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Abstract

The main focus of the present work is the validation of the numerical
simulation of two-phase stratified flow in horizontal pipes. Numerical
simulations are performed using a 3D numerical domain coupled to a
two-equation turbulence RANS model (SST k-ω) and interface track-
ing method Volume of Fluid (VOF) in adiabatic operating conditions
at several superficial gas and liquid velocities (i.e., several void frac-
tion values). Numerical results are in agreement with the experimen-
tal data collected at Politecnico di Milano showing a more significant
difference at high superficial gas velocity with mean absolute percent-
age error (MAPE) of around 29% on pressure gradient prediction. The
comparison includes global quantities (e.g., pressure gradient) and visual
behavior (e.g., the shape of the interface) confirming the capability of the
numerical model to catch the main characteristics of the stratified fluid
flow. Moreover, a sensitivity analysis is conducted, taking into account
the density of moist air and a mesh refinement at the interface. Numer-
ical results showed an improved agreement with experiments where the
difference between gas and liquid superficial velocities was significant.

Furthermore, wavy flow is simulated adopting the same sensitivity
analysis done for the stratified flow.

Keywords: Numerical Simulation; Computational Fluid Dynamics
[CFD]; Volume of Fluid Method [VOF]; Two-phase Flow; Stratified Flow;
Horizontal Pipes; Pressure Gradient; Interface
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Chapter 1

Introduction to Two-phase Flows: A
Literature Review

1.1 Stratified Smooth Flow

Multiphase flow regimes can be grouped into the categories of gas-liquid,
liquid-liquid flows, gas-solid flows, liquid-solid flows, and three-phase
flows. The horizontal gas-liquid flows can be classified into seven groups
according to their flow patterns as shown in Figure (1.1).

Figure (1.1) Horizontal Two-phase Flow Patterns

Two-phase stratified flow is the flow of immiscible fluids separated by
a clearly-defined interface which is frequently encountered in many in-
dustrial applications such as oil and gas, nuclear reactor cooling system,
and geothermal plants, to mention a few. This flow is the most desirable
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flow regime for the oil and gas industry since it creates a low pressure
drop, less erosion and equipment failure, and facilities easier phase sep-
aration.

Stratified gas-liquid flow is the dominating two-phase combination
inside transportation pipelines and is mainly present as a gas-condensate
or gas-water mixture. The condensation of natural gas is an inevitable
process that occurs due to the temperature and pressure changes that are
imposed on the pipes by the natural surroundings. In offshore gas fields,
the raw production is often transported in multiphase pipelines before it
reaches a processing unit. These lines are at the bottom of the sea in hor-
izontal and near-horizontal positions. Hence, a better understanding of
the flow characteristics of stratified gas-liquid flow in horizontal pipes is
needed for the proper design and operation of pipelines that are subjected
to stratified flows.

The effects of the flow on the quantities such as flow rate, pressure
drop, and flow regimes, have always been of engineering interest. Wallis
and Dobson (1973) analyzed the onset of gas-liquid slug or plug flow
in rectangular horizontal and near-horizontal ducts. Taitel and Dukler
(1976) introduced a prediction of horizontal flow regime transitions in
pipes. They elaborately discussed and developed correlations for the
transition between stratified smooth, stratified wavy, intermittent (slug
and plug), dispersed bubble, and annular dispersed liquid flow consider-
ing pipe size, fluid properties, and angle of inclination.

Figure (1.2) Taitel and Dukler Obtained Results Comparison with Experiments
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Stratified two-phase flow is a flow regime that occurs when the veloc-
ity of each phase is relatively low. In such flows, the inertia forces are
not large enough to generate large waves that may lead to the onset of
intermittent flow regimes such as slug flow or dispersed flow, which are
considered as more complicated and problematic in industrial contexts.
Sanchis et al. (2011) reported on how stratified flow can develop into
hydrodynamic slugging through wave interaction. They developed an
interface tracking technique to measure the characteristics of two-phase
stratified flow accurately. They compared their experimental results with
viscous Kelvin-Helmoltz stability theory finding that this method fails to
predict the occurrence of slugging for their experimental tests.

The interfacial wave generated by the slip ratio between the gas and
liquid superficial velocity strongly affects the character of the flow, which
indicates the significant effect of the presence of interfacial wave on the
pressure drop.

Estimation of pressure drop and liquid hold-up are limited to one-
dimensional mechanistic modeling, where the shear stress in the interface
are calculated based on the average velocity. There is a critical need to
conduct CFD simulations to predict the liquid structure and gas-liquid in-
terface in detail. The CFD simulation can help to study multiphase strat-
ified flow at any interface within the system reliability and in a cheaper
way.

Computational fluid dynamics (CFD) techniques have been used to
simulate the stratified pipe flow. One of the early CFD models of turbu-
lent stratified flow in a horizontal pipe was presented by Shoham and Tai-
tel (1984), where a 2D simulation for liquid-gas flow was simulated by
adopting zero-equation models for the liquid region flow field while the
gas region was treated as bulk flow. Shoham and Taitel (1984) applied the
combination of 2D momentum equation and eddy viscosity turbulence
model to characterize the liquid phase behavior in stratified flow. For
the gas phase, the gas and interface stresses are estimated based on the
bulk flow calculations. Their model was able to predict the liquid veloc-
ity field, hold-up, and pressure drop, given the gas and liquid flow rates,
physical properties, pipe size, and inclination angle. So a better model for
stratified flow was developed rather than the Lockhart and Martinelli’s.

Issa et al. (1988) combined the momentum equation for gas and liquid
with k-ε model and modeled the fully-developed stratified flow, applying
wall function for solid boundaries. Their method includes two versions of
the k-ε turbulence model, for high and low Reynolds numbers. Their al-
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gorithm is based on the solution of basic governing differential equations
numerically, using a finite element technique, and a curvilinear orthog-
onal mesh which caters for both rectangular and circular cross-sections.
This algorithm solves the set of finite-difference equations in an iterative
loop, in which the equations are solved sequentially. The results were in
close agreement with Taitel and Dukler mechanistic model.

Advances in computational fluid mechanics have provided the basis
for further insight into the dynamics of multiphase flows. Currently, there
are two approaches for the numerical calculation of multiphase flows: the
Euler-Lagrange approach and the Euler-Euler approach.

In the Euler-Euler approach, the different phases are treated mathe-
matically as inter-penetrating continua. Since the other phases can not
occupy the volume of a phase, the concept of phasic volume fraction is
introduced. These volume fractions are assumed to be continuous func-
tions of space and time, and their sum is equal to one. Conservation equa-
tions for each phase are derived to obtain a set of equations, which have a
similar structure for all phases. These equations are closed by providing
constitutive relations that are obtained from empirical information.

Various multi-dimensional numerical models were developed to sim-
ulate stratified flows:

• Harlow and Welch (1965) developed a method called Marker and
Cell, where they wrote the finite difference form of full Navier-
Stokes equations for a time-dependent incompressible flow. Their
new method considers marker particles whose trajectories follow
the motion of elements throughout the fluid. These particles are
placed in the fluid containing cells initially and are moved with the
local velocity. Finally, a linear interpolation is used to calculate the
velocity with which a particle should move. Although simple, this
method requires ample computer storage and additional computa-
tional time.

• Lagrangian grid methods and Volume of Fluid method discussed
by Hirt and Nichols (1981) introduced a function whose value is
unity at any point occupied by the fluid and zero otherwise, and the
average of this function indicated the fractional volume of the cell
occupied by the fluid. The VOF model requires minimum storage
requirements and follows the interface more accurately.

• The level set method was presented by Sussman (1994) that implic-
itly captures the interface instead of explicitly tracking the interface.
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A new function is defined as the signed normal distance from the in-
terface. This method is computationally affordable as it can be used
for coarse meshes.

These methods are, in principle, able to accurately capture most of
the physics of the stratified flows. However, they cannot capture all the
morphological formations like small bubbles and droplets if the grid is
not reasonable small enough.

Newton and Behnia (2000) obtained excellent agreement with experi-
mental results for stratified pipe flow by employing a low Reynolds num-
ber k-ε turbulent model for turbulent viscosity instead of wall functions
which incorporated wall damping functions obtained from single-phase
pipe flow.

One of the first attempts to simulate mixed flows was presented by
Cernea et al. (2001), who coupled the VOF method and interface re-
construction algorithms with a two-fluid model in order to bring together
the advantages of both analytical formulations and investigate the inter-
face tracking grid dependence. Banerjee and Isaac (2003) applied CFD
code to simulate stratified flow by using the VOF model and three dif-
ferent turbulent models, namely standard k-ε , RNG k-ε , and Reynolds
Stress Model. The results show that standard k-ε and RNG k-ε turbu-
lence models give a closer match to the experimental results, however,
RNG k-ε turbulence model gives overall best results compared to the
other models.

De-Sampaio et al. (2008) applied the k-ω model turbulence model
and Newton-Raphson Scheme to solve the Reynolds averaged Navier-
Stokes equations for modeling the gas-liquid stratified model. Results
were compared to the Taitel and Dukler model, indicating that k-ω tur-
bulent model is suitable for numerical simulation of such flows; how-
ever, a better understanding of imposing interfacial values for k and ω

is required to obtain a better agreement with experimental data of strat-
ified wavy two-phase flow. Sisi-Ali and Gatingnol (2008) developed a
CFD simulation with the k-ε turbulence model to model the stratified
flow with and without gravity effect. They investigated the velocity pro-
file, pressure and turbulent quantities of the phases as well as the phase
distribution. In case of profiles of phases, densities, velocities, turbulent
kinetic energies, and dissipation rates, the results show a clean separation
between the two phases by an interface that affects all these quantities.
Pressure increases for the flow with gravity in the liquid until the bottom
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of the channel, while the pressure is constant in the air as in the liquid
for the case without gravity. The highest value of the velocity of water
is seen at the interface. The maximum turbulent kinetic energy is seen
for the flow with gravity. The maximum of turbulence dissipation rate is
obtained at the upper wall and the minimum at the interface.

