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Abstract 

 
 

 

 

BACKGROUND – The increasing availability of brain imaging data from different studies 

of aging population offers statistical power and great opportunities to build robust models in 

age-related pathologies. An important field is the prediction of imaging-derived risk scores 

for neurodegenerative diseases and cognitive impairment. However, variations in data 

properties across imaging protocols, used scanner, and populations can severely limit our 

ability to combine datasets.  

White matter hyperintensities (WMHs) are gaining more and more relevance as a marker of 

potential brain damage in asymptomatic aging, but also in non-aged patients with several 

neurological and vascular disorders. WMHs are assessed both by MRI and CT. The superior 

contrast of the former is recognised; however, harmonisation limits are given by the well-

known difficulties in scanner-independent MRI calibration.  

AIMS – In this context, our project aims to harmonise imaging-derived measures of WMH, 

across two large DPUK (Dementia Platform UK) datasets: Whitehall (Whll) and UK 

Biobank (BB). Namely, the percent of WMHs volume vs. the brain volume, WMH%, was 

considered. Whll represents a multi-centre study gathering data from a single population, 

acquired with the same acquisition protocol but exploiting two different MRI scanners (SC1 

and SC2) to derive the imaging data. BB includes data from a different population, imaged 

using a third scanner and a different acquisition protocol. For this reason, we divided our 

work in two separate parts: 1) a retrospective harmonisation across scanners (Whll SC1 vs 

Whll SC2), added to the pre-existing prospective one, offered by the Whll study design; 2) 

a fully retrospective harmonisation process, challenging the integration of dataset belonging 

to significantly heterogeneous populations (Whll and BB).  

METHODS – As to imaging data, we exploited an automatic tool (BIANCA), based on k 

nearest neighbour (k-NN) machine learning, to perform lesion segmentation and we assessed 

the influence on harmonisation of five main analysis parameters: (i) rater who generated the 

manual masks used as ground truth for the tool training phase; (ii) biasfield correction of the 
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RF field inhomogeneities affecting images; (iii) different training dataset used (study 

specific vs mixed); (iv) Functional Anisotropy (FA) availability; and (v) difference in the 

thresholding method (global or locally adapted). 

On the other hand, for the non-imaging variables, we started harmonising all the ones 

involved in our study through the creation of a specific pipeline for format conversion. We 

then created a mathematical model, able to predict the WMH% starting from the integrated 

non-imaging data. This helped us accounting for: i) the variability related to demographic 

and clinical characteristics of the individuals; ii) to evaluate the relationship between 

WMH% and their majors risk factors; and iii) to assess harmonisation on the whole non-

annotated cohorts, when the predictive influence of the used scanner was lowered or even 

negligible. 

RESULTS –  Firstly, we found a protocol able to harmonise WMH measures across datasets, 

comprising the following parameters: (i) expert rater to perform the manual labelling phase 

(ii) biasfield correction of the RF field inhomogeneities (iii) use of a mixed training set, 

combining information from all of the datasets involved in our analysis (iv) Functional 

Anisotropy (FA) excluded from the MRI training features and (v) use of global thresholding 

method (0.9) to binarise results. 

Moreover, we managed to implement a specific pipeline (Parser) for the harmonisation of 

the non-imaging variables involved in our study, that is actually available online on the 

GitLab Platform. In this context, we fitted an Elastic Net model for WMH% prediction from 

non-imaging data calibrated on the imaging WMH% derived by the optimal settings we 

defined. This was a valid support to derive the relative importance of the non-imaging 

variables, used scanner included. Finally, we tested a Gaussian Process regression of 

WMH% on the non-imaging data. This non-linear predictor was compared to Elastic Net, as 

the best performing linear predictor. The resulting performance, in terms of correlation 

between actual and predicted value, was close to 0.4, comparable with Elastic Net. 

CONCLUSION – Our findings attested the existence of a general set of parameters, able to 

derive comparable WMH% measures across datasets, in the context of automatic lesion 

segmentation. These results, along with the non-imaging data integration, proved the 

accomplishment of a robust harmonisation on the different datasets involved in our study, 

that were finally well combined and compatible. The fair heterogeneity of the addressed 
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datasets permits to foresee a wider extension of our harmonisation approach to further 

datasets. 
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Sommario 

 
 

 

 

CONTESTO – Il recente aumento nella disponibilità dei dati di neuro-imaging, provenienti 

da diversi studi relativi all’invecchiamento della popolazione, offre una notevole potenza 

statistica e rappresenta pertanto una buona opportunità per la costruzione di modelli 

matematici robusti in grado di descrivere le patologie correlate all'età. In questo contesto, un 

aspetto importante è rappresentato dalla predizione degli score di rischio per le malattie 

neurologiche e i disturbi cognitivi, derivati a partire dai dati di imaging. Tuttavia, le 

variazioni nelle proprietà di questi ultimi, dovute a differenze nei protocolli di acquisizione, 

nei centri clinici di riferimento e nelle popolazioni coinvolte, possono limitare notevolmente 

la capacità di combinare ed integrare tra loro set di dati diversi.  

Le iperintensità della materia bianca (White Matter Hyperintensities, WMH) stanno 

acquisendo sempre maggiore importanza come indicatori clinici di potenziali danni 

neurologici, sia nel contesto dell’invecchiamento asintomatico, che in relazione a pazienti 

che, seppure in giovane età, sono affetti da diversi disturbi neurodegenerativi e vascolari. Le 

WMH vengono generalmente valutate mediante risonanza magnetica nucleare (MRI) o TAC 

ma il miglior contrasto del primo rispetto al secondo ha portato alla scelta dell’MRI come 

tecnica standard per la visualizzazione delle lesioni in questione. Tuttavia, le ben note 

difficoltà relative al processo di calibrazione delle immagini di risonanza magnetica 

determinano notevoli limiti nel processo di armonizzazione dei dati acquisiti.  

OBIETTIVI – In questo contesto, il nostro progetto mira ad una armonizzazione delle misure 

di WMH ottenute a partire dai dati di imaging relativi a due grandi dataset DPUK (Dementia 

Platform UK): Whitehall (Whll) e UK Biobank (BB).  

Whll rappresenta uno studio multicentrico che da riferimento ad una singola popolazione, 

acquisita con lo stesso protocollo ma mediante l’utilizzo di due scanner diversi (SC1 e SC2). 

BB include, invece, dati provenienti da una popolazione diversa, acquisiti utilizzando un 

terzo scanner e un protocollo di imaging differente rispetto a quello menzionato in 

precedenza. Pertanto, il nostro lavoro è stato diviso in due parti distinte: 1) un processo di 
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armonizzazione retrospettiva tra i due scanner presenti in Whll (Whll SC1 e Whll SC2), che 

si aggiunge ad una preesistente fase di armonizzazione prospettica, intrinseca allo studio di 

popolazione in questione; 2) un processo di armonizzazione retrospettiva, che mira 

all'integrazione di dati appartenenti a popolazioni significativamente eterogenee (Whll vs 

BB).  

Per quanto riguarda i dati di imaging, abbiamo sfruttato un tool automatico (BIANCA) per 

eseguire la segmentazione delle lesioni di interesse e abbiamo cercato di valutare l'influenza 

di cinque diversi parametri sulla sua performance finale: (i) rater che ha generato le maschere 

manuali utilizzate come riferimento per la fase di training (ii) correzione delle disomogeneità 

nel campo a radiofrequenze (RF) che caratterizza le immagini di risonanza magnetica 

nucleare (iii) differenza nel gruppo di soggetti utilizzati per il training (study specific/single 

vs mixed) (iv) presenza della Fractional Anisotropy (FA) tra le features utilizzate e (v) 

differenza nel metodo di thresholding applicato all’output ottenuto (globale o locale). 

Per quanto riguarda le variabili di non imaging, abbiamo cercato di armonizzare tutte quelle 

coinvolte nella nostra analisi, attraverso la creazione di una specifica pipeline per la 

conversione dei format. Abbiamo poi creato un modello matematico, in grado di prevedere 

il volume di WMH a partire dai dati di non-imaging, perfettamente integrati tra loro 

(pressione sanguigna, BMI, test cognitivi, ecc.). Questo ci ha permesso di prendere in 

considerazione la variabilità dovuta alle caratteristiche demografiche e cliniche degli 

individui e, inoltre, a valutare il rapporto tra le WMH e i loro principali fattori di rischio. 

RISULTATI – Innanzitutto abbiamo delineato un protocollo in grado di ottenere misure di 

WMH comparabili tra i diversi dataset a disposizione. Esso si compone di una serie di 

parametri che vengono di seguito elencati: (i) utilizzo di un rater esperto per la fase di 

segmentazione manuale (ii) correzione del biasfield presente nelle immagini (iii) uso di un 

training set misto, che combina informazioni provenienti da tutti i dataset coinvolti nella 

nostra analisi (iv) Fractional Anisotropy (FA) esclusa dalle features di training e (v) uso di 

un metodo di thresholding globale (0.9) per sogliare i risultati ottenuti. 

Successivamente, è stata implementata una pipeline (Parser) specifica per l'armonizzazione 

delle variabili di non-imaging coinvolte nel nostro studio, che è attualmente disponibile 

online sulla piattaforma GitLab. In questo contesto, abbiamo inoltre costruito un modello 

chiamato Elastic Net e lo abbiamo testato sui dati ricavati dai vari step di ricerca dei 

parametri ottimali, ottenendo così un valido supporto per il calcolo dell’importanza delle 
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rispettive variabili di non-imaging. Infine, ci siamo serviti di un regressore gaussiano 

(Gaussian Process regressor) per la creazione di un modello di predizione generale, in grado 

di stimare il volume di lesioni cerebrali da cui è affetto un paziente, indipendentemente dalla 

coorte di dati alla quale appartiene.  La performance ottenuta, in termini di correlazione tra 

il valore attuale e quello predetto, è circa pari a 0.4.  

CONCLUSIONI – I dati ottenuti dimostrano l'esistenza di un protocollo generale, in grado 

di ottenere misure di WMH comparabili tra i diversi dataset a disposizione, nel contesto della 

segmentazione automatica di lesioni. Tali risultati, insieme al processo di integrazione delle 

variabili di non-imaging, attestano il raggiungimento di un significativo effetto di 

armonizzazione sui diversi insiemi di dati coinvolti nella nostra analisi, che risultano 

finalmente ben integrati e compatibili. La significativa ed evidente eterogeneità che 

caratterizzava i dataset di partenza consente inoltre di prevedere un'applicazione su vasta 

scala dell’approccio integrativo da noi sviluppato.  
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Chapter 1  

 

 “Introduction” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter we introduce the main aspects of our work, which focuses on harmonisation 

of imaging-derived measures of White Matter Hyperintensities. We present the clinical 

context of the condition of interest and provide a general understanding of different 

harmonisation techniques. Finally, we summarise the main goal we aim to achieve. 
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1.1 Introduction  

The focus of this thesis is the harmonisation (alias, standardisation) of imaging-derived 

measures of White Matter Hyperintensities (WMHs), which are a common age-related 

finding on brain magnetic resonance imaging (MRI). WMHs of presumed vascular origin, 

also known as white matter lesions, white matter disease, or leukoariosis, are areas that 

appear hyperintense on T2-weighted, fluid attenuated inversion recovery (FLAIR), and 

proton density-weighted images. Although they do become more common with advancing 

age, numerous studies indicate that they have important associations with cardiovascular risk 

factors and clinical impact on cognitive impairment, risk of stroke, risk of functional decline, 

risk of dementia (Wardlaw et al., 2015; Griffanti et al., 2016). 

One of the most important motivations for a further and more detailed characterisation of 

WMHs is their potential role as early imaging-based markers for cognitive impairment.  

With a growing aging population, the burden of people living with dementia represents a 

major public health issue. Thus, quantitative biomarkers would greatly enhance our ability 

to detect and ultimately manage dementia, from the early developmental stages, often 

asymptomatic, up to the actuation of measures of prevention and damage limitation. 

During the past few decades several studies have been conducted with this aim (Alzheimer's 

Disease Neuroimaging Initiative (ADNI), Petersen et al., 2010; The Rotterdam Study, 

Breteler et al., 1994). However, in order to increase statistical power on one hand and 

ultimately be able to compare single subject data with general population on the other, we 

need to integrate datasets, thereby introducing a source of variability.  

The distinct properties of different datasets indeed reduce our ability to integrate 

observations across studies, which would allow us to obtain robust finding to inform 

developments in prognosis and care. 

The main goal of this project is therefore to contribute towards overcoming this barrier by 

developing approaches to harmonise imaging data from different datasets and different MRI 

scanners. Particularly we aim at harmonising measures of the volume of white matter 

hyperintensities in individuals belonging to different populations.  
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1.2 White Matters Hyperintensities  

White Matter Hyperintensities (WMH), defined for the first time in 1985 by Hachinski, are 

a common sign found on brain magnetic resonance imaging (MRI) or computed tomography 

(CT) images in elderly subjects or patients with stroke and dementia. 

They appear as abnormal areas of signal intensity on magnetic resonance imaging (MRI), in 

which they are easier to recognise compared to CT, due to the former better sensitivity to 

soft tissue changes. 

Even though the signal change is predominant in the periventricular and deep white matter 

regions some lesions can also be recognised in the deep gray matter. The presence of these 

abnormal areas is, however, more significant in the white matter. Many studies show they 

are bilateral, mostly symmetrical, and hyperintense on T2-weighted (T2), fluid attenuated 

inversion recovery (FLAIR), and proton density-weighted (PD) images. For these reasons, 

they are now by consensus referred to as “white matter hyperintensities”, where deep gray 

matter is also involved (Wardlaw et al., 2015). 

Figure 1.1. Severity of MRI-detected WMH: visual contrast inspection (upper panel) and segmentation (left 

hemisphere only) by semi-automated tools (lower panel) (Chutinet et al., 2014). 

 

Between the above-mentioned structural sequences, FLAIR is the most sensitive one for 

detecting WMH but usually they are also commonly found as hyperintense on T2*-weighted 

sequences and hypointense on T1-weighted ones (Wardlaw et al., 2015). Therefore, all of 

these imaging techniques are usually involved in the most significant studies relative to WM 

lesions (Anbeek et al., 2004; Dyrby et al., 2008; Admiraal-Behloul et al., 2005; de Boer et 

al., 2009). 
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1.2.1 Pathophysiology 

White matter hyperintensities are generally associated to pathological changes in the white 

matter axonal microstructure or to alterations relative to the interstitial fluid. Examples of 

these conditions are given by increased water content and mobility, demyelination, or axonal 

loss that represent permanent structural changes. Extensive WMH were indeed associated 

with reduced density of glia and vacuolation while more subtle ones with microglial and 

endothelial activation (Wardlaw et al., 2015). 

A further distinction can be made between those lesions mostly occurring around the 

ventricular structures, called “periventricular” lesions, and those appearing in deep white 

matter regions, referred to as “deep”.  

Figure 1.2. Difference between periventricular and deep white matter hyperintensities (Debette et al., 2010). 

 

Periventricular WMH are characterised by discontinuous ependyma, gliosis, loosening of 

the white matter fibers, and myelin loss around the venules in perivascular spaces. Instead 

deep WMH are linked to gliosis, demyelination and axonal loss around perivascular spaces, 

with increased tissue loss as the lesions become more severe.  

In most studies, periventricular and deep WMHs are sharply differentiated; however, some 

others indicate that periventricular and deep WMHs are more probably part of a continuous 

pathology rather than representing just ischemic and permanent changes due to 

demyelination and axonal loss (Wardlaw et al., 2015). A recent multi-centre study in 11 

stroke centres in China found more microglial activation in WMH in patients with AD than 

in WMH of age-matched controls, thereby confirming the theory that sees periventricular 
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and deep lesions as effects of an earlier or later stage in the disease condition affecting 

patients (Ryu et al. 2014).  

After presenting WMHs characteristics and classification, we now mention how they are 

quantified. There are different approaches to evaluate the overall WMH severity on either 

CT or MRI, and the most common are the ones listed below: 

• Visual rating scales based on the location and severity of the lesions. An example is 

the Fazekas scale (score 0–3), applied to both periventricular and deep locations 

(Fazekas et al., 1987). 

• Volumetric approach based on manual, semi-automated or automated protocols, 

using analytical software such as BIANCA (for details relative to BIANCA see Par. 

2.4.1, “BIANCA (Brain Intensity AbNormality Classification Algorithm)”). 

 

1.2.2 Clinical Context 

Although WMHs were once considered just an expected consequence of advancing age, 

nowadays numerous studies indicate that they have important clinical and risk factor 

associations with progressive cognitive impairment, risk of late depression, doubled risk of 

dementia, and a tripled risk of stroke (Wardlaw et al., 2015).  

A great amount of research has been conducted so far to try understanding the origin and 

cause of these lesions, as will be explained in this section.  

Kim and colleagues (Kim et al., 2008), showed that presence and severity of WMH have 

been consistently related to cognitive function and emotion in the elderly. The disruption of 

subcortical and cortical connections by white matter lesions may indeed be detrimental to 

cortical gray matter integrity and result in cognitive and emotional dysfunctions.  

Debette and colleagues (Debette et al., 2010) demonstrated a significant association of white 

matter hyperintensities with risk of stroke and age-related diseases. Moreover, several other 

studies, linked the WMHs presence with subjects cognitive decline (Breteler et al., 1994; 

Zamboni et al., 2017; Griffanti et al., 2018).  

In particular, one of them, the Rotterdam study (Breteler et al., 1994), correlated the presence 

of WMHs and the enlargement of lateral ventricles with worse performance in all the 

cognitive tests performed by subjects. Although the presence of white matter lesions and 

increasing ventricle-to-brain ratio were correlated, their effects on cognitive performance 

resulted to be independent. After further investigation, the study proposed the conclusion 
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that white matter lesions on MRI scans represent a morphological substrate of dementia 

related to vascular disease. However, many of the evidences exploited were based on cross 

sectional studies and some relevant findings derived from small groups of subjects. 

Population-based studies including larger cohorts are thus needed to achieve the statistical 

power necessary to obtain reliable results.  

As in this case, several other studies revealed lack of data, not only in the context of clinical 

and risk factor analysis, but also relevant to the validation of automatic lesion segmentation 

algorithms, with very small validation samples leading to overfitting (Admiraal-Behloul et 

al., 2005; Anbeek et al., 2004; de Boer et al., 2009; DeCarli et al., 1995; Dyrby et al., 2008; 

Ramirez et al., 2011).  

To summarise, many neuroimaging studies attempted to analyse the interaction existing 

between WMH and other pathological conditions thereby trying to achieve a better insight 

into the impact of WMHs on the subjects state of health. Reaching this goal is of primary 

importance and could contribute to the prevention of brain damage caused by small vessels 

disease. Furthermore, it could cast new light over its cognitive and physical consequences 

relevant to dementia and stroke. However, to achieve this, we must better understand the 

role of WMHs in aging by integrating observations across studies. This has become possible 

thanks to the growing number of large cross-sectional cohort studies like Whitehall (Filippini 

et al., 2014) with 800 subjects, and UK Biobank (http://imaging. ukbiobank.ac.uk), with 

100˙000. These large and heterogeneous datasets should be merged together in order to reach 

the statistical power necessary to provide better, more sensitive and reliable analyses and, 

crucially, this requires harmonisation.  

 

1.3 Harmonisation 

Harmonisation is a process that ensures data compatibility, thus allowing to integrate 

information from different databases and also to properly explore the similarities and 

discrepancies across studies. This can thus permit pooling of data from a large number of 

datasets to obtain statistically valid results.  

In terms of harmonisation approaches it’s possible to distinguish between prospective and 

retrospective ones, depending on when the harmonisation process takes place in the lifecycle 

of a study. Under prospective harmonisation, the goal is to create an agreement across 

different studies by determining common measures and protocols before the beginning of 
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the data collection phase. The reason is that an agreement on a main set of collection 

procedures and common measures prior to data collection facilitates future integration or 

comparison of data. Retrospective harmonisation, on the other hand, takes place after the 

phase of data collection has been initiated, thus giving to all the information gathered in 

separate studies the label of study specific. It is generally carried out since most of the time 

datasets are merged at a later stage (i.e. they were not part of the same study at the time of 

data acquisition), thus impeding to any attempt to prospectively ensure a high level of 

compatibility across studies, beyond the low-level standards of general application. This 

retrospective approach therefore necessitates a rigorous documentation relative to all the 

databases involved in the analysis and a scrupulous a-posteriori process to harmonise and 

integrate study specific data under a common setup. Despite differences, under both 

prospective and retrospective harmonisation, the ultimate potential to integrate information 

is usually related to the same aspects: the level of heterogeneity amongst the different 

populations involved, the design of the experiments carried out, the characteristics of the 

machinery involved in the process of data collection and, finally, the standard operating 

procedures followed by investigators to get all the information needed. 

This project mostly aims at performing a retrospective harmonisation process between 

datasets on both imaging and non-imaging variables, which derive from different 

machineries and/or were acquired with different tools (e.g. questionnaires or tests) being part 

of different studies carried out in different centres. 

Griffith and colleagues (Griffith et al., 2013) described the general procedure for 

retrospective harmonisation by three steps. First of all, once a research question guiding the 

harmonisation initiative has been identified, investigators document all the relevant 

characteristics of the participating studies, which allows the identification of sources of 

heterogeneity amongst the available data. This furthermore provides the elements required 

to properly evaluate the harmonisation potential across studies. Examples of the above-

mentioned sources of heterogeneity are usually represented by data access and usage 

policies, and all the relevant information describing samples, data items, and collection 

methods (data dictionaries or codebooks, questionnaires, and standard operating 

procedures). Secondly, based on the documentation obtained and on the scientific purpose 

of the harmonisation initiative, variables targeted to serve as reference for data 

harmonisation across studies are selected. A priori selection of the reference variables needs 
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to balance the trade-off between the desire of integrating as many studies as possible for 

larger sample sizes and the necessity to limit the heterogeneity of the included studies. 

Finally, after the identification of the reference variables, there are various methodologies 

that can be applied to transform all the study-specific data items into the target variable 

format. These include both qualitative harmonisation and statistical harmonisation 

methodologies. The former processes study-specific data items using logical algorithms and 

is often applied to create categorical variables (e.g. alcohol or smoking status). The latter, 

instead, may be used to harmonise complex constructs, such as cognition.  

To conclude, it can be stated there are several methods that allow the integration of different 

databases but the choice of the best harmonisation approach to use depends on the nature of 

the measures and overall information to be harmonised. Therefore, it is very important to 

deeply understand the characteristics of the problem which needs to be addressed and of the 

available data that would allow to do so (Griffith et al., 2013). 

 

1.3.1 Biomedical Images Harmonisation 

Amongst the different types of data involved in our analysis, we had to deal both with non- 

imaging variables and imaging data, that are particularly sensitive to inter-site and inter-

scanner variability. These forms of heterogeneity represent a real problem for joint analyses 

of MRI data and are usually due to several sources of variability such as the number of used 

head coils, their sensitivity, the imaging gradient non-linearity, magnetic field homogeneity, 

differences in the image reconstruction algorithms, as well as many other scanner related 

factors (Mirzaalian et al., 2016).  

In multi-centre studies, a careful prospective harmonisation can mitigate some of the above-

mentioned differences thanks to the use of the same acquisition protocol (same pulse 

sequence parameters and same field strength) and, as far as possible, similar hardware. This 

allows to work with the same image modalities, all obtained through analogue practical 

steps.  

However, not all the sources of variability can be removed using analogue protocols.  Some 

of them are indeed really challenging, being intrinsic in the image acquisition process when 

performed using different scanners. Here are mentioned some: the image contrast 

characterising each scanner, the bias-field affecting MRI images differently from scan to 

scan, and the scanner dependent Signal to Noise Ratio (Mirzaalian et al., 2016). These 
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systematic differences, if not entirely removed, can lead to severe biases especially in 

volumetric analyses and therefore necessitate a retrospective harmonisation approach. 

Another source of variability, introduced in the context of automatic lesion segmentation, is 

given by the analysis method used to obtain the labelling. Distinct raters, heterogeneous 

training sets as well as the chosen combination of input MRI scans can lead to substantial 

differences in the volumetric evaluation of the detected lesions.  

This is particularly relevant to our project, that deals with WMH volumetric segmentation 

and therefore will require a correction for the analysis related variability. Furthermore, we 

address both a multi-centre study, comparing different datasets belonging to the same cohort 

(Whitehall, see details in Par. 2.6.1, “Whitehall (Whll) phase 11 imaging sub-study”), and 

data derived from two heterogeneous populations, comparing the Whitehall study to the UK 

Biobank one (again see details in Par. 2.6.2, “UK Biobank (BB)”). In the first case we will 

need to correct for the above-mentioned scanner related effects, through a careful 

retrospective harmonisation approach. In the second one, harmonisation will be even more 

necessary, since dataset differences will be worsened by lack of a perspective harmonisation 

process and by the intrinsic heterogeneity of the two populations.  

 

1.4 Objectives  

As mentioned above, the main goal of this thesis project is to harmonise measures of the 

white matter lesional load from heterogeneous datasets (for details relative to all the 

differences characterising our datasets see Par. 3.1, “Dataset”). In order to pursue this aim, 

we identified several specific objectives that will be discussed below. 

