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A B S T R A C T

Many space engineering and orbital mechanics applications seek for
the usage of focused mathematical models, capable of providing useful
insight onto particular phenomena or exploiting some theoretical and
physical tools to reduce the computational costs and/or increase the
level of accuracy reached. Orbital resonances are one of the phenomena
that needs to be properly modelled, both for exploiting such features
in the mission design phase and to predict possible resonant returns
of threatening objects closely approaching a specified planet.

This work deals indeed with one of the possible models of orbital
resonances, representing such a physical phenomenon in the b-plane
reference frame with an analysis on the resonant trajectories performed
at the moment of close encounter. Before this, flybys are an important
source of uncertainty in the numerical simulations, which then need
to be as accurate as possible to be used as benchmark. To this extent,
a highly efficient method to account for general relativity effects in
the N-body propagation is developed, tested and validated, to be then
used as precise benchmark for the resonance analysis and application.

The b-plane resonance model is a strictly patched conics theory
which does not account for perturbations. A semi-analytical extension
of the current b-plane resonance model is proposed to account for
perturbing effects inside the planet’s sphere of influence. Introducing a
set of perturbing coefficients brings the model to match the simulation
results at the b-plane point where such coefficients are computed, as
well as to be a highly reliable approximation in its vicinity, performing
a validation with Monte-Carlo simulated data.

An extension of the validation proposed would lead to a complete
planetary protection or defence application, whereas in its final part
the work will show the flexibility of the model by looking at it from
a different perspective. A ballistic resonant flyby design application
will be implemented by solving a multi-level optimisation problem,
to modify an initial trajectory into a new one on the same Tisserand
level. Without dealing with the specific case of resonances, the b-plane
reference frame embeds a smart geometrical framework where to
express and design flyby deflections, whose power will be shown in
terms of accuracy achieved and computational cost required.

Once completed by detaching from the patched conics approxima-
tion, such a model could bring remarkable simplifications in planetary
protection applications, reducing the need of propagating a high num-
ber of Monte Carlo samples, and would increase the precision of the
defence analyses against impacts from near-Earth threatening aster-
oids. About the application proposed here, internal and/or external
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integration could eventually lead to an enhanced efficiency of the cur-
rent mission design strategies and could widen the internal proposed
capabilities, providing high precision and almost optimal results with
lowered computational costs.
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Part I

I N T R O D U C T I O N A N D B E N C H M A R K





1
I N T R O D U C T I O N

The variety of applications within the orbital mechanics field itself is
remarkably high. The very same mathematical and physical tools are
used for many different purposes and applications, starting from the
study of the orbital motion of natural bodies, passing through the first
draft of mission analysis and manoeuvre and command design, finally
for the final optimisation of rather complex multi-body trajectories.

The presented work will deal with orbital resonances in different
applications of the common concept, which indeed is simply requiring
two orbits whose periods are in a ratio equal to the one of two integers.

The planetary protection and defence side seeks to obtain a reliable
prediction of impact probabilities of threatening objects, asteroids
and natural celestial bodies in the case of defence, human-crafted
disposal objects in the case of protection to avoid the contamination
of planetary environments other than Earth. In fact, a danger of this
kind is not finished when an impact is avoided in a simple close
approach: some flybys feature a particular configuration such that
a consequent close approach can be predicted. It is then crucial to
design end-of-life manoeuvres and asteroid deflections being sure
under a high confidence level that the small objects under analysis
are injected in proper interplanetary orbits, such that they will not
dangerously approach any planet or relevant body in future epochs.
As a support for this last statement, an example is brought by the
European Space Agency’s planetary protection requirements [16],
that ask to design interplanetary injections so that an uncontrollable
spacecraft or disposal object has an impact probability with any planet
of 0.01%, over 100 years forward in time.

Such high confidence levels are reached only through either ex-
tremely precise simulation or analytical models. About this last ones,
their validation against a solid benchmark is a necessary step to be
taken before their implementation and usage. High accuracy simula-
tions involve any kind of perturbing effects and can actually be used
for benchmark purposes, provided that their precision is ensured.
To this extent, some cases where the full N-body simulation is not
enough to guarantee minimum accuracy requirements will be shown,
particularly in the long term propagation case (typical of planetary
protection applications) and when the trajectory experiences close
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4 introduction

encounters. It is of common knowledge [19] that in orbital motion
a small error propagates and increases in time, with sudden steep
growths every time that a flyby occurs, therefore the most accurate
simulation strategy is required if it is to be used as benchmark. In this
regard, the effect of general relativity on the N-body dynamics will be
studied, to eventually validate and implement a simulation method
that will be used as benchmark for all the upcoming parts of the work.

The word benchmark is fundamental in the purposes of this work,
because, despite such a complete physical model features incompara-
ble accuracy and reliability, the computational cost remains too high,
particularly when performing Monte Carlo simulations where the mo-
tion of thousands of virtual bodies is propagated. Moreover, given that
such simulations are carried out in a cartesian reference frame, some
physical insight on the various orbital phenomena is missing, that
needs to post process the propagation results to be retrieved. Referring
again specifically to orbital resonances, there exists then the need to
model reliable analytical tools, in order to obtain accurate predictions
even without performing complete high precision simulations.

The b-plane reference frame is a step in this direction, where the
deflection that a small body undergoes during a close approach is
modelled by rather simple geometrical and mathematical relations.
This work, particularly Part ii, aims to increase the precision of the b-
plane tool by applying corrective coefficients obtained from simulated
data; a detailed and referenced introduction of the b-plane reference
frame will be given in the dedicated Chapter 4.

Finally, it is important to remember that such a reference frame is
suitable for deflections of all kind and not only the resonant ones.
To this extent, the deflection design capabilities of the b-plane model
together with the concept of orbital resonances will be exploited in Part
iii to design interplanetary resonant ballistic trajectories. Many works
tackled the resonant orbit design problem, which will be described in
detail in Chapter 10, in order also to provide some context about the
current works and applications in similar directions.

As already mentioned, the first chapter of this work will be devoted
to building a proper benchmark to rely on for all the future consider-
ations, assumptions and modelling choices. Note that only the main
results are reported in Chapter 2, leaving the conceptual details of
general relativity in the appendix, since they are not the main focus of
the work. The description given there is meant to be mostly concep-
tual and understandable with the classical engineering mathematical
and physical background, thus a read-through is recommended for a
complete understanding of what discussed in Chapter 2.



2
G E N E R A L R E L AT I V I T Y I N T H E N - B O D Y D Y N A M I C S

2.1 introduction

What presented in this chapter has been entirely developed within
this thesis work, in this regard no reference material is available at
the best of the author’s knowledge. For a complete conceptual view
of the model proposed here the reading of Appendix A and B is
recommended, although it is not reported in the main body of the
work because of the focus on orbital resonances developed in the next
parts. Before digging more into general relativity (GR) details, the
main reason of studying its effect on the N-body dynamics is to have
a suitable benchmark where to test other orbital models. As it will be
shown shortly, there are cases where the N-body propagation is not
precise enough, particularly for long term propagations associated,
for instance, with planetary protection and defence applications.

The test data used for the validation have been taken from NASA’s
toolkit SPICE [1], a database containing the propagated ephemerides
of many celestial objects and that is known to be accounting for GR
effects. Simulations are carried out only on asteroids, because the goal
of this chapter has to be intended as the development, implementation
and validation of consistent methods for the N-Body propagation
taking into account GR. The most robust validation strategy is then
the propagation of objects undergoing the pure gravitational motion,
without introducing any sort of manoeuvres.

Note that only few meaningful cases are reported in this Chapter,
despite, being it the validation of the benchmark needed for the rest
of the work, many of them have been run and all of them showed the
very same successful behaviour. For the sake of conciseness they are
not included in the work, given that they would add only redundancy
and no value to the discussion presented.

5



6 general relativity in the n-body dynamics

2.2 general model and method

The model chosen to implement GR effects in the N-body equation
of motion comes originally from [36], with the formulation used here
proposed by [25]:

r̈i =
∑
j6=i

µj(rj − ri)
r3ij

{
1−

4

c2

∑
k6=i

µk
rik

−
1

c2

∑
k6=j

µk
rjk

+

(
vi
c

)2
+ 2

(
vj

c

)2

−
4

c2
ṙi · ṙj −

3

2c2

[
(ri − rj) · ṙj

rij

]2
+

1

2c2
(rj − ri) · r̈j

}
+
1

c2

∑
j6=i

µj

r3ij

{[
ri − rj

]
·
[
4ṙi − 3ṙj

]}
(ṙi − ṙj) +

7

2c2

∑
j6=i

µjr̈j
rij

(2.1)
The dynamics, described by Equation (2.1), to be propagated looks
very complex: many nonlinear terms (on position and velocity) are
present, as well as coupling can be seen among all of them. However,
one should not forget that in a propagation formalism all that matters
is the state and its derivatives and, in this case, the state xi for body i
can be defined as the usual one for N-Body propagations:

xi =

{
ri
ṙi

}
(2.2)

where ri and ṙi are i-th body’s position and velocity respectively.
A propagator needs the equation to propagate in the form

ẋi = f(xi) (2.3)

with f that can be as complex as one wants. It will be shown shortly
that even in the GR case the equation can assume a shape pretty
similar to the one reported in Equation (2.3).

Equation (2.1) is then re-arranged in the following way:

r̈i =
∑
j6=i

µj(rj − ri)
r3ij

+

{∑
j6=i

µj(rj − ri)
r3ij

{
−
4

c2

∑
k6=i

µk
rik

−
1

c2

∑
k6=j

µk
rjk

+

(
vi
c

)2
+ 2

(
vj

c

)2
−
4

c2

(
ṙi · ṙj

)
−

3

2c2

[
(ri − rj) · ṙj

rij

]2}
+
1

c2

∑
j6=i

µj

r3ij

{[
ri − rj

]
·
[
4ṙi − 3ṙj

]}
(ṙi − ṙj)

}

+
1

2c2

∑
j6=i

µj(rj − ri)
r3ij

[(
rj − ri

)
· r̈j
]
+

7

2c2

∑
j6=i

µjr̈j
rij

(2.4)
with three different groups can be highlighted, of which two can be
defined as:

aNewti :=
∑
j6=i

µj(rj − ri)
r3ij

(2.5)



2.2 general model and method 7

aReli :=
∑
j6=i

µj(rj − ri)
r3ij

{
−
4

c2

∑
k6=i

µk
rik

−
1

c2

∑
k6=j

µk
rjk

+

(
vi
c

)2
+ 2

(
vj

c

)2

−
4

c2

(
ṙi · ṙj

)
−

3

2c2

[
(ri − rj) · ṙj

rij

]2}
+
1

c2

∑
j6=i

µj

r3ij

{[
ri − rj

]
·
[
4ṙi − 3ṙj

]}(
ṙi − ṙj

)
(2.6)

with aNewti to be the acceleration of body i due to Newtonian effects
only and aReli to be a peculiar contribution of GR, however dependent
on the states only, not on their derivatives.

The last group is identified by the sum of these two terms:

1

2c2

∑
j6=i

µj(rj − ri)
r3ij

[
(rj − ri) · r̈j

]
︸ ︷︷ ︸

1©

and
7

2c2

∑
j6=i

µjr̈j
rij︸ ︷︷ ︸

2©
(2.7)

They are both linearly dependent on the acceleration r̈j, therefore they The dot product is a
linear operator.are linear in the derivative of the state ẋj.

The two terms 1© and 2© are now manipulated, so that a single
acceleration-dependent term can be obtained. Particularly, 1© can be
re-written as:

1© =
1

2c2

∑
j6=i

µj(rj − ri)
r3ij

[
(rj − ri) · r̈j

]
= c1

∑
j6=i

kij(hij · r̈j) (2.8)

and the dot product can be expanded and re-grouped in the following
way:

c1
∑
j6=i

kij(hij · r̈j) = c1
∑
j6=i

kij(h
(1)
ij r̈

(1)
j + h

(2)
ij r̈

(2)
j + h

(3)
ij r̈

(3)
j )

= c1
∑
j6=i

(
h
(1)
ij kijr̈

(1)
j + h

(2)
ij kijr̈

(2)
j ++h

(3)
ij kijr̈

(3)
j

)
= c1

∑
j6=i

[
h
(1)
ij kij h

(2)
ij kij h

(3)
ij kij

]
r̈j

= c1
∑
j6=i

M 1©
ij r̈j

(2.9)
where the notation y(n) means the n-th component of the vector y. Both kij and hij are

vectors, the double
index ij means that
they are dependent
both on i and j.

2© can be re-written as:

2© =
7

2c2

∑
j6=i

µjr̈j
rij

= c2
∑
j6=i

αijr̈j = c2
∑
j6=i

αijIr̈j = c2
∑
j6=i

M 2©
ij r̈j

(2.10)
where I is the identity matrix.

The whole Equation (2.4) can therefore be written as:

r̈i = aNewti + aReli +
∑
j6=i

(
c1M 1©

ij + c2M 2©
ij

)
r̈j (2.11)
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The final form of the equation has been almost reached, nevertheless
coupling is still visible among the acceleration. To be able to face this
computational issue it is enough to build an augmented system for all
the N bodies, with quantities:

r̈aug =


...

r̈i
...

 ; aaug =


...

aNewti + aReli
...

 ; M =
[
Mij

]
; (2.12)

where the matrix M contributions are:

Mij
1 =

0 i = j

c1M 1©
ij + c2M 2©

ij i 6= j
(2.13)

with the elements composing Mij explicitly defined as:

c1 :=
1

2c2
;

c2 :=
7

2c2
;

M
1©
ij :=

[
h
(1)
ij kij h

(2)
ij kij h

(3)
ij kij

]
=
µj

r3ij

[
(r(1)j − r

(1)i)(rj − ri), (r(2)j − r
(2)i)(rj − ri), (r(3)j − r

(3)i)(rj − ri)
]
;

M 2©
ij := αijI =

µj

rij
I.

(2.14)
The augmented system takes then the form:

r̈aug = aaug + M r̈aug
=⇒ (I − M)r̈aug = aaug

(2.15)

It is now straight forward to obtain the final state-space formulation

ẋaug = F
(
xaug

)
(2.16)

with the sole difference to simulate the whole augmented state if the
purpose of the propagation is to propagate all the N-body trajectories.

Consistency is the only thing that matters when defining F, meaning
that F(xaug) should be defined according to Equation (2.15), assigning
the terms of xaug following their physical meaning, independently on
how the elements of the augmented vector are sorted. In any case, all
the complexity of the problem has been reduced to the need of just
solving a linear system at each step of the propagation.

Note also that no further assumption has been made so far, meaning
that the result obtained with the propagation is affected only by the
analytical approximations made back in the derivation of the starting

1 Mij, as well as M 1©
ij and M 2©

ij , is a 3× 3 matrix.



2.3 fully relativistic method 9

equation (parametrised post newtonian mechanics (PPN) formalism,
treated in Section B.4) and by the round off errors coming from the
numerical propagation.

As final remark, this formulation of the problem is also quite general
and flexible: it is true that no other orbital perturbation is considered
in this example, but they could easily be included as one of the
elements to sum inside aaug, whether they are not dependent on
the acceleration of the bodies2. Furthermore, the original equation
reported in [36] includes also a term called "self-acceleration": the most
general type of body is considered there, where the center of mass3 is
self-accelerated if shape and/or density are not spherically symmetric.
But again this contribution is not dependent on the acceleration of any
of the bodies, hence it can be added in aaug as well.

2.3 fully relativistic method

2.3.1 Implementation

The computational effort required for a full N-Body propagation
is extremely high, thus the model purposed in this work has been
tested using Matlab

R© and SNAPPShot (European Space Agency’s
planetary protection compliance verification software [11] [18]) the
motion of several asteroids, propagating the small body and relying
on planet’s ephemerides data, i.e. assuming the asteroids having no
gravitational influence on the major bodies. The cases of 2006H51,
2010RF12, Apophis and Icarus4 are reported in this work, in a J2000
reference frame centred on the Solar System barycentre, propagated
100 years forward in time, starting from 1st January 1989 at 12 : 00,
with a Runge-Kutta 8 propagator and using the planet’s ephemerides
available in SPICE [1]. The reason for such long propagations is simply
to perform a deep test on the high accuracy reached with including
GR, given that the N-body propagation is already good if no close
approach is to happen . This is however

proven to be reduced
until the flyby date
for Apophis (as it
can be seen in Figure
2.3).

Since only the asteroids’ motion needs to be propagated, it is possi-
ble to compute the acceleration of the asteroids with Equation (2.1),
after having obtained the accelerations of the N-Bodies.

The validation will be carried out by comparing the propagator
results with some benchmark data, thus the errors that will be pre-

2 This usually happens, for example all the oblateness perturbation models and the
Solar Radiation Pressure are dependent on the position only.

3 Note that, as already mentioned in Subsection B.4.3, bodies are considered as point
masses, like any N-Body model.

4 Those asteroids have been chosen because of their orbital perihelion close to the Sun
(thus quite sensitive to GR effects) or because performing a close approach with Earth
(thus planetary defence applications justify the interest to be extremely accurate in
determining their trajectory).
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sented, unless differently specified, are to be considered as computed
with respect to each correspondent SPICE’s set.

With this method, the accelerations of the N bodies are computed
taking into account GR effects directly with the linear system re-
ported in Equation (2.15). It is then solved at each propagation step
with the purpose of obtaining the accelerations of the N-bodies, but
without propagating their motion5. Note that the Matlab

R© function
mldivide.m does not require the user to specify the method used to
solve the linear system. On the other hand, a method implementation
was needed in SNAPPShot since no explicit linear system was solved
before implementing GR effects. A thorough inspection showed a pos-
itive definite, ill-conditioned (some off-diagonal elements are in the
order of 10−20km/s2) and non-symmetric associated matrix, which
thus led to the implementation of an LU factorisation with partial
pivoting, in order to avoid a too small element to become pivot, and
consequent forward and backward substitutions [22].

2.3.2 Propagation and results

The results of the propagation without taking into account GR are first
presented. They are reported as distances from Mercury (2006HY51

and Icarus) or Earth (Apophis and 2010RF12), in Figures 2.1, 2.2, 2.3,
2.4 respectively. Looking at the order of magnitude of the distances

Figure 2.1: Order of magnitude of the distance between 2006HY51 and Mer-
cury, N-body accelerations only.

from Mercury for both the asteroids 2006HY51 and Icarus, there
seems to be almost no difference between the N-body propagation
and SPICE’s data (Figures 2.1 and 2.2). In the Apophis case (Figure
2.3)the difference becomes rather high, particularly after the flyby of
Earth, whereas for 2010RF12 (Figure 2.4) a difference with respect to

5 Their position and velocity come always from ephemerides data.
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Figure 2.2: Order of magnitude of the distance between Icarus and Mercury,
N-body accelerations only.

Figure 2.3: Order of magnitude of the distance between Apophis and Earth,
N-body accelerations only.

SPICE’s data can be seen, but after the second flyby of Earth and not
as high as for Apophis.

It can be observed that, as expected, any flyby produces a sudden
growth of the error and the uncertainty of the propagation, neverthe-
less this may be indeed due to be yet to include in the propagation
GR effects.

The results of the propagation with GR are presented for Apophis
and 2010RF12 in Figures 2.5 and 2.6, looking for some improvements
of the N-body results.

The propagation results have become quite good for Apophis (Fig-
ure 2.5), with still a small difference left which however doesn’t affect
the next close approach dates, in any case better than what reported
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Figure 2.4: Order of magnitude of the distance between 2010RF12 and Earth,
N-body accelerations only.

Figure 2.5: Order of magnitude of the distance between Apophis and Earth,
general relativity effects added.

in Figure 2.3). For 2010RF12 the improvement is visible only after its
second flyby of Earth (Figure 2.6.)

Note that, as it can be seen in Figures 2.1 and 2.2, the N-body
propagation is already enough for the order of magnitude analysis,
therefore their new distances are not reported again, because no actual
improvement would be seen in those graphical representation.

A precise study of the error behaviour is then carried out, with
the purpose of understanding properly where the difference on the
model has actually made the biggest improvement on the results. The
comparison between the position errors are reported in Figures 2.7,
2.8, 2.9, 2.10. The velocity errors have been computed as well in all
the cases, for the sake of conciseness they are not included in this
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Figure 2.6: Order of magnitude of the distance between 2010RF12 and Earth,
general relativity effects added.

work since they have always been showing the same behaviour of the
position errors.

Figure 2.7: 2006HY51, position error.

Despite it was not visible in Figures 2.1 and 2.2, there actually is
an improvement even for these asteroid if GR is taken into account.
The same observation can be made: over a 100 years propagation,
the reduction on the error is experienced to be of at least one order
of magnitude, because of the combined effects of the model being
improved and, as a consequence, of a lower error to be propagated.

A sudden increase of the error, as expected, is experienced while
performing the flyby for both Apophis and 2010RF12 (Figures 2.9 and
2.10 respectively). However, the improved model due to GR allows this
time to still have quite an accurate prediction of the motion after the
event. For the particular case of 2010RF12, the error when accounting
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Figure 2.8: Icarus, position error.

Figure 2.9: Apophis, position error.

for GR effects is observed to be lower than the N-body propagation
even before the 2nd flyby, despite it did not seem so by comparing
Figures 2.6 and 2.4.