Hui et al. (2003) numerically simulated stratified oil-water two-phase
turbulent flow in a horizontal tube using a VOF model. An acceptable
agreement with experimental data was achieved for the predictions of
pressure loss and slip ratio. They applied the RNG k-ε model com-
bined with a near-wall low-Re turbulence model to each phase, and they
adopt continuum surface force approximation for the calculation of sur-
face tension. Although the predicted local phase fraction profile showed
excellent agreement with experimental results, the prediction of the ve-
locity field was only satisfactory. Carlos F. (2006) developed a 2D model
for fully developed, turbulent-turbulent oil-water stratified flow using the
finite-volume method in a bipolar coordinate system and applying a sim-
ple mixing-length turbulence model. The predictions of the proposed
model for the flow velocity fields of both phases showed a satisfactory
agreement when compared with experimental data. Al-Yaari et al. (2011)
simulated oil-water two-phase turbulent flow in a horizontal pipe volume
of fluid (VOF) model and adopting the RNG k-ε turbulence model. CFD
Numerical simulation predicted the stratified flow pattern and smooth-
ness and the type of the interface. On the other hand, while the CFD
model accurately predicated the oil layer, the water layer was not pre-
dicted as a segregated layer.

Dabirian et al. (2015) conducted a CFD simulation of the air-water
horizontal pipeline using ANSYS Fluent. The Volume of Fluid (VOF)
model was used as a multiphase flow model, and the Realizable k-ε
model with standard wall functions is employed as the turbulent model.
They investigated several parameters such as liquid hold-up, which was
in good agreement with experimental results; however, a poor agreement
was obtained by comparing with the Taitel and Duckler (1976) model.
Nevertheless, a satisfactory agreement was achieved for the wall shear
stress on the gas side compared to the Taitel and Duckler (1976) model.
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1.2 Stratified Wavy Flow

Despite its relative simplicity, stratified flow is still far from completely
understood due to its complex underlying physics. In a co-current gas-
liquid flow, where the gas moves faster than the liquid-layer beneath it,
the waves that were initially induced upstream by interfacial shear forces
will be perceived, by the gas-phase, as a slowly moving deformed surface
locally. This will, in turn, influence the flow conditions of the gas and
consequently change the interfacial shear downstream. Hence, two-way
interaction between the flow dynamics, or more specifically, the dynam-
ics of turbulent structures of each phase and local interface morphology
is created.

The work of Lockhart and Martinelli (1949) and Andritsos and Han-
ratty (1987) more focused on the measurement of the superficial velocity,
pressure drop, and liquid hold-up and proposing empirical correlation to
predict the pressure drop based on experimental data. Strand (1993) and
Espedal (1998) used more advanced measurements of the wavefields by
employing conducting probes and Fernandino and Ytrehus (2006) used
the more complicated technique of Laser Doppler Velocimetry (LDV).
Analyzing the spectral cross-correlation output, it was established that
the stratified flow regime consists of a range of well-defined sub-regimes
determined by the interfacial wave kinematics.

Espedal (1998) divided them into the following five regions:

1. Smooth flow: No waves were observed.

2. Small Amplitude Waves I: Amplitudes below 2 mm and wave lengths
between 2 and 6 cm. The power spectrum showed no peak at all or
one peak.

3. Small Amplitude 2D Waves II: Similar to the waves above, but the
power spectrum showed two peaks.

4. Large Amplitude 2D Waves: Amplitudes above 2 mm, and the
waves are less regular. The power spectrum has a one, two, or no
marked peaks.

5. Large Amplitude 3D Waves: Amplitudes above 2 mm, and the
waves do not have a two-dimensional shape.

Moreover, it is common knowledge that interfacial turbulence struc-
tures are responsible for not only the scalar mixing (mass, momentum,
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temperature, energy, etc.) between phases but also for the pressure drop
along the pipe as they enhance the overall shear friction of the flow.
Therefore, a better understanding of the relation between the different
stratified flow patterns and their belonging turbulence dynamics might
be the key to more accurate mathematical modeling. However, details
about the turbulent structures near the gas-liquid interface are difficult
to access using conventional instrumentation. Fabre et al. (1987) pre-
sented successful LDA measurements of turbulence parameters close to
the interface of wavy stratified flow where the results showed an impor-
tant mean secondary flow in the cross-section as well as an asymptotic
behavior of the mean velocity and Reynolds stress components near the
interface.

The prediction of pressure drop, average hold-up, and velocities has
traditionally been based on a greatly simplified representation of the flow
where both phases are treated as one-dimensional bulk flows, also called
the two-fluid 1D model such as the work of Ullmann and Brauner (2006).
However, the application of this model in a stratified flow relies on the
availability of closure relations for the wall and interface shear stress.
These closure relations depend on system parameters (e.g., fluid prop-
erties, pipe characteristics, etc.) and flow-related parameters in both
phases. In the most common approaches, empirical correlations for the
interfacial friction factors are obtained from experimental data, highlight-
ing the importance of the experimental aspect within this field.

Bartoseiwicz et al. (2006) applied the VOF to find wave celerity, crit-
ical wave number, and also the transition between stratified smooth and
wavy. Good agreements have been achieved between the experimental
data and CFD predictions by taking into account the surface tension as a
primary parameter in terms of dynamics growth.

Holmas et al. (2005) employed CFD to find the characteristics of
stratified flow in a horizontal channel by the VOF model. Two turbulent
models, namely RNG k-ε and MSST k-ω , were employed with particular
attention to the turbulence near the gas-liquid interface. They compared
the predicted velocity and kinetic energy profiles with the experiments by
Akai et al. (1980) for a smooth interface and by Lorencez et al. (1997)
for a wavy interface. In both cases, the gas and liquid flow rates disagreed
with the experimental results. Hence, it was concluded that a correction
for the turbulence is required.

Terzouli et al. (2008) performed CFD calculations of a two-dimensional
domain, and their results showed that the three-dimensional effects are



Chapter 1 – Introduction to Two-phase Flows: A Literature Review Page 9

not negligible so that 2D simulations are not suitable to correctly predict
the stratified fluid flow. They conducted single-phase analyses as well
using Fluent and ANSYS CFX to compare 2D and 3D simulations for
both air and water single-phase domains. They achieved relevant im-
provements in both water and air velocity profiles with 3D simulations.

Lo and Tomasello (2010) investigated the capability of STAR-CD to
simulate multiphase gas-liquid flow in pipelines using the VOF method
coupled with the RANS equations. They examined two methods for the
treatment of the interface in stratified flow without an interface recon-
struction algorithm. The results show that the damping of turbulence at
the interface is necessary to predict the correct pressure losses and liq-
uid levels. This is achieved by using a damping coefficient in front of
the turbulent viscosity or adding a source term in the energy dissipation
equation. However, mesh independence should be investigated for both
of these methods. Besides, this correction is only effective when strong
velocity gradients are detected.

Chinello (2014) developed a RANS code to simulate gas-liquid tur-
bulent stratified flow between two flat plates using k-ω Low Reynolds
correction model. The k-ω model was modified to correctly predict the
turbulence at the gas side of the interface. Good agreement with experi-
mental results was observed for the stratified smooth case, while less sat-
isfactory results were obtained for the stratified wavy case. Nonetheless,
the stratified wavy case results were in agreement with the experiments.
Furthermore, mesh refinement at the interface showed more satisfactory
results.

Ali (2017) performed in-depth research simulating both stratified and
intermittent flow using the Volume of the Fluid (VOF) model. Different
turbulent models were used to simulate the stratified flow namely stan-
dard k-ε , standard RNG k-ε , differential RNG k-ε , and k-ω model. The
best results were obtained by the differential RNG k-ε model. The re-
sults suggest reducing the turbulent kinetic energy generation in the sim-
ulations. Moreover, the difference between experimental and numerical
results was attributed to the nature of the VOF formula since it calculates
the flow field around the interface based on the physical properties of the
mixture.

Chinello et al. (2019) presented the first study to investigate the per-
formance of CFD with the VOF method, with and without damping at
the interface. They compared the simulation results with experimental
results for the pressure drop, the liquid hold-up, and the velocity PIV as
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well as for the characteristics of the waves for stratified gas-liquid flow in
pipes. Their main finding was that while bulk quantities such as the pres-
sure drop and hold-up can be predicted very accurately (up to ±10%),
when turbulence is damped at the gas-liquid interface, the prediction of
the velocity profiles and of the wave characteristics is unsatisfactory both
with and without turbulence damping at the interface.

The present work focuses on the numerical analysis of the adiabatic
two-phase stratified smooth and stratified wavy flows with a concentra-
tion on investigating pressure drop and interface shape. Numerical sim-
ulation of the operating conditions in a lower range of gas superficial
velocities is poorly studied in the literature, but significant for the ap-
plication to gas flow lines. The aim is to reach a better agreement with
the experimental data by applying the modifications in the literature to
the simulation models and conducting different sensitivity analysis. The
simulations were performed using a 3D numerical domain coupled with
k-ω SST turbulence RANS model and the Volume of Fluid (VOF) in-
terface tracking model. Numerical results were compared to the exper-
iments conducted in Multiphase Thermo-Fluid Dynamics Laboratory at
Politecnico di Milano. The preliminary numerical results show a good
agreement with experimental data for stratified smooth flow. Moreover,
the effect of air density and further mesh refinement at the interface was
investigated for stratified smooth flow. As a result, a simulation case was
developed for further examination of stratified wavy flow.



Chapter 2

Governing Equations

The purpose of this chapter is to elaborate on the governing equations
used for simulation of the two-phase stratified flow. In this chapter Navier-
Stokes Continuity and Momentum Equations, k-ω Turbulence Model,
and Volume of Fluid Method are described in detail.

2.1 Continuity and Momentum Equations

The equation for conservation of mass, or continuity equation, can be
written as follows:

∂ρ

∂ t
+∇.(ρ~v) = 0 (2.1)

Conservation of momentum in an inertial (non-accelerating) reference
frame is described by

∂

∂ t
(ρ~v)+∇.(ρ~v~v) =−∇p+∇.(τ̄ + τ̄t)+ρ~g+~F (2.2)

where p is the static pressure, ρ~g is the gravitational body force, and ~F
is an external force term that can be used to model the effect of surface
tension. The molecular stress tensor,τ̄ , in Equation (2.2) is defined as

τ̄ = µ

[(
∇~v+∇~vT)− 2

3
∇.~vI

]
(2.3)

The turbulent stress tensor (Reynolds Stress) in Equation(2.2) is de-
fined as

τ̄t = µt

[(
∇~v+∇~vT)− 2

3
(∇.~v+ρk) I

]
(2.4)

in which I is the unit tensor.

