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SOMMARIO 
La presente tesi tratta problemi di controllo relativi a sistemi di produzione e accumulo di vapore. 

Sono presentati i modelli matematici di boiler di tipo fire-tube e di accumulatori i cui parametri vengono 
poi identificati prendendo in considerazione dati estratti da un sistema reale.        

Nell’elaborato sono illustrati due diversi schemi di controllo.  

Il primo, basato sul controllo predittivo basato su modello (MPC), tratta la regolazione di un sistema 

composto da un boiler e un accumulatore. 

La particolarità di questo sistema è la sua composizione “ibrida”. I modelli impiegati per la regolazione 

e la simulazione sono derivati utilizzando metodi di identificazione differenti: 

• il modello del boiler è basato su equazioni fisiche;  

• il modello dell’accumulatore è basato su una rete neurale ricorsiva Long Short Term Memory 

(LSTM). Il motivo di questa scelta è legato al fatto che i modelli di letteratura degli accumulatori 

risultano essere inadeguati a descrivere con accuratezza l’evoluzione dei dati a disposizione.  

L’implementazione dello schema di controllo viene proposta con una tecnica di linearizzazione del 

sistema lungo le traiettorie degli stati. 

Il secondo schema proposto si basa su un’architettura gerarchica e viene impiegato nell’ottimizzazione 

e nel controllo di un sistema composto da un insieme di boiler che lavorano in parallelo per il 

raggiungimento di un obiettivo comune. Tale struttura gerarchica è composta da tre livelli: 

• alto livello, basato su un ottimizzatore statico, con ha il compito di ripartire la produzione tra i 
vari componenti dell’insieme; 

• medio livello, fondato su schemi di controllo avanzati di tipo MPC, con ha il compito di 

permettere al sistema di seguire un riferimento tempo variante usando un modello aggregato e 

centralizzato, il cui ordine non si ridimensiona al variare del numero di sottosistemi; 

• basso livello, basato su controllori di tipo Proporzionale/Integrale (PI) decentralizzati, con il 
compito di stabilizzare la pressione interna dei boiler.  

Infine, vengono presentati i risultati delle simulazioni dei due schemi di controllo, eseguite in ambiente 

MATLAB, per poterne poi valutare prestazioni e potenzialità.  
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ABSTRACT 
This thesis deals with control problems related to steam production units. 

Mathematical models of fire-tube boilers and steam accumulators are first presented, whose parameters 

are then identified using available experimental data.  

In this work, two different control schemes are presented.  

The first one, based on model predictive control (MPC) deals with the regulation of a system composed 

of a boiler and an accumulator. The peculiarity of this system is its “hybrid” composition. Indeed, the 

models used for regulation and simulation are derived using different identification procedures: 

• the boiler model is based on the physics of the system; 

• the accumulator model is based on a recursive Long Short Term Memory (LSTM) neural 

network. The reason behind this choice lies in the fact that literature physical-based 

accumulator models turn out to be not consistent with the available experimental data.  

The implementation of the control scheme is proposed with a system linearization along the state 

trajectories technique.  

The second scheme proposed in this thesis is based on a hierarchical architecture and deals with the 

optimization and control of a system composed of an ensemble of boiler steam generators, which need 

to sustain jointly a common load. The hierarchical structure is composed of three levels: 

• the high-level, based on a static optimizer, computes the optimal shares of production to be 
allocated to single generators; 

• the medium level, based on MPC advanced control schemes, tracks the time-varying demand of 

the ensemble using a centralized, but aggregate, model, whose order does not scale with the 

number of subsystems; 

• the low level, based on Proportional/Integral (PI) decentralized controllers, regulates the 
internal pressure of the boilers. 

Finally, we present simulation results obtained applying the two control schemes. Simulation tests are 

obtained in the MATLAB environment. We conclude with the discussion about the performances and 

the potentiality of the proposed algorithms.  
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CHAPTER 1 

INTRODUCTION 

There are three principal forms of energy used in industrial processes: electricity, direct-fired heat, and 

steam [10, 11]. Electricity is used in many different ways, including mechanical drive, heating, and 

electrochemical reactions. Direct-fired energy directly transfers the heat of fuel combustion to a process. 

Steam provides process heating, pressure control, mechanical drive, and component separation, and is 

a source of water for many process reactions. Steam has many performance advantages that make it an 

indispensable means of delivering energy. These advantages include low toxicity, ease of 

transportability, high efficiency, high heat capacity, and low cost with respect to the other alternatives. 

Since most of the heat content of steam is stored as latent heat, large quantities of heat can be transferred 

efficiently at a constant temperature, which is a useful attribute in many process heating applications. 

Steam is generated in a boiler by transferring the heat of combustion gases to water. When water 

absorbs enough heat, it changes phase from liquid to steam. The distribution system carries steam from 

the boiler or generator to the points of end-use. Many distribution systems have several take-off lines 

that operate at different pressures. A properly performing distribution system delivers sufficient 

quantities of high-quality steam at the right pressures and temperatures to the end uses. Effective 

distribution system performance requires proper steam pressure balance, complete and optimum 

insulation, and effective pressure regulation. 

The problem discussed in this thesis derived from the European project Symbioptima, which aims to 

improve the process industry efficiency, productivity, service level, and safety while cutting costs, using 

math-optimization, algorithms, artificial intelligence, and predictive analytics [12].  

In this thesis, we discuss steam production systems. We present the model of the fire tube boiler steam 

generator [4] and the model of a steam accumulator [6, 8]. Boiler and accumulator are widely used 

together to increase the steam production system efficiency. The derivation and the identification 

procedure done on these models are based on real plant data. The data provided by sensors are collected 

by a software, produced in the framework of the Symbioptima project, in Excel files.  

The first proposed control scheme is a Model Predictive Control (MPC) based scheme to control a system 

composed of a boiler steam generator and a steam accumulator that work together to supply the user 

steam demands. The boiler model is identified and linearized from the mathematical equations, while 

the accumulator one is built using successive linearization of a Long Short Term Memory neural network 

[13, 14]. The pressure regulation is the main goal of this control scheme. The main advantage of this 

control scheme is that the controller simultaneously regulates the boiler and the accumulator steam 

production, maintaining the pressure of the two components within their limits, minimizing the gas 

consumption and so the production costs.  

The second proposed control scheme is a hierarchical scheme for the optimal management of an 

ensemble of boiler steam generators [1, 3], which need to sustain jointly a common load. The 

coordination of independent subsystems is provided by a multi-layer control scheme. We have chosen 

the hierarchical method because it is considered as the best choice for optimal supervision and 

coordination of the system ensembles. A high-level optimizer computes the optimal shares of 

production to be allocated to single boilers. At medium level, a robust tube-based MPC is proposed to 

track the time-varying demand of the ensemble. At low level, decentralized controllers are in place to 

stabilize the internal boiler pressure.  
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The thesis is structured as follows: 

• Chapter 2: we discuss more in detail about steam, its production, and its application. Then, we 
present the real plant and we describe its components. At the end of the chapter we discuss the 

available plant data; 

• Chapter 3: we discuss the boiler and accumulator models, their validation, and the identification 

procedure; 

• Chapter 4: we present a theoretical overview of the MPC control algorithms, then we discuss its 
implementation to control the boiler and accumulator system; 

• Chapter 5: we show the simulation results related to the control scheme presented in Chapter 4; 

• Chapter 6: we present a theoretical overview of the hierarchical control scheme, then we discuss 
its implementation for the control of the boiler ensemble; 

• Chapter 7: we show the simulation results related to the control scheme presented in Chapter 6; 

• Chapter 8: we discuss some conclusions on the presented work; 

• Appendix 1: we present a short description of the Matlab thermodynamics library used; 

• Appendix 2: we describe some advanced control schemes used in Chapter 6; 
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CHAPTER 2 

STEAM PRODUCTION SYSTEMS AND PLANT DESCRIPTION 

2.1 - STEAM 

Today, steam systems are part of almost every major industrial process. All major industrial energy 

users devote significant proportions of their fossil fuels consumption to steam production: food 

processing (57%), pulp and paper (81%), chemicals (42%), petroleum refining (23%).  

Steam is one of the most widely used carriers for transporting energy. From the energy point of view 

producing steam is economical and efficient. Steam easily transfers its thermal energy to processes. Its 

temperature is strongly related to its pressure; larger is the pressure, larger the temperature. This 

property is important because controlling the steam pressure is easy so that it is possible to control the 

amount of energy transferred to industrial processes. Steam generators, that produce steam, are 

compact and efficient and can work with a wide variety of fuels.  

Boilers dating back in the XVIII century were simple metal containers placed over a charcoal external 

flame.  The smoking pipe system began to be used at the beginning of the XIX century. Thanks to that, 

boilers became more efficient, because the hot fumes help to heat water. Nevertheless, the system was 

quite dangerous because there was a large risk of explosion caused by the water large pressure reached 

inside. In 1867 Babcock and Wilcox created the water pipe boiler. They increased the heat exchange 

surface so that they could increase the efficiency and, at the same time, avoid the explosion risk. The 

boilers' evolution continued during the XX century boosted by the evolution of fossil fuels.  

Nowadays, steam is used in many different areas. It is widely used to transfer heat from a place to 

another, as for example in buildings, where steam is used for heating. The steam production systems 

used for heating are generally composed of: 

• a boiler partially filled with water; 

• steam outlet tubes that start from the boiler; 

• condensate water tubes that return to the boiler; 

• a series of radiating plates connecting the steam tubes and the condensate heater tubes. 

This is a closed system. The void is created in this kind of system, by extracting air. As soon as the boiler 

is on, steam formation starts, which is possible even at low temperatures in the void environment. Then 

steam goes in the tubes and transfers heat to the radiating plates that transfer heat to the environment. 

Finally, steam condensates and the water returns to the boiler by gravity. 

Steam is also widely used in industrial processes [15], as for example heating source for process fluid 

heat exchangers, where steam raises the temperature of the product by heat transfer. Boilers that are 

used for these applications have two fluids at different starting temperatures. One flows through the 

tubes and the other flows outside the tubes but inside the shell. Heat is transferred from one fluid to the 

other through the tube walls. After heating the fluid inside the tubes, steam condensates and it is 

discharged through a steam trap. Heat exchangers are used as components of air conditioning and 

cooling systems or for heating systems. Within industrial plants and factories, heat exchangers are 

required to keep machinery, chemicals, water gas, and other substances within a safe operating 

temperature. They may also be used to capture and transfer steam or heat exhaust, that is released for 

example by combustion processes, so that the steam or heat can be put to better use elsewhere, thereby 

increasing plant efficiency. 



4 
 

 

 

 

 

 

 

 

 

Large pressure saturated steam can also be used in steam turbines, used for generating electricity in 

thermal electric power plants. High pressures and temperatures allow to increase the plant efficiency. 

Superheated steam is used in steam turbines to prevent damage to equipment caused by the inflow of 

condensate. The driving steam force causes the fins to turn, which causes the rotation of the rotor of the 

power generator creating electricity. Worldwide, the major part of electric power is produced by steam 

electric power plants. For example, in the United States, about 80% of the all-electrical production is 

made using steam turbines. Besides electric power, other typical propulsion applications are turbine-

driven compressors or pumps, gas compressors, cooling towers pump, etc.  

 

 

 

 

 
Steam is also used in atomization processes, where steam is used to mechanically separate a fluid. In 

some burners, steam is injected into the fuel in order to maximize combustion efficiency and minimize 

the production of hydrocarbons.  

We can also find steam in the food industry and in many activities related to food and beverage 

processing. In fact, it is used for cooking, drying, warming, cleaning, and sterilization.  

 

 

 

 

 

Figure 2.1 – Steam heat exchanger scheme [15] 

Figure 2.2 – Steam turbine scheme [15] 



5 
 

2.2 – STEAM PRODUCTION 

Nowadays there are many ways to produce steam and many boiler types, depending on one’s needs. 

Steam generators are used wherever a source of steam is required. Shape and size depend on the 

application. For example, mobile steam engines such as steam locomotives, usually use a smaller boiler 

integrated in the vehicle. On the other hand, stationary steam engines, as industrial installations and 

power stations, usually have larger separate steam-generating facilities connected to the point of use by 

piping. Boilers can be classified into two categories:  

• shell boilers; 

• once-through boilers. 

2.2.1 - SHELL BOILERS 

Shell boilers are those in which the heat transfer surfaces are all contained within a steel shell [16]. Shell 

boilers are also known as fire tube boilers or smoke tube boilers because the hot gases produced by 

combustion pass through the boilers' tubes transferring heat to the boilers' water. Several different 

combinations of tube layouts are used in shell boilers, characterized by the number of passes taken by 

the heat before being discharged. Considering, for example, a two-pass boiler configuration, there exist 
two new configuration types: a Dry back reversal chamber and a Wet back reversal chamber.  

 

 

 

 

 

 

In Figure 2.3 in the dry back boiler, the hot gases are reversed by a refractory-lined chamber on the 

outer planting of the boiler. In Figure 2.4 we can see a more efficient method of reversing the hot gases 

through a wet back boiler configuration. Here the reverse chamber is contained entirely within the 

boiler. This allows for a greater heat transfer area. 

Over the years, many boiler configurations were designed. The economic boilers configurations are the 

two-pass dry back, the three-pass wet back, and four-pass. Three-pass wet back is considered the 

standard configuration used today. Four-pass boilers are potentially the most efficient, even if they are 

subject to higher thermal stresses. In addition, they tend to have low efficiency at low demand operating 

conditions. For these reasons, four-pass boilers are unusual.  

A conventional boiler design variation is the reverse flame (or thimble boiler) shown in Figure 2.5. This 

boiler is limited in both evaporative capacity and its maximum temperature.  

This type of boiler is not generally used as a primary steam power generator but as an auxiliary boiler.  

 

 

 

 

       Figure 2.3 – Shell boiler – Dry Back configuration [16]                 Figure 2.4 – Shell boiler – Wet back configuration [16] 
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2.2.2 - ONCE-THROUGH BOILERS 

Once-through boilers have tubes in which water is introduced at the bottom, while steam is produced 

from the top [16, 18]. They are used for steam production in connection with utility electricity 

production and they have been the most popular design in Europe for many years.  

 

 

 

 

 

 

 

 

 

Once-through boilers incorporate spirally shaped evaporator tubes to form the furnace envelope. Once-

through boilers are generally associated with high-pressure operation. Large scale powerplant type 

once-through boilers normally have 100% conversion of water to steam before it comes out of the 

boilers. Furnaces may be fired in three ways. Firstly, they can have burners mounted in the front wall. 

Secondly, they can be fired by opposed firing with burners, normally, in the front and rear walls. Finally, 

furnaces can be fired by tangential firing achieved by slot-burners mounted in the corners creating a 

circulating flow, with the advantage of suppressing pollutant formation. Because the water is 

evaporated to high-quality steam, it is essential to protect the boiler against dryout occurring in high 

heat flux zones or taking other precautions against burnout. A solution to this problem can be the use 

rifled-bore tubing. Rifled-bore tubing creates centrifugal forces which allow the liquid phase to mostly 

remain in contact with the tube wall.  

 

 

 

 

Figure 2.5 – Thimble boiler [16] 

Figure 2.6 – Once through boiler [20] 



7 
 

2.3 – PROJECT AND PLANT DESCRIPTION 

This thesis project stems from and is inspired by the research carried out in the framework of the 

European project Symbioptima. The Symbioptima project promotes the interaction of different 

industries a resource-efficient production at the network level and for a reduction of the adverse 

environmental impact. This can be made possible thanks to a dynamical optimal management at large-

scale, sharing common resources through the coordination of distributed optimization-based 

controllers.  

One of the benchmark case studies of Symbioptima consists of the system depicted in Figure 2.8 and 

whose scheme can be found in Figure 2.9. In order to generate steam, in such plant, there are boilers 

working at different pressure and steam accumulators. The plant’s goals are:  

1) provide steam at 10 and 60 bar for building heating and for other final users;  

2) provide electricity to the premises.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As discussed, the function of the boilers is to heat water and transform it into steam, using heat produced 

by a burner. There is a dedicated boiler for each level of steam pressure. The role of the accumulators is 

to store high enthalpy water and convert it into steam helping boilers to reach steam production goals.  

Combined Heat and Power (CHP) is another important component of the system. It is composed of a gas 

engine used for electricity production.  

 

 

 

 

 

 

Figure 2.8 – Real plant system 
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A flow scheme of the connected components in the plant can be: 

 

 

 

 

 

 

 
 

 

 

 

In this work, we consider a particular subsystem composed of 60 bar boilers and steam accumulators. 

This because in a preceding study the subsystem composed of the CHP and of the 10-bar boiler has been 

detailed analyzed [2].  

In the following sections, a description of all single components of the overall plant will be made, giving 

also a general description of how they work. Then in the following chapter, only 60-bar boiler and the 

accumulator will be taken into account  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 – General operating flow scheme 
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2.4 - 10 BAR BOILERS 

The used 10 Bar boilers considered in the Symbioptima project, are Danstoker OPTI shell/tube high-

pressure steam boilers with a nominal production rate of 12000 kg/h of saturated steam at 180°C.  

 

 

 

 

 

 

 

 

 

 

 

The OPTI fire tubes boiler has a 3 – pass wet back design as shown in a schematic way in Figure 2.11. 

The main feature of this design is a reversal chamber that is within the boilers. The reversal chamber is 

used to direct flue gases from the furnace to the tubes. This system helps heating water and improve 

efficiency. The tubes are surrounded by water that absorbs burner heat. They are thin and made of 

metal. Thanks to that, more tubes can be accommodated, a higher heat transfer rate is achievable, and a 

more compact boilers design can be done.  

 

 

 

 

 

 

 

 

 

 

In our study plant, we have a Combined Heat and Power (CHP) that is connected to the electric grid. The 

exhaust gases produced by the CHP are used to help heating the boilers’ water. The feedwater is 

preheated thanks to the heat removed from the CHP by its cooling liquid. This allows achieving higher 

performance with less power consumption.  

 

Figure 2.10 - 10 Bar Boiler [21] 

Figure 2.11 – OPTI 3-pass wet back design scheme [16] 
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2.5 - COMBINED HEAT POWER 

Combined heat power systems are heat engines used for the cogeneration of electric and thermal 

energy. They are engines where the hot water and the hot exhaust gasses are recovered. Using this type 

of recovery, it is possible to reduce the cost and increase the overall efficiency of used fuel with respect 

to the separated production of the same amount of electric and thermal energy.  

The CHP considered in the Symbioptima project is a TCG 2020 from MWM. It is a high-efficiency gas 

engine producing 1200kW of electric power at 400V and 50 Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is connected to the electric power grid and its goal is to follow the plant electricity demand. The 

exhaust gasses of this engine flow inside the 10 Bar boiler helping heating water and so the efficiency of 

steam production. The water used in the cooling system removes heat from the CHP and then is used to 

fill the 10 Bar boiler. This also allows to reduce the gas consumption to heat water.  