2.3.3 Orbital element analysis

To give stronger support to the accuracy of the model, an analysis
on the orbital elements (a, e, i,Ω,ω, θ) (obtained by converting eachSemi-major axis,

eccentricity,
inclination, right

ascension of the
ascending node,

perihelion anomaly
and true anomaly

respectively

state (r, ṙ) coming from the cartesian propagation) is performed with
and without taking into account GR. Particularly, the results are re-
ported zoomed at the end of the propagation (where the accumulated
error makes the differences more visible) and in terms of ω6 only
for 2006HY51 (Figure 2.11) and Icarus (Figure 2.12). All the other

6 The perihelion drift is the most significant effect of GR for near-Sun objects.
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Figure 2.10: 2010RF12, position error.

elements have been tested but not reported, since showing the very
same behaviour of the presented ones.

Figure 2.11: 2006HY51, perihelion anomaly variation.

For 2006HY51 and Icarus (Figures 2.11 and 2.12) it can be seen that
now the model is capable of tracking even the smallest variations on
the orbital parameters, with almost no difference compared to SPICE’s
data.

About Apophis, all the elements experience a sudden change due
to the close approach. The time history of a is reported in Figure 2.13,
whereas all the other elements, again for the sake of conciseness, are
not reported in the analysis since showing the very same behaviour.
The difference was already significant even before the flyby, with an
oscillating behaviour from the N-body propagation pretty different
than the ephemerides data.
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Figure 2.12: Icarus, perihelion anomaly variation.

Figure 2.13: Apophis, semi-major axis variation

The eccentricity variation of 2010RF12 is presented in Figure 2.14,
with again all the other elements to follow the same trend and not in-
cluded here. What happens at the second flyby is highlighted. Account-
ing for GR effects has now kept the elements close to the ephemerides
data, whereas the N-body model would have led to a completely
different result.

As a final comment about what observed with orbital elements and
errors, despite the differences being small between ephemerides and
GR propagation, note that all the distances involved are quite high in
their absolute value. Even a tiny variation in a or θ can easily lead to
positions remarkably different one another.
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Figure 2.14: 2010RF12, eccentricity variation

2.4 newtonian n-body accelerations method

For the sake of reducing the computational cost but still obtaining an
accurate result, it may be worth to look for a suitable approximation
that allows to avoid, even if linear, to solve the system reported in
Equation (2.15) at each iteration. This can actually be done when one
wants to rely on data from ephemerides about the N-bodies and not
to propagate the full N-body motion, namely avoiding to compute the
N-body accelerations required to apply the model presented in the
previous sections.

2.4.1 Rigorous definition

An order-of-magnitude-based proof is then proposed in the follow-
ing lines: Equation (2.11) written for a mass particle p, that has no
gravitational influence on the body i, is:

r̈p = aNewtp + aRelp +
∑
i

Mipr̈i (2.17)

where:

• aNewtp is the Newtonian Acceleration on the mass p due to
bodies i, hence of order O(1);

• aRelp is what was the relativistic vector contribution in Equation
(2.11), but for the mass p due to the bodies i; thus it is of order
O
(
1/c2

)
;

• The quantity Mip embeds a reduction of 1/c2, recalling its defi-
nition in Equations (2.13) and (2.14).
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It follows that any acceleration, including the body i, can be seen as:

r̈i = aNewti︸ ︷︷ ︸
O(1)

+ aReli︸︷︷︸
O
(
1/c2

)+
∑
i 6=j

Mij︸ ︷︷ ︸
O
(
1/c2

)
[
aNewtj +O

(
1/c2

)]
(2.18)

Note that the actual purpose of the relativistic corrections is to reach
a level of accuracy up to O

(
1/c2

)
: multiplying the acceleration by Mij

is then providing a term O
(
1/c2

)
from the Newtonian part, and a

term O
(
1/c4

)
from all the other contributions.

Therefore, if there is no need of propagating the full relativistic
N-body problem, it is reasonable to use

r̈p ≈ aNewtp + aRelp +
∑
i

MipaNewti (2.19)

with the consequence of not needing to solve the augmented system
of Equation (2.15) to obtain the full accelerations of the N-bodies
providing the gravitational field, but applying directly Equation (2.19)
to obtain the small body’s acceleration.

2.4.2 Results

The numerical integration performed with this method has a reduced
computational cost 3 times lower than the fully relativistic propagation.
About the cases presented here on the order of 6 vs 2 minutes for
2006HY51 and Icarus, 10 vs 3.5 minutes for Apophis and 15 vs 5
minutes for 2010RF12, all computed with a Runge Kutta RK7(8) [22]
method, run on Matlab

R© in a local machine, on a single CPU at
2.7GHz. Accurate results are obtained anyway, as it can be observed
in Figures 2.15 and 2.16 for the most critical cases analysed, the flyby
asteroids Apophis and 2010RF12 respectively. The position errors are
reported in Figures 2.17 and 2.18, with the error again not included
since showing exactly the same behaviour.

Looking at the order of magnitude of the distance Apophis-Earth
(Figure 2.15), no difference is visible and the flyby seems not to be
critical with this approximated method. A similar situation happens
for 2010RF12 (Figure 2.16), with a deviation slightly increased after
the second flyby.

For Apophis error with respect to SPICE data is very similar to the
fully relativistic case (Figure 2.17), whereas the error between the two
relativity methods stays more or less constant over the propagation.
Note that these two errors have been plotted on the same graphs to
highlight what particularly happens for 2010RF12 (Figure 2.18): the
situation is again similar to the Apophis until the second flyby is
reached, here the error increases, with the fully relativistic model this
time staying closer to SPICE’s data.
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Figure 2.15: Order of magnitude of the distance between Apophis and Earth,
approximated general relativity effects.

Figure 2.16: Order of magnitude of the distance between 2010RF12 and Earth,
approximated general relativity effects.

The maximum values of the error have been observed to be in both
the cases more or less of 0.005% of the magnitude of the problem. This
value however increases enormously after the second flyby for the case
of 2010RF12, with the maximum value of the error between the two
propagations reaching an order of 20% of the reference magnitude.
This can be considered due to the amplifying effect of the close ap-
proach on the error, as well as the increased uncertainty that is always
propagated.

The orbital element analysis is not reported for this method, because
the results would not be distinguishable from the fully relativistic
propagation treated in Section 2.3.

As a final remark about this approximated method, note that the
actual impact on the propagation is that small only because all the
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Figure 2.17: Apophis, position error comparison between general relativity
models.

Figure 2.18: 2010RF12, position error comparison between general relativity
models.

accelerations are scaled by the factor c2. In a full N-body propagation
they have a direct impact on the future position and velocity, thus quite
a significant error accumulation can be expected whether propagating
with the acceleration-approximated method.



3
C O N C L U S I O N A N D O U T L O O K

The study and research of methods to take into account GR in the N-
body propagation are now over, with two consistent methods proven
to be solid and robust. The first one, the fully relativistic propagation,
is an approach suitable even for the ephemerides generation, since it
does not embed any assumption that is not coming from the PNM
model derivation and can be, as already discussed at the end of Section
2.2, easily generalised to take into account many other effects and
contributions.

The first method looks gives always the best results, even if prop-
agating a simple mass assumed as having no influence on the other
N-bodies. The computational cost is high, but not so high in fact, given
the results and the robustness that it provides: on this regard, it has
been crucial to rely completely on the numerical propagation already
needed for the N-body case to implement the equation of motion. This
allowed to formulate the problem just as the solution of an augmented
linear system (Equation (2.15)) at each time step for the computation
of the accelerations up to machine precision, without any further loss
of generality and accuracy.

The difference between this general method and the Newtonian-
acceleration approximated one (described in Section 2.4) does however
highlight that precise results can be achieved even with a simplified
approach, paying just a slightly reduced accuracy to have a compu-
tational cost way lower than the fully relativistic propagation (the
computational performances had been compared in Section 2.4). This
last method has however proven itself to have a reduced robustness
when a second flyby occurred, in the 2010RF12 case (Figures 2.6 2.16

and 2.18). Hence, it may be used and trusted whether no particular
event is expected during the propagation, where the sudden growth
of the error due to flyby events is not experienced.

Model and propagation method can both be improved, implement-
ing other perturbation sources (i. e. J2 oblateness and solar radiation
pressure, for instance) and studying the uncertainty propagation, for
the sake of reaching a model where, ideally, this last element is the
only error source. They have not been included in this work, since the
goal was only to study the peculiar effects of GR in an interplanetary
sense, although their implementation would be straight forward.
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22 conclusion and outlook

As a final remark, a suitable benchmark has been built and can be
used to test and study other orbital models. In the following parts
of this work such a benchmark will be used not only to test the
approximations made in the model derivations, but also to compute
and apply corrective coefficients to improve the model’s precision.
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T W O B O D Y B - P L A N E R E S O N A N C E T H E O RY

4.1 introduction

As a takeaway from the previous part of this work, the reader should
now be aware of how crucial it is to have a proper model to study the
flybys and their future consequences: for instance, Apophis’ remark-
ably deep close encounter with Earth (Figure 2.5) can be predicted
quite ahead in time, nevertheless one should still wonder whether a
next, consequent close approach occurred.

Remaining within the patched conics context1, there indeed exists
an analytical theory that attempts to setup a first model for orbital
resonances. Such a framework had been developed based on Öpik’s
variables2 [14] first in [9], deepened in [29] and then finalised in [30],
whose geometry and concepts will be recalled and described with a
deep level of detail in the upcoming sections.

4.2 close encounter geometry

Assuming the planet to follow a circular orbit around the Sun, the
reference frame of analysis (Figure 4.1) was first introduced in [9].
Referring all the quantities to the flyby planet, the system is centred
on the planet’s centre of mass, the x axis is directed as the heliocen-
tric position, the y axis as the heliocantric velocity vp and z as the
heliocentric angular momentum.

The remaining quantities presented in Figure 4.1 stand for the
ingoing and outgoing planetocentric velocities U and U ′, the respective
spherical angles θ and θ ′ with respect to the planet’s velocity, φ and φ ′

to locate the correspondent maximum circles with respect to the one
on the plane (y, z). The deflection magnitude is identified by γ (i.e. the
turn angle) and the direction by ψ, given as the internal angle between
the sides γ and θ of the spherical triangle θγθ ′, formed by the vectors
U, U ′ and vp ([9], [30]). Note that the flyby effect, interplanetary-wise

1 There are other resonance models and applications which make use of different
assumptions and environments, that will be better mentioned in Part iii.

2 The six elements used to describe the orbital motion will be mentioned in the
following sections.
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26 two body b-plane resonance theory

Figure 4.1: Deflection reference frame introduced by [9].

in any patched conics approximation, is modelled as an instantaneous
rotation of the vector U.

Identifying by (a, e, i) the non-dimensional semi-major axis, eccen-
tricity and inclination of the small object’s orbit, the components of U
can be written as ([9],[30]):

U =

UxUy
Uz

 =

±
√
2− 1/a− a(1− e2)√
a(1− e2) cos i− 1

±
√
a(1− e2) sin i

 (4.1)

where the reference length is the distance planet-Sun, the reference
time is the planet’s orbital period divided by 2π and the Sun’s gravi-
tational parameter is set to 1. In this a way also the planet’s velocity
magnitude is equal to 1 [30].

Identifying with T the Tisserand parameter the magnitude U = ||U||

becomes:

U =

√
3−

1

a
− 2
√
a(1− e2) cos i =

√
3− T (4.2)

U can be also expressed as function of the angles θ and φ:UxUy
Uz

 =

U sin θ sinφ

U cos θ

U sin θ cosφ

 (4.3)

which then suggests the following definition for such angles[
cos θ

tanφ

]
=

[
Uy/U

Ux/Uz

]
(4.4)
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4.3 the b-plane reference frame

With the above defined quantities it is possible to introduce the b-plane
reference frame, whose axes (ξ̂, η̂, ζ̂) are defined as [14]:

η =
U
||U||

; ξ =
U× vp

||U|| ||vp||
; ζ = ξ× η. (4.5)

Note that the components of such axes identify a rotation matrix
to express a generic point xcar of the cartesian space3 into b-plane
coordinates:

xb−plane = [ξ̂, η̂, ζ̂]Txcar. (4.6)

From now on the definition b-plane will be used to identify the plane
perpendicular to the η̂ axis, because

ξ2 + ζ2 = b2 (4.7)

with b the impact parameter [20]. Each of the coordinates has its own
physical meaning [5]:

• η̂ is directed as the planetocentric velocity, thus η stands for
some distance measure with respect to the pericentre of the
planetocentric hyperbolic orbit. In fact it is there that η = 0

because of the velocity vector being normal to the planetocentric
position, for negative and positive η values in the ingoing and
outgoing arcs respectively.

• ζ̂ is directed opposite to the projection on the b-plane of vp,
therefore ζ identifies the phasing of the two orbits.

• ξ̂ completes the right-handed reference frame, the coordinate ξ
highlights the minimum distance between the two orbits.

Such physical meanings allow then to separate the flyby features into
three different coordinates, i.e. what is missing for the small body
to impact with the planet could be just a matter of time (η), the two
orbits never intersecting each other or their minimum distance being
higher than the planet’s radius (ξ), the phasing of the two orbits (ζ) or
a combination of the three.

Now all the six Öpik’s variables [14] have been introduced, thus
summarising them:

1. the magnitude U of the planetocentric velocity;

2. the angle θ (Figure 4.1);

3. the angle φ (Figure 4.1);

4. the b-plane coordinate ξ;

3 Provided that it is written in the same reference frame of the b-plane axes
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5. the b-plane coordinate ζ;

6. the time of b-plane crossing tb, i.e. strictly linked to the third
coordinate η.

The b-plane coordinates and the impact parameter provide a straight
forward definition of the deflection direction angle ψ ([9],[30]):[

ξ

ζ

]
=

[
b sinψ

b cosψ

]
(4.8)

and introducing the quantity c = m/U2, where m is the planet’s mass
expressed in solar masses, γ can be identified as:

tan
γ

2
=

m

bU2
=
c

b
(4.9)

or

cosγ =
b2 − c2

b2 + c2

sinγ =
2bc

b2 + c2
.

(4.10)

Recalling Figure 4.1, the deflection can be then determined by solv-
ing the spherical triangle (θ,γ, θ ′), with ψ acting as internal angle,
thus obtaining the new orientation θ ′. The cosine law for spherical
geometry gives [30]:

cos θ ′ = cos θ cosγ+ sin θ sinγ cosψ. (4.11)

4.4 resonant circles formulation

Following [30], by combining Equations (4.4), (4.1) and (4.2), cos θ can
be expressed in terms of the orbital parameters to obtain:

cos θ =

√
a(1− e2) cos i− 1√

3− 1
a − 2

√
a(1− e2) cos i

(4.12)

Taking the square of Equation (4.2) it can be highlighted that√
a(1− e2) cos i =

3− 1/a−U2

2
(4.13)

thus plugging such an expression from Equation (4.13) into Equation
(4.12), a new definition for cos θ is obtained:

cos θ =
3−1/a−U2

2 − 1√
3− 1

a − (3− 1/a−U2)

=
3/2− 1/2a−U2/2− 1

U

=
3− 1/a−U2 − 2

2U

=
1− 1/a−U2

2U

(4.14)
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A definition of resonance needs now to be introduced: a flyby leads
to a resonant return when the new small object’s interplanetary orbit
(with superscript ’) satisfy the condition [30]

ht ′obj = ktpl (4.15)

with t to identify the orbital period and (k,h) positive integers, re-
spectively the number of orbits of planet and small object until the
next close approach. Note that in the considered reference frame the
planet’s non-dimensional orbital period tpl = 2π and the small ob-
ject’s one is linked to the new interplanetary orbit semi-major axis by
t ′obj = 2πa

′3/2. Therefore, a resonant post encounter semi-major axis A 0 subscript is
added to remark the
resonance feature of
this new orbit

can be determined just by k and h [30]:

a ′0 =

(
k

h

)2/3
(4.16)

In theory, from Equation (4.16), there can be infinite resonances
with each one featuring its own semi-major axis, however the interest
lies only on rather small values of k and h to not push the analysis
pointlessly too much forward in time.

Taking now a look to Equation (4.14), it can be seen that the resonant
condition turns into a specified orientation θ ′0 of U ′ with respect to
vp:

cos θ ′0 =
1− 1/a ′0 −U

2

2U
(4.17)

This post encounter angle must satisfy the deflection equation (Equa-
tion (4.11)). Plugging the expressions for cosγ, sinγ, cosψ from Equa-
tions (4.10) and (4.8) into Equation (4.11) cos θ ′0 becomes [30]:

cos θ ′0 =
b2 − c2

b2 + c2
cos θ+

2cζ

b2 + c2
sin θ (4.18)

and re-arranging to write explicitly ζ:

ζ =
(b2 + c2) cos θ ′0

2c sin θ
−

(b2 − c2) cos θ
2c sin θ

(4.19)

As already mentioned, a key b-plane feature sees b2 = ξ2 + ζ2.
Then

2c sin θζ = (ξ2 + ζ2) cos θ ′0 + c
2 cos θ ′0 − (ξ2 + ζ2) cos θ+ c2 cos θ

= (ξ2 + ζ2)(cos θ ′0 − cos θ) + c2(cos θ ′0 + cos θ)
(4.20)

Which once re-arranged becomes the resonant circle equation pro-
posed in [30]:

ξ2 + ζ2 −
2c sin θ

cos θ ′0 − cos θ
ζ+

c2(cos θ ′0 + cos θ)
cos θ ′0 − cos θ

= 0

⇐⇒
ξ2 + ζ2 − 2Dζ+D2 = R2

(4.21)
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with

D =
c sin θ

cos θ ′0 − cos θ
R =

∣∣∣∣ c sin θ ′0
cos θ ′0 − cos θ

∣∣∣∣ (4.22)

Specifically, those geometrical entities are circles on the b-plane, whose
centre is located on the ζ̂ axis at a coordinate D and whose radius is
equal to R (e.g. Figure 4.2).

Figure 4.2: Example of set of resonant circles in the b-plane; the thicker
solid and dashed lines represent, in this case, respectively Earth’s
radius and augmented radius due to gravitational focusing.

Note that the most general concept of circle on the b-plane is linked
only to a specified post-encounter semi-major axis, without necessarily
having it resonant. To this extent, there may exist a flyby whose
encounter only changes eccentricity and inclination preserving the
semi-major axis, with the consequence of cos θ = cos θ ′. The circle
parameters do not exist in this case, taking the limit as in [30] the locus
of points with such an unchanged semi-major axis is the straight line
parallel to the ξ̂ axis identified by the equation

ζ =
c cos θ
sin θ

(4.23)

Note also that (Figure 4.1) the angle θ is bounded between 0 and
π, thus sin θ > 0 ∀ θ. Recalling the definition for cos θ ′ in Equation
(4.16), as in [30] it can be seen that a ′ > a implies cos θ ′ > cos θ,
therefore a positive value for the parameter D of all the circles satis-
fies a ′ > a. This then implies that all the circles with D > 0 will beThis is already a

quick visual
information provided
by the b-plane, useful

to already classify
the close approach.

included in the semi-plane ζ > cos θ/ sin θ and will lead to a post en-
counter semi-major axis higher than the pre-encounter one [30]. Note
that such a consequence is not exactly the rule leading-side/trailing
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side flybys, since depending on the sign of cos θ/ sin θ slightly trailing-
side close approaches may see a slight reduction in the semi-major
axis, and vice-versa.





5
R E S O N A N T B E LT S A N D P E RT U R B E D C I R C L E
PA R A M E T E R S : A S E M I - A N A LY T I C A L M O D E L

5.1 introduction

The research performed in this thesis work led to a semi-analytical
extension of the theory presented in Chapter 4, by introducing some
corrective effects in order to make the b-plane deflection compliant
with simulated data. The main perturbing effects are taken into ac-
count as happening only inside the sphere of influence, and despite
the corrections start to improve the model in that specific direction, the
overall assumption remains still the patched conics reference frame. Indeed, the

correction seeks to
replicate the
deflection that the
trajectory
experiences when
undergoing any
possible perturbation,
although such a
deflection is used
instead of the
patched conics’ one
in the b-plane
analysis.

The proposed model will be shown already suitable for a precise
treatment of any deflection inside the planet’s sphere of influence,
nevertheless, to reach its final form, such a semi-analytical theory must
detach from the patched conics method to embed a continuous study
along the whole and most general orbital motion.

5.2 from resonant circles to resonant belts

First of all, it might be worth to introduce a slightly more general
concept of resonance than in [30]1, to take into account also non-
perfectly phased return as resonant one. Recalling Equations (4.15)
and (4.16), as in [11] a quasi-resonance definition can be introduced, i.e.
an object is considered in resonance with a given planet whether the
condition for a generic resonance k/h∣∣∣∣Tobject/Tplanet − k/hk/h

∣∣∣∣ 6 ∆∗ (5.1)

is satisfied, with the quantity ∆∗ to be an arbitrary value identifying
the quasi-resonance thresholds. For instance,

∆∗ = 0.005 in [11]Such a definition can be conceptually reverted, in order to obtain
the values of k/h that correspond to the quasi-resonance boundaries:

k

h

±
=
k

h
(1±∆∗) (5.2)

1 The concept of resonance will select some specific semi-major axes, albeit the same
considerations can be made for a general post encounter semi-major axis.
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34 resonant belts and perturbed circle parameters : a semi-analytical model

Re-applying Equation (4.16) two new quasi-resonant post encounter
semi-major axes can be obtained

a
′±
0 =

(
k

h

±)2/3
(5.3)

to bring two new values for cos θ ′0, as it was in Equation (4.17)

cos θ
′±
0 =

1− 1/a
′±
0 −U2

2U
(5.4)

and eventually obtain the parameters of two new circles as defined in
Equation (4.22):

D± =
c sin θ

cos θ
′±
0 − cos θ

R± =

∣∣∣∣ c sin θ
′±
0

cos θ
′±
0 − cos θ

∣∣∣∣ (5.5)

These two new circles bound a closed region, the locus of points
in the b-plane satisfying the quasi-resonance condition, from now on
called resonant belts (e.g. Figure 5.1).