11
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2.2 Turbulence Model

There are numerous methods to model the turbulence; however, specific
types of modeling are more practical in the specific case of two-phase
stratified flow. The largest family of models in the field of turbulence
is Reynolds-Averaged Navier-Stokes Models (RANS), which uses vis-
cosity terms to close the turbulence equations. Among all the models in
this family, k-ε and k-ω models are of much more interest in the field of
two-phase stratified flows.

In the case studied here, the k-ω model was used to model the turbu-
lence of the two-phase stratified flow. Hence, only this model is described
in detail in this section.

2.2.1 k-ω Models

Standard k-ω Model

Turbulent kinetic energy (TKE) is defined as the mean kinetic energy per
unit mass associated with the eddies in turbulent flow. Physically, the
turbulence kinetic energy is characterized by measure root-mean-square
(RMS) velocity fluctuations. Generally, the TKE is defined as the half
of the sum of the variances (square root standard deviation) of velocity
components:

k =
1
2

((
u′
)2

+
(
v′
)2

+
(
w′
)2
)

(2.5)

where the turbulent velocity component is the difference between the
instantaneous and average velocity u

′
= u− ū, whose mean and variance

are

u′ =
1
T

∫ T

0
(u(t)− ū)dt = 0 (2.6)

and (
u′
)
=

1
T

∫ T

0
(u(t)− ū)2 dt ≥ 0 (2.7)

respectively.
The specific turbulence dissipation, ω , is the rate at which turbulence

kinetic energy is converted into thermal internal energy per unit volume
and time.
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The standard k-ω model is based on the Wilcox (1998) k-ω model,
which incorporates modifications for low-Reynolds number effects, com-
pressibility, and shear flow spreading. One of the weak points of the
Wilcox model is the sensitivity of the solutions to values for k and ω

outside the shear layer (free-stream sensitivity).
The standard k-ω model is an empirical model based on model trans-

port equations for the turbulence kinetic energy (k) and the specific dis-
sipation rate (ω). To improve the accuracy of the model for predicting
free shear flows, production terms have been added to both the k and ω

equations over time.

Transport Equation for the Standard k-ω Model The turbulence kinetic en-
ergy, k, and the specific dissipation rate, ω , are obtained from the follow-
ing transport equations, respectively:

∂

∂ t
(ρk)+

∂

∂xi
(ρkui) =

∂

∂x j

(
Γk

∂k
∂x j

)
+Gk−Yk +Sk (2.8)

and

∂

∂ t
(ρω)+

∂

∂xi
(ρωui) =

∂

∂x j

(
Γω

∂k
∂x j

)
+Gω −Yω +Sω (2.9)

In these equations, Gk represents the generation of turbulence kinetic
energy due to mean velocity gradients. Gω represents the generation of
ω . Γk and Γω represent the effective diffusivity of k and ω , respectively.
Yk and Yω represent the dissipation of k and ω due to turbulence. Sk and
Sk are user-defined source terms.

Modelling the Effective Diffusivity The effective diffusivities for the k-ω
model are given by:

Γk = µ +
µt

σk

Γω = µ +
µt

σω

(2.10)

where σk and σω are the turbulent Prandtl numbers for k and ω , respec-
tively. The turbulent viscosity, µt , is computed by combining k and ω as
follows:

µt = α
∗ρk

ω
(2.11)
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Low-Reynolds Number Correction The coefficient α∗ damps the turbulent
viscosity causing a low-Reynolds number correction. It is given by:

α
∗ = α

∗
∞

(
α∗0 +Ret/Rk

1+Ret/Rk

)
(2.12)

where,

Ret =
ρk
µω

(2.13)

and

Rk = 6

α
∗
0 =

βi

3
βi = 0.072

(2.14)

In the high-Reynolds number form of the k-ω model, α∗ = α∗∞ = 1.

Modelling the Turbulence Production of k The term Gk represents the pro-
duction of turbulence kinetic energy. From the exact equation for the
transport of k, this term may be defined as:

Gk =−ρu′iu
′
j
∂u j

∂xi
(2.15)

To evaluate Gk in a manner consistent with the Boussinesq hypothesis,

Gk = µtS2 (2.16)

where S is the is the modulus of the mean rate-of-strain tensor, defined
as

S≡
√

2Si jSi j (2.17)

and the strain rate tensor, Si j is defined as

Si j =
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)
(2.18)
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Modelling the Turbulence Production of ω The production of ω is given by:

Gw = α
ω

k
Gk (2.19)

where Gk is given by Equation (2.16).
The coefficient α is given by:

α =
α∞

α∗

(
α0 +Ret/Rω

1+Ret/Rω

)
(2.20)

where Rω = 2.95. α∗ and Ret are given by Equation (2.12) and Equation
(2.13), respectively.

Modelling the Turbulence Dissipation of k The dissipation of k is given by:

Yk = ρβ
∗ fβ ∗kω (2.21)

where,

fβ ∗ =

{
1, χk ≤ 0

1+680χ2
k

1+400χ2
k

χk > 0
(2.22)

where,

χk ≡
1

ω3
∂k
∂x j

∂ω

∂x j
(2.23)

and

β
∗ = β

∗
i [1+ ς

∗F (Mt)] (2.24)

where β ∗i is given by

β
∗
i = β

∗
∞

(
4/15+(Ret/Rβ )

4

1+(Ret/Rβ )
4

)
(2.25)

and

ς
∗ = 1.5

Rβ = 8

β
∗
∞ = 0.09

(2.26)

where Ret is given by Equation (2.13).
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Modelling the Turbulence Dissipation of ω The dissipation of ω is given by:

Yω = ρβ fβ ω
2 (2.27)

where,

fβ =
1+70χω

1+80χω

(2.28)

and

χω =

∣∣∣∣∣Ωi jΩ jkSki(
β ∗0 ω

)3

∣∣∣∣∣
Ωi j =

1
2

(
∂ui

∂x j
−

∂u j

∂xi

) (2.29)

The strain rate tensor, Si j is defined as Equation (2.18). Also,

β = βi

[
1−

β ∗i
βi

ς
∗F (Mt)

]
(2.30)

where β ∗i is defined by Equation (2.25) and the compressibility function,
F (Mt), is given by:

F (Mt) =

{
0, Mt ≤Mt0

M2
t −M2

t0 Mt > Mt0
(2.31)

and,

M2
t ≡

2k
a2

Mt0 = 0.25

a =
√

γRT

(2.32)

In the high-Reynolds number form of the k-ω model, β ∗i = β ∗i n f ty.
In the incompressible form, β ∗ = β ∗i .

Model constants are as follows:
α∗∞ = 1,α∞ = 0.52,α0 =

1
9,β

∗
∞ = 0.072,Rβ = 8,Rk = 6,Rω = 2.95,ς∗ =

1.5,Mt0 = 0.25,σk = 2.0,σω = 2.0

Baseline (BSL) k-ω Model

The main problem with the Wilcox model is its well known strong sen-
sitivity to free-stream conditions. The baseline (BSL) k-ω model was
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developed to effectively blend the robust and accurate formulation of the
k-ω model in the near-wall region with the free-stream independence of
the k-ε model in the far-field. Hence, the k-ε model is converted into
a k-ω formulation. The BSL k-ω model is similar to the standard k-ω
model, but includes the following refinements:

• The standard k-ω model and the transformed k-ω model are both
multiplied by a blending function, and both models are added to-
gether. The blending function is designed to be one in the near-wall
region, which activates the standard k-ω model, and zero away from
the surface, which activates the transformed k-ε model.

• The BSL model incorporates a damped cross-diffusion derivative
term in the equation.

• The modeling constants are different.

Transport Equation for the BSL k-ω Model The BSL k-ω model has a sim-
ilar form to the standard k-ω model:

∂

∂ t
(ρk)+

∂

∂xi
(ρkui) =

∂

∂x j

(
Γk

∂k
∂x j

)
+Gk−Yk +Sk (2.33)

and
∂

∂ t
(ρω)+

∂

∂xi
(ρωui) =

∂

∂x j

(
Γω

∂k
∂x j

)
+Gω −Yω +Sω (2.34)

In these equations, all the terms are defined in the same manner as in
the standard k-ω model.

Modelling the Effective Diffusivity The effective diffusivities for the k-ω
model are given by:

Γk = µ +
µt

σk

Γω = µ +
µt

σω

(2.35)

where σk and σω are the turbulent Prandtl numbers for k and ω , respec-
tively. The turbulent viscosity, µt , is computed as defined in Equation
(2.11), and

σk =
1

F1/σk,1 +(1−F1)/σk,2

σω =
1

F1/σω,1 +(1−F1)/σω,2

(2.36)
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The blending function F1 is given by

F1 = tanh
(

φ
4
1

)
(2.37)

and

φ1 = min

[
max

( √
k

0.09ωy
,

500µ

ρy2ω

)
,

4ρk
σω,2D+

ωy2

]

D+
ω = max

[
2ρ

1
σω,2

1
ω

∂k
∂x j

∂ω

∂x j
,10−10

] (2.38)

where y is the distance to the next surface and D+
ω is the positive portion

of the cross-diffusion term (Equation (2.45)).

Modelling Turbulence Production of k The term Gk represents the produc-
tion of turbulence kinetic energy and is defined in the same manner as in
the standard k-ω model.

