
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Master of Science in Computer Science and Engineering

Almost-Rerere: An approach for
automating conflict resolution from similar

resolved conflicts

Supervisor: Prof. Piero Fraternali
Assistant Supervisor: Sergio Luis Herrera Gonzalez

Master Graduation Thesis
Mohammad Manan Tariq

877011

Academic Year 2018/2019

Abstract

Model-Driven Software Engineering provides tools to help developers
in the creation process of complex applications. A developer, due to
the continuous updates of the model and the generation of the code,
must resolve many conflicts when integrating the generated and man-
ually modified code. Several times the conflicts to be resolved are very
similar to previously resolved conflicts. Our approach extends the work
done on Almost-Git [1] and extends the Git Rerere tool, thus creat-
ing Almost-Rerere. The developed tool clusters similar conflicts using
a hierarchical agglomerative clustering algorithm based on a similarity
measure and synthesizes a conflict resolution based on those previously
seen similar conflicts. The approach has been evaluated using it dur-
ing the development of an application with model-driven development
tools and using the history of large Git project repositories.

Sommario

Model-Driven Software Engineering fornisce strumenti per aiutare gli
sviluppatori nel processo di creazione di applicazioni complesse. Uno
sviluppatore, a causa dei continui aggiornamenti del modello e della
generazione del codice, deve risolvere molti conflitti quando integra il
codice generato e quello manualmente modificato. Spesso i conflitti da
risolvere sono molto simili a quelli precedentemente risolti. Il nostro
approccio estende il lavoro svolto su Almost-Git [1] ed estende lo stru-
mento Git Rerere, creando così Almost-Rerere. Lo strumento svilup-
pato raggruppa i conflitti simili usando un algoritmo di raggruppa-
mento agglomerativo gerarchico basato su una metrica di somiglianza e
sintetizza una risoluzione del conflitto basata sui conflitti simili prece-
dentemente visti. L’approccio è stato valutato utilizzandolo durante
lo sviluppo di un’applicazione con gli strumenti di sviluppo basati su
modelli e utilizzando la cronologia dei repository di grandi progetti Git.

Acknowledgements

First I would like to thank Prof. Piero Fraternali for giving me the
opportunity to work on this interesting project. I would like to thank
Sergio for his great support and advice during the development of the
thesis work.

Especially I would like to thank all my family that has always sup-
ported me in difficult times and for all the sacrifices they made to give
me the opportunity to complete my studies.

I would also like to thank all my friends I met during my studies.
We have studied and spent many good times together. I will miss the
moments we spent playing different games during breaks. I will always
carry in my heart all the moments spent together. Thank you so much
guys!

Contents

1 Introduction 1
1.1 Motivations and Background of the research 1
1.2 Approach of the thesis 2

2 Related Work 4
2.1 Model Driven Software Engineering 4
2.2 Integration of handwritten and generated code 6
2.3 Tools and approaches for distributed development . . . 6
2.4 Software merging and conflict resolution 8
2.5 Automatic synthesis of search and replace expressions . 9

3 Proposed Approach 11
3.1 Integration of handwritten and generated code: The Vir-

tual Developer workflow 12
3.2 Conflict resolution with Almost-Git 15
3.3 Conflict resolution with Almost-Rerere 16

3.3.1 Git Rerere implementation 17

4 Implementation 22
4.1 The Almost-Rerere architecture 22

4.1.1 Conflict Clustering 23
4.1.2 Regular expression and replacement generator . 26
4.1.3 Conflict resolver 28

4.2 Git Integrations . 30

5 Evaluation 33
5.1 Conflict resolution results for the integration of hand-

written and generated code 33
5.2 Evaluation of Git project repositories 37
5.3 Discussion . 38

5.3.1 Crowd-Sourcing 38
5.3.2 Git project repositories 43

6 Conclusions and Future Work 50

Bibliography 52

List of Figures

3.1 Architecture supporting the Vitrual Developer work-flow 12
3.2 Vitural Developer workflow 15
3.3 Rerere directory . 18
3.4 Git Rerere automatic resolution mechanism Diagram . 21

4.1 Almost-Rerere architecture 22
4.2 Almost-Rerere Conflict Clustering 25
4.3 Almost-Rerere Regex & Replacement Generator 28
4.4 Almost-Rerere Conflict Resolver 29
4.5 Almost-Rerere Git Merge sequence diagram 31
4.6 Almost-Rerere Git Commit sequence diagram 32

5.1 IFMLEdit.org online tool 34

List of Tables

4.1 Average similarity score over 200 samples 24

5.1 Crowd-Sourcing sprints description 35
5.2 Git repository statistics 37
5.3 Crowd-Sourcing: Almost-Rerere conflict resolved statistics 38
5.4 Crowd-Sourcing: Almost-Rerere cluster statistics 39
5.5 Repositories: Almost-Rerere cluster and conflicts resolved

statistics . 44
5.6 Repositories: Almost-Rerere N° conflicts for similarity

intervals statistics . 44
5.7 Repositories: Almost-Rerere N° of cluster for intra-cluster

similarity intervals statistics 45

Chapter 1

Introduction

1.1 Motivations and Background of the research

In recent years the technology sector has grown exponentially. IT com-
panies to keep up with market changes are always looking for new
technologies to reduce development costs. But at the same time, they
want to increase the speed of software development without losing the
quality of the final product. For this reason, more and more compa-
nies are resorting to the Model-Driven Software Engineering (MDSE)
approaches which aim to increase productivity by simplifying the de-
sign process, application development process and optimizing system
compatibility.

The software complexity increased in years, to overcome this prob-
lem, distributed development approaches were adopted. Software is
developed by several development teams located in different locations.
The parts of the software are shared between different teams through
distributed development tools, this induces conflicts between the mod-
ified pieces of code that need to be manually resolved by one of the de-
velopers. When MDSE techniques are used this also induces conflicts
between the automatically generated code and the human-written one.
Many times developers resolved the similar conflicts over and over, the
objective of this work is to provide tools that help developers to reduce
the effort that they need to put in trivial tasks.

1

1.2 Approach of the thesis

This thesis project proposes and implements an approach that extends
the capabilities of an open-source tool, Git Rerere, to automatically
resolve conflict by synthesizing a resolution based on similar conflicts
resolved in past iterations of the development process.

The algorithm identifies conflicts using a similarity metric. They
are clustered together and a machine learning algorithm is applied to
synthesize a general regular expression and replace expression to iden-
tify the small differences and automatically resolve the future similar
conflicts.

The approach has been evaluated by using it during the develop-
ment of an application under an agile approach and using model-driven
development tools, and it has been evaluated using the history of large
Git project repositories.

The contribution of this project can be summarized as the following:

• Git Rerere has been extended to resolve not only conflicts that
have previously been resolved but to identify new conflicts with
high similarity score to previously resolved and to synthesize the
corresponding resolution based on those seen samples.

• Git Rerere has also been modified to extend its basic function-
ality, 2 configurable heuristics were developed to resolve conflicts
originated on no-semantically representative sections of the code,
e.g. conflicts cause by white-spaces or that occurred in comments,
and to resolve previously resolve conflicts in files with more than
1 conflicting area.

• A hierarchical agglomerative clustering algorithm based on Jaro-
Winkler String similarity has been developed to identify and group
conflicts with a similarity score over a defined threshold.

The rest of the thesis is organized as follows, chapter 2 presents the
recent research and works on related topics to contextualize the contri-
butions of this project. Chapter 3 presents in detail the core concepts
of the conflict resolution process and the proposed approach for auto-
matic resolution. The chapter 4 describes the design and implementa-
tion of the components that were created for the automatic resolution
process: identification of previously resolved conflicts, resolution syn-
thesis, and resolution replacement, the chapter includes descriptions of

2

the Git Rerere process that were modified to integrate these compo-
nents. Chapter 5 describes the experiment settings that were created
to evaluate the tool on a Model-Driven development life-cycle and on
large Git project repositories, it presents the results obtained from such
evaluation. Finally, chapter 6 summarizes the conclusion obtained by
the thesis project and gives an introduction to the work that will be
done in the future to extend the capabilities of the tool.

3

Chapter 2

Related Work

In this chapter, we will survey approaches for Model-Driven Software
Engineering. In particular, we will focus on the problem of integration
of handwritten and generated code. In Section 2.1 we will explain the
core concepts of MSDE and will survey the tools based on MSDE that
have been presented in the last decade. In Section 2.2 we will survey
the techniques used to integrate handwritten and generated code. In
Section 2.3 we will survey the tools that allow teams to work concur-
rently on the same project. In Section 2.4 we will survey the techniques
to merge the software and to resolve the conflicts. In Section 2.5 we will
survey the state of the art to synthesis search and replace expression
from examples.

2.1 Model Driven Software Engineering

Model-Driven Software Engineering (MDSE) uses the models as the
main ingredients of software development. It is intended to reduce
development effort by generating executable code from high-level mod-
els. The models are abstract representations of the system and they
allow to represent the different aspects of the system. MDSE aims at
improving the development process through automation [2].

The core concepts of MDSE are domain-specific modeling languages
(DSMLs) and model transformations [3]. A domain-specific language
(DSL) is a programming language or executable specification language
for a particular domain and allow to express the concepts through
appropriate notations and abstractions. [4]. DSMLs, such as IFML
(Interaction Flow Modeling Language [5]), is specific for the model

4

domain. They support higher-level abstractions than general-purpose
modelling languages, so they require less effort and fewer low-level de-
tails to specify a given system.

A model transformation performs a transformation between a source
and a target model. There are two common model transformations:
Model to Model (M2M) and Model to Text (M2T). The former trans-
forms a model to another model and the latter generates textual arti-
facts from the model element. Transformation, defined at meta-model
level, is applied to models that conform to meta-models. A meta-model
is a precise definition of the constructs and rules needed for creating
models. A meta-model has a high-level abstraction, so it does not con-
tain low-level details [6]. The low-level details can be included in the
final code using a template-based approach. An increasing number of
companies are using code synthesis techniques to reduce development
time and among them, template-based code generation is one of the
most used [7].

