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Abstract

Monitoring financial transactions is a critical anti-money laundering (AML) obligation
for all financial institutions. Traditional anti-money laundering approaches are based
on heuristics and static rules to highlight unusual behaviours. Such approaches
generate a high number of false positives, false negatives, and require a substantial
effort to manually review all alerts generated by these systems. Moreover, transactional
data is large in volume and highly imbalanced, often having less than 1% of anomalous
occurrences. In recent years, several advanced statistical models, as well as machine
learning-based systems, have been successfully used to complement traditional rule-
based systems. Unfortunately, these solutions also have disadvantages: even if
unsupervised models don’t require human intervention, they lead to low performance
resulting in a high number of false positives; while supervised models require a large
amount of labelled data to perform adequately and achieve high detection rate.

In this work we present Amaretto, an active learning framework for money
laundering detection that combines supervised and unsupervised learning techniques,
taking advantage of their strengths, to improve AML transaction monitoring processes
by targeting a subset of transactions for investigation and making more efficient use
of the feedback provided by the analyst. We experimentally evaluated Amaretto,
on a synthetic dataset simulating a real-world scenario. We show that our approach
outperforms state-of-the-art solutions by improving both the detection rate and the
precision by 25% and achieving an overall detection rate of 0.6 and an area under the
ROC curve (AUROC) of 0.94, with a limited set of labels, showing an improvement
in performance after each successive iterations.
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Sommario

Il riciclaggio di denaro comprende qualsiasi processo attraverso il quale le entrate di
attività illecite come il traffico di droga, il traffico illegale di armi, l’evasione fiscale o
altre attività criminali sono introdotte nel sistema finanziario attraverso molteplici
operazioni che nascondono le loro origini illecite. Al giorno d’oggi, il riciclaggio di
denaro interessa tutte le economie mondiali ed è responsabile della generazione di
profitti stimati tra 1.6-2.85$ trilioni all’anno, equivalenti al 2,1% e al 4% del Prodotto
Mondiale Lordo [1]. Per molti anni, i governi e le forze dell’ordine hanno affrontato
l’evoluzione delle attività criminali diventate sempre più sofisticate, introducendo
regolamenti per ridurre al minimo l’impatto del riciclaggio di denaro e rimuoverne le
cause. Ad esempio, la Financial Conduct Authority (FCA) suggerisce nelle sue linee
guida di monitorare ripetutamente le attività dei clienti [2].

Il monitoraggio delle transazioni in materia di antiriciclaggio consiste in una serie
di attività svolte da analisti e sistemi automatizzati per controllare le transazioni
dei clienti al fine di rilevare comportamenti sospetti che possono essere collegati a
schemi di riciclaggio. Le transazioni finanziarie potrebbero includere trasferimenti
bancari, pagamenti con carta di credito o transazioni in banche di investimento,
come operazioni su azioni. Il primo passo per implementare adeguate procedure di
antiriciclaggio consiste nell’implementare sistemi configurati con una serie di regole
predefinite che supportano i processi di monitoraggio delle transazioni. Questi sistemi
generano avvisi se tali regole vengono attivate. I vantaggi degli approcci basati su
euristiche sono principalmente legati alla facilità di interpretazione dell’output del
sistema e alla capacità degli esperti in materia di utilizzare facilmente tali informazioni.
Purtroppo, le tecniche di riciclaggio di denaro e il crimine finanziario sono in continua
evoluzione e quindi le regole devono essere aggiornate per garantire che siano idonee
a cogliere gli scenari in evoluzione e questo rappresenta la più grande vulnerabilità
di questi sistemi. Inoltre, le regole possono riguardare solo comportamenti anomali
noti e non possono rileveare comportamenti insoliti sconosciuti, con conseguenti falsi
negativi. Il fatto che le regole debbano essere configurate utilizzando predeterminate
soglie statiche comporta un elevato numero di falsi positivi e, successivamente, un
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aumento del volume delle indagini manuali. Tecniche di machine learning (ML) e
deep learning (DL) migliorano le tradizionali tecniche di antiriciclaggio superando
alcune delle insidie nei sistemi basati su regole. I modelli di ML non si limitano ad
un insieme di regole predefinite, ma possono estratte e analizzare schemi dai dati e
valutare correlazioni insolite che potrebbero essere sconosciute agli esperti in materia.
Sfortuntamente, queste soluzioni presentano, a loro volta, degli svantaggi. tecniche
supervisionate richiedono un’elevata quantità di dati etichettati per poter funzionare
correttamente e ottenere un alto tasso di rilevamento.

Al fine di raccogliere un insieme di dati etichettati nel modo più rapido ed
efficiente possibile, i sistemi moderni possono sfruttare tecniche di active learning
(AL). L’active learning è una tecnica aggiuntiva che utilizza modelli di machine
learning per selezionare le transazioni da investigare che hanno la più alta probabilità
di migliorare la qualità dell’output del sistema di machine learning.

In questo documento, presentiamo Amaretto, un sistema di active learning che
combina modelli non supervisionati e supervisionati organizzati in un framework che
combina il prezioso feedback di un analista. Il modello non supervisionato consente
al sistema di rilevare anomalie sconosciute e nuovi schemi mai visti prima, mentre
il modello supervisionato può utilizzare dati precedentemente etichettati da analist
per migliorare in modo rapido il tasso di rilevamento. Il sistema è in grado di
preelaborare i dati transazionali grezzi, convertendoli in vettori aggregati. I modelli
non supervisionati e supervisionati prendono questi vettori come input e calcolano
un punteggio di anomalia per ciascun vettore. In seguito, viene applicata la strategia
di selezione per individuare i campioni che verranno esaminati dall’analista. Quindi,
il feedback raccolto dall’analista viene utilizzato come dati di addestramento per il
modello supervisionato che calcolerà il punteggio finale per i vettori di aggregazione.

Infine, presentiamo la valutazione sperimentale condotta su un set di dati sintetico
fornito dal partner con cui abbiamo collaborato, che è stato generato da un insieme di
dati che ingloba i tipici schemi di riciclaggio di denaro. In primo luogo, confrontiamo
le tecniche non supervisionate comunemente utilizzate nelle attività di rilevamento
delle anomalie e nelle soluzioni più all’avanguardia, e dimostriamo che la Isolation
Forest è l’algoritmo migliore. Quindi, abbiamo condotto una valutazione simile tra le
tecniche supervisionate e concludiamo che Random Forest supera le altre tecniche
per questo set di dati. Successivamente, dimostriamo che i contributi forniti da un
modello non supervisionato completano la capacità dei modelli supervisionati, essendo
in grado di rilevare nuovi tipi di anomalie. Alla fine, conduciamo esperimenti con
l’obiettivo di confermare la solidità del design di Amaretto in uno scenario reale,
identificando le migliori strategie di selezione da quelle proposte e dimostrando infine
che Amaretto supera le soluzioni all’avanguardia migliorando sia il tasso di rileva-
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mento che la precisione del 25%, raggiungendo un tasso di rilevamento complessivo
di 0,6 e un’area sotto la curva ROC (AUROC) di 0,94.

I contributi di questo lavoro sono i seguenti:

• comparazione di algoritmi supevisionati e non supervisionati applicati all’attività
di rilevamento del riciclaggio di denaro;

• prove sperimentali che dimostrano l’importanza di un modello non supervi-
sionato in combinazione con un modello supervisionato per ottenere migliori
prestazioni e ridurre i costi (es. indagine manuale);

• sviluppo di un framework di AL con una nuova strategia di selezione per rilevare
potenziali schemi di riciclaggio di denaro.
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Chapter 1

Introduction

Money laundering encompasses any process by which the income of unlawful activities
such as drugs trafficking, illegal arms trafficking, tax evasion or other criminal activi-
ties is introduced into the financial system through multiple operations that conceal
their illicit origins. Nowadays, money laundering affects all worldwide economies
and is responsible for generating profits estimated between $1.6-2.85 trillion per year,
equivalent to 2.1% and 4% of the Gross World Product [1]. For many years, govern-
ments and law enforcement agencies dealt with the evolution of criminal activities
becoming more and more sophisticated, by introducing regulations to minimise the
impact of money laundering and to remove its root causes. For example, the Financial
Conduct Authority (FCA) suggests in its guidelines to monitor customers’ activities
repeatedly [2].

Transaction monitoring in anti-money laundering consists of a set of activities
carried out by analysts and automated systems to scrutinise customers’ transactions
to detect suspicious behaviours that may be linked to laundering patterns. Financial
transactions could include bank transfers, credit card payments or investment banking
transactions such as equity trades. The first step to implementing adequate anti-money
laundering (AML) procedures consists of implementing expert systems configured
with a set of pre-defined rules that support transaction monitoring processes. These
systems generate alerts if such rules are triggered. The benefits of heuristic-based
approaches are mainly related to the ease of interpretation of the output of the
system and the ability for subject matter experts to easily use that information. The
disadvantage of expert systems is that money laundering techniques and financial
crime are always evolving and so the rules need to be updated to ensure they are fit
to capture the evolving scenarios. Moreover, rules can only cover known anomalous
behaviours and they can not detect unknown unusual behaviours resulting in false
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2 CHAPTER 1. INTRODUCTION

negatives. The fact that rules have to be configured using specific static thresholds
results in a high number of false positives and subsequently, an increase in the volume
of manual investigations. Machine learning and deep learning enhance traditional
AML techniques by overcoming some of the pitfalls in rule-based systems. Machine
learning models are not limited to a set of pre-defined rules, instead, they can extract
and analyse patterns and insights from data and assess unusual correlations that may
be unknown to subject matter experts.

In order to collect a valuable set of labelled data as quickly and as efficiently
as possible, modern systems can leverage active learning. Active learning is an
additional technique that uses machine learning models to select transactions for the
investigation that have the highest probability of improving the quality of the output
of the supervised machine learning system.

In this paper, we present Amaretto, an active learning system that combines
unsupervised and supervised models organised in an "analyst-in-the-loop" framework.
The unsupervised model allows the system to detect unknown anomalies and new
patterns that have not been seen before, while the supervised model can use labels
previously classified by subject matter expert to improve the detection rate. The
system can preprocess the raw transactional data, converting it to aggregated vectors.
The unsupervised and supervised models take the vectors as input and compute an
anomaly score for each vector. Then, the selection strategy is applied to retrieve the
samples that will be reviewed by the analyst. In the end, the feedback collected from
the analyst is used as training data for the supervised model that will compute the
final score for the aggregation vectors.

Finally, we present the experimental evaluation conducted on a synthetic dataset
provided by the industry partners we collaborated with, that was generated from a
real-world dataset that resembles typical genuine and potential money laundering
patterns. Firstly, we compare unsupervised techniques, commonly used in anomaly
detection tasks and in state of the art solutions, and we demonstrate that the
Isolation Forest is the best algorithm. Then, we conducted a similar assessment
amongst supervised techniques and we conclude that Random Forest outperforms
the other techniques for this dataset. Subsequently, we prove the contributions made
by an unsupervised model complement the ability of supervised models by being able
to detect new types of anomalies. In the end, we conduct experiments with the aim
of confirming the robustness of our design in a real-world scenario, identifying the
best selection strategies from the ones proposed and finally showing that Amaretto
outperforms the state of the art solutions by improving both the detection rate and
the precision by 25% and achieving an overall detection rate of 0.6 and an area under
the curve (AUROC) of 0.94.
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The contributions of this work are the following:

• comparison of supervised and unsupervised algorithms applied to the task of de-
tecting money laundering focused on highlighting the most effective techniques;

• experimental evidence that demonstrates the importance of an unsupervised
model in conjunction with a supervised model to achieve better performance
and to reduce cost (i.e., manual investigation);

• development of an active learning framework with a novel selection strategy to
detect potential money-laundering patterns.

The structure of this thesis is as follows:

– Chapter 2 presents a description of the anomaly detection task and the money
laundering problem; a review of works regarding anti-money laundering and
fraud detection in the academic world; an overview of the threat models and
the challenges that the problem involves;

– Chapter 3 presents the description of the dataset we used for this work, showing
its main characteristics;

– Chapter 4 presents a high-level description of Amaretto;

– Chapter 5 describes the details of every module in the Amaretto system;

– Chapter 6 presents all the experiments that validate the end to end flow that
Amaretto implements;

– Chapter 7 we present the limitations of our approach, together with interesting
paths for future works;

– Chapter 8 we exhibit our conclusions and a resume of the impact of our work.
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Chapter 2

Motivation

In this chapter, we present the motivation lying behind our research work. After
providing the necessary background concepts, we present the topic of money laundering
and how anomaly detection in that domain is carried out. We conduct then a review
of the literature on the subject. Finally, we summarize the goals of our work and the
challenges to be faced in achieving such objectives.

2.1 Background

2.1.1 Anomaly Detection

Anomaly detection, also called outlier detection, is the branch of data mining that
addresses the problem of discovering instances, called outliers, that do not conform
with the expected behaviour of the dataset they belong to. In general, the presence
of an outlier in a dataset can be regarded as an interesting occurrence, potentially
indicating something unusual, even of critical importance. The application domains
of anomaly detection are endless, as stated in [3], and in each domain, the presence
of an outlier means something different. For example, in the context of network
traffic, an anomaly may indicate the presence of an attacker trying to steal sensitive
information [4], while in a Magnetic Resonance Imaging result it could hint the
presence of a tumour [5]. When applied to the financial domain, anomaly detection
is referred to as fraud detection, and it finds many different applications: frauds are
sought for example in online banking [6] and investment funds transactions [7] [8],
insurance contracts [9], financial statements [10] and several other contexts. We
decided to focus on money laundering in capital markets.