Modelling Turbulence Production of ω The term Gω represents the produc-
tion of ω and is given by

Gω =
αα∗

νt
Gk (2.39)

This formulation differs from the standard k-ω model (important for
the SST model described in subsection (2.2.1)). It also differs from the
standard k-ω model in the way the term α∞ is evaluated. In the standard
k-ω model, α∞ is defined as a constant (0.52). For BSL k-ω model, α∞

is given by

α∞ = F1α∞,1 +(1−F1)α∞,2 (2.40)

where

α∞,1 =
βi,1

β ∗∞
− κ2

σω,1
√

β ∗∞

α∞,2 =
βi,2

β ∗∞
− κ2

σω,2
√

β ∗∞

(2.41)

where κ is 0.41.
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Modelling the Turbulent Dissipation of k The term Yk represents the dis-
sipation of turbulence kinetic energy and is defined similarly as in the
standard k-ω model. The difference is in the way the term fβ ∗ is evalu-
ated. In the standard k-ω model, fβ ∗ is defined as a piecewise function
(Equation (2.22)). For the BSL k-ω model, fβ ∗ is a constant equal to 1.
Thus,

Yk = ρβ
∗kω (2.42)

Modelling the Turbulent Dissipation of ω The term Yω represents the dis-
sipation of ω and is defined in a similar manner as in the standard k-ω
model. The difference is in the way the terms βi and fβ are evaluated.
In the standard k-ω model, βi is defined as a constant (0.072) and fβ is
defined in Equation (2.28). For BSL k-ω model, fβ is a constant equal
to 1. Thus,

Yk = ρβω
2 (2.43)

Instead of having a constant value, βi is given by

βi = F1βi,1 +(1−F1)βi,2 (2.44)

and F1 is obtained from Equation (2.37).

Cross-Diffusion Modification The BSL k-ω model is based on both the
standard k-ω model and the standard k-ε model. To blend these two mod-
els together, the standard k-ε model has been transformed into equations
based on k and ω , which leads to the introduction of a cross-diffusion
term Dω . Dω is defined as

Dω = 2(1−F1)ρ
1

ωσω,2

∂k
∂x j

∂ω

∂x j
(2.45)

Model constants are as follows
σk,1 = 2.0,σω,1 = 2.0,σk,2 = 1.0,σω,2 = 1.168,βi,1 = 0.075,βi,2 = 0.0828

Shear-Stress Transport (SST) k-ω Model

The SST k-ω model includes not only all the refinements of the BSL k-ω
model but also the transport of the turbulence shear stress in the definition
of the turbulent viscosity. These features make the SST k-ω model more
accurate and reliable for a broader class of flows than the standard and
the BSL k-ω models.
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Modelling the Turbulent Viscosity The BSL model described previously
combines the advantages of the Wilcox and the k-ε model, but still fails
to properly predict the onset and amount of flow separation from smooth
surfaces. The main reason is that both models do not account for the
transport of the turbulent shear stress. This results in an over-prediction
of the eddy-viscosity. The proper transport behaviour can be obtained by
a limiter to the formulation of the eddy-viscosity:

µt =
ρk
ω

1

max
[

1
α∗ ,

SF2
α1ω

] (2.46)

where S is the strain rate magnitude and α∗ is defined in Equation (2.12).
The blending function F1 is defined as Equation (2.37) and F2 is given by

F2 = tanh
(

φ
2
2

)
(2.47)

φ2 = max

[
2

√
k

0.09ωy
,

500µ

ρy2ω

]
(2.48)

where y is the distance to the next surface and D+
ω is the positive portion

of the cross-diffusion term.
Model constants are as follows; σk,1 = 1.176,σω,1 = 2.0,σk,2 = 1.0,

σω,2 = 1.168,a1 = 0.31,βi,1 = 0.075,βi,2 = 0.0828. All additional model
constants (α∗∞,α∞,α0,β

∗
∞,Rβ ,Rk,Rω ,ς

∗, and Mt0) have the same values
as for the standard k-ω model.

Turbulence Damping

In free surface flows, a high velocity gradient at the interface between
two fluids results in high turbulence generation, in both phases. Hence,
turbulence damping is required in the interfacial area to model such flows
correctly. Egorov (2004) proposed the following term to be added as a
source to the ω-equation

Si = Ai∆nβρi

(
B6µi

βρi∆n2

)2

(2.49)

where
Ai=Interfacial area density for phase i
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∆n=Cell height normal to interface
β=0.075, k-ω model closure coefficient of destruction term
B=Damping factor
µi=Viscosity of phase i
ρi=Density of phase i

The interfacial area density for phase i is calculated as

Ai = 2.0αi|∇αi| (2.50)

where
αi=Volume fraction of phase i
|∇αi|=Magnitude of gradient of volume fraction

The grid size ∆n is calculated internally using grid information.

Wall Boundary Conditions

The wall boundary conditions for the k equation in the k-ω models are
treated in the same way as the k equation is treated when enhanced wall
treatments are used with the k-ε models which means that all boundary
conditions for wall-function meshes will correspond to the wall function
approach, while for the fine meshes, the appropriate low-Reynolds num-
ber boundary conditions will be applied.

The value of ω at the wall is specified as

ωW =
ρ(u∗)2

µ
ω

+ (2.51)

Analytical solutions can be given for both the laminar sublayer

ω
+ =

6
βi(y+)2 (2.52)

and the logarithmic region:

ω
+ =

1√
β ∗∞

du+turb
dy

(2.53)

Therefore, a wall treatment can be defined for the ω-equation, which
switches automatically from the viscous sublayer formulation to the wall
function, depending on the grid.



Chapter 2 – Governing Equations Page 22

2.3 Volume of Fluid Method

2.3.1 Overview of the VOF Model

The VOF model can model two or more immiscible fluids by solving a
single set of momentum equations and tracking the volume fraction of
each of the fluids throughout the domain.

The VOF formulation relies on the fact that two or more fluids (or
phases) are not inter-penetrating. For each additional phase added to the
model, a variable is introduced: the volume fraction of the phase in the
computational cell. In each control volume, the volume fractions of all
phases sum to unity. The phases share the fields for all variables and
properties that represent volume-averaged values as long as the volume
fraction of each of the phases is known at each location. Thus the vari-
ables and properties in any given cell are either purely representative of
one of the phases, or representative of a mixture of the phases, depending
upon the volume fraction values. In other words, if the qth fluid’s volume
fraction in the cell is denoted as αq, then the following three conditions
are possible:

• αq = 0: The cell is empty (of the qth fluid).

• αq = 1: The cell is full (of the qth fluid).

• 0 < αq < 1: The cell contains the interface between the qth fluid and
one or more other fluids.

Based on the local value of αq, the appropriate properties and vari-
ables will be assigned to each control volume within the domain.

2.3.2 Volume Fraction Equation

The tracking of the interface(s) between the phases is accomplished by
the solution of a continuity equation for the volume fraction of one (or
more) of the phases. For the phase, this equation has the following form:

1
ρq

[
∂

∂ t

(
αqρq

)
+O.

(
αqρq~vq

)
= Sαq +

n

∑
p=1

(
ṁpqṁqp

)]
(2.54)

where ṁqp is the mass transfer from phase q to phase p and ṁpq is the
mass transfer from phase p to phase q.
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The volume fraction equation will not be solved for the primary phase;
the primary-phase volume fraction will be computed based on the follow-
ing constraint:

n

∑
q=1

αq = 1 (2.55)

The volume fraction equation may be solved either through implicit
or explicit time formulation.

2.3.3 The Explicit Formulation

The explicit formulation is time-dependent and the volume fraction is
discretized in the following manner:

αq
n+1ρq

n+1−αq
nρq

n

∆t
V +∑

f

(
ρqU f

n
αq, f

n)= [Sαq +
n

∑
p=1

(
ṁpqṁqp

)]
V

(2.56)

where:
n+1= index for new (current) time step
n= index for previous time step
αq, f = face value of the volume fraction
V = volume of cell
U f = volume flux through the face, based on normal velocity

Since the volume fraction at the current time step is directly calculated
based on known quantities at the previous time step, the explicit formula-
tion does not require an iterative solution of the transport equation during
each time step.

The face fluxes can be interpolated using interface tracking or cap-
turing schemes such as Geo-Reconstruct, CICSAM, Compressive, and
Modified HRIC.

When the explicit scheme is used, a time-dependent solution must be
computed.

Interpolation Near the Interface

The geometric reconstruction and donor-acceptor schemes apply a spe-
cial interpolation treatment to the cells that lie near the interface between
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two phases. Figure (2.1) shows an actual interface shape along with the
interfaces assumed during computation by these two methods.

(a) actual interface shape (b) geo-reconstruct scheme (c) donor-acceptor scheme

Figure (2.1) Interface Calculations

The explicit scheme and the implicit scheme treat these cells with
the same interpolation as the cells that are filled with one phase or the
other which means using the standard upwind, second-order, QUICK,
modified HRIC, compressive, or CICSAM scheme rather than applying
a particular treatment.

In this chapter, the Geo-Reconstruct scheme is explained. More infor-
mation on other schemes can be found in the Appendix B.

The Geometric Reconstruction Scheme In the geometric reconstruction ap-
proach, the standard interpolation schemes are used to obtain the face
fluxes whenever a cell is filled with one phase or another. When the cell
is near the interface between two phases, the geometric reconstruction
scheme is used.

The geometric reconstruction scheme represents the interface between
fluids using a piecewise-linear approach. This scheme is the most accu-
rate and is applicable for general unstructured meshes. It assumes that
the interface between two fluids has a linear slope within each cell, and
uses this linear shape for calculation of the advection of fluid through the
cell faces.

The first step in this reconstruction scheme is calculating the position
of the linear interface relative to the center of each partially-filled cell,
based on information about the volume fraction and its derivatives in
the cell. The second step is calculating the advecting amount of fluid
through each face using the computed linear interface representation and
information about the normal and tangential velocity distribution on the
face. The third step is calculating the volume fraction in each cell using
the balance of fluxes calculated during the previous step.
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When the geometric reconstruction scheme is used, a time-dependent
solution must be computed.

2.3.4 Momentum Equation

A single momentum equation is solved throughout the domain, and the
resulting velocity field is shared among the phases. The momentum
equation, shown below, is dependent on the volume fractions of all phases
through the properties ρ and µ .

∂

∂ t
(ρ~v)+∇.(ρ~v~v) =−∇p+∇.

[
µ
(
∇~v+~vT)]+ρ~g+~F (2.57)

One limitation of the shared-fields approximation is that in cases where
large velocity differences exist between the phases, the accuracy of the
velocities computed near the interface can be adversely affected.

