
POLITECNICO DI MILANO

School of industrial and information engineering

Master in automation and control engineering

RESOURCE AND LOAD ALLOCATION VIA LINEAR

MULTIAGENT OPTIMIZATION: PROBABILISTIC

CERTIFICATES OF SOLUTION STABILITY

Supervisor: Prof. Simone Garatti

Co-supervisors: Prof. Maria Prandini, Prof. Alessandro Falsone

M.Sc thesis by Jacopo Zizzo

Student ID 898344

Academic year 2018/2019

1

Contents

1 Introduction 6

1.1 Mathematical formulation . 7

1.2 Contributions and thesis organization 10

2 Previous results, problems in standard form 12

2.1 Optimality conditions for a standard form problem 14

2.2 Dual problem . 15

2.3 New agent arrival: scenario approach 16

3 Problems with upper bounds 19

3.1 Extended basic solution and optimality condition 26

3.2 Dual problem . 29

3.3 New agent arrival . 32

4 Inequality constrained problems 35

4.1 Optimality conditions . 36

4.2 Dual Problem . 37

4.3 New agent arrival . 39

5 Application to economic dispatch problem 41

5.0.1 Problem introduction . 41

5.1 Quadratic form problem . 42

5.2 Linear programming reformulation . 44

5.3 Solution stability evaluation . 46

5.4 Simulation setup and numerical results 48

5.4.1 Results for N = 100 . 50

5.4.2 Results for N = 200 . 51

5.4.3 Results for N = 100 and L=10000 52

5.4.4 Results for N = 100, Normal distribution 53

1

6 Application to Cargo aircraft loading 55

6.1 Linear programming modeling . 56

6.2 Solution stability evaluation . 57

6.3 Simulation setup and numerical results 59

6.4 Results for N = 100 . 61

6.5 Results for N = 200 . 62

6.6 Results for N = 100, very small Dmax 63

6.7 Results for N = 100, Normal distribution 65

7 Conclusions 66

7.1 Future work . 67

A Scenario approach 68

A.0.1 Scenario approach with constraint removal 70

A.1 Wait-and-judge scenario approach . 70

A.2 MATLAB code . 72

A.2.1 Economic dispatch problem . 73

A.2.2 Air cargo loading problem . 81

2

Abstract

Many engineering problems feature different units (machines, items or people) and a

resource to be shared among them in such a way to maximize (or minimize) a certain

profit or performance index. Examples of such problems can be a power company that

has to fulfill a required load and has many plants available, or a warehouse with limited

capacity that has to accommodate different goods in different quantities.

The previous work was focused on linear programming modeling of such problems, in

which each agent is represented by a decision variable, contributes to a cost function

with its own profit coefficient and is bound together with the other users by means of

one or more coupling equality constraints.

Specifically the stability of the solution to such linear problems was assessed by using

results coming from the scenario approach theory for stochastic optimization which

provide a metric for the probability of the original solution changing if a new agent is

added to the problem.

This research work aims to extend the achieved results to problems in which the amount

of resource dedicated to each agent is subject to an upper bound and also to problems

whose coupling constraints include also inequalities.

To better visualize the results, two realistic case studies are included along with their

modeling and numerical simulation.

3

Sommario

In molti problemi ingegneristici viene affrontata la distribuzione ottimale di una risorsa

tra diversi agenti (macchine o persone) in modo tale da massimizzare (o minimizzare)

un certo indice di prestazioni. Esempi di suddetti problemi includono una società di dis-

tribuzione di energia elettrica che deve soddisfare una determinata domanda e possiede

diversi impianti, oppure un magazzino con capacità limitata in cui devono essere con-

servati diversi beni in diverse quantità. Il lavoro precedente da cui parte questa tesi era

incentrato su modelli di programmazione lineare di problemi di questo tipo, nei quali

ciascun agente è rappresentato da una variabile decisionale , contribuisce a una funzione

di costo con il suo coefficiente di profitto ed è legato agli altri agenti attraverso uno o più

vincoli di accoppiamento. In particolare, la stabilità della soluzione di questi problemi

lineari era valutata tramite risultati provenienti dalla teoria dell’approccio a scenario

per l’ottimizzazione stocastica, la quale fornisce un metodo per misurare la probabilità

di cambiamento della soluzione originale nel caso in cui un nuovo agente venga inserito

nel problema. Lo scopo di questa tesi è di estendere i risultati ottenuti in precedenza a

problemi in cui la quantità di risorsa dedicata a ciascun agente è soggetta a un limite su-

periore ed anche a problemi in cui i vincoli di accoppiamento includono disuguaglianze.

Per visualizzare meglio i risultati, sono inclusi due casi di studio realistici.

4

5

1 Introduction

The topic of multi-agent games is well studied and documented in engineering and game

theory. While the majority of research in this field is directed towards the computation

of optimal strategies for each agent through iterative and distributed algorithms, this

thesis will focus on linear programming models of problems in which a resource is to

be shared among multiple users to the benefit of an external entity. In particular,

rather than maximizing the utility functions of each (or some) agent, the global utility

score, represented by the cost function of the problem, is maximized (or minimized)

considering an initial pool of agents, then the stability of the retrieved solution is tested

against new agent arrivals that may lead to an improvement in the cost function value.

Examples of problems of this kind are found in every situation in which there is a

planning phase to allocate space or distribute a task. For example a first case study

which is exactly in this framework and will be developed in the thesis is about an

energy producer that has to split a required power load among many power plants with

different characteristics aiming to reduce fuel costs. A second example, also developed

in the thesis regards an export company which has to make the best use possible of the

limited space in one of its aircrafts to fit the best mix of products in order to maximize

profit.

Once the optimal resource allocation problem is solved with a given pool of agents, it

may be that just a part of the agents concur in the determination of the solution, while

the others are not employed because it would disadvantageous to. When a new agent

is added to the original pool and the solution is recomputed, it may either happen

that the solution changes, in which case, the newly arrived agent must take part in it,

or that the original solution remains unchanged, which means that the newly arrived

agent becomes part of the unemployed ones. Stability of the solution with respect to the

original pool of agents refers to the tendency of the solution to not change in presence

of a new agent and the main point of the thesis is to develop results in the vein of the

scenario approach theory [1] [2] [3] [4] to estimate the probability of the initial solution

6

changing if a new and unseen agent is included in the original optimization problem.

This probability of improving the previous solution, also called stability index, has an

important meaning and can be an useful tool for the planner. In the first of the two

examples, an operator working for the energy producer has access to data only about a

portion of all the power plants that can be employed. He/She can solve the allocation

problem using only the available data or can request a new poll to get information

about other plants the company owns. Since this polling operation takes time and

money, it may not be the best choice to request it, even more if the newly acquired

data do not bring an improvement to the solution obtained with only the previously

available information. The aforementioned scenario approach theory will be exploited

in order to obtain a metric to decide if the solution found is good enough or if it can

still be improved with reasonable effort in searching for a new agent.

The exact same reasoning can be applied to the second example in which an air cargo

company charges clients to carry their merch. Waiting more time and accepting more

requests can be advantageous if clients willing to pay more to have their goods delivered

in time show up but if they do not the air cargo company loses time and possibly money

if the delivery service is delayed because of this. Again estimating the probability of

change delivers precious information to decide whether it is better to search for new

clients or go on with the present solution as it is unlikely to improve.

1.1 Mathematical formulation

From a mathematical standpoint, it is assumed that the generic multi-agent resource

sharing problem is described by a linear program in one of the following three forms

that model slightly different situations:

P0 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi = b

xi ≥ 0 i = 1, ..,m,

(1)

7

P1 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi = b

0 ≤ xi ≤ di i = 1, ..,m,

(2)

P2 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi ≤ b

0 ≤ xi ≤ di i = 1, ..,m,

(3)

In all of these problems there are m agents each one associated to a decision vector

xi ∈ Rni which is positive (≥ 0) component-wise, and a corresponding cost coefficient

ci. b ∈ Rp is a vector representing the shared resource and in all problems the agents

compete for it, while Ai ∈ Rp×ni represents the utilization of the resource b by agent

i that is required to implement an unitary decision vector (Aixi is the utilization of

b to implement xi). The amount of b that is allocated to the single agent xi can be

unlimited (problem P0) or limited (problems P1 and P2) by means of the additional

constraint on the maximal value of xi given by di ∈ Rni . Moreover, the resource b may

be left partially unallocated as in P2, where the resource allocation constraint is posed

as an inequality. Reasons for introducing this latter possibility are either because the

agents are unable to fully utilize the resource due to their limits di or, in case b is a

vector, it may be difficult or impossible to find a situation where all components of b

are fully used. The example of Chapter 6 will provide a situation of this type.

Each one of the m agents is associated with a tuple δi = (ni, c
i, Ai, di), and the mecha-

nism through which the agents become available and take part in the decision problem

is assumed to be stochastic. Specifically the {δi}mi=1 is assumed to be a sample of

a random variable δ = (n, c, A, d) defined over a generic probability space (∆,D,P).

The instances in the sample are assumed to be independent and identically distributed

(i.i.d.), so the collection {δi}mi=1 is distributed according to the product probability

measure Pm. In other words, the problems P0, P1 and P2 are random linear problems

over m realizations of δ and each one of them is furthermore assumed to have a unique

8

minimizer with probability 1.

To formalize the concept of stability, consider now a situation where one may want to

introduce new agents in order to see if they can improve the resource exploitation. The

agents in ∆ may be infinite so exploring or waiting for them all to show up is not an

option. Even the exploration can be costly and time consuming and for these reasons

one would like to draw some conclusions on the possibility of improving the initial so-

lution based on the first batch of m observed agents {δi}mi=1. To be precise, suppose

a new agent y ∈ Rny is observed alongside its tuple δy = (ny, c
y, Ay, dy). The starting

resource allocation problem is now modified and defined over m + 1 agents instead of

m, and, depending on whether the initial problem were P0, P1 or P2, it becomes either:

P0+ : min
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1(c

i)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy = b

xi ≥ 0 i = 1, ...,m

y ≥ 0

(4)

or

P1+ : min
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1(c

i)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy = b

0 ≤ xi ≤ di i = 1, ...,m

0 ≤ y ≤ dy

(5)

or

P2+ : max
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1(c

i)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy ≤ b

0 ≤ xi ≤ di i = 1, ...,m

0 ≤ y ≤ dy

(6)

Before continuing, a a remark on the notation used has to be made: a superscript as in

xi denotes that a vector is associate with agent i, while a subscript as in xi generally

denotes the i− th element of a vector.