Figure 5.1: Resonant belts from the same example of Figure 4.2. The corre-
spondent perfect resonances (i.e. resonant circles) are reported in
grey.

5.3 circle modification due to perturbing effects

The current section will introduce perturbing effects in the compu-
tation of the resonant circle parameters, due to the actual trajectory
slightly differing from the patched conics approximation. Note that
whatever presented in the upcoming lines has to be intended as ap-
plicable to any of the circles, thus for both the perfect resonance and
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the boundaries of the resonant belts, as well as to any other arbitrary
post-encounter semi-major axis.

A set of perturbing parameters will be introduced, all meant to be
computed by the results of numerical simulations.

5.3.1 Perturbation effects in the planetocentric motion

Some work to model perturbing effects in hyperbolic trajectories
has already been made, particularly what developed by [3] presents
an analytical solution for perturbing angles in a formalism close to
Öpik’s variables [14], by means of the Born approximation. Some
inspiration has been taken from [3] on how to handle the geometry,
even though the perturbing coefficients are kept as general, in order
to be suitable for both a numerical computation and possible future
analytical developments.

Starting with the perturbing effects, the following claim needs to
be made, inside the sphere of influence any perturbation acts by
modifying the classical spherical triangle introduced in [9] and [30]
for the relative angles: Note that such

angles are in theory
relative, their
definition is strictly
connected to the
nominal b-plane
coordinates, thus are
expected to differ
from point to point
in the domain.

γ∗ = γ+∆γ

ψ∗ = ψ+∆ψ

θ
′∗ = θ ′ +∆θ ′

(5.6)

with the superscript ∗ to identify the actual angles and the clean
symbols to denote the analytical ones, from the usual resonance theory
(Chapter 4, [30]).

5.3.1.1 Geometry

Since all the observations that will lead to the perturbing parameter
definitions are made on the same reference frame, Figure 4.1 is shown
again in this Section.

The final aim is to replicate the deflection obtained by the simula-
tions including the perturbing effects. It is straight forward to model
the variation in the deflection γ∗ and θ

′∗, if Note that in the
upcoming lines the
notation U and U ′

will stand for the
actual velocity
vectors obtained
from the numerical
simulation, whereas
voutp will identify
the planet’s velocity
at the exit of the
sphere of influence.

γ∗ = arccos
(

U ·U ′

||U||||U ′||

)
θ
′∗ =

(
U’ · voutp

||U ′||||voutp ||

) (5.7)

re-arranging Equation (5.6) and with the definition of γ from Equation
(4.10) the perturbing angle ∆γ becomes

∆γ = γ∗ − γ = γ∗ − arccos
(
b2 − c2

b2 + c2

)
(5.8)
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Figure 5.2: Deflection reference frame introduced by [9], as in Figure 4.1.

and ∆θ ′, with the expression for θ ′ as in Equation (4.17)

∆θ ′ = θ
′∗ − θ ′ = θ

′∗ − arccos
(
1− 1/a

′∗ −U2

2U

)
(5.9)

with the symbol a
′∗ to denote the actual post-encounter semi-major

axis. Note that this definition keeps in theory the model applicable
to any post-encounter condition, not necessarily requiring it to be
resonant. In fact, the actual value of a

′∗ should identify the b-plane
locus of points leading to that specified post encounter semi-major
axis.

It is conceptually more complicated to get the perturbation ∆ψ,
since some more observations on the geometry are needed. Note that
the whole analysis is being conducted in the b-plane reference frame
at the entrance of the sphere of influence, thus, by the definition of
the reference frame in Equation (4.5), the b-plane under analysis is
perpendicular to the vector U, which is common to both the actual
deflection and the theoretical definitions2. This has several friendly
implications, particularly that the angle ψ is measured counterclock-
wise ([9], [30]) on the upside3 b-plane, starting from the axis direction
−ζ̂ and the vector U×U ′ must lay on the same b-plane as well.

Since ψ∗ identifies the actual direction of the deflection, exploiting
U × U ′ being normal to the plane containing both U and U ′, the
counterclockwise angle measured from the direction −ζ to U×U ′ is
simply defined as ψ∗ + π/2 (Figure 5.2).

2 In fact, U is used to initialise the b-plane analysis by means of identifying cos θ and
preserving its magnitude U.

3 Facing towards positive η̂ directions.
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Recalling the definition of the theoretical ψ given in Equation (4.8)
([9] and [30])

cosψ = ζ/b

sinψ = ξ/b
(5.10)

one must note that the b-plane coordinates do not provide directly
the deflection direction, since on the downside b-plane it is measured
clockwise from the positive ζ̂ direction.

In fact, the two angles are measured on the two opposite sides of
the b-plane, whereas the current definition for ψ proposed by [9]
and [30] is strictly counterclockwise. Which real directions (clockwise
or counterclockwise) to consider in each definition to get the proper
counterclockwise value of ∆ψ becomes then not so clear: even though a
more compact form could be reached with some further manipulation,
a fully b-plane description of the deflection direction is presented,
with the purpose of obtaining a better understanding of its description
on the downside b-plane itself, which is what is seen when entering
the planet’s sphere of influence. Since both the deflection directions
must lie on the b-plane, the geometry of Figure 5.3 is introduced to
properly identify ∆ψ. The angles ψ̃∗ and ψ̃ are both measured on
the downside b-plane (where the resonant circles are represented),
thus with ingoing η̂ axis. The magnitude of the difference ψ̃∗ − ψ̃
will correspond to ∆ψ, its direction will be counterclockwise on this
plane and clockwise in the 3-dimensional deflection reference frame
of Figure 5.2.

Figure 5.3: Graphical representation of the rotation convention used for the
computation of ∆ψ.
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Particularly, the angle ψ̃− π/2 is defined as

cos(ψ̃− π/2) = −
ζ

b

sin(ψ̃− π/2) =
ξ

b

(5.11)

The actual deflection direction U × U’|∗ is a vector that can be
expressed in the b-plane reference frame in the same manner as it was
done in Equation (4.6):

U×U’|∗b−plane =
[
ξ̂, η̂, ζ̂

]TU×U’|∗cartesian (5.12)

with the component in the η̂ direction to be equal to 0 by the cross
product properties. Exploiting the geometry in Figure 5.3 the angle
ψ̃∗ is defined as the counter-clockwise angle such that

cos ψ̃∗ =

[
U×U’|∗

ξ̂
, U×U’|∗

ζ̂

]T · [0,−1]T
||U×U’|∗||

(5.13)

and therefore in the original 3-dimensional deflection frame (Figure
5.2) the counterclockwise ∆ψ is given by

∆ψ = −(ψ̃∗ − ψ̃) (5.14)

5.3.1.2 Modified circle parameters

Such perturbing angles are going to modify the circle parameters, since
their definition has a direct impact on the variables that mathematically
defined the circles (Equation (4.21)).

First of all, the modified cos θ
′∗ can be kept in such a form, provided

that its explicit definition is made clear as

cos θ
′∗ = cos(θ ′ +∆θ ′) = cos θ ′ cos∆θ− sin θ ′ sin∆θ (5.15)

Secondly, a re-derivation of the resonant circle equation is needed.
The spherical triangle equation highlighting the perturbations is then:The subscript 0 on

cos θ
′∗
0 stands for a
resonant post

encounter
semi-major axis.

cos θ
′∗
0 = cos θ cos(γ+∆γ) + sin θ sin(γ+∆γ) cos(ψ+∆ψ) (5.16)

with the trigonometry relations

cos(A+B) = cosA cosB− sinA sinB

sin(A+B) = sinA cosB+ cosA sinB
(5.17)

an equation of the following form is obtained

cos θ ′∗0 =a1 cosγ+ a2 sinγ+ a3 sinγ cosψ+ a4 cosγ cosψ

+ a5 sinγ sinψ+ a6 cosγ sinψ
(5.18)
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with the ai coefficients not to depend on the b-plane variables, partic-
ularly:

a1 = cos θ cos∆γ

a2 = cos θ sin∆γ

a3 = sin θ cos∆γ cos∆ψ

a4 = sin θ sin∆γ cos∆ψ

a5 = − sin θ cos∆γ sin∆ψ

a6 = − sin θ sin∆γ sin∆ψ

(5.19)

By replacing the trigonometric functions of γ and ψ with their b-plane
definitions, Equation (5.18) becomes

(b2 + c2) cos θ ′∗0 = a1(b
2 − c2) + 2a2bc+ 2a3cζ+ a4(b

2 − c2)ζ/b

+ 2a5cξ+ a6(b
2 − c2)ξ/b

(5.20)
A final claim about modelling the perturbed resonant circles is made:
since the perturbing effects must be small compared to the main
2-body effect, the overall shape should be still identified by circles
centred on the ζ axis. To find the parameters of such circles it then is
enough to obtain two expressions for the two intersections with the ζ
axis:

ζ1,2 = D± R (5.21)

which correspond to the solution of the quadratic equation that is
obtained by setting ξ = 0 in Equation (5.20): The equivalence

b2 = ζ2 + ξ2 must
still hold, thus for
ξ = 0 it must also be
introduced that
b = ζ.

(ζ2 + c2) cos θ ′∗0 = a1(ζ
2 − c2) + 2a2cζ+ 2a3cζ+ a4(ζ

2 − c2)

(5.22)
therefore

ζ2 − 2c
B

A
ζ+ c2

C

A
= 0 (5.23)

where, writing explicitly the coefficients ai

A = cos θ
′∗
0 − cos θ cos∆γ− sin θ sin∆γ cos∆ψ

B = sin θ cos∆γ cos∆ψ− cos θ sin∆ψ

C = cos θ
′∗
0 + cos θ cos∆γ+ sin θ sin∆γ cos∆ψ

(5.24)

The solutions to Equation (5.23) are

ζ1,2 =
2c(B±

√
B2 −AC)

2A
(5.25)
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It is now possible to operate some simplifications under the square
root, particularly some of the terms become:

B2 = sin2 θ cos2∆γ cos2∆ψ− 2 sin θ cos∆γ cos∆ψ cos θ sin∆ψ+

cos2 θ sin2∆ψ

AC = cos2 θ
′∗
0 − (cos θ cos∆γ+ sin θ sin∆γ cos∆ψ)2

= cos2 θ
′∗
0 + cos2 θ cos2∆γ+ 2 cos θ cos∆γ sin θ sin∆γ cos∆ψ+

sin2 θ sin2∆γ cos2∆ψ
(5.26)

thus

B2 −AC = sin2 θ cos2∆γ cos2∆ψ+ cos2 θ sin2∆ψ− cos2 θ
′∗
0 +

cos2 θ cos2∆γ+ sin2 θ sin2∆γ cos2∆ψ
(5.27)

and using the identity sin2∆γ = 1− cos2∆γ

B2 −AC = cos2 θ− cos2 θ
′∗
0 + sin2 θ cos2∆ψ (5.28)

finally the use of cos2∆ψ = 1− sin2∆ψ yields the desired solution
form ζ1,2 = D± R, where

D =
c(sin θ cos∆γ cos∆ψ− cos θ sin∆ψ)

cos θ ′∗0 − cos θ cos∆γ− sin θ sin∆γ cos∆ψ

R =

∣∣∣∣ c
√
sin2θ

′∗
0 − sin2 θ sin2∆ψ

cos θ ′∗0 − cos θ cos∆γ− sin θ sin∆γ cos∆ψ

∣∣∣∣
(5.29)

Note that, as a proper perturbation model, if the angles ∆γ, ∆ψ
and ∆θ ′ were all to be zero the original solution from [30] would be
obtained.

5.4 validation strategy

The validation process is presented in Chapter 6, validating the de-
flection model itself and studying its relative-validity limits4, and
comparing the perturbed resonant circles with the b-plane coordinates
of simulated samples in actual post-encounter resonance. Note that
the validation process presented digs already into the planetary protec-
tion and defence study, whose complete version would include more
thorough and extensive analyses about the risk of impact/resonance
with the current planet.

4 In other words, since the perturbing angles introduced are relative it may be reason-
able to expect them pretty similar for b-plane points close enough to each other.



6
R E S O N A N C E M O D E L VA L I D AT I O N

6.1 introduction

The validation of the model developed in Chapter 5 will feature two
main and consequent directions. First of all, the deflection model will
be validated by itself, together with studying the error in the nearby
b-plane regions if the perturbing angles ∆γ and ∆ψ are approximated
as equal to the reference’s ones.

Secondly, the perturbation on cos θ ′ will be introduced and its qual-
ity will be checked directly by comparing the simulated resonances
and the perturbed resonant belts. In this regards, Monte-Carlo sim-
ulations have been performed with SNAPPShot [11]. The test cases Each simulation

includes N-body
gravitational and
general relativity
effects.

presented in this work feature three Near-Earth asteroids (Apophis,
Duende, 2018BD) and Solar Orbiter’s1 launcher upper stage in its first
uncontrolled flyby of Venus [2].

In fact, the three
asteroids highlight
already a planetary
defence application,
whereas the
uncontrolled
dynamics of the
upper stage of Solar
Orbiter’s launcher
starts the planetary
protection analysis.

6.2 deflection model

As already briefly introduced, the validation of the deflection model
involves the perturbations on the angles γ and ψ only. The solution
of the spherical triangle in Figures 4.1 and 5.2 leads to the resonant
circle equation by finding the combination of γ and ψ as the locus
of b-plane points that brings a given post-encounter semi-major axis,
i.e. a specified cos θ ′. The case will be tackled on the opposite side, in
order to maintain the generality of talking about the flyby deflection
instead of restricting the analysis to the sole angle between U ′ and
voutp . Therefore, a b-plane domain map will be introduced, whose
coordinates are numerically propagated until exiting the sphere of
influence, building the benchmark to test the quality of the standard
b-plane deflection model and the perturbed one.

For the sake of conciseness only a few remarkable cases2 will be
presented and discussed, from Apophis’ and Solar Orbiter’s velocities
at the entrance of the sphere of influence in the same cases for the
resonance analysis. Detailing deeper the plots that will be presented:

1 Solar Orbiter is a European Space Agency’s mission to be launched in February 2020,
studying the Sun and the related space weather phenomena [12].

2 In terms of b-plane coordinates.

41
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• Standard b-plane model: the geometry in Figure 4.1 brings the
full deflection, without considering any perturbation effects and
obtaining U ′ from the angles γ and ψ (function of the b-plane
coordinates). The error with respect to the simulated deflection
is plotted.

• Perturbed b-plane model: the corrections ∆γ and ∆ψ are added as
the ones featuring the middle point in the domain plotted for all
the points, adding such effects to the standard deflection. The
error with respect to the simulated deflection is plotted.

6.2.1 Simulation details

All the b-plane map points have been simulated with Matlab
R©, prop-

agating the initial conditions in non-dimensional coordinates with the
solver ode113.m, using SPICE [1] as the ephemerides source and with
a dedicated event function to stop the simulation at the exit of the
sphere of influence. In this case the simulations have been carried out
in the J2000 reference frame centred in the Solar System’s barycentre,
although any other reference could be chosen as long as consistency
is kept among all the units and conversions.

The details about the precise times, locations and features of the
close approach will be given in the following section, since the fo-
cus here is just to compare the different deflection models with the
simulation benchmark.

6.2.2 Apophis case

The analysis of the deflection approximation in two different b-plane
regions is reported in this section, low (Figures 6.2 and 6.1) and high
(Figures 6.3 and 6.4) altitude flybys respectively, with two different
colour scales in order to better highlight the differences between the
two models. Note that impact regions have not been considered.

At low altitude the overall error is rather high for the unperturbed
deflection (Figure 6.1), increasing for points closer to the attractor and,
generally, showing a pretty steep variation over the whole domain. A
remarkable improvement is obtained with the corrected model (Figure
6.2) in a wide region about the reference point, where the error goes
to zero.

At high altitude the error decreases in magnitude for the unper-
turbed case (Figure 6.3), even though it remains different from zero
about the reference. A displaced lower error region is observed, which
may be explained by some occasional compensation of the error. The
correction model is again effective (Figure 6.4), leading to a lower error
about the reference point.
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Figure 6.1: Apophis case, deflection error at low altitudes for the unperturbed
model, as the norm of the difference between the actual and the
modelled vectors.

Figure 6.2: Apophis case, deflection error at low altitudes for the corrected
model, as the norm of the difference between the actual and the
modelled vectors.

Other b-plane regions (intermediate altitudes and circular sectors)
have been analysed and are not included here for the sake of concise-
ness, since the behaviour observed remains basically the same, with
the error getting to zero at and significantly decreasing nearby the
reference point.
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Figure 6.3: Apophis case, deflection error at high altitudes for the unper-
turbed model, as the norm of the difference between the actual
and the modelled vectors.

Figure 6.4: Apophis case, deflection error at high altitudes for the corrected
model, as the norm of the difference between the actual and the
modelled vectors.

6.2.3 Solar Orbiter case

The analysis of the deflection approximation in two different b-plane
regions is reported in this section, low (Figures 6.5 and 6.6) and
medium-low (Figures 6.7 and 6.8) altitude flybys respectively, with
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two different colour scales in order to better highlight the differences
between the two models. Note that impact regions have not been
considered.

Figure 6.5: Solar Orbiter case, deflection error at low altitudes for the unper-
turbed model, as the norm of the difference between the actual
and the modelled vectors.

Figure 6.6: Solar Orbiter case, deflection error at low altitudes for the cor-
rected model, as the norm of the difference between the actual
and the modelled vectors.

Similarly to the Apophis case (Figure 6.1), at low altitude the overall
error in this case (Figure 6.5) is rather high even though smaller in
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Figure 6.7: Solar Orbiter case, deflection error at medium-low altitudes for
the standard model, as the norm of the difference between the
actual and the modelled vectors.

Figure 6.8: Solar Orbiter case, deflection error at medium-low altitudes for
the corrected model, as the norm of the difference between the
actual and the modelled vectors.

magnitude, increasing for points closer to the attractor. The deflection
prediction is again more accurate with the corrected model (Figure
6.6), with a high precision region even wider than the correspondent
Apophis case.
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For medium-low altitudes a regular variation of the error is expe-
rienced (Figure 6.7), getting higher the closer the points are to the
attractor, although overall lower in magnitude than the lower altitude
case (Figure 6.5). The corrected deflection (Figure 6.8) is again precise
about the reference, with a wide high accuracy region as in the low
altitude case.

Other b-plane regions have been analysed and are not included
here for the sake of conciseness, since the behaviour observed remains
basically the same, with the error getting to zero at and significantly
decreasing nearby the reference point.

6.3 b-plane perturbed resonance model

The just validated deflection model is used to show an improved
definition of the resonant belts, adding the perturbing effect ∆θ and
letting the b-plane definitions of the angles γ and ψ identify the locus
of points.

All the cases will be analysed as plots on the b-plane with a common
colour legend, therefore presented here for good, leaving the floor to
the analysis itself in each of the following subsections:

• Red dots: the current sample features a simulated impact with
the planet.

• Yellow dots: the current sample features a simulated resonance
(i.e. satisfying the condition in Equation (5.1) presented in [11].)

• Dark grey dots: the current sample features a simple close ap-
proach.

• Blue dot: reference sample (nominal condition which the cloud is
generated upon) for the b-plane axes computation.

• Black lines: boundaries of the resonant belts.

• Light grey lines: perfect resonances (i.e. resonant circles).

6.3.1 Test cases, introduction

Each of the test cases will be introduced together with its nominal
initial condition (r0, v0, t0) (J2000 reference frame, centred on the Solar
System’s barycentre). For the near-Earth asteroids, the clouds have
been generated by applying to each component of position and velocity
vectors a relative deviation to the nominal value, normally distributed
with boundaries ±0.005% and propagated with SPICE ephemerides
data [1]. Solar Orbiter’s cloud has been instead generated according to
the co-variance matrix given in [11], computed as specified by [16] to
comply with ESA’s planetary protection requirements, and propagated
with ESA’s ephemerides routine as in [11].
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For all the cases, the numerical propagations have been carried out
100 years forward in time from the initial epoch, in the J2000 reference
frame centred on the Solar System’s barycentre. The b-plane analysis
has been then performed at the first close encounter at the entrance
of the sphere of influence, with the simulated samples converted into
b-plane coordinates, switching them first into a J2000 planetocentric
reference frame, by Equation (4.6), and plotting such coordinates in
the b-plane of the nominal condition.

In each subsection the non-perturbed resonant belts (i.e. the original
theory in [30] with the relaxed resonance definition as presented in
Section 5.2) will be compared with the modified belts, presented in
Section 5.3, with the corrective parameters computed by the perturba-
tions featuring the nominal simulated trajectory3. For each case, the
relative errors on the ζ coordinate of the lower bound of the three
resonant belts closest to the reference sample are reported, for both
the standard and the corrected belts. Note that the coordinate ζ has
been chosen because of being the most significant b-plane coordinate
varying from belt to belt, as well as an already available parameter for
any point in the simulated clouds. The lower bound has been chosen
arbitrarily and to select the actual resonant samples in an handier
way, even though such a choice does not affect the contents of the
analysis. The very same results, as it will be confirmed by the more
visual plots, could have been shown by computing the error on the
middle circles or on the upper bound of the resonant belts. Finally,
only three belts are reported per each case because of the extreme
variation of the number of resonances experienced in the test cases
and to maintain a common framework, from a minimum of indeed
3 for 2018BD to more than 20 for Solar Orbiter. The three belts, for
the cases where more resonances are experienced, are chosen as the
closest to the reference because, as it was shown in Section 6.2, the
deflection model is supposed to perform at its best about such point,
therefore where the most significant improvements are expected even
for the resonant belts modelling.

