

POLITECNICO DI MILANO

School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Robust real-time monitoring of human task advancement in

collaborative robotics applications

Supervisor: Prof. Paolo ROCCO

Co-supervisor: Ing. Riccardo MADERNA

Author:

Maria CILIBERTO ID: 905403

Academic Year: 2019 – 2020

Contents

1 Introduction 1
1.1 State of the art . 2
1.2 Proposed solution . 3
1.3 Chapters organization . 4

2 Monitoring of a single task 5
2.1 Past duration average method 5
2.2 Dynamic Time Warping 6
2.3 Open-Ended Dynamic Time Warping 7

2.3.1 Task advancement monitoring 8
2.3.2 Input signals . 9
2.3.3 Handling occlusions 9
2.3.4 Selection of the reference 10
2.3.5 Output Filtering 11

2.4 Results . 13

3 Monitoring of task variants 17
3.1 Introduction . 17
3.2 Variant definition . 17
3.3 Building the template . 18

3.3.1 Template update 21
3.4 Recognition of variant . 22

3.4.1 Updating current probability of the segment 23
3.5 Advancement and duration estimate 26

iii

iv CONTENTS

4 Experimental Validation 31
4.1 Monitoring system . 31
4.2 Experimental set up . 32
4.3 Obtained results . 40

4.3.1 Building of the template tree 41
4.3.2 Performance evaluation 55

5 Conclusions and future works 63

A Window size for task duration extrapolation 65

Bibliography 71

List of Figures

2.1 Example of DTW Matrix 7
2.2 DTW Matrix with Occlusion: DTW exploration space is

represented with blue circles while the red circles represent
the OE-DTW one. 10

2.3 Phase transitions: When a pause is detected we impose a
linear growth to the advancement, in case there is a real stop
in the execution of the operation the growth is saturated.
When the operation returns informative we return to the
normal behavior state. 12

2.4 Example of results obtained using the DTW-based algorithm 14
2.5 Example of error case using DTW in presence of variants of

operation. 16

3.1 Example of template tree: node 0 is the root, while node n1

contains the data related to the segment 0-1, node n2 the
ones related to 1-2 and leaf 3 the data regarding the part 2-3 20

3.2 Example of template tree with a fork: if the human executes
a variant of the task, the template tree is enriched with
information about the new variant 21

3.3 Initial probabilities: each segment has its historical proba-
bility (the ones represented in red) and the probability of
each variant is evaluated as the product of the probabilities
of the segments that compose it (the ones in blue) 26

v

vi LIST OF FIGURES

3.4 Example of tree with forks 30

4.1 Product assembled during the experiment 33

4.2 Experimental set up . 38

4.3 Tree built during the experiments. It consists of three
plausible task variants (V1, V3, V6) and three error variants
(V2, V4, V5) . 39

4.4 Advancement (a) and duration (b) estimate of the second
execution of variant V6 when there is only this latter as
possible template. (c) shows the result of the last twenty
seconds of the operation. 42

4.5 While monitoring the third execution of the operation, the
template is composed of just one variant. The dashed line
indicates that, after having completed the segment related
to node n2, the human is performing an unknown new segment. 43

4.6 The current probability is corrected when changes in the
human’s movements are detected, in the meanwhile the
template tree is enriched with data about the new segment 44

4.7 Template tree with a fork 45

4.8 Probabilities behavior in a fork 46

4.9 During the first monitoring of the error variant that corre-
sponds to a shorter execution of the operation, the algorithm
overestimates the duration as it compares the ongoing oper-
ation (that is just partial) with sequences of the complete
operation . 47

4.10 Template tree where n3 has two children. After having
reached node n3 the algorithm compares the ongoing seg-
ment with the ones related to n4 and n10, but DTW’s ma-
trices costs become high at a certain point so the algorithm
detects a new segment as children of node n3. 49

LIST OF FIGURES vii

4.11 During the first monitoring of a third new segment starting
from node n3, the current probabilities of the two existing
segments in the template rapidly goes to zero when the
algorithm detects a change in the human’s movements . . . 50

4.12 Now that the user has performed four variants of the op-
eration task at least once, the template tree in made as
shown. 52

4.13 Current probabilities of the trivium when the second variant
inserted in the template tree is the one being executed. The
algorithm is able to identify the correct segment even if it
starts from an historical probability lower than the one of
the others. 53

4.14 In red it is shown the actual duration of the operation while
in blue it is represented the expected duration evaluated
with our algorithm. It is apparent that, even after the
building of the entire template tree, the expected duration
gives good results. 54

4.15 The green line represents the actual duration of the oper-
ation. Our algorithm (in blue) estimates well as its mean
error is around 2s after the initial part. For comparison, the
algorithm developed in previous work is represented in red
while the method described in 2.1 is represented in yellow 56

4.16 Previous work’s estimate is not correct in the majority of
the situations. The method that uses the average of past
duration estimates well the duration of the operation, this
is also due to the fact that the most plausible variants have
similar duration. Our method is slightly better than the
average method. 57

viii LIST OF FIGURES

4.17 Our algorithm (blue) is able to correct itself when it recog-
nizes the correct variant of the operation that the human
is performing. While the method that uses past duration
(red) keeps on overestimating the final duration. The green
line represents the actual duration of the operation. 59

4.18 Our algorithm (blue) presents a valley around 18s due to
the fact that the estimate of the length of the next segments
is imprecise. In cases like this, the method that uses the
average of past duration has a lower mean error. 60

4.19 Boxplot of the errors obtained with the three methods when
monitoring always the same operation variant. 60

A.1 Example of linear advancement trend 66
A.2 Mean error sensitivity with respect to window size 67

List of Tables

4.1 Nodes - segments relationships 40
4.2 Number of execution of each variant considered to evaluate

the error . 55

ix

Abstract

In recent years, the interest in collaborative robotics has been continu-
ously growing. This is due to the fact that humans and robots working
together can efficiently complete tasks that are very difficult for either agent
to accomplish alone. The robot executes operations that require strength
and could be dangerous for the human to perform, while the operator adds
flexibility to the task. To collaborate fluidly, robots must recognize humans’
intentions and adapt to their actions appropriately. However, from the
interaction between robots and humans, a large amount of problems arise,
mainly due to the uncertainties caused by the latter. This thesis offers a
robust way to estimate the advancement of the current human operation,
considering the variability introduced by the human being. Our work
accounts for the possibility that the operator performs the operation in
different ways and estimates the progress of the current operation taking
into account this issue. From the estimate of the advancement, it is then
possible to derive the expected duration of the current task. The proposed
method compares the ongoing sequence with a set of possible reference
ones and this is done with the use of the Open-Ended Dynamic Time
Warping. The proposed solution proved to be satisfactory, guaranteeing
low errors in estimating the duration of operations and robustness to the
uncertainties introduced by the human.

Keywords: Collaborative Robotics, Assembly, Dynamic Time Warping,
Temporal Sequences.

xi

Sommario

La robotica collaborativa è un settore in continua espansione. Ciò è
dovuto al fatto che operatori umani e robotici che collaborano possono
completare efficacemente operazioni che altrimenti sarebbero difficili da
eseguire singolarmente. Il robot conduce operazioni che richiedono forza e
che potrebbero essere pericolose per l’umano, mentre l’operatore aggiunge
flessibilità. Per collaborare in maniera efficiente, è necessario che i robot ri-
conoscano le intenzioni dell’umano per adattarvisi e scegliere di conseguenza
il prossimo compito da eseguire. Dall’analisi dell’interazione tra uomo e
robot scaturiscono diversi problemi, alcuni dei quali dovuti al fatto che
l’essere umano ha un comportamento non sempre predicibile. Questa tesi
offre un metodo robusto per stimare l’avanzamento dell’operazione collabo-
rativa che tiene in considerazione l’incertezza introdotta dall’umano. Il nos-
tro algoritmo affronta la possibilità che l’uomo possa eseguire l’operazione
in diversi modi e stima l’avanzamento dell’operazione corrente tenendo in
considerazione questo aspetto. Il metodo proposto paragona la sequenza
corrente dei movimenti dell’operatore a un insieme di sequenze di rifer-
imento possibili e ciò è possibile tramite l’Open-Ended Dynamic Time
Warping. La soluzione proposta si è rivelata soddisfacente, garantendo
bassi errori nella stima della durata delle operazioni e robustezza alle
incertezze introdotte dall’umano.

Parole chiave: Robotica Collaborativa, Assemblaggio, Dynamic Time
Warping, Sequenze Temporali.

xii

Chapter 1

Introduction

The project presented in this thesis is part of the research related to
industry 4.0. This term refers to the current trend of industrial automation
to integrate new production technologies for improving working conditions,
increasing performance and quality production of the plants. A role of
fundamental importance in this revolution is carried out by collaborative
robotics. Robots are no longer used solely to replace the human operator
where possible, but also to interact with the latter in order to improve
working conditions and performance. Examples are the collaborative
assembly operations, where automata are used for the production or to
perform repetitive actions that require precision, while the human operator
performs the operations that are difficult to automate and increase their
flexibility. To exploit to the fullest extent the resources, robot and human
being, and to make the best use of the time available to them, the robot
should be able to correctly estimate the duration of the ongoing operation
performed by the human and to schedule its tasks consequently. This is
not an easy task since the operator’s behaviour is neither controllable nor
repeatable. For example, if the human is performing the same operation
several times, he/she will perform it at different paces and will not always
exactly repeat the same movements. Moreover, some assembly operations
can be performed in different ways, for example, the human could take

1

2 Introduction

an element before another one and still get to the final product. So it is
important to find a method to estimate the progress of the human task
considering such variability.
In this thesis, a method for monitoring in real-time the operation performed
by the human operator, considering the issues previously explained, was
developed. The actual progress of the operator is estimated in order to
obtain an estimate of the progress of the current operation at each time
instant. This is then used to calculate the expected duration of the current
operation and therefore the remaining time before its conclusion.