 

 

 

 

 

 

 

 

 

Figure 2.12 – CHP TCG 2020 [24] 
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2.6 - 60 BAR BOILER 

The 60 Bar boilers considered in this study, are Babcock Wanson coil steam generator Series VPX RR 

with a nominal production of 5000 kg/h. VPX steam generators are completely packaged coil type once-

through forced circulation units. The water is forced by a pump in a helicoidal tube that is the heat 

transfer surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 shows different boiler components: 

A) Burner: in the center of the boiler the flame burns, while the coils are placed around the burner. 

B) Control cabinet: it contains all electrical and electronic operating equipment for safe automatic 

operation. 

C) Tubular coil construction: it provides high-pressure safety heating surface in compact dimensions. This 

configuration allows optimal efficiency because of high-velocity convection gas across the heating 

surface. 

D) Feedwater pump. 

E) Steam outlet. 

F) Thermal insulation. 

 

Boilers with this structure are safer than conventional boiler because the risk of pressure explosion is 

removed since water and steam flow into thin metal tubes. Another important feature of this design is 

the reduction of heat losses. This reduction is obtained by minimizing steam distribution and 

condensate return pipework, which allows for reducing the operating costs. Another important feature 

of this type of boilers is the use of exhaust gasses produced during the combustion to help heating the 

helicoidal tubes.  

In our study plant, these boilers feed the 60 Bar steam line and the second steam line at 32 bar which is 

connected to accumulators. They are fed by a 60 bar preheated hot well water by using part of the steam 

flow from 10 bar boilers. 

Figure 2.13 - 60 Bar Coil Boiler [22] 
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2.7 - STEAM ACCUMULATOR 

Steam accumulators are used in industry and power plants to adjust the differences between steam 

production and consumption rates. They are applied as buffers between steam generators and 

consumers. The inputs of steam accumulators are water and steam. 

The steam accumulator is: 

• charged in periods of lower steam consumption or surplus production, so that the pressure in 

the accumulator increases and the steam condenses; 

• discharged in periods of increased steam consumption (due to the consumers' request) that are 
not covered with the normal production rate. During the discharging process, the pressure 

decreases, and the water evaporates.  

Steam accumulators, when associated with steam generators, can guarantee better performance and 

minimum operating costs. In fact, without a steam accumulator, the steam generator must operate at 

higher power to guarantee large consumption requests. On the other hand, in periods with lower 

request, the excess steam is discharged since the steam generator usually cannot follow rapid dynamic 

power changes.  

 

 

 

 

 

 

 

 

 

In our study plant, the accumulator is meant to provide extra capacity when the demand exceeds the 

boiler maximum continuous rating. That is made, filling the accumulator with saturated steam at boiler 

pressure. When the boiler cannot cope with the demand, the accumulator pressure starts dropping. The 

excess energy is released in the form of flashed steam as a result of the pressure reduction. In this way, 

generating extra steam capacity on top of the incoming steam supply from the boiler. The pressure in 

the accumulator is allowed to drop only to 36 bar. Then when the excess demand is cut off, the 

accumulator is allowed to recover its nominal operating pressure, which is about 60 bar. 

 

 

 

 

 

 

Figure 2.14 – Boiler and steam accumulator general scheme [23]  



13 
 

2.8 – AVAILABLE PLANT DATA 

One of the tasks of the Symbioptima project (carried out by other research partners) was also to develop 

a software tool that collects data from the plant. To achieve this goal, various sensors were mounted on 

the system. An improvement and an upgrade of these sensors over time have improved data quality. 

Sensors in the plant collect data regarding most of the physical quantities of the processes. The data are 

then organized in Excel files, each representing the system operating on a specific day or more days. 

Sensors are positioned according to the simplified scheme as for as the 60-bar boiler and the 

accumulator reported in Figure 2.15. 

 

 

 

 

 

 

 

 

 

Sensors or multiple sensors, in different locations of the plant, are represented as circles. Note, however, 

that the exact position of the sensor on the system plants is unknown. 

The sensors on this system are listed in Table 2.1. They are classified according to their location (from 1 

to 5). There will be also information about what they are measuring and what is their basic sampling 

time.  

 

 

It is clear, from the list, that some sensors collect data in a somehow counterintuitive way. Sensors 

related to the accumulator should have a sampling time of 10 seconds but in the Excel files, the data are 

reported with two different sampling times.  

Sensor 
position 

Physical quantity Unit of 
measurement 

Sampling Time 
[s] 

1 Boiler inlet water mass flow rate kg/h 60 
1 Boiler inlet water temperature °C 60 
2 Steam mass flow rate in the tube kg/h 60 
2 Steam temperature in the tube °C 60 
2 Steam pressure in the tube Bar 60 
3 Boiler burner gas mass flow rate kg/h 60 
3 Boiler burner power kW 60 
4 Accumulator inflow steam flow rate kg/h 3 to 8 
4 Accumulator water level % 10 
5 Accumulator steam pressure Bar 1 and 9 
5 Accumulator outlet steam kg/h 1 and 9 

Figure 2.15 – General sensor position scheme 

Table 2.1 – General sensor description 
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On the other hand, boiler sensors have some inconsistencies due to a non-uniform sampling time (i.e. 

from time to time the sampling period is 61 seconds). 

A selection of useful data is needed since the available Excel files are related to different plant 

operational periods. In this work data related to the system’s start-up and shutdown periods were 
discarded because nominal operational conditions are mostly considered. A more accurate analysis of 

data sets allowed to identify some corrupted data and some unphysical data. Corrupted data are those 

in which physical fundamental data are missing due to one or more sensors malfunction. Unphysical 

data have non-physical behaviour due to a temporary or permanent sensor malfunction. For that reason, 

this kind of data was discarded. 
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CHAPTER 3 

MODELLING, IDENTIFICATION AND VALIDATION 

In this chapter, we discuss the 60-bar boiler and accumulator modelling phase. Then, we illustrate the 

system’s parameters identification procedure. The last part of the chapter is devoted to the validation 

of the derived models with the selected parameters.  

3.1 – NOTATION 

In this section, we list the variables, subscripts, and superscripts used in this thesis.  

The system variables are: 

• 𝑉      volume     [m3]; 

• 𝑝      pressure     [bar]; 

• 𝑙       level     [%]; 

• 𝜌      specific density      [kg/m3]; 

• ℎ      specific enthalpy    [kj/kg]; 

• 𝑇      Temperature    [K]; 

• 𝑚     mass      [kg]; 

• 𝑞      flow rate      [kg/s]; 

• 𝑄      heat flow rate    [kW]; 

• 𝐶      specific heat    [kj/kgK]; 

• 𝜏       phase change relaxation time  [s]; 

• 𝑟       phase change latent heat   [kj/kg] 

The subscripts used for these variables are:  

• s       steam; 

• w     water; 

• f       feedwater; 

• m     metal; 

• tot   total system; 

• e      evaporation; 

• c      condensation.  

The following sub-subscripts are also used: 

• sat   saturated; 

• in     input of the physical system; 

• out  output from the physical system. 

Finally, superscripts are also employed, i.e.: 

• B      Boiler; 

• T      Steam tube; 

• A      Accumulator. 

 

 



16 
 

3.2– 60 BAR BOILER MODEL AND STEAM TUBE MODEL 

In this section, we describe in detail the model of the 60-bar boiler and of the downstream steam tube. 

In Figure 3.1 a picture of a fire-tube 60-bar boiler is depicted, while in Figure 3.2 we show the 

corresponding CAD drawing. These two images are taken from the Badcock Wanson UK steam generator 

series vpx datasheet.  

 

 

 

 

 

 

 

 

 

 

 

 

The plant boiler’s geometrical data indicated in Figure 3.2 are listed in the following table. 

A 2100 mm 
B 2950 mm 
C 4200 mm 
D 3685 mm 

 

The inputs of the systems are:  

• 𝑄B    the heat flow rate given by the burner to the boiler [kW]; 

• 𝑞f
B    the feedwater mass flow rate [kg/s]; 

The output of the system is:  

• 𝑝B     the steam pressure [bar]. 

• 𝑞s
B    the outlet steam mass flow rate [kg/s]. 

The global mass and energy balance equations (that capture the main dynamics of the systems), are the 

starting point to model the 60 Bar boilers.  

 

 

 

 

 

Figure 3.1 – 3D view of the 60 Bar Boiler [22] 

Figure 3.2 – 60 Bar boiler CAD drawing [22] 

Table 3.1 – Boiler geometrical data 
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3.2.1 – 60 BAR MODEL DERIVATION 

The global mass and energy balance equations regarded the boiler are the following [4]: 

𝑑

𝑑𝑡
[𝜌s
B𝑉s

B  + 𝜌w
B𝑉w

B] = 𝑞f
B − 𝑞s

B 

𝑑

𝑑𝑡
[𝜌s
Bℎs

B𝑉s
B + 𝜌w

Bℎw
B𝑉w

B − 𝑝B𝑉tot
B +𝑚tot

B 𝐶p
B𝑇m

B] = 𝑄B + 𝑞f
Bℎf

B − 𝑞s
Bℎs

B 

In steady-state conditions, the metal tube temperature is close to the steam saturation temperature. For 

this reason, the difference between the two is small, so that the metal temperature 𝑇m
B can be expressed 

as a function of the pressure. 

To write the state model we choose as state variables: 

• 𝑝s
B that is the pressure of the boiler’s outlet steam; 

• 𝑉w
B that is the total water volume in the boiler.  

Choosing these state variables is convenient because, using the available thermodynamic table, it is 

possible to define the variables 𝜌s
B, 𝜌w

B , ℎs
B, and ℎw

B  as a function of the steam pressure. In this way we 

can write the following state equations:  

𝑒11
𝑑𝑉w

B

𝑑𝑡
+ 𝑒12

𝑑𝑝B

𝑑𝑡
= 𝑞f

B − 𝑞s
B     (3.1) 

𝑒21
𝑑𝑉w

B

𝑑𝑡
+ 𝑒22

𝑑𝑝B

𝑑𝑡
= 𝑄B + 𝑞f

Bℎf
B − 𝑞s

Bℎs
B     (3.2) 

where we have defined: 

• 𝑒11 = 𝜌w
B − 𝜌s

B; 

• 𝑒12 = 𝑉s
B 𝛿𝜌s

B

𝛿𝑝B
+ 𝑉w

B 𝛿𝜌w
B

𝛿𝑝B
 ; 

• 𝑒21 = 𝜌w
Bℎw

B − 𝜌s
Bℎs

B; 

• 𝑒22 = 𝑉s
B (ℎs

B 𝛿𝜌s
B

𝛿𝑝B
+ 𝜌s

B 𝛿ℎs
B

𝛿𝑝B
) + 𝑉w

B (ℎw
B 𝛿𝜌w

B

𝛿𝑝B
+ 𝜌w

B 𝛿ℎw
B

𝛿𝑝B
) − 𝑉tot

B +𝑚tot
B 𝐶p

B 𝛿𝑇s
B

𝛿𝑝B
 . 

 

With this set of equations, we can describe the behaviour of pressure changes in input power, feedwater 

flow rate, and steam flow rate.  

We also need to define the efficiency factor of the burner 𝜂. This term will multiply the heat term Q, 

meaning that not all the burner generated heat is transferred to the water in the boiler metal tube.  

3.2.2 - STEAM TUBE MODEL DERIVATION 

In our system, the pressure sensor is positioned in a tube far from the boiler exit steam valve, as were 

shown in Figure 2.9. For this reason, we introduce other equations to model the steam flow in such a 

tube, so that we can consider the tube as a dynamical system after the boiler.  

The following variables are used. It is worth mentioning that these data are available and will be used 

for model parameters identification. 

• 𝑝s
T that is the pressure measured by the pressure sensor in the tube [bar]; 

• 𝑞s
T that is the steam flow rate in the tube [kg/s]. This value is measured with a sensor that is in                                                                                                                                                                                                       

the same position as the pressure sensor of 𝑝s
T. 
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In our framework, the steam flow rate, 𝑞s
T will be accounted for as an exogenous variable (i.e. a 

disturbance when not manipulable), while 𝑝s
T will be accounted for a measured output.  

We define two parameters 𝐴B and 𝐴T, that are i.e. the boiler outlet tube’s area and the tube’s area at the 

sensor position, respectively. It is possible to write the equation describing the tube pressure.  

 

 

 

 

 

 

 

 

We write the Bernoulli Equations for the tube 

𝑞s
𝐵2

𝜌s
B𝐴B

+ 𝑝s
B =

𝑞s
B2

𝜌s
𝑇𝐴T

+ 𝑝s
T 

From the mass balance equation in the tube 

𝑑𝑀

𝑑𝑡
= 𝑞s

B − 𝑞s
T 

we can compute the steam boiler mass flow rate 𝑞s
B 

𝑞s
B = 𝑉𝑇

𝛿𝜌s
B

𝛿𝑝s
B

𝑑𝑝s
B

𝑑𝑡
+ 𝑞s

T     (3.3) 

where V is the volume of the tube.  

Now from the Bernoulli equation, it is possible to write the equation of the pressure measured from the 

sensor 

𝑝s
T = 𝑝s

B +
1

2
(
(𝑞s

B)
2

𝜌s
B(𝐴B)2

) −
1

2
(
(qs

T)
2

𝜌s
T(𝐴T)2

)     (3.4) 

where 𝜌s
T is the density of the steam at sensor level that can be expressed in function of the pressure 𝑝s

T 

since the steam is saturated.  

In this set of equations, we have geometrical parameters like 𝐴s
B, 𝐴s

T and 𝑉T that have to be identified. 

The identification procedure will be described in Chapter 3.3.3. 

We now slightly modify our theoretical boiler model adding the new equation of the tube and the water 

𝑞wout
 to achieve a better modelling description of our study plant. 

 

 

 

Figure 3.3 – Block diagram:  boiler and steam tube 
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3.2.3 – OVERALL MODEL OF THE BOILER AND THE TUBE 

As a final step, we need to consider that a water outflow is present. This because the boiler feedwater is 

not totally converted into steam. This little portion of high enthalpy water must be added to the global 

mass balance. The reason for this is to have a more realistic model. So, we define the high enthalpy water 
outflow as the difference of the inlet feedwater and the outlet steam mass flow rate 

𝑞wout
𝐵 = 𝑞f

B − 𝑞s
T     (3.5 ) 

Under this reformulation, the equation (3.1) becomes: 

 𝑒11
𝑑𝑉w

B

𝑑𝑡
+ 𝑒12

𝑑𝑝B

𝑑𝑡
= 𝑞f

B − 𝑞s
B − (𝑞f

B − 𝑞s
T)    (3.6) 

Replacing (3.6) into equation (3.2) we can compute that 

𝑒11
𝑑𝑉w

B

𝑑𝑡
+ 𝑒12

𝑑𝑝B

𝑑𝑡
= −𝑉𝑇

𝛿𝜌s
B

𝛿𝑝s
B

𝑑𝑝s
B

𝑑𝑡
     (3.7) 

Then, consider equation (3.2) and add the energy term related to the boiler outlet water. Defining ℎw as 

its enthalpy, that is found using the thermodynamic water table in functions of the boiler pressure, the 

equation becomes: 

𝑒21
𝑑𝑉w

B

𝑑𝑡
+ 𝑒22

𝑑𝑝B

𝑑𝑡
= 𝜂𝑄B + 𝑞f

Bℎf
B − 𝑞s

Tℎs
B − (𝑞f

B − 𝑞s
T)ℎw

B      (3.8) 

This concludes the boiler and steam tube model derivation.  

Overall, the obtained set of equations reads:  

{
 
 

 
 𝑒11

𝑑𝑉w
B

𝑑𝑡
+ 𝑒12

𝑑𝑝B

𝑑𝑡
= −𝑉𝑇

𝛿𝜌s
B

𝛿𝑝s
B

𝑑𝑝s
B

𝑑𝑡

𝑒21
𝑑𝑉w

B

𝑑𝑡
+ 𝑒22

𝑑𝑝B

𝑑𝑡
= 𝜂𝑄B + 𝑞f

Bℎf
B − 𝑞s

Tℎs
B − (𝑞f

B − 𝑞s
T)ℎw

B

     (3.9) 

It is worth finally recalling that: 

• 𝑄B and 𝑞f
B are manipulable input variables; 

• 𝑞s
T is a further exogenous variable. It is generally imposed and equal to the users’ demand since 

it represents the steam flowing out of the tube. However, it may be possibly considered as a 

manipulable variable in case of need since it is controlled through a valve.  

• 𝑝B and 𝑞s
B are system outputs to be properly regulated at set-point values. The nominal values 

are, in the plant consider in this thesis, available to the control system. However, they are not 

available to us for model identification purposes.  

• 𝑝s
T, expressed as in (3.4), is a measured variable. Its values are currently available and will be 

used in Chapter 3.3.3 for parameters tuning.  

The validation of the 60 Bar theoretical model and of our modified model will be done in the validation 

sub-chapter.  

The model is characterized by a number of parameters, some of which need to be identified or to be 

subject to fine-tuning.  

The known parameter is: 

- 𝐶T: specific heat of the tube that we set to 0.5 kJ/kgK that correspond to iron steel; 
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while the ones that will be subject to tuning (in Chapter 3.3.3) are listed in the following table:  

 

Name Variable Unit of 
measurement 

𝑉T Total steam tube volume m3 

𝐴B Area of the boiler outlet tube m2 

𝐴T Area of the steam tube where the sensor is positioned m2 
𝑚tot Total metal mass of the boiler kg 
𝑉tot Total volume of the metal tube inside the boiler m3 
𝜂 Efficiency factor of the burner  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 – List of parameters to be identified 
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Figure 3.4 – Boiler pressure changes after a +10% heat step  

Figure 3.5 – Boiler pressure changes after a +10% feedwater step  

3.3 – BOILER MODEL VALIDATION AND PARAMETERS 

IDENTIFICATION 

3.3.1 – MODEL VALIDATION WITH RESPECT TO LITERATURE DATA 

In this section, we validate the 60 bar boiler presented in Chapter 3.2 using literature data. For this 

validation, we consider the boiler parameters used in [4] that are reported in the following table. 

Name Variable Value 

𝑚tot
B  Total metal mass of the boiler 300 000 𝑘𝑔 

𝑉tot
B  Total volume of the metal tube inside the boiler 88 m3 

 

We will do two different tests for the validation: 

1) heat 𝑄B changes; 

2) steam flow rate 𝑞s
B changes. 

We remind that here the assumption that the outlet steam mass flow rate is equal to the feedwater mass 

flow rate is done by [4]. 