9

The decision vectors for P0,1,2 and P0+,1+,2+ are x = [x1, . . . , xm] and x+ = [x1, . . . , xm, y],

respectively, and let us call the optimal solutions for these problems x∗ and x?+ =

(x?, y?).

The newly added agent y can only improve the original solutions, since the costs of the

solutions to P0+,1+ will be lesser than or equal than the ones of P0,1 or in the case of

P2+ and P2+ , greater than or equal. If the costs of x∗ and x?+ are equal, then certainly

y? = 0 and x?+ = (x∗, 0). If instead y brings improvement over the original solutions x∗,

it is certainly assigned a share of b, effectively rendering x?+ 6= (x∗, 0). The probability

of this event happening is called stability index and is formally defined below:

Definition 1.1. - Stability index Consider the solution to P0, 1, 2 x∗ and the new

agent y with its tuple δ(ci, Ai, di) giving rise to P0+,1+,2+ . The stability index V (x∗) is

the probability of x∗ changing because of the addition of δy:

V (x∗) = P
{
δy = (cy, Ay, dy) ∈ ∆ : x?+ 6= (x∗, 0)

}
, (7)

Since x∗ depends on {δi}mi=1, it is a random vector defined over (∆m,Pm), where Pm

represents a product probability since all δi are i.i.d and so V (x∗), being a function of

a random vector is itself a random variable over (∆m,Pm), and as such any statement

concerning V (x∗) will be true with a certain confidence β ∈ (0, 1) with respect to Pm.

The problem is that both the distribution and the mechanism through which the agents

are observed are usually not known giving rise to a particularly complex problem that

will be confronted throughout this research.

1.2 Contributions and thesis organization

The goal of this thesis is to characterize V (x∗) as a tool useful to take decisions in situ-

ations where waiting for new agents or polling them may result or not in improvements

over a previously computed solution. In particular:

10

� In Chapter 2 a recap of the main results achieved previously [5] for problems like

P0 through tools from the classic scenario approach [1] [2] [3] theory is presented.

� In Chapters 3 and 4 the main theoretical contribution of this thesis is presented.

A more recent development of the scenario approach theory [4] is employed in

order give a characterization of the stability index for problems in non-standard

form since what is achieved in Chapter 2 does not stand valid for problems of the

form of P1 and P2.

� In Chapter 5 and 6 the two case studies on economic dispatch and air cargo load-

ing problems, introduced in the previous paragraph, are more detailedly described

and formulated in an appropriate way for numerical simulations. The two exam-

ples will serve to validate the results of Chapter 3 and 4.

� In Chapter 7 general conclusions on both the theoretical and the numerical results

achieved in this research work are drawn, while in the Appendix more insights on

the scenario approach theory and also the MATLAB code used for the numerical

simulations can be found.

11

2 Previous results, problems in standard form

Let us recall problem P0:

P0 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi = b

xi ≥ 0 i = 1, ..,m,

(8)

with n =
∑m

i=1 ni the total number of decision variables in P0, x = [(x1)T , . . . , (xm)T]T ∈

Rn, A = [A1...Am] ∈ Rp×n, c = [(c1)T ...(cm)T]T ∈ Rn ,where only m agents drawn

independently from a generic probability distribution are considered and denote as x∗ its

optimal solution. This chapter will be a recap of the main results of [5], providing means

to characterize the random variable V (x∗) as defined in Chapter 1, the probability that

the optimal solution of P0 will change upon the arrival of a new agent y, associated

with the tuple δy = (ny, c
y, Ay), as in P0+ :

P0+ : min
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1(c

i)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy = b

xi ≥ 0 i = 1, ...,m

y ≥ 0,

(9)

whose solution is x?+ = (x?, y?).

The main result is provided below, along with some comments on the notation and on

its meaning:

Theorem 2.1. Let β ∈ (0, 1 =) and ε ∈ (0, 1) such that the following relation holds:

p−1∑
k=0

(
m

k

)
εk(1− ε)m−k ≤ β, (10)

12

then it holds true that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : V (x∗)<ε
}
≥ 1− β, (11)

where p is the row-rank of A in P0, ε ∈ (0, 1) represents an upper bound for the

stability index and β ∈ (0, 1) is the confidence with which the above statement is true

with respect to Pm.

Usually β is fixed by the user and the bound ε for the satbility index is retrieved

from the equation.

Setting a very small β, for example 10−7 ensures that V (x∗)<ε is verified almost surely

(apart from a case in 10 million) regardless of the particular (δ1, . . . , δm) extracted.

Concerning ε, having V (x∗)<0.1 means that the probability that a new agent could

bring improvements over x∗ cannot be very high. It may take much effort, time or

simply sampling many agents before finding it, while if V (x∗)<0.9 the probability of

improvement may be much larger than the previous case, requiring less time or much

less agents to examine before finding the special one.

The rest of this chapter is dedicated to the proof of Theorem 2.1 and is organized as

follows:

� In Section 2.1 a characterization of the optimal solution for problems of the type

of P0 is provided.

� In Section 2.2 the dual of P0, D0 is introduced and a connection between their

optimal solutions is established.

� In Section 2.3 the scenario optimization theory is applied on D0 and then mapped

back to P0 to prove the main result.

13

2.1 Optimality conditions for a standard form problem

This section will deal with the characterization of the optimal solution x∗ of P0:

P0 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi = b

xi ≥ 0 i = 1, ..,m,

(12)

where n =
∑m

i=1 ni the total number of decision variables in (12), x = [(x1)T , . . . , (xm)T]T ∈

Rn, A = [A1...Am] ∈ Rp×n, c = [(c1)T ...(cm)T]T ∈ Rn and assume that A is full row

rank. A superscript as in xi indicates an association to agent i, while a subscript as in

xi denotes the i− th component of such vector.

In order to characterize x∗, the concept of basic solution has to be introduced:

Definition 2.1. -Basic solution Consider a polyhedron P and a vector xv ∈ Rn. xv is

a basic solution if at xv all equality constraints are active and n linearly independent

constraints are active at xv in total.

If xv satisfies all the constraints., then it is also a basic feasible solution. According

to theorem 2.3 of [6], basic solution ⇐⇒ vertex of a polyhedron.

Moreover, another definition is introduced that will help with defining the optimality

conditions for x∗:

Definition 2.2. -Degenerate basic solution If more than n constraints are active

at a basic solution x∗ ∈ Rn, it is said to be degenerate.

Since A is full row rank, theorems 2.3-2.4 of [6] can be applied and thus any basic

feasible solution xv of (12) is partitioned in two sets of variables: basic (xvB) and non-

basic (xvN).

Denote with AB the partition of A associated with the same indexes of the variables in

xvB and with AN the one corresponding with xvN . Since xv is feasible for (12), it is true

that:

Axv = ABx
v
B + ANx

v
N = b. (13)

14

but remembering that xvN = 0 (theorem 2.4 of [6]) and since AB is a full rank square

matrix, this results in xvB = A−1B b.

By calling cB and cN the partitions of vector c corresponding respectively to basic and

non-basic variables and also assuming that (12) admits a non-degenerate minimizer,

theorem 3.1 of [6] guarantees that xv is the optimal solution x∗ for (12) if and only if :

cTN − cTBA−1B AN ≥ 0, (14)

The quantity on the left hand sign of (14) is called reduced cost, c.

2.2 Dual problem

The proof of Theorem 2.1 requires information derived from the optimal solution of the

dual (see Chapter 4 of [7] or [6]) of (12), D0. In this subsection connections are drawn

between the primal and the dual problem, here presented:

D0 : max
λ

−λT b

s.t. λTAi + ci ≥ 0
(15)

where λ ∈ Rp is the vector of dual variables, associated with the equality constraints

of P0. Let us denote λ∗ as the optimal solution for (15).

The following paragraph will go on with the proof of the proposition:

Proposition 2.1. - Characterization of the dual solution The optimal solution

to (15) is λ∗ = −(cTBA
−1
B)T .

Proof : The feasibility of λ∗ will be checked first, then the optimality. By evaluating

the constraints of D0 at λ∗ one obtains:

ci + (λ∗)TAi ≥ 0

ci − cBA−1B Ai ≥ 0
(16)

15

By considering the basic and non-basic partitions:

cN − cBA−1B AN ≥ 0 because of (14)

cB − cBA−1B AB = 0
(17)

So λ∗ is feasible. Concerning its optimality, consider the dual cost function evaluated

at λ∗:

−(λ∗)T b = c>BA
−1
B b

= c>Bx
?
B (remember that x∗B = A−1B b)

= c>Bx
?
B + c>Nx

?
N

= c>x∗. (and x∗N = 0)

Since the values of the primal and dual cost functions are equal, the optimality of λ∗ is

proven by strong duality (theorem 4.4 of [6]).

2.3 New agent arrival: scenario approach

In order to obtain a practical measure of the probability of the original solution of P0

changing upon the arrival of a new agent, the scenario approach theory for random

convex problems [1], [2], [3], is hereby introduced. The theory will be applied to the

dual of P0 since it has the required structure and the results will then be mapped back

to P0.