5
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2.1.2 Money Laundering

Money laundering can be considered as one of the most challenging tasks regarding
anomaly detection and fraud detection because, due to its multiple typologies, it is a
complex problem to formalize. First of all, there isn’t a common regulation between
states and this makes it difficult to discern which transactions should be considered
fraudulent and which are not. Furthermore, some money laundering processes involve
a high number of transactions between banks and different countries, camouflaging
fraudulent transactions between licit ones and therefore impossible to detect even with
automatic systems. Money laundering is a fraudulent activity that can be sum up
with the following sentence: "money laundering is the process of obscuring the source,
the ownership or use of funds, usually cash, that are profits of illicit activities" [11].
In other words, it is how money originated from criminal activities such as drugs
smuggling, people trafficking, cybercrime and fraud, in general, is made accessible and
usable. Given the illegal nature of the transactions associated with money laundering,
it is extremely hard to give accurate estimates of the magnitude of the phenomenon,
and very few attempts have been made in this sense: the flow of money it generates has
been estimated as $1.6-2.85 trillion per year, responsible for 2.1-4% of GDP [1]. With
such a huge impact on the global economy, public and private regulators worldwide
propose guidelines and enforce policies and laws concerning anti-money laundering
activities, to be complied with financial institutions. An example is given by the
UK’s Financial Conduct Authority (FCA), which periodically issues such guidelines
and regulations to financial firms [2].

The typical structure of one “instance” of money laundering activity, as defined by
the intergovernmental organization Financial Action Task Force on Money Laundering
(FATF) [12], is composed of three phases:

• Stage 1: criminal proceeds are transferred to, or collected by, PMLs:
in the first stage, funds are transferred, physically or electronically, to pro-
fessional money launderers (PMLs) or to entities operating on their behalf.
The precise manner of introduction of the funds into the ML scheme varies
depending on the types of predicate offence(s) and the form in which criminal
proceeds were generated (e.g., cash, bank funds, virtual currency, etc.):

– cash: when illicit proceeds are introduced as currency, they are usually
passed over to a cash collector. This collector may ultimately deposit
the cash into bank accounts. The collector introduces the cash into the
financial system through cash-intensive businesses, MVTS providers or
casinos, or physically transports the cash to another region or country.
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– bank accounts: some types of criminal activity generate illicit proceeds
held in bank accounts, such as fraud, embezzlement and tax crimes. Unlike
drug, proceeds of these crimes rarely start out as cash but may end up as
cash after laundering. Clients usually establish legal entities under whose
names bank accounts may be opened for the purposes of laundering funds.
These accounts are used to transfer money to the first layer of companies
that are controlled by the PMLs.

– virtual currency : criminals who obtain proceeds in a form of virtual cur-
rency (e.g., owners of online illicit stores, including Dark Web marketplaces)
must have e-wallets or an address on a distributed ledger platform, which
can be accessed by the PMLs.

• Stage 2: layering stage executed by individuals and/or networks: in
the layering stage, the majority of PMLs use account settlement mechanisms
to make it more difficult to trace the funds. A combination of different ML
techniques may be used as part of one scheme. The layering stage is managed
by individuals responsible for the co-ordination of financial transactions.

– cash: ML mechanisms for the layering of illicit proceeds earned in cash
commonly include: TBML and fictitious trade, account settlements and
underground banking.

– bank accounts: funds that were transferred to bank accounts managed
by PMLs are, in most cases, moved through complex layering schemes
or proxy structures. Proxy structures consist of a complex chain of shell
company accounts, established both domestically and abroad. The funds
from different clients are mixed within the same accounts, which makes
the tracing of funds coming from a particular client more difficult.

– virtual currency : criminals engaged in cybercrime or computer-based fraud,
as well as in the sale of illicit goods via online stores, often use the services
of money mule networks (see Section IV). The illicit proceeds earned from
these crimes are often held in the form of virtual currency and are stored
in e-wallets or virtual currency wallets that go through a complex chain of
transfers.

• Stage 3: laundered funds are handed back over to clients for invest-
ment or asset acquisition: in the last stage, funds are transferred to accounts
controlled by the clients of the PML, their close associates or third parties acting
on their behalf or on behalf of affiliated legal entities. The PML may invest
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the illicit proceeds on behalf of these clients in real estate, luxury goods, and
businesses abroad (or, in some cases, in countries where the funds originated
from). The funds can also be spent on goods deliveries to a country where the
funds originated or to a third country.

Given the variety of domain in which money laundering can be pursed, we decided
to focus on money laundering in capital markets. So considering an outlier [13]
defined as "an observation (or subset of observations) which appears to be inconsistent
with the remainder of that set of data", we recognize an anomalous transaction as a
fraudulent one. The challenge in applying fraud detection to anti-money laundering
is that – whilst fraud mostly occur at transactional level – money laundering often
involves multiple transactions across multiple accounts, hence multiple correlations
have to be taken into account.

2.2 State of the Art
This section focuses on reviewing existing academic papers and research. Anomaly
detection is a widely researched topic, covering areas such as intrusion detection
systems or biomedical systems. In particular, we focus on money laundering detection
but we also analyse the banking and credit card fraud detection context which share
many common aspects.

A general overview of anomaly detection techniques has been presented in [3], which
thoroughly explores the subject, offering a detailed description and categorisation of
several of the algorithms with their respective applications. Moreover, in literature,
there are a good number of paper reviews related to the fraud detection sector.
Amongst these, we find [14], [15], and [16], in which the authors review a wide set of
papers focused on supervised techniques applied to cases of fraud detection (credit
card fraud, insurance fraud and money laundering) and anomaly detection in general.

Unsupervised learning is mainly used to detect unusual correlations and is applied
where it is expensive to obtain labels (i.e., it requires reviewing multiple data points).
The main principle adopted in the use cases related to money laundering detection
is to quantify how a transaction (or group of transactions) deviates from the norm.
In [17], the authors have directed their work along this way, proposing a formulation
for outliers, according to the distance of a point from its neighbours. In [18], the
authors proved that a Replicator Neural Network can detect anomalies in very diverse
datasets and in some cases it overcame issues commonly affecting Neural Networks
such as training with a small dataset. Another work concerning fraud detection is
BankSealer [6], where the authors work in a semi-supervised setting, extracting a
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local, global, and temporal profile for each user to capture their behaviours. Then
they use various techniques in combination, such as HBOS [19] and (DBSCAN) [20],
to rank new transactions. Concerning money laundering, the authors of [7] and [8]
propose in the use case of detecting anomalies in investment funds, an approach
based on clustering profiles into categories and feeding a Backpropagation Neural
Network with the transformed data to output an anomaly score for each transaction.
The above approach is extremely specific to that particular problem and dataset: the
entire learning process is carried out on just two high-level features derived from the
raw data, which appears to offer a limited perspective on the complexity of users’
behaviours. In [21], the authors address the problem of money laundering in Brazilian
exports using a type of Replicator Neural Network called Auto Encoder, which is
considered a state of the art machine learning algorithm for anomaly detection. The
disadvantage of unsupervised models is that in practice an analyst will still have
to verify whether all the predictions were correct, and an unsupervised model will
not be able to fully leverage the output of the reviews as part of subsequent runs.
Also, unsupervised techniques tend to generate a large number of false positives due
to unusual data correlations that are perfectly acceptable [22]. This is an issue for
institutions, as false positives being reviewed translate into the direct cost for the
organisations, which lead to potential money laundering cases not being reviewed
promptly or being missed.

Supervised techniques are reviewed by [14], [15], and [16]; the most commonly
used are Linear Regression, Bayesian Networks, Decision Trees, Neural Networks.
Additionally, Random Forest and Support Vector Machines have started to gain more
attention. In [23], the authors demonstrate that in a real credit card fraud scenario a
Random Forest outperforms Support Vector Machines and Linear Regression across
all metrics used for the comparison. Specifically for money laundering, one of the
first studies applied to automated systems uses a rule-based method (Decision Trees)
which is employed in the FAIS system [24]. This system allows the analyst to follow
evidence sequentially left by linked transactions. An important component is a score
relative to the anomaly degree for a transaction. Simple Bayesian networks are used
to update and combine evidence that a transaction or activity is illicit. Supervised
learning can utilise manually reviewed transactions (i.e., labelled data) and generally
outperforms unsupervised learning in anomaly detection and classification tasks, as
long as enough labelled data is available [25]. However, a large amount of labelled
data is required to ensure adequate performance is achieved; additionally, they are
not as effective at detecting new anomalous patterns (resulting in false negatives)
when compared to unsupervised learning. This is where active learning plays an
important role in bridging unsupervised and supervised anomaly detection.
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Amaretto implements an active learning system combining both supervised and
unsupervised learning, leveraging their strengths and mitigating their weaknesses.
Active learning is a process whereby a model queries a subject matter expert for the
label of a transaction or group of transactions (suspicious or genuine). Within active
learning a dedicated model is used to select which transactions the subject matter
expert should investigate to minimise manual data reviews and at the same time
ensure the output of the overall anomaly detection system is improved. This approach
has already been successfully deployed in anomaly detection as described in [26]. In
their paper, the authors propose an ensemble of unsupervised methods including a
Density-based model, a Matrix Decomposition-based model and a Replicator Neural
Network. Combining the anomaly scores computed by the three models, their system
ranks the instances based on the most anomalous and consequently present them to
the subject matter expert for review; subsequently the feedback collected is used to
train a Random Forest. Further to this research, in [27] the authors pointed out the
importance of selecting data from a different type of anomalies to enhance active
learning frameworks (i.e., selecting different classes of anomalies).

Amaretto explicitly focuses on reducing the cost for a bank, represented by the
daily budget allocated on transaction monitoring and by the cost of not detecting
illicit activities, and on optimizing the selection strategy to spot new anomalous
patterns and to improve the detection rate of the system.

Another approach commonly applied in fraud and money laundering detection is
the analysis of graphs. [28] is a detailed and in-depth review of research regarding
graph-based anomaly detection methods in fraud detection, intrusion detection,
telecommunication networks and opinion networks. In [29], the authors also provide
a detailed analysis of graphs and their application to anomaly detection. Finally,
the authors of [30] provide an example of usage for a graph-based model applied to
anomaly detection using the KDDCup99 dataset for evaluation. As graph analytics
was out of scope for Amaretto, further investigation was not performed.

Our work has also taken advantage of the progress and discoveries made within
our research group, regarding the use of an ensemble of unsupervised models for
anti-money laundering tasks [31], the use of supervised models [32], [33] and the
implementation of active learning systems [34] in banking fraud detection.
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2.3 Goals and Challenges

2.3.1 Money Laundering Detection: Goals

The review of literature on the topic of money laundering detection brought to light
the lack of a system that can decisively tackle the problem of money laundering.
Therefore, we define the following goals for our research work:

• develop an anti-money laundering detection system, that can model user’s
behaviours over a temporal frame and so not considering only the characteristics
of individual transactions;

• prove that the system is reliable in a real-world scenario, detecting specific
money laundering related patterns, recognized by the Financial Action Task
Force on Money Laundering (FATF) [35], an inter-governmental body that
promotes effective implementation of legal, regulatory and operational measures
for combating money laundering, and demonstrating that the computational
time is suitable for individual profiles’ modelling;

• compare the system performances with other state-of-the-art anomaly detection
solutions and verify that our system outperforms the existing solutions.

2.3.2 Money Laundering Detection: Challenges

The realization of an anti-money laundering system able to fulfil the stated character-
istics has to address challenges specific to the financial domain, which are common to
all its different subdomains:

• highly imbalanced datasets: concerning the enormous amount of legitimate
transactions produced daily, the percentage of illicit ones is extremely limited,
which leads to datasets with a fraud percentage which typically varies between
0.005% and 1.0%. With such a small number of outliers, anomaly detection
systems are likely to obtain terrible performances, i.e., of samples that are
classified as outliers when they are not. Incorrect classifications can cause
considerable damage as both in terms of workload and in terms of unacknowl-
edged illicit resources that can lead to sanctions by authorities. Therefore,
the ultimate challenge for a financial money laundering detection system is
to be able to indicate with the highest accuracy the transactions considered
anomalous, reducing the possible costs for the banking institution. In case of
systems that produce anomaly scores (i.e., sorting the analyzed data points from
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the most to the least anomalous), this means to be able to place a consistent
part of the illicit transactions in the very top positions of the ranking, to ensure
a good detection rate while keeping the amount of work required to the analysts
as low as possible;

• the volume of data: in an ideal world, with an unlimited amount of resources,
an analyst would look at every transaction and then decide if the transaction or
group of transactions present a risk of money laundering. Considering the large
volume of transactions executed daily in global markets, this approach is not
feasible because financial institutions, regulators and enforcers have a limited
amount of subject matter experts to deal with such a significant demand. To
solve this problem, organisations employ a risk-based approach by adopting
automated systems to flag and allocate transactions for review. The objective
is to maximise the time spent investigating suspicious activities;

• lack/scarcity of labels: a burdensome challenge in dealing with money
laundering task is finding a valid and trustworthy dataset of transactions.
Unfortunately, banks do not share data or information to not damage their
reputations and some of them do not even have a record of laundering reports.
This, apart from strongly limiting the chance of using supervised learning
approaches, also impacts the possibility of evaluating the effectiveness of the
developed solutions, because there is no ground truth against which the output
of the anomaly scoring or classification can be compared. Therefore, the solution
usually adopted when evaluating financial money laundering detection tools is
to either resort to an injection of synthetic frauds in real datasets or to produce
entirely synthetic datasets shaped to resemble the characteristics of the real
ones. This last solution is often the adopted one due to the restrictive privacy
policies that concern data owned by financial institutions, which make it hard
to get any real-world dataset to work on when making research in this domain;

• dynamic frauds patterns: another major challenge is that even if the financial
institution has historical labelled data, fraudsters evolve their techniques over
time. Given this dynamic behaviour of fraudulent patterns, any solution
developed on old data may become obsolete and its performances decrease
over time. Therefore, one of our goals is to provide a system able to create a
labelled dataset over time, to provide a ground truth knowledge base that can
be leveraged to develop supervised models or further knowledge for the domain
experts.