A particular observation needs to be made about modelling the
perturbation ∆θ ′, whose definition might be misunderstood in this
context where only the resonant returns are searched. The common
reference is the computation of the perturbation effects with respect
to the nominal condition, with the definition straight forward in the
case of the angles ∆γ and ∆ψ because dealing with the actual and
theoretical velocity vectors. Despite it is used to improve the resonant
belt model, the perturbation ∆θ ′ is computed again on the reference
sample, whose close approach may be in general perfectly resonant,
quasi-resonant or just simple. The actual post-encounter semi-major
axis a

′∗ is thus computed on the nominal condition and then used

3 Given the results of the deflection validation, a zero error would be expected at the
reference, if this was located on a circle’s intersection with the ζ̂ axis.
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in Equation (5.9), with such a ∆θ to be applied to all, in this case
resonant, the b-plane circles that one wishes to draw.

Note that the resonance ratio is reported only when visible/relevant,
because of, in some of the cases, the too packed samples/belts.

6.3.2 Apophis

The nominal initial condition is

r0 =


18658363.5984703

132490717.716693

49676168.1228006

 km

v0 =


−28.3478281346163

9.00743133531365

2.63329103908463

 km/s

t0 = 10227 MJD2000(midnight)

(6.1)

and features a resonant close approach (resonance condition k/h = 7/6)
with Earth at epoch 10694.3 MJD2000. The non-perturbed resonant
belts and the perturbed ones are plotted in Figures 6.9 and 6.10 re-
spectively.

Figure 6.9: Apophis case, standard resonant belts vs simulated resonances.

A slight deviation between the simulated and the standard resonant
belts is experienced (Figure 6.9), between all the analytical resonant
belts and the correspondent simulated ones. The correction param-
eters improve the model (Figure 6.10), leading to a basically perfect
correspondence of the simulated and modelled resonances particularly
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Figure 6.10: Apophis case, corrected resonant belts vs simulated resonances.

close to the reference sample. The correspondence is improved, but not
perfect, for the upper belt. The relative error for the three resonances
closest to the simulation reference are reported in Table 6.1.

k/h Standard belt Corrected belt

7/6 6.045% 0.199%

6/5 5.594% 0.327%

8/7 6.506% 0.047%

Table 6.1: Apophis case, relative error for standard and corrected belt models
with respect to the simulated resonances.

The lower error for the 8/7 belt, with respect to the reference 7/6,
might be due to the corrective coefficients computed at the reference
but applied at the intersection with the ζ̂ axis, which might lead to
slight occasional compensations of this kind in other near b-plane
regions.

The corrected belts in Figure 6.10 seem to be pretty accurate also for
all the points closer to Earth than the reference. This result complies
with the deflection validation shown in Figure 6.2, where rather high
errors were practically obtained only for points within the impact
region, despite using the corrective parameters of the reference sample.

As another observation, in opposition to the next cases, the nominal
close approach experienced will be shown to be the deepest overall.
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6.3.3 Duende

The nominal initial condition is

r0 =


−18623208.1303659

130438213.384556

36039104.1291735

 km

v0 =


−32.2871979890617

−3.11275285550554

2.42528219708185

 km/s

t0 = 4383 MJD2000(midnight)

(6.2)

and features a simple close approach with Earth at epoch 4794.92 MJD2000.
The non-perturbed resonant belts and the perturbed ones are plotted
in Figures 6.11 and 6.12 respectively.

Figure 6.11: Duende case, standard resonant belts vs simulated resonances.

Similarly to Figure 6.9, a slight deviation is experienced again for
Duende (Figure 6.11) and, as it happened for Apophis case, the cor-
rected model (Figure 6.12) is basically matching the simulated res-
onances. The relative error for the three resonances closest to the
simulation reference are reported in Table 6.2.

In this case, the corrected model behaves in the expected way: the
resonance 10/9 is the closes to the reference, with also the lower
relative error.

Duende’s close approach is not as deep as Apophis’ one, neverthe-
less there seems to be no effect within such a distance range between
the furthermost samples and the reference, having again used the
corrective parameters from the nominal simulation only.
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Figure 6.12: Duende case, corrected resonant belts vs simulated resonances.

k/h Standard belt Corrected belt

10/9 8.039% 0.869%

9/8 6.866% 1.076%

8/7 5.748% 1.307%

Table 6.2: Duende case, relative error for standard and corrected belt models
with respect to the simulated resonances.

6.3.4 2018BD

The nominal initial condition is

r0 =


−6327111.07348661

−141477865.487925

−65847724.4156263

 km

v0 =


29.3692470755624

−9.93649939637433

−3.13293598090667

 km/s

t0 = 6210 MJD2000(midnight)

(6.3)

and features a simple close approach with Earth at epoch 6592.86 MJD2000.
The non-perturbed resonant belts and the perturbed ones are plotted
in Figures 6.11 and 6.12 respectively.

The bigger dimension of the cloud seems now to affect the model
prediction, especially the farther the samples get from the reference
point. Even for the standard case (Figure 6.13) it can be seen that theNote that the upper

points of such a
cloud reach an

impact parameter in
the order of

3× 105 km and the
reference sample
stands about at
1.7× 105 km

distances involved are higher than the previous case. The correction
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Figure 6.13: 2018BD case, standard resonant belts vs simulated resonances.

Figure 6.14: 2018BD case, corrected resonant belts vs simulated resonances.

(Figure 6.14) improves the model, although not as much as in the
previous cases.

Note also that the distance range would be within what observed
being the accurate regions presented in the deflection validation in
Section 6.2, however one must remember that such regions were
obtained with Apophis’ flyby properties and despite the error still
going to zero at the reference point, the different conditions featuring
2018BD’s flyby, particularly on the planetocentric velocity, may lead to
remarkably different accurate region sizes. A future work development
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certainly involves a thorough analysis of the high-accuracy regions
behaviour with the variation of the parameter c 4. The relative error for
the three resonances closest to the simulation reference are reported
in Table 6.3.

k/h Standard belt Corrected belt

10/7 34.823% 15.745%

3/2 22.739% 9.832%

8/5 20.862% 11.968%

Table 6.3: 2018BD case, relative error for standard and corrected belt models
with respect to the simulated resonances.

As the errors in Table 6.3 show, the correction model still improves
the results, even though, as already mentioned, given the generally
high distances from the reference and the possible effect related to the
parameter c its performances are not as good as in the two previous
cases.

6.3.5 Solar Orbiter’s launcher upper stage

The nominal initial condition is

r0 =


132048839.0181729

63140185.87973432

27571915.37875966

 km

v0 =


−12.19900175754253

20.24016626492768

9.767449779831535

 km/s

t0 = 6868.619376111506 MJD2000(midnight)

(6.4)

and the covariance matrix C used for the sample generation (from
[11]) expressed in an inertial cartesian reference frame reported in
Table 6.4.

The case features a resonant close approach (resonance condition
k/h = 5/4) with Venus at epoch 7035.03 MJD2000. The non-perturbed
resonant belts and the perturbed ones are plotted in Figures 6.11

and 6.12 respectively. Note that in order to spot the correspondent
simulated and modelled resonances, only a portion of the whole cloud
is shown.

As in 2018BD’s case, the model prediction becomes less and less
accurate the farther the cloud gets from the nominal sample, however
with significant improvements in its neighbourhood. Note that, despite
being the reference in the correct resonance predicted by the b-plane

4 Remembering its definition in Equation (4.9) as c = µ/U2
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x km y km z km vx km/s vy km/s vz km/s

5.35E+ 04 5.41E+ 04 −2.56E+ 04 2.48E− 01 2.74E− 01 −1.21E− 01

5.41E+ 04 1.36E+ 05 4.51E+ 03 2.34E− 01 7.10E− 01 3.43E− 02

−2.56E+ 04 4.51E+ 03 1.73E+ 05 −1.37E− 01 5.02E− 02 8.33E− 01

2.48E− 01 2.34E− 01 −1.37E− 01 1.16E− 06 1.18E− 06 −6.49E− 07

2.74E− 01 7.10E− 01 5.02E− 02 1.18E− 06 3.72E− 06 3.08E− 07

−1.21E− 01 3.43E− 02 8.33E− 01 −6.49E− 07 3.08E− 07 4.02E− 06

Table 6.4: Covariance matrix associated to the initial state of the launcher
of Solo at the epoch 6868.6193MJD2000 expressed in an inertial
reference frame [11].

Figure 6.15: Solar Orbiter case, standard resonant belts vs simulated reso-
nances.

belts, a slight deviation is observed between that semi-analytical belt
and the simulated one. A possible explanation is again the deflection
model, this time together with the circle definition. The reference
sample is not exactly on the ζ̂ axis, whose intersections with the locii
resonant points have been used to approximate the locii themselves
by circles. Such a small position difference naturally embeds slightly
different perturbing angles, and using the reference’s one at the in-
tersection with the ζ̂ axis may explain such a slight difference in the
simulated and the modelled belts. The relative error for the three
resonances closest to the simulation reference are reported in Table
6.5.

Again compatibly with the deflection model, the approximation
seems to become better and better getting close to the attractor. A
lower error for a non-reference belt is experienced, which may be an
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Figure 6.16: Solar Orbiter case, corrected resonant belts vs simulated reso-
nances.

k/h Standard belt Corrected belt

5/4 24.460% 1.636%

6/5 52.669% 3.806%

9/7 17.499% 0.800%

Table 6.5: Solar Orbiter case, relative error for standard and corrected belt
models with respect to the simulated resonances.

occasional compensation due to the perturbing angles computed on
the reference and applied at the intersection with the ζ̂ axis.

In any case, the improvement obtained in this case is the highest
overall, despite the small deflection errors shown in Section 6.2, sug-
gesting again the need of a deeper analysis in the actual deflection
behaviour with the parameter c.



7
C O N C L U S I O N A N D O U T L O O K

The model developed in Chapter 5 has gone through a first, even
though limited, validation process. The corrective parameters proved
to be quite an accurate approximation for resonances nearby the
reference sample used for the computation.

Given the results obtained, a suitable approximation for planetary
protection applications may involve assisting simulations in key b-
plane region, rather than using the reference sample whose coordinates
are generally unknown a-priori, in order to robustly and precisely map
the perturbing effects even in the farthermost regions of the cloud.

For the sake of increasing again the model precision, the claim made
about the shape of the locus of resonant points needs to be verified
as well. The clouds analysed did not allow to check whether such
an assumption was good at the outermost b-plane regions, thus the
validity of such a claim must for now remain limited to the deepest
encounters. A generalisation strategy is also possible, trying to stick
to the deflection model as by itself looking for further developments.

Another issue to be taken into account, specific of planetary protec-
tion and defence applications, is the performed representation, namely
plotting all the samples in the b-plane of the reference one. Indeed,
the coordinates are computed with Equation (4.6), each single one
featuring its own b-plane axes (Equation (4.5)) dependent on the plan-
etocentric velocity U. Such a b-plane property has a major impact
on the plotted circles, whose elements actually depend on U and
therefore are expected to be accurate for the reference sample only. A
possible future exploration direction is then to include such an effect
in the model, in order to apply some variation to the circle parameters
dependent on the distance from the reference point.

Figure 7.1 shows that, as an example for the circle parameters’
behaviour, the variation of the square of the radius is steep with
the planetocentric velocity and appears to be linear, suggesting the
exploration of some series expansion of the circle parameters upon U
as a first modelling strategy.

Lastly, the most thorough validation strategy would include flybys
over all the Solar System’s planets. It is however difficult to find accu-
rate data about asteroids or other bodies closely approaching planets

57



58 conclusion and outlook

Figure 7.1: Apophis’ square of the radius of the resonant circle 6/5 with
respect to the non-dimensional magnitude and y-component (ex-
pressed in the deflection frame, Figure 4.1 has a direct impact on
cos θ [30]) of the planetocentric velocity, computed for planeto-
centric velocities between the minimum and the maximum ones
in the cloud.

other than Earth, given the obvious interest in precisely monitoring
such threatening objects. Artificial test cases would need to be created.

As the ultimate completion of the model, the final assumptions to
be relaxed is the patched conics approximation itself. Note that the
current model only improves the actual deflection making it compliant
with the fully perturbed simulation, however such a deflection is
considered as the two asymptotic conditions within the sphere of
influence, thus applied as a sudden deflection exactly at the planet’s
position in an interplanetary point of view. The ultimate development
goal should then be a more continuous model, accounting for the
actual positions, times and velocities during the whole close encounter.
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B A L L I S T I C R E S O N A N T F LY B Y D E S I G N A L G O R I T H M

8.1 introduction

An improved model for b-plane orbital resonances has been developed
in Part ii and validated with the first steps of planetary protection/de-
fence analysis. In the way it currently stands, the model is not ready
for the most general planetary protection application yet, since some
further improvements and developments are needed (Chapter 7).

Nevertheless, a proof of its versatility will be shown by applying
it to the design of resonant flybys, where the problem of different
planetocentric velocities within the same b-plane representation is
cut out, as well as a proper mapping of the perturbing effects on the
b-plane could bring an almost real trajectory with low computational
cost, basically only dependent on how thick the map is wanted to be.

In a planetary protection application one wishes to identify orbital
resonances in order to minimise the probability of a resonant return,
here the concept will be exploited in the exactly opposite way, using
the degree of freedom left, in the patched conics approximation, by the
point of injection in the sphere of influence to force resonant flybys, in
order to achieve a total ballistic deflection that a single flyby could not
provide.

Note that many other works have been performed on the design
of resonant trajectories, all exploiting different concepts and shades
of the resonance definition, and all meant to obtain optimal quasi
ballistic deflections accounting also for other perturbing effects. Some
of these methods exploit the resonance concepts for Earth-Moon mis-
sions trying to reach a weak capture, escape or the libration points,
capable of lowering the fuel consumptions allowing for higher times
of flight, determining a new set of governing equations or exploiting
the properties of generalised dynamical systems, such as Ceriotti et
al. [10], Topputo et al. [27], [26], Oshima et al. [21] and Vaquero et
al. [32]. Other important applications concern all those missions at
Saturn’s and Jupiter’s moon systems where the need of maximising
the payload is crucial, being such orbits distant from Earth. In all the
cases exploration missions seek to collect better data by performing
repeated, resonant close approaches of a single moon or simply to
exploit the natural gravitational field to reach other points of the space.
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Among many of them, the study of low fuel consuption trajectories
at the Jovian and Saturn’s system has been done for example by Jo-
hannesen et al. [15], Ross et al. [24], Campagnola et al. [6], [7], [8],
Lantoine et al. [17], Vaquero et al. [33], among hundreds of different
shades of the same topics and moon systems.

All the just mentioned applications see a common framework, i.e.
the Circular Restricted Three Body Problem (CR3BP) considering one
moon, in the case of the giant planets, at a time and applying the
dynamical systems theory, by means of Poincaré maps and invari-
ant manifold dynamics. The Poincaré map [13] is a graphical tool
used, generally, in dynamical systems theory that feature a periodic
behaviour and, to general extent, undergoing to some perturbations.
At a specified time such a tool is used to study a discretised dynamical
system to show the evolution of the main system at each periodic pas-
sage through a selected state-surface normal to the system’s evolution
flow. The concept of invariant manifold [23] is strictly linked with the
Poincaré map’s one, despite having a more rigorous mathematical def-
inition. It identifies a state-space region where the system is allowed
to evolve in a continuous time frame, contrary to the periodic nature
of the systems that can be studied with the Poincaré map. Two of
the most important features of manifolds, among the others, is their
stability (linked to the concept of "attraction") and and instability (vice-
versa qualitatively linked to "repulsion"), exploited in the trajectory
design case to either get captured or escape from a gravitational field.

More restricted to the Orbital Mechanics field there is the tool/-
concept of the Tisserand parameter and criterion and the connected
Tisserand graph [6], which gives a visual identification of possible
categories of motion in a strict orbital energetic sense. The quasi-
conservation of the Tisserand parameter will be exploited in this work
too, whereas other application combined the Tisserand graph features
with the Poincaré map properties )[17], [7]), identifying new regions
of allowed motion, albeit high time of flight demanding, more efficient
than Hohmann transfers on the ∆v point of view, as well as adding
v∞ leveraging manoeuvres [37] on top of such approaches, [8].

Returning to the perturbed model developed in this work, at the best
of the author’s knowledge, no application of this kind has been found
in the existing literature, particularly dealing with open interplanetary
resonances. The current non-completion of the model limits for now
its usage to the patched conics definition of deflection, nevertheless the
algorithmic method presented in this chapter will need some changes
in the initial assumptions only, maintaining the innermost structure,
where the actual b-plane flyby model enters, unaltered. Because of
this, the actual interplanetary definition of resonance has remained
unchanged and thus whatever resonant flyby designed will need toAlthough an

extension has been
introduced with the

quasi-resonance
concept, the

framework still
remains the patched

conics’ one.

comply with the same. In other words, even though there is already
the possibility to semi-analytically refine the planetocentric deflections,
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such modified resonances will not provide the same ∆v of their 2-body
parents, and therefore will not correspond to the ∆v required for that
specified resonance to happen 1.

That being said, the presented algorithmic method features a mod-
ular structure, where at the highest level the resonant flybys are
designed by the solution of a global optimisation problem, under
a fully 2-body patched conics approximation. At a lower level, the
perturbed resonant deflections will be designed in order to minimise
their difference with respect to each correspondent optimal 2-body
∆v.

8.2 2-body optimal resonance design

Some work in a similar direction, even though not specifically meant
for the optimal trajectory design purposes of this work, has already
been performed in [31] and [28], where the authors developed an
analytical solution for the post encounter keplerian parameters im-
plementing the b-plane deflection formalism. In [31] and [28] the
study was built such that a fully b-plane and keplerian description
was enough to achieve a fully analytical solution. In this work the
formulation presented will instead feature an hybrid cartesian, bplane
and keplerian approach, in order to exploit the b-plane flyby design
properties, the keplerian simple description of the orbital parameters
and the simplicity and computational efficiency guaranteed by the
cartesian coordinates. Note that the

cartesian
formulation is
perhaps the easiest
choice for the flyby
descriptions, where
the deflections
become simple vector
summations.

8.2.1 Key assumptions/observations

8.2.1.1 Tisserand parameter conservation

First of all, a major limitation appears when using the b-plane formal-
ism for design purposes: the deflections feature such a mathematical
formulation only if fully natural, with a manoeuvre in the planeto-
centric motion to modify at least the outgoing asymptote and the
hyperbolic excess velocity magnitude, severely affecting the geometry
described in [9]. Since the objective of this section is to present an
application of the current model, it is beyond the scopes of the whole
work to investigate the modified deflections to take into account some
manoeuvre execution, thus the design will stay limited to initial and
final orbits featuring the same Tisserand parameter T . Indeed, recalling
the relation in [9] and [30]

U =
√
3− T (8.1)

1 Referring again to [30], remember that the resonant circles are identified as the loci
of points in the b-plane where the deflection leads to a specific post encounter semi-
major axis, all under a 2-body patched conics approach. A different deflection may
not lead to a post encounter resonant orbit.
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interplanetary orbits with the same Tisserand parameter T are all and
the only ones achievable with unpowered gravity assists, since the
magnitude of the planetocentric velocity never changes. This implies
that, given the quasi-conservation of the Tisserand parameter already
embedded in the b-plane deflection formalism, a quasi-ballistic overall
transfer between initial and final orbits is theoretically feasible under
such a constraint.

This must not be seen as a limitation, it could actually be a property
to be exploited to reduce the number of degrees of freedom when
designing a flyby, as well as by definition potentially obtain a ballistic
trajectory.

8.2.1.2 Resonance consequences

The 2-body patched conics definition of orbital resonance embeds
naturally another assumption, of key value in this algorithm design:
a resonant return is a consequent close approach happening after a
finite integer number of orbital periods of both the small body and the flyby
planet. Since such a number of orbits is indeed integer, the definition
of orbital period, without considering orbital perturbations, implies
that the next close approach is to happen at the same position and on
the same interplanetary orbit of injection after the previous flyby.

Under a cartesian description of the two orbits, the elements of the
position vector r will remain unchanged for all the resonant flybys
designed, with only the heliocentric velocity v to change according to
some ∆v leading to consequent resonant returns. This new velocity v+

∆v (of the small body only, the planet obviously does not undergo any
deflection) will then also be the ingoing condition of the consequent
flyby, by the definition of resonant orbit itself.

8.2.2 Combinatorial issues

The standard flyby design is a highly combinatorial problem, with time
playing a fundamental role in determining the best encounter position
to target a desired orbit. Nevertheless, the definition of resonance
allows to neglect at least a portion of such a combinatorial nature,
having the encounter position always fixed in time and space moves
the problem to the need of identifying the velocities only.

Even when dealing with resonances some combinatorial issues
exist, namely what actual resonance (thus what set of planetocentric
trajectories) to choose at each flyby. Once a specified resonance is
chosen, there are again infinite possible solutions that satisfy such a
resonance condition, indeed the degree of freedom exploited in the
presented algorithm.
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8.2.3 Algorithm structure

The implementation strategy chosen aims to drastically reduce the
double combinatorial nature of the resonant flyby design, by paying
the price of solving a non-smooth optimisation problem at the highest
level.

8.2.3.1 Non-handle inputs

Apart from the various handle quantites, namely gravitational con-
stants, reference frame and ephemerides data, the algorithm requires:

• a set of admissible resonances S 2;

• an initial orbit (r0, v0);

• an ultimate target orbit (rf, vf);

• the number of close approaches N to be designed to reach such
a final trajectory.