In the last ten years, a great variety of tools based on Model-Driven
Engineering (MDE) have been developed. Sparx Enterprise Architect
[8] is an OMG UML based tool for designing and building business pro-
cess modeling systems. Metacase MetaEdit+ [9] is a purely graphical
language tool that allows to build modelling tools and code generators
without writing a line of code. A modelling language can be defined via
meta models, constraints, and graphical symbols. Language concepts
can be represented by different symbols in different diagrams types
and elements from several languages can be used in one diagram [10].
JetBrains Meta Programming System (MPS) [11] is developed by Jet-
Brains, it is an open-source projectional language workbench [12] that
enable users to edit a projection, a visual or graphical representation
of the data structure. MPS is based on a BaseLanguage which can be
extended to define a new language.

Eclipse Modeling Project [13] provides a set of tools and frameworks,
including Eclipse Modeling Framework [14], graphical modeling, tex-
tual modeling, and concrete modeling tools. IFMLEditor.org [15] is an
online open-source tool for the rapid prototyping of web and mobile
applications. The model of application is defined using IFML, the do-
main model is inferred from the IFML diagram, and actions are treated
as abstract black-boxes. IFMLEditor.org is based on ALMOsT.js [1]
transformation framework, which allows the developer to specify model

5

transformations with a rule-based extension of JavaScript [16].

2.2 Integration of handwritten and generated code

The main problem with model-driven approaches is that it is not pos-
sible to represent all features in the model, so it is necessary to add
non-modelled features manually in code. The existing approaches share
the idea that the handwritten and generated code must be managed
separately. Specifically, the handwritten code must be structured, and
possibly exposed to the code generator, in such a way that the gener-
ator does not overwrite the manual modifications.

In [17] the authors describe eight handwritten code integration
mechanisms which can be adopted to reduce collisions. In [6] the au-
thors present different methods such as protected areas, inclusion of
code in models and templates. Protected areas approach is a simple
mechanism to integrate handwritten and generated code. Develop-
ers must change the code only in these areas, any changes outside
of these areas will be overwritten by the code generator. For exam-
ple, the industry-standard transformation framework Acceleo [18] offers
protected areas, which are preserved between executions of the model
transformation.

In [19] the authors survey the approaches to manage change in
the meta-model. They classify techniques for propagating meta-model
changes not only to the models but also to the transformations. In
[20] a tool is proposed to apply semi-automatically changes of the in-
put meta-model to the transformation that depends on it, aiding the
developer to co-evolve the meta-model and the transformation.

The paper [16] presents a model and code co-evolution approach
that addresses such a problem a posteriori, using the standard collision
detection capabilities of Version Control Systems to support the semi-
automatic merge of handwritten and generated code. In chapter 3 we
will describe this approach in details.

2.3 Tools and approaches for distributed develop-
ment

In recent years, the software development process has become increas-
ingly complex. Presently, software is developed by different teams that

6

may be in different sites [21]. Distributed software development is
essential to develop the same product or service among globally dis-
tributed sites [22]. Developers, located in geographically separated
areas, need to collaborate and share the source code. Version Con-
trol Systems (VCS) like Git [23], Mercurial [24] or Subversion (SVN)
[25] provide tools to control changes over the source code and to man-
age conflict resolution. VCS allows developers to work on their local
branch which maintains multiple workflows independent of each other.
When the feature is complete, Developers can merge their local branch
into the master branch. Merge could generate conflicts because two
developers have changed the same lines of the code in a file. Some
conflicts are resolved automatically by the VCS, for others the manual
intervention of the developer is required.

In [26], the authors discussed six main advantages of distributed
development for companies:

• Lower development costs due to, for example, lower salaries in
other regions of the world

• Leveraging time-zone effectiveness, increase the number of daily
working hours in a ‘follow-the-sun’ development model

• Access the most talented developers

• Cross-site modularization of development work

• Innovation and shared best practice

• Closer proximity to market and customer

One of the VCS most used is Git, developed by Linus Torvald to sup-
port the development of Linux kernel [27]. Over time it has become
an important tool for distributed development. Git is written in C
language, respect to other VCS it has best performance. Git utilizes
a central repository and a series of local repositories. Local reposito-
ries are exact copies of the central repository complete with the entire
history of changes. SVN, another popular tool for distributed develop-
ment, is a centralized version control system. All the files are stored
on a central server and developers commit their changes directly to the
main repository. It is easy to use and understand but working on one
central server means there is a single point of failure. If there is an
error, it can destroy all builds. It is only accessible online.

7

Git with respect to SVN is preferred for a few reasons [28]: faster
to commit; possibility to work and commit the changes on the local
repository, and send the changes to a central repository when all the
code is fixed; available offline.

2.4 Software merging and conflict resolution

Software merging is an essential aspect of the maintenance and evo-
lution of large-scale software systems. It is assisted by VCS, which
allows developers to work on a local branch, which are reconciled to
produce a shared version. Over the years, a wide variety of different
merge techniques has been proposed [29][16]. Two-way merging tech-
nique merge two versions of a software without considering the common
ancestor from which both versions originated, instead three-way merg-
ing technique also use the common ancestor during the merge process.
Software merging techniques at text level can be grouped into cate-
gories: text-based approaches consider a software artifact as a plain
file and apply merging at the level of text lines; syntactic techniques
also consider the syntax of the language and can avoid the production
of unnecessary conflicts, e.g., those arising inside comments; semantic
techniques consider the semantics of the language, which enables the
detection of conflicts that a purely syntactic check would not identify;
finally, operation-based techniques consider not only the artifacts but
also the operations made by developers on them.

The survey work [30] provides an overview of the state-of-the-art of
VCS dedicated to modelling artifacts. [31] exploits model differencing
techniques to propagate the changes applied to a model to the artifacts
depending on it, including those representing non-modelled features.
The proposed approach requires specific transformations for all the
possible types of model changes; for the data model, it can migrate the
database schema and instance after a change, but for the presentation
layer can only compute hints for the manual propagation of change.
Commercial MDD tools, including Mendix [32], WebRatio [33], and
Outsystems [34], offer functions for model versioning, visualization of
model changes, and conflict resolution.

8

2.5 Automatic synthesis of search and replace ex-
pressions

Regular expressions are widely used in all type of tasks, not only in
programming. However, writing a regular expression is not easy, for
this reason, plenty of approaches for the automatic generation of regular
expression have been proposed in the last years.

In [35], the algorithm requires input a set of examples and initial
regular expression. The algorithm applies a series of transformations
and stop when reaches a defined precision and recall. In [36] the algo-
rithm does not require an initial regular expression. It extracts relevant
patterns from a set of examples (phones numbers, invoice numbers) and
evaluate the patterns using a fitting measure. The one that gives the
best result is selected to generate a regular expression. In [37], the
authors proposed a semi-supervised active learning algorithm to iden-
tify the patterns from textual data. It starts from a single example
and produces a reduced form of a regular expression, but this is not
completely automatic because it requires user intervention. Also [38]
presents an active learning algorithm to generate regular expression,
which requires human intervention to respond to membership queries
about candidate expressions.

In last three decades, many approaches using genetic algorithms
[39], [40] and genetic programming [41], [42], [43], [44], [45]. All these
cited works does not consider the problem of synthesizing both a reg-
ular expression and a replacement expression. The authors of [43]-[45]
presented a paper [46] in which they describe a completely automatic
algorithm, search-and-replace from examples, that synthesize a regular
expression & replacement from a set of examples. The authors devel-
oped a tool that can be tested online [47]. Our approach integrates
this tool to synthesize a regular expressions & replacement from a set
of conflicts and resolutions. In 4.1.2 we will describe in details the
functionalities of algorithm search-and-replace.

Our approach extends the capabilities of a distributed development
tool, Git, to automatically solves the conflicts by learning a search
pattern and synthesizing a resolution from previously resolved similar
conflicts. Our approach requires input a conflict and proposes to the
user a possible resolution based on previous similar conflicts. Previ-
ously resolved conflicts are grouped using a hierarchical agglomerative

9

clustering algorithm based on Jaro-Winkler similarity.

10

Chapter 3

Proposed Approach

In this chapter, we will focus on the problem of automatic resolution
of the conflicts. In Section 3.1 we describe an approach to integrate
handwritten and generated code that has been presented in the paper
[16]. In Section 3.2 we show how this approach is integrated into Git.
Finally, in Section 3.3 we proposed an approach to resolve automat-
ically conflicts when a developer submits his changes to the remote
branch. Before proceeding, we introduce the notations use in 3.1:

• Developer: Di denotes the i-th member of the development
team.

• Local/central code base: Ci denotes the version of the code-
base edited by developer Di. CC identifies the central code-base
shared among developers.

• Revision: Ri,j denotes the j-th revision of code-base Ci; it is the
full textual artifact stored in Ci at a particular point in time. RC,j

denotes a revision in the central code base.

• Equivalence: two revisions Ri,j and Rm,n are equivalent, if the
content of the textual artifact stored in them is the same.

• Difference: the difference Ri,j −Rm,n of two revisions is the set
of changes that need to be applied to Rm,n to produce Ri,j.

• Delta: the delta introduced by Ri,j (∆i,j = Ri,j − Ri,j−1) is the
difference between Ri,j and the previous revision Ri,j−1.

• Manual Revision: RM
i,j denotes revision resulting from a manual

change.

11

Figure 3.1: Architecture supporting the Vitrual Developer work-flow

• Generated Revision: RG
i,j denotes revision containing generated

artifacts.

• Resolution Revision: RR
i,j denotes revision resulting from con-

flict resolution.

3.1 Integration of handwritten and generated code:
The Virtual Developer workflow

Model-to-text transformations generate textual artifacts from models
and each time regenerate the whole textual artifact. At every genera-
tion, it would be as if an update on the entire artifact is checked in to
the repository regardless of the past history of the code. Submitting a
generated revision without precautions would "forget" the conflict res-
olution steps done in precedence and make the same sources of conflict
arise again at each code generation. But if the human developer has
modified the code generated from a model element E and the subse-
quent generation applies to a model in which E has not been updated,
then the manual modification is still valid and should not be considered
as a source of conflict. To make the behaviour of the code generator
more similar to that of the human developer, redundant information
can be inserted in the code-base history, simulating the incremental
production of code by the model transformation.

