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Abstract

Ovarian cancer is the most lethal gynecologic cancer, causing annually a
large number of deaths throughout the world. In particular, high-grade
serous ovarian adenocarcinoma (HGS-OC) is the most common type of
ovarian epithelial carcinomas and has the worst prognosis; it is a rapidly
growing carcinoma, it is believed to have a tubal origin with a high chro-
mosomal instability.
Poor prognosis in HGS-OC is largely related to chemoresistance: although
patients usually respond to initial therapy and cytoreductive surgery fol-
lowed by adjuvant chemotherapy with platinum and paclitaxel, ∼70% of
those with advanced-stage ovarian cancer experience recurrence; in many
cases, the disease becomes incurable mainly due to the development of
drug resistance.
This thesis is born as cooperation with Istitituto di Ricerche Farmaco-
logiche Mario Negri, particularly driven from biologist Sergio Marchini,
who has the intuition that using CNA data would provide interesting re-
sults in terms of early diagnosis of the disease. The analysis present in this
work is done in collaboration with a parallel thesis, which is presented to
a different committee. The focus of this work is on the biological aspects
and results of the research, while the emphasis of the other one by Sara
Sansone is on the computational methods implemented to achieve the final
goal.
One of HGS-OC peculiarity its the relapse timing of patients, that may
be used as a predictor or as a label. By using it in the first way, we
performed survival analysis to discriminate the drug-responsiveness of pa-
tients through their time to relapse. The results obtained with this model
were quite poor, therefore we decided to use the relapse timing as a label to
classify patients in classes, and specifically, we focused on therapy-resistant
and therapy-sensitive patients, where the former ones are identified by re-
lapse within a short interval of just six months since diagnosis.
To do so, many different data types have been integrated - as gene and
miRNA expression data, DNA methylation data and CNA data - because
of their involvement in ovarian cancer spreading and development; these
data-types were downloaded from The Cancer Genome Atlas (TCGA)
repository and the information needed to implement the models have been
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extracted through the use of GenoMetric Query Language (GMQL), de-
veloped at Politecnico di Milano. Building an effective classifier through
an integrative approach was the most difficult part of the thesis; based on
this approach we were able to find significant results. These results are
promising, and the integration of multiple data-types can be considered
an innovation for this case of study. The most significant biological contri-
bution was then integration of the genome portions that characterize the
classifier, useful for explaining from a biological point of view the main
distinctive features of resistant patients.
An important outcome was the identification of the Notch Signaling Path-
way, considered to be one of the most important signalling pathways in
drug-resistance tumor cells.



Sommario

Il carcinoma ovarico é il tumore ginecologico più letale, e ogni anno causa
un numero elevatissimo di decessi in tutto il mondo. In particolare,
l’adenocarcinoma ovarico sieroso di alto grado (HGS-OC) é il tipo più
comune di carcinoma epiteliale ovarico e presenta la prognosi peggiore; é
un carcinoma caratterizzato da una rapida crescita, che si ritiene abbia
origine tubarica con un’acuta instabilità cromosomica.
La prognosi sfavorevole dell’HGS-OC é soprattutto dovuta alla chemiore-
sistenza: sebbene le pazienti di solito rispondano alla terapia iniziale e
alla chirurgia citoriduttiva seguita da chemioterapia adiuvante con platino
e paclitaxel, circa il 70% di quelle affette da carcinoma ovarico in stadio
avanzato presenta recidiva; in molti casi, la malattia diventa incurabile
principalmente a causa dello sviluppo della resistenza ai farmaci.
Questa tesi nasce come collaborazione con l’ Istitituto di Ricerche Far-
macologiche Mario Negri, in particolare dall’intuizione di Sergio Marchini
che l’uso dei dati di CNA fornirebbe risultati interessanti in termini di
diagnosi precoce della malattia. L’analisi presente in questo lavoro viene
effettuata in collaborazione con una tesi parallela, che viene presentata
a un comitato diverso. Il focus di questo lavoro riguarda gli aspetti e i
risultati biologici della ricerca condotta, mentre l’enfasi di quello presen-
tato da Sara Sansone é posta sui metodi computazionali implementati per
raggiungere l’obiettivo finale. Una delle peculiarità di questa malattia é la
tempistica di ricaduta delle pazienti, che può essere utilizzata come pred-
ittore o come etichetta.
Usandola nel primo modo, ha reso possibile l’esecuzione di un’analisi di
sopravvivenza per discriminare la reattività farmacologica delle pazienti;
tuttavia, i risultati ottenuti con questo modello sono stati piuttosto scarsi,
quindi si é deciso di utilizzare i tempi di ricaduta come etichetta per clas-
sificare i pazienti in classi e, in particolare, ci siamo concentrati su pazienti
resistenti alla terapia e sensibili ad essa, in cui i primi sono identificati da
recidiva entro un breve intervallo di soli sei mesi dalla diagnosi.
Per fare questo, sono stati integrati molti diversi tipi di dati - come dati
di espressione genica e miRNA, dati di metilazione del DNA e dati CNA -
per via del loro coinvolgimento nella diffusione e nello sviluppo del cancro
ovarico; questi tipi di dati sono stati scaricati da The Cancer Genome At-
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las (TCGA) e le informazioni necessarie per implementare i modelli sono
state estratte attraverso l’uso di GenoMetric Query Language (GMQL),
sviluppato presso il Politecnico di Milano. Costruire un classificatore effi-
cace attraverso un approccio integrativo é stata la parte più difficile della
tesi; sulla base di questo approccio siamo riusciti a trovare risultati sig-
nificativi. Questi risultati sono promettenti e l’integrazione di più tipi
di dato può essere considerata un’innovazione per questo caso di studio.
Il contributo biologico più significativo é stato quindi l’integrazione delle
porzioni del genoma che caratterizzano il classificatore, utile per spiegare
da un punto di vista biologico le principali caratteristiche distintive dei
pazienti resistenti.
Un risultato importante é stata l’identificazione del Notch Signaling Path-
way, considerato uno dei pathway più rilevanti per quanto riguarda lo
studio delle cellule tumorali resistenti ai farmaci:
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Chapter 1

Introduction

1.1 General outline

Ovarian cancer is the deadliest gynecologic malignancy, with a 5-year sur-
vival rate of approximately 47%, a number that has remained constant
over the past two decades. Early diagnosis improves survival, but unfor-
tunately, only 15% of ovarian cancers are diagnosed at an early or local-
ized stage. Most ovarian cancers are originally epithelial and treatment
prioritizes surgery and cytoreduction followed by cytotoxic platinum and
taxane chemotherapy. While most tumours will initially respond to this
treatment, recurrence is likely to occur within 16 months for patients with
advanced-stage disease.
In this thesis, a particular type of ovarian cancer has been taken into con-
sideration: high-grade serous ovarian adenocarcinoma (HGS-OC), which is
a tumor-type arising from the serous epithelial layer in the abdominopelvic
cavity and it is mainly found in the ovary; these carcinomas make up the
majority of ovarian cancer cases and they have the lowest survival rates.
Patients diagnosed with high-grade serous ovarian adenocarcinoma who
received initial debulking surgery followed by platinum-based chemother-
apy can experience highly variable clinical responses: a small percentage
of women experience exceptional long-term survival, while others develop
primary resistance to therapy and succumb to the disease in less than 32
months.
Despite the promising results achieved with cytoreductive surgery and
platinum-based chemotherapy, eventually between 70% and 80% of
advanced-stage ovarian cancer patients develop a resistance to the treat-
ment, which is the only available therapy at the moment. Predicting the
drug responsiveness at the time of diagnosis is essential for an improved
outcome.
What makes a reliable cure particularly difficult to find, are the distinctive
traits of this pathology: it is a rapidly growing carcinoma believed to have
tubal origin with a high chromosomal instability : in many cancer types,
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chromosome instability (CIN; or abnormal numbers of chromosomes) is as-
sociated with aggressive tumours, the acquisition of multi-drug resistance
and poor patient outcome.
Another one of its peculiarities stands in the relapse timing of the patients
affected by it. Indeed, patients can be recognized and differentiated into
three classes, according to the time elapsed from the end of the first-line
therapy to relapse:

• relapse within 6 months since the end of treatment: resistant ;

• relapse after 12 months since the end of treatment: sensitive short
term;

• relapse after 32 months since the end of treatment: sensitive long
term.

Since the aim of this study is to build an efficient method for chemore-
sistance prediction, it is fundamental to characterize genomic patterns in
intrinsic or acquired drug resistance, identifying a molecular signature that
could be used to predict response to therapy at the time of diagnosis: this
would lead to an improvement in the quality of life of patients resistant
to therapy, who could not be subjected to it as could consequently not be
affected by its side effects, in the search for alternative therapies.
The types of data that have been analyzed in this work are gene expres-
sion data, miRNA expression data and DNA methylation data: these have
been chosen due to their involvement in ovarian cancer spreading and de-
velopment;

• regarding gene expression data, a particular category of genes belong-
ing to this category was selected to carry out the study: these are
protein-coding genes, equal to about 2% of the DNA of the human
genome that encodes for protein. The choice of using this gene-type
is derived from their involvement in pathways designed to perform
various functions, which if affected can lead to the appearance of
cancer.

• miRNA expression data were chosen because of the causal role they
have in tumorigenesis; in particular, in comparison to the normal
ovary, miRNAs are aberrantly expressed in human ovarian cancer;

• moreover, methylation imbalance is characteristic of cancer and it is
known that changes in DNA methylation can be used diagnostically
and that they may predict resistance to treatment.

To further improve these results, copy number alteration (CNA) data,
concerning regions of the genome presenting deletions and amplifications,
have been merged with those already mentioned: the merging of these data
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types has led to an overall improvement in the results. The processing of
this data-type has been performed in a parallel study, [1].
It has been decided to use also CNA data because these regions are partic-
ularly interesting for their possible prognostic and diagnostic involvement:
these alterations could be considered “early events”, so they are potential
predictors of chemoresistance; furthermore, being probably indicative and
characterizing therapy-resistant patients, they can also be investigated to
evaluate the development of resistance to therapy for patients initially sen-
sitive to it; this intuition came from Istituto di Ricerche Farmacologiche
Mario Negri researchers. A key part of the pipeline to build a model suit-
able for the intended purpose was the feature selection process: various
sets of features were selected according to the significance of their expres-
sion, with the significance being evaluated in both statistical and biological
terms.
Once the feature sets were identified, we proceeded in two distinct ways:
first, a survival analysis was performed to understand if this method could
predict the patients’ relapse time; once this parameter was known, it would
have been possible to identify those patients as belonging to a specific class,
and thus it would have been possible to prevent treatment for therapy-
resistant patients, who would not benefit from receiving the treatment.
Unfortunately, the results of this analysis were quite poor. For this reason,
it was decided to leave this method aside and move on to the classification,
from which good results have been achieved.
The data types used in this study were downloaded from The Cancer
Genome Atlas (TCGA) repository, and the information needed to imple-
ment the model has been extracted using appropriate queries on Geno-
Metric Query Language (GMQL): TCGA is a landmark cancer genomics
program that sequenced and molecularly characterized a huge amount of
cases of primary cancer, and GMQL is a next-generation query language
for querying next-generation sequencing data.
The results obtained through the use of features sets selected as signif-
icant for the distinction of therapy-sensitive patients compared to those
resistant to it turned out to be good, especially as regards those obtained
through the integration of all data types: this integration is an innovation
with respect to the studies already in the literature.
A very important achieved result was the identification of Notch Signaling
Pathway, which is known to be involved in drug-resistance; its regulation
can induce drug sensitivity, leading to increased inhibition of cancer cell
growth, invasion and metastasis.
With the purpose of improving the declared results in the future, a modus
operandi could be to better investigate the involvement of specific miRNAs
in the development of ovarian cancer, their functional bonds with methy-
lated genes and CNA deletion and amplification regions of the genome.
Being aware of the fact that resistance to the only available therapy
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gives patients no other treatment options, it would be interesting, hav-
ing treated methylation data, to investigate how DNA methylation may
be useful for innovative cancer treatment and investigate the potential of
DNA methylation-based markers for diagnosis, prognosis, screening and
prediction of drug resistance for ovarian cancer patients.

1.2 Thesis structure

The structure of the thesis is the following.

Chapter 2: Ovarian Cancer This chapter is entirely devoted to the
discussion and in-depth analysis of as many aspects as possible concerning
ovarian cancer, necessary to provide a detailed description of the disease
and its development, up to the understanding of the particular case of
study analyzed, that of the high-grade serous ovarian adenocarcinoma.

Chapter 3: Bionformatics and Tools In this chapter, we provide the
information necessary to understand more in detail the reasoning behind
the choice of the declared data-types; the tools and interfaces used for
their treatment will be described.

Chapter 4: Datasets In this chapter, we describe the structure of the
datasets used during the discussion, their composition and the origin of
the data used to construct them.

Chapter 5: Computational Methods Foundation This chapter is
dedicated to the detailed explanation of the methods used to proceed with
the analysis.

Chapter 6: Computational Methods This chapter explains the final
model thanks to which the results have been extrapolated.

Chapter 7: Results The best results obtained through the performed
analyzes are extensively described in this chapter.

Chapter 8: Conclusions In this final chapter, we critically evaluate
results of this thesis and compare them with those in the literature, men-
tioning related works and future perspectives.
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Chapter 2

Ovarian Cancer

2.1 Overview

Ovarian cancer is the preeminent cause of gynecologic cancer death world-
wide while constituting only 3% of all female cancers, [2]. As of 2018, ovar-
ian cancer was the seventh most common cancer worldwide in women, with
around 240,000 new cases. Ovarian cancer is the second most common ma-
lignancy after breast cancer in women over the age of 40, particularly in
developed countries. When looking at all types of cancers, ovarian cancer
is the eleventh most common type in women, the fifth leading cause of
cancer-related death in women, and, as mentioned before, the most fatal
gynecologic cancer, [3].
Due to the lack of specific symptoms in the early stage, 70% of cases are not
diagnosed until cancer has reached an advanced stage, FIGO Stages IIB
to IV (spread of tumour within the pelvis or elsewhere in the abdomen).
Early detection of ovarian cancer reportedly increases the 5-year survival
rate by up to 92%; however, the actual overall 5-year survival rate is only
15%-45%, [2].
Ovarian cancer is characterized by a late-stage presentation and poor prog-
nosis. Women often present with silent symptoms as abdominal bloating
and pain, causing delayed referral for workup of a malignancy. The risk
factors of nulliparity, early-onset menarche, and late-onset menopause and
the protective factors of increased parity, extended time lactating, and use
of oral contraceptive pills imply that ovarian cancer risk is proportional to
the number of ovulations in a life-time. Besides ovulation number, family
history is a strong risk factor. A hereditary predisposition is responsible
for 1424% of ovarian cancers, with the majority attributable to inherited
mutations in the BRCA1 or BRCA2 genes, [4].
The majority of the deaths (70%) are of patients presenting with advanced-
stage, high-grade serous ovarian cancer (HGS-OvCa). The standard treat-
ment is aggressive surgery followed by platinumtaxane chemotherapy. Af-
ter therapy, platinum-resistant cancer recurs in approximately 25% of pa-
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tients within six months, and the overall five-year survival probability is
31%. Approximately 13% of HGS-OvCa is attributable to germline muta-
tions in BRCA1/2 and a smaller percentage can be accounted for by other
germline mutations. However, most ovarian cancer can be attributed to a
growing number of somatic aberrations, [5].
Despite advancements in cancer research and treatment, survival statistics
have remained largely unchanged for many years. A better understanding
of the molecular pathogenesis of ovarian cancer is needed in order to de-
velop new drug therapies or diagnostic biomarkers and elucidate the role
of environmental exposures to the individual predisposition to the disease,
[2].

2.2 Incidence and Prognosis

2.2.1 By Population/Age

The Centers for Disease Control and Prevention reports that white women
have the highest prevalence, with 11.3 out of every 100,000 women being
affected. The highest incidence per ethnicity after whites are Hispanics,
Asian/Pacic Islander, African Americans, and American Indian/Alaska
natives, whose incident rates are 9.8, 9.0, 8.5, and 7.9 per 100,000, respec-
tively. Ovarian cancer is rare in young women, particularly under the age
of 30; risk increases with age, with the occurrence spiking drastically after
the age of 50, and average diagnosis between the ages of 50 and 70 years,
[3].

2.2.2 Prognosis

Prognosis for those women that develop ovarian cancer is directly related
to the stage of disease at the time of diagnosis. Those diagnosed at stage I,
have a 5-year survival rate of 90%. In those with regional disease (meaning
the disease has spread to adjacent tissues), 5-year survival rates drop to
around 80%, and 25% in those with metastatic disease. Over the last 30
years, mortality rates from ovarian cancer have narrowly dropped, [3]

2.3 Classifications and Histopathology

Ovarian cancer has three main types: epithelial (most common), germ cell,
and sex-cord-stromal, with the latter two comprising only about 5% of all
ovarian cancers. There are four primary histologic subtypes of epithelial
ovarian cancer: serous, endometrioid, mucinous, and clear cell. Serous tu-
mours are categorized into two classications: high-grade serous carcinomas
(HGSC) or low-grade serious carcinomas (LGSC). HGSCs account for 70%
to 80% of all subtypes of epithelial ovarian cancer, while LGSCs account
for less than 5%.

6



Endometrioid, mucinous, and clear cell subtypes account for 10%, 3%, and
10%, respectively. Figure 2.1 from [3] highlights key aspects of the types
of epithelial ovarian cancers.

Figure 2.1: Key aspects of the types of epithelial ovarian cancers

The ovarian cancer we are interested in is the epithelial one, so we are
gonna discuss about it and its features.

2.4 Epithelial Ovarian Cancer

2.4.1 Background

Epithelial malignancies will typically have three point-of-origin sites: ovar-
ian, tubal, or other epithelial sites in the pelvis. Epithelial ovarian ones
(which account for the majority of ovarian cancers) are subdivided into
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two categories: type I and type II tumours. Type I tumours, which are
not as lethal as type II tumours, are considered to be caused by contin-
ual ovulation cycles, inflammation, and endometriosis. The appearance
of endometriosis seems to enhance a woman risk of ovarian cancer and
it is associated with 5% to 15% of all epithelial ovarian cancers. Many
of these cancers manifest as low-stage diseases and usually have a more
favourable outcome than types that are not associated with endometriosis.
Unfortunately, type II tumours are commonly associated with fatal out-
comes. These cancers are usually diagnosed later and are often connected
to the genetic mutations of the BRCA genes and p53 mutations, another
tumour-suppressing gene. One theory is that these tumours have moved
from the fallopian tubes, the point of origin for these cancers, [3].
Epithelial ovarian cancer (EOC) represents the largest subgroup (90%)
of ovarian cancers. EOCs are distinguished by histology, of which pap-
illary serous is the most frequent (75%). Serous carcinomas are further
partitioned into high-grade and low-grade tumour types. High-grade and
low-grade serous carcinomas behave differently in terms of disease pro-
gression and response to platinum-based chemotherapy: low-grade serous
carcinomas (LGSC) are often associated with borderline serous tumours,
indicating that they may arise from precursor lesions. LGSCs tend to fol-
low a more indolent course and are relatively platinum-resistant, compared
to high-grade serous tumours which are often aggressive and can respond
to platinum therapies.
High-grade serous carcinomas (HGSC) are the most common serious tu-
mours. Over 90% of high-grade serous ovarian cancers harbour somatic
P53 mutations. The majority of P53 mutations found in ovarian cancer
are missense mutations, most of which occur in the DNA-binding domain
of the protein. This is also the area through which P53 exerts its major
function as a tumour suppressor, by trans-activating target genes regu-
lating cell cycle progression, proliferation, and apoptosis. P53 mutations
not only deplete wild-type P53 tumour-suppressive functions but can also
act in a dominant-negative fashion on tetramerization of wild-type P53
with its target DNA sequence. In addition, the mutant P53 protein fre-
quently acquires an oncogenic gain-of-function in these tumours leading to
uncontrolled proliferation, increased metastatic potential, and higher risk
of acquiring resistance to specific treatments, all through transcriptional
regulation of genes important for tumorigenesis, cancer progression, and
metastasis, [4].

2.4.2 The Morphological and Molecular Heterogeneity of
Epithelial Ovarian Cancer

Ovarian Cancer is a heterogeneous disease composed of different types of
tumours with widely differing clinicopathologic features and behaviour.
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Based on a series of morphological and molecular genetic comparisons,
a dualistic model that classifies various types of ovarian cancer into two
groups designated type I and type II is proposed, [6].
Type I tumours are clinically inactive and usually present at a low stage.
They exhibit a shared lineage between benign cystic neoplasms and the
corresponding carcinomas often through an intermediate (borderline tu-
mour) step, supporting the morphological continuum of tumour progres-
sion in these neoplasms. This stepwise sequence of events parallels the
adenoma-carcinoma sequence that occurs in colorectal carcinoma. Type I
tumours include low-grade serous, low-grade endometrioid, clear cell and
mucinous carcinomas. In contrast to the clear-cut and distinctive mor-
phological differences among type I tumours, the morphological variations
among the type II tumours are more complex and as a result, there is
considerable overlap in the diagnosis of these tumours by different pathol-
ogists. Type II tumours exhibit papillary, glandular and solid patterns
and they are diagnosed as high-grade serous, high-grade endometrioid and
undifferentiated carcinomas depending on the dominant pattern. Gener-
ally, most pathologists classify them as high-grade serous carcinomas even
though they bear little resemblance to the tubal-type epithelium (the basis
for typing a tumour as serous); many of those lacking distinctive serous or
endometrioid features could be classified as high-grade adenocarcinoma.
In addition to these neoplasms, malignant mixed mesodermal tumours
(carcinosarcomas) are included in the type II category because they have
epithelial components identical to the pure type II carcinomas.
Type II tumours are highly aggressive and almost always present in an
advanced stage. Since they account for approximately 75% of all epithe-
lial ovarian carcinomas and have relatively similar morphological features
and a uniformly poor outcome, ovarian cancer has been erroneously re-
garded as a single disease. The morphological differences between type I
and type II tumours are mirrored by marked differences in their molecular
genetic features. As a group, type I tumours are genetically more stable
than type II tumours and display specific mutations in the different his-
tologic cell types. Thus, KRAS, BRAF, and ERBB2 mutations occur in
approximately two-thirds of low-grade serous carcinomas whereas TP53
mutations are rare in these tumours.
High-grade serous carcinoma, the prototypic type II tumour, is character-
ized by very frequent TP53 mutations (80% of cases) and CCNE1 (encod-
ing cyclin E1) amplification but rarely mutations that characterize most
type I tumours such as KRAS, BRAF, ERBB2, PTEN, CTNNB1 and
PIK3CA7. Although only a small number of malignant mixed mesodermal
tumours have been analyzed molecularly, these few have been displaying
a similar molecular genetic profile.
In summary, type I tumours, as a group, are genetically more stable than
type II tumours and display a distinctive pattern of mutations that occur

9



in specific cell types (low-grade serous, low-grade endometrioid, clear cell
and mucinous).
In contrast, the type II tumours (high-grade serous, high-grade endometri-
oid, malignant mixed mesodermal tumours and undifferentiated carcino-
mas) show greater morphological and molecular homogeneity, they are
genetically unstable with a very high frequency of TP53 mutations. These
findings imply that different types of ovarian carcinomas develop along
different molecular pathways.y of TP53 mutations. These findings suggest
that different types of ovarian carcinomas develop along different molecular
pathways.