Chapter 3

Dataset Analysis

In the anti-money laundering domain, one of the major limitations is the difficulty to
obtain a real dataset from financial institutions, due to privacy concerns; besides, it
is a much more complicated challenge to be able to use a dataset labelled by human
analysts. However, we have the great opportunity to work with NapierAI, who is an
anti-money laundering company that work within the capital market and help their
clients comply with AML regulations, that provided us with a synthetically forged
dataset consistent with an international capital market. In this chapter, we describe
and analyze this dataset.

3.1 Dataset Description

A synthetic dataset was generated to simulate transaction profiles consistent with
customers of the international capital market. The data was generated by our
industry partner using a custom-built data generator, that combined more than
10,000 parameters. The dataset consists of 29,704,090 transactions executed by 400
end-customers, covering 60 days divided in 12 weeks (a week is composed of 5 days,
Saturdays and Sundays are not included because during the weekend markets are
closed) that are buying or selling specific securities in a specific market. Key fields
contained in the data include the amount of the transaction, the product class (e.g.,
Equity, Fixed Income, etc.), product type (e.g., cash equity, future equity, bond, etc.),
time field, currency, market. Within the data, it is not possible to identify any specific
statistical distributions in any key field. Table 3.1 shows the summary statistics for
the synthetic data.

To replicate real-world scenarios, we set the number of anomalies to less than 1%
of the data. As part of this dataset, 5 classes of anomalies have been generated based

13
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on examples of suspicious patterns suggested in [35] of The Financial Action Task
Force (FATF), an inter-governmental body that promotes effective implementation of
legal, regulatory and operational measures for combating money laundering.

Table 3.1: Dataset characteristics

Dataset size Nominal Transactions Anomalous Transactions Ratio Originator

29,704,090 29,622,822 81,268 0.274% 400

3.1.1 Features Description

In this section, we are going to explain and to show the features that compose our
dataset. Since the dataset was forged synthetically by NapierAI, any feature cleaning
or feature engineering was required.

The following are the features in our dataset:

• Transaction ID: is a unique value that identifies the transaction in the dataset.
It is included in the dataset to guarantee compatibility with a real dataset but
for our research, it does not provide any useful information, so it is never used;

• Originator: is the name of the users who performed the transaction. In our
dataset, there are 400 distinct UserIDs. This means that there are 74,260.225
transactions per user, but the distribution is very skewed. Figure 3.1 shows
how many transactions have been executed by each user. Circa 90% of the
users made at least 50,000 transactions while 10% of the users performed circa
400,000. It means that 10% of the clients executed almost 50% the transactions;

• Originator_ID: is the identifier of the user. We do not need this feature
because the Originator is sufficient to identify a customer;

• InputOutput: indicates if an asset is bought or sold with the transactions. Fig-
ure 3.2 shows that transactions are almost evenly distributed between the two
categories;

• EntryDate: is the date and time when the transaction is executed. Figure 3.3
shows the distribution of the transactions over the days and over the hour.
Since the dataset is synthetic, any seasonal trend is characterizing the data.
It is possible to see that the transactions are evenly distributed between the
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Figure 3.1: Histogram of number of transactions per user

12 weeks and that most of the operations are executed during market opening
hours while only a small percentage of the transactions is done during the
early hours of the morning and at the end of the day. Also, any particular
trend can be observed looking at the distribution of the transactions over the
date (Figure 3.3(a));

• Market: is the market where the transaction is executed. NapierAI forged the
dataset using insights provided by one of their partners, so the market included
in the dataset are not randomly chosen. Figure 3.4 shows how the transactions
are distributed between the different markets.

• Product ISIN: contains information characterizing financial instruments but
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Figure 3.2: Histogram of number of transactions bought or sold

rather serves to uniformly identify a security for trading and settlement purposes.
Since our dataset is synthetic, this feature is a random alphanumeric string
that don’t bring any insight for our challenge; so for this reason, it is not used;

• Product Type: is the category of the product that is traded in the transaction.
There are 17 different products, representing the main product traded in the
capital market. Figure 3.5 shows how these categories are distributed;

• Product Class: is the procedure by the product type is traded in the transac-
tion. Figure 3.5 shows how these categories are distributed;

• Normalized Amount: represents the amount of the transaction in USD. It is
normalized since the transactions are performed in different markets and so in
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Figure 3.3: Transactions distribution over time

(a) Transactions distribution over date
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Figure 3.4: Number of transactions in the different markets

different currencies. Figure 3.6(a) and Figure 3.6(c) shows two histograms for
the normalized amount of genuine transactions and anomalous transactions. It
is possible to see a high spike indicating that 98.43% of the transactions have
an amount that is less than 1M USD and focusing on these transactions 40%
have an amount less than 10K USD. While Figure 3.6(b) and Figure 3.6(d)
show the trend of the amount for the anomalous transactions. From the figures,
it is evident that the anomalous transactions follow the same trend and this
reinforces the thesis that anomalous transactions are very well hidden with
genuine ones.

• Currency: is the currency in which the transactions are made. There are two
possible values: RUB and USD;
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Figure 3.5: Distribution of product types

• Anomaly: indicates if a transaction is anomalous or not. It is only used in for
test purposes. It represents an important feature so it is described in detail
in Section 3.1.2. Figure 3.7 shows the trends of anomalous transactions: it is
possible to see that fraudsters operate following genuine trends, camouflaging
illegal transactions. The only difference can be spotted in Figure 3.7(c) that
shows anomalous transactions also in early morning hours.
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Figure 3.7: Anomalous transactions distribution over time
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3.1.2 Money Laundering Patterns Analyzed

A total of 81,269 anomalous transactions have been generated in the dataset, this
equates to circa 0.274% of the total population. The criteria used to generate the
anomalies is based on mirroring realistic scenarios highlighting unusual behaviours in
an account or customer activity. 5 classes of anomalies have been generated based
on examples of suspicious patterns suggested in [35] of The Financial Action Task
Force (FATF), an inter-governmental body that promotes effective implementation of
legal, regulatory and operational measures for combating money laundering. Below,
we describe the classes of anomalies injected in the dataset:

1. Small but highly frequent transactions generated within a short time-
frame: a transaction pattern indicating a value of transactions just below any
applicable reporting threshold;

2. Transactions with rounded normalised amounts bought or sold within
an account: it is unusual for transactions in capital markets to have rounded
amounts (unless they occur in markets where foreign exchange conversion causes
rounding errors)

3. Security bought or sold at an unusual time: it is unusual for a customer
trading a specific security, to trade outside of a specific timeframe (for example,
outside of the opening and closing times of a stock exchange);

4. Large asset withdrawal: a sudden spike in transaction amount withdrawn
from an account or transferred out, which deviates from previous transactional
activity absent any commercial rationale or related corporate action event;

5. An unusually large amount of collateral transferred in and out of an
account within a short period: this behaviour is unusual as a client would
not be able to invest by simply trading collateral, or at least such a strategy
would be unusual;

Figure 3.8 indicates the number of anomalous transactions belonging to each
category of money laundering pattern. Over each bar is possible to see the percentage
of each category related to the total number of anomalies. The figure shows that the
majority of the anomalies (74.71%) are distributed between category 4 and 5, while
less than half of the anomalies are divided among the other categories.
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Figure 3.8: Anomalies count

Figure 3.9 shows the distribution of each category over the time (distribution
over the date on the left column, distribution over hours on the right column). It is
possible to see, on the left column, how the anomalies follow the same distribution
of the genuine transactions shown in Figure 3.6(a); every category is distributed
almost uniformly over the days without any particular peak. Furthermore, the same
considerations can be drawn on the hourly distribution. Except for category 3 which
by definition occurs only at unusual times: in fact from Figure 3.9(f), it is possible to
notice how this type of anomaly occurs only during the night.
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(b) Anomalies 1 distribution over hours

Figure 3.9: Money laundering pattern distribution over time



26 CHAPTER 3. DATASET ANALYSIS

20
19

-0
1-

01

20
19

-0
1-

15

20
19

-0
2-

01

20
19

-0
2-

15

20
19

-0
3-

01

20
19

-0
3-

15

0

200

400

600

800

1000

1200

C
ou

n
t

(c) Anomalies 2 distribution over the date
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(d) Anomalies 2 distribution over hours

Figure 3.9: Money laundering pattern distribution over time, cont. 1



3.1. DATASET DESCRIPTION 27

20
19

-0
1-

01

20
19

-0
1-

15

20
19

-0
2-

01

20
19

-0
2-

15

20
19

-0
3-

01

20
19

-0
3-

15

0

200

400

600

800

1000

1200

C
ou

n
t

(e) Anomalies 3 distribution over the date
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(f) Anomalies 3 distribution over hours

Figure 3.9: Money laundering pattern distribution over time, cont. 2
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(g) Anomalies 4 distribution over the date
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(h) Anomalies 4 distribution over hours

Figure 3.9: Money laundering pattern distribution over time, cont. 3
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(i) Anomalies 5 distribution over the date
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(j) Anomalies 5 distribution over hours

Figure 3.9: Money laundering pattern distribution over time, cont. 4
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Chapter 4

Approach

In this chapter, we describe the design of Amaretto. We present all the single
procedures that the system performs, then we show how they are combined to create
an active learning framework that merges unsupervised and supervised techniques
together to address all the challenges introduced in Section 2.3. In particular, the
active learning framework will enable Amaretto to be deployed in situations where
there is no past labelled data and where fraudulent patterns are rapidly evolving,
which is a typical situation for money laundering detection.

4.1 Approach Overview

In this section, we introduce our active learning system for transaction monitoring,
Amaretto.

To enable the detection of money laundering through supervised models, there
is a requirement for sufficient labelled data. Unfortunately, the only way to have
reliable labels is to have all transactions manually reviewed by an analyst, which is
not feasible. For this reason, we opted for a hybrid solution, using active learning as
described in [36]. This consists of using both unsupervised and supervised techniques,
to overcome their respective limitations, combined in an analyst in-the-loop framework.
The main goal of the system is to reduce the cost of transactions monitoring for a
bank institution, supporting the analyst in his daily job routine. The system will focus
on analysing the most suspicious activities using the anomaly_score assigned by the
system, reducing the number of reviews that have to be done by the analyst. Within
the active learning framework, the supervised models are trained on the analysts’
feedback which constitutes the labelled dataset. The contribution of this procedure is
to constantly increase the performances of the supervised model, integrating also new

31
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anomalous patterns discovered by the unsupervised model.
The first step in the Amaretto workflow is to aggregate the raw transactional

data across a specific timeframe to produce features representing high-level vectors that
capture the behavioural profile of a customer. The models employed in Amaretto
are trained with these high-level vectors generated from historical data. This is done
to detect anomalies in customers behaviours inside an extended period, rather than
just in the characteristics of the individual transactions they perform. After the
training phase, Amaretto computes an anomaly_score for each new vector using
both unsupervised and supervised modules, if enough data is available to train the
latter. Then a selection of vectors is done using the anomaly_score. The number
of transactions that will be sent for review to the analyst each day (daily_k) is
a parameter of our system, based on the resources that a financial institution can
allocate on this task. At this point, the potential unusual behaviours are manually
inspected by an analyst who assesses whether they are truly anomalous or not, hence
saving this information as labels in the dataset building a knowledge base which
grows every day by daily_k records. The reviewed labels contribute to a historical
set of labelled data that is the input for the supervised component of the system. The
supervised component is then used alongside the unsupervised model to continuously
sample and select the data to be reviewed by the analyst.

The key component of Amaretto is the selection strategy. The system selects
the vectors to be shown to the analyst, and that will form the training set for the
supervised model, considering the anomaly_score returned by the two models. This
process is divided into three stages that can be configured to use different strategies.
The first stage involves only the anomaly_score computed by the unsupervised
module; this allows the system to rank each vector. Using the first strategy, the
system samples the topmost anomalous vectors; on the contrary, the second strategy
clusters the vectors and then samples the most anomalous vectors from each cluster
to ensure the system learns different types of anomalies. In the second stage, the
vectors are queried using only the anomaly_score of the supervised model, following
these criteria: high scores, indicating a high probability of being an anomalous set
of transactions and low scores, indicating high probability of being a normal set of
transactions. In the third and last stage, data points considered uncertain are selected.
To do so, the vectors can be ranked using the uncertainty of the score generated
by the supervised model, this can be done by either sampling a set of transactions
with an anomaly_score close to 0.5, or taking into account the difference of the
anomaly_score computed by the unsupervised and the supervised model (i.e., when
the two models disagree in scoring vectors).