1.1 State of the art

There are several articles in the literature concerning human-robot
collaboration([1],[3]). Many challenges arise to achieve effective collabora-
tion: in addition to safety issues([15], [14]), the estimation of the progress
of the operation performed by the human is particularly interesting ([2],
[11]). Since the human is a source of uncertainty in many researches, the
prediction of human activity has been discussed. In [5] a Hidden Markov
Model was trained to infer the current human activity as perceived by a
mobile robot. In [12] the human activity pattern is modelled with higher-
order Markov Chains. [10] used gaze information to monitor the worker’s
activity and interpret his/her future intention. While [8] and [13] discuss
different ways to solve this problem using probabilities.
In order to have real-time monitoring of the task advancement, we started
from the work in [6],[9] that estimates the duration of the ongoing operation
by monitoring the human’s skeletal positions and compares them with a
reference sequence to evaluate at which point of the reference the operation
is. The expected duration of the operation is then found as a function of
the advancement percentage and of the elapsed time at each instant. The
main limitation of this algorithm is that it considers just one reference
sequence, so when the operator performs a variant of the task it cannot

1.2. Proposed solution 3

predict precisely the final duration. This is due to the fact that, since the
operation is performed in a different way, the human’s movements will be
different from the ones of the reference sequence.

1.2 Proposed solution

This thesis aims at providing a robust method to estimate the duration
of the operation performed by the human operator in collaborative robotics
applications. In particular, our work consists in a real-time monitoring of
the ongoing task and is robust to the variability introduced by the poor
predictability of the human.
We focused on the possibility that the human could change the order of
the operations that compose the task, considering also error variants (for
example, the operator forgets to pick an element for the operation or he
finds a defective part and has to substitute it). To do so it is necessary to
have a set of reference sequences, each one corresponding to a variant of
the task execution, which in turn are made up of several segments. Since
we wanted to develop a plug-and-play application, we decided to add as
reference a temporal sequence that the operator has performed at least
once. The algorithm keeps track of the last segment performed and since it
knows which are the possible next segments, he monitors the ongoing part
of the operation with all of them. Then two situations were considered:

• the human is performing a variant already present in the set of
reference sequences

• the ongoing operation is a new variant.

In the first case, the algorithm is able to recognize which variant is the
most probable to be performed and evaluates the advancement rate and
the expected duration. To give a good estimate of the duration also in
the second case, we implemented a function with which the algorithm can
perform an early recognition of the new variant. [7] proposes a method

4 Introduction

to align partial temporal sequences, but it involves offline computations.
Conversely, our method works in real-time, making the algorithm easier to
use.

1.3 Chapters organization

The remainder of this thesis is organized as follows:

The second chapter describes the work developed in [6] and [9] which
served as a starting point for this thesis.

The third chapter explains in detail the changes made to the previous
work. In particular, the creation of a reference template that considers
the possible variants of the operation execution is described.

The fourth chapter presents the experimental results obtained by apply-
ing the algorithm developed and comparing it with basic algorithms.

The fifth chapter draws the main conclusions about the work presented
in this thesis and presents cues for future works.

Chapter 2

Monitoring of a single task

As it has been said in Section 1.1 the starting point of this thesis is
based on [6]. Section 2.1 describes a simple method for the estimation of
the operation duration. After that,the algorithm from which we started is
presented. In particular, Section 2.2 explains the Dynamic Time Warping
algorithm. In Section 2.3 a modification of the algorithm called Open-
Ended Dynamic Time Warping is described. Section 2.3.1 presents the
changes applied to it for monitoring the advancement of a task. Finally,
Section 2.4 shows the results obtained in the previous work and its main
limitation.

2.1 Past duration average method

The method presented here estimates the duration of the current
operation as the average of the duration of the previous ones, according to
the equation:

T̂D(Te) = E[τ ∈ T |τ > Te] (2.1)

where T represents the vector containing all previous operations duration
saved in memory and Te is the time elapsed since the start of the current
operation. T̂D(Te) is then calculated as the average of the elements of T
with longer duration. Each time the duration of the operation previously

5

6 Chapter 2. Monitoring of a single task

carried out is exceeded by the current one, T̂D(Te) is evaluated as the
elapsed time Te. The algorithm just presented works correctly if the past
operation and the current one have a similar duration. However, it is
possible that the human executes the operation at different speeds or
perform some variant of it, so that the operation execution takes more
or less time than usual. Therefore, we present a method that links the
duration of the current ongoing operation to the estimated progress of it
to take this problem into account.

2.2 Dynamic Time Warping

The Dynamic Time Warping (DTW) algorithm allows to measure the
similarity between different temporal sequences. In our case, the algorithm
receives as input a time sequence and returns as output the measure of
similarity with a reference time series. The underlying idea of DTW is
to locally deform the time axes of the input signal in order to associate
each of its points to one point of the reference sequence. This makes the
algorithm robust to variations in time dimension. Let X = {x1...xi...xN}
be the input sequence and Y = {y1...yj...yM} the reference one. Let ϕx and
ϕy be two functions that map the indices i of X and j of Y to a common
index k ∈ {1, 2...T} where T is the current operation length, such that
ϕx(k) = i and ϕy(k) = j. It is possible to combine these two functions
in order to obtain a general warping function ϕ{ϕx(k), ϕy(k)} and the
cumulative distance between X and Y denoted as D(X, Y, ϕ):

D(X, Y, ϕ) =
T∑
k=1

c(xϕx(k), yϕy(k)) (2.2)

where c(x, y) could be any function that evaluates the distance between
X and Y. The aim of DTW is to find ϕ that minimizes D(X, Y, ϕ). The
algorithm builds an N − by −M matrix where each element (i, j) stores
the cumulative distance D(i, j) of the optimal warping and it is computed
as:

2.3. Open-Ended Dynamic Time Warping 7

D(i, j) = d+ s(i, j) (2.3)

where s is the Eucledian distance between xi and yj and d is:

d = min{D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)} (2.4)

The following constraints are taking into account to handle limit cases:


D(0, 0) = 0
D(i, 0) =∞ ∀i;
D(0, j) =∞ ∀j;

(2.5)

Figure 2.1: Example of DTW Matrix

In figure 2.1 an example of DTW matrix is shown where the red path
represent the optimal alignment ϕ.

2.3 Open-Ended Dynamic Time Warping

The algorithm that has been previously explained, is mainly used for
the offline comparison of complete signals. Instead, a modification called

8 Chapter 2. Monitoring of a single task

Open-Ended Dynamic Time Warping (OE-DTW)([11]) allows to compare
an input sequence that is only representative of a partial execution of
the template with the reference sequence. Thanks to this peculiarity, it
is possible to apply the OE-DTW to monitor operations in real time.
The main intuition consists in applying several times DTW between X
and different signals Y(j) obtained by truncating Y to the j-th element
∀j = [1...M] where M is the number of elements of Y. The open-ended
similarity is then defined as:

DOE = min
j=1...M

DDTW (X, Y (j)) = min
j=1...M

D(N, j) (2.6)

where D(N, j) is the last row of the DTW matrix. This means that
DTW can be applied just once in order to retrieve the open-ended similarity,
thus allowing an efficient computation.

2.3.1 Task advancement monitoring

In this work we are interested in finding the advancement of the ongoing
task, so the information obtained with the OE-DTW are used to find
the optimal truncation index j∗N that indicates at which point of the
reference sequence the ongoing task is. From this information the associated
percentage of advancement adv% is evaluated as:

adv% = 100j∗
N

M
(2.7)

where j∗N = argmax
j=1...M

D(N, j). Furthermore, one can estimate the du-

ration T̂ of the ongoing operation at time instant k knowing the elapsed
time Te(k) and the percentage of advancement1 as:

T̂ (k) = Te(k)
adv%(k) (2.8)

1We considered the possibility to use a moving window to evaluate the expected
duration of the operation to take into account sudden changes in the advancement rate
and improve the duration estimate. See Appendix A for further information.

2.3. Open-Ended Dynamic Time Warping 9

2.3.2 Input signals

Since our aim is to monitor human task advancement in collaborative
robotics we have chosen to use the operator’s index fingers and wrists
Cartesian position as input signals. It is important to separate movements
of the left side of the human from the ones of the right side because they
are not forced to be synchronous. Therefore, the algorithm is applied twice
and the two obtained warping paths are merged together into an average
warping path ϕ̄ as follows:

 ϕ̄(k) = ε·ϕsx(k)+(1/ε)·ϕdx(k)
ε+1/ε ϕdx ≥ ϕsx

ϕ̄(k) = ε·ϕdx(k)+(1/ε)·ϕsx(k)
ε+1/ε ϕdx < ϕsx

(2.9)

where ϕsx and ϕdx are the warping paths obtained by applying DTW
respectively to the left and right motion, and ε is a weight with an expo-
nential behavior that decreases proportionally to the difference between
the two indices |ϕsx − ϕdx|. Be α a designed parameter used to determine
the decreasing speed, then ε = exp−α·|ϕsx−ϕdx|

2.3.3 Handling occlusions

Loss of data during the monitoring of human activity may occur due
occlusions of features or tracking errors. Two cases are possible: either
only some of the signals are missing and the algorithm works as usual
considering only the available dimensions, or all features are unavailable at
the same time. The latter case is more critical: the algorithm shown so far
would update the cumulative distance D(i, j) searching for the minimum
distance d among the neighbors of the point (i, j), but when an occlusion
occurs, input samples are discarded, so that the first points before and
after the occlusion are considered to be subsequent. This fact causes wrong
alignments and leads to low performance of the algorithm.

