/basics/gene
https://ghr.nlm.nih.gov/primer/howgeneswork/makingprotein
https://ghr.nlm.nih.gov/primer/howgeneswork/makingprotein

[11] “Defining functional DNA elements in the human genome”. In: Pro-
ceedings of the National Academy of Sciences of the United States of
America 111.17 (Apr. 2014), pp. 6131–6138. doi: 10.1073/pnas.
1318948111. url: https://www.ncbi.nlm.nih.gov/pubmed/

24753594.

[12] U.S. National library of medicine. What is noncoding DNA? url:
https://ghr.nlm.nih.gov/primer/basics/noncodingdna.

[13] U.S. National library of medicine. What is Epigenomic? url: https:
//ghr.nlm.nih.gov/primer/howgeneswork/epigenome.

[14] National Human Genome Research Institute. A brief guide to ge-
nomics. url: genome . gov / about - genomics / fact - sheets / A -

Brief-Guide-to-Genomics.

[15] ENCODE Consortium. ENCODE Imputation Challenge. url: https:
//www.synapse.org/#!Synapse:syn17083203/wiki/587192.

[16] France genomique. Mapping of DNA-protein interaction sites: CHIP
seq. url: https://www.france-genomique.org/technological-
expertises/regulome/chip-seq-2/?lang=en.

[17] Roadmap Epigenomics. Data processing. url: https://egg2.wustl.
edu/roadmap/web_portal/processed_data.html.

[18] Heng Li and Richard Durbin. “Fast and accurate short read align-
ment with Burrows-Wheeler transform”. In: Bioinformatics (Ox-
ford, England) 25.14 (July 2009), pp. 1754–1760. doi: 10.1093/

bioinformatics/btp324. url: https://www.ncbi.nlm.nih.gov/
pubmed/19451168.

[19] taoliu. MACS. url: https://github.com/taoliu/MACS.

[20] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980 (2014).

[21] ENCODE Project Consortium et al. “Identification and analysis of
functional elements in 1% of the human genome by the ENCODE
pilot project”. In: Nature 447.7146 (June 2007), pp. 799–816. doi:
10.1038/nature05874. url: https://www.ncbi.nlm.nih.gov/
pubmed/17571346.

[22] Ian H. Witten and Eibe Frank. Data mining : practical machine
learning tools and techniques. Elsevier, 2005, pp. 128–136.

[23] Aggarwal and Charu C. Recommender systems: the textbook. Springer
International Publishing, 2005, pp. 90–99. doi: 10.1007/978-3-
319-29659-3.

80

https://doi.org/10.1073/pnas.1318948111
https://doi.org/10.1073/pnas.1318948111
https://www.ncbi.nlm.nih.gov/pubmed/24753594
https://www.ncbi.nlm.nih.gov/pubmed/24753594
https://ghr.nlm.nih.gov/primer/basics/noncodingdna
https://ghr.nlm.nih.gov/primer/howgeneswork/epigenome
https://ghr.nlm.nih.gov/primer/howgeneswork/epigenome
genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
https://www.synapse.org/#!Synapse:syn17083203/wiki/587192
https://www.synapse.org/#!Synapse:syn17083203/wiki/587192
https://www.france-genomique.org/technological-expertises/regulome/chip-seq-2/?lang=en
https://www.france-genomique.org/technological-expertises/regulome/chip-seq-2/?lang=en
https://egg2.wustl.edu/roadmap/web_portal/processed_data.html
https://egg2.wustl.edu/roadmap/web_portal/processed_data.html
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://github.com/taoliu/MACS
https://doi.org/10.1038/nature05874
https://www.ncbi.nlm.nih.gov/pubmed/17571346
https://www.ncbi.nlm.nih.gov/pubmed/17571346
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix Factor-
ization Techniques for Recommender Systems”. In: Computer 42.8
(Aug. 2009), pp. 30–37. issn: 0018-9162. doi: 10.1109/MC.2009.
263. url: https://doi.org/10.1109/MC.2009.263.

[25] Sebastian Ruder. “An overview of gradient descent optimization al-
gorithms”. In: (Sept. 2016).