In Figure 4.1 is possible to observe a scheme of the general design of Amaretto.
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Figure 4.1: Amaretto design

While in Algorithm 1 the pseudocode of the workflow is shown.

Summarizing, the use of the active learning pattern allows us to define a precise
number of transactions to be labelled every day that solves the budget issue posed
by the fully supervised approach. At the same time, it allows us to store and use
the precious information received by the human analyst feedback, that otherwise,
using a fully unsupervised approach, would be wasted. Moreover, we have a labelled
training set that grows every day with new records; in this way, the supervised module
that is trained with the labelled training set will always be up to date and capable
of catching new fraudulent patterns. This would not be possible if the supervised
module is only trained with an initial labelled training set and then used to predict,
without the unsupervised module beside it that provides additional alerts of possibly
new fraudulent patterns.
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Algorithm 1: Amaretto
Input: L = ∅, U , modsup, modunsup, stratfirst, stratsecond, stratthird, K, T
for t = 0, . . . , T: do

if t = 0 then
Train modunsup on U t−1

Compute the scores with modunsup for S(xi) where xi ∈ U t

Query K samples from U t using the sampling strategy stratfirst
Collect analyst feedback. Call it sampletunsup
Add the selected points to Lt−1 i.e.
Lt = Lt−1 ∪ (xi, yi) ∈ sampletunsup

else if t >0 then
Train modunsup on U t−1

Train modsup on Lt−1

Compute the scores with modunsup and modsup for S(xi) for where
xi ∈ U t

Query K
2
samples from U t using the sampling strategy stratfirst

Collect analyst feedback. Call it sampletunsup
U t = Ut \ sampletunsup
Select K

2
samples from U using the sampling strategy stratsecond and

stratthird
Collect analyst feedback. Call it sampletsup
Add the selected points to Lt−1 i.e.
Lt = Lt−1 ∪ sampletunsup ∪ sampletsup

4.1.1 Amaretto Workflow

In this section we will briefly describe the workflow involved in the daily routine of
Amaretto once it’s fully operational.

1. Data Processing Module: the system retrieves new raw transactions (low-
level vectors) from the bank to compute the customers’ profiles than a be-
havioural modelisation (high-level vectors) is performed. The system computes
aggregate features, capturing the customers’ behaviours signature within a
period, ready to be pipelined to the learning algorithms; (Section 4.2)

2. Unsupervised Module: high-level vectors are passed to the unsupervised
model which outputs the anomaly_score for each one; (Section 4.3.1)
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3. Supervised Module: the high-level vectors are fed into the supervised model
which gives a probability or a binary prediction as output; (Section 4.3.2)

4. Selection Strategies Module: at this point, daily_k vectors detected by the
system are presented to the human analyst, which will explore them and label
them as fraud or genuine. The feedback is then stored into the local labelled
database, that will be used in future to train the supervised model; (Section 4.4)

5. at the end of each day, the feedbacks are collected from the analyst and models
are retrained:

• the labelled database is given as input to the supervised model training
algorithm;

• the unsupervised model is trained (in an online fashion) with all the
high-level vectors of the day, excluding the ones labelled as frauds by the
analyst.

6. at the end of the month, with the aim to keep the tool up to date, an optional
hyper-parameters optimization operation is performed. (Section 4.5)

4.2 Data Preprocessing

In this section, we present the steps performed by Amaretto to transform the raw
transactions data into the high-level vectors used for models training, also providing
an insight on why this process is necessary to perform money laundering dection.

4.2.1 Purpose of the Aggregation Process

The starting point for performing money laundering detection is raw transactional
data, i.e., a dataset of historical transactions performed by customers which can
represent single person, an holding company or any entity able to perform financial
movements in capital markets. Each raw transactions data sample is a vector
representing a finanancial transaction, i.e., with at least a sender customer ID, the
amount of money transferred and the timestamp of the transaction. In this domain,
applying machine learning with the purpose of anomaly detection directly on raw
data is either completely impossible, or destined to lead to utterly bad results, for a
variety of reasons:
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• features’ domain: in general, most learning algorithms work with numeric
data. However, almost all the raw features in transactions data are nominal:
there are account IDs, countries, products codes and currencies identifiers,
timestamps and many others. Therefore, preprocessing steps are necessary to
extract usable information;

• lack of perspective: after mapping all the features into numeric ones, it is hard
to learn anything useful from vectors corresponding to individual transactions
for our purpose. The reason is that it is impossible to understand a customer’s
habits and, therefore, to detect variations in them, looking exclusively at how
each individual transaction is shaped. To capture customers’ behaviour, the
system needs to compute statistics on number of transactions performed, product
bought/sold or amount of money traded within a specific timeframe. To obtain
these meaningful features, the system need to aggregate the information of
individual transactions;

• volume of data: finally, even if the system would be able to learni directly
from individual transactions, the volume of the data to handle would be huge,
leading to practical problems in models’ training, in term of both memory
and time required. Also, too much data pointing to even slightly different
directions in terms of customer behaviour information can result in losing the
ability of capturing an modelling what is common, recurrent and standard for
that customer or group of customers. In a domain where the amount of data
produced worldwide daily is enormous, having one vector containing condensed,
meaningful information about one day or few hours of transactions data instead
of thousands of individual transaction vectors may be the only solution to apply
machine learning on that data.

Considering the aforementioned reasons, a data preprocessing and aggregation is
necessary for the succes of the system.

4.2.2 Data Preprocessing Steps

Amaretto generates a set of high-level features that can be derived from the
information contained in the transactional data. To derive such aggregated features,
an aggregation window is chosen: this value represents the time over which transactions
are aggregated (e.g., hours, days, etc.) and is used for computing each set of aggregated
features. Aggregating transactions over a period of time is useful in the anti-money
laundering use case since it can be used to capture correlations over time across
multiple transactions.
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1. Data parsing: the data is parsed to obtain raw transaction vectors, containing
the original features. In this step, the raw data is converted into a format that
can be easily read by the system. The raw features’ handled by the system are
described in detail in Section 3.1.1;

2. High-level features derivation: Amaretto implements a set of high-level
features that can be derived from the information contained in the transactional
data. To derive such aggregated features, an aggregation window is chosen:
this value indicates the width of the time window to consider for computing
each set of aggregated features. For example, as shown in Figure 4.2, if a daily
window is chosen, one aggregated features’ set will be produced for each day,
by aggregating all the transactions the customer performed in that day. This
functionality has been introduced with a particular focus on money laundering
detection since it is a very complex scenario in which studying anomalies and
laundering processes can be detected only analysing patterns of transactions.

4.2.3 Modelling Strategies

Amaretto offers two option of developing the anomaly detection models of customers
to allow its usage in different conditions of data availability:

• individual users’ modelling: if a single user profile contains enough infor-
mation to allow them to be modelled individually, then this is the best to
perform anomaly detection. What ’enough information’ means depends on
many factors: the specific subdomain of the data, how diversified the user’s
behaviour is and therefore for how long it needs to be observed to learn its
regular patterns, how many high-level features are being used, and several
others. It is, therefore, something that varies from application to application,
and needs to be investigated in place;

• global modelling: a single, global model could also be trained using all the
vectors from all the customers. However, this is usually not a good solution
in any scenario in which behavioural patterns of the customers are diversified
because one model would not be able to capture all the different behavioural
patterns. So, unless necessary due to lack of data or to the opposite problem of
a massive amount of data and limited computational resources available, this
solution should not be adopted, or not as the only one.
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Figure 4.2: Aggregation example

4.3 Anomaly Detection

The anomaly detection models are the true core of Amaretto and use high-level
vectors to train the models used to detect anomalies. In this section we present
the algorithms’ that compose it and the technique employed, explaining first the
characteristics fulfilled by these algorithms and the choice of using an ensemble.
We present then the three different options, available to the analyst, for modelling
customers’ behaviours.

The ensemble is composed of the two of the best machine learning algorithms,
Isolation Forest and Random Forest . An unsupervised model is essential to detect
new anomalous patterns never seen before, while a supervised model improves the
ability of the system to make future predictions. The choice of such algorithms
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has been carried out with the aim of implementing a solution with the following
characteristics:

• robustness to outliers: the fundamental characteristic of any good unsu-
pervised anomaly detection algorithm. The presence of a few outliers in the
training set should not compromise the efficacy of the solution, as the will is to
model the behaviour of the majority of the data samples;

• flexibility and domain independence: Amaretto should be capable of
working on any kind of numeric dataset, independently from what those data
represent and from the meaning of each data feature;

• computational efficiency: knowing that, in the financial domain, the algo-
rithms might be used to train models individually for tens of thousands of users,
we want them to be fast. This aspect acquires even more importance consider-
ing the general need for frequent retraining, to keep the models updated with
the dynamic nature of the scenario. Also for what concerns generic anomaly
detection, the computation time performance is important since even if only
one model has to be trained, it is quite frequent to have hundreds of thousands
of training vectors, many more than the ones required for training individual
users’ models. Therefore, we are required to put particular attention into the
computation time performance of the algorithms, to obtain a solution that is
not only theoretically but also practically suitable for the widest number of
applications.

The Isolation Forest and the Random Forest fulfil all the listed requirements.
The domain independence and noise robustness are intrinsic characteristics of these
two learning algorithms. Within the Selection Strategies Module, the scores of the
two modules are combined together. Since the two scores have different natures
and meanings, we need to map them in a common domain. For our solution, we
employ a technique called Weibull Probabilities Combination that transforms all the
anomaly_score produced by each model into probabilities in the interval [0, 1]. It is
later described after the individual algorithms are presented.

4.3.1 Isolation Forest

The Isolation Forest algorithm [37] is based on the isolation principle: it tries to
separate data points from one another, by recursively randomly splitting into two
partitions the dataset. The idea is simple: if a point is an outlier, it won’t be
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Figure 4.3: Isolation Forest splitting examples

surrounded by many other points, and therefore it will be easier to separate it from
the rest of the dataset with random partitioning.

The algorithm uses the training set to build a series of isolation trees, which
constitute the isolation forest; each isolation tree is built on a subset randomly
sampled from the original training set. The isolation tree is built starting from the
whole subset, which is split into two partitions and then recursively repeating the
binary splitting on each pair of partitions generated at each step. The splitting is
performed as follows: the algorithm randomly selects a feature and a splitting value -
lying between the minimum and maximum values for that feature among the data
points in that partition - and separates the data points that have that feature value
above the splitting value from the ones that have it below. Recursively splitting the
data points in this way will lead to isolating all the points sooner or later, i.e., to
reach partitions with only one sample. As shown in Figure 4.3, the number of splits
required by an outlier to remain isolated is likely to be much smaller than the one
needed by a regular point, because of there’s more space around it.

First, the concept of path length for a sample x̃ must be defined. The path length
h(x̃) of x̃ is measured by the number of edges x̃ traverses in the Isolation Forest
starting from the root node and until the traversal is terminated at an external node.
Each edge corresponds to a binary split over a feature, and reaching an external node
of the tree means that the point got isolated from all the others.

The anomaly score s of an instance x is defined as
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Figure 4.4: Random Forest example

s(x, n) = 2−
E(h(x))

c(n) (4.1)

where n is the number of instances contained in a subset of the training set used
to build an Isolation Forest , E(h(x)) is the average path length of x in all the trees
of the forest, and c(n) an estimate of the general average path length of a tree built
with n instances, representing the average path length of an unsuccessful search in a
Binary Search Tree, calculated as

c(n) = 2H(n− 1)− 2(n− 1)

n
(4.2)

where H(i) is the harmonic number, i.e., the truncation of the harmonic series at
the i-th term

4.3.2 Random Forest

In this section, we describe what a Random Forest [38] (shown in Figure 4.4) is and
how it works, starting from its basic component, the Decision Tree [39].

A Decision Tree is a structure that allows the categorization of data points into
different classes. Starting from the root node, each data point is deviated through
different branches of the tree, depending on each node rule, until a leaf node is reached.
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The node rules are simple conditions verified by a given attribute of the data point
(e.g., is attribute a1 ≥ K? Or, for categorical features, is attribute a2 equal to C0?).
In the leaf node, it will then be possible to determine the class of an input point,
by simply looking for the class presenting maximum probability with respect to the
leaf’s samples.

A major advantage of this technique is the possibility to analyze, branch after
branch, every decision made by the tree. This allows for a much better understanding
of the decision taken and motivation driving the classification of points towards one
or the other class.