2.4.3 The Cell of Origin of Most Epithelial Ovarian Cancer
is not Ovarian

The origin of ovarian cancer and the mechanisms by which cancer develops
have been long discussed. The traditional view of ovarian carcinogenesis
has been that the various tumours are all originated from the ovarian sur-
face epithelium (mesothelium) and that following metaplastic changes lead
to the development of the different cell types (serous, endometrioid, clear
cell, mucinous and transitional cell [Brenner1]) which morphologically
resemble the epithelia of the fallopian tube, endometrium, gastrointestinal
tract or endocervix and urinary bladder, respectively. The healthy ovary,
however, has no constituents that resemble these tumours. Furthermore,
the cervix, endometrium and fallopian tubes are derived from the
Müllerian ducts whereas the ovaries develop from mesodermal epithelium
on the urogenital ridge separate from the Müllerian ducts. Therefore,
an alternate theory proposes that tumours with a Müllerian phenotype
(serous, endometrioid and clear cell) are derived from Müllerian-type
tissue, not mesothelium. This Müllerian-type tissue (columnar epithelium,
often ciliated) lines cysts located in para-tubal and para-ovarian locations
that have been referred to collectively as the secondary Müllerian system.
According to this theory, ovarian tumours develop from these cysts. As
the tumour enlarges, it compresses and eventually obliterates ovarian
tissue resulting in an adnexal tumour that appears to have arisen in the
ovary. More recently another theory has been advanced which argues
that the majority of ovarian carcinomas, which are high-grade serous
carcinomas, arise from high-grade intra-epithelial serous carcinomas in
the fallopian tube which then spread to the ovary.

Evaluation of these hypotheses is problematical because it is hard to
construct experimental systems, to test their validity. Consequently, this

1Extremely rare tumor of testis and paratesticular regions composed of transitional
type epithelium; usually occurs in ovary; also called transitional cell tumor. Aetiology
unknown; may originate from Walthard rests within tunica vaginalis or transitional
epithelial nests located in testicular / paratesticular locations, [7].
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evaluation is based on a critical analysis of these studies in light of observa-
tions made in the course of pathologic examination of ovarian tumours, [6].

The theory of origin from ovarian surface epithelium (mesothelium)
has a number of limitations Histologically, the single layer of commonly
attenuated mesothelium overlying the ovaries bears no correspondence
to serous, endometrioid, mucinous, clear cell or transitional (Brenner)
carcinomas. To account for this apparent contradiction, it was proposed
that the mesothelium overlying the ovary invaginates into the underlying
stroma to form so-called cortical inclusion cysts. These cysts under
the influence of local factors, possibly steroid hormones, experience a
metaplastic change, which results in the mesothelium being converted to
Müllerian-type epithelium. These inclusion cysts, with their newly ac-
quired Müllerian phenotype, can then undergo malignant transformation
resulting in carcinomas corresponding to the different cell types (serous,
endometrioid and clear cell carcinomas). Although cortical inclusion cysts
lined by ciliated (Müllerian-type epithelium) are frequently observed in
the ovarian cortex, well documented examples of what can be interpreted
as a transition from these cysts to carcinoma have not been reported.
The limitations of the secondary Müllerian system theory are that pre-
cursor lesions resembling serous carcinomas have rarely, if ever, been
reported in paratubal and paraovarian cysts.

The most compelling evidence suggests that the vast majority of what
appear to be, primary ovarian cancers, namely serous, endometrioid and
clear cell carcinomas, are derived from the fallopian tube and endometrium,
not directly from the ovary. Sporadic reports of tubal carcinoma and
dysplasia had been reported in the past but in 2001 a group of Dutch
investigators described these lesions, which closely resemble high-grade
ovarian serous carcinoma, in women with a genetic predisposition to
ovarian cancer. This was a surprising finding, since numerous studies that
carefully examined the ovaries of women with a genetic predisposition to
ovarian cancer never reported similar lesions. In addition, other studies
of normal appearing ovaries contralateral to sporadic (non-hereditary)
unilateral ovarian carcinomas had never identified a convincing precursor
lesion. These latter studies reported a number of morphological changes
in grossly normal appearing ovaries, such as an increased number of
inclusion cysts, surface papillae, cortical inclusions, including some
displaying minor degrees of atypia. The data have been conflicting, some
studies reporting a significant difference of these changes in cases versus
controls and other studies reporting no difference. In any event, none of
these changes, even remotely, resembles high-grade serous carcinoma. It
was precisely because of a lack of convincing precursor lesions that the de
novo hypothesis was proposed.
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In hindsight, because it was assumed that precursors of ovarian carci-
noma would logically be in the ovaries, the fallopian tubes were not care-
fully examined. Subsequent studies in which fallopian tubes were more
carefully examined confirmed that in situ and small, early invasive tubal
carcinomas occurred in women with a genetic predisposition for the de-
velopment of ovarian cancer. This led to fallopian tube carcinoma being
included as part of the cancer spectrum associated with inherited BRCA
mutations. It was subsequently proposed that a proportion of ovarian car-
cinomas might develop as a result of implantation of malignant cells from
the tubal carcinoma to the ovary. The next important step linking what
had been termed tubal intra-epithelial carcinoma (TIC) and subsequently
serous tubal intra-epithelial carcinoma (STIC) with ovarian carcinoma was
the observation that over 70% of sporadic (non-hereditary) ovarian and
peritoneal high-grade serous carcinomas demonstrated mucosal tubal in-
volvement including STICs. This observation gave support to the proposal
that STICs2 may be the source of ovarian high-grade serous carcinoma in
both women with hereditary mutations in BRCA as well as women who
did not have a known genetic predisposition for ovarian cancer. Although
it can be argued that mucosal tubal involvement could represent secondary
spread from an ovarian carcinoma present in the same specimen, the pres-
ence of focal non-contiguous intra-epithelial lesions (STICs) would be an
unusual manifestation of metastasis. Furthermore, the identification of
STICs in prophylactic specimens from women, with a hereditary predis-
position to ovarian cancer in which complete microscopic evaluation of the
fallopian tubes and ovaries failed to identify invasive carcinoma in these
organs, lends additional support to the concept that the serous neoplastic
process may well begin in the fallopian tube rather than the ovary. Further
support for this argument is the finding that nearly all STICs overexpress
p53 similar to high-grade serous carcinoma, Figure 2.2.

Laser capture microdissection studies of these lesions have demon-
strated that they harbor mutated TP53. In addition, STICs associated
with a concomitant ovarian carcinoma share not only morphological fea-
tures but also identical TP53 mutations indicating a clonal relationship
between them. Adnexal malignant mixed mesodermal tumours (another
type II tumor) have also been associated with STICs supporting the exis-
tence of a common precursor lesion for type II tumours. Further evidence,
implicating the fallopian tube rather than ovarian surface epithelium as
the site of origin of serous neoplasms, comes from a gene profiling study
showing that the gene expression profile of high-grade serous carcinoma is
more closely related to the fallopian tube than to ovarian surface epithe-
lium. In addition high-grade serous carcinomas express PAX8, a Müllerian
marker, but not calretinin, a mesothelial marker(Figure 2.3).

2STICs are almost always detected in the fimbria.
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Figure 2.2: Serous tubal intra-epithelial carcinoma (STIC). A. High magnification.
Hematoxylin and eosin stain. B. Immunohistochemical stain for p53. An asterisk

defines the boundary of the lesion.

Figure 2.3: Comparison of the immunohistochemical staining pattern for ovarian
surface epithelium (mesothelium), normal fallopian tube epithelium, and high-grade
serous carcinoma. PAX8 is a marker of Müllerian-type epithelium such as fallopian

tube epithelium and calretinin is a marker of mesothelium.

Generally, before a carcinoma acquires the ability to metastasize it
must first invade and gain access to blood vessels or lymphatics.
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Tubal intra-epithelial carcinomas are similar morphologically and im-
munohistochemically to endometrial intra-epithelial carcinomas, which
are regarded as precursors or early forms of uterine serous carcinoma.
These lesions have also been termed uterine surface serous carcinomas.
They have been shown to disseminate throughout the peritoneal cavity
presumably by passage of malignant cells through the fallopian tube
without requisite myometrial invasion. The cells that comprise both
endometrial and tubal intra-epithelial carcinomas are highly anaplastic
and morphologically identical to high-grade serous carcinoma. The lesions
form papillary tufts and the constituent cells are loosely cohesive.

In studies of ovarian and primary peritoneal high-grade serous carcino-
mas, in which the entire fallopian tubes were carefully sectioned, mucosal
involvement of the tube, including STICs, were identified in approximately
70% of cases. The question arises as to the source of the remaining ovarian
carcinomas that lack evidence of tubal involvement. There are a number
of possible explanations; first, despite thorough sectioning, a small STIC
could have been missed (unpublished data); second, on occasion high-
grade serous carcinomas are intimately associated with serous borderline
tumours and low-grade serous carcinomas. In these cases the high-grade
tumours have had KRAS mutations identical to those in the serous bor-
derline tumours and lacked TP53 mutations. This finding suggests that
some high-grade serous carcinomas arise from low-grade serous tumours
and not by the usual (type II) pathway that begins with a TP53 mutation.
Third, clear-cut mucosal tubal involvement could have been obscured by
overgrowth of the pelvic carcinoma. Fourth, the fimbria of the fallopian
tube is normally in intimate contact with the ovarian surface at the time
of ovulation. It is conceivable that when the ovarian surface epithelium is
disrupted at the time of ovulation, normal tubal epithelial cells from the
fimbria may be dislodged and implanted in the ovary to form an inclusion
cyst from which a high-grade serous carcinoma could develop, (Figure 2.4).
Evidence to support this notion is the observation that fallopian tube ep-
ithelial cells are easily obtained for culture by flushing the fallopian tube.
This mechanism could also explain the development of endosalpingiosis,
a lesion composed of glands and papillary structures lined by tubal-type
epithelium that is found on peritoneal surfaces in the pelvis, omentum and
beneath the capsule of pelvic and para-aortic lymph nodes. Endosalpin-
giosis is frequently found in association with low-grade serous tumours and
has been viewed as a possible precursor of these tumours. Finally, the pos-
sibility that some high-grade serous carcinomas arise in cortical inclusion
cysts, as a metaplastic process from the ovarian surface epithelium rather
than from implantation of normal fallopian tube epithelium, cannot be
entirely dismissed.
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Figure 2.4: Transfer of normal tubal epithelium to the ovary. A. Anatomical
relationship of fallopian tube to the ovary at the time of ovulation. The fimbria

envelops the ovary. B. Ovulation. The ovarian surface ruptures with expulsion and
transfer of the oocyte to the fimbria. The fimbria is in intimate contact with the

ovary at the site of rupture. C. Tubal epithelial cells from the fimbria are dislodged
and implant on the denuded surface of the ovary resulting in the formation of an

inclusion cyst.

Direct implantation of tubal epithelium into the ovary to form an inclu-
sion cyst, which in turn is the site of origin of ovarian serous carcinoma,
is an attractive alternative theory to that of metaplasia from the sur-
face epithelium (mesothelium). Implantation of fallopian tube epithelium
from the fimbria at the time of ovulation, when the surface epithelium is
disrupted, can explain the derivation of low- and high-grade serous car-
cinomas. In the case of a low-grade serous carcinoma the process slowly
develops from a serous cystadenoma and then a serous borderline tumor
after a KRAS or BRAF mutation whereas in the case of a high-grade
serous carcinoma the process evolves rapidly, presumably from a cortical
inclusion cyst after a TP53 mutation with the development of an intraep-
ithelial carcinoma as an intermediate step. According to this view both
low- and high-grade serous carcinomas are ultimately of tubal (Müllerian)
origin and in a sense the ovary is involved secondarily, Figure 2.5.

In summary, none of the existing theories adequately reconcile all as-
pects of ovarian carcinogenesis. All of them have something to offer in
explaining the development of ovarian carcinomas but none are all inclu-
sive. It does appear that the vast majority of what have been thought
to be primary epithelial ovarian and primary peritoneal carcinomas are,
in fact, secondary. Thus, the most persuasive data support the view that
serous tumours develop from the fimbriated portion of the fallopian tube.
The concept, that the majority of epithelial ovarian carcinomas originates
outside the ovary and involves it secondarily, has emerged only recently
because in the past the default diagnosis of carcinomas involving the pelvis
and abdomen was that they were ovarian. A carcinoma was classified as
tubal in origin only when the bulk of tumor involved the fallopian tube
rather than the ovary and there was evidence of an intra-epithelial (in situ)
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tubal carcinoma. A diagnosis of primary peritoneal carcinoma is even more
restrictive. Even with extensive tumor involving the peritoneum, omentum
and other abdominal organs, a carcinoma is classified as primary ovarian
if there is as little as 5 mm of tumor involving the ovaries. Thus, there
has been an inherent bias in classifying pelvic tumours as being ovarian in
origin.
Although the data, suggesting that epithelial ovarian carcinoma arises in
extra-ovarian sites and involves the ovaries secondarily, are compelling,
serous neoplasms (low- and high-grade) involve the ovaries and other pelvic
and abdominal organs, such as the omentum and mesentery, much more
extensively than the fallopian tubes.

Figure 2.5: Proposed development of low-grade (LG) and high-grade (HG) serous
carcinoma. A. One mechanism involves normal tubal epithelium that is shed from
the fimbria, which implants on the ovary to form an inclusion cyst. Depending on

whether there is a mutation of KRAS/BRAF/ERRB2 or TP53 a low-grade or
high-grade serous carcinoma develops respectively. Low-grade serous carcinoma

often develops from a serous borderline tumor (SBT), which in turn arises from a
serous cystadenoma. Another mechanism involves exfoliation of malignant cells

from a serous tubal intra-epithelial carcinoma (STIC) that implants on the ovarian
surface resulting in the development of a high-grade serous carcinoma. B. A

schematic representation of direct dissemination or shedding of STIC cells onto the
ovarian surface where the carcinoma cells ultimately establish a tumor mass that is

presumably arising from the ovary. Of note there may be stages of tumor
progression that precede the formation of a STIC.
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2.5 LGSC versus HGSC

2.5.1 Background

Ovarian serous carcinoma has traditionally been graded as well-, mod-
erately, and poorly differentiated, suggesting that it is a homogeneous
disease from the standpoint of pathogenesis. Multiple different grading
systems have been used with variable results, including the FIGO3 sys-
tem based on percentage of solid architecture the WHO4 system based
on an impression of architecture and cytologic features, the Gynecologic
Oncology Group (GOG) system based on histologic type, a system based
on a combination of mitotic index and volume percentage of epithelium,
a system based on presence/amount of hyperchromatic giant nuclei and
solid or cribriform architecture, and a grading index based on a mean
of the individual scores for architectural pattern, nuclear pleomorphism,
nucleoli, nuclear-to-cytoplasmic ratio, mitotic index, pattern of invasion,
capsule penetration, and vascular invasion. A 3-tier grading scheme that
has gained much attention over the past several years is the universal grad-
ing system, which is also referred to as the Silverberg grade. In this system,
points are assigned for each of 3 components: architecture (glandular, pap-
illary, or solid), degree of nuclear atypia, and mitotic index. The points
for each component are added, resulting in a total score which determines
the grade, analogous to that used for breast carcinoma. More recently, a
2-tier grading system specifically for serous carcinoma, in which tumours
are subdivided into low-grade and high-grade, has been proposed. A -tier
grading system is easy to apply, reproducible, and based on underlying
molecular biologic differences between low-grade and high-grade tumours,
[2].

2.5.2 Behaviour

The few studies that have compared outcome between both types of serous
carcinomas using the 2-tier system have shown that patients with low-
grade tumours have better survival. In the study by Malpica et al [8], the
2-tier grading system was found to be of independent prognostic signifi-
cance upon multivariate analysis, and the survival of patients with low-
grade tumours was significantly higher than with high-grade tumours. In
that study, death due to disease was more rapid with high-grade carci-
noma. The median survival was 1.7 years for patients with high-grade

3The International Federation of Gynecology and Obstetrics is an international or-
ganization that links about 125 international professional societies of Obstetricians and
Gynecologists. In 2011 FIGO recognized two systems designed to aid research, educa-
tion, and clinical care of women with abnormal uterine bleeding (AUB) in the repro-
ductive years.

4WHO’s primary role is to direct international health within the United Nations’
system and to lead partners in global health responses.
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tumours compared to 4.2 years for women with low-grade tumours. Fur-
thermore, in a large clinical study of only low-grade serous carcinoma, the
median overall survival with stage III or IV disease was 6.8 years. Persis-
tent disease after primary chemotherapy was the only variable associated
with shorter survival time. With high-grade serous carcinoma, survival
beyond 5 years is unusual, but survival over 10 years can be seen in a
subset of low-grade serous carcinomas.
Few studies have compared survival using the 2-tier vs. 3-tier grad-
ing systems, where serous carcinomas were graded using the 2-tier low-
grade/high-grade, 3-tier universal, and 3-tier FIGO systems; all 3 grading
systems showed statistically significant prediction of survival, [8].
In view of its simplicity in application and excellent reproducibility, it is
recommended to use the 2-tier system in routine practice, [9].

2.5.3 Pathogenesis

LGSC Low-grade serous carcinoma (invasive micropapillary serous car-
cinoma [MPSC]), has been hypothesized to arise from a serous cystade-
noma (Figure 2.6) or adenofibroma which progresses to an atypical prolifer-
ative serous tumor (APST, atypical serous borderline tumor, in Figure 2.7,
to non-invasive MPSC (micropapillary serous borderline tumor, in Figure
2.8), and then to invasive MPSC in a slow step-wise fashion. This has been
described as the Type I pathway and is supported by several morphologic
observations. First, invasive low grade serous carcinoma is associated with
non-invasive MPSCs in over three fourths of cases, Figure 2.9. Second, in
occasional tumours, the level of differentiation of the non-invasive tumor
is intermediate between APST and non-invasive MPSC, suggesting a mor-
phologically intermediate step. Third, true early invasion in an APST or
non-invasive MPSC resembles low-grade serous carcinoma (Figure 2.10).
Fourth, in several studies, non-invasive MPSCs have a higher frequency of
invasive implants (Figure 2.11) compared with APST, and these implants
are histologically identical to low-grade serous carcinoma.

Figure 2.6: Small APST arisin in a serous
cystadenoma. Figure 2.7: APST.
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Figure 2.8: MPSC. Figure 2.9: Tumor progression in MPSC.

Figure 2.10: Microinvasion in MPSC. Figure 2.11: Invasive implants.

HGSC Much less is known about the pathogenesis of ovarian high-grade
serous carcinoma compared with low-grade serous carcinoma; mutations
of KRAS, BRAF, or ERBB2 occur very infrequently in high-grade
carcinoma. In contrast, TP53 mutation occurs in 80% of high-grade
tumours, and up-regulation and down-regulation of numerous other genes
and various DNA copy number changes have been described.

Genome-wide analysis of DNA copy number alterations has demon-
strated significant numbers of amplifications and deletions, including
homozygous deletions. Among homozygous deletions, loci containing
Rb1, CDKN2A/B, CSMD1, and DOCK4 were most common and except
for the CDKN2A/B region, these homozygous deletions were not present
in either serous borderline tumours or low-grade serous carcinomas.

The identification of the precursor lesion of high-grade serous carci-
noma has been a topic of interest for decades. Since high-grade serous
carcinoma nearly always presents with high-stage disease, the develop-
ment of this tumor is thought to be rapid, and its origin has traditionally
been presumed to be from surface epithelium or epithelial inclusions in
the ovary. In an effort to detect putative precursors, researchers have
focused on ovaries of women with a family history of ovarian cancer and
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women with BRCA mutations. Increased p53 immuno-positivity has
been noted in the epithelium of ovaries from these women compared with
controls, but these findings have not been confirmed in other studies.
Mutations and/or loss of heterozygosity of TP53 have been identified in
early carcinomas and epithelial inclusions of the ovary, including identical
mutations in the epithelium and adjacent carcinoma in the same cases.
These molecular findings support to the role of TP53 mutation as an early
event in the pathogenesis of high-grade serous carcinoma and that the
origin for some tumours is the surface epithelium or epithelial inclusions
of the ovary. Parenthetically, 10% of ovarian carcinomas are hereditary.
Of the hereditary carcinomas, most are related to BRCA mutations,
which appear to play a role in the pathogenesis of ovarian carcinoma in
this subset of tumours. The vast majority of BRCA-related hereditary
ovarian tumours are high-grade serous carcinoma.