8.2.3.2 Sub-target optimisation

A sub ∆v target is assigned to each flyby and the planetocentric
trajectory will be selected in order to minimise the difference between
its own deflection and the specified sub-target.

The highest level consists then of finding a global optimal solution
to the non-smooth optimisation problem, determining the best set
of sub ∆v targets that will eventually minimise the artificial contri-
bution needed to match the final orbit. The non-smoothness of the As already outlined

such a design is fully
2-body.

problem, in principle unknown in its location on the domain, makes
it necessary to use either stochastic-based (e.g. a genetic algorithm
approach) or direct search methods to find the optimal solution. Any
gradient-based method, such as interior point or active constraints,
might not work in a global sense, unless a multi-start solution with a
remarkably high number of initial points is implemented. A gradient-
based optimisation could although be included to refine the results
given by the direct search/stochastic first level solution, provided that
it remains nearby the first level optimal solution.

Note that, despite the solution comes from a global-like optimisa-
tion problem, it may not be unique and in general the lowest residual
possible may not be compatible with other constraints (i.e. time-wise,
having too long times of flight or also in some orbital parameters). At
the current, initial development state of the algorithm the optimisation
is let completely free, in order to get a first idea of performances and
capabilities, with the possibility to add other constraints, include ma-
noeuvres or more simply implement this ballistic resonance strategy

2 By definition the number of allowed resonances is integer, thus the non-smoothness
is brought in the sense of having a mixed integer-nonlinear problem to solve.
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in already existent design techniques to be among the first future
developments.

The problem can then be formulated as:

minimise ||∆vresidual(∆vi, (k/h)i, v0, vf)||

subject to
∑
i

∆vi = ∆vtarget i = 1, ...,N

(k/h)i ∈ S i = 1, ...,N

(8.2)

Among the several possible ways of computing ||∆vresidual||, one
should keep in mind the following three aspects:

• The summation of the sub-targets must lead to the global ∆vtarget,
but this does not mean that the optimal solution will exactly
feature no residuals at each of the flybys. Even though it is not
explicitly implemented as such, the resonance condition is actu-
ally a constraint on the ∆v to occur at each flyby to experience a
consequent return, whereas, in order to get rid of the combina-
torial issues, the only linear constraint (in this case) put on the
sub-targets is their summation to give the global target.

• Despite the likely experienced residuals, that cannot be included
in the correspondent flybys, the summation of all the actual ∆vs
given must still lead to the final target.

• When designing the last flyby it does not matter whether it
is resonant or not (it may actually never be if the target orbit
is not resonant), with this to imply much more flexibility and
possibilities in the design of the last deflection.

In order to then fulfill all those aspects and constraints, a possible
design choice is to split evenly the residual ∆v of the current flyby
over all the next sub-targets, in order to avoid the risk of sub-targets
getting remarkably different each other. This allows, other than to
automatically fulfill the constraint of the sub-target summation, to
always design resonant flybys up to and including the second to last,
without any artificial ∆v needed, letting the last and more flexible
deflection to be optimised in order to get as close as possible to the
final target.

For N flybys the sub-target update can be easily written as:

∆vitarget,new = ∆vitarget +
i−1∑
j=1

∆vjresidual
N− j

i = 2, ...,N (8.3)

The sub-targets are then, given that their residuals will update the
following ones, a sort of guiding light for the design of each single
flyby. Here lies the main feature of drastically reducing the combinato-
rial nature of the problem, solving the non-smooth optimisation that
leads to the optimal set of brute-force designed resonant deflections.



8.2 2-body optimal resonance design 67

8.2.3.3 Optimal resonance choice

Given a set S of resonances, for a specified sub ∆v the algorithm
finds the best resonant trajectory whose deflection gets the closest
to the sub-target. This happens on another 2-level optimisation local
algorithm that works as follows:

1. Select one of the resonances in S.

2. Find the point on the resonant circle, according to some de-
flection model detailed in the following subsections, of such a
resonance that gives the best ∆v.

3. Loop over all the admissible resonances and pick the best ∆v.

4. Store the detailed data of such a resonant trajectory.

Some constraints are anyway needed, to bound the trajectories in
a feasible region (i.e. the impact parameter must be at the same time
not too low and not too high, bmin 6 b 6 bmax).

8.2.3.4 Deflection model

The core, and lowest level, of the proposed algorithm and approach is
the deflection model implemented in the design of optimal flybys.

Each deflection is modelled by using the b-plane formalism, with
the presented notation and not specifically defined quantities used to
follow [30]. The two deflection cases need to be distinguished for the
first step, i.e. locating the b-plane coordinates ξ and ζ, for resonant
and free flybys: a specific resonance acts as by imposing a constraint
on the position on the b-plane, namely the point must belong to a
circle of centre’s ζ̂ coordinate D and radius R. Identifying with α a
counter-clockwise angle measured from the ξ̂ direction (exactly as
the angle in simple polar coordinates), given D and R a generic point
features:

ξ = R cosα

ζ = D+ R sinα
(8.4)

and the impact parameter defined as

b2 = ξ2 + ζ2 (8.5)

whereas for a non-resonant case such coordinates are obtained by

ξ = b cosα

ζ = b sinα
(8.6)

with b to act directly as the radius variable in b-plane polar coordinates.
Note that the non-resonant case removes the constraint of the b-plane
point to be located on a resonant circle, although having one more
degree of freedom on b. Another slight difference between the free
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and resonant flybys is the way to include the constraint on the impact
parameter: since b is one of the optimisation variables in the free
case, it is enough to set lower and upper boundaries for b to get
bmin 6 b 6 bmax, whereas the resonant case for given D and R has
α as the only variable, and thus will feature a non-linear constraint
built upon Equations (8.4) and (8.5) to check that b remains within the
specified boundaries.

On the b-plane it is fairly easy to model the deflections, γ can be
computed as in [30]:

cosγ =
b2 − c2

b2 + c2
(8.7)

The rotation direction, thus a principal rotation vector, lies on the
b-plane and its orientation is strictly linked to the angle ψ, defined as:

cosψ =
ζ

b

sinψ =
ξ

b

(8.8)

Particularly, with the planetocentric velocity pointing towards the
b-plane, as defined in Equation (8.8) the angle ψ measures a clockwise
rotation from the ζ̂ direction to the b-plane point itself, plus the ve-
locity vector will be always rotated towards the centre of the plane.This paragraph just

re-phrases what
presented in

Subsection 5.3.1.

This implies that one of the possible deflection direction computa-
tion strategies is to rotate the direction −ζ̂ counterclockwise on the
downside b-plane of an angle ψ+ π/2.

With the rotation direction (given by ψ) and its magnitude (γ),
to rotate the cartesian ingoing planetocentric velocity Ui into the
outgoing one U ′i at the i-th flyby it is then enough to follow these
steps:

1. rotate −ζ̂ on the downside b-plane counterclockwise of ψ+ π/2;

2. represent this new vector in the cartesian reference frame (rota-
tion matrix straight from the b-plane axes definition in Equation
(4.5);

3. together with γ, this will build the principal rotation vector in
the cartesian reference frame;

4. apply the rotation to Ui;

5. compute ∆vi = U ′i − Ui.

Defining the residual of flyby i as

∆viresidual = ∆visub−target −∆vi (8.9)

at the lowest level, the optimisation process will select a solution
where the quantity ||∆viresidual||

2 is minimised. For the last free flyby
the best coordinates (b,α) will be selected, whereas for a resonant
flyby only the coordinate α together with the correspondent circle
parameters will be chosen and saved.
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8.3 perturbed resonance design

Given that the perturbed semi-analytical model available still relies
on a strictly 2-body patched conics definition of resonance, to feature
the resonant return the deflection must still comply with such a
definition. Therefore, the perturbed ∆vs are computed so that their
difference with respect to the already optimised 2-body deflections
is minimised. Note that such a ∆v is not meant to be a manoeuvre
to be implemented, in the current analysis it has only the purpose of
showing the difference between perturbed and unperturbed case.

The semi-analytical model developed in this work applies the per-
turbing effects in terms of corrective elements to be included in the
analytical deflection. Since in design applications a reference sample
does not exist, some strategy to map the perturbing effects on the
b-plane is required. As experienced in Section 6.2, mapping the per-
turbing effects reduces the deflection error nearby the point used for
their computation, with higher magnitude errors observed for lower
impact parameters. Such effects are then mapped on the b-plane be-
fore designing the flyby, with a thicker mesh close to the planet, and
then interpolated to obtain the perturbing values not exactly at the
map nodes, in order to exploit the deflection model to avoid to carry
out numerical propagations at each step of the optimisation process.

A set of simulations is then performed at the beginning of the design
itself: the starting conditions are identified by the b-plane polar coordi-
nates (bmin 6 b 6 bmax, 0 6 α < 2π), thus with their correspondent
(ξ,η, ζ) positions at the entrance of the sphere of influence, and the
ingoing planetocentric velocity of the current flyby. All these points
together will build a mesh (Figures 8.1 and 8.2), whose propagation
will bring the following set of parameters at each node, computed in
the same way as in Section 5.3:

• the perturbation ∆γ on the deflection magnitude;

• the perturbation ∆ψ on the deflection direction;

• the perturbation ∆θ ′ on the outgoing angle between the planet’s
and the object’s planetocentric velocities;

• mesh-related handle quantities for the interpolation.

Note that, similarly to what discussed in Section 6.2, once the mesh
point is propagated the perturbation ∆θ ′ is redundant for the de-
flection modelling, thus it will be used for the identification of the
resonant loci of points to be then deflected according to the perturba-
tions on γ and ψ only. The different α angles are linearly spaced one
another, whereas b features a quartic distribution between bmin and
bmax. Note that, as shown in Figures 8.1 and 8.2, the quartic distri-
bution on b has been chosen arbitrarily to reach a thicker mapping
nearby the lower limit, where the difference between two values of b
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Figure 8.1: Mesh example in b-plane polar coordinates.
.

has an higher impact on the deflection error (Section 6.2). A quartic
distribution may not be the best choice, some further analyses could
deepen the focus on this topic in order to reach an optimised map
building strategy. Nevertheless, it is not performed here since way
beyond the demonstration scope of building a first resonant ballistic
flyby design method. Such a map features in all the cases 100 evenly
spaced elements between 0 and 2π for the angular coordinate, 100
map elements between bmin and bmax, identified respectively by the
impact region of the current planet and a reasonable high altitude
flyby (5× 105km for Earth and 3× 105km for Venus in the test cases
presented)3.

Despite the reason of mapping the whole domain is fully evident in
the free flyby case, in principle for the resonant close approaches, if the
b-plane region enclosing a specified resonance was to be known, there
would not be the need of propagating such a whole mesh and the
domain could be restricted to the interest areas only. Nevertheless, in
the current application, one must remember that not only the position
of the resonant circles at a specified close approach is not known, but
also that all the configurations of the intermediate encounters are let
free, leading to even more uncertainties than the sole circle location.
For the current implementation some computational cost could be cut
by using the optimal 2-body result to identify the interest areas in the
N-body analysis, however, if the goal was to detach from the patched

3 Note that such a distribution with 100 mesh points within 8 × 103 km 6 b 6
5× 105 km stays already in the well approximated regions highlighted in Secton
6.2. Some higher differences may be experienced at the highest altitudes, whereas
the inter-node distance for points close to the planets is already in the order of
50/100 km, expected to be robust enough for the purposes of this work.
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conics approximation, a complete mapping would be anyway needed
to include the perturbing effect, since the optimisation may be run
already at the perturbed level.

Figure 8.2: Mesh representation in b-plane coordinates. As already men-
tioned, the b-plane representation allows to visualise the en-
hanced mesh thickness given by the quartic distribution of b
nearby the lower boundary.

The interpolation strategy is inspired to a bi-linear lagrange-polynomials,Note that the
interpolation will be
still bi-linear on
impact parameter
and arc, albeit
linearity is lost on
the sole variable b.

interpolating over b and the arc bα. The four interpolation coefficients
are then given by

lij(b,α) =
b− bi
bj − bi

bα− biαi
bjαj − biαi

(8.10)

with i, j to be the indexes identifying the nodes of the cell enclosing b
and α.

8.3.1 Resonant flyby design

Sticking to what presented in Section 6.3, a complete use of the per-
turbed deflection model to draw the new resonant circles is made(i.e.
to compute the perturbed circle parameters Dp and Rp), and then the
same optimisation process (Subsection 8.2.3.3), constraints and deflec-
tion (Subsection 8.2.3.4) depicted in the two body case are applied,
with the only difference to include the perturbing angles ∆γ and ∆ψ
in the deflection computation.

Being in a design phase and having mapped the perturbing effects
on the b-plane, there is no need to pick one node only as the reference
to draw the perturbed resonant circles, whose approximation looses
accuracy far from the reference. Since in general the position of the
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circle intersection with the ζ̂ axis is not known, some iteration method
is required. A fixed-point-iteration-like algorithm is proposed here,
detailed as follows:

1. initialise the search by computing the unperturbed circle param-
eters D and R;

2. compute the highest magnitude intersection b with the ζ̂ axis;Since the
intersection with the
ζ̂ axis can be either
positive or negative,

the search is
performed

consistently in the
correspondent
semi-b-plane.

3. get the interpolated perturbing angles ∆γ, ∆ψ and ∆θ ′ at such
a point;

4. compute the perturbed circle parameters Dp and Rp and get the
updated intersection bnew with the ζ̂ axis;

5. if the difference between the current bnew and the previous
iteration’s one (equal to b when initialising the algorithm with
the unperturbed case) is lower than some tolerance stop the
algorithm, otherwise return to step 3.

Given the thickness of the map implemented and the result of the
deflection validation (Section 6.2), a fast convergence is expected, since
the perturbing coefficients do not differ much in a vast region nearby
the node. In fact, despite having set a rather strict tolerance of 10−6km
for the difference between two iterations and a maximum of 1000
steps, such a number was never reached and convergence happened
in all the test cases analysed.

Note that such a model does not take into account possible different
values of the perturbation ∆θ ′ and still assumes the resonant loci of
points to be described by circles. A possible generalisation performs
the optimisation over both the variables (b,α) of the free flyby and
relaxes the circle approximation of the perturbed resonances, but still
makes use of the perturbing coefficients to insert the following nonlin-
ear constraint based on the perturbed resonant geometric deflection:The definition of

cos θ
′∗
0 is the one

given in Equation
(5.15), the different

b-plane positions
affect the theoretical

angles γ and ψ as in
Equations (8.7) and

(8.8)

cos θ
′∗
0 − cos(γ+∆γ) cos θ∗−

sin(γ+∆γ) sin θ∗ cos(ψ+∆ψ) = 0
(8.11)

Basically the claim that such a deflection must bring a circular locus
of points in the b-plane (whose parameters were identified by the two
intersections with the ζ̂ axis in Section 5.3) is abandoned, accounting
for possible different angles ∆γ, ∆ψ and ∆θ in the various b-plane
positions to be obtained via map interpolation.

An attempt of optimising the deflection with such a generalised
resonance has been made, although the new setup has not converged
to an optimal solution. The results reported in Chapter 9 involve only
the circular resonance model, a further analysis to find a suitable
method for the generalised resonance optimisation is required.
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8.3.2 Last free flyby design

The perturbed last free flyby is let free of any constraint, to get as close
as possible to the desired final orbit. A difference with respect to the
resonant perturbed flybys is that the optimisation can be let free to
comply with the ultimate deflection required, since there is no 2-body
resonant ∆v to be fulfilled. Yet again the deflection model acts in a
similar way to the resonant one but having both b and α as optimisa-
tion variables, featuring the same deflection algorithm presented in
Subsection 8.2.3.4 accounting for the interpolated perturbing effects
∆γ and ∆ψ, obtained by the map propagated before the flyby design.
The domain is initially restricted by finding the map region nearby the
point that get closest to the target, with a sequence of direct search and
descent method refinement run to get the best deflection interpolating
the map parameters.





9
T E S T C A S E S A N D R E S U LT S

9.1 introduction and common framework

The algorithm presented in Chapter 8 has been applied to other gen-
eral test cases, designing from 2 to 7 resonant flybys, of which only
two particularly meaningful of them are reported here. They will be
introduced with its initial orbit, the target orbit and the number of
flybys that the solver is asked to design. The sequence of resonant
orbits designed will given, as well as the b-plane coordinates at each
close approach.

For all the cases the optimisation has been performed with Mat-
lab

R© and SPICE ephemerides[1], using the function patternsearch.m

at the highest level (optimal ∆v target search) and a multistart fmincon.m
for the unperturbed b-plane deflections, since the formulation is non-
convex albeit smooth enough to allow descent method to converge
if starting from a good enough initial guess. In general, for the per-
turbed model the interpolation of the perturbing parameters makes
the problem non-smooth even at the planetocentric design, thus a
patternsearch.m optimisation is implemented at this level as well,
with an fmincon.m refinement performed on the direct search optimal
solution.1

9.2 general , simple but meaningful case at earth level

The first case used to test the solver is conceptually simple, but already
an interesting test for the physics upon which the optimisation process
is based. Indeed, the solver is asked to find a 2-flyby ballistic solution
for a deflection impossible to achieve with a simple close approach.
The initial condition is Earth’s position on 01 January 2020 at midnight,

1 fmincon.m is a function available in Matlab
R© optimisation toolbox that implements

several algorithms, among which the interior point method is always chosen in
the cases presented. patternsearch.m is instead a function available in the global
optimisation toolbox, implementing a direct search algorithm with smart mesh
definition and update. It is used for its gradient-free features, for a global optimality
search at the highest level and to provide good enough starting guesses for fmincon.m
refinements in the deflection design.

75
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with the two orbits, denoted with subscripts 0 for the initial and f for
the final, in a heliocentric ecliptic J2000 reference frame defined as

r0 = rEarth = rf =


−0.1663

0.9691

0.0000

 AU; vEarth =


−29.8489

−5.1623

0.0000


km

s
;

v0 =


−33.8489

−4.1623

−2.9999


km

s
; vf =


−25.8489

−6.1623

2.9999


km

s
;

(9.1)
and highlighting the asymptotic conditions and the total deflection
required

v0∞ =


−4

1

−3


km

s
; vf∞ =


4
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(9.2)
As already mentioned such a deflection is impossible to achieve in

a single, hyperbolic, ballistic close approach, since it would require
a turn angle equal to π. The resonance set S involves all the possible
combinations of (k,h), for both Earth and the fictitious small object,
between 1 and 10.

9.2.1 Optimal unperturbed solution

The algorithm converged to a ballistic optimal solution, obtaining a
∆vres after the last flyby whose norm is on the order of 10−8 km/s.
The intermediate orbit features a k/h = 8/7 resonance, with the flyby
providing a deflection ∆vi = {4.035,−6.079, 3.439}T km/s, whereas
the last free close approach that gives the remaining contribution
∆v = {3.965, 4.079, 2.561}T km/s.

The orbit evolution is reported in Figure 9.1 and Table 9.1, with the
subscript i to identify the intermediate orbit.

a [AU] e [−] i [rad] Ω [rad] ω [rad] θ [rad]

Initial 1.4029 0.3025 0.0878 4.8819 2.9372 0.2049

Resonant 1.0947 0.1891 0.0141 1.7438 1.1688 5.1114

Final 0.8144 0.2165 0.1127 1.7412 2.9067 3.3761

Table 9.1: As a further design check, comparing the ratio (ai/aEarth)
3/2 =

1.1453 with k/h = 8/7 = 1.1429 proves the intermediate orbit to
be resonant, with the small difference due to floating point issues.

A visual check of the intermediate resonance k/h = 8/7 is possible
in Figure 9.1, with pretty similar sizes of that orbit and Earth’s one.
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Figure 9.1: Interplanetary trajectories followed in the two-flyby general case.

Comparing the semi-major axis ratios from Table 9.1, (ai/aEarth)3/2 =
1.1453 with k/h = 8/7 = 1.1429 proves the intermediate orbit to be
resonant, with the small difference due to floating point issues. Note
that the algorithm involves several rotation matrices and trigonometry
functions, thus a simple floating point explanation is reasonable for
such a small difference between Ti/TEarth and k/h.

The only possible solution to this issue would be an analytical
formulation refinement of the algorithm assisting and avoiding such
computations whenever possible.

9.2.2 Optimal perturbed solution

The algorithm designed the optimal N-body trajectories according to
the deflection model introduced in this work, again targeting the 2-
body optimal deflections in order to comply with the current definition
of resonance. Note that the algorithm is let free to choose among all
the possible resonances even in this case, thus a different resonance
chosen would highlight a remarkable difference between the perturbed
and unperturbed resonant circles for the current b-plane. In this case
the choice of the resonance has slightly changed to k/h = 9/8: such
a circle is the one that, nearby the 2-body optimal solution, closest
resembles the unperturbed one, in order to both accommodate the
constraint of lying on a perturbed resonant circle and to try to get as
close as possible to the point providing the best deflection (as shown
in Figure 9.2). The optimal perturbed deflection is anyway close to
the unperturbed one, with the perturbing effects that do not severely
affect the optimal deflection region.
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Figure 9.2: B-plane coordinate and circles of the deflection selected.

The resonant deflection is slightly different than the unperturbed
case with ∆vires = −{0.071, 0.011, 0.102}T km/s, mainly due to the
constraints introduced, whereas the residual left on the free flyby is in
the order of 10−6km/s, compatible with the added degree of freedom
left for its design.