A model-to-text transformation can be considered as a Virtual De-

12

veloper. Treating the model-to-text transformation as an additional
developer potentially simplifies the management of manual updates in
the forward engineering MDD life cycle. Tools and methodologies that
are normally applied for conflict resolution among developers can be
applied to both human and virtual developers. This model and co-
evolution approach was presented in the paper [16]. Figure 3.1 shows
the whole architecture described in the cited paper.

Multiple human developers and a single Virtual developer can work
in parallel, in a work-flow such as the following:

1. CC contains n commits, the latest commits RG
C,n is generated.

2. A human developer DH creates a local copy CH of the remote
branch CC .

3. DH introduces a new feature by applying changes to RG
H,n, creat-

ing a new commit RM
H,n+1.

4. DH submits the new commit to the remote branch generating a
new commit RM

H,n+1 → CC = RM
C,n+1. The submission is accepted

because RC,n = RH,n.

5. DH deletes her local branch CH returning to the initial state. Her
work is safely stored in CC .

6. The model is updated and the transformation is ready to be exe-
cuted.

7. The Virtual Developer DV creates a local copy CV of the remote
branch CC up to the latest generated commit : ∀j∈{1..k}(RV,j =

RC,j), where k is the index of the last generated commit (k = n
in the current example).In this way, the Virtual Developer aligns
its local branch to the status that reflects the previous version of
the model.

8. DV executes the transformation and stores the result into CV

generating a new commit RG
V,n+1, which is a replacement of the

entire textual artifact.

9. DV tries to submit RG
V,n+1 to the remote branch. The operation

is rejected because RG
V,n is not equivalent to RM

C,n+1, due to the
intervening manual update of DH .

13

10. DV solves the conflict between RM
C,n+1 and CV generating RM

C,n+1

→ CV = RR
V,n+2. In this step, the 4G

V,n+1 used to identify the
modifications introduced by the latest round of code generation,
which simplifies, and even automates in some cases, the identifi-
cation and resolution of collisions with the manual modifications
of the code.

11. In order to safely store the latest generated commit in the remote
branch for future alignment, DV forces the submission of RG

V,n+1

to CC , generating RG
C,n+2.

12. DV submits the conflict resolution RR
V,n+2 to the remote branch,

generating a new shared commit RR
V,n+2 → CC = RR

C,n+3. The
submission is accepted because RG

C,n+2 is equivalent to RG
V,n+1. It

is important to notice that 4C,n+3 is identical to 4V,n+2, due to
the previous forced submission, which saved in the remote branch
also the latest generated revision.

13. DV deletes its local branch CV returning to the initial state. Its
work is safely stored in CC .

All steps of Virtual Developer workflow are show in Figure 3.2. The
remote branch contains a twofold sequence of commits: automatically
generated (RG

C,j) and conflict-resolved (RR
C,j+1). The human developer

always works on the latest commit, whereas the Virtual Developer is
always out-of-sync and applies changes on the latest generated commit
RG

C,j.
The limits of Almost-Git are the following:

1. it does not support multiple Virtual Developers and conflict res-
olution at the model level;

2. it works only on Git repositories;

3. item cannot automatically resolve conflicts on the code manually
modified by the developer

Our approach overcomes the last limit of Almost-Git and automati-
cally resolve conflict by synthesizing a resolution based on previously
resolved conflict with a high similarity score.

14

Figure 3.2: Vitural Developer workflow

3.2 Conflict resolution with Almost-Git

Almost-Git [48] is a control manager for the Virtual Developer ex-
plained in 3.1, it maps the operations required to handle a submission
of the Code Generator into calls to the Revision History Manager in-
terface. The Virtual Developer concepts are mapped to Git primitives
as follows [16]:

• code-bases are mapped to Git branches

• revisions are mapped to Git commits.

• the act of copying the central code-base is mapped to the clone or
branch Git operations, depending on the location of the central
code-base; the former in the case of a centralized repository, the
latter in the case of a local branch.

• submission is mapped to the Git push operation, which copies
commits from the current branch to another local or remote one.
The push operation may fail if the latest commit in the remote
branch (i.e., the HEAD of the branch) is not identified in the local
branch.

• collision resolution is mapped to the pull operation in Git.

The evolution process of Virtual Developer can be controlled with the
following commands:

• almost-git init : initialize the repository and sets the status to
READY

15

• almost-git evolve /new-generated-code: starts the evolution pro-
cess. If a conflict arises during execution then the status is set to
CONFLICTED and the human developer will be asked manually
solve the conflicts and continue the evolution process.

• almost-git evolve –continue: continues the evolution process after
the human developer has resolved manually the conflicts.

• almost-git evolve –abort : abort the execution process and restore
the repository status to the initial state

Almost-Git is built on top of the Git, and it allows developers to pre-
serve the parts of code that have been changed manually.

3.3 Conflict resolution with Almost-Rerere

Git Rerere stands for REuse REcorded REsolution, which means that
it automatically records a conflict and its resolution so that the next
time the same conflict occurs again Git can automatically resolve it
using the previously recorded solution. Git Rerere can be useful in
several cases. For example, on a long-lived feature branch where refac-
toring of methods tends to be common and the developer might need
to execute several integration testing cycles before the release of the
feature.

The Rerere is a useful tool, but its implementation has some prob-
lems that limit its potential:

• The Rerere mechanism relies heavily on the HASH of the conflict
areas, any change that alters the hash (like a space character) will
prevent Rerere from finding the recorded solution. A snapshot’s
content is used only if its conflict area context is preserved, as is
usual for merge conflicts. Consequently, Rerere will not be able
to locate the hash directory to resolve the conflict.

• The Rerere support multiple conflicts in a file, but if in a file
there are two conflicts and Rerere has the solution for only one
of them, then it is not able to apply the previous solution to the
conflict because it generates a single hash per file. As there is a
new conflict, the hash changes. Consequently, Rerere will not be
able to locate the hash directory to resolve the conflict.

16

Our approach, Almost-Rerere, aims at overcoming these limitations
and help developers to resolve the conflicts when Rerere fails to apply
the previous solution. Almost-Rerere does not depend on the HASH
so it is not affected by the changing in a conflict area. Almost-Rerere
records conflict and its resolution, then use it to learn a search pattern
that can be applied to all the similar conflicts.

The approach consists of extending the current functionality of
Rerere: to resolve conflicts originated on no-semantically representa-
tive sections of the code, e.g. conflicts cause by white-spaces or that
occurred in comments, and to resolve previously resolve conflicts in files
with more than 1 conflicting area; to synthesize a regular expression
and a replacement from a group of similar conflicts. The first function-
ality is trivial, we updated the pre-image and post-image by adding the
section of codes that generate conflicts.

In this work, we concentrate on the development of the second fea-
ture to automatically resolves the conflicts. We cluster the similar con-
flicts and their resolution using similarity metrics. These clusters are
given in input to genetic algorithm for automatic synthesis of a regular
expression and a replacement expression. The regular expression and
the replacement are applied to a conflict and the result is proposed
to the user as a possible solution for the conflict. Initially, the gen-
erated regular expressions & replacements are very sensitive to small
changes because the number of conflicts in a cluster are very small.
But as the conflicts increase the regular expressions & replacements
become more precise. In chapter 4 we describe the whole architecture
of Almost-Rerere.

3.3.1 Git Rerere implementation

Git Rerere can be enabled globally when a repository is initialized the
.git/rr-cache directory is created automatically, or locally by manually
creating the .git/rr-cache directory in a specific repository. Rerere
saves a pre-image and post-image of the file that has conflicts. Pre-
image is a before-state of the file with conflicts and Post-image is,
instead, after-state of the file once conflicts have been resolved. Figure
3.3 shows how .git/rr-cache is organized. The following code shows how
a pre-image file looks like. The markers <<<<<<< and >>>>>>>

delimits the conflict area, and the marker ======= separates the
user local changes from the remote changes.

17

Figure 3.3: Rerere directory

1 <h3>List</h3>
2 <table class="table table-hover table-condensed">
3 <!-- Conflict area Start -->
4 <<<<<<< <!-- Start Marker -->
5 <thead class = "HEader"> <!-- Local Branch -->
6 ======= <!-- Separate Marker -->
7 <thead class= "header"> <!-- Remote Branch -->
8 >>>>>>> <!-- End Marker -->
9 <!-- Conflict area End -->

10 <tr>
11 <th>#</th>
12 <th>First Name</th>
13 <th>Last Name</th>
14 <th>Username</th>
15 </tr>
16 </thead>
17 <!-- Conflict area Start -->
18 <<<<<<<
19 <tbody data-bind="foreach: items" class = "BODY">
20 =======
21 <tbody data-bind="foreach: items" class= "body">
22 >>>>>>>
23 <!-- Conflict area End -->
24 <tr data-bind="click: $parent.select">
25 <td data-bind="text: id"></td>
26 <td data-bind="text: $data['First Name']" style="white-space:

pre-wrap;"></td>
27 <td data-bind="text: $data['Last Name']" style="white-space:

pre-wrap;"></td>

18

28 <td data-bind="text: $data['Username']" style="white-space:
pre-wrap;"></td>

29 </tr>
30 </tbody>
31 </table>

The post-image code corresponding to the pre-image code is follow-
ing:

1 <h3>List</h3>
2 <table class="table table-hover table-condensed">
3 <thead class= "header">
4 <tr>
5 <th>#</th>
6 <th>First Name</th>
7 <th>Last Name</th>
8 <th>Username</th>
9 </tr>

10 </thead>
11 <tbody data-bind="foreach: items" class= "body">
12 <tr data-bind="click: $parent.select">
13 <td data-bind="text: id"></td>
14 <td data-bind="text: $data['First Name']" style="white-space:

pre-wrap;"></td>
15 <td data-bind="text: $data['Last Name']" style="white-space:

pre-wrap;"></td>
16 <td data-bind="text: $data['Username']" style="white-space:

pre-wrap;"></td>
17 </tr>
18 </tbody>
19 </table>

Rerere is invoked automatically by different git commands such as:
merge, rebase, cherry-pick, stash apply/pop, checkout –m. Git Rerere
has several commands that allow it to interact with its working state:

• clear: reset the metadata used by rerere if a merge resolution is
to be aborted.