First of all, we aspire to retrospectively harmonise all the non-imaging variables involved in 

our study (for details relative to our datasets see Par. 3.1, “Dataset”), such as arterial blood 

pressure, smoking habits, physical activity, cognitive abilities, and many more. This will be 

done through the creation of a tool able to remove differences caused by heterogeneous data 

collection protocols that result in variable unit of measurements, different categorisation of 

the same variables, etc.  

Secondly, we aim at harmonising all the imaging variables involved in this work (for details 

relative to the imaging variables involved in our study see Par. 3.1, “MRI sequences for 

WMH detection”) and we are planning to do so through a dual approach. On one hand, at 

the pre-processing level, applying specific techniques such as biasfield correction in order 
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to obtain better comparable contrasts (for details relative to biasfield correction see Par. 

2.2.3, “Biasfield correction”). On the other hand, we will address the optimisation of the 

machine learning approaches implemented in the BIANCA software package, i.e. the 

automatic segmentation tool used to classify WMH lesions (for details relative to BIANCA 

see Par. 2.4.1, “BIANCA (Brain Intensity AbNormality Classification Algorithm)”). The 

objective is to increase its robustness by finding a general setting of analysis parameters able 

to obtain comparable performances across different datasets. In this way the volumetric 

amount of lesions relative to different datasets would result similar regardless of the age of 

the subjects involved in the study. Age is being considered as it is strongly related to the 

presence of WMHs according to literature (Simoni et al., 2012). Having comparable 

volumetric distributions in different datasets, throughout the various aging classes will hence 

be taken as major marker of harmonisation performance.  

As part of the imaging harmonisation, BIANCA will be further optimised in terms of 

accuracy so as to obtain an automatic labelling as close as possible to the manual one. This 

would allow to widespread the tool usage in many clinical contexts, providing physicians 

with a robust and reliable support to diagnose dementia, cognitive impairment or any other 

disease correlated with white matter lesions.  

There is one further goal that we aim to reach and that can be identified in the creation of a 

mathematical model able to predict the volumetric amount of WMHs given all the non-

imaging variables mentioned above. This would help us accounting for the variability that 

is not related to the images themselves but to the demographic or clinical characteristics of 

the individuals. Furthermore, it would allow us to evaluate the relationship between WMHs 

and their associated risk factors, thereby providing a better insight into the nature of these 

lesions.  
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Chapter 2  

 

 “Methods” 

 

 

 

 

 

 

 

 

 

 

As introduced in the previous chapter, WMHs can be found in MRI scans also in healthy 

elderly subjects, being therefore a diffuse condition and a possible prognostic marker of 

future neurological and cerebrovascular disorders. Furthermore, the growing number of 

cross-sectional cohort studies has recently provided a huge amount of data to work with in 

order to gain a better insight into WMH as risk factor in large population studies. These 

reasons have enormously increased the interest towards strategies able to improve the WMH 

automatic segmentation tools born in the past few decades. In this regard, a major issue is 

to overcome study dependent biases by means of appropriate data harmonisation 

techniques, thus permitting the integration of different datasets.  

This chapter deals with the most theoretical aspects of WMH segmentation and data 

harmonisation. It also lays the foundation for a deep understanding of our future results, 

illustrating in detail all the methods involved within the analysis.  

Every aspect of the MRI images and of the pre-processing techniques, exploited in the 

context of our work, will be described in details, along with a proper characterisation of the 

datasets involved in the study. We furthermore try to introduce the various regressive models 

and statistical indicators, that will be the basis for the subsequent process of validation of 

our findings. 
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2.1 MRI sequences for WMH detection 

In this section we are going to introduce all the different MRI images that have been 

exploited in the context of our work.  

 

2.1.1 T1-weighted images 

T1-weighted images are one of the most basic pulse sequences within the MRI field and are 

due to differences in the T1 relaxation time of tissues. To explain the meaning of this 

parameter we introduce the following situation: when spins are aligned in an external and 

constant magnetic field, a radiofrequency (RF) pulse is able to flip them into the transverse 

plane. Right afterwards, they slide back towards the original equilibrium state, but not all 

the different tissue types need the same amount of time to do that, each being characterised 

by a specific relaxation time. Fat, that lies within bone marrow at the brain level, quickly 

realigns its longitudinal magnetization with the original constant field, therefore appearing 

bright on a T1 weighted images. Conversely, water and fluids, such as the cerebrospinal one 

(CSF), have much slower longitudinal magnetization realignment after an RF pulse and 

therefore appear dark, carrying low signal. Intermediate intensity level are instead produced 

by white matter and cerebral cortex, appearing respectively light and grey (Westbrook, 

2008).  

Figure 2.1. T1-weighted image of the brain. 

 

2.1.2 FLAIR (FLuid Attenuation Inversion Recovery) images 

Fluid attenuation inversion recovery (FLAIR) is a special inversion recovery (IR) 

sequence, used in the context of our work as base image for the lesion segmentation tool.  
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Generally, an inversion recovery sequence begins with a 180 pulse that inverts the net 

magnetization vector into full saturation. After a specific time, TI, namely the inversion time, 

an excitation pulse of 90 is applied and transfers magnetization into the transverse plane. 

The transverse magnetization itself is in turn rephased by an additional 180 pulse to produce 

an echo. FLAIR utilises a long TI corresponding to the null point of cerebrospinal fluid 

(CSF) so that the excitation pulse specifically removes the signal deriving from CSF. Brain 

tissue on FLAIR images therefore appears similar to T2 weighted images, with grey matter 

(light grey) brighter than white matter (dark grey) and fat that results being bright. Different 

from a usual T2, CSF, in this case, looks dark. 

Figure 2.2. FLAIR image of the brain (Westbrook, 2008). 

 

2.1.3 Fractional Anisotropy (FA) 

Fractional anisotropy (FA) is a scalar value lying between zero and one that describes the 

degree of anisotropy characterising a diffusion process. A value of one means that diffusion 

occurs only along one axis while it is fully restricted along all the other directions. A value 

of zero, on the other hand, means that diffusion is isotropic, therefore unrestricted in all 

directions (Alexander et al., 2007).  

FA is a measure often used in diffusion tensor imaging (DTI), a particular MRI technique, 

used to map and characterise the three-dimensional diffusion of water, as a function of spatial 

location. The diffusion tensor describes magnitude, degree and orientation of the diffusion 

anisotropy, therefore being able to detect changes in the tissue microstructure and 

organisation. FA is a parameter particularly sensitive towards these kinds of alterations and 

is furthermore able to provide information relative to fiber density, axonal diameter, 
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and myelination in white matter. For these reasons, it was included in the context of our 

work as one of the available MRI modalities (Alexander et al., 2007). 

Figure 2.3. FA image of the brain. 

 

2.2 MRI pre-processing 

We now introduce some of the concepts that will help pre-processing the MRI scans, 

preparing them for the further step of WMH detection and segmentation. BIANCA requires 

indeed some preliminary passages such as brain extraction, registration and bias-field 

correction before applying the k-NN algorithm to perform the automatic labeling of WMH 

voxels. Here we briefly describe all of the above-mentioned steps, and eventually the lesion 

segmentation definition within the BIANCA strategy.  

 

2.2.1 Brain extraction 

With image brain extraction we refer to that procedure aimed at deleting all the non-brain 

tissue from a head volumetric scan. In the context of our work it was performed using a 

specific tool part of the FSL library (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) called BET (Brain 

Extraction Tool). This method uses a deformable model that evolves to fit the brain surface 

by the application of a set of locally adaptive model forces. It is very fast and requires no 

preregistration or other pre-processing before being applied (Stephen M. Smith, 2002). After 

deleting all the non-brain tissue, BET can also estimate the inner and outer skull surfaces, 

and outer scalp surface, when fed with good quality T1 and T2 input images. From a practical 

point of view, the command takes as input an MRI scan and provides as output the 

corresponding brain extracted image whose filename needs to be set within the command 

line. Some additional options allow to obtain further outputs or modifications such as the 
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following: changes in the fractional intensity threshold from its default value causing the 

overall segmented brain to become larger or smaller, the generation of a binary mask of the 

brain, etc. 

Figure 2.4. Result of the Brain Extraction process (right panel) performed on the original MRI scan (left 

panel). 

 

2.2.2 Registration 

Image registration is a pre-processing technique widely used in the context of medical 

analysis applications to superimpose images, for further comparisons and/or fusion. The 

main goal is to reduce them to the same 3D coordinates, so that any other difference or 

feature overlap will be easier to identify. It is used in motion correction, multi-modal fusion, 

mapping to Talairach space and many other tasks (Mauren Abreu de Souza et al., 2018).  

In most cases images are mapped spatially through the use of automatic registration methods 

which exploit a cost or similarity function in order to quantify the alignment between two 

images for any given transformation. The objective function is then optimised in the attempt 

to find the best solution to the registration problem.  

There are several different transformations that can be performed in order to align images 

and the number of degrees of freedom (DOF) exploited generally characterises the kind of 

registration implemented. The rigid body transformation is global and linear with 6 DOF in 

3D (3 for translation and 3 for rotation). The affine one, is also global and linear and has 12 

DOF, adding 3 scaling parameters and 3 shear parameters. The further generalisation to 

projective transformations (16 DOF) is generally not applied to 3D scans. Non-linear 

registration permits local (elastic) adaptations of the 3D transformation, by defining a 3D 

grid of control points, perfectly aligned in the target space, yet on regularly bent lines (e.g., 

B-splines) in the registered space. Each control point is characterised by 3 DOF, hence the 

optimisation of a high number of parameters might be necessary, if the grid density was 
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augmented. For this reason, elastic transformations have to balance the tradeoff between 

matching of small details and keeping the regularity of convergence, ultimately resulting 

into image regularity. 

Linear transformations are generally used for intra-subject alignment, which means having 

two (or more) different types of images from the same subject. In the context of our work it 

was performed using FLIRT (FMRIB's Linear Image Registration Tool), a fully automated 

tool part of the FSL library (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). Non-linear 

registration, on the other hand, is generally used for inter-subject alignment or of subjects to 

a common atlas. Following a general rule, the best anatomical image (FLAIR) was used to 

find the affine matching between subjects to MNI atlas. In our case, it was performed 

exploiting FNIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT) another automatic tool part 

of the FSL library. Clearly, the intra-subject (subject to atlas) matching of the other 

modalities is obtained by combining the intra-subject affine transformations with the inter-

subject elastic transformation. 

 

2.2.3 Biasfield correction 

MR images are often corrupted by a low spatial frequency artifact known as bias field, 

arising from inhomogeneities in the radiofrequency (RF) field, both in the transmitting and 

in the receiving phases. Such an artifact causes intensity variations across space, but it has 

little impact on visual diagnosis, thanks to the ability of the human eye to capture local 

contrasts rather than the absolute intensity. Unfortunately, this is not equally true in the 

context of automatic image analysis techniques, whose performance, especially for intensity-

based segmentation, can be dramatically degraded by the presence of even mild biasfields 

(Zhang et al., 2001). 

For this reason, within our work, a robust and automatic way of correcting for this artifact is 

required. In particular, we exploited FAST (FMRIB’s Automated Segmentation Tool), an 

FSL’s tool able to segment 3D images of the brain into different tissue types (Grey Matter, 

White Matter, CSF, etc.) and to furthermore correct for spatial intensity variations 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST). From a practical point of view the command 

line takes as input the image to be segmented and returns one binary image for each of the 

tissue-types classes selected. The different values, from 0 to 1, represent the inclusion 

probability of each voxel within a particular class of tissue. Further outputs, returned by the 
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segmentation tool, are a map of the estimated biasfield along with the original but corrected 

image.  

The analytical method exploited by FAST is based on a hidden Markov random field 

(HMRF) model associated with an Expectation-Maximisation (EM) algorithm. The first one 

is a stochastic process generated by a Markov random field whose state sequence cannot be 

observed directly but only through a field of observations. The spatial information contained 

in each image is encoded through contextual constraints relative to the neighbouring pixels, 

which are expected to belong to the same class labels. The second, on the other hand, is an 

algorithm able to derive an estimation of the parameters characterising the original model 

(Zhang et al., 2001).  

Results provided by the HMRF-EM framework are an accurate and robust segmentation of 

the different tissue types present in the brain, along with the suppression of the bias field due 

to RF inhomogeneities. 

  

2.2.4 Segmentation 

Image segmentation is the process of partitioning an image into different regions based on a 

given criteria. The ultimate goal is to detect and classify meaningful structures, whether 

physiological (e.g. cortex vs. white matter) or pathological (e.g., the WMH lesions).  

In the context of our work we focused the detection and volumetric quantification of brain 

lesions in Magnetic Resonance Images, which stresses the central role played by 

segmentation within this framework. Widely speaking, brain image segmentation is very 

important for detecting abnormalities such as tumors, edema, necrotic tissues and any other 

pathological damage. An accurate detection and delineation of these structures is of primary 

importance for every diagnostic system and is furthermore a key task in many medical 

applications such as surgical planning, post-surgical assessment, mapping of functional 

activation onto brain anatomy, analysis of neuroanatomical variability and so on (Balafar et 

al., 2010).  

Brain image segmentation is unfortunately a very challenging task, since brain MRI scans 

are affected by noise, inhomogeneities, and large inter-individual variability. Namely, the 

last one goes from the fine details of the individual conformation of gyri and sulci to the 

gross changes due to pathological sign such as brain atrophy. For this reason, several 

automatic and general-purpose algorithms have been developed during the past few decades. 
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For our work, entirely focused on White Matter Hyperintensities (WMHs), we exploited 

BIANCA (for see Par. 2.4.1), the above-mentioned tool specifically designed for their 

segmentation. 

 

2.3 Segmentation’s previous studies 

In this paragraph we will present a review of WMH segmentation approaches that have been 

adopted in previous studies. WMH segmentation algorithms typically rely on two broad 

categories of machine learning methods: supervised and unsupervised. Moreover, any 

algorithm, can be either semi-automated, therefore requiring a certain amount of human 

intervention at some point during the processing pipeline, or fully automated, therefore 

requiring no intervention at all (Caligiuri et al., 2015). Several approaches, belonging to all 

the above-mentioned categories, have been developed during the last forty years. Here we 

discuss the most important ones.  

We start with the fully automated supervised segmentation algorithms, one of the most 

popular ones being represented by Anbeek and colleagues (2004). Their strategy is to use a 

k-nearest neighbours (k-NN) classification technique that employs multispectral information 

from T1-weighted, inversion recovery, PD, T2-weighted and FLAIR scans. Their ground 

truth is represented by manual segmentations of WMHs. The training set of this study is 

randomly generated selecting one fifth of the voxels so as to reduce computation time and 

computer memory. On the other hand, the performance evaluation on a sample is conducted 

using five different feature sets, each obtained as a combination of voxel intensities from the 

mentioned MRI sequences, plus the voxel location in the brain. Results show that the best 

performance is achieved using both intensities and 3D spatial features. Furthermore, the 

choice of the threshold for the lesion probability map resulting as output has a strong 

influence on the overall performance of the algorithm. Also, the recruiting strategy of voxels 

for the training set is shown to have a major impact, since a small number of samples is not 

representative of whole data (Caligiuri et al., 2015; Anbeek et al., 2004).  

Another example of a supervised algorithm, very different from the previous one, is given 

by the work of Dyrby and colleagues (2008), that faces the segmentation issue by an artificial 

neural network. Addressed features are: intensities of FLAIR, T1 and T2 images, a 3x3 

neighbourhood, and spatial location of each voxel. Furthermore, an optimal-weight-

selection strategy is included in the protocol in order to guarantee the classifier generality. 
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Results from the validation process show that multimodal neural networks outperforms those 

trained using FLAIR data only and that variations in MRI scan quality represents the largest 

source of error (Caligiuri et al., 2015; Dyrby et al., 2008).  

We now introduce an example of unsupervised segmentation algorithm. Admiraal-Behloul 

and colleagues (2005) develop a technique comprising two different levels: an adaptive one, 

robust to differences in image intensities and image contrast, and a reasoning one able to 

remain unchanged when applied to images acquired on different MRI scanners. Information 

from three different MRI contrasts were combined in this method: proton density (PD), T2-

weighted, and FLAIR. During the first phase, intensity values are mapped to crispy linguistic 

categories as “bright”, “medium-bright”, and “dark”. During the second one, the linguistic 

values were used within a fuzzy inference, together with voxel position category (e.g., WM 

for white matter and IC for Intracranial) to derive a label to every voxel. The innovative 

aspect that differentiates this approach from others multispectral segmentation methods lies 

is that different voxel features are exploited only if crucial to the classifier. This results in 

low dimensionality and thereby in a reduction of the computational time. The method also 

allows to set some user-defined preferences, such as different exclusion criteria to reduce 

false positives (Caligiuri et al., 2015; Admiraal-Behloul et al., 2005).  

De Boer and colleagues (2009) provide another unsupervised segmentation approach. Their 

technique allows to segment GM, CSF and WM on multimodal MRI data (T1- weighted, 

PD and FLAIR) by an atlas-based k-NN. To train this classifier, a non-linear registration of 

12 brain atlases to the subject space is performed. The GM segmentation obtained as output 

is next used to automatically find a WMH threshold on the histogram of the FLAIR scan. 

False positives were removed by ensuring that the hyperintensities were within WM 

(Caligiuri et al., 2015; De Boer et al., 2009).  

We now mention the most significant examples of semi-automated segmentation approaches 

to complete the overview.  One is represented by the work of DeCarli and colleagues (1995) 

which exploits a double-echo pixel intensity histogram to label as WMHs all of those pixels 

with intensity three or more standard deviations above the mean of the histogram itself. This 

latter was intensity-corrected according to non-uniformities characterising images (Caligiuri 

et al., 2015; DeCarli et al., 1995). Another remarkable technique is developed by Ramirez 

and colleagues (2011) who implement segmentation by applying an adaptive local 

thresholding. The brain is subdivided in small 3D regions and a threshold is calculated for 
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each of them, based on the intensity histograms of PD and T2 images (Caligiuri et al., 2015; 

Ramirez et al., 2011). In both cases manual steps for checking the quality of the WMHs 

segmentation is part of the protocol and takes approximately 10–20 minutes of user 

intervention.  

Despite the number of methods proposed, there are several reasons that have prevented them 

from entering a widespread clinical use, so far. First of all, the code of very few of them is 

publicly available therefore making very challenging for both researchers and clinicians to 

evaluate them. Furthermore, several automated and voxel-wise methods have been 

developed for the detection of multiple sclerosis (MS) lesions, which, however, are 

significantly different from the WMHs. MS lesions have sharper boundaries and, on the 

other hand, WMHs are characterised by a very heterogeneous patterns, ranging from 

punctuate lesions in the deep white matter to large confluent periventricular lesions. A 

further problem is represented by most algorithms being validated on small samples, with 

limits related to possible over fitting or to protocol and/or study specificity. These limits 

severely hinder the overall analysis of completely different datasets (Griffanti et al., 2016).  

The need for a multimodal, flexible, freely available and well supported tool led to the 

development of a new approach. Griffanti and colleagues in 2016 indeed proposed a fully 

automated, supervised method for WMH detection called BIANCA (Brain Intensity 

AbNormality Classification Algorithm). The tool relies on a k-NN algorithm, with flexible 

features (combination of MRI modalities and spatial features) and differs from the previous 

similar approaches thanks to the introduction of entirely new options like the possibility of 

weighting spatial coordinates (using local spatial intensity averaging) and changing the 

number and location of the training points. During this work BIANCA was both optimised 

and validated in the perspective of the harmonisation of different databases. Firstly, the goal 

was to find the best combination of parameters (BIANCA options) able to provide a good 

performance in terms of both overlap and volumetric agreement with a manually segmented 

WMH mask. Results were evaluated on an annotated subset for each of the datasets involved 

in the study. The best performance obtained determined the main choices relevant to the 

settings of BIANCA. In the validation phase, the optimised set of options was applied to the 

whole cohorts and the resulting measurements of WMH volume were evaluated by 

correlation with visual ratings and age. Eventually, this study successfully demonstrated that 

the measure of WMH load extracted with BIANCA is a valid and reliable alternative to 
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manual segmentation and, furthermore, that the tool could be considered as promising for 

routine MR diagnostic scans and large cohort cross-sectional studies.  

Unfortunately, this doesn’t exclude the presence of a certain amount of limitations, that will 

be further explained in the following paragraph and represent the reason why this thesis 

project aimed to improve and optimise BIANCA (Griffanti et al., 2016).  

 

2.3.1 Limits 

Some of the limitations affecting the above-mentioned approach concern specific steps of 

the protocol that will be further discussed later in this chapter. Therefore, we just quickly 

mention them before introducing the most significative one in deeper detail. First of all, there 

is the necessity to use an exclusion mask of grey matter, cerebellum and subcortical 

structures to decrease the amount of false positives. Therefore, BIANCA is currently not 

able to detect cortical and cerebellar abnormalities. Another limit is that the number of 

clusters k of the k-NN algorithm was not optimised but a value of 40 was selected based on 

literature. Furthermore, not all the possible configurations of the available BIANCA options 

were tested, due to an excessively large number of possible combinations. 

Last but not least, the training and validation of BIANCA required a training set of manually 

segmented images, when used with data from different scanners or acquisition protocols. 

This is the main reason why this thesis project strived to optimise BIANCA both in terms of 

accuracy and robustness. This happens because FLAIR and T1 characteristics usually vary 

across different scanners thereby making a study-specific manual labelling mandatory.  

The first drawback is that manual segmentation is time consuming and cumbersome, since 

it requires high expertise in WMH identification. The second consequence, on the other 

hand, is represented by the lack of a general training set able to obtain comparable 

performances across different populations. Training BIANCA on one dataset and using it on 

another one acquired with the same protocol, would further reduce manual intervention and 

most importantly would make BIANCA applicable to multi-centres studies. That indeed 

represents one of our main goals (Griffanti et al., 2016). 

 

2.4 Supervised machine learning for segmentation 

In this chapter we are going to introduce BIANCA, the automatic tool for lesion 

segmentation, in greater detail than in the above paragraphs, illustrating its main modules 
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along with the underlying algorithms. To conclude we will introduce LOCATE, a supervised 

and automated method sometimes applied to BIANCA’s outputs in order to further optimise 

its performance.  

 

2.4.1 BIANCA (Brain Intensity AbNormality Classification Algorithm)  

As previously mentioned, BIANCA is a fully automated and supervised method for WMHs 

segmentation exploited in the context of our work to perform lesion detection. The tool takes 

MRI scans of the brain as input, being very flexible about the different image modalities that 

can be used. It exploits a k-nearest neighbour (k-NN) algorithm in order to classify each 

image voxel on the basis of intensity and spatial features. The output is further processed to 

obtain the binary classification mask highlighting lesions (Griffanti et al., 2016).  

This is a general overview of BIANCA’s working principle. However, in this section we 

will provide a further insight into the underlying algorithm and its overall structure.   

 

2.4.1.1 k-NN Algorithm 

The k-nearest neighbour (k-NN) algorithm is a non-parametric learning method in which it 

is not needed to discard the training set in the next prediction phase. In fact, the training set 

has the only function to provide samples that will be compared to validation data in order to 

help with their classification. Indeed, for each new data to predict, the closest k training 

samples are selected and the label belonging to the majority of them is assigned to the new 

example.  

In this context, the definition of a similarity measure is of primary importance. This is not 

always trivial, but it has the advantage of allowing k-NN to be used also with all objects 

(such as graphs) for which the concept of closest can be defined analytically. A core issue is 

the choice of the number of classes, defined by the k parameter, which is determinant for the 

performance of the algorithm and is generally chosen through a cross-validation process.  

The k-NN method is affected by the problem of dimensionality, which means that having 

input data with a very high number of dimensions will decrease the performance of the 

predictor. This is caused by the fact that, with high dimensions, all of the points tend to have 

the same distance from one to another (Mitchell, 1997). 

When applied to the problem of WMH segmentation, the k-NN method has a feature space 

whose axis are characterised by voxel features. In BIANCA, these are represented by both 

punctual, local, and spatial characteristics that can be well summarised as follows: intensity 
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of the voxel, local average intensity calculated on a 3D patch of pre-specified dimension, 

and spatial coordinates, respectively.  

In order to work, the algorithm requires a training set of pre-classified voxels, each of which 

corresponds to a specific feature vector. These data, being already segmented, represent a 

rich set of examples for both the WMH and non-WMH class. Classification of a voxel 

belonging to a new subject image is then performed through creation of the feature vector, 

its addition to the feature space, next looking at the k training feature vectors that are closest 

to it. The output obtained after running k-NN is the probability of each voxel of being WMH 

and is calculated as the proportion of k neighbours belonging to the WMH class. Its spatial 

representation is usually referred to as lesion probability map and, being not binary, it needs 

a further post-processing step in order to produce the final sharp classification. If the 

probability value exceeds a certain threshold, it is classified as WMH, if not as non-WMH 

(Griffanti et al., 2016). 