Some studies report that:

• an incidental ovarian carcinoma in situ from a woman with a germline
mutation of BRCA1 exhibited loss of heterozygosity of this gene;

• loss of heterozygosity of BRCA has been demonstrated in epithelial
inclusions/surface epithelium in ovaries from prophylactic oophorec-
tomy specimens;

• loss of heterozygosity has also been reported in invasive carcinoma
and adjacent epithelium in stage I ovarian carcinomas from women
with BRCA germline mutations;

these evidences suggest that loss of heterozygosity of BRCA is an
early event in high-grade serous carcinoma for tumours with germline
mutations. Similar to TP53, BRCA appears to function as a tumor
suppressor gene. Thus, patients who inherit a germline mutation of
BRCA and with somatic loss of the wild-type allele, develop carcinoma.
The exact interaction between mutations of BRCA and TP53 in ovarian
carcinoma is unclear. In addition to germline mutations, other molecular
alterations leading to inactivation of BRCA include somatic mutation,
promoter hypermethylation, and isolated loss of hetrerozygosity. These
putative precursor lesions are detected in inclusions in the ovary or
ovarian surface epithelium and they are characterized by tubal-type
epithelium with varying degrees of cytologic atypia that have been termed
dysplasia/carcinoma in situ. These findings, although they suggest that
a morphologically identifiable precursor of high-grade serous carcinoma
may exist in the ovary, they are very rarely detected, and, therefore, it
has been suggested that these tumours arise de novo.
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Recently, attention has been drawn to a lesion in the fallopian tube
that has the cytologic appearance of high-grade serous carcinoma of the
ovary and tubal intraepithelial carcinoma (TIC) has been designated,
Figure 2.12, [9].

Figure 2.12: Tubal intraepithelial carcinoma (TIC). The epithelium of the fallopian
tube mucosa with TIC is thicker compared with normal mucosa (upper center).

These lesions are almost always detected in the fimbriated end of the
fallopian tube. The fimbriated end is in close proximity to the ovarian
surface and it has been suggested that the tube is the origin of a subset of
ovarian high-grade serous carcinomas. This is supported by the following:

• early serous carcinomas in prophylactic bilateral salpingo-
oophorectomy specimens from women with BRCA mutations can be
detected in the tube, especially the fimbriated end, in the absence of
an ovarian tumor;

• identical TP53 mutations have been reported in TIC and syn-
chronous ovarian high-grade serous carcinomas;

• identical TP53 mutations have been reported in TICs and in small
foci of histologically normal tubal epithelium that diffusely expresses
p53, which has been termed p53 signature. It has been suggested
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that p53 signatures are precursors of TICs which in turn precede the
development of high grade serous carcinoma.

Moreover, it has been proposed that when there is a synchronous TIC and
ovarian high-grade serous carcinoma, the fallopian tube is the primary
site of origin for the ovarian tumor.

The morphologic and molecular observations suggest that possibly half
of ovarian high-grade serous carcinomas may be of tubal origin. In the
other half of tumours, primary origin may have been ovarian or peritoneal.
It should be noted that the criteria for distinction of primary ovarian vs.
peritoneal origin are quite arbitrary. Bona fide well-defined precursor
lesions in the ovary are rare and have not been identified in the peritoneum.

In summary, the pathogenesis of high-grade serous carcinoma (Type II
pathway) is characterized by:

1. rapid development from what are now believed to be intraepithelial
carcinomas very likely of tubal origin;

2. TP53 mutations;

3. a high level of chromosomal instability;

4. in hereditary tumours, BRCA germline mutations;

5. absence of mutations of KRAS, BRAF, or ERBB2.

2.5.4 Clinical aspects, histologic features and selected di-
agnostic problems

We will now leave the LGSC aside so that we can better concentrate on
HGSC.

HGSC High-grade serous carcinomas may exhibit mixtures of papillary,
glandular (Figure 2.13), nested, and diffuse/solid growth patterns (Figure
2.14) although any component may predominate in a given tumor. The
papillae tend to be large and complex. The epithelium lining the papillae
is usually stratified with an irregular slit-like configuration (Figure 2.15).
Although a micropapillary growth pattern is typical of low-grade serous
carcinoma, it should be emphasized that occasional high-grade carcinomas
can also exhibit this architecture (Figure 2.16); however, they have high-
grade nuclei and typically have an admixed solid growth pattern. The
latter would be unusual for low-grade tumours.
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Figure 2.13: Glandular pattern. Figure 2.14: Diffuse, solid pattern.

Figure 2.15: Typical papillary pattern
showing irregular slit-like spaces.

Figure 2.16: Micropapillary pattern.

The glands in high-grade serous carcinoma may be round and
simple or complex with irregular slit-like spaces (Figure 2.13). Some
tumours may have such extensive solid architecture with diffuse sheets
of neoplastic epithelium that a careful search for a glandular or papil-
lary component may be necessary for distinction from undifferentiated
carcinoma. Obvious destructive stromal invasion is generally present,
but some neoplasms may be predominantly intracystic and, therefore,
misdiagnosed as APST/non-invasive MPSC. The presence of high-grade
nuclei excludes that possibility. Necrosis is common in high-grade serous
carcinoma. Psammoma bodies can be seen but they are typically less
frequent compared with low-grade serous carcinoma.

The neoplastic epithelial cells are heterogeneous, they may be a mix-
ture of low-cuboidal, columnar and hobnail shapes. Typically, there is
marked variation in size and shape. The nuclear-to-cytoplasmic ratios are
generally high, but at times, abundant eosinophilic cytoplasm is present.
Most tumours have variable combinations of enlarged round or oval nu-
clei, irregular nuclear membranes, irregular chromatin distribution, hyper-
chromasia, large nucleoli and abundant mitotic figures, including atypical
forms, Figure 2.17.
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Figure 2.17: The nuclei of high-grade serous carcinoma are larger with greater
pleomorphism and larger nucleoli in respect to LGSC.

At times high-grade carcinomas can display an appearance, mimick-
ing endometrioid carcinoma (Figure 2.18). When the glands have irreg-
ular serrated luminal contours, large complex papillae lined by stratified
epithelium with irregular slit-like patterns, hobnail cells, bizarre tumor
giant cells and psammoma bodies, a serous carcinoma is favored. In con-
trast, high-grade endometrioid carcinoma is favoured by tumours with
peripheral palisading of solid islands and nests, squamous metaplasia, or
a background of atypical proliferative (borderline) endometrioid tumor or
endometriosis. Immunohistochemical staining for WT-1 has been advo-
cated as useful for this differential diagnosis, but in our experience it is
not reliable. At times, distinction of high-grade serous carcinoma from
high-grade endometrioid carcinoma (FIGO grade 2 or 3) is not possible
and classification as high-grade adenocarcinoma, not otherwise specified
with a descriptive comment is necessary.

Some tumours may contain cells with clear cytoplasm. If the tubulo-
cystic and papillary patterns characteristic of clear cell carcinoma are not
present, these tumours should not be interpreted as clear cell carcinoma,
Figure 2.19. When the epithelium lining the surface of large rounded
papillae is smooth, a transitional cell carcinoma-like appearance can be
produced and may be mistaken for ovarian transitional cell carcinoma
(TCC), Figure 2.20. Opinions vary among gynecologic pathologists as to
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Figure 2.18: Endometrioid carcinoma-like pattern.

whether pure TCC of the ovary is a distinctive entity or simply a TCC-
like pattern of high-grade serous carcinoma. At present, the jury is still
out. Glandular differentiation has been described in transitional cell carci-
noma; however, a diagnosis of serous carcinoma is favored when the glands
merge with complex, branching papillae exhibiting epithelial tufting and
solid nests surrounded by a space and irregular slit-like spaces are present.
Also, psammoma bodies are more typical of serous carcinoma. Immuno-
histochemistry is not helpful as WT-1 expression has been described in
both serous and transitional cell carcinomas.

Figure 2.19: Serous carcinoma
with clear cytoplasm.

Figure 2.20: Transitional
cell carcinoma-like pattern.
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Rarely, microcystic or signet ring cell-like change can be seen in high-
grade and also in low- grade serous carcinoma(Figure 2.21). Microcystic
change in such tumours is produced by the presence of back-to-back cells
with signet ring change and can simulate the reticular pattern of yolk sac
tumor. The combination of older age, bilaterality, large papillae lined by
complex and stratified epithelium, glands with irregular slit-like spaces and
psammoma bodies favor serous carcinoma. On the other hand, the com-
bination of younger age, unilaterality, microcystic patterns which blend
with other classic patterns of yolk sac tumor, such as Schiller-Duval bod-
ies, polyvesicular-vitelline, intestinal and myxoid patterns, and hyaline
globules favor yolk sac tumor. An elevated serum AFP level is charac-
teristic of yolk sac tumor. Immunohistochemistry may be helpful in that
expression of WT-1, ER, PR, CK7, and EMA are more frequent in serous
carcinoma while expression of AFP and absence of other markers are more
typical of yolk sac tumor.
The distinction of low-grade from high-grade serous carinoma is based on
nuclear features.
In most tumours, the nuclei of low-grade and high-grade serous carcinomas
are typically grade 1 and grade 3, respectively, in a 3-tier system; thus,
the diagnosis in the vast majority of tumours is straightforward. Some tu-
mours (approximately 4% of serous carcinomas), however, exhibit nuclear
features that are intermediate between low-grade and high-grade. These
grade 2 nuclei are larger and have coarser chromatin, more mitotic activity,
and larger nucleoli than grade 1 nuclei. They are also relatively uniform,
smaller and less pleomorphic with less coarse chromatin than grade 3 nu-
clei. Thus, classification of these tumours with intermediate grade nuclei
as low-grade versus high-grade serous carcinoma will be difficult.

High-grade serous carcinomas are architecturally heterogeneous: they
correspond to moderately differentiated and poorly differentiated grades
in 3-tier grading systems because some are predominantly papillary or
glandular while others are mostly solid. However, they do not appear to
be different from a molecular and in vitro drug resistance standpoint. In
a study of high-grade serous carcinomas, in which moderately differenti-
ated and poorly differentiated were compared, there were no significant
differences in the frequency of TP53 mutation or extreme drug resistance
for each of chemotherapeutic agents. In addition, the survival for patients
with grades 2 and 3 serous carcinomas, using the universal grading system,
is closer to each other compared with survival for patients with grade 1 and
2 tumours. These biologic and clinical findings suggest that moderately
and poorly differentiated tumours can be combined into a single category,
justifying the use of a 2-tier rather than a 3-tier grading system.
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Figure 2.21: Signet ring change simulating signet ring cells of metastatic
adenocarcinoma involving the ovary.

2.6 Proposed case of study: High-Grade Serous
Ovarian Adenocarcinoma

As treated above, high-grade serous ovarian adenocarcinoma5 is a rapidly
growing carcinoma believed to have tubal origin with a high chromoso-
mal instability; its peculiarity stands in the relapse timing of the patients
affected by it. Indeed, patients can be recognized and differentiated into
three classes (from sensitive to resistant) according to the time elapsed
from the end of the first line therapy to relapse:

• relapse after 32 months since the end of treatment: sensitive long
term;

• relapse between 6 and 32 months since the end of treatment: sensi-
tive;

• relapse within 6 months since the end of treatment: resistant.

HGS-OC generally responds to platinum-based chemotherapy, but 80%
of the patients relapse within 18 months from the diagnosis and progres-
sively becomes resistant to treatment, up to becoming incurable: less than
20% of the patients survive after five years from the initial diagnosis.
This study involves the study of resistance in ovarian cancer patients bas-
ing on their transcriptional, mutational, and DNA structural profiles, in

5Adenocarcinoma: malignant epithelial tumor that originates specifically from cells
of the glandular epithelium
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particular of the molecular differences between patients that are sensitive
to therapy compared to patients that are resistant, using data sets from
the TCGA.
In particular, the ultimate aim is the identification of a molecular signature
that could be used to predict the response to therapy (sensitive/resistant)
at the time of diagnosis.

2.6.1 Resistance to platinum-based chemotherapy

Platinum-based combination chemotherapy with either cisplatin or carbo-
platin and paclitaxel is the standard treatment for ovarian cancer. How-
ever, resistance to chemotherapy remains a complex problem. Although
50% of the patients are already resistant to chemotherapy, a substantial
number of those, who were originally responsive, develop resistance to
platinum-based chemotherapy during the course of their treatment. In
cell culture experiments, there is evidence that the efficacy of various
chemotherapeutic agents, including cisplatin, requires a functional p53
protein for efficient induction of apoptosis and that loss of p53 function6

enhances resistance to cytotoxic agents used in cancer therapy. The impor-
tance of identifying factors and molecular patterns that trigger resistance
to this therapy is essential to distinguish which patients are suitable to
receive the treatment and which patients would get worse after receiving
it, given that prognosis relates to stage at diagnosis and sensitivity to
platinum-based chemotherapy, [10].

6The p53 tumour suppressor gene plays a central role in cell cycle regulation and
induction of apoptosis; p53 alterations influence the response to chemotherapy and
clinical outcome in ovarian cancer patients.
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Chapter 3

Bioinformatics and tools

3.1 Computational Biology

Computational biology and bioinformatics is an interdisciplinary field that
develops and applies computational methods to analyse large collections
of biological data, such as genetic sequences, cell populations or protein
samples, to make new predictions or discover new biology. The computa-
tional methods used include analytical methods, mathematical modelling
and simulation.
Initially, computational biology focused on the study of the sequence and
structure of biological molecules, often in an evolutionary context. Be-
ginning in the 1990s, however, it extended increasingly to the analysis of
function. Functional prediction involves assessing the sequence and struc-
tural similarity between an unknown and a known protein and analyzing
the proteins interactions with other molecules. Such analyses may be ex-
tensive, and thus computational biology has become closely aligned with
systems biology, which attempts to analyze the workings of large interact-
ing networks of biological components, especially biological pathways.
Biochemical, regulatory, and genetic pathways are highly branched and in-
terleaved, as well as dynamic, calling for sophisticated computational tools
for their modeling and analysis. Moreover, modern technology platforms
for the rapid, automated (high-throughput) generation of biological data
have allowed for an extension from traditional hypothesis-driven experi-
mentation to data-driven analysis, by which computational experiments
can be performed on genome-wide databases of unprecedented scale. As
a result, many aspects of the study of biology have become unthinkable
without the power of computers and the methodologies of computer sci-
ence.
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3.2 Genomics

Genomics is a branch of molecular biology involved in the study of the
genome, including interactions of those genes with each other and with
the person’s environment, [11].
The genome is an organism’s complete set of DNA, (Figure3.1). Virtually,
every single cell in the body contains a complete copy of the approximately
3 billion DNA base pairs that make up the human genome, [12].

Figure 3.1: DNA double helix structure.

With its nucleotide-based language, DNA contains the information needed
to build the entire human body. A gene traditionally refers to the unit
of DNA that carries the instructions for making a specific protein or set
of proteins. Each of the estimated 20,000 to 25,000 genes in the human
genome codes for an average of three proteins.
Located on 23 pairs of chromosomes packed into the nucleus of a human
cell, genes direct the production of proteins with the assistance of enzymes
and messenger molecules. Specifically, an enzyme copies the information in
a gene’s DNA into a molecule called messenger ribonucleic acid (mRNA).
The mRNA travels out of the nucleus and into the cell’s cytoplasm, where
the mRNA is read by a tiny molecular machine called a ribosome, and the
information is used to link together small molecules called amino acids in
the right order to form a specific protein.
Proteins make up body structures like organs and tissue, as well as con-
trol chemical reactions and carry signals between cells. If a cell’s DNA is
mutated, an abnormal protein may be produced, which can disrupt the
body’s usual processes and lead to a disease such as cancer.
Deoxyribonucleic acid (DNA) is the chemical compound that contains the
instructions needed to develop and direct the activities of nearly all living
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organisms. DNA molecules are made of two twisting, paired strands, often
referred to as a double helix.
Each DNA strand is made of four chemical units, called nucleotide bases,
which comprise the genetic “alphabet”. The bases are adenine (A),
thymine (T), guanine (G), and cytosine (C). Bases on opposite strands
pair specifically: an A always pairs with a T; a C always pairs with a
G. The order of the As, Ts, Cs and Gs determines the meaning of the
information encoded in that part of the DNA molecule just as the order
of letters determines the meaning of a word.
Sequencing simply means determining the exact order of the bases in a
strand of DNA. Because bases exist as pairs, and the identity of one of the
bases in the pair determines the other member of the pair, researchers do
not have to report both bases of the pair.
In the most common type of sequencing used today, called sequencing by
synthesis, DNA polymerase (the enzyme in cells that synthesizes DNA) is
used to generate a new strand of DNA from a strand of interest. In the
sequencing reaction, the enzyme incorporates into the new DNA strand
individual nucleotides that have been chemically tagged with a fluorescent
label. As this happens, the nucleotide is excited by a light source, and a
fluorescent signal is emitted and detected. The signal is different depend-
ing on which of the four nucleotides was incorporated. This method can
generate ‘reads’ of 125 nucleotides in a row and billions of reads at a time.
To assemble the sequence of all the bases in a large piece of DNA such as a
gene, researchers need to read the sequence of overlapping segments. This
allows the longer sequence to be assembled from shorter pieces, somewhat
like putting together a linear jigsaw puzzle. In this process, each base
has to be read not just once, but at least several times in the overlapping
segments to ensure accuracy.
Researchers can use DNA sequencing to search for genetic variations
and/or mutations that may play a role in the development or progression
of a disease. The disease-causing change may be as small as the substitu-
tion, deletion, or addition of a single base pair or as large as a deletion of
thousands of bases.
The study of tumours is one of the main branches of genomics, which is
nowadays mainly taking advantages of the new possibilities provided by
new advanced digital technologies regarding Big Data, Artificial Intelli-
gence and machine learning algorithms, and Next Generation Sequencing
(NGS), [13].
Contributing to the development of these technologies it is the H u m a n
G e n o m e P r o j e c t , an international scientific research project that
was designed to generate a resource that could be used for a broad range
of biomedical studies. One such use is to look for the genetic variations
that increase risk of specific diseases, such as cancer, or to look for the
type of genetic mutations frequently seen in cancerous cells.
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3.2.1 Gene expression and its regulation

Gene expression is the process by which the genetic code - the nucleotide
sequence - of a gene is used to direct protein synthesis and produce the
structures of the cell, (Figure 3.2).

Figure 3.2: The central dogma of molecular biology: it explains the flow of genetic
information, from DNA to RNA, to make a functional product, a protein.

Genes that code for amino acid sequences are known as “structural
genes”.
The process of gene expression involves two main stages:

• Transcription: is the process of RNA synthesis, controlled by the
interaction of promoters and enhancers. Several different types of
RNA are produced, including messenger RNA (mRNA), which spec-
ifies the sequence of amino acids in the protein product, plus transfer
RNA (tRNA) and ribosomal RNA (rRNA), which play a role in the
translation process; it involves four steps:

1. initiation;
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2. elongation;

3. termination;

4. processing.

• Translation: the mature mRNA molecule is used as a template
to assemble a series of amino acids to produce a polypeptide with
a specific amino acid sequence. The complex in the cytoplasm at
which this occurs is called a ribosome. Ribosomes are a mixture
of ribosomal proteins and ribosomal RNA (rRNA), and consist of a
large subunit and a small subunit. It involves four steps:

1. initiation;

2. elongation;

3. termination;

4. post-translation processing of the protein.

Gene expression measurement is usually achieved by quantifying
levels of the gene product, which is often a protein (i.e., measuring the
expression level of cancer-causing genes (oncogenes) can help to determine
a persons susceptibility to cancer).

Gene expression measure: RNA-seq (RNA-sequencing) is a
technique that can examine the quantity and sequences of RNA in a
sample using next generation sequencing (NGS). It analyzes the transcrip-
tome of gene expression patterns encoded within our RNA. It’s rapidly
replacing gene expression microarrays because of the many advantages it
has.
With RNA-seq more than just differential gene expression can be in-
vestigated. Although there are microarrays available for exon-level and
microRNA analysis, most users are still interested in basic, probably 3
biased, differential gene expression. With RNA-seq, the attention can
be driven at coding and non-coding RNA, at splicing and allele-specific
expression, and possibly soon at full-length cDNA sequences, eliminating
the need to infer or assemble isoforms.
Microarrays are also biased, as it has to be decided what content to place
on the array. Since RNA-seq does not use probes or primers, the data
suffer from much lower biases (although I do not mean to say RNA-seq
has none).
RNA-seq provides digital data in the form of aligned read-counts, resulting
in a very wide dynamic range, improving the sensitivity of detection for
rare transcripts.
Expression is quantified by counting the number of reads that mapped to
each locus in the transcriptome assembly step. Expression can be quanti-
fied for exons or genes using contigs or reference transcript annotations.
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The common unit of measurement for the amount of the gene expression
as a result of the RNA-seq process is the Fragments Per Kilobase per
Million reads (FPKM), calculated from the number of reads that mapped
to each particular gene sequence taking into account the gene length (one
expects more reads to be produced from longer genes) and the sequencing
depth (one expects more reads to be produced from the sample that has
been sequenced to a greater depth):

FPKM =
RCg · 109

RCpc · L
(3.1)

where:

• RCg = number of reads mapped to the gene;

• RCpc = total number of reads mapped to all protein-coding genes;

• L = gene length (in base pairs), calculated as the sum of the length
of all the exons in the gene (i.e.,, the actual regions in the gene
encoding information).

3.2.2 miRNA

MicroRNAs (miRNAs) are a class of short, endogenously-initiated non-
coding RNAs that post-transcriptionally control gene expression via either
translational repression or mRNA degradation. It is becoming evident that
miRNAs are playing significant roles in regulatory mechanisms operating
in various organisms, including developmental timing and host-pathogen
interactions as well as cell differentiation, proliferation, apoptosis and tu-
morigenesis (i.e., miRNA genes frequently coincide with fragile sites and
hot spots for chromosomal abnormalities or locate near cancer susceptibil-
ity loci that correlate with tumorigenesis), [14].
miRNAs are synthesized from primary miRNAs (pri-miRNAs) in two
stages by the action of two RNase III-type proteins: Drosha in the nu-
cleus and Dicer in the cytoplasm, Figure 3.3. The mature miRNAs are
then bound by Argonaute (Ago) subfamily proteins. These miRNAs tar-
get mRNAs and thereby function as post-transcriptional regulators, [15].

It is possible to separate the genes subjected to the action of miRNAs
from those that are not and categorize them into two groups:

• target genes, subjected to miRNA regulation: in general, the target
genes have a longer 3’UTR (untraslated region);

• genes not subjected to miRNA regulation.

miRNAs can have both expression tuning and buffering motifs, all ex-
plained in Figure3.4:
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Figure 3.3: miRNA building process.

• expression tuning motifs:

1. simple repression;

2. coherent feed forward loop;

3. double negative feedback loop;

• expression buffering motifs:

1. incoherent feed forward loop;

2. negative feedback loop;

3. double incoherent feed forward loop.