HEAT CHANGES TEST 

In this test, we set all the input variables to their steady-state values. At time instant 𝑡 = 50 we do a step 

of +10% at the heat 𝑄B. Considering Figure 3. 4, we can see that the pressure increases at approximately 

constant rate because the steam flow remains constant.  

 

 

 

 

 

 

STEAM FLOW RATE CHANGES TEST 

For this test, we start setting all the input variables to their steady-state values. At time 𝑡 = 50 we do a 

step of +10% at the outlet steam flow rate. For the assumption made at the beginning of this chapter, 

this is equal to make a step in the feedwater mass flow rate. Considering Figure 3.5, we can see that the 

pressure decreases practically linearly because of the increased steam flow rate. 

 

 

 

 

 

Table 3.3 – Literature boiler parameters  
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3.3.2 – BOILER PARAMETERS AND DATA DESCRIPTION 

In this sub-chapter, we will describe the available system data, how we have manipulated them and how 

they are employed to identify the boiler parameters. 

The available data about the system are collected in Excel files. The ones used and they are used to 

perform simulations and identification procedures. They are summarized in Table 3.4. 

 

 

 

 

 

The boiler model parameters that must be identified are listed in the following table. 

 

 

To have a good reconstruction of the real system behaviour in simulation, it is essential to make an 

accurate choice of these parameters. These six parameters are constitutive of the system, so the main 

goal is to find the best combination of them that reconstruct in the best way all the real plant data set.  

As mentioned in Chapter 2.8, since we don’t have data about the evolution of the boiler state, we have 

to identify the initial condition of the boiler state as well. The boiler initial conditions are:  

• 𝑝𝑠0
𝐵  that is the initial pressure of the boiler, measured in bar; 

• 𝑉𝑤0  that is the initial water volume of the boiler, measured in m3. 

The initial condition of the boiler may be different for each data set since each Excel file is referred to 

different operating days of the system. For this reason, we identify the initial conditions independently 

for each data set.  

To identify the model parameters, we have used 7 Excel files referring to operating days from January 

to April 2019. All the selected files have a similar operating condition. We are interested in the operating 

condition where the pressure in the tube is around 57 Bar. For this reason, all the data about the 

system’s start-up and shutdown were discarded from the available data set. 

For simplicity, only two sets of date sequence are shown as example in this chapter. More specifically, 

the used data set are: 

- Boiler data of 18 February 2019 depicted in Figure 3.6 with a sampling time 𝑇𝑠 = 10 𝑠; 

- Boiler data of 08 April 2019 depicted in Figure 3.7 with a sampling time 𝑇𝑠 = 10 𝑠. 

Data name Variable Unit of measurement 
𝑝s
T Pressure measured by the sensor in the tube Bar 

𝑇f
B Boiler feedwater temperature °C 

𝑞f
B Boiler feedwater mass flow rate kg/s 

𝑞s
T Steam mass flow rate in the tube kg/s 

𝑄B Burner heat kW 

Name Variable Unit of 
measurement 

𝑉T Total steam tube volume m3 

𝐴B Area of the boiler outlet tube m2 

𝐴T Area of the steam tube where the sensor is positioned m2 

𝑚tot
B  Total metal mass of the boiler kg 

𝑉tot
B  Total volume of the metal tube inside the boiler m3 

𝜂 Efficiency factor of the burner  

Table 3.4 – Boiler available data  

Table 3.5 – List of boiler parameters to be identified 
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The Excel files' original data have different sample times. So, we extracted and resampled all of them to 

have a more homogenous set of signals with the same new sampling time of 10 seconds. These signals 

are very noisy, especially the ones related to the mass flow rate. There are also fictitious changes on 

some signals that are not experienced by the system. For example, the drop (see Figure 3.6) in the heat 

signal to 0kW, at samples 7000, or (see Figure 3.7) at samples 12000 and 13000 in. These values are 

clearly related to missing signals. As such, we classified them as outliers, and we discarded them.  

We filtered all the so obtained signals and we removed the outliers. In this way, smoother sets of signals 

were obtained, and this is pointed out for identification purposes. We decided also to reduce the number 

of samples of the data sets to have faster computational times. In order to achieve this goal, we have 

resampled the signals with a 5 minutes sampling time. The result of this filtering is shown in the 

following figures:  

 

Figure 3.7 - Original signals of file 08 April 2019 

Figure 3.6 - Original signals of file 18 February 2019 
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The differences between the original and filtered signals are evident. We can, for example, look at Figure 

3.8 (subplot 5), where the boiler feedwater signal is plotted. We can understand the global signal 

behaviour, but we can not use this signal for simulation or identification because is too noisy. After the 

filtering operation, showed in Figure 3.9 subplot 5, the signal is improved and displays a more realistic 

behaviour of what is happening in the real system.  

3.3.3 – IDENTIFICATION PROCEDURE 

The identification consists of finding the set of parameters that minimize a given objective function. The 

objective function is defined as the squared error between the pressure measured by the sensor 𝑝s
T and 

the pressure 𝑝sSim
T  obtained as result of the simulation. 

The identification is done using a generic MATLAB solver. The used function is fmincon that is a 

nonlinear programming solver. This solver finds the minimum of constrained nonlinear multivariable 

function. Specifically, it finds the minimum of a problem specified by: 

min
𝑥
𝑓(𝑥) such that 𝐴𝑥 ≤ 𝑏 

Figure 3.9 - Filtered signals 08 April 2019 

Figure 3.8 - Filtered signals 18 February 2019 
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where A is a matrix, b is a vector, 𝑓(𝑥) is a function that returns a scalar, and x is a vector.  

The first step was the single identification of all the parameters for each file so that the objective function 

for the boiler file i is: 

min
𝐴B ,𝛽,𝑉T,𝑚tot

B ,𝑉tot
B ,𝜂,𝑝s

B,𝑉𝑤
B
   𝐽   (3.13) 

The function J for each data set is:  

𝐽 =  ∑ (𝑝s
T(𝑘)  − 𝑝sSim

T (𝑘))
2

 

𝑁

𝑘=1

 

where we have that: 

• 𝑁 is the total number of sample points of the data set; 

• 𝑝ssim
T  is the simulated pressure in the tube of the data set, described by the equations (3.5). 

The constraints (all lower and upper limits) have been chosen considering the real system, to have the 

most precise and realistic parameters possible.   

We have defined a set of constraint for all parameters: 

Name Variable Constraint 
𝐴𝐵  Area of the boiler outlet tube 0.0019 ≤ 𝐴B ≤ 0.096 𝑚2 
𝛽 𝐴𝑇 = 𝛽𝐴B 0.3 ≤ 𝛽 ≤ 3 

𝑉T Total steam tube volume 0.0019 ≤ 𝑉𝑇 ≤ 2.4 𝑚3 

𝑚tot
B  Total metal mass of the boiler 2𝑒3 ≤ 𝑚tot

B ≤ 5.5𝑒3  𝑘𝑔 

𝑉tot
B  Total volume of the metal tube inside the boiler 0.1 ≤ 𝑉tot

B ≤ 1.211 𝑚3 
𝜂 Efficiency factor of the burner 0.01 ≤ 𝜂 ≤ 0.99 

𝑝s
B Initial pressure of boiler i 55 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟𝑖 ≤ 61 𝐵𝑎𝑟 

𝑉𝑤
B Initial water volume of boiler i 0.1 ≤ 𝑉w0i

B ≤ 1.211 𝑚3 

 

We show the results of this identification for our example data set in the following figures. 

 

 

 

 

 

 

 

 

 

 

Table 3.6 – List of constraint of parameters to be identified 

Figure 3.10 - Result of simulated pressure with respect to data for file 18 February 2019 
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The set of parameters identified for each example data set, reconstruct well the behaviour of the real 

system pressure. For the example files we are considering, the parameters are listed in the following 

table:  

Name Data set 18 February 2019 Data set 08 April 2019 
𝐴𝐵  0.0019635 m2 0.002103 m2 

𝛽 0.1455 0.1135 

𝑉T 2.4052 m3 2.4046 m3 

𝑚tot
B  5499.9956 kg 5498.9145 kg 

𝑉tot
B  1.2109 m3 1.2108 m3 

𝜂 0.9699 0.9649 

𝑝s
B 57.608 bar 57.7528 bar 

𝑉𝑤
B 1.1109 m2 1.1106 m2 

 

 

  

To evaluate and compare the quality of the identification, we compute the value of the objective function 

divided by the data variance. For this reason, we define parameter K as: 

𝐾 =
𝑣𝑎𝑟(𝑝s

T
𝐷𝐴𝑇𝐴

− 𝑝s
T
𝑆𝐼𝑀

)

𝑣𝑎𝑟(𝑝s
T
𝐷𝐴𝑇𝐴

)
 

For the 18 February 2019 data set we have 𝐾 = 0.212 and for the 08 April 2019 data set we have 𝐾 =

0.615. 

At this point, we decided to make an arithmetic mean of all parameters identified from each data set to 

obtain a single value for each parameter listed in Table 3.5. This choice, although very simple, has been 

found to be more efficient than the solution of a further identification procedure with both data streams.  

 

 

 

 

Figure 3.11 - Result of simulated pressure with respect to data for file 08 April 2019 

Table 3.7 – Two example files’ identified parameters 
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The new set of mean parameters is listed in Table 3.8. 

Name Mean parameters 
𝐴𝐵  0.002 m2 

𝛽 0.1282 

𝑉T 2.3345 m3 

𝑚tot
B  5029.2162 kg 

𝑉tot
B  1.1618 m3 

𝜂 0.9744 

 

the comparison between real and simulated data (with suitably identified initial conditions), 

considering the example data sets, are plotted in the following figures: 

 

 

Figure 3.12 - Result of simulated pressure with mean parameters with respect to data for file 18 February 2019 

Figure 3.13 - Result of simulated pressure with mean parameters with respect to data for file 08 April 2019 

Table 3.8 – Mean parameters 
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These last results are, as expected, slightly worse than the previous ones because of parameters mean. 

Now the simulated pressure has a growing trend, but since the original data sets were very noisy, this 

final error is acceptable. We can also point out that the two example data sets have different variations 

peaks: the 18 February data set pressure varies from 54 to 57.4 bar, while the 08 April data set has a 

pressure that is almost constant, and it is between 56.3 to 57.2 bar. With these new parameters set we 

have a sub-optimal solution to each different data set.  

In conclusion, with this set of parameters, we can reconstruct the behaviour of the pressure in the steam 

tube. We can say that the model of the boiler and the steam tube presented in Chapter 3.2 and described 

by equations (3.9) and (3.4) are validated for the real plant data sets since the error on the data is 

acceptable.    
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3.4 STEAM ACCUMULATOR MODEL 

A detailed simulation model of a steam accumulator accounts for the dynamics of water and steam 

masses, water and steam temperatures and pressures [6, 8]. 

In the literature, models based on the assumption of thermal equilibrium between water and steam have 

been proposed. Basically, they assume that steam and water are at the same temperature and pressure, 

and that the evaporation and condensation are instantaneous. This could be a heavy limitation in control 

design.  

In this work, we use a thermal non-equilibrium model that takes into account that water and steam 

could be at different temperatures and the evaporation and condensation rates are calculated 

separately. The aim of this model is to have more accurate predictions of the steam accumulator 

pressure, temperature, and water level during charging and discharging transients.  

 

 

 

 

 

 

 

 

 

 

To develop the model, we start from the mass and energy balance for water and steam. The evaporation 

and condensation rates are calculated with empirical correlations. The heat transfer rate from the steam 

to the water is calculated when steam is at a larger temperature than water. The resulting model is a set 

of five differential equations where the state variables are:  

• 𝑝A    that is the accumulator pressure; 

• 𝑚w
A   that is the accumulator water mass; 

• 𝑚s
A  that is the accumulator steam mass; 

• ℎw
A    that is the accumulator water enthalpy; 

• ℎs
A   that is the accumulator steam enthalpy. 

The accumulator inputs are:  

• 𝑝s
T that is the steam pressure in the tube. This is an accumulator input because the tube starting 

from the boiler is connected to the accumulator; 

• 𝑞s
T  that is the steam mass flow rate in the tube.  

The outputs are:  

• 𝑝s
A  that is the accumulator steam pressure; 

• 𝑞s
A  that is the accumulator outlet steam mass flow rate. 

Figure 3.14 – Steam accumulator scheme [6,8] 
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There are computations of derivatives of thermodynamic variables that were solved using the IAPWS-

IF97 MATLAB library described in Appendix 1. 

The model equations are: 

• Liquid mass balance: 

𝑑𝑀w
A

𝑑𝑡
= (𝑞win

A − 𝑞wout
A ) + (𝑞c − 𝑞e)      (3.14) 

where we denote: 

- (𝑞win
A − 𝑞wout

A ) = 𝑞w
A  the input-output water mass balance; 

- (𝑞c − 𝑞e) =  𝑞wec
A  the variation mass caused by the vaporization and condensation. 

 

• Steam mass balance 

𝑑𝑀s
A

𝑑𝑡
= (𝑞sin

A  − 𝑞sout
A  ) + (𝑞e − 𝑞𝑐)     (3.15) 

where we denote: 

- (𝑞sin
A  −  𝑞sout

A  ) = 𝑞s
A the input-output steam mass balance; 

- (𝑞e − 𝑞𝑐) =  𝑞sec
A  the variation mass caused by the vaporization and condensation; 

- 𝑞e =
(𝜌𝑤

𝐴𝑉𝑤
𝐴(ℎ𝑤

𝐴−𝑤𝑠𝑎𝑡
𝐴 ))

𝜏𝑒𝑟 
  the evaporation rate, that is zero if the water is saturated or subcooled, 

i.e. ℎw
A ≤ ℎwsat

A ; 

- 𝑞c =
(𝜌𝑤

𝐴𝑉𝑤
𝐴(ℎ𝑤𝑠𝑎𝑡

𝐴 −ℎ𝑤
𝐴))

𝜏c𝑟 
  the condensation rate, that is zero if the water is saturated or 

superheated, i.e. ℎw
A ≥ ℎwsat

A ; 

- 𝜏e and  𝜏c the evaporation and condensation relaxation time. 

 

 

• Liquid specific energy balance 

𝑑ℎ𝑤
𝐴

𝑑𝑡
=

1

𝑀𝑤
𝐴
[(𝑞ℎ)w + 𝑞wec

A ℎ𝑠𝑠𝑎𝑡
𝐴 + 𝑄s→w

A +𝑀w
A𝑣w

A
𝑑𝑝A

𝑑𝑡
− ℎw

A
𝑑𝑀w

A

𝑑𝑡
 ]      (3.16) 

 where:  

- (𝑞ℎ)w = 𝑞win
A  hwin

A  − 𝑞wout
A hwout

A   is the energy balance of the input-output water mass flow; 

- 𝑄s→w
A = (ℎ𝑎)s→w(𝑇s

𝐴 − 𝑇w
𝐴)𝑉w

A is the heat transfer rate for the heat steam; 

- (ℎ𝑎)s→w is the product between the heat transfer coefficient and the area contact between 

water and steam; 

- 𝑉w
A is the water volume; 

- 𝑣w
A is the specific water volume. 

 

• Steam specific energy balance 

𝑑ℎs
A

𝑑𝑡
=

1

𝑀s
A
[(𝑞ℎ)s + 𝑞sec

A ℎssat
A − 𝑄s→w

A +𝑀s
A𝑣s

A
𝑑𝑝A

𝑑𝑡
− ℎs

A
𝑑𝑀s

A

𝑑𝑡
 ]     (3.17) 

 where:  

- (𝑞ℎ)s = 𝑞sin
A  hsin

A  − 𝑞sout
A hsout

A  is the energy balance of the input-output steam mass flow; 

- 𝑄s→w
A = (ℎ𝑎)s→w(𝑇s

𝐴 − 𝑇w
𝐴)𝑉w

A is the heat transfer rate for the heat steam.; 

- (ℎ𝑎)s→w is the product between the heat transfer coefficient and the area contact between 

water and steam; 
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- 𝑉s
A is the steam volume; 

- 𝑣s
A is the specific steam volume. 

 

• Pressure balance 
𝑑𝑝

𝑑𝑡

=

(ℎ𝑤
A ∂vw

A

∂h
|
𝑝

− 𝑣w
A)
𝑑𝑀w

A

𝑑𝑡
+ (ℎs

A ∂vs
A

∂h
|
𝑝

− 𝑣s
A)
𝑑𝑀s

A

𝑑𝑡
− 
∂vw

A

∂h
|
𝑝
[(𝑞ℎ)w + 𝑞wec

A ℎ𝑠𝑠𝑎𝑡
𝐴 + 𝑄s→w

A ] − 
∂vs

A

∂h
|
𝑝
[(𝑞ℎ)s + 𝑞sec

A ℎssat
A − 𝑄s→w

A ]

(
∂vwA  
∂p

|
ℎ

+ 𝑣wA
∂vwA

∂h
|
𝑝

)𝑀w
A + (

∂vsA 
∂p

|
ℎ

+ 𝑣sA  
∂vsA

∂h
|
𝑝

)𝑀s
A 

(3.18) 

 

These set of five differential equations describe the behaviour of the steam accumulator. This subsystem 

can be now added to the other part of the systems.  

The accumulator subsystem has as input the steam mass flow rate in the tube, and so its enthalpy as a 

function of the tube pressure. 

The output of the subsystem is the accumulator pressure.  

 

 

 

 

 

 

 

 

The accumulator’s shape can be easily approximated with a cylinder, so the geometrical parameters of 

the accumulator in our study plant are reported in the following table.  

 

 

 

 

 

 

The accumulator water level is measured starting from a point above the center indicated as “A” in 

Figure 3.16. As we can see this water level has a maximum that is value “B”. This is a security feature so 

that when the water reaches this level it exits from a discharger tube that is in point “C” in Figure 3.16.   

 

 

Name Variable Value Unit of 
measurement 

L Length 12 𝑚 
d Diameter 2 𝑚 
𝑙 Water level  % 

𝑙 ̅ Maximum water level 1.8 𝑚 

Figure 3.15 – Block diagram of the system plus the accumulator 

Table 3.9 – Accumulator geometrical data 
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Figure 3.16 – Accumulator front view with dimension in [cm] 

Besides these parameters, there are other three that will be identified and are: 𝜏e, 𝜏c and (ℎ𝑎)s→w . They 

must be identified from data to have the best fit possible.  
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3.5 – ACCUMULATOR MODEL VALIDATION 

In this section, we put into test the steam accumulator model described in Chapter 3.4. first, we will show 

that such a model is perfectly consistent with other models and data available in the literature. Then, we 

will show that, using the available data extracted from our plant, a successful model identification 

procedure has not been possible, due to two possible concurring issue: 

1) the accumulator model dynamics shows to be overly sensitive to parameters changes, making 

the parameters tuning extremely difficult; 

2) the model considered in Chapter 3.4 may not include phenomena or processes that actually 

occur in the real system, but which are unknown to us.  