• forget <pathspec>: reset the conflict resolutions which Rerere
has recorded for the current conflict in <pathspec>.

• diff : display diffs for the current state of the resolution. It is
useful for tracking what has changed while the user is resolving
conflicts.

19

• status: print paths with conflicts whose merge resolution Rerere
will record.

• remaining: print paths with conflicts that have not been auto-
resolved by Rerere. This includes paths whose resolutions cannot
be tracked by Rerere, such as conflicting submodules.

• gc: prune records of conflicted merges that occurred a long time
ago. By default, unresolved conflicts older than 15 days and re-
solved conflicts older than 60 days are pruned. These defaults
are controlled via the gc.rerereUnresolved and gc.rerereResolved
configuration variables respectively.

To better illustrate the resolution process of Rerere, a typical use
case of the tool is presented in the following:

A developer is working on a feature branch, his changes may overlap
an area that the master branch touched, so he may want to perform
integration tests with the latest master, even before feature branch is
ready to be pushed upstream.

1. Developer execute git merge master command to get the changes
of the master branch into the feature branch.

2. Git tries to merge automatically but it fails due to overlap of
changes in a file, so git merge calls automatically Rerere.

3. Rerere verifies if there are any conflicts in the file, for each conflict
area found it generates a hash.

4. Rerere search for the .git/rr-cache/hash directory, if the directory
does not exist, it is created.

5. Rerere saves the pre-image inside it. After that Rerere terminates
and Git asks developer to resolve manually the conflicts.

6. Developer resolves the conflicts and commits the changes, git com-
mit -m “Message".

7. Steps 3 and 4 are repeated.

8. Rerere finds the path .git/rr-cache/hash containing the pre-image.
It saves the post-image of the file inside the hash directory.

Developer after completing all the tests throw away the merge
by executing git reset –hard HEAD and continue to work on the

20

feature branch. When the branch is ready to be pushed upstream,
developer aligns the feature branch to the master.

9. Steps 1, 2, 3 and 4 are repeated.

10. Rerere finds the path .git/rr-cache/hash containing both pre-
image and post-image files.

11. Rerere resolves the conflict performing a three-way merge between
the pre-image, current state and post-image.

12. User commits and push all the changes to the remote master
branch, git push origin master.

Figure 3.4 shows the flow diagram of the automatic resolution mech-
anism of Rerere.

Figure 3.4: Git Rerere automatic resolution mechanism Diagram

21

Chapter 4

Implementation

In this chapter, we will illustrate the architecture of Amost-Rerere and
for each component will show implementation details.

4.1 The Almost-Rerere architecture

Almost-Rerere architecture is shown in Figure 4.1. It is composed
of three main components: conflict clustering, regular expression &
replacement generator and conflict resolver.

Figure 4.1: Almost-Rerere architecture

Conflict clustering and conflict resolver are developed in C language,
and they are part of Almost-Rerere. Regular expression & replacement

22

generator [46], instead, is an external tool written in Java that is used
by Almost-Rerere to generate regular expression & replacement. Now
we will describe each component in detail.

4.1.1 Conflict Clustering

Clustering is the task of grouping a set of similar data in the same
group called cluster. Different algorithms differ significantly in their
understanding of what constitutes a cluster and how to efficiently find
them, but none of them is better than the other. The best clustering
algorithm is the one that best fits our data set.

Almost-Rerere clusters the conflicts using the hierarchical clustering
[49] that group the objects in clusters based on their similarity. The
result of hierarchical clustering is a set of clusters, where each cluster is
distinct from each other cluster, and the objects within each cluster are
broadly similar to each other. Hierarchical clustering starts by treating
each object as a separate cluster. Then, it identifies and merges the two
most similar clusters. These steps are repeated until all the clusters are
merged. Hierarchical clustering uses a similarity measure to identify
if two clusters or objects are similar. Almost-rerere use Jaro-Winkler
similarity measure. Jaro-Winkler is a modification of Jaro.

The Jaro similarity of two string s1 and s2 is [50]:

simj =

{
1
3
(m
|s1| + m

|s2| + m−t
|m|) m > 0

0 m ≤ 0

where:

• |si| is the length of the string si

• m is the number of matching characters

• t is half the number of transpositions

The two strings, s1 and s2, are compared character by character. Two
characters are considered matching only if they are the same and have
a maximum distance of max(|s1|,|s2|)

2
− 1. The number of matching char-

acter, but in different sequence order, divided by 2 defines the number
of transpositions.

The Jaro-Winkler modified this algorithm to support the idea that
differences near the start of the string are more significant than differ-
ences near the end of the string. The Jaro-Winkler similarity of two

23

Average Similarity
Jaro-Winkler 0,95

Jaro 0,92
Cosine 0,91
Sorensen 0,91
Damerau 0,88
LCSS 0,88

Levenshtein 0,87
Jaccard 0,85
Hamming 0,68
LCSSTR 0,64

Table 4.1: Average similarity score over 200 samples

string s1 and s2 is [50]:

simw = simj + l ∗ p ∗ (1− simj)

where:

• simj is the Jaro similarity of s1 and s2

• l is the length of common prefix at the start of the string up to a
maximum lbound

• p is a scaling factor for how much the similarity measure is ad-
justed upwards for having common prefixes

The standard values of lbound and p ,as defined in Winkler’s work [51],
are respectively 4 and 0.1. The Jaro-Winkler distance is defined as
dw = 1− simw.

Jaro and Jaro-Winkler measures are suited for comparing short
strings. We evaluated different similarity measures on a set of strings
that were to be considered similar to each other. We compared each
string pairs, obtaining a similarity score. We have a data set of about
200 pairs, Jaro-Winkler has the highest similarity score in 80% of cases.
Table 4.1 report average similarity score of different similarity mea-
sures.

Almost-Rerere compares a new conflict with all clusters one by one.
For each cluster, it computes an average Jaro-Winkler’s similarity score.
After different tests, we set a threshold at 0.80. If there is more than

24

Figure 4.2: Almost-Rerere Conflict Clustering

one cluster that is above the threshold then the cluster with the highest
similarity score is selected. The conflict and its resolution is inserted
in the cluster which have maximum similarity score, only if it is over
a threshold. If no cluster is found then a new cluster is created. A
detailed flow of conflict clustering is shown in Figure 4.2.

An example of conflict clusters data set is shown below. Each clus-
ter has a unique id and contains an array of objects. The object is
composed of a conflict and a resolution.

25

1 {
2 "1": [
3 {
4 "conflict": "<form class=\"blue\">",
5 "resolution": "<form class=\"red\">"
6 },
7 {
8 "conflict": "<form class = \"blue\">",
9 "resolution": "<form class =\"red\">"

10 },
11 {
12 "conflict": "<form class = \"blue\">",
13 "resolution": "<form class =\"red\" >"
14 }
15],
16 "2": [
17 {
18 "conflict": "<div class =\"row\">",
19 "resolution": "<div class = \"row\">"
20 },
21 {
22 "conflict": "<div class=\"space\"></div>",
23 "resolution": "<div class = \"space\"></div>"
24 },
25 {
26 "conflict": "<div class =\"space\" ></div>",
27 "resolution": "<div class=\"space\"></div>"
28 }
29]
30 }

4.1.2 Regular expression and replacement generator

Almost-Rerere resolves the conflict using regular expression & replace-
ment which are generated by an external tool, Automatic Search-and-
Replace From Examples [46], written in Java.

The Search-and-Replace algorithm takes as input a series of exam-
ples consisting of pairs describing the original string and the desired
modified string, in our case the conflict and its resolution. Starting
from these examples, a search pattern and a replacement expression
is generated: the former is a regular expression which describes both
the strings to be replaced and their portion to be reused in the latter,
which describes how to build the modified strings.

The algorithm is based on Genetic Programming (GP), a type of

26

an Evolutionary Algorithm (EA) inspired by biological evolution such
as reproduction, mutation, recombination, and selection. The best
solution is chosen based on a fitness function. The main steps of the
algorithms are:

1. Initially generates a random population of individuals for search
pattern and replacement.

2. Evaluate the generated population using a fitness function.

3. Repeat the following regeneration steps until termination:

(a) Select the best-fit individuals (Parents).

(b) Breed new individuals through crossover and mutation op-
erations to generate a new population of search pattern and
replacement.

(c) Evaluate the individual fitness of new individuals.

(d) Replace least-fit population with new individuals.

The tool has been modified to read our conflict clusters data set
and to output a JSON file that has regular expression & replacement
for each cluster. Almost-Rerere executes the Search-and-Replace tool,
passing as parameters the ids of clusters that have been updated when
user made a commit. Search-and-Replace tool, for each cluster, reads
all the conflicts and the corresponding resolutions and constructs a set
of data by dividing examples for training, validation and testing.

The algorithm needs at least three examples, if a cluster does not
have three examples, the same sample is used for training, validation
and testing. After every execution, we verify if the generated regular
expression & replacement is valid, otherwise, the algorithm is executed
another time. The generated regular expression & replacement could
depend on the order of conflicts, to make it independent the algorithm
is executed multiple times. If the generated regular expressions & re-
placements are same then the only one is written on the file, otherwise
the expressions are used with an or logical connection. The algorithm
terminates when a predefined number of generation has been executed
or the best search-and-replacement expression is found.

The algorithm may take several minutes to run the clusters that
have been updated, for which it runs on a new background thread.
Figure 4.3 shows a detailed flow of Regex & Replacement Generator.

27

Figure 4.3: Almost-Rerere Regex & Replacement Generator

4.1.3 Conflict resolver

Conflict resolver has a structure very similar to conflict clustering. This
component has the responsibility to resolve a conflict. Figure 4.4 shows
how Almost-Rerere resolves a conflict.