From bioinformatics point of view, two resources dedicated to miRNAs
and the action they perform towards their targets are miRBase7 and Tar-
getScan8.
The common unit of transcript expression is the Reads Per Million Mapped
reads (RPM), that is:

• a normalized expression unit that explicitly ignores transcript length;

7Reachable at http://www.mirbase.org/
8Reachable at http://www.targetscan.org/vert 72/
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Figure 3.4: miRNA expression motifs.

• suitable for sequencing protocols where reads are generated irrespec-
tive of gene length;

it can be described by the formula:

RPM =
Nmg · 106

Totmr
(3.2)

where:

• Nmg = number of reads mapped to a gene;

• Totmr = total number of mapped reads from a given library.

3.2.3 Epigenetics and DNA methylation

Epigenetics has been defined has “the branch of biology which studies
the causal interactions between genes and their products which bring the
phenotype into being”.
In the original sense of this definition, epigenetics referred to all molecular
pathways modulating the expression of a genotype into a particular phe-
notype. Now, the definition of epigenetics has changed into the study of
changes in gene function that are mitotically and/or meiotically heritable
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and that do not entail a change in DNA sequence. The epigenetic modifi-
cations describe histone variants, posttranslational modifications of amino
acids on the amino-terminal tail of histones, and covalent modifications of
DNA bases [16].
Epigenetic mutations are able to change the chromatin structure, either
generating euchromatin and promoting gene transcription, or producing
heterochromatin and repressing gene transcription. One of the main epi-
genetic mechanisms regulating gene expression is the DNA methylation,
explained in Figure 3.5.

Figure 3.5: Graphical explanation of the role of methylation in gene expression.

DNA methylation is an epigenetic mechanism that occurs by the addition
of a methyl (CH3) group to DNA, thereby often modifying the function
of the genes and affecting gene expression. The most widely characterized
DNA methylation process is the covalent addition of the methyl group at
the 5-carbon of the cytosine ring resulting in 5-methylcytosine (5-mC), also
informally known as the fifth base of DNA. These methyl groups project
into the major groove of DNA and inhibit transcription.
A common way to measure DNA methylation is the calculation of beta
values (β) and it represents the probability that a coding gene is not
transcribed due to methylation at the level of DNA. Beta values are the
estimate of methylation level using the ratio of intensities between methy-
lated and unmethylated alleles; these values are between 0 and 1, with 0
being unmethylated and 1 fully methylated.
Beta values are commonly described by the formula:

β =
φm

φm + φnm
(3.3)

where:
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• φm = methylation intensity measurement;

• φnm = non-methylation intensity measurement.

3.2.4 CNA regions

A copy number alteration (CNA) [17] is when the number of copies of a
particular gene varies from one individual to the next, as in Figure 3.6.
Copy number variation is a type of structural variation where there is a
stretch of DNA, which is duplicated in some people, and sometimes even
triplicated or quadruplicated. And so when looking at that chromosomal
region, it is shown a variation in the number of copies in normal people.
Sometimes those copy number variants include genes, maybe several genes,
which may mean that this person has four copies of that gene instead of
the usual two, and somebody else has three, and somebody else has five.
CNAs occur via a variety of mechanisms in cancer. Entire chromosomes
may be gained/ lost during cell division, generating 3N or 1N copy number
status for all genes on the chromosome. This occurs due to failed cell-
division checkpoints resulting in chromosome missegregation. In contrast
to such gains at the total chromosome level, tiny focal CNAs may alter a
single gene (or even part of a gene), [18].
Aside from very infrequent gene losses paired with mutations, there are
also a few CNAs which drive cancer through amplification of oncogenes.
In the case of SOC, new cures are unlikely to be found unless somatic copy
number alterations (SCNAs) are considered, so this study includes the use
of this type of data.

Figure 3.6: Graphical representation of CNA mutation.

3.3 GMQL

The GenoMetric Query Language (GMQL) is a high-level, declarative lan-
guage used to perform queries on big genomic data, structured according
to the Genomic Data Model (GDM), [19].
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GMQL uses the GDM9 based on the notion of genomic region: each re-
gion can be compared with millions of other regions, typically using metric
properties; in addition, GDM also covers metadata of arbitrary structure.
This model is mainly based on the notions of datasets, defined as collec-
tions of samples, and samples, representing different genomic data.
Each sample consists of two main parts:

• Region data, describing the physical coordinates of the genome
areas and their features, encoded as specific fields having different
values for each region;

• Metadata: descriptive attributes of a sample, describing its biolog-
ical, clinical and experimental properties.

Regions are data format independent and provide an interoperabil-
ity framework for comparing data on mutations, expression or regulation;
while metadata are system independent and implement an interoperability
framework for comparing samples based upon their biological aspects.
Formally, in the GDM a sample s is defined as a triple:

s =< id, {ri, vi} , {mj} > (3.4)

where id is the sample identifier; each pair ¡ ri,vi ¿ represents a region,
with coordinates ri and values vi; mj are attribute-value pairs, with values
of type string.
Each sample s has specific attributes describing its region properties and
an associated set of attribute-value pairs referred to as the metadata of s.
The region data schema of s is the set of all attribute names used for region
coordinates and values, and the region data type of s is the record of all
the elementary types of the corresponding attributes.
The use of a type system to express region data allows for controlled
arbitrary operations upon type-compatible values.
A GMQL query is expressed as a sequence of GMQL operations with the
following structure:

< variable >= operator(< parameters >) < variables >

where each variable stands for a GDM dataset. Operators apply to one
or more operand variables and construct one result variable; parameters
are specific for each operator. Parameters of several operators include
predicates, used to select and join samples; predicates are built by arbitrary
Boolean expressions of simple predicates, as it is customary in relational

9The GDM is a formal framework used for representing in a uniform way genomic
data with different formats.
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algebra.
A typical GMQL query starts with a SELECT operation, which creates a
dataset with only the data samples that it filters out from an input dataset
by using a predicate upon their metadata attributes.
Then, the query proceeds by processing the selected samples in batch with
operations applied on their region data and/or metadata.
Finally, it ends with a MATERIALIZE operation, which stores a dataset
by saving the region data of each of its samples in an individual text file
in standard GTF format and the related metadata in an associated tab
delimited text file.
In this project, GMQL web interface (Figure 3.7) has been used in order
to extract information of interest from TCGA data.

Figure 3.7: GMQL web interface.

3.4 Python Libraries

Most computations are performed using the Python programming lan-
guage.
Python is an interpreted, high-level, general-purpose programming lan-
guage, in which is not needed to compile the scripts into machine language
instructions, and it allows to easily execute a lot of complex tasks, thanks
to the availability of standard libraries and of a large number of resources.
Python has been choosen as it offers a wide set of functions for statistical
modeling and machine learning analysis and it is the only programming
language integrated with GMQL. Here, Python is used through Anaconda,
an open source distribution for large-scale data processing and scientific
computing and the most convenient framework for Python data science
and machine learning, including at the installation more than 250 popular
data science packages.
The main libraries used for the computations are detailed in the following
paragraphs.
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Pandas is a Python package providing fast, flexible, and expressive data
structures designed to make working with relational or labeled data both
easy and intuitive, [20]. It aims to be the fundamental high-level building
block for doing practical, real world data analysis in Python. Additionally,
it has the broader goal of becoming the most powerful and flexible open
source data analysis / manipulation tool available in any language.

Scikit - learn is a Python library providing various classification, regres-
sion and clustering algorithms for performing machine learning operations
and it is used in this project for normalizing input data of the linear regres-
sion process, using the StandardScaler class in the preprocessing module,
consistently helping to compare results across models, [21].

Matplotlib is a Python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive environ-
ments across platforms, [22]. Matplotlib can be used in Python scripts, the
Python and IPython shells, the Jupyter notebook, web application servers,
and four graphical user interface toolkits. By using this library, it is pos-
sible to generate plots, histograms, power spectra, bar charts, errorcharts,
scatterplots, etc.

Lifelines is an implementation of survival analysis in Python, [23]; the
benefits offered by it over other survival analysis implementations are:

• built on top of Pandas;

• internal plotting methods;

• simple and intuitive API;

• only focus is survival analysis;

• handles right, left and interval censored data

3.5 R Libraries

KaryoploteR is based on base R graphics and mimicks its interface.
You first create a plot with plotKaryotype and then sequentially call
a number of functions (kpLines, kpPoints, kpBars) to add data to the
plot.
karyoploteR is only a plotting tool: that means that it is not able to
download or retrieve any data. The downside of this is that the user is
responsible of getting the data into R. The upside is that it is not tied to
any data provider and thus can be used to plot genomic data coming from
anywhere. The only exception to this are the ideograms cytobands, that
by default are plotted using pre-downloaded data from UCSC.
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3.6 Cytoscape

Cytoscape is an open source software platform for visualizing molecular in-
teraction networks and biological pathways and integrating these networks
with annotations, gene expression profiles and other state data. Although
Cytoscape was originally designed for biological research, now it is a gen-
eral platform for complex network analysis and visualization. Cytoscape
core distribution provides a basic set of features for data integration, anal-
ysis, and visualization.
In this thesis, Cytoscape has been very useful for plotting the visual rep-
resentation of the interaction between genes belonging to the same set.
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Chapter 4

Datasets

4.1 TCGA: The Cancer Genome Atlas

4.1.1 Introduction

The Cancer Genome Atlas (TCGA) is a public funded project that aims
to catalogue and discover major cancer-causing genomic alterations to cre-
ate a comprehensive atlas of cancer genomic profiles. So far, TCGA re-
searchers have analysed large cohorts of over 30 human tumours through
large-scale genome sequencing and integrated multi-dimensional analyses.
Studies of individual cancer types, as well as comprehensive pan-cancer
analyses have extended current knowledge of tumorigenesis. A major goal
of the project was to provide publicly available datasets to help improve
diagnostic methods, treatment standards, and finally to prevent cancer.
This chapter is devoted to a review of the current status of TCGA Re-
search Network structure, purpose, and achievements, as discussed in [24].

4.1.2 The idea behind the project

Cancer is deemed the most challenging illness to counteract.
More than 200 forms of cancer have been analyzed and each type can
be distinguished by different molecular profiles requiring unique thera-
peutic strategies. Cancer involves dynamic changes in the genome: the
architecture of occurring genetic aberrations - such as somatic mutations,
copy number variations, changed gene expression profiles, and different
epigenetic alterations - are individual for each type of cancer. The need
for better diagnosis, treatment, and prevention of cancer has appeared
and strongly correlates with a better understanding of genetic changes
in the tumour. The latest progress in the technological development of
genome-wide sequencing and bioinformatics has shed new light on the
cancer genome, [25].
In 2005, The Cancer Genome Atlas (TCGA) and in 2008 the Interna-
tional Cancer Genome Consortium (ICGC) were launched as the two main
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projects quickening the comprehensive understanding of the genetics of
cancer using innovative genome analysis technologies, helping to generate
new cancer therapies, diagnostic methods, and preventive strategies.
The National Institute of Health (NIH) launched TCGA Pilot Project to
create a comprehensive atlas of cancer genomic profiles. The TCGA is a
public funded project that intends to catalogue and discover major cancer-
causing genome alterations in large cohorts of over 30 human tumours
through large-scale genome sequencing and integrated multi-dimensional
analyses. Providing publicly available cancer genomic datasets will allow
the improvement of diagnostic methods, treatment standards, and finally
cancer prevention. Phase I of the project (a 3-year pilot study) aimed
to develop and test the research infrastructure based on the characterisa-
tion of chosen tumours having a poor prognosis: brain, lung, and ovar-
ian cancers. Since 2009 (phase II) analyses have expanded to additional
types reaching 30 different tumour types analysed by 2014. The TCGA
project engaged scientists and managers from NIHs National Cancer In-
stitute (NCI) and National Human Genome Research Institute (NHGRI)
funded by the US government, as well as cooperating with institutions
across the USA and Europe. To run the project, the NCI as well as the
NHGRI each invested $50 million for the 3-year pilot study. Additional
funding was also provided from different sources, such as the American Re-
covery and Reinvestment Act (ARRA), to help stimulate the US economy
in the context of biomedicine.

4.1.3 The Cancer Genome Atlas Research Network

The structure of TCGA is well established and involves several cooper-
ating centres engaged for collection and sample processing, followed by
high-throughput sequencing and sophisticated bioinformatics data analy-
ses. First, different Tissue Source Sites (TSSs) collect the required biospec-
imens (blood, tissue) from eligible cancer patients and deliver them to the
Biospecimen Core Resource (BCR). Next, the BCR catalogue, process,
and verify the quality and quantity of samples, and then submit clinical
data and metadata to the Data Coordinating Center (DCC) and pro-
vide molecular analytes for the Genome Characterization Centers (GCCs)
and Genome Sequencing Centers (GSCs) for further genomic characteri-
sation and high-throughput sequencing. Then, sequence-related data are
deposited in the DCC. The Genome Characterisation Centers also submit
trace files, sequences, and alignment mappings to NCIs Cancer Genomics
Hub (CGHub) secure repository. The generated genomic data is made
available to the research community and Genome Data Analysis Centers
(GDACs). The GDACs provide new information-processing, analysis, and
visualisation tools to the entire research community to facilitate broader
use of TCGA data. Furthermore, the information generated by the TCGA
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Research Network is centrally managed at the DCC and entered into pub-
lic free-access databases (TCGA Portal, NCBIs Trace Archive, CGHub),
allowing scientists to constantly access the cancer datasets and to speed
advancements in cancer biology and linked technologies (Figure 4.1, [24]).

Figure 4.1: The Cancer Genome Atlas (TCGA) Research Network Centres flowchart.

4.1.4 Platforms and data models

To provide a comprehensive analysis of cancer genome profiles, TCGA ap-
plied high-throughput technologies based on microarrays (to test nucleic
acids and proteins) and next-generation sequencing methods (for global
analysis of nucleic acids). The research network structure comprises many
centres employing different platforms to provide global information on can-
cer genomics.
Some of the applied methods are MicroRNA sequencing (miRNAseq),
DNA sequencing (DNAseq), RNA sequencing (RNAseq), SNP-based plat-
forms, Array-based DNA methylation sequencing and Reverse-phase pro-
tein array (RPPA).
The method by which the datasets used in this study were processed will
be discussed below.
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RNA sequencing (RNAseq)

RNAseq is a high-throughput technology for transcriptome (total RNA)
profiling, deriving strand information with very high precision. RNAseq
is able to quickly distinguish and quantify rare and common transcripts,
isoforms, novel transcripts, gene fusions, and non-coding RNAs, among a
wide range of samples, including low-quality samples. For transcriptome
analysis, TCGA uses a platform based on the Illumina system. The TCGA
deposited data includes information about both nucleotide sequence and
gene expression. RNA sequence alignment provides different levels of in-
formation such as RNA sequence coverage, sequence variants, expression
of genes, exon, or junction. The NCBI dbGaP database is the official
repository for the actual sequence data, [24].

MicroRNA sequencing (miRNAseq)

MiRNAseq is a type of RNASeq, utilising material enriched in small RNAs,
allowing the detection of specific sets of short, noncoding RNAs (mi RNAs)
that have the capacity to regulate hundreds of genes within and across
diverse signalling pathways. Moreover, miRNA-sequencing defines tissue-
specific miRNA expression profiles, their isoforms, connection with dis-
eases, and the discovery of unreported miRNAs, [24].

Array-based DNA methylation sequencing

Array-based DNA methylation sequencing is a high- throughput, genome-
wide analysis of DNA methylation profile providing information of epige-
netic changes in the genome. Abnormal profile of DNA methylation of
CpG sites is among the earliest and most frequent alterations in cancer.
The TCGA utilises DNA methylation assay mainly based on the Illumina
platform, assuring single-base-pair resolution, high accuracy, easy work-
flows, and low input DNA requirements. Methylation profiling technolo-
gies are based on highly multiplexed genotyping of bisulphite-converted
genomic DNA. The TCGA DNA methylation data files contain informa-
tion of signal intensities (raw and normalised), detection confidence, and
calculated beta values for methylated (M) and unmethylated (U) probes,
[24].

DNA sequencing (DNAseq)

DNA sequencing (DNAseq) is a high-throughput method for determin-
ing the nucleotides within a DNA molecule, providing information about
DNA alterations, such as insertions, deletions, polymorphism as well as
copy number variation or mutation frequencies. To catalogue the ge-
nomic diversity across cancer types, TCGA Genome Sequencing Centers
utilise DNA sequencing systems based on Sanger Sequencing.
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Also other platforms can potentially produce this kinds of data, such as
reverse-phase protein array (RPPA), which is a highly sensitive (detect-
ing nanograms of proteins), reproducible, high-throughput, functional and
quantitative proteomic method for large-scale protein expression profiling,
biomarker discovery, and cancer diagnostics, or SNP-based platforms, that
are used to analyse genome-wide structural variation across multiple can-
cer genomes. Array-based detection of single nucleotide polymorphisms
(SNPs) included platforms able to define SNP and CNV across multiple
samples, [24].

4.1.5 Visualisation and examination of the genomic data

Nowadays, next-generation sequencing (NGS) and array-based profiling
methods produce massive numbers of diverse types of genomic data allow-
ing researchers to analyse the cancer genome at an advanced level. Inte-
grated multi-dimensional data visualisation is an indispensable component
of cancer genomic data analysis. Consequently, the demand for advanced
comprehensive visualisation tools has emerged allowing the emergence of
numerous useful imaging tools and databases, as The cBioPortal for Can-
cer Genomics that has been used in this study.

The cBioPortal for Cancer Genomics

The cBioPortal for Cancer Genomics (http://cbioportal. org) is an open-
access resource developed at the Memorial Sloan-Kettering Cancer Centre
(MSKCC) for visualisation, analysis, and download of large-scale cancer
genomics data sets. Additionally, the portal also grants for interactive
exploration of custom datasets by access to OncoPrinter or Muttation-
Mapper web tools. Currently, the portal collects data from 69 cancer
genomics studies (datasets from literature and TCGA portal) including
DNA copy-number data, mRNA and miRNA expression data, mutations,
RPPA data, DNA methylation data, and limited clinical data related to
survival. Visualisation type involves networks, matrices, and heatmaps.
The cBio portal complements existing tools, such as the TCGA and ICGC
data portals, the IGV, the UCSC Cancer Genomics Browser, and IntO-
Gen.

Ovarian Cancer

Ovarian serous adenocarcinoma is a major type of ovarian cancer. The
high mortality of ovarian cancer patients (only 31% of patients are ex-
pected to live for five years or more) is connected to a lack of methods
for early detection and treatment. Recently, TCGA researchers performed
a wide-range analysis of the genomic and epigenetic changes that occur
in high-grade serous ovarian carcinoma (HGS-OvCa) and demonstrated
several potential therapeutic targets. In their work published in 2011 in
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Nature, TCGA scientists analysed 489 tumour samples and determined
the presence of TP53 mutation in almost all specimens (96%) and a low
but significant frequency of somatic mutations in nine further genes, in-
cluding BRCA1 and BRCA2 (mutated in 22% of tumours). Integrated
multidimensional analyses led to the identification of four ovarian cancer
transcriptional subtypes, three miRNA subtypes, four promoter methy-
lation subtypes, and a transcriptional signature that is associated with
survival outcome. However, the main goal of TCGA research is to iden-
tify new therapeutic approaches. Therefore, TCGA scientists imply op-
portunities for therapeutic intervention in commonly dysregulated path-
ways: RB, RAS/PI3K, FOXM1, and NOTCH. Moreover, the research
group from Johns Hopkins Medical Institution identified an amplified re-
gion in chromosome 19, containing a NACC1 gene known to contribute to
chemoresistance. Analysing TCGA data, they demonstrated the correla-
tion of amplified NACC1 with early tumour reoccurrence in ovarian cancer
patients. Furthermore, TCGA data have helped to shed light on the ef-
fect of BRCA1/2 mutations on ovarian cancer patients survival. Recent
findings from analyses of the ovarian cancer dataset have the potential to
improve the therapeutic management of this deadly disease.

4.2 Project Datasets

4.2.1 Building datasets

To proceed with the development of a classifier for the prediction of the
class belonging, it was first necessary to generate the input datasets.
The first step performed for this project was to examine, among the data
available from TCGA, those concerning patients affected by Ovarian Can-
cer; subsequently, a file containing the clinical data10 of these patients was
downloaded: each patient was associated with an identification barcode,
and to each barcode was assigned a series of data relating to the description
of the status of the patient in question.

• In the first instance, to make a first distinction between patients due
to their relapse timing, reference was made to the “Platinum Status”
datum, which identifies patients as “Sensitive” or “Resistant”.

• Consequently, given the temporal variety of patients belonging to
the “Sensitive” category, a further division was made based on the
Progression-Free Survival data (i.e., survival time before relapse);
thus, from the split of the “Sensitive” class, it was possible to gen-
erate two distinct classes: patients with relapse between 6 and 32
months from therapy will constitute the “Sensitive Short Term”

10The file containing this data has been downloaded from
https://gdc.cancer.gov/about-data/publications/ov 2011/
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class, while patients who have not manifested relapse after 32 months
will constitute the “Sensitive Long Term” class.

• Once the patients belonging to the three distinct classes were identi-
fied, their barcodes were selected; to obtain the metadata belonging
to each patient, the GMQL web interface was used, in which for each
class of patients, a query (Fig. 4.2) was inserted, from which two files
for each patient have been obtained: a metadata file and a region
file11.

Figure 4.2: Abbreviated example of the performed query on GMQL web interface to
obtain files for Resistant class, gene expression data.

• Then, using the region files containing information of interest, the
descriptive information of the genetic profile of each sample is ex-
tracted by using Python (version 3.0): location of the feature, fea-
ture id, feature symbol, value of the expression.

• Once only the information relevant to our analysis was taken into
account, the data relating to each patient were combined to form a
single dataset; in Table 4.1 are shown the original number of samples
available for each class and for each data type.

Table 4.1: Samples obtained from GMQL queries.

Class Gene expression miRNA Methylation

Resistant 62 85 91

Sensitive Short 109 147 148

Sensitive long 34 40 40

This procedure was carried out for each class and for each type of
data: where the type of data was of gene expression, the indicated expres-
sion value will be represented by the “fpkm”, while in relation to a given
miRNA, the same value will be identified by the “rpm”; a shortcut of the
datasets is shown is Fig. 4.3, 4.4 and 4.5.