DTs hold several good properties, however, they suffer a major issue: overfitting.
There are several ways to cope with this problem, although, the most promising one
in literature is to use an ensemble of several decision trees, called Random Forest . It
consists of growing N trees from bootstrapped samples of the original dataset, thus
growing many different weak learners, characterized by low bias and high variance.
Nonetheless, the bagging ensemble of these weak learners will be a robust model,
since the overall prediction is made averaging the prediction of the single trees. For
binary classification tasks, the prediction can be interpreted as the probability of the
sample to belong to the positive class. In usual applications, the desired output is a
class, so you have to set a threshold value: if the predicted probability is greater than
the threshold, the sample will be labelled as positive, otherwise as negative. However,
in our case, the desired output is not a binary classification. Since the final output of
our system is a ranking for transactions, we prefer the continuous value of probability
more than a binary value 0 or 1. For example, if we have a threshold at 0.5, two
samples predicted respectively as 0.6 and 0.9 are both classified to 1, but we prefer
keeping that difference so that they get ranked differently. For this reason, we keep
the probability prediction without applying any thresholding function.

4.3.3 Ensembling Technique

If you want to use several different models, you face a challenging issue: how can you
combine the prediction of models that don’t have the same output?

In Amaretto we use a Random Forest , which outputs class probabilities ∈ [0, 1],
and an Isolation Forest , which outputs an anomaly_score ∈ [−1,+1). Even if the
models yield outputs in the same range (e.g., probabilities in [0, 1]), their prediction
distribution could be significantly different, so the sum of the predictions could be
misleading.

In order to cope with this problem, we use a score ensembling technique based
on Weibull distribution. To perform the score transformation for each model, we
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perform three steps:

1. Weibull PDF fitting: we fit a Weibull distribution to the observed model’s
score distribution (i.e., f(anomaly_score)); the choice of a Weibull curve is
performed because of its shape flexibility (Figure 4.5(a)).

2. Weibull CDF derivation: once we have the Weibull PDF, we compute the
corresponding CDF through integration (Figure 4.5(b)).

3. Scores conversion: for each new prediction s~x, we redefine the anomaly_score
as F (s~x) = P (~x ≤ s~x). This is performed by plugging the old anomaly_score
into the Weibull CDF (Figure 4.5(c)).
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Figure 4.5: Anomaly score standardization

(a) Weibull distribution fitted anomaly_score.
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(b) Fitted Weibull CDF: FX(~x) = P (X ≤ ~x).
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(c) Histogram of the anomaly_score after the conversion
is performed.
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4.4 Selection Strategies
This section defines the processes used to select a subset of high-level vectors for the
subject matter expert to review as part of the active learning process. Taking into
account the resources allocated by a financial institution on transaction monitoring,
a fixed number (daily_k) of high-level vectors is shown to the subject matter expert.
This process is divided into three stages.

4.4.1 First Stage: Unsupervised Selection Strategies

The purpose of the first stage is to detect new anomalous patterns as well as common
anomalous patterns. As previously mentioned, the anomaly_score computed by the
Isolation Forest is fundamental to detecting new anomalous patterns. For this stage
two possible strategies are available.

In the firsts strategy, high-level vectors are ranked in decreasing order based on
the anomaly_score generated by the Isolation Forest, and the topmost anomalous
vectors are selected. However, this may not guarantee all types of anomalies are
covered (i.e. selecting the top anomalies may result in having samples of the same
anomaly type).

As previously evidenced in Section 2.2 by [27], it is important to diversify the
type of unusual patterns that are selected. For this reason, the second active learning
strategy uses clustering to group high-level vectors and drawing samples from each
cluster based on the anomaly_score. Samples are drawn from each clusters starting
from the least dense cluster until the desired number of samples has been reached.
The decision of starting from the least dense cluster is motivated by the following
assumption: given that the number of non-anomalous high-level vectors is greater
than the number of anomalous vectors, the latter should form less dense clusters.

The clustering algorithm used for this strategy is HDBSCAN and the technical
details are presented in the following section.

HDBSCAN

This algorithm is based on the work by [40] and [41]. The first step of the algorithm
is to build a weighted graph, where each data point represents a node of the graph.
The weights of this graph are computed using a metric called mutual reachability
distance between two points, defined as:

d(a, b) = max {corek(a), corek(b), d(a, b)}.
corek(x) is the core distance for a point x which is the distance between that

point and its k-th farthest neighbour. The mutual reachability distance defines the
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density of the areas around each point and it is used for spreading apart isolated
points. A minimum spanning tree is constructed from the resulting graph using
Prim’s algorithm, which aims to connect every point in the graph whilst minimising
the total weight of the edges in the resulting graph.

The next part of the algorithm focuses on building a hierarchy of clusters. This
is achieved by removing all edges sorted by decreasing weight. This split process
is recursively performed starting with the edges of the tree that have the lowest
weight. This is defined by a parameter "minimum cluster size". The first step in
cluster extraction is condensing down the large and complicated cluster hierarchy
into a smaller tree. The key point is to consider points that are split close to a
cluster, belonging to this single persistent cluster. To do so, the notion of minimum
cluster size is applied. Again, a different measure than distance is defined to measure
the persistence of clusters: λ = 1

distance
. For a given cluster, values λbirth and λdeath

represent the value when the cluster split off and became its cluster and the lambda
value (if any) when the cluster split into smaller clusters respectively. In turn, for
a given cluster, for each point p in that cluster we can define the value λp as the
lambda value at which that point ‘fell out of the cluster’ which is a value somewhere
between λbirth and λdeath since the point either falls out of the cluster at some point
in the cluster’s lifetime, or leaves the cluster when the cluster splits into two smaller
clusters. Now, for each cluster computes the stability as

∑
p∈cluster(λp − λbirth). If the

sum of the stabilities of the child clusters is greater than the stability of the cluster,
then we set the cluster stability to be the sum of the child stabilities. If, on the other
hand, the stability of the is greater than the sum of its children then we declare the
cluster to be selected and unselect all its descendants. Once we reach the root node
we call the current set of selected clusters our flat clustering and return that.

4.4.2 Second Stage: Random Forest Selection

The second stage of the selection phase relies on the probability score generated by
the Random Forest. This process comprises two steps: the first one is the selection
of the most anomalous aggregated transactions; the second one is the selection of
the least anomalous aggregated transactions. The purpose of this stage is to take
advantage of the higher accuracy of the Random Forest to reinforce the information
contained in the labelled dataset.
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4.4.3 Third Stage: Uncertain Datapoints Selection

In the third and last stage of the selection phase, the high-level vectors, for which the
two models show the most uncertainty, are selected. To assess the level of uncertainty,
two approaches can be followed:

• the first approach uses the probability scores generated by the supervised model.
Samples whose probability is close to 0.5, have a high chance of being selected
due to their high entropy and hence uncertainty;

• the second approach takes into account the difference between the scores
generated by the supervised and unsupervised model. A discrepancy the in
score for each set of high-level vectors indicates that the outputs of the two
models disagree; for this reason, samples, where the score discrepancy is close
to 1.0, are selected (i.e. the models are completely in disagreement on whether
the vectors are anomalous or not).

Both the strategies provide a varied selection of samples that allows the super-
vised model to be trained not only anomalous aggregation but also on nominal one.
Furthermore, the selection of samples for which the models are uncertain leads the
analyst to inspect transactions that are well hidden within the nominal ones.

4.5 Automatic Hyper-Parameters Optimization
The two models we use in Amaretto, Isolation Forest and Random Forest , have
several hyper-parameters that need to be tuned to achieve optimal performances.
There are several ways to do this, from manual to automatic activity. The hyper-
parameters optimization could be done by hand, but it’s a very tedious operation.
For this reason, among the automatic methods, we adopt Bayesian Optimization [42]
because it allows us to save an enormous amount of time.

Bayesian Optimization is a probabilistic model-based approach for finding the
minimum of any function that returns a real-value metric. In particular, it finds
the input value or set of values to an objective function that yields the lowest
output value, called a “loss”. Typically, in machine learning, the objective function
is multidimensional because it takes in a set of model hyperparameters. For simple
functions in low dimensions, it is possible to find the minimum loss by creating a
grid of input values (grid search) and seeing which one yields the lowest loss. Or
it is possible to pick random values (random search [43]). As long as evaluations
of the objective function are cheap, these uninformed methods might be adequate.
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However, for complex objective functions, it could require a huge amount of time and
computational power. Bayesian Optimization, also called Sequential Model-Based
Optimization (SMBO), builds a probability model of the objective function that
maps input values to a probability of a loss: p(loss|inputvalues). The probability
model also called the surrogate or response surface, is easier to optimize than the
actual objective function. Bayesian methods select the next values to evaluate by
applying a criterion (usually Expected Improvement) to the surrogate. The concept
is to limit evals of the objective function by spending more time choosing the next
values to try, focusing on previous values that return a lower loss. Bayesian Reasoning
means updating a model based on new evidence, and, with each eval, the surrogate is
re-calculated to incorporate the latest information. The longer the algorithm runs,
the closer the surrogate function comes to resembling the actual objective function.
Bayesian Optimization methods differ in how they construct the surrogate function:
common choices include Gaussian Processes, Random Forest Regression and the Tree
Parzen Estimator (TPE).

The hyper-parameters that need to be set are the following:

• Isolation Forest :

– n_estimators: the number of base estimators in the ensemble;
– max_features: the number of features to draw from the training set to

train each base estimator;
– contamination: the amount of contamination of the data set, i.e. the

proportion of outliers in the data set. Used when fitting to define the
threshold on the decision function;

• Random Forest :

– num_trees: the number of decision trees that compose the forest;
– max_depth: the maximum depth to grow each decision tree;
– min_samples_split: the minimum number of samples required to split

an internal node;
– min_samples_leaf: the minimum number of samples required to be at a

leaf node. A split point at any depth will only be considered if it leaves
at least min_samples_leaf training samples in each of the left and right
branches;

– max_features: the number of features to consider when looking for the
best split.



Chapter 5

Implementation Details

In this chapter, we describe all the details regarding the implementation of Amaretto.
The entire framework is developped using Python v3.7.2. Firstly, we present an
overview of the main modules that compose our tool, then we describe each one of
them in detail, together with some algorithms.

5.1 Amaretto Architecture

Amaretto is composed of three main modules:

• the Data Preprocessing Module is the module that new raw transactions
(low-level vectors) from the bank to compute the customers’ profiles than
a behavioural modelisation (high-level vectors) is performed. The system
computes aggregate features, capturing the customers’ behaviours signature
within a period, ready to be pipelined to the learning algorithms (Section 5.2);

• the Anomaly Detection Module is the module that employes the algorithm
using to detect the anomalous patters. It is divided in two submodules:

– theUnsupervised Module that is used to detect anomalous patterns and,
above all, discover new anomalous patterns. It returns an anomaly_score
to each new high-level vectors (Section 5.3.1);

– the Supervised Module is used to perform the supervised scoring and
the binary predictions. It uses the labeled feedbacks provided by the
analyst to train itself (Section 5.3.2);

49
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• the Selection Strategies Module is the module in charge of selecting the
high-level vectors to be shown to the analyst which will explore them and label
them as fraud or genuine. The feedback is then stored into the local labelled
database, that will be used in future to train the supervised model (Section 5.4);

• the Hpyer-parameters Optimization Module that automatically finds the
optimal value for the hyper-parameters of our framework (Section 5.5).

A full schema of Amaretto architecture is depicted in Figure 4.1. In the following
sections, we will deeply describe each of these modules, what models we chose for
them and how they work.

5.2 Data Preprocessing Module
We present here the characteristics of the Data Preprocessing Module, whose
funcionalities have been designed in collaboration with NapierAI experts to answer
all the expected needs of an analyst in the capital market domain.

5.2.1 Raw Data Parsing

The raw data parsing is the first key task performed by the module. The process is
performed starting from data shaped as a .csv (comma-separated values) file, where
each column corresponds to a base feature. The file containing the raw transactions
is then transformed into a DataFrame provided by Pandas v0.23.4. The DataFrame
columns are mapped in the following dtype:

• Transaction ID: str;

• Originator: str;

• Originator_ID: str;

• InputOutput: str;

• EntryDate: pandas.DateTime

• Market: str;

• Product ISIN: str;

• Product Type: str;
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• Product Class: str;

• Normalized Amount: float;

• Currency: str;

• Anomaly: int

5.2.2 High-Level Features Derivation

After parsing the raw data, the aggregation process is carried out using a fixed, defined
aggregation window for all the customers. For each one, the aggregation window
starts sliding from his oldest transaction performed, and all the activities inside the
window at each iteration are aggregated into a single DataFrame containing all the
high-level vectors. When aggregating labeled data, necessary to test the efficacy of
the solution (remember that labels are not used in any way for the anomaly detection
task), if at least one of the raw transaction vectors included in the aggregation is
marked as anomalous, then the high-level vector itself is marked as anomalous too.

Extracting financial information First of all, the EntryDate column is used
to extract temporal features like Weekday, Month, Hour. The DataFrame contain-
ing the transactional data is grouped by using the Originator and the temporal
features mentioned before. Then, the financial features are extracted from the
DataFrameGroupBy object. For each window in which the user performed at least
one transaction, a raw in the final Dataframe is created, collecting all the activities
of the customer. These records are uniquely indexed through the features used to
create the DataFrameGroupBy.

The financial features extracted in this phase are designed to model the be-
haviourial signature of the user in each window, capturing the spending patterns.
The features of interest comprises combination between Currency, Product Class,
Product Type, and InputOutput columns. These high-level features are carefully
selected exploting the domain expertise of the NapierAI team, to be able to detect
all kinds of behavioral variations that might indicate a fraudulent activity.