This will motivate the fact that, in this worth, the physical-based mathematical model shown in Chapter 

3.4 will be eventually discarded, and a neural network will be identified and used in its place for control 

purposes. The identification procedure of the accumulator parameters will be discussed in Chapter 3.5.2, 

while the identification of the neural network of choice will be discussed in Chapter 3.5.3.  

3.5.1 – VALIDATION OF THE ACCUMULATOR MODEL USING LITERATURE DATA 

Here we show a comparison results of the simulations obtained using the model derived in Chapter 3.4 

with experimental data collected in [7]. 

Several experiments will be performed in different working conditions to have a complete set of tests, 

i.e.  

• two charging tests at different working condition; 

• two discharging tests at different working condition; 

• three charging tests with different initial water volume condition; 

• three charging tests with different inlet steam mass flow rate; 

• three charging tests with different inlet enthalpy.  

The steam source’s parameters and the initial state of the accumulator are given for each test. 

CHARGING TESTS 

The charging test can be divided into two conditions: A and B, that are summarized in the following 

table: 

Condition A B 

Steam pressure [MPa] 0.633 0.8 
Steam temperature [°C] 280.2 268.9 
Steam enthalpy [kJ/kg] 3019 2991 
Steam flow rate [kg/s] 0.2 0.25 

Accumulator initial pressure[MPa] 0.484 0.484 
Stop pressure [MPa] 0.65 0.65 

τe and τc  [𝑠] 9.1 8 
 

The stop pressure parameter in Table 3.10 represents the accumulator pressure value that, when 

reached, induces to the closure of the inlet steam valve. The results of these tests are shown in Figure 

3.17, where the right panels are the simulated data, while the left ones are from [7].  

In these charging tests, we can see the pressure evolution in the steam accumulator indicating a strong 

non-equilibrium thermodynamics process. The pressure rapidly increases up to the set value. After 

charging, the valve opens, then the pressure quickly drops as the charging valve closes before finally 

stabilizing. This phenomenon occurs because part of the inlet steam enters the space filled by the 

Table 3.10 - Literature experiments conditions A and B 



34 
 Figure 3.18 - Literature experiments and simulation experiments results for discharging  

accumulator steam before there is an enough heat exchange with water. This leads to a quick pressure 

rise. When the charging valve closes, the water is still unsaturated, thus the steam in the accumulator 

condenses and transforms into water, which causes the pressure to drop quickly until it reaches a new 

equilibrium state.  

 

 

 

 

 

 

 

 

 

 

 

DISCHARGING TESTS 

For the discharging process, the two experiments have different initial accumulator pressure. As in the 

previous tests, there is a stop pressure parameter that when is reached induces the closure of the 

discharging valve.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 - Literature experiments and simulation experiments results for charging 
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Also, the pressure, in this case, indicates a strong non-equilibrium thermodynamic process. In Figure 

3.18 we can see the pressure does not maintain stability after the discharge valve is closed, on the 

contrary slightly increases. The non-equilibrium process mainly occurs because the water is still in a 

superheated state when the discharge valve closes, due to the extremely short discharging time.  

CHARGING TESTS WITH DIFFERENT INITIAL WATER CONDITION 

In these tests, we set the initial water filling coefficient to 25%, 40%, and 55% respectively for each test. 

The water filling coefficient is defined as the ratio of the internal water volume to the total volume of 

the steam accumulator 

α =
V𝑤
A

𝑉tot
A
100% 

We also set the charged steam flow rate to 0.25 kg/s, the charged enthalpy to 3000 kJ/kg and the initial 

pressure and the charging stop pressure to 0.8 and 1.2 MPa. The influence of the initial water volume 

on the charging process is shown in Figure 3.19.  

 

 

 

 

 

 

 

 

 

We can see in Figure 3.19 that the charging time increases as the water filling coefficient increases. This 

occurs because a smaller water filling coefficient results in a smaller mass inertia of the system, which 
makes it easier to change the state of the system. We can also notice that the pressure drop ratio 

Δp caused by the non-equilibrium thermodynamic process during the charging is different and become 

smaller when the water filling coefficient becomes higher. This means that the heat transfer becomes 

more effective between the charged steam and the water with a larger water filling coefficient. So, as the 

water filling coefficient increases, the heat exchange between the steam and the water increases and 

there will be more energy to be stored in the water. On the other hand, the steam accumulator requires 

more steam to maintain the same final pressure. In conclusion, the goal of the steam accumulator to be 

a heat storage becomes easier to achieve as the water filling coefficient increases. The drawback of 

having a large water filling coefficient is that the times to reach a given pressure are extended. There 

could be problems also in the evaporation phase since the steam space height may be insufficient and 

the evaporation rate cannot be guaranteed.  

 

 

 

Figure 3.19 - Literature experiments and simulation experiments results for charging with different initial water volume 
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Figure 3.20 - Literature experiments and simulation experiments results for charging with different inlet flow rate 

CHARGING TESTS WITH DIFFERENT INLET STEAM FLOW RATE 

For these tests, we set the initial filling water coefficient to 40%, the charged steam enthalpy to 3000 

kJ/kg and the initial pressure and the charging stop pressure to 0.8 and 1.2 MPa. The inlet steam mass 

flow rates are 0.2, 0.25, and 0.3 kg/s respectively. 

When the steam enthalpy is constant, the charging time gradually decreases as the charged steam flow 

rate increases. The pressure drop ratio increases as the charged steam flow increases. The speed of the 

charging increases and the charging time decreases as the charged steam flow increase, which means 

that the contact time between the steam and the water inside the steam accumulator decreases as well. 

More steam turns into water as the charged steam flow decreases, which improves the effective energy 

storage of the system. Simulation results are shown in Figure 3.20.  

 

 

 

 

 

 

 

 

 

CHARGING TESTS WITH DIFFERENT INLET STEAM ENTHALPY 

For these experiments we set the initial water filling coefficient to 40%, the initial pressure and the stop 

charging pressure to 0.9 and 1.2 MPa, and the charging steam flow rate to 0.25 kg/s. The inlet steam 

enthalpies are 3050, 3200, 3350 kJ/kg.  

 

 

 

 

 

 

 

 

 

 

Figure 3.21 - Literature experiments and simulation experiments results for charging with different inlet steam enthaply 
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In Figure 3.21 we can see that the pressure in the steam accumulator changes along with the changed 

steam enthalpy. As the enthalpy increases the charging time gradually increases. Increasing the inlet 

enthalpy causes the steam accumulator pressure to rise quickly and thus allow the system to achieve a 

given pressure in a shorter time.  

After all these experiments we can say that the non-equilibrium accumulator model is validated with 

respect to the literature data.  

3.5.2 – IDENTIFICATION OF THE ACCUMULATOR PARAMETERS 

ACCUMULATOR PARAMETERS AND DATA DESCRIPTION 

In this section, we explain the accumulator’s parameter identification procedure. As we did for the boiler 

in Chapter 3.3.3, we will describe the available system data, how we have manipulated them and how 

they are employed to identify the accumulator parameters. 

The data we have about the accumulator are collected in Excel files. The data we have used are list in 

the following table. 

Data name Variable Unit of measurement 

𝑝A Accumulator pressure Bar 

𝑇sin
𝐴  Accumulator inner steam temperature °C 

𝑙w
A  Accumulator water level % 

𝑞sin
𝐴  Accumulator inlet steam flow rate kg/s 

𝑞sout
𝐴  Accumulator outlet steam flow rate kg/s 

 

The accumulator model parameters that must be identified are listed in the following table: 

Name Variable Unit of measurement 
𝜏𝑐  Condensation relaxation time seconds 
𝜏𝑒  Evaporation relaxation time seconds 

(ℎ𝑎)s→w Product between the heat transfer coefficient and contact area 
between water and steam 

𝑘𝑊/𝑚3𝐾 

 

The phase change condensation and evaporation relaxation times have a strong influence on the 

pressure change rate.  

We don’t need to estimate the initial condition of the accumulator since we have the real data available. 

To identify the accumulator parameters, we have used 3 Excel files referring to operating days from 

January to February 2019. As an example, we use the accumulator data set of 07 January 2019, depicted 

in Figure 3.22 with a sampling time 𝑇𝑠 = 10 𝑠; 

 

 

 

 

 

 

 

Table 3.11 – Accumulator available data 

Table 3.12 – Accumulator parameters to be identify 
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Figure 3.22 – Accumulator data of 7 January 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As for the boiler, we extracted and resample the data to have an homogeneous set of signals with the 

same sampling time of 10 seconds. The noise of these signals is slightly higher than the boiler one. We 

point out, for example, the outlet steam out mass flow rate 𝑞sout
A (see Figure 3.22 sub-plot 6) that is the 

noisiest signal of all data set.  

IDENTIFICATION PROCEDURE 

The identification consists of finding the set of parameters that minimize a given objective function. The 

objective function is defined as the squared error between:  

- the accumulator measured pressure 𝑝A and the simulated pressure 𝑝sim
A ;  

- the accumulator measured water level 𝑙w
A  and the simulated level 𝑙wSim

𝐴 ; 

The identification is done, as for the boiler, using the Matlab solver function fmincon. The objective 

function for the accumulator is: 

min
𝜏𝑒,𝜏𝑐,(ℎ𝑎)s→w

𝐽     (3.19) 

and J is 

𝐽 =  ∑(𝑝A(𝑘) − 𝑝Sim
A (𝑘))

2

+ (𝑙w
A (𝑘) − 𝑙wSim

A (𝑘))
2

𝑁

𝑘=1

 

where we have that: 

• N is the total number of sample points of the data set. 

We have two terms in the cost function because we need that the model reconstructs the pressure and 

water level behaviour for control purposes.  
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We do not define strict constraints on the parameters because their value is strongly correlated to the 

data behaviour. So, we want to give the solver the best range of possible parameter choice to have the 

best fit possible. Summarizing the parameter constraints are: 

0.001 ≤ [𝜏𝑐; 𝜏𝑒] ≤ 4000 seconds 

0.001 ≤ (ℎ𝑎)s→w ≤ 4000 𝑘𝑊/𝑚3𝐾  

The optimal parameter values are:  

Name Data set 01 January 2019 
𝜏𝑐  67 seconds 
𝜏𝑒  7.5 seconds 

(ℎ𝑎)s→w 51 𝑘𝑊/𝑚3𝐾 
 

We show the results of this identification for our example data set in Figure 3.23.  

We can immediately notice the steady-state behaviour is reconstructed neither for the pressure nor for 
the water level. The trends of the downward peaks are also not reconstructed. These errors make this 

accumulator model impossible to use for controlling purposes. This because the simulated variables are 

too different with respect to the real ones.   

A possible explanation of this result has been proposed at the beginning of Chapter 3.5. For these 

reasons, our study plant accumulator behaviour is not well reconstructed although the model is 

validated. A solution to this issue is presented in the following chapter: we decided to use a long short-

term memory artificial recurrent neural network to reconstruct the accumulator pressure and water 

level behaviour.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 – Result of simulated pressure and water level with respect to data file 01 
January 2019 

Table 3.13 – Identified accumulator parameters 
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3.5.3 – ACCUMULATOR MODEL IDENTIFICATION WITH LSTM 

Here we give the description of the main steps to reconstruct the accumulator model using a Long Short-

Term Memory (LSTM) artificial recurrent neural network (RNN).  

DATA SELECTION 

The first step requires a selection of the data. From all the Excel files, we have selected only the ones 

that have smooth pressure and water level behaviour. Thus, we discarded all the files where too noisy 

signals were present. After that, the selected files were divided into two groups. The first group, 

composed of five files, was used to train the network. The second group, composed of two files, was used 

to validate the network.  

As an example in the following figures are reported two accumulator data set from the five selected for 

the training: 

• Accumulator data of 7 January 2019, depicted in Figure 3.22 with a sampling time 𝑇𝑠 = 10 𝑠; 

• Accumulator data of 12 February 2019, depicted in Figure 3.24 with a sampling time 𝑇𝑠 = 10 𝑠; 

 

 

 

 

 

 

 

 

 

 

 

 

 

NETWORK SETUP AND TRAINING 

Looking at the accumulator data figures, we can see that the data have different ranges. We first 

normalize them in order to prepare the network to handle this data. This will change the values of the 

dataset to a common scale, without distorting differences in the ranges of values. The normalization is 

done with respect to the mean value and the standard deviation of the signal as: 

𝑥Norm =
(𝑥 − μ(𝑥))

σ(𝑥)
 

Now that all the signals belong to the same range, we can build up the network features. We select three 

as feature number, representing the inputs to the system, that are: 

Figure 3.24 – Accumulator data of 12 February 2019 
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Figure 3.26 and 3.27 – Pressure and water level of accumulator data of 7 January 2019 and data of 12 February 2019  reconstructed by the network 

- steam inlet enthalpy, calculated with the IAPWS-IF97 (Appendix 1) formulation from the inlet 

steam pressure and temperature; 

- steam inlet mass flow rate; 

- accumulator steam outlet mass flow rate.  

Then we select two responses features, representing the system output: 

- accumulator pressure; 

- accumulator water level. 

So, the system we want to identify with this network is the one sketched in the following figure: 

 

 

 

 

 

 

After this, we selected 50 neurons for the network, and we choose 250 as epochs maximum to train the 

network. in the following figures, we can see the reconstruction of our example data set.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This reconstruction was made on the training data. As expected, the pressure behaviour is reconstructed 
well. All its dynamics and steady-state trends are good. About the water level, there is not a perfect 

Figure 3.25 – System to be identified 
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Figure 3.28 – Accumulator data of 9 January 2019 

match between the original data (blue line) and the reconstructed data (red line). This mainly because 

of the noise on the signal and a possible malfunction of the sensor. This is evident in the training file on 

7 January 2019. Looking at the first 3500 points in Figure 3.22 we can see that the system is almost in 

steady-state and the water level is about 80%. After the dynamics behaviour, from point 6500 to the end 

of the plot the system returns in a steady-state condition that is equal to the first one. But now, the water 

level has a different equilibrium point that is around 86% that should be impossible. In fact, as 

mentioned at the end of Chapter 3.4, the water level has a security feature that makes the water level 

stay under 83%. Nevertheless, we take this result as a good reconstruction of the general behaviour of 

the water level, since we do not have better data to create a more precise model.  

VALIDATION ON TESTING DATASETS 

Now that the network is trained and it is validated on the training data, we try to validate it with the two 

data set validation. As validation data sets, we take: 

• Accumulator data of 9 January 2019; 

• Accumulator data of 13 February 2019; 

and they are shown in Figure 3.28 and Figure 3.29 respectively, with a sampling time 𝑇𝑠 = 10 𝑠;. 
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Figure 3.29 – Accumulator data of 13 February 2019 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

After the simulation of the network on these data sets, the obtained results are shown in the following 

figures:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.30 – Pressure and water level of accumulator data of 9 January 2019 reconstructed by the network 
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As we can see the pressure still has good reconstructed behaviour. Also, the level dynamics and general 

value are good enough to validate the network also on the test data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 – Pressure and water level of accumulator data of 13 February 2019 reconstructed by the network 
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CHAPTER 4 

CENTRALIZED MPC FOR CONTROL OF THE BOILER AND THE 

ACCUMULATOR 

In this chapter the control algorithms, that will be applied to the models described in the previous 

chapter, are discussed. 

4.1 – MODEL PREDICTIVE CONTROL 

Model predictive control (MPC) is a family of algorithms that have gained wide popularity because of 

their widespread diffusion in process control. MPC is the most widely used advanced control 

methodology in the process industry [9].  

The most important characteristics of MPC are the possibility to: 

• formulate the control problem as an optimization one, where different goals can be considered; 

• explicitly include, in the control problem formulation, state and input constraints; 

• synthesize the controller based on the process models. 

These characteristics make MPC very flexible and suitable for many applications. 

The elements needed to build an MPC controller are: 

• a discrete-time process model; 

• input, output, and state constraints; 

• a cost function J defined, at any time instant k, over a finite horizon [𝑘, 𝑘 + 𝑁]; 

• an optimization algorithm for computing the future optimal control sequence; 

A general scheme of an MPC-based control system is sketched in the following figure. 

 

 

 

 

 
In the MPC block (Figure 4.1) there are two components, that are: 

• the plant model; 

• the optimizer. 

The model used in MPC represents the behaviour of the dynamical system that we want to control. MPC 

uses the current plant measurements, dynamic states of the process, and the plant model to calculate 

the future dynamical changes of the system. These changes are calculated to hold the output variables 

close to the references honouring constraints. So, the essence of MPC is to optimize, suitably using the 

manipulable inputs, forecasts of process behaviour. For this reason, the model is the essential element 

of an MPC controller.  

 

Figure 4.1 – General MPC controlled plant scheme 
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MPC is based on the Receding Horizon principle: at any time instant k, based on the available process 

information, solve the optimization problem with respect to the future control sequence [𝑢(𝑘), … , 𝑢(𝑘 +

𝑁 − 1)] and apply only its first element 𝑢°(𝑘). Then, at the next time instant k + 1, a new optimization 

problem is solved, based on the process information available at time k + 1, along the prediction horizon 
[𝑘 + 1, 𝑘 + 𝑁]. By means of this strategy, a time-invariant feedback control law is obtained even if a finite 

horizon optimization problem is solved at any time instant. 

The rationale of the RH algorithm is represented in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

4.1.1 – LINEAR MPC WITH CONSTRAINS 

A typical linear discrete-time model is of the form: 

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)
     (4.1) 

Assuming matrix 𝐷 = 0, we have that 𝑥 ∈ ℝ𝑛 is the state (assumed to be measurable for simplicity), 𝑢 ∈

ℝ𝑚  is the control variable, and 𝑦 ∈ ℝ𝑝 is the output variable. The state-space form has several 

advantages in MPC control. These advantages are, for example, easy generalization to multivariable 

systems, ease of analysis of closed-loop properties, and online computation.  

The optimization problem consists of computing, at each time instant k, the control sequence 

𝑢(𝑘), 𝑢(𝑘 + 1),… , 𝑢(𝑘 + 𝑁 − 1) that minimize the finite horizon quadratic cost function: 

𝐽 = ∑ (||𝑥(𝑘 + 𝑖)||
𝑄

2
+ ||𝑢(𝑘 + 𝑖)||

𝑅

2
)

𝑁−1

𝑖=0

+ ||𝑥(𝑘 + 𝑁)||
𝑆

2
     (4.2) 

where 𝑄 ∈ ℝn x n, 𝑅 ∈ ℝm x m and 𝑆 ∈ ℝn x n are positive definite matrices. Note that Q and R are free 

design parameters, while S must be chosen in order to guarantee the properties of the control algorithm. 