Consider D0 and λ∗ = −(cTBA
−1
B)T . By taking ε, β ∈ (0, 1) such that:

p−1∑
k=0

(
m

k

)
εk(1− ε)m−k ≤ β. (18)

and assuming P0 is feasible and admits a unique minimizer, Theorem 1 of [2] guarantees

that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : P
{
δy = (ny, c

y, Ay) ∈ ∆ : c>y + (λ∗)>Ay ≥ 0
}
≥ 1− ε

}
≥ 1− β, (19)

16

i.e., with confidence at least 1− β (measured with respect to Pm), the optimal solution

λ? of D0 remains feasible for a constraint generated by a new extraction δy = (ny, c
y, Ay)

with probability at least 1− ε.

Now consider P0 and P0+ , namely the problem that arises upon the arrival of a new

agent y characterized by δy = (ny, c
y, Ay):

P0+ : min
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1(c

i)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy = b

xi ≥ 0 i = 1, ...,m

y ≥ 0

(20)

Recalling that x∗ and x?+ = (x?, y?) denote their respective solutions, let us restate

Theorem 2.1:

Theorem 2.1 Fix any m ∈ N. Fix ε, β ∈ (0, 1) such that (18) holds.

Assuming P0 is feasible and admits a unique minimizer,

Pm
{

(δ1, . . . , δm) ∈ ∆m : P
{
δy = (ny, c

y, Ay) ∈ ∆ : x?+ = (x∗, 0)
}
≥ 1− ε

}
≥ 1− β,

(21)

i.e., with confidence at least 1− β, x?+ = (x∗, 0) with probability at least 1− ε.

Proof: Fix {δi}mi=1 and consider P0+ . Take x?+ = (x∗, 0), which is certainly a basic

feasible solution for P0+ . Since y? = 0, the new agent y is a nonbasic component of x?+.

Recalling the definition of reduced cost in (14) for P0, it is true that x?+ = (x∗, 0) is

optimal for P0+ if and only if:

(cy)T − cBA−1B Ay ≥ 0 (22)

But since the optimal solution for D0 λ
∗ = −(cTBA

−1
B)T , (22) is equal to:

(cy)T − (λ∗)TAy ≥ 0 (23)

17

So in conclusion x?+ = (x∗, 0) is optimal for P0+ if and only if (23) holds.

Therefore,

P
{
δy = (ny, c

y, Ay) ∈ ∆ : x?+ = (x∗, 0)
}

= (24)

P
{
δy = (ny, c

y, Ay) ∈ ∆ : (cy)> + (λ∗)>Ay ≥ 0
}
.

For any ε, β ∈ (0, 1) such that (18) holds.

The right hand side of (24) is actually equal to 1 minus the stability index of x∗ and

as such has to be greater than 1 − ε, keeping the same meaning of V (x∗) < ε. Since

the scenario approach is applied to the dual of P0, D0, the number of scenarios N

(here equal to m), corresponding to N extraction of constraints of D0, is equivalent to

the number of agents m that are being extracted (also remembering that each decision

variable in the primal problem is mapped to a constraint in the dual problem), while

p, the number of coupling constraints and equal to the number of decision variables in

D0, corresponds to the number of support constraints [see chapter 3, definition 3.1] for

the dual optimal solution.

18

3 Problems with upper bounds

This chapter will deal with problem P1:

P1 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi = b

0 ≤ xi ≤ di i = 1, ..,m,

(25)

which, differently from P0, accounts for upper bounds di to the agents xi, resulting in

the fact that the m agents are subject to a limit on the quantity of the shared resource

b that can be assigned to them.

Recall that a superscript as in xi indicates an association to agent i, while a subscript

as in xi denotes the i− th component of the total decision vector x = [x1, x2, . . . xm]T

Similarly to the previous chapter, the objective is to provide a probabilistic character-

ization of the stability index V (x∗) in the context of P1 (where x∗ denotes the optimal

solution to (25)) and, as in the previous chapter, it is worth to point out that V (x∗)

is a random variable since x∗ is random. To this purpose, it is interesting to note that

the previous results of Chapter 2 cannot be used. This means that

Pm
{

(δ1, . . . , δm) ∈ ∆m : V (x∗)<ε
}
≥ 1− β, (26)

where β and ε satisfy (18), is not a valid statement. More in detail, Pm
{

(δ1, . . . , δm) ∈

∆m : V (x∗)<ε
}

, seen as a function of ε, represents the cumulative distribution function

(CDF) of V (x∗) and according to (26) should always be above 1 − β where β is given

by (18). This yields the following stochastic dominance relation:

Pm
{

(δ1, . . . , δm) ∈ ∆m : V (x∗)<ε
}
≥ 1−

p−1∑
k=0

(
m

k

)
εk(1− ε)m−k, (27)

but it will be shown by means of a practical counterexample that it is false in the

context of P1.

19

Example 3.1 - Consider the auxiliary problem Pa, which is of the same type as P1:

Pa : min
xi

∑110
i=1 c

ixi

s.t.
∑m

i=1 x
i = 100

0 ≤ xi ≤ di i = 1, ..., 110,

(28)

where xi ∈ R, ci ∈ R, di ∈ R and Ai is equal to 1 for all agents, implying that

p = 1. The mechanism through which the agents are generated is as follows: the di

are extracted from a uniform distribution between 0 and 30 and the ci are extracted

from a uniform distribution too but between 0 and 1. A numerical simulation was run

in order to obtain an empirical estimate of the CDF of Va(x
∗), the stability index of

the optimal solution of Pa: at first m = 110 agents with their tuples δi = (ci, di) were

extracted and the solution x∗ retrieved, then another 5500 agents were extracted from

the same distributions and one by one they were added to the initial pool of m agents,

each time turning Pa, into:

Pa+ : min
xi,y

∑110
i=1 c

ixi + cyy

s.t.
∑m

i=1 x
i + y = 100

0 ≤ xi ≤ di i = 1, ..., 110

0 ≤ y ≤ dy,

(29)

where y represents the newly extracted agent that is being added to Pa alongside its

tuple δy = (cy, dy). The solution to Pa+ , x?+ = (x?, y?) was then obtained and compared

to x∗: in particular it was checked if the value of y? in x?+ was different from zero, i.e.

the solution had changed.

To obtain an empirical estimate of Va(x
∗) the number of times, out of 5500, x?+ was

different from x∗ was counted and divided by the total number of new agents 5500.

This procedure was repeated 100 times, obtaining 100 different values for Va(x
∗) corre-

sponding to different realizations of the agents. The empirical CDF was then retrieved

from this values.

20

Considering now 1−
∑p−1

k=0

(
m
k

)
εk(1− ε)m−k, where p = 1, m = 110 and ε ∈ (0, 1), the

empirical CDF of Va(x
∗) should always be above it (recall (27)). A plot of the empirical

CDF of Va(x
∗) and of 1−

∑p−1
k=0

(
m
k

)
εk(1− ε)m−k is given in Figure 1 and, as it can be

seen the CDF of Va(x
∗) is entirely below 1−

∑p−1
k=0

(
m
k

)
εk(1− ε)m−k, thus showing that

the previous result of Chapter 2 is unusable for problems like P1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a
(x

*
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(V

a
(x

*
))

Empirical CDF of V
a
(x *) vs chapter 2 upper bound

Figure 1: The CDF of Va(x
∗) is always under the bound introduced in chapter 2.

Example 3.1 shows that it is not possible to provide a characterization of V (x∗) in the

same vein as in Theorem X in Chapter 2. The following perspective is inspired by some

recent result in the scenario optimization theory, called wait-and-judge approach [4].

Instead of looking for a − priori bounds to the stability index V (x∗) that hold with

high confidence, a− posteriori bounds to V (x∗) are searched, meaning that the bound

depends on some quantity that becomes observable after Pa is solved

The previous example suggests what can be observed in order to tightly bound V (x∗).

If the di are very small with respect to 100, many agents have to be used in order to

satisfy the constraint
∑
xi = 100, even the ones with high cost coefficients ci. Therefore,

the probability of observing a new agent with a better cost coefficient than one of the

21

already used ones is higher.

If instead the di are quite big with respect to 100, less agents have to be used in order

to satisfy the constraint
∑
xi = 100, obviously the few with the lowest cost coefficients

out of the 110 original ones. In this situation it would be harder to observe a better

agent.

This reasoning suggests that a tight evaluation of V (x∗) must be based on the number

of agents effectively employed in the determination of the solution x∗ and leads to the

following key definition.

Definition 3.1. - Number of support agents Consider problem P1 and its solution

x∗ = [x∗1, x
∗
2, . . . , x

∗
m]. An agent is said to be a support agent if its optimal decision

vector x∗i is different from zero (in case xi is a vector ∈ Rni , it will be considered

different from zero if at least one of its subcomponents is different from zero). The

number of x∗i 6= 0 (i.e. the number of support agents) will be denoted by s∗.

As it will be shown later on, the concept of support agents is related to that of support

constraints, which is the observable quantity used in the scenario optimization theory

[4], [8]. Precisely it will be shown that the number of support agents is equal to

the number of support constraints of the dual of problem P1. The main theoretical

contribution of this thesis is given by the following theorem.

Theorem 3.1. Let β ∈ (0, 1) and let ε(k) ∈ (0, 1) for k = 0, 1, . . . ,m be equal to

1− t(k) where t(k) for k = 0, 1, . . . ,m is the unique solution of the polynomial equation

β

m+ 1

m∑
i=k

(
i

k

)
ti−k −

(
m

k

)
tm−k = 0, (30)

in the interval (0,1) and t(m) = 0. Then it holds that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : V (x∗)<ε(s∗)
}
≥ 1− β, (31)

where x∗ is the optimal solution to P1 and s∗ is the number of support agents of x∗.

22

ε(k), as a function of k, is retrieved from (30) for fixed values of β prior to obtaining

s∗. Then, after evaluating s∗, the corresponding value of ε(s∗) can be calculated.

Theorem 3.1 says that the statement V (x∗) ≤ ε(s∗) is true with confidence 1 − β. If

beta is chosen to be, for example, 10−7 it can be reasonably assumed as true always

(in only 1 case out of 10 million it would result false), making ε(s∗) an accurate upper

bound to V (x∗).