The first step is to transform the Product Class, Product Type into new features
called Cash and Collateral that indicate if a transaction is performed through a
simple transfer using cash or other types of security. Then, a first aggregation, called
Amount_IO_Aggregation, is carried out extracting information about the amount
of the transactions included in the aggregation window as statistical features like
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mean_amount, sum_amount or code_small_amount, code_round_amount. Further-
more, during this step, InputOutput_delta and Collateral_delta are determined,
indicating the difference between bought and sold operations or the difference be-
tween collateral and the other secutiries. Afterwards, another DataFrameGroupBy
object, called Product_Currency_Aggregation, is created aggregating by Currency,
Product Class, Product Type, and InputOutput columns and computing the mean_amount,
sum_amount, and count for each different value of the pivot columns. Finally, the
two aggregation, Amount_IO_Aggregation and Product_Currency_Aggregation,
are merged together and indexed used the Originator and the temporal columns.
This is the final DataFrame that contains the high-level vectors used to train or be
analysed by the Anomaly Detection Module.

An example of high-level vector is shown in Table 5.1, while in Algorithm 2 is
shown the pseudocode of the high-level features derivation.

Algorithm 2: High-level features derivation
Input: transaction_df, window_width, client_flag
Output: high_level_df

drop useless columns from transaction_df

extract temporal features from transaction_df

extract features regarding Cash and Collateral

if client_flag == True then
group_df = groupby temporal feautures and Originator

else
group_df = groupby temporal feautures

Amount_IO_Aggregation = aggregate and compute ’mean’, ’count’, ’sum’ on
[Amount, InputOutput and Collateral]

Product_Currency_Aggregation = aggregate and compute ’mean’, ’count’,
’sum’ on [Cash, Collateral and Currency]

high_level_df = merge [Product_Currency_Aggregation and
Amount_IO_Aggregation]
return high_level_df
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Feature name Value
Originator Client_304
EntryDate 2019-01-01 00:00:00
Weekday 1
Hour 7
Night 1
Morning 0
Evening 0
Anomaly 1
Transactions_count 73
Normalized Amount_sum 20886919.32000001
Transactions_count_Small_Amount 15.0
Transactions_count_Round_Amount 0.0
InputOutput_delta 17
Collateral_delta -39
Transactions_count_Buy_Collateral_Cash_USD 0.0
Transactions_count_Buy_Collateral_Cash_RUB 1.0
Transactions_count_Buy_Collateral_Security_USD 3.0
Transactions_count_Buy_Collateral_Security_RUB 3.0
Transactions_count_Sell_Collateral_Cash_USD 1.0
Transactions_count_Sell_Collateral_Cash_RUB 3.0
Transactions_count_Sell_Collateral_Security_USD 2.0
Transactions_count_Sell_Collateral_Security_RUB 4.0
Normalized Amount_sum_Buy_Collateral_Cash_USD 0.0
Normalized Amount_sum_Buy_Collateral_Cash_RUB 1952.2
Normalized Amount_sum_Buy_Collateral_Security_USD 34888.65
Normalized Amount_sum_Buy_Collateral_Security_RUB 835052.6699999999
Normalized Amount_sum_Sell_Collateral_Cash_USD 16782.43
Normalized Amount_sum_Sell_Collateral_Cash_RUB 94323.17
Normalized Amount_sum_Sell_Collateral_Security_USD 27584.75
Normalized Amount_sum_Sell_Collateral_Security_RUB 191164.09000000003
Normalized Amount_mean_Buy_Collateral_Cash_USD 0.0
Normalized Amount_mean_Buy_Collateral_Cash_RUB 1952.2
Normalized Amount_mean_Buy_Collateral_Security_USD 11629.550000000001
Normalized Amount_mean_Buy_Collateral_Security_RUB 278350.88999999996
Normalized Amount_mean_Sell_Collateral_Cash_USD 16782.43
Normalized Amount_mean_Sell_Collateral_Cash_RUB 31441.056666666667
Normalized Amount_mean_Sell_Collateral_Security_USD 13792.375
Normalized Amount_mean_Sell_Collateral_Security_RUB 47791.02250000001

Table 5.1: High-level vector example
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Modeling Strategies Due to the lack of the a sufficient amount of data in a
customer profile or because the analyst wants a difference point of view, the high-level
vectors can be model via a individual profile modeling or a global profile modeling.
Through a boolean variable, the high-level features derivation can take into account
the Originator column or not. Obviously, the final DataFrame generated to globally
model the profiles contains less instances than a the individual one, since in the latter
are generated ncustomers × nwindows instances.

5.3 Anomaly Detection Module

Here, we present the main processes performed by the two models included in the
Anomaly Detection Module of Amaretto.

5.3.1 Unsupervised Module

The Unsupervised Module is one of the core components of Amaretto. It is in charge
of performing anomaly detection in an unsupervised way, using the high-level vectors.
The algorithm running within this module is the Isolation Forest [37], developped by
[44]. In order to fulfill our requirements, we built a wrapper class around the main
algorithm that implements the methods we need, receiving and returning pandas
DataFrames and Series. The principal functions implemented are the following:

1. decision function: computes the anomaly_score using given the depth of the
leaf containing the observation, which is equivalent to the number of splittings
required to isolate this point;

2. fit Weibull parameters: at training time, we first train the Isolation For-
est , then we fit a Weibull PDF to the anomaly_score distribution. For the
Weibull we used the implementation provided by the statistical module of SciPy
v1.1.0 [45];

3. anomaly scoring: it’s the method used for transactions scoring. It basically
calls the decision function, then passes the anomaly_score through the
Cumulative Distribution Function (CDF) of the Weibull fitted in training phase,
thus obtaining a normalized anomaly_score in the [0, 1] space that can be
compared to the supervised one.
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5.3.2 Supervised Module

The Supervised Module is the other main component of Amaretto Anomaly Detec-
tion Module. It’s composed of a Random Forest that gets trained with the labeled
high-level vectors database created by collecting human analyst feedbacks. To develop
the wrapper class around the Random Forest , we used the implementation provided
by the ensemble module in scikit-learn v0.20.3 [44]. The main custom functions
we added are the following:

1. fit Weibull parameters: during the training phase, we first train the Random
Forest , then we fit a Weibull PDF to the probability distribution of the just
fitted Random Forest ;

2. probabily estimation: computes the probabily that an instance is anomalous
or not computed as the mean predicted class probabilities of the trees in the
forest. The class probability of a single tree is the fraction of samples of the
same class in a leaf;

3. anomaly scoring: it’s a custom method to score the transactions based on
the probability estimation of the Random Forest . Instead of directly using the
predicted probability for class 1, we pass it through the CDF of the Weibull
fitted during training phase, in order to have results that can be compared with
the Isolation Forest ’s anomaly_score;

4. binary prediction: it’s the function called to return the binary prediction
computed by the Random Forest . The purpose of this functions is to create
a wrapper that returns a pandas DataFrame merging the predictions and the
high-level vectors.

5.4 Selection Strategies Module

In this section, we detailed the the processes and the algorithms used to select a
subset of high-level vectors for the analyst to review as part of the active learning
process. After the scoring phase, the DataFrame containing the anomaly_score and
the high-level vectors features is the input of this module and through every stage of
the selection process is modified by the submodule related to each stage. Since the
process is divided in three stages, the daily_k samples are equally shared between
the stages.
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5.4.1 First Stage: Unsupervised Selection Strategies

The Unsupervised Module returns an anomaly_score for each high-level vector. This
score is fundamental because it indicates how much a vector is anomalous and
therefore it is used to select the most interesting ones for the analyst. In this stage,
Amaretto leverages the ability of the Isolation Forest to detect, in addition to
common anomalies, new anomalous patterns. As explained in Section 4.4.1, two
approaches can be employed in this stage.

In the first one, the DataFrame is sorted in decreasing order by anomaly_score
and the ratiounsup most anomalous vectors are selected, as show in Algorithm 3.

Algorithm 3: First stage: SELECT-TOP
Input: U t, ratiounsup
Output: sampletunsup
Sort U t by unsupervised score
Select ratiounsup most anomalous aggregations. Call it C
Append C to sampletunsup i.e.
sampletunsup = sampletunsup ∪ C

return sampletunsup

The second approach employes more steps but it allows the system to select
different types of anomalies, providing a wider knowledge in the training set for
the Supervised Module. Also in this approach, the DataFrame is ranked using the
anomaly_score and all the vectors with an anomaly_score higher than the punsup
percentile are then considered. Afterwards, the cluster process is applied on this
subset of vectors in order to obtain different groups of vectors. Then, cluster_ratio
is defined taking into account ratiounsup and indicating the number of samples to be
selected from each cluster. Starting from the least populated cluster, cluster_ratio
vectors are selected untill a DataFrame containing ratiounsup samples is obtained.
The Algorithm 4 presents the pseudocode of this approach.

5.4.2 Second Stage: Random Forest Selection

The second stage of the selection phase relies on the probability score generated by
the Random Forest . This process comprises of two steps: the first one is the selection
of the most anomalous aggregated transactions; the second one is the selection of
the least anomalous aggregated transactions. In this stage, the previously selected
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Algorithm 4: First stage: SELECT-DIVERSE
Input: U t, ratiounsup, punsup
Output: sampletunsup
Sort U t by unsupervised score
Find punsup percentile. Call it xp
Select xi ∪ U t with score si >xpĊall it anomsunsup
Run HDBSCAN algorithm on anomsunsup
Define clusterratio = max {1, ratiounsup

nclusters
}

Sort cluster by clusterdensity
for i = 0, . . . , nclusters: do

Select clusterratio samples from clusteri. Call it Ci
Append Ci to sampletunsup i.e.
sampletunsup = sampletunsup ∪ Ci
if |sampletunsup| ≥ ratiounsup then

Break

return sampletunsup

vectors are filtered out from the input DataFrame in order to not overlap the selected
vectors.

5.4.3 Third Stage: Uncertain Datapoints Selection

In the third and last stage of the selection phase, we exploit the anomaly_score of
both models in order to select the high level vectors for which the two models show
contraddictory anomaly_score.

As explained in Section 4.4.3, two approaches can be employed in this stage.
In the first one, only the probability estimation provided by the Random Forest is

considered. A probability close to 0.5 means that the Random Forest is completely
uncertain if the high-level vector is anomalous or not. For this reason, with this
approach, we focus on these vectors. From the anomaly_score in the input DataFrame,
the distance of each vectors to 0.5 is computed. Then, the vectors are sorted in
ascending order by distance and ratiosup samples are selected. Algorithm 5 shows the
pseudocode of the algorithm.

In the second approach, the anomaly_score computed by the two models are
taken into account. In this case, the score provided by the Isolation Forest and the
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Algorithm 5: Third stage: SELECT-ENTROPY
Input: U t, ratiosup, pcenter
Output: Ccenter

Compute the distance of the score for each aggregation i to the center = 0.5.
disti = |si − 0.5|
Sort disti in ascending order
Select ratiosup × pcenter least distant aggregations. Call it Ccenter

return Ccenter

Random Forest are normalized using the Weibull techinque in order to be compared.
With this approach, Amaretto focuses on the high-level vectors which shows a
different rating between the two models. In this case, a difference between the two
anomaly_score is computed. The derived DataFrame is then sorted by the difference
and ratiosup vectors are selected. Algorithm 6 shows the pseudocode of the algorithm.

Algorithm 6: Third stage: SELECT-CONFLICT
Input: U t, ratiosup, pcenter
Output: Ccenter

Compute the difference between the supervised score and the unsupervised
score for each aggregation i. Call it unci
Sort unci in descending order
Select ratiosup × pcenter most uncertain aggregations. Call it Ccenter

return Ccenter

Both the strategies provide a varied selection of samples that allows the super-
vised model to be trained not only anomalous aggregation but also on nominal one.
Furthermore, the selection of samples for which the models are uncertain leads the
analyst to inspect transactions that are well hidden within the nominal ones.

5.5 Hyper-Parameter Optimization Module

The two models we use in Amaretto, Isolation Forest and Random Forest , have
several hyper-parameters that need to be tuned in order to achieve optimal perfor-
mances. We adopt Bayesian Optimization [42] that is a probabilistic model based
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approach for finding a set of input values to an objective function that yields the
lowest loss. The objective function implemented in our case takes into account the
AUROC because an higher AUROC means a high value for TPR and a low value for
FPR.

f(x) = 1− AUROC

TRAIN TRAIN TEST

DAY	1 DAY	2 DAY	3 DAY	4 DAY	5

TRAIN TRAIN TRAIN TEST

DAY	1 DAY	2 DAY	3 DAY	4 DAY	5

TRAIN TRAIN TRAIN TRAIN TEST

DAY	1 DAY	2 DAY	3 DAY	4 DAY	5

Figure 5.1: Walk-forward example

Since the framework is designed to be employed in a real-world scenario on a
daily basis, the hyper-parameters optimization tests are simulating a walk-forward
approach [46], as showed in Figure 5.1.