For this reason the rule shown in 2.4 is modified as follows to take into
account the occlusion length in the minimum search:

10 Chapter 2. Monitoring of a single task

Figure 2.2: DTW Matrix with Occlusion: DTW exploration space is repre-
sented with blue circles while the red circles represent the OE-DTW
one.

d = min{D(i− 1, j), D(i, j − 1), D(i− k, j − 1)} (2.10)

where k = 1...Locc and Locc is the occlusion length. With this expedient,
the algorithm can detect a missing part of the signal and is able to handle
the occlusion and retrieve the correct result (figure 2.2).

2.3.4 Selection of the reference

To increase flexibility of the algorithm a learning phase is not required
and the first instance of the activity to be monitored is taken as the first
reference sequence. Then, the reference sequence is updated when one
instance results shorter than the reference one. This is done because the
operator becomes familiar with the operation by repeating it several times
and also because a shorter execution is more likely to be free from errors
and pauses.

2.3. Open-Ended Dynamic Time Warping 11

2.3.5 Output Filtering

From the modified DTW, we obtain the advancement of the current
activity, which can be used to compute the expected duration. However, it
is inconvenient to directly use the DTW output in the equation, as it suffers
from a couple of problems. Firstly, sections of the activity during which
the human is mostly still may cause a temporary stop in the advancement,
followed by a jump when motion returns informative. The second problem
is the presence of a bad initial transient, when only few data are available
and progress estimate is poor. In order to address the first problem, a
finite state automata with three states that describe the possible situations
has been modeled. The states are:

• N: Normal behavior;

• L: Linear growth;

• S: Saturation.

In the first case (N) the algorithm behaves in the standard way, when
a pause is detected we impose a linear growth (L) with speed equal to the
average rate of progress of the activity. To set a limit on forced growth,
the case of saturation (S) has been devised. The transitions between states
(figure 2.3) are triggered by:

a) N → L : ϕ(k) = ϕ(k − 1);

b) L→ S : ϕ(k) > ϕ(k − 1) ∨ ϕ̆(k − 1)− ϕ(k) > δM where δM is a limit
threshold;

c) S → N : ϕ(k) ≥ ϕ̆(k − 1).

where ϕ(k) = ϕ(k − 1) and ϕ(k) > ϕ(k − 1) respectively represent
a pause and a jump in the advancement are due to DTW errors. The
additional second condition on the L→ S transition is used to represent a

12 Chapter 2. Monitoring of a single task

a

bc

N L

S

Figure 2.3: Phase transitions: When a pause is detected we impose a linear
growth to the advancement, in case there is a real stop in the
execution of the operation the growth is saturated. When the
operation returns informative we return to the normal behavior
state.

real stop in the execution performed by the human. The modified warping
path ϕ̆ is computed as follows depending on the current state:

N : ϕ̆(k) = max{ϕ(k), ϕ̆(k − 1)}
L : ϕ̆(k) = ϕ̆(k−1)

k−1 · k
S : ϕ̆(k) = ϕ̆(k − 1)

Due to the small number of samples at the beginning of monitoring the
initial transient offered poor performance, so the rule described in 2.8 has
been modified as follows:

T̂ =

 E[τ ∈ T |τ > Te] adv% ≤ 20%;
Te

adv% adv% > 20%;
(2.11)

where E[τ ∈ T |τ > Te] is the average duration of the past executions
of the operation that are greater than the elapsed time as it has been
described in Section 2.1.

2.4. Results 13

2.4 Results

With all previous adjustments, the algorithm works well as it estimates
the duration of the operation appropriately even in critical situations.
Figure 2.4 shows the comparison between the results obtained with DTW
algorithm (the ones in orange), the ones obtained with the basic algorithm
explained in Section 2.1 in blue and the actual duration of the operation
which is represented in green. In figure 2.4a the graph of the duration
estimate of the second implementation of the operation is shown, in this
case the basic algorithm does not have enough data to provide a correct
estimate. In figure 2.4b the result obtained when monitoring a longer
operation with respect to the reference one are presented and it can be
seen that the basic algorithm underestimates the final duration. Lastly,
when the operation is shorter than the reference (figure 2.4c), the basic
algorithm tends to overestimate the final duration since the average of the
past ones results higher. A longer instance could be due to a tired operator
or to an error in the operation, while a shorter one is possible due to the
fact that the human becomes more and more experienced and faster in the
execution of the operation. Conversely, DTW algorithm works well in all
the three situations.

14 Chapter 2. Monitoring of a single task

0 5 10 15 20 25 30 35
Time [s]

25

30

35

40

45

D
u
ra

ti
o
n
 e

s
ti
m

a
te

 [
s
]

(a) Second Execution

0 10 20 30 40 50 60
Time [s]

40

50

60

70

D
u
ra

ti
o
n
 e

s
ti
m

a
te

 [
s
]

(b) Execution longer than average

0 5 10 15 20 25 30 35 40
Time [s]

25

30

35

40

45

D
u
ra

ti
o
n
 e

s
ti
m

a
te

 [
s
]

(c) Execution shorter than average

Figure 2.4: Example of results obtained using the DTW-based algorithm

As it has been shown, the proposed algorithm offers good results as long
as the operations to be monitored are always performed in the same way.
Figure 2.5 shows the results obtained when the human executes a variation
of the operation. In particular, the operation consisted in the assembly
of a caster wheel. The first time, the operator picks the main body and

2.4. Results 15

insert a screw to allow for wheel mounting, then takes the rubber wheel
which is fixed using another screw. The sequence obtained was taken as
reference and used in the monitoring of a second instance when the human
changed the order of the operations, mounting the rubber wheel first, then
inserting the mounting screw. It is apparent that the algorithm offers poor
performance in this case. The advancement keeps a constant value for
long periods and consequently does not reach 100%. As a consequence
the expected duration is greater than the real one. Since the algorithm
works comparing the actual position of the human’s skeletal points, it
is straightforward that when the human changes the order in which he
performs the operation, the DTW matrix costs become high and a bad
estimation of advancement and expected duration follow.
In general, a human can perform a task in different ways and the execution
times among the different variants can change considerably. In collaborative
robotics applications it is necessary to know the exact duration of the
task in order to better schedule the next operations. So we worked on the
algorithm to take into account this issue. Changes applied to give more
robust estimates are shown in the next chapter.

16 Chapter 2. Monitoring of a single task

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.2

0.4

0.6

0.8

1

A
d
v
a
n
c
e
m

e
n
t

(a) Advancement Estimate

0 5 10 15 20 25 30 35 40 45

Time [s]

30

40

50

60

70

80

90

100
 Expected Duration

 Actual Duration

(b) Duration Estimate

Figure 2.5: Example of error case using DTW in presence of variants of
operation.

Chapter 3

Monitoring of task variants

3.1 Introduction

As it has been shown in Section 2.4, the algorithm from which we
started is able to estimate the duration of a task when it is always executed
in the same way, while it offers poor performance when the human changes
the order in which he performs the operation. Our work focuses on the
online recognition of the task variants to be able to compare each instance
with the associated template, instead of using one single template for all
the instances. In the following, the definition of variant is declared and the
explanation of how the template is built and updated is presented. Section
3.4 shows the main intuition behind the recognition of a new variant while
Section 3.5 presents the changes applied to the previous work to estimate
the expected duration of the task.

3.2 Variant definition

To recognize a variant, we have decided to divide the operation into
different segments. The distinction between the various segments consists
in the recognition of a feature. Let us define a set of feature F . The main
requirements of fi ∈ F are that:

17

18 Chapter 3. Monitoring of task variants

• it is known a priori;

• it is possible to detect its occurrence online;

• it must be such that the segment of the operation between certain
features is always executed in the same way (i.e. there are no variants
of the segment).

The first requirement is due to the fact that, by knowing the features,
the algorithm is able to recognize them. The second one is straightforward,
since the operation has to be segmented online during the monitoring
of the operation itself. The last one is fundamental for the definition of
coherent reference sequences. In fact, each template segment will be used
to monitor the equivalent section of the following. If the third condition
holds, it is possible to apply the algorithm presented in Chapter 2 at the
operation segment level. In our work we have decided to use as features the
positions of some elements necessary for an assembly operation and they
will be better described in Chapter 4 . In particular, we have considered
some intermediate workstations and the final one. The latter is used to
distinguish the end of the task execution.
Let us define as V the set of all the known variants. A variant Vx ∈ V is
then defined as the ordered set of features that occur during the operation
from the starting position to the final one (for example Vx = (fi, fj, fk)
where fk represents the final position).

