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Sommario

Il tracciamento di particelle attraverso gli elementi di un acceleratore necessita di
metodi numerici che siano accurati ed efficienti. L’obiettivo di questa tesi è studiare
e testare metodi che garantiscano la conservazione delle proprietà del moto delle
particelle, anche nel caso di passaggio attraverso elementi non lineari.
In questo lavoro sono stati implementati due metodi di ricostruzione e post-
processamento del potenziale vettore in casi realistici, con lo scopo di conservare le
proprietà di divergenza nulla del campo magnetico. Questi sono stati poi confrontati
con i più classici metodi di interpolazione.
Diverse tecniche di integrazione numerica, utilizzate per il calcolo delle equazioni
del moto, sono state poi messe a confronto. Infine, sono stati studiati gli effetti di
diversi metodi di interpolazione sull’efficacia del processo di integrazione.

Parte di questo lavoro è stata sviluppata durante uno stage di quattordici mesi
presso il CERN (European Organization for Nuclear Research) di Ginevra, sotto la
supervisione del Dr. Andrea Latina. Al termine di questa esperienza, il lavoro è
stato completato presso il Politecnico di Milano.

Parole chiave: Tracciamento di particelle, Metodi numerici, Post-processamento,
Integratori numerici, Ricostruzione a divergenza nulla.
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Abstract

Particle tracking in accelerators elements requires accurate and efficient numerical
methods. The aim of this thesis is to study and test methods which guarantee the
conservation of particle motion properties when crossing non-linear elements. Two
techniques for the reconstruction and post-processing of realistic vector potentials,
aiming to preserve the divergence free property of the magnetic field, have been
implemented and compared with more classical interpolation methods. Various
integration techniques for the determination of particle motion have been compared.
Moreover, the impact of different interpolation methods on the numerical integration
process was observed.

The idea for this thesis work started during an internship at CERN (European
Organization for Nuclear Research, Geneva, Switzerland), from September 2017
to November 2018. There, my work was coordinated by Dr. Andrea Latina, in
the “Beam Department” (BE), “Accelerators and Beam Physics” (ABP) group. At
the end of the time spent at CERN, this work was continued and completed at
Politecnico di Milano. This thesis presents the results achieved independently in both
the experiences, analysing the process of particle tracking from two complementary
view points.

Keywords: Particle tracking, Numerical methods, Post-processing, Numerical
integrators, Divergence-free reconstruction.
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Introduction

CERN is the most important research centre in the world for particle physics.
CERN’s mission is to provide a unique range of particle accelerator facilities to
uncover what the universe is made of and how it works. Particle accelerators
are used to obtain extremely high-energy particle beams that collide in dedicated
detection areas, called experiments. The products of such collisions are detected,
recorded and analysed, the final goals being on one hand to confirm theoretical
predictions and, on the other hand, to search for new theoretical explanations of
previously unseen phenomena, to understand the most fundamental laws of nature
and ultimately advance the boundaries of human knowledge.
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Figure 1: CERN accelerators complex.

A particle accelerator consists of a large number of magnets and other electromag-
netic devices that determine the particle trajectory through the accelerator. Each
device is described by its own equations of motion, which are derived from the exact
Hamiltonian of the system. However, these equations cannot be solved exactly in
general. For this purpose, a number of approximations are introduced in order to
simplify the solution process and to speed up the computation. These approxima-
tions are only valid under certain conditions and ignore many non-linear effects.
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2 Introduction

Nonetheless, they are often considered to be appropriate and find widespread use
in beam physics.

In order to evaluate the long term stability of particle beams and to simulate
particle losses, particle tracking algorithms are applied, which simulate the motion
of the particle through each magnet in the accelerator. The effect of the magnet on
the motion of the particle is modelled in what will be referred to as a map. Indeed,
each magnet can be represented by a mapping which maps the initial coordinates
at the entrance of the magnet to the final coordinates at the exit of the magnet. If
w i denotes the initial coordinates, w f the final coordinates and M the map of a
magnet, this mapping can be denoted as:

w f = M(w)w i.

The mathematical form of these maps varies depending on the approximations
used in their derivations. In a linear case they can be expressed in matrix form.
Generally, the maps representing specific magnets are non-linear. The motion of
any Hamiltonian system is represented by a sympletic map, which implies that
the volume in phase space is conserved by the time evolution of these systems, as
guaranteed by the Liouville theorem.

The typical procedure followed in a particle tracking operation, in the case of
accelerator elements that cannot be represented by a linear map, is sketched in
fig. 2. The field data of such accelerator elements are generally expressed in terms
of magnetic field at discrete grid points in space, computed either numerically,
using dedicated electromagnetic solvers, or measured. Then, in order to retrieve
the complete behavior of the field, these data are interpolated. The information
retrieved is used in the equations of motion of the system to compute the particle’s
trajectory, defining in this way the particle dynamics. Finally, tracking algorithms,
simulating the particles passing repeatedly inside the element, can be applied. In

Discrete 
Field
Data

TrackingNumerical 
Integration

Interpolation

Figure 2: Standard tracking procedure.

order to track the motion of the particles effectively, numerical approximations are
usually necessary.

On one hand, electric and magnetic fields are too complex to be expressed in terms
of analytic functions, so that, as we already mentioned, the field is numerically
evaluated at a discrete set of points. An estimation of its value at a generic point can
then be provided using either reconstruction or interpolation methods. Performing
particle tracking with interpolated magnetic field may cause some problems. For
example, the interpolated fields may not satisfy the divergence-free condition,
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because of measurement errors or an improper interpolation itself. In this case,
results of the tracking will not correspond to the real dynamics of the system. In
particular, if the divergence free condition over the magnetic field is not satisfied by
the reconstructed magnetic field, Liouville theorem does not hold anymore. If the
volume occupied by the particles in phase space is not conserved, the consequence
is an artificial growth or damping of the size of a cell in phase space, due to this
bad approximation of the field values.

The importance of preserving ∇·B = 0 was pointed out in many fields: for example,
Brackbill and Barnes [BB80] showed that in the context of magnetohydrodynamics,
the failure of this condition may lead to unphysical sources orthogonal to the field
in the model. As stated in [McN11], the key fact is that the discrete point values of
the magnetic field do not have a defined derivative, so, if ∇ ·B = 0 is respected,
depends entirely on the method used to produce the continuous representation
of the magnetic field from which derivatives are taken. We know that Liouville
theorem holds under specific conditions: any forces encountered by the particles
must be conservative and differentiable (i.e. “smooth”), they must not change
the total energies of the particles and they cannot be abrupt forces such as those
arising from collisions. According to [BB80], if the condition ∇ · B = 0 is not
respected, it can be proved that the energy integral is not in conservation form. As
a consequence, the energy of an isolated system is not a constant of the motion
and Liouville theorem does not hold.

On the other hand, an accurate description of the particle dynamics is achieved
using numerical methods which solve the Hamilton Ordinary Differential Equations
(ODE), called integration methods. Hamiltonian integrators can be symplectic
or non-symplectic. The numerical approximation to a Hamiltonian system ob-
tained from an ordinary numerical method (non-symplectic) may introduce a
non-Hamiltonian perturbation in the long term. This means that a Hamiltonian
system integrated using an ordinary numerical method may become a dissipative
system, with completely different long-term behaviour. This problem has led to the
introduction of methods of symplectic integration for Hamiltonian systems, which
do preserve the features of the Hamiltonian structure, imposing each step of the
integration to be a canonical transformation.

Interpolation and integration methods influence each other and the overall accuracy
of the particles tracking. An appropriate choice of both these aspects is necessary
in order to obtain accurate results. In this thesis, the impact of field reconstruction
and interpolation techniques was studied during the internship at CERN, while a
comparison of the accuracy of several integration methods was carried out in the
final part of the thesis work at Politecnico.

The main goal of the work done at CERN was to provide reconstruction and
post-processing algorithms for the vector potential of the field on a discrete grid,
preserving the divergence-free characteristics, and prove that these techniques,
together with proper interpolation methods and accurate integration algorithms,
are able to improve volume preservation in phase space, also for non-linear field
maps. The procedure described in fig. 2, was completed with extra steps, in which
the magnetic field data are reconstructed in such a way that the final magnetic
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field preserves its divergence free properties (see fig. 3).

Discrete 
Field
Data

TrackingNumerical 
Integration

Reconstruction &
Post-processing

Methods

Proper 
Interpolation

Figure 3: New tracking procedure.

This part of the work was performed improving and completing the simulation code
“RF-Track” [Lat16], developed at CERN by Dr. Andrea Latina, which implements
particle tracking through accelerators, using field maps of various kind. Two
alternative techniques to achieve divergence free reconstructions were considered
and their impact was assessed by numerical simulations.

On the other hand, the main goal of the work done at Politecnico was to study
the accuracy and efficiency of different integration methods and their interactions
with the interpolation techniques. Indeed, as pointed out in [Sim+19], if the errors
induced by field reconstruction and interpolation are significant, non symplectic
integration methods appear to be competitive with symplectic ones (even on rela-
tively long integrations). For this reason, implicit high-order symplectic integrators
and explicit Runge Kutta methods were compared, in order to assess their effi-
ciency and their computational costs. In this case, a magnetic field, whose analytic
expression is known, was considered. It has been shown that the accuracy of the
field reconstruction and interpolation techniques are both limiting factors for the
accuracy of the particle tracking procedures.

This thesis is organized as follows. In chapter 1, the system we considered in
our tracking analysis is presented. In chapter 2, some general results concerning
the particle dynamics in Hamiltonian systems are recalled. Also, the particular
Hamiltonian used in this thesis is presented. In chapter 3, an overview of the
numerical methods considered is given. The two reconstruction and post-processing
methods developed at CERN are explained in detail. Afterwards, the quadrature
formulae and the ODE techniques applied are introduced. In chapter 4, the results
of the tests over the post-processing methods and the different integrators are
shown.



Chapter 1

Magnetic Field and Coils System

This chapter provides the reader with an overview of the classical theory of electro-
magnetism (section 1.1) and a presentation of the main characteristics of the system
for which we tested our algorithms, which is a system of coils leading opposite
currents (section 1.3).

1.1 The Maxwell’s Equations

In the following section we are going to introduce the basic concepts and formalism
used in the treatment of the magnetic field. The reader is referred to [Jac99] for a
more detailed description. Unless specified otherwise, the system of measurement
adopted is the International System of Units (SI), reported in Appendix (A).

The Maxwell equations describe the electric and magnetic fields arising from
distributions of electric charges and currents, and how those fields change in time.
They can be written in a differential form as:

∇ · E =
ρ

ε
∇ ·B =0

∇× E =− ∂B

∂t

∇×B =µj + µε
∂E

∂t

(1.1)

where E is the electric field, B is the magnetic field, ρ is the charge density, ε is
the vacuum permittivity, µ is the vacuum permeability and j is the current density.
In this thesis, we consider stationary magnetic fields in a region free of sources or
currents. In these conditions, the equations (1.1) become:

5



6 Chapter 1. Magnetic Field and Coils System

∇ · E = 0

∇ ·B = 0

∇× E = 0

∇×B = 0

(1.2)

We assume to be working in a simply connected domain. A domain Ω in R3 is said
to be simply connected if it is both contour-wise and surface-wise simply connected
[BN82].
Definition 1.1.1. A domain Ω is said to be contour-wise simply connected (c.s.c.)
if every closed regular curve Γ contained in Ω is the boundary of an open surface S
entirely contained in Ω. In a c.s.c. domain every irrotational vector field can be
written as the gradient of a global one-valued C2 magnetic scalar potential:

∇× v = 0 in Ω c.s.c. ⇒ v = −∇u, u one-valued in Ω.

Definition 1.1.2. A domain Ω is said to be surface-wise simply connected (s.s.c)
if every closed regular surface S contained in Ω is the boundary of a domain D
entirely contained in Ω. In a s.s.c. domain a C1 solenoidal (divergence-free) vector
field can be written as the curl of a C2 global one-valued vector potential:

∇ · v = 0 in Ω s.s.c. ⇒ v = ∇×V, V one-valued in Ω.

Thanks to the regularity of the domain, the magnetic field B, which is divergence-
free (∇ ·B = 0), can be expressed as the curl of some other vector field A, called
the magnetic vector potential :

B = ∇×A.

Since the magnetic field is also irrotational (∇×B = 0), it can also be written as
the gradient of a scalar potential ϕ, called the magnetic scalar potential :

B = −∇ϕ.

It can be proved that the vector potential is defined up to a constant and up
to a gradient of a scalar function. Indeed, if we define a scalar function ψ and
A′ = A +∇ψ, we can write:

∇×A′ = ∇× (A +∇ψ) = ∇×A = B,

because the curl of a gradient is zero. Similarly, the magnetic scalar potential is
defined up to a constant. Indeed, defining g a constant function and ϕ′ = ϕ+ g,
we get:

∇ϕ′ = ∇(ϕ+ g) = ∇ϕ = −B,

because the gradient of a constant function is null. A particular choice of the scalar
and vector potentials is called a choice of gauge.
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1.2 Transfer Matrix for a Solenoid

Let us consider a solenoid as shown in fig. 1.1, with length L and N coils leading
a current I. The magnetic field, considering the cylindrical coordinates (r, z, ϑ),
is composed by a radial and an axial component, called Br and Bz, while Bϑ = 0
because of the axial symmetry of the system. Inside the body of the solenoid, the
axial component is constant and equal to:∮

C

B · dl = µ0I ⇒ Bz0 = µ0
N

L
I (1.3)

where C is the rectangular circulation path in fig. 1.1. However, real solenoids
present also an entry and an exit region. In these regions one has:∮

S

B · ds = 0⇒ Bzπr
2 + 2πr

∫
Brdz = 0⇒ Br = −r

2

dBz

dz
, (1.4)

where S is the integration volume shown in fig. 1.1. Indeed, a variation of the
magnetic field along the axis of the solenoid gives rise to a radial component of
the magnetic field. This term is responsible for the end effects seen by particles
entering or leaving a solenoid, since, at the end of a solenoid, the field falls from a
given value Bz0 to zero. As an approximation, one can look at the solenoid as split

L

I

Figure 1.1: Circulation structure in the solenoid.

in three parts: an entry region, a body region and an exit region (see fig. 1.2). We
first consider the behavior of a particle entering the solenoid. We assume that its
velocity is aligned with the direction z of the axis of the solenoid. In this region, we
have to look at the action of the radial field which imparts an angular momentum
on the beam, resulting in a change of the azimuthal momentum. Indeed, in the
absence of electrical fields, the Lorentz force is given by:

dp

dt
= qv ×B. (1.5)

As we previously said, the particle is moving along the z axis with velocity vz
(vr = vϑ = 0). Equation (1.5) becomes:

dpϑ
dt

= qvz Br, (1.6)
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Figure 1.2: Subdivision of the solenoid magnetic field along the z axis.

where ϑ indicates azimuthal direction and pr = pz = 0. After substituting the
expression of Br given in (1.4), we can rewrite (1.6) as:

dpϑ
dz

dz

dt
= qvz(−

r

2

dBz

dz
),

ending up with:
dpϑ
dz

= −qr
2

dBz

dz
.

Afterwards, integrating in z over the entrance region, one obtains a variation of the
azimuthal momentum equal to:

∆pϑ = −qr
2
Bz. (1.7)

As a consequence, the variation of the magnetic field, which varies for instance
from zero to a given value at the entrance of a solenoid, induces a transverse kick
in the azimuthal momentum. In other words, the particles crossing the fringe fields
experience a transverse force. This phenomenon is responsible for the particles
entering with a velocity parallel to the axis of the solenoid to start spiralling inside
the solenoid. Finally, we can retrieve the vertical and horizontal components of the
momentum as:

∆px =−∆pϑ sin(ϑ) =
qr

2
Bz sin(ϑ) =

qBz

2
y.

∆py =∆pϑ cos(ϑ) = −qr
2
Bz cos(ϑ) = −qBz

2
x.

To simplify notation, we define:

K =
qBz

2P0

, (1.8)
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where P0 is a called the reference momentum. Although the reference momentum
can be chosen arbitrarily, a smart choice is to set P0 as the momentum that particles
are intended to have by design. Then, we define P0 = pz. Finally, we get:

x′ =
dx

dz
=

∆px
P0

=
qBz

2P0

y = Ky;

y′ =
dy

dz
=−Kx;

(1.9)

The transfer matrices for the transverse variables (x, x′, y, y′) in the entry and the
exit regions are then:

Mentry =


1 0 0 0
0 1 K 0
0 0 1 0
−K 0 0 1

 , Mexit =


1 0 0 0
0 1 −K 0
0 0 1 0
K 0 0 1

 .

In the body of the solenoid the field is constant and directed along the z axis. The
motion of a particle is circular in the xy plane. The geometry we are considering is
the one shown in fig. 1.3. vϑ is the transverse velocity, vx and vy are its transverse
plane components, ρϑ is the radius of the coil and ϕ is the transverse angle. Over

Figure 1.3: Transverse section of the solenoid.

the length L of the solenoid, the total rotation angle is:

ϑ = ωtL =
−qBz

m

L

vz
= −qBz

P0

L = 2KL, (1.10)

where ω is the angular velocity and tL the time needed to go through the solenoid.
Let us define the quantities x′ and y′, which are the derivatives of x and y with
respect to z. The index i and f indicate the initial and final position:

x′f =x′i cos(ϑ)− y′i sin(ϑ),

y′f =x′i sin(ϑ) + y′i cos(ϑ).
(1.11)



10 Chapter 1. Magnetic Field and Coils System

Setting:

cosϕ =
vyi
vϑ

=
vyi
vz

vz
vϑ

=
dy

dz

L

ρϑ tLω
= y′i

1

ρϑ

L

ϑ
,

sinϕ =− vxi
vϑ

= −vxi
vz

vz
vϑ

= −x′i
1

ρϑ

L

ϑ
,

the position transformation is given by:

∆x =xf − xi
= ρϑ[cos (ϕ+ ϑ)− cos(ϕ)]

= ρϑ[cosϕ(cosϑ− 1)− sinϕ sinϑ]

= ρϑ[y′i
1

ρϑ

L

ϑ
(cosϑ− 1) + x′i

1

ρϑ

L

ϑ
sinϑ]

= xi
L

ϑ
sinϑ− y′i

L

ϑ
(1− cosϑ).