11This procedure has been iterated three times, in order to obtain from GMQL gene
expression data, miRNA expression data and methylation of the patients (referring to
assembly GRCh38).
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Figure 4.3: Example of the first patient for each class and the relative informations
about gene expression. As can be seen also in Fig.4.4 and 4.5, the barcode of each
patient has been replaced with the first letter associated to the class of belonging,

followed by the rank.

Figure 4.4: Example of the first patient for each class and the relative informations
about miRNA expression.

Figure 4.5: Example of the first patient for each class and the relative informations
about DNA methylation.

In order to then be able to perform a transversal analysis between all
data types, only the barcodes common to all data types were selected:
after extracting the samples, a match between the patients’ id in the dif-
ferent data sets has been carried out, in order to uniquely identify each
sample12.
In addition to the data types described so far, CNA data13 have been
considered in order to carry out a cross-sectional analysis on the mutation
profile of the various classes of patients; for this data type, the same pro-

12This means that only patients for whom gene expression, miRNA, and methylation
data were known were considered in order to build the datasets.

13The original number of samples associated to each CNA class was: for Resistant :
86; for Sensitive: 148; for Sensitive long : 32.
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cedure for constructing the datasets has been implemented, Fig. 4.6.

Figure 4.6: Example of the first patient for each class and the relative informations
about CNA regions.

The number of final samples for each class and for each type of data
will be shown in Table 4.2.

Table 4.2: Samples obtained from GMQL queries after considering only common
barcodes between data types.

Class Gene expression miRNA Methylation CNA

Resistant 57 57 57 57

Sensitive Short 104 104 104 104

Sensitive long 25 25 25 25

The information contained in the datasets will be explained more in
detail below:

• for gene expression data, Figure 4.3:

1. patient : the barcode of each patient has been replaced with the
first letter associated to the class of belonging, followed by the
rank;

2. chrom, start, stop: location of each feature on the genome: the
name of the chromosome, the starting and the ending position
of the feature in the chromosome;

3. ensemble id : the Ensembl ID of the gene, including its version
with . notation; an Ensembl stable ID consists of five parts:
ENS(species)(object type)(identifier).(version);

4. entrez id : the Entrez gene ID, identifier for a gene per the NCBI
Entrez database, of the gene related to the reported variant
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5. gene symbol : the symbol of the gene related to the reported
variant;

6. fpkm uq : the upper quartile FPKM (FPKM-UQ) is a modi-
fied FPKM calculation in which the total protein-coding read
count is replaced by the 75th percentile read count value for the
sample;

7. fpkm: Fragments Per Kilobase of transcript per Million mapped
reads;

• for miRNA expression data, Figure 4.4:

1. patient : the barcode of each patient has been replaced with the
first letter associated to the class of belonging, followed by the
rank;

2. chrom, start, stop: location of each feature on the genome: the
name of the chromosome, the starting and the ending position
of the feature in the chromosome;

3. mirna id : a valid miRBase ID (http://www.mirbase.org/);

4. rpm: millions of reads that mapped to a miRNA;

5. entrez id : the Entrez gene ID, identifier for a gene per the NCBI
Entrez database, of the gene related to the reported variant

6. gene symbol : the symbol of the gene related to the reported
variant;

• for DNA methylation data, Figure 4.5:

1. patient : the barcode of each patient has been replaced with the
first letter associated to the class of belonging, followed by the
rank;

2. chrom, start, stop: location of each feature on the genome: the
name of the chromosome, the starting and the ending position
of the feature in the chromosome;

3. beta value: the ratio between the methylated array intensity
and total array intensity, falling between 0 (lower levels of
methylation) and 1 (higher levels of methylation);

4. gene symbol : the symbol of the gene related to the reported
variant;

5. gene type: a general classification for each associated gene (e.g.,
protein coding, miRNA, pseudogene);

6. ensemble transcript id : Ensembl IDs of the transcripts related
to the gene provided in the column gene symbol, retrieved from
the gene type of the GDC DNA methylation file; an ensembl
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gene includes any spliced transcripts (ENST) with overlapping
coding sequence; transcript clusters with no overlapping coding
sequence are annotated as separate genes;

7. feature type: the position of the CpG site in reference to the
island: Island, or N Shore, or S Shore, or N Shelf, or S Shelf;

• for CNA data, Figure 4.6:

1. patient : the barcode of each patient has been replaced with the
first letter associated to the class of belonging, followed by the
rank;

2. chrom, start, stop: location of each feature on the genome: the
name or number of the chromosome where the CNV is located,
the starting and the ending position of the CNV feature in the
chromosome;

3. n probes: the number of consecutive probes that comprise the
genome segment with the CNV;

4. seg mean: the estimated Copy Number (CN) ratio for the seg-
ment, that is the log2 ratio of the tumor intensity of CN to the
normal intensity of CN.
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Chapter 5

Computational Methods
Foundation

To achieve the goal of distinguishing the response to therapy of HGS-OC
patients, two methods have been tried: the first one is based on survival
regression, in particular on CoxPH Model, used to predict the time to
event - which in our case is the time to relapse experienced by patients.
The other one, instead, uses classification models to directly discriminate
the classes. Various levels of features selection have been performed, using
statistical tests. To avoid false positives, and hence to select only features
relevant for the analysis, multiple statistical test corrections have been
applied. After performing various features selection levels, through which
various subsets of features were created that are considered significant, the
next step was to use the classifier for class distinction, verified by a 10-fold
cross-validation.

5.1 Multiple statistical test correction

Bonferroni Correction Bonferroni correction is a conservative test
that, although protects from Type I Error (the higher the chance for a
false positive; rejecting the null hypothesis when you should not), is vul-
nerable to Type II errors (failing to reject the null hypothesis when you
should in fact reject the null hypothesis).
Its procedure is to alter the p value to a more stringent value, thus making
it less likely to commit Type I Error.
To get the Bonferroni corrected/adjusted p value, we have to divide the
original -value by the number of analyses on the dependent variable. Then
a new alpha for the set of dependent variables (or analyses) that does not
exceed some critical value is assigned:

αcritical = 1− (1− αaltered)k (5.1)

where k = the number of comparisons on the same dependent variable.
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After correcting the value of the p value associated with each feature
of the original dataset, a threshold of 0.05 (corresponding therefore to an
error rate of 5%) was imposed to select which features were significantly
expressed after Bonferroni correction.

Given the low number of features extracted through the properly ap-
plied Bonferroni correction, we have chosen to modify one of the parame-
ters constituting the equation, which can thus be rewritten:

p valuecorrected = p valuenominal · n tests (5.2)

where n tests = the total number of tests and p value nominal = original
p value before the correction.
The parameter that has been modified is precisely n tests, which is now
equal to the sum of the number of patients belonging to the classes for
which the differentially expressed features are sought. We will call this
correction “mild Bonferroni correction”.

False Discovery Rate, in particular the Benjamini-Hochberg Pro-
cedure The false discovery rate (FDR) is a method of conceptualizing
the rate of type I errors in null hypothesis testing when conducting multi-
ple comparisons. FDR-controlling procedures are designed to control the
expected proportion of “discoveries” (rejected null hypotheses) that are
false (incorrect rejections).
The Benjamini-Hochberg procedure (BH step-up procedure) controls the
FDR at level α:

• For a given α, find the largest k such that:

P (k) ≤ k

m
α

• Reject the null hypothesis for all H(i) for i = 1, ..., k.

The BH procedure is valid when the m tests are independent, and also
in various scenarios of dependence, but is not universally valid. It can be
rewritten as:

p valuecorrected = p valuenominal ·
n tests

ranking
(5.3)

where ranking = position of each p value nominal in the ordered list14.
After correcting the value of the p value associated with each feature

of the original dataset, a threshold of 0.05 (corresponding therefore to an
error rate of 5%) was imposed to select which features were significantly

14P values are ordered from the most significant (with a minor value) to the least
significant (with a major value).
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expressed after FDR correction.
Given the low number of features extracted through the properly applied
FDR correction, we have chosen to modify this correction in the same way
as we did for Bonferroni, so as to apply a “mild FDR correction”.

Selection from p value The p-value is the level of marginal signifi-
cance within a statistical hypothesis test representing the probability of
the occurrence of a given event; a smaller p-value means that there is
stronger evidence in favor of the alternative hypothesis.
Due to this, it was decided to proceed with a further selection without
correcting the value of the original p value, but choosing three thresholds:
a threshold = 0.05 (statistically significant), a threshold = 0.005 (very
significant) and a threshold = 0.0005 (extremely significant). This
procedure was implemented in order to evaluate which features were
naturally expressed with a significant p value.

Hypergeometric test: Enrichment Analysis Enrichment analysis is
a means to characterize biological attributes in a given gene set.
From a list of genes obtained from previous analyzes, a grouping is carried
out in functional classes for the interpretation of the results. Rather than
studying genes individually, the links in groups are analyzed. Depending
on the different expressions of genes in a group, for different biological
conditions, one can understand the cellular processes in which the genes
of interest are involved [26].
The association of groups of genes with particular functions derives from
experimental evidence or from computational inference. Establishing the
list of genes is not enough, we must estimate the statistical significance,
that is, how far this list differs from the genes obtained by sampling at
random on the genome.
This type of test is called hypergeometric testing. The set of genes of
interest C is compared with a universe set U (background) and a set of
elements with a given property P. The population of C genes can be divided
into P ∩ C genes associated with a certain function, and the rest in C not
associated with it, as in Figure 5.1).
If | P ∩ C | = X, | U | = M, | P | = K and | C | = N, then the probability
Pr of observing X or more elements with the property P is:

Pr = 1−
X−1∑
i=0

(
K
i

)(
M−K
N−1

)(
M
N

) =

N∑
i=X

(
K
i

)(
M−K
N−1

)(
M
N

) (5.4)

The zero hypothesis is that the presence in the list of a gene annotated by
specific category is random, while in the alternative hypothesis the list is
particularly enriched in the considered category.
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Figure 5.1: Visual representation of hypergeometric test functioning.

Various online tools are available for the calculation of functional enrich-
ment, such as David [27]-[28], Gorilla and Fidea.
In addition to entering the list of genes of interest, you can specify the
organism and choose a list of its own. Outgoing to the enrichment test,
the result is an association of groups of genes with specific functions and
to each category corresponds a value of p. The association is as significant
as the pvalue is small.
The base of the functional analysis lies on two large databases: KEGG
(Kyoto Encyclopedia of Genes and Genomes) and Gene Ontology, which
attribute specific functions to genes. In particular, KEGG contains infor-
mation on the metabolic pathway of the cell and on the molecules that are
part of it.
In this project, functional analysis is used through David15, since it is able
to represent the results in a simple and understandable way.

5.2 Features selection

In order to create the most significant possible set of features, various
levels of features selection have been carried out, which will be described
below.

The number of initial features associated with each patient was:

• for gene expression data: 60483 genes;

• for miRNA expression data: 1881 miRNA;

• for methylation data: 14887 methylated genes.

Regarding the gene expression data, a first selection on the features
that may be considered as significant to find a gene pattern that identified

15DAVID Functional Annotation Bioinformatics Microarray Analysis, reachable at
https://david.ncifcrf.gov/home.jsp.
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a profile for each class of patients was selecting, from the totality of genes,
only the protein-coding ones16.
In doing so, it has gone from a total of 60483 genes to 19814 protein-
coding genes.

First, the median of all the features for each patient in each class
was calculated, in order to have a single value of the expression for each
of them.
In the case of methylation data, since more isoforms of the same gene
are present, a median of the single features in the individual patient
was calculated first, and then the median of the medians on the class of
patients was calculated.
Then, using the Mann-Whitney test, the p-value associated with the
binary comparison between classes was calculated for each feature.

The Mann-Whitney test, also known as the 2-sample rank test, can
be completed in four steps:

• combine the data from the two samples into one;

• rank all the values, with the smallest observation given rank 1, the
second smallest rank 2, etc.;

• calculate and assign the average rank for the observations that are
tied (the ones with the same value);

• calculate the sum of the ranks of the first sample (the W-value).

Based on the W-value, the Mann-Whitney test now determines the p-value
of the test using a normal approximation, which is calculated as follows:

ZW = |W − (n(m+n+1))
2 | − 0.5√

mn(m+n+1)
12

(5.5)

where W is Mann-Whitney test statistics, n is the size of sample 1 and m
is the size of sample 2.
The resulting ZW value translates for a both-sided test (+/- ZW) and a
normal approximation into a p-value.

16A protein-coding gene consists of a promoter followed by the coding sequence for
the protein and then a terminator. The promoter is a base-pair sequence that specifies
where transcription begins. The coding sequence is a base-pair sequence that includes
coding information for the polypeptide chain specified by the gene. The terminator is a
sequence that specifies the end of the mRNA transcript.
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If there are ties in the data, the p-value is adjusted by replacing the de-
nominator of the above Z statistics by:

√√√√nm

12

[
(m+ n+ 1)−

∑l
i(t

3
i − ti)

(m+ n)(m+ n− 1)

]
(5.6)

where i = 1, 2, , l, l is the number of sets of ties and ti is the number of
tied values in the i-th set of ties.

CNA features selection Also for CNA data various levels of features
selection have been performed.
CNA regions can be used to accomplish a genome wide analysis; to do so,
in order to compare the alterations of different patients in specific portion
of the genome, an homogeneous representation of the signal has been cre-
ated. This representation will be addressed as CNA profile, in Figure 5.2,
and it will allow to guess in which regions the signal is detected with a
different intensity between the classes.
Given the length of the genome (which contains 3 billions of base pairs),
three different resolutions have been tried (1K, 10K and 50K) to under-
stand if doing averages over n portions might return misleading informa-
tion: a resolution of 1K has been chosen.
This procedure has been done for both amplification and deletion regions.
The regions significantly different between the classes has been selected

Figure 5.2: CNA amplification profiles with a resolution of 10K for Resistant (red),
Sensitive short (green) and Sensitive long (blue).

by the mean of a permutation test, using a threshold for the p-values of
0.005.
This procedure is better explained in [1].
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5.3 Classification

Classification is the process of predicting the class of given data points.
Classes are sometimes called as targets/ labels or categories. Classification
predictive modeling is the task of approximating a mapping function (f)
from input variables (X) to discrete output variables (y).
Classification belongs to the category of supervised learning where the
targets also provided with the input data.

5.3.1 Supervised Learning

Supervised (inductive) learning is the largest, most mature, most widely
used sub-eld of machine learning.
Its purpose is to estimate the unknown model that maps known inputs to
known outputs, given a training dataset including desired outputs:

D = {< x, t >} ⇒ t = f(x) (5.7)

from some unknown function f.
It is used to solve problem of classification, regression and probability esti-
mation by the mean of many techniques, as support vector machines and
decision trees.
Supervised learning is particularly useful for finding a good approximation
of f that generalizes well on test data.
The variables used are divided into:

• input variables x, also called features, predictors, attributes;

• output variables t, also called targets, responses, labels:

1. if t is discrete: classification;

2. if t is continuous: regression;

3. if t is the probability of x : probability estimation.

The appropriate applications for its use are when:

• there is no human expert;

• humans can perform the task but cannot explain how;

• desired function changes frequently;

• each user needs a customized function f.

5.3.2 Evaluation of the classifier

After training the model the most important part is to evaluate the clas-
sifier to verify its applicability.
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Cross-validation

Over-fitting is a common problem in machine learning which can occur
in most models. K-fold cross-validation (Figure 5.3) can be conducted to
verify that the model is not over-fitted. In this method, the data-set is ran-
domly partitioned into k mutually exclusive subsets, each approximately
equal size and one is kept for testing while others are used for training.
This process is iterated throughout the whole k folds.

Figure 5.3: Graphical explanation of k-fold cross-validation.

Performance measures

Accuracy is a ratio of correctly predicted observation to the total ob-
servations:

Accuracy =
TP + TN

TP + FP + FN + TN
(5.8)

Precision is the ratio of correctly predicted positive observations to the
total predicted positive observations:

Precision =
TP

TP + FP
(5.9)

High precision relates to the low false positive rate.

Recall or Sensitivity is the ratio of correctly predicted positive observa-
tions to the all observations in actual class:

Recall =
TP

TP + FN
(5.10)
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f1 score is the weighted average of Precision and Recall. Therefore, this
score takes both false positives and false negatives into account.

f1 score =
2 · (Recall · Precision)

(Recall + Precision)
(5.11)

ROC curve (Receiver Operating Characteristics)

ROC curve is used for visual comparison of classification models which
shows the trade-off between the true positive rate and the false positive
rate. The area under the ROC curve is a measure of the accuracy of the
model. When a model is closer to the diagonal, it is less accurate and the
model with perfect accuracy will have an area of 1.0

5.4 Standard methods of classification

5.4.1 Random Forest

Random Forests is an ensemble method, whose structure consists in build-
ing multiple trees and merging them together to get a more accurate and
stable prediction.
Random Forest can be used either for classication or regression17:

• when used for classication, a random forest get a vote from each tree
regarding a class, and then classies through using majority vote;

• when used for regression, the predictions from each tree for a target
x are gathered and averaged.

When Random Forest is used for regression, it is not as good as in clas-
sification: it happens because prediction has not real continuous nature.
Random Forest creates multiple decision trees on a subset of features and
joins them for getting a prediction whose more stable, as in figure 5.4.

While growing the trees, instead of searching for the most relevant
feature while dividing a node, it searches for the best feature among a
random subset of features. So, only some features from a random subset
will be taken into account when the split of a node will occur [inserisci cit].
Thanks to this randomness, the algorithm is resistant to overfit and able
to handle datasets with high dimensionality. Another advantage of the
random forest algorithm is its accuracy: for many data sets, it produces
a highly accurate classifier; it also runs efficiently on large databases and
can handle thousands of input variables without variable deletion. Finally,
it gives estimates of what variables are important in the classification [29].
By the other hand, there is little control on what the model does, the
typical hyper-parameters to be set in Random Forests regard:

17Random Forest can perform these different tasks by combining multiple decision
trees and a technique called Bootstrap Aggregation, commonly known as bagging
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Figure 5.4: Example of how Random Forest works: in the diagram each decision
tree has voted or predicted a specific class. The final output or class selected by the

Random Forest will be the Class N, as it has majority votes or is the predicted
output by two out of the four decision trees.

• the number of trees built, the most important to care;

• the maximum number of features allowed to be tried within a tree;

• the minimum number of leaves required to split an internal node.

To optimize those parameters, a compromise between accurate predictions
and time performance is needed [30].

5.4.2 Logistic Regression

Logistic regression is a statistical method for analysing a dataset in which
there are one or more independent variables that determine an outcome.
The outcome is measured with a dichotomous variable (in which there are
only two possible outcomes). It is used to predict a binary outcome (1
/ 0, Yes / No, True / False) given a set of independent variables, Figure
5.5, [31].
The class prediction is given by:

y(xn) = σ(w0 + xn1w1 + xn2w2) (5.12)

σ(x) =
1

1 + e−x
(5.13)

where σ is called the logistic function or the sigmoid function [inserisci cit].
The loss measure used is the negative log likelihood, while the optimization
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Figure 5.5: Example of how Logistic Regression works with graphical representation
of components.

method is the Gradient Descend. The non-linearity of the sigmoid implies
that there is no unique solution; what gradient descend returns is the
maximum likelihood estimation. Given a threshold value (typically 0.5) it
is decided to which class the sample belongs to (see Figure 5.6, [32]).

Figure 5.6: Sigmoid fuction.
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5.4.3 k-Nearest Neighbor

K Nearest Neighbour is a simple algorithm that stores all the available
cases and classifies the new data or case based on a similarity measure. It
is mostly used to classifies a data point based on how its neighbours are
classified. Its initialization phase consists of:

• define a k, number of neighbor;

• define a distance metric (Manhattan distance, Hamming distance,
etc);

• consider a set of labeled features.

Since it is a non-parametric method, no fitting is required; this algorithm
memorizes the training dataset, [30]. This technique is suggested when
data are huge and fitting would be time consuming. However, bottleneck
arises when recomputing all distances. Classication works according to
these easy consecutive steps, given a test sample.

1. Calculate the distance between the test sample and all other training
samples.

2. Take the top k training samples based on the distance from the test
sample.

3. Each neighbor votes for its label and so the most frequent class
among the nearest k is assigned [Figure 5.7].

Figure 5.7: KNN working steps.

5.4.4 Adaboost

AdaBoost, short for Adaptive Boosting, is the first practical boosting al-
gorithm [30].
It focuses on classification problems and aims to convert a set of weak
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classifiers into a strong one. The final equation for classification can be
represented as:

F (x) = sign(
M∑
m=1

θmfm(x)) (5.14)

where fm stands for the mθ weak classifier and θm is the corresponding
weight. It is exactly the weighted combination of M weak classifiers.
The procedure of the AdaBoost algorithm can be summarized as [Figure
5.8]:

• given a data set containing n points, initialize the weight for each
data point;

• for iteration m = 1, ...,M :

1. fit weak classifiers to the data set and select the one with the
lowest weighted classification error;

2. calculate the weight for the mθ weak classifier;

3. update the weight for each data point by using a normalization
factor that ensures the sum of all instance weights is equal to
1.

After M iteration it’s possible to get the final prediction by summing
up the weighted prediction of each classifier.

Figure 5.8: Illustration of AdaBoost algorithm for creating a strong classifier based
on multiple weak linear classifiers.
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5.4.5 Suppor Vector Machine

A Support Vector Machine is a supervised learning model considered one of
the best classication methods due to its ability to recognize subtle patterns,
[29].
A SVM is made of a subset of training examples xm (support vectors), a
vector of weights for them, and a similarity function k (the kernel). The
hypothesis space is:

f(xq) = sign(
∑
m∈S

amtmk(xq, xm) + b) (5.15)

where S is the set of indices of the support vectors. SVM enables in-
stancebased learning through the concept of margin, which is the smallest
distance between the separating hyperplane and any of the samples.
There exist two kinds of SVM:

• Linear SVM, useful for linearly separable data. Receives the orig-
inal feature space as input and finds the optimal hyperplane that
separates the samples of the two classes, trying to maximize the
margins (the distance of the decision boundaries). In case data are
non-linearly separable, it is added a loss function to account also for
misclassified samples. Graphical representation is at figure 5.9.

Figure 5.9: Graphical example of margin maximization operated from SVM: the
margin is defined as the distance between the separating hyperplane and the

training sample that are closest to it.