3.3 Building the template

As a consequence of the definition of variants, the template is no more
a single sequence, but a set of different sequences each one representing a
segment of the operation. With this expedient, it is possible to compare
the input sequence (i.e. the one associated with the operation that the
human is doing) with all the possible variants that the human has already
done at least once. As a result, the template can now be represented as

3.3. Building the template 19

a tree where each node contains different data useful for the recognition
and updating of the individual segment. Let T = (N,A) be the template
tree where N is a set of nodes and A is the set of arcs. A node ni ∈ N is
defined as a 5-tuple ni = (oi, di, pi, Ci, ei) where:

oi is the origin feature

di is the destination feature

pi is the parent

Ci is a set of children nodes

ei is the number of times the segment has been executed

Origin and destination respectively represent from which feature the
segment started and where it finished. The parent must be a node nj
that has as destination the origin of the actual node (i.e. dj = oi) while
children contained in Ci are the ones that have as parent node ni. Arcs in
A connects parents to children, that is aij ∈ A if and only if ni is the parent
of node nj . The number of executions stores how many time that segment
has been executed, this will be used to evaluate the probability of taking a
variant rather than another (it is better explained in Section 3.4). A variant
Vx = (f0, ...fi, fi+1, ...fN), where N is the number of considered features,
can now also be defined as an ordered set of nodes Vx = (n0, ...nj, ...nN−1)
where nj : oj = fi, dj = fi+1.
Defining as T the set of all the known reference segments, tij ∈ T contains
data about skeletal points Cartesian positions collected during the execution
of the segment that goes from fi to fj, that is tij = (wlij, wrij, f lij, frij)
where wlij, wrij, f lij, frij respectively are the temporal sequences that
stores data about the left wrist, right wrist, left finger, right finger of the
segment that goes from fi to fj and they all have the same length |tij|.
This latter information is used to update the template (how it is done is
explained in subsection 3.3.1). It is possible that in a more complex tree

20 Chapter 3. Monitoring of task variants

different branches contain the same segment, so that there exists at least
two nodes ni and nj , with i 6= j, where oi = oj and di = dj (i.e. with same
origin and destination) and they are all related to the template sequence
denoted as tij.
Let us consider a simple example, where three different features denoted
as f1, f2, f3 are used. The first time that the human executes the task, he
visits the workstations in numerical order. The graph depicted in figure 3.1
shows the resulting tree. There is a root with a single branch, this one is
made of as many nodes as the segments of the task (so three in our case).
Each node contains the data related to the part of the task they represent.
In particular, the node n1 has origin o1 = 0 and destination d1 = 1, its
parent is the root 0 and its child is node n2, then the segment associated
to n1 is monitored with data contained in t01. In the same way, the node
n2 has origin o2 = 1 and destination d2 = 2, its parent is node n1 and
its child is leaf 3. The segment associated to n2 is monitored with data
contained in t12. Lastly, node n3 has origin o3 = 2 and destination d3 = 3,
its parent is node n2 and it has no children, so it is a leaf of the tree. All
these nodes have been executed once so they all have one as number of
execution. So at this point we have just one variant V1 of the task, where
V1 = (n0, n1, n2, n3).

n0 n1 n2 n3

Figure 3.1: Example of template tree: node 0 is the root, while node n1

contains the data related to the segment 0-1, node n2 the ones
related to 1-2 and leaf 3 the data regarding the part 2-3

It is possible that by mistake, or because the task allows to do so, the
operator decides to execute the task visiting f2 before f1. As a consequence,
a new branch of the tree is created (as depicted in figure 3.2). This new
branch has respectively a node n4 related to f0 → f2, a node n5 with data

3.3. Building the template 21

about the part f2 → f1 and a leaf (n6) related to segment f1 → f3. So we
have another variant of the task V2 = (n0, n2, n1, n3) In this way, even if
the human repeats variant V2 another time the algorithm will be able to
compare it with the correct set of sequences.

n0

n1 n2 n3

n4 n5 n6

Figure 3.2: Example of template tree with a fork: if the human executes a
variant of the task, the template tree is enriched with information
about the new variant

3.3.1 Template update

As already discussed in Section 2.3.4 in the previous work, when the
final position is reached, a check on the duration of the monitored operation
and the reference sequence is performed and the shorter one is taken as
template. So data regarding the movements of the skeletal points of the
shortest execution are taken as reference sequences. Since the template is
now divided into different segments it is possible to update the reference
sequences in two moments:

22 Chapter 3. Monitoring of task variants

• at the end of each segment

• at the end of the task.

In the first case, when a feature is reached, it is checked if the last
instance of the segment lasted less than the reference one. If it is so the
reference sequence regarding that segment is updated. When the template
tree becomes complex and there are different segments for each branch, this
method could be time consuming. As a consequence, the algorithm could
miss some of the movements of the operator and it could give a wrong
estimate of the next segment. So we have decided to update each sequence
at the end of the task execution. When the final position is reached each
segment of the last execution of the task is compared with the associated
reference sequence. Let us define as t′ij = (wl′ij, wr′ij, f l′ij, fr′ij) the data
related to the segment just monitored and as tij = (wlij, wrij, f lij, frij)
the corresponding reference segment in the template set T . If |t′ij| < |tij|
the reference sequence is updated as tij = (wl′ij, wr′ij, f l′ij, fr′ij).

3.4 Recognition of variant

The easiest way to detect a variant is to check if the last reached feature
fi is part of an already existing variant. If the monitored segment already
exists in the template tree the algorithm continues the monitoring of the
ongoing operation and its advancement and duration evaluation while, if
it is not, a new branch of the tree must be created and the algorithm
returns as expected duration the average of the past duration of the task.
As a consequence, the expected duration of the segment is wrong, due to
the fact that segment i is compared with a different segment for all its
duration.
In order to have a better estimate of the duration of the segment, we
have decided to perform an early recognition of a new variant. The main
intuition of the proposed method is the computation of probabilities at

3.4. Recognition of variant 23

each time instant. Since at each time sample the ongoing operation is
compared with the segments in the template tree that have the same origin
feature, probabilities are used to decide which among them is the most
likely to be the one that the human is performing. Moreover if all of them
have a low probability to be the ongoing segment, then the algorithm
assumes that the human is performing a new variant.
The number of execution ei of each segment i is used to evaluate the
historical probability Ph of that segment. Let ei be the number of executions
of node i and let us denote as p the parent of node ni, the historical
probability of segment i is evaluated as:

Phi = ei
ep

(3.1)

while the probability of the variant Vx is calculated as:

PVx =
∏
ni∈Vx

Phi (3.2)

3.4.1 Updating current probability of the segment

The historical probability is used as a starting point in the evaluation
of the current probability. In fact, while monitoring the human activity, a
second probability, defined as Pcurri is updated considering the similarity
between the ongoing segment and the segment i considered as reference.
To evaluate the current probability also the DTW matrices’ costs are
taken into account since they are the indices of the similarity of the input
sequence with respect to the reference one. Since we have two DTW
matrices for each segment (one for the right side and one for the left one)
we have decided to consider a unique cost D̃OEi for each segment i. It is
evaluated as:

D̃OEi(k) = min{Dsx
OEi

(k), Ddx
OEi

(k)} (3.3)

where Dsx
OEi

(k) and Ddx
OEi

(k) respectively are the costs of DTW matrices
corresponding to the best alignment index of the left and right side at
instant k, evaluated as in equation 2.6. Furthermore, in order to take into

24 Chapter 3. Monitoring of task variants

account the average cost trend instead of the instantaneous evaluation, we
have decided to consider a normalized cost DNi equal to:

DNi(k) =
D′Ni(k) +D′′Ni(k)

2 (3.4)

where D′Ni and D
′′
Ni

are two costs that differently affects the final cost DNi

and consecutively Pcurri . In particular the first one is calculated as:

D′Ni = D̃OEi(k)− D̃OEi(k − 1) (3.5)

and it detects a change in the movements performed by the operator very
fast, this means that if the ongoing segment is a new variant, the costs
evaluated with this method increase as soon as possible. As a drawback,
the current probability obtained using only this method is very chattering
and this would cause a bad estimation of the final duration. On the other
hand, the second one is calculated as:

D′′Ni = D̃OEi(k)
k

(3.6)

and it is a normalized cost that produces smooth trends of the probabilities
and a less chattering expected duration. Unfortunately, it is very slow
in the detection of differences in the human’s movements, so it could not
recognize a new variant if it is very similar to another one present in the
template tree. In order to have a less chattering probability and a quite
fast method we have decide to combine these two giving the same weight
to both.
Now that a unique cost has been defined, it is possible to estimate the
current probability of each segment. In particular, we have considered the
recursive bayesan classifier (similar to the one presented in [13]), so that
the current probabilities of each segment starting from the last reached
node are calculated as:

Pcurri(k) ∝ Pcurri(k − 1) · f(DNi(k)) (3.7)

where f is a Gaussian distribution with mean µ = 0 and standard devi-
ation σ = 0.27. This latter is a design parameter whose value has been

3.4. Recognition of variant 25

determined as the one that minimized the classification error during test
experiments. That is, it is the value that leads to recognize as soon as
possible and correctly the segment that corresponds to the one performed
by the human. The starting condition is that Pcurri(0) = Phi , then the
current probability of segment i is updated as follows:

Pcurri(k) = 1
σ
√

2π
exp−

DNi
(k)2

2σ2 ·Pcurri(k − 1) (3.8)

Since the recursive law could return a probability greater than 1, a normal-
ization is performed if the sum of the current probabilities of the variants
existing at instant k is greater than 1. It is important to say that the
normalization is performed only if the latter condition applies because,
otherwise, 1−

∑
i:ni∈Vx

Pcurri is the probability that the operator is perform-

ing an unknown segment. If at some point the costs become high, thus
showing that the current operation is far from those in the template, then
the current probabilities of the segments in the template tree are lowered.
If their sum is below a certain threshold then the human is executing a
new variant of the task, since it is highly improbable that he is doing one
of the others present in the template. So the algorithm stops comparing
the two sequences and just records input data to store them as new nodes
of the template tree. In the meanwhile, the algorithm returns as expected
duration the average of the past execution duration.

Example

Going back to the example shown in figure 3.1 when we only have a
branch (i.e. variant V1) as template, we have that Phi = 1 ∀i ∈ 1, 2, 3. Let
us assume that the next time that the human executes the task he will
visit f2 before f1. While executing the segment f0 → f2, the algorithm
will compare it with data of the segment f0 → f1, since it is the only
one known at this time. It is straightforward that since the operation is
different the costs of DTW matrices increase causing a decreasing trend in
Pcurr1 . When the current probability of that variant goes below a certain

26 Chapter 3. Monitoring of task variants

limit it becomes evident that the operator is performing a new variant
V2. So we have that at the end of the second execution the template tree
has two branches (V1 = (n0, n1, n2, n3) and V2 = (n0, n2, n1, n3)). When
the human starts a new execution of the operation we will have that the
probability of the two variants will be equal to 50% for both, since the
human has performed variant V1 the first time and V2 the other time.