(1.12)

The same procedure can be followed also for the y variable. Finally, the transfer
matrix for the body of the solenoid is:

Mbody =


1 L

ϑ
sinϑ 0 −L

ϑ
(1− cosϑ)

0 cosϑ 0 − sinϑ
0 L

ϑ
(1− cosϑ) 1 L

ϑ
sinϑ

0 sinϑ 0 cosϑ



=


1 sin 2KL

2K
0 (1−cos 2KL)

2K

0 cos 2KL 0 − sin 2KL

0 − (1−cos 2KL)
2K

1 sin 2KL
2K

0 − sin 2KL 0 cos 2KL

 .

In this way, setting:

C = cos (KL) , S = sin (KL) ,

we can obtain the transfer matrix for a solenoid as:

Msol = Mexit ·Mbody ·Mentry =


C2 SC

K
SC S2

K

−KSC C2 −KS2 SC

−SC −S2

K
C2 SC

K

KS2 −SC −KSC C2

 . (1.13)

The transfer matrix of a solenoid shows full coupling of the components in the
transversal direction. Physically, particles moving through a solenoid follow helical
trajectories, performing cyclotron oscillations around the field lines.

From (1.13) it is possible to prove that solenoids are able to focus both transverse
planes, simultaneously. Indeed, following the thin lens approximation, we can
consider the length L, hence ϑ, small, and keep the first term of the Taylor series
for the cosine and sine. The matrix takes then the form [Wie07]:

M thin
sol =


1 0 0 0
−1/f 1 0 0

0 0 1 0
0 0 −1/f 1

 , (1.14)
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with 1
f

= K2L =
(
qBz
2P0

)2
L. This property is extremely useful in particle acceler-

ators, in which this double focusing is generally achieved with a sequence of two
rotated quadrupoles. However, the price that has to be paid for this ability is the
coupling of the motion over the transverse plane. This fact is complicating the
dynamics of particles, allowing the passage of errors from the x-axis to the y-axis
and vice versa.

In order to remove the coupling, one can consider two consecutive solenoids with
opposite magnetic fields Bz and −Bz. Indeed, calling M−

sol the matrix obtained
from (1.13) evaluated setting:

K− = −qBz

2P0

= −K,

C− = cos
(
K−L

)
= cos (KL) = C,

S− = sin
(
K−L

)
= − sin (KL) = −S,

we have:

M−
sol =


C2 CS

K
−CS −S2

K

−CSK C2 S2K −CS
CS S2

K
C2 CS

K

−S2K CS −CSK C2

 .

The product between the two matrices Msol ·M−
sol is given by:

C4 − S4 2C S3

K
+ 2C3S

K
0 0

−2C S3K − 2C3SK C4 − S4 0 0

0 0 C4 − S4 2C S3

K
+ 2C3S

K

0 0 −2C S3K − 2C3SK C4 − S4

 .

Simplifying the trigonometric expressions, the transfer matrix of a cell composed
by two opposite solenoids can be written as:

2cos (KL)2 − 1 4P cos (KL) sin (KL)
Bq

0 0

−Bq cos (KL) sin (KL)
P

2cos (KL)2 − 1 0 0

0 0 2cos (KL)2 − 1 4P cos (KL) sin (KL)
Bq

0 0 −Bq cos (KL) sin (KL)
P

2cos (KL)2 − 1

 ,

which can be finally written as:

M =


2C2 − 1 2SC

K
0 0

−2KSC 2C2 − 1 0 0
0 0 2C2 − 1 2SC

K

0 0 −2KSC 2C2 − 1

 . (1.15)



12 Chapter 1. Magnetic Field and Coils System

1.3 Coils System

Solenoids are interesting elements but it is not easy to work directly with them:
the coupling of the motion over the transverse plane allows the passage of errors
from the x-axis to the y-axis and vice versa, resulting in a complicated dynamics
of the particle motion. For this reason we focused on a particular system of
coils leading opposite currents. A single coil can be formally considered as the
approximation of a solenoid with a single turn of wire, and, as a consequence, the
considerations about coupling and decoupling made in section 1.2 apply also to
this system. Considering a system composed by a sequence of coils provides us
multiple advantages, like periodicity, exact knowledge of the transport matrix and
of the complete analytic field equations, including the so called fringe fields. This
last characteristic is of crucial importance. The Maxwell equations require the
presence of a transition region between a null field and a solenoidal or multipole
magnetic field. These transition regions are usually known as fringe fields. Accurate
models of an accelerator must include them, since they may have significant and
complicated effects: they can introduce non-linearities in the equations of motion,
or they can make a substantial contribution to the desired effects of the magnetic
field [Wol14]. However, the mathematical description of a fringe field can be rather
complicated. The study of a system of coils represents a way to overcome fringe
field definition, since the magnetic field is known analytically everywhere in space.

In order to understand the behavior of such a system, let us consider the magnetic
field generated by a pair of coils in two different situations. When the coils are
leading the same current, their magnetic fields sum together as in figure 1.4. When

z

B
z

Bz first coil

Bz second coil

Bz superposition

Figure 1.4: Magnetic field generated by two coils leading the same currents.

the system is composed by a large number of these coils (placed at an appropriate
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distance from each other), we can approximate the system with a solenoid. Such a
system is generating a uniform magnetic field, perpendicular to the coil’s surface.
As we saw in section 1.2, the particle dynamics can be approximated by linear
equations and the motion in the horizontal and vertical direction (in the transverse
plane) is strongly coupled.

i ii

x

y

z

Bz

Figure 1.5: System of coils leading opposite currents.

Since each coil can be considered as the approximation of a solenoid with a single
turn of wire, we decided to focus on a system of coils leading opposite currents
(see fig. 1.5), so that the coupling effect could be cancelled (keeping anyways
the knowledge about the fringe fields behavior). When two coils leading opposite
currents are placed one next to the other, their magnetic fields sum together as
in fig. 1.6. In this case, as it was proved in (1.15), the vertical and the horizontal

z

B
z

Bz first coil

Bz second coil

Bz superposition

Figure 1.6: Magnetic field generated by two coils leading opposite currents.

motion of the particles passing through this system are decoupled.
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1.4 Coils Equations

Following [Kun07], we will now derive the equations describing the magnetic field
generated by a coil leading a certain current.

The magnetic field generated by a steady current loop can be expressed using the
Biot–Savart law as:

B =
µ0

4π

∫
Idl×R

|R3|
. (1.16)

where dl is the coil element, I is the steady current and R is the distance from a
given point on the loop to the observation point P . In order to find the analytic

Figure 1.7: Coil reference system

expression of the field, the integral in (1.16) has to be computed. This can be done
in terms of complete elliptic integrals of the first and second kind.

1.4.1 Elliptic integrals

Elliptic integrals originally arose in connection with the problem of giving the arc
length of an ellipse [AWH13]. These special functions can be computed numerically
(see [AS65]) and, in general, they are expressed as a function of the parameter k,
called elliptic modulus or eccentricity. We can distinguish different kinds of elliptic
integrals. In our study we will focus only on the complete elliptic functions of the
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first and second kind. Assuming a k such that 0 < k2 < 1, the complete elliptic
integral of the first kind is defined as:

K(k) =

∫ π
2

0

dα√
1− k2 sin2 α

. (1.17)

The complete elliptic integral of the second kind is:

E(k) =

∫ π
2

0

√
1− k2 sin2 α dα. (1.18)

We are now going to define the expressions for the derivative of K(k) and E(k),
since they will be useful in the calculation of B. The derivative of K is given by:

dK(k)

dk
=

∫ π
2

0

k sin2 α

(1− k2 sin2 α)
3
2

dα. (1.19)

Since
k sin2 α

(1− k2 sin2 α)
3
2

=
1

k(1− k2 sin2 α)
3
2

− 1

k
√

1− k2 sin2 α
,

we can rewrite (1.19) as:

dK(k)

dk
=

∫ π
2

0

1

k(1− k2 sin2 α)
3
2

dα−
∫ π

2

0

1

k
√

1− k2 sin2 α
dα.

By definition of K, the second integral is K
k
. It can be shown that [AWH13]:

E(k) = (1− k2)
∫ π

2

0

dα

(1− k2 sin2 α)
3
2

,

so that as a consequence:

dK(k)

dk
=

E(k)

k(1− k2)
− K(k)

k
. (1.20)

The derivative of E(k) is given by:

dE(k)

dk
= −

∫ π
2

0

k sin2 α√
1− k2 sin2 α

dα.

Since

− k sin2 α√
1− k2 sin2 α

=

√
1− k2 sin2 α

k
− 1

k
√

1− k2 sin2 α
,

we can rewrite and simplify the derivative as:

dE(k)

dk
=

∫ π
2

0

√
1− k2 sin2 α

k
dα−

∫ π
2

0

dα

k
√

1− k2 sin2 α

=
E(k)

k
− K(k)

k
. (1.21)
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1.4.2 The Vector Potential

The computation of the magnetic field generated by a current loop in any point
of the space will be obtained starting from the expression of its vector potential
[Sha12], and then using the formula B = ∇ ×A. The expression for the vector
potential is:

A =
µ0I

4π

∫
dl

R
, (1.22)

where dl is the coil element and R is the distance from any point on the loop to
the point of observation P . Consider that a loop of radius a centered on the z axis
and lying on a plane parallel to xy, as represented in figure 1.7. For simplicity,
we will determine A at a point P with coordinates (r, 0, z). Choosing y = 0 or
x = 0 does not change the final configuration, thanks to the cylindrical symmetry
of the system. Moreover, in the most general case in which the vector potential is
computed in a point P = (x, y, z), the following demonstration will still be valid,
as long as r will be imposed equal to

√
x2 + y2.

Denoting by ϑ the angle from the x axis to a generic point of the loop, the coordinates
of the same point on the loop will be (a cosϑ, a sinϑ, 0).
The distance from P to any point on the loop is given by:

R =
√

(r − a cosϑ)2 + a2 sin2 ϑ+ z2 = (1.23)

=
√
r2 − 2ar cosϑ+ a2(cos2 ϑ+ sin2 ϑ) + z2

=
√
r2 + a2 + z2 − 2ar cosϑ.

The length element along the coil is:

dl = −a sinϑ dϑ x̂ + a cosϑ dϑ ŷ. (1.24)

Substituting (1.23) and (1.24) in (1.22), we get:

A =
µ0I

4π

[∫ 2π

0

−a sinϑ dϑ√
r2 + a2 + z2 − 2ar cosϑ

x̂

+

∫ 2π

0

a cosϑ dϑ√
r2 + a2 + z2 − 2ar cosϑ

ŷ

]
.

(1.25)

One can prove by symmetry arguments that the overall contribution in the x
direction is zero, canceling the first term in (1.25). Moreover, the component in the
y direction integrated from 0 to 2π can be rewritten as twice the same function
integrated from 0 to π. Finally, we can also switch to cylindrical coordinates,
rewriting (1.25) as:

A =
µ0Ia

2π

∫ π

0

cosϑ dϑ√
r2 + a2 + z2 − 2ar cosϑ

ϑ̂.

This integral will now be expressed in terms of elliptic functions. First of all, we
can rewrite the denominator inside the integral as:

√
r2 + a2 + z2 − 2ar cosϑ =

√
(r + a)2 + z2 − 4ar

(
1 + cosϑ

2

)
.



1.4. Coils Equations 17

Then, assuming ϑ = π − 2α, we have:

cosϑ = − cos(2α) = −(1− 2 sin2 α). (1.26)

So, we can write:
(1 + cosϑ) /2 = sin2 α.

Afterwards, factoring out (r + a)2 + z2, we get:√
(r + a)2 + z2

√
1− 4ar

(r + a)2 + z2
sin2 α.

If we define the parameter k as:

k =

√
4ar

(r + a)2 + z2
,

then the denominator becomes:
2
√
ar

k

√
1− k2 sin2 α. (1.27)

Concerning the numerator inside the integral in (1.25), it will be rewritten as (1.26).
Putting together numerator and denominator and remembering dϑ = −2dα, (1.25),
we get:

A =
µ0Ia

2π

∫ π

0

−2(1− 2 sin2 α) dα
2
√
ar
k

√
1− k2 sin2 α

ϑ̂

=
µ0Ik

2π

√
a

r

∫ π

0

−(1− 2 sin2 α) dα√
1− k2 sin2 α

ϑ̂

=
µ0Ik

2π

√
a

r

[∫ π
2

0

−dα√
1− k2 sin2 α

+

∫ π
2

0

2 sin2 α dα√
1− k2 sin2 α

]
ϑ̂.

The first term of the equation is (1.17), K(k). The second term can be further
reformulated as:

2 sin2 α√
1− k2 sin2 α

=
1

k2

(
1√

1− k2 sin2 α
−
√

1− k2 sin2 α

)
.

Therefore, for the second integral we get:

2

k2

[∫ π
2

0

dα√
1− k2 sin2 α

−
∫ π

2

0

√
1− k2 sin2 α dα

]
,

which is equivalent to:
2

k2
(K(k)− E(k)).

Finally, we can write:

A =
µ0Ik

2π

√
a

r

[
−K(k) +

2

k2
(K(k)− E(k))

]
ϑ̂

=
µ0I

2π

√
a

r

[(
−k +

2

k

)
K(k)− 2

k
E(k)

]
ϑ̂.

(1.28)
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1.4.3 The Magnetic Field

We will now derive an expression for B from the curl of the vector potential. In
cylindrical coordinates, one has:

∇×A =
1

r

(
∂Az
∂ϑ
− ∂Aϑ

∂z

)
r̂ +

(
∂Ar
∂z
− ∂Az

∂r

)
ϑ̂+

1

r

(
∂

∂r
rAϑ −

∂Ar
∂ϑ

)
ẑ

= −∂Aϑ
∂z

r̂ +
1

r

∂

∂r
(rAϑ) ẑ,

since A has only a ϑ component. In order to compute each component, we first
compute the derivative of k with respect to r and z.

∂k

∂z
=

1

2

√
(r + a)2 + z2

4ar
· −8arz

[(r + a)2 + z2]2 k

= −k
3z

4ar
(1.29)

∂k

∂r
=

1

2

√
(r + a)2 + z2

4ar
· 4a [(r + a)2 + z2]− 8arz

[(r + a)2 + z2]2

=
k

2r
− k3(r + a)

4ar
. (1.30)

Starting from these expressions, we can compute the two components of the magnetic
field. The radial component can be retrieved as:

−∂A
∂z

=− µ0I

2π

√
a

r

[
−
(

1 +
2

k2

)
∂k

∂z
K(k) +

(
2

k
− k
)
∂k

∂z

dK(k)

dk

+
2

k2
∂k

∂z
E(k)− 2

k

∂k

∂z

dE(k)

dk

]
. (1.31)

Substituting (1.20), (1.21) and (1.29) in (1.31):

−∂A
∂z

= −µ0I

2π

√
a

r

[(
1 +

2

k2

)
k3z

4ar
K(k)−

(
2

k
− k
)
k3z

4ar

(
E(k)

k(1− k2)
− K(k)

k

)
−

2

k2
k3z

4ar
E(k) +

2

k

k3z

4ar

(
E(k)

k
− K(k)

k

)]
By expanding and simplifying, we get:

−∂A
∂z

= −µ0I

2π

√
a

r

[
kz

2ar
K(k)− 2kz − k3z

4ar(1− k2)
E(k)

]
= − µ0Ikz

4π
√
ar3

[
K(k)− 2− k2

(1− k2)
E(k)

]
.
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We can now determine the z component of B. We have to compute ∂
∂r

(rA), where:

rA =
µ0I

2π

√
ar

[(
−k +

2

k

)
K(k)− 2

k
E(k)

]
,

so:

∂

∂r
(rA) =

µ0I

4π

√
a

r

[(
−k +

2

k

)
K(k)− 2

k
E(k)

]
+
µ0I

2π

√
ar

[(
−1− 2

k2

)
∂k

∂r
K(k)

+

(
−k +

2

k

)
∂k

∂r

dK(k)

dk
+

2

k2
∂k

∂r
E(k)− 2

k

∂k

∂r

dE(k)

dk

]
. (1.32)

Again, substituting (1.20), (1.21) and (1.29) in (1.32) we have:

∂

∂r
(rA) =

µ0I

2π

√
a

r

[(
1

k
− k

2

)
K(k)− E(k)

k

+

(
−2r

k2
− r
)(

k

2r
− k3(r + a)

4ar

)
K(k)

+

(
−kr +

2r

k

)(
k

2r
− k3(r + a)

4ar

)(
E(k)

k(1− k2)
− K(k)

k

)
+

2r

k2

(
k

2r
− k3(r + a)

4ar

)
E(k)− 2r

k

(
k

2r
− k3(r + a)

4ar

)(
E(k)

k
− K(k)

k

)]
.

This expression can be finally expanded and simplified as follows. Moreover, we
also divided the expression by r to get the complete expression for Bz:

1

r

∂

∂r
(rA) =

µ0I

2π

√
a

r3

[(
k(r + a)− ak

2a

)
K(k)

+

(
k2(−2a− 2(r + a) + k2(r + a) + 4a)

4ak(1− k2)

)
E(k)

]

=
µ0Ikr

4π
√
ar3

[
K(k) +

k2(r + a)− 2r

2r(1− k2)
E(k)

]
.

So, finally, the complete expression for the magnetic field is:

B(r, z) =
µ0Ik

4π
√
ar

[
−z
r

(
K(k)− 2− k2

2(1− k2)
E(k)

)
r̂

+

(
K(k) +

k2(r + a)− 2r

2r(1− k2)
E(k)

)
ẑ

]
.
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In order to make the expression more readable and to be consistent with the
formalism used in the implementation we have used for the numerical experiments,
we define:

α =
r

a
, β =

z

a
, γ =

z

r
, Q = (1 + α)2 + β2, B0 =

µ0I

2a
.

and

k =

√
4ar

(r + a)2 + z2
.

The radial and longitudinal components of the magnetic field are then:

Br =
µ0Ik

4π
√
ar

[
−z
r

(
K(k)− 2− k2

2(1− k2)
E(k)

)]
r̂

=
B0γ

π
√
Q

(
2− k2

2(1− k2)
E(k)−K(k)

)
r̂

=
B0γ

π
√
Q

(
1 + α2 + β2

Q− 4α
−K(k)

)
r̂;

Bz =
µ0Ik

4π
√
ar

(
K(k) +

k2(r + a)− 2r

2r(1− k2)
E(k)

)
ẑ

=
B0

π
√
Q

(
K(k) +

4ar2 + 4a2r − 2r [(r + a)2 + z2]

2r [(r + a)2 + z2]− 8ar2
E(k)

)
ẑ

=
B0

π
√
Q

(
K(k) +

1− α2 − β2

Q− 4α

)
ẑ.