 

2.4.2 LOCATE (Locally Adaptive Threshold Estimation) 

To further refine the above thresholding, we now introduce a further automated tool that was 

used along with BIANCA in the context of our work. LOCATE is a supervised method able 

to determine adaptive thresholds for binarising the subject-level lesion probability map 

(LPM). This LPM postprocessing includes the following steps: the division of LPM into 

sub-regions using Voronoi tessellation, the extraction of local features within those sub-

regions, and finally the estimate of optimal local thresholds using a supervised learning 

method on the basis of the extracted characteristics. 

This was a general overview, but we now present in detail the practical steps performed by 

the tool in order to provide the above-mentioned output. Firstly, local maxima points Mi 

(i=1, ..., N) are detected on the lesion probability map to identify the plausible lesion 

locations. Then, the lesion probability map is tessellated, based on those local maxima, into 

N Voronoi polygons, Vi (for details see Chapter 2, “Voronoi Tessellation”). Within each 

polygon, different levels of thresholds (Th) from 0 to 0.9 are applied using incremental steps 

of 0.05, and the following features are extracted at each time:  

• Mean greyscale intensity of the image within the thresholded region;  

• Distance between the centre of gravity of the thresholded region and brain ventricles;  

• Volume of the thresholded region;  
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The optimal local threshold for each Voronoi region was determined using a random forest 

regression model (for details see Chapter 2, “Random Forest Regression”) with 1000 trees 

and min leaf size of 5. The training phase was conducted determining, for each Vi, the highest 

threshold value Thmax among the set of thresholds Th which gave the best similarity index 

with respect to the manually segmented binary lesion mask. The random forest regression 

model was at this point trained with the above-mentioned features using the values of Thmax 

again. In conclusion, during the testing phase the trained regression model was applied to 

new images in order to get the optimal thresholds Th for each of them (Sundaresan et al., 

2018).  

 

2.4.2.1 Voronoi Tessellation 

Voronoi diagrams were first considered in early 1644 by René Descartes and were further 

investigated by Voronoi in 1907. They represent a method for partitioning a bidimensional 

space into convex polygons starting from n distinct points. The subdivision is performed in 

such a way that each polygon contains exactly one generating point pi and that every point 

q belonging to a given polygon is closer to its generating point pi than to any other point in 

the 2D space. Therefore, the following analytical formula can be used in order to well 

represent the concept:  distance(q, pi) < distance(q, pj) for each pj with  j ≠ i (Sack et al., 

2000).  Despite simplicity of the underlying concept, Voronoi diagrams have applications in 

almost all areas of science and engineering, reaching a widespread use in field such as 

network analysis, computer graphics, medical diagnostics, astrophysics, hydrology, robotics 

and computational fluid dynamics.  

Figure 2.5. A Voronoi diagram of 11 in the Euclidean space (Sack et al., 2000). 
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2.4.2.2 Random Forest Regression 

Random forest, or random decision forest is an ensemble and supervised learning method 

for classification, regression and other tasks. With the term ensemble, we refer to a technique 

that combines predictions from multiple machine learning algorithms with the goal of 

obtaining a more accurate result with respect to the one that would be obtained through an 

individual model.  

Random forest regression is strongly connected with the concept of decision trees and is in 

charge of correcting for their usual tendency to overfitting.  

It relies on a technique called bagging (Bootstrap Aggregation) which is the process of 

randomly sampling from a dataset with replacement. Therefore, if we have a group of 

observations of size N, we will be able to generate many new ones, different from the original 

but characterised by the same amount of data. This technique is very effective when applied 

to decision trees, being these latter very sensitive to the data they are trained on, for which 

even small changes can result in significant differences in the structure of the resulting tree.  

Random forest regression exploits this concept and operates by constructing a multitude of 

decision trees during the training phase. Next, each of them processes data during the testing 

phase and generates a class of predictions, the most voted one being considered as the final 

RF prediction model (Breiman, 2001).  

In conclusion, this algorithm was able to bring significant improvements in classification 

accuracy, thanks to the many trees protecting each other from their individual errors: while 

some of them may be wrong, many other will be right, so that, as a whole, they manage to 

move in the correct direction. 

 

2.5 Harmonisation’s previous studies 

The following section is split into imaging and non-imaging harmonisation data 

harmonisation methods used in the past few years with goals similar to ours.  

 

2.5.1 Imaging harmonisation 

Even if inter-scanner variability (for details see Par. 1.3.1, “Biomedical images 

harmonisation”) can be minimised acquiring data using the same scanner model and an 

analogue pulse sequence, recent studies highlighted relevant disparities between 



 50 

measurement deriving from different sites (Kochunov et al. 2014; Mirzaalian et al. 2015, 

2016). 

This inter-site variability especially interested fractional anisotropy (FA) images, where it 

revealed to be uneven being both tissue and region specific (Mirzaalian et al. 2015). 

Hence, for joint analysis of data from different sites, three major harmonisation techniques, 

based on data poling, have been explored during the past few years. The first to be introduced 

is a Meta-analysis approach which relies on the combination of z-scores, relative to distinct 

sites, in order to establish group disparities. The application example addressed by this study 

is diffusion tensor imaging (DTI) measures such as fractional anisotropy (FA); nonetheless, 

harmonisation principles can be extended to other application, WMH studies included. Even 

though, the subject population at each site may not be adequate to capture the variance of 

the entire population it is a critical requisite to ensure proper pooling and analysis of z-scores, 

since the latter depends on the variance and not only on the population mean. A consistent 

limitation characterising this approach is represented by low statistical power, since z-scores 

may not be the best method when dealing with non-Gaussian distributions (Bouix et al, 

2018).  

A second category of methods uses Statistical covariates to account for site-specific 

differences (Forsyth and Cannon 2014; Venkatraman et al. 2015), regressing out the inter-

site disparities. The specific applications present attain to FA, again, and to cortical thickness 

evaluation. The approach introduced by Kochunov et al. (2014) is a mixture of the previous 

ones and uses z-scores from each site and then regresses-out specific site differences using 

statistical covariates. Thus, both strategies are integrated to correct for scanner differences 

through a linear correction factor specific for each of the addressed measures, giving to the 

harmonisation procedure a model-specific characteristic (Bouix et al, 2018). 

Recently ComBat (COMbining BATches), an innovative empirical Bayes approach to 

correct for batch effect, has been exploited as a retrospective multi-site harmonisation 

method in many studies about DTI data, cortical thickness measures and other longitudinal 

ones such as the Adolescent Brain Cognitive Development (ABCD) study (Fortin et al., 

2017; Fortin et al., 2018; Nielson e al., 2018). 

ComBat works as follows: it obtains a preliminary estimate of the batch interaction 

parameters from a linear model and then shrinks those parameters towards a grouped mean. 
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The level of shrinkage is generally calibrated according to either parametric or 

nonparametric estimates of the batch effects distribution (Johnson et al., 2007).  

The main limitation characterising this approach is that specific prior distributions (Gaussian 

and Inverse-gamma) of the site effect parameters do not allow to properly generalise to every 

possible scenario or to measures derived from other models. 

Moreover, harmonisation of imaging datasets oughts also to permit the exploitability of 

information recorded aside each image, relevant to the subject anamnestic and demographic 

features, subject condition at the specific scan, scanner and protocol technical data, etc. All 

this, by overcoming the different procedures, metrics, and scales adopted in each dataset. 

The harmonisation approach exploits many different processes, such as: selection of the data 

to be accepted and further application of a cleaning procedure, application of quality control 

metrics to the accepted data, mapping of data in order to match them with a common data 

model, processing of the data with common bioinformatic pipelines, and application of 

further quality control metrics to the processed results (filtering of poor quality data, outliers 

removal, etc.) (Lee et al., 2018). These concepts are well summarised in the scheme 

presented below: 

Figure 2.6. An Overview of the Data Harmonisation Process  (Lee et al., 2018). 

 

Data harmonisation practices are critical for advancing the knowledge on neurological 

diseases such as Alzheimer, Parkinson, depression, etc. in a learning health system and, 

moreover, are important to turn those advances into patient benefit. Literature on statistical 

methods of data harmonisation mainly contemplates three general approaches. The first one 

uses a simple linear- or z- transformation to create a common metric, thus combining 
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constructs measured using different scales across datasets. An example is given by the 

Standardisation Methods that can be applied to continuous variables and do not require a 

specialised software (Minicuci et al., 2004).   

A second class of methods is based on one or more latent factors, which underlie a set of 

measured items that can be modelled through very different techniques: linear factor analysis 

for continuous items, two parameter logistic item response theory for binary items, a 

polytomous Rasch model for ordinal ones, and finally moderated nonlinear factor analysis 

(MNFA) if there is a mix of all of them. 

In each of the above-mentioned cases, firstly we need to create a “conversion key” using one 

of those statistical models to depict the relationship between the latent construct and 

measured items. The next step consists in converting the information into a common scale 

through the newly generated conversion key.  

On the other hand, the final class of methods, Missing data by design with multiple 

imputation, is applied to continuous, binary and ordinal data but requires some specialised 

software and multiple datasets (Burns et al., 2011). In this case, the authors were interested 

in mixing Mini-Mental State Examination (MMSE) scores with missing data across nine 

Australian longitudinal studies, related to demographic characteristics such as age and 

education. Burns and colleagues (2011) used a specific model that exploited multiple 

imputation with chained equations to assign appropriate missing MMSE item scores.  

 

2.5.2 Harmonisation of Non-Imaging data 

However, before talking about specific methods for statistical harmonisation, it’s 

fundamental to create inferentially equivalent datasets through a pre-statistical 

harmonisation process involving the non-imaging data. The latter includes steps such as the 

identification of relevant cognitive tests, the identification of biological, demographic and 

clinical variables of interest (e.g., blood pressure, weight, smoker status, sex, age, and 

education) and finally the qualitative harmonisation of all of the above-mentioned features 

using processing algorithms able to reduce variables to a common format. Lack of 

inferentially equivalent datasets would result in qualitative harmonisation being only 

applicable to simple constructs (e.g., number of cigarettes smoked, sex etc.), but not to more 

complex measures such as different rating scales across studies (Griffith et al., 2013). This 

helps understanding the importance of this process. 
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Inferentially equivalent datasets can be obtained by converting the original data dictionary 

(a codebook with descriptions of variable names, type, format, and missing values) into a 

fixed master data dictionary that states overlapping data from all studies either prospectively 

or retrospectively (Kalter et al., 2019). 

An example of this kind of harmonisation approach is represented by DataSHaPER (Data 

Schema and Harmonisation Platform for Epidemiological Research) (Fortier et al., 2011). 

This method starts with the definition of a set of targeted variables, called DataSchema. A 

priori rules are then defined for each variable of the DataSchema and are used to establish 

which data can be validly combined across studies therefore generating a DataSchema 

variable. Then, the Harmonisation Platform provides a template for formal estimation of the 

potential to summarise information from different studies. However, this approach is 

subjects to some limitations that are related to variable selection and pairing rules, 

participating studies, and the harmonisation process. Moreover, one of the main limits 

affecting this method is represented by the inevitable element of subjectivity associate to the 

variable selection and pairing rules definition. Another example of Data Harmonisation 

Platform (DHP) is the one recently developed for the Predicting OptimaL cAncer 

RehabIlitation and Supportive care (POLARIS) study, which was subsequently applied to 

other cohorts (Kalter et al., 2019). This innovative platform allows to harmonise Individual 

Patient Data (IPD) with a flexible approach, storing data in a centralised and secured 

database server with large capacity. It allows the user to import distinctive studies data, to 

harmonise them with a master data dictionary and to further export the harmonised results 

into a statistical software program of choice (e.g., SPSS statistical package) for further 

analysis. 
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Figure 2.7. Harmonisation model with a fixed master data dictionary (Kalter et al., 2019). 

 

While previous examples dealt with specific fields of interest, working respectively on 

Epidemiological and Cancer Rehabilitation datasets, this harmonisation work is mainly 

focused on neurodegenerative diseases. In this specific study, data were taken from the Data 

portal of the Dementia Platform UK (DPUK) (https://portal.dementiasplatform.uk/). This is 

a collaboration between DPUK and a growing number of cohort research teams who wish 

to make their data globally accessible. Indeed, between the DPUK’s cohorts we find the ones 

under study in this project: Whitehall II and UK Biobank, characterised by an 

inhomogeneous format.  For this reason, it was fundamental to process them using an ad-

hoc python library called FUNPACK, included in the FSL package. 

 

2.5.3 FUNPACK 

As mentioned in the previous chapter, the main disparities between the Whitehall and the 

UK Biobank datasets are due to differences in the collection of clinical variables, usually 

happening through different questionnaires or different physical and cognitive tests. There 

are other differences relative to the type of data collected, being either continuous or integer, 

binary or categorical. These several disparities made it impossible, so far, to work towards 

models, comparison and subsequent integration between the two populations with the goal 

of statistical analysis.  

For this reason, it was necessary to introduce a specific pipeline represented by an innovative 

Python library, designed to convert BB data into a homogeneous format with respect to the 

corresponding Whitehall ones. This tool is called FUNPACK and was developed for pre-

processing the UK Biobank data at the Wellcome Centre for Integrative Neuroimaging 

(WIN), University of Oxford. 

FUNPACK comes bundled with metadata about the variables present in BB dataset and 

contains a large number of built-in rules which have been specifically designed to pre-

process those features (https://git.fmrib.ox.ac.uk/fsl/funpack/). The above-mentioned 

metadata can be obtained from the online BB data showcase 

(http://biobank.ndph.ox.ac.uk/showcase) whereas the source code is available at 

https://git.fmrib.ox.ac.uk/fsl/funpack/.  FUNPACK aim is to merge one or more input files 

(e.g. csv, tsv) together and to perform different types of pre-processing, finally producing a 

single output file. In this thesis work, through the use of FUNPACK, it was possible to 
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reduce the BB’s data into a format compatible with the WhII one. This allowed populations 

analysis and furthermore the creation of a unique predictive model able to account for the 

variability of demographic and clinical characteristics relative to the different subjects (for 

details see Par. 2.7). 

 

2.6 Data management 

This thesis project aims to harmonise WMH measurements across two main datasets 

deriving from the Dementias Platform UK: the UK Biobank (BB) and the Whitehall II 

imaging cohort (WhII). The cohorts will be integrated through manipulation of imaging data 

(FLAIR and T1-weighted scans), demographic, clinical and cognitive variables. 

The Dementias Platform UK (DPUK), established in 2014, was developed by the Medical 

Research Council (MRC), in order to improve treatment and ultimately also prevention of 

dementia (Orton et al., 2018). Especially, it supports multi-modal studies both in genetics 

and imaging, increasing the chance to ameliorate data collection and data sharing. 

Concerning the two above-mentioned datasets, both deploy the same MRI contrast types 

(T1-weighted and FLAIR), same field strength in the acquisition sequences (3T), but distinct 

resolution and contrast scales. Furthermore, they have overlapping, yet not matching, age 

ranges (WhII: 65-85 years; BB: 50-80 years) and only part of the cognitive tests submitted 

to participants in common. In terms of harmonisation, the two different Scanners used within 

Whitehall (3 T Siemens Magnetom Scanners, SC1: Verio, SC2: Prisma), belonging to a 

multi-centre study, have been used to derive MRI images using the same acquisition 

protocol. Therefore, when we compare data belonging to SC1 and SC2, it is possible to 

assume that at least a partial prospective harmonisation was implemented (Filippini et al., 

2014). However, some differences remain between the two datasets due to the distinct post-

processing techniques applied to the MRI images; e.g., the bias field correction was 

performed just on Scanner 2. All of this is no longer the case with the introduction of UK 

Biobank (using a 3T Siemens Skyra scanner), which is a completely different study. No 

prospective harmonisation protocol was indeed applied in order to integrate the UK Biobank 

data with the Whitehall one. Therefore, it was necessary to proceed with a specific pipeline 

for retrospective harmonisation, as mentioned in the previous chapter. 
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2.6.1 Whitehall (Whll) phase 11 imaging sub-study 

The Whitehall II project is a long-lasting longitudinal study started in in 1985–1988 (phase 

1) on a cohort of 10˙308 public workers, men and women, aged 35-55 employed in the 

London offices of 20 Whitehall departments (Marmont et al., 2004). It provides a remarkable 

source of longitudinal data to explore factors hypothesised to affect brain health and 

cognitive aging. In the overall WHII study, participants took part in eleven data collection 

phases, six of which included a medical screening. Between 2012 and 2013, 6˙035 (age range 

between 60-85) of the original 10˙308 subjects, participated to the Phase 11 assessment 

which included the collection of clinical data that varies from demographic and 

socioeconomic to biological ones, including cognitive assessment and measurements from 

MRI scans (Filippini et al., 2014). Table 2.1 well summarises all the different types of non-

imaging data that were finally included within the Whitehall cohort. 
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(anxiety, 

depression) 

Studies 

Depression 

Scale) 

Health outcomes 
Sickness 

absence 

Stroke and 

myocardial 

infarction 

Clinical 

depression 
Mortality 

 

Table 2.1.  Example summary of the data collected in the Whitehall II study (Marmont and Brunner, 2004). 

 

Furthermore, from the last phase (Phase 11) a sub-cohort consisting of nearly 800 randomly 

selected WhII participants was extracted: the WhII imaging sub-study. Our project is 

precisely focused on that dataset, comprising 774 MRI scans, acquired with the same 

protocol on two 3T Siemens scanners (SC1: Verio, N=551; SC2: Prisma, N=223). The 

involved subjects were 65-85 years old (Filippini et al.,2014).In conclusion, WhII 

specifically aimed to explore factors hypothesised to affect brain health and cognitive ageing 

and therefore has a much more detailed cognitive assessment with respect to the BB, even 

though they have similar image modalities. 

 

2.6.2 UK Biobank (BB) 

The UK Biobank dataset is a prospective cohort study with deep genetic and phenotypic data 

collected on approximately 500˙000 volunteers from across the United Kingdom, aged 

between 40 and 69 at recruitment, that happened in 2006 (Sudlow et al., 2015). 

After six years, in 2011 a web-based questionnaire was included in the assessment visit 

towards the end of the recruitment period and two years later a repeated assessment of 20˙000 

participants was carried out at the BB Co-ordinating Centre, UK. As final check, most of the 

Participants were invited to undergo a repeated assessment of all the baseline measures 

(Bycroft et al., 2018). Hence, this huge dataset aims to improve the prevention, diagnosis 

and treatment of a wide variety of serious and life-threatening illnesses as cancer, heart 

disease, diabetes, mental health, dementia. This is pursued through the collection of an 

extensive range of phenotypic information as well as biological samples. Moreover, answers 

to the questionnaires were collected during the recruitment, especially on socio-

demographic, lifestyle and health-related factors. They completed a range of physical 

measures, as in the Whitehall dataset, with particular attention to mental disorders such as 
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bipolarism and schizophrenia. Unfortunately, some of these measures were integrated into 

the protocol towards the end of the recruitment period thereby not being available for all of 

the 500˙000 participants. Table 2.2 well summarises all the different types of non-imaging 

data that were finally included within the UK Biobank cohort. 

 

Demographic Age Gender   

Socioeconomic Education Income Work 
Household 

composition 

Biological 
Blood 

pressure 

Weight, 

Height 

Glucose, 

insulin 

BMI (Body 

Mass 

Index) 

Psychosocial/work 

exposure 
Effort-reward 

Demand-

control 

Social 

support 

Social 

networks 

Health behaviours Smoking Alcohol 
Physical 

activity 

Diet 

frequency 

CVD 

(cardiovascular 

disease) 

WHO chest 

pain 

CVD 

symptoms 
  

General health 
Self-rated 

health 
Well-being Medications 

Quality of 

life 

Mental health 

General 

Health 

Questionnaire 

(anxiety, 

depression) 

Activities of 

daily living 

Schizophrenia 

and Bipolar 

disorder 

Alzheimer 

et al. 

Health outcomes 
Sickness 

absence 

Stroke and 

myocardial 
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Mortality 

 

Table 2.2. Example summary of the data collected in the UK Biobank study. 
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With regards to images, it can be stated that an imaging sub-study is actually ongoing on 

100˙000 subjects including brain, heart and body MRI, carotid ultrasound, a 12-lead ECG 

recording and a full-body dual energy X-ray absorptiometry scan. Brain scans are acquired 

in three dedicated imaging centres, all equipped with identical scanners (3T Siemens Skyra, 

software VD13) and using the standard Siemens 32-channel receive head coil (Miller et al., 

2016).  

The huge collection of currently available data provides great statistical power thanks to the 

high-quality scans of nearly 30˙000 individuals and offers a superb dataset for identifying a 

normative population distribution. However, the cognitive assessment of BB is limited, 

preventing a thorough investigation of the associations between WMH and cognitive 

impairment. 

Figure 2.8. Summary of the UK Biobank resource and genotyping array content (Bycroft et al., 2018). 
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2.7 Predictive models 

Once we converted data into a single compatible format, it was finally possible to proceed 

with the analysis of those datasets. In particular, as previously introduced, we created a 

unique model able to account for the variability that is not related to the images themselves 

but to the demographic and clinical characteristics of the individuals belonging to different 

populations. More in details, the predictive model was generated, firstly, in order to give a 

general prediction of the amount of WMHs in terms of total volume, starting from just the 

clinical (included cognitive tests), biological and behavioural data relative to the subjects 

(e.g. blood pressure, weight, alcohol status, physical activity etc.). This would allow to have 

a primary idea of the likely presence and severity of lesions, even before resorting to specific 

magnetic resonance imaging. Secondly, as anticipated, the model has the goal to outline the 

existing relationship between various non-imaging variables and the total amount of WMH 

affecting participants, thus highlighting those that have more influence on lesion appearance. 

These variables could then be indicated as major risks factors. Finally, this would also lead 

to the observation of similarities and differences amongst the two populations, that basically 

depend on whether predominant risk factors are the same or not. 

A short introduction from predictive analysis and its related models is presented below since 

it’s very common to talk about Predictive Analysis in big data, especially in population 

profiling. This is usually seen as the process of using data analysis to make data-driven 

predictions, which means exploiting several techniques such as data mining, statistics, 

modelling and machine learning in order to analyse current data and to build a model for 

predicting future events (Swani et al., 2017). 

Very often, machine learning techniques are used to predict a future value or to estimate 

probability, capturing relationships among many factors to assess risk with particular set of 

conditions. Broadly speaking, machine learnings methods can be divided into two sub areas: 

Supervised and Unsupervised. Supervised learning involves allocating labelled data into a 

system so that a definite pattern or function can be deduced from them. It consists in 

providing the computer system of the machine with a series of already classified (alias, 

annotated) examples, that allow to build a database of a-priori information and experience 

called training set. After the learning phases, which tunes the machine parameters to the best 

performance on the training set, the classifier will apply the same rules to new data. In other 

words, it will analyse data based on the previously acquired knowledge (Brownlee, 2016).  
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On the other hand, Unsupervised learning requires that information entering into the 

machine is not encoded. In other words, the machine has the possibility to draw over the 

given information without having any reference example, without any knowledge of the 

expected. Therefore, the machine itself needs to catalogue all the information in its 

possession, to organise them and learn their meaning, their use and, above all, the result to 

which they will lead. Namely, the only reference is given by the structure of data themselves; 

e.g. by the presence of clusters, the separation of which should be optimised. Unsupervised 

learning allows more freedom in the choice of how to organise information and to learn what 

is best for different situations (Zhu and Goldberg, 2009).  

The main difference between supervised and unsupervised learning is relative to the input 

dataset. In supervised learning is well known and labelled while in unsupervised learning it 

is completely unknown (Brownlee, 2016). Another difference lies in the accuracy and in the 

computational complexity of the results produced after every cycle of machine learning 

analysis. The results generated from a supervised method are indeed more accurate and 

reliable when compared to the ones generated from unsupervised algorithms. 

In the context of our work, the focus was mainly on supervised learning methods and on a 

single Bayesian model. Anyway, in Table 2.3 the main algorithms relevant to both will be 

presented. 

 Unsupervised Supervised 

Continuous 

 

 

 

 

Clustering & 

Dimensionality Reduction 

• SVD 

• PCA 

• K-means 

• Linear Regression 

• Regularisation 

(Ridge, Lasso, 

Elastic Net) 

• Decision Trees 

• Random Forests 

Categorical Association Analysis 

• A priori 

• FP-Growth 

 

Hidden Markow Model 

Classification 

• k-NN 

• Trees 

• Logistic Regression 

• Naive-Bayes 

• SVM 
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Table 2.3. Machine learnings algorithms categories. 

 

2.7.1 General Linear Model (GLM) 

As predictive analytics is a tool for machine learning and big data, regression modelling is a 

technique for predictive analytics. Regression modelling investigates the relationship 

between a dependent (target) and independent variables (predictor) while also assessing the 

strength in the association between them. Thus, it is looking for relationships between 

variables and tries to understand how strong that relationship is. The term general linear 

model usually refers to conventional linear regression models for a continuous response 

variable given continuous and/or categorical predictors (Goldburd et al., 2016).  