• Nonlinear SVM, that performs a non-linear mapping of the original
feature space into a higher dimensional feature space able to better
separate data (kernel trick). In this way it is possible to classify
nonlinearly separable data, by using a non-linear margin as in Figure
5.10.
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Figure 5.10: How Nonlinear SVM overcomes the problem of data that cannot be
separated from Linear SVM. From [33].

5.5 Survival Analysis

Sometimes it’s interesting to investigate how a risk factor or treatment
affects time to disease or some other event, and if a study dropout is
present therefore there will be subjects who we are not sure if they had
disease or not.
In these cases, survival analysis is used to analyze data in which the time
until the event is of interest. The response is often referred to as a failure
time, survival time, or time to event, [34].
The survival time response:

• is always ≥ 0;

• is usually continuous;

• may be incompletely determined for some subjects, i.e., for some
subjects is possible to know their survival time, which was at least
equal to some time t. Whereas, for other subjects, their exact time
of event is known;

• incompletely observed responses are called censored.

If there is no censoring, standard regression procedures could be used.
However, these may be inadequate because:

• time to event is restricted to be positive and has a skewed distribu-
tion;

• the probability of surviving past a certain point in time may be of
more interest than the expected time of event;

• the hazard function, used for regression in survival analysis, can lend
more insight into the failure mechanism than linear regression.

5.5.1 Censoring

Censoring is present when some information about a subjects event time
are available, but the exact event time is not known.
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For the analysis methods that will be discussed to be valid, censoring
mechanism must be independent of the survival mechanism.
There are generally three reasons why censoring might occur:

• a subject does not experience the event before the study ends;

• a subject is lost to follow-up during the study period;

• a subject withdraws from the study;

the reasons just explaines are all examples of right-censoring18. Regardless
of the type of censoring, it must be assumed that it is non-informative
about the event; that is, the censoring is caused by something other than
the impending failure.

5.5.2 Terminology and notation

• T denotes the response variable, T ≥ 0;

• the survival function (Figure 5.11) is:

S(t) = Pr(T > t) = 1− F (t) (5.16)

This function gives the probability that a subject will survive past

Figure 5.11: Survival analysis: survival function.

time t.
As t ranges from 0 to ∞ the survival function has the following
properties:

18Right-censonring can be of different types, as fixed type I censoring, random type I
censoring, and type II censoring.
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1. it is non-increasing ;

2. at time t = 0, S(t) = 1: the probability of surviving past time
0 is 1;

3. at time t = ∞, S(t) = S(∞) = 0 : as time goes to infinity, the
survival curve goes to 0.

In theory, the survival function is smooth. In practice, events on a
discrete time scale are observed.

• the hazard function, h(t), is the instantaneous rate at which events
occur, given no previous events:

h(t) = lim
∆t→0

Pr(t < T ≤ t+ ∆t|T > t)

∆t
=
f(t)

S(t)
(5.17)

5.5.3 Survival data

In the following will be described how survival data with censoring are
recorded and represented:

• Ti denotes the response for the ith subject;

• Ci denotes the censoring time for the ith subject;

• δi denotes the event indicator:

δi =

{
1 : if the event was observed, (Ti ≤ Ci))

0 : if the response was censored, (Ti > Ci))

• the observed response is:

Yi = min(Ti, Ci) (5.18)

5.5.4 Kaplan-Meier survival estimate

The Kaplan-Meier (KM) [35] method is a non-parametric method used
to estimate the survival probability from observed survival times. The
survival probability at time ti, S(ti), is calculated as follow:

S(ti) = S(ti−1)(1− di
ni

) (5.19)

where S(ti-1) is the probability of being alive at ti-1, ni is the number of
patients alive just before ti, di is the number of events at ti, t0=0 and
S(0)=1.
The estimated probability (S(t)) is a step function that changes value only
at the time of each event. Its also possible to compute confidence intervals
for the survival probability.
The KM survival curve (Figure 5.12), a plot of the KM survival probability
against time, provides a useful summary of the data that can be used to
estimate measures such as median survival time, [36].
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Figure 5.12: Survival analysis: Kaplan-Meier curve.

5.5.5 Performance measure: Concordance Index

The C-statistic (sometimes called the concordance statistic or C-index ) is
a measure of goodness of fit for binary outcomes in a logistic regression
model. In clinical studies, the C-statistic gives the probability a randomly
selected patient who experienced an event (e.g., a disease or condition)
had a higher risk score than a patient who had not experienced the event.
It is equal to the area under the Receiver Operating Characteristic (ROC)
curve and ranges from 0.5 to 1.
Some consideration about the C-index:

• a value below 0.5 indicates a very poor model;

• a value of 0.5 means that the model is no better than predicting an
outcome than random chance;

• values over 0.7 indicate a good model;

• values over 0.8 indicate a strong model;

• a value of 1 means that the model perfectly predicts those group
members who will experience a certain outcome and those who will
not.

A weighted c-index is used when the cost of failing to predict a positive out-
come (i.e., a test for cancer) is higher than benefit of correctly predicting
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a negative outcome. Weighting penalizes models that result in small prob-
ability differences for positive and negative outcomes, but doesnt change
the value of the C-statistic.
The C-statistic is sometimes paired with a confidence interval: in general,
any result is not significant if it includes 0.5, even if it includes the relevant
C-statistic.

5.5.6 CoxPH Model

The Cox proportional-hazards model [34] is a regression model commonly
used statistical in medical research for investigating the association be-
tween the survival time of patients and one or more predictor variables.
It works for both quantitative predictor variables and for categorical vari-
ables. Furthermore, the Cox regression model extends survival analysis
methods to assess simultaneously the effect of several risk factors on sur-
vival time.
The purpose of the model is to evaluate simultaneously the effect of several
factors on survival. In other words, it allows us to examine how specified
factors influence the rate of a particular event happening (e.g., death) at
a particular point in time. This rate is commonly referred as the hazard
rate. Predictor variables (or factors) are usually termed covariates in the
survival-analysis literature.
The Cox model is expressed by the hazard function, that can be inter-
preted as the risk of dying at time t. It can be estimated as (Chapter 5,
page 70):

h(t) = h0(t)× exp(b1x1 + b2x2 + ...+ bpxp) (5.20)

where t presents the survival time, h(t) is the hazard function determined
by a set of p covariates (x1,x2,...,xp), the coefficients (b1,b2,...,bp) mea-
sure the impact of covariates; the term h0 is called the baseline hazard : it
corresponds to the value of the hazard if all the xi are equal to zero (the
quantity exp(0) equals 1). The t in h(t) reminds that the hazard may vary
over time.
The Cox model can be written as a multiple linear regression of the loga-
rithm of the hazard on the variables xi, with the baseline hazard being an
intercept term that varies with time.
The quantities exp(bi) are called hazard ratios (HR). A value of bi greater
than zero, or equivalently a hazard ratio greater than one, indicates that
as the value of the ith covariate increases, the event hazard increases and
thus the length of survival decreases.
Put another way, a hazard ratio above 1 indicates a covariate that is posi-
tively associated with the event probability, and thus negatively associated
with the length of survival.
In summary,

• HR = 1: No effect;
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• HR < 1: Reduction in the hazard;

• HR > 1: Increase in Hazard.

So, the Cox model is a proportional-hazards model: the hazard of the
event in any group is a constant multiple of the hazard in any other.
This assumption implies that the hazard curves for the groups should be
proportional and cannot cross.

Correlation Matrix is a table showing correlation coefficients between
variables. Each cell in the table shows the correlation between two vari-
ables. A correlation matrix (e.g., Figure 5.13) is used to summarize data,
as an input into a more advanced analysis, and as a diagnostic for advanced
analysis.

Figure 5.13: Correlation Matrix of features extracted with the ”Mild B-H
Correction”, without collinearities, miRNA expression data.
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5.6 Windowing

As explained before, many different data types with distinct biological
meanings have been used to discriminate patients in classes.
In order to understand where the selected features were located, a new
interesting method has been developed to visualize on each chromosome
how many and which features were expressed in there: this method will
be referred to as windowing.
The original idea is that to allocate a bar, which corresponds to the fea-
ture, on a graph that has chromosome length on x-axis and the feature’s
expression on y-axis. In order to made the graph printable, it has been
performed a reduction of 1:10000 on the bins that make up the chromo-
some length, and regarding the bar heigth, the normalization is done by
taking the maximum value associated with the features expressed on that
gene and bringing it to 1, and comparing all the others to that value.
The first experiment to use this method was to plot, chromosome by chro-
mosome, for each class, all the features coming from each binary compari-
son, in order to observe which were the chromosomes with greater density
of significant features and which was the expression of those features at
each comparison.

Figure 5.14: MiRNA features expressed on chromosome 8 for Resistant class: in
red, features considered relevant in distinguishing Sensitive Long and Sensitive Short

classes are shown; in blue, features considered relevant in distinguishing Sensitive
Long and Resistant classes are shown; in green, features considered relevant in

distinguishing Resistant and Sensitive Short classes are shown.

An example is shown in Figure 5.14, where for Resistant class, all the
features extracted from three binary comparisons (Resistant vs Sensitive
Short, Resistant vs Sensitive Long and Sensitive Long vs Sensitive Short)
for performing survival analysis have been plotted; it has been chosen to
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plot chromosome 8 because it seems the chromosome having much number
of features in it.

This method can be used not only to assess which chromosome has
greater density of relevant features, but also which are the regions of the
genome considered significant through the use of various types of data.
Given the use in this analysis of regions of alteration and deletion due to
copy number alterations, the windowing was also developed to understand
if, which and how many features selected among the other types of data
(protein coding genes, miRNAs and methylated genes) were contained in
those regions.
The significance of understanding if multiple types of features overlap each
other in the genome is associated to the possibility of identifying with
confidence genomic regions of biological relevance that can be adequate
predictors to distinguish patients from one another.
This could be considered a method of intersection: while the classifier
works by using all the features selected by significance - this allowing to
state it as a method of union, the windowing can grant the recognition
of regions in which are included different genomic data, so to reduce the
amount of processing to do on the genome, suggesting portions of moderate
size to be analyzed.
Being able to identify genomic regions would lead to a speed-up in the
analysis procedure, and a lower cost in acquiring and manipulating data
for the diagnosis of this disease.
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Chapter 6

Computational Methods

The response to therapy can be assessed both by trying to predict time to
relapse and by attempting to distinguish between classes of patients.
However, both methodologies have in common a fundamental point, which
concerns the features selection, performed through different steps for sur-
vival analysis and classification. The starting data concern gene expres-
sion, miRNA expression, DNA methylation and copy number alteration,
related to the pre-treatment phase. The selection of features suitable for
predicting chemoresistance is fundamental to identify a distinctive genomic
pattern between therapy-resistant and therapy-sensory patients.
For this reason, it was decided to investigate the different expressions of
data-types in order to verify which features show a greater variation in
their expressions, relative to the different classes under consideration.
As for genes, a first selection has restricted the genomic material to be eval-
uated to only protein-coding genes, which result in many cellular functions
and biological activities.
The DNA methylation data are those that present a greater variability,
since for each methylated gene its isoforms are present, each having an
expression value of its own.
Data related to miRNAs have been inserted due to their implication in
downregulating their target genes: this change in gene expression can mod-
ify drug response.
All these types of data, however, suffer from a modification due to the
administration of the therapy; for this reason, given that one of the main
ambitions of the study of high-grade serous ovarian cancer is to identify
patients who will develop resistance to therapy with an early diagnosis
with good accuracy, among the analyzed data already mentioned was also
introduced another data-type, related to the genomic regions of copy num-
ber alteration.
These regions, which cover a large part of the genome, show an alteration
in the number of copies, which are considered early events, therefore el-
igible predictors of the response to therapy; the identification of precise
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regions, in which it would in any case be possible to identify genes, would
lead both to the possibility of using an integrative approach and to the
possible development of new therapeutic options based on the targeting of
those factors involved in the development of chemoresistance.
To better integrate the significant features from the point of view of the
drug-response prediction, various levels of analysis have been carried out,
starting from the features selection.

6.1 Features selection

To assess the significance of the features in terms of expression, the Mann-
Whitney test was performed and then the relative p-value has been ob-
tained for each feature for each binary comparison.
First of all, in order to understand which features could be considered
significant based on their nominal p-value, a treshold equals to 0.05 was
initially set, meaning statistically significant, which was then lowered twice
(a second treshold = 0.005 and a third threshold = 0.0005, to evaluate the
significance of the expression of that feature based on its p-value).
Later, the Bonferroni and Benjamini-Hochberg multiple test corrections
were used: we chose to make both these corrections (therefore the most
conservative and the least conservative) in order to verify the presence of
biologically relevant features.
Unfortunately, almost no features outweighed the corrections: this sup-
ports the biological assumptions about the extreme variety of gene muta-
tions within the development of this disease, which makes the evolution of
this type of cancer very difficult to delineate precisely.
For this reason, the descriptive equations of the multiple test corrections
have been slightly modified (Chapter 5, page 55), in order to still make a
correction on the p-value, even if in a more bland way.
The reasoning behind this features selection procedure lies in the fact that
it was preferred to have available various sets of features selected based on
their p-value in order to evaluate the performance of each single set: not
always a set including a large number of features will return the best relia-
bility, as on too few features it will not be useful to develop an enrichment
analysis since no pathway will be identified by them.
For performing the survival analysis with the most suitable features, some
other steps have been added for each set:

1. first of all, the dataset is created, taking for each patient the ex-
pression value relative to the selected feature, and it is normalized.
Then, a 5-fold cross validation is ran to evaluate the model;

2. at this point, in order to improve the performance obtained, the
correlation matrix is computed and for the features that have a cor-
relation greater than or equal to 0.9, only one candidate is selected.
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Also, a second step of selection is performed, removing the features
with a too low variance.
Again, a 5-fold cross validation is performed to evaluate the model;

3. finally, a further analysis is carried out to understand which of the
selected features can be considered relevant for the prediction of the
relapse time. This is done fitting the model on the entire dataset
and checking for each features the exponential of the coefficient and
its confidence interval. In particular, it is verified if the interval is
either all below 1 or all above 1.
A 5-fold cross validation is ran one last time, using only the features
that respect the condition required to be considered significant.

For CNA data only, the features selection is slightly different; starting from
the CNA profiles (Chapter 5, section 5.2), various levels of selection have
been carried out:

• we tried to select only the regions in which the average CNA value
(for amplification and deletion, indipendently) was different between
the classes;

• we moved to evaluate the real difference between regions by the mean
of a z-test, a parametric test that verifies if the average values of two
distributions are equal or not;

• a permutation test was implemented in order to find genomic regions
in which the CNA profiles belonging to the classes have different
alteration intensities.

A permutation test is a type of statistical significance test in which the
distribution of the test statistic under the null hypothesis is obtained by
calculating all possible values of the test statistic under rearrangements of
the labels on the observed data points.
In order to combine all types of features (from gene and miRNA expression
data, DNA methylation data and CNA data), the functional associations
between features have been evaluated.
MiRNAs can play the role of downregulators in the gene regulation of
their targets, so the causal relationships between the selected features were
evaluated, through the use of interactions experimentally known19 and
high confidence predictions in silico20.

6.2 Survival Analysis

One way to predict the response to therapy is to perform a survival re-
gression to prognosticate the timing of patients’ relapse.

19From http:// mirtarbase.mbc.nctu.edu.tw/php/index.php, [37].
20From https://targetscan.org, [38].
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Considering that patients are divided into classes based on the time in
which they show resistance to therapy, knowing the time at relapse also
implies being able to distinguish the categories to which the patients be-
long.
First, in order to obtain a visual representation of the relapse timing of
the patients’ groups, the Kaplan-Meier curve has been plotted: in Figure
6.1, the y-axis represents the percentage of censored data and the x-axis
is the time in months.

Figure 6.1: Progression Free Survival Kaplan Meier Estimate: time to relapse of
each class is represented by different color described in label.

Then, the survival regression has been performed on CoxPH Model
and concordance index has been computed, as performance measure.
This regression did not reach satisfactory values in terms of the predictive
model, so we switched to the classification method.

6.3 Classification

To distinguish patients based on their belonging to a specific class, and
thus predict the response to therapy, a classifier has been implemented,
which uses the features extracted as explained above.
The classification was conducted separately for each data type and each
set of features, to choose the set through which the distinction between
classes was clearer.
Different types of classification algorithms have been used on each feature
set to select the most suitable to treat our data and then the one with the
best performance has been executed.
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The results obtained through this method using the different data-types
independently were quite good, as regards the distinction of the two classes
with greater variety of expression, Resistant vs Sensitive Long; to improve
them and try to clearly distinguish resistant patients from all sensitive
ones, it was decided to implement a classifier that used all the best features
extracted from each data-type (gene expression data, miRNA expression
data, DNA methylation data and CNA data). First, a dataset was built
in which there were only patients for whom all four types of data were
available; this has reduced the number of patients associated with each
class.
Subsequently, based on the results obtained through the different classifi-
cation algorithms used previously on the individual data-types, the best
set of features was chosen for each binary comparison. The dataset cre-
ated for the classification is a matrix that has the patients in the rows
and the features in the columns and each value corresponds to the relative
expression data.
Once this is done, the support vector machine has been chosen as a classi-
fication algorithm because they work well in genomic analysis with many
features and few samples, as in our case.
We executed a hyperparameter tuning to choose the best parameters for
SVM and then we performed the classification: hyperparameter tuning is
the problem of choosing a set of optimal hyperparameters for a learning
algorithm. A hyperparameter is a parameter whose value is used to con-
trol the learning process, so many classification algorithms have been tried
with relative hyperparameters, and then the one through which the best
results are obtained has been choosen to perform the integrative classifi-
cation.
From the merging of all types of features promising results have been ob-
tained, discussed more in detail in Chapter 7.
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Chapter 7

Results

7.1 Computational results

In this section, the best results obtained through the analysis methods
implemented will be discussed.

7.1.1 Best performances of survival analysis

Concordance index

As already discussed in Chapter 5, subsection 5.5, page 72, the index of
concordance is a “global” index for validating the predictive ability of a
survival model and it is equivalent to a rank correlation.
Giving the fact that the index is not calculated for every observation/sub-
ject, c-index is not perfect because the predicted probabilities of outcome
might be way off the observed probabilities of outcome, but as long as the
ranking of these probabilities show that higher probabilities are associated
with the event, discrimination/c-index might be relatively good.
Unfortunatly, the outcomes obtained for concordance index are quite poor,
because none of them reach at least a value of C.I. = 0.7, which would
mean a good model was used.
Actually, this model indicates no better prediction than random chance;
for those reasons, survival analysis is not considered the best method to
deal with this type of problem.

Table 7.1: Concordance index computed for each data type.

Data type Concordance Index

Gene Expression data 0.61

MiRNA data 0.54

Methylation data 0.57
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Survival curves

The fact of having a poor predictive model is also reflected on the graphic
aspect of the survival functions: as it can be seen in Figure 7.1, 7.2 and
7.3, all the predicted survival functions show almost the same shape.
This result is disappointing to say the least, considering that the patients
belonging to the three classes considered have extremely different relapse
times; considering only that for the class of patients resistant to therapy,
the range of relapse can reach a maximum of 6 months post-treatment,
while for a patient belonging to the sensitive class, the range starts from
6 months and can reach up to over 3 years.
The predicted survival functions have confirmed the above, considering
the results of the concordance index, which means that to be used to
address problems of this type, the survival analysis must be implemented
differently, on less discontinuous data; a chance to improve these results
could be finding alternative ways to select the features.

Figure 7.1: Prediction survival function of each class for gene expression data.
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Figure 7.2: Prediction survival function of each class for miRNA data.

Figure 7.3: Prediction survival function of each class for methylation data.
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7.1.2 Best performances of classifier

The feature sets with the best performances for each type of data analyzed
for each comparison will be listed below.

Gene expression data

For each binary class comparison, the following will be described: the
type of features selection that was used, the number of resulting features,
the best performance obtained and the classification algorithm, with its
related parameters, involved to obtain them.
In order to also have a visual result of the performances, ROC curves will
be inserted.

Sensitive Long VS Sensitive Short The best classifier has been ob-
tained using:

• features with p value < 0.0005,

• Support Vector Machine as classification algorithm, with C=10
and kernel=rbf.

The number of features resulting from this selection is 35.
The visual results are shown in the ROC curve below (see Figure 7.4(c)).

Sensitive Long VS Resistant The best classifier has been obtained
using:

• features with p value < 0.0005,

• Random Forest, with n estimators=200 and max depth=15.

The number of features resulting from this selection is 26.
The visual results are shown in the ROC curve below (see Figure 7.4(a)).

Sensitive Short VS Resistant The best classifier has been obtained
using:

• features with p value < 0.05 after applying the Mild Bonferroni
Correction,

• Random Forest, with n estimators=200 and max depth=15.

The number of features resulting from this selection is 40.
The visual results are shown in the ROC curve below (see Figure 7.4(b)).
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All Sensitive VS Resistant The best classifier has been obtained us-
ing:

• features with p value < 0.05 after applying the Mild Bonferroni
Correction,

• Random Forest, with n estimators=200 and max depth=15.

The number of features resulting from this selection is 20.
The visual results are shown in the ROC curve below (see Figure 7.4(d)).

The performance of the classifier for each comparison are shown in
Table 7.2.

Table 7.2: Performance related to gene expression data, using the most significant
feature sets.

Gene Expression data Precision Recall Accuracy f 1 score
Comparison

Sensitive Long vs Sensitive 0.606± 0.2 0.766± 0.2 0.801± 0.1 0.751± 0.1
Short

Sensitive Long vs Resistant 0.862± 0.2 0.933± 0.1 0.845± 0.2 0.806± 0.3

Sensitive Short vs Resistant 0.718± 0.2 0.55± 0.2 0.766± 0.1 0.723± 0.2

Resistant vs All Sensitive 0.71± 0.2 0.37± 0.1 0.765± 0.05 0.474± 0.1

Considerations From the results shown in the Table 7.2, which refer to
the best performances obtained with each set of features, it is possible to
make some considerations:

• the binary comparison that gives the best performance is the one
that discerns between the two most different classes, both in terms
of relapse and gene profile: Sensitive Long vs Resistant ;

• in this case, the binary comparisons between Sensitive Long vs Sen-
sitive Short and between Sensitive Short vs Resistant give similar
performance, although the second shows slightly worse results: this
could have been predictable, because patients belonging to the Sensi-
tive Short class can manifest relapse in very different times, therefore
also very close (we speak of a difference of a few months) compared
to those of therapy-resistant patient;

• The binary comparison between the Resistant class and the totality
of the patients sensitive to the therapy returned good performances,
despite the classes are strongly unbalanced between each other.
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miRNA data

Sensitive Long VS Sensitive Short The best classifier has been ob-
tained using:

• features with p value < 0.005,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 17.
The visual results are shown in the ROC curve below (see Figure 7.5(c)).