Providing a further check to the deflection model, such a map led
to a maximum error of 0.177 km/s, experienced on the resonant flyby
with respect to the post-processed trajectory propagated with the
design optimal solution as initial condition. Despite being already
small if compared to the magnitude of the whole deflection (equal to
8.138 km/s, for a 2.169% relative error), whether a higher precision
level was required it would be enough to implement a thicker mesh,
allowing for necessarily larger computational times. Indeed a test was
run to this extent, mapping the b-plane with a 3 times thicker mesh led
to basically the same optimal results, with an error model/simulation
of 1.142%. Nevertheless, still using the initial map, an error of only
0.8% is obtained with respect to the propagated deflection for the free
flyby, likely due to a better approximation on the free flyby b-plane
region.

9.3 solar orbiter-like optimisation

As a second meaningful validation test, the solver will be asked to
search for an optimal solution about designing resonant flybys similar
to Solar Orbiter’s [12] ones about Venus. Such trajectories are used
to raise the orbit’s inclination with low cost manoeuvres, exploiting
repeated close approaches of Venus. The solution is expected to slightly
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differ from the designed one, since the algorithm for now designs
ballistic flybys only. In any case, reaching a solution similar to the
already optimised ones available in Solar Orbiter’s mission plans
would give a strong proof of the proposed design approach.

The reference case will be the solution proposed with launch in
January 2017 in [2], even though the whole mission has been eventually
postponed to 2020. The optimised trajectory just mentioned is available
in Figure 9.3. The algorithm will be asked to reproduce the resonant
flybys, namely a solution similar to what here identified between V2
and V6.

Figure 9.3: Optimised, final orbit sequence for the January 2017 Solar Or-
biter’s mission plan. Picture from [2].

The main features [2] of the four resonant orbits are reported in
Table 9.2, with the first flyby to happen on 22/05/2020. The resonances
designed are also specified in [2], namely (3/4, 3/4, 2/3, 3/5) in that
order. The notation used to identify the different close approaches
is the same introduced in [2], namely Vi stands for the i-th flyby of
Venus and Vi− Vj refers to the heliocentric orbit between the flybys
i and j. Note that the orbits are actually uniquely defined, since the
position of Venus at each specified time adds the three remaining
parameters.

Note that, being the design fully ballistic, some of the mission con-
straints, especially keeping perihelion and aphelion altitudes within
specified boundaries, must be removed, since they would not be
achievable without manoeuvres. In fact, the Tisserand parameter of the
initial orbit is T0 = 2.724, whereas the final orbit features Tf = 2.922,
making it impossible to ballistically comply with all those properties.
The solver will be therefore asked to perform the specified change in



80 test cases and results

Orbit Aphelion [AU] Perihelion [AU] Ecl. Incl. [◦]

Initial 0.998 0.311 1.72

V2− V3 0.910 0.284 9.93

V3− V4 0.870 0.315 18.11

V4− V5 0.789 0.315 23.83

V5− V6 0.740 0.290 27.25

Table 9.2: Orbital parameters of the resonant orbits for Solar Orbiter’s January
2017 mission profile [2].

inclination in the same number of flybys, letting all the parameters
to adjust autonomously. In any case, the solution is expected not to
differ much from the optimal one reported in [2]. Given the optimal
resonances mentioned above, the algorithm will this time select (k,h)
values only within 1 and 5. Initial and final orbits for the optimisation
prolem are then reported in Table 9.3. These two orbits feature the
same Tisserand parameter. Note that the specified target is not a 3/5
resonant orbit, which is not ballistically achievable for the specified
final inclination. The remaining two target parameters have been cho-
sen so that an orbit with similar perihelion and aphelion is reached.

Orbit Aphelion [AU] Perihelion [AU] Ecl. Incl. [◦]

Initial 0.998 0.311 1.72

Final 0.738 0.320 27.25

Table 9.3: Initial and final orbit parameters given as input to the optimisation
algorithm.

and the total deflection required is

∆vtot =


−10.544

−7.553
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km

s
. (9.3)
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9.3.1 Optimal unperturbed solution

The algorithm converged to a ballistic optimal solution, obtaining
a ∆vres after the last flyby whose norm is again on the order of
10−8 km/s. The four deflections are

∆v1 =


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(9.4)

and the orbits designed are reported in Figure 9.4, with their pa-
rameters in Table 9.4. The intermediate orbits feature resonances
(3/4, 2/3, 3/5) and as already briefly mentioned the last orbit was
let free, to comply with the final inclination to reach and obtain a
similar overall shape, albeit the last orbit reported in Table 9.2 is still
in a 3/5 resonance. As a visual check, the algorithm has produced
orbits pretty similar to the optimised ones of Figure 9.3. Also the
orbital parameters obtained are similar, apart from the perihelion
distance which appears to be, reasonably considering the purposes of
the mission itself [12], the main objective of control manoeuvres.

Figure 9.4: Interplanetary trajectory computed by the optimisation algorithm.

Note that only the first one out of three resonances correspond to
the ones designed in [2]. The main possible explanation is the absence
of manoeuvres and mission constraints in the optimisation algorithm,
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Orbit Aphelion [AU] Perihelion [AU] Ecl. Incl. [◦]

Initial 0.998 0.311 1.72

V2− V3 0.914 0.281 7.17

V3− V4 0.838 0.267 15.68

V4− V5 0.771 0.259 22.60

Final 0.738 0.320 27.25

Table 9.4: Interplanetary orbital parameters for the trajectories computed by
the optimisation algorithm.

that for instance leads to perihelion distances too low compared to the
constraints specified in [2].

9.3.2 Optimal perturbed solution

The chosen resonances remain in this case all compliant with what
designed in the two body optimisation, i.e. the ratios k/h stay un-
changed. Again as shown in Figure 9.5 the perturbed points chosen
are the ones that get the closest to the optimal unperturbed b-plane
coordinates. For the sake of conciseness all the resonant flybys are
reported in the same plot, although the b-plane reference frame itself
has a different orientation for each single close approach.

Figure 9.5: B-plane coordinates and circles of the resonant close approaches.
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All the resonant deflections feature some residual, compatibly due
to the constraint of lying on their b-plane circles:

∆v1res =
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As in the previous case, the residual on the last free flyby is in the
order of 10−6km/s.

Providing a further and final check to the deflection model, the
maximum error is experienced in the third flyby, equal to 0.628% with
respect to the simulated trajectory. This suggests that the chosen mesh
is more accurate than the previous case studied, despite the equal
number of elements. Intuitively it appears that stronger gravitational
fields require a much thicker mesh, although a thorough verification
is needed to confirm the claim.

9.4 performances

All the upcoming machine times are referred to a local computer, for
computations carried out in Matlab

R© parallelised onto two CPUs at
2.7GHz.

9.4.1 Unperturbed design

The heaviest part from the computational point of view is the target
selection, indeed patternsearch.m implements an intelligent direct
search method, although that still needs to perform several function
evaluations at each algorithm iteration. For large domains and small
tolerances this turns into a rather high computational time, due to
the optimal targets not being known at all. An extremely small com-
putational time is experienced when the algorithm is ran again for
retrieving the complete solution, of only 1.5s for the design of Solar
Orbiter’s flybys. A slightly higher time, 4.1s, is experienced in the
general cased detailed in Section 9.2, mainly due to the higher number
of resonances available in the set.

9.4.2 Perturbed design

In order to underline the performances of the deflection model itself,
the performance focus is put here on the local computations, whose
time mentioned below include the numerical simulation of the selected
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trajectory. The heaviest part is indeed the map generation, for higher
machine times associated obviously with higher thicknesses. If the map
is given again an extremely fast convergence is experienced, for about
2.7s in both last free flybys the cases presented, 1.9s for a resonant
close approach in the Solar Orbiter case and of 4.5s in the general case,
again due to the higher number of resonances analysed. Such numbers
are remarkable if combined with the precision level reached and the
software used, a full transition to better programming languages could
easily tackle such design problems with higher precision and even
lower computational times.
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C O N C L U S I O N A N D O U T L O O K

A first draft of efficient algorithm for the design of resonant orbits
using the b-plane formalism has been succesfully implemented. The
solution given when trying to replicate Solar Orbiter’s already opti-
mised trajectory, for a close fully ballistic result which is yet to include
manoeuvres and mission constraints, is particularly meaningful. In the
way it currently stands the algorithm is already suitable for mission
analysis purposes, in the cases where orbital resonances are exploited
in a 2-body sense and obtaining also an idea about how the perturbed
deflection behaves.

Such a tool is however strictly linked to the model it uses, which,
as already mentioned in the previous part of this work, is yet to
be completed, particularly for what concerns the current resonance
definition. What then needs to be taken away from the perturbed
design section is the capability of the deflection model to comply with
a target and the perturbed b-plane definition of resonance, which will
see some updates with the model developments but will not change
in their main structure. In other words, an extended definition of
resonance, detaching from the pathced conics approximation, could
perhaps modify the circle parameters or their shape on the b-plane,
without however affecting the design capabilities of the algorithm
since they are always implemented as a constraint to fulfill.

About the algorithm itself, some work needs still to be done to reach
a final form, especially studying the possibility of adaptive/smart
mesh designs that would lower the computational cost and at the
same time enhance the precision where required. Despite it already
appears to be rather efficient in all the test cases analysed, a more
thorough analysis on the optimisation strategy could be performed, in
order to either confirm the existing choice or offer some better solution.
As final remark, some work should be spent towards studying the
convergence of the algorithm implementing the resonance as a real
deflection constraint, rather than the correspondent locus of points on
the b-plane. It is true that in all the test cases considered in Part ii such
circles seem to well approximate the orbital resonances, enhancing
also the computational speed due to the lower number of degrees
of freedom, nevertheless a more detailed study would even in this
case either confirm the choice or suggest the need of a more general
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implementation. A smart approach could be considered as well, with
the algorithm eventually capable of distinguishing itself whether the
circle approximation is good or not.



Part IV

F I N A L C O N C L U S I O N A N D O U T L O O K
S U M M A RY
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F I N A L C O N C L U S I O N

An interesting outcome can be found in the benchmark development
part, where an efficient formulation to account for general relativity
effects in the N-body dynamics has been developed. The real efficiency
stands in the precision of the achieved results, for exact computations
of the relativistic accelerations under the most general parametrised
post newtonian mechanics context. Such a model could then be imple-
mented for any sort of application, opening the possibility of extreme
precision numerical studies.

The precise identification of the resonant loci of point in the b-plane
reference frame successfully brought a semi-analytical modification of
the current model, reaching an exact solution, in terms of simulation
compliance, at the b-plane point where the perturbing coefficients
have been computed, providing also a highly reliable approximation
in the nearby b-plane regions. The immediately next developments al-
ready comply with the planetary protection application needs, namely
studying the actual impact of plotting a full Monte Carlo simulation
on the same b-plane representation. The model should eventually
detach from the patched conics approximation and then generalise the
proposed semi-analytical solution, to account for the variations of the
perturbing parameters among different b-plane regions. To this extent,
some focus should be put towards both exploring optimal mapping
strategies and new analytical solutions, in order not to waste the effi-
ciency features reached so far and to guarantee an in-b-plane precise
impact/resonance probability computation for planetary protection
and defence analyses.

Finally, the deflection modelling capabilities of the b-plane formal-
ism have been shown by implementing an efficient ballistic resonant
trajectory design algorithm. The main outcome of such an application
is perhaps having showed once again how embedding and connecting
different orbital representations could enhance the algorithm perfor-
mances, namely using the b-plane features for the deflection design,
the traditional keplerian elements for the objective definition and
the simple cartesian representation to carry out rather easy compu-
tations. The results achieved by the algorithm, particularly the Solar
Orbiter-like optimal ballistic solution in terms of both precision and
computational resources required, suggest again to keep developing
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both the model and the method. On one hand, the restriction to reso-
nant flybys drastically reduced the number of degrees of freedom left
to the problem, main reason for such low computational costs, high-
lighting that proper analytical or semi-analytical developments, such
as optimal perturbation mapping strategies and in-b-plane manoeu-
vre design, could lead to application extensions to the non-resonant
case. On the other hand, optimal trajectory design techniques already
exist, thus the proposed method could contribute in increasing the
functionalities of the current procedures, from which it could also
take and embed other mathematical and physical tools for its own
development.



Part V

A P P E N D I X





A
I N T R O D U C T I O N T O G E N E R A L R E L AT I V I T Y

a.1 introduction

Newtonian mechanics provides quite an accurate description of what
happens to point-mass objects in space, how they move and how they
interact. The purely Newtonian models can sometimes be adjusted,
taking into account the effect of several orbital perturbations (J2 Oblate-
ness, Solar Radiation Pressure, etc.). In very peculiar cases general
relativity (GR) plays an important role, which can not be neglected if
high precision computations are needed.

In this chapter a collection of the key and the introductory concepts
necessary for a broad understanding of GR will be presented. The main
reference will be [35], the classical tome used to tackle consistently GR,
although the contents will be presented sorted differently, with the
purpose of highlighting what is of key importance from an application
point of view.

a.2 special relativity (sr)

In this section a brief summary of the principles of special relativity
(SR) is collected, following what is presented on [35] and on [4].
The concepts of SR are fundamental to understand completely its
generalisation, GR.

a.2.1 Principles and concept of time

It was Einstein who first developed this theory, trying to explain some
apparently wrong phenomena description, e. g. Maxwell’s equations:
the mathematical formulation underlines an asymmetric behaviour,
which is not consistent with observations and experiments. The most
simple example to underline this phenomenon is the interaction be-
tween a magnet and a conductor, represented in Figure A.1 and
expressed with Equations (A.1) and (A.2). The relative motion gives
different results in terms of electromotive force (Fe−m), if the body
considered moving is the conductor, with a velocity v (Equation (A.1))
or the magnet with a velocity -v (Equation (A.2)).
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Figure A.1: Picture of the relative motion issue in Maxwell equations. Source
[4].

Fmagn = ev×B

Fe−m =

∫
(v×B) · dl

(A.1)
Fel = eE

Fe−m =

∫
E · dl

(A.2)

Despite the usual description leading to two completely different
results, the observed reality is only dependent on the relative motion
of the source (magnet) and the conductor.

Indeed the basic, well known principle (first postulate of SR) is:

Different observers (inertial reference frames) provide different descriptions of
the same phenomenon, but the considered physical law is the same.

Note that SR is a theoretical formalism that applies to phenomena of
different nature: new and more general (than the classical newtonian
mechanics) kinematics and dynamics are introduced. Therefore, in the
context of SR, an important inconsistency of classical physics (of which
the magnet-conductor relative motion is a simple example, Equations
(A.1) and (A.2)) appears: Newton’s law is invariant under a galileian
change of coordinates, Maxwell’s equations are not.

Einstein had two key ideas:

1. Maxwell’s equations are correct;

2. physic laws have the same form on every inertial reference frame.This assumption is
peculiar of SR, in the

context of GR the
case is generalized to

non-inertial
reference frames.

Einstein found that, to eliminate these asymmetric results of Maxwell
Equations, a new concept of time was needed: time is not an absolute
concept. Moreover, it is not uncorrelated to external phenomena (and
this is a fundamental of newtonian mechanics).

On the contrary, time is intrinsically a relative quantity and, as
Einstein remarked, it is always defined through two different simulta-
neous events (e. g. think about the two sentences "The train is passing
at 7:00" and "The train is passing when the clock hand is pointing
at 7:00", time is defined considering two different events, the train
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passing and the clock hand pointing). It becomes then important to
define the concept of simultaneity, which is again relative and done
with the help of the second postulate of SR:

The speed of light c in vacuum takes always the same value, in all the inertial
reference frames independently on the motion of the source.

The concept of simultaneity comes then by exploiting the speed of
light staying constant, from the synchronisation of two hypothetical
clocks embedded with two different reference frames (Einstein syn-
chronisation process, Figure A.2), located in two different points in
the space (1 and 2), distant L one another.

Figure A.2: If at time t a light signal is sent from the observer in 1 to 2,
then the observer in 2 must set their clock to the time t+ L

c and
re-send the signal back to 1. The observer in 1 should observe
now the signal from 2 arriving at the time t+ 2Lc . Source [4].

Before going deeper with the mathematical formulation, the defini-
tion of a reference quantity, the proper time ∆τ, is needed. Note that
∆τ is a relativistic-invariant: Relativistic-

invariant means
invariant with
respect to the
Lorentz
transformations,
treated in Section
A.2.2.

The proper time ∆τ is the time measured on a clock in its reference frame at
rest.

a.2.2 Lorentz transformations

Lorentz transformations will be presented from two different points
of view. The first one, more conceptual, follows what described in [4],
whereas some simple tensor analysis will be presented following [35].
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Let us consider two different reference frames, K and K ′, in relative
motion one another with velocity v, as in Figure A.3:

Figure A.3: Particularly, K ′ is moving with velocity v along the x axis. Since
the context of analysis is the one of SR, considering a motion
along one axis only is not a loss of generality, since it must be
rectilinear and uniform. If there were also other components, a
rotation of the frame is enough to get back to this simple case.
Source [4].

The galileian coordinate transformation is defined as:

x ′ = x+ vt , t ′ = t (A.3)

As already stated in Section A.2.1, a galileian coordinate transforma-
tion is based on the postulate of absolute time (t = t ′), the same for
both the frames K and K ′.

A Lorentz coordinate transformation is instead defined as:

x ′ =
x− vt√
1− (v/c)2

, t ′ =
t− vx/c2√
1− (v/c)2

(A.4)

Lorentz transformations involve the second SR postulate only, the
invariance of the speed of light c in vacuum. Some of observations
can be made:

• the Lorentz Factor γ can be defined:

γ =
1√

1− (v/c)2
(A.5)

which basically identifies the difference between the Galileian
and the Lorentz transformations;

• the speed of light is a limit velocity:

if v→ c =⇒ γ→ +∞ (A.6)

therefore a divergence (and thus the most significant differences
with the classical physics) is experienced when v→ c;
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• the relativistic law for the summation of velocities is:

V =
v1 + v2

1+ v1v2/c2
(A.7)

one can easily observe that if v1 = c and v2 = c then V = c;

• galileian transformations are the limit of Lorentz transforma-
tions, for c→ +∞.

Now several implications of Lorentz transformations can be found.
Only three (the ones more intuitively related to the mechanics of the
motion) will be reported in this section1:

1. Referring always to the two reference frames reported in Figure
A.3, it is now provable that events which are simultaneous in K
are not so in K ′. Considering two different points A and B in K:

tA = tB

t ′A = γ

(
t−

v

c2
xA

)
, t ′B = γ

(
t−

v

c2
xB

)
=⇒ ∆t ′ = t ′A − t ′B 6= 0

(A.8)

2. In the reference frame K ′ time dilatation2 is experienced. Con- Time dilatation
means that the time
runs slower in K ′

than in K, therefore
∆t ′ < ∆t.

sider two events happening in the same point in K ′ (x ′A = x ′B =

x ′) and compute times and coordinates in K:

tA = γ

(
t ′A +

v

c2
x ′
)

, xA = γ(x ′ + vt ′A)

tB = γ

(
t ′B +

v

c2
x ′
)

, xB = γ(x ′ + vt ′B)

∆t = tB − tA = γ(t ′B − t ′A) =
∆t ′√

1− v2/c2

(A.9)

3. Measuring the dimension of objects "attached" to K ′ (moving
with velocity v) in the frame K, length contraction is experienced
in K. This happens because the length is actually measured as
the distance between the two ends (1 and 2) of the object at the
same time instant in K:

L ′ = x ′2 − x
′
1 length in the "attached" frameK ′

L = x2 − x1 =
1

γ
(x ′2 − x

′
1) =

1

γ
L ′ length in the frameK

(A.10)

1 To have a deeper insight on the topic the main reference is always [35].
2 Note that, due to the speed of light being a limit velocity, 0 6 γ < 1.
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a.2.3 Minkowski space

The concept of space needs now to be extended. Physical phenomena
happen in a four-dimensional continuum, called space-time. Time is
now defined as any local quantity, therefore it is treated more or less
like the other three spatial dimensions.

Let us write a generic vector x of a four-dimensional space of thisThe elements of the
space-time are events. kind with its component:

x = (x,y, z, ct); (A.11)

where c is the speed of light in vacuum, (x,y, z) the usual spatial
coordinates and t is the actual time.

It can be observed that Lorentz transformations are isometric trans-
formations among this kind of vector spaces:

x = (x,y, z, ct) Lorentz−−−−→ x ′ = (x ′,y ′, z ′, ct ′) (A.12)

Note that now also the time has changed (t 6= t ′).
Moreover, the metric of spaces of this kind can be written as:The concept of metric

will be deepened in
Section A.3.

gij =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (A.13)

All the vector spaces that feature this metric are called Minkowski
spaces.

a.2.4 Tensor formulation

In the following section all the tensor expressions will follow Einstein’s
notation (implicit summation over the repeated indexes). The greek
letters α,β,γ, δ will represent the indexes in this subsection and all
of them can vary among x,y, z, ct, according to what presented in
Subsection A.2.3. Using tensor notation, Lorentz transformations from
coordinate system xβ to coordinate system xα can be written as:The two vectors

under consideration
are four-vectors,

elements of a
four-dimensional

space-time

xα = Λαβxβ + aα (A.14)

where Λαβ and aα are constants, restricted by the following conditions:

ΛαγΛ
β
δ ηαβ = ηγδ

with ηαβ =


+1 if α = β = x,y, z

−1 if α = β = ct

0 if α 6= β

(A.15)
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Note that, in tensor notation, upper and lower indexes distinguish
the base of reference, canonical in the first and reciprocal in the latter.
This property will be often used and expressed in the whole analysis.
Further details, as well as all the tensor operations whose description
is omitted here, can be found in [35].