Each cluster can have one or two regular expression & replacement.
A cluster that has the highest similarity with respect to other clusters,
is the closest to the conflict. The regular expression & replacement of
the closest cluster is applied to the conflict, and the result is showed
to the user. If there are two regular expressions & replacements then
both are applied to the conflict. The two resolutions are compared
using Jaro-Winkler similarity, the one that has the highest similarity
score is returned to the user as the best possible solution. The regular
expression & replacement for each cluster are stored in a JSON file, an
example is shown below.

28

Figure 4.4: Almost-Rerere Conflict Resolver

1 {
2 "1": [
3 {
4 "regex": "[^7]\"[^;]\\w*+",
5 "replacement": "\"red"
6 },
7 {
8 "regex": "(?:([^2])[^_]u(e)(\"))++",
9 "replacement": "red$3 "

10 }
11],
12 "2": [
13 {
14 "regex": "(?=\\))",
15 "replacement": "s"
16 }
17],
18 "3": [
19 {

29

20 "regex": " = ",
21 "replacement": "="
22 }
23]
24 }

4.2 Git Integrations

Almost-Rerere is invoked automatically by git merge and git commit
commands. It operates in two different cases: In first case, Almost-
Rerere tries to resolve the conflicts using regular expressions & re-
placements and proposed to the developer a possible solution. In the
second case, Almost-Rerere add conflicts in the clusters and updates
the regular expressions & replacements for each cluster. The workflow
for two cases are described below.

Figure 4.5 shows the flow of Almost-Rerere in first case. The check_
conflict_suggestion() function reads the file with conflicts and extracts
the conflict area. For each conflict line in the conflict area, the regex_
repalce_suggestion() function computes a similarity measure between
the conflict and the clusters. The conflict fit into the cluster that
has the highest similarity compared to other clusters. The apply_
regex_replacement() gets the regular expression & the replacement for
the chosen cluster, and apply it to the conflict. The string obtained is
returned to the developer as a possible solution for the conflict.

Figure 4.6, instead, shows the flow of Almost-Rerere in the sec-
ond case, when a developer commits manually resolved conflicts. The
write_json_ conflict_index() function checks if the pair, conflict and
its resolution is already present in a cluster. If not, it computes a sim-
ilarity measure between the conflict and clusters. The pair is inserted
in the cluster for which the similarity measure is maximum. After the
conflicts have been added into a cluster, Almost-Rerere executes the
external tool explained in 4.1.2 which updates the regular expression
& the replacement for each modified cluster.

30

Figure 4.5: Almost-Rerere Git Merge sequence diagram

31

Figure 4.6: Almost-Rerere Git Commit sequence diagram

32

Chapter 5

Evaluation

We evaluated Almost-Rerere on two case studies. In the first case, we
develop a web-based Crowd-Sourcing platform using a Model driven
development tool and following an Agile development approach. In
the second case, we evaluate our approach on large git repositories of
long run open-source projects.

5.1 Conflict resolution results for the integration of
handwritten and generated code

The application is developed using IFMLEdit.org [15]. IFMLEdit.org is
an online tool for the rapid prototyping of web and mobile applications
[52]. It is based on Interaction Flow Modeling Language (IFML) [5].
IFMLEdit.org allows developers to design the model of web or mobile
applications, using a graphical interface. The following aspects of an
interactive application can be defined in the tool:

• The view structure and content: the view content is expressed
through two classes of ViewElements: ViewContainers, elements
for representing the nested structure of the interface, and View-
Components, elements for content display and data entry. View-
Components have a ContentBinding, which expresses the link to
the data source.

• The events: the occurrences that affect the state of the user in-
terface, which can be produced by the user interaction, the appli-
cation, or an external system.

33

Figure 5.1: IFMLEdit.org online tool

• The event transitions: the consequences of an event on the user
interface, which can be the change of the ViewContainer, the
update of the content on display, the triggering of an action, or a
mix of these effects. Actions are represented as black boxes.

• The parameter binding: the input-output dependencies between
ViewElements and Actions.

The development process of the application is divided into seven
sprints. At each sprint, we apply changes to the model or add a man-
ual modification to code. We developed the application with the aim
of creating conflicts. We simulated that two developers work on the
development of the platform. The main repository is on master branch,
each developer work on his own branch. The details of seven sprints
are shown in the table 5.1.

In sprint from 1 to 6, both developers update the model with new
content. Both developers make the same changes, but with little differ-
ences, to the templates of IFMLEdit.org. When Developers generate
the code, the changes will propagate to all the pages where the mod-
ified templates are used. In sprint 7 the changes are made directly
on the generated code. Both developers commit changes to their local
branch. The main goal of these changes is to generate many conflicts
when the code is committed to the main repository. In fact, when
the local branches are merged into the main repository, it generates

34

Sprint Description
1 Create Login and Register page: A User can create an ac-

count and login into the application.

2 Create User Profile page and Edit Profile page: A User
can access to profile and change the account information
(Name,Surname,password).

3 Create New Campaign page and List Campaign page: A
User can create a new campaign and visualize list of all cam-
paigns.

4 Create Ready Campaign Details page: A User can view and
changes campaign details. He can upload images and select
users for selection and annotation task. When campaign is
ready then a user can start the campaign.

5 Create Running Campaign Details page: A owner of the
campaign can view the selected and annotated images.

6 Create Archive Campaign Details page: A owner of the cam-
paign can view the statistics of the terminated campaign.

7 Do the manual changes to the generated code.

Table 5.1: Crowd-Sourcing sprints description

conflicts because both users have changed the same content. When-
ever there is a conflict between two files or a conflict is resolved by the
user, Almost-Rerere intervenes to resolve the conflict or to record the
resolved conflict.

The following codes show an example of a template that generates
the HTML of a Form View Component, and how it is modified by two
developers:

1 <h1><%=name %></h1>
2 <form>
3 <% fo r (var i = 0 ; i < f i e l d s . l ength ; i += 1) { −%>
4 <div c l a s s="form−group" data−bind="c s s : { ' has−e r ror ' : e r r o r s

() ['<%= f i e l d s [i]%>']}">
5 <l ab e l f o r="<%=id%>_field_<%=i%>" data−bind="c s s : {

a c t i v e : f i e l d s () ['<%= f i e l d s [i]% > ']} , a t t r : { ' data−

35

e r ro r ' : e r r o r s () ['<%= f i e l d s [i]%> ']}" c l a s s="cont ro l−
l a b e l"><%=f i e l d s [i]%></labe l >

6 <input id="<%=id%>_field_<%=i%>" data−bind="value :
f i e l d s () ['<%= f i e l d s [i]%> ']" type="text " c l a s s="form−
c on t r o l v a l i d a t e " ar ia−descr ibedby="<%=id%>_field_<%=
i%>_error">

7 <span id="<%=id%>_field_<%=i%>_error " c l a s s="help−block "
data−bind="text : e r r o r s () ['<%= f i e l d s [i]%>']">

8 </div>
9 <% } −%>

10 </form>
11 <% i f (events . l ength) { −%>
12 <div>
13 <% fo r (var i = 0 ; i < events . l ength ; i += 1) {
14 i f (events [i] . s t e r eo type == ' system ') { −%>
15 <c−<%= events [i] . id %> params="t r i g g e r : t r i g g e r . bind ($data

,'<%= events [i] . id %>')"></c−<%= events [i] . id %>>
16 <% } e l s e { −%>
17 <a c l a s s="btn btn−primary" data−bind="c l i c k : t r i g g e r . bind (

$data , '<%= events [i] . id %>')"><%= events [i] . name %>
18 <% }
19 } −%>
20 </div>
21 <% } −%>

Both developers make changes to this template on line 2 and 12 in
the following way:

1 <!−− F i r s t Developer −−>
2 . . .
3 <form c l a s s = " red">
4 . . .
5 </form>
6 . . .
7 <div c l a s s = "row">
8 . . .
9 </div>

10 . . .

1 <!−− Second Developer −−>
2 . . .
3 <form c l a s s = "blue">
4 . . .
5 </form>
6 . . .
7 <div c l a s s="row">
8 . . .
9 </div>

10 . . .

36

The changes made concern HTML, JavaScript and CSS templates. In
7 sprints we resolved about 200 conflicts. We will present and discuss
all the results in 5.3.1.

5.2 Evaluation of Git project repositories

We needed to test Almost-Rerere on a real project to evaluated the
quality of the regular expressions and resolutions when there are hun-
dreds of similar conflicts. We used some data sets that are used in [53].
The authors of the cited paper, in order to evaluate their algorithm
created data sets based on 9 git-repositories from active open-source
projects. They stored and used all commits to the master branch.
The data sets concern only Java language, and they contain the pairs
of strings: the string in the original state to which we will refer as a
conflict ; the string after the changes to which will refer as a resolution.

We have created a program that allows Almost-Rerere to iterate over
the conflict and resolution pairs directly from our data set. Almost-
Rerere verifies if it can resolve the conflict by searching for the nearest
clusters to the conflict and applying regular expression that was derived
for it. The resolution obtained by Almost-Rerere is compared with
the original resolution (ground-truth) using the Jaro-Winkler similarity
score. The conflict, regular expression, replacement, similarity score
and resolution is written on a CSV file. Then Almost-Rerere writes
the conflict and resolution pair in the nearest cluster.

Repository N° Conflicts
Ant 10500

Cobertura 1260
Eclipse 1355

FitLibrary 4399
JGraphT 3200
JUnit 4424

Table 5.2: Git repository statistics

We use only 6 of 9 repositories used in the cited paper, table 5.2
shows the total number of pairs (conflict & resolution) for each used
repository. We will discussed the result in 5.3.2.

37

Sprint N° Conflicts N° Conflicts Resolved
1 2 0
2 11 4
3 11 10
4 24 20
5 40 15
6 71 43
7 49 26

Total 208 118

Table 5.3: Crowd-Sourcing: Almost-Rerere conflict resolved statistics

5.3 Discussion

In Section 5.3.1 we will present the results of the first case study, Crow-
Sourcing. In Section 5.3.2 we will discuss the results of second case
study and evaluate the quality of the synthesized resolution by Almost-
Rerere compared to the original resolution.