The library allows us to choose different search spaces for each parameters that
has to be tuned. The following search spaces are defined:

• Isolation Forest :
n_estimators: uniform distribution between [50, 150];
max_features: uniform distribution between [0.5, 1.0];
contamination: uniform distribution between [0.0001, 0.15];

• Random Forest :
num_trees: uniform distribution between [50, 150];
max_depth: uniform distribution between [3, 12];
min_samples_split: loguniform distribution between [log(3), log(6)];
min_samples_leaf: loguniform distribution between [log(2), log(4)];
max_features: uniform distribution between [0.7, 1.0].
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Chapter 6

Experimental Validations

In the following chapter, we exhibit several experiments conducted to assess the
performance and effectiveness of Amaretto. Firstly, the goals of the experiments
are described. Secondly, we present the base approach used in our experiments and
metrics used to perform our evaluations. Then, we show the experimental setup and
libraries used in our experiments. Afterwards, we show the experiment conducted on
to asses the performances of the components of Amaretto. Finally, we will assess
the performance of the system proving its effectiveness specifically in the detection of
money laundering patterns recognized in real-world scenarios.

First, we compare Isolation Forest used in Amaretto with state-of-the-art un-
supervised solutions, as outlined in [26], [21], to confirm that our choice is the best
for an anomaly detection system (Section 6.4). Then, we test the same unsupervised
techniques to assess their prediction ability with different daily budgets (Section 6.5).
Afterwards, we evaluate Random Forest against the supervised solutions cited in Sec-
tion 2.2 to prove that the algorithm we adopt is the best classifier for anomaly
detection (Section 6.6). Furthermore, we prove the importance of an unsupervised
model in combination with a supervised one in detecting new anomalous patterns (Sec-
tion 6.7). Finally, we show the evaluation tests conducted on Amaretto: initially,
we compare the different selection strategies of Amaretto (Section 6.8); finally, we
compare Amaretto with AI2, a state of the art active learning framework, in a
real-world scenario (Section 6.9).

6.1 Goals

The major goal for this thesis is to implement a framework capable of learning
over time an efficient way to recognize fraudulent patterns, even starting from a
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situation where there is no historical labelled data, with a limited human analysis
budget. Analysing these goals, we can see that these specifications are in contrast
with themselves because it is possible to achieve a very high detection rate only with a
massive labelled dataset to train the system with and this requires a significant effort
in term of human analysis. Keeping this in mind, we face this trilemma choosing the
best trade-off possible for our tool, trying to achieve the following goals:

1. ability to start in a setting where no past labelled data is available;

2. high detection rate, even with a limited human analysis budget;

3. produce an acceptable number of false positives and false negatives;

6.2 Experimental Setup

6.2.1 Hardware

All the experiments are executed on a remote machine with the following characteris-
tics:

• 377GB of RAM;

• Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz x40;

6.2.2 Software

The following software with the described characteristics is employed:

• Ubuntu 16.04.6 LTS

• Python 3.7.2

The following libraries are employed within the developing of the code:

• catboost v0.13.1 for the implementation of the CatBoost classifier in Sec-
tion 6.6;

• copulas v0.2.3, for the implementation of the Copula-based model used
in Section 6.4;
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• hdbscan v0.8.23, for the implementation of the HDBSCAN algorithm in Sec-
tion 4.4.1;

• hyperopt v0.1.2, for the implementation of Bayesian Optimization in Sec-
tion 4.5;

• keras v2.2.4 [47] with tensorflow v1.13.1 backend, for the implementation
of Auto Encoder (AE) in Section 6.4;

• lightgbm v2.2.3, for the implementation of eXtreme Gradient Bosting (XGB)
in Section 6.6;

• numpy v1.16.2, for mathematical computations;

• pandas v0.24.2 [48], for managing data in Section 4.2;

• scikit-learn v0.20.3 [44], for implementing the algorithm of Isolation Forest ,
Random Forest and the tecnhiques used in Section 5.3, in Section 6.4 and
in Section 6.6

6.3 Evaluation Approach and Metrics

The data contained in our dataset can be considered as time-series data. For this
reason, we split the dataset into two sets: the first one contains the first 7 weeks
of transactions which is used for training the models and for the hyper-parameter
optimization; the second set is used to evaluate the model performance by running
tests and it includes 5 weeks of transactions. Given the temporal link of the data,
we used a walk-forward testing approach [46] for evaluating the models. For the
hyper-parameter optimization, we used Bayesian Optimization [42], explained in
Section 4.5 because of its ability to achieve accurate parameter selection within a
reasonable amount of time.

In this section, we introduce the metrics used for evaluating Amaretto. A True
Positive (TP) is an anomalous high-level vectors correctly classified as anomalous,
False Positive (FP) is a legitimate high-level vectors wrongly ranked as anomalous,
a False Negative (FN ) is an anomalous vector wrongly ranked as legitimate, and a
True Negative (TN ) is a legitimate vector correctly ranked as non-anomalous. The
common evaluation metrics used to assess the system performance are:
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• Accuracy that measures the percentage of high-level vectors correctly classified:

ACC =
TN + TP

TN + FP + FN + TP
; (6.1)

• Precision that is the proportion of TP over the vectors considered as anomalies:

Precision =
TP

TP + FP
; (6.2)

• True Positive Rate or Recall that computes the percentage of correctly identified
anomalous vectors:

TPR =
TP

TP + FN
; (6.3)

• False Positive Rate that computes the percentage of legitimate vectors that are
wrongly identified as anomalous:

FPR =
FP

TN + FP
; (6.4)

• FScore that measures the harmonic mean between the Recall and the Precision:

FScore = 2 · Precision ·Recall
Precision+Recall

; (6.5)

• Matthews Correlation Coefficient that measures the quality of the detection
rate in terms of the correlation coefficient between the observed and predicted
classifications; a coefficient of +1 represents a perfect ranking, 0 no better than
random prediction and -1 indicates total disagreement between prediction and
observation:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (6.6)

• Area Under the Receiver Operating Characteristic (ROC) Curve is the area
under the ROC curve, obtained by plotting the TPR against the corresponding
FPR at various threshold settings; the AUROC gives a measure of the solution
performance, where a perfect model has an AUROC of 1.



6.3. EVALUATION APPROACH AND METRICS 65

The test data is very imbalanced (0.27% of anomalous transactions), so metrics
like accuracy, are not very meaningful. However, to make a fair comparison with the
state of the art solution, they are included as a reference. The AUROC is a useful
indicator for benchmarking algorithms; if the ROC curve of a model is consistently
higher than the curve of other estimators, this indicates the former achieves better
performance. For these reasons, we use the AUROC and the ROC curve to assess
the performance of various unsupervised models and the common metrics described
above for assessing the performance of the supervised models.

We also considered an additional metric to account for class imbalance and different
classification costs. This cost metric is described in [49] as:

Cost = FP + C_R× FN (6.7)

A normalization process can be applied to obtain a value that is independent from
the number of transactions:

Norm_Cost =
FP + C_R× FN

TN + FP + C_R× (TP + FN)
(6.8)

As suggested in [49], 100 is a reasonable estimation of C_R, that is the cost ratio
between FN and FP, and this was the value used to assess the optimal operating
condition of our system, however, it could be set to reflect real costs of anomalous
transactions based on scenarios. This metric takes into account the cost of false
positives for an institution. A unit cost is applied to a FP, whilst a higher cost
is applied for a FN, since the cost of allowing a money launderer in the system is
hundreds of time higher than the cost of false positives, and it may result in fines for
the institution.
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6.4 Experiment 1: unsupervised models comparison
With this test, we compared models used in state of the art solutions with Isolation
Forest . In [21], AE are used for outlier detection; we also tested Variational AE
as proposed in [50]. In [26], the unsupervised models used comprise of a Matrix-
decomposition model, a Density-based model and an AE, using PCA as a Matrix
decomposition model [51] and using a Copula distribution as a Density-based model.
We also tested a threshold-based model that uses mean and standard deviation
computed for each feature of the high-level vector. Given these descriptive statistics,
we compute a one-sided threshold as the sum of mean and standard deviation. In
order to score new samples, all features that exceed their respective threshold, add
the surplus to the risk score, while features below the threshold yield a risk score of 0.
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Figure 6.1: Experiment 1: ROC unsupervised algorithms

As shown in Figure 6.1, Isolation Forest is the model that exhibits the best
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performance with an AUROC of 0.9. Surprisingly, the threshold-based model and
the matrix decomposition-based model outperformed the AE, which is considered
one of the best models for outlier detection.

6.5 Experiment 2: daily budget K estimation
For this experiment, we benchmark the performances of all the unsupervised models
analysed in the previous experiments when varying the number of samples reviewed
each day by the analyst. For every day existing in the test set, each model computes
the anomaly_score for the high-level vectors which is then used to rank the vectors.
Then the K top anomalous vectors are considered anomalous e.g., for K = 10 the
first 10 vectors with the highest scores are selected for the review. The purpose of
this experiment is to assess the best daily_k that allows the system to achieve a
suitable detection rate and to reduce the cost for a financial institution and the effort
of the subject matter expert in reviewing the high-level vectors.

Please note that we split the table of the result in 4 parts, for the sake of readability.
The metrics presented in Table 6.1, Table 6.2, Table 6.3 and Table 6.4 are the mean
metric computed for each technique and for each budget. As shown in the tables,
the Isolation Forest is the model that achieves the best results for every budget K,
achieving an average Precision of 0.904 and an average FPR of 0. This means that
the Isolation Forest allows the analyst to focus only on the most anomalous vectors.
The matrix decomposition-based model achieves worse results in this experiment
compared to the Isolation Forest, achieving comparable performance only with a
higher budget. The daily budget values considered in this experiment represent a
small percentage of the daily vectors that are generated, for this reason, the FNR is
high for small daily budget; while it is reducing as the budget increases.
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Table 6.1: Experiment 2: daily budget K estimation (I)

K Metric AutoEncoder Copulas IsolationForest

10

AUC 0.612 0.558 0.897
Accuracy 0.991 0.991 0.993
FScore 0.005 0.055 0.246
False Negative Rate 0.997 0.968 0.858
False Positive Rate 0.001 0.001 0.0
Matthews 0.003 0.078 0.357
Normalized Cost 0.448 0.435 0.385
Precision 0.015 0.208 0.904
True Positive Rate 0.003 0.032 0.142

20

AUC 0.612 0.558 0.897
Accuracy 0.989 0.99 0.993
FScore 0.007 0.061 0.313
False Negative Rate 0.996 0.96 0.794
False Positive Rate 0.003 0.002 0.001
Matthews 0.003 0.067 0.364
Normalized Cost 0.448 0.432 0.357
Precision 0.013 0.129 0.656
True Positive Rate 0.004 0.04 0.206

30

AUC 0.612 0.558 0.897
Accuracy 0.988 0.989 0.992
FScore 0.015 0.068 0.328
False Negative Rate 0.989 0.95 0.758
False Positive Rate 0.004 0.003 0.002
Matthews 0.01 0.068 0.348
Normalized Cost 0.446 0.428 0.342
Precision 0.022 0.108 0.513
True Positive Rate 0.011 0.05 0.242
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Table 6.2: Experiment 2: daily budget K estimation (II)

K Metric MatrixDecomposition Threshold-base

10

AUC 0.676 0.898
Accuracy 0.991 0.991
FScore 0.037 0.049
False Negative Rate 0.979 0.972
False Positive Rate 0.001 0.001
Matthews 0.05 0.068
Normalized Cost 0.44 0.437
Precision 0.131 0.181
True Positive Rate 0.021 0.028

20

AUC 0.676 0.898
Accuracy 0.99 0.991
FScore 0.051 0.128
False Negative Rate 0.967 0.916
False Positive Rate 0.002 0.002
Matthews 0.055 0.146
Normalized Cost 0.435 0.412
Precision 0.104 0.269
True Positive Rate 0.033 0.084

30

AUC 0.676 0.898
Accuracy 0.989 0.99
FScore 0.057 0.178
False Negative Rate 0.958 0.869
False Positive Rate 0.003 0.003
Matthews 0.056 0.187
Normalized Cost 0.432 0.391
Precision 0.088 0.279
True Positive Rate 0.042 0.131
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Table 6.3: Experiment 2: daily budget K estimation (III)

K Metric AutoEncoder Copulas IsolationForest

50

AUC 0.612 0.558 0.897
Accuracy 0.986 0.987 0.99
FScore 0.017 0.07 0.312
False Negative Rate 0.985 0.937 0.721
False Positive Rate 0.006 0.006 0.004
Matthews 0.01 0.064 0.309
Normalized Cost 0.446 0.424 0.326
Precision 0.018 0.081 0.355
True Positive Rate 0.015 0.063 0.279

100

AUC 0.612 0.558 0.897
Accuracy 0.98 0.981 0.985
FScore 0.016 0.067 0.284
False Negative Rate 0.979 0.914 0.634
False Positive Rate 0.013 0.012 0.01
Matthews 0.007 0.059 0.284
Normalized Cost 0.446 0.417 0.29
Precision 0.013 0.055 0.233
True Positive Rate 0.021 0.086 0.366

200

AUC 0.612 0.558 0.897
Accuracy 0.967 0.968 0.974
FScore 0.015 0.055 0.223
False Negative Rate 0.968 0.888 0.537
False Positive Rate 0.025 0.025 0.022
Matthews 0.004 0.05 0.251
Normalized Cost 0.449 0.412 0.253
Precision 0.01 0.036 0.147
True Positive Rate 0.032 0.112 0.463
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Table 6.4: Experiment 2: daily budget K estimation (IV)

K Metric MatrixDecomposition Threshold-base

50

AUC 0.676 0.898
Accuracy 0.986 0.989
FScore 0.057 0.229
False Negative Rate 0.949 0.795
False Positive Rate 0.006 0.005
Matthews 0.05 0.225
Normalized Cost 0.429 0.36
Precision 0.065 0.261
True Positive Rate 0.051 0.205

100

AUC 0.676 0.898
Accuracy 0.98 0.984
FScore 0.05 0.237
False Negative Rate 0.935 0.696
False Positive Rate 0.012 0.01
Matthews 0.042 0.236
Normalized Cost 0.427 0.318
Precision 0.041 0.195
True Positive Rate 0.065 0.304

200

AUC 0.676 0.898
Accuracy 0.968 0.973
FScore 0.044 0.197
False Negative Rate 0.908 0.593
False Positive Rate 0.025 0.022
Matthews 0.038 0.219
Normalized Cost 0.421 0.278
Precision 0.029 0.13
True Positive Rate 0.092 0.407
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6.6 Experiment 3: supervised models comparison
With this test, we compare the Random Forest in Amaretto, with state of the
art supervised models, cited in Section 2.2, including Gradient Boosting and Cat-
egory Boosting. The Gradient Boosting framework [52] is considered one of the
best algorithms for classification tasks. Category Boosting [53] is an alternative
boosting algorithm based on decision trees, that offers computational and efficiency
improvements compared to Gradient Boosting frameworks. The experiment is done
by running predictions daily. Table 6.5 and Table 6.6 presents the average metrics for
each technique.