One can already observe some similarities with the definition of
metric given in Section A.2.3. The concept will be extended in Section
A.3.

The tensor formulation becomes particularly useful when expressing
metrics and transformations. A simple proof of this is the invariance
of the proper time ∆τ (following the steps reported in [35]). The
definition is:

c2∆τ2 = c2∆t2 −∆x ·∆x (A.16)

This can be re-written using the tensor notation specified above:

∆τ = −ηαβ∆x
α∆xβ (A.17)

Applying Lorentz’s transformations to ∆xδ the correspondent element
in the transformed reference frame is obtained:

∆x ′α = Λαδ∆x
δ (A.18)

So the proper time in the new frame will be:

∆τ ′ = −ηαβ∆x
′α∆x ′β

= −ηαβΛ
α
γΛ

β
δ∆x

γ∆xδ

= −ηγδ∆x
γ∆xδ

(A.19)

Therefore:
∆τ ′2 = ∆τ2 (A.20)

a.3 curved geometry

The discussion reported in this section will refer mainly, about nota-
tion and formalism, to what presented in [34]. This section is meant to
provide the reader of the key concepts only about generalised geome-
tries3, for what is necessary to have a conceptual but mathematically
solid understanding of it, to be then able to face GR.

Tensor notation will be used, represented by the indexes i, j,k, l,m;
all of them to vary over all the general n-dimensions of the space,
unless differently specified in each particular case.

3 A deeper insight can be found in both [34] and [35], this section is a summary of
what presented there.
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a.3.1 Metric

First of all, generalised n-dimensional space will be considered, with
a set of n coordinates qi describing the position of a generic point in
this space. Let us introduce now a basis ei for this space. The position
q of the point can therefore be written as:

q = eiqi (A.21)

Note that any assumption about this space and coordinate system is
yet to be made. The formulation will be then kept general, without
assuming rectilinear basis vectors and the space to be flat.

Figure A.4: The tangent space has rectilinear basis vectors and, therefore,
quantities. This concept can be generalized to n-dimensional
curved spaces, 3-d spaces are useful for visual interpretations.
Source [34].

The only assumption required and to be made right now is the
existence and uniqueness of a rectilinear tangent space (note that the
problem is n-dimensional), at any point of the space. An example, for
a 3-dimensional curved space, can be seen in Figure A.4. This assump-
tion becomes particularly useful when the definition of infinitesimal
quantities is needed, such as the line element ds4. It can be defined

4 Note that the line element corresponds to the exact "physical" displacement in the
tangent space.
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in the tangent space, and its definition is exact to the first order for
quantities dqi → 0:

ds = eidqi (A.22)

A new quantity is now introduced, the interval, defined as the square
of the distance of the displacement. The infinitesimal interval in the
tangent space, from simple vector algebra, is:

(ds)2 =
(
ei · ej

)
dqidqj (A.23)

It is now possible to define the metric matrix gij in terms of the inner
product of the basis vectors:

gij = ei · ej (A.24)

Some observations can be made:

• The metric matrix is symmetric by definition;

• In the case of generalized coordinates, the metric matrix, as well
as the basis vectors, can be non-constant, but position-dependent
(gij = gij(q) and ei = ei(q));

• Taking a look to Equation (A.13), the metric rules the dot product
in the space of definition5;

Moreover, following what presented in [34] about reciprocal basis
analysis, it can be proved that the metric matrix also lowers (or rises,
depending on the basis of definition) the indexes:

dqi = gijdq
j

or

dqi = gijdqj

(A.25)

And also, due to the definition of reciprocal basis itself, gij and gij

are one the inverse of the other:

gij =
(
gij
)−1 (A.26)

a.3.2 Affine connection

How do the basis vectors change between two points of a generalized
curved space? The affine connection is the mathematical entity that
answers to this question. Remaining position-dependent, one can
write the following relation (from [34]), under the assumption of
infinitesimal displacements (therefore infinitesimal changes on the
basis vectors) and expanding up to the first order in the original point:

dei(q) = γkij(q)ek(q)dq
j (A.27)

5 The one reported in Equation (A.13) was the particular metric matrix of a Minkowski
Space.
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where γkij(q) are a position-dependent set of coefficients. In the refer-
ence [34] it is proved that those coefficients correspond to Γkij(q), the
affine connection.

With some differential calculations and other manipulations, it is
possible to obtain the following expression for Γkij(q):

Γkij(q) =
1

2
gkm(q)

[
∂gmi(q)
∂qj

+
∂gmj(q)
∂qi

−
∂gij(q)
∂qm

]
(A.28)

In summary, the affine connection is the law with which the basis
vectors change in a curved n-dimensional space.

a.3.3 Lagrange equations and geodesics

When the definition of time changes, energetic approaches become
the only way to derive equations of motion. A generalized expression
for Lagrange equations is needed, since it is no longer possible to use
3rd Newton’s law to obtain the equations of motion. But before doingThe action-reaction

law can be defined
only as a

simultaneous force
exchange. But in the
context of relativity,
time is different for

the two bodies
involved, therefore it

becomes tricky to
define at what time
instant (different in

the two
body-attached

reference frames) the
force exchange is

happening.

this, it is crucial to define a new velocity concept.
The analysis is now restricted to a 4-dimensional space, similar to

the Minkowski space characterizing SR, but with the possible presence
of curvature (thus with the dependence on the position q)6.

The concept of proper time can be exploited to write the line element
of this case:

(ds)2 = −c2(dτ)2 = (dq)2 − c2(dt)2 = (v2 − c2)(dt)2 < 0 (A.29)

Using metric and proper time definitions:

ds
dτ
· ds
dτ

= gij(q)
dqi

dτ

dqj

dτ
= −c2 (A.30)

A new quantity can now be introduced, the four-velocity u. Its general
component is:

ui =
dqi

dτ
(A.31)

From now until the end of Subsection A.3.3, the case of a particle
of mass m freely moving in this four-space is being considered. The
kinetic energy T of the particle can be then written according to the
definition of u:

T =
1

2
mu · u =

1

2
mgij(q)

dqi

dτ

dqj

dτ
(A.32)

Note that, in this case, the sole kinetic energy corresponds to the whole
Lagrangian function.

Lagrange equations with these coordinates can be written as:

d

dτ

(
∂T

∂(dqi/dτ)

)
−
∂T

∂qi
= 0 (A.33)

6 An element of this curved space is q = (q1,q2,q3, ct)
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Writing the expression of T and after a small manipulation, Lagrange
equations become:

d

dτ

(
mgij(q)

dqj

dτ

)
−
1

2
m
∂gjk

∂qi
dqj

dτ

dqk

dτ
= 0 (A.34)

Note that the equation, and therefore the dynamics, is not dependent
on the mass any longer, it has become a general (not related to the
particular case of single point mass freely moving in the space) fact
of pure geometry. This particular aspect will be better discussed in
Chapter B. It is indeed one of the

peculiar results of
GR.

Exploiting some properties of the definition of reciprocal basis
and manipulating this form of Lagrange equations, it is possible to
highlight the role of the affine connection Γkij(q) (defined in equation
(A.28)), on Lagrange equations ([34]):

d2qk

dτ2
+ Γkij(q)

dqi

dτ

dqj

dτ
= 0 (A.35)

It is worth to mention a particular class of solutions of these geometry
problems, the geodesics. Geodesics are the minimum length trajectories, In an Euclidean

space geodesics are
straight lines, in a
curved space they are
not. Think about
stretching a rope
constrained to lie in
a curved surface:
that is a geodesic for
that curved
space(example
reported in [34]).

in a generalized space. They are obtained by solving the equations of
motion, with the constraint to follow this minimized path7:

s12 =

∫2
1

cdτ (A.36)

It follows that, since c is constant by principle, the minimisation has to
occur on the proper time τ, finding then the path that passes through
the points satisfying this condition. The concept of geodesics will be
of great value in Chapter B.

a.3.4 Geometric tensors

In this section the mathematical definitions of some relevant tensors
are reported, as well as their main properties and how they are ob-
tained, following what presented in [34]. Other details of the same are
also available in [35].

First of all, two already presented entities are tensors indeed, the
metric matrix and the affine connection:

• metric matrix - gij(q) is a 2nd order tensor, linear by definition (it
comes from the inner product of the basis vectors ei(q), Equation
(A.24));

• affine connection - Γkij(q) (defined in Equation (A.28)) is a 3rd

order tensor, dependent only of the metric and its derivatives, it
is however nonlinear on the same;

7 Note that, since the coordinates change in space, the same does the proper time τ. In
the context of SR the whole space was a Minkowski space, Section A.2.3, in a more
generalized case the dependence on the position modifies also the the proper time.
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Some other tensor entities are now introduced, defined as functions
of gij(q) and Γkij(q).

The first one is the Riemann curvature tensor Rijlk(q):

Rijlk(q) =
(
∂

∂ql
Γ ijk(q) + Γ

i
lm(q)Γmjk (q)

)
−

(
∂

∂qk
Γ ijl(q) + Γ

i
km(q)Γmjl (q)

)
(A.37)

with properties:

• position-dependent;

• 4th order tensor;

• 2nd order, nonlinear form of the metric;

• It describes the internal structure of the n-dimensional space
dependent of the metric only;

• It is skew-symmetric in the single swaps of the couples (i, j) and
(l,k):

Rijlk(q) = −Rjilk(q)

and

Rijlk(q) = −Rijkl(q)

(A.38)

• Therefore, it is symmetric on both those swaps occurring to-This is a 4th order
tensor, the definition

of symmetry has to
be thought as just

related to a general
index swap. It is not

"visual" as the
symmetry definition

for matrices is.

gether:
Rijlk(q) = R

j
ikl(q) (A.39)

The second one is the Ricci Tensor Rij(q). Its derivation is straight
forward and simply related to Riemann Curvature Tensor through a
tensor contraction:

Rij(q) = Rkikj(q) (A.40)

The definition of this tensor is a simple but necessary step towards the
derivation of Einstein tensor. However, it is also useful to define the
scalar curvature R(q), again through a tensor contraction:

R(q) = Rii(q) (A.41)

Note that the operations of rising or lowering the indexes consists
simply of a change in the basis of expression, from the initial to the
reciprocal one, for the raised/lowered index.

Finally, Einstein Tensor Gij(q) can be defined:

Gij(q) = Rij(q) −
1

2
gij(q)R(q) (A.42)

It can be proved that, as reported in [34]:

• Rij is symmetric, therefore Gij is symmetric too;The metric matrix
gij(q) is symmetric

because of the
definition of inner

product.
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• Gij is divergenceless, meaning that its covariant divergence van-
ishes8.

a.4 riemannian geometry

Wrapping up, now all the conceptual and mathematical tools to tackle
broadly GR have been defined. In this and last step (Section A.3) the
biggest effort has been made, generalizing the common concept of
euclidean geometry to the absolutely general and free of assumptions
of riemannian Geometry. The next step is to extend the context of SR
to GR, to be developed in Chapter B, to finally obtain a formulation of
the relativistic N-body problem.

8 Deeper details about co-variant differentiation can be found in the reference papers.
They are not reported here because they are not of high meaning for the goals of this
thesis.





B
G E N E R A L R E L AT I V I T Y F E AT U R E S A N D
E Q UAT I O N S

b.1 introduction

In this chapter the milestones to obtain the equations of the relativistic
N-body Problem will be presented, making use of all the mathematical
and conceptual tools developed in Chapter A. The main reference
remains always [35], with the help of [34] to present the points in
a more conceptual point of view. In the last section of the chapter
(Section B.4) the main reference will be changed to [36], with the
purpose of going deeper in what is specific of post-newtonian celestial
mechanics. All the indexes (i, j,k, l) that will be used are intended to
be, unless differently specified, varying among (1, 2, 3, 4), the four
dimensions featuring GR.

b.2 principles , equations and qualitative consequences

GR is a theory of principles. Those are reported in the following list,
according to the way Einstein first formulated the theory (from [34]):

1. We live in a four-dimensional, curved, riemannian space.

2. The structure of this space is given by Einstein’s field equations.

3. Particles move along geodesics in this space.

Each of these points will be tackled in the next subsections, building
the frame to study and understand their consequences and applica-
tions.

b.2.1 Equivalence principle

Before going deeper into those concepts, it is crucial to understand
another key principle that Einstein stated first, the so called Equivalence
Principle:

Gravitational and inertial mass are exactly the same thing.

107
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Einstein proved it with the following simple conceptual proof,
whose consequences are however fundamental for the rest of the
theory [34]:

Consider a particle, undergoing the gravitational acceleration g, being inside
a closed room. Imagine the same particle being in a closed room in a space
without any gravitational field, which room is moving with acceleration −g1.
The particle itself is not able to feel the difference between the gravitational
field and the acceleration of the room.

This means that there is actually no difference between gravity
and acceleration. Therefore, this implies the equivalence of defining
the mass through inertia and gravity. This allows to cancel the mass
on both sides of the gravitational equation of motion (e. g. Equation
(A.34)), reducing the problem to one of pure and simple geometry.

b.2.2 Curved, riemannian space

All the geometric considerations done in Section A.3 come together
here, in this concept. Particularly, and this is exactly the characteri-
sation of riemannian space (presented in Section A.4), the space is
described by the set of generalised coordinates qi and the generalised
basis vectors ei(q). The line element then becomes:

ds = ei(q)dqi (B.1)

And the physical interval can be expressed in terms of the metric gij
(defined in the same way as in Equation (A.24)):

(ds)2 = gijdqidqj (B.2)

At each point of this space there exists a flat tangent Minkowski
space with a Lorentz metric gtangentij (the same described in Equation
(A.13)) in a cartesian basis equal to:

g
tangent
ij =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (B.3)

In this flat tangent space, it is possible to define another cartesian
space, the so called local freely falling frame LF3. This space is charac-
terised by being subjected to the acceleration (freely falling) given
by the gravitational field. As a consequence, the local effects of the
gravitational field are exactly canceled by inertial forces; what is left

1 This particular will be discussed in Subsection B.2.2, it is exactly the definition of
Local Freely Falling Frame.
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are then just the Lorentz’s metric (exactly the same of the local tangent
space) and the laws of SR2. This space can become useful when it
comes to provide some physical interpretations to GR, or to specialise
any description in a reference frame embedded with a particular body
moving in a gravitational field.

b.2.3 Einstein’s field equations

Saying that the structure of the space is provided by the solution of
Einstein’s field equations means that they will lead to the definition of
the metric. Those equations are indeed (from [34]): From now on, the

dependence on the
position q, unless
otherwise specified,
will be assumed as
implicit and always
present, without
writing it explicitly.

Gij = kTij (B.4)

Where:

• Tij is the energy-momentum tensor, whose elements account for
all the energy, mass and momentum sources in the space;

• k is a constant, the strength of the gravitational field, to be deter-
mined;

• Gij is the Einstein Tensor (nonlinear differential form in the Met-
ric) of the current generalized space.

Note that Gij has already been defined in Equation (A.42) as function
of the Ricci tensor Rij which, similarly, has been defined as function
of the Riemann curvature tensor Rijlk (Equation (A.40)). This last
tensor, through its definition (Equation (A.37)), comes from the affine
connection Γ ijk and finally, using Equation (A.28), this is in turn defined
as function of the metric gij. One can already feel the mathematical
path that rules this principle of GR, if it were possible to have an
analytical solution of all these equations then a simple backward
process would be enough to fully characterise the structure (metric
and curvature) of the space.

Note also that Gij is proportional to Tij through k. Intuitively, one
can already say that a strong set of forces (of any nature) influences a
lot the geometry of the space. Particularly talking about a gravitational
field, being it stronger close to the massive body, it produces an higher
curvature of the space nearby the massive body itself.

b.2.4 Geodesic motion

It is in this matter that the equivalence principle plays its most impor-
tant role, reducing the dynamics problem into a purely geometrical
one.

2 This definition is only local, therefore it holds in an infinitesimal portion of space only.
There cannot be cancellation of gravitational effects due to inertia in an extensive
sense, plus one should note also that, keeping it general, the gravitational field is
different in all the points of the space.
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Taking a look again at the equations of motion of a particle of mass
m (Equation (A.34)), that mass m should be called mi (inertial mass).
By adding a gravitational force (right hand side of the equation, as a
simple term proportional to the gravitational mass mg), it is clearly
possible to see that the equivalence principle is the key to reach the
pure geometry problem, where there is no mass dependence indeed.

The motion is then said to happen particularly along geodesics
because of the definition of the space itself. Any kind of force or
energy in the context of GR goes into the energy-momentum tensor
Tij, which is then linked to the Einstein tensor Gij and so on, dictating
finally the metric, thus the geometry, of the space.

b.2.5 Newtonian limit

GR is an extension of classical physics. It should be therefore possible
to re-obtain newtonian mechanics laws just by applying some assump-
tions to the equations of GR. The necessary steps will be covered in
this subsection, following what presented in [34].

It should be clear at this point that the presence of gravity, and
so of any mass, is a source of curvature, with the most significant
curvatures to exist nearby the source itself. A first assumption is then
made, which is for a point to be located at far enough from all the
curvature sources: here the space can be approximated as almost flat.
Getting also back to the set of coordinates introduced in Section A.2,
when talking about SR:

x = (x1, x2, x3, ct) = (q1,q2,q3,q4) (B.5)

Since the space is almost flat, the metric gij at the point x can be
defined as a slight modification of a Lorentz’s Metric g0ij:

gij(x) = g0ij + γij(x) (B.6)

with ||γij(x)|| << 13. A static dependence only is assumed, with γij(x)
depending only on the position x and not on the velocity of the sources,
or of any other particle moving nearby there.

The relation between time and proper time can be re-written, ma-
nipulating Equation (A.23) with Equation (B.6) to obtain:(

ds
dct

)2
= −

(
dτ

dt

)2
=
[
g0ij + γij(x)

]dxi
dct

dxj

dct
(B.7)

The newtonian limit can now be introduced: since the speed of light is
constant wherever in space (no matter the curvature), if the velocities
are small enough it can be assumed that c → ∞. This implies that
Equation (B.7), at the newtonian limit, can be expressed as function of

3 Note that, for the purposes of this analysis, any kind of norm can be considered in
this assumption.
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the time coordinate (coordinate 4) only and, exploiting the definition
of Lorentz metric, further manipulated with a first order power series
expansion to obtain:

dτ

dt
≈
[
1− γ44(x)

]1/2 ≈ 1− 1
2
γ44(x) (B.8)

because of γ44(x) being small.

Note that by proving γ44
(
x = O

(
1/c2

))
the time t would be proven

to be indistinguishable from the proper time τ, therefore newtonian The dependence on
the position x has
vanished as a
consequence of the
newtonian limit.

mechanics and GR would be linked.
Some of the key concepts of newtonian mechanics are now intro-

duced, by considering the gravitational field provided by a single mass
M:

φ = −
MG

r
Gravitational Potential

g = ~∇φ Gravitational Field

mi
d2x
dt2

= −mg~∇φ Particle motion

(B.9)

With G being Newton’s constant and r the distance of the particle m
from the source.

The two masses mi (inertial) and mg (gravitational) are equal be-
cause of the equivalence principle. They can then be simplified to
obtain:

d2x
dt2

= −~∇φ (B.10)

Yet again, the orbit has become a function of the source and the
geometry only.

The strength (from [34]) of the gravitational field can be charac-
terised by the non-dimensional ratio 2φ/c2, with 2φ/c2 → 0 at the
newtonian limit.

Getting back to GR, from the 3rd principle (presented at the begin-
ning of Section B.1) the particle m should move along geodesics in the
space, which, in the coordinate system introduced in Equation (B.5),
are defined as:

d2xi

dτ2
+ Γ ijk

dxj

dτ

dxk

dτ
= 0 (B.11)

In the newtonian limit the only relevant part of the second contribution
is the one in the coordinate x4 = ct:

d2xi

dτ2
+ Γ i44c

2 ≈ 0 (B.12)

The affine connection Γ i44 is connected, by its definition (Equation
(A.28)), to the metric gij introduced in Equation (B.6). This definition
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can be exploited together with γij(x) being not dependent on time to
obtain:

Γ i44 = −
1

2

∂

∂xi
γ44(x) = −

1

2
~∇γ44(x) for i = 1, 2, 3

and

Γ444 = 0

(B.13)

Therefore the geodesics equation becomes:

d2xi

dτ2
= ~∇

[
c2

2
γ44(x)

]
for i = 1, 2, 3 (B.14)

Note that now Equations (B.10) and (B.14) (thus GR and newtonian
mechanics) can be connected simply by imposing:

γ44(x) =
2φ

c2
(B.15)

The assumption of being far from the source (r→∞) allows us to say
2φ/c2 → 0, thus the metric is almost flat indeed.

GR and newtonian mechanics have successfully been connected,
under the simple assumptions (almost flat, static metric and newtonian
limit) made throughout the proof. One could however argue on the
imposition stated in Equation (B.15), claiming this situation to be just
a particular case. This last doubt will be solved in Sections B.3 and B.4
for two different cases, where, respectively, the final expression of the
lagrangian L and the equation of motion itself will be obtained in a
more rigorous way.

b.3 schwarzschild’s solution

The first, simple but meaningful gravitational field that can be analysed
is the one produced by a single, spherically symmetric, non-rotating
source, which an analytical solution is eventually available for. This
section will follow what presented on [35], providing the key results
and consequences of this particular case, called Schwarzschild’s solution.

b.3.1 Field solution

This kind of field source allows to operate directly some assumptions
on the metric, without the need to define the energy-momentum tensor
Tij and solve Einstein’s field Equations, leading to a static, isotropic
metric to be diagonal if expressed in a reference frame centered at the
source M, with spherical coordinates (r, θ,ϕ, t). In tensor notation it
is defined as:

grr = A(r);

gθθ = r2

gϕϕ = r2 sin2 θ

gtt = −B(r)

(B.16)
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As it can be seen from Equation (B.16), static, isotropic means quasi-
Lorentzian metric, where also one has that the proper time τ does
not depend on the time t. The spherical symmetry is guaranteed by
the definitions of gθθ and gϕϕ. The terms A(r) and B(r) are to be
determined by solving the field equations (Equation (B.4)).