ε(s∗) is not known beforehand because it depends on s∗ which is however observable.

The upper bound to V (x∗), ε(s∗) depends on what is observed, providing estimates

tuned on the obtained solution that can be considered tight.

In Figures 2 and 3 ε(k) is plotted as a function of m and β. As it can be seen, decreasing

β below a certain threshold does not yield significant changes, so setting for example

β = 10−7 is enough to consider the bound ε(k) tight. Moreover, by increasing m, the

difference between different values of β becomes less evident.

0 20 40 60 80 100 120 140 160 180 200

Number of support agents [k]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty
 o

f
s
o

lu
ti
o

n
 c

h
a

n
g

e

=10
-4

=10
-7

=10
-10

Figure 2: ε(k) for m = 200 and different values of β

23

0 50 100 150 200 250 300 350 400

Number of support agents [k]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty
 o

f
s
o

lu
ti
o

n
 c

h
a

n
g

e

 10
-4

 10
-7

 10
-4

Figure 3: ε(k) for m = 400 and different values of β

By evaluating ε(k) at specific values of s∗, the number of support agents, it can be

noted that the bound is lower for lower values of s∗ and higher for higher values of

s∗. This means that if many agents in the original problem contribute to its optimal

solution x∗ (high s∗), it is more likely to observe a new agent that brings improvements,

vice-versa for a low number of support agents s∗: an higher s∗ signifies that also agents

with suboptimal cost coefficients among the initial m ones are used for finding x∗ which

are more likely to be replaced by a newly arrived one.

As an additional remark it is worth noting that the results of the classic scenario theory

(18) were valid in chapter 2 because s∗ ≤ p always, where p represents the number of

coupling constraints of the problem, or the row rank of A. Now because of the presence

of the upper bounds on xi, this is not always true. In fact consider a problem without

upper bounds:

24

P0 : min
xi

∑m
i=1(c

i)Txi

s.t.
∑m

i=1A
ixi = b

xi ≥ 0 i = 1, ...,m,

(32)

where xi ∈ Rm and A ∈ Rp×m. Recalling theorem 2.4 of [6], there cannot be more

than p xi different from zero at a vertex of the polyhedron {x ∈ Rm|Ax = b, x ≥ 0}.

Since the optimal solution x∗ of (32) occurs surely at a vertex, the number of nonzero

components of x∗, s∗ must be less or equal than p.

Now consider again the auxiliary practical problem introduced here in chapter 3:

Pa : min
xi

∑110
i=1 c

ixi

s.t.
∑m

i=1 x
i = 100

0 ≤ xi ≤ di i = 1, ..., 110,

(33)

where xi ∈ R, ci ∈ R, di ∈ R and Ai is equal to 1 for all agents, implying that p = 1.

In particular, all di ∈ (10, 30). It is clear that in order to satisfy the equality constraint

more than one x∗i (i-th element of the optimal solution x∗ of (33)) will have to be

different from zero because of the upper bounds di, each one far smaller than b = 100,

while p = 1. This clearly result in s∗ > p making it not possible to reuse the a priori

bound provided by (18).

The rest of this chapter is dedicated to the proof of the fundamental Theorem 3.1 and

is organized as follows:

� In Section 3.1 a characterization of the optimal solution for problems of the type

of P1 is provided.

� In Section 3.2 the dual of P1, D1 is introduced and a connection between their

optimal solutions is established.

25

� In Section 3.3 the scenario optimization theory is applied on D1 and then mapped

back to P1 to obtain the main result.

3.1 Extended basic solution and optimality condition

In this section, a characterization of the optimal solution x∗ of:

P1 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi = b

0 ≤ xi ≤ di i = 1, ..,m,

(34)

is provided. Let n =
∑m

i=1 ni the total number of decision variables in P1, x =

[(x1)T , . . . , (xm)T]T ∈ Rn, A = [A1...Am] ∈ Rp×n, c = [(c1)T ...(cm)T]T ∈ Rn,

d = [(d1)T , . . . , (dm)]T ∈ Rn and without loss of generality assume that A is full

row-rank with n > p. Also a superscript to a vector describes its association with

a corresponding agent, while a subscript denotes a particular element in that vector.

The equality constraints in P1 along with the upper bounds di define a polyhedron, let

us call it Q = {0 ≤ x ≤ d : Ax = b}. In order to characterize the optimal solution of

P1, the concept of basic solution (Definition 2.1) has to be recalled and extended in the

current context:

Definition 3.2. Extended basic solution - x ∈ Rn is said to be a basic solution

associated with P1 if Ax = b and n linearly independent constraints are active at x. It

is an extended basic solution of P1 if in addition x ∈ [0, d].

The following proposition is a modified version of Theorem 2.4 of [6]:

Proposition 3.1: Consider the constraints Ax = b and 0 ≤ x ≤ d and assume

that the p × n matrix A has linearly independent rows. A vector x ∈ Rn is an

extended basic solution if and only if we have Ax = b, and there exist p indices

B(1), ..., B(p) ⊂ {1, . . . , n} such that:

26

1. The columns AB(1), ..., AB(p) are linearly independent;

2. If i 6= B(1), ..., B(p), then either xi = 0 or its respective upper bound di.

Proof : ⇐=:Suppose that x satisfies Ax = b and both conditions (1) and (2). Condition

(2) clearly implies that there are at least n− p active constraints. Then, it is true that:

b = Ax =

p∑
i=1

AB(i)xB(i) +
∑

i 6=B(1),...B(p)

Aixi,

from which

p∑
i=1

AB(i)xB(i) = b−
∑

i 6=B(1),...B(p)

Aixi

(35)

Since the columns AB(i) i = 1, ..., p are linearly independent, then the xB(i) i = 1, ..., p

are uniquely determined. By Theorem 2.2 of [6], this implies that there are p linearly

independent active constraints, besides the already existing n− p and this implies that

x is a basic solution.

=⇒: For the converse, let us assume x is a basic solution. Let B(1), ..., B(k) all the

indices such that xB(i) 6= 0 and xB(i) 6= di for all i = 1, ..., k.

Since x is a basic solution, the system of equations formed by the active constraints

among the equality constraints
∑m

i=1Aixi = b, xi = 0, xi = di i 6= B(1), ...B(k) has a

unique solution (Theorem 2.2 of [6]).

This implies that the columns AB(1), ..., AB(k) are linearly independent and so k ≤

p. Since rank(A) = p, we can choose p − k more columns so that the columns

AB(1), ..., AB(p) are linearly independent. Moreover if i 6= B(1), ..., B(p), then it is

also true that i 6= B(1), ..., B(k), since k ≤ p, and hence xi = 0 or xi = di.

The previous proposition implies that any extended basic solution can be partitioned

in three subvectors: xB corresponding to the indices B(1), . . . , B(p) (subvector of basic

variables), xNl (the subvector of non-basic variables at lower bound) and xNu (the sub-

vector of non-basic variables at upper bound). The same subscripts applied to A and

c will denote the corresponding index partitions from now on.

Being at one vertex of Q, the optimal solution to P1 is always an extended basic so-

27

lution. The previous definition of extended basic solution is now used to provide a

characterization of x∗.

Proposition 3.2 - Optimality condition (extended) Assume that P1 is feasible

and admits a unique non degenerate minimizer. An extended basic solution xv is the

optimal solution x∗ of P1 if and only if:

� cTNl − cTBA−1B ANl ≥ 0

� cTNu − cTBA−1B ANu ≤ 0,

where B, Nu and Nl is the indices partition corresponding to xv. In order to have

xv = x∗ the reduced cost for any non-basic variable at lower bound must be greater or

equal than 0 and vice-versa for any variable at upper bound.

Proof: Consider an extended basic solution xv and another feasible point x ∈ Q and

let z = x− xv. Since x and xv are feasible, Axv = b = Ax, so Az = 0, which is equal to

writing ABzB + ANzN = 0 with the N subscript including both the indices of Nl and

of Nu.

Since AB is a square matrix and its columns are linearly independent, it is true that

zB = −A−1B ANzN . Considering the cost value for z:

cT z = cTNzN + cTBzB =

cTNzN − cTBA−1B ANzN =

(cTN − cTBA−1B AN)zN =

(cTN − cTBA−1B AN)(xN − xvN)

(36)

Now let us split the previous equation along the components Nl and Nu:

cT z = (cTNu − cTBA−1B ANu)(xNu − xvNu)+ (37)

+(cTNl − cTBA−1B ANl)(xNl − xvNl) (38)

28

Regarding (37) note that , (xNl − xvNl) ≥ 0 since xvNu contains variables whose value is

the lowest possible (xvNl are at lower bound), while regarding (38) (xNu−xvNu) ≤ 0 since

xvNu contains variables whose value is the highest possible (xvNl are at upper bound). In

order for xv to be optimal it must be that cT z ≥ 0 ∀x ∈ Q (which means cTx−cTxv ≥ 0

for all x in Q). The sign conditions (xNl − xvNl) ≥ 0 and (xNu − xvNu) ≤ 0 along with

the expression for cT z in (37) and (38) imply that it must be (cTNu − cTBA−1B ANu) ≥ 0

and (cTNu − cTBA−1B ANu) ≤ 0.

3.2 Dual problem

As anticipated in the introduction, the proof of Theorem 3.1 is based on inheriting some

properties possessed by the solution of the dual problem of P1. In this subsection the

connections between P1 and its dual problem are established. The dual of P1, D1 is:

D1 : min
λ∈Rp,{νi∈Rni}mi=1

λT b+
∑m

i=1 (νi)Tdi

s.t. λTAi + ci ≥ −νi i = 1, ..,m

νi ≥ 0 i = 1, ..,m

(39)

where λ ∈ Rp is the dual vector associated to the resource allocation equality con-

straints, while vi ∈ Rni , i = 1, . . . ,m are the dual vectors associated to the upper limit

constraints on xi.