2.3.5 Material Properties

The properties appearing in the transport equations are determined by the
presence of the component phases in each control volume. In a two-phase
system, for example, if the phases are represented by the subscripts 1 and
2, and if the volume fraction of the second of these is being tracked, the
density in each cell is given by

ρ = α2ρ2 +(1−α2)ρ1 (2.58)

In general, for a q-phase system, the volume-fraction-averaged den-
sity takes on the following form:

ρ = ∑αqρq (2.59)

All other properties (for example, viscosity) are computed in this man-
ner.

2.3.6 Additional Scalar Equations

Depending upon the problem definition, additional scalar equations may
be involved in the solution. In the case of turbulence quantities, a single
set of transport equations is solved, and the phases share the turbulence
variables (for example, k and ω or the Reynolds stresses) throughout the
field.
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2.3.7 Surface Tension

The VOF model can also include the effects of surface tension along
with the interface between each pair of phases. Surface tension arises
as a result of attractive forces between molecules in a fluid. The surface
tension is a force, acting only at the surface, that is required to main-
tain equilibrium in such instances. It acts to balance the radially inward
inter-molecular attractive force with the radially outward pressure gradi-
ent force across the surface. In regions where two fluids are separated,
but one of them is not in the form of spherical bubbles, the surface tension
acts to minimize free energy by decreasing the area of the interface.

The calculation of surface tension effects on triangular and tetrahedral
meshes is not as accurate as on quadrilateral and hexahedral meshes. The
region where surface tension effects are most significant should, there-
fore, be meshed with quadrilaterals or hexahedrals.

In ANSYS Fluent, two surface tension models exist; the continuum
surface force (CSF) and the continuum surface stress (CSS). The two
models are described in detail in the following sections.

Continuum Surface Force Model

The continuum surface force (CSF) model has been implemented, such
that the addition of surface tension to the VOF calculation results in a
source term in the momentum equation. To understand the origin of the
source term, consider the special case where the surface tension is con-
stant along the surface, and where only the forces normal to the interface
are considered. It can be shown that the pressure drop across the surface
depends upon the surface tension coefficient, σ , and the surface curvature
as measured by two radii in orthogonal directions, R1 and R2:

p2− p1 = σ

(
1

R1
+

1
R2

)
(2.60)

where p1 and p2 are the pressures in the two fluids on either side of the
interface.

In the CSF model, the surface curvature is computed from local gra-
dients in the surface normal at the interface. Let n be the surface normal,
defined as the gradient of αq, the volume fraction of the qth phase.

n = ∇αq (2.61)
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The curvature, κ , is defined in terms of the divergence of the unit
normal, n̂,

κ = ∇.n̂ (2.62)

where,

n̂ =
~n
|~n|

(2.63)

The surface tension can be written in terms of the pressure jump across
the surface. The force at the surface can be expressed as a volume force
using the divergence theorem. It is this volume force that is the source
term that is added to the momentum equation. It has the following form:

Fvol = ∑
pairsi j,i< j

σi j
αiρiκ j∇α j +α jρ jκi∇αi

1
2

(
ρi +ρ j

) (2.64)

This expression allows for a smooth superposition of forces near cells
where more than two phases are present. If only two phases are present
in a cell, then κi =−κ j and ∇αi =−∇α j, and Equation (2.64) simplifies
to:

Fvol = σi jκi
ρ∇αi(
ρi+ρ j

2

) (2.65)

where ρ is the volume-averaged density computed using Equation (2.59).
Equation (2.65) shows that the surface tension source term for a cell is
proportional to the average density in the cell.

Continuum Surface Stress Model

The Continuum Surface Stress (CSS) method is an alternative way to
model surface tension conservatively, unlike the non-conservative formu-
lation of the Continuum Surface Force (CSF) method. CSS avoids the ex-
plicit calculation of curvature and could be represented as an anisotropic
variant of modeling capillary forces based on surface stresses.

In the CSS method, the surface stress tensor due to surface tension is
represented as

T = σ (I− n̂⊗ n̂) |n̂| (2.66)

and,

~n = ∇α (2.67)
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where, I = unit tensor
σ = surface tension coefficient
⊗ = tensor product of the two vectors: the original normal and the trans-
formed normal
α = volume fraction
~n = volume fraction gradient
So,

T = σ

(
|∇α|I− ∇α⊗∇α

|∇α|

)
(2.68)

The surface tension force is represented as

FCSS = ∇.T (2.69)

Comparing the CSS and CSF Methods The CSS method provides few added
advantages over the CSF method, especially for cases involving variable
surface tension. Both CSS and CSF methods introduce parasitic currents
at the interface due to the imbalance of the pressure gradient and surface
tension force.

In the CSF method, the surface tension force is represented in a non-
conservative manner as follows:

FCSF = σκ∇α (2.70)

where κ is the curvature. This expression is valid only for constant sur-
face tension.

For variable surface tension, the CSF formulation requires to model
an additional term in the tangential direction to the interface based on the
surface tension gradient.

In the CSS method, surface tension force is represented in a conser-
vative manner as follows:

FCSS = ∇.

[
σ

(
|∇α|I− ∇α⊗∇α

|∇α|

)]
(2.71)

The CSS method does not require any explicit calculation for the cur-
vature. Therefore, It performs more physically in under-resolved regions,
such as sharp corners. Furthermore, this method does not require any
additional terms for modeling variable surface tension due to its conser-
vative formulation.
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Experimental Benchmarking

The experimental data were collected at the facility in Multiphase Thermo-
Fluid Dynamics Laboratory at Politecnico di Milano.

The schematic of the experimental loop is shown in Figure (3.1). A
storage tank of 4 m3 volume supplies the water flow employing a cen-
trifugal pump, and the volume flow rate is measured by a float-type flow
meter set through a valve. The characteristics of the centrifugal pump
and the flow meters are shown in Table (3.1) and (3.2), respectively.

Figure (3.1) Set-Up Loop Schematic

29
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(a) Experimental Set-Up Loop

(b) Experimental Mixing Section

Figure (3.2) Experiment Facility

Table (3.1) Centrifugal Pump Characteristics

Name CALPEDA
Volume Flow Rate Range 0.12 – 0.75 m3/h

Head Range 6.5 - 20 m

Table (3.2) Flow-meters Characteristics

Name ASAMETRO P13-2800 ASAMETRO N5-2008
Fluid Water Air
Range 0.1 – 1 m3/h 2.5 – 23.5 Sm3/h
Error ±3% full scale ±2.5% full scale
Tcal 20 ◦C 20 ◦C
pcal - 101 325 Pa

Air and water mix in the mixing section where compressed air is in-
jected into the liquid flow. After the air-water mixing section, the two-
phase fluid flows inside the test section consisted of a 24m long horizon-
tal PMMA pipeline of 60 mm bore tubes connected by sealed flanges.
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There are four evenly distributed pressure taps along the pipeline that are
connected to a differential pressure transducer. Each of the taps is placed
at a distance of at least ten diameters from the flanges. The characteris-
tics of the pressure transducer are shown in Table (3.3). The superficial
velocities ranged between 0.03 m/s and 0.06 m/s for the water and be-
tween 0.41 m/s and 2.31 m/s for air. The experiments were conducted
repeatedly to ensure the reliability of the achieved results. The pressure
gradient along the pipeline was determined.

Table (3.3) Pressure Transducer characteristics

Name SETRA 267 MR 7
Output 0 – 5 V
Range 0 – 250 / 0 – 1 000 Pa
Fluid Gas
Error ±1 % full scale

Moreover, the height of the water layer is measured with a modified
method developed by Kang and Kim [2]. This method consists of a nee-
dle electrode introduced radially from above through an open pressure
tap with a ruler to measure the immersion depth and a reference elec-
trode submerged through a second pressure tap into the liquid phase.
The needle electrode is connected to an analogue input of the acquisition
board and grounded through a resistance while the reference electrode is
connected to a power supply. Figure (3.3) shows a schematic of the used
method.

Figure (3.3) Schematic of Water Level Measurement Technique

This way, the difference between the pipe inner diameter and the max-
imum water layer depth hL can be measured. Accordingly, void fraction
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values are obtained from Equations (3.1) and (3.2), where γ is the angle
subtended by two radii to the ends of the interface perimeter Si as shown
in Figure (3.4).

Figure (3.4) Pipe Cross-Section

γ = 2cos−1
(

1− 2hL

D

)
(3.1)

α = 1− γ− sinγ

2π
(3.2)

The experimental results are collected in Table (C.1) in the Appendix
C. Furthermore, they are shown in Mandhane’s map as shown in Figure
(3.5).

Figure (3.5) Experimental Data on the Mandhane’s Map
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Numerical Modelling in ANSYS

4.1 Geometry

The geometry of the studied case is shown in Figure (4.1). This geometry
consists of a pipe with a bore diameter of 60 mm and a length of 2 m. A
portion of the pipe used in experiments is simulated to capture the details
of the interface by adopting a refined mesh. This approach is computa-
tionally unaffordable if a complete experimental model is simulated.

The geometry has been divided into two parts, where each corre-
sponds to one of the phases. This division varies from case to case ac-
cording to the void fraction.

Figure (4.1) Geometry of the Case

33



Chapter 4 – Numerical Modelling in ANSYS Page 34

4.2 Mesh

Meshes are commonly used to compute solutions of partial differential
equations. A mesh partitions space into elements (or cells or zones) over
which the equations can be solved, which then approximates the solution
over the larger domain.

In this section, the focus is on the cell shapes and grid characteristics
of the generated mesh for the simulation. Thus, only these parts are
described in detail.

4.2.1 Cell Shape

In the mesh generation, three-dimensional hexahedral elements are used.
For the same cell amount, the accuracy of solutions in hexahedral meshes
is the highest. The pyramid and triangular prism zones can be considered
computationally as degenerate hexahedral elements, where some edges
have been reduced to zero.

4.2.2 Grid Class

The generated mesh is composed of a structured grid. This type of grid
is identified by regular connectivity. The possible element choices are
quadrilateral in 2D and hexahedral elements in 3D. This model is highly
space-efficient since a storage arrangement defines the neighborhood re-
lationships. Structured grids have better convergence and higher resolu-
tion compared to unstructured ones.

Although the manual creation of a structured grid is more time con-
suming compared to the unstructured meshes, the unstructured grid needs
more CPU time and memory.