In MPC, the positive integer N is called prediction horizon.  

The MPC optimization problem, in general, includes state, input, and output constraints, that take the 

form: 

𝑥(𝑘 + 𝑖) ∈ 𝒳,     𝑖 = 0,…𝑁 

𝑢(𝑘 + 𝑖) ∈ 𝒰,     𝑖 = 0,…𝑁 − 1 

Figure 4.2 – MPC strategy 
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𝑥(𝑘 + 𝑁) ∈ Ω 

where 𝒳 and 𝒰 are convex sets containing the origin and Ω is a convex terminal set containing the origin.  

The main properties that can be guaranteed through a proper problem formulation are 

• recursive feasibility: if at time instant k the optimization problem is feasible, then it is feasible at 

every future time instant; 

• convergence: the state of the closed-loop system asymptotically converges to the origin.  

A general design choice consists of choosing an auxiliary control law 𝑢 = 𝐾𝑥, where 𝐴 + 𝐵𝐾 is stable. In 

this case, to guarantee convergence, S has to be selected in order to satisfy the Lyapunov equality  

(𝐴 + 𝐵𝐾)𝑇𝑆(𝐴 + 𝐵𝐾) − 𝑆 = −(𝑄 + 𝐾𝑇𝑆𝐾) 

The terminal set, to guarantee recursive feasibility, must be chosen such that Ω ⊆ 𝒳, 𝐾𝑥 ∈ 𝒰  ∀𝑥 ∈ Ω 

and (𝐴 + 𝐵𝐾)Ω ⊆ Ω, i.e. as a suitable positively invariant set.  

4.1.2 – CONSTANT REFERENCE SIGNAL TRACKING 

We assume that the reference signal is constant, i.e. 𝑦°(𝑘) = 𝑦°and that the disturbances are known. 

Provided that 𝑝 ≤ 𝑚 and the system does not have any invariant zero 𝑧 = 1, it is possible to compute a 

steady-state pair (�̅�, �̅�) such that 

�̅� = 𝐴�̅� + 𝐵�̅� 

𝑦° = 𝐶�̅� 

In this case, the cost function can be written as: 

𝐽 = ∑ (||𝑦° − 𝑦(𝑘 + 𝑖)||
𝑄

2
+ ||𝑢(𝑘 + 𝑖) − �̅�||

𝑅

2
) + ||𝑥(𝑘 + 𝑁)||

𝑆

2
𝑁−1

𝑖=0

 

so that 𝐽 = 0 for 𝑦(𝑘 + 𝑖) = 𝑦° and 𝑢(𝑘 + 𝑖) = �̅�.  

4.1.3 – NONLINEAR MPC 

Consider now that linear system (4.1) is replaced with a nonlinear system, as in our case, in the form: 

{
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

𝑦(𝑘) = 𝑔(𝑥)
    (4.3) 

The optimization problem and the definition of the ingredients, which formally ensure recursive 

feasibility and convergence, may become more complex. The adopted solution to this problem is based 

on the successive linearization of the nonlinear system. This method allows having a problem solution 

with the same computational load of the linear MPC. This is due to the fact the optimization problem to 

be solved still a quadratic problem.  

Therefore, at each time step, the nonlinear model is linearized around the last available optimal 

state/input trajectories obtained at the previous step ℎ − 1.  

Assuming that some predicted input/state trajectories 𝑢(𝑘|ℎ − 1), 𝑥(𝑘|ℎ − 1) are suitable as the 

solution to the MPC optimization problem obtained at time ℎ − 1 , the linearized system dynamics at 

time step h becomes [13, 14].: 

𝑥(𝑘 + 1) = 𝐴k|h−1𝑥(𝑘) + 𝐵k|h−1𝑢(𝑘) + 𝑑k|h−1    (4.4) 

where: 
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𝐴k|h−1 = 
𝛿𝑓(𝑥(𝑘), 𝑢(𝑘))

𝛿𝑥
|
𝑥=𝑥(𝑘|ℎ−1)

𝑢=𝑢(𝑘|ℎ−1)

     (4.5) 

𝐵k|h−1 =
𝛿𝑓(𝑥(𝑘), 𝑢(𝑘))

𝛿𝑢A
|
𝑥=𝑥(𝑘−1)

𝑢=𝑢(𝑘−1)

   (4.6)  

𝑑k|h−1 = −𝐴k|h−1𝑥(𝑘|ℎ − 1) − 𝐵k|h−1𝑢(𝑘|ℎ − 1)  +  𝑓(𝑥(𝑘|ℎ − 1), 𝑢(𝑘|ℎ − 1))   (4.7) 

Now we can write the cost function to be minimized at each time instant h as:  

𝐽 = ∑ (||𝑥(𝑘)||
𝑄

2
+ ||𝑢(𝑘)||

𝑅

2
)

ℎ+ 𝑁

𝑘=ℎ

+ ||𝑥(𝑘 + 𝑁)||
𝑆

2
     (4.8) 

subject to the dynamics given by (4.4) and constraints 

𝑥(𝑘 + 𝑖) ∈ 𝒳,     𝑖 = 0,…𝑁            

𝑢(𝑘 + 𝑖) ∈ 𝒰,     𝑖 = 0,…𝑁 − 1    (4.9) 

𝑥(𝑘 + 𝑁) ∈ Ω        

where 𝒳 and 𝒰 are convex sets containing the origin and Ω is a convex terminal set containing the origin 

[13, 14]. However, in this case, the definition of the terminal set and the terminal weight are non-trivial 

tasks. So, in this work will not define the terminal constraint. Instead, to guarantee the recursive 

feasibility, we will use slack variables. Consequently, weighted variables 𝜖 must be added in the 

optimization cost function. The weight 𝜌 of this slack variable in the cost function must be selected large 

enough to guarantee that the optimum is 𝜖 ≅ 0 when a feasible solution exists. Therefore, the cost 

function can be rewritten as 

𝐽 = ∑ (||𝑥(𝑘)||
𝑄

2
+ ||𝑢(𝑘)||

𝑅

2
)

ℎ+ 𝑁

𝑘=ℎ

+ 𝜌𝜖    (4.10) 

subject to:  

𝜖 ≥ 0         

𝑥(𝑘 + 𝑖) ∈ 𝒳 ⊕ 𝜖𝐵(0),     𝑖 = 0,…𝑁    (4.11)  

𝑢(𝑘 + 𝑖) ∈ 𝒰,     𝑖 = 0,…𝑁 − 1         

where 𝐵(0) is a ball of unitary radius and centre in the origin.  
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4.2 – MODELS FOR MPC CONTROL 

In this section we describe in detail the model used for the MPC control. Specifically, we focus on a boiler 

model obtained from the nonlinear one described in Chapter 3.2; 

In the operating condition of interest, the boiler nonlinear model can be linearized with satisfactory 

results. We choose to identify this linear model and the identification procedure is described in the 

following sections. 

This chapter describes how the linear boiler model is derived. The goal is to obtain a linear model that 

describes the boiler’s pressure behaviour with respect to input changes. As in Chapter 3.2, the 

manipulable inputs are:  

• 𝑄B    the heat flow rate given by the burner to the boiler [kW]; 

• 𝑞f
B    the feedwater mass flow rate [kg/s]. 

We also have some non-manipulable inputs that can be considered as disturbances: 

• 𝑝win
B   that is the boiler feedwater pressure; 

• 𝑇win
B   that is the boiler feedwater temperature; 

• 𝑞sDEM
B  that is the steam mass flow rate that the boiler should supply to the system. 

The boiler feedwater enthalpy ℎwin
𝐵  can be computed based on the first two non-manipulable inputs 

using the water thermodynamics property. We do not have sensors that measure the feedwater 

pressure, so it is set to 60 bar. The feedwater pressure is assumed to be constant since small pressure 

variations have negligible effects with respect to water enthalpy.  

In the following, the identification procedure is described.  

BOILER DATA CREATION 

Firstly, a data set is created. This data set represents the boiler input signals. The data properties are: 

• length: 500 samples; 

• sampling time: 1 second; 

 Each signal in the set has a proper variation range. These variation ranges are summarized in Table 4.1.  

 

 

 

 

 

The variation ranges are within the real plant signals variation range. Steps of different amplitude are applied 

with an interval of 25 samples. This will allow the identified linear system to be more reactive to input 

variation. As mentioned before, the feedwater enthalpy is computed based on the water 

thermodynamics property, described in Appendix 1, taking a constant pressure of 60 bar and the 

generated feedwater temperature signal. The generated data set is used as input of the boiler system to 

simulate the pressure behaviour. The result is shown in Figure 4.3. 

Variable Nominal value Variation range 

𝑄B 1600 kW [1570; 2500] kW 

𝑞f
B 0.9 kg/s [0.85; 1.2] kg/s 

𝑇win
B  100.7 °C [100.2; 101.7] °C 

𝑞sDEM
B  0.58 kg/s [0.53; 1.08] kg/s 

Table 4.1 – Signals nominal values and variation ranges 
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BOILER LINEAR MODEL IDENTIFICATION 

The model identification is done using the Matlab toolbox System Identification, with the following 

options: 

• first-order discrete-time linear state-space model; 

• sampling time of 1 second; 

• free matrices form and non-including disturbance component; 

• subspace N4SID estimation method.  

• other settings have been left with their default value.  

The so-obtained system matrices and the reconstructed pressure behaviour are shown in the following: 

𝐴 = 0.999862 

𝐵 = [−0.03579    8.79145 × 10−6     2.1136 × 10−5     − 0.01757] 

 𝐶 = 0.4433 

 

 

 

 

 

 

 

 

Figure 4.4 shows the identified linear boiler pressure behaviour (red line) over the simulated boiler 

behaviour (black line). It can be noted that they are practically equal, in fact, the data fitting is 99.11%. 

Figure 4.3 – Generated input data set and simulated pressure result 

Figure 4.4 – Identified model behavior 
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BOILER IDENTIFIED LINEAR MODEL VALIDATION 

Before using the identified model in MPC control, we want to understand how good it reconstructs the 

pressure behaviour using other data sets. To do so, other two data sets are generated. After that, the 

new obtained simulated pressure is used as validation data for the identified model.  

The second generated data set and the simulated pressure are shown in Figure 4.5. 

With this new data set, the simulated boiler pressure has a swinging behaviour with a pick value of 61 

bar and a minimum value of 56 bar. This behaviour is different from the one used to identify the model 

and shown in Figure 4.3 subplot 1. 

The identified linear model can accurately reconstruct the new pressure behaviour, and the result is 

showed in Figure 4.6. The reconstructed pressure is the blue line, and we can see that we have a data 

fitting of 93.69%. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Second generated input data set and simulated pressure result 

Figure 4.6 – Identified linear model validation with respect the second data set 
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Figure 4.7 – third generated input data set and simulated pressure result 

The third generated data set and the simulated pressure are shown in the next figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this data set, we have expanded the signal variation range. The obtained pressure has a growing 

tendency with a pick value of 70 bar. This value is far from our system operating condition. This 

validation test is useful because we want to know if the model is able to reconstruct pressure behaviour 

out of the operating condition range since our final goal is to control the boiler pressure with MPC. 

The identified linear model can also accurately reconstruct this new pressure behaviour, and the result 

is showed in Figure 4.8. The reconstructed pressure is the green line, and we can see that we have a data 

fitting of 90.03%. 

 

 

 

 

 

 

 

 

After these results, we can consider the boiler linear model validated since it can reconstruct different 

pressure behaviour with a low percentage error.  

 

 

 

Figure 4.8 – Identified linear model validation with respect the third data set 
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Figure 4.9 – MPC control scheme of boiler and accumulator 

4.3 – MPC CONTROL OF BOILER AND ACCUMULATOR 

In this section, we discuss how the boiler and accumulator MPC control problem is formulated.  

Figure 4.9 shows the control scheme idea. 

We can see that in the MPC block there are two models that are: 

• boiler linear model identified in Chapter 4.2; 

• accumulator LSTM linear model. This derives from the linearization of the LSTM network; 

The “PLANT” group is composed of nonlinear equation models, that are: 

• the non-linear 60 bar boiler model is the one presented in Chapter 3.2.1; 

• the steam tube model is the one presented in Chapter 3.2.2; 

• the accumulator model is the one represented by the LSTM neural network presented in Chapter 

3.5.3.  

 

 

 

 

 

 

 

 

More specifically: 

• the linear boiler model includes: 

o 1 state; 

o 4 inputs; 

o 1 output; 

• the LSTM network includes: 
o 50 neurons, this means that the network states number is 100; 

o 3 inputs; 

o 2 outputs; 

The resulting model that is used in the MPC prediction is composed of: 

• 104 state, this because the LSTM network linearization matrix 𝐴𝐿𝑆𝑇𝑀  is a 103x103 matrix. 

• 8 inputs; 

• 3 outputs.  

The main goals of this control are: 

• control the boiler pressure 𝑝B to a given setpoint 𝑝set
B ; 

• control the accumulator pressure 𝑝A to a given setpoint 𝑝set
A ; 

• control the accumulator water level 𝑙w
A  to a given setpoint 𝑙w

A
set. 

Doing this the system must supply the steam demands from different areas. We have the: 
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• boiler steam demand �̅�s
B Dem; 

• accumulator steam demand �̅�s
A Dem; 

• 60 bar steam working area request �̅�s
Area Dem . 

The optimization problem is defined as:  

min
𝑝B ,𝑝A,𝑙w

A ,𝑄B,𝑞f
B,𝑞sout

B ,𝑠B,𝑞sin
A ,𝑞sout

𝐴
𝐽(𝑝B, 𝑝A, 𝑙w

A , 𝑄B, 𝑞f
B, 𝑞sout

B , 𝑠B, 𝑞sin
A , 𝑞sout

𝐴 )     (4.12) 

where  

𝐽 = ∑||𝑢(𝑘 + 𝑖) − 𝑢SP||𝑅
2
+ ||𝑦(𝑘 + 𝑖) − 𝑦SP||𝑆

2
+ 𝜌𝑠B

𝑁−1

𝑖=0

   (4.13) 

where 𝑢SP(𝑘) and 𝑦SP(𝑘) are the setpoint vectors, and subject to the constraints:  

𝑝set
B − 𝑠B ≤ 𝑝B ≤ 𝑝set

B + 𝑠B    (4.14𝑎) 

𝑝min
A ≤ 𝑝A ≤ 𝑝max

A      (4.14𝑏) 

𝑙𝑤min
A ≤ 𝑙w

A ≤ 𝑙𝑤max
A      (4.14𝑐) 

𝑄min
B ≤ 𝑄B ≤ 𝑄max

B      (4.14𝑑) 

𝑞f
B
min

≤ 𝑞f
B ≤ 𝑞fmax

B      (4.14𝑒) 

𝑞s
B
min

≤ 𝑞s
B ≤ 𝑞smax

B      (4.14𝑓) 

𝑞sin
A

min
≤ 𝑞sin

𝐴 ≤ 𝑞sinmax
A      (4.14𝑔) 

𝑞sout
𝐴

min
≤ 𝑞sout

𝐴 ≤ 𝑞soutmax
A      (4.14ℎ) 

𝑠B ≥ 0     (4.14𝑖) 

𝑞f
B − 𝑞s

B ≥ 0     (4.14𝑙) 

𝑞s
B ≥ 𝑞sin

A + 𝑞s
Area     (4.14𝑚) 

The variable 𝑠B in (4.14a and 4.14i) is a slack variable used to allow small changes in the boiler pressure 

with respect to its set-point value.  

Constraint (4.14l) is necessary because the difference between the boiler feedwater and the boiler steam 

production must be greater or equal to zero, to satisfy the mass balance.  

Constraint (4.14m) is necessary because the boiler steam production must be greater, or equal to zero, 

than the sum of the accumulator inlet steam and the 60 bar area steam.  

The accumulator pressure and water level would be in given intervals because of their physical 

behaviour. In fact, to supply the accumulator steam demand, the accumulator must drop its pressure to 

create more steam and consequently drop the water level. The MPC controller must regulate the 

accumulator to not violate these bounds. 
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CHAPTER 5 

MPC CONTROL SIMULATION RESULTS 

In this chapter, we show the simulation results obtained by applying the MPC controller to the boiler 

and the accumulator. 

We briefly introduce the main steps to build the state observer for the network. Then we will discuss a 

series of tests on the overall controlled system.  

5.1 – OBSERVER DESIGN 

In this chapter, we consider the design of the observer for the LSTM network describing the 

accumulator.  

To this purpose, two possible choices can be taken: 

1) nonlinear observer; 

2) observer-based on the successive linearized models. 

In this chapter, we test both solutions. In the following simulation, solution “2” will be preferred due to 

the reduced convergence speed with respect to the solution “1”.  

5.1.1 – NONLINEAR TRIVIAL OBSERVER 

The design of a nonlinear observer is the first possible choice for the LSTM model. In particular, a simple 
solution is to use an “open-loop” observer: this consists basically of the LSTM model fed by the actual 

inputs applied to the system. 

This is possible, however, only provided that the identified LSTM model guarantees incremental 

stability properties.  

To empirically prove the existence of such properties, we simulate the network from different initial 

conditions but with the same (constant) input. The goal is to see if the network converges to the same 

point. The following table reports the different initial conditions tested (in terms of “external” variables).  

Test number 𝑞sin
𝐴  [m3/s] 𝑞sout

𝐴   [m3/s] ℎ𝑠in
𝐴   [kJ/kg] 𝑝A  [Bar] 𝑙w

A   [%] 

1 0.15 0.15 2793 53.9 84.1 
2 0.106 0.102 2794 54 84.2 
3 0.017 0.03 2794 54.1 84.3 
4 0.27 0.57 2795 52.8 83.4 
5 0.42 0.37 2792 53.5 83.5 
6 0.34 0.7 2792 53.2 83 

 

 

In all these tests we apply the time-varying input depicted in Figure 5.1. These input signals are 

randomly generated, with a sampling time 𝑇𝑠 = 10 𝑠. We define as “test 1” the 2-norm state trajectory 

||𝑥||2 as the reference state trajectory of the network for the corresponding inputs. Therefore, at each 

time instant k, we have 

||�̂� (𝑘)||
2
= ||𝑥𝑛𝑒𝑡(𝑘)||2 

 

Table 5.1 – Accumulator LSTM network initial conditions 
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Then, we define the error between the 2-norm of the other network simulation state trajectory 

||𝑥𝑖||2 and the reference state trajectory ||�̂�||2: 

𝑒𝑟𝑟𝑖1 = ||𝑥 − 𝑥𝑖||2  

where i (from 2 to 6), identifies the number of the performed network simulations. The behaviour of 

these errors is depicted in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Network time dependent inputs 

Figure 5.2 – State trajectory error 



57 
 

As we can see from Figure 5.2, the error of the state trajectories tend to zero. In view of these results, we 

can conclude that, in the tested conditions, the identified LSTM network exhibits the required 

incremental stability property. 