Letting ν = [(ν1)T , . . . , (νm)T], the optimal solution to D1 is denoted by (λ∗, ν∗).

The main purpose of the following paragraph is to prove the proposition:

Proposition 3.3 - Characterization of the dual solution The optimal solution to

D1 is (λ∗, ν∗) where:

� λ∗ = −(cTBA
−1
B)T

� ν∗i = 0 if i ∈ Nl or i ∈ B

29

� ν∗i = −(ci − cTBA−1B AI) := −ci if i ∈ Nu

Proof: Firstly, the feasibility of the solution will be proved, then the optimality.

Considering the dual constraint at λ∗ = −(cTBA
−1
B)T , λ∗TAi + ci ≥ −νi, it is satisfied

for νi = 0, i ∈ Nl, since cTNl − cTBA−1B ANl ≥ 0. The constraint also holds for νi = 0,

i ∈ B since cTNl − cTBA
−1
B ANl = 0. Lastly λ∗TAi + ci ≥ −νi is certainly satisfied for

νi = −ci, i ∈ Nu, since it results in cTNu − cTBA−1B ANu ≥ −ci where −ci ≥ 0 for i ∈ Nu

(Recall Proposition 3.2). We then can select a suitable ν∗, νi = 0 ∀i ∈ Nl such that

the remaining constraints λ∗, λ∗TAi + ci ≥ −νi, i ∈ Nu are satisfied. Now, to verify

the optimality (λ∗, ν∗), it must satisfy together with the optimal solution of P1, x
∗ the

following complementary slackness conditions (for upper bound problems [9]):

xi(λ
TAi + νi + ci) = 0 i = 1, ..., n

νi(di − xi) = 0 i = 1, ..., n
(40)

If and only if these condition (40) are verified, the couple of solutions x∗, (λ∗, ν∗) is opti-

mal. Given an extended basic feasible solution x∗ that verifies the optimality conditions

seen before and the previously introduced (λ∗, ν∗), they indeed do. νi(di − xi) = 0 is

always verified since νi = 0 ,∀i ∈ Nl ∪ B, corresponding to the xi that are either 0 or

a value between 0 and their upper bound di, while for i ∈ Nu xi = di.

xi(λ
TAi + νi + ci) = 0 is verified for i ∈ Nl since xi = 0 for i ∈ Nl.

For i ∈ B, substituting λ∗ = −(cTBA
−1
B)T and remembering that cTNl − cTBA−1B ANl = 0,

the first condition is again satisfied.

Lastly for i ∈ Nu by substituting λ∗ = −(cTBA
−1
B)T and ν∗i = −(cNu − cTBA−1B ANu) in

the first condition it becomes xNu(−cTBA−1B ANu − cNu + cTBA
−1
B ANu + cNu) = 0. This

concludes the proof.

For the sake of completeness the optimality of (λ∗, ν∗) will be proven also by showing

that the duality gap is equal to 0 for this solution.

30

Consider again the dual problem D1, rewritten to be a maximization one:

D1 : max
λ∈Rp,{νi∈Rni}mi=1

−λT b−
∑m

i=1 (νi)Tdi

s.t. λTAi + ci ≥ −νi i = 1, ..,m

νi ≥ 0 i = 1, ..,m

(41)

Remembering that ν∗Nu = −cNu, ν∗Nl = 0 and ν∗B = 0, the cost function of the dual

problem evaluated at (λ∗, ν∗) reads:

(cTBA
−1
B)b− (−cTNudNu) =

(cTBA
−1
B)b+ cTNudNu − cTBA−1B ANudNu =

cTBA
−1
B (b− ANudNu) + cTNudNu

(42)

Now consider the optimal solution of the primal problem x∗ (remembering that x∗Nl = 0

and x∗Nu = dNu), since it is feasible it is true that:

Ax∗ =ABx
∗
B + ANux

∗
Nu

=

ABx
∗
B + ANudNu = b

(43)

From (43) an expression for x∗B can be derived:

x∗B = A−1B (b− ANudNu), (44)

and substituting (44) in (42), the dual cost associated to (λ∗, ν∗) can be rewritten as:

cTBA
−1
B (b− ANudNu) + cTNudNu = cTBx

∗
B + cTNudNu (45)

The right-hand side of (45) is however equal to cTx∗ = cTBx
∗
B + cTNlx

∗
Nl + cTNux

∗
Nu =

cTBx
∗
B + cTNudNu because x∗i = di for i ∈ Nu and x∗Nl = 0.

Thus, it is shown that the value of the cost function of the primal and the dual are the

same and the optimality of (λ∗, ν∗) is proven by strong duality.

31

3.3 New agent arrival

The results of the previous sections are now used to prove Theorem 3.1.

Consider now the problem P1+ :

P1+ : min
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1 (ci)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy = b

0 ≤ xi ≤ di i = 1, ..,m

0 ≤ y ≤ dy,

(46)

where the symbol x+ denotes the augmented vector of decision variables (x, y).

Applying the results in Section 3.1 to P1+ , it holds that x?+ = (x∗, 0), i.e. the optimal

value for x in P1+ coincides with the optimal solution to P1 and the optimal value of y

is 0, if and only if all the reduced costs associated with the indices of the new variable

y are ≥ 0 (see Proposition 3.2). That is, in compact notation:

cy = (cy)T − cTBA−1B Ay ≥ 0. (47)

On the other hand, recalling that λ∗ = −(cTBA
−1
B)T as given by Proposition 3.3, (47) is

true if and only if

λ∗TAy + cy ≥ 0, (48)

i.e if the solution to the dual λ∗ satisfies a new constraint associated to the new agent

y.

In conclusion, it can be said that:

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : x?+ = (x∗, 0)
}

= (49)

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : (λ∗)>Ay + cy ≥ 0
}
.

The left-hand side of (49) is equal to 1 minus the stability index of x∗ (1-V (x∗)), to

which a bound has to be found, while the right-hand side is the probability of extracting

32

a new constraint of the dual problem which is satisfied by the optimal dual solution λ∗.

This probability (the right-hand side one)is itself a random variable because it varies

with λ∗, which is random.

The scenario optimization theory deals with the problem of bounding P
{
δy =

(ny, c
y, Ay, uy) ∈ ∆ : (λ∗)>Ay + cy ≥ 0

}
, that is why it was necessary to characterize

the optimal solution of D1. More recent results from the Wait-and-judge scenario opti-

mization [4] guarantee that by taking β ∈ (0, 1) the following polynomial equation has

a unique solution in the variable t:

β

m+ 1

m∑
i=k

(
i

k

)
ti−k −

(
m

k

)
tm−k = 0, (50)

for k = 0, . . . , n− 1 where n is the total number of decision variables of P1.

By considering the unique solution to (50) t(k) ∈ (0, 1), recalling (49) and letting

ε(k) = 1− t(k) [4], [8] guarantees that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : (51)

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : (λ∗)>Ay + cy ≥ 0
}
≥ 1− ε(s∗)

}
≥ 1− β,

where λ∗ is the solution to (39) , the dual problem of P1 δ
y = (ny, c

y, Ay, dy) is the

tuple associated with the new agent y and ε(s∗) is the probability bound ε(k) = 1 −

t(k) evaluated at the number of support constraints at λ∗, s∗, that is the number of

constraints out of all of the dual problem D1 for which it does not hold (λ∗)TAi+ci > 0,

but rather (λ∗)TAi + ci = 0 or (λ∗)TAi + ci < 0 element-wise. This means that ∃ an

index j such that

(λ∗)TAj + cj < 0 or = 0, (52)

where Aj represents the j − th column of Ai and cj the j − th element of ci.

33

By recalling (49) and applying it to (51), it holds true that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : (53)

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : x?+ = (x∗, 0)
}
≥ 1− ε(s∗)

}
≥ 1− β,

where x?+ is the optimal solution of (46) and x∗ of P1, while s∗ still denotes the number

of support constraints of D1.

The concept of support constraints defines the constraints that if removed bring an

improvement to the optimal solution of the problem. The number of support agents is

actually equal to the number of support constraints. To prove the previous statement it

is sufficient to substitute λ∗ = −(cTBA
−1
B)T into (λ∗)TAi+ci, obtaining −cTBA−1B Aj+cj =

ci for j = 1, . . . , ni, the reduced cost for component (xi)∗ of x∗. (52) holds true if and

only if −cTBA−1B Aj + cj < 0 or −cTBA−1B Aj + cj = 0, meaning that either j ∈ Nu or

j ∈ B, respectively. By denoting with x∗j the j − th element of (xi)∗, it holds true that

x∗j = dj if j ∈ Nu or x∗j 6= dj ≥ 0 if j ∈ B, and so according to Definition 3.1 (xi)∗ 6= 0

because at least one of its elements are different from zero. So in conclusion (xi)∗ 6= 0

if and only if the associated (λ∗)TAi + ci < 0 or 0, proving that indeed the number of

support agents and the number of support constraints are equal.

Employing the result in (53) it is possible, after computing the optimal solution x∗ of

P1 and therefore s∗ to say that the probability that x∗ remains feasible upon the arrival

of the new agent y is at least 1 − ε(s∗), with confidence of at least 1 − β, where β is

user chosen and measure with respect to Pm.

34

4 Inequality constrained problems

This chapter will consider problem P2:

P2 : min
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi ≤ b

0 ≤ xi ≤ di i = 1, ..,m,

(54)

whose optimal solution is x∗ and where the initial m agents are subject to an upper

bound di to the quantity of b they can be assigned and moreover the shared resource b

can also not be used fully. Again, the results of Chapter 2 are not valid in this situation

for the same reasons expressed in Chapter 3 and V (x∗), where x∗ represents the optimal

solution of P2 will be characterized by using results from the Wait and judge scenario

approach theory.