0.5

n0

n1 n2 n3

n4 n5 n6

0.5

11

11

Variant 1 0.5

Variant 2 0.5

Figure 3.3: Initial probabilities: each segment has its historical probability
(the ones represented in red) and the probability of each variant is
evaluated as the product of the probabilities of the segments that
compose it (the ones in blue)

3.5 Advancement and duration estimate

Since the template sequence is now divided into many segments, we
have decided to consider two types of advancement estimate:

• with respect to the segment

• with respect to the whole operation.

3.5. Advancement and duration estimate 27

In the first one the advancement is estimated as in 2.7, the only
difference lays in the fact that the reference sequence is just a part of
the operation. The second one is more complex to evaluate, as it has to
consider all the possible variants present in the template tree. Let n̄ be the
node that represent the last completed segment. Let V̄ = {Vi ∈ V |n̄ ∈ Vi}
be the set of variants that contain node n̄ and let Vi = (V pre, V post

i) :
V pre = (n0, ...n̄) and V post

i = (ci, ...nN) (where nN is a leaf) be a partition
for variants in V̄ . The DTW algorithm is applied for each children ci ∈ C̄.
Let Lpreci =

∑
ni∈V pre

|tjk| be the length of the segments already executed,

then the advancement of the variant Vi at instant k is calculated as:

advVi(k)% = 100 · j
∗
N(k) + Lpreci
Lpreci + Lnexti

(3.9)

where Lnexti is an estimate of the length of the remaining part of the
operation that is evaluated as the convex combination of the average
lengths for all variants that starts from n̄, weighted over the historical
probabilities of those variants. In particular, Lnexti is evaluated as:

Lnexti = |tōd̄|+
∑

i:V posti ∈V̄

(LVi · ProbVi) (3.10)

where LVi and ProbVi are evaluated as:

LVi =
∑

k:nk∈V posti

|tok,dk |

P V
i =

∏
k:nk∈V posti

Phk

(3.11)

This estimation of the length of the remaining part of the operation
minimizes the error between the actual length and the estimated one.
Let us define the mean error of the length of the remaining part of the
operation considering sub-variant Vi as emi = (L∗ − Li)2, the total mean
error considering all variants is em =

∑
i

pi(L∗ − Li)2. So to minimize it

we impose that:
dem
dL∗

= 2 ·
∑
i

pi(L∗ − Li) = 0 (3.12)

28 Chapter 3. Monitoring of task variants

and we obtain that ∑
i pi · L∗ = ∑

i piLi. So the estimate that minimizes
the error is L∗ = ∑

i piLi since
∑
i pi = 1.

Let us recall the example of figure 3.3 and consider that the third time
the operator executes the operation he repeats the variant V1 while the
fourth time an error variant is executed. The resulting tree is shown in
figure 3.4 and shows probabilities and lengths of each segment. When the
fifth execution is started the first part of the operation is compared with
segments f0 → f1 and f0 → f2 (i.e. segments f0 → f1 and f1 → f2). As
a consequence, the advancement will be calculated twice: one considers V1

as the current variant, the other has to consider the convex combination of
the other two branches (V21 and V22). Let us call advV1% the advancement
estimate with respect to branch 1 and advV2% the advancement estimate
that considers the other two branches, they are evaluated as:

advV1% = 100 · j∗
N

|t1|+|t2|+|t3|

advV2% = 100 · j∗
N

(|t4|+(|t5|+|t6|)·(Ph5 ·Ph6)+(|t7|+|t8|)·(Ph7 ·Ph8)

(3.13)

where |tx| represents the size of the data set contained in node nx and
Phi is the historical probability of segment i, according to the notations
used in 3.3.

In the same way as for the advancement, we have decided to separately
evaluate the expected duration of the single segment and the one of the
whole operation. Let Padvi%(k) be the percentage of the advancement of
segment i at time k, the duration T̂partiali(k) of this latter is estimated as
follows:

T̂partiali(k) = Te(k)
Padvi%(k) (3.14)

On the other hand, the estimate of the total duration of the operation
is estimated considering the presence of different variants in the template
tree. Let n̄ be the last node reached and ci ∈ C̄ be one of its child, for
each variant Vi ∈ V̄ , an expected duration is calculated as:

3.5. Advancement and duration estimate 29

T̂Vi(k) = Te(k)
advVi(k)% (3.15)

that is the rule described in 2.8 updated considering the percentage of
advancement of each variant Vi containing the current node n̄. In order to
return a unique duration estimate T̂ (k) at any instant k, we have decided
to collect the expected duration of each segment and multiply them by
their current probabilities. In this way, the most probable variant will have
more weight on the expected duration, while the less probable will not
influence it as much.

T̂ (k) =
∑
ni∈Ci

T̂Vi(k) · Pcurrj(k) (3.16)

where ni ∈ C̄ are the children of the current node n̄ and their number
corresponds to the number of variants containing n̄ which are known at
that point of the operation. Besides, Pcurrj (k) is the current probability of
the reference segment tij that is part of variant Vi. In order to take into
account the possibility that the human is executing an unknown segment
the rule in 3.16 is updated as follows:

T̂ (k) =
∑
ni∈Ci

T̂V posti
(k) · Pcurrj(k) + (1−

∑
ni∈Ci

Pcurrj(k) · E[∆T]) (3.17)

where E[∆T] is the average of the past duration of the task.
With the implemented changes, it is now possible to correctly estimate the
duration of the total operation even if the operator executes one of the
known variant in the task. In the following Chapter, the results obtained
applying the algorithm to a real assembly task will be shown.

30 Chapter 3. Monitoring of task variants

n0

n1

n2

n3

n4

n5

n6

n7

n8

0.50.5

1

1

1 1

0.5 0.5

Variant 1Variant 2Variant 3

0.50.250.25

20 50

100200

70 80

75

75

Figure 3.4: Example of tree with forks: n0 and n4 have two children each, this
leads to a tree that represent three possible variants. In order to
estimate the advancement of the ongoing operation the length of
every segment of each variant has to be considered. The length of
the segments are represented in green, the historical probabilities
of the segments are represented in red and the probability of each
variant is depicted in blue. The percentage of advancement of
each variant are calculated as:
adv1(k)% = 100 · j∗

N (k)
50+75+75 and

adv2(k)% = 100 · j∗
N (k)

(20+[(100+80)·0.5+(200+70)·0.5]

Chapter 4

Experimental Validation

After discussed in the previous Chapter all the changes applied to
the algorithm described in Chapter 2, the experimental results obtained
with the new method are presented in this Chapter. In particular, Sec-
tion 4.1 briefly explains how data were recorded. Section 4.2 describes
the experimental set up and gives a description of the segments of the
operation. Finally, Section 4.3 is divided in two parts: subsection 4.3.1
illustrates that the algorithm correctly builds the template tree and that
it is able to recognize a new variant of the operation. While subsection
4.3.2 compares the performances of our work with the results obtained
with other algorithms.

4.1 Monitoring system

As noted in subsection 2.3.2 we have decided to use as input signal of
the algorithm the human’s skeletal points Cartesian positions. In order to
do so we have used a Kinect v2 sensor, but the algorithm presented in this
thesis works regardless of the sensor used. The sensor is able to recognize
the wrists and the hands, but in assembly operations this is not sufficient,
due to the fact that in some part of the operation wrists and hands may
not be informative as they are stationary. Another issue arise due to the

31

32 Chapter 4. Experimental Validation

fact that the data about the hands obtained through the Kinect are often
unstable and inaccurate. In order to find the fingers and acquire data also
from them, the human is provided with gloves with a colored identifier on
the index finger of each hand. It has been decided to consider the index
fingers because they usually are the most informative ones 1.
In order to detect if the human visits the features in real-time, we have used
the positions Pfi = {Pxfi , Pyfi , Pzfi} of these latter and considered a sphere
around it. Considering that P ′fi = {P ′xfi , P

′
yfi
, P ′zfi

} is the current position
of human’s finger, if

√
(P ′xfi − Pxfi)

2 + (P ′yfi − Pyfi)
2 + (P ′zfi − Pzfi)

2 < δ

(where δ is the sphere radius), then the human is visiting feature fi. This
means that if one of the human’s hand enters the sphere he is visiting the
corresponding feature.

4.2 Experimental set up

The experiment used for testing involves the assembly of two wheels
on a pre-arranged base (i.e. the holes where to insert the wheels are not
created within the experiment). Figure 4.1a shows the main parts that
compose the final product (Figure 4.1b). The work table includes an input
zone, an output zone and several boxes containing the pieces necessary for
the operation. Figure 4.2 shows the arrangement of the various elements
used for the experiments. In particular zone IN and OUT respectively
are the input zone (from where the human takes the base before the
assemblying operation) and the output zone (where the human puts the
final product).

1See [6] for further details.

4.2. Experimental set up 33

(a) Main body of the
wheel structure

(b) Big screw (c) Wheel

(d) Small screw (e) Base (f) Nut

(a) Main components of the product

(b) Final product

Figure 4.1: Product assembled during the experiment

34 Chapter 4. Experimental Validation

The buffers respectively contain:

1. wheels that will be mounted on the left side of the table

2. big screws used to fix the wheels to the table

3. a zone where to put defective elements

4. wheels that will be mounted on the right side of the table

5. small screws and nuts used to fix the wheel to the main part.

6. the main bodies of the wheel structure.

Since we wanted to test the robustness of the algorithm we have
considered a complex tree made of six variants. In order to do so, we
defined 5 features:

f0 corresponds to the starting position of the human

f1 corresponds to buffer 1

f2 is buffer 2

f3 is buffer 3

f4 corresponds to buffer 4

f5 is the output zone

These 5 features allows to have many combinations and consequently a
big set of segments. Here are summarized the ones we considered:

f0 → f1 : the human picks up the base from the input zone, puts it on the
assembly zone, takes the main body from buffer 6, puts this last
on the up left hole of the base and reaches out for the left wheel in
buffer 1 (f1).