4.2.3 Accuracy

Both discretization error and solution error have an impact on accuracy.
For discretization error, a given mesh is a discrete approximation of the
space, and so can only provide an approximate solution, even when equa-
tions are solved exactly. Furthermore, many iterations over the entire
mesh are required for PDEs, and the calculation is terminated early be-
fore the equations are solved exactly.

Accuracy depends on the total number of elements and the shape of
individual elements. The speed of each iteration grows (linearly) with
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the number of elements, and the required number of iterations depends
on the local solution value and gradient compared to the shape and size
of local elements.

4.2.4 Generated Mesh

A mesh is considered to have higher quality if a more accurate solution
is calculated more quickly. A poor-quality grid will cause inaccurate
solutions and slow convergence. In order to have a good quality mesh,
the following characteristics of the grid are considered:

• For the same cell count, hexahedral meshes are used to obtain more
accurate solutions, especially in this case that the grid lines are
aligned with the flow.

• The mesh density is high enough to capture all relevant flow fea-
tures.

• The mesh adjacent to the wall is fine enough to resolve the bound-
ary layer flow. Also, an inflated mesh refinement in the interface
domain is applied to capture the behavior of the interface elabo-
rately.

The final generated mesh is shown in Figure(4.2).

Figure (4.2) Generated Mesh
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Moreover, another mesh is generated with further refinement at the
interface to investigate the effect of grid refinement at the interface on
the pressure gradient and capture any waviness at the interface for both
stratified and wavy regimes. This mesh is shown in Figure(4.3).

Figure (4.3) Generated Mesh with Further Refinement at the Interface

4.2.5 Grid Independence

A solution is considered grid-independent if the discretization and solu-
tion errors are small enough given sufficient iterations, which is essential
to consider for comparative results. A mesh convergence study consists
of refining elements and comparing the refined solutions to coarse so-
lutions. If further refinement (or other changes) does not significantly
change the solution, the mesh is an “Independent Grid”.

Mesh independence of the results is carried out for the case of Ex-
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periment #10 (see Table(C.1)) with Jl = 0.04[m/s], Jg = 0.5513[m/s],
(d p/dz)experimental = 0.486[Pa/m], and void fraction of 0.705. For this
matter, three grids were generated with 169 349, 292 000, and 505 261
elements. The generated grids are shown in Figure(4.4).

(a) 169 349 Elements Mesh (b) 292 000 Elements Mesh (c) 505 261 Elements Mesh

Figure (4.4) Three Grids Generated for Mesh Independence Study

The results, Figure(4.5), show that the pressure drop of the 292 000
grid has 14.98% difference from the 169 349 grid; however, the pressure
drop of the 505 261 grid has only 1.637% difference with 292 000 grid.
Thus, it can be said that the independence of the grid has been reached.
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A non-dimensional wall distance for a wall-bounded flow can be de-
fined in the following way:

y+ ≡ u∗y
ν

(4.1)

where u∗ is the friction velocity at the nearest wall, y is the distance to
the nearest wall and ν is the local kinematic viscosity of the fluid.

Figure (4.6), (4.7), and (4.8) show the y+ histogram for different num-
bers of mesh elements. The most satisfactory results were obtained for
505 261 elements mesh. The maximum value of y+ is observed at the
line where the interface between air and gas meets the wall due to the
very small size of the grid in this region. Moreover, there is a small dif-
ference between the three grids in the value of y+ because of the small
difference in the mesh size in the vicinity of the interface.

Figure (4.6) Y Plus Histogram for 169 349 Mesh
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Figure (4.7) Y Plus Histogram for 292 000 Mesh

Figure (4.8) Y Plus Histogram for 505 261 Mesh
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4.3 Model Set-Up in ANSYS Fluent

4.3.1 Set-Up Procedure

The steps for setting up and solving a general multiphase problem is
outlined below and described in detail for the case study in the subsection
that follows.

1. Enabling the multiphase model (in this case, VOF) and specifying
the number of phases is the first step. For the VOF model, the vol-
ume fraction scheme is also specified.

2. Enabling the viscous model by choosing the k-ω SST turbulence
model is the second step. In this case, the turbulence damping is
activated as well.

3. Selecting the material representing each phase from the materials
database is the third step.

4. Defining the phases, and specifying any interaction between them
(in this case, surface tension for using the VOF model) is the fourth
step.

5. Enabling gravity and specifying the gravitational acceleration is the
fifth step. This step is mandatory because of the presence of body
forces.

6. Specifying the boundary conditions, including the secondary-phase
volume fraction at flow boundaries is the sixth step.

7. Setting any model-specific solution parameters required for the case
study is the seventh step.

8. Initializing the solution and setting the initial volume fractions for
the secondary phase is the eighth step.

9. Calculating a solution and examining the results is the final step.

4.3.2 Final Model Set-Up

In this study, specifying the volume fraction formulation to be used for
the VOF multiphase model is of great importance. ANSYS Fluent offers
Implicit and Explicit formulation; however, Explicit schemes are time-
dependent which is suitable for the studied case. Among all the options
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for Volume Fraction spatial discretization schemes, Geo-Reconstruct is
chosen.

Although the Geo-Reconstruct scheme is computationally expensive,
the interface between phases will be sharper than the predicted with other
schemes. The geometric reconstruction interpolation scheme is typically
used whenever a time-accurate transient behavior of the VOF solution is
being studied. In this case, the Explicit formulation of Volume Fraction
Parameters is used with the Geo-Reconstruct scheme.

Since large body forces (in this case, gravity and surface tension forces)
exist in the multiphase flow, the body force and pressure gradient terms
in the momentum equation are almost in equilibrium while the contri-
butions of convective and viscous terms are small in comparison. Un-
less partial equilibrium of pressure gradient and body forces is taken into
account, segregated algorithms converge poorly. By enabling “Implicit
Body Force” in ANSYS Fluent, a more robust solution is provided.

To include the body force, Gravity is enabled in the Operating Condi-
tions, and the Gravitational Acceleration is specified as −9.81[m/s2] in
the Y direction. For VOF calculations, the Specified Operating Density
option is enabled as well in the Operating Conditions, and the Operating
Density is set to be the density of the lightest phase, which is air.

The two Eulerian phases selected are water and air as primary and
secondary, respectively. The material properties were already available
in the ANSYS Fluent database; however, a sensitivity analysis on the
density of air is conducted where the density of humid air is inserted
instead of the density of dry air.

The Inlet Volume Fraction and Outlet Backflow Fraction have been
set according to the void fraction of each specific case. Air and water
enter the pipe from the upper and lower parts of the inlet, respectively.

The Second Order Upwind method is chosen for Spatial Discretiza-
tion of Momentum, Turbulent Kinetic Energy, and Specific Dissipation
Rate since high precision and accuracy is of great importance.

For the case of Jl = 0.04[m/s], Jg = 0.5513[m/s], (d p/dz)experimental =
0.486[Pa/m], and void fraction of 0.705, a Hybrid Initialization has been
conducted followed by a patch to distinguish the two phases in the pipe.
For all other cases, however, an interpolation of the results from the case
as mentioned earlier at 20 seconds of flow-time, is used to initialize the
simulation.

The summary of the simulation is shown in Table (4.1).
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Table (4.1) Summary of the Simulation in ANSYS Fluent

Solver
Pressure-based Type

Absolute Velocity Formulation
Transient

Gravitational Acceleration −9.81m/s2 in Y Direction

Multiphase Model

Volume of the Fluid – Two Phases
Explicit Formulation
Implicit Body Force

Sharp Interface Modelling
Interfacial Anti-Diffusion

Viscous Model
k-ω SST

Turbulence Damping (Damping Factor = 250)

Phase-Interaction
Surface Tension Force Modelling

Continuum Surface Force
Constant Surface Tension Coefficient = 0.073 N/m

Materials
Water-Liquid (Primary Phase)

Air (Secondary Phase)

Operating Conditions
Atmospheric Pressure

Gravity = −9.81m/s2 in Y Direction
Density = 1.225 kg/m3

Boundary Conditions
Inlet: Velocity Inlet - Inlet Volume Fraction

Wall: Stationary – No Slip Condition
Outlet: Pressure Outlet - Outlet Backflow Fraction

Solution Methods

Pressure-Velocity Coupling: SIMPLE
Spatial Discretization of Pressure: PRESTO!

Spatial Discretization of Volume Fraction: Geo-Reconstruct
High Order Term Relaxation
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Results and Discussion

5.1 First Case Scenario - Stratified Smooth Flow

As Taitel and Duckler (1976) explained in their study, the Reynolds num-
ber should be calculated by using the actual velocity and hydraulic diam-
eter of each phase to determine whether the laminar or turbulent flow
occurs in each phase. According to the data from the experiments, this
Reynolds number can be calculated for each phase. This Reynolds num-
ber range for the gas phase is from 2 844 to 15 867, while the for the
liquid phase ranges from 4 183 to 8 366. So, the flow is entirely turbu-
lent for both phases.

Defining the turn-over time as the time required for a single particle to
travel from the inlet point to the outlet point, the solution is calculated for
two turn-over times of the water phase. Since water has a lower velocity
than air, the velocity of water is the criteria for data post-processing in
this transient simulation.

The results are shown for Experiment #10 (see Table (C.1)). Other
simulated cases have a similar set-up for which analogous results are
achieved.

Figure (5.1) shows the water level and the interface between gas and
liquid phases along the axis of the pipe. Figure (5.2) shows the interface
at different cross-sections along the pipe axis. Both of these figures show
that the stratified smooth flow is accomplished through the simulation as
no waves of any amplitude or wavelength are observed. The interface is
flat not only along the pipe axis but also at the cross-section.

Figure (5.3) represents the contours of velocity magnitude of both
phases along the axis of the pipe. Figure (5.4) shows the velocity magni-
tude contours at the half-length cross-section of the pipe. Obviously, the
velocity at the wall is zero due to the no-slip condition.