The result of this chapter, proven in the later sections is really similar to the one of

Chapter 3, stated in the following theorem:

Theorem 4.1. Let β ∈ (0, 1) and let ε(k) ∈ (0, 1) for k = 0, 1, . . . ,m be equal to

1− t(k) where t(k) for k = 0, 1, . . . ,m is the unique solution of the polynomial equation

β

m+ 1

m∑
i=k

(
i

k

)
ti−k −

(
m

k

)
tm−k = 0, (55)

in the interval (0,1) and t(m) = 0. Then it holds that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : V (x∗)<ε(s∗)
}
≥ 1− β, (56)

where x∗ is the optimal solution to P1 and s∗ is the number of support agents of x∗.

where the number of support agents of x∗, s∗ is defined in Definition 3.1. The rest of

this chapter is structured in a similar way to Chapters 2 and 3, and will go on with

the characterization of x∗ in section 4.1, the primal dual connection in section 4.2 and

finally recall the Wait-and-judge scenario optimization theory [4], [8] to provide a proof

35

of Theorem 4.1.

4.1 Optimality conditions

The previous results of Chapter 3 can be easily extended to problems with inequality

constraints.

Consider the problem:

P2 : max
{xi∈Rni}mi=1

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi ≤ b

0 ≤ xi ≤ di i = 1, ..,m,

(57)

whose solution is x∗ and let n =
∑m

i=1 ni the total number of decision variables in

P2, x = [(x1)T , . . . , (xm)T]T ∈ Rn, A = [A1...Am] ∈ Rp×n, c = [(c1)T ...(cm)T]T ∈ Rn,

d = [(d1)T , . . . , (dm)]T ∈ Rn and without loss of generality assume that A is full row-

rank with n > p.

By simply adding a slack variable (s) per row of A:

P2 : max
{xi∈Rni}mi=1,s

∑m
i=1 (ci)Txi

s.t.
∑m

i=1A
ixi + s = b

0 ≤ xi ≤ di i = 1, ..,m,

s ≥ 0

(58)

and by bringing the slack variables inside the decision variables vector:

P2 : max
x̃i

∑m+1
i=1 (c̃i)T x̃i

s.t.
∑m+1

i=1 Ãix̃i = b

0 ≤ xi ≤ di i = 1, ..,m,

s ≥ 0

(59)

36

where

x̃ =

x1
...

xm

s

 Ã =
[
A 1Tp

]
c̃ =

c1
...

cm

cs

 (60)

with 1Tp indicating a column vector ∈ Rp containing all ones as elements, cs the cost

coefficient for the slack variable s, always equal to 0 and x̃∗ its optimal soluton. Propo-

sition 3.1 can now be applied and the same definition for reduced costs and conditions

for optimality hold (provided x̃∗ is not degenerate).

Since P2 it is a maximization problem, the reduced costs at an optimal solution must

be:

� cTNl − cTBA−1B ANl ≤ 0

� cTNu − cTBA−1B ANu ≥ 0

4.2 Dual Problem

Consider now the dual of P2:

D2 : min
λ∈Rp,{νi∈Rni}mi=1

−λT b−
∑m

i=1 (νi)Tdi

s.t. λTAi + νi − ci ≥ 0 i = 1, ..,m

νi ≥ 0 i = 1, ..,m

λj ≥ 0 j = 1, ..., p

(61)

whose optimal solution is (λ∗, ν∗) which is going to be characterized in the next

proposition:

Proposition 4.1. - Characterization of the dual solution The optimal solution

to D2 is (λ∗, ν∗) where:

37

� λ∗ = (cTBA
−1
B)T

� ν∗i = 0 if i ∈ Nl or i ∈ B

� ν∗i = (ci − cTBA−1B Ai) := −ci if i ∈ Nu

Proof:

To prove that (λ∗, ν∗) is feasible first assume that c and Ai are ≥ 0 element wise,

meaning λ∗ = (cTBA
−1
B)T ≥ 0 which is reasonable since a negative Ai would mean that

the agent i is bringing in more resource and a negative ci would mean that the agent

gets discarded immediately from the optimal solution since lowers the profit.

By substituting λ∗ = (cTBA
−1
B)T and ν∗i into λTAi + νi − ci ≥ 0 one obtains cTBA

−1
B Ai +

ν∗i − ci ≥ 0 which is satisfied for i = B since it turns into cTBA
−1
B Ai + −cB = 0, is

satisfied for i ∈ Nl since it becomes cTBA
−1
B ANl − cNl = −cNl ≥ 0 and is satisfied for

i ∈ Nu since cTBA
−1
B ANu + cNu − cNu = 0.

Similarly to the previous case, the optimality of (λ∗, ν∗) is guaranteed if and only if it

satisfies the complementary slackness conditions for problem P2, which in turn can be

derived from its Lagrangian function L(x, λ, ν):

L(x, λ, ν) = cTx+ λT (b− Ax) + ν(d− x) (62)

The first two are highlighted in red and are found immediately by writing L(x, λ, ν).

To find the last one, let us collect by x, obtaining the dual Lagrangian function:

Ld(x, λ, ν) = x(λTA+ ν − c) + νd+ λT b (63)

38

The conditions (1 for each dual and primal inequality constraint) read:

xi(λ
TAi + νi − ci) = 0 i = 1, ...,m

λTj (bj − Ajx) = 0 j = 1, .., p (condition on rows of A)

νi(di − xi) = 0 i = 1, ...,m

(64)

Indeed λ∗ = (cTBA
−1
B)T and ν∗ such that:

� νi = 0 if i ∈ Nl or i ∈ B

� νi = ci for i ∈ Nu (ci is the reduced cost for variable xi,which is ≥ 0 for i ∈ Nu)

satisfy these conditions, rendering (λ∗, ν∗) optimal for D2. In fact, νi(di − xi) = 0 is

verified for i ∈ B and i ∈ Nl since ν∗i = 0 and for i ∈ Nu since xi = di. xi(λ
TAi + νi −

ci) = 0 holds for i ∈ Nl since xi = 0 holds for i ∈ B since (cTBA
−1
B Ai − cB) = 0 with

ν∗i = 0 for i ∈ B. For i ∈ Nu (cTBA
−1
B Ai + cNu − cNu) = 0.

For the second condition λTj (bj − Ajx) = 0 if the j − th equality constraint is active it

is true that (bj − Ajx) = 0, while if it is not active, the j − th component of the slack

variable s, sj is different from zero, so sj, not having an upper bound, becomes one of

the p variables that are neither at 0 nor at their upper bounds (recall Proposition 3.1),

as xi for i ∈ B. So cB will include the cost coefficient for sj, csj = 0, rendering the

j − th component of λ∗ = (cBA
−1
B) equal to zero, verifying the condition.

4.3 New agent arrival

Consider now the problem P2+ :

P2+ : max
{xi∈Rni}mi=1,y∈R

ny

∑m
i=1(c

i)Txi + (cy)Ty

s.t.
∑m

i=1A
ixi + Ayy ≤ b

0 ≤ xi ≤ di i = 1, ...,m

0 ≤ y ≤ dy

(65)

39

Its solution x?+ = (x∗, 0), (y? = 0) if and only if the reduced cost of the new variable y,

cy = (cy)T − cTBA−1B Ay ≤ 0 (66)

But recalling that λ∗ = (cTBA
−1
B)T , (66) is true if and only if

λ∗TAy − cy ≥ 0 (67)

Since y? = 0, its associated ν = 0 and its reduced cost is lesser than or equal to 0.

In conclusion, similarly to chapter 3, it can be said that:

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : x?+ = (x∗, 0)
}

= (68)

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : (λ∗)>Ay − cy ≥ 0
}
.

Since for problem (57) s∗ ≤ p is again not always guaranteed, the Wait and judge

scenario approach will be used to provide a bound for the probability of solution change.

By taking β ∈ (0, 1) and evaluating the number of support constraints s∗mof the optimal

solution x∗ of (57) one can retrieve (s∗) from (50) and compute ε(s∗) such that:

Pm
{

(δ1, . . . , δm) ∈ ∆m : (69)

P
{
δy = (ny, c

y, Ay, dy) ∈ ∆ : (λ∗)>Ay + cy ≥ 0
}
≥ 1− ε(s∗)

}
≥ 1− β,

where λ∗ is the optimal solution of D2. Since (68) holds, (69) can be rewritten as:

Pm
{

(δ1, . . . , δm) ∈ ∆m : (70)

P
{
δy = (cy, Ay, dy) ∈ ∆ : x?+ = (x∗, 0)

}
≥ 1− ε(s∗)

}
≥ 1− β,

and similar conclusions to the ones expressed in Chapter 3 can be formulated.

40

5 Application to economic dispatch problem

In this chapter (and in the next one) the results of chapter 3 and 4 will be applied

through two practical examples. In particular, the theoretical results will be verified

experimentally and given specific interpretations depending on the context.

5.0.1 Problem introduction

Ever-rising costs of fossil fuels and competitive pressure make power system planning

a really important phase in energy production.

The economic dispatch problem is a planning procedure carried out by an external

dispatch company that has to split a forecasted load among several energy producers in

a geographical area. It consists in determining the optimal power output from available

energy generation facilities so as to minimize the production cost while meeting the

required load and considering also likely limits of the power plants which include:

� Ramp rate (how quickly the generators output can be changed)

� Maximum and minimum generation levels

� Minimum amount of time the generator must run

� Minimum amount of time the generator must stay off once turned off

� Whether there are transmission problems for a plant or not

In general, costs are not limited to the fuel ones, but should also account for losses

along the transmission line, environmental compliance and generator startup. Speak-

ing of environmental impact, some producers might employ also renewable sources that

generally have (except for hydroelectric generators) lower electricity generation capac-

ity compared to fossil fuels or nuclear plants while having near zero ecological footprint.

Planning is generally a daily task but can be performed multiple times or for shorter

periods in order to increase efficiency or in case of increasing demand and is generally

preceded by a reliability assessment that ensures the correctness of the load forecast

41

and the integrity of the transmission line for the units that are about to be employed.