Chapter 2

Hamiltonian Systems

The particle dynamics inside a beam line is ruled by the Hamilton equations.
Therefore, in this chapter, following the presentation in [Lan+82], some definitions
and properties of Hamiltonian systems are recalled.

A mechanical system with n degrees of freedom can be described by its generalized
coordinates q ∈ Rn and its generalized velocities q̇ ∈ Rn. The state of a system is
characterized by the Lagrangian function L(q, q̇, t). The most general formulation
of the law governing the motion of mechanical systems is the principle of least
action. According to this principle, a mechanical system occupying the positions
described by q(1) and q(2) at instants t1 and t2, is moving between these two position
in such a way that [Lan+82]:

S(q) =

∫ t2

t1

L(q, q̇, t) dt (2.1)

is minimized. This integral S is called action.

Let us call q = q(t) the trajectory for which S is minimized. A small variation
of δq(t) will increase the value of S. This means that S is increased when q(t) is
replaced by q(t) + δq(t). Since at t1 and t2 all the functions q(t) + δq(t) have to
be equal to q(1)(t) and q(2)(t), it follows that:

δq(t1) = δq(t2) = 0. (2.2)

The correspondent change in S is:

δS(q) =

∫ t2

t1

L(q + δq, q̇ + δq̇, t) dt−
∫ t2

t1

L(q, q̇, t) dt.

When this difference is expanded in a power series, the necessary condition for S to
have a minimum is that the first order terms are zero. Thus, the principle of least
action can be written as:

δS(q) = δ

∫ t2

t1

L(q, q̇, t) dt = 0,

21
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and also:

δS(q) =

∫ t2

t1

(
∂L
∂q

δq +
∂L
∂q̇

δq̇

)
dt = 0.

Since δq̇ = d δq
dt

, we obtain, integrating the second term by parts:

δS(q) =

∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq dt+

[
∂L
∂q̇

δq

]t2
t1

= 0.

Remembering the condition (2.2), we obtain:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0. (2.3)

These n different equations are known as Euler-Lagrange equations. Once the
Lagrangian is known, they allow to define the equations of motion.

In Hamiltonian mechanics, the dynamics of a given system is usually described in
terms of generalized coordinates and momenta of the system [GPS02]. To perform
this change of independent variables, we have to apply a Legendre transformation.
The conjugate momenta are defined as:

pi =
∂L
∂q̇i

(q, q̇, t) i = 1, . . . , n. (2.4)

The total differential of the Lagrangian can be written as:

dL =
∂L
∂q

dq +
∂L
∂q̇

dq̇ +
∂L
∂t
dt

= ṗ dq + p dq̇ +
∂L
∂t
dt.

(2.5)

Working on the last expression, it is possible to retrieve the equivalent form:

d (p q̇− L) = −ṗ dq + q̇ dp− ∂L
∂t
dt. (2.6)

The argument of the differential represents the energy of the system in terms of
generalized coordinates and momenta, which is also called Hamiltonian of the
system:

H(p,q, t) = p q̇− L(q, q̇, t). (2.7)

Substituting (2.7) in (2.6), we have:

dH = −ṗ dq + q̇ dp− ∂L
∂t
dt. (2.8)

It is also interesting to compute the differential of (2.7):

dH =q̇idpi + pidq̇i − dL

=q̇idpi + pidq̇i −
∂L
∂qi

dqi −
∂L
∂pi

dq̇i −
∂L
∂t
dt

=− ∂L
∂qi

dqi + q̇idpi −
∂L
∂t
dt

=
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt.
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from which, comparing it with (2.8), we can retrieve the so called Hamilton equations
of motion or canonical equations :

∂H

∂pi
= q̇i

−∂H
∂qi

=
∂L
∂qi

= q̇i

∂H

∂t
= −∂L

∂t

(2.9)

where qi are the coordinates of the particle (i = 1 . . . n in an n−dimensional space),
pi are the components of the momentum, and H(q,p, t) is the Hamiltonian. The
Hamilton equations can also be rewritten in a compact form as:

ẇ = S∇H(w) = −S−1∇H(w) = −ST∇H(w), (2.10)

where w = (q1, . . . , qn, p1, . . . , pn) ∈ R2n and:

S =

[
0 In
−In 0

]
∈ R2n×2n. (2.11)

with In the identity matrix of dimension n.

2.1 Canonical Transformations

Canonical transformations are special transformations from q(t) to new variables
Q(q, t) that act on the dynamical variables preserving the form of the Euler-
Lagrange equations. The Hamiltonian formulation of the equations of motion
has important advantages: we can enlarge the class of possible transformations
imposing that also the Hamilton equations are preserved. Indeed, in the Hamiltonian
treatment the momenta p are variables independent of and on an equal footing
with the coordinates q. In this case, the transformation will include all the 2n
independent variables p and q:

Qi = Qi(p, q, t) Pi = Pi(p, q, t).

In order to retain the canonical form, the new variables have to satisfy the following
conditions:

Q̇i =
∂H ′

∂Pi
Ṗi = −∂H

′

∂Qi

, (2.12)

with Hamiltonian H ′(P,Q). If transformations respect the previous constraints,
they are called canonical transformations.

A first way to retrieve canonical transformations is using generating functions. If the
new variables P and Q satisfy the Hamilton equations, we can write the principle
of least action as:

δ

∫ t2

t1

(ṗ dq−H dt) = δ

∫ t2

t1

(
Ṗ dQ−H ′ dt

)
= 0. (2.13)
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The two expressions are equivalent if their intergrands are equal apart from the
total differential of a function F of coordinates, momenta and time. Each canonical
transformation is characterized by a specific function F , called generating function
of the transformation.

ṗ dq−H dt = Ṗ dQ−H ′ dt+ dF (2.14)

In particular, there are four types of these functions, called mixed generating
functions, that mix new and old dynamical variables, ensuring that the obtained
transformation is canonical: F1(q,Q, t), F2(q,P, t), F3(Q,p, t) and F4(P,p, t). For
example, assuming Fk = F2(q,Q, t), from equation (2.14), we can retrieve the
relation between new and old variables:

pi =
∂F2

∂qi
, Qi = −∂F2

∂Pi
, H ′ = H +

∂F2

∂t
∀i = 1, . . . , n.

2.2 Extended Phase Space

In some cases, it is easier to work with autonomous Hamiltonian systems. An
autonomous Hamiltonian system is a system whose Hamiltonian does not explicitly
depend on the independent variable. It is possible to transform non-autonomous
Hamiltonian systems with n degrees of freedom into autonomous Hamiltonian
system with n + 1 degrees of freedom. Let us consider the original independent
variable t: it is possible to treat it as if it were dependent on a new independent
variable τ (assuming for sake of simplicity that t(τ) = τ).
Let us now define the extended phase space of dimension 2n+2, where the canonical
pair (t;E) is added to the usual dynamical variables. Then, the new system with
n+ 1 degrees of freedom is autonomous and ruled by the following Hamiltonian:

H̃(q̃, p̃) = E +H, (2.15)

where q̃ = (qT , t)T and p̃ = (pT , E)T ∈ Rn+1.
In this case, indicating with the prime the total derivative respect to τ , the
Hamilton equations become:

q̃′i =
∂H̃

∂p̃i
=
∂H

∂pi
∀i = 1, . . . , n;

q̃′n+1 = t′ = 1;

p̃′i = −∂H̃
∂q̃i

= −∂H
∂qi

∀i = 1, . . . , n;

p̃′n+1 = E ′ = −∂H̃
∂t

= −∂H
∂t

;
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2.3 Choice of the Independent Variable

In beam dynamics it is a common practice to express the equations of motion
using the distance along a path as the independent variable. Indeed, in particle
accelerator, the axial speed is almost constant and almost equal to the speed of
light c. Under these conditions, it is more useful to express the equations of motion
in terms of distance rather than time. Moreover, it is easier to evaluate "how
far" the particle went in a beam line, rather than "when" a particle passed in
a certain magnet. From this point of view, Hamiltonian mechanics provides a
useful technique to perform this conversion [Wol14]. These techniques rely on the
re-parametrization of the action. Following [Dra19], we have:
Theorem 2.3.1. Suppose H(q,p, t) is a Hamiltonian for a system having n degrees
of freedom. Suppose further that ˙qK = ∂H

∂pL
6= 0, K ∈ [1, . . . , n], for some interval of

time T in some region R of the phase space described by the 2n variables (q1, . . . , qn)
and (p1, . . . , pn). Then in this region and time interval, qK can be introduced as an
independent variable in place of the time t.

Consider again the expression for the action (2.1):

S(q,p) =

∫ T

0

L(q, q̇, t) dt =

∫ T

0

n∑
i=1

piq̇i −H(q,p, t) dt, (2.16)

where n is the number of degrees of freedom (in our case n = 3). The dependence
of q and p on the time t is given for granted. An infinitesimal variation of the
action can be expressed as:

δS(q,p) =

∫ T

0

n∑
i=1

δpiq̇i + piδq̇i − δH(q,p, t) dt. (2.17)

To have a graphical idea of what is happening, we can plot both the particle’s
momentum and position on a two dimensional graph (see fig. 2.1). This space is
the so called phase space. Over the period from time 0 to time T the particle is
following a particular line on this plot.
The variation at (2.17) can be seen as a change δp and δq to the dynamic variables,
inducing a variation δH of the Hamiltonian. Graphically, we are fixing the starting
and the ending points in the phase space, and we are considering a different path
in the same interval of time.

Recalling the expression (2.8) for the infinitesimal Hamiltonian, the action’s variation
is:

δS(q,p) =

∫ T

0

(p δq̇ + ṗ δq) dt =

=

∫ T

0

d

dt
(p δq) dt =

= [ p δq ]T0 .
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Figure 2.1: Path of the integral in phase space

Since the starting and ending points in the phase space are fixed, δq = 0 at t = 0, T ,
we obtain:

δS(q,p) = 0.

This result means that, for a system obeying Hamilton equations, the path taken
by the particle in the time interval (0, T ) is the one that minimizes the action with
respect to small changes in the trajectory (the principle of least action).
Let us consider now a beam line with the accelerator components aligned along
q3(t) (z axis of a Cartesian coordinate system). If one of the generalized coordinates
q is invertible with respect to the independent variable t and q̇i(t) 6= 0 ∀t ∈ [0, T ],
then the path can be re-parametrized. Thus, we can rewrite (2.16) as an integral
over one of the coordinates, for example q3. We have that:

S(q,p) =

∫ q3,T

q3,0

(
n∑
i=1

pi(t(q3))
dqi
dt

(t(q3))−H(t(q3))

)
dt

dq3
(q3)dq3 =

=

∫ q3,3

q3,0

(
p3(t(q3)) +

n−1∑
i=1

pi(t(q3))
dqi
dq3

(t(q3))−H(t(q3))
dt

dq3
(q3)

)
dq3,

where the particle is in q3 = q3,0 at time t = 0, and in q3 = q3,T at time t = T .

If we replace the Hamiltonian H by −p3 and the coordinate q3 by t, we obtain a
system equivalent to (2.18), where the independent variable is now q3, the distance
along the beam line. The other coordinate and momentum pairs, (q1, p1) and
(q2, p2), are left unchanged:

S(q,p) =

∫ q3,T

q3,0

(
n∑
i=1

pi(q3)q
′
i(q3) + p3(q3)

)
dq3. (2.18)

This replacement is equivalent to assume (t,−H) as a new canonical pair of variables.
The prime now indicates the derivative with respect to the independent variable q3.
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2.4 Symplectic Condition

The main goal of this work is to study how the numerical approximations of field
maps affect the symplectic properties of a Hamiltonian system. In this section we
are going to define the concept of symplecticity and all its consequences.

Transfer maps for magnetic components are fundamental to study beam dynamics
in accelerators. A transfer map is simply a statement of the relationship between the
dynamical variables for a particle at different points. In the case of an accelerator
beam line:

w(s1) = Ms0,s1(w(s0))

where w = (x, y, z, px, py, pz) ∈ R2n is a vector in phase space and M is the transfer
map, function of the dynamical variables for a particle at s = s0. The transfer map
M is found by solving Hamilton’s equations for a particle moving from s0 to s1.
From [HLW06]:
Definition 2.4.1. A generic differentiable map M : U ⊂ R2n → R2n (where U is
an open set) is called symplectic if

J(w)T S J(w) = S ∀w ∈ U,

where J(w) is the Jacobian matrix of the map M and S is a block-diagonal 2n×2n
antisymmetric matrix, defined as:

S =


s 0 0 0
0 s 0 0

0 0
. . . 0

0 0 0 s

 ,

where s is the 2× 2 matrix given by:

s =

(
0 1
−1 0

)
.

Let us consider the components wi of the vector w , where for n degrees of freedom,
i = 1, . . . , 2n. As already said in (2.10), the Hamiltonian equations can be written
as:

ẇi = S
∂H

∂wi
,

where ẇi is the derivative with respect to the independent variable. The matrix S
has the following properties:

S−1 = −S, S2 = −I, det (S) = 1, (2.19)

where I is the 2n× 2n identity matrix.

Following the procedure explained in [Wol14], we consider an infinitesimal transfor-
mation in the independent variable from s = s0 to s = s0 + δs. In this infinitesimal
interval, the dynamic variables change as:

wi(s0 + δs) = wi(s0) + ẇi(s0)δs = wi(s0) + Sik
∂H

∂wk

∣∣∣∣
s=s0

δs,
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where we used the Einstein notation for the repeated indices. The Jacobian matrix
element of this infinitesimal transformation from s0 to s0 + δs is:

Jij =
∂wi(s0 + δs)

∂wj(s0)
= δij + Sik

∂2H

∂wj∂wk

∣∣∣∣
s=s0

δs,

where δij is the Kronecker delta. Because of the antisymmetrical properties of S,
we can write the transpose of J as:

JTij = δij −
∂2H

∂wj∂wk

∣∣∣∣
s=s0

Sikδs.

Putting all the elements together we can write the expression for the Jacobian as:

J(w) = I + SH̃δs,

JT (w) = I − H̃Sδs,

where H̃jk = ∂2H
∂wj∂wk

∣∣∣
s=s0

is a symmetric 2n × 2n matrix. Keeping in mind the

properties of S given in equation (2.19), it can then be proved that (I−H̃Sδs)S(I+
SH̃δs) = S, whence it follows that:

JT (w)SJ(w) = S (2.20)

where JT is the transpose of the Jacobian matrix J .
Symplecticity provides us with a direct test for canonical transformations. We
considered the motion of a system from s0 to s0 + δs. In the infinitesimal interval
δs, the coordinates and the momenta changed by increments q̇δs and ṗδs. Thus,
considering a set of new variables W , the motion transformation can be written as:

W = w + S
∂H

∂w
δs.

Repeating the steps of the previous proof, we would find that if a transformation is
symplectic, it is canonical, and if a transformation is canonical, then it is symplectic
[FM06]:
Definition 2.4.2. A differentiable and invertible coordinate transformation W is
called canonical if the Jacobian matrix

J(w) =
∂W

∂w

is symplectic for every choice of w in the domain of the transformation.

We should point out that the Jacobian matrix will generally be a function of the
dynamical variables. However, if we are dealing with a linear transformation, the
components of the vector M are polynomials in the dynamical variables with zeroth-
order and first-order terms, then the Jacobian matrix will be a matrix with constant
components. The first-order part of a linear transfer map can be represented by a
symplectic matrix.
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2.5 Symplecticity and Liouville’s Theorem

An important consequence of symplecticity is that in symplectic transformations
some quantities are conserved. An example is the volume identified by a set of
particles in phase space. In this section we are presenting this aspect, ending with
the introduction and the proof of Liouville theorem.

Let us consider a symplectic transformation in phase space M as defining a new
set of dynamical variables [Wol14]:

W = M(w).

As an example, we can imagine to pass from an initial region described by w ∈ R2n,
to a final region (described by W ∈ R2n) by the symplectic map M. A volume
element in phase space in the original variables w is represented as:

dv =
2n∏
i=1

dwi. (2.21)

In the new variables W , the volume element is:

dV =
2n∏
i=1

dWi = |det(J)|
2n∏
i=1

dwi, (2.22)

where |det(J)| is the absolute value of the determinant of the Jacobian matrix of the
transformation from the old to the new variables. Using the symplectic condition
(2.20) we can also get:

det(JTSJ) = det(J)2 det(S) = det(S) = 1.

It follows immediately that:

det(J) = ±1, |det(J)| = 1. (2.23)

Putting (2.21), (2.22) and (2.23) together we get:

dV = dv.

We can conclude that the volume of any given region in phase space is conserved
under a symplectic transformation [Wol14].

In order to introduce Liouville theorem, we need to consider particles densities.
We know that the density of particles in phase space is given by the number of
particles in a given region divided by the volume of the region. As we have seen,
in a Hamiltonian system, both the number of particles and the volume defined by
them is conserved [Wol14].
Theorem 2.5.1. In any system governed by a Hamiltonian, the density of particles
in phase space must remain constant as the independent variable evolves:

dρ

dt
=
∂ρ

∂t
+

2n∑
i=1

dwi
dt

∂ρ

∂wi
= 0,

where ρ is the density of particles in a given volume.
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The theorem may be considered a consequence of the symplectic condition, since its
proof relies on the constancy of the Jacobian determinant (which is a consequence
of symplecticity). A more formal demonstration of the Liouville’s theorem can be
found in Appendix B.