4.2. Experimental set up 35

f0 → f2 : the human picks up the base from the input zone, puts it on the
assembly zone, takes the main body from buffer 6, puts this last on
the up left hole of the base and reaches out for the big screw in buffer
2 (f2).

f1 → f2 : the operator takes a small screw from buffer 5 and inserts it in
the wheel on the up left hole of the base. Then he takes a nut from
buffer 5 and fixes the wheel. The human takes the main body from
buffer 6 and puts it on the down right hole of the base. After that,
he reaches out for the big screw in buffer 2 (f2).

f1 → f5 : the operator takes a small screw from buffer 5 and inserts it in
the wheel on the up left hole of the base. Then he takes a nut from
buffer 5 and fixes the wheel. After that, he places the final product
in the output zone (f5).

f2 → f1 : the big screw is fixed to the table in the up left hole with the use
of a hex key. Then the operator picks a wheel from buffer 1(f1).

f2 → f2 : the human takes a hex key and fixes with the big screw the main
body to the table in the up left hole. Then he takes the main body
from buffer 6 and puts it on the down right hole of the table. Then
he picks another big screw from buffer 2(f2).

f2 → f4 : the human picks a hex key and with it he fixes the main body to
the base in the down right hole. Then he picks a wheel from buffer
4(f4).

f2 → f5 : the big screw is fixed to the base in the up left hole then the
operator places the finished part on the output buffer(f5).

f3 → f1 : the operator takes a small screw from buffer 5 and insert it in the
wheel on the down right hole of the base. Then he takes a nut from
buffer 5 and fixes the wheel. After that, he picks a wheel from buffer
1 (f1).

36 Chapter 4. Experimental Validation

f3 → f2 : the operator takes a small screw from buffer 5 and insert it in the
wheel on the down right hole of the table. Then he takes a nut from
buffer 5 and fixes the wheel. After that, he picks a screw from buffer
2 (f4).

f4 → f1 : the operator takes a small screw from buffer 5 and inserts it in the
wheel on the down right hole of the base. Then he takes a nut from
buffer 5 and fixes the wheel. After that, he takes the wheel from
buffer 1 (f1).

f4 → f2 : the operator takes a small screw from buffer 5 and inserts it in the
wheel on the down right hole of the base. Then he takes a nut from
buffer 5 and fixes the wheel. After that, he reaches out for the big
screw in buffer 2 (f2).

f4 → f3 : the operator takes a small screw from buffer 5, he realizes that the
screw is defective and brings it to the waste buffer (f3).

f4 → f5 : the operator takes a small screw and a nut from buffer 5, so he fixes
the wheel on the down right side of the base and put the product in
the output zone(f5).

Figure 4.3 shows the tree we built during our experiments. It is made
of six branches (i.e. six variants). The considered variants are composed
as follows:

• V1 = (f0, f2, f1, f2, f4, f5)

• V2 = (f0, f2, f2, f4, f3, f1, f5)

• V3 = (f0, f1, f2, f4, f2, f5)

• V4 = (f0, f2, f2, f4, f5)

• V5 = (f0, f1, f2, f4, f3, f2, f5)

• V6 = (f0, f2, f2, f4, f1, f5)

4.2. Experimental set up 37

where V2 and V5 represent variants where a scrap screw was taken from
the operator, so he stops the execution of the task to throw the screw
in the waste zone and after that he continues the operation from where
he stopped. V4 corresponds to a variant where the human forgets to fix
the wheel on the top right side of the table, so he delivers an incomplete
product to the output zone. Finally V1, V3 and V6 are the most significant
variants where the operator correctly assemblies the product exchanging
the order of features visited.

38 Chapter 4. Experimental Validation

2

1 3
45

6

(a)

zone
OUT

zone
IN

Buffer 6

Buffer 3

Buffer 4Buffer 5

Buffer 2

Buffer 1 Assembly zone

(b)

Figure 4.2: Experimental set up

4.2. Experimental set up 39

n0

n11

n12

n13

n17

n18

n19

n14

n15

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n16n20

n21

Variant 1

Variant 2

Variant 3

Variant 4

Variant 5

Variant 6

Figure 4.3: Tree built during the experiments. It consists of three plausible
task variants (V1, V3, V6) and three error variants (V2, V4, V5)

40 Chapter 4. Experimental Validation

A segment can be represented by different nodes, it depends on when
that segment has been executed in the variant of the task. Table 4.1
summarizes which nodes are related to each segment.

f0 → f1 n11 f0 → f2 n1

f1 → f2 n3, n12 f1 → f5 n21

f2 → f1 n2 f2 → f2 n6

f2 → f4 n4, n7, n13 f2 → f5 n15, n19

f3 → f1 n9 f3 → f2 n18

f4 → f1 n20 f4 → f2 n14

f4 → f3 n8, n17 f4 → f5 n5, n16

Table 4.1: Nodes - segments relationships

Section 4.3.1 discusses the most interesting passages of the tree con-
struction.

4.3 Obtained results

In this section the most important results obtained during the experi-
ments are shown. In particular, in subsection 4.3.1 the online construction
of the template is explained through its most interesting passages (i.e.
the recognition of a new variant and the comparison between different
segments). Then in subsection 4.3.2 the results obtained with our algo-
rithm are compared with the ones obtained with other ones. In particular,
we have considered the algorithm described in Section 2.1 and the one
developed in [6]. Since our aim is to correctly estimate the duration of
the ongoing operation, the errors between the expected duration and the
actual one obtained with the different methods are compared.

4.3. Obtained results 41

4.3.1 Building of the template tree

During the first execution, the operator assembles the product following
the variant V6. The operator picks the main body of the wheel structure,
fixes it on the top left side of the base, then he picks another main body
and puts it on the down right side of the base and he fixes the wheel on
this position. After that, he takes another wheel to fix it on the top left
side of the base. These set of sequences is used to build the first template
branch. The second time the operator repeats the variant previously done.
The graphs of advancement and expected duration are shown in figure 4.4.
The results obtained are good considering that this was just the second
execution of the variant. In particular the error between the expected
duration (in blue) and the actual one (in red) in the last twenty seconds of
the operation is around 1.5 s over a total duration of 112.1 s, which means
an error of 1.3% (figure 4.4c).

The third time that the human executes the operation he performs
variant V1. The difference between V1 and V6 lays in the segment after n1

(figure 4.5). After having picked the main body from buffer 6 and a big
screw from buffer 2 (f2), in variant V1 the operator fixes the main body
to the base with the screw and then picks a wheel from buffer 1 (f1). In
variant V6 he picks another main body from buffer 6 and then another
big screw from buffer 2 (f2). So the initial part of segments f2 → f2 and
f2 → f1 are the same as the human fixes the main body to the table by
inserting the screw. The difference lays in the final part and the proposed
algorithm recognizes this difference. Figure 4.6 shows how the current
probability behaves while monitoring segment f2 → f1 when it is compared
with segment f2 → f2. It starts as 1.0 (i.e. the ongoing operation
corresponds for sure to the reference one) and in the final part it rapidly
corrects itself going to a very low percentage. The current probabilities are
updated continuously in order to detect changes in the human movements
and to promptly react to them in the estimation of the duration.

42 Chapter 4. Experimental Validation

0 20 40 60 80 100 120

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

v
a

n
c
e

m
e

n
t

(a)

0 20 40 60 80 100 120

Time [s]

95

100

105

110

115

120

125

130

135

140

 Expected Duration

 Actual Duration

(b)

90 95 100 105 110 115 120

Time [s]

107

108

109

110

111

112

113

114

115

116
 Expected Duration

 Actual Duration

(c)

Figure 4.4: Advancement (a) and duration (b) estimate of the second execution
of variant V6 when there is only this latter as possible template.
(c) shows the result of the last twenty seconds of the operation.

4.3. Obtained results 43

n0

n1

n6n2

n3

n4

n5

Variant 6

Figure 4.5: While monitoring the third execution of the operation, the tem-
plate is composed of just one variant. The dashed line indicates
that, after having completed the segment related to node n2, the
human is performing an unknown new segment.

44 Chapter 4. Experimental Validation

0 5 10 15 20 25

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty

Wrong variant

Figure 4.6: The current probability is corrected when changes in the human’s
movements are detected, in the meanwhile the template tree is
enriched with data about the new segment

4.3. Obtained results 45

So now we have that the template tree is made of two variants (as in
figure 4.7) and from now on the ongoing operations will be compared with
both. We repeated variant V6 and when monitoring segment f2 → f2 the
current probabilities of the two possible segments are very similar, but in
the final part the algorithm is able to recognize the correct one (as it is
shown in figure 4.8).

n0

n1

n6

n7

n8

n9

n2

n3

n4

n5

Variant 6 Variant 1

Figure 4.7: Template tree when variant V1 and V6 have been executed.

46 Chapter 4. Experimental Validation

0 5 10 15 20 25 30

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probabilities

Variant 6 correct

Variant 1 wrong

Figure 4.8: Considering the template tree shown in 4.7, after having reached
node n1. At each time instant, the algorithm compares the fol-
lowing sequence with the ones which data are related to nodes
n2 and n3. The current probabilities of segment f2 → f2 and f2 →
f1 are very similar. But in the end the algorithm is able to recog-
nize the correct variant(the one in blue)

4.3. Obtained results 47

After that, the operator executes an error variant (V4). Since the
ongoing operation in shorter with respect to the reference ones (as the
operator forgets to complete the product) the algorithm overestimates the
duration of the operation. However, it is able to detect the new variant
and consequently add it to the template tree. (figure 4.9).