In this section a mathematical formulation of the planning problem is presented and

a linear programming approximation is proposed [10], which yields the model used in

the simulations. Since the point of this case study is not to provide an accurate model

for real life power planning but rather to visualize the theoretical results of chapter 3,

the only constraint considered for the generators is the maximum and minimum power

one.

In this chapter the scenario approach theory will be employed to evaluate a situation

where the planning is initially done on a small group of already known power plants

although many others exist and are not initially taken into consideration. The energy

dispatch company is willing to consider new producers in the hope that a more ad-

vantageous generator is discovered and the energy dispatch solution is improved. On

the other hand obtaining information on previously not considered power plants is a

costly and time consuming operation so that starting a campaign to augment the pool

of producers among which to dispatch the energy load requires an assessment of its

effectiveness. To this purpose, the scenario approach theory will be used to give an

estimate of the probability that the solution might be improved by adding a previously

unseen power plant to the initial pool of producers. In other words, the effectiveness of

a new poll to collect information about power production facilities previously not taken

into account is assessed in the probabilistic framework developed in this thesis.

5.1 Quadratic form problem

An energy dispatch company has information about various power plants and to keep

the fuel costs low it will prioritize the most efficient or less expensive plants for the

production of electrical energy. The energy generation cost curve of a generic generator

i is ideally similar to a half parabola and can be modeled as it follows:

F i = ai(P i)2 + biP i + ci, (71)

42

where F i is the cost needed for plant i to produce power P i and ai, bi and ci are cost

coefficients, all positive. Each generator has a minimum and maximum power it can

output, say P i,min and P i,max, so the cost curve will be bound between these values.

Figure 4 shows an example of a generator cost curve. The superlinear increasing trend

has an intuitive appeal, since usually producing more energy results in higher and

additional costs. Moreover a case where the dispatch company only pays for energy

production costs is considered, not accounting for startup costs or costs arising from

the plant production reserved to other dispatch companies. As a result all ci coefficients

(representing generator startup and already existing costs) are equal to zero and a sit-

uation is considered where the dispatch company may not avail of a given producer.

This amounts to setting the minimum power for all generators P i,min = 0,∀i.

Lastly, the sum of all the powers produced by the generators must be equal to the re-

quired load. This is a strict requirement since producing more is highly disadvantageous

since storing the excess energy is extremely expensive and is possible for a very limited

amount of energy. On the other hand, producing less than required would result in a

severe disruption for the final users. Thus, summarizing, the energy dispatch problem

consists in selecting P i, the production of each energy generator, so as to minimize the

production costs
∑
F i, while satisfying the load equality constraint and the production

limits for all generators.

In formulas, the resulting minimization problem reads :

min
P i

∑N
i=1 a

i(P i)2 + biP i + ci

s.t.
∑N

i=1 P
i = Load

P imin ≤ P i ≤ P imax i = 1, ..., N

(72)

43

Figure 4: Cost curve

5.2 Linear programming reformulation

In order to make use of linear programming theory, a linear approximation of the cost

function of the optimization model (72) introduced in the previous section is hereby

proposed. Specifically, the parabolic curves are approximated with piecewise linear

functions whose fit depends on the numbers of segments it is made of. A visual example

of such an approximation is shown in Figure 5 where, for instance, the cost curve for

generator i is approximated with four connected segments. Each of the mi segments for

each generator i is defined over an interval [P
i

j, P
i

j+1] where P
i

1,P
i

mi+1 is a partition

of [P i,min, P i,max] with P
i

1 = P i
min and P

i

mi+1 = P i,max.

To obtain a linear optimization problem, then, the original variable P i in (72) is replaced

by mi decision variables xij, j = 1, . . . ,mi , where mi is the number of segments used for

the approximation, while xi = [xi1, . . . , x
i
N]T will denote the vector of the new decision

44

variables for generator i. Each xij represents the part of power output P i within the

interval [P
i

j, P
i

j+1] and as such its value is bounded between 0 and P
i

j+1 − P
i

j = xij. In

particular the xij have to be thought of as a decomposition of P i and it must be that

P i =
∑mi

j=1 x
i
j and

xij = 0 if xij<P
i

j+1 − P
i

j (73)

This constraint means that the total energy produced cannot be obtained from the

various segments in the partition independently. A segment is activated only if the

allowance of the previous ones is exhausted.

Figure 5: Approximated cost curve

In the reformulation of (72), with respect to the new variables, the cost coefficient

cij, j = 1, . . . ,mi for each xij is the slope of the corresponding segment in the cost curve

approximation resulting in the total cost
∑mi

j=1 c
i
jx
i
j for generator i. Given that the ap-

proximated function is a convex one, the slope of each segment is higher than the slope

45

of the preceding ones, that is cij+1 ≥ cij ∀j, i. This means that, when the cost function is

minimized, xij+1 cannot be different from zero if xij is not at its upper bound, since the

solver prioritizes the variables with lower cost coefficients. Hence, minimization auto-

matically enforces the satisfaction of (73), which need not be explicitly accounted for.

Now that the modeling assumptions have been clarified, by letting ci = [ci1, . . . , c
i
mi

]T

and 1mi
= [1, . . . , 1] ∈ R1×mi the reformulated minimization problem can be stated:

min
xi

∑N
i=1(c

i)Txi

s.t.
∑N

i=1 1
T
mi
xi = Load

0 ≤ xij ≤ xij i = 1, ..., N j = 1, ...,mi

(74)

The problem in (74) is exactly of the type of P1 introduced in Chapter 3. In the current

setup, 1mi
corresponds to Ai in P1 while the xij match the upper bounds for the decision

variables di in P1.

Lastly, it is worth noting that if a generator has no upper bound P i,max, the problem

(74) is always feasible since its last segment xij has no upper bound xij either.

5.3 Solution stability evaluation

An energy dispatch company has successfully planned the optimal usage of a pool

of known power plants in order to meet the required load. However the company is

certainly interested in reducing the costs by searching for additional generators able

to supply the desired area that may have smaller costs or better capacity. Finding

new facilities though is a costly and time consuming operation so it would be ideal for

the company knowing in advance how beneficial this poll for new generators could be.

The Wait and judge scenario approach theory introduced in Chapter 3 will be used in

order to retrieve the probability that this polling operation could bring a change in the

original solution: a high probability of improving the solution will act as an incentive

to start a new search for better facilities.

46

Consider problem (74) where initially only N agents are taken into account:

min
xi

∑N
i=1(c

i)Txi

s.t.
∑N

i=1 1
T
mi
xi = Load

0 ≤ xij ≤ xij i = 1, ..., N j = 1, ...,mi,

(75)

and denote by x∗ the solution to (75) as usual.

The underlying assumption is that these N producers can be seen as independently

extracted (chosen) from a probability distribution that represents the entire population

of producers. Polling can be seen as an independent extraction of new producers ferom

the same population.

When a new agent y is added, the problem becomes:

min
xi,yj

∑N
i=1(c

i)Txi +
∑ny

j=1 c
y
jyj

s.t.
∑N

i=1 1
T
mi
xi +

∑ny

j=1 1
T
my
yj = Load

0 ≤ xij ≤ xij i = 1, ..., N j = 1, ...,mi

0 ≤ yj ≤ yj j = 1, ...,my

(76)

where my is the number of segments that represent the new agent y, and yj the local

upper bounds for such segments. By calling x?+ the solution of (76), the stability index

of x∗, V (x∗) is defined as:

V (x∗) = P
{
δy = (my, c

y, Ay, y) ∈ ∆ : x?+ 6= (x∗, 0my)
}
, (77)

where y denotes the set of the upper bounds yj ∀j = 1, . . . ,my for the segments of y

and 0my ∈ R1×my indicates that the new decision vector y ∈ R1×my is composed only

by zeros. (77) defines the probability that the newly found producer does not improve

the initial solution found on N agents.

Recalling the main result of Chapter 3, the stability index of x∗ should also be bounded

47

as follows:

PN
{

(δ1, . . . , δN) ∈ ∆N : V (x∗)<ε(s∗)
}
≥ 1− β, (78)

where s∗ denotes the number of support agents of x∗ and β ∈ (0, 1), ε ∈ (0, 1) and the

collection (δ1, . . . , δN) refers to the initial N agents.

In particular, according to Definition 3.1, an agent xi in problem (75) is a support agent

if at least one of its components xij is different from zero, meaning that the generator

i is utilized to produce some energy in the solution of (75). Intuitively, and as it will

be seen in the numerical simulations, the higher s∗ is, the more generators are used to

retrieve the initial solution x∗ in the original pool, meaning that some not so optimal

ones may be chosen in order to fulfill the load, increasing the probability that the new

agent y is able to improve the solution.

5.4 Simulation setup and numerical results

The aim of the following simulations is to show that the estimated probability of x∗

changing upon the arrival of y is less than or equal than the theoretical bound provided

by the scenario approach theory which has been proven to be suitable for this kind of

problem in Chapter 3, thus validating the theoretical results.

Specifically, after solving the original problem (75), the number of support agents of

the solution was evaluated. M = 50N new agents were then extracted and tested one

by one and the empirical probability of improving the solution was retrieved simply

dividing the number of times it happened by M .

This procedure was repeated for 100 times obtaining a vector of 100 probabilities of

improving the solution, each one associated with one of the initial 100 solutions and

therefore with its number of support agents. These probabilities were then plot on a

graph against the number of support agents to verify they were below the theoretical

bound ε(k) with the expected confidence.

The main parameters used for the simulations are:

� N number of initial agents or generators (extractions);

48

� M number of subsequent extractions for empirical probability of violation evalu-

ation, fixed to 50N ;

� Pmin (always set to 0) and Pmax which are the values for the minimum lower

bound and maximum upper bound for the decision variables P i. The actual

bounds P i,max are extracted from a uniform distribution ranging between those

two values;

� L the right hand value for the coupling constraint (Load);

� β confidence coefficient for computing the theoretical bound ε(k), always fixed to

10−7;

� maxslope which denotes the maximum slope (or maximum cost) that can be used

for the linear approximation. The slopes of the various segments are extracted

from a uniform distribution ranging from 0 to maxslope.