2.6 Hamiltonian for a Charged Particle

In order to describe particles dynamics in a beam line, we define the Hamiltonian
for a charged particle moving through electromagnetic fields. In the non-relativistic
frame, the Hamiltonian of this system would be:

H(q,p) =
1

2m
(p−QA)2 ,

where m is the mass of the particle, Q is the charge, p is the canonical momenta
and A is the magnetic vector potential. The canonical momenta p are related to
the mechanical momenta by:

p = pM +QA. (2.24)

Since particles in high energy accelerators move typically with relativistic velocities,
we are writing the total energy E and the momentum p according to special
relativity [Lan+82].
As a result, the Lagrangian of a single particle moving in an electromagnetic field
is given by:

L = −mc2
√

1− β2 +QA · v,

where β = v/c, β is the norm of β, v is the speed of the particle under consideration
and c is the speed of light in vacuum. According to (2.4), the canonical momenta
are:

p =
∂L
∂v

=
mv√
1− β2

= γmv +QA. (2.25)

As we can see, the relation between mechanical and canonical momenta is the same,
but the mechanical one is now γmv. For a particle in free space we can also show
that the kinetic energy E is:

E = γmc2, (2.26)

and:
γ =

1√
1− β2

, (2.27)

is the Lorentz factor. From (2.27) the relationship between the kinetic energy and
the canonical momentum can be retrieved:

E2 = (p−QA(q))2c2 +m2c4, (2.28)

where c is the speed of light in vacuum.

Since also in the relativistic case, the Hamiltonian is expressed as the total energy
of the particle, we can write the following form:
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H(q,p) = c
√

(p−QA(q))2 +m2c2 (2.29)

As we already mentioned in section 2.3, it is usually more convenient to express the
system using the longitudinal coordinate z. Rewriting the Hamiltonian in (2.29)
we obtain the new form K:

K = −pz = −
√
E2

c2
− (px −QAx)2 − (py −QAy)2 −m2c2 −QAz, (2.30)

where the Hamiltonian H was replaced by the total energy of the particle E. At
this point, the dynamical variables are (x, y, t, px, py,−E) and z is the indepen-
dent variable. It can be noticed that this new Hamiltonian does not describe an
autonomous system anymore, due to the fact that the magnetic vector potential
depends on the independent variable z.

2.6.1 Dynamical Variables for Beam Dynamics

Once the Hamiltonian (2.30) and the electromagnetic potentials are known, it is
possible to derive the equations of motion as function of the position. However,
these equations are generally too complex to be solved exactly, and we need to
perform some approximations.

A general procedure in beam dynamics is to consider the new position and momen-
tum as relative quantities with respect to those of a reference particle, which is
assumed to move along the z axis with a reference momentum P0 [Wol14].
Since we are dealing with Hamiltonian systems, we also need to ensure that the
new variables will be canonical variables and the transformation from the old to
the new ones has to be a canonical transformation.
Describing the motion of a general particle in terms of relative position with respect
to a reference particle particle, the new set of variable will take relatively small
values, if all the particles in the beam line are assumed to have a momentum similar
to P0. The trajectory described by the reference particle is called reference orbit
and it is characterized by the following values of the dynamical variables:

x0 = y0 = p0x = p0y = 0, t0 =
z

v0z
=

z

cβ0
, E0 = γ0mc

2. (2.31)

We want to perform a change of variables that allows to describe the motion of a
generic particle in terms of deviations with respect of the reference orbit:

w d = w −w 0, (2.32)

where w = (x, y, t, px, py,−E). This change of variables is a canonical transforma-
tion that can be obtained using a generating function (see section 2.1):

F2(q,p
d; z) = p0i qi − q0i pdi + qip

d
i ,

which, considering (2.31), becomes:

F2(q,p
d; z) = −E0t+ t0Ed + qip

d
i . (2.33)
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Then, the new Hamiltonian expressed using the deviation variables is:

Kd =K +
∂F2

∂z
=

=−
√

(E0 + Ed)2

c2
− (px −QAx)2 − (py −QAy)2 −m2c2

−QAz +
Ed

cβ0

(2.34)

It is also convenient to deal with non-dimensional quantities. For this reason
the deviation variables have been properly scaled. This operation is done using
a fixed length L and the module of reference momentum P0, that is defined as

P0 =

√(
E0

c

)2 −m2c2.
First of all, we apply a scaling factor to the Hamiltonian and to the independent
variable:

H̃ =
Kd

P0

, Z̃ =
z

L
.

Observing the action (2.16), we can see that:

S(qd,pd) =

∫ zT

z0

n∑
i=1

pdi
qdi
dz
−Kd(qd,pd, z) dz

=

∫ Z̃T

Z̃0

(
n∑
i=1

pdi
qdi
dZ̃

dZ̃

dz
−Kd(qd,pd, Z̃)

)
L dZ̃

=

∫ Z̃T

Z̃0

(
n∑
i=1

pdi
qdi
dZ̃
− LKd(qd,pd, Z̃)

)
dZ̃,

(2.35)

and so the scaling of the independent variable introduces a scaling factor L in the
Hamiltonian Kd. The new scaled dynamic variables are then:

p̃x =
px
P0

, p̃y =
py
P0

, Ẽ =
Ed

cP0

,

X̃ =
xd

L
, Ỹ =

yd

L
, t̃ = c

td

L
.

Ẽ can be seen as the relative energy deviation from the reference energy. We also
introduced the so called mechanical momentum deviation, defined as:

δ =
|pd|
P0

=
|p| − P0

P0

=
|p|
P0

− 1. (2.36)

Between Ẽ and δ the following relations hold:

Ẽ = −
√

1 + (2δ + δ2)β2
0 − 1

β0
, δ =

√
1− 2Ẽ

β0
+ Ẽ2 − 1 (2.37)

For simplicity, we also define the scaled version of the vector potential:

a =
Q

P0

A. (2.38)
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Performing all the substitutions, we can write the Hamiltonian for a particle moving
along z in a linear beam line as:

H̃ =
Kd

P0

= −

√
(E0 + Ed)2

c2P 2
0

−
(
px −QAx

P0

)2

−
(
py −QAy

P0

)2

− m2c2

P 2
0

− QAz
P0

+
Ed

P0cβ0

= −

√
1− 2Ẽ

β0
+ Ẽ2 − (p̃x − ax)2 − (p̃y − ay)2 − az +

Ẽd

β0
,

where the canonical variables are (X̃, Ỹ , t̃, p̃x, p̃y,−Ẽ) and the independent variable
is Z̃. Finally, it is possible to rewrite the Hamiltonian, substituting the canonical
pair (t̃,−Ẽ) with (l, δ), applying again the generating function (2.14):

H̃1 = −
√

(1 + δ)2 − (p̃x − ax)2 − (p̃y − ay)2 − az − δ, (2.39)

where the canonical variables are now (X̃, Ỹ , l, p̃x, p̃y, δ) and the independent variable
is still Z̃.

2.6.2 Paraxial Approximation

Linear approximations to non-linear dynamical systems are usually useful in the
study of accelerator components. In order to do that, the Hamiltonian is expanded
as a power series to second order in the dynamical variables. The truncation of the
power expansion at the lower order of p is known as paraxial approximation. This
approximation holds when the momenta in the transversal plane are much smaller
than the total momentum module (i.e. (δ + 1)2 � (p̃x − ax)2 − (p̃y − ay)2). Given
(2.39), we can write the Hamiltonian as the Taylor expansion to second order of H̃1:

H̃1 =−
√

(1 + δ)2 − (p̃x − ax)2 − (p̃y − ay)2 − az − δ

=− (1 + δ)

√
1− (p̃x − ax)2

(1 + δ)2
− (p̃y − ay)2

(1 + δ)2
− az − δ

≈− (1 + δ)

(
1− (p̃x − ax)2

2(1 + δ)2
− (p̃y − ay)2

2(1 + δ)2

)
− az − δ

=− 1− 2δ +

(
1− (p̃x − ax)2

2(1 + δ)
− (p̃y − ay)2

2(1 + δ)

)
− az

≈− 2δ +

(
1− (p̃x − ax)2

2(1 + δ)
− (p̃y − ay)2

2(1 + δ)

)
− az,

where we neglected the constant terms, because they are not physically relevant.
Since the vector potential depends on the independent variable Z̃, this Hamiltonian
describes a 6D non-autonomous system. Applying the procedure explained in



34 Chapter 2. Hamiltonian Systems

section 2.2, we introduce a new canonical pair (Z̃, p̃z) and a new independent
variable σ. The new autonomous Hamiltonian H is:

H = −2δ +

(
1− (p̃x − ax)2

2(1 + δ)
− (p̃y − ay)2

2(1 + δ)

)
− az + p̃z, (2.40)

where q = (X̃, Ỹ , l, Z̃) and p = (p̃x, p̃y, δ, p̃z). In this case, the equations of motion
can be written as:

w = J∇H =



p̃x − ax
δ + 1

p̃y − ay
δ + 1

−(p̃x − ax)2

2(δ + 1)2
− (p̃y − ay)2

2(δ + 1)2
− 2

1

∂ax

∂X̃

p̃x − ax
δ + 1

+
∂ay

∂X̃

p̃y − ay
δ + 1

+
∂az

∂X̃

∂ax

∂Ỹ

p̃x − ax
δ + 1

+
∂ay

∂Ỹ

p̃y − ay
δ + 1

+
∂az

∂Ỹ
azY

0

∂ax

∂Z̃

p̃x − ax
δ + 1

+
∂ay

∂Z̃

p̃y − ay
δ + 1

+
∂az

∂Z̃



. (2.41)

Moreover, it can be noticed that the Hamiltonian does not depend on l, so that
the partial derivative of H with respect to l is zero. As a consequence, δ is a
constant of motion, equal to the initial value, denoted by δ0. If the evolution of
the variable l is not needed, the canonical pair (l, δ) can be neglected, considering
δ0 as a parameter and reducing again the size of the phase space. In this case,
the Hamiltonian is still given by (2.40) but, since the dynamical variables are now
w = (X̃, Ỹ , Z̃, p̃x, p̃y, p̃z), the Hamilton equations become:

w = J∇H =



p̃x − ax
δ0 + 1

p̃y − ay
δ0 + 1

1

∂ax

∂X̃

p̃x − ax
δ0 + 1

+
∂ay

∂X̃

p̃y − ay
δ0 + 1

+
∂az

∂X̃

∂ax

∂Ỹ

p̃x − ax
δ0 + 1

+
∂ay

∂Ỹ

p̃y − ay
δ0 + 1

+
∂az

∂Ỹ

∂ax

∂Z̃

p̃x − ax
δ0 + 1

+
∂ay

∂Z̃

p̃y − ay
δ0 + 1

+
∂az

∂Z̃



. (2.42)
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A further simplification can be achieved noticing that p̃z is decoupled from the
other dynamical variables, so that its computation can be neglected if we are only
interested in the dynamics of the transverse variables, reducing the number of
equations (2.42) to the four ones associated to X̃, Ỹ , p̃x and p̃y.

This form of the Hamilton equations was used in some numerical tests performed
at Politecnico di Milano, in the framework of the integrators analysis. For the tests
performed at CERN, the equations of motion used are the one presented in section
2.7.

2.7 Alternative Form of the Equations of Motion

In alternative to the Hamiltonian form (2.42), the equations of motion can also be
rewritten in a form more similar to that often employed in the non relativistic case.

Indeed, in the tracking tests performed at CERN with the ”RF-Track” code, the
equations of motion (with z as independent variable) were written as:

dpM

dz
=

Q

βzc
(v ×B) , (2.43)

dx

dz
=
pMx
pMz

;

dy

dz
=
pMy
pMz

;

dt

dz
=

1

βzc
,

(2.44)

where pM is the mechanical momentum and βz = vz/c, with vz velocity in the
z direction. In the first equation it is possible to recognize the expression of the
Lorentz force.

This form of the equations was implemented in order integrate directly the magnetic
field B values, instead of those of the vector potential. However, this version was
used just for testing non-symplectic integrators.

2.8 The Helmholtz Theorem

We are now introducing an important theorem that will be widely used in the
next sections for the reconstruction of the field data. From [Dra19], the Helmholtz
decomposition theorem reads:
Theorem 2.8.1. Suppose V is simply connected volume in 3-dimensional space
bounded by a surface S and let F(r) be a continuous vector field with continuous
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first partial derivatives in V. Then F(r) can be uniquely expressed in terms of the
negative gradient of a scalar potential IS(r) and the curl of a vector potential IV (r):

F (r) = ∇× IV (r)−∇IS (r) for r ∈ V .

The Helmholtz theorem can be demonstrated in the following way. Let us consider
the three dimensional representation of the delta function:

∇2

(
1

|r− r′|

)
= 4πδ(r− r′). (2.45)

Next, we write the arbitrary function F(r) over a given volume V as:

F(r) =

∫
V

d3r′δ(r− r′)F(r′). (2.46)

Substituting (2.45) in (2.46) and factoring the derivatives with respect to the
function point r′ yields:

F(r) =
−∇2

4π

∫
V

d3r′δ(r− r′)
F(r′)

|r− r′|
. (2.47)

We now apply the vector identity:

∇2 = ∇(∇·)−∇× (∇×).

In this way, we can rewrite (2.47) as:

F(r) = ∇× IV −∇IS, (2.48)

where
IV =

1

4π
∇×

∫
V

d3r′
F(r′)

|r− r′|
,

IS =
1

4π
∇ ·
∫
V

d3r′
F(r′)

|r− r′|
.

(2.49)

At this point, we have to bring the derivative operator with respect to r inside the
integral. Then, it is possible to switch the derivative from r to r′ with a cost of a
minus sign. Finally, integrating by parts, the resulting equations we end up with
are:

IV =
1

4π

∫
V

∇′ × F(r′)

|r− r′|
dr3 − 1

4π

∫
S

n(r′)× F(r′)

|r− r′|
dS ′,

IS =
1

4π

∫
V

∇′ · F(r′)

|r− r′|
dr3 − 1

4π

∫
S

n(r′) · F(r′)

|r− r′|
dS ′,

(2.50)

where S = ∂V is the boundary surface of the volume and n is the corresponding
outwards normal.

Given a magnetic field B(r) under the conditions in Theorem 2.8.1, we can easily
find:

B(r) = ∇×A (r)−∇ϕ (r) for r ∈ V , (2.51)
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where:

A(r) =
1

4π

∫
V

∇′ ×B(r′)

|r− r′|
dV ′ − 1

4π

∫
S

n(r′)×B(r′)

|r− r′|
dS ′, (2.52)

ϕ(r) =
1

4π

∫
V

∇′ ·B(r′)

|r− r′|
dV ′ − 1

4π

∫
S

n(r′) ·B(r′)

|r− r′|
dS ′. (2.53)

Since in a magnetostatic case, Maxwell equations describing the system are those
of (1.2), we can retrieve the widely known Biot-Savart law:

B = ∇×A =
µ0

4π

∫
V

J(r′)× (r− r′)

|r− r′|3
dr′3. (2.54)

This is the case of solenoidal fields, in which the magnetic scalar potential contribu-
tion is equal to zero. This is also the case for our system of coils.

It has to be pointed out that, given a magnetic field in the form (2.54), sampled
on a discrete grid, it is not always true that a field reconstructed by interpolation
from this sampled data will preserve all the properties of the original field. In
particular, the reconstructed field may not be divergence free. In other words, in
the interpolated reconstruction a small contribution given by a spurious scalar
potential field ϕ can arise.





Chapter 3

Numerical Methods

In this chapter, we present several numerical techniques which are employed to
achieve an accurate approximation of the solutions of the equations for our system.
In the first part, the vector potential reconstruction and post-processing methods
developed at CERN are introduced. A brief description of the numerical methods
for integration is then presented. Afterwards, an overview on the interpolation
methods applied in both the parts of this work is presented. Along some classical
interpolation algorithms, an original method is also introduced. The Ordinary
Differential Equation (ODE) methods tested and implemented, together with the
error norms used in the validation chapters are explained in the last sections.

3.1 Vector Potential Post-Processing Methods

The methods presented in this section have been developed and implemented during
the work done at CERN. As we already mentioned, in accelerator particle physics
it is usual to deal with measured field maps, so that a magnetic field B is only
available at the points of a specific grid. Usually, given these data, the field itself is
directly interpolated and its vector potential is used in the integration. In particular,
the Hamiltonian (2.29) (function of the vector potential) is integrated to retrieve
the equations of motion. However, this measured field is usually not divergence free,
due to measurements errors, and consequently its vector potential is not enough to
describe the field completely.
In order to solve this problem, our procedure includes also a reconstruction and
post-processing step: after retrieving the vector potential from the measured field
map, this is then re-elaborated, in order to make it consistent with a divergence
free magnetic field, preserving the original behavior of the data as much as possible.
For this purpose, we have tested two different techniques. The first one is based on
the paper [MMK06]. The second method is based instead on some results presented
in [Dra19]. This post-processing method allows to eliminate the spurious scalar
potential contribution completely, leading to a perfectly divergence free magnetic
field.

39
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In the following pages, we are going to describe in the detail the two reconstruction
and post-processing methods. The re-elaborated vector potential obtained with
the two methods was then interpolated with the cubic interpolation presented in
section 3.3.2.

3.1.1 First Post-Processing Method

The first method we implemented is based on the procedure presented in [MMK06].
In order to ensure ∇·B = 0, a common strategy is to work with the vector potential
A and employ an interpolation procedure that guarantees a C2 regularity. Assuming
the Coulomb Gauge to hold (∇ ·A = 0), the relationship between A and B is:

B = ∇×A.

Starting from the knowledge of the magnetic field at the discrete points of a grid,
the Fourier transform of the vector potential can be written as:

Ã(k) =
ik× B̃(k)

|k|2
, (3.1)

where B̃(k) is the Fourier transform of the field and k is the wave vector number.
In order to take advantage of the numerical efficiency of fast Fourier transforms,
in the implementation the fields and their transforms are considered on a uniform
Cartesian grid, and the number of grid points in each the x, y and z directions is
an integer power of two. Once Ã is computed, it is straightforward to find A as
inverse Fourier transform. It has to be noticed that the expression for Ã has a
singularity in correspondence of k = 0. This value represents the contribution to
the vector potential due to the average value of the magnetic field. It is computed
and analytically added to the total vector potential as:

A0 = −r×B0

2
.

The same technique can also be applied to identify the presence of a magnetic scalar
potential contribution in the original data:

ϕ̃ =
ik · B̃(k)

|k|2
. (3.2)

It has to be noticed that, even if the method is aiming to the reconstruction of
a divergence-free field, a substantial contribution given by the magnetic scalar
potential was detected in different cases. In realistic situations, in which the field
map is measured, this may be due to measurement errors and non-linearities. As
a consequence, the magnetic field cannot be completely described by the vector
potential contribution, and we will have to keep in mind that the resulting post-
processed field will not be perfectly divergence-free.
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Finally, the field is computed interpolating the values of A and ϕ defined in each
grid point and computing B = ∇ ·A−∇ϕ. According to [MMK06], A and ϕ have
to be C2 continuous, so that the equality (vector potential case):

∂2Ai
∂xj∂xk

=
∂2Ai
∂xk∂xj

,

holds. For this reason, the interpolation defined in section 3.3.2 was employed in
this post-processing method. In the following chapters, we are going to refer to this
method with the name FIRST.