Table 6.5: Experiment 3: supervised techniques comparison (I)

Metric RandomForest CatBoost DecisionTree
Accuracy 0.998 0.998 0.996
Precision 0.899 0.907 0.77
True Positive Rate 0.793 0.781 0.771
False Positive Rate 0.001 0.001 0.002
False Negative Rate 0.207 0.219 0.229
FScore 0.842 0.838 0.77
Matthews 0.843 0.84 0.768
Normalized Cost 0.094 0.099 0.104

Table 6.6: Experiment 3: supervised techniques comparison (II)

Metric xGradient Boost SVM NaiveBayes
Accuracy 0.997 0.994 0.963
Precision 0.879 0.855 0.036
True Positive Rate 0.752 0.3 0.135
False Positive Rate 0.001 0 0.03
False Negative Rate 0.248 0.7 0.865
FScore 0.809 0.44 0.056
Matthews 0.811 0.501 0.054
Normalized Cost 0.112 0.314 0.405

Please note that we split our table into 2 parts, for the sake of readability. As
shown in Table 6.5 and Table 6.6, the metrics are quite similar between Random
Forest, Category Boosting (CatBoost) and Gradient Boosting (xGradient Boost)
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models, whilst other supervised methods don’t achieve equally good performance.
The CatBoost model accomplishes the highest Precision although Random Forest
achieves the highest TPR and the lowest FNR. Considering also the cost-related
metric, we can conclude that Random Forest is more efficient than the other models.

6.7 Experiment 4: detecting new anomalies
The goal of this test is to assess the performance of supervised and unsupervised
techniques to detect new anomalous patterns.

Several runs of this experiment are done in order to test each combination of the
classes of anomalies existing in the dataset. For every run, a set of classess of anomalies
is withheld from the training set is only introduced in the test set for evaluation.
During the run, the models are trained using the high-level vectors obtained from the
training set that contains the remaining class of anomalies excluding the withheld
anomalies. After several iterations of the system (precisely after the 15th day of test),
the withheld pattern is introduced in the test data to assess the behaviours of the
two models. The results of each run are then averaged on a daily basis. For this test,
we considered a daily budget of K = 5 in order to compute the same metrics for the
two algorithms.

Figure 6.2 and Figure 6.3 demonstrate that Isolation Forest performance is
consistent, while Random Forest exhibits a decay in performance when new anomalies
are introduced. The increase of 100% in the FNR proves that Random Forest is
unable to detect new anomalous patterns introduced in the dataset. On the other
hand, the performance of Isolation Forest was not negatively affected by the new
anomalous pattern introduced.
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Figure 6.2: Experiment 4: True Positive Rates
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Figure 6.3: Experiment 4: False Negative Rates
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6.8 Experiment 5: Amaretto configurations

The purpose of this experiment is to test which of the strategies are the most suitable
for our dataset since our active learning system is customisable with different selection
strategies, as explained in Section 4.4. The experiment works as follow: the first day
the labelled dataset is empty, therefore the supervised model is not used. After the
first day, the labelled dataset contains the samples selected by the Isolation Forest
which have been reviewed by an analyst. From this point onwards, the entire selection
strategy can be employed (first stage, second stage and third stage). The mapping
between the approaches adopted in the first and third stage and the names of the
configurations are outlined below (and used in experiments described in the next
section):

• first_stage = SELECT-TOP

• third_stage = SELECT-ENTROPY ;

Amaretto_0

• first_stage = SELECT-DIVERSE

• third_stage = SELECT-CONFLICT ;

Amaretto_1

• first_stage = SELECT-TOP

• third_stage = SELECT-CONFLICT ;

Amaretto_2

• first_stage = SELECT-DIVERSE

• third_stage = SELECT-ENTROPY ;

Amaretto_3

Figure 6.4 and Figure 6.5 show the average Precision and the average AUROC
of the score generated by Random Forest . The performances of the 4 configurations
are similar. We decided to focus on the system that employs SELECT-DIVERSE
and SELECT-ENTROPY (Amaretto_3, red bar in the plots) because it provides the
best Precision in the worst-case scenario where the daily budget K is equal to 10.
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Figure 6.4: Experiment 5: average Precision
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6.9 Experiment 6: state of the art comparison
In this final experiment, we compare Amaretto with the state-of-the-art active
learning framework AI2 [26]. It includes an ensemble of three unsupervised models
including a density-based model, using a Copula-based multivariate distribution, a
matrix decomposition-based model, using a PCA-based model, and an Autoencoder.
The combination of the anomaly_score computed by the three models is used to rank
the most anomalous high-level vectors for review by an analyst; The feedback collected
is then used to train a Random Forest that additionally analyse the high-level vectors.
The experiment is divided into three parts:

I we compare the frameworks in a static scenario i.e., we collect 10 samples per
day over a period of 10 days from each framework and then we use this labelled
data to train the Random Forest and to predict all the remaining high-level
vectors;

II we compared the frameworks in a real-world scenario, comparing the effec-
tive support to the daily routine of an analyst and the performances of the
frameworks;

III we compare the frameworks in a real-world scenario, comparing the performance
taking into account different risk profiles for a financial institution.

The purpose of the first part of the experiment is to verify the performance of the
frameworks with a minimum amount of training data. During this part, we also assess
the active learning inner modules, i.e., the components of the framework in charge of
computing the anomaly_score and selecting the samples to be shown to the analyst.

Table 6.7: Experiment 6 (I): classification report

Amaretto AI2
Accuracy 0.9947 0.9951
Precision 0.7488 0.9813
True Positive Rate 0.5159 0.3896
False Positive Rate 0.0014 0.0001
False Negative Rate 0.4841 0.6104
FScore 0.6109 0.5578
Matthes 0.6191 0.6167
Normalized Cost 0.2168 0.2724
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For the first 10 days existing in the test set, only the inner module are employed
with a minimum daily budget (K = 10), collecting 100 samples. Afterwards, this
labelled dataset is used to train a Random Forest . Subsequently, the trained Random
Forest model computes the probability score and the prediction for all the remaining
high-level vectors. Figure 6.6 and Figure 6.7 show the comparison of our system
against AI2 using the probability score. As exhibited by the ROC curve plotted
in Figure 6.6, Amaretto achieves an AUROC of 0.94 better than 0.88 obtained by
AI2. Furthermore, as shown in the Precision/Recall curve in Figure 6.7, Amaretto
reaches an average Precision of 0.62 that is 31% better than AI2. Table 6.7 shows the
classification report obtained using the prediction computed by the Random Forest .
In spite of the better Precision and FPR obtained by AI2, Amaretto achieves
comparable performances especially considering that TPR and cost.

In the second part of the experiment, we estimate, in a real-world scenario, the
effective support provided by the framework and the practical decrease of the workload
of the analyst. Initially, only the unsupervised techniques can be employed since
no feedback was collected. After the first day, the Random Forest starts to work
alongside the unsupervised models in the active learning loop and the prediction
phase. For this test, we consider the worst-case scenario with a minimum daily budget
of (K = 10). Figure 6.8 shows the average precision computed using the probability
score. Amaretto doubled its Precision in approximately 10 days, i.e with a dataset
of 100 high-level vectors, constantly increasing its performance. During the tests,
Amaretto reaches a maximum average Precision of 0.78, while AI2 0.57. As shown
in Figure 6.9, Amaretto achieves better performances also considering the AUROC.
As in the previous test, the maximum AUROC is 0.94 and the mean AUROC is
0.847, improving AI2 one by 14% circa.

In the last part, we test the frameworks considering different risk profiles that a
financial institution can adopt. This is done considering different threshold values
for the probability score corresponding to different use cases. For example, a lower
threshold could be used where high financial risk is estimated, this way, more transac-
tions will be considered as a candidate for review, hence reducing the False Negatives
but increasing False Positives too. As shown in Figure 6.10, Figure 6.11, Figure 6.12,
and Figure 6.13, the Amaretto outperforms the AI2 across all thresholds: in the
high-risk use case, Amaretto achieves a TPR of 0.428, while in the high-risk use
case a TPR of 0.596 that represents an improvement of circa 50% w.r.t AI2. AI2
achieves a better FPR than Amaretto only in a low-risk case. On the other hand,
Amaretto achieves a higher TPR and a lower FNR and a lower Cost, balancing
the overall performance. Another import point is that in every scenario, the Cost of
the Amaretto system is lower than the Cost of AI2.
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Figure 6.8: Experiment 6 (II): average Precision
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Figure 6.9: Experiment 6 (II): average AUROC
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Figure 6.10: Experiment 6 (III): TPR over thresholds
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Figure 6.11: Experiment 6 (III): FNR over thresholds
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Chapter 7

Limitations and Future Work

The first limitation encountered in this research work is the lack of an intuitive
explanation for the anomaly_score returned by the two models which are used to
rank the high-level vectors. The two algorithms are used in a black-box fashion. We
know that both techniques are based on rule-based trees whose prediction can be
explained following the path that led to the given classification. However, with a
Random Forest and Isolation Forest , we are using the average result of several trees,
so the resulting probability does not provide us with any useful insight about the
choice. For this reason, the final anomaly_score can not be used to help the human
analyst to better understand the result.

Another limitation of our work is the dataset we worked on. Even though NapierAI
experts synthetically forged it on a real-world dataset, is very limited in terms of
timespan, containing only 60 days of transactions. A wider dataset would have
allowed us to perform a deep analysis of the system’s evolution over time, especially
it would have been possible to implement seasonal models or models for a specific
anomalous pattern. Moreover, the dataset contains only a few patterns highlighted by
the FATF [12]. It could be interesting to see how Amaretto works on more complex
scenarios. Despite the important advantage of being conducted in collaboration with
NapierAI domain experts, exploiting their knowledge to target the evaluation on the
detection of specific money laundering patterns, the experimental validation does not
include a further evaluation on a real-world dataset.

For what concerns possible future works, there are many interesting directions in
which this work can be improved:

• as part of this work, we assumed that the analyst always provided correct labels
when reviewing the data; further research should be conducted to assess the
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impact of incorrect labelling to the system and ensure that the models can
accommodate for such errors;

• alternative unsupervised and supervised models should be tested. In this work,
we didn’t consider graph-based models or deep learning models. For example,
LSTM neural networks could be employed due to the temporal correlations in
money-laundering patterns;

• a library implementing explainability processes should be adopted in Amaretto.
For example, SHAP [54] is one of the newest and most interesting approaches
for explaining models’ output;

• finally, evaluating the tool on the detection of other kinds of financial frauds,
like credit card fraud detection, to prove its flexibility.



Chapter 8

Conclusions

In this work, we present an active learning system for anomaly detection applied
to assess money-laundering risk in capital markets. Amaretto comprises of an
unsupervised model for detecting known and unknown anomalous patterns, 4 distinct
strategies to optimally sample the data for a subject matter expert to review and
feed into a supervised learning model to continuously improve the performance of
the system. Amaretto was able to process over 29 million transactions, extract
aggregated features highlighting customer’s behavioural patterns over time to detect
unusual correlations.

Finally, we present the experimental evaluation conducted on a synthetic dataset
that was generated from a real-world scenario that resembles typical genuine and
potential money laundering patterns. Firstly, we compare unsupervised techniques,
commonly used in anomaly detection tasks and in state of the art solutions, and
we demonstrate that Isolation Forest is the best algorithm. Then, we compare the
supervised techniques and we assess that Random Forest outperforms the other
techniques. Subsequently, we prove the contributions made by an unsupervised model
to an anomaly detection made up of only supervised models. In the end, we conducted
experiments with the aim of confirming the robustness of our design in a real-world
scenario, demonstrating the best selection strategies between the ones proposed and
showing that Amaretto outperforms the state of the art solutions by improving
both the detection rate and the precision by 25% and achieving an overall detection
rate of 0.6 and an AUROC of 0.94.

The experimental validation proves that our system was able to achieve state of
the art performance within a short timeframe, with minimal manual input from an
analyst.
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