43
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�Y�

�Z� �X�

Figure (5.1) Contours of the Phases at the Pipe Axis

�Y�

�X��Z�

Figure (5.2) Contours of the Phases at Multiple Cross-Sections Along the Pipe
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Figure (5.3) Contours of the Velocity Magnitude at the Pipe Axis
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Figure (5.4) Contours of the Velocity Magnitude at the Half-Length Cross-Section
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Figure (5.5) Axial Velocity Profile at the Half-Length Cross-Section

Figure (5.6) Velocity Magnitude Profile at the Half-Length Cross-Section
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Figure (5.7) and (5.8) show the contours of turbulence kinetic energy
along the pipe axis and at the half-length cross-section of the pipe, re-
spectively. As it is shown, the turbulence kinetic energy is higher in the
gas phase, and it is higher, especially at the interface between gas and
liquid phases. The turbulence kinetic energy is generated by the shear
stress due to the eddies generated through the turbulent flow. The reason
for the high kinetic energy is the generation of vortices in the air phase at
the area close to the interface and the walls on both sides. These vortices
have a very high velocity magnitude, which generates a very high kinetic
energy, as shown in Figure (5.9). Some vortices can be observed in the
water phase as well; however, the velocity magnitude of these vortices is
not sufficiently high to have a significant effect on the turbulent kinetic
energy.

�Y�

�Z� �X�

Figure (5.7) Contours of the Turbulence Kinetic Energy at the Pipe Axis
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Figure (5.8) Turbulence Kinetic Energy Contours at the Half-Length Cross-Section

�X�

�Y�

�Z�

Figure (5.9) Velocity Vectors Colored by the Velocity Magnitude at the Half-Length
Cross-Section



Chapter 5 – Results and Discussion Page 49

Figure (5.11) shows the turbulent viscosity ratio at the half-length
cross-section. The turbulent viscosity ratio, µt/µ , is directly proportional
to the turbulent Reynolds number Ret , that is shown in Figure (5.10). In
high-Reynolds-number boundary layers, shear layers, and fully devel-
oped duct flows, Ret is very large. The Generally, the turbulence param-
eters are set so that 1 < µt/µ < 10. As can be seen from the figure, the
maximum turbulent viscosity ratio is observed at the interface and on the
gas side. Also, high values are observed in the water phase far away
from the wall. The same behavior is observed for the turbulent Reynolds
number.

�X�

�Y�

�Z�

Figure (5.10) Turbulent Reynolds Number at the Half-Length Cross-Section
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�X�
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Figure (5.11) Contours of the Turbulent Viscosity Ratio at the Half-Length Cross-
Section

Figure (5.12a) shows the pressure gradient versus flow time. It is
observed that the value of the pressure gradient becomes stable after the
first turn-over time of the air phase. Figure (5.12b) provides a closer look
at the diagram after stability is achieved. Some fluctuations can be seen;
however, the range of these fluctuations is so small that these oscillations
can be considered as negligible, and mean value can be determined for
the pressure gradient.

Figure (5.13) and Figure (5.14) show the pressure and velocity of a
point in the air phase versus the flow time, respectively, to show that
the value of pressure gradient is determined for stable conditions in the
air phase. Moreover, Figure (5.15) and Figure (5.16) are presented to
show the stability of pressure and velocity in the water phase for the
determination of the pressure drop. As can be observed, the velocity and
pressure on the water side reach their stability after the first turn-over
time of water.
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Figure (5.12) Pressure Gradient versus Flow Time

0 2 4 6 8 10 12 14 16 18 20

Flow Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

A
ir
 P

re
s
s
u
re

 [
P

a
]

Pressure of a Point in Air Phase versus Flow Time

(a) 20[s]

20 25 30 35 40 45 50

Flow Time [s]

0.244

0.246

0.248

0.25

0.252

0.254

0.256
A

ir
 P

re
s
s
u
re

 [
P

a
]

Pressure of a Point in Air Phase versus Flow Time

(b) 20-50[s]

Figure (5.13) Pressure of a Point in Air Phase versus Flow Time
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Figure (5.14) Velocity of a Point in Air Phase versus Flow Time
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Figure (5.15) Pressure of a Point in Water Phase versus Flow Time Until 50[s]
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Figure (5.16) Velocity of a Point in Water Phase versus Flow Time Until 50[s]
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A comparison is made between the pressure gradient value obtained
from the numerical simulation and the measured experimental pressure
gradient. Figure (5.17) shows this comparison of the pressure gradient
versus void fraction for JL = 0.03[m/s]. As can be seen, the deviation
of numerical results from the experiments increases as the void fraction
increases. The same behavior can be observed in Figure (5.18) for the
superficial gas velocity at the same liquid superficial velocity. This devi-
ation is also observed for other liquid superficial velocities. It should be
mentioned that the trend of the pressure gradient versus the void fraction
is close to an exponential function, whereas, the trend of the pressure
gradient against the gas superficial velocity is a linear function.

Analogously, the same reasoning can be discussed for other liquid
superficial velocities, as it is shown in Figure (5.19) and (5.20) for JL =
0.04[m/s] and in Figure (5.21) and (5.22) for JL = 0.05[m/s].

Comparing different liquid superficial velocities of JL = 0.03[m/s],
JL = 0.04[m/s], and JL = 0.05[m/s], it is observed that the deviation from
the experimental values for pressure gradient increases with increasing
the liquid superficial velocity.
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Figure (5.17) Pressure Gradient Comparison between Numerical and Experimental
Data versus Void Fraction (JL = 0.03[m/s])
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Figure (5.18) Pressure Gradient Comparison between Numerical and Experimental
Data versus Jg (JL = 0.03[m/s])
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Figure (5.19) Pressure Gradient Comparison between Numerical and Experimental
Data versus Void Fraction (JL = 0.04[m/s])
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Figure (5.20) Pressure Gradient Comparison between Numerical and Experimental
Data versus Jg (JL = 0.04[m/s])
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Figure (5.21) Pressure Gradient Comparison between Numerical and Experimental
Data versus Void Fraction (JL = 0.05[m/s])
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Figure (5.22) Pressure Gradient Comparison between Numerical and Experimental
Data versus Jg (JL = 0.05[m/s])

The mean absolute percentage error (MAPE) usually expresses accu-
racy as a percentage and is defined by the following formula,

M =
100%

n

n

∑
t=1

∣∣∣∣At−Ft

At

∣∣∣∣ (5.1)

where At is the actual value, and Ft is the forecast value. The difference
between At and Ft is divided by the actual value At again. The absolute
value in this calculation is summed for every predicted point in time and
divided by the number of fitted points n. Multiplying by 100% makes
it a percentage error. The values of the mean absolute percentage error
are shown in Table (5.1) for different values of JL. The overall value of
MAPE for all the simulated points is equal to 28.91%.

Table (5.1) Mean Absolute Percentage Error for Different Values of JL

JL[m/s] MAPE[%]
0.03 21.044
0.04 32.522
0.05 33.162
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Figure (5.23) Numerical Results Error (JL = 0.03[m/s])
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Figure (5.24) Numerical Results Error (JL = 0.04[m/s])
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Figure (5.25) Numerical Results Error (JL = 0.05[m/s])

5.2 Second Case Scenario - A More Realistic Analysis

5.2.1 Effect of Interface Mesh Refinement

The effect of moist air density is investigated for Experiment #10 (see
Table (C.1)) with Jl = 0.04[m/s], Jg = 0.5513[m/s], (d p/dz)experimental =

0.486[Pa/m], and void fraction of 0.705. The mesh generated for this
investigation is shown in Figure (4.3).

The results of the simulation show a slight decrease in the absolute
percentage error of the pressure gradient of 0.31% under-prediction, which
is insignificant.

5.2.2 Effect of Moist Air Density

The amount of water vapor in the air influences its density. Water vapor
is relatively light compared to the diatomic Oxygen and diatomic Nitro-
gen, which are the dominant components in the air. When vapor content
increases in the moist air, the amount of Oxygen and Nitrogen are de-
creased per unit volume and the density of the mixture decreases. Hence,
dry air is denser than moist air.
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Based on the specific volume of moist air, the moist air density can be
calculated as

ρ =
1
ν
=

p
RaT

1+ x

1+ xRw
Ra

(5.2)

where,
ν= specific volume of moist air per mass unit of dry air and water vapor
[m3/kg],
Ra= 286.9 - individual gas constant air [J/kg K],
Rw= 461.5 - individual gas constant water vapor [J/kg K],
x = humidity ratio [kg/kg],
p = pressure in the humid air [Pa].

The density of dry air can be expressed as

ρdryair =
p

RaT
(5.3)

Combining the two previous equations:

ρ = ρdryair
1+ x

1+ xRw
Ra

(5.4)

Since the gas constant ratio between water vapor and air is equal to
Rw
Ra

=
461.5J/kgK)
286.9J/kgK = 1.609, The final form of Equation (5.4) becomes

ρ = ρdryair
1+ x

1+1.609x
(5.5)

The effect of mesh refinement is investigated for Experiment #10 (see
Table (C.1)) with Jl = 0.04[m/s], Jg = 0.5513[m/s], (d p/dz)experimental =
0.486[Pa/m], and void fraction of 0.705. The mesh generated for this
investigation is shown in Figure (4.2).

The results of the simulation show an increase in the absolute per-
centage error of the pressure gradient of 10.07% under-prediction which
is a significant deviation from the experimental results (40.96% under-
prediction of absolute percentage error compared to the experiments).
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5.2.3 Combined Effects

Both effects of mesh refinement at the interface and moist air density is
investigated on four cases of Experiment #9, #10, #12, and #15 with JL =
0.04[m/s]. The comparison between experimental and numerical pres-
sure gradient is shown in Figure (5.26). As it can be seen, the absolute
percentage error difference between the combined effects and first case
scenario is larger for lower void fractions and lower superficial gas veloc-
ities while this difference decreases for higher void fractions and higher
superficial gas velocities where there is a higher difference between the
superficial velocity of gas and liquid. MAPE for JL = 0.04[m/s] is equal
to 38.16% of under-prediction, which has an increase of 5.64% compared
to the previous model.