0 10 20 30 40 50 60 70 80

Time [s]

75

80

85

90

95

100

105

110

115

120

125

 Expected Duration

 Actual Duration

Figure 4.9: During the first monitoring of the error variant that corresponds to
a shorter execution of the operation, the algorithm overestimates
the duration as it compares the ongoing operation (that is just
partial) with sequences of the complete operation

48 Chapter 4. Experimental Validation

Let us now consider to have a template tree corresponding to the one
in figure 4.10 where node n3 has two children, n4 and n10. Variant V2 was
executed to verify that even if none of the two sequences (f4 → f5 and f4 →
f1) corresponds to the ongoing segment (f4 → f3), the algorithm is able
to correct both current probabilities (as it is shown if figure 4.11).

4.3. Obtained results 49

n0

n1

n6

n7

n8

n9

n2

n3

n11n10n4

n5

Variant 1

Variant 4

Variant 6

Figure 4.10: Template tree where n3 has two children. After having reached
node n3 the algorithm compares the ongoing segment with the
ones related to n4 and n10, but DTW’s matrices costs become
high at a certain point so the algorithm detects a new segment
as children of node n3.

50 Chapter 4. Experimental Validation

0 2 4 6 8 10 12

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probabilities

Variant 6 wrong

Variant 4 wrong

Figure 4.11: During the first monitoring of a third new segment starting from
node n3, the current probabilities of the two existing segments
in the template rapidly goes to zero when the algorithm detects
a change in the human’s movements

4.3. Obtained results 51

After that, we have as template tree the one represented in figure 4.12,
which is composed by 4 variants. In particular, the main difference between
variant V6, V4 and V5 starts from node n7. After that node, one branch
represents the end of the normal way to execute the task, one leads to the
delivery of an incomplete product and the last one considers a sequence
where a defective screw was find and thrown in the waste zone.

The trivium is the most interesting part of our tree as it let us un-
derstand whether the update of the current probabilities works well even
when there are more than two segments. So we repeated the variant V4

where the correct segment was f4 → f5 and the behavior of the current
probabilities is depicted in figure 4.13. In this latter it is visible that the
algorithm is able to identify the correct segment even if it starts from an
historical probability lower than the one of the others.

52 Chapter 4. Experimental Validation

n0

n1

n6

n7

n8

n9

n2

n3

n11

n12

n13

n10n4

n5

Variant 1

Variant 2

Variant 4

Variant 6

Figure 4.12: Now that the user has performed four variants of the operation
task at least once, the template tree in made as shown.

4.3. Obtained results 53

0 5 10 15 20 25 30

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probabilities

Variant 6 wrong

Variant 4 correct

variant 2 wrong

Figure 4.13: Current probabilities of the trivium when the second variant
inserted in the template tree is the one being executed. The
algorithm is able to identify the correct segment even if it starts
from an historical probability lower than the one of the others.

54 Chapter 4. Experimental Validation

After some instances, variant V3 and V5 were executed to complete the
template tree. To verify that the algorithm works well with such a complex
tree, we performed one last time variant V6 that was the first one inserted in
the template. The obtained results are shown in figure 4.14. It is apparent
that although this variant includes a fork (segment f2 → f2 compared
also with f2 → f1) and a trivium (f4 → f5, f4 → f3 and f4 → f1) the
estimated duration well behaves for almost the entire duration of the
operation. In fact, after the initial part that is estimated with the mean of
the past duration, the maximum error is around 5s over a total length of
89s.

0 10 20 30 40 50 60 70 80 90

Time [s]

82

84

86

88

90

92

94

96

98

Expected duration

Actual duration

Figure 4.14: In red it is shown the actual duration of the operation while in
blue it is represented the expected duration evaluated with our
algorithm. It is apparent that, even after the building of the
entire template tree, the expected duration gives good results.

4.3. Obtained results 55

4.3.2 Performance evaluation

In order to evaluate the performances of our work, we have decided
to compare it with other two methods. The first one is the algorithm
developed in the previous work ([6]) while the second one is the one
described in Section 2.1 and uses as expected duration the average of
the past duration of the operations that are greater than the current
elapsed time. The operator has executed the task 139 times and the tree
in figure 4.3 was built and updated as described in Chapter 3. We decided
to calculate the errors of the three algorithms when they work at full
capability and therefore we excluded the data related to the learning phase.
Specifically, we considered the last 33 experiments. In particular, the most
plausible variants have been executed more times than the error ones as it
would happen in a real case (table 4.2 summarizes how many times each
variant has been performed). To compare the performances of the different

Variant V1 12
Variant V2 3
Variant V3 6
Variant V4 2
Variant V5 3
Variant V6 7

Table 4.2: Number of execution of each variant considered to evaluate the
error

methods we have evaluated the error between the expected duration of
each method and the actual duration of the operation at each time instant.
Let T̂i(k) be the expected duration of the operation evaluated with the
i− th method and T̄ the actual duration of the operation. The error ei(k)
at instant k is computed as:

ei(k) = |T̂i(k)− T̄ | (4.1)

56 Chapter 4. Experimental Validation

Figure 4.15 shows the expected duration evaluated with each method
while monitoring an instance of variant V1 (that was executed the majority
of the time). It is apparent that our method performs well as its behavior
shows small amplitude oscillations around the actual duration for the
majority of the time. The method that uses the past operations duration
has an offset, due to the fact that the average is greater than the actual
duration of the monitored operation. While the algorithm developed in the
previous work fails as it had as reference sequence another variant which
is likely to be that of V4, that is the error variant where the human forget
a part of the task and outputs an incomplete product.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

50

60

70

80

90

100

110

Variant recognition expected duration

[6] expected duration

Past duration average method

 Actual duration

Figure 4.15: The green line represents the actual duration of the operation.
Our algorithm (in blue) estimates well as its mean error is around
2s after the initial part. For comparison, the algorithm developed
in previous work is represented in red while the method described
in 2.1 is represented in yellow

4.3. Obtained results 57

Variant recognition algorithm [6] algorithm Past duration average method

0

10

20

30

40

50

60

70
D

u
ra

ti
o

n
 e

s
ti
m

a
ti
o

n
 e

rr
o

r
[s

]

Figure 4.16: Previous work’s estimate is not correct in the majority of the
situations. The method that uses the average of past duration
estimates well the duration of the operation, this is also due to
the fact that the most plausible variants have similar duration.
Our method is slightly better than the average method.

The boxplot in figure 4.16 shows the aggregated results obtained with
the different methods. It is immediate to see that the work developed
in the previous work is the worst one as it has a median equal to 16.8s,
this is due to the fact that it considers only one sequence as the reference
template. Initially, the first executed instance is taken, but eventually, the
algorithm updates the template with a shorter one, without considering
that the latter could be another variant of the task. Therefore, when
the human executes a variant of the task different from the one used as
template sequence, its DTW matrices costs arise and a bad advancement
and duration estimate follow. The method that uses the average of past
duration estimates well the duration of the operation, this is also due
to the fact that the most plausible variants have similar duration, so
when estimating one of them the average method is good. Our method is
slightly better than this one with a smaller median error (our median error

58 Chapter 4. Experimental Validation

is around 5.4s and the one of the past duration average is around 7.5s)
and a similar variance. In particular, our method is able to correct itself
quickly when it realizes what variant of the task the operator is performing.
As example, figure 4.17 shows the behavior of the expected duration of
our algorithm and the one obtained with the method described in 2.1.
The monitored operation was the error variant V4 (that is the one where
the operator delivers to the output zone an incomplete product). The
average past duration method clearly overestimates the duration of the
operation because it is shorter than the other operations. Also our method
overestimates the final duration of the operation. This is due to the fact
that variant V4 and variant V6 are basically the same operation, but with
the first one the last part of the operation is missing. So our algorithm
considers as correct variant V6 for the majority of the time (since it is the
most probable one between the two, as it is one of the plausible variants
of the operation), but then, when the operator performs the last segment
of the operation (f4 → f5) the current probability of the correct variant
arises and the estimated duration is adjusted to the actual value of the
operation duration.

On the other hand, the method proposed tends to produce peaks or
valleys in the duration estimates in the first part of the operation and then
it corrects as the operation goes on (as in figure 4.18). This is due to the
fact that, when calculating the advancement rate according to equation
(3.9), the total length of the operation is evaluated as LnextVy + LprecVy ,
where LprecVy is the length of the past segments that belong to variant Vy
while LnextVy is just an estimate of the following segments length. This
estimate (as explained in section 3.5) is calculated as a convex combination
of lengths and historical probabilities of the possible next segments, so it
could be imprecise as the historical probability of a segment that the human
will not execute could be grater than the correct one. As the operation
progresses, the number of segments performed increases and unfeasible
variants of the operation are excluded, the length of the segments to be

4.3. Obtained results 59

0 10 20 30 40 50 60 70 80
Time [s]

70

80

90

100

110

120

130

Variant recognition expected duration

Past duration average method

Actual duration

Figure 4.17: Our algorithm (blue) is able to correct itself when it recognizes
the correct variant of the operation that the human is perform-
ing. While the method that uses past duration (red) keeps on
overestimating the final duration. The green line represents the
actual duration of the operation.

estimated is reduced and consequently the estimate improves. A final
comparison was made to assess the estimation error between the three
methods when monitoring the most probable variant (V1). In order to do
so, the algorithm of the previous work was trained with data related to
variant V1 only, while our algorithm and the past duration average method
were trained with data related to all the variants present in the template
tree. The box plot of the obtained results are shown in figure 4.19. It
is possible to see that the past duration average method offers the worst
performance in this case (its median error is around 5.2s), while the one of
the previous work and our algorithm medians are around 4s on an average
duration of 99s. Our method and the one developed in [6] almost offer the
same performance. This means that the presence of several variants of the
operation that are taken into account by our algorithm does not imply
any worsening of the estimate of the main variant of the task. The slightly

60 Chapter 4. Experimental Validation

0 20 40 60 80 100 120

Time [s]

75

80

85

90

95

100

105

110

115

Variant recognition expected duration

Past duration average method

Actual duration

Figure 4.18: Our algorithm (blue) presents a valley around 18s due to the
fact that the estimate of the length of the next segments is
imprecise. In cases like this, the method that uses the average of
past duration has a lower mean error.