In a general linear model:   

 

(2.1) 

 

the response yi (i=1, ..., n) is modelled by a linear function of explanatory variables xj (j=1, 

…, p) plus an error term. The term general refers to the dependence on potentially more than 

one explanatory variable, whereas a simple linear model establishes a relationship between 

dependent variable (Y) and one or more independent variables (X) using a best fit straight 

line, the regression one: 

 

(2.2) 

 

𝜶 is intercept, β is slope of the line and 𝝴 is error term. This equation can be used to predict 

the value of the target variable based on given predictor one(s). 
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Figure 2.9: Linear regression model, in red regression line (https://www.jmp.com/en_hk/statistics-

knowledge-portal/what-is-multiple-regression/fitting-multiple-regression-model.html). 

 

The goal of simple linear regression, also known as Ordinary Least Squares (OLS), is to 

minimise the sum of squared errors, each error being the difference between the actual data 

(yi point) and its predicted value. This quantity, allows to find the model optimal parameters 

and is generally referred to as cost function: 

 

(2.3) 

 

At this point is possible to introduce a further concept. In order to obtain a more accurate 

model of complex data it’s possible to add a penalty term to the cost function since it adds a 

bias due to model complexity. These penalty terms are generally known as L1 regularisation 

(Lasso regression) and L2 regularisation (Ridge regression) or a combination of both: Elastic 

Net. 

 

2.7.2 Ridge Regression Model 

Ridge Regression is generally used when independent variables are highly correlated, 

therefore data suffer from multicollinearity. In this condition, even if the least squares 

estimate (OLS) is unbiased, the parameter estimate variances are large (H. Duzan et al., 

2015). In this regard, it is important to recall that prediction errors can be decomposed into 

systematic bias and random variance.  

Ridge regression is able to reduce the standard error and solve the multicollinearity problem 

by adding a penalty term to the above-mentioned OLS equation, even though it introduces a 

certain degree of bias. It exploits L2 regularisation which is the one represented by the 

following formula:  

 

 (2.4) 

 

The L2 term is equal to the square of the magnitude of coefficients. When lambda (λ) is 

equal to zero the equation is basically the OLS model seen before, but when its value 

increases a constraint is introduced on the coefficients. In particular, this process, called 
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shrinkage, has the goal of minimising their magnitude, that tends to zero for larger values of 

lambda (https://www.datacamp.com/community/tutorials/tutorial-ridge-lasso-elastic-net). 

In conclusion, shrinking the coefficients leads to a decrease in the overall model variance 

and in turn results in a lower error value. Ridge regression is therefore able to decrease the 

complexity of a model without reducing the number of its variables. 

 

2.7.3 Lasso regression 

In the sake of completeness, we also describe LASSO (Least absolute shrinkage and 

selection operator), which is not used in our processing pipeline, yet is one of the most 

popular algorithms in Machine learning (ML). 

It uses an L1 penalty term and stands for Least Absolute Shrinkage and Selection Operator 

(A. Kassambara, 2018). The penalty is equal to the absolute value of the coefficients 

magnitude: 

 

  (2.5) 

 

Similarly to Ridge regression, a lambda value equal to zero returns the basic OLS equation, 

while for higher values a constraint on the coefficients is introduced. The difference is that 

Lasso regression can drive some coefficients to zero and, in particular, the larger the value 

of lambda the higher the number of weights that are shrunk to zero. This allows to entirely 

eliminate some of the features present in the model and provides the selection of a subset of 

predictors that help mitigate multicollinearity and model complexity. The surviving 

predictors, whose weights have values different from zero, are hence highlighted as the most 

important in explaining the variability of the target variable.  

In conclusion L1 regularisation is based on the same principle of L2 regularisation but it also 

allows for feature selection. 

 

2.7.4 Elastic Net 

Elastic Net has been developed due to the need of exceeding Lasso regression limits, whose 

selection of variables can be too dependent on data thus resulting unstable. 

The proposed solution is to combine penalties of Ridge and Lasso regularisation in order to 

get the best of both sites. The overall method aims at minimising the following loss function 

(A. Kassambara, 2018):        
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(2.6) 

 

In addition to the introduction of a usual lambda variable, Elastic Net also allows us to tune 

an alpha parameter in such a way that 𝛼 = 0 corresponds to Ridge and 𝛼 = 1 to Lasso. 

Therefore, it is possible to select a value for alpha between 0 and 1 in order to optimise the 

elastic Net. Effectively, this will shrink some of the coefficients and set some others to 0 for 

feature selection (https://medium.com/hackernoon/an-introduction-to-ridge-lasso-and-

elastic-net-regression-cca60b4b934f). 

We conclude saying that Linear, Ridge and Elastic Net regressions assume a parametric form 

for functions, differently from Gaussian process models (see nest Par.), which assume a 

probabilistic prior. The latter brings some benefits, since the uncertainty of estimates is based 

on statistical inference, but also some challenges, being the algorithms for fitting Gaussian 

processes more complex than in parametric models. 

 

2.7.5 Gaussian process regression (GP) 

GP is a non-parametric (i.e. not limited by a functional form), Bayesian approach towards 

regression problems, that can be utilised in data exploration and prediction. As a Bayesian 

technique its approach infers a probability distribution over all possible values useful for 

regression problems (E. Schulz et al., 2017). 

GP generates data located throughout some domain such that any finite subset of the range 

follows a multivariate Gaussian distribution. Thus, n observations in an arbitrary data set y 

= {y1, ..., yn} can always be considered as a sample from a multivariate Gaussian distribution. 

In contrast with parametric regressions, GP considers every possible function that matches 

the data, with the drawback of a huge amount of parameters involved. That is indeed the real 

meaning of non-parametric: it’s not the total absence of parameters, but rather the fact that 

their number is large. To summarise, rather than calculating the probability distribution of 

parameters for a specific function, GP calculates the probability distribution over all 

admissible functions that fit the data (https://towardsdatascience.com/quick-start-to-

gaussian-process-regression36d838810319) . It operates as follows: first it needs a prior (on 

the function space), then it calculates the posterior using training data, and finally computes 

the predictive posterior distribution on the points of interest, thus incorporating information 

from both the prior distribution and the available dataset.      
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(2.7) 

 

The prior selection, or model selection, is a key step, necessary to narrow the range of possible 

functions to be selected. In this regard the domain of interest is considered, to specify the 

mean function and the smoothness through the use of a covariance matrix. This enables to 

ensure that values that were close together in the input space will be close in the output space 

as well.  

The mean function is typically constant, being either equal to zero or to the mean of the 

training dataset. On the other hand, there are several options for the covariance kernel 

function: it can assume many different forms as long as it follows the properties of kernels. 

Some of the most common examples include constant, linear, Matern kernel, as well as a 

composition of multiple kernels.  

Figure 2.10: Multivariate Normal Distribution (https://katbailey.github.io/post/gaussian-processes-for-

dummies/). 

 

In the figure above (Figure 2.10) we can see the bell-shape determined by the covariance 

matrix (Bailey, 2016). There are several libraries that allow for the implementation of 

Gaussian process regression (e.g. scikit-learn, GPy) in Python, but in the context of our work 

we will focus on the use of scikit-learn’s Gaussian process package (https://scikit-

learn.org/0.17/modules/gaussian_process.html). A graphical example of the output of GP in 

scikit-learn package is reported in Fig.12. Here observations are represented by blue dots 
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and a confidence region (95% confidence interval) is plot around the expected predicted 

function. 

Figure 2.11: GP’s graph with confidence interval. 

 

2.8 Model evaluation 

Evaluation of model performance is very important. It aims is to quantify the goodness and 

accuracy of the model on existing data and high performance on future data. Between the 

model evaluation method, we find the simple analysis of the residuals, which can’t give an 

indication about the quality of new predictions for data it has not already seen, or the best 

known Validation method: Hold-Out and Cross-Validation. 

Evaluating model performance with the data used for training is not acceptable in the context 

of data science as it can easily generate overfitted models.  These last two methods use a test 

set to evaluate the overall performance. The Hold Out method removes a part of the training 

dataset and uses it to get predictions from the model trained on the remaining samples. More 

precisely, the original dataset is randomly split into three different subsets: 

• A training set used to derive the predictive model parameters; 

• A validation set introduced to evaluate the performance of the model built during the 

training phase. It provides a test platform for selecting the best-performing model 

and, moreover, for fine tuning of the model parameters (not all of the available 

algorithms need it). 

• A test set used to assess the expected future performance of a model. When an 

algorithm fits the training set much better than it fits the testing one, overfitting might 

be the problem (https://www.saedsayad.com/model_evaluation.htm). 
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Computationally speaking, hold-out validation is simple to program and fast to run. The 

drawback is its low statistical power when dataset is not large. Unlike the Cross validation, 

this approach is not able to properly deal with situations in which the available training set 

has reduced dimensions, therefore introducing the risk of losing characteristic trends in data 

set and of increasing the error relative to bias. 

When a limited amount of data is available, k-fold Cross-validation tends to be the best 

choice to achieve an unbiased estimate of the model performance. For a given 

hyperparameter setting, the available dataset is split into k folds, each taking turns in being 

the hold-out validation set. The model is therefore trained on k-1 folds and measured on the 

remaining held-out one. The overall performance is evaluated by averaging the results given 

by the k different folds. 

A variant to the cross-validation technique is represented by leave-one-out cross-validation. 

This procedure is based on the same concept discussed above but the value of k is equal to 

the total number of data points belonging to the original dataset. The testing phase is 

therefore performed on just one subject (A. Zheng, 2015). 

For both K-fold and leave-one-out cross validation, as most of the available samples are used 

for fitting, the amount of bias is drastically reduced. These methods also lower the value of 

variance as most of the data are included within the validation set as well. The way in which 

training and testing sets are swap again and again, also increases the effectiveness of the 

above-mentioned techniques. As a general rule, values of K equal to 5 or 10 are often used, 

but this is usually dependent on the specific dataset and computational power available. 

Figure 2.12: Hold-out and k-fold validation flowchart (A. Zheng, 2015.) 

 

2.9 Statistical analysis 

After obtaining results from any of the steps involved in our analysis, being able to interpret 

them is of crucial importance in order to extract knowledge and information that would help 
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us to deriving significant conclusions about our data. Statistical analysis proved to be very 

useful in this context and is generally categorised into two main branches: descriptive 

statistics and inferential statistics. 

The first one is defined by a set of techniques used to describe the fundamental 

characteristics of the collected data and comprises methods such as mean, variance, standard 

deviation error, maximum, minimum, etc. Together with a graphical representation of data, 

through the use of scatter plots, box plots, violin plots, and so on, descriptive statistics 

constitutes the initial basis of any quantitative analysis on data, providing a simple summary 

of samples distribution and of the collected measures characteristics. 

While descriptive statistic is simply presenting what is observed or what data highlight in 

their essential traits, using information derived from the entire population, inferential 

statistics, tries to collect one or more samples from the original population and to use them 

in order to make inferences about the original population. The goal is to derive conclusions 

that extend beyond the pure data collected process and that may be valid within a wider 

context (https://socialresearchmethods.net/kb/statinf.php). 

Here we present some of the statistical analysis indicators exploited in the context of our 

work, starting with correlation and T-test, to finally conclude with all the model evaluation 

metrics. 

 

2.9.1 T-test 

A t-test is an inferential statistic method used to establish the existence of a significant 

difference between the mean of a pair of groups. Hence, it is able to determine whether two 

sets of data come from the same population or not and, in order to do that, it tests an 

assumption on the involved populations. For this reason, it belongs to the class of statistical 

hypothesis tests. 

From a practical point of view, the t-test takes a sample from each of the available datasets 

and assumes, as null hypothesis, that the two means are equal. Based on the applicable 

formulas, certain values are calculated and compared against the standard ones, leading to 

either accept or reject the assumed null hypothesis. If it qualifies to be rejected, results 

indicate the two involved distributions are significantly different from one another. 

Conversely, if the null hypothesis results in being accepted, it means data actually belong to 

the same population (https://www.investopedia.com/terms/t/t-test.asp). 
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There are several types of t-tests, each characterised by a different formula. The most 

commonly used are the ones that follow: 

• One sample T-test: used to determine whether a sample of observations could have 

been generated by a process with a specific mean. Therefore, in this case, we are not 

trying to compare two distributions between each other, but a single dataset with 

respect to a specific, fixed value. The corresponding mathematical expression is the 

one presented below: 

 

(2.8) 

 

• Independent or unpaired samples T-test: used to compare the average values relative 

to two independent groups. In this case we are therefore comparing different 

distributions between each other. 

 

(2.9) 

 

• Paired samples T-test: used to compare samples that represent repeated measures 

relative to the same group of participants or that are somehow related, having 

matching characteristics.  For these reasons, it can be stated that this kind of test is 

used to compare directly paired couples of datasets. 

 

(2.10) 

 

In each of the above-mentioned cases, the numerator is represented by the amount of 

difference between the two mean values (X1 and X2 respectively). Denominator, on the 

other hand, is obtained through different combinations of samples standard deviation (s), 

samples variance (s2) and samples size (n). 

Regarding the Independent or unpaired samples T-test a further distinction can be made 

between Equal and Unequal Variance (Independent) T-test. The former is used when the 

involved pair of datasets are characterised by same size or by different size but same 

variance. The latter, on the other hand, is used for those situations in which datasets are 

characterised by both different size and variance (Kim, 2015). 
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2.9.2 Correlation  

Correlation indexes are generally used in order to evaluate a possible linear association 

between two continuous variables. Even though there are several different types of technique 

that allow to calculate correlation, all indices have certain common characteristics:  

1. The values of the various correlation indices vary between -1 and +1; both extreme 

values represent perfect relationships between variables, while 0 represents a total 

absence of it. This concept is valid as long as we consider relationships of linear type; 

2. A positive relationship means that individuals who obtain high values in a variable 

tend to get high values even on the second one. In the same way, those who have low 

values in the first variable tend to have low values on the second one; 

3. A negative relationship indicates that at low scores on a variable corresponds a high 

score on the other variable or vice versa (Mukaka, 2012); 

Usually in statistics the most commonly used correlation coefficients are the following:   

• Pearson product-moment correlation coefficient, also known as r of Pearson, 

measures the strength of the linear relationship between normally distributed 

variables. 

• When variables are not normally distributed or the relationship between them is no 

longer linear, it may be more appropriate to use the Spearman rank correlation 

method, also known as r of Spearman. 

 

2.9.3 Evaluation metrics  

As discussed in the previous chapter, predictive models can be divided into two broad 

categories: classification and regression. A classification problem is about predicting the 

category to whom a training sample belongs to, in the attempt to derive some conclusions 

from the observed data. According to the category under investigation, different metrics can 

be used to evaluate the overall model performance. The most common ones are represented 

by Percent correction classification (PCC), measuring the overall accuracy, and Confusion 

matrix. The aim of a regression model is to map input samples to continuous real values 

rather than using classes or discrete variables, as it happened for the classification case. The 

ultimate goal is the prediction of future values distribution, starting from the original training 

data. In this context, evaluating model accuracy is an essential part in the process of creating 

a machine learning model able to perform well. Being ŷᵢ the predicted value for yᵢ and ȳ 
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representing its mean value, three of the most common metrics used for regression model 

evaluation are described below (https://indatalabs.com/blog/predictive-models-

performanceevaluationimportant?cli_action=1572796194.637): 

• R-squared coefficient: it represents the proportion of variance characterising the 

outcome that our model is able to predict on the basis of its own features. This 

parameter does not take into account the eventual bias that might be present within 

the data, therefore, a good model is generally associated to a low R-squared value. 

 

(2.11) 

 

• Mean Square Error (MSE): it represents the average of the squared differences 

between the predicted outputs and the real ones, useful in case of high number of 

outliers in the data. 

 

(2.12) 

 

• RMSE (Root Mean Squared Error): is represents the square root of the MSE value. 

 

(2.13) 
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Chapter 3  

 

 “Materials and Methods” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter we’ll describe in detail the tools and protocols used in the project. We first 

explore the effects of the different pre-processing options for obtaining the percent volume 

of WMH over whole brain (WMH%) in the Whitehall dataset, bias field correction and 

choice of training data for BIANCA, included.  As the Whitehall study was acquired across 

a scanner upgrade, we also assess the effects of this on our WMH% measures. Then we 

expand the exploration to the harmonisation of data from both the Whitehall and the UK 

Biobank, thus broadening the search for optimal parameters able to give comparable results 

across different scanners. Finally, we will pass through the steps necessary for the 

construction of a unique predictive model, necessary to validate the improvements related 

to the performance of BIANCA and to better characterise the relationship between non-

imaging variables and WMH% among the different populations under study.  
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3.1 Datasets 

After the introduction of the characteristics related to the general datasets and procedures in 

Chapter 2, we now present further details relative to the process of subjects selection that 

was conducted in the context of our analysis. 

 

3.1.1 Whitehall 

We start with Whitehall II imaging Sub-study, comprising 774 elderly participants (60-85 

years old) acquired with the same protocol on two different scanners. Ethical approval was 

granted by the University of Oxford Central University / Medical Science Division 

Interdisciplinary Research Ethics Committee and all participant gave written informed 

consent. 

Scanning was carried out at the Oxford Centre for Functional MRI of the Brain (FMRIB) 

using two 3T Siemens Magnetom Scanners with a 32-channel receive head coil: a Verio 

model for 551 participants (Scanner 1: SC1) and a Prisma for the other 223 participants 

(Scanner 2: SC2). 

For each subject, multiple image modalities were recorded, including high-resolution T1 

images (MEMPR, TR = 2530 ms, TE= 1.79/3.65/5.51/7.37, flip angle 7°, FOV 256 mm, 

voxel size 1 mm isotropic), FLAIR images (TR/TE = 9000/73 ms, flip angle 150°, FOV 220 

mm, voxel size 0.9 × 0.9 × 3 mm) and fractional Anisotropy (FA). Exclusion criteria 

complied with the standard MRI safety/quality ones. E.g., metal implants, recent surgery, 

health conditions problematic for MRI scanning, extreme claustrophobia, inability to travel 

to Oxford without assistance (Filippini et al, 2014). 

A total amount of 34 non-imaging variables were also available for the 774 participants and 

were subdivided in demographic (e.g. age, gender, weight, height), clinical (e.g. systolic and 

diastolic blood pressure) and cognitive classes (e.g. Trail Making Test A and B, Digit Coding 

Test).  

Of the 551 subjects recorded on SC1, the following were excluded: 1 due to lack of non-

imaging data, 19 because of concurrence with specific pathological conditions such as 

stroke, cancer and multiple sclerosis, and 3 due to lack of some of the needed MRI 

modalities. As a result, analysis were performed on a total number of 528 subjects. 
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Of the 223 subjects recorded on Scanner 2, there were: 4 excluded due to lack of images and 

8 because of concurrence with the above-mentioned pathologies. The final number of 

subjects was therefore reduced to 211. 

 

3.1.2 UK Biobank 

The Imaging component of the UK Biobank is an ongoing study, aiming to acquire brain 

and other MRI scans from 100˙000 predominantly healthy participants, aged 40-69 at 

baseline recruitment with health outcomes being tracked over the coming decades. Even in 

this case, informed consent was obtained from all UK Biobank participants and ethical 

procedures were controlled by a dedicated Ethics and Guidance Council (Miller et al., 2016).  

Subjects were excluded from scanning according to the same criteria applied on the 

Whitehall dataset. Of the 14˙503 participants, available at the time of this project, we 

selected 2˙295 subjects with matching variables to Whitehall. Among those, 10 were next 

excluded because of concurrence with stroke events. In total, our dataset was composed of 

2˙285 patients, all with multiple MRI modalities acquired by a 3T Siemens Skyra with 32-

channel receive head coil. including T1 (3D MPRAGE, TI/TR=880/2000 ms, voxel size 1 

mm isotropic, sagittal, R=2) and T2 FLAIR (3D SPACE, sagittal, R=2, PF 7/8, fat sat, 

TI/TR=1800/5000 ms, elliptical, voxel size 1.05x1.0x1.0 mm). Table 3.1 well summarises 

all the available data presents in this study within the Whitehall  and UK Biobank cohorts. 

 

 Subjects Manual Masks 

Whll SC1 528 24 

Whll SC2 211 24 

BB 2285 12 

 

Table 3.1. Summary table of available data. 

 

3.1.3 Manual Masks 

BIANCA requires training by manually annotated images. We assessed the effects of using 

different setting of analysis options on these images, including different raters, and training 

sets from different datasets. 
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Concerning Whitehall, a subgroup of 48 subjects, 24 from each scanner, was associated with 

a manual labelling of the WMH lesions, in the form of a binary mask.  

Especially, 24 subjects from the Whitehall cohort imaged using SC1 were manually labelled 

by two different expert operators, referred to as R1 and R2. Then, a subgroup of 12 of these 

from each scanner were selected in order to balance the WMH lesional load in the two 

subgroups.  

Further 24 subjects from Whitehall imaged using Scanner 2 were segmented by R2. A third 

rater, R3, performed manual labelling of 12 training images from to the UK Biobank dataset. 

These concepts are summarised in Table 3.2. 

 

 Manual Masks Rater 

Whll SC1 24 R1, R2 

Whll SC2 24 R2 

BB 12 R3 

 

Table 3.2. Summary table of available manual masks. 

 

The three above-mentioned raters were characterised by different levels of expertise being 

respectively a radiology technician (R1), a medical student (R2) and a neuroimaging 

researcher (R3). 

 

3.2 Parser 

To perform harmonisation, it was essential to combine the variables from the datasets to a 

standard format. This allowed populations analysis and the creation of a predictive model 

able to account for the variability associated with demographic and clinical characteristics 

of the different subjects (for details see Chapter 2, “Predictive models”). 

Firstly, we excluded all subjects with non-imaging variables out of the range of the Whitehall 

population. The intersection of Whitehall and UK Biobank led also to the exclusion of 2 out 

of the 34 above-mentioned features, due lack of such pieces of information within the UK 

Biobank dataset.  
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Once the common variables had been identified, the conversion was conducted through the 

use of the FUNPACK library. This library has been developed with the UK Biobank dataset.  

As a result, the library contains a large number of procedures specific to this dataset, 

allowing it to perform various data sanitisation and processing steps, such as the following 

(https://git.fmrib.ox.ac.uk/fsl/funpack/): 

• Columns or rows extraction: selection can be performed through the name of a 

variable, subjects ID or number of visits (many variables are clinical data repeatedly 

collected during several different phases e.g. Visit 1.0, 2.0 etc.) 

• NA value replacement: values representing indefinite answers can be replaced with 

NA, (e.g. variables where a value of -1 indicates Do not know); 

• Categorical recoding: particular categorical columns can be re-coded. For example, 

variables where a value of 555 represents half can be recoded and replaced with 0.5; 

• Categorical Binarisation: a column containing categorical labels is replaced with a 

set of binary columns, each being associated to one of the available categories; 

• Child value replacement: NA value can be assigned to those features that depend 

upon another one in a hierarchical way (e.g. answer to “How many cigarettes did you 

smoke yesterday?” after a negative response to the question “Do you currently smoke 

cigarettes?”); 

As FUNPACK provides the ability to define and customise new functions, we decided to 

define a new pipeline for the Whitehall data. This pipeline is a Parser, that converts between 

BB and Whll non-imaging variables.  It comprises both built-in rules and new functions 

designed for a specific purpose.  This pipeline, developed by us, has now been made 

available online together with an associated step by step User guide to all users willing to 

integrate and analyse the WhII and UK Biobank datasets (https://issues.dpuk.org/eugene 

duff/wmh_harmonisation/tree/master/funpack_wmh_bb). In it, a reader can find: 

1. An excel file (“Parser.xlsx”) containing all the matching variables between the two 

datasets with the relative notes and conversion rules; 

2. A python file containing all the newly generated conversion functions, not being 

included in the original FUNPACK library ("conversion.py"). 

Amongst these rules, we defined functions converting both spatial (e.g. meters to 

centimetres) and temporal (e.g. conversion from min/day to h/week) units and to perform 

volumetric normalisations (WMH volume normalised for the total brain volume of the 
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subject). Due to the different data formats of specific questions in different questionnaires, 

for some variables it was necessary to create functions able to combine more multiple UK 

Biobank features in order to create the equivalent Whitehall one. For example, the Alcohol() 

function that allows to convert two categorical UK Biobank variables (unit/day and 

day/week) into a unique continuous one representing alcohol units per month (Whll format). 

 

3.3 BIANCA 

After a detailed description of its underlying algorithm, presented in Par. 2.4.2, we now 

introduce all steps we followed in order to derive the WMH binary lesion map that represents 

BIANCA’s final output (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Usergui 

de). The provided MRI scans underwent specific pre-processing steps (Par. 3.3.1) and the 

information about the data were gathered into a single text file (Par. 3.3.2) before being fed 

to the segmentation tool.  

BIANCA can be tailored to the specific segmentation purpose through a focused setting of 

its options (Par. 3.3.3). Finally, since the desired output is usually a binary image, a final 

step of thresholding is needed to obtain a binary lesion mask (Par. 3.3.4). 

 

3.3.1 Data preparation  

As previously mentioned, BIANCA works with multiple MRI modalities, the most common 

ones being FLAIR (Fluid Attenuated Inversion Recovery) and T1. Sometimes information 

from diffusion-weighted scans is also included, for example by Fractional Anisotropy (FA) 

maps. Moreover, the tool is quite flexible and allows either 2D or 3D acquisitions to be 

included in the dataset.  