The affine connection can be computed using Equation (A.28), to
obtain the following non-vanishing terms:

Γrrr =
1

2A(r)

dA(r)

dr
Γrθθ = −

r

A(r)

Γrϕϕ = −
r sin2 θ
A(r)

Γrtt =
1

2A(r)

dB(r)

dr

Γθrθ = Γθθr =
1

r
Γθϕϕ = − sin θ cos θ

Γϕrϕ = Γϕϕr =
1

r
Γϕϕθ = Γϕθϕ = cot θ

Γttr = Γ
t
rt =

1

2B(r)

dB(r)

dr

(B.17)

Without passing through the Riemann curvature tensor, the Ricci
tensor can be directy linked to the affine connection through

Rij =
∂Γkik
∂xj

−
∂Γkij

∂xk
+ Γ likΓ

k
jl − Γ

l
ijΓ
k
kl

(B.18)

Using Equation (B.18) Rij becomes:

Rrr =
B ′′(r)

2B(r)
−
1

4

(
B ′(r)

B(r)

)(
A ′(r)

A(r)
+
B ′(r)

B(r)

)
−
1

r

(
A ′(r)

A(r)

)
Rθθ = −1+

r

2A(r)

(
−
A ′(r)

A(r)
+
B ′(r)

B(r)

)
+

1

A(r)

Rϕϕ = sin2 θRθθ

Rtt = −
B ′′(r)

2A(r)
+
1

4

(
B ′(r)

A(r)

)(
A ′(r)

A(r)
+
B ′(r)

B(r)

)
−
1

r

(
B ′(r)

A(r)

)
Rij = 0 for i 6= j

(B.19)

Where the notation C ′ means differentiation of the quantity C with
respect to r, as also reported in [35]. Note that the symmetry of Rij is
a direct consequence of the metric and the set of coordinates chosen
(according to the physics of the problem).

One can also observe that, being still made of differential equations,
boundary conditions are actually needed. This case can be seen as
a specific particular solution, where the homogeneous case is repre-
sented by the empty space, where obviously

Rij = 0 (B.20)

It can be noted that
Rrr

A(r)
+
Rtt

B(r)
= −

1

rA(r)

(
A ′(r)

A(r)
+
B ′(r)

B(r)

)
(B.21)
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Therefore, imposing the condition as in Equation (B.20) for Rrr and
Rtt, what expressed into Equation (B.21) turns into a requirement on
A(r) and B(r), which can be expressed as

B ′(r)

B(r)
= −

A ′(r)

A(r)

or

A(r)B(r) = constant

(B.22)

One should not forget that, even for empty spaces, A(r) and B(r) have
been defined as referred to the metric of the space which includes a
source. The same assumption made in Section B.2.5 of flat space for
r→∞ can be applied:This means that the

space must become
Minkowskian for

r→∞.
lim
r→∞A(r) = lim

r→∞B(r) = 1 (B.23)

Therefore using Equation (B.23)the condition in Equation (B.22) be-
comes:

A(r) =
1

B(r)
(B.24)

The only condition left to be used is the definition of Rij, setting all the
elements equal to 0. Plugging the result obtained in Equation (B.24)
into their definitions in Equation (B.19) we obtain4:

Rθθ = −1+B ′(r)r+B(r)

Rrr =
B ′′(r)

2B(r)
+
B ′(r)

rB(r)
=

R ′θθ
2rB(r)

(B.25)

It is then enough to set Rθθ equal to zero, to obtain

d

dr
(rB(r)) = rB ′(r) +B(r) = 1 (B.26)

With solution (from [35]):

rB(r) = r+ constant (B.27)

The constant of integration can be found by again making use of the
metric becoming Minkowskian for r→∞, particularly

gtt = −B(r) −−−→
r→∞ −1−

2φ

c2
(B.28)

as a consequence of what presented in Subsection B.2.5, with the
same definition for φ (reported in Equation (B.9)). The constant of
integration is therefore equal to −2MG/c2, leading to the following
definitions for A(r) and B(r):

A(r) =

[
1−

2MG

c2r

]−1
B(r) =

[
1−

2MG

c2r

] (B.29)

4 Note that it is enough to study the condition in these two elements, the others are
easily obtained from these two with Equations (B.19) and (B.21).
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and the metric of the space with this source of mass M at its center is

gij(r, θ,ϕ, t) =


[
1− 2MG

c2r

]−1
0 0 0

0 r2 0 0

0 0 r2 sin2 θ 0

0 0 0 −
[
1− 2MG

c2r

]

 (B.30)

found by Karl Schwarzschild in 1916.

b.3.2 Observations

This subsection will present the observations and considerations avail-
able in [34] about the Schwarzschild’s solution.

An interesting quantity can be highlighted, the Schwarzschild radius
Rs:

Rs =
2MG

c2
(B.31)

For values r < Rs gij becomes singular5, with the result that as
currently formulated there does not exist a solution for r < Rs. This is
actually the lower limit of r domain.

Another interesting observation can help to understand the concept
of curvature: at a fixed time instant t and for θ = π/2, the space
become a 3-dimensional surface, identified as z in Figure B.1. If one
lived into this kind of space, their existence would be constrained
to that surface. This is an extremely visual result and it can give a
"classical" physical interpretation to the space-time curvature. Note
that by existing in that space one would not feel the curvature, because
constrained inside the curved reference frame. These effects can be
observed only by being on an inertial and external reference frame,
like if the world under study were enclosed in a fixed and inertial
laboratory room.

b.3.3 Classical tests of general relativity

In this subsection a list of the classical tests of general relativity is
presented. It is provided within this Section (B.3) because these are in
their most significant effect (the variations due to the other bodies of
the Solar System are small) due to the gravitational field of the Sun,
which can be accurately modelled with the Schwarzschild’s solution.

• Gravitational redshift

5 This is, intuitively because the reality is more complex, the key that makes the Black
Holes black. They are so massive that Rs is big enough to include the whole body (for
Earth Rs ∝ 10−3m), therefore nearby these objects the high curvature of the space
forces the light to follow a curved and closed path, keeping it trapped in the field
(this is why they are black, the light cannot literally abandon the field).
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Figure B.1: Image from [34]. The concept of curvature turns now in dilatation
and contraction of the space. Particularly, for increasing values
of r and the same angle ∆ϕ the length of the arc in the inertial,
fixed laboratory frame ∆s = r∆ϕ increases as well.

Practically speaking, the name of this effect calls to some-
thing happening to the light signals, observed shifted towards
lower frequency values nearby the source6. This phenomenon is
indeed observed because of the time dilatation produced by the
gravitational field, which can actually be quantified as:

dtnear =
dtfar√
1− Rs/r

(B.32)

The expression looks similar in the shape to what already men-
tioned for SR in Section A.2. Note that the gravitational field
is introduced here with its Schwarzschild radius Rs and the di-
latation becomes stronger for r→ R+s (i. e. the time runs slower
close to the source.)

• Deflection of light

This is the pure consequence of the space being curved by
the source. Photons are massless particles, therefore they do
not modify the field7 and travel purely on the geodesics of the
space curved by the sources. As a consequence, the position of
some stars is observed to be slightly different than expected, not
because it actually is, but because the relative position Earth-Sun-
star makes the photons travel close to the Sun in some periods
of the year, with the consequence of them being slghtly deflected
and, looking at that star from Earth, resulting in a change of the
apparent position of that particular star.

6 Red because of the visible spectrum, UV at high and IR at low frequencies.
7 Any massive body contributes to the whole gravitational field, this is being discussed

in Section B.4.
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• Precession of perihelia

Massive particle motion in GR has slightly different results.
It happens always along geodesics, but they have to be computed
taking into account the particle masses in the energy-momentum
tensor. Planets can be considered as, when orbiting the Sun, as
point masses that do not curve the space, therefore the only
curvature can be approximated as produced by the Sun only.
As it will be shown in Subsection B.3.4 for the simple 2-Body
problem, GR influences the dynamics with an additive term. This
modifies all the orbital elements of all the bodies, exactly as a
perturbation effect (shown in Chapter 2), but the results are more
visible when talking about Mercury, because of its vicinity to the
Sun, and particularly of its perihelion, the orbital parameter most
affected by the space being curved. Results of GR (already just
with the simple case of the Schwarzschild’s solution) are actually
able to explain a small orbital anomaly that the newtonian N-
Body problem was not able to show alone (the effects are by
the way small, over 100 years Mercury’s perihelion experience a
precession of ≈ 1.54◦ due to the N-Body perturbation and ≈ 43"
due to GR).

b.3.4 Particle motion in the Schwarzschild field

The path to the equation of motion for a massive particle will be
shown in this subsection, following what presented on [34] using La-
grange Equations and until reaching the expanded formulation of the
lagrangian. The comparison between relativistic and non-relativistic The reader can find

more details about it
in [34].

case is already visible there, for the purposes of this work it does not
make much sense to go deeper in the derivation in this case. A qualita-
tive explanation of the path until the actual equations will be followed All the analytical

steps and
assumptions can be
found in [35], the
purpose of this work
is just to give the
reader an idea about
the meaning of the
derivation.

in the N-Body case, tackled in Section B.4, because that particular
result is to be applied in Chapter 2.

In this context, the lagrangian L still equals the kinetic energy of the
particle T , with the gravitational effects to lay in the metric. Reporting
what already presented in Equation (A.32):

L =
1

2
mu · u =

1

2
mgij

dxi

dτ

dxj

dτ
(B.33)

which in the Schwarzschild metric becomes (from [34]):

L = m

(
ds
dt

)2(
dt

dτ

)
= −mc2

dτ

dt

= −mc2
{[
1+

2φ(r)

c2

]
−
1

c2

[
ṙ2

1+ 2φ(r)/c2
+ r2θ̇2 + r2 sin2 θϕ̇2

]}1/2
(B.34)

with φ(r) =MG/r, the usual gravitational potential of the source of
mass M as in Equation (B.9).
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Some observations can be made before going on with the derivation:

• by neglecting all the terms O
(
1/c2

)
the exact newtonian la-

grangian is obtained;

• terms up to O
(
1/c4

)
are deep enough to catch the relevant

relativistic effects, such as Mercury’s perihelion precession.

This suggests to carry out a power series expansion over ε = 1/c2, to
have a simplified but still analytical final form of the lagrangian L.
Note that:

• the power series expansion of 1+ ε under the square root is

(1+ ε)1/2 ≈ 1+ 1
2
ε−

1

8
ε2 + ... (B.35)

• in polar coordinates the square of the velocity is defined as

v2 = ṙ2 ++r2θ̇2 + r2 sin2 θϕ̇2 (B.36)

Therefore, considering the terms up to O
(
1/c4

)
for what is inside the

square root, L becomes:

L ≈ −mc2
[
1+

1

c2

(
2φ(r) − v2 +

2φ(r)ṙ2

c2

)]1/2
(B.37)

Expanding now the square root:

L ≈ −mc2 −
m

2

(
2φ(r) − v2 +

2φ(r)ṙ2

c2

)
+
m

8c2

(
2φ(r) − v2

)2 (B.38)

The value −mc2 is a constant and would anyway disappear in the
Lagrange mechanics calculations. Neglecting it and re-organising the
terms, the lagrangian L becomes:

L =
mv2

2

(
1+

v2

4c2

)
−mφ(r)

(
1+

ṙ2

c2
+
v2

2c2
−
φ

2c2

)
+O

(
1/c4

)
(B.39)

Note that truncating the expansion to O
(
1/c2

)
would lead exactly at

the Newtonian lagrangian:

LNewtonian =
mv2

2
−m

MG

r
(B.40)

The usual Lagrange equations can now be used to obtain the equations
of motion8:

d

dt

(
∂L

∂ẋi

)
−
∂L

∂xi
= 0 (B.41)

8 The lagrangian has been obtained in spherical coordinates, but it is of course possible
to go back to cartesian coordinates with the usual transformation rule.
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b.4 post-newtonian mechanics , n-body relativistic mo-
tion

Whenever it comes to deal with relativistic effects in a more general
sense, the simple Schwarzschild’s solution (treated in Section B.3) may
not suffice, even though it provides an accurate mathematical support
to the usual tests of GR in the Solar System. Such cases could be an
higher level of precision needed or an approach capable to tackle also
problems of more general nature.

In this regard, post-newtonian mechanics (PNM) is a formalism that
answers to those questions and doubts, providing an analytical tool
to derive the equations of motion of a generalised system, expanding
all the terms in a power series over 1/c2 and neglecting all the terms
which are O(1/c4). As it is built, this formalism is even more gen-
eral than GR itself, with its scalar-coefficient-based formulation called
parametrised post-newtonian mechanics (PPN), since it can be fully
used also with other metric gravitational theories9. Particularly, PPN
consists of generalising the metric into a super-metric, dependent on
some scalar coefficients. The values assigned then to those coefficients
will make the distinction between the different metric theories of grav-
ity. This introduction will become more clear during the development
of the section, with a discussion that will follow what presented in
[35] and [36].

b.4.1 Post-Newtonian mechanics framework

The assumption of the gravitational field affecting the metric of the
space with particles moving along geodesic remains. What distin-
guishes GR from the other gravitational metric theories is the way the
space is affected, with laws more general than Einstein Field equations.

It is possible then to still make use of the already obtained result
presented in Equation (A.35):

d2xk

dτ2
+ Γkij

dxi

dτ

dxj

dτ
= 0 (B.42)

From [35], the following expression for the acceleration is obtained,
for (i, j,k) = (1, 2, 3):

d2xi

dt2
=

(
dt

dτ

)−1
d

dτ

[(
dt

dτ

)−1
dxi

dτ

]
=

(
dt

dτ

)−2
d2xi

dτ2
−

(
dt

dτ

)−3
d2t

dτ2
dxi

dτ

= −Γ ijk
dxj

dt

dxk

dt
+ Γtjk

dxj

dt

dxk

dt

dxi

dt

(B.43)

9 The only requirement asked to these gravitational theories to be studied with the
PPN formalism is to be metric theories. Examples of non-metric theories are the ones
that treat quantum gravity, not reported in this thesis because going way far beyond
the purposes of this work.
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It is now possible to highlight all the affine connection terms in-
volved:

d2xi

dt2
=− Γ itt − 2Γ

i
tj

dxj

dt
− Γ ijk

dxj

dt

dxk

dt

+

[
Γttt + 2Γ

t
tj

dxj

dt
+ Γtjk

dxj

dt

dxk

dt

]
dxi

dt

(B.44)

The goal is to obtain the accelerations up to O(1/c4), therefore the
following orders are the ones needed:The derivative

operators have to be
intended as ∂

∂xi
∼ 1r

and ∂
∂t ∼ vr , where r

and v are
characteristic length

and velocity of the
problem. They

respectively lower
the infinitesimal

level of 1/c2 and
1/c, further details

and the proof can be
found in [35], the

link involves c = 1
in that book, working

with slightly
different units.

Γ itt up to O
(
1/c4

)
; Γ itj up to O

(
1/c3

)
;

Γ ijk up to O
(
1/c2

)
; Γttt up to O

(
1/c3

)
;

Γttj up to O
(
1/c2

)
; Γtjk up to O(1/c).

(B.45)

b.4.2 Equation of motion, energy-momentum tensor, relativistic potentials

Given Equation (B.44) and the orders needed from (B.45), one should
now already have an idea of what is the actual path to follow. Detach-
ing from the generality of PNM and underlining the path for GR, it is
possible to underline a backward process that leads to the components
of the affine connection Γ ijk, expressed as function of the power series
expansion of the energy-momentum tensor Tij (as described in Sub-
section B.2.3 and making use of the definitions reported in Equations
(A.42), (A.40) and (A.37)).

It is worth to mention that, like for the Schwarzschild’s solution
presented in Section B.3, even in this framework it is possible to find a
metric that is quasi-minkowskian, with the consequence to arrive to
the equations that will be shown in a few lines. The detailed derivation
can be found in [35].

The equation of motion for the particle n of mass mn in an N-Body
system, under this framework is:

r̈n =− ~∇
(
φ+ 2φ2 +ψ

)
− ~̇ζ+ ṙn × (∇× ~ζ)

+ 3
dφ

dt
ṙi + 4ṙn(∇ · ṙn)φ− ||ṙn||2~∇φ

(B.46)

where rn is the position vector of mn and φ is the newtonian potential:

φ(r, t) = −G

∫ 0

Ttt (s, t)
||r − s||

ds (B.47)

And the other potentials ψ and ζ are defined as:ζ is a vectorial
potential.

ψ(r, t) = −

∫
1

||r − s||

[
1

4π

∂2φ(s, t)
∂t2

+G
2

Ttt (s, t)+
2

T ii (s, t)
]
ds

ζi(r, t) = −4G

∫ 1

T it (s, t)
||r − s||

ds

(B.48)
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with the symbol
α

A denoting the term of the expansion of the quantity
A to be of order 1/cα and r = (r1, r2, r3) a generic position in the 3-
dimensional space. The boundary conditions used are the newtonian
limit and Minkowski metric at infinity, for the derivations of all the
three potentials.

It is only left to give a definition of the energy-momentum tensor
T ij, which is (from [35]):

T ij(r, t) = g−1/2(r, t)
∑
n

mn
drin(t)

dt

dr
j
n(t)

dt

(
dτn

dt

)−1

δ3(r − rn)

(B.49)
where g(r, t) is the determinant of the metric matrix gij(r, t), ri is the
i− th component of the position vector r, τn is the proper time for
the particle n and δ3 is a 3× 3 matrix with components according to
the Kronecker delta (i. e. the identity matrix).

b.4.3 N-body barycentric equations of motion

The equations of motion presented in Subsection B.4.2 are still general,
no assumption is made on the reference frame in which they are
expressed.

The reference now will be put onto a system of N point masses,
each denoted with the indexes (i, j,k). A formulation of the equations
of motion can be obtained in this PNM context, with a cartesian
reference frame centered in the center of mass of the N-Body system.
It is reported in Equation (B.50), from [25], although its derivation is
available in [36]. It has been already simplified of all the extensive
contributions and the conservation laws have already been exploited10. The derivation in

[36] takes into
account the shape of
the bodies, not
necessarily spherical,
with their mass
distributions, not
necessarily uniform
and solid, and for
rotating bodies.

Note also that Einstein notation will be abandoned, to highlight better
the similarities with the usual N-body problem.

r̈i =
∑
j6=i

µj(rj − ri)
r3ij

{
1−

2(β+ γ)

c2

∑
k6=i

µk
rik

−
(2β− 1)

c2

∑
k6=j

µk
rjk

+ γ

(
vi
c

)2
+ (1+ γ)

(
vj

c

)2
−
2(1+ γ)

c2
ṙi · ṙj −

3

2c2

[
(ri − rj) · ṙj

rij

]2
+

1

2c2
(rj − ri) · r̈j

}
+
1

c2

∑
j6=i

µj

r3ij

{[
ri − rj

]
·
[
(2+ 2γ)ṙi

− (1+ 2γ)ṙj
]}
(ṙi − ṙj) +

3+ 4γ

2c2

∑
j6=i

µjr̈j
rij

(B.50)

10 The equations are expressed in the context of PPN, therefore they do not assume a
priori a gravitation theory. Some of these theory allow the violation of principles like
the conservation of mass, energy, linear and angular and momentum, expressing this
fact with some particular values assumed by the PPN coefficients. Those last have
already been set equal to 0, specific value of the same for fully conservative theories,
again reported in [36].
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The symbols not already mentioned are defined as:

• µi is the gravitational constant of body i (µi = miG);

• rij = ||ri − rj||;

• vi = ||ṙi||;

• β and γ are the two PPN parameters that define all the Full
Conservative gravitation theories.

It now remains to determine the values of γ and β. This is indeed
done with the equivalence principle (discussed in Subsection B.2.1)
formulated in the context of PNM. It suffices then to impose the
equivalence of the inertial and both gravitational active and passive11

(as reported in [36]) masses, the result obtained is "simply":

γ = β = 1 (B.51)

Plugging in the values for γ and β Equation (B.50) becomes:

r̈i =
∑
j6=i

µj(rj − ri)
r3ij

{
1−

4

c2

∑
k6=i

µk
rik

−
1

c2

∑
k6=j

µk
rjk

+

(
vi
c

)2
+ 2

(
vj

c

)2

−
4

c2
ṙi · ṙj −

3

2c2

[
(ri − rj) · ṙj

rij

]2
+

1

2c2
(rj − ri) · r̈j

}
+
1

c2

∑
j6=i

µj

r3ij

{[
ri − rj

]
·
[
4ṙi − 3ṙj

]}
(ṙi − ṙj) +

7

2c2

∑
j6=i

µjr̈j
rij

(B.52)
Equation (B.52) is now the starting point for what discussed in

Chapter 2, where it was manipulated and used to study what effects
GR has on the N-Body dynamics.

11 It is now necessary to impose the principle for both active and passive masses,
meaning that each mass mi is contributing in the generation of the gravitational
field and being subjected to the attraction of the other masses mj, whereas in the
Schwarzschild case the mass m was only subjected to the source M without affecting
it.
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