It is important to know that the presence of the scalar magnetic field contribution
represents an error in the desired reconstructed divergence-free magnetic field. For
this reason, we implemented a second post-processing method, focusing on the
direct elimination of this contribution.

3.1.2 Second Post-Processing Method

An alternative post-processing approach is now introduced, which is based on the
Helmholtz decomposition theorem. This presentation follows the steps explained in
[Dra19]. Recalling the equation in Theorem 2.8.1, we can rewrite it introducing the
superscripts n and t to denote the normal and tangential components:

B (r) = ∇×At (r)−∇ϕn (r) for r ∈ V .

At and ϕn are defined by the integrals already introduced in (2.52) and (2.53):

At(r) =
1

4π

∫
V

∇′ ×B(r′)

|r− r′|
dV ′ − 1

4π

∫
S

n(r′)×B(r′)

|r− r′|
dS ′, (3.3)

ϕn(r) =
1

4π

∫
V

∇′ ·B(r′)

|r− r′|
dV ′ − 1

4π

∫
S

n(r′) ·B(r′)

|r− r′|
dS ′. (3.4)

As we can see, the vector potential depends only on the tangential component of
the field, whereas the scalar one depends only on the normal component. Here,
n(r′) is the outward normal to S at the point r′, position of the source. The Green’s
functions for the Laplace’s equations (in three dimensions) are defined as [Dra19]:

G(r, r′) = − 1

4π

1

|r− r′|
. (3.5)

We can now write the expressions as:

At (r) = −
∫
V

∇′ ×B (r′)G (r, r′) dV ′ +

∫
S

n (r′)×B (r′)G (r, r′) dS ′ (3.6)

ϕn (r) = −
∫
V

∇′ ·B (r′)G (r, r′) dV ′ +

∫
S

n (r′) ·B (r′)G (r, r′) dS ′ (3.7)
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Let us consider the case of main interest for our purposes. If B(r) is divergence
and curl free in V , only the surface terms appear in (3.3) and (3.4) and we obtain:

At(r) = − 1

4π

∫
S

n(r′)×B(r′)

|r− r′|
dS ′ =

∫
S

n(r′)×B(r′)G(r, r′)dS ′, (3.8)

ϕn(r) = − 1

4π

∫
S

n(r′) ·B(r′)

|r− r′|
dS ′ =

∫
S

n(r′) ·B(r′)G(r, r′)dS ′. (3.9)

However, this formalism presents an issue: in order to employ a Hamiltonian
formulation to reap the benefits of symplectic symmetry, we need the field to be
expressed as curl of the vector potential only (rather than in terms of both a scalar
and vector potential):

B(r) = ∇×A(r).

In order to get rid of the magnetic scalar potential contribution, we need a vector
potential such that:

∇×An(r) = −∇ϕn(r).

Then, the overall vector potential will be:

A(r) = At(r) + An(r).

A suitable expression for An(r) can be found using the so called Dirac monopole
vector potential. Indeed, the expression of ϕn(r) as given by (3.9) appears to arise
from a distribution of magnetic monopoles described by a magnetic charge surface
density spread over the surface S. Therefore, it should be possible to find an
equivalent vector potential based on the vector potential for a magnetic monopole.
Recalling the Green’s function given in equation (3.5), we note that G(r, r′) has
the following properties:

∇G (r, r′) = −∇′G(r, r′) = − 1

4π

r− r′

|r− r′|3
,

∇2G (r, r′) = (∇′)2G(r, r′) = δ (r− r′) ,

where r is the position of the system and r′ is the source position. We then define
the kernel Gn (r; r′,n) as:

Gn (r; r′,n) =
1

4π

n× (r− r′)

|r− r′| − n · (r− r′)

1

|r− r′|
, (3.10)

where n is a unit vector normal and outgoing from the surface S. It can be shown
that for the vector field Gn, the following property holds:

1

4π
∇′ 1

|r− r′|
= ∇′G (r, r′) = ∇′ ×Gn (r; r′,n) .

If we define:
Bn(r) = −∇ϕn(r) = ∇×An(r),

we can combine it with (3.9) in:
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Bn (r) =

∫
S

n (r′) ·B (r′)∇′G (r, r′) dS ′

=

∫
S

n (r′) ·B (r′)∇′ ×Gn (r; r′,n(r′)) dS ′

=∇′ ×
∫
S

n (r′) ·B (r′) Gn (r; r′,n(r′)) dS ′. (3.11)

Finally, we get the complete expression for An:

An(r) =

∫
S

n (r′) ·B (r′) Gn (r; r′,n (r′)) dS ′. (3.12)

Let us make at this point some observations. If r ∈ V , Gn(r, r′) has to respect the
following properties:

∇ ·Gn(r, r′) = 0,

∇× [∇×Gn(r, r′)] = 0.

It is then straightforward that:

∇ ·An(r) = 0,

∇× [∇×An(r)] = 0.
(3.13)

This fact has an important consequence. As long as n(r′) is the unit vector pointing
outward from S, the functions Gn(r, r′), for every r′ ∈ S, are analytic in r for
all r ∈ V . It follows from (3.12), under mild conditions on Bn(r′) for r′ ∈ S,
that An(r) is analytic in V . For this reason, even if Bn(r) will be known only
approximately, with an accuracy depending on the method used to approximate
the integral (3.11), the resulting An(r) will be analytic in V and will satisfy the
relations (3.13) exactly, independently of any error on Bn(r), as long as the kernel
is computed very accurately.

We now retrieve the expression for At(r). Looking at the expression (3.3), it can
be proved that:

∇ ·At(r) 6= 0,

∇× [∇×At(r)] 6= 0.

However, it is possible to recast the expression for At(r) in such a way to respect
these properties and be symmetric with An(r).

Since, by assumption, B(r′) is curl free for r′ ∈ V , there exists a magnetic scalar
potential ψ(r′) such that

B(r′) = ∇′ψ(r′).

We can then write (3.3) as:

At(r) =

∫
S

[n(r′)×∇′ψ(r′)]G (r, r′) dS ′.
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Given the identity:

[∇′ψ(r′)]G (r, r′) = ∇′ [ψ(r′)G (r, r′)]− ψ(r′)∇′G (r, r′) ,

we have that:

At(r) =

∫
S

n(r′)×∇′ [ψ(r′)G (r, r′)] dS ′ −
∫
S

n(r′)× ψ(r′)∇′G (r, r′) dS ′

=−
∫
S

n(r′)× ψ(r′)∇′G (r, r′) dS ′

=−
∫
S

ψ(r′) [n(r′)×∇′G (r, r′)] dS ′,

where it can be shown that the first integral vanishes, and in the last expression we
moved ψ(r′) outside the cross product. We then define the new kernel Gt (r; r′,n)
as:

Gt (r; r′,n) = n×∇′G (r, r′) = n× (∇′ ×Gn (r; r′,n)) .

At this point, At(r) takes the final form:

At(r) = −
∫
S

ψn(r′)Gt(r; r′,n(r′))dS ′. (3.14)

Since, according to our hypothesis, the magnetic field B(r) is curl free, we can write
the previous equation in function of the magnetic scalar potential ϕn. In this way:

At(r) =

∫
S

ϕn(r′)Gt(r; r′,n(r′))dS ′. (3.15)

Analogously to the previous case, it can be proved that also Gt(r) is respecting the
properties:

∇ ·Gt(r, r
′) = 0,

∇× [∇×Gt(r, r
′)] = 0.

(3.16)

and so does At(r). Moreover, following the same reasoning done for Gn(r, r′), At(r)
is again analytic in V and equations (3.16) hold exactly even in the presence of
errors in the surface values ϕn(r′), no matter how poorly the integrals (3.14) are
evaluated.

Finally, the three equations implemented are given by (3.17).

An (r) =

∫
S′

n(r′) ·B(r′) Gn (r; r′,n (r′))dS ′,

ϕn (r) =

∫
S′

n(r′) ·B(r′)G(r, r′)dS ′,

At (r) =

∫
S′
ϕn (r′) Gt (r; r′,n (r′))dS ′.

(3.17)

The evaluation of the surface integrals was performed over the six faces of the
rectangular volume presented in section 4.2 (the same for all the points). The
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integrals were evaluated using the midpoint rule explained in section 3.2. To perform
all these summations is computationally really slow. For this reason, it has to be
remembered that this method, even though it is divergence-free-wise the best one,
it is also very time consuming. Once obtained the value of A = An + At, this
value was interpolated with the cubic interpolation method introduced in section
3.3.2. In the following chapters, we are going to refer to this method with the name
SECOND.

3.2 Quadrature Formulae

In this section we are going to briefly introduce the quadrature formula that was
used for the approximation of the integrals applied in the work performed at CERN.
More details on this topic can be found in [QSS10]. The quadrature formulae are
used to approximate the value of a generic integral:

I(f) =

∫
f(x)dx. (3.18)

With the Newton-Cotes Formulae, the finite integral (3.18) is approximated using
a Lagrange polynomial of order n to In(f), interpolating f(x) through n equispaced
points xk, k ∈ [0, n]. The midpoint, trapezoidal and Simpson formulae are special
instances of the Newton-Cotes formulae, taking n = 0, n = 1 and n = 2 respectively.
More formally:
Definition 3.2.1. Assume that the value of the function f defined on [a, b] is
known at equally spaced points xk, for k = 0, . . . , n, where x0 = a and xn = b. A
Newton–Cotes formula is said to be of the closed type if it uses the function value
at all points, otherwise it is called open, when it does not use the function values at
the endpoints. The closed Newton–Cotes formula of degree n is stated as:

In(f) =

∫ b

a

f(x) dx ≈
n∑
k=0

wk f(xk)

where xk = kh+ x0, with h (called the step size) equal to (xn − x0)/n = (b− a)/n.
The wk are called weights.

The quadrature weights are derived from the Lagrange basis polynomials and they
depend only on n. Indeed, let L(x) be the interpolation polynomial in the Lagrange
form for the given data points (x0, f(x0)), . . . , (xn, f(xn)), then:∫ b

a

f(x) dx ≈
∫ b

a

L(x) dx =

∫ b

a

(
n∑
k=0

f(xk) lk(x)

)
dx

=
n∑
k=0

f(xk)

∫ b

a

lk(x) dx︸ ︷︷ ︸
wk

.

where lk(x) is the kth Lagrange base polynomial of degree n.
The simplest method of this type is using an interpolating function that is a constant
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(a polynomial of degree zero). This method is called midpoint rule or rectangle rule.
This formula is obtained by replacing f over [a, b] with the constant function equal
to the value attained by f at the midpoint of [a, b]. This yields:

I0 = (b− a)f

(
a+ b

2

)
,

with weight w = b − a and node x0 = (a + b)/2. In this case, it is possible to
estimate the quadrature error E0 = I(f)− In(f). By expanding f in a Taylor series
around c = (a+ b)/2 and truncating at the second order, we get:

f(x) = f(c) + f ′(c)(x− c) +
f ′′(η(x))(x− c)2

2
,

from which, integrating on (a, b) and using the mean-value theorem, we get:

E0(f) =
h3

3
f ′′(ξ), h =

b− a
2

,

where ξ ∈ (a, b).

It should be pointed out that, if the width of the integration interval [a, b] is not
sufficiently small, the quadrature error can be quite large. This drawback is common
to all the numerical integration formulae, which lead to the introduction of their
composite counterparts. These methods are called composite since they repeatedly
apply the simple formulae derived previously to cover longer intervals. Suppose now
that we approximate the integral I(f) by replacing f over [a, b] with its composite
interpolating polynomial of degree zero, constructed on m sub-intervals of width
H = (b−a)/m, for m ≥ 1. Introducing the quadrature nodes xk = a+ (2k+ 1)H/2,
we get the composite midpoint formula:

I0,m = H
m−1∑
k=0

f(xk) =
(b− a)

m

m−1∑
k=0

f(xk), m ≥ 1.

In this case, the quadrature error E0,m(f) = I(f)− I0,m(f) is given by:

E0,m(f) =
b− a

24
H2f ′′(ξ), H =

b− a
m

,

provided that f ∈ C2 and where ξ ∈ (a, b).

The integrals computed with the code implemented at CERN use this simple
technique. In future implementations, some effort might be spent in improving this
aspect, opting for a more efficient and fast strategy.

3.3 Interpolation Methods

In this section, we are going to present the interpolation methods we used in this
thesis. In the work done and CERN and at Politecnico di Milano, different methods
were considered.
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In the first case, a linear and a cubic spline were implemented. The linear in-
terpolation, despite its simplicity, is generally used in particle tracking. Indeed,
given a grid with a dense concentration of interpolating points, the error can be
considered tolerable, and this method is usually chosen because of its speed and
simple implementation. For this reason, we used this technique to interpolate the
analytic magnetic field B sampled on a three dimensional grid (see chapter 4.2). On
the other hand, an original cubic spline was developed. This technique, ensuring
a C2 regularity, was applied to interpolate the re-elaborated vector potential A
obtained with both the post-processing methods presented in section 3.1.

During the tests performed in Politecnico di Milano, the effects of interpolation
on the integration procedure were analysed. In this framework, three classical
MATLAB interpolators were used: linear interpolation, cubic interpolation and
the cubic spline interpolation. In this case, these methods were all applied to the
analytic vector potential. The results of this comparison are reported in section 4.3.

3.3.1 Linear Interpolation

Linear interpolation is one of the simplest polynomial interpolation procedures. It
is a fast and easy to implement algorithm but it does not produce very smooth
results.

In the one-dimensional case, for a value xc in the interval (x0, x1), the corresponding
value yc along the straight line is given from the equation of slopes:

yc − y0
xc − x0

=
y1 − y0
x1 − x0

.

Solving this equation for yc, gives:

yc = y0 + (xc − x0)
y1 − y0
x1 − x0

,

which can be rewritten as:

yc = y0

(
1− xc − x0

x1 − x0

)
+ y1

(
1− x1 − xc

x1 − x0

)
= y0

(
1− xc − x0

x1 − x0

)
+ y1

(
xc − x0
x1 − x0

)
,

This formula can be interpreted as a weighted average. The weights are inversely
related to the distance from the end points to the unknown point: the closer point
has more influence than the farther point.

These results can be extended to the 3D case, where we talk about trilinear
interpolation. In the following, we will refer to this method as LINT.
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3.3.2 Cubic Interpolation

A common, widely used cubic interpolation method is the so called Catmull-Rom
spline [CR74]. However, this kind of method only ensure a C1 continuity of the
piecewise polynomials considered. In order to reconstruct the field preserving its
divergence free properties (see section 3.1), a C2 continuous interpolation is needed.
For this reason, in the tests performed at CERN, a particular form of C2-cubic spline
has been used, constructed modifying the Catmull Rom interpolation method.

The Catmull-Rom spline is an interpolation method which belongs to the class of
Cubic Hermite splines. A generic cubic Hermite spline is an interpolation method
over an interval using a third-degree polynomial, written in its Hermite forms
[SB13], i.e. specified by its values of the function and its first derivative at the
boundaries of its domain. For example, the Cubic Hermite spline p(t) over the
interval [0, 1] is given by:

p(t) = (2t3 − 3t2 + 1) · y0 + (t3 − 2t2 + t) ·m0 + (−2t3 + 3t2) · y1 + (t3 − t2) ·m1.

where y0 , y1 and m0 , m1 are respectively the function and the derivative values
at the boundaries. The Catmull–Rom spline estimates the derivative values using
a centered finite difference. For example, the derivative value m0 at t0 = 0 is
estimated using the values y−1 at t−1 = −1 and y1 at t1 = 1:

m0 =
y1 − y−1

2
.

So, given the control points (y−1, y0, y1, y2) computed at t−1 = −1, t0 = 0, t1 = 1,
t2 = 2, the interpolated value p(t) at the points t ∈ [0, 1] is:

p(t) =
[

1 t t2 t3
] 

1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1




y0
y1

y1−y−1

2
y2−y0

2

 ,
which can be simplified in:

p(t) =
1

2

[
1 t t2 t3

] 
0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1



y−1
y0
y1
y2

 (3.19)

The Hermite spline interpolation allows to interpolate using only sampled values
near the interpolation point, in contrast to the global nature of more common cubic
spline functions.

We present now the C2-cubic spline we developed during the internship at CERN.
Let us consider the one-dimensional cubic spline for a set of n+1 points (y0, . . . , yn).
The ith piece of the spline is represented by:

pi(t) = ai + bit+ cit
2 + dit

3. (3.20)
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where ai, bi, ci and di are four constants that characterize the polynomial function,
t ∈ [0, 1] and i = 0, . . . , n−1. This interpolation imposes a C0, C1 and C2 continuity
of the reconstructed function. In particular, we imposed the continuity of the
first and the second derivatives in the interior points, while on the end points we
fixed the exact function value on the boundaries (p0(0) = y0 and pn−1(1) = yn).
Moreover, the second derivative was set to zero at the end points. Like for the
Catmull Rom splines, the first and second derivative values are approximated by
centered finite differences. For example, the derivative value m1 at t1 is estimated
using the values y0 at t0 and y2 at t2:

m1 =
y2 − y0

2
.

The second derivative value M1 in the same point t1 is defined as:

M1 =
y2 − 2y1 + y0

2
.

For the end points, it was necessary to implement one-sided finite differences for
the derivative values (respectively forward and backwards). For this reason, the
interpolating functions p0(t) and pn−1(t) are different from the one for the interior
points.

For example, given the control points (y0, y1, y2, y3) computed at t0 = 0, t1 = 1, t2 = 2, t3 = 3,
the interpolated piece-wise polynomials, for t ∈ [0, 1], are:

p0(t) =
1

6

[
1 t t2 t3

] 
6 0 0 0
−6 6 0 0
0 0 0 0
1 −2 1 0



y0
y1
y2
y3

 (3.21)

pj(t) =
1

2

[
1 t t2 t3

] 
1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1



y0
y1
y2
y3

 (3.22)

pn−1(t) =
1

2

[
1 t t2 t3

] 
0 −1 −4 1
0 3 0 3
0 −3 6 3
0 3 −2 −1



y0
y1
y2
y3

 (3.23)

where j = 1, . . . , n− 2 is equal to the index i, without the end points.