BIANCA works in single subject space, therefore all the MRI modalities need to be 

registered to one of them (base modality) and to have equal dimensions (same field of view 

(FOV) and resolution). The choice of the base MRI modality can be arbitrary, depending on 

things such as the image quality or the aim of the study being conducted. The first step that 

needs to be done to prepare data is therefore image registration. In our case, we selected 

FLAIR as base MRI modality and registration of the other scans (T1 and FA) to its space 

was performed using FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001) by a rigid 

transformation (6 degrees of freedom), applying trilinear interpolation. 
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The second step is brain extraction of at least one of the chosen MRI modalities, to allow 

BIANCA to derive a binary mask of the subject brain inside which to look for lesions. If we 

want to further restrict the area were lesions will be detected, thereby reducing the amount 

of false positives, we can consider using a more restrictive mask. We used 

make_bianca_mask, a support script released with BIANCA, to create a mask that excludes 

the cortical GM and the following structures: putamen, globus pallidus, nucleus accumbens, 

thalamus, brainstem, cerebellum, hippocampus, amygdala. This is because some of these 

structures can appear hyperintense on FLAIR and therefore risk to be labelled as lesions 

(cortical and deep GM), while some other are often affected by artifacts on FLAIR scans 

(e.g. cerebellum). 

The affine transformation (FLIRT, 12 degrees of freedom, bilinear interpolation) to 

normalise the base image to the MNI reference space was also computed. However, the 

images were left in the subject space, while the normalisation parameters were kept to be 

delivered to BIANCA. 

Finally, BIANCA requires a training set that is represented by a set of pre-classified voxels 

generally belonging to a manually segmented mask of the WM lesions. As described in 

section 3.1.1, manual labelling of a subgroup of images was already available for our 

datasets.  

 

3.3.2 Masterfile preparation  

BIANCA needs a text file containing the paths to all the images involved within the analysis. 

This is generally called masterfile and contains a row per subject (either training or query 

subjects) and, on each row, a list of all addressed files: 

• All the images decided to be used for classification (e.g. T1, FLAIR), coregistered 

to the same base space; 

• One brain extracted image that allows to derive a brain mask (or any more restrictive 

mask); 

• The binary manual lesion mask (coregistered to the base space, if needed). For query 

subjects, that do not possess one, any other "placehold" name can be used in to keep 

the same column order of training subjects; 

• The transformation matrix from subject space to standard space, for subject 

normalisation. The file of normalisation parameters is usually needed to calculate 
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spatial features (optional argument), which refer to anatomical position in standard 

coordinates. 

Information order can be arbitrarily modified, as the meaning of each column included in 

the text file can be specified by BIANCA options (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 

BIANCA/Userguide). 

 

3.3.3 BIANCA call  

BIANCA is executed through a command line comprising several options (full list available 

at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide).  

In our work we used BIANCA in three use-cases: 

• Leave One Out (LOO) testing, which was used on annotated subjects (having a 

manual WMH mask), included in the training set. This validation procedure is well 

suited to analyse very limited datasets, as our annotated ones. It consists in the 

process of excluding 1 subject out of k, in order to use the pool of k-1 for the training 

and the excluded 1 for the testing, in order to generate an unbiased output that can 

be used to evaluate the performance of the tool. The procedure is repeated until a 

result is generated for all of the k involved subjects. An example of command line 

for LOO is: bianca –singlefile=masterfile.txt --labelfeaturenum=3 --

brainmaskfeaturenum=1 --querysubjectnum=1 --trainingnums=1,2,3,4,5,6,7,8,9, 

10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 --featuresubset=1,2 --

matfeaturenum=4 --trainingpts=2000 --nonlespts=100000 --selectpts=noborder --

spatialweight=2 --patchsizes=3 -o bianca_output.nii.gz -v. With this command 

BIANCA will use data from masterfile.txt. It will look for information about 

manually labelled images in the 3rd column of the master file and will derive the 

binary brain from images in the 1st column. The subject to be segmented is, in this 

case, the first of the master file (first row) and, since he/she belongs to the group of 

training participants, BIANCA will use only the remaining 23 to perform the training 

procedure. The tool will use as spatial features the images in the 1st and 2nd columns 

and will furthermore extract the spatial features (MNI coordinate) using the 

transformation matrix listed in the 4th one. Considering the training process, 

BIANCA’s default options were applied, as specified in the following. For each 

training subject, training voxel subsets were randomly selected with up to 2˙000 
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voxels within the labelled lesions and up to 10˙000 among the non-lesion voxels, 

excluding voxels close to the lesion edge (selectpts=noborder). A 3D patch with 

dimension equal to 33 voxels was used to perform the local intensity averaging with 

a spatial weight factor equal to 2. The output image was called bianca_output.nii.gz. 

We used this modality to perform the tests described in sections 3.6.1 and 3.6.2 in 

order to derive results for those subjects belonging to the training sets. 

• Training, performed on the available data eventually saving the training file. Once 

optimised the parameters on the subjects with manual masks, we saved the generated 

training file to be applied to the rest of the data. Example call: bianca --

singlefile=masterfile.txt --labelfeaturenum=3 --brainmaskfeaturenum=1 --

querysubjectnum=25 --trainingnums=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 

19,20,21,22,23,24, --featuresubset=1,2 --matfeaturenum=4 --trainingpts=2000 --

nonlespts=10000 --selectpts=noborder --spatialweight=2 --patchsizes=3 --

saveclassifierdata=training -v. The difference with respect to the previous case is 

represented by the fact that no actual output is generated through this command, 

therefore the querysubjectnum option can refer to any random subject among the 

ones not included in the training set. 

• Testing, performed on unseen data by loading a pre-existing training file. Example 

call: bianca –singlefile=masterfile.txt --brainmaskfeaturenum=1 --

querysubjectnum=25 --featuresubset=1,2 --matfeaturenum=4 --spatialweight=2 --

patchsizes=3 --loadclassifierdata=training -o bianca_output.nii.gz -v. In this user-

case, the options relative to the training phase no longer needed to be specified being 

indeed substituted by the loadclassifierdata argument. 

• Training and testing, both performed using the same command. This is a further 

possibility with respect to ones introduced above, but we didn’t use it in the context 

of our work as, with a high number of subjects, it was computationally less intensive 

to generate training separately and then apply it to the unseen data. 

 

3.3.4 Thresholding 

BIANCA’s output is an image mapping the probability of each voxel to be classified as 

lesions. Being not binary, a thresholding step is needed in order to derive a WMH mask. 

This can be easily performed using fslmaths, a very general image calculator included in the 
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FSL library. For our analysis we chose a threshold value of 0.9 since it was identified as 

optimal by Griffanti and colleagues in the context of their analysis (Griffanti et al., 2016).  

 

3.4 LOCATE 

As an alternative to applying a global threshold to the lesion probability map, we tested the 

local threshold adaptation implemented by LOCATE. After the comprehensive description 

of its working principle, presented in Chapter 2, we now describe the practical steps that 

need to be followed in order to derive the WMH binary lesion map, representing its final 

output. 

The tool takes as input BIANCA’s lesion probability map, along with a few other images 

(section 3.4.1), in order to extract features that will be used to train the random forest 

regression. At this point, as it happened for BIANCA, LOCATE can be tailored to specific 

thresholding purposes through the use of a focused preparation process on the available data. 

This furthermore implicated the use of different command lines ( Par. 3.4.2). 

 

3.4.1 Data preparation 

For every subject involved in the analysis the compulsory files are the ones listed below 

(https://git.fmrib.ox.ac.uk/vaanathi/LOCATE-BIANCA/blob/master/LOCATE_User_Man 

ual_V1.1_20052018.pdf): 

• The base image modality used in BIANCA (it is essential to provide at least one 

image modality), renamed in this way when necessary: 

<subject_name>_feature_<base_modality_name>.nii.gz. As previously mentioned, 

in our case it was FLAIR; 

• Additional images, that were used as intensity features in BIANCA. They have to be 

referred to as <subject_name>_feature_<modality_name>.nii.gz when required. In 

the context of our work, we used just the T1 as an additional feature with respect to 

FLAIR; 

• The binary lesion mask based on manual segmentation and included for training 

subjects only (<subject_name>_manualmask.nii.gz); 

• A ventricle distance map, that is an image whose voxel intensities represent the 

distance from ventricles within the brain mask 

(<subject_name>_ventdistmap.nii.gz). This was calculated using the FSL tool 
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distancemap, of which we present here an example call: distancemap -i 

<ventricle_mask_image_in_FLAIR_space> -m <brain_mask_in_FLAIR_space> -o 

<subject_name>_ventdistmap.nii.gz). The <ventricle_mask_image> was already 

part of our original dataset, but needed to be linearly registered to the FLAIR through 

the use of FLIRT;  

• The lesion probability map (LPM) obtained as output from BIANCA. 

(<subject_name>_BIANCA_LPM.nii.gz); 

• A binary mask of the subject brain (<subject_name>_brainmask.nii.gz). We derived 

it from the brain extracted modality used in BIANCA; 

• A binary mask of white matter, excluding sub-cortical regions 

(<subject_name>_biancamask.nii.gz;). We used the one introduced in section 3.3.1 

and obtained through the use of make_bianca_mask; 

 

3.4.2 LOCATE call 

As for BIANCA, LOCATE is executed through a command line and can be used for different 

use-cases (https://git.fmrib.ox.ac.uk/vaanathi/LOCATE-BIANCA/blob/master /LOCATE_ 

User_Manual_V1.1_20052018.pdf). The process of data preparation can be slightly different 

according to the specific case that needs to be performed. For Leave One Out (LOO) 

validation, all of the needed input images have to be gathered within a directory and renamed 

in the specific, standardised manner highlighted in Par. 3.4.1. The directory itself is then fed 

to the tool through a command line. In order to perform testing, on the other hand, there is no 

specific need of moving and renaming files and all of the required images are directly fed into 

to the tool, providing it with their paths. Here we present details relevant to the above-

mentioned user-cases, used in the context of our work:  

• Training and testing of the LOCATE model using LOO in order to derive results for 

all of those subjects belonging to the training sets. An example of LOO call is: matlab 

-nojvm -nodisplay -nosplash -r "addpath('/home/fs0/vbordin/scratch/vale 

ntina/LOCATE-BIANCA-master');addpath('/home/fs0/vbordin/scratch/valentina/L 

OCATE-BIANCA-master/MATLAB');LOCATE_LOO_testing('LOO_imgs_director 

y');”. This command recalls LOCATE-BIANCA-master, a folder containing all of the 

scripts necessary for the tool to run and, more importantly, the above-mentioned 

directory obtained gathering and renaming files (LOO_imgs_directory); 
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• Training of the LOCATE model on manually labelled data, saving the resulting file. 

Example call:  matlab -nojvm -nodisplay -nosplash -r "addpath ('/home/fs0/vb 

ordin/scratch/valentina/LOCATE-BIANCA-master');addpath('/home/fs0/vbordin/sc 

ratch/valentina/LOCATE-BIANCA-master/MATLAB');LOCATE_training('Trainin 

g_imgs_directory’);”. In this case the recalled directory is the one containing data 

relative to the training subjects; 

• Testing of the LOCATE model on unseen data by loading a pre-existing training file. 

For this user-case we exploited two subject specific commands, combining them 

with the use of ‘for’ cycles every time we needed to derive results for a very high 

number of participants. The first command was necessary to extract a matrix of 

features based on the involved MRI modalities relative to each subject. Example call: 

for i in `cat subject_list-txt`; do matlab -nojvm -nodisplay -nosplash -r 

"addpath('/home/fs0/vbordin/scratch/valentina/LOCATE-BIANCA-master');addpat 

h('/home/fs0/vbordin/scratch/valentina/LOCATE-BIANCA-master/MATLAB');LOC 

ATE_feature_extraction_per_subject([1,1,1,1],2,'Results','Subject_${i}','FLAIR.ni

i.gz','T1.nii.gz','bianca_output.nii.gz','biancamask.nii.gz','brainmask.nii.gz','ventdis

tmap.nii.gz');"; done. The second, on the other hand, was necessary to derive 

outcomes on the basis of the feature matrix extracted before. Example call:  for i in 

`cat subject_list-txt`; do matlab -nojvm -nodisplay -nosplash -r "addpath('/home/fs 

0/vbordin/scratch/valentina/LOCATE-BIANCA-master');addpath('/home/fs0/vbordi 

n/scratch/valentina/LOCATE-BIANCA-master/MATLAB');LOCATE_testing_per_s 

ubject('bianca_output.nii.gz','/LOCATE_training_files/RF_regression_model_LOC

ATE.mat','LOCATE_features_${i}.mat',[1,1,1,1],2,'Results’);"; done. The 

command includes both all of the input files required by LOCATE and the obtained 

outputs, saved in a folder called 'Results’.  

 

3.5 Preliminary optimisation of the main training parameters 

As previously introduced, BIANCA is characterised by several different options, able to 

greatly influence its resulting output performance. Since the first part of our work was mainly 

focused around harmonisation of the two different Whitehall datasets, we tried to assess the 

best option combination allowing to obtain comparable performances across scanners. The 
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goal was to make sure that no further bias was introduced by the optional parameters choice, 

therefore finding a common baseline for the process of data integration.  

Among all different options we tested some combinations of the most significative ones, 

through a step by step process. Default values used in the examples presented in section 

3.3.3 are here summarised in Table 3.3. 

 

 
Select 

points 

Non lesion 

points 

Training 

points 

Patch 

sizes 

Spacial 

weight 

Default noborder 10˙000 2˙000 3 2 

 

Table 3.3. BIANCA default options. 

 

We followed the workflow presented below:  

• Step1: each value of the Training points option was combined with all the possible 

values of the Non-lesion points one; 

• Step 2: after fixing the amount of Training points to the best result obtain through 

Step1, we combined each value of the Non-lesion points parameter with all the ones 

relative to Patch size; 

• Step 3: in the same way we finally tried all the possible combination of Patch size 

and Spatial weight parameters, finally selecting the best couple of values obtained; 

 

Training points 2˙000 3˙000 4˙000 5˙000 

Non-lesion points 8˙000 9˙000 10˙000 
 

 

Patch sizes 3 6 9 3/9 

Spatial Weight 1 2   

 

Table 3.4. BIANCA parameters values. 
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In order to evaluate results, we tested BIANCA's performance on a subsample of manually 

segmented subjects (12 for SC1 and 12 for SC2) balanced in terms of WMH load. This 

allowed us to avoid any bias due to different amounts of lesions. 

 

3.6 Evaluation of the influence of different analysis options on WMH 

harmonisation 

In this section, we are going to discuss all of the practical steps that were undertaken in order 

to evaluate the influence of different analysis options on the output of the segmentation 

process performed using BIANCA.  

For data harmonisation we implemented a step by step process evaluating the following 

options: 

• rater who performed the manual labelling step; 

• introduction of the biasfield correction process on FLAIR images; 

• composition of the training set used for BIANCA; 

• presence of the Fractional Anisotropy as one of the exploited image modalities; 

• choice of the thresholding method (global threshold or LOCATE). 

The goal was to compare one option at a time, while keeping the others fixed,  to understand 

how a specific parameter impacted on the results.  

An across-scanners comparison of the Whitehall data was first focused. Next, the UK 

Biobank dataset was introduced in the analysis, therefore representing a distinct phase in our 

study.  

 

3.6.1 Multi-centre study with prospective harmonisation - Whitehall 

This first section describes the comparison between SC1 and SC2, as emphasised by the 

variable Scanner tested, presented in Table 3.5. In particular, for every selected combination 

of parameters, the obtained results were evaluated performing the testing phase on the two 

subgroups of manually labelled subjects, balanced in terms of WMH load (12 for SC1 and 

12 for SC2, as previously mentioned). This allowed us to avoid any bias due to the different 

amount of lesions characterising the different validation sets.    

Table 3.5 presents the different options that were combined in many specific ways within 

the step by step procedure. The considered training sets were: the 24 manually labelled 

subjects belonging to SC1 (TR1), the 24 relative to SC2 (TR2), and a mix of both scanners 
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comprising respectively all of the subjects (24+24) or just the balanced ones (12+12). SC1 

and SC2, in which training and validation is based on a single scanner, will be referred to as 

Study specific. The two expert raters, used for the annotation, are referred to as R1 and R2. 

Biasfield correction or its absence are labelled BC and BF, respectively. FA was mentioned 

when present (FA) and substituted with an X when excluded and finally, the different 

thresholding methods that could be used were simply referred to as Global (the value was 

set to 0.9) and Local (the valued was decided through the use of LOCATE). 

 

Option tested Values tested Scanner tested 

Rater R1, R2 SC1 

Biasfield BF, BC SC1, SC2 

Training set Study specific, TR1, TR2, 12+12 (Mixed), 24+24 (Mixed) SC1, SC2 

FA FA (with), X (without) SC1, SC2 

Thresholding Global (0.9), Local (LOCATE) SC1, SC2 

 

Table 3.5. Summary table of the available setting of analysis options for Whitehall. 

 

The different steps implemented within the procedure are presented in the following 

sections. 

For each option we evaluated the effect on harmonisation by comparing the results between 

scanners in terms of BIANCA performance with the metrics described in section 3.7 and in 

terms of impact of the scanner on the variability in WMH volume using the models described 

in section 3.8. 

 

3.6.1.1 Rater 

We assessed the influence of Rater, keeping all of the available options fixed except for one. 

Therefore, the only difference between settings was represented by the use of manual masks 

performed, in one case, by Rater 1 (R1) and in the other by Rater 2 (R2). Since masks 

obtained from different raters were only available for data from SC1 was used for both 

training and testing. We derived WMH using the following settings: 

• TR1 R1 BF FA Global SC1; 

• TR1 R2 BF FA Global SC1; 
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Note that for the following tests on the Whitehall dataset we fixed the rater to be R2, since 

manual masks were available for both scanners. 

 

3.6.1.2 Biasfield 

In order to assess the influence of Biasfield, for each scanner we generated WMH using 

FLAIR images not corrected for bias field and compared them against the results obtained 

when FLAIR was bias field corrected using FAST (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FA 

ST).  Therefore, the settings we tested were: 

• TR1 R2 BF FA Global SC1 

• TR1 R2 BC FA Global SC1 

• TR2 R2 BF FA Global SC2 

• TR2 R2 BC FA Global SC2 

 

3.6.1.3 Training set 

At this point we tried to assess the effect that Training set had on performance, comparing 

the five different settings introduced in Table 3.5. In each case the testing phase was 

performed on both scanners, therefore we obtained the following pairs of data: 

• TR1 R2 BC FA Global SC1 

• TR2 R2 BC FA Global SC2 

• TR1 R2 BC FA Global SC1 

• TR1 R2 BC FA Global SC2 

• TR2 R2 BC FA Global SC1 

• TR2 R2 BC FA Global SC2 

• 12+12 R2 BC FA Global SC1 

• 12+12 R2 BC FA Global SC2 

• 24+24 R2 BC FA Global SC1 

• 24+24 R2 BC FA Global SC2 

 

3.6.1.4 FA 

We followed an analogue procedure in order to assess the influence of FA. This step is 

justified by the fact that, since FA is not available for all subjects in UK Biobank, the aim is 

to be able to use only T1 and FLAIR as features for WMH segmentation (as used in the data 
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currently released). Therefore, as we aim to include BB in our study, it’s important to assess 

the impact that FA removal would have on BIANCA’s performance. 

For this reason, we compared all the settings presented in the previous section with the ones 

obtained excluding the FA from the process of training and testing: 

• TR1 R2 BC X Global SC1 

• TR2 R2 BC X Global SC2 

• TR1 R2 BC X Global SC1 

• TR1 R2 BC X Global SC2 

• TR2 R2 BC X Global SC1 

• TR2 R2 BC X Global SC2 

• 12+12 R2 BC X Global SC1 

• 12+12 R2 BC X Global SC2 

• 24+24 R2 BC X Global SC1 

• 24+24 R2 BC X Global SC2 

 

3.6.1.5 Thresholding 

In order to evaluate the effect that the selected Thresholding method would have on results 

we tried to compare the global one, with probability threshold fixed to 0.9, with the local 

method, obtained through the use of LOCATE. We therefore applied the latter to all of the 

settings presented in the previous step and then compared the obtained outputs.  

A secondary objective is represented by the possibility to compensate for a possible 

worsening of performance due to FA exclusion from the set of analysis options. We present 

here the tested settings: 

• TR1 R2 BC X Local SC1 

• TR2 R2 BC X Local SC2 

• TR1 R2 BC X Local SC1 

• TR1 R2 BC X Local SC2 

• TR2 R2 BC X Local SC1 

• TR2 R2 BC X Local SC2 

• 12+12 R2 BC X Local SC1 

• 12+12 R2 BC X Local SC2 

• 24+24 R2 BC X Local SC1 
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• 24+24 R2 BC X Local SC2 

 

3.6.2 Retrospective harmonisation of Whitehall and UK Biobank datasets 

The second part of harmonisation addressed the comparison between the Whitehall dataset, 

represented by both Scanner 1 (SC1) and Scanner 2 (SC2), and the UK Biobank, as 

emphasised by the variable Scanner tested, presented in Table 3.6. As for the previous case, 

in order to avoid any bias due to the different amount of lesions characterising different 

validation sets, results were validated on the two Whitehall subgroups of balanced subjects, 

12 for SC1 and 12 for SC2, and on the 12 manually segmented participants of UK Biobank.  

The different analysis options, whose influence we are trying to assess in this second part of 

the analysis, are basically two: the exploited thresholding method, that can be either Global 

or Local, and the used Training set, adding combinations including UK Biobank (see 

3.6.2.1).   

Some of the options of  Table 3.5 were  a-priori fixed, in this second study:  

• FA was excluded since UK Biobank does not include it; 

• A process of Biasfield correction was always been applied to the FLAIR images, 

since the first study had already demonstrated its necessity; 

• Due to the lack of a common rater, the manual labelling procedure was performed 

by different operators for the Whitehall and UK Biobank training data. Therefore, 

this parameter was set to R2 and R3, respectively. 

 

Option tested Values tested  Scanner tested 

 

Training set Study, specific, 12+12 (Mixed), 24+24 (Mixed), 

12+12+BB (Mixed), 24+24+BB (Mixed) 

 

SC1, SC2, BB 

Thresholding Global (0.9), Local (LOCATE) SC1, SC2, BB 

 

Table 3.6. Summary table  of the available settings of analysis options for the retrospective harmonisation 

across Whitehall and UK Biobank. 

 

The different steps implemented are presented in the following sections. Also in this case, 

we evaluated the effect on harmonisation by comparing the results in terms of BIANCA 
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performance with the metrics described in section 3.7 and in terms of impact of the scanner 

on the variability in WMH volume using the models described in section 3.8. 

 

3.6.2.1 Training set 

With this step we tried to highlight the effect that mixed Training sets would have on 

performance and we compared their results with the ones obtained from the Study specific 

case. We added to the previous options (Study-specific, 12+12 and 24+24), two further 

training sets, consisting in a combination of the Whitehall dataset with the UK Biobank one: 

12+12+BB and 24+24+BB. 

 

3.6.2.2 Thresholding 

In an analogue way to has been done in the first part of the analysis, in this step we are trying 

to assess the effect that the selected Thresholding method would have on results. In 

particular, we want to understand whether the application of LOCATE on the available data 

could result in an improvement of the segmentation performance. For this reason, we 

compare all of the settings presented in the previous step with the ones obtained through the 

application of a local thresholding method.   

 

3.7 Indicators for the evaluation of WMH segmentation 

In order to evaluate WMH segmentation results, we used performance indicators of the 

overlap between the automatic WMH segmentation and the manually labelled WMH mask:  

• Dice Similarity Index (DI): calculated as twice the amount of voxels lying within the 

intersection of automatic and manual masks, divided by the sum of manual mask 

lesion voxels (true WMH voxels) and tool lesion voxels (positive WMH voxels); 

• Voxel-level false positive ratio (FPR): number of voxels incorrectly labelled as 

WMH (false positive, FP) divided by the total number of voxels labelled as WMH 

by the tool (positive WMH voxels); 

• Voxel-level false negative ratio (FNR): number of voxels incorrectly labelled as non-

WMH (false negative, FN) divided by the total number of voxels labelled as WMH 

in the manual mask (true WMH voxels); 

• Cluster-level FPR: number of clusters incorrectly labelled as WMH (False Positive 

clusters) divided by the total number of clusters labelled as WMH by the tool 

(positive WMH clusters); 
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• Cluster-level FNR: number of clusters incorrectly labelled as non-WMH (False 

Negative clusters) divided by the total number of clusters labelled as WMH in the 

manual mask (true WMH clusters). 

All these measures of overlap, were calculated in the reference space, represented by FLAIR 

image modality. Since the Dice Similarity Index is the most widely used metric, able to 

account for repeatability in validating medical volume segmentations, and is given highest 

importance for the final discussion. Also, cluster level FNR was privileged compared to 

FPR, since it is known (Griffanti et al., 2016) that cluster level sensitivity is more important 

than specificity for lesion detection.  