Sensitive Long VS Resistant The best classifier has been obtained
using:

• features with p value < 0.005,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 21.
The visual results are shown in the ROC curve below (see Figure 7.5(a)).

Sensitive Short VS Resistant The best classifier has been obtained
using:

• features with p value < 0.005,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 12.
The visual results are shown in the ROC curve below (see Figure 7.5(b)).

All Sensitive VS Resistant The best classifier has been obtained us-
ing:

• features with p value < 0.005,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 11.
The visual results are shown in the ROC curve below (see Figure 7.5(d)).

The performance of the classifier for each comparison are shown in
Table 7.3.
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Table 7.3: Performance related to miRNA expression data, using the most
significant feature sets.

miRNA data Precision Recall Accuracy f 1 score
Comparison

Sensitive Long vs Sensitive 0.666± 0.4 0.35± 0.3 0.837± 0.1 0.68± 0.3
Short

Sensitive Long vs Resistant 0.77± 0.1 0.9± 0.1 0.75± 0.1 0.68± 0.3

Sensitive Short vs Resistant 0.7± 0.3 0.5± 0.3 0.736± 0.1 0.68± 0.2

Resistant vs All Sensitive 0.77± 0.3 0.37± 0.2 0.745± 0.1 0.45± 0.1

Considerations From the results shown in the Table 7.3, which refer to
the best performances obtained with each set of features, it is possible to
make some considerations:

• differently from what happened for the gene expression data, in this
case the performances of all the binary comparisons are extremely
similar;

• the binary comparison between Sensitive Short vs Resistant classes
remains the one with the worst performances, as expected;

• the comparison between the Resistant class and that inclusive of
all patients sensitive to therapy improves slightly compared to the
results seen for the gene expression data; this indicates that the
selected features of miRNA expression are able to better distinguish
the two classes: this is positive, since the final aim of the project is
to distinguish therapy-resistant patients from all others.

Methylation data

Sensitive Long VS Sensitive Short The best classifier has been ob-
tained using:

• features with p value < 0.05 after applying the Mild Bonferroni
Correction,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 10.
The visual results are shown in the ROC curve below (see Figure 7.6(c)).

Sensitive Long VS Resistant The best classifier has been obtained
using:

• features with p value < 0.0005,
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• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 18.
The visual results are shown in the ROC curve below (see Figure 7.6(a)).

Sensitive Short VS Resistant The best classifier has been obtained
using:

• features with p value < 0.005,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 31.
The visual results are shown in the ROC curve below (see Figure 7.6(b)).

All Sensitive VS Resistant The best classifier has been obtained us-
ing:

• features with p value < 0.005,

• Random Forest as classification algorithm, with n estimators=200
and max depth=15.

The number of features resulting from this selection is 65.
The visual results are shown in the ROC curve below (see Figure 7.6(d)).

The performance of the classifier for each comparison are shown in
Table 7.4.

Table 7.4: Performance related to methylation data, using the most significant
feature sets.

Methylation data Precision Recall Accuracy f 1 score
Comparison

Sensitive Long vs Sensitive 0.575± 0.4 0.383± 0.3 0.821± 0.1 0.669± 0.3
Short

Sensitive Long vs Resistant 0.79± 0.1 0.9± 0.1 0.77± 0.1 0.7± 0.2

Sensitive Short vs Resistant 0.65± 0.3 0.32± 0.2 0.69± 0.1 0.59± 0.2

Resistant vs All Sensitive 0.79± 0.3 0.35± 0.1 0.78± 0.1 0.47± 0.1

Considerations From the results shown in the Table 7.4, which refer to
the best performances obtained with each set of features, it is possible to
make some considerations:
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• in this case, compared to the two precedents seen, the binary com-
parison between Sensitive Short vs Resistant is even worse, showing
worse performance than all the other comparisons and also with re-
spect to the same comparison carried out using different data types;

• the accuracy performances concerning the distinction between the
Resistant class and the Sensitive one are the best views to date;
however, accuracy is a great measure only when symmetric data sets
are available, where values of false positive and false negatives are
almost same. Therefore, you have to look at other metrics to evaluate
the performance of your model, and unfortunately considering all the
parameters constituting the performance of the classifier, the final
result is that of a classically reliable classifier.

CNA data

As for the comparisons performed using CNA data as features, the best
classifier was always obtained through:

• features selected from permutation test, with p value < 0.005
and resolution = 1K, from which we extracted:

1. for Resistant vs Sensitive Long comparison: 153 features;

2. for Resistant vs Sensitive Short comparison: 236 features;

3. for Sensitive Long vs Sensitive Short comparison: 128
features;

4. for Resistant vs Sensitive comparison: 225 features;

• Support Vector Machine, with:

1. for Resistant vs Sensitive Long comparison: C=1 and ker-
nel=rbf ;

2. for Resistant vs Sensitive Short comparison: C=1 and ker-
nel=rbf ;

3. for Sensitive Long vs Sensitive Short comparison: C=10
and kernel=rbf ;

4. for Resistant vs Sensitive comparison: C=10 and ker-
nel=rbf.

Considerations From the results shown in the Table 7.5, which refer to
the best performances obtained with each set of features, it is possible to
make some considerations:
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Table 7.5: Performance related to CNA data, using the most significant feature sets.

CNA data Precision Recall Accuracy f 1 score
Comparison

Sensitive Long vs Sensitive 0.30± 0.26 0.32± 0.21 0.74± 0.07 0.28± 0.1
Short

Sensitive Long vs Resistant 0.89± 0.07 0.88± 0.10 0.83± 0.08 0.88± 0.2

Sensitive Short vs Resistant 0.53± 0.11 0.57± 0.11 0.64± 0.09 0.54± 0.09

Resistant vs All Sensitive 0.51± 0.10 0.61± 0.19 0.68± 0.07 0.54± 0.11

• the binary comparison that gives the best performance is the one
that discerns between the two most different classes, both in terms
of relapse and gene profile: Sensitive Long vs Resistant ;

• the binary comparison between the Resistant class and the total-
ity of the patients sensitive to the therapy returned better results
than Sensitive Short vs Resistant comparison, despite the classes are
strongly unbalanced between each other.

Merging data types

Finally, a last classifier was built by combining the best features of each
data type (gene expression data, miRNA expression data, methylation
data and CNA data).

Sensitive Long VS Sensitive Short The best classifier has been ob-
tained using:

• Support Vector Machine, with C=1 and kernel=rbf.

The number of features is equal to 190, of which 128 of CNA, 35 of gene
expression, 17 of miRNA and 10 of methylation.
The visual results are shown in the ROC curve below (see Figure 7.7(c)).

Sensitive Long VS Resistant The best classifier has been obtained
using:

• Support Vector Machine, with C=10 and kernel=rbf.

The number of features is equal to 218, of which 153 of CNA, 26 of gene
expression, 21 of miRNA and 18 of methylation; some of them were re-
moved due to a correlation = 1 with other features, thus the final number
is 213.
The visual results are shown in the ROC curve below (see Figure 7.7(a)).
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Sensitive Short VS Resistant The best classifier has been obtained
using:

• Support Vector Machine, with C=10 and kernel=rbf.

The number of features is equal to 319, of which 236 of CNA, 40 of gene
expression, 12 of miRNA and 31 of methylation; some of them were re-
moved due to correlation = 1 with other features, thus the final number
is 310.
The visual results are shown in the ROC curve below (see Figure 7.7(b)).

All Sensitive VS Resistant The best classifier has been obtained us-
ing:

• Support Vector Machine, with C=1 and kernel=linear.

The number of features is equal to 321, of which 225 of CNA, 20 of
gene expression, 11 of miRNA and 65 of methylation; some of them were
removed due to correlation=1 with other features, thus the final number
is 311.
The visual results are shown in the ROC curve below (see Figure 7.7(d)).

The performance of the classifier for each comparison are shown in
Table 7.6.

Table 7.6: Performance obtained by merging different data types, using the most
significant feature sets.

Merge data Precision Recall Accuracy f 1 score
Comparison

Sensitive Long vs Sensitive 0.60± 0.39 0.48± 0.32 0.83± 0.11 0.83± 0.20
Short

Sensitive Long vs Resistant 0.86± 0.09 0.95± 0.08 0.84± 0.08 0.91± 0.10

Sensitive Short vs Resistant 0.80± 0.16 0.65± 0.14 0.82± 0.09 0.83± 0.10

Resistant vs All Sensitive 0.68± 0.18 0.74± 0.11 0.80± 0.10 0.82± 0.09

Considerations From the results shown in the Table 7.4, which refer to
the best performances obtained with each set of features, it is possible to
make some considerations:

• the results obtained by combining the best features of different data
types are generally good, considering the innovation of having in-
tegrated very different features (i.e., CNA regions and methylated
genes) between them;
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• exactly as for the performances analyzed before, the comparison with
better performances turns out to be that between the Resistant and
Sensitive Long classes: at this point it can be stated that all the
subset of features considered are significant in the distinction of the
two mentioned classes;

• the overall of the performances concerning the comparison between
the Resistant and Sensitive classes is quite good: these results
demonstrate that the features selection procedure used here, together
with a careful choice of the classification algorithm and its parame-
ters (hyperparameter tuning), is a winning strategy in order to dis-
criminate among patients affected by a high-chromosomal instable
cancer-type.

ROC curves

In a Receiver Operating Characteristic (ROC) curve the true positive rate
(Sensitivity) is plotted in function of the false positive rate (100-Specificity)
for different cut-off points. Each point on the ROC curve represents a sen-
sitivity/specificity pair corresponding to a particular decision threshold. A
test with perfect discrimination (no overlap in the two distributions) has
a ROC curve that passes through the upper left corner (100% sensitivity,
100% specificity). Therefore the closer the ROC curve is to the upper left
corner, the higher the overall accuracy of the test.
Considering the above, the ROC curves describing the best overall accu-
racy of the various tests are in Figure 7.4(a), 7.5(a), 7.6(a) and 7.7(a), all
referring to the binary comparison between the Resistant and Sensitive
Long classes.
The curves that describe the worst performances are those related to the
binary comparison between the two Resistant and Sensitive Short classes,
while the comparison between the class of resistant patients and the class
inclusive of all therapy-sensitive patients is generally good.
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(a) Resistant vs Sensitive Long (b) Resistant vs Sensitive Short

(c) Sensitive Long vs Sensitive Short (d) Resistant vs All Sensitive

Figure 7.4: ROC curves of gene expression classifier, obtained by each binary
comparison.
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(a) Resistant vs Sensitive Long (b) Resistant vs Sensitive Short

(c) Sensitive Long vs Sensitive Short (d) Resistant vs All Sensitive

Figure 7.5: ROC curves of miRNA expression classifier, obtained by each binary
comparison.
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(a) Resistant vs Sensitive Long (b) Resistant vs Sensitive Short

(c) Sensitive Long vs Sensitive Short (d) Resistant vs All Sensitive

Figure 7.6: ROC curves of DNA methylation classifier, obtained by each binary
comparison.
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(a) Resistant vs Sensitive Long (b) Resistant vs Sensitive Short

(c) Sensitive Long vs Sensitive Short (d) Resistant vs Sensitive

Figure 7.7: ROC curves for each comparison by merging the best features obtained
from different data types (gene expression data, miRNA expression data,

methylation data, CNA data).
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7.2 Biological Results

At this point, having various sets of considerable relevant features for each
data-type, we have focused attention on the 137 CNA amplification re-
gions relevant to the distinction of patients resistant to therapy compared
to those who are not.
It was decided to analyze these regions in more detail due to the hypothe-
sis that their intensity of alteration may be a good predictor of diagnosis,
given their nature of early events: this means that it is not necessary to
administer the therapy to understand the response to it because a partic-
ular expression of these regions could be indicative of a chemoresistance
guessed intrinsic; in particular, the amplification regions have been chosen
because, unlike those of deletion, these do not imply a sub-expression of
genes such as to consider them silenced.
The identification of genomic regions distinctive of chemoresistance would
represent great progress from the point of view of both the early diagnosis
and the computational costs necessary for the acquisition and manipula-
tion of data.
The use of an integrative approach based on the study of many different
data-types showed good classification results among the classes, so it was
decided to try to investigate whether, starting from the CNA features, it
would be possible to bring the research back to a more targeted level.
Thus, a total of 183 protein-coding genes were extracted from the 137
CNA regions previously identified. Through functional annotations pro-
vided from DAVID, 33 genes considered relevant in the ovarian cancer
study were selected. These genes and their brief descriptions are reported
in Table 7.7.
Given the involvement of these 33 genes in the biology, aetiology and drug-
resistance associated with ovarian cancer, a further selection was executed,
including only the genes related to specific HGS-OC and its characteris-
tics, resulting in 24 genes. A further selection has been done including
only the genes that had relevance in terms of their contribution to the
onset of chemoresistance.
The genes that proved to be relevant according to this selection are only
6 (in bold in Table 7.7).
At this point, to evaluate the existing interactions between genes and their
involvement in the activation of any pathway relevant to the development
and progression of HGS-OC and its relative chemoresistance, various levels
of enrichment analysis have been performed, leading to the final result of
Notch signaling pathway identification.

7.2.1 Enrichment Analysis

The first level of enrichment analysis was performed on the 24 genes in-
volved in the development of HGS-OC and ovarian tumors, as epithelial
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Table 7.7: Brief description of the 33 genes related to ovarian cancer in the CNA
amplification regions suitable for distinguishing Resistant and Sensitive classes.

Official gene symbol Gene name Description

ADAM12 ADAM metallopeptidase domain 12 selectively expressed in ovarian tumor vasculature;
its expression is associated with poor survival

in patients with HGS-OC

BCCIP BRCA2 and CDKN1A interacting protein its germ line mutations are unlikely to be a
major contributor to familiar ovarian cancer risk

BID BH3 interacting domain death agonist roles as predictive biomarker of chemotherapy resistance

BLM Bloom syndrome RecQ like helicase role in drug-resistance in leukemia

BMPR1B bone morphogenetic protein receptor type 1B role in EOC and influence on
prognosis of OC patients

CA9 carbonic anhydrase 9 role in resistance to chemotherapy

CCSER1 coiled-coil serine rich protein 1 contribution to the chromosomal instability of cancer

CERS4 ceramide synthase 4 higher level in cancerour cell lines

CNTFR ciliary neurotrophic factor receptor may underlie treatment resistance, potential therapeutic target

CTBP2 C-terminal binding protein 2 ovarian cancer oncogene

CUZD1 CUB and zona pellucida like domains 1 promising biomarker for OC diagnosis

DLL1 delta like canonical Notch ligand 1 its overexpression may increase sensitivity
of cells to chemotherapeutic agents

DPYSL4 dihydropyrimidinase like 4 associated with various systemic cancers

ELAVL1 ELAV like RNA binding protein 1 it mediates resistance to carboplatin
in ovarian cancer cells

ERMP1 endoplasmic reticulum metallopeptidase required for the organization of somatic cells and oocytes
in the ovary

FANCG Fanconi anemia complementation group G interacts directly with BRCA2

FBN3 fibrillin 3 evidence for association with Polycystic ovary syndrome

FGFR2 fibroblast growth factor receptor 2 chemoresistance in neuroblastoma

FURIN furin, paired basic amino acid cleaving enzyme predictor of the disease outcome

GHSR growth hormone secretagogue receptor expressed in EOC in vivo and in vitro

HINT2 histidine triad nucleotide binding protein downespression associated with low response to therapy in EOC

HtrA1 HtrA serine peptidase 1 its loss in OC may contribute to
in vivo chemoresistance

IQGAP1 IQ motif containing GTPase activating protein 1 contribution to metastasis of OC

PARK2 parkin RBR E3 ubiquitin protein ligase possible tumor suppressor gene
defects in its expression may be involved

in progression of OC

RECK reversion inducing cysteine rich protein target-gene for anticancer effects of icariin
with kazal motifs

RNASET2 ribonuclease T2 its downregulation contributes to drug-resistance
in OC

STOML2 stomatin like 2 overexpressed in EOC

TNFSF10 tumor necrosis factor good response to cisplatin
superfamily member 10

TPM2 tropomyosin 2 (beta) overexpression in ovarian cancer compared to controls

UNC45A unc-45 myosin chaperone A expressed in OC proliferation and metastasis

UNC93A unc-93 homolog A located in a region of the genome frequently associated with OC

URI1 URI1, prefoldin like chaperone role in development of chemotherapeutic resistance

VCP valosin containing protein highly sensitive serum tumor marker in several human cancers

OC, anticipating it. The result obtained through this first analysis was
the identification of the Notch Signaling Pathway, considered relevant for
its influence on drug-resistance.
This result highlighted the relevance of two genes present in our set that
are activators of the pathway itself: the Delta-like 1 lingad DLL1 and the
CTBP2 oncogene, as can be seen in Figure 7.8 from DAVID.
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Figure 7.8: Notch Signaling Pathway from DAVID Functional Annotation Tool.

Notch Signaling Pathway

Notch Signaling pathway is one of the most important signaling pathway
in drug-resistance tumor cells; its down-regulation could induce drug sen-
sitivity, leading to increased inhibition of cancer cell growth, invasion and
metastasis. It is a conserved ligand-receptor pathway which has critical
roles in many aspects that affects the development and function of many
organs, [39].
To date, four Notch receptors have been identified in mammals, including
humans, such as Notch-1-4; the canonical ligands are designated as either
Delta-like or Serrate-like ligands, known as Jagged-1 and Jagged-2.
Canonical Notch signals are transduced by a process called regulated in-
tramembrane proteolysis. Notch receptors are normally maintained in a
resting, proteolytically resistant conformation on the cell surface, but lig-
and binding initiates a proteolytic cascade that releases the intracellular
portion of the receptor (ICN) from the membrane. The critical, regu-
lated cleavage step is effected using ADAM metalloproteases and occurs
at a site called S2 immediately external to the plasma membrane. This
truncated receptor, dubbed NEXT (for Notch extracellular truncation),
remains membrane tethered until it is processed at site S3 and additional
sites by gamma secretase, a multiprotein enzyme complex.
After gamma secretase cleavage, ICN ultimately enters the nucleus, where
it assembles a transcriptional activation complex that contains a DNA-
binding transcription factor called CSL, and a transcriptional coactivator
of the Mastermind family. This complex then engages additional coacti-
vator proteins such as p300 to recruit the basal transcription machinery
and turn on the expression of downstream target genes.
The whole Notch signaling is summarized in Figure 7.9. Notch signals
influence a wide spectrum of cell fate decisions, both during development
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Figure 7.9: Schematic of Notch signaling.

and in the adult organism. However, dysregulated signaling has also been
implicated in a number of different human diseases ranging from neurode-
generation to cancer.
Recently, Notch pathway has been reported to be involved in drug re-
sistance and many studies have demonstrated that Notch regulates the
formation of cancer stem cells (CSCs) and contributes to the acquisition
of the epithelialmesenchymal transition (EMT) phenotype, which are crit-
ically associated with drug resistance, [10].
Experimental evidence also revealed that Notch was involved in anti-cancer
drug resistance, indicating that targeting Notch could be a novel thera-
peutic approach for the treatment of cancer by overcoming drug resistance
of cancer cells, which may lead to the elimination of cancer stem cells
or epithelialmesenchymal transition type cells which are typically drug-
resistant, and are believed to be the root cause of tumor recurrence.
Moreover, this pathway seems to play a role in anti-taxol and platinum-
based resistance, which are anti-cancer chemotherapy drugs used for the
treatment of ovarian tumors, in particular of high-grade serous ovarian
adenocarcinoma.
Also, evidences suggest that microRNAs (miRNAs) play important roles
in the regulation of drug resistance. It is well known that the miRNAs
elicit their regulatory effects in post-transcriptional regulation of genes
by binding to the 3 untranslated region (3UTR) of target messenger RNA
(mRNA). Some miRNAs are thought to have oncogenic activity while oth-
ers have tumor suppressor activity:

• oncogenic miRNAs are up-regulated in cancer and contribute to its
pathology through various mechanisms such as targeting tumor sup-
pressor genes;

• in contrast, other miRNAs are considered to have tumor suppressor
activity and are down-regulated in cancer.

One miRNA, namely miR-34, has been found to participate in Notch path-
ways regulation and has been reported to be involved drug resistance. The
miR-34 family is composed of three processed miRNAs: miR-34a is en-
coded by its own transcript, whereas miR-34b and miR-34c share a com-
mon primary transcript. The expression of miR-34a has been found to
be lower or undetectable in many cancer types, suggesting that miR-34a
could function as a tumor suppressor gene; in fact, many involvements of
this miRNA in Notch regulation have been reported, such as:

• transfection of miR-34a to glioma cells down-regulated the protein
expression of Notch-1, Notch-2, and CDK6;
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• human gastric cancer cells with miR-34 restoration reduced the ex-
pression of target gene Notch;

• Notch-1 and Notch-2 are downstream genes of miR-34 in pancreatic
cancer cells because restoration of miR-34 expression in the pan-
creatic cancer cells down-regulated the expression of Notch-1 and
Notch-2;

• pancreatic cancer stem cells are enriched with tumor-initiating cells
or cancer stem cells (CSCs) with high levels of Notch-1/2 and loss
of miR-34, suggesting that miR-34 may be involved in pancreatic
cancer stem cell self-renewal mediated by Notch signaling;

• miR-34a is down-regulated in drug-resistant prostate cancer cells,
and ectopic overexpression of miR-34a resulted in growth inhibi-
tion and attenuated chemoresistance to the anti-cancer drug camp-
tothecin;

• miR-34a was down-regulated in doxorubicin and verapamil resistance
MCF-7 breast cancer cells.