In view of this, the trivial nonlinear observer can be employed. However, in view of the fact that the 
settling time is rather slow, we analyse and design the Kalman filter-based observer, which provides 

faster settling times, as it is discussed in the following section.  

5.1.2 – STATIC KALMAN FILTER IMPLEMENTATION 

In this section we design a Kalman type observer derived from the successive linearized models of the 

LSTM derived in Chapter 4.1.3.  

As discussed in Chapter 4.1.3, the evolution of the system is described by the “local” linearized model: 

𝑥(𝑘 + 1) = 𝐴k|h−1𝑥(𝑘) + 𝐵k|h−1𝑢(𝑘) + 𝑑k|h−1
𝑦(𝑘) = 𝐶𝑥(𝑘)

    (5.1) 

where matrices  𝐴k|h−1, 𝐵k|h−1, and vector 𝑑k|h−1 are defined in Chapter 4.1.3, while matrix C is given by: 

𝐶 = [0 0 𝑊𝑜𝑢𝑡]     (5.2) 

where 𝑊𝑜𝑢𝑡  is the output layer of the LSTM network and the zeros are needed because this matrix must 

multiply only the LSTM network controllable state 𝑥(𝑘). Therefore, the number of zeros in the matrix 

are equal to half of the number of states of the network plus the number of inputs of the network. 

The corresponding observer is [9]:  

𝑥(𝑘 + 1) = 𝐴k|k−1𝑥(𝑘) + 𝐵k|k−1�̂�(𝑘) + 𝑑k|k−1 + 𝐿𝑘[𝑦(𝑘) − 𝐶𝑥(𝑘)]   (5.3) 

where 𝑥 ∈ ℝ𝑛  and  

𝐿ℎ = 𝐴k|k−1𝑃𝑘𝐶
′(𝐶𝑃𝑘𝐶

′ + 𝑅)−1    (5.4) 

and where 𝑃ℎ is the solution of the following algebraic Riccati equation: 

𝑃𝑘 = 𝐴k|k−1𝑃𝑘𝐴k|k−1
′ + 𝑄 − 𝐴k|k−1𝑃𝑘𝐶

′(𝐶𝑃𝑘𝐶
′ + 𝑅)−1𝐶𝑃𝑘𝐴k|k−1

′  

The Q and R values are chosen to have a fast observer, so the matrix R is smaller with respect to Q:  

𝑄 = 𝐼𝑛  

𝑅 = 0.01 

In Figure 5.3 and 5.4 we can see the convergence of the observer outputs to the ones of the model. By 

comparing these plots with the ones in Figure 5.2, we see that the observer presented in this section 

enjoys the convergence properties, and will, therefore, be used in the following sections. 
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Figure 5.3 – Observer pressure dynamic Figure 5.4– Observer water level dynamic 
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5.2 – WEIGHTS IN THE COST FUNCTION 

In our implementation the number of states, inputs, and outputs is reported in the following table: 

System variable Boiler Accumulator Total system 
State n 1 103 104 
Input m 4 3 7 
Output p 1 2 3 

 

As already discussed: 

• the six manipulable inputs are: 

o boiler feedwater mass flow rate 𝑞f
B; 

o boiler power 𝑄B; 

o boiler outlet steam mass flow rate 𝑞sout
𝐵 ; 

o accumulator inlet steam mass flow rate 𝑞sin
𝐴 ; 

o accumulator outlet steam mass flow rate 𝑞sout
𝐴 ; 

• the two non–manipulable inputs are: 

o boiler feedwater enthalpy ℎf
B; 

o accumulator inlet steam enthalpy ℎsin
𝐴 . 

The three system’s outputs are: 

• boiler pressure 𝑝B; 

• accumulator pressure 𝑝A; 

• accumulator water level 𝑙w
A . 

The weight matrices Q and R of the optimization problem (4.12) are diagonal and are defined in order 

to achieve the main control goals of the system. Firstly, the boiler pressure must be maintained near its 

setpoint. Secondly, the boiler and accumulator steam mass flow rate demands must be satisfied. In view 

of these goals, the weight on these variables must be large. The other variables in the system must 

change their values to achieve these two primary goals, so they can be different from their setpoint since 

a lower weight is assigned to them. The weights of all variables are listed in the following table 

Variable Weight 
Boiler pressure 1010 

Boiler feedwater 1011 
Boiler heat 10−3 

Boiler outlet steam 108 
Accumulator pressure 100 

Accumulator water level 100 
Accumulator outlet steam 105 

 

It is worth to remind that the system’s constraints are represented by (4.14a to 4.14m). In constraint 

(4.14a) we have also defined a slack variable to soft the boiler pressure constraint. The weight of such 

variable is set to 107 . 

 

 

Table 5.2 – Boiler and accumulator linear system variables  

Table 5.3 – Variables’ weight 
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5.3 – SIMULATION TEST RESULTS 

In this chapter we show some significant simulation tests, demonstrating the potentiality of the 

controller designed in Chapter 4.  

Note that the feedwater enthalpy in these tests will be considered as a constant non-manipulable input. 

Note that in all plots, the sampling time is 10 seconds. Moreover, as a legend for the following figures, 

we defined the following pattern for colours and lines: blue and solid for outputs; red and solid for non-

manipulable inputs; green and solid for manipulable inputs; magenta and dotted for profile setpoint. 

Some of the constraints defined in (4.14) are specifically given by: 

57.8 − 𝑠B ≤ 𝑝B ≤ 57.8 + 𝑠B  [bar]    (5.5𝑎) 

36 ≤ 𝑝A ≤ 60   [bar]     (5.5𝑏) 

0 ≤ 𝑙w
A ≤ 84   [%]     (5.5𝑐) 

1410 ≤ 𝑄B ≤ 3130   [𝑘W]     (5.5𝑑) 

The constraint (5.5a) change dynamically with the evolution of the system. Considering constraint 

(4.14f), the maximum value that the boiler steam production can reach is set to the maximum steam 

production rate of the boiler, that is 1.4 kg/s. This value is taken directly from the datasheet of the boiler.  

0 ≤ 𝑞s
B ≤ 1.4 [kg/s]     (5.5e) 

The constraint for the steam flow rate at the accumulator outlet (4.14h) is time-varying with respect to 

the accumulator steam demand at time step k: 

0 ≤ 𝑞sout
𝐴 ≤ 𝑞sout

A Dem(𝑘)   [kg/s]    (5.5f) 

The boiler feedwater must follow the boiler steam demand profile in order to guarantee that constraint 

(4.14l) is always satisfied.  
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Figure 5.5 – Boiler pressure setpoint change simulation result 

5.3.1 – BOILER PRESSURE SETPOINT CHANGES 

In this first test, the system is subjected to a pressure setpoint step change.  

We start the simulation where the boiler setpoint pressure is 57.8 bar. Then we change this setpoint 

value to 55.8 bar. The next figure shows the simulation results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can see from Figure 5.5 that after reaching the first setpoint, the system stays in steady-state 

condition until sample 14. After this point, the pressure setpoint changes and we can see that the MPC 

control increases the inlet water and outlet steam mass flow rate and decrease the power. This 

decreases the pressure. When the new setpoint is reached the mass flow rates return to their nominal 

values and the power goes to its new steady-state value. It has to be noticed that, when the step change 

occurs, the boiler power reaches suddenly the minimum constraint (5.5d). Concurrently, the MPC 

controller increases the feedwater flow rate since the system leads to a faster  

The system chooses this type of control action because it can not further reduce the heat because it has 

reached already the minimum possible at sample 14. For this reason, to have a fast pressure response, 

the controller increases the feedwater since this led to a faster pressure drop.  

5.3.2 – BOILER STEAM MASS FLOW RATE REQUEST SETPOINT CHANGES 

In the second test, the response of the system to a step change of steam demand is presented.  

The initial value of the steam demand, 0.58 kg/s, is increased at 𝜏 = 4 to 1.16 kg/s and is kept constant 
for 3 samples and then set back on the original value. Figure 5.6 shows the simulation result. 

At 𝜏 = 4 the boiler steam demand rises to the new setpoint value. We can see that the feedwater and the 

power rise to follow the increased demand. The boiler pressure varies a little from its setpoint. This is 

allowed by the slack variable used in its constraint (5.5a) permits small pressure changes. This allows 

the system to be faster in tracking setpoint changes because the constraint on the boiler pressure has 

been softened.  The tube pressure drops due to the augmented steam mass flow rate. Nevertheless, this 

drop is limited by the boiler pressure rise. After sample 8, the steam demand returns to its nominal value 

and the system goes back to its steady-state condition.  
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Figure 5.6– Boiler steam demand setpoint change simulation result 

 

 

 

 

 

 

 

 

  

 

 

 

 

 In the next figure, we can see the results of the same simulation on accumulator variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the accumulator point of view, the variation of the boiler steam demand creates no negligible 

effect. We can notice that the controller decides to charge all the surplus produced boiler steam into the 

accumulator since we do not have other steam requests. The accumulator pressure drops by a few bars 

because the inlet steam has lower enthalpy due to the tube pressure drop. This leads to a small drop 

also of the water level due to a variation of density. When the tube pressure returns at its nominal value, 

also the accumulator pressure comes back to its nominal value. The water level instead is raised of some 

Figure 5.7 – Accumulator simulation result when boiler steam demand changes 



63 
 

Figure 5.8 – Accumulator outlet steam demand change simulation result 

percentage due to the new charged steam. The controller has been designed with low weights on the 

accumulator pressure and water level since their variation from the nominal values are acceptable.  

5.3.3 – ACCUMULATOR OUTLET STEAM DEMAND CHANGES 

In the last test, the steam demand at the accumulator outlet is changed, in particular, at 𝜏 = 2 the 

demand is increased to value of 1.26 kg/s. The step demand variation is kept at a high level for 3𝜏 and 

then it returns to the initial value of 0.42 kg/s. Figure 5.8 shows the simulation result. 

We can see that the system is in steady-state operating condition until sample 4. When the accumulator 

outlet steam demand changes and we can see that the pressure starts dropping to allow the water to 

evaporate. This phenomenon causes the drops also of the water level. After the steam demand comes 

back to its nominal value, the system slowly returns to its steady-state condition. This is explained as 

follows: when the pressure stops dropping, the water stops evaporating. So, the inlet steam condenses 

in the water and the level rise, while the outlet steam request is satisfied by the steam already present 

in the accumulator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The accumulator results described here and in Chapter 5.3.2 are consistent with the data used to train 

the LSTM network presented in Chapter 3.5.3. We point out that in our results, and in the plant data, the 

water level is constant whenever the ratio between the inlet steam and outlet steam is constant. This 

because the water level mainly depends on the pressure value and so, on the water enthalpy value that 

is crucial to properly calculate the water density.  
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5.3.4 – SIMULATION USING REAL PLANT DATA 

In this section, we simulate the system using the real plant data set. We take the boiler and the 

accumulator data set referred to the 07 January 2019. The boiler data set is shown in the following figure 

with a sampling time 𝑇𝑠 = 10𝑠, while the accumulator one was already presented in Figure 3.22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the simulation, we use the following data as input: 

• boiler feedwater temperature 𝑇w
B to find the feedwater enthalpy (note that in previous tests, this 

was assumed constant); 

• tube steam flow rate 𝑞s
T, as boiler steam demand; 

• accumulator outlet steam mass flow rate 𝑞sout
A , as accumulator steam demand. 

In addition to these data, we create a steam demand from the so-called “60Bar Area”, that takes part of 

the steam flowing in the tube. We arbitrarily create it because the real data is not available to use. We 

define this steam demand as the difference between the tube steam mass flow rate and the accumulator 

inlet steam data: 

𝑞s60Bar
Dem = 𝑞s

T − 𝑞sin
A  

The goal of the system is to generate enough steam to satisfy all the steam demands, while the MPC 

controls that the variables stay in their limits. 

The next two figures show the simulation results. We plot the simulation results with the colours defined 

at the beginning of the chapter and the original plant data as dotted line (where not otherwise specified).  

We can see in Figure 5.10 panel 3 and in Figure 5.11 panel 4 and 5 that all the three steam requests are 

successfully satisfied by the system. 

 

Figure 5.9 – Original signals of file 01 January 2019 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 5.10 panel 1 we can see that the boiler pressure is always near its setpoint of 57.8 bar (dotted 

line). We can notice that when the steam production increases, the pressure slightly increases too. This 

because the slack variable used in the pressure bound constraint, allows small pressure variation. In 

panel 2 of the same figure, we can see the tube pressure that has a similar behaviour to the original data, 

but its drops are smaller. In panel 5 we can see the boiler heat and it is similar to its corresponding 

original data. It is slightly higher since the pressure constraints are stronger than the real plant ones. 

Note that the increase in heat made by the MPC controller is in advance with respect to the original plant 

data. This different control action leads to the small rise of the boiler pressure and to the smaller drops 

of the tube pressure. The last panel shows the feedwater mass flow rate that must be high enough to 

produce the requested steam. We notice that the system uses less water to produce the same amount of 

steam. This is justified by the more efficient use of the heat, that makes the system faster.  

 

 

 

 

Figure 5.10 – Boiler simulation result 
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In Figure 5.11 panel 1 we show the accumulator pressure. The pressure drops when the accumulator 

steam demand increases. Compared with the original pressure it follows the same behaviour, but the 

reductions are smaller. The same consideration can be done for the water level (Figure 5.11 panel 2). 

Some different behaviour can be seen for the accumulator inlet steam mass flow rate (Figure 5.11 panel 

3). Here the controller decides to decrease the inlet steam in high-production condition for the outlet 

steam. We point out that in this condition the tube pressure is lower than the steady-state value, and 

then the inlet steam enthalpy is lower too. Therefore, a higher inlet steam mass flow rate with this lower 

enthalpy would have provoked a larger pressure drop. 

 

 

 

 

 

Figure 5.11 – Accumulator simulation result 
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CHAPTER 6 

BOILER ENSEMBLE HIERARCHICAL CONTROL 

6.1 – INTRODUCTION 

A centralized controller (especially based on optimization-based method like MPC) for large-scale 

systems is often undesirable and difficult to implement. The dimension of the optimization problem 

grows with the number of subsystems composing the global process and for a large number of 

subsystems, the computational demand explodes. Other drawbacks of centralized strategies are their 

poor flexibility and reliability and the facts that they are not scalable and difficult to maintain. For these 

reasons other algorithms have been developed for large-scale systems. The most popular ones are:  

• Decentralized; 

• Distributed; 

• Hierarchical. 

In decentralized and distributed configurations, the centralized optimization problem is replaced by 

different parallel local ones in order to achieve global or local objectives. While in decentralized MPC 

communication between subsystems is not required, in distributed formulations input, state, and output 

variables can be broadcast to neighbour subsystems to obtain performance comparable with those of 

centralized controllers or to foster stability. 

Hierarchical formulations are widely used in the industrial realm. They are very effective e.g. when 

controlling systems with separable fast and slow dynamics, and for the coordination of subsystems and 

when it is desirable to consider different objectives in the same problem. In many hierarchical structures 

a centralized MPC in used a the high level at a slow time scale to achieve long-term goals, with the 

possibility to use a simplified model in the design phase, while decentralized or distributed MPC 

regulators are designed at the low levels at a fast time scale to achieve short-term performance using 

full orders model.  

In recent years many hierarchical control algorithms have been proposed for the optimal control of 

large-scale systems. Most times these approaches usually have superior short and long term 

performances compared with distributed methods. They also have many computational advantages 

with respect to centralized controllers.  

Hierarchical MPC methods rely upon different control layers (multilayer structure), also called levels, 

and are used mainly in two non-exclusive cases: 

1) low-level local controllers are used to achieve local goals while a high-level coordinator has the 

goal to minimize a global performance index and/or satisfy consistency constraints; 

2) the high-level controller works at a slow time scale computing the reference signals to be used 

at the low level, while the low-level controllers solve tracking problems at a fast time scale. 

At the upper-layer, Real-Time Optimization (RTO) is often used to compute the steady-state operating 

points for the low-level controllers according to an economic optimization criterion. Such optimization 

can be based on a static nonlinear model of the whole system or on a dynamic one, depending on the 

needs.  

At the lower layer, a simpler linear dynamic model of the same system is used to design an MPC regulator 

that guarantees that the reference values computed and transmitted by the high level are reached 

satisfying a given set of constraints.  

In the next figure, the described structure is represented. 
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In the proposed hierarchical structure, the higher layer (RTO) plays a major role, given the fact that the 

whole control system relies on the set-points transmitted by it [9]. Some issues must be considered:  

• the static model used has to be periodically updated by means of some kind of reconciliations 
procedure to deal with possible model mismatches and slow disturbances; 

• consistency between the models of the upper layer and the lower layer should be ensured; 

• an accurate steady-state target optimization must be done to guarantee that the set-points 
computed by the upper-layer should be reachable by the MPC regulator. 

Time-scale separation can be employed when long term-goals such as economic indices have to be 

achieved with a sampling rate of hours or days, while the short-term behaviour of the actuators should 

be considered at a much faster sampling interval of minutes or seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 – General structure of hierarchical control for plantwide control  
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6.2 – HIERARCHICAL MPC FOR BOILER ENSEMBLE 

Here we discuss the implemented algorithm for the hierarchical control of a boiler steam generator 

ensemble. The following presented work and results are subjects to the paper submitted for the 21st 

IFAC World Congress 2020 [1].  

More specifically, we consider a group of 𝑁B boiler steam generators that work in a parallel 

configuration to sustain a cumulative steam demand �̅�s
Dem . We aim to fulfil the required steam flow rate, 

with the minimum amount of fuel gas and optimizing the contribution of each boiler to the overall 

demand. We assume that the boiler steam generators, although different in dimension, steam, firing 

rates, and efficiency, are homogeneous dynamical systems, i.e. sets of similar subsystems in terms of 

input and output.  

Subsystem i is represented by the boiler presented in Chapter 3.2. The single subsystems and the 

ensemble are subjected to input and output constraints. More specifically, we assume that convex and 

compact sets 𝒰𝑖 , 𝒴𝑖 , �̅� and 𝒴 are defined in such a way that 

𝑞s,i ∈ 𝒰𝑖     (6.1𝑎) 

𝑄i ∈ 𝒴𝑖     (6.1𝑏) 

�̅� =∑𝑄i

𝑁B

𝑖=1

∈ �̅�    (6.1𝑐) 

�̅�s =  ∑𝑞𝑠,𝑖 

𝑁B

𝑖=1

∈ �̅�    (6.1𝑑) 

where 𝑞s,i is the steam mass flow rate generated by boiler i, Q is the generated heat, �̅� is the total 

generated heat, and �̅�s the total produced steam.  