Liquid Superficial Velocity = 0.03 [m/s]

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500

N
u

m
er

ic
al

 P
re

ss
u

re
 G

ra
d

ie
n

t[
P

a/
m

]

Experimental Pressure Gradient[Pa/m]

Numerical Results Error for J_L=0.04[m/s]

Experimental

Numerical

30%

40%

Figure (5.26) Numerical Results Error Considering Combined Effects (JL =
0.04[m/s])

The effects of interface mesh refinement and moist air density is in-
vestigated for the case of Experiment #8, where there is the maximum
difference between the gas and liquid superficial velocities. The effect of
mesh refinement at the interface results 2.63% over-prediction compared
to the experiments which is very significant. When both effects were
implemented in the simulation, a 13.22% under-prediction compared to
the experimental pressure gradient with 4.57% closer results compared
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to the first case scenario.
Comparing other flow characteristics in these three cases, the turbu-

lent kinetic energy of the case with mesh refinement at the interface was
higher than the case where no effects of moist air density or mesh refine-
ment were considered. The turbulence kinetic energy of the case where
both effects were taken into account was significantly higher than the
other two. So an improvement of the prediction of the results is achieved
for cases with higher difference between gas and liquid superficial ve-
locities, while a large deviation from experiments is seen for pressure
gradient where there is lower difference between gas and liquid superfi-
cial velocities as shown in Figure (5.27).
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Figure (5.27) Behaviour of Numerical Results Error versus Superficial Gas Velocity

5.3 Third Case Scenario - A More Realistic Analysis of
Wavy Flow

The waves created in wavy flow are caused under conditions where the
velocity of the gas is sufficient to cause waves to form; however, slower
than that needed for rapid wave growth which causes the transition to
slug or annular flow. These waves are generated when the pressure and
shear work on a wave can overcome the viscous dissipation.

Taitel and Dukler (1976) worked on the transition from smooth to
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wavy flow criteria. They implemented some approximations to Jefferys
work which resulted the Equation (5.6) as the criterion for this transition,

uG ≥
[

4νL(ρL−ρG)gcosα

sρGuL

]1
2

(5.6)

In Equation (5.6), uG and uL are the superficial velocities of gas and
liquid respectively, α is the inclination angle of the pipe, and s is a shel-
tering coefficient which Taitel and Dukler suggested should take a value
of 0.01. The dimensionless form can be expressed as Equation (5.7),

K ≥ 2√
ũLũG

√
s

(5.7)

where K is the product of the modified Froude and square root of the
superficial Reynolds number of the liquid,

K2 = F2Re2
L =

[
ρGu2

G
(ρL−ρG)Dgcosα

][
DuL

νL

]
(5.8)

ũL and ũG can be calculated using the following equations:

ũL =
Ã

ÃL
(5.9)

ũG =
Ã

ÃG
(5.10)

where,

ÃL = 0.25

[
π− cos−1

(
2h̃L−1

)
+
(

2h̃L−1
)√

1−
(

2h̃L−1
)2
]

(5.11)

ÃG = 0.25

[
cos−1

(
2h̃L−1

)
−
(

2h̃L−1
)√

1−
(

2h̃L−1
)2
]

(5.12)

Analogous to the stratified flow, a simulation case is created for the
wavy flow considering the work of Taitel and Duckler to determine the
characteristics of the two-phase flow. Additional to the three-dimensional
domain, a two-dimensional one is considered as well to accurately take
into account the effects. Results will be discussed subsequently.



Conclusion

The present work focuses on the validation of the numerical simulation
of two-phase stratified flow in horizontal pipes. Numerical simulations
are performed using a 3D numerical domain where the interface track-
ing method Volume of Fluid (VOF) is coupled with the two-equation
turbulence RANS model (SST k-ω). Several superficial gas and liquid
velocities (i.e., several void fraction values) were simulated in adiabatic
operating conditions. Numerical results show a good agreement with the
experimental data collected at Politecnico di Milano. The results show
a more significant difference at high superficial gas velocities as well
as high superficial liquid velocities with mean absolute percentage error
(MAPE) of around 29% on pressure gradient prediction. The compar-
ison includes global quantities (e.g., pressure gradient) and visual be-
havior (e.g., the shape of the interface) confirming the capability of the
numerical model to catch the main characteristics of the stratified fluid
flow.

Furthermore, a sensitivity analysis is conducted, taking into account
the density of moist air and a mesh refinement at the interface. An over-
all MAPE of 38% was obtained considering the combined effects which
has an increase of 5% compared to the previous scenario. However, this
significant difference is due to the deviation from experiments for low
superficial gas velocities, while a better agreement was reached for high
superficial gas velocities. Moreover, numerical results showed an im-
proved agreement with experiments where the difference between gas
and liquid superficial velocities was significant.

Additionally, wavy flow is simulated taken into account the sensitivity
analysis performed for the stratified flow.

Potential future studies may include refinement at the interface using
adaptive mesh in case of the wavy flow to investigate the shape of the
interface.
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Appendix A

VOF Model Implicit Formulation

When the implicit formulation is used, the volume fraction equation is
discretized in the following manner:

αq
n+1ρq

n+1−αq
nρq

n

∆t
V +∑

f

(
ρq

n+1U f
n+1

αq, f
n+1
)
=

[
Sαq +

n

∑
p=1

(
ṁpqṁqp

)]
V

(A.1)

where:
n+1= index for current time step
n= index for previous time step
αq

n+1= cell value of volume fraction at time step n+1
αq

n= cell value of volume fraction at time step n
αq, f

n+1= face value of the qth volume fraction at time step n+1
U f

n+1= volume flux through the face at time step n+1
V = cell volume

Since the volume fraction at the current time step is a function of other
quantities at the current time step, a scalar transport equation is solved
iteratively for each of the secondary-phase volume fractions at each time
step.

Face fluxes are interpolated using the chosen spatial discretization
scheme. The implicit formulation can be used for both time-dependent
and steady-state calculations.
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Appendix B

VOF Model Explicit Schemes

B.1 The Donor-Acceptor Scheme

In the donor-acceptor approach, the standard interpolation schemes that
are used in ANSYS Fluent are used to obtain the face fluxes whenever a
cell is filled with one phase or another. When the cell is near the inter-
face between two phases, a donor-acceptor scheme is used to determine
the amount of fluid advected through the face. This scheme identifies
one cell as a donor of an amount of fluid from one phase and another
(neighbor) cell as the acceptor of that same amount of fluid and is used
to prevent numerical diffusion at the interface. The amount of fluid from
one phase that can be convected across a cell boundary is limited by the
minimum of two values: the filled volume in the donor cell or the free
volume in the acceptor cell.

The orientation of the interface is also used in determining the face
fluxes. The interface orientation is either horizontal or vertical, depend-
ing on the direction of the volume fraction gradient of the phase within
the cell and that of the neighbor cell that shares the face in question. De-
pending on the interface’s orientation as well as its motion, flux values
are obtained by pure upwinding, pure down winding, or some combina-
tion of the two.

When the donor-acceptor scheme is used, a time-dependent solution
must be computed. Also, the donor-acceptor scheme can be used only
with quadrilateral or hexahedral meshes.
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B.2 The Compressive Interface Capturing Scheme for
Arbitrary Meshes (CICSAM)

The compressive interface capturing scheme for arbitrary meshes (CIC-
SAM), is a high-resolution differencing scheme. The CICSAM scheme
is particularly suitable for flows with high ratios of viscosities between
the phases. CICSAM is implemented in ANSYS Fluent as an explicit
scheme and offers the advantage of producing an interface that is almost
as sharp as the geometric reconstruction scheme.

B.3 The Compressive Scheme and Interface-Model-based
Variants

The compressive scheme is a second order reconstruction scheme based
on the slope limiter. Equation (B.1) is applicable to zonal discretization
and the phase localized discretization, which use the framework of the
compressive scheme.

φ f = φd +β∇φd (B.1)

where
φ f is the face VOF value
φd is the donor cell VOF value
β is the slope limiter value
∇φd is the donor cell VOF gradient value

The compressive scheme discretization depends on the selection of
interface regime type.

B.4 Bounded Gradient Maximization (BGM)

The BGM scheme is introduced to obtain sharp interfaces with the VOF
model, comparable to that obtained by the Geometric Reconstruction
scheme. Currently, this scheme is available only with a steady-state
solver and cannot be used for transient problems. In the BGM scheme,
discretization occurs in such a way to maximize the local value of the
gradient, by maximizing the degree to which the face value is weighted
towards the extrapolated downwind value.
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Appendix C

Obtained Data from the Experiments

Table (C.1) shows the experimental data obtained at the facility in Mul-
tiphase Thermo-Fluid Dynamics Laboratory at Politecnico di Milano.

These data were obtained for four values of the liquid superficial ve-
locity by changing the gas superficial velocity. Pressure drop and water
height were measured during the experiments.
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Table (C.1) Experimental Data obtained for the Range of Superficial Velocities

Superficial Velocities Void Fraction Pressure Gradient Experiment
JG [m/s] JL [m/s] α [-] (−d p/dx)E [Pa/m] #

0.413 0.03 0.73 0.255 1
0.551 0.03 0.75 0.411 2
0.769 0.03 0.78 0.699 3
0.908 0.03 0.79 0.966 4
1.308 0.03 0.79 1.691 5
1.538 0.03 0.80 2.280 6
1.816 0.03 0.81 2.985 7
2.306 0.03 0.81 4.357 8
0.413 0.04 0.68 0.304 9
0.551 0.04 0.70 0.486 10
0.769 0.04 0.73 0.811 11
0.908 0.04 0.74 1.152 12
1.308 0.04 0.74 1.958 13
1.538 0.04 0.75 2.650 14
1.816 0.04 0.76 3.442 15
2.306 0.04 0.77 5.010 16
0.413 0.05 0.62 0.363 17
0.551 0.05 0.65 0.575 18
0.769 0.05 0.69 0.956 19
0.908 0.05 0.70 1.308 20
1.308 0.05 0.72 2.254 21
1.537 0.05 0.73 3.064 22
1.816 0.05 0.74 3.947 23
2.306 0.05 0.75 5.523 24
0.413 0.06 0.59 0.427 25
0.551 0.06 0.62 0.670 26
0.769 0.06 0.66 1.100 27
0.908 0.06 0.67 1.484 28
1.308 0.06 0.70 2.631 29
1.537 0.06 0.71 3.418 30
1.816 0.06 0.71 4.461 31
2.306 0.06 0.73 6.105 32
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