Many reports clearly suggest the role of miR-34 in drug resistance, which
is in part mediated through the regulation of Notch signaling.
Furthermore, the alteration of miR-200 family was also found in drug-
resistant cells. The miR-200 family has five members: miR-200a, miR-
200b, miR-200c, miR-141, and miR-429; many studies have shown that the
miR-200 family regulates EMT which is associated with drug resistance:

• the expression of miR-200b was significantly down-regulated in
docetaxel-resistant non-small cell lung cancer (NSCLC) cells;

• miR-200 expression regulates epithelialmesenchymal transition
(EMT) in bladder cancer cells and reverses resistance to EGFR ther-
apy;

• miR-200c restored microtubule-binding chemotherapeutic agents in
breast and ovarian cancer cells;

• miR-200a, miR-200b, and miR-200c were down-regulated in
gemcitabine-resistant pancreatic cancer cells, which show the acqui-
sition of EMT phenotype;

• re-expression of miR-200 family resulted in the down-regulation of
ZEB1, slug, E-cadherin, and vimentin and increased cell sensitivity
to gemcitabine.

In addition, it has been found that Notch-1 could be one of miR-200b
targets because overexpression of miR-200 family significantly inhibited
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Notch-1 expression in gemcitabine-resistant pancreatic cancer cells and
prostate cancer cells, suggesting that re-expression of miR-200 could
increase drug sensitivity, which indeed could be mediated through the
regulation of Notch signaling pathway.
It is important to underline the link of Notch with epithelial-mesenchymal
transition, because it is associated with drug resistance and cancer cell
metastasis; the processes of EMT has been shown to be important on
conferring drug resistance characteristics to cancer cells against conven-
tional therapeutics including taxol, vincristine, and oxaliplatin and Notch
signaling pathway has been reported to be involved with the acquisition
of EMT in drug-resistant cancer cells: the activation of Notch signaling is
mechanistically linked with chemoresistance phenotype, which is consis-
tent with the acquisition of EMT phenotype, and further suggesting that
the inactivation of Notch signaling by novel strategies could be a potential
targeted therapeutic approach for overcoming chemoresistance toward the
prevention of tumor progression and/or treatment of human cancer for
which current conventional therapeutic strategies are highly disappointing.

Then, by the mean of miRTarBase, which provides miRNA-target
gene interactions experimentally known, and TargetScan, which provides
high confidence prediction in silico, the relationships between the selected
24 genes with miRNAs have been investigated, leading to a network of
connections shown in Figure 7.10.

As can be seen in the graph above, some of the selected genes have

Figure 7.10: Connection network between relevant genes for progression of HGS-OC
and miRNAs, obtained by the mean of Cytoscape tool.

shown to have experimental relationships with miRNAs involved in the
Notch Signaling pathway, such as mir-34a, mir-200b and mir-200c.

To confirm the hypothesis that the genes involved in the drug-response,
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selected within the CNA regions, were identifying a pattern that could lead
back to the Notch Signaling Pathway, a second enrichment analysis was
performed, using only the 6 protein-coding genes related to drug response
plus the two activators DLL1 and CTBP2.

Figure 7.11: Connection network between relevant genes for drug-response in
HGS-OC and miRNAs, obtained by the mean of Cytoscape tool.

This second analysis has again produced the identification of the Notch
Signaling Pathway and the network of connection between those genes
and miRNAs connected to them is shown in Figure 7.11. Also in this
case the miRNA-target gene relationships were considered, which showed
regulation by mir-34a and mir-34c, previously attributed to drug-resistance
regulation mediated by the Notch signaling pathway.

Later, further analysis was performed to study in more detail the be-
havior of these 8 genes and their possible relevance within the found path-
way.
To have a first visual impression of the difference in expression of the 8
genes considered to be involved in drug-resistance mediated by Notch sig-
naling patwhay, the expression values of those genes were compared in
Resistant and Sensitive classes, as shown in Figure 7.12. As can be seen
from the graph in Figure 7.12, the expression of these genes is not sig-
nificantly different in the classes that indicate a distinct drug-response to
therapy.
This can be attributed to the fact that the data analyzed correspond only
to the early stage, in which no administration of the therapy has taken
place, which would induce a variation in the gene expression from which
the development of chemoresistance would follow.
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Figure 7.12: Gene expression comparison of 8 genes considered to be involved in
drug-resistance mediated by Notch signaling pathwhay in Resistant and Sensitive

classes.

For this reason, to verify the relevance of these genes in the induction of
chemoresistance, the CNA regions associated with them were analyzed,
to verify whether in those regions the intensity of alteration was already
distinctive of the classes at the early stage.
Verifying a significant alteration in those CNA regions would validate the
hypothesis that:

• the identified genes are drivers of chemoresistance at early stage;

• the CNA regions are predictors of drug-responsiveness at early stage,
giving the possibility to do early diagnosis;

if these hypotheses were verified, there would be the possibility of targeting
the identified genes and evaluating the development of other therapeutic
options.

DLL1 Delta Like Canonical Notch Ligand 1 is a protein-coding gene,
a human homolog of the Notch Delta ligand and it is a member of the
delta/serrate/jagged family. The DLL1-induced Notch signaling is medi-
ated through an intercellular communication that regulates cell lineage,
cell specification, cell patterning and morphogenesis through effects on
differentiation and proliferation. Also, its overexpression may increase the
sensitivity of cells to chemotherapeutic agents.
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Figure 7.13: DLL1 gene expression across
all the classes.

Figure 7.14: CNA region alteration
associated to DLL1 across all the classes.

CTBP2 C-Terminal Binding Protein 2 is a protein-coding gene that
produces alternative transcripts encoding two distinct proteins. One
protein is a transcriptional repressor, while the other isoform is a major
component of specialized synapses known as synaptic ribbons. Both
proteins contain a NAD+ binding domain similar to NAD+-dependent
2-hydroxyacid dehydrogenases. A portion of the 3’ untranslated region
was used to map this gene to chromosome 21q21.3; however, it was noted
that similar loci elsewhere in the genome are likely. Several transcript
variants encoding two different isoforms have been found for this gene.
The expression of this transcriptional co-repressor is elevated in human
ovarian tumors. Downregulation of CtBP2 expression in ovarian cancer
cell lines using short-hairpin RNA strategy suppressed the growth rate
and migration of the resultant cancer cells. It has been proposed that
CtBP2 is an ovarian cancer oncogene that regulates gene expression
program by modulating histone deacetylase (HDAC) activity. CtBP2
expression may be a surrogate indicator of cellular sensitivity to HDAC
inhibitors.

Figure 7.15: CTBP2 gene expression
across all the classes.

Figure 7.16: CNA region alteration
associated to CTBP2 across all the

classes.

Now, we will show the analyzes related to the genes considered most
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important in the development of chemoresistance, in order of relevance.

CA9 Carbonic anhydrase IX is an enzyme that in humans is encoded
by the CA9 gene, included in the large family of zinc metallo-enzymes
that catalyze the reversible hydration of carbon dioxide. They partici-
pate in a variety of biological processes, including respiration, calcification,
acid-base balance, bone resorption, and the formation of aqueous humor,
cerebro-spinal fluid, saliva, and gastric acid. They show extensive diver-
sity in tissue distribution and in their subcellular localization. CA9 is a
transmembrane protein and is one of only two tumor-associated carbonic
anhydrase isoenzymes known. Its expression in combination with that of
vascular endothelial growth factor (VEGF) has been associated with de-
creased overall survival and response to therapy, because cancer growth,
spread and chemotherapy resistance are promoted by hypoxic microen-
vironment which affects several genes through stabilization of hypoxia-
inducibile factor 1-α, that triggers the promoters of CA9 and VEGF, [40].
The combined high expression CA9 and VEGF phenotype, described as
high hypoxia profile group, showed significant positive correlation with re-
sistance to chemotherapy and poor overall survival, suggesting that this
phenotype may have a useful role in stratifying ovarian cancer for prog-
nostic and therapeutic purposes.

Figure 7.17: CA9 gene expression across
all the classes.

Figure 7.18: CNA region alteration
associated to CA9 across all the classes.

ELAVL1 ELAV Like RNA Binding Protein 1, also known as Human
antigen R (HuR), is a protein-coding gene. The protein encoded by this
gene is a member of the ELAVL family of RNA-binding proteins that
contain several RNA recognition motifs, and selectively bind AU-rich el-
ements (AREs) found in the 3’ untranslated regions of mRNAs. AREs
signal degradation of mRNAs as a means to regulate gene expression, thus
by binding AREs, the ELAVL family of proteins play a role in stabilizing
ARE-containing mRNAs. This gene has been implicated in a variety of
biological processes and has been linked to a number of diseases, including
cancer. It is highly expressed in many cancers, and could be potentially
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useful in cancer diagnosis, prognosis, and therapy.
HuR is regulated through NEDDylation post-translational modification:
inhibition of this process should sensitise resistant tumour cells to car-
boplatin. It is showed in [41] that treatment of a tumour cell line with
MLN4924, a NEDDylation inhibitor, overcame the resistance to carbo-
platin, this leading to the conclusion that inhibition of NEDDylation may
be a useful strategy to resensitise tumour cells in patients that have ac-
quired carboplatin resistance.

Figure 7.19: ELAVL1 gene expression
across all the classes.

Figure 7.20: CNA region alteration
associated to ELAVL1 across all the

classes.

HtrA1 HtrA Serine Peptidase 1 is a protein-coding gene that encodes
a member of the trypsin family of serine proteases. The expression of
HtrA1, which is frequently downregulated in ovarian cancer, influences tu-
mor response to chemotherapy by modulating chemotherapy-induced cy-
totoxicity. Downregulation of HtrA1 attenuated cisplatin- and paclitaxel-
induced cytotoxicity, while forced expression of HtrA1 enhanced cisplatin-
and paclitaxel-induced cytotoxicity. HtrA1 expression was upregulated by
both cisplatin and paclitaxel treatment. This upregulation resulted in lim-
ited autoproteolysis and activation of HtrA1. Active HtrA1 induces cell
death in a serine proteasedependent manner. The potential role of HtrA1
as a predictive factor of clinical response to chemotherapy was assessed
in ovarian cancer patients receiving cisplatin-based regimens. Patients
with ovarian tumors expressing higher levels of HtrA1 showed a higher
response rate compared with those with lower levels of HtrA1 expression.
These findings uncover what is believed to be a novel pathway by which
serine protease HtrA1 mediates paclitaxel- and cisplatin-induced cytotox-
icity and suggest that loss of HtrA1 in ovarian and gastric cancers may
contribute to in vivo chemoresistance, [42].
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Figure 7.21: HtrA1 gene expression across
all the classes.

Figure 7.22: CNA region alteration
associated to HtrA1 across all the classes.

RNASET2 Ribonuclease T2 is a protein-coding gene, member of the
Rh/T2/S-glycoprotein class of extracellular ribonucleases. It is a tumor
suppressor genes whose expression is significantly downregulated in drug-
resistant ovarian cancer cells/tissues. The drug resistance-related func-
tions of RNASET2 have been analyzed in [43], resulting that RNASET2
was co-expressed, co-localized, physically interacted and shared protein do-
mains and pathways directly/indirectly with a number of proteins. Specif-
ically, direct genetic interactions were established between RNASET2 and
phosphatase and tensin homolog (PTEN): PTEN is a well-known TSG
associated with cancer development through the ERK1/2 signaling and
PI3K/Akt/mTOR pathways. It interacts with tumor suppressor genes
(such as p53 and BRCA1) that contribute to the development of drug re-
sistance in several types of cancer. In ovarian cancer, PTEN contributes
to multidrug resistance through cell cycle regulation, apoptosis and the
PI3K/Akt pathway.

Figure 7.23: RNASET2 gene expression
across all the classes.

Figure 7.24: CNA region alteration
associated to RNASET2 across all the

classes.

BID BH3 Interacting Domain Death Agonist is a protein-coding gene
that encodes a death agonist that heterodimerizes with either agonist BAX
or antagonist BCL2. The encoded protein is a member of the BCL-2
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family of cell death regulators. It is a mediator of mitochondrial damage
induced by caspase-8 (CASP8); CASP8 cleaves this encoded protein, and
the COOH-terminal part translocates to mitochondria where it triggers
cytochrome c release. Multiple alternatively spliced transcript variants
have been found, but the full-length nature of some variants has not been
defined. BID preferentially activates BCL-2 antagonist or killer (BAK),
affecting chemotherapy response, as stated in [44].

Figure 7.25: BID gene expression across
all the classes.

Figure 7.26: CNA region alteration
associated to BID across all the classes.

URI1 URI1 Prefoldin Like Chaperone involved in gene transcription reg-
ulation. This gene may play a role in multiple malignancies including
ovarian cancer and hepatocellular carcinoma. URI regulates tumorigenic-
ity and chemotherapeutic resistance of multiple myeloma by modulating
interleukin (IL)-6 transcription, [45].

Figure 7.27: URI1 gene expression across
all the classes.

Figure 7.28: CNA region alteration
associated to URI1 across all the classes.

Except for URI1, no significant differences in gene expression between
the classes are shown; on the other hand, the alteration of the CNA
regions seems to be more significant, in particular for BID, CA9, CTBP2,
HtrA1 and DLL1, thus suggesting that the regions associated to those
genes could actually be used as efficient predictors of drug-resistance at
early stage.
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To validate what has been said by commenting on the graphs that
compare the gene expression with the intensity of alterations of the CNA
region associated to the gene in analysis, a statistical verification was
conducted by the mean of Kolmogorov-Smirnov21 test, whose results are
reported in Tables 7.8 and 7.9:

Table 7.8: p values obtained comparing the distribution of the CNA values of
classes for the different genes using the K-S test.

Comparison BID CA9 CTBP2 HtrA1 URI1 DLL1 RNASET2 ELAVL1

Resistant vs 0.003 0.01 0.01 0.01 0.05 0.081 0.22 0.48
Sensitive

Table 7.9: p values obtained comparing the distribution in the classes of the
expression of the different genes using the K-S test.

Comparison URI1 CTBP2 ELAVL1 RNASET2 BID HtrA1 DLL1 CA9

Resistant vs 0.03 0.18 0.22 0.38 0.49 0.49 0.69 0.88
Sensitive

The results shown in the tables above statistically validate the
statement that for many of the genes, the CNA distributions are different
between the classes while those of expression are practically the same.

In summary, from what has been said so far it can be stated that:

• the selected genes are actually involved in drug response, in partic-
ular their contribution modulates the chemoresistance;

• at early stage, these genes do not show a significantly different gene
expression, but the CNA regions associated with them show a dif-
ferent intensity of alteration between classes;

this confirms that copy number alterations can be considered predictors of
drug-response that can be used for early diagnosis and to assess whether
the possible targeting of the selected genes would lead to the development
of new therapeutic options.

21In statistics, the KolmogorovSmirnov test (KS test or KS test) is a nonparametric
test of the equality of continuous (or discontinuous), one-dimensional probability distri-
butions that can be used to compare a sample with a reference probability distribution
(one-sample KS test), or to compare two samples (two-sample KS test).
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Chapter 8

Conclusions

The aim of this study was the identification of a molecular signature that
was distinctive of the onset of chemoresistance in patients with High-Grade
Serous Ovarian Adenocarcinoma, the most lethal of ovarian tumors. Re-
sponsiveness to the platinum-based drug is a very relevant factor linked
to the outcome of therapy, as most patients, who are initially sensitive,
will develop a progressive resistance, becoming incurable due to the lack
of therapeutic options. Moreover, in some cases, patients show an in-
trinsic drug-resistance, which makes them resistant from the beginning of
the therapy: for this reason, it is necessary to identify those factors that
discriminate therapy-resistant patients from therapy-sensitive ones, to be
able to intervene promptly by subjecting them to a different type of treat-
ment.
To do so, different genomic data has been downloaded from TCGA repos-
itory, like gene expression data, miRNA expression data and methylation
data. Each of them has been analyzed to identify a set of relevant features
which could be good predictors of the patient drug-responsiveness; in par-
ticular, for each data-type, different feature have been extracted to obtain
the best set of predictors. that distinguish as the patients belonging to
three classes, known as resistant, sensitive long and sensitive short.
Build said predictor was not easy. A first attempt to predict the response
to therapy was done using each patient’s time to relapse; this analysis
was carried out using each data-type independently. The results obtained
were quite poor since the maximum concordance index value reached was
0.61, lower a the threshold (c.i. = 0.7) that defines the model as a good
predictor.
Given the unsatisfactory results of survival analysis, the focus shifted to-
wards the modelling of a classifier capable of discriminating classes through
binary comparisons, using as features the protein-coding genes, miRNAs
and methylation of genes previously selected. In this case, the discrimina-
tion between classes has shown satisfactory results, both for the distinction
of resistant patients to sensitive ones, and as regards the distinction be-
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tween subclasses: the best results were those obtained in the separations of
resistant versus sensitive long classes, which exhibit the greatest difference
in relapse timing, reaching an accuracy of 0.84 for gene expression data,
0.75 for miRNA expression data and 0.77 for DNA methylation data.
To further improve these already promising results, all the different types
of features have been merged, thus including also the CNA genomic re-
gions, which also come from TCGA repository: this has led to an overall
improvement in the performances, producing a good discrimination of re-
sistant class compared to the sensitive one.
In order to develop a model of the rising of the resistance, we focused on
copy number alterations, these being considered early events, and there-
fore possible predictors that would favor an early diagnosis. In particular,
attention has focused on the 137 amplification regions indicative for the
distinction between resistant and sensitive; within these genomic areas,
corresponding to around 1% of the genome, 183 protein-coding genes were
identified, subsequently selected based on two different criteria:

• the involvement of these genes in biology, aetiology and therapy-
response of ovarian cancer, which allowed us to identify a set of 24
protein-coding genes;

• the influence of these genes with respect to drug responsiveness,
which allowed us to identify a set of 6 protein-coding genes.

We conducted on both sets of genes, an enrichment analysis using DAVID
tool, and that analysis allowed us to identify a relevant pathway implicated
in drug-resistance: the Notch Signaling Pathway.
It was decided to perform a second enrichment analysis using only the
genes involved in drug responsiveness plus the two pathway activators in-
cluded in the first set of genes: DLL1 and CTBP2. Given that many
evidences have suggested that miRNAs can play important roles in drug
resistance regulation, the relationships between the selected genes with
miRNAs have been investigated by the mean of miRTarBase and Tar-
getScan.
Through this analysis, two miRNAs of the miR-34 family have been identi-
fied which, according to literature, are attributed to drug-resistance regula-
tion mediated by the Notch signaling pathway: miR-34a - that is encoded
by its own transcript and its lower expression in many cancer types sug-
gests it could function as a tumor suppressor gene - and miR-34c. Further
investigations have been performed to compare the different expressions
of the selected genes with respect to the classes and compare them with
the alterations present in the CNA regions corresponding to the location
of those genes. Thanks to this procedure, it was possible to verify that:

• the genes selected according to their contribution to drug respon-
siveness are indicators of the development of chemoresistance;
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• having used pre-treatment data, in which no alteration due to drug
administration could be detected in the gene expression, it is possible
to assume that:

1. the CNA regions relative to the genes under examination, which
show a difference in alteration between the classes also at early
stage, can be considered predictors for early diagnosis;

2. drug-resistance is triggered by drug intake, which induces ex-
pression changes in the selected genes.

This findings allow to formulating an interesting theory about the develop-
ment of chemoresistance, linked to the activation of the pathway as a result
of the regulation of the genes that we have identified, and that occurs for
patients as a function of the number and form of the gene replications,
well evidenced by the copy number alterations. Simplifying, our model
implies that elevate alterations of copy number in the restricted areas of
the genome that we have identified, already present at the diagnosis, lead
to a greater probability that the Notch Signaling pathway is activated
and that this leads to the rapid development of chemoresistance. This
result validates on a biological level what has been hypothesized in the
literature, and can lead to interesting therapeutic developments, aimed at
downregulating the Notch signaling pathway, which would seem to induce
drug-sensitivity.
Therefore, if our model will be confirmed by more detailed biological anal-
ysis, interesting advancements related to the knowledge of the disease are
envisaged, and perhaps also a new direction for the development of tar-
geted therapies, customized on the basis of a relatively simple examination
to be performed (specific probes may be created to investigate the portions
of the genome indicated by our model). On the other hand, the genes iden-
tified by us based on CNA regions are differentially activated when there
is chemoresistance, as analyzes by various works; in particular:

• the Notch signaling pathway regulates the formation of cancer stem
cells and contributes to the acquisition of the epithelial-mesenchymal
transition phenotype, which are critically associated with drug-
resistance; also, this pathway is found to be involved itself in anti-
cancer drug-resistance, indicating that targeting and downregulating
it could induce drug-sensitivy, [39];

• DLL1 and CTBP2, two protein-coding genes identified by our pro-
cedure, are primary activators of the Notch signaling pathway, in
particular DLL1 is a Delta-like 1 canonical ligand for Notch1 recep-
tor and CTBP2 is an ovarian cancer oncogene that regulates gene
expression;
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• RNASET2 is a strongly down-regulated protein-coding gene in drug-
resistant cells and tissues; it is also associated with PTEN, a tumor
suppressor gene that contributes to the development of drug resis-
tance in many types of cancer; especially in ovarian cancer, PTEN
contributes to a multi-drug resistance through its cell regulation cy-
cle, apoptosis and the PI3K / Akt pathway, [43];

• HtrA1 influences the cytotoxicity of paclitaxel and cisplatin drugs,
specifically: its downregulation attenuates the cytotoxicity of the
drug, while its upregulation promotes it; downregulation of this
gene in ovarian cancer may represent an additional mechanism to
chemoresistance, [42];

• ELAVL1, also known as Human antigen R (HuR), is implicated both
in the sensitive response to the therapy and in the resistant one; this
gene, regulated through NEDDylation post-translational modifica-
tion, interacts with a series of genes that show an over-expression
in clinical cases of ovarian cancer; this over-expression seems to be
predictive of chemoresistance, [41];

• CA9, whise over-expression, combined with the over-expression of
VEGF, results involved in chemoresistance and in the poor overall
survival, [40];

• URI1 is an oncogene whose upregulation contributes to drug resis-
tance in ovarian cancer, [46], [45];

• BID, in interaction with BAK and BAX oncogenes modulates drug
resistance, [47], [44], [48].

Our model can be verified with experimental data, that will be pro-
vided by Instituto di Ricerche Farmacologiche Mario Negri ; however, we
expect that very few individuals will match the model’s applicaility. Then,
further clinical studies could be performed, as well as to specify a low-cost
method to collect the data necessary for the model to make a diagnosis
prediction.Such other analyzes go beyond the specific context of this the-
sis, aimed at finding a molecular signature allowing the separation between
sensitive and chemo-resistant patients; this task has been successfully com-
pleted.
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