The proposed control scheme consists of three layers. 

1) The top layer computes the optimal shares of production to be allocated to each boiler based on 

the requested profile �̅�s
Dem  minimizing the produced heat. This includes the possibility to 

activate and deactivate boilers in the ensemble. The sharing factors 𝛼𝑖 are defined such that 

𝑞s,i = 𝛼i�̅�s    (6.2) 

where 𝛼𝑖 ∈ [0, 1] and  

∑𝛼i

𝑁B

𝑖=1

= 1    (6.3) 

This layer must avoid inconsistencies and constraint violation at the lower levels.  

2) At medium control layer, we use an MPC algorithm applied to the aggregate low-order model of 

the system ensemble to track the overall demand �̅�s. At the same time, the MPC controller 

determines the local steam request 𝑞s,i for each subsystem.  

3) At the lowest layer, we use a decentralized set of proportional-integral (PI) controllers, to track 

the individual request and regulating the boiler internal pressure. This layer works at faster 

sampling time 𝜏 with respect to the others to improve the performance of the control of the 

ensemble. We denote with 𝜅 the corresponding time index.  
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In Figure 6.2, we can see a schematic view of the system’s control layers. 

 

 

 

 

 

 

 

 

 

 

 

The block “Gain” in Figure 6.2 is used to convert the steam demand �̅�s
Deminto the corresponding 

numerical value of �̅�Dem that is needed by MPC as reference.  

The ensemble we consider in our study case is composed of five boiler generators. These five 

components work all at the same pressure, but they are different in size, steam rating, and power 

efficiency. In the following table, the five boiler parameters are summarized.  

Boiler Total volume 
[m3] 

Total mass 
[kg] 

Heat efficiency 
 𝜂 [%] 

Heat equilibrium 
[kW] 

Feedwater 
equilibrium [m3/s] 

1 1.21 5499 97 1370 0.58 
2 1.15 5225 92 1453 0.58 
3 1.28 5830 89 1523 0.58 
4 1.11 5060 95 1407 0.58 
5 1.32 5995 99 1350 0.58 

 

The parameters of boiler 1 are the ones presented in Chapter 3.3.3, while the parameters of the other 

four boilers are arbitrary.  

 

 

 

 

 

 

 

Figure 6.2 – Hierarchical structure  

Table 6.1 – Boiler parameters 
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Figure 6.3 – Boiler steam generator closed-loop system  

6.3 – LOW LEVEL CONTROLLERS 

As mentioned before, the 60-bar boiler non-linear dynamical system is the one presented in Chapter 3.2. 

In this chapter, for the sake of simplicity of notation, we avoid using the superscript “B” since all the 

variables are referred to boilers.  

6.3.1 – LOW LEVEL CONTROL CONFIGURATION 

In this chapter, the low-level controllers are embedded in each subsystem and operate on the local input 

variables 𝑞f,i and 𝑄i to maintain the pressure at the setpoint level. We assume that a PI regulator R and 

a disturbance compensator C act on the heat and on the feedwater mass flow rate, respectively, as 

depicted in the following figure. 

 

 

 

 

 

 

R is a feedback controller regulating the pressure to a setpoint 𝑝SP, while the compensator C forces, with 

an open-loop action, the feedwater to follow the steam demand. As a result, the i-th boiler, controlled at 

low level, can be described as a nonlinear dynamic model 𝜑𝑖 , denoted as  

𝑄i = 𝜑i(𝑞s,i)     (6.4) 

The steam mass flow rate can be accounted for as input of the control system, while the heat will be 

considered as an output. This reverse vision of the boiler, with respect to the actual physical flows of 

heat and steam, permits to formalize the problem in the framework of hierarchical control of ensemble 

systems.  

6.3.2 - REGULATORS IDENTIFICATION 

The parameters of the PI regulator R and of the compensator C were defined in order to reproduce the 

current available closed-loop plant data. We have built an error vector for the pressure and the 

feedwater defined as 

𝑒𝑟𝑟𝑜𝑟(𝑖) = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 −  𝐷𝑎𝑡𝑎_𝑣𝑎𝑙𝑢𝑒(𝑖) 

where i runs from zero to the length of Data_value, Setpoint is the actual setpoint of the considered 

variable. After that, we start the identification of the PI parameters using the Matlab function fmincon.  

For example, regarding the PI regulator R, the generic control input of the regulator as: 

𝑢gen = 𝑢eq +𝐾𝑝  𝑒𝑟𝑟𝑃 + 𝐾𝐼  𝑒𝑟𝑟I 

where 𝑢eq is the equilibrium input value, 𝑒𝑟𝑟P and 𝑒𝑟𝑟I are the proportional and integral error, and 𝐾𝑝  

and 𝐾𝐼are the proportional and integral coefficients that have to be identified. So, we have four 

parameters to identify since we have two PI regulators. To find these parameters we minimize the cost 

function defined as: 

min
𝐾𝑃1 ,𝐾𝐼1,𝐾𝑃2,𝐾𝐼2

(𝑢gen
1 − 𝑢data

1 )
2
+ (𝑢gen

2 − 𝑢data
2 )

2
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where 𝑢gen
j

 is the generated input of regulator 𝑗 = 1,2 and 𝑢data
j

is the real available plant data.  

The transfer function of R and C result: 

𝑢𝑅(𝑘) = (0.87 + 0.31
𝑇𝑠
𝑧 − 1

) 𝑒𝑅(𝑘) 

𝑢𝐶(𝑘) = (3.54 x 10
−4 + 0.1

𝑇𝑠
𝑧 − 1

) 𝑒𝐶(𝑘)  

where 𝑇𝑠 is the sampling time, and 𝑒𝑅(𝑘), 𝑒𝐶(𝑘) are the errors.  

These two regulators are used in the Low layer control and they are equal for each boiler.  
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6.4 – HIGH LEVEL OPTIMIZATION 

The high level is devoted to the optimization of the sharing factors 𝛼𝑖, which define the partition of the 

overall demand among the subsystems of the ensemble. This optimization layer considers the 

functioning range of each subsystem in the ensemble to ensure the best share resources and the 

minimization of the associated operating cost. Here a static optimization layer is discussed. In a static 

environment, we define 𝑔𝑖 = 𝐶𝑖(𝐼𝑛𝑖 − 𝐴𝑖)
−1
𝐵𝑖 .  

We assume that �̅�s
Dem  is given. Our scope is to compute, at the same time, the corresponding shares 𝛼𝑖 

and a feasible steady-state overall steam production value �̅�𝑠𝑠, as close as possible to the demand �̅�s
Dem , 

but which, at the same time, allows to fulfil constraints (6.1a-d)  where we have: 

𝒰𝑖 = [𝑢𝑚𝑖𝑛,𝑖 , 𝑢𝑚𝑎𝑥,𝑖] 

𝒴𝑖 = [𝑦𝑚𝑖𝑛,𝑖 , 𝑦𝑚𝑎𝑥,𝑖]   

�̅� = [�̅�𝑚𝑖𝑛, �̅�𝑚𝑎𝑥] 

�̅� = [�̅�𝑚𝑖𝑛�̅�𝑚𝑎𝑥] 

A further constraint must be enforced, to guarantee consistency with the medium level controller. More 

specifically, at medium level, a limitation on the variation of the input value between two consecutive 

steps is enforced to be lower, in absolute value, than Δ�̅�, for all active boilers. In this respect, we 

introduce the integer variable 𝛿𝑖, being 𝛿𝑖 = 1 if the boiler i is active, while 𝛿𝑖 = 0 otherwise. At higher 

level, this can be required, for each subsystem, as follows: 

|𝛼𝑖�̅�𝑠𝑠 − 𝛿𝑖𝛼𝑖
old�̅�ss

old| ≤ Δ�̅� 

where 𝛼i
old and �̅�ss

old are the value of 𝛼𝑖 and �̅�ss applied before the optimization is solved.  

A mixed-integer program with bilinear inequality constraints is formulated, also allowing for the 

possibility of having different weights 𝜆𝑖 for each subsystem, e.g. related to the cost of using every single 

boiler. The optimization problem reads: 

min
𝛼𝑖,𝛿𝑖,𝑢ss

∑𝜆𝑖(𝑔𝑖𝛼𝑖�̅�ss + 𝛿𝑖𝛾𝑖) + �̅�(�̅�ss − �̅�s
Dem)

2

𝑁B

𝑖=1

    (6.5) 

such that  

∑𝛼𝑖 = 1

𝑖

 

�̅�min ≤ �̅�ss ≤ �̅�𝑚𝑎𝑥 

�̅�𝑚𝑖𝑛 ≤∑(𝑔𝑖𝛼𝑖�̅�ss + 𝛿𝑖𝛾𝑖)

𝑁B

𝑖=1

≤ �̅�𝑚𝑎𝑥 

and for all 𝑖 = 1,… ,𝑁B 

𝑢𝑚𝑖𝑛,𝑖𝛿𝑖 ≤ 𝛼𝑖�̅�ss ≤ 𝑢𝑚𝑎𝑥,𝑖𝛿𝑖 

𝑦𝑚𝑖𝑛,𝑖𝛿𝑖 ≤ 𝑔𝑖𝛼𝑖�̅�ss + 𝛿𝑖𝛾𝑖 ≤ 𝑦𝑚𝑎𝑥,𝑖𝛿𝑖 

−Δ�̅� ≤ 𝛼𝑖�̅�ss − 𝛿𝑖𝛼i
old�̅�ss

old ≤ Δ�̅� 
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0 ≤ 𝛼𝑖 ≤ 1 

𝛿𝑖 ∈ {0,1} 

The high level optimization can be either event-based or cyclically executed. In event-based mode, the 

triggering can be done when the steam demand varies significantly with respect to the value used in the 

previous run of the high level itself. 
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6.5 – MEDIUM-LEVEL CONTROLLER 

The medium level controller is based on linear models, derived in the next subchapter.  

6.5.1 – LINEAR MODEL OF EACH LOW-LEVEL CONTROLLED BOILER 

In the closed-loop configuration presented in Figure 6.3, we can consider that the system can be 

functionally described with the steam demand as input and the heat Q as output. Therefore, we consider 

𝑁B boiler steam generator, each one described by the closed-loop system model 𝜑𝑖: 

𝑄 = 𝜑𝑖(𝑞s,i)    ∀𝑖 = 1,… ,𝑁B 

Considering each closed-loop system, 𝜑𝑖 , we propose to identify a linear Output Error model (OE), 𝜑𝑖 , 

using the controlled nonlinear model 𝜑𝑖  to generate the data-set for the identification. Regarding the 

single model, 𝜑𝑖 , we propose to approximate the closed-loop dynamics as an OE model in the form:  

𝑦(𝜅) =
(∑ (𝑏𝑗𝑧

−𝑗)𝑁𝑏
𝑗=1 )

1 + ∑ (𝑓𝑗𝑧
−𝑗)

𝑁𝑓
𝑗=1

 𝑢(𝜅) + 𝛾     (6.6)  

where the auto-regressive polynomial is identified based on the detrended input-output data set and 

the term 𝛾 is the identified bias recovered a posteriori considering 𝑢(𝑘) > 0. 

We present the main steps done for the identification of the output error model of the boiler steam 

generator. We first generate four sets of signals for 𝑞s, each representing a different experiment. The 

generated signals are different from each other to study different behaviour of the system and have e 
better identification model. 

In Figure 6.4, we can see the four 𝑞s generated profile used for the identification of the output error 

model for boiler 1. The other boilers’ signals are not shown because they are similar to the one 

presented.  

One by one the experiments are done simulating the real system controlled with the regulators 

presented in the previous section. After that, the experiments are merged and the OE model is identified.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.4 – 𝑞𝑠  generated profile for each experiment 
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When the five boiler models are identified, we rewrite them from the OE form (6.6) into state-space 

form, where i runs from one to five: 

𝜑𝑖(𝜅): {
𝑥𝑖(𝜅 + 1) = 𝐴𝑖𝑥𝑖(𝜅) + 𝐵𝑖𝑢𝑖(𝜅)

𝑦𝑖(𝜅) = 𝐶𝑖𝑥𝑖(𝜅) + 𝛾𝑖
    (6.7) 

defining, for each subsystem i, the state vector as: 

𝑥(𝜅) = [𝑦𝜅 , 𝑦𝜅−1, … , 𝑦𝜅−𝑛𝑓+1 , 𝑢𝜅−1, … , 𝑢𝜅−𝑛𝑏+1] ∈ ℝ
𝑛  

where 𝑛 = 𝑛𝑓 + 𝑛𝑏 − 1, and matrix A is defined as:  

 

 

 

matrix B is defined as: 

𝐵 = [𝑏1 01x(nf−1)  1  01x(nb−2)] 

and finally, matrix C is defined as 

𝐶 = [1 0…0] 

All the identified models (6.7) respect the assumption of:  

• 𝐴𝑖  is Schur stable; 

• 𝑚 = 𝑝; 

• det(𝐶𝑖(𝐼𝑛 − 𝐴𝑖)
−1𝐵𝑖) ≠ 0 

In particular, we have that 𝑚 = 𝑝 = 1.  

6.5.2 - SYSTEM REFERENCE MODELS 

For control design at medium level, we need to devise a model of the boiler ensemble. To do so, we first 

define the reference dynamics for each subsystem. In practice we need: 

• To define a possibly reduced state of the i-th reference model as 𝑥𝑖 = 𝛽𝑖(𝑥𝑖) where 𝛽𝑖 ∈ ℝ
�̂�x𝑛𝑖 ; 

• To describe the evolution of the state variable 𝑥𝑖 using the alternative model [19] 

�̂�𝑖 : {
𝑥𝑖(𝜅 + 1) = �̂�𝑥�̂�(𝜅) + 𝐵�̂�𝑢𝑖(𝜅) + �̂�𝑖(𝜅)

𝑦𝑖(𝜅) = �̂�𝑥�̂�(𝜅) + 𝛾�̂�
    (6.8) 

where �̂�𝑖(𝑘)embeds the error due to the mismatch between model (6.8) and (6.7). if the rate of 

changes of �̅� between consecutive steps is bounded, then it is possible to guarantee that �̂�𝑖(𝜅) 

is bounded.  

We point out that the state and output matrices �̂� and �̂�, respectively, as well as the model order �̂�, are 

the same for all subsystems’ reference models. On the other hand, matrices �̂�𝑖  must be properly selected. 

The most convenient choice consists of selecting �̂�, �̂�𝑖  and �̂� with a similar canonical structure of the 

ones described in (6.6). In this case, is sufficient to define 𝛽𝑖 ∈ ℝ
�̂�xni  as a suitable selection matrix, i.e. 

whose rows are basis vector of the canonical space and where �̂� ≤ 𝑛𝑖 . The reference model (6.7) must 

satisfy the so-called gain consistency conditions with respect to (6.6), that in this case are verified by 

sampling setting: 

𝛾𝑖 = 𝛾𝑖     (6.9) 
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�̂�(𝑖,1) =
∑ 𝑏𝑖,𝑗
𝑛𝑏
𝑗=1

1 + ∑ 𝑓𝑖,𝑗
𝑛𝑓
𝑗=1

 (1 + ∑𝑓𝑗

𝑛�̂�

𝑗=1

) −∑�̂�𝑗

𝑛�̂�

𝑗=2

     (6.10) 

where 𝑏𝑖,𝑗, 𝑗 = 1,… , 𝑛𝑏  and 𝑓𝑖,𝑗 , 𝑗 = 1, . . , 𝑛𝑓  are the parameters that characterize the i-th model (6.8).  

The state of the ensemble dynamical model �̂� is defined considering the state of the single active boilers, 

i.e. the ones where 𝛿𝑖 = 1. This is done under the assumption that, when a boiler is switched off, its 
steam production is inactivated, and the steam produced during the switch off transient is diverted from 

the ensemble output. Accordingly, �̅� = ∑ 𝛿𝑖�̂�𝑖
𝑁B
𝑖 , the input is �̅�, and the output is �̅� =

 ∑ 𝛿𝑖𝑦𝑖
𝑁B
𝑖 . Considering the reference model (6.7) we can write: 

�̅�: {
�̅�(𝜅 + 1) = �̂��̅�(𝜅) + �̅��̅�(𝜅) + �̅�(𝜅)

�̅�(𝜅) = �̂��̅�(𝜅) + �̅�
    (6.11) 

where �̅� =  ∑ 𝛼𝑖�̂�𝑖
𝑁𝐵  
𝑖 , �̅� =  ∑ 𝛿𝑖𝛾𝑖

𝑁B
𝑖 , and �̅� =  ∑ 𝛿𝑖𝑤𝑖

𝑁B
𝑖 . We also define the static gain of the ensemble 

as �̅� = ∑ 𝑔𝑖𝛼𝑖
𝑁B
𝑖 .  

At medium level, the reference tracking controller may operate with a slow sampling time 𝑇 = 𝑣𝜏, 𝑣 ∈

ℕ. We denote with k the corresponding time index. This requires defining the ensemble variables at the 

new timescale as follows. 

The input is �̅�[𝑇](𝑘), defined such that �̅�(𝜅) = �̅�[𝑇](𝑘) for all 𝜅 = 𝑘𝑣,… , (𝑘 + 1)𝑣; also, we define 

�̅�[𝑇](𝑘) =  �̅�(𝑘𝑣) and �̅�[𝑇](𝑘) = �̅�(𝑘𝑣).  Accordingly, the system (6.10) is resampled, and its slow 

timescale dynamics is  

�̅�[𝑇] : {
�̅�[𝑇](𝑘 + 1) = �̂�[𝑇]�̅�[𝑇](𝑘) + �̅�[𝑇]�̅�[𝑇](𝑘) + �̅�[𝑇](𝑘)

�̅�[𝑇](𝑘) = �̂�[𝑇]�̅�[𝑇](𝑘) + �̅�
    (6.12) 

where �̂�[𝑇] = �̂�𝑣 , �̅�[𝑇] = ∑ �̂�𝑗�̂�,𝑣−1
𝑗=0  and �̅�[𝑇](𝑘) is defined consistently.  

6.5.3 – MEDIUM LAYER MPC CONTROLLER 

The objective of the medium level MPC is to track the global produced heat target 𝑟 = �̅�Dem , based on 

the ensemble configuration, defined by the sharing factors optimized at high level. 

For all the time steps k, the medium level is also committed to enforce the constraints (6.1), i.e. 