Let us consider, for example, the function f(t) = sin
(
πt
2

)
, from which we sampled

the points (y0, . . . , y4) at t0 = 0, t1 = 1, t2 = 2, t3 = 3 and t4 = 4. In figures
3.1, 3.2 and 3.3, the interpolating function retrieved with the cubic spline and the
Catmull Rom spline are shown. As we can see from figure 3.3, the cubic spline
implemented ensures the continuity of the second derivative. However, it is clear
that the accuracy of the reconstruction provided by this cubic spline is inferior.
Nevertheless, for our scope, the precision will be shown to be competitive with
other classical methods, with the extra feature of preserving the C2 continuity and
reducing the computational cost with respect to the global cubic splines described
in section 3.3.3, for whose computation the solution of a linear system is necessary.
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Figure 3.1: Interpolation comparison.
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Figure 3.2: First derivative of the interpolated function.
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Figure 3.3: Second derivative of the interpolated function.

3.3.3 Global Cubic Splines

This kind of interpolation was used during the tests performed at Politecnico di
Milano.

Global spline functions, that allow to obtain a piecewise polynomial interpolant
that is also differentiable over the whole interval on which it is defined, were
considered. These functions are very widely used in applications. For example, they
are implemented in the MATLAB command interp1.
Definition 3.3.1. Given an interval [a, b] and interpolation data (xi, yi), i =
0, . . . , n with x0 = a < x1 < · · · < xn = b, a function s(x) is said to be a spline of
degree p and of order k if, for any i = 0, . . . , n−1, for x ∈ [xi, xi+1] the function s(x)
coincides with a polynomial of degree p that satisfies the interpolation conditions
s(xi) = yi and at the same time s ∈ C(k)[a, b].

The order and degree of a spline function cannot be arbitrary, but they must
satisfy appropriate relationships for the existence of a function with the above
characteristics to be guaranteed. Among the most widely used spline functions are
those of degree 3 and order 2, also known generally as cubic splines.
Definition 3.3.2. Given an interval [a, b] and interpolation data (xi, yi), i =
0, . . . , n with x0 = a < x1 < · · · < xn = b, a function s(x) is said to be a natural
cubic spline if, for any i = 0, . . . , n− 1, for x ∈ [xi, xi+1] one has s(xi) = yi with

s(x) = αi + βi(x− xi) + γi(x− xi)2 + δi(x− xi)3,

where αi, βi, γi and δi are four constants and furthermore s ∈ C2[a, b] and s(2)(a) =
s(2)(b) = 0.
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Definition 3.3.3. Given an interval [a, b] and interpolation data (xi, yi), i =
0, . . . , n with x0 = a < x1 < · · · < xn = b, a function s(x) is said to be a periodic
cubic spline if, for any i = 0, . . . , n− 1, for x ∈ [xi, xi+1] one has s(xi) = yi with

s(x) = αi + βi(x− xi) + γi(x− xi)2 + δi(x− xi)3,

and furthermore s ∈ C2[a, b] and s(1)(a) = s(1)(b), s(2)(a) = s(2)(b).

Theorem 3.3.1. Given an interval [a, b] and interpolation data (xi, yi), i =
0, . . . , n with x0 = a < x1 < · · · < xn = b, there is a unique function s(x) that is a
natural cubic spline defined by the given intepolation data.

Denote by hi = xi+1 − xi the distance between two consecutive interpolation nodes.
Using the same notation as in definition 3.3.2, the conditions on the coincidence of
the left and right limit with the interpolation datum in the internal nodes can be
expressed as:

αi = yi, i = 0, . . . , n− 1

yi+1 = αi + βihi + γih
2
i + δih

3
i , i = 0, . . . , n− 1

These conditions imply that all the coefficients αi are automatically determined
from the interpolation conditions. Furthermore, rewriting the second equation as:

βi =
yi+1 − yi

hi
− γihi − δih2i , i = 0, . . . , n− 1

it is clear that the coefficients βi can be determined if the values of γi, δi, are known.
In order to impose the continuity conditions on the spline derivatives, notice that
for x ∈ [xi, xi+1] one has:

s(x) = αi + βi(x− xi) + γi(x− xi)2 + δi(x− xi)3,

s′(x) = βi + 2γi(x− xi) + 3δi(x− xi)2,
s′′(x) = 2γi + 6δi(x− xi).

These expressions and the definition of γn = s′′(b)/2 imply that:

2γi = 2γi−1 + 6δi−1hi−1 i = 1, . . . , n

βi = βi−1 + 2γi−1hi−1 + 3δi−1h
2
i−1 i = 1, . . . , n− 1.

Rewriting the first equation in order to express the coefficients δi as a function of
the coefficients γi and using the expression of βi derived previously, one obtains for
γi:

yi+1 − yi
hi

− γihi −
γi+1 − γi

3hi
h2i

=
yi − yi−1
hi−1

− γi−1hi−1 −
γi − γi−1

3hi−1
h2i−1

+2γi−1hi−1 + 3h2i−1
γi − γi−1

3hi−1
, (3.24)

which can then be rewritten as:
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γi−1hi−1 + 2γi(hi−1hi) + γi+1hi

= 3
[yi+1 − yi

hi
− yi − yi−1

hi−1

]
i = 1, . . . , n− 1. (3.25)

In this way, n− 1 linear equations in the n+ 1 unknowns γi are obtained. In order
to obtain a number of equations equal to the number of unknowns, the boundary
conditions s(2)(a) = s(2)(b) = 0 must be imposed, which amount to set γ0 = γn = 0.

Global spline interpolation allows to obtain a piecewise polynomial approxima-
tion that approximates the derivatives of the interpolated function well, along
with the function itself. Standard piecewise polynomial interpolants, instead, ap-
proximate locally also the interpolated function derivatives, but yield in general
non-differentiable functions at the nodes shared by two local interpolants. On the
other hand, the numerical solution of a linear system, required for the determination
of the global spline coefficients, requires a greater computational effort than the
simpler, local formulae introduced in section 3.3.1.
Theorem 3.3.2. Given the interval [a, b] and the interpolation data (xi, yi), i =
0, . . . , n such that x0 = a < x1 < · · · < xn = b, if g ∈ C4[a, b] and if g satisfies the
interpolation conditions g(xi) = yi, i = 0, . . . , n, then, denoting by s(x) the natural
cubic spline defined by the assigned interpolation data and setting hi = xi − xi−1,
h = maxhi, one has

max
x∈[a,b]

|s(x)− g(x)| ≤ max
x∈[a,b]

|g(4)(x)| 5

384
h4

max
x∈[a,b]

|s′(x)− g′(x)| ≤ max
x∈[a,b]

|g(4)(x)| 1

24
h3

max
x∈[a,b]

|s′′(x)− g′′(x)| ≤ max
x∈[a,b]

|g(4)(x)|3
8
h2.

Furthermore, interpolation by natural cubic splines provides an approximation
whose graph has on average a smaller curvature than that of the graph of the
interpolated function. This statement can be made more precise by the following
theorem.
Theorem 3.3.3. Given the interval [a, b] and the interpolation data (xi, yi), i =
0, . . . , n where x0 = a < x1 < · · · < xn = b, if g ∈ C2[a, b] and if g satisfies the
interpolation conditions g(xi) = yi, i = 0, . . . , n, then denoting by s(x) the natural
cubic spline defined by the interpolation data one has∫ b

a

[s′′(x)]2 dx ≤
∫ b

a

[g′′(x)]2 d.
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3.4 ODE Integrators

In this section, we compare the different high order integration techniques used in
this thesis, in order to assess their accuracy and efficiency for long term simulations.
Since the goal of the work performed at CERN was to show clearly the advantages
introduced by a divergence-free interpolation, we just applied a stable and precise
interpolation method, in order to introduce the minimum amount of error. The
integration method used in this case was taken from the GNU Scientific Library
[Gou09]. This library provides a variety of methods and components for adaptive
step-size control.

On the other hand, the accurate comparison of different methods was the heart
of the work done at Politecnico di Milano. For this reason, different methods and
their characteristics are presented here.

In order to integrate the equations of motion, integration methods for Ordinary
Differential Equations (ODE) are needed. In particular, our goal is to solve systems
of the form: {

ẏ = f(t,y), t > 0

y(0) = y0 t = 0
, (3.26)

where t is the independent variable and y and f are n-dimensional functions. For
the problem (3.26), also known as Cauchy problem, there are different results about
the existence and the uniqueness of the solution, depending on the regularity of f .
The reader can find further information in [QSS10].

First, let us give some basic definitions. Fixed 0 < T < +∞, let I = (t0, t0 + T ) be
the integration interval. Correspondingly, for h > 0, h ∈ R, let:

tn = t0 + nh n = 0, 1, 2, . . . , Nh

be the sequence of discretization nodes of I into sub-intervals In = [tn, tn+1]. The
width h of such sub-intervals is called discretization step size. Notice that Nh is the
maximum integer such that tNh ≤ t0 + T .

Figure 3.4: Axis of time.

Let uj be the approximation of the exact solution y(tj) at node tj. Similarly, fj
denotes the value f(tj, uj). Clearly, let u0 = y0.
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Definition 3.4.1. A numerical method for the approximation of problem (3.26) is
called one-step method if ∀n ≥ 0, un+1 depends only on un. Otherwise, the scheme
is called a multistep method.

Moreover:
Definition 3.4.2. A method is called explicit if un+1 can be computed directly in
terms of (some of) the previous values uk, k ≤ n, implicit if un+1 depends implicitly
on itself through f .

3.4.1 Runge Kutta Methods

The main methods we used are the so called Runge Kutta methods. The most
general form for a Runge Kutta method is the following [QSS10]:

un+1 = un + hF (tn, un, h; f), n ≥ 0, (3.27)

where F is the increment function defined as:

F (tn, un, h; f) =
s∑
i=1

biKi,

Ki = f

(
tn + ci h, un + h

s∑
j=1

aijKj

)
, i = 1, . . . , s.

(3.28)

s denotes the number of stages of the method. The coefficients aij ∈ Rs×s, bi ∈ Rs

and ci =
∑s

j=1 aij fully characterize a RK method and they are usually collected in
the so called Butcher array :

c1 a11 a11 . . . a1s

c2 a21 a22 . . . a2s
...

... . . . ...
cs as1 as2 . . . ass

b1 b2 . . . bs

It is sometimes useful to rewrite the relations (3.27) and (3.28) in a somewhat
different form. At each step we introduce intermediate times ti and coordinates ui
following the rules:

ti = tn + cih, (3.29)

ui = un + h

s∑
j=1

aijKj. (3.30)

With this convention (3.28) can be rewritten in the form:

Ki = f(ti, ui). (3.31)
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Then, the RK definition becomes:

un+1 = un + h
s∑
i=1

bif(ti, ui), n ≥ 0. (3.32)

These sets of equations are clearly equivalent but, in this expanded form, it is clear
how Ki represents the value of f at the intermediate points.

If the coefficients aij are equal to zero for j ≥ i, with i = 1, 2, . . . , s , then each Ki

can be explicitly computed in terms of their i − 1 coefficients K1, . . . , Ki−1 that
have already been determined. In such a case the RK method is explicit. Otherwise,
it is implicit and solving a non-linear system of size s is necessary for computing
the coefficients Ki. Moreover, a RK method can be symplectic or not:
Theorem 3.4.1. If the coefficients of a Runge-Kutta method satisfy:

biaij + bjaji = bibj, ∀j = 1, . . . , s

then it is symplectic.

It has to be noticed that all the symplectic RK methods are also implicit methods.

In the realistic case, where the magnetic vector potential is sampled at equidistant
points along z, the use of high order methods become difficult. In fact, a general
numerical method requires the value of the magnetic vector potential at fixed z
coordinate, for example the mid-point method at (zn + zn+1)/2. These values can
be provided in simple cases, where the z-step is a multiple of the required evaluation
points, for example the mid-point method or other second order methods require
the value of the vector magnetic field in the middle of the z-step. Therefore, using
a doubled z-step for the integration, these values become available. Anyways, in
our methods, the magnetic field is re-interpolated every time, in order to get the
value of the field also in all the points we may need.

3.4.2 Runge Kutta and Gauss Methods

Another widely used Runge Kutta method is the Fourth Order Runge Kutta (RK4).
The RK4 method is a fourth-order method, meaning that the local truncation error
is on the order of O(h5), while the total accumulated error is on the order of O(h4).
The explicit equations for the increment functions are:

K1 = h f(tn, un),

K2 = h f

(
tn +

h

2
, un +

K1

2

)
,

K3 = h f

(
tn +

h

2
, un +

K2

2

)
,

K4 = h f (tn + h, un +K3) ,

(3.33)

and:
un+1 = un + 1

6
(K1 + 2K2 + 2K3 +K4) ,

tn+1 = tn + h.
(3.34)
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In this case the Butcher array is:

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

Recalling what was stated in Definition 3.4.2, this method is an explicit method,
as we can also understand by the fact that the Butcher matrix is strictly lower
triangular. It can be also observed that this method is not symplectic since it does
not satisfy conditions of Theorem 3.4.1. Gauss methods are particular implicit
Runge-Kutta methods which are symplectic. A fourth order gauss method is
characterized by the following Butcher tableau:

1
2
−
√
3
6

1
4

1
4
−
√
3
6

1
2

+
√
3
6

1
4

+
√
3
6

1
4

1
2

1
2

.

The sixth-order Gauss method is instead characterized by the Butcher tableau:

1
2
−
√
15
10

5
36

2
9
−
√
15
15

5
36
−
√
15
30

1
2

5
36

+
√
15
24

2
9

5
36
−
√
15
24

1
2

+
√
15
10

5
36

+
√
15
30

2
9
−
√
15
15

5
36

5
18

4
9

5
18

.

3.4.3 Runge Kutta Embedded Method

Since RK schemes are one-step methods, they are well-suited to adapting the step
size h, provided that an efficient estimator of the local error is available. One
possible estimation uses simultaneously two different RK methods with s stages,
of order p and p + 1, respectively, which share the same set of values Ki. These
methods form the group of the so called embedded methods [HLW06].

The main method we used is of this kind, and it is called Runge-Kutta Fehlberg.
It consists of a method of order O(h4) with an error estimator of order O(h5) (for
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this reason, it is known as the RK45 method). During the integration, the step size
is adapted such that the estimated error stays below a user-defined threshold: if
the error is too high, a step is repeated with a lower step size; if the error is much
smaller, the step size is increased to save time. This results in an (almost) optimal
step size, which saves computation time. The lower-order step is given by:

u∗n+1 = un + h

s∑
i=1

b∗iKi,

where Ki are the same as for the higher-order method. Then, taking the difference
between the approximate solutions at tn+1 produced by the two methods, we are
provided with an estimate of the local truncation error for the scheme of lower
order:

en+1 = un+1 − u∗n+1 = h
s∑
i=1

(bi − b∗i )Ki,

which is O(hp). The Butcher tableau for this kind of method is extended to give
the values of b∗i :

c1 a11 a11 . . . a1s

c2 a21 a22 . . . a2s
...

... . . . ...
cs as1 as2 . . . ass

b1 b2 . . . bs

b∗1 b∗2 . . . b∗s

In particular, the Butcher array for the RK45 method is:

0 0 0 0 0 0 0
1
4

1
4

0 0 0 0 0
3
8

3
32

9
32

0 0 0 0
12
13

1932
2197

−7200
2197

−7296
2197

0 0 0

1 439
216

−8 3680
513

− 845
4104

0 0
1
2
− 8

27
2 −3544

2565
1859
4104

−11
40

0
25
216

0 1408
2565

2197
4104

−1
5

0
16
135

0 6656
12825

28561
56430

− 9
50

2
55

3.4.4 Step-Size Adaptive Methods

The GSL library provided us with multiple functions. In particular, the adaptive
step size control function examines the proposed change to the solution produced
by a stepping function and attempts to determine the optimal step-size for a user-
specified level of error. The step-size adjustment procedure for this method begins
by computing the desired error level Di for each component. This error is obtained
by adding the absolute and the relative error (properly weighted) set by the user:

Di = εabs + εrel · (ay|yi|+ adydt h|y′i|),
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with ay and adydt scaling factors for the system state y(t) and derivatives y′(t)
respectively. This desired error is compared with the observed error Ei = |yerri |. If
the observed error E exceeds the desired error level D by more than 10% for any
component then the method reduces the step-size by an appropriate factor:

hnew = hold · S · (E/D)−1/q,

where q is the consistency order of the method (e.g. q=4 for 4(5) embedded RK),
and S is a safety factor of 0.9. The ratio E/D is taken to be the maximum of the
ratios Ei/Di. If the observed error E is less than 50% of the desired error level for
the maximum ratio Ei/Di, then the algorithm takes the opportunity to increase
the step-size to bring the error in line with the desired level,

hnew = hold · S · (E/D)−1/(q+1).

This encompasses all the standard error scaling methods.

3.5 Error Evaluation

Calling f(x) the exact solution of a specific problem and I(x) the approximated
function of the exact solution. x is a set of discrete values [x1, . . . , xn] over which
the two functions are defined. The approximation error is defined as:

e(x) =
n∑
i=0

e(xi) =
n∑
i=0

|f(xi)− I(xi)|. (3.35)

In order to measure the quality of an algorithm, various error norms can be used.
This evaluation gives a way to describe the distance of the approximation from the
exact solution. The absolute L2 error is computed as:

εA,L2 = ‖e(x)‖L2 =

∥∥∥∥∥
n∑
i=0

e(xi)L2

∥∥∥∥∥ =

√√√√ n∑
i=0

e(xi)2. (3.36)

Another common method is the absolute L∞ error, which computes the magnitude
of the largest component of e(x):

εA,L∞ = ‖e(x)‖L∞ =

∥∥∥∥∥
n∑
i=0

e(xi)

∥∥∥∥∥
L∞

= max
i∈[0,...,n]

|e(xi)|. (3.37)

The relative L2 error is:

εR,L2 =
‖e(x)‖L2

‖f(x)‖L2

=
‖
∑n

i=0 e(xi)‖L2

‖
∑n

i=0 f(xi)‖L2

=

√∑n
i=0 e(xi)√∑n
i=0 f(xi)

. (3.38)

The relative L∞ error:

εR,L∞ =
‖e(x)‖L∞
‖f(x)‖L∞

=
‖
∑n

i=0 e(xi)‖L∞
‖
∑n

i=0 f(xi)‖L∞
. (3.39)

In our analysis we mainly used the relative error, in the L2 and L∞ norm.