Variant recognition algorithm [6] algorithm trained with V1 Past duration average method

0

2

4

6

8

10

12

14

16

18

20

E
x
p

e
c
te

d
 d

u
ra

ti
o

n
 e

rr
o

r
[s

]

Figure 4.19: Boxplot of the errors obtained with the three methods when
monitoring always the same operation variant.

4.3. Obtained results 61

worse performance of [6] may be due to the fact that it has fewer data to
learn the best operation template and evaluate its average duration.
In conclusion, it can be said that we have made a significant improvement
in the estimate of the operation duration since when only one variant is
performed our algorithm offers the same performance as the previous one,
while it is better when the human performs a variant of the operation.
Taking into account the obtained results, next chapter draws the main
conclusions concerning the work presented in this thesis and explains
possible future developments.

Chapter 5

Conclusions and future works

The behaviour of human operators in collaborative robotics applica-
tions, such as assembly operations, has been the subject of many studies in
recent years, due to the ever-expanding use of collaborative robots within
industries. In particular, in assembly operations, the robot should be able
to correctly estimate the duration of the ongoing operation performed
by the human and to schedule its tasks consequently. However, from the
interaction between robots and humans, a large amount of problems arise,
mainly due to the uncertainties caused by the latter. The human operator
could execute the operations at different paces or in different ways if the
task allows to do so. This last issue leads to different variants of the same
operation and each one has a different time of execution. In order to better
estimate the duration of the human task, the robot should be able to
understand which variant is the one that the operator is performing.
In this thesis, a robust method for the real-time monitoring of human
task advancement has been proposed. The main idea behind our work is
to divide the ongoing operation into segments with the use of intermedi-
ate known features. Our algorithm is able to understand which, among
currently feasible segments, is the most probable to be executed by the
human, and to recognize a new variant (i.e. a sequence of segments that
the operator has never done before) when it occurs. This leads to a correct

63

64 Chapter 5. Conclusions and future works

duration estimate of the ongoing operation also in presence of particular
cases, such as error variants with only a partial completion of the product.
This is possible by monitoring the movements of the human and by assign-
ing them a cost that leads to penalizing the least likely segment (i.e. the
reference sequence that differs most from the operation that the human is
performing).
The obtained results are quite promising as the mean prediction error
with respect to the average duration of the operation is 7.5%. To test the
robustness of the algorithm, experiments were performed using similar
segments, so part of the error is due to the fact that this method recog-
nized the correct one after some seconds. On the other hand, the main
limitations of the algorithm can be summarized in two points:

• Features known a priori: in this work the features (i.e. elements that
allow to divide the operation into different segments) are know a
priori. This means that the set of segments is limited to a combination
of the known features, while it would be interesting to identify a
feature in real-time to find also variants of the operations that are
not part of this set. For example, a particular error variant that
leads the human to a different workstation from the one that he uses.
Moreover, a non optimal choice of the features lead to segments with
section that are similar with each other. In turn, this makes it more
difficult to distinguish the correct variant being executed.

• The estimate of the length of the next segments: the obtained results
show that if the structure of the operation under analysis is described
by a template tree with several branches, in the initial part of the
operation the algorithm is imprecise since it evaluates the expected
duration of the operation considering an estimate of the length
remaining part of the operation, that can differ from the actual one.

Future works should investigate how to improve the performance of
the algorithm considering these two issues.

Appendix A

Window size for task duration
extrapolation

In the previous work the expected duration of the operation at instant
k, T̂ (k), was estimated as:

T̂ (k) = Te(k)
adv%(k) (A.1)

where Te(k) and adv%(k) respectively are the elapsed time and the
estimated percentage of advancement at instant k. This means that all
the data recorded until instant k are considered in the estimation of the
expected duration. This makes sense if the trend of the advancement is
almost linear (like it happens in figure A.1). Unfortunately, there are
cases in which the algorithm causes sudden changes in the slope of the
advancement estimate, for this reason, we have tried to consider a smaller
window for the duration estimation. In order to do so, the rule in A.1 was
modified as:

T̂ (k) = Te(k)− Te(k − x)
adv%(k)− adv%(k − x) (A.2)

where k− x = y is the window size. We considered as optimal window size
the one that causes the minimal error in the estimation of the duration.
Let em be the mean error of the estimated duration with respect to the

65

66 Appendix A. Window size for task duration extrapolation

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.2

0.4

0.6

0.8

1

A
d

v
a

n
c
e

m
e

n
t

Figure A.1: Example of linear advancement trend

actual duration of the operation TD, it is evaluated as:

em =
∑N
y=0 T̂ (y)− TD

N
(A.3)

where N is the size of data in the operation. To have a robust estimate, we
have considered 70 experiments where the operation monitored consisted
in the assembly of a caster wheel. For each experiment, the mean error
was calculated following the rule in A.3. Then the average of all the mean
errors was evaluated for each y. In figure A.2 it is shown the relation
between the mean error and the window size. It is apparent that the error
decreases as the size of the window increases. Given the results obtained,
we have decided to keep on using all the available data to estimate the
duration.

67

100 200 300 400 500 600 700 800

Window Size

3.5

4

4.5

5

5.5

6

6.5

7

7.5

M
e

a
n

 E
rr

o
r

[s
]

Figure A.2: Mean error sensitivity with respect to window size

Bibliography

[1] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin
Albu-Schäffer, Kazuhiro Kosuge, and Oussama Khatib. Progress
and prospects of the human—robot collaboration. Auton. Robots,
42(5):957–975, June 2018.

[2] C. D. Chitraranjan, A. S. Perera, and A. M. Denton. Tracking
vehicle trajectories by local dynamic time warping of mobile phone
signal strengths and its potential in travel-time estimation. 2015 IEEE
International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), pages 445–450, March 2015.

[3] Patrik Gustavsson, Magnus Holm, Anna Syberfeldt, and Lihui Wang.
Human-robot collaboration – towards new metrics for selection of
communication technologies. Procedia CIRP, 72:123 – 128, 2018. 51st
CIRP Conference on Manufacturing Systems.

[4] E. Hourdakis and P. Trahanias. A robust method to predict temporal
aspects of actions by observation. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1931–1938, May
2018.

[5] Richard Kelley, Alireza Tavakkoli, Christopher King, Monica Nico-
lescu, Mircea Nicolescu, and George Bebis. Understanding human
intentions via hidden markov models in autonomous mobile robots.
In Proceedings of the 3rd ACM/IEEE International Conference on

69

70 BIBLIOGRAPHY

Human Robot Interaction, HRI ’08, pages 367–374, New York, NY,
USA, 2008. ACM.

[6] Paolo Lanfredini. Stima dell’avanzamento di un’operazione di assem-
blaggio per applicazioni di robotica collaborativa. Master’s thesis,
Politecnico di Milano, 2017-2018.

[7] Przemyslaw A. Lasota and Julie A. Shah. Bayesian estimator for
partial trajectory alignment. In 2019, Robotics: Science and System
(RSS 2019), Freiburg im Breisgau, Germany, June 2019.

[8] Guilherme Maeda, Marco Ewerton, Gerhard Neumann, Rudolf Li-
outikov, and Jan Peters. Phase estimation for fast action recognition
and trajectory generation in human–robot collaboration. The Inter-
national Journal of Robotics Research, 36(13-14):1579–1594, 2017.

[9] A. M. Zanchettin P. Rocco R. Maderna, P. Lanfredini. Real-time mon-
itoring of human task advancement. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), November 2019.

[10] K. Sakita, K. Ogawara, S. Murakami, K. Kawamura, and K. Ikeuchi.
Flexible cooperation between human and robot by interpreting human
intention from gaze information. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 1, pages 846–851 vol.1, Sep. 2004.

[11] Paolo Tormene, Toni Giorgino, Silvana Quaglini, and Mario Stefanelli.
Matching incomplete time series with dynamic time warping: an
algorithm and an application to post-stroke rehabilitation. Artificial
Intelligence in Medicine, 45(1):11 – 34, 2009.

[12] A. M. Zanchettin, A. Casalino, L. Piroddi, and P. Rocco. Prediction
of human activity patterns for human–robot collaborative assembly
tasks. IEEE Transactions on Industrial Informatics, 15(7):3934–3942,
July 2019.

BIBLIOGRAPHY 71

[13] A. M. Zanchettin and P. Rocco. Probabilistic inference of human
arm reaching target for effective human-robot collaboration. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6595–6600, Sep. 2017.

[14] Andrea Maria Zanchettin, Nicola Ceriani, Paolo Rocco, Hao Ding, and
Bjoern Matthias. Safety in human-robot collaborative manufacturing
environments: Metrics and control. IEEE Transactions on Automation
Science and Engineering, 04 2015.

[15] M. Zinn, O. Khatib, B. Roth, and J. K. Salisbury. Playing it
safe [human-friendly robots]. IEEE Robotics Automation Magazine,
11(2):12–21, June 2004.

	Contents
	List of Figures
	List of Tables
	Abstract
	Sommario
	Introduction
	State of the art
	Proposed solution
	Chapters organization

	Monitoring of a single task
	Past duration average method
	Dynamic Time Warping
	Open-Ended Dynamic Time Warping
	Task advancement monitoring
	Input signals
	Handling occlusions
	Selection of the reference
	Output Filtering

	Results

	Monitoring of task variants
	Introduction
	Variant definition
	Building the template
	Template update

	Recognition of variant
	Updating current probability of the segment

	Advancement and duration estimate

	Experimental Validation
	Monitoring system
	Experimental set up
	Obtained results
	Building of the template tree
	Performance evaluation

	Conclusions and future works
	Window size for task duration extrapolation
	Bibliography