After evaluating the segmentation performance using the indicators discussed so far, we tried 

to compare results between each other. The goal was to identify the best setting among the 

ones tested within each step. Sometimes we also tried to compare results obtained applying 

the same setting on different groups of data (SC1 vs SC2, SC1 vs SC2 vs BB, and so on). 

This allowed us to understand whether the selected combination of parameters could help 

harmonising data across datasets, therefore providing uniform and integrated results. 

 

3.8 Predictive model construction 

In this section we go through all of the steps performed to build the General Linear model 

and the other model as the regularisation ones (Ridge Regression and Elastic Net), described 

in detail in the previous chapter “predictive models”. 

Our aim was to build regression models that predict the percentage lesional load (WMH%) 

from a individuals non-imaging variables. In addition, these models should help to reveal 

the inner relationships occurring between specific subgroups of variables and WHM%. 

This work was divided in two parts: 

1. The first one deals with making these predictions in the Whitehall dataset, since it is 

characterised by two distinct Scanners (SC1 and SC2), but with same population and 

MRI acquisition protocols; 

2. The second combines Whitehall and UK Biobank, therefore dealing with completely 

different datasets characterised by distinct populations and different MRI protocols; 

Its construction required the use of Pandas, a fundamental high-level building block for 

doing practical, real world data analysis in Python (https://github.com/pandas-dev/pandas). 
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3.8.1 Multi-centre study with prospective harmonisation - Whitehall 

The search for an optimal model began with the implementation of a basic General Linear 

Model (GLM) using data relative to the Whitehall Cohort (SC1 and SC2). We applied this 

to the output of BIANCA with the following training parameters: single training set 

(Training 1), Rater 2, no biasfield correction, FA still present and global thresholding method 

(TR1 R2 BF FA Global Thresholding). 

 

3.8.1.1 GLM 

The GLM was implemented assigning the designated 34 non-imaging variables to the 

independent input variables (Xi with i=1,2,3…34) and the percentage brain lesional load 

(WMH%) to the dependent output one. 

Initially, we fitted the model using both SC1 and SC2 data, split into Training (75%) and 

Test set (25%). Data shuffling was applied to reduce variance and ensure models remaining 

as general as possible, preventing overfitting. 

 

3.8.1.2 Other Models 

We also explored: 

1. Decision tree Models, which are better at capturing the non-linearity in the data: 

- Random Forest: an ensemble of different regression trees used for nonlinear 

multiple regression, where each leaf contains a distribution for the continuous 

output variable/s. 

2. Regularisation Models, which prevent overfitting by extending the cost function to 

include the goal of model simplicity. They address some of the drawback 

characterising GLMs by imposing a penalty on the size of the prediction coefficients: 

- Ridge regression: it uses L2 regularisation to decrease the coefficients value but 

is unable to force them to zero. This severely limits the use of this regularisation 

technique as it’s unable to perform feature selection; 

- Elastic Net regression: it includes both L1 and L2 norm regularisation terms, 

potentially representing a model that is both simple and capable of performing 

features selection/reduction. 

Finally, once the optimal prediction model was identified, it was used to assess the impact 

that different training parameters had on performance. In particular, we quantified the effect 

of bias field correction and different thresholding methods (both Global and Local) on model 
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performance. We also selected a subgroup of predictive features to be later used in our 

analyses. 

 

3.8.1.3 Evaluation of harmonisation through predictive modelling 

We also explored the prediction of the Fazekas total score (the Fazekas score is a qualitative 

score from 0-6 used by expert raters based on visual assessment of periventricular and deep 

lesional load), to determine how this varied from the output of BIANCA. We again used the 

first available set of processed data (TR1 R2 BF FA Global Thresholding) and the optimal 

predictive model.  We were interested in the most predictive features obtained in both cases 

and were interested in determining whether BIANCA’s output was more independent of the 

scanner used (SC1, SC2) than a non-automated visual rating scale such as Fazekas. 

After fitting these models, we began a process of evaluation of different BIANCA settings 

of analysis options (see Table 3.7). Specifically, we tested: 

1. “Single Training (TR1), Rater 2, FA, BF, Global Threshold (0.9)” versus “Single 

Training (TR1), Rater 2, FA, BC, Global Threshold (0.9)” to evaluate the impact of 

biasfield correction; 

2. “Single Training (TR1), Rater 2, FA, BC, Global Threshold (0.9)” versus “Mixed 

Training (24+24), Rater 2, FA, BC, Global Threshold (0.9)” to evaluate the impact 

of a mixed training; 

3. “Mixed Training (24+24+BB), Rater 2, FA, BC, Global Threshold (0.9)” versus 

“Mixed Training (24+24+BB), Rater 2, FA, BC, Local Threshold (LOCATE)” to 

evaluate the impact of different thresholding methods. 

The obtained results were graphically represented through the use of  different scatter plots, 

in which data were differentiated according to the variable Scanner of test. This allowed us 

to visualise if and how each combination of parameters helped harmonising data: a positive 

effect resulted in more uniform and integrated distributions, while a negative one was 

represented by a further distinction between scanners. 

 

Training set Rater Biasfield FA Threshold Scanner of test 

TR1 R2 BF FA Global (0.9) SC1, SC2 

TR1 R2 BC FA Global (0.9) SC1, SC2 
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24+24 (Mixed) R2 BC FA Global (0.9) SC1, SC2 

24+24+BB (Mixed) R2 BC FA Global (0.9) SC1, SC2 

24+24+BB (Mixed) R2 BC FA 
Local 

(LOCATE) 
SC1, SC2 

 

Table 3.7. Summary table of all the settings of analysis options exploited for the evaluation of harmonisation 

through predictive modelling. 

 

3.8.2 Retrospective harmonisation of Whitehall and UK Biobank datasets 

The second stage of modelling explored prediction of WMH% across Whitehall and UK 

Biobank. With the introduction of the UK Biobank dataset, the input variables reduced from 

34 to 32 features, since the number of medications for depression and the years of education 

missed in many cases of the UK Biobank.  

 

3.8.2.1 Gaussian Process Regression 

We finally introduced the Gaussian process (GP) regression, a supervised machine learning 

approach that can model non-linear relationships between the non-imaging variables and 

WMH volumes.  The GP returns the prediction of WMH in terms of both mean and variance. 

This helped us to: 

• Build a common model able to predict the confidence interval of brain percentage 

lesional load (WMH%) for a new patient (new testing sample) based on non-

imaging variables. 

• Compare the different WMH volume distributions segmenting by the most 

predictive variables. 

The complexity of the non-parametric GP model grows together with the size of the dataset. 

For instance, when applying a Gaussian process to a dataset of size N, exact inference has 

computational complexity O (N²) with storage demands of O (N³) (Hensmanet al., 2013). 

Therefore, a subset of input variables was selected, in order to avoid predictive power loss 

and improve model generality. The subset was common to Whitehall and UK Biobank and 

derived from the intersection of the most predictive variables identified during previous step. 

In conclusion, given the greater statistical power provided by UK Biobank with respect to 

Whitehall, we decided to assess whether the GP model, trained on UK Biobank and tested 

on Whitehall, could give comparable result to the ones obtained both training and testing on 
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Whitehall. A positive result would provide evidence of the prediction model robustness vs. 

the introduction of further datasets. 

 

3.9 Statistical analysis  

Finally, for every model implemented we introduced a K fold cross validation to overcome 

the problem of scarce generalisation capabilities. In the context of our work we used K=5. 

Typical values are either k = 5 or k = 10, as they have been empirically shown to yield test 

error rate estimates that suffer neither from excessively high bias nor from very high variance 

(James et al., 2013). 

Then to assess the accuracy of the obtained model, some statistical indicators (more details 

in Chapter 2 “Indicators for statistical analysis”) have been calculated. In particular: 

• R-squared coefficient, which accounts for the proportion of variance explained by 

the predictors; 

• Root-Mean-Square-Error (RMSE) which provides the magnitude of the prediction 

errors as a single measure of predictive power; 

• Spearman correlation coefficient between the predicted and the actual value, which 

account for the statistical dependence between the rankings relative to those two 

values; 

Actually, in the context of our work we mainly focused on Spearman Correlation. 

As previously mentioned, it is a non-parametric index that has a rather simple calculation 

method: it operates a transformation in which values are replaced by their rank, when data 

are sorted. Its calculation and subsequent significance testing require the following 

assumptions to hold (Myers et al., 2006): 

1. All of the involved variables need to be either interval or ratio level or ordinal; 

2. All of involved variables need to be monotonically related; 

Here we present its formula, where n is the number of observations involved and D the 

difference between ranks:  

 

(3.1) 

 

Moreover, in the context of evaluation of different analysis options influence, we assessed 

the significance of comparisons of outcomes in the validation sets, we applied t-tests. 
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Chapter 4  

 

 “Results” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter we go through the preliminary workflow developed to optimise the main 

parameters of the automatic segmentation tool involved in our work (BIANCA.) 

Furthermore, we present results of the main analysis steps that allowed us to integrate and 

harmonise the different datasets involved in our work.  
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4.1 Preliminary optimisation of the main training parameters  

Ahead of the detailed assessment of each analysis parameter effect, described in Par. 4.4 and 

relevant to a mix of the Whitehall and the UK Biobank datasets, here we summarise the main 

settings of BIANCA training. This preliminary analysis was limited to Scanner 1 (SC1) and 

Scanner 2 (SC2) of the Whitehall II data only and was necessary in order to find the best set 

of BIANCA options able to provide comparable performances across scanners. Since the 

Parser, needed to integrate the UK Biobank set, was not necessary in this phase, this 

procedure is presented below in Par. 4.2. Furthermore, the present optimisation is based only 

on comparison statistics (Dice Similarity Index, False Positive Ration, False Negative 

Ration, Cluster-level FNR and Cluster-level FPR), without the prediction model based on 

non-imaging data, illustrated in Par. 4.3. 

The analysis of BIANCA training parameters for all possible combinations was performed 

through the following steps: 

● Step1: the value for the Training points option that gave the best result (for all the 

possible combinations of Non-lesion points) is 2˙000; 

● Step 2: the value for the Non-lesion points option that gave the best result (for all the 

possible combinations of Patch size) is 10˙000; 

● Step 3: in an analogue way we finally tried all the possible combinations of the last 

two parameters, being Patch sizes and Spatial Weight, obtaining respectively optimal 

values equal to 3 and 2; 

In the sake of briefness, detailed results relevant to all the tested combinations are omitted. 

So, in Table 4.1 we summarise only the values of DI and Cluster-level FPR. Also, each row 

of Tab. 4.1 presents the outcomes for tested values of a single parameter, when the other 

ones are fixed to their optimum. Given the purposes described above, results relative to both 

SC1 and SC2 are reported for all cases and compared.  

In this context, for every step involved in the analysis, we identified as optimal the BIANCA 

training option characterised by statistical performance indicators able not only to provide 

high values for both scanners, but also to minimise the difference between them. The values, 

presented in Tab. 4.1 and highlighted in blue, therefore represent the best compromise found.  
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Step 1 Training 

points 

2˙000 3˙000 4˙000 5˙000 

Scanner 1 Dice Index 0.672 0.656 0.651 0.643 

 
False Positive 

Cluster 
0.632 0.709 0.755 0.774 

Scanner 2 Dice Index 0.7430 0.7534 0.7504 0.7417 

 False Positive 

Cluster 
0.4385 0.4950 0.5896 0.6422 

Step 2 Non-lesion 

points 

8˙000 9˙000 10˙000 
 

 

Scanner 1 Dice Index 0.659 0.665 0.672  

 
False Positive 

Cluster 
0.663 0.656 0.632  

Scanner 2 Dice Index 0.756 0.750 0.743  

 False Positive 

Cluster 
0.486 0.452 0.439  

Step 3A Patch sizes 3 6 9 3/9 

Scanner 1 Dice Index 0.672 0.675 0.680 0.684 

 
False Positive 

Cluster 
0.632 0.398 0.436 0.377 

Scanner 2 Dice Index 0.743 0.751 0.752 0.761 

 
False Positive 

Cluster 
0.439 0.369 0.302 0.356 
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Step 3B Spatial Weight 1 2   

Scanner 1 Dice Index 0.664 0.672   

 False Positive 

Cluster 
0.741 0.632   

Scanner 2 Dice Index 0.510 0.743   

 False Positive 

Cluster 
0.154 0.439   

 

Table 4.1. Summary table of the main settings of BIANCA training. Each value is associated with 

performance indicators (Dice Similarity Index and Cluster-level FPR) for both scanners. Optimal values 

highlighted in blue. 

 

In summary, the optimal set of parameters was the same for SC1 and SC2; i.e., 2˙000 

Training points = 2˙000, Non-lesion points = 10˙000, Patch size = 3 and Spatial weight = 2, 

which gave maximum DI = 0.672 (median) for SC1 and DI = 0.743 for SC2. The Cluster 

FPR was 0.632 for SC1 and 0.429 for SC2. The fairly high % of voxels in false clusters is 

justified by our need to privilege sensitivity over specificity in setting the global threshold 

of positive classification probability, which ought to be not too high in order not to miss 

parts of the true lesion. However, this figure of loss can be easily improved by a 

postprocessing excluding small isolated clusters and also by the application of a locally 

modulated threshold (LOCATE). 

Two examples of visual assessment of segmentation are presented in Fig. 4.1. In the top row 

(Fig.4.1 a-d) a segmentation with non-optimal setting is presented, while in the bottom one 

(e-h) a good fitting with optimal parameters is shown. From left to right, Fig.4.1 displays the 

FLAIR image (a and e), the image with BIANCA’s segmentation (red, b and f), with the 

manual mask (white, c and g), with both masks superimposed (d and h). 

The top row segmentation shows that the non-optimal setting gave a scarce lesion 

segmentation performance, as the overlapping region between the masks highlighted, 

respectively, in red and white is very narrow. On the other hand, the bottom row displays 
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results of a good performance, as BIANCA output matches almost entirely the manually 

segmented region.   

Figure 4.1.  Comparison between manual and automatic segmentation performances. FLAIR image 

characterised by a high (a) and moderate (b) lesional load, relative manual segmentations (b, f), automatic 

lesion segmentations obtained through the use of BIANCA (c, g) and overlap between manual and automatic 

lesion masks. This first (a, b, c, d) and second set of images (e, f, g, h) give, respectively, an example of 

scarce and good BIANCA performance. 

 

4.2 Parser  

In this section we report the final output of the Parser, which matches Whitehall and UK 

Biobank non-imaging variables.  

As previously mentioned, both the Parser was a tool specifically developed for this thesis 

work. The Parser, with its User guide, is already available online to the scientific community 

on the GitLab platform (https://issues.dpuk.org/eugeneduff/wmh_harmonisation/tree/master 

/funpack_wmh_bb). Conversely, the extracted harmonised dataset will be available through 

the Dementias Platform UK. The final dataset, we generated by the Parser and used for the 

analyses, contains 32 non-imaging variables (see table 4.2) plus 3 imaging variables: total 

brain volume, total volume of WMH and the percentage volume of lesions with respect to 

brain volume (WMH%, the independent variable used in our model). 
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For our extraction, it was necessary to first screen for "visit 2.0" corresponding to the images 

acquisition phase. In fact, unlike Whitehall, the UK Biobank data are acquired at different 

time points, depending on the data collection phase. The Parser can be used for a range of 

variables and converting functions, specified according to the user’s needs (as we did in 

“conversion.py”). Tab. 4.2 summarises the conversions implemented on the 32 variables of 

interest for the present study. 

 

Whitehall Type 
UK 

Biobank 
Type Conversion 

OX.AGE Continous, year 21003 Integer, years Round() 

GenderM1F0 Categorical 31 Categorical N/A 

OX. WEIGTH Continuous, kg 21002 Continuous, kg N/A 

OX. HEIGTH Continuous, m 12144 Integer, cm cm → m / 100 

OX.BMI 
Continuous, 

kg/m^2 
21001 

Continuous, 

kg/m^2 
N/A 

OX.BP_SYS Integer, mmHg 4080 Integer, mmHg N/A 

OX.BP_DIA Integer, mmHg 4079 Integer, mmHg N/A 

OX.PULSE Integer, bpm 102 Integer, bpm N/A 

 

ModeratePA 

 

 

Continuous, 

h/week 

884 

 

894 

Integer, day/week 

 

Integer, min/day 

 

(884*894) / 60 

= h/week 

 

 

VigorousPA: 

 

Continuous, 

h/week 
914 Integer, min/day 

(914*904) / 60 

= h/week 



 103 

 

CHAMwalk: 

 

Continuous, 

h/week 

864 

 

894 

Integer, day/week 

 

Integer, min/day 

(864*874) / 60 

= h/week 

TotWalk 
Continuous, 

h/week 
894 Integer, min/day 

894/60(min/h) 

* 7 = = h/week 

SleepDuration 
Continuous, 

h/day 
1160 Integer, h/day Round() 

HealthClasses 
Categorical 4 

classes 
2178 

Categorical, 9 

classes 

Clean  -1/ -3. 

Convert: 

1 in 4 ,  2 in 3 

3 in 2 ,  4 in 1 

SmokerStatus_C-

NC 
Categorical 0/1 20116 

Categorical 

4 classes 

Convert: 

0 in 0 

1,2 in 1 

Clean -3 

Cig/day Integer 3456 Integer N/A 

AlcoholStatus_C

-NC 
Categorical 0/1 20117 

Categorical 4 

classes 

Convert: 

0 in 0     

1,2 in 1 

Clean -3 

AlcoholU/w 
Continuous, 

Units/month 

20403 

 

 

20414 

Categorical 5 

classes, U/day 

 

Categorical 5 

classes, day/week 

- Making them 

continuous on 

the mean value 

 

- 20403*20414 

= units/month 

OX.MEDS_TS_A

LL 
Integer 137 Integer N/A 
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BNF_CVmedY1

N0 
Categorical 0/1 6177 

Categorical 6 

classes 

Binarise 

Categorical  

and extract V1 

BPMedRawY1N0 Categorical 0/1 6177 
Categorical 6 

classes 

Binarise 

Categorical  

and extract V2 

BNF_AntideprY1

N0 
Categorical 0/1 20546 

Categorical 6 

classes 

Convert: 

3 in 1 

1,4 in 0 

Clean -818 

DiabRawY1N0 Categorical 0/1 2443 
Categorical 4 

classes 
Clean -1 -3 

CVDRawY1N0 Categorical 0/1 6150 
Categorical 6 

classes 

Convert: 

1,2,4 in 1 

-7 in 0 

Clean -3 

CESD_depressed 
Categorical 4 

classes 
20510 

Categorical 5 

classes 
Clean for -818 

OX.EDUC_FT_

END 
Integer, years 845 Integer, years N/A 

HandClasses 

1R2L3A 

Categorical 3 

classes 
1707 

Categorical 4 

classes 
Clean for -3 

TMT_A_s Integer, s 20156 Continuous, s Round( ) 

TMT_B_s Integer, s 20157 Continuous, s Round( ) 

OX.DCOD 
Integer, correct 

answers 
20159 

Integer, correct 

answers 
N/A 

OX.DSB Integer 20240 Integer N/A 
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Reaction_Time Continuous, ms 20023 Integer, ms Round( ) 

WholeBrain Integer, mm3 
25010 

(W+G) 
Integer, mm3 (WM+ GM) 

WMH_tot 
Continuous, 

mm3 
25781 Integer, mm3 Round() 

WMH_percent 
Continuous, 

mm3 
N/A Continuous, mm3 

25781 / 25010 

*100 

 

Table 4.2. Parser summary table with conversions rules. 

 

For more details and notes about every step, consult the file “Parser.xlsx” on GitLab. 

 

4.3 Predictive model construction for multi-centre study with prospective 

harmonisation – Whitehall 

The search for the best performing model, able to predict the percentage lesional load 

WMH% from the non-imaging variables is also a core element in this work, which will be 

used in Par. 4.4 as further validation of harmonisation addressing the estimate of WMH% 

from images. In fact, classification statistics (DI, Cluster-level FPR, etc.) could be applied 

only to the limited manually segmented sets. Conversely, for WMH% validation over the 

whole populations, our working hypothesis was that a valid image harmonisation should 

permit well matched prediction models, in the different addressed studies. In other words, 

we assumed a common epidemiological statistic through the different populations leading 

to similar relationships between WMH% and its non-imaging correlates. Conversely, 

different prediction laws would be obtained in the case of biases in WMH% measures, due 

to poor imaging harmonisation.  

As reported in the previous Chapter, all the implemented predictive models (General Linear 

Model, Random Forest, Ridge Regression and Elastic Net) were built using data obtained in 

this way: training phase performed according to the following processing options “Single 

training T1, Rater 2, no biasfield correction, FA still present (TR1 R2 BF FA)” and testing 

phase conducted on the Whitehall dataset. Especially, the resulting optimal model allows us 

to account for the importance attributed to the variable “Scanner” in predicting WMH%. 
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This is a key point in the evaluation of the harmonisation results, obtained through the 

different analysis options introduced (see next section). 

Thus, Table 4.3 shows and compares the main indicators of goodness and accuracy of the 

regressive models implemented.  

The considered statistics in Tab. 4.3 are: 

● proportion of variance explained by the predictors (R²); 

● root mean square error (RMSE), i.e. quadratic mean of the model residuals;  

● Spearman’s correlation (rs) between the actual and predicted value of WMH%. 

 

Model R² RMSE rs 

General Linear (GLM) 0.14 0.24 0.46 

Random Forest -0.05 0.26 0.39 

Ridge Regression 0.16 0.24 0.47 

Elastic Net 0.17 0.24 0.49 

 

Table 4.3. Performance metrics for the four models implemented with the best resulting one highlighted in 

blue. 

 

Since our main goal is to maximise the Spearman correlation coefficient, Elastic Net was 

chosen as the optimal predictive model for the Whitehall study harmonisation (Whll SC1- 

Whll SC2) and it will be the starting point for the second one extended to BB (Whll-BB, 

relative results described in section 4.5). 

Moreover, Elastic Net was the only one really able to perform an accurate selection of 

variables among the proposed predictors and it is the best compromise in terms of all the 

three statistics in Tab. 4.3. 

After we obtained the results of the different analysis options on WMH harmonisation in 

Whitehall, we were able to test the various models also on: (i) Single Training (TR1), Rater 

2, FA still present, biasfield correction, Global Threshold (0.9) and (ii) Mixed Training 

(24+24), FA still present, biasfield correction, Global Threshold (0.9) ( see Chapter 3, 

section 3.8.1.3). Elastic Net reported the best results both before and after harmonisation 
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obtained through the biasfield correction (i) and the use of a mixed training (ii). In Table 4.4, 

we can see a review of results in terms of Spearman Correlation. 

 

 GLM 
Random 

Forest 

Ridge 

Regression 
Elastic Net 

T1 R2 BC FA 0.9 0.36 0.31 0.37 0.40 

24+24 R2 BC FA 0.9 0.35 0.31 0.38 0.39 

 

Table 4.4. Spearman Correlation coefficients between actual and predicted WMH% for the two analysis 

options implemented. Blue boxes indicate the best performing method for each option. 

 

4.4 Evaluation of the influence of different analysis options on WMH 

harmonisation 

In this section, the influence of different analysis options on WMH harmonisation is 

analysed, when a single option/variable is changed from the optimal setting fixed in through 

the studies of the previous sections. Namely: (i) rater who performed the manual labelling 

step, (ii) introduction of the biasfield correction process on images, (iii) composition of the 

training set used for BIANCA, (iv) presence of the Fractional Anisotropy among the 

exploited image modalities and (v) choice of the thresholding method. As discussed 

previously, the goal is to find the best combination able to reduce differences in the WMH 

measures extracted from the different datasets involved in our study, therefore providing an 

effect of harmonisation.  

Firstly, in section 4.4.1 and 4.4.2. we present BIANCA’s performance using all the 

indicators introduced in the previous chapter and for every tested combination of parameters 

(for details refer to Table 3.5 and 3.6 respectively). However, we limit to the indicators with 

highest importance on the final decision: Dice Similarity Index (DI) (as a summary measure 

of overlap) and Cluster-level FPR (i.e. we were more interested in achieving high sensitivity 

to lesion detection). The obtained results, relevant to the different subsets of testing subjects 

used (12 for SC1 and 12 for SC2 in Par. 4.4.1; 12 for SC1, 12 for SC2 and 12 for BB in Par. 

4.4.2), are graphically shown through box plots. For each of the tested combinations of 
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parameters, we therefore created a plot reporting, on the horizontal axis, the different 

scanners used and, on the vertical one, the values relative to a specific performance indicator.  

As an additional way of evaluating the results of the different options, in the second part of 

this section (4.4.3), the main options are studied vs. age as represented by scatter plots. In 

this context, data are differentiated according to the Scanner of test. On the horizontal axis 

is reported the participants age, while on the vertical one the percentage lesional load 

(WMH%) obtained through the application of BIANCA on the entire datasets. A linear 

regression line is then fitted to the data to show the correlation between the two variables.  

For the same options, we also present the outcome of Elastic Net. As introduced in the 

previous section, this regression method is able to identify the most predictive variables 

among the 32 ones included in the original training set. For the three situations of interest 

we therefore report the most significant non-imaging features, ordered by ascending 

importance. A reduced importance of the variable “Scanner” was considered as a marker of 

good harmonisation by the addressed parameter combination.   