Chapter 4

Numerical Experiments

In this chapter the numerical experiments performed are presented. In the first
and second sections, the precise scheme of coils and the discrete mesh used are
explained. Afterwards, the results of the comparison between integration methods
performed at Politecnico is introduced. In the end, the particle tracking tests run
at CERN are described and commented.

4.1 Modeling the System of Coils

We are considering a system of coils with opposite currents, where each coil has a
radius r = 0.15 m and a distance d = 0.2 m one from the other. We set the on-axis

Figure 4.1: Scheme of the system of coils.

Bz field of each coil equal to Bz = 3 T and the canonical momentum P0 = 50 MeV
c

.

It has to be noticed that with these specific values of radius and distance, the
magnetic fields of each coil influence those of the neighbouring coils, leading to a
change of the overall field along the z axis. As we can observe in figure 4.2, these
fringe effects are mainly localized at the edges of the system.
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Figure 4.2: Magnetic field variation with number of coils: one coil versus three coils.

Figure 4.3: Magnetic field variation with number of coils: 16 coils versus 32 coils.

In order to concentrate these fringe effects in regions where they do not excessively
affect the particle dynamics, we choose a system composed by 200 coils with opposite
currents, 100 placed before the origin of the z axis, 100 placed after. In this way,

Figure 4.4: Periodic construction of the magnetic field. In red, the elementary unit
formed by two coils, then repeated along the z axis four times.
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the behavior of the field around the origin of the z axis was more uniformly affected
by the fringes, showing a constant on-axis magnetic field. We then selected only
the two central coils (the coil in zero, half coil in −0.2 and half coil in 0.2), and we
repeated this unit four times, starting from the origin of the axis. The resulting
system was finally composed by 8 coils, extending from 0 to 1.6 m. In this way we
obtained an ideal periodic model of a system of opposite coils, where the fringe
effects were assumed negligible.

4.2 Definition of the Discrete Mesh

In this section we describe the discrete mesh on which the magnetic field was
considered as known. In order to set the limits of accuracy depending on the
grid spacing, we performed an analysis of the interpolation error over different
grids. The volume we discretized was placed inside the coils, going from 0 to 1.6
m along the z axis and from 0 to 0.1 m along the x and y axis. This decision was
based on the fact that the particles are moving along the system of coils staying
relatively close the axis, thanks to the focusing action of the coils. For each grid,

x

y

z

0.1m

Figure 4.5: Grid for interpolation.

the analytic field was computed at the grid nodes and then reconstructed on a finer
mesh by means of three different approaches: 1) the trilinear method (LINT), 2) the
first post-processing method (FIRST) described in section 3.1.1 and 3) the second
post-processing method (SECOND) described in section 3.1.2, both interpolated
with a local cubic interpolation method (see section 3.3.2). This kind of cubic
interpolation, even if it preserves the C2 continuity of the field, results in a general
lower quality of the interpolated field. For this reason, we expect to see errors
higher than the ones obtained with usual global cubic interpolation splines.
In Table 4.1, the different meshes and the corresponding steps are shown together
with the corresponding relative infinite norm error (3.39). All the interpolated
fields show a similar error. However, we can observe that the SECOND method,
interpolated with the local cubic spline described in section 3.3.1, returns the least
accurate results, while the trilinear and the FIRST one are comparable (see also fig.
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mesh size ∆x, y [m] ∆z [m] LINT err FIRST err SEC err
4× 4× 64 0.0667 0.0254 1.6416e-01 1.6081e-01 7.2205e-01
6× 6× 96 0.0400 0.0168 5.6369e-02 8.2990e-02 3.5011e-01
8× 8× 128 0.0286 0.0126 2.8442e-02 2.2747e-02 2.1773e-01
10× 10× 160 0.0222 0.0101 1.7119e-02 2.2618e-02 1.5767e-01
12× 12× 192 0.0182 0.0084 1.1428e-02 9.6237e-03 1.2352e-01
14× 14× 224 0.0154 0.0072 8.1657e-03 1.0120e-02 1.0152e-01
16× 16× 256 0.0133 0.0063 6.1315e-03 5.3651e-03 8.6181e-02
18× 18× 288 0.0117 0.0056 4.7675e-03 5.6661e-03 7.4871e-02
20× 20× 320 0.0105 0.0050 3.8172e-03 3.4323e-03 6.6189e-02
22× 22× 352 0.0095 0.0046 3.1218e-03 3.6055e-03 5.9313e-02
24× 24× 384 0.0087 0.0042 2.6013e-03 2.3854e-03 5.3733e-02
26× 26× 416 0.0080 0.0039 2.2059e-03 2.4911e-03 4.9114e-02
28× 28× 448 0.0074 0.0036 1.8908e-03 1.7542e-03 4.5228e-02
30× 30× 480 0.0069 0.0033 1.6366e-03 1.8225e-03 4.1912e-02
32× 32× 512 0.0065 0.0031 1.4323e-03 1.3442e-03 3.9049e-02
34× 34× 544 0.0061 0.0029 1.2657e-03 1.3906e-03 3.6553e-02

Table 4.1: Grid steps and Infinite Norm errors with the different interpolation methods

102

10-2

10-1

subdivisions along z

E ∞

LINT
FIRST
SECOND

Figure 4.6: Interpolation error changing the grid size

4.6). A possible reason of this behavior lies in the quadrature methods employed in
the implementation of the SECOND method. Indeed, as we explained in section
3.1.2, the computation of the surface integrals (3.17) is performed through the
midpoint quadrature rule. As explained in section 3.2, this is the simplest numerical
integration methods, introducing a quite high error. In future implementations, the
usage of more accurate methods will be of first importance.
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The resolution of the grid is chosen in order to guarantee that the error is below
a given threshold, set around 10−2. A good grid could be taken considering
∆x = ∆y ≤ 0.0065 m (32× 32) and ∆z ≤ 0.0029 m (512). In this specific case, we
obtained the L∞ and L2 errors shown in Table 4.2.

Infinite error L2 error
LINT 1.4323e-03 1.0917e-03
FIRST 1.3442e-03 1.2590e-03
SECOND 3.9049e-02 2.5608e-02

Table 4.2: Errors in the 32× 32× 512 case.

In fig. 4.7 we can see that the general behavior of the field is preserved, even if the
lack of accuracy of SECOND approach is clear. In particular, figures 4.8 and 4.9
show the reconstructed field errors with respect to the analytic field.
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Figure 4.7: Overall interpolated field.
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Figure 4.8: Absolute error for the FIRST post-processing method.
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Figure 4.9: Absolute error for the SECOND post-processing method.
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4.3 Comparison of Different Integration Methods

In this section, several high order integration techniques will be compared, in order
to assess their accuracy and efficiency for long-term simulations. The tests were
performed following the procedure presented in [Sim+19]. As we discussed in section
1.4, for the system of coils considered here, the exact analytic expression of the vector
potential is available. In this way, the Maxwell equation are theoretically satisfied
everywhere and unwanted spurious contributions are avoided. The magnetic vector
potential is the one described at (1.28), with z as independent variable. The ODE
system that has to be solved is given in (2.41).
The particle tracking was performed simulating the passage of an electron, with rest
mass m = 0.5109989461 MeV/c2= 9.109383 · 10−31 kg and charge q = −1.602176 ·
10−19 C, through a sequence of 4 coils leading opposite currents, placed one next
to the other around the z = 0. We choose a reference momentum P0 = 50 MeV/c,
resulting in a total energy equal to E = 50 MeV. The initial conditions for the
transverse positions and momenta of the particle are set to w 0 = (0.02, 0.04,−2, 0)
m and δ0 = 0.
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Figure 4.10: Analytic field: Relative L2-norm error for x.

In figures 4.10 and 4.11 the errors obtained with the different ODE methods are
presented. A reference solution was computed using the exact vector potential
and the Matlab ODE solver ode45, with a maximum ∆zref = ∆zdata/10 and a
relative error tolerance of 10−13. Methods are tested integrating the particles motion
doubling each time the subdivisions number for 5 times (25, 50, 100, 200, 400). Since
we are dealing with a field that is not interpolated, the magnetic vector potential
is computed exactly at each required location. The error computed was the L2

relative norm error (see equation (3.38)). It can be proved that the errors in the x
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Figure 4.11: Analytic field: Relative L2-norm error for py.

and y coordinates behave very similarly and the same is true for the corresponding
momenta. The behavior of the solvers is in agreement with their theoretical
convergence order (on the right bottom of the plots, the ideal slopes corresponding
to the theoretical convergence order is indicated). In this analytic case, high order
symplectic integrators (Gauss6) are those ensuring the highest accuracy.
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Figure 4.12: Gauss6, different interpolations: relative L2-norm error for x.
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As we already said, in realistic cases the vector potential (1.28) is only available as
sampled data on a discrete grid. For this reason, we tested the impact of different
interpolation techniques on the integration methods. A three dimensional mesh was
constructed imposing steps equal to ∆x = 0.007 m, ∆y = 0.007 m and ∆z = 0.003
m over the intervals x = [−0.15, 0.15] m, y = [−0.15, 0.15] m and z = [−2, 2]
m. In this case, methods were tested integrating the particles motion doubling
each time the subdivisions number for 8 times (5, 10, 20, 40, 80, 160, 320, 640). The
vector potential value in each point not corresponding to the sampling points was
computed applying different interpolation techniques. The results of the comparison
is reported in figures 4.12, 4.13, 4.14 and 4.15. The ’linear’ interpolated values
at the query points are based on linear interpolation of the values at neighboring
grid points in each dimension. With the ’cubic’ method, the interpolated values
are based on a piece-wise cubic, globally non differentiable interpolation of the
values at neighboring grid points. The interpolated values at query points with
the ’spline’ method are based on the global cubic spline interpolation defined in
section 3.3.3. Also the behavior in the analytic case, in which the error is depending
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Figure 4.13: Gauss6, different interpolations: relative L2-norm error for py.

only on the integrator, is shown. In figures 4.12 and 4.13, results obtained with
the sixth-order Gauss method are shown, since the highest order methods are more
strongly affected by errors introduced by the interpolation process. The overall
accuracy seems to be affected by all the interpolation methods. However, the
’spline’ interpolation follows better the error achieved with the analytic vector
potential. The overall error achieved by the interpolation methods is higher than
the one observed in [Sim+19], even if the interpolating step along z is similar. This
is most likely due to the fact that in our case, the interpolation was performed over
the three directions, while in [Sim+19] a 1-dimensional interpolation was used.

As a comparison, in figures 4.14 and 4.15 the results obtained with the midpoint
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Figure 4.14: Mid-point, different interpolations: relative L2-norm error for x.
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Figure 4.15: Mid-point, different interpolations: relative L2-norm error for py.

integration are presented. In this case, since we are dealing with a second order
method, the interpolation does not influence the integration accuracy. Obviously,
the overall accuracy is much lower than the one obtained with higher order meth-
ods. Further results concerning the effects of interpolation techniques on different
integrators (see section 4.3) are reported. In the following figures, the results for
the Runge Kutta 4 and the Gauss 4 method are reported.



4.3. Comparison of Different Integration Methods 71

101 102

Number of subsivisions along z

10-8

10-6

10-4

10-2

E
rr

o
r 

(n
or

m
 L

2
)

err x

Analytic
Cubic
Linear
Spline

101 102

Number of subsivisions along z

10-6

10-4

10-2

E
rr

o
r 

(n
or

m
 L

2
)

err py

Analytic
Cubic
Linear
Spline

Figure 4.16: Runge Kutta 4, different interpolations: relative L2-norm error for x and
py.
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Figure 4.17: Gauss 4, different interpolations: relative L2-norm error for x and py.

From these results, it can be understood that, after a certain point, the error
is limited by the accuracy of the reconstructed field. If a greater accuracy is
needed, the use of very precise high order integrator will be ineffective. A better
reconstruction of the field will be instead required.

In order to compare the efficiency of the methods employed, we performed the
analysis of the required computational time for each method (fig 4.18 and 4.19).
Also in this case, methods are tested integrating particles motion doubling each
time the subdivisions number for 5 times (25, 50, 100, 200, 400). Among the ODE
methods, the fourth order explicit Runge Kutta method gives the best results.
Among the other methods, the sixth order Gauss method is the best one in order
to achieve a high precision.
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Figure 4.18: CPU time for the analytic field: relative L2-norm error for x.
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Figure 4.19: CPU time for the analytic field: relative L2-norm error for py.
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4.4 Particle Tracking Results

Recalling the discussion in section 2.5, symplectic transformations must preserve
the phase space volume (Liouville theorem). We already mentioned that, if after the
interpolation the reconstructed field does not respect the divergence free condition
∇ ·B = 0, Liouville theorem does not hold. In chapter 3.1, we showed how this
problem can be addressed by introducing vector potential reconstruction and post-
processing methods that preserve the divergence-free nature of the magnetic field.
We also studied the differences between interpolation methods, concluding that
some of them are actually less accurate than the standard methods in faithfully
reconstructing the field behavior (see results in 4.1). In this section, we will report
numerical results that show how preserving the divergence free properties of a
field allows to improve the preservation of phase space volume during the tracking.
In order to do that, we performed three different tests. The first one consists
of a general observation of the trajectory behavior, in order to get an idea of
what is happening during the turns if we use the field reconstructed in different
ways. In the second test, we studied the volume in phase space through another
parameter called emittance. In the last one, we simulated a measurement error
on the magnetic field with the ultimate goal of proving the difference between the
divergence-free-preserving methods.

The integration method used in all the tests is RK45, setting an absolute error
of 10−13. This method appeared to be very stable during the tracking, also after
106 revolutions, and allowed us to focus only on the effects of interpolation and
post-processing errors.

4.5 First Test: Trajectory Study

As we discussed in section 2.5, volume preservation can be seen as a consequence
of the symplectic properties. As a first test, we decided to focus our attention
on a small distribution of particles with precise initial conditions, studying the
variation of their dynamical variables and their trajectory over a big number of
revolutions across the coils system. It has to be underlined that this kind of test is
not representative of a real situation. However, it will give us a useful hint on what
is happening in our system when a high number of revolutions is considered.

We assumed a grid space with 32× 32× 512 points in each of the coordinates. The
Hamilton equations were integrated using the adaptive RK45 method described in
section 3.4. We divided the z axis, extended from 0 to 1.6 m, in 1000 integration
steps and we imposed an absolute error of 10−13. Consider that, in order to achieve
this tolerance, the adaptive method may employ a number of integration steps
larger than the initially prescribed one. We performed the particle tracking for a
group of twelve electrons, distributed symmetrically around a reference electron
in the 6D space (see fig. 4.20). For example, assuming the reference particle to
be at the origin of the system (w(0, 0, 0, 0, 0, 0)), we placed two particles along
the x axis at a distance ∆ from the reference particle, in (∆, 0, 0, 0, 0, 0) and
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(−∆, 0, 0, 0, 0, 0). ∆ was taken equal to 10−6 m. The same thing was done for
all the dynamical variables. Afterwards, this distribution was sent through the
system of coils previously described and tracked for 106 revolutions. In order to

y

Figure 4.20: First test: arrangement of the particles (example in the 3D space).

get an idea of what happens to our distribution of particles, we can observe their
trajectories on the xy plane for 106 revolutions. In a perfectly conservative system,

Figure 4.21: Trajectory on the xy plane for the analytic field directly interpolated with
the LINT method.

we would expect to see a precise circle showing the particles to travel always along
the same trajectory. In fig. 4.21, we show the final trajectory for the case of the
trilinear interpolation of the analytic field (LINT). At the end of the simulation the
trajectory of the particles over the xy plane is no more conserved, but collapses
towards the axis. On the other hand, the trajectory of the particles in the case of
the other field reconstruction approaches seems to be better preserved during the
turns. This fact indicates that the energy is not conserved by the first interpolation
approach. As we already mentioned, this can be an effect of the fact that the
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divergence free properties are not conserved [BB80]. Indeed, it appears that the
other two methods, even if not perfectly, are able to better preserve the particles
trajectory even over 106 revolutions. In the next tests, we will give a quantitative
assessment of this fact.

Figure 4.22: Trajectory on the xy plane for the analytic field reconstructed with the
FIRST method.

Figure 4.23: Trajectory on the xy plane for the analytic field reconstructed with the
SECOND method.
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4.6 Second Test: Emittance

Linear symplectic transformations in n degrees of freedom have associated with
them n conserved quantities, the product of which corresponds to the phase space
volume, that is conserved in all symplectic systems (see section 2.5, [Wol14]).
In beam dynamics, these quantities can be expressed in terms of the so called
emittances, which are one of the main tools used to describe beam dynamics.