5.3.1 Crowd-Sourcing

Table 5.3 shows the total number of conflicts and the number of con-
flicts resolved by Almost-Rerere in 7 sprints. In the first sprint, we
have 0 conflicts resolved because there are no recorded conflicts. From
the second sprint, Almost-Rerere begins to propose a possible solution
to the user. In the second sprint, there are only 4 conflicts resolved
because there are only a few conflicts in clusters. Then as the number
of conflicts increases also the number of resolved conflicts increased.

We have over 200 conflicts, Almost-Rerere proposed a resolution to
the user for 118 conflicts, that are 57% of total conflicts. The quality
of the resolution depends on the intra-cluster similarity of the cluster,
which defines the similarity of elements in a cluster.

Table 5.4 shows the total number of clusters, and for each cluster
total number of conflicts and of regular expressions & replacements.
Almost-Rerere creates 21 clusters and records in these clusters 121 dif-
ferent conflicts. We have 7 clusters with intra-cluster similarity above
90%, some of them have a few numbers of conflicts, but all of them give
a good conflict resolution. In the other 7 cases, we have clusters with
intra-cluster similarity less than 90%, in these cases we will not have a

38

good resolution in every case. It is necessary to increase the number of
conflicts in the cluster to make regular expressions more precise. In the
remaining cases, nothing can be said because there is only one conflict
per cluster.

Cluster N° Conflicts Intra-cluster similarity %
1 4 99
2 3 93
3 10 90
4 1 0
5 2 86
6 6 87
7 2 85
8 10 91
9 26 83
10 2 83
11 1 0
12 1 0
13 1 0
14 1 0
15 1 0
16 1 0
17 2 92
18 17 94
19 11 83
20 15 93
21 4 85

Table 5.4: Crowd-Sourcing: Almost-Rerere cluster statistics

Initially, the proposed solution is very sensible because there are
few numbers of records conflicts in clusters. If a cluster has an intra-
cluster similarity score above 90% then the resolution obtained after
applying a regular expression & replacement is very good. For example,
the following cluster have almost the same conflicts, they have little
difference like spaces.

1 " 1 " : [
2 {
3 " c o n f l i c t ":"<form c l a s s =\"blue \">",
4 " r e s o l u t i o n ":"<form c l a s s =\"red\">"

39

5 } ,
6 {
7 " c o n f l i c t ":"<form c l a s s = \" blue \">",
8 " r e s o l u t i o n ":"<form c l a s s =\"red\">"
9 } ,

10 {
11 " c o n f l i c t ":"<form c l a s s = \" blue \">",
12 " r e s o l u t i o n ":"<form c l a s s =\"red \" >"
13 } ,
14 {
15 " c o n f l i c t ":"<form c l a s s = \" blue \">",
16 " r e s o l u t i o n ":"<form c l a s s = \" red \" >"
17 }
18] ,

This cluster has following regular expressions & replacements:
1 "1" : [
2 {
3 " regex " : " [^ 7] \ " [^ ;] \ \w∗+",
4 " replacement " : "\" red "
5 } ,
6 {
7 " regex " : " (? : ([^ 2]) [^_] u(e) (\"))++",
8 " replacement " : " red$3 "
9 }

10] ,

First regular expression is more precise than the second one because
the first one can replace every word with the "red" within the quotation
marks. For example, if we have the following conflict:

1 <form c l a s s = " green">

The following regular expression
1 {
2 " regex " : " [^ 7] \ " [^ ;] \ \w∗+",
3 " replacement " : "\" red "
4 } ,

applied to the conflict gives the following result, that is similar to our
conflict.

1 <form c l a s s ="red">

But this regular expression is sensitive to the spaces. If we remove a
space character in the conflict, as in the following,

1 <form c l a s s ="green">

40

the first regular expression this time gives the following resolution.
That is similar to original conflict but at compile time it will give an
error because there is missing a "=" character.

1 <form c l a s s " red">

The following second regular expression, instead, is dependent to
the character "u" and "e", so it is not able to replace a word within
the quotation marks if it will not have any character "u" followed by a
character "e".

1 {
2 " regex " : " (? : ([^ 2]) [^_] u(e) (\"))++",
3 " replacement " : " red$3 "
4 }

For example, if we have the following conflict:
1 <form c l a s s = "SkyBlue">

it will have the following resolution after the application of second
regular expression & replacement.

1 <form c l a s s = "Skyred" >

But if have the following conflict like the first example, the second
regular expression is not able to find the pattern and to apply the
replacement.

1 <form c l a s s = " green">

These examples show that Almost-Rerere can learn a pattern from a
set of similar conflicts and then resolve the conflicts. But the learned
pattern depends on the number of conflicts in the cluster and how
much these conflicts are similar to each other. As we saw Almost-
Rerere generates two regular expressions & replacements to make them
independent of the order of the conflicts. In the first example, the
regular expression is more precise than the second example, but in
both examples, they are sensitive to small changes because there are
only a few conflicts in the cluster.

The regular expressions become more robust and less sensitive to
small changes or to order if the number of conflicts in a cluster is large
and the conflicts have a high intra-cluster similarity score (above 90%)
such as clusters 18 and 20. For example, cluster 20 have following
regular expression & replacement.

41

1 "20" : [
2 {
3 " regex " : " (? : (\ ") \\w++)++",
4 " replacement " : " $1header "
5 } ,
6 {
7 " regex " : "(\") \\w++(\") " ,
8 " replacement " : " $2header$1 "
9 }

10] ,

Both regular expressions are very precise to replace the content within
the quotation marks, as shown in the following example they give the
same result.

1 <!−− Con f l i c t −−>
2 <thead c l a s s = "HEAD">
3
4 <!−− Reso lut ion F i r s t regex & replacement −−>
5 <thead c l a s s = "header">
6
7 <!−− Reso lut ion Second regex & replacement −−>
8 <thead c l a s s = "header">

Cluster 9 has the highest number of conflicts but it has an intra-cluster
similarity of 83%. In effect, the conflicts in the cluster have the same
structure but differ in content. In the following, we show some example
of cluster 9 to give the idea of differences.

1 " 9 " : [
2 {
3 " c o n f l i c t ":"<h3>image<\/h3>",
4 " r e s o l u t i o n ":"<h3>Images<\/h3>"
5 } ,
6 {
7 " c o n f l i c t ":"<h3>worker<\/h3>",
8 " r e s o l u t i o n ":"<h3>Workers<\/h3>"
9 } ,

10 {
11 " c o n f l i c t ":"<h3>Annotated image<\/h3>",
12 " r e s o l u t i o n ":"<h3>Annotated Images<\/h3>"
13 } ,
14 {
15 " c o n f l i c t ":"<h3>worker d e t a i l s <\/h3>",
16 " r e s o l u t i o n ":"<h3>Worker Deta i l <\/h3>"
17 } ,
18 {
19 " c o n f l i c t ":"<h1>workers <\/h1>",

42

20 " r e s o l u t i o n ":"<h2>workers <\/h2>"
21 }
22] ,

The regular expressions of the this cluster are the following,
1 "9" : [
2 {
3 " regex " : "1([^9]++) " ,
4 " replacement " : "2$1"
5 } ,
6 {
7 " regex " : "1(>) " ,
8 " replacement " : "2$1"
9 }

10] ,

both patterns are dependent on a particular form of the conflict, they
replace the conflicts that have a character "1" or "1>". In the following
we show two examples.

1 <!−− F i r s t Example : c o n f l i c t −−>
2 <h1>workers <\/h1>
3
4 <!−− Reso lut ion : F i r s t regex & replacement −−>
5 <h2>workers <\/h1>
6
7 <!−− Reso lut ion : Second regex & replacement −−>
8 <h2>workers <\/h2>
9

10 <!−− Second Example : c o n f l i c t −−>
11 <h3>Annotated image<\/h3>

Second resolution is better than the first one because it replaces "h1"
with "h2". But in the second example, both the regular expressions
are not able to find a pattern to replace.

To make regular expressions independent of a particular charac-
ter, the similarity of the cluster must be very high. Furthermore, to
make regular expressions independent of order and insensitive to small
changes it is necessary to have a high number of conflicts in the cluster.

5.3.2 Git project repositories

Almost-Rerere has found a similar resolution for a certain number of
conflicts for each repository: Ant 54%, Cobertura 70%, Eclipse 59%,
FitLibrary 54%, JGrapT 68%, JUnit 49%. Table 5.5 shows statistics

43

of the repositories that we evaluate with Almost-Rerere. Almost-Rerere
resolved 55,7% of conflicts.

Repository N° Conflicts N° Cluster N° Conflicts Resovled
Ant 10500 1294 5667

Cobertura 1260 179 885
Eclipse 1355 382 799

FitLibrary 4399 337 2371
JGraphT 3200 238 2135
JUnit 4424 388 2166

Total 25138 2818 14023

Table 5.5: Repositories: Almost-Rerere cluster and conflicts resolved statistics

To evaluate the quality of synthesized resolutions by Almost-Rerere
we compared with the original resolution using Jaro-Winkler similarity
score. Table 5.6 shows the number of conflicts for similarity intervals:
100 - 90 %, synthesized resolution is almost similar to the original;
89 - 80 %, synthesized resolution is similar in some parts to the orig-
inal, 79 - 0 %, synthesized resolution is not similar to the original.
Almost-Rerere has resolved 14023 conflicts, 65,8% of resolutions have
a similarity score, compared to the original resolution, over 90%. So,
the synthesized resolution by Almost-Rerere, based on previous similar
conflicts, is almost similar to the original resolution in 65,8% of cases.