[26] Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and
Applications”. In: SIAM Review 51.3 (2009), pp. 455–500. doi: 10.
1137/07070111X. eprint: https://doi.org/10.1137/07070111X.
url: https://doi.org/10.1137/07070111X.

[27] Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann.
“Introduction to Tensor Decompositions and their Applications in
Machine Learning”. In: ArXiv abs/1711.10781 (2017).

[28] Tanin Sirimongkolkasem and Reza Drikvandi. “On Regularisation
Methods for Analysis of High Dimensional Data”. In: Annals of Data
Science 6.4 (Dec. 2019), pp. 737–763. issn: 2198-5812. doi: 10.1007/
s40745-019-00209-4. url: https://doi.org/10.1007/s40745-
019-00209-4.

[29] “The ENCODE (ENCyclopedia Of DNA Elements) Project”. In:
Science 306.5696 (2004), pp. 636–640. issn: 0036-8075. doi: 10 .

1126/science.1105136. eprint: https://science.sciencemag.
org/content/306/5696/636.full.pdf. url: https://science.
sciencemag.org/content/306/5696/636.

[30] Univerisy of California Santa Cruz (USCS) Genomic Institute. USCS
Genome Browser. url: http://genome.ucsc.edu/index.html/.

[31] Lutz Prechelt. “Early Stopping - But When?” In: Neural Networks:
Tricks of the Trade. Ed. by Genevieve B. Orr and Klaus-Robert
Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 55–
69. isbn: 978-3-540-49430-0. doi: 10.1007/3-540-49430-8_3. url:
https://doi.org/10.1007/3-540-49430-8_3.

[32] Matthias Feurer and Frank Hutter. “Hyperparameter Optimization”.
In: Automated Machine Learning: Methods, Systems, Challenges. Ed.
by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Cham:
Springer International Publishing, 2019, pp. 3–33. isbn: 978-3-030-
05318-5. doi: 10. 1007/ 978- 3 - 030- 05318 - 5_ 1. url: https:

//doi.org/10.1007/978-3-030-05318-5_1.

81

https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1007/s40745-019-00209-4
https://doi.org/10.1007/s40745-019-00209-4
https://doi.org/10.1007/s40745-019-00209-4
https://doi.org/10.1007/s40745-019-00209-4
https://doi.org/10.1126/science.1105136
https://doi.org/10.1126/science.1105136
https://science.sciencemag.org/content/306/5696/636.full.pdf
https://science.sciencemag.org/content/306/5696/636.full.pdf
https://science.sciencemag.org/content/306/5696/636
https://science.sciencemag.org/content/306/5696/636
http://genome.ucsc.edu/index.html/
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1

	Abstract
	Sommario
	Ringraziamenti
	Introduction
	Research area
	Goals and research applications
	Brief description of the work
	Outline of the thesis

	Background
	Biological background
	Epigenetics
	Signals processing
	Related works
	ChromImpute
	PREDICTD
	Avocado

	Metodologies
	Nearest neighbors regression
	Matrix factorization
	Tensor factorization

	Research questions

	Investigating the data
	ENCODE imputation challenge
	Data structure

	Explorative data analysis
	Data visualization
	Data outliers

	Signal pre-processing
	Evaluation metrics
	Aggregating evaluation measures

	K-Nearest Neighbor model
	Similarities between samples
	Aggregating similarities

	KNN regression
	Assay based predictions
	Cell based predictions
	Rescaling Assay and Cell-based predictions
	Predicting at different resolutions
	Merging the predictions
	Top-k Assay and Cell based predictions

	Factorization models
	Factorization models
	Objective function

	Additive model
	Additive model parameter estimation

	Matrix factorization
	Matrix factorization parameter estimation

	Tensor factorization
	Tensor factorization parameter estimation

	Experiments and results
	Experiments set up
	KNN regression
	Assay and Cell based prediction
	Transformed signals
	Sweep over the parameters

	Factorization models
	Hyperparameter tuning
	Tensor factorization

	Test set results
	KNN results
	Factorization models results
	Comparing KNN and Factorization models

	Imputation challenge

	Future work and conclusions