�̅�[𝑇](𝑘) ∈ �̅�    (6.12𝑎)  

�̅�[𝑇](𝑘) ∈ �̅�    (6.12𝑏) 

and for all 𝑖 = 𝑖, … ,𝑁B 

𝑢𝑖(𝑘𝑣) = 𝛼𝑖�̅�
[𝑇](𝑘) ∈ 𝒰𝑖      (6.12𝑐) 

𝑦𝑖(𝑘𝑣) ∈ 𝒴𝑖     (6.12𝑑) 

finally, for consistency we need to ensure that: 

�̅�[𝑇](𝑘) − �̅�[𝑇](𝑘 − 1) ∈ Δ�̅�     (6.12𝑒) 

To manage this, the medium level MPC is a robust offset-free tracking algorithm [3]. To design the offset-

free state-feedback MPC, the ensemble model is augmented and rewritten in the velocity form. This 

robust MPC algorithm in velocity form, among other things, has the advantage to easily enforce the 

constraint (6.12e). Furthermore, thanks to the tube-based MPC approach, by tightening opportunely the 
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constraints, the MPC problem guarantees the feasibility of the actual controller while considering the 

unperturbed system in the computation of the control action. Finally, the corresponding optimization 

program to be solved at each time step T is enhanced with the additional optimization variable �̂�, which 

is defined as the closest feasible set point to r, to guarantee feasibility when set-point change.  

In Appendix 2, we look more in details these last concepts, regarding the robust tube-based MPC, the 

velocity form, and the MPC reference tracking.  
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CHAPTER 7 

BOILER ENSEMBLE HIERARCHICAL CONTROL SIMULATION RESULTS 

In this chapter, we show the main simulation result regarding the boiler ensemble hierarchical control 

presented in Chapter 6.  

We consider  𝑁B = 5 boiler steam generators operating at nominal pressure of 57 bar. These boilers are 

serving a common load. Some of the boiler parameters are listed in Table 7.1, while in the next one we 

list the production limitations of each boiler and the corresponding cost 𝜆𝑖 of using such boiler.  

Boiler 𝑞𝑠 Min 
[kg/s] 

𝑞𝑠 Max 
[kg/s] 

Q Min 
[kW] 

Q Max 
[kW] 

𝜆 

1 0.1 1.264 565 3879 100 
2 0.092 1.16 575 3810 130 
3 0.089 1.125 584 3820 120 
4 0.095 1.20 564 3800 70 
5 0.099 1.25 553 3789 80 

 

 

The system is characterized by the global constraints (6.1c-d). In particular, we have that the sets are: 

�̅� = [0.089, 6] [kg/s]  

�̅� = [554,19062 ] [kW] 

We assume that all the systems have the same low-level controllers, that are defined in Chapter 6.3.1. 

the closed-loop nonlinear model is used to generate the data-set for the identification of the discrete-

time linear polynomial model (6.6), with sampling time 𝜏 = 10 s, 𝑛𝑓 = 3, 𝑛𝑏 = 2, and 𝑛𝑘 = 1. The same 

setting is used for each boiler, so that system 𝜑𝑖  has the same order n. The comparison of the dynamic 

response of the nonlinear model 𝜑𝑖
𝑁𝐿  and the identified linear one 𝜑𝑖

𝐿 is presented for boiler 1 in the 

next figure. 

 

 

 

 

 

 

 

 

 

 

 

Table 7.1 – Boiler limitations production 

Figure 7.1 – Comparison of step-response of 𝜑1
𝑁𝐿 and 𝜑1

𝐿 
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The matrices of the first boiler steam generator are chosen for defining the reference model. In Figure 

7.2, the comparison of the step response of each linear system 𝜑𝑖
𝐿 with its reference model �̂�𝑖  is shown: 

the gain consistency conditions (6.9) and (6.10) guarantee that at steady state the actual and reference 

model reach the same value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thanks to the reference models �̂�𝑖 , the model �̅� of the ensemble is derived using (6.12) and re-sampled 

at the medium-layer time scale, with 𝑇 = 30𝑠. 

The robust MPC is designed considering that the disturbance �̅� is such that (see Figure 7.3): 

||�̅�||
∞
≤ 4 x 10−2  [𝑘𝑔/𝑠]  

the set �̅� is evaluated by imposing the maximum variation of the input equal to  

Δ�̅� = 0.5 [𝑘𝑔/𝑠] 

A simulation shows the result of the proposed control architecture when a piece-wise constant demand 

is given. It is worth noting that, as reported in Figure 6.2, the reference trajectory is naturally given in 

terms of steam demand �̅�s
Dem  and converted into an equivalent heat target using the static gain of the 

ensemble: 

�̅�Dem = 𝐺𝑎𝑖𝑛 �̅�s
Dem    (7.1) 

 

Figure 7.2 – Comparison of step-response of each linear system with its reference 
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 Figure 7.4 – Simulation 1: generated heat and generated steam  

 

 

 

 

 

 

 

 

 

 

In Figure 7.4 it is shown in the top graph the boiler ensemble generated heat �̅� = ∑ 𝑄𝑖
𝑁B

𝑖=1 , in solid red 

line, that track a time-varying load. The overall heat demand, �̅�Dem  (black line with circles), is directly 

computed with the static relation (7.1). The actual demand is filtered by the high-level optimization, 

defined in (6.5), to obtain a feasible steady-state steam production �̅�ss, depicted in magenta dotted line. 

Eventually, at the medium MPC level the reference �̂� is further considered as a decision variable (thin 

blue solid line). In the bottom graph, it can be seen the ensemble steam generation �̅�s = ∑ 𝑞𝑠,𝑖
𝑁B

𝑖=1  

depicted in ochre solid line) with the time-varying steam demand, �̅�s
Dem in black dotted line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 – Total disturbance distribution  
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As shown in Figure 7.4, the reference trajectory for the ensemble is further modulated at high and 

medium levels: its variation is restrained at high level by considering the implication of the feasibility of 

the medium predictive controller, as discussed in Chapter 6.4. The high-level optimization is executed 

with a slow cycle time, a multiple of the medium level controller, i.e. 𝑇𝐻𝐿 = 5𝑇. However, the 

optimization is also triggered when the disturbance from the final target is above a certain threshold, 

Δ�̅�s
Dem,threshold = 3 x 10−2. The high level concurrently decides the shares, the activation/deactivation 

of the generators and the closest reachable steady-state steam value �̅�ss used to compute the reference 

for the lower MPC level, 𝑟 =  𝑔𝑎𝑖𝑛 �̅�ss , to safeguard its feasibility.  

As shown in Figure 7.5, when the global steam demand rises, the boiler steam generators are added to 

the ensemble based on the subsystem efficiency rank, but also the associated operating cost 𝜆𝑖. When 

the demand slightly changes as in the first half of the simulation, sharing factors are just adapted to 

improve the ensemble operating efficiency. Instead, a larger increase in the demand, as al 𝑡 = 1800 𝑠, 

induces a variation of the ensemble configuration, shown by the activation of the boiler 2. To respond 

to a further increase of the demand, at 𝑡 = 2450 𝑠, the boiler 3 is plugged into the ensemble, then when 

the demand drops again, boiler 2 is unplugged.  

When the share factors change or the ensemble configuration is modified by the introduction or removal 

of a subsystem, the ensemble model is recomputed following (6.12) and the MPC state �̅�[T]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 – Sharing factors 𝛼𝑖 computed from the high-level optimization  
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Figure 7.6 –Steam production of each boiler in the ensemble 

and the previous optimal input �̅�𝑘−1
[T]  are reset in order to be consistent with the successive configuration 

of the ensemble. The optimal steam demand for the ensemble �̅�𝑠 is computed by the medium level MPC 

to track the reference trajectory. Based on the shares given by the high layer, the subsystem steam flow 

rate 𝑞𝑠,𝑖 = 𝛼𝑖�̅�𝑠 is applied to the boiler nonlinear continuous-time system, described in Chapter 3.1, and 

controlled with sampling time 𝜏. 

The next two figures show that for each subsystem the input and output constraints are correctly 

enforced.  

In Figure 7.6 the steam flow rate 𝑞s,i of the single subsystem is shown. When the high-level optimization 

removes a boiler in the ensemble, the contribution is null, and the steam flow rate is shown below the 

minimum level with a bold grey line. When the boiler is actively contributing to the ensemble, it is shown 

that local constraints are always enforced.  

In Figure 7.7 the used heat of the single subsystem is shown. The constraints on the output of the local 

subsystem are directly imposed at the medium level control of the ensemble. When the boiler is 

unplugged from the ensemble the corresponding gas flow rate is shown below the minimum level with 

a bold grey line. 
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Figure 7.7 – Heat used by each boiler in the ensemble 



85 
 

CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

In this thesis we have discussed the importance of steam in the industry processes, we have presented 

its main properties and how it is produced (Chapter 2). 

We have derived the boiler physical model and we have shown the identification procedures to detect 

the set of parameters that best describe the plant real data. (Chapter 3). The black box identification of 

the accumulator using the LSTM was necessary to implement this component in the control problem. 

The successive linearization technique was powerful and allows use the standard linear MPC algorithms 

even if we are dealing with a complex nonlinear system.  

We have presented two original control schemes that face real application problems i.e. the control of 
multiple different subsystems (Chapter 4) and the control of an ensemble of similar subsystems (Chapter 

6). In particular, the hierarchical control algorithm explained in Chapter 6 can be adapted to any kind of 

applications that require the coordination of subsystems towards the main goal.   

This work can be extended in many possible directions:  

First of all, it is case of interest to derive an appropriate model of the accumulator based on the physical 

equations consistent with the available plant data. This would require further insights on the specific 

structure and functioning of the accumulator under analysis.  

Secondly, as a future step, the hierarchical control architecture will be extended to include accumulators, 

to improve the system efficiency, especially in transient conditions. 

Finally, it could be of great interest to extend the control scheme derived in Chapter 4 to the control of 

the boiler in another range of operating conditions, e.g. during start-up and shut down operations.  
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APPENDIX 1 

IAPWS-IF97 GENERAL DESCRIPTION 

In 1997, The International Association for the Properties of Water and Steam (IAPWS) [5] adopted a 

new formulation for the thermodynamics property of water and steam for industrial use. This 

formulation was designed for much greater computational speed and was an approximation of the 

previous one. 

In this work, we use the MATLAB function related to this formulation [17]. This allows us to calculate all 

the thermodynamic properties of water and steam given some known parameters. It also allows us to 

calculate approximately the derivative of certain thermodynamics variables with respect to others and 

evaluate them at a specific point with very low computational load and low numerical error. 

 The range of validity of this formulation is:  

 

and the result error range varies from property to property, but in general, it is in the range of 

±0.001% to ±0.3%. 

The following figure shows five regions into which the entire range of validity of IAPWS-IF97 is divided. 

It also represents the boundaries of each region.  

 

 

 

 

 

 

 

 

 

 

 

All regions are covered by their respective fundamental equations, that allow calculating the property 

of water and steam inside the regions.  

 

 

 

 

 

 

273.15°𝐾 ≤ 𝑇 ≤ 1073.15𝐾 𝑝 ≤ 100 𝑀𝑃𝑎 
1073.15 𝐾 < 𝑇 ≤ 2273.15𝐾   𝑝 ≤ 50 𝑀𝑃𝑎   

Figure A1.1 – IAPWS range of validity regions 
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APPENDIX 2 

ADVANCED MPC SCHEMES 

In this Appendix, we will consider the three advanced control schemes that combine together allow to 

define the control problem stated in Chapter 6.5.3. 

ROBUST TUBE-BASED MPC 

If the system to be controlled is affected by an external unknown (but bounded) disturbance, controlling 

the system neglecting the disturbance, could easily lead to the loss of the stability property and/or to 

constraint violation. For this reason, the so-called tube-based method has received much attention for 

its simplicity and in view of the fact that it requires an on-line computational load comparable to that of 

nominal MPC.  

Consider a linear, discrete-time system under control described by: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘)    (𝐴2.1) 

where 𝑥(𝑘) ∈ 𝒳 ⊂ ℝ𝑛, 𝑢(𝑘) ∈ 𝒰 ⊂ ℝ𝑚  and 𝑤(𝑘) ∈ 𝒲 ⊂ ℝ𝑛  is an unknown but bounded disturbance. 

The nominal system corresponding to (A2.1) is. 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵�̂�(𝑘)     (𝐴2.2) 

Consider a control gain K selected in such a way that 𝐹 = 𝐴 + 𝐵𝐾 is Schur and the robust positive 

invariant set 𝒵 verifying 𝐹𝒵 ⊕𝕎 ⊆ 𝒵. It can be proved that if 𝑥(𝑘) − 𝑥(𝑘) ∈ 𝒵 and if the real system is 

controlled with  

𝑢(𝑘) = �̂�(𝑘) + 𝐾(𝑥(𝑘) − 𝑥(𝑘))    (𝐴2.3) 

then 𝑥(𝑘 + 1) − 𝑥(𝑘 + 1) ∈ 𝒵 for all 𝑤(𝑘) ∈ 𝒲. Therefore, the input 𝑢(𝑘) to the system (𝐴2.1) is 

computed as the sum of two terms: by the nominal input �̂�(𝑘) obtained as the solution of a standard 

MPC optimization problem solved considering the nominal model (𝐴2.2) and by the corrective term 

𝐾(𝑥(𝑘) − 𝑥(𝑘)), which has the role of keeping the real system state as close as possible to that of the 

nominal system. The tube-based MPC considers the nominal system (𝐴2.2) with tighter constraints and 

its main innovation relies in adding its current state to the set of optimization variables. So, the cost 

function to be minimized is:  

𝐽 = ∑ (||�̂�(𝑘 + 𝑣)||
𝑄

2
+ ||�̂�(𝑘 + 𝑣)||

𝑅

2
)

𝑁−1

𝑣=0

+ ||�̂�(𝑘 + 𝑁)||
𝑆

2
 

where 𝑄 ∈ ℝ𝑛x𝑛 , 𝑅 ∈ ℝ𝑚x𝑚  and 𝑆 ∈ ℝ𝑛x𝑛   are positive definite matrices. As in the standard MPC case, 

the simplest choice for parameters K and S can be done as described in [3]. 

The optimization problem to be solved at each time step is: 

𝑚𝑖𝑛  𝐽 

such that 

𝑥(𝑘) − 𝑥(𝑘) ∈ 𝒵 

𝑥(𝑘 + 𝑣) ∈ �̂� ∀𝑣 = 0, . . , 𝑁 − 1 

�̂�(𝑘 + 𝑣) ∈ �̂�  ∀𝑣 = 0, . . , 𝑁 − 1 



89 
 

𝑥(𝑘 + 𝑁) ∈ Ω̂   

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵�̂�(𝑘) 

where �̂� ⊆ 𝒳⊝𝒵, �̂� ⊆ 𝒰 ⊝𝐾𝒵, where ⊝ is the Pontryagin difference. Ω̂ is a suitable positive 

invariant set for the nominal system (𝐴2.2) such that Ω̂ ⊆ �̂�, and 𝐾Ω̂ ⊆ �̂�. 

 

THE VELOCITY FORM 

Consider a discrete-time, linear, time-invariant system described by  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

                                     𝑦(𝑘) = 𝐶𝑥(𝑘)                             (𝐴2.4) 

where 𝑥(𝑘) ∈ ℝ𝑛, 𝑢(𝑘) ∈ ℝ𝑚 , 𝑦(𝑘) ∈ ℝ𝑚 . 

In order to solve the tracking problem, the system is enlarged with m integrators and described in 

velocity-form. Specifically, denoting by �̂� a generic tracking target, the corresponding steady-state 

condition is denoted (𝑥, �̂�). Letting 𝛿𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑘 − 1), 𝜖(𝑘) = 𝑦(𝑘) − �̂�, and 𝛿𝑢(𝑘) = 𝑢(𝑘) −

𝑢(𝑘 − 1), the dynamical system (𝐴2.4) can be reformulated as  

𝛿𝑥(𝑘 + 1) = 𝐴𝛿𝑥(𝑘) + 𝐵𝛿𝑢(𝑘)            

𝜖(𝑘 + 1) = 𝐶𝐴𝛿𝑥(𝑘) + 𝜖(𝑘) + 𝐶𝑏 𝛿𝑢(𝑘)    (𝐴2.5) 

Define 𝜉(𝑘) = (𝛿𝑥(𝑘), 𝜖(𝑘)) and  

𝒜 = [
𝐴 0
𝐶𝐴 𝐼𝑚

]     ℬ = [
𝐵
𝐶𝐵
] 

In this way, the system (𝐴2.5) can be written in compact form as 

𝜉(𝑘 + 1) = 𝒜𝜉(𝑘) + ℬ𝛿𝑢(𝑘)    (𝐴2.6) 

 

MPC FOR TRACKING PIECEWISE CONSTANT REFERENCES 

For practical application purposes, model predictive controllers must be able not only to regulate the 

system state to zero but also to handle non-zero target steady states which can be provided by the 

steady-state high-level optimizer. The standard solution to this problem consists of changing the system 

state coordinates i.e. shifting the state to the desired steady state. Unfortunately, the new target steady 

state could be unreachable and, moreover, feasibility may not be guaranteed.  

An effective MPC algorithm for tracking, that avoid these problems is proposed and its ingredients are: 

• the online computation of the actual target to be really tracked at each time instant; 

• the penalization of the deviation between the artificial steady state and the desired one at the 

optimization problem level.  

The controller steers the system to any admissible target steady-state while satisfying the system 

constraints. If the desired target is not admissible, the system is steered to the closet admissible steady 

state.  

If we have to track a generic non admissible target 𝑦𝑑 corresponding to (�̅�𝑑 , �̅�𝑑) = 𝑀�̅�𝑑 , possibly non 

admissible for the system because outside the set 𝒴, the penalization of the distance between admissible 
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state �̅�𝑎  and �̅�𝑑makes the system evolve to an admissible steady state such that its deviation with the 

desired steady-state �̅�𝑑is minimized.  

So, after these considerations, the cost function to be minimized is:  

𝐽 = ∑ (||𝑥(𝑘 + 𝑣) − �̅�𝑎||
𝑄

2
+ ||𝑢(𝑘 + 𝑣) − �̅�𝑎||

𝑅

2
)

𝑁−1

𝑣=0

+ ||𝑥(𝑘 + 𝑁) − �̅�𝑎||
𝑆

2
+ ||�̅�𝑎 − �̅�𝑑||

𝑇

2
 

 

where 𝑄 ∈ ℝ𝑛x𝑛 , 𝑅 ∈ ℝ𝑚x𝑚 , 𝑆 ∈ ℝ𝑛x𝑛   and 𝑇 ∈ ℝ𝑛x𝑛 are all assumed to be positive definite. The input 

sequence over all the prediction horizon N and �̅�𝑎 (the target really tracked at time k) are the decision 

variables, while the current state 𝑥(𝑘) and the desired target �̅�𝑑 are parameters of the cost function. 
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