Repository 100 - 90 % 89 - 80 % 79 - 0 %
Ant 3717 791 1159

Cobertura 577 100 208
Eclipse 567 128 104

FitLibrary 1690 434 247
JGraphT 1748 221 166
JUnit 1470 370 326

Total 9229 2044 2210

Table 5.6: Repositories: Almost-Rerere N° conflicts for similarity intervals statistics

Table 5.7 shows number of clusters of each intra-cluster similarity
interval. Our threshold for Jaro-Winkler similarity score is 80%, as
explained in 4.1.1, below that all the clusters have only one component
and intra-cluster similarity score is equal to 0 because they are not
similar to previous conflicts.

44

Repository 100 - 90 % 89 - 80 % 79 - 0 %
Ant 127 485 682

Cobertura 27 33 119
Eclipse 62 116 204

FitLibrary 48 132 157
JGraphT 26 86 126
JUnit 43 162 183

Total 333 1014 1471

Table 5.7: Repositories: Almost-Rerere N° of cluster for intra-cluster similarity intervals
statistics

Now we will show some interesting case of clusters where Almost-
Rerere is able to synthesize a resolution with high similarity score even
if there are conflicts that have the same structure but different content.

Repository Ant has a cluster with the intra-cluster similarity of 83%
and it has 296 pairs of conflict and resolution. Almost-Rerere synthesize
a resolution of 276 conflicts out of 296. In the following we show some
examples of conflicts presents in the cluster:

1 "13" : [
2 {
3 " c o n f l i c t " : " pub l i c void s e t Z i p f i l e (F i l e z i pF i l e)

{" ,
4 " r e s o l u t i o n " : " pub l i c void s e t Z i p f i l e (f i n a l F i l e

z i pF i l e) {"
5 } ,
6 {
7 " c o n f l i c t " : " pub l i c void setCommand(St r ing command)

{" ,
8 " r e s o l u t i o n " : " pub l i c void setCommand(f i n a l S t r ing

command) {"
9 } ,

10 {
11 " c o n f l i c t " : " pub l i c void setComment (S t r ing comment)

{" ,
12 " r e s o l u t i o n " : " pub l i c void setComment (f i n a l S t r ing

comment) {"
13 } ,
14 {
15 " c o n f l i c t " : " pub l i c void setVerbose (boolean b) {" ,
16 " r e s o l u t i o n " : " pub l i c void setVerbose (f i n a l boolean

b) {"
17 } ,
18 {

45

19 " c o n f l i c t " : " pub l i c void setProxy (Object o) ; " ,
20 " r e s o l u t i o n " : " void setProxy (Object o) ; "
21 }
22]

This cluster has the following regular expression:
1 "13" : [
2 {
3 " regex " : " (\\ () (b) " ,
4 " replacement " : " $ 1 f i n a l $2"
5 } ,
6 {
7 " regex " : " (\\ () (\\w) " ,
8 " replacement " : " $ 1 f i n a l $2"
9 }

10] ,

Both regular expression gives a good resolution. But the First one
is dependent on a character "b", instead the second one is the more
general, it can always find a pattern in a conflicts. if we have the
following conflict, the first regular expression & replacement do not
give any result but the second gives a good resolution that is almost to
the original resolution.

1 <!−− c o n f l i c t −−>
2 pub l i c void log (S t r ing message) {
3
4 <!−− F i r s t r e gu l a r exp r e s s i on & replacement −−>
5 No r e s o l u t i o n
6
7 <!−− Second r egu l a r exp r e s s i on & replacement −−>
8 pub l i c void log (f i n a l S t r ing message) {

There are a few conflicts in the cluster for which the first regular ex-
pression do not give any resolution and the second gives a resolution
that is different from the original resolution, as shown in the following.

1 <!−− c o n f l i c t −−>
2 pub l i c void setProxy (Object o) ;
3
4 <!−− Or ig ina l r e s o l u t i o n −−>
5 void setProxy (Object o) ;
6
7 <!−− F i r s t r e gu l a r exp r e s s i on & replacement −−>
8 No r e s o l u t i o n
9

10 <!−− Second r egu l a r exp r e s s i on & replacement −−>
11 void setProxy (f i n a l Object o) ;

46

Repository Cobertura has a cluster which is composed of 68 conflicts
and has an intra-cluster similarity score of 96%. In the following we
show some examples of conflict in the cluster:

1 "29" : [
2 {
3 " c o n f l i c t " : " f i n a l p r i va t e boolean jj_3R_84 () {" ,
4 " r e s o l u t i o n " : " p r i va t e boolean jj_3R_87 () {"
5 } ,
6 {
7 " c o n f l i c t " : " f i n a l p r i va t e boolean jj_2_1 (i n t x la)

{" ,
8 " r e s o l u t i o n " : " p r i va t e boolean jj_2_1 (i n t x la) {"
9 } ,

10 {
11 " c o n f l i c t " : " f i n a l p r i va t e boolean jj_2_2 (i n t x la)

{" ,
12 " r e s o l u t i o n " : " p r i va t e boolean jj_2_2 (i n t x la) {"
13 } ,
14 {
15 " c o n f l i c t " : " f i n a l p r i va t e boolean jj_2_22 (i n t x la)

{" ,
16 " r e s o l u t i o n " : " p r i va t e boolean jj_2_22 (i n t x la) {"
17 } ,
18]

Initially, when there were few conflicts Almost-Rerere generated a reg-
ular expression & replacement that gave very bad resolution. Around
50 conflicts, regular expressions became more precise and started to
give a good resolution. After 68 conflicts, the synthesized resolution is
almost similar to the conflict, in fact, Almost-Rerere learned that the
real difference between conflict and resolution was the word "final". In
the following we show an example.

1 "29" : [
2 {
3 " regex " : "[^ r]++",
4 " replacement " : "p"
5 } ,
6 {
7 " regex " : "[^p]++\\w" ,
8 " replacement " : "p"
9 }

10] ,

1 <!−− c o n f l i c t −−>

47

2 f i n a l p r i va t e boolean jj_2_29 (i n t x la) {
3
4 <!−− Or ig ina l r e s o l u t i o n −−>
5 pr i va t e boolean jj_2_29 (i n t x la) {
6
7 <!−− F i r s t r e gu l a r exp r e s s i on & replacement −−>
8 prp
9

10 <!−− Second r egu l a r exp r e s s i on & replacement −−>
11 pr i va t e boolean jj_2_29 (i n t x la) {

The first regular expression & replacement gives a very bad resolution.
Instead, the second one gives resolution similar to the original reso-
lution. This example demonstrates that high intra-cluster similarity
does not always mean a good resolution. It is important to have a high
number of similar pairs of conflicts and resolutions to have always a
good resolution.

JGraphT repository has a cluster with 40 conflicts and intra-cluster
similarity of 84%. Here are some example of conflicts:

1 "81" : [
2 {
3 " c o n f l i c t " : " pub l i c Connec t i v i ty In spec to r (

UndirectedGraph g) {" ,
4 " r e s o l u t i o n " : " pub l i c Connec t i v i ty In spec to r (

UndirectedGraph<V, E> g) {"
5 } ,
6 {
7 " c o n f l i c t " : " pub l i c B r ead thF i r s t I t e r a t o r (Graph g)

{" ,
8 " r e s o l u t i o n " : " pub l i c B r ead thF i r s t I t e r a t o r (Graph<V,

E> g) {"
9 } ,

10 {
11 " c o n f l i c t " : " pub l i c CycleDetector (DirectedGraph

graph) {" ,
12 " r e s o l u t i o n " : " pub l i c Cyc leDetector (DirectedGraph<V

, E> graph) {"
13 } ,
14 {
15 " c o n f l i c t " : " pub l i c Topo l og i c a lOrde r I t e r a to r (

DirectedGraph dg) {" ,
16 " r e s o l u t i o n " : " pub l i c Topo l og i ca lOrde r I t e r a to r (

DirectedGraph<V, E> dg) {"
17 } ,
18]

48

This is a very interesting example because Almost-Rerere converges to
a single regular expression which is the following.

1 "81" : [
2 {
3 " regex " : "(h) () " ,
4 " replacement " : "$1<V, $2E> "
5 }
6]

If we have following conflicts, the regular expression gives a resolution
that is equal to the original resolution.

1 <!−− Con f l i t c −−>
2 pub l i c B r ead thF i r s t I t e r a t o r (Graph g) {
3
4 <!−− Or ig ina l r e s o l u t i o n −−>
5 pub l i c B r ead thF i r s t I t e r a t o r (Graph<V, E> g) {
6
7 <!−− Regex & expr e s s i on r e s o l u t i o n −−>
8 pub l i c B r ead thF i r s t I t e r a t o r (Graph<V, E> g) {
9

10 <!−− Con f l i t c −−>
11 pub l i c Connec t i v i ty In spec to r (DirectedGraph g) {
12
13 <!−− Or ig ina l r e s o l u t i o n −−>
14 pub l i c Connec t i v i ty In spec to r (DirectedGraph<V, E> g) {
15
16 <!−− Regex & expr e s s i on r e s o l u t i o n −−>
17 pub l i c Connec t i v i ty In spec to r (DirectedGraph<V, E> g) {

In the first example, we showed Almost-Rerere can synthesize a
good resolution even if there are few conflicts in the cluster that have
the same structure and similar content. If, instead, the conflicts have
the same structure but different content, Almost-Rerere needs more
example to synthesize a good resolution that we demonstrated in the
second example.

49

Chapter 6

Conclusions and Future Work

Almost-Rerere is an approach aimed to resolve automatically similar
conflicts to speed up development times.

In Crowd-Sourcing example we analyzed different examples of res-
olution synthesized by Almost-Rerere. The synthesis of the regular
expression by Almost-Rerere become more precise and more robust if
the number of conflicts and intra-cluster similarity is high. Almost-
Rerere proposed a solution for 57% of conflicts and generated 66% of
clusters with intra-cluster similarity over 80%.

In the second example, we evaluated the quality of resolution syn-
thesized by Almost-Rerere, comparing it to the original resolution 66%
of synthesized resolution have a similarity score over 90%, which is a
very good result. Thus a developer could accept the solution proposed
by Almost-Rerere in 66% of cases, reducing the number of conflicts.