As before, we split the results in two parts. The first is entirely focused on a between-

scanners comparison in the Whitehall dataset, while the second one sees the introduction of 

UK Biobank in the analysis, which represents case of retrospective harmonisation merging 

two different datasets.  

 

4.4.1 Multi-centre study with prospective harmonisation - Whitehall 

This first section describes the comparison of the obtained BIANCA performance (in terms 

of both DI and Cluster-level FPR) between SC1 and SC2.  

 

4.4.1.1 Rater 

In Fig. 4.2 and 4.3 we present results relevant to the influence of Rater. We trained BIANCA 

using data from SC1 (we exploited 24 manually segmented subjects in one case and 12 in 

the other) referring to the manual annotation by rater 1, only. FA was included; global 

thresholding was applied; and biasfield was corrected. In one case (blue) leave-one-out 

validation was performed on rater 1 annotation (coincident training and validation), while in 

the latter (orange) validation was performed against rater 2 (changed rater).  

The second pair of compared results (orange box in Figure 4.2 and 4.3), were obtained in an 

analogue way with respect to the previous case, but the manual labelling phase was 

performed by a different operator, referred to as Rater 2. 
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Figure 4.2. Step 1 – Effect of Rater. Box-plot of the Dice Similarity Index between BIANCA output and the 

corresponding manual mask (with leave-one-out) when using masks segmented by rater 1 (R1, blue box) or 

rater 2 (R2, orange box). Results are relative to SC1, since ratings from two raters was available only for 

this scanner. 

Figure 4.3. Step 1 – Effect of Rater. Box-plot of the Cluster-level FPR between BIANCA output and the 

corresponding manual mask (with leave-one-out) when using masks segmented by rater 1 (R1, blue box) or 

rater 2 (R2, orange box). Results are relative to SC1, since ratings from two raters was available only for 

this scanner. 

 

4.4.1.2 Biasfield 

In this section we compare a pair of settings for each scanner, in order to assess the influence 

of Biasfield on the resulting BIANCA performance. For the first (left in Figure 4.4 and 4.5), 

we trained and tested BIANCA using data from SC1 (24 and 12 subjects respectively) and 

manual masks labelled by Rater 2. The FA scan was included as intensity feature and a 

global thresholding method was applied. We corrected for the biasfield inhomogeneities in 

the FLAIR images in one case (green box) and we didn’t in the other (blue box). For the 

second pair of compared settings (right in Figure 4.4 and 4.5), we obtained data in an 
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analogue way, with the only difference that training and testing phases were performed on 

subjects imaged by SC2. 

The difference in DI between the BF and BC case was statistically significant for SC1 (p-

value < 0.001) while not significant for SC2 (p = 0.097). 

Figure 4.4. Step 2 – Effect of Biasfield correction. Box-plot of the Dice Similarity Index between BIANCA 

output and the corresponding manual mask (with leave-one-out) when correcting for the biasfield 

inhomogeneities (BC, green box) and when they are still present (BF, blue box). Results are relative to SC1 

(left pair of plots) and to SC2 (right pair of plots). 

 

 Similarly, Cluster-level FPR between the BF and BC case are significantly different for SC1 

(p-value < 0.001) and not significant for SC2 (p-value = 0.259). 

Figure 4.5. Step 2 – Effect of Biasfield correction. Box-plot of the Cluster-level FPR between BIANCA output 

and the corresponding manual mask (with leave-one-out) when correcting for the biasfield inhomogeneities 

(BC, green box) and when they are still present (BF, blue box). Results are relative to SC1 (left pair of plots) 

and to SC2 (right pair of plots). 
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4.4.1.3 Training set 

At this point we present results relevant to the effect of different Training sets, comparing 

five settings. We were interested in identifying whether study and scanner specific training 

sets improved the performance of BIANCA with respect to expert identification of lesions.  

We trained BIANCA using the subgroups of subjects introduced in the previous chapter: 24 

belonging to SC1 (TR1), 24 relative to SC2 (TR2), two training sets obtained as a mix of 

both scanners (24+24 and 12+12) and an additional reference case in which every scanner 

was both trained and tested using its own manually segmented masks (Study specific). We 

kept the other processing options fixed: FA included, biasfield corrected and Global 

thresholding method applied. 

Results of DI demonstrate that mixed training sets lead to a more comparable performance 

across scanners compared to the other training sets used.  

Remarkably, they are very close to the case used as reference, represented by the Study 

specific training set. Obviously, this is the best scoring one, since the training and the testing 

sets are the same. In particular 24+24 was not significantly different form reference in terms 

of DI (p-value = 0.392 for SC1), despite a significant difference for SC2 (p-value = 0.014). 

A similar behaviour characterises Cluster-level FPR, which appears to be lower and more 

comparable for the 24+24 case, with respect to the others. In particular results relevant to 

SC2 are significantly close to the study specific ones (p-value = 0.363) thereby confirming 

the concepts introduced previously. To conclude, results of the 12+12 case also showed a 

graphical similarity with respect to the reference case and a significant contrast was 

approached only for the DI case of SC1 (p-value = 0.548).  

Since the aim is to harmonise WMH measures across scanners, we performed t-tests 

comparing the resulting data of SC1 with the ones of SC2, for the most relevant cases 

involved in our analysis: Study specific (i.e., within both SC1 and SC2, but taken separately)  

and 24+24.  

The difference, for the Study specific case, were significant for the Cluster-level FPR (p-

value = 0.013), while not significant for the DI (p-value < 0.001). 

On the other hand, for the 24+24 case, even if the performance across scanners was proved 

to be different for the DI case (p-value = 0.046) the heterogeneity was very low (the obtained 

p-value is indeed close to the threshold value of 0.05). The performance in terms of Cluster-

level FPR, on the other hand, was not significantly different between SC1 and SC2 results.  
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Figure 4.6. Step 3 – Effect of different Training sets. Box-plot of the Dice Similarity Index between BIANCA 

output and the corresponding manual mask for the different training sets used (specified on the x axis): study 

specific (training with leave-one-out), TR1 (training by 24 subj from SC1), TR2 (training by 24 subj from 

SC2), 12+12 (training by 12 subj from SC1 and 12 subj from SC2), 24+24 (training by 24 subj from SC1 and 

24 subj from SC2). Validation on both SC1 (blue box) and to SC2 (purple box). 

Figure 4.7. Step 3 – Effect of different Training sets. Box-plot of the Cluster-level FPR between BIANCA 

output and the corresponding manual mask for the different training sets used (specified on the x axis): study 

specific (training with leave-one-out), TR1 (training by 24 subj from SC1), TR2 (training by 24 subj from 

SC2), 12+12 (training by 12 subj from SC1 and 12 subj from SC2), 24+24 (training by 24 subj from SC1 and 

24 subj from SC2). Validation on both SC1 (blue box) and to SC2 (purple box). 

 

4.4.1.4 FA availability 

In this section, all previous results are revisited by excluding FA as a feature. Outcomes 

show a significant decrease of performance in terms of DI, with a loss of almost 0.2 (see 

Figure 4.8 for reference). Conversely, a decrease in Cluster-level FPR was observed in 

almost all cases, passing from values equal to 0.4 – 0.5 to 0.1 – 0.2 (see Figure 4.9 for 

reference).  

Overall, results confirm that mixed trainings provide the most similar results to the study 

specific case, particularly for the 24+24 case. The DI p-value was indeed equal to 0.637 for 
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SC1, in spite of a difference characterising SC2 (p-value < 0.001). An analogue behaviour 

can be observed for the Cluster-level FPR (SC2 not statistically significant, p-value = 0.199, 

SC1 statistically different, p-value = 0.006). 

More importantly, the mixed 24+24 set was even more comparable across scanners than it 

was in the previous step, therefore matching the objectives of our work (p-value = 0.462 and 

p-value = 0.565 for the DI and Cluster-level FPR respectively).  

At the light of this result, we concluded that FA removal is likely to decrease the amount of 

false positive clusters, therefore favouring a higher specificity of the segmentation 

performance. Moreover, being an MRI modality not very common in clinical contexts, this 

feature will be excluded from further analysis steps even though it was verified to have a 

positive effect on the overall segmentation accuracy.  

Figure 4.8. Step 4 – Effect of FA exclusion from the training features. Box-plot of the Dice Similarity Index 

between BIANCA output and the corresponding manual mask when using different training sets (specified on 

the x axis): study specific (training with leave-one-out), TR1 (training by 24 subj from SC1), TR2 (training by 

24 subj from SC2), 12+12 (training by 12 subj from SC1 and 12 subj from SC2), 24+24 (training by 24 subj 

from SC1 and 24 subj from SC2). Validation on both SC1 (blue box) and to SC2 (purple box). 
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Figure 4.9. Step 4 – Effect of FA exclusion from the training features. Box-plot of the Cluster-level FPR 

between BIANCA output and the corresponding manual mask when using different training sets (specified on 

the x axis): study specific (training with leave-one-out), TR1 (training by 24 subj from SC1), TR2 (training by 

24 subj from SC2), 12+12 (training by 12 subj from SC1 and 12 subj from SC2), 24+24 (training by 24 subj 

from SC1 and 24 subj from SC2). Validation on both SC1 (blue box) and to SC2 (purple box). 

 

4.4.1.5 Thresholding  

We finally reanalyse all previous results, FA excluded, comparing the global thresholding 

(applied, so far) with the local thresholding provided by LOCATE. The data shown in Figure 

4.9 highlight a significant increase of performance in terms of DI, with an improvement of 

almost 0.2 when compared to the previous setting. However, the optimised segmentation 

performance is accompanied by a simultaneous increase in Cluster-level FPR, that results in 

an overestimation of the total amount of lesions.  

The application of a local thresholding method has therefore a dual effect: it compensates 

for the FA removal from the feature set, re-optimising performance towards the original DI 

values, at the cost of an increase in the number of voxels incorrectly classified as WMH.  

Like in previous steps, results confirmed that mixed trainings provide the most similar results 

to the study specific case in terms of DI: in the 12+12 case p-values were indeed equal to 

0.629 and 0.087, for SC1 and SC2 respectively; in the 24+24 case, on the other hand, results 

with respect to the study specific training were not significantly different for SC2 (p-value 

= 0.656), while for SC1 they were slightly different (p-value = 0.043). The Cluster-level 

FPR gives analogue performances for both comparisons.  

Even in this case, as we aim to harmonise WMH measures across scanners, we performed t-

tests comparing the results of SC1 and SC2, both before and after the application of 

LOCATE. Differences were significant for all the different Training sets used, but for the 

sake of briefness we report here just the most relevant ones: Study specific, 12+12 and 

24+24.  

For the Study-specific and 12+12 case we obtained p-values < 0.001 for both the DI and the 

Cluster-level FPR. In an analogue way, the 24+24 case resulted in significantly different 

performances both in terms of DI (p-value < 0.001 for both SC1 and SC2) and of Cluster-

level FPR (p-value < 0.001 for SC1 and p-value = 0.013 for SC2).  

The dual effect provided by LOCATE leads us to consider its use as an open question, that 

will be addressed through further analysis (see Par. 4.4.3). 
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Figure 4.10. Step 5 – Effect of the use of a local thresholding method (LOCATE) on BIANCA output. Box-

plot of the Dice Similarity Index between BIANCA output and the corresponding manual mask when using 

different training sets (specified on the x axis): study specific (training with leave-one-out), TR1 (training by 

24 subj from SC1), TR2 (training by 24 subj from SC2), 12+12 (training by 12 subj from SC1 and 12 subj 

from SC2), 24+24 (training by 24 subj from SC1 and 24 subj from SC2). Validation on both SC1 (blue box) 

and to SC2 (purple box). 

Figure 4.11. Step 5 – Effect of the use of a local thresholding method (LOCATE) on BIANCA output. Box-

plot of the Cluster-level FPR between BIANCA output and the corresponding manual mask when using 

different training sets (specified on the x axis): study specific (training with leave-one-out), TR1 (training by 

24 subj from SC1), TR2 (training by 24 subj from SC2), 12+12 (training by 12 subj from SC1 and 12 subj 

from SC2), 24+24 (training by 24 subj from SC1 and 24 subj from SC2). Validation on both SC1 (blue box) 

and to SC2 (purple box). 

 

4.4.2 Retrospective harmonisation of Whitehall and UK Biobank datasets 

As discussed previously, in this second part of the analysis we introduce the UK Biobank 

dataset. We therefore investigate the influence of different settings of parameters, comparing 

data relative to three groups of testing subjects: 12 for Scanner 1 (SC1), 12 for Scanner 2 

(SC2) and 12 for the UK Biobank (BB). Also in this case, the goal is to find the best 

combination of parameters able to give comparable performances across datasets, therefore 
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providing a harmonisation effect. We furthermore try to achieve the best possible 

performance in terms of segmentation accuracy of the WMH lesions.  

 

4.4.2.1 Training set 

We present here the effect of the different Training sets tested in the analysis.  Since mixed 

training resulted having the best performance in previous analyses, here we consider only 

the 12+12 and 24+24 cases, along with the two additional ones, consisting in a combination 

of the Whitehall and UK Biobank data: 12+12+BB and 24+24+BB. All the results presented 

in Figure 4.12 and 4.13 were obtained using the global thresholding value of 0.9.  

From a graphical point of view, it’s quite easy to see that 24+24+BB is the training set able 

to provide the most comparable performance across datasets. This is noticeable when 

comparing these results to the ones relevant to the Study specific case, as characterised by 

box plots less similar among datasets.  

In order to assess the statistical significance of data comparability for the 24+24+BB case, 

we performed a one-way-ANOVA test on the three resulting settings (SC1, SC2 and BB): 

SC1 and SC2 were not statistically different between each other both in terms of DI and of 

Cluster-level FPR (p-value = 0.343 and p-value = 0.987 respectively). On the other hand, 

some differences were observed in the comparisons to the UK Biobank: SC1 vs BB gave a 

p-value of 0.009 for the DI and of 0.043 for Cluster-level FPR, while SC2 vs BB resulted in 

a p-value < 0.001 and p-value = 0.030 respectively.  

the resulting data where no longer equivalent: SC1 vs BB gave indeed a p-value of 0.009 for 

the DI and of 0.043 for Cluster-level FPR, while SC2 vs BB resulted in 0.000 and 0.030 

respectively. 

One-way-ANOVA test relevant to the other investigated Training sets gave similar results 

with respect to the ones presented above, but the difference between the Whitehall scanners 

and the UK Biobank are more heterogeneous for both the DI and Cluster-level FPR, being 

characterised by a difference of almost 0.2 – 0.3 against the 0.1 of the 24+24-BB case. 

Furthermore, for the 12+12+BB case, the difference between SC1 and SC2 was also 

significant in terms of DI (p-value = 0.122). 
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Figure 4.12. Step 6 – Effect of different Training sets. Box-plot of the Dice Similarity Index between BIANCA 

output and the corresponding manual mask for the different training sets used (specified on the x axis): study 

specific (training with leave-one-out), 12+12 (training by 12 subj from SC1 and 12 from SC2), 24+24 

(training by 24 subj from SC1 and 24 from SC2), 12+12+BB (training by 12 subj from SC1, 12 from SC2 

and 12 from BB), 24+24+BB (training by 24 subj from SC1, 24 from SC2 and 12 from BB). Validation on 

SC1 (blue box), SC2 (purple box) and BB (green box). 

Figure 4.13. Step 6 – Effect of different Training sets. Box-plot of the Cluster-level FPR between BIANCA 

output and the corresponding manual mask for the different training sets used (specified on the x axis): study 

specific (training with leave-one-out), 12+12 (training by 12 subj from SC1 and 12 from SC2), 24+24 

(training by 24 subj from SC1 and 24 from SC2), 12+12+BB (training by 12 subj from SC1, 12 from SC2 

and 12 from BB), 24+24+BB (training by 24 subj from SC1, 24 from SC2 and 12 from BB). Validation on 

SC1 (blue box), SC2 (purple box) and BB (green box). 

 

4.4.2.2 Thresholding 

In this paragraph we present results obtained after the application of LOCATE to all the 

options discussed previously. As it happened for the Multi-centre Whitehall study, the 

automatic tool provided a dual effect: 1) it resulted in a great improvement of the DI 

performance, with an increase of almost 0.2 – 0.3 for both SC1and SC2 (Figure 4.14). 

Significance of the difference between the Global and Local thresholding case was assessed 
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through the use of a t-test, that reported p-values < 0.001 for both the Study specific and 

24+24+BB case relative to SC1 and the same ones relative to SC2. The effect was less 

evident (increase of 0 – 0.1) for the UK Biobank dataset, but still significant (p-value < 0.001 

for the Study specific case and p-value = 0.012 for the 24+24+BB one); 2) at the same time, 

the use of LOCATE resulted in a significant increase in the number of voxels incorrectly 

classified as WMH. The amount of Cluster-level FPR was indeed much higher than the one 

obtained with previous settings with an increase of almost 0.2 – 0.4 for all cases (Figure 

4.15). Significance of the difference between the Global and Local thresholding was again 

assessed through the use of a t-test, whose p-values, for the Study specific and 24+24+BB 

case, were equal to 0.005 and 0.049 for SC1, < 0.001 and equal to 0.002 for SC2 and both < 

0.001 for UK Biobank).  

Again, the Training set including as many samples as possible from the 3 scanners 

(24+24+BB) resulted in more comparable performances across the datasets involved in the 

analysis. Indeed, one-way-ANOVA test showed no significant difference between SC1 and 

SC2, both in terms of DI and of Cluster-level FPR (p-value = 0.178 and p-value = 0.869 

respectively). The same happened for SC2 and UK Biobank with values equal to 0.428 and 

0.127 respectively. The only differences were between SC1 and UK Biobank, with p-values 

equal to 0.011 and 0.044 for DI and Cluster-level FPR. 

As the dual effect introduced in the previous section (Par. 4.4.1.5) was confirmed even in 

this case, LOCATE use remains an open question, requiring further analysis to be addressed 

(see Par. 4.4.3). 

Figure 4.14. Step 7 – Effect of the local thresholding method (LOCATE). Box-plot of the Dice Similarity 

Index between BIANCA output and the corresponding manual mask for the different training sets used 

(specified on the x axis): study specific (training with leave-one-out), 12+12 (training by 12 subj from SC1 

and 12 from SC2), 24+24 (training by 24 subj from SC1 and 24 from SC2), 12+12+BB (training by 12 subj 
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from SC1, 12 from SC2 and 12 from BB), 24+24+BB (training by 24 subj from SC1, 24 from SC2 and 12 

from BB). Validation on SC1 (blue box), SC2 (purple box) and BB (green box). 

Figure 4.15. Step 7 – Effect of the local thresholding method (LOCATE). Box-plot of the Cluster-level FPR 

between BIANCA output and the corresponding manual mask for the different training sets used (specified 

on the x axis): study specific (training with leave-one-out), 12+12 (training by 12 subj from SC1 and 12 from 

SC2), 24+24 (training by 24 subj from SC1 and 24 from SC2), 12+12+BB (training by 12 subj from SC1, 12 

from SC2 and 12 from BB), 24+24+BB (training by 24 subj from SC1, 24 from SC2 and 12 from BB). 

Validation on SC1 (blue box), SC2 (purple box) and BB (green box). 

 

4.4.3 Evaluation of harmonisation through predictive modelling  

Henceforth, we pass to evaluations involving the whole of the considered populations, non-

annotated subjects included. Thus, the comparison statistical indexes used so far are no more 

applicable. To determine whether the above optimisations provide comparable measures of 

WMH across studies, we conversely utilised predictive modelling from non-imaging 

variables to determine whether there was a residual scanner/study related bias or a good 

harmonisation was achieved. 

Importantly, this is a core passage of this thesis work aiming at a generalisation of the 

harmonisation process beyond the limitations of manual annotation due to their high burden 

and the rater related biases.  

In this section we start by graphical representation of WMH% age dependence for the main 

comparisons discussed in the previous phase. Remarkably, this time the entire datasets (528 

subjects for SC1, 211 for SC2 and 2285 for BB) were addressed. Our aim was to visualise 

if and how each combination of parameters helped harmonising the WMH volumes (our 

target measure to harmonise) and if the findings obtained on the subset of subjects with 

manual masks are generalisable to the entire dataset.  
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Next, we extended predictive modelling to the entire set of the 32 non-imaging variables by 

the Elastic Net, in order to assess the relative importance of  the different analysis options 

for predicting WMHs.  Specifically, we were interested in how the knowledge of which 

scanner was used is important to optimise predictions, which is taken as a marker of 

insufficient harmonisation. For this evaluation we selected only a subset of the tested 

comparisons, specifically those that showed promising impact on harmonisation: effect of 

bias field correction, mixed training, and thresholding method.  

Results are shown relevant to the annotated sub-sets only, in order to limit the density of the 

scatter-plots and improve their readability. However, we recall that annotation was not used 

for the predictive modelling, but only for training. Indeed, limiting the modelling assessment 

to the training cases, permitted us to limit the overall dispersion of results. 

The shown settings are the following:  

1. Fig. 4.16 – Effect of Bias field correction. “Single Training (TR1), Rater 2, FA, BF, 

Global Threshold (0.9)” versus “Single Training (TR1), Rater 2, FA, BC, Global 

Threshold (0.9)”. Results showed a significant decrease in the volume bias between 

WMH volumes relative to the different scanners. Moreover, the importance of the 

variable Scanner, assessed through the Elastic Net model, was significantly decreased 

passing from second to sixth position; 
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                                         (c)                                        (d) 

 

Figure 4.16. Impact of Biasfield correction. Scatter plot relative to the BF (a) and BC case (b), respectively; 

Importance of the different non-imaging parameters relative to the BF (c) and BC case (d). Bias field 

correction produces a decrease in importance of the variable “Scanner” (in red) in predicting WMH volume. 

 

2. Fig. 4. 17 – Effect of using mixed vs study-specific training set for BIANCA. “Single 

Training (TR1), Rater 2, FA, BC, Global Threshold (0.9)” versus “Mixed Training 

(24+24), Rater 2, FA, BC, Global Threshold (0.9)”. The volume bias characterising 

the WMH data was even more decreased compared to the previous setting, despite a 

slight difference in the slope characterising the regression lines. Furthermore, the 

importance of the variable Scanner, was further decreased, passing from sixth to 

eleventh position; 
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                                     (c)                                                                                         (d) 

 

Figure 4.17. Impact of different Training sets. Scatter plot relative to the Single Training (a) and Mixed 

Training (b), respectively; Importance of the different non-imaging parameters for WMH prediction for the 

Single Training (c) and Mixed Training case (d). The use of a Mixed Training instead of a single one 

produces a decrease in importance of the variable “Scanner” (in red) in predicting WMH volume. 

 

3. Fig. 4.18 – Effect of thresholding. “Mixed Training (24+24+BB), Rater 2, no FA, 

BC, Global Threshold (0.9)” versus “Mixed Training (24+24+BB), Rater 2, no FA, 

BC, Local Threshold (LOCATE)”. The volume bias on WMH volumes among 

datasets was reduced to its minimum using the global thresholding method, while it 

was still present and even increased when using LOCATE.  Furthermore, in the first 

case the importance of the variable Scanner, was not even present in the most 

predictive features, highlighted by the Elastic Net model. LOCATE, on the other 

hand, bring its importance to the first position therefore leading us to the decision of 

avoiding its use in the thresholding procedure.  
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Figure 4.18. Impact of different Thresholding method. Scatter plot relative to the Global Thresholding (a) 

and the Local one (LOCATE) (b), respectively; Importance of the different non-imaging parameters for 

WMH prediction for the Global (c) and Local case (d). The use of a Global Thresholding method produces a 

decrease in importance of the variable “Scanner” (in red) in predicting WMH volume. 

 

 Moreover, since in Whitehall dataset BIANCA’s output (WMH%) shows a high correlation 

with Fazekas visual rating score (rs = 0.67), BIANCA is considered a good substitute for 

qualitative evaluation of WMHs, instead of using non-automated visual rating scale which 

are still frequently used but are time consuming and operator-dependent. (Griffanti et al., 

2016) 

Thus, to provide whether the standard Fazekas scoring might be more or less affected by a 

change of scanner we compared the most predictive variables relevant to the model 

predicting BIANCA’s output, with the ones relevant to the model predicting the Fazekas 

score. We find that the output of the automatic segmentation tool was more independent of 

the Scanner used (SC1, SC2) with respect to Fazekas. Indeed, Figure 4.18 highlights the 

variable Scanner, being at second place among the most predictive ones. 
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Figure 4.19. Features importance for the prediction of Fazekas score in Whitehall dataset using Elastic Net. 

This figure has to be compared with Figures 4.16 and 4.17 (c, d). 

 

4.5 Predictive model construction for retrospective harmonisation of Whll and 

BB  

Once we obtained the UK Biobank non-imaging data and turned them into Whitehall format, 

we were able to apply the various models and validate the consistency of Elastic Net on it 

testing on the whole datasets, whether annotate or not. The training set was integrated by 12 

manually labelled subjects belonging to BB, thus aiming at harmonisation improvement, 

across datasets. 