Neglecting mutual interactions and coupling between the three coordinates of a
particle, one defines the emittance of each degree of freedom: horizontal, vertical and
longitudinal. The emittance is the property of a particle beam that characterizes its
size. Roughly, it is proportional to the area or volume in the transverse phase space
of particles. In an actual accelerator, the region in phase space in which particles
stay in motion in the accelerator can be quite complicated, but it is frequently
approximated by an ellipse [MMK06]. The original choice of an elliptical shape
comes from the fact that when linear focusing forces are applied to a beam, the
trajectory of each particle in phase space lies on an ellipse, which may be called
the trajectory ellipse. In our special case, the non-linearity of the field does not
allow the representation of the phase space with the elliptical approximation, so
we directly studied the value of the emittance over the whole trajectory. Indeed,
non-linear field components can stretch and distort the particle distribution in
phase space. A realistic phase space distribution is quite different from a regular
ellipse (see figure 4.24). We introduce, therefore, a definition of emittance that

2

2

Figure 4.24: Particle distribution in a realistic case (in trace space (x, x′)).

measures the beam quality rather than the phase space area: the RMS (root mean
square) emittance. First, we need to introduce the so called beam matrix, which
describes the statistical properties of the beam. The beam matrix for the transverse
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dimension is defined as:

Σxy =


〈x2〉 〈xx′〉 〈xy〉 〈xy′〉
〈x′x〉 〈x′2〉 〈x′y〉 〈x′y′〉
〈xy〉 〈x′y〉 〈y2〉 〈y′y′〉
〈xy′〉 〈x′y′〉 〈yy′〉 〈y′2〉

 =

(
σ2
xx σ2

xy

σ2
xy
T

σ2
yy

)
, (4.1)

where x and y are the horizontal and vertical coordinates, x′ and y′ are their
derivatives with respect to the longitudinal coordinate and variances σ2 are the so
called second moments of the beam distribution. The formulation used refers to the
so called trace space (x, x′, y, y′), but it is completely equivalent to its formulation
in the phase space. If the beam is transversely decoupled (σxy = 0), we can consider
the two matrices separately in order to fully characterize the beam:

Σuu =

(
σ2
uu σ2

uu′

σ2
u′u σ2

u′u′

)
=

(
〈u2〉 〈uu′〉
〈u′u〉 〈u′2〉

)
(4.2)

where u refers to either x or y. In this case, we define:

σ2
uu = 〈u2〉 =

1

N

∑
j

u2j rms size;

σ2
u′u′ = 〈u′2〉 =

1

N

∑
j

u′2j rms divergence;

σ2
u′u = 〈uu′〉 =

1

N

∑
j

uju
′
j correlation,

(4.3)

where N denotes the total number of particles. Finally, given a particle distribution,
we define the emittance as:

εrms =
√
〈u2〉〈u′2〉 − 〈uu′〉2 =

√
det Σuu. (4.4)

For linear systems, like drifts and quadrupoles, this quantity is an invariant (in
absence of dissipative or cooling forces) [Buo92]. Let us consider now the spatial
evolution of the beam emittance ε also in a non-linear case. The particle motion is
assumed to be Hamiltonian, not significantly coupled and in general non-linear. It
can be modeled with the general non-linear Hamiltonian:

H(x, x′) =
x′2

2
+ f(x),

where f(x) is a general C∞ function. The Hamilton equations of motion, with
respect to the independent variable s are:

dx

ds
= x′; (4.5)

dx′

ds
= −∂H

∂x
. (4.6)
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The equations of motion of the barycentre (x, x′) are:

dx

ds
= x′; (4.7)

dx′

ds
= −∂H

∂x
. (4.8)

If the motion is linear, ∂H
∂x

is proportional to x. Then, if the barycentre coincides
with the origin (x = x′ = 0) at some time, it stays at rest (dx

ds
= dx′

ds
= 0).

However, if the motion is non-linear, the derivative of x′ involves higher order
moments of the coordinate x, and generally does not vanish. As a consequence, the
barycentre moves in the phase space. Moreover, in general, ∂H

∂x
is not equal to ∂H

∂x
(x).

This means that in the non-linear case, the barycentre does not move according
to the same law as the representative points. As a consequence, the straight lines
joining a couple of pointsMi,Mj and the barycentre O are not mapped into straight
lines, and the triangle OMiMj is not mapped into another triangle, except in the
linear case. Therefore, in a non-linear case, the Liouville theorem does not imply
that the area Aij of the triangles OMiMj is conserved. The emittance, here defined
as a sum of areas Aij , is not conserved except when the motion is linear. From this
observation one can understand that, in the case of non-linear systems for which
the Liouville theorem holds, the rms emittance is generally not conserved.
To obtain this result analytically, it is useful to compute the derivative dε

ds
of the

emittance. Here, we cannot in general assume x = x′ = 0 and we must replace
x2 = x′2 and xx′ by the central second-order moments σ2

xx, σ
2
x′x′ and σ2

xx′ respectively,
in the expression of the emittance (4.4). Defining:

µxx = σ2
xx, µx′x′ = σ2

x′x′ , µxx′ = σ2
xx′ ,

a straightforward calculation gives the derivatives of the moments:

dµxx
ds

= 2µxx′ ; (4.9)

dµx′x′

ds
= −2µ01H ; (4.10)

dµxx′

ds
= µx′x′ − µ10H , (4.11)

where:

µ10H = x
∂H

∂x
− x · ∂H

∂x
, (4.12)

µ01H = x′
∂H

∂x
− x′ · ∂H

∂x
. (4.13)

(4.14)

With these relations, the derivative dε
ds

of the emittance is:

dε

ds
=

1

ε
(µxx′µ10H − µxxµ01H). (4.15)



4.6. Second Test: Emittance 79

As we discussed before, in the case of linear motion:

∂H

∂x
= ax;

∂H

∂x
= ax,

and so:
µ10H = aµxx and µ01H = aµxx′ .

The derivative dε/ds vanishes and the emittance is conserved.
When the motion is non-linear, dε

ds
does generally not vanish for all s, and the

emittance is not conserved. However, non-linearities are obviously harmful to the
stability of motion and they are maintained at the smallest possible level in particle
accelerators. Generally, all the causes of emittance dilution (coupling, scattering,
radiation,...) are also minimized. An invariant emittance is a characteristic that
should be preserved in any kind of system, linear or not. It can be concluded that
in accelerators the beam emittance should be always conserved.

Going back to the simulation, we computed the emittance value (4.4) for 104

revolutions, considering the same system composed by 12 particles described in
section 4.5. As shown in fig. 4.25, the different interpolation and reconstruction
procedures have an impact on the emittance behaviour. If the trilinear method is
applied, a substantial increase of the emittance (350 times higher than the starting
value) can be observed. This behavior can be prove to diverge for further revolutions.
On the other hand, the two post-processing methods show their ability to better
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Figure 4.25: Emittance behavior for the three different methods vs. the number of
turns.

preserve the emittance value. Looking at the zoomed figure 4.26, we can observe
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that also in these cases the emittance experiences a growth. As we discussed before,
this is the effect of the non-linearity of the field itself. This amount is obviously
not negligible (100 times bigger than the starting value), but over 104 revolutions
and compared with LINT behavior, it can be considered a good improvement. The
starting emittance value is around 5 · 10−13 m ·mrad, while the final values are
around 5 · 10−11 for FIRST and SECOND methods and around 1.5 · 10−10 m ·mrad
in LINT case. From these results we can derive the conclusion that the preservation
of the divergence free properties of the field has an immediate positive impact on
the preservation of the volume in phase space, in spite of the approximations and
shortcomings of the methods described in sections 3.1.1 and 3.1.2.
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Figure 4.26: Emittance behavior for the divergence free preserving methods.

4.7 Third Test: Measurement Errors Correction

In the following test, we tried to underline the differences between the two post-
processing methods in a more realistic case, for example with a measured field
map. As discussed in chapter 3.1.2, the reconstruction of the field performed with
the SECOND method, implies the complete elimination of the magnetic scalar
potential ϕ and allows to prevent from contributions depending on the magnetic
field evaluation. Indeed, according to [Dra19], the functions Gn(r, r′) and Gt(r, r

′),
for every r′ ∈ S, are analytic in r for all r ∈ V . It follows from (3.12) and (3.14),
under mild conditions on Bn(r′) and ϕn(r′), that An(r) and At(r) are analytic in
V . Thanks to this procedure, only Gn and Gt need to be evaluated very accurately
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and it does not matter how poorly Bn and ϕt (see equations (3.12) and (3.15))
are evaluated. To sum up, the resulting An and At will be analytic in V and will
satisfy the relations:

∇ ·A(r) = 0,

∇× [∇×A(r)] = 0.
(4.16)

In order to show that the method does indeed benefit from these properties, we
performed a specific test, adding a random error of ∼ 10−2 T in every point of the
analytic field map’s grid. In this case, we considered an interpolation grid more
dense in the z direction, using 32 × 32 × 3200 grid points. Then, we proceeded
to the evaluation of the field with our three methods: on one hand, we directly
interpolated the new data with the trilinear interpolation (LINT); on the other
hand, we post-processed the data with the FIRST and the SECOND reconstruction
methods, and we interpolated the results with the cubic spline. The numerical
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Figure 4.27: Bz field considered in the third test.

integration of the equations of motion was performed with a Runge Kutta 45
integrator, with a maximum step of 10−4 and an absolute error of 10−13. It has
to be noticed that in this case, we integrated the equations coming from the time
dependent Hamiltonian. Afterwards, we proceeded with the tracking.

In this case, the simulation considered a different situation with respect to the first
two tests: the tracking was performed on a straight path, passing through a segment
of 16 coils just once. Over such a short distance, it was possible to simulate the
tracking of a significant number of particles: we randomly distributed 104 particles
around a reference one in the 6D space. The new volume considered included also
the contribution of the fringe fields (see fig. 4.27).
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Figure 4.28: Transverse emittance over the number of integration steps.

The decision to perform just a single passage through our system was a necessity
imposed by the long time needed by the simulation to track such an large number
of particles.

As we discussed in chapter 4.6, the emittance is an important quantity to assess
the conservation of the volume in phase space. Thus, we computed this quantity
over our 104 time steps, to see what could be the effect of the addition of the
measurement error.

Since just a single passage through our system was simulated, we do not expect to
see a net variation of the emittance, as the one shown in fig. 4.25. However, since
we added an extra error to the field data and we simulated a beam composed by an
high number of particles, we expect to observe a growth of the emittance also along
this short path. The results are shown in figure 4.28, and they seem to confirm
our hypothesis. As in the other tests, the LINT field shows the worst emittance
behavior, which starts growing from the first steps. The post-processing methods
present a general lower spread in phase space. If we focus on the FIRST method
results ( see fig. 4.29), we can observe that, also in this case, the emittance values
are growing progressively, reaching a peak in the lasts steps. On the other side,
the best emittance behavior is given by the SECOND method. As it can be seen
from the plots, the emittance seems generally more stable and constant in time,
not showing particular peaks as with the other methods.

As a further support to this argument, another check was performed. Considering
the same distribution of particles and the same system of coils with measurement
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Figure 4.29: FIRST and SECOND methods: transverse emittance over the number of
integration steps.

errors, the final positions of the particles were computed and a linear transfer map
was fitted to the initial and corresponding final position in a least square sense.
Afterwards, the absolute value of the determinant of this matrix was computed.
Since it can be shown that the following theorem holds [LBH80]:
Theorem 4.7.1. Let v1, v2, . . . , vn be vectors in Rn, let P be the n-dimensional
parallelepiped determined by those vectors, and let M be the matrix with rows
v1, v2, . . . , vn. Then, the absolute value of the determinant of M is the volume of P :

| det(M)| = vol(P ),

studying the temporal behavior of | det(M)|, we can have an idea of how the volume
is varying. As we can see in fig. 4.30 and 4.31, LINT method is showing high
peaks, while the FIRST post-processing method tends to increase only at the end
of the simulation. On the other hand, the SECOND post-processing method shows
a constant behavior for all the integration steps. These results are coherent with
the results reported in fig. 4.28.

These results support our previous arguments that the reconstruction performed
using the SECOND method, ensuring always the preservation of ∇ ·B = 0, results
in a better conservation of the volume of the particles in the phase space, even in
presence of measurement errors.
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Figure 4.30: |det(M)| over the number of integration steps for all the methods.

     0        2000        4000        6000        8000        10000   
     0.9997   

     0.9998   

     0.9999   

     1   

     1.0001   

     1.0002   

     1.0003   

     Temporal steps   

  
 

|d
et

(M
)|

  
 

     LINT   

     FIRST   

     SECOND   

Figure 4.31: Zoom on FIRST and SECOND methods: |det(M)| over the number of
integration steps.



Chapter 5

Conclusions and Perspectives

In this thesis, we have studied methods for the accurate reconstruction of magnetic
fields from sampled values and numerical integration methods for the equations of
motion of a charged particle in the reconstructed field. A system of coils leading
opposite currents was taken as case study, in order to model non-linear elements in
the presence of fringe fields.
Two techniques for the calculation of the vector potential were considered and
implemented. These techniques can process realistic field maps, even in presence
of measurement errors. In both cases, the particle tracking simulation using these
post-processed fields showed an improvement of the conservation of the volume
occupied in the phase space. Also the emittance growth proved to be limited,
even over a large number of revolutions. In particular, the method implemented
following the procedure outlined in [Dra19], guaranteed the full reconstruction
of the vector potential, providing divergence-free properties even in case of non-
negligible measurement errors. These results confirm the importance of working
with divergence-free magnetic fields for stable particle tracking simulations.

Concerning the comparison of numerical methods for the approximation of the
particle trajectories, high order symplectic Runge-Kutta integrators show good
accuracy results, while standard explicit Runge-Kutta methods are among the
most efficient for the considered problem. Moreover, following the steps described
in [Sim+19], it was observed how the interpolated reconstruction of the vector
potential plays a central role in the final accuracy of the tracking, limiting the results
achievable with high order integration methods characterized by small integration
steps. Also in this case, the use of cubic splines, ensuring a C2 continuity of the
vector potential, provided the best results.

In this work many aspects of numerical methods and electomagnetic field modeling
were involved, leading to many possible directions of improvement. In the future, it
would be useful to improve the numerical methods present in “RF-Track” [Lat16],
in order to increase the efficiency and the accuracy of the code. For example,
the standard midpoint quadrature formula used for solving the integrals in the
implementation of one of the post-processing method could be replaced by a higher
order one.
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Testing both with big numbers of particles and over a high number of turns
appeared to be computationally intensive and was not feasible within this thesis
work. We performed instead simulations focusing on each aspect separately. In
future implementations it will be interesting to combine and tests these aspects.



Appendix A

Measure Units

A.1 Units

Description Unit Practical Unit

Length m m

Mass kg MeV · c−2

Time s mm · c−1

Electric current A A

Electric charge C e

Force N MeV ·m−1

Energy J MeV

Potential difference V V

Electric field strength V ·m−1 V ·m−1

Magnetic flux density T T

Emittance m ·mrad mm ·mrad

Momentum kg ·m · s−1 MeV · c2
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A.2 Physical Constants

Description Symbol Unit

Speed of light in vacuum c 299792458 m · s−1

Elementary charge e 1, 602176634 · 10−19C

Vacuum permeability µ0 1, 256637061 · 106 N · A−2

Electron mass me 9, 10938291 · 10−31 kg



Appendix B

Liouville’s Theorem Demonstration

The proof of the phase space volume conservation (and so the Liouville theorem)
relies on the symplectic condition. We are going to rewrite the demonstration
presented in section (2.5) in a more complete way [Tuc10]. Consider a phase space
volume element dw at t = 0, containing a small collection of initial conditions
on a set of trajectories. The trajectories evolve in time according to Hamilton’s
equations of motion, and at a time t later will be located in a new volume element
dW .

In order to keep clear the difference between Jacobian matrix and Jacobian deter-
minant, now on we will respect the following definitions:
Definition B.0.1. If f : Rn → Rn is a C∞-differentiable map, its Jacobian matrix
is the (m× n) matrix of partial derivatives:

Jij :=
∂Wi

∂wj

=, i = 1, . . . , n; j = 1, . . . , n.

where w = (w1, . . . ,wn) and W = (W1, . . . ,Wn).
Definition B.0.2. If n = m the Jacobian matrix is a square matrix, hence its
determinant det(J) is defined and called the Jacobian of f (possibly only at a
point), defined as:

J = det J =
∂(W1, . . . ,Wn)

∂(w1, . . . ,wn)

Moreover, in order to make our calculation easier, we will also use the matrix
exponential form. Given a differentiable matrix A, the following trace identity
holds:

det(eA) = eTr(A). (B.1)

An equivalent expression for the Jacobian is then:

det(J) = eTr(ln J). (B.2)

The Liouville theorem condition we want to prove is:

dV =
2n∏
i=1

dWi = |det(J)|
2n∏
i=1

dwi = J
2n∏
i=1

dwi = dv. (B.3)
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We want to compute the time derivative of the Jacobian. In order to do so, we
apply the so called Jacobi’s Formula.
Theorem B.0.1. If A is a differentiable map from the real numbers to n × n
matrices,

d

dt
detA(t) = Tr

(
adj(A(t))

dA(t)

dt

)
where tr(X) is the trace of the matrix X. Moreover, when A is invertible:

adj(A(t)) = det(A)A−1.

Then we get:

dJ
dt

=
d

dt
det J = Tr

(
adj(J)

dJ(t)

dt

)
= Tr

(
det(J)J−1

dJ(t)

dt

)
. (B.4)

Substituting (B.2) in (B.4):

dJ
dt

= Tr

(
eTr(ln J)J−1

dJ(t)

dt

)
= eTr(ln J) Tr

(
J−1

dJ(t)

dt

)
=

=J
m∑
i=1

m∑
j=1

(
J−1ij

dJij(t)

dt

) (B.5)

The explicit expressions for the matrices J−1 and dJ/dt are:

J−1ij =
∂wi
∂Wj

,

dJij(t)

dt
=

d

dt

[
∂Wi

∂wj

]
=
∂Ẇj

∂wi
.

(B.6)

Substituting (B.6) in (B.5):

dJ
dt

=J
n∑

i,j=1

(
∂wi
∂Wj

∂Ẇj

∂wi

)

=J
n∑

i,j,k=1

(
∂wi
∂Wj

∂Ẇj

∂Wk

∂Wk

∂wi

) (B.7)

where the chain rule has been introduced for the derivative ∂Ẇj

∂wi
. The sum over i

can now be performed:
n∑
i=1

∂wi
∂Wj

∂Wk

∂wi
=

n∑
i=1

J−1ij Jki =
n∑
i=0

Jki J
−1
ij = δkj.

Thus, we are left with:

dJ
dt

=J
n∑

j,k=1

(
δkj

∂Ẇj

∂Wk

)
=

=J
n∑
j=1

∂Ẇj

∂Wj

= J∇W · Ẇ
(B.8)
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The initial condition on this differential equation is J (0) = J (w ,w) = 1 . Moreover,
for a Hamiltonian systems:

∇W · Ẇ =∇W · (Q̇, Ṗ) =
∂Q̇

∂Q
+
∂Ṗ

∂P
=

=
∂

∂Q

(
∂H

∂P

)
+

∂

∂P

(
−∂H

∂Q

)
=

=
∂2H

∂Q∂P
− ∂2H

∂P∂Q
= 0.

(B.9)

This says that dJ /dt = 0, and J (0) = 1. Thus:

|J (w ,W )| = | det J | = 1. (B.10)

If this is true, then the phase space volume element transforms according to:

dV =
2n∏
i=1

dWi =
2n∏
i=1

dwi = dv.

This conservation law states that the phase space volume occupied by a collection
of systems evolving according to Hamilton equations of motion will be preserved in
time. This is one statement of Liouville theorem.
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