The future work will focus on the following aspects:

1. The algorithm for search and replace of the regular expression
tries to generalize a common regular expression & replacement
to cover changing section of multiple samples. This decreases
the accuracy of the regular expressions as the samples similarity
decreases. The algorithm can be improved by considering sev-
eral changing regions on the same sample, instead of considering
the changing region as a whole. Suppose we have two following
strings:

1 Or ig ina l : <h1>Thesis<h1>
2 Modif ied : <h2>Thesis<h2>

Algorithm compares two strings character by character from start
and it stops when finds a different character. Then do the same

50

starting by end of the string. It separates strings in three areas:
$1 and $3 are the same in both strings, and $2 is the difference.
Algorithm will generate a regular expression considering the whole
area $2 as a changing region.

1 <h | 1 >Thesis<h 1 | >
2 <h | 2 >Thesis<h 2 | >
3 $1 | $2 | $3

We want that algorithm separates $2 in more regions as shown
in following, and generates regular expressions only for $2 and $4
areas.

1 <h | 1 | >Thesis<h | 1 | >
2 <h | 2 | >Thesis<h | 2 | >
3 $1 | $2 | $3 | $4 | $5

2. This version of Almost-Rerere can handle only single-line conflict
because it is very likely to have single-line conflicts similar to the
previous one respect to multi-line conflicts. Multi-line conflicts
means that the conflict area has two or more consecutive lines
that differ. In future work, we want to improve our approach to
deal with this case as well.

3. Improve the clustering algorithm to make clusters with high intra-
cluster similarity. We want to improve the threshold for Jaro-
Winkler similarity to have clusters with high intra-cluster simi-
larity. As a result, the regular expressions & replacements will
also be improved.

4. Implement an algorithm to re-cluster the conflicts to make the
cluster independent of the initial conflicts.

5. Create a graphical interface for Almost-Rerere that allows the
developers to select the proposed resolution.

51

Bibliography

[1] Carlo Bernaschina. Almost. js: an agile model to model and model
to text transformation framework. In International Conference on
Web Engineering, pages 79–97. Springer, 2017.

[2] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-
driven software development: technology, engineering, manage-
ment. John Wiley & Sons, Inc., 2006.

[3] Douglas C Schmidt. Model-driven engineering. COMPUTER-
IEEE COMPUTER SOCIETY-, 39(2):25, 2006.

[4] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: An annotated bibliography. ACM Sigplan Notices,
35(6):26–36, 2000.

[5] Marco Brambilla and Piero Fraternali. Interaction flow modeling
language: Model-driven UI engineering of web and mobile apps
with IFML. Morgan Kaufmann, 2014.

[6] S. Kelly and J.P. Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley - IEEE. Wiley, 2008.

[7] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. Sys-
tematic mapping study of template-based code generation. Com-
puter Languages, Systems & Structures, 52:43 – 62, 2018.

[8] Geoffrey Sparks. Enterprise architect user guide, 2009.

[9] Juha-Pekka Tolvanen and Matti Rossi. Metaedit+: defining and
using domain-specific modeling languages and code generators.
In Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and appli-
cations, pages 92–93. ACM, 2003.

52

[10] Markus Voelter and Konstantin Solomatov. Language modular-
ization and composition with projectional language workbenches
illustrated with mps. Software Language Engineering, SLE, 16(3),
2010.

[11] Jetbrains, meta programming system,http://jetbrains.com/mps.

[12] Markus Voelter. Projectional language workbenches as a foun-
dation for product line engineering. Software Engineering 2010–
Workshopband (inkl. Doktorandensymposium), 2010.

[13] Richard C Gronback. Eclipse modeling project: a domain-specific
language (DSL) toolkit. Pearson Educzation, 2009.

[14] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Pater-
nostro. EMF: eclipse modeling framework. Pearson Education,
2008.

[15] Carlo Bernaschina, Sara Comai, and Piero Fraternali. Ifmledit.
org: model driven rapid prototyping of mobile apps. In Proceed-
ings of the 4th International Conference on Mobile Software En-
gineering and Systems, pages 207–208. IEEE Press, 2017.

[16] Carlo Bernaschina, Emanuele Falzone, Piero Fraternali, and Ser-
gio Luis Herrera Gonzalez. The virtual developer: Integrating
code generation and manual development with conflict resolu-
tion. ACM Transactions on Software Engineering and Methodology
(TOSEM), 28(4):20, 2019.

[17] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus
Look, Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro
Perez, Dimitri Plotnikov, Dirk Reiss, Alexander Roth, et al. A
comparison of mechanisms for integrating handwritten and gener-
ated code for object-oriented programming languages. In 2015 3rd
International Conference on Model-Driven Engineering and Soft-
ware Development (MODELSWARD), pages 74–85. IEEE, 2015.

[18] Eclipse. https://www.eclipse.org/acceleo/, 2007.

[19] Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou. Ap-
proaches to co-evolution of metamodels and models: A survey.
IEEE Transactions on Software Engineering, 43(5):396–414, 2016.

53

[20] Jokin García, Oscar Diaz, and Maider Azanza. Model transforma-
tion co-evolution: A semi-automatic approach. In International
Conference on Software Language Engineering, pages 144–163.
Springer, 2012.

[21] Larry W Allen, Gary L Fernandez, Kenneth P Kane, David B
Leblang, Debra A Minard, and Gordon D McLean Jr. Version con-
trol system for geographically distributed software development,
October 7 1997. US Patent 5,675,802.

[22] Filippo Lanubile. Collaboration in distributed software develop-
ment. In Software Engineering, pages 174–193. Springer, 2007.

[23] Git. https://git-scm.com/.

[24] Mercurial. https://www.mercurial-scm.org/.

[25] Apache Subversion. https://subversion.apache.org/.

[26] Eoin Ó Conchúir, Pär J Ågerfalk, Helena H Olsson, and Brian
Fitzgerald. Global software development: where are the benefits?
Communications of the ACM, 52(8):127–131, 2009.

[27] Linus Trovald. https://www.kernel.org/.

[28] https://backlog.com/blog/git-vs-svn-version-control-system/.

[29] Tom Mens. A state-of-the-art survey on software merging. IEEE
transactions on software engineering, 28(5):449–462, 2002.

[30] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A
survey on model versioning approaches. International Journal of
Web Information Systems, 5(3):271–304, 2009.

[31] Antonio Cicchetti, Davide Di Ruscio, Ludovico Iovino, and Al-
fonso Pierantonio. Managing the evolution of data-intensive web
applications by model-driven techniques. Software & Systems
Modeling, 12(1):53–83, 2013.

[32] Mendix. https://www.mendix.com.

[33] WebRatio. https://www.webratio.com.

[34] Outsystems. https://www.outsystems.com.

54

[35] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivaku-
mar Vaithyanathan, and H. V. Jagadish. Regular expression learn-
ing for information extraction. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Processing, pages
21–30, Honolulu, Hawaii, October 2008. Association for Compu-
tational Linguistics.

[36] Falk Brauer, Robert Rieger, Adrian Mocan, and Wojciech M. Bar-
czynski. Enabling information extraction by inference of regular
expressions from sample entities. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Manage-
ment, CIKM ’11, pages 1285–1294, New York, NY, USA, 2011.
ACM.

[37] Cherie Madarash-Hill and JB Hill. Enhancing access to ieee con-
ference proceedings: a case study in the application of ieee xplore
full text and table of contents enhancements. Science & Technol-
ogy Libraries, 24(3-4):389–399, 2004.

[38] Efim Kinber. Learning regular expressions from representative
examples and membership queries. In International Colloquium
on Grammatical Inference, pages 94–108. Springer, 2010.

[39] David F Barrero, David Camacho, and Maria D R-moreno. Auto-
matic web data extraction based on genetic algorithms and regular
expressions. In Data Mining and Multi-agent Integration, pages
143–154. Springer, 2009.

[40] Antonio González-Pardo, David F Barrero, David Camacho, and
María D R-Moreno. A case study on grammatical-based repre-
sentation for regular expression evolution. In Trends in Practical
Applications of Agents and Multiagent Systems, pages 379–386.
Springer, 2010.

[41] Bertrand Daniel Dunay, Frederick E Petry, and Bill P Buckles.
Regular language induction with genetic programming. In Pro-
ceedings of the First IEEE Conference on Evolutionary Computa-
tion. IEEE World Congress on Computational Intelligence, pages
396–400. IEEE, 1994.

[42] Borge Svingen. Learning regular languages using genetic program-
ming. Proc. Genetic Programming, pages 374–376, 1998.

55

[43] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco
Mauri, Eric Medvet, and Enrico Sorio. Automatic generation of
regular expressions from examples with genetic programming. In
Proceedings of the 14th annual conference companion on Genetic
and evolutionary computation, pages 1477–1478. ACM, 2012.

[44] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano
Tarlao. Learning text patterns using separate-and-conquer genetic
programming. In European Conference on Genetic Programming,
pages 16–27. Springer, 2015.

[45] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano
Tarlao. Active learning of regular expressions for entity extraction.
IEEE transactions on cybernetics, 48(3):1067–1080, 2017.

[46] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano
Tarlao. Automatic search-and-replace from examples with coevo-
lutionary genetic programming. IEEE transactions on cybernetics,
2019.

[47] Automatic Generation of Text Extraction Patterns from Exam-
ples. http://regex.inginf.units.it/.

[48] Almost-Git. https://www.npmjs.com/package/almost-git.

[49] Fionn Murtagh. A survey of recent advances in hierarchical clus-
tering algorithms. The Computer Journal, 26(4):354–359, 1983.

[50] Jan Martin Keil. Efficient bounded jaro-winkler similarity based
search. BTW 2019, 2019.

[51] William Winkler. String comparator metrics and enhanced deci-
sion rules in the fellegi-sunter model of record linkage. Proceedings
of the Section on Survey Research Methods, 01 1990.

[52] https://editor.ifmledit.org/.

[53] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M Es-
kofier, and Michael Philippsen. Automatic clustering of code
changes. In Proceedings of the 13th International Conference on
Mining Software Repositories, pages 61–72. ACM, 2016.

56