Accordingly, the final steps of retrospective harmonisation (Training: 24 + 24 + BB, Rater 

2, no FA and tested on both Whll and BB) were assessed both in the case of local (LOCATE) 

and in the global Threshold. All the results in terms of Spearman Correlation rs are presented 

in Table 4.5. 

 

 GLM 
Random 

Forest 

Ridge 

Regression 

Elastic 

Net 
 

BB (before 

harmonisation) 
0.50 0.39 0.35 0.37 

 

24+24+BB, R2, no FA, 

Local 

0.28 0.25 0.28 0.29 
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24+24+BB, R2, no FA, 

Global 

0.37 0.27 0.46 0.48 

 

Table 4.5. Spearman Correlation coefficients between actual and predicted WMH%. (i) model trained on the 

12 manually labelled subjects belonging to BB and  tested on the whole BB dataset; (ii) model trained on 

Mixed training 24+24+BB, Rater 2, no FA, local thresholding and (iii) model trained on Mixed training 

24+24+BB, Rater 2, no FA, global thresholding, tested on both Whitehall (Whll SC1 and SC2) and UK 

Biobank (BB). Blue boxes indicate the best performing method for each option. 

 

Using UK Biobank data only, the best result is given by the General linear model, 

highlighting a more linear relationship between the predictive variables and the WMH%, 

with respect to the Whitehall one. Otherwise, in both cases characterised by Mixed training 

it was always Elastic Net that gave the best performances. Then, obtaining the results of the 

Elastic Net features reduction for both the two datasets, we were finally able to compare 

them in terms of predictive features and to identify the common variables.  Considering the 

most predictive variables for the best setting for Whitehall data only (training on Mixed 

24+24, Rater 2, FA, Biasfield correction, Global Threshold; see Figure 4.17 (d)), and those 

related to UK Biobank (Figure 4.20), it appears that the most predictive variables for 

WMH% are: 

1. Age; 

2. Gender; 

3. Height; 

4. Systolic Blood Pressure; 

5. Diastolic Blood Pressure; 

6. Body Mass Index (BMI); 

7. Blood Pressure Medications; 

8. Trail Making TEST_B (TMT-B); 

9. Reaction Time; 

These nine variables can be divided into demographic (age, gender, height), clinical (Sys/Dia 

BP and BP meds) and cognitive (TMT-B, Reaction Time) ones.  

In particular the TMT-B is part of a common two-part neuropsychological test, in which 

visuospatial ability (TMT-A) and executive function (TMT-B) are evaluated. Meanwhile 

Reaction time assesses a person's quickness to react to a stimulus. 
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The fact that age represents the most significant predictor in not surprising as the significance 

of age and WMH correlation has been extensively proved by several research studies (e.g. 

Griffanti et al., 2016; Lee and Preacher, 2013) 

Moreover, age shows a significant correlation with WMH% in both the two populations 

under study (Whll: rs = 0.35;  BB: rs = 0.51).  

Figure 4.20. Features importance for the prediction of WMH% in UK Biobank dataset using Elastic Net. Red 

circles represent the most predictive variables common to both Whitehall and UK Biobank dataset. 

 

4.5.1 Gaussian Process 

Finally, we explored the use of Gaussian Processes modelling to account for 

nonlinear patterns in the relationship between our non-imaging variables and 

WMH%.  We were interested in whether predictions trained on a different study (e.g. 

Whll) could perform to the same level as predictions trained on the target dataset (i.e. 

UK Biobank). 

Initially, we built our Gaussian process regressor with just two variables as predictors and a 

Radial Basis function as kernel. We applied it separately on Whitehall and UK Biobank, 

both having WMH% data coming from our best mixed training (24+24+BB, R2, no FA, 

Global training). These basic models allow us to compare the different distributions of 

WMH volumes with respect to the relative predictive variables. We determined the different 
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trend of WMH% volume in relation to both age and the main factors of prediction in the two 

populations. We reported in Figure 4.20 the 3D plot of two main trends analysed. 

In both Whitehall and UK Biobank, Age and BMI seem to predict high a high amount of 

WMH lesion, particularly at their highest values. The same linear pattern characterises the 

Age and TMT_B pair where, however, the age factor seems to be less determinant. 

Moreover, if in both Whitehall pairs the surfaces follow the same trend, in UK Biobank 

surfaces tend to become more and more distant as the values on the y-axis increase. This 

results into an increase in variance for high values of BMI and TMT_B. respectively. 

 

 

 

 

 

 

 

 

 
 

(a)     (b) 

 

 

 

 

 

 

 

 

 

(c)     (d) 

 

Figure 4.21. 3D plot of WMH% distributions with respect to: Age and BMI (a, b), Age and TMT_B (c. d) in 

Whitehall (b, d) and UK Biobank (a, c). The three surfaces represent respectively: the mean of predictive 

distribution for each query points (in the middle) and the mean itself +/- standard deviation (Confidence 

Interval) above and below it. In all the plots the x axis corresponds to “OX.AGE”, the z axis corresponds to 

“WMH%”, while the y axis changes every time depending on the variable analysed. 
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When we included the nine input variables into the GP’s model the model complexity 

increased. Therefore, we implemented the GP with four different kernel combinations. 

Those kernels are composed by Radial Basis Function, Matern, Exponential and Rational 

Quadratic kernels combining with a White noise. Firstly, we fitted the model with UK 

Biobank data only, which has a greater statistical power given its larger size. Results by the 

four different kernels where equal in terms of Coefficient of determination and Root-mean-

squared deviation (R² = 0.10, RMSE = 0.23), except for the Exponential one (R² = 0.02, 

RMSE = 0.24). Hence, we decided to compare them using the Correlation coefficient 

between the actual and predicted value and we did the same with Whitehall data, comparing 

the accuracy of the model on the two different datasets (Table 4.6).  

We finally assessed the results of GP model, trained on UK Biobank and tested on Whitehall, 

compared to the ones obtained both training and testing on Whitehall. This was tested 

because we are interested in understanding the expected range of WMH% for a new patient 

regardless of the cohort.  

 

 
Trained and 

tested on BB 

Trained and 

tested on Whll 

Trained on BB and 

tested on Whll 

Radial Basis + White Kernel 0.43 0.38 0.37 

ExpSine Squared + 

WhiteKernel 
0.24 0.24 0.12 

Rational Quadratic + White 

Kernel 
0.44 0.38 0.36 

Matern + White Kernel 0.43 0.36 0.37 

 

Table 4.6. Spearman Correlation coefficients between actual and predicted values of WMH%, obtained by 

implementing GP using four different combinations of kernels. 

 

As we can see in Tab. 4.6, all of them have almost the same performance in terms of 

Correlation coefficient, except for the Exponential Quadratic one, which are slightly 
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reduced compared to the ones obtained with linear models (GLM and Elastic Net). Thus, 

among the implemented kernels, we choose the first one, which shows more comparable 

results among the different cases. Looking at Figure 4.21 we can appreciate in yellow the 

WMH% values predicted by our GP’s final model trained and tested on UK Biobank data 

compared to actual BB testing values, while in Figure 4.22 we find our GP’s final model 

trained on UK Biobank and tested on Whitehall compared to actual testing values for both 

datasets. 

Figure 4.22. Scatterplot of the WMH distribution, obtained by GP trained and tested on UK Biobank, 

according to age. 

Figure 4.23. Scatterplot of the WMH distribution, obtained by GP trained on UK Biobank and tested on 

Whitehall, according to age. 
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More specifically, we investigated the goodness of the previous one with respect to the one 

trained and tested on Whitehall to verify whether it can be used as a general prediction model 

to estimate the WMH% for a new patient regardless of the dataset to whom they belong. 

This will allow us to not re-train the model each time on the specific cohort. 

The results show a good overlap of the predicted WMH% volumes with comparable 

performances (Figure 4.23) and a correlation coefficient of 0.92 between the two.  

Figure 4.24. Scatterplot of the WMH distribution, obtained by GP trained on UK Biobank and tested on 

Whitehall (in yellow) vs the one trained and tested on Whitehall (in red). 

 

The residuals analysis also shows similar results. In fact, for both models, the residuals 

increase considerably as the lesional load increases, following a linear pattern (Figure 4.24 

- b, d). While against Age, the residuals appear evenly distributed around 0 with majority of 

negative values (Figure 4.24 - a, c). In the range between 70 and 80 years we can note a 

limited number of values due to the lack of data in UK Biobank for that age range.  
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(a) (b) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

                                      (c)                             (d) 
 

Figure 4.25. Analysis of Model residuals plots: (a) residuals versus age for the model trained and tested on 

Whitehall, (b) residuals versus WMH% for the model trained and tested on Whitehall, (c) residuals versus 

age for the model trained on UK Biobank and tested on Whitehall, (d) residuals versus WMH% for the model 

trained on UK Biobank and tested on Whitehall. 

 

We finally used The Bland-Altman (B&A) plot: a graphical method that quantifies the 

agreement between two methods of clinical measurement plotting their differences vs. their 

average (Bland and Altman, 1999). In Figure 4.25 we represent the B&A plot of the 

differences between GP trained and tested on Whll and the one trained on BB and tested on 

Whll. 

Dashed horizontal lines correspond to average differences, and to the limits of agreement 

(mean 1.96 std). Ideally the difference between the two methods should be minimal and 

independent from the quantity measured (WMH%). In our case the difference is acceptable, 

being within the confidence intervals. However, a linear positive correlation between 

differences and mean values is also clearly shown, which indicates some residual 

dependence of errors from values. 
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  Figure 4.26. Bland Altman Plot of GP’s model trained and tested on Whitehall versus the one trained on 

UK Biobank and tested on Whitehall. The blue horizontal line represents the mean difference between 

methods, while the red ones are drawn at the limits of agreement, defined as the mean difference ± 1.96 SD 

of differences. 
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Chapter 5  

 

 “Discussion and Conclusions” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter we discuss the results obtained in this work, highlighting the most important 

aspects that allowed us to achieve our initial goals. We furthermore present the main 

limitations encountered throughout the development of the analysis, finally outlining briefly 

some of the possible future developments. 
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5.1 Discussion 

This thesis project focused on the harmonisation of MRI-derived measures of White Matter 

Hyperintensities (WMHs) across different datasets. Currently, WMHs are intensively 

studied as an early prognostic sign of a broad band of neurodegenerative pathologies, most 

of which age-related. This both accounts for the motivation of the present study and also for 

the challenge of collecting data from diverse imaging datasets. Being able to merge data 

from different sources has the potential to improve our understanding of the relationship 

between vascular burden and other clinical and demographic factors with the ultimate aim 

to inform diagnosis and prognosis of diseases involving vascular lesions (e.g. vascular 

dementia or stroke). The involved datasets are the UK Biobank (BB) and the Whitehall II 

imaging study (Whll), two healthy ageing cohorts part of the Dementias Platform UK. 

However, Whll, represents a multi-centre study gathering data from to a single population, 

acquired with the same acquisition protocol but exploiting two different MRI Scanners (SC1: 

3T Siemens Verio, SC2: 3T Siemens Prisma). On the other hand, the BB includes data from 

a different population, imaged using a third Scanner (SC3: 3T Siemens Skyra) and a different 

acquisition protocol. For this reason, our work was divided in two separate parts, relevant to 

different scenarios: the first is a retrospective harmonisation across scanners (Whll SC1 vs 

Whll SC2) added to a pre-existing prospective one, given by the Whll study design; the 

second, on the other hand, is again a retrospective integration process, but it challenges the 

problem of harmonising two completely independent studies; i.e., Whll and BB. 

In order to compensate for the lack of prospective harmonisation between Whll and BB also 

in the collection of non-imaging variables (e.g., smoking habits, cognitive tests, alcohol 

consumption, etc), the first part of our work focused on their retrospective harmonisation. 

Thus, we created a specific “Parser” tool for the conversion of the BB data into the Whll 

format, to remove differences caused by heterogeneous data collection protocols and 

different units of measurement. The above-mentioned Parser was successfully implemented 

and uploaded online on the GitLab platform, as an open source tool available for future 

analysis using BB or other datasets that would require non-imaging data harmonisation, 

since it is fully customisable. 

Once obtained homogeneous non-imaging data across studies, we focused on using them to 

predict the volumetric amount of WMH lesions (as percentage of total brain volume, 

WMH%). The general aim was to find a model able to account for the variability related to 
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demographic and clinical characteristics of the individuals and, moreover, to evaluate the 

relationship between WMH% and its major correlates or risk factors. To pursue this goal, 

we investigated which mathematical model could better fit the non-imaging variables that 

were available in our datasets and identified from the literature as potentially related to 

WMH%. Among the four models we tested (GLM, Random forest, Ridge regression and 

Elastic Net), Elastic Net gave the best result, providing an optimal compromise across the 

R², RMSE and Spearman’s correlation values rs. This model was also the only one able to 

perform feature selection among the involved non-imaging data, allowing us to evaluate how 

important the Scanner variable was in predicting the volumetric amount of lesions. We 

therefore used Elastic Net for two aims: firstly, as a metric to judge the success of imaging 

data harmonisation (i.e., the used scanner should have little or no predictive value if the 

measures are well harmonised) on the whole datasets, since the modelling approach was 

applicable also to the non-annotated data. Secondly, to identify the most predictive clinical 

and demographic variables common between the two datasets, to include in a more 

sophisticated model for WMH% prediction. 

At this point, we aimed at identifying processing choices that produced well-matched 

measures of WMHs, the imaging variable of interest, across the different data. We did that 

by testing specific pre-processing techniques (such as biasfield correction) and optimising 

the robustness of BIANCA, the automatic lesion segmentation tool used in our work, based 

on trained (alias, supervised) k-NN clustering. The latter goal was pursued by exploring the 

effect of the rater who generates the training data, finding a general training set able to gain 

comparable performances across different datasets, studying the effect of excluding FA as 

intensity feature, and exploring the effect of different options for thresholding the lesion 

probability map obtained as output from BIANCA.  

As BIANCA uses several different options, we conducted a preliminary analysis to assess 

the best combination of options to obtain comparable outcomes between the two Whll 

scanners in terms of segmentation accuracy. This ensured that no further bias was being 

introduced by the parameter choices. The best results were found to be the default 

parameters, found by Griffanti and colleagues (Griffanti et al., 2016) during their work: 

number of Training points equal to 2˙000, number of Non-lesion points equal to 10˙000, a 

Patch size of 3 and a Spatial Weight of 2. 
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While the preliminary part of the analysis was mainly focused on the optimisation of basic 

BIANCA options, the second part aimed at assessing the influence of specific parameters as 

to their impact on harmonisation. Results of the step-by-step analysis, described during the 

previous chapters and implemented in order to assess their impact on the ultimate WMH 

segmentation performance, are summarised and discussed as follows: 

● Regarding the impact of the Rater who generated the WMH masks used to train the 

supervised algorithm, performance indicators such as DI and Cluster-level FPR, 

showed that this parameter greatly influenced the segmentation performance. In our 

study we used masks from the same rater whenever possible (Whll SC1, SC2), but 

this is not feasible in the large scale (already when adding BB data). This outcome 

highlights the differences among expert radiologists (alias, raters) in charge of 

manual labelling and also the need to standardise the definition of WMH, especially 

if automated supervised tools are planned to be used. 

● In terms of performance indicators, biasfield correction proved to greatly improve 

results by correcting inhomogeneities of the radiofrequency (RF) field. Indeed, the 

strongest impact on segmentation performance was registered for those images 

slightly affected by intensity variations across space. Scatter plots comparing the BF 

(Biasfield not removed) and BC (Biasfield Corrected) case showed a significant 

decrease in the WMH volume bias between scanners. The accomplishment of a 

harmonising effect was confirmed by a great decrease in the importance of the 

Scanner variable, assessed through the Elastic Net model. Therefore, in conclusion, 

it’s always recommendable to correct MRIs from biasfield;  

● The use of a mixed training set, combining images from all of the datasets involved 

in our analysis, helped obtaining better and more comparable outcomes in terms of 

DI and Cluster-level FPR. This was true for both the above-mentioned scenarios 

(Whll SC1 vs Whll SC2; Whll vs BB) and was moreover proved by a further decrease 

in the volume bias when comparing outputs of the mixed training case with respect 

to the single training ones. Furthermore, in both settings (i – Mixed Training 24+24, 

Rater 2, FA, BC, Global Threshold); and ii – Mixed Training 24+24+BB, Rater 2, 

no FA, BC, Global Threshold) the Elastic Net model highlighted a significant 

decrease in the importance of the variable Scanner, that was no longer among the 

most predictive ones. These finding suggests that having enough examples of 
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heterogeneous datasets to use for the training phase, the automatic segmentation tool 

could generalise well also to unseen data beyond the training set. 

● The exclusion of Fractional Anisotropy (FA) from the exploited MRI modalities, 

resulted in a significant decrease of the DI performance with respect to the previous 

setting. However, this was accompanied by a corresponding decrease in the amount 

of Cluster-level FPR, that proved a substantial reduction in the overall level of lesion 

overestimation. The effect was therefore dual: a significant worsening of the overall 

accuracy but, at the same time, an increase in the specificity characterising the 

segmentation performance. The choice relative to the its inclusion/exclusion is 

therefore strongly dependent on the nature of the problem that needs to be addressed. 

Since FA is a time-consuming MRI modality, not very common in clinical contexts, 

and our goal was to obtain a general pipeline, combining information from different 

cohorts, we decided to remove it from the analysis. This is in line with the BB 

imaging analysis team, who decided to extract WMHs by T1 and FLAIR only, even 

if FA was available in most cases. 

● Finally, assessing the influence of thresholding technique, we found out that 

LOCATE (Locally Adaptive Threshold Estimation) actually provided a dual effect: 

it resulted in a great improvement of the DI performance, but, at the same time, 

significantly increased the number of voxels incorrectly classified as WMH. This 

happened for both the Whll SC1 vs Whll SC2 case and the Whll vs BB one. 

Additional evidence was provided by the scatter plots of WMH% vs. Age, which 

showed a significant increase in the volume bias mentioned above. Even though this 

result seems in contradiction with the increase in segmentation accuracy (DI), this 

ambiguity might be explained through the following hypothesis: LOCATE works 

well on data characterised by high lesional loads, therefore providing high values of 

the performance indicator for those subjects belonging to the training set (which were 

selected among high lesional load participants because the lesions are better defined 

and easier to be manually segment and also because BIANCA showed to better 

results when trained on subjects with high lesional loads - Griffanti et al., 2016) . On 

the other hand, when it is applied to the whole population, characterised by a more 

variable WMH%, often low, the automatic tool is no longer able to provide a good 

segmentation performance. We therefore conclude that the choice of the thresholding 
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method is strongly dependent on the nature of the problem and decided to exclude 

LOCATE in our harmonisation setting, in the sake of generality.  

In summary, among all the settings discussed above, the one offering the best trade-off 

among performance indicators, reduction in the volume bias, low effect of the used scanner, 

and generality of application is given by the following combination of parameters: Mixed 

Training (i.e., in this context Whll 24+24 with Rater 2, plus BB), no FA, BC, Global 

Threshold. 

Even though FA and LOCATE resulted being important factors in the achievement of 

increased BIANCA performances, they were no longer helpful in the context of retrospective 

harmonisation, when trying to integrate the heterogeneous datasets involved within our study 

(Whll SC1, Whll SC2, BB). For this reason, we excluded FA from our harmonisation setting 

and we exploited a global thresholding. 

Results showed comparable and accurate outcomes both in terms of DI and Cluster-level 

FPR. The resulting scatter plot displayed very uniform and integrated data, almost 

overlapping between each other. Furthermore, the variable Scanner, was no longer found 

among the most predictive variables selected by Elastic Net model. These results, all 

together, proved the accomplishment of a robust harmonisation effect on the different 

datasets involved in our study, that were eventually well integrated and compatible.  

In addition, the major non-imaging variables, age and cognitive functions, selected by our 

modelling are in keeping with the main WMH correlates reported in the literature. In fact, 

age has been highly related to the presence of WMHs in literature (Simoni et al., 2012) and 

their correlation has been extensively proved by several research studies (e.g., Griffanti et 

al., 2016; Lee and Preacher, 2013). Other studies (e.g., Kim et al., 2008) have shown that 

presence and severity of WMH are consistently related to cognitive function and cognitive 

test scores in the elderly population. Moreover, the prevalence of WMH increases with 

increasing vascular risk factors, including hypertension (Dufouil et al., 2001; Maillard et al., 

2012) and aggressive blood pressure reduction (Sabayan B et al., 2013). 

Once obtained the optimal analysis option setting (Mixed Training, no FA, BC, Global 

Threshold) we tried to improve our WMH prediction model, both in terms of input data (i.e. 

using the harmonised WMH% volumes) and model complexity. After defining Elastic Net 

as the best linear regression model (compared to GLM, Random forest and Ridge 

Regression), we trialled Gaussian Process regression (GP), a technique that can describe 
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non-linear relationships and can provide confidence intervals on WMH% predictions. We 

fitted the GP model with the non-imaging variables that best predicted WMH% using Elastic 

Net and that were common to both Whll and BB, and we found the optimal hyper-

parameters, tuned specifically on our datasets. 

When trained and tested on BB, GP produced satisfying results (Spearman correlation 

between WMH% actual and predicted value: rs= 0.43), considering that the involved 

predictive variables were only nine. However, the non-linear GP predictor did not 

outperform the linear Elastic Net one.  Next, the model was assessed for its ability to predict 

in new data (Whll), by comparing models: (1) trained on BB and tested on Whll and (2) both 

trained and tested on Whll. This allows us to verify whether (1) GP can be used as a general 

WMH% prediction model regardless of the employed scanner and dataset. In this way any 

deviation from the predicted value (used as normative value) can be clinically interpreted as 

potentially pathological. 

Results gave greatly comparable performances in terms of model-specific Spearman 

correlations (1. rs= 0.37, 2. rs= 0.38), a high correlation value between each other (rs= 0.92) 

and very similar residual analysis plots. Moreover, the use of a Bland-Altman plot confirmed 

a good agreement between the two models. However, a linear pattern between relative errors 

and WMH%, yet within the confidence interval, was observed. It can be explained by the 

low amount of data within BB of subjects over 70 years, usually associated with greater 

lesional loads, which is likely to bias the BB trained GP model.  

In summary, it was evident that the GP model trained on BB was able to give satisfying 

outputs either being tested on BB itself or on Whll.  For this reason, it can be used as a 

general prediction model to estimate the WMH% for a new patient regardless of the cohort 

to whom it belongs. This was an additional proof of the effect of data integration achieved 

throughout our work.  

 

5.2 Conclusions 

With this work we achieved a successful harmonisation of measures of White Matter 

Hyperintensities (WMHs) of presumed vascular origin across different large datasets. 

Therefore, we contributed overcoming the barriers that hinder the possibility by the clinical 

and the scientific communities to integrate observations across studies. Our work led to three 

main outcomes: firstly, we developed a Parser to harmonise non-imaging variables across 
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studies, which is specific for the datasets used in our work but can be adapted to other studies. 

Secondly, we optimised the analysis pipeline for extracting comparable WMH measures 

across scanners/studies, including increasing the accuracy and robustness of pre-existing 

software (BIANCA), used to segment white matter lesions. Finally, we proposed a model to 

predict the amount of WMHs from demographic and clinical data and also to assess 

harmonisation beyond the availability of annotated sets. As a future clinical application, the 

predicted value obtained from a normative population can be compared with the measured 

value to help detecting deviations from the norm. This has the potential to provide physicians 

with a tool that could help diagnosis and prognosis for diseases involving WMHs, like 

vascular dementia, cognitive impairment and stroke.  

Further future developments may address the automatic WMH segmentation tool BIANCA. 

Our work tried to optimise both segmentation accuracy and sensitivity. However, the amount 

of false positive clusters could be reduced introducing a global thresholding value on the 

minimum cluster size classifiable as lesion, therefore obtaining an overall increase in the 

precision of segmentation.  

Other developments would improve the harmonisation method validation trying to integrate 

additional cohorts with the ones considered so far, in order to test whether the general 

harmonising effect, achieved throughout our work, would still be valid on completely new 

and unseen datasets. 

Preliminary results of the analysis carried out during this project have been or will be 

presented at international conferences by the following accepted works: 1) “Harmonising 

white matter hyperintensities measures across studies: impact of BIANCA training options”, 

L. Griffanti, I. Bertani, V. Bordin, I. Mattioli, G. Zamboni, S.Suri, E. Zsoldos, K.P. 

Ebmeier, M.M. Laganà, G. Baselli, M. Jenkinson, C.E. Mackay, E. Duff. Organisation for 

Human Brain Mapping Conference, Rome 2019; 2) “Between- and within-rater agreement 

in white matter hyperintensity segmentation from manual rating and a supervised automated 

classifier, FSL-BIANCA”, L. Griffanti, I. Mattioli, V. Bordin, I. Bertani, S. Suri, E. 

Zsoldos, K.P. Ebmeier, C.E. Mackay, G. Zamboni. Accepted as research presentation at the 

European Congress of Radiology, Vienna 2020. 

A journal paper is in preparation. 
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