To construct the approximated parabolas, each generator is assigned a P i,max as de-

scribed before and then a random number, between 3 and 10, of intermediate points

and associated cost coefficients is extracted from a uniform distribution. Then, the

intermediate points are assigned a random value from a uniform distribution between

0 and P i,max and the cost coefficients one from 0 to maxslope. This new points will

be used to build the upper bounds for the new decision variables used for the linear

approximation (see Figure 2). The following results, grouped by N , will show the sen-

sitivity of the outcomes to parameters N , L, and Pmax, while maxslope is fixed for all

simulations to value 5.

In all cases, as it was expected, all estimated probabilities of violation remain under

the theoretical bound. Since β = 10−7 only one point (representing 1 iteration of the

algorithm) out of 10 million should be above the red curve.

49

5.4.1 Results for N = 100

Following the procedure described in the previous section, the initial problem with

N = 100 was solved retrieving x∗ and evaluating s∗. 50N new agents were then ex-

tracted and added one by one to see if they could improve the solution. The number

of times it changed was then divided by 50N , obtaining an empirical estimate of the

probability of solution change which was plot against s∗, obtaining a point on the graph

(Figure 6). Repeating the procedure 100 times yielded a cloud of points. By reiter-

ating the whole routine for different values of Pmax, 3 different clouds of points were

plotted together to better visualize the impact the maximum power limit has on the

problem. If the upper bounds Pmax are set to be larger, the probability of changing

the solution upon a new arrival will be lower, since the solver is able to use larger

values for decision variables with an advantageous cost coefficient from the start. This

translates to a real life situation in which the power plants have high capacities and

the planner can just select a small number of them (the most efficient ones of course)

to meet demand. As expected, all the points in the three different simulations remain

below the theoretical upper bound ε(k), function of the number of support agents.

50

0 20 40 60 80 100 120

No. support agents [k]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 100 L = 5000

Pmax=700

Theoretical bound

Pmax=400

Pmax=1200

Figure 6: Increasing Pmax results in higher probability of solution change alongside
more support agents

5.4.2 Results for N = 200

The same routine, repeated again for different values of Pmax, was run for N = 200.

The results in Figure 7 show, as expected, all probabilities below the theoretical bound

and also, with respect to the previous case, that the probabilities of solution change are

roughly halved per same Pmax. In fact, increasing N increases the pool of agents with

which the initial solution is found, lowering the probability of solution change per same

Pmax when compared to a case with a lower N . This means that the planner is able to

choose from more plants right away, so having observed a larger sample the probability

of discovering a more cost effective facility lowers.

51

0 20 40 60 80 100 120 140 160 180 200

No. support agents [k]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 200 L = 5000

Pmax=200

Theoretical bound

Pmax=400

Pmax=1200

Figure 7: Doubling the number of agents similar results are obtained by roughly halving
Pmax

5.4.3 Results for N = 100 and L=10000

In Figure 8, results are shown for various simulations in which N = 100 but L was

doubled. The same procedure was adopted, obtaining three different clouds of points

on the graph, all staying under the theoretical bound. A larger L means more agents are

required to fulfill the goal (since this is a equality constrained problem), thus resulting

in higher probabilities of violation per same Pmax when compared to cases with lower

L. This case depicts a situation in which the planner is able to fulfill the requested

load using a big portion of the initial pool of plants, including not so efficient ones so

discovering new facilities has an higher probability of improving the solution.

It can be observed that if Pmax is set to larger values, the points tend to spread more

along the x axis. Since Pmin is fixed to 0, a bigger Pmax increases the variance of the

uniform distribution the upper bounds for the power plants are taken from, thus yielding

more diverse results in which the number of agents that contribute to the solution is

52

more varied.

0 10 20 30 40 50 60 70 80 90 100

No. support agents[k]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 100 L = 10000

Pmax=400

Theoretical bound

Pmax=1200

Pmax=2000

Figure 8: This time only L was doubled, obtaining similar results as with increasing N
alone

5.4.4 Results for N = 100, Normal distribution

A fundamental result of the scenario theory developed in Chapter 3 is that it holds irre-

spectively of the probability distribution the agents are extracted from. This property

is fundamental as the application of the result does not require any knowledge of this

distribution. In the present context, this means that the energy dispatch company does

not need to possess any information about the producers population (which is indeed

unlikely) and can simply apply the result based on the a posteriori information given

by the number of support agents, which is readily available.

To test this important property, simulations where the P i,max are sampled from a trun-

cated normal distribution ranging from 0 to Pmax and the intermediate points from the

same kind of distribution between 0 and P i,max for each generator i are also included

and shown in Figure 9.

53

Figure 9 show the results for the same procedure used for the previous simulations

but with the differences introduced above. As it was to be expected, all the obtained

probabilities of solution change stay below the theoretical bound proving that indeed

the Wait and judge scenario approach theory holds regardless of the probability distri-

bution the uncertain constraints/agents are sampled from.

Moreover, similarly to what was seen in Figures 4,5,6 increasing the variance of the

normal distribution leads to a larger spread of the clouds of points on the plot.

0 10 20 30 40 50 60 70 80 90 100

No. support agents [k]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 100 L = 5000

variance 100, Pmax=400

Theoretical bound

variance 10000, Pmax=400

Figure 9: Results using a truncated normal distribution for the agents. Pmax was fixed
to 400 and only the variance of the distribution was varied, making the points spread
wider.

54

6 Application to Cargo aircraft loading

Air freight companies offer their airplanes to traders who need to transport their goods.

Airborne transportation is typically much more expensive than other methods but

also faster and so it is the priority choice when delivering urgent or perishable items.

Shipment dimension varies by a great factor and practically anything can be transported

by plane. For this reason, the cargo is usually arranged inside special metal containers

called ULDs, unit load devices, which have different shape in order to use efficiently

the available space in the fuselage. Each container has a limited capacity that should

be exploited in the best way possible, while also avoiding packing items that pose a

risk when too close to each other and providing an appropriate padding to prevent the

merch from being damaged, effectively creating a sub-problem within the aircraft load

planning one.

The air cargo loading problem is solved generally 24 hours before departure and it

begins usually when the cargo space is fully booked or almost. First ULDs of various

form factors are chosen, then the booked shipment is sorted and arranged inside them,

finally the ULDs are loaded into the aircraft.

It may happen that one or more ULDs are damaged or arrive late, in that case it is

replaced by another one, loaded with different shipment, in order to still be able to fill

the airplane. Sometimes the planned shipment is packed more efficiently than expected

in the containers, leaving room for other ULDs that would have shipped later onto

another flight, increasing the total value of the cargo.

The placement of the ULDs in the aircraft is not an easy task: beside the obvious

weight and volume capacities of the airplane, they must be arranged in such a way to

guarantee optimal balance of the aircraft throughout the flight and also to lower as

much as possible its center of mass to reduce fuel consumption. These last two aspects

will not be considered in this case study, whose aim is not to accurately model a real

world situation as in [11], far too complex and including matters not interesting to this

research which will consider a simpler model [12] with further relaxations. Moreover

55

only one aircraft performing one stopless flight will be considered, neglecting other

problematics such as refueling and partial unloading and reloading of the vehicle.

The problem will consider a situation where the maximum profit from carrying different

goods is to be attained while filling the cargo airplane as much as possible. The planning

procedure is initially solved but during the actual loading phase as it was discussed

before, some room can be left for an additional ULD, some container can be repacked

to carry more items or even swapped for a more rewarding one thus improving the

initially thought solution. These operations obviously take time and it may not be

possible to replan or rearrange the ULDs in the aircraft in order to obtain a better

solution. The scenario approach theory will be exploited to evaluate the probability of

improving the original solution if the operators wait to see if more urgent or rewarding

(from an economical point of view) shipment comes by.

6.1 Linear programming modeling

The decision variables xi for this problem are the quantities in kg of every different good

to be carried, which has a value coefficient ci that represents how much the freight com-

pany is paid for carrying a certain quantity of the specified ware. Specifically, more

urgent shipments may be paid more in order to arrive on time.

Each xi has a lower bound set to 0 (good not shipped) and an upper bound set by its

estimated demand (by the customers of the transportation company) in order to avoid

shipping excessive quantities of a merch that would remain unsold.

Finally, the employed cargo aircraft has maximum weight (W) and volume (V) capac-

ities that set limits not only on the sum of all the xi but also on the average density of

the shipment. Most of the times the two constraints are not both active, so an equiva-

lent problem with only equality coupling constraint would be usually not feasible.

56

In conclusion, the linear problem reads:

max
xi

∑N
i=1(c

i)Txi

s.t.
∑N

i=1 x
i ≤ W∑N

i=1 a
ixi ≤ V

0 ≤ xi ≤ di i = 1, ..., N,

(79)

where ai is the density of xi and di its estimated demand. The problem in (79)

is exactly of the type of P2 introduced in Chapter 4. In the current setup, [1, ai]T

corresponds to Ai in P2 while b is matched by [W,V]T .

6.2 Solution stability evaluation

An air freight company has received an initial batch of requests from customers and

has planned the optimal arrangement of these initial items on an aircraft. However

after the airplane has been loaded some late items from other customers arrive. Often

times there is still room left in the aircraft after the loading procedure or it can be

created anyway by rearranging items inside the ULDs or even discarding some, and

shipping them on another plane departing later, if the late ones are more profitable. In

all of these cases, waiting for the new items to arrive and reloading the aircraft takes

additional time that can surely cause a delay and requires extra work from the workers

that ultimately result in more costs for the company but it may be worth waiting for

more items if they guarantee an increased profit.

The Wait and judge scenario approach theory provides a means of knowing beforehand

if waiting for new goods can make up for the costs of rearranging the items already

in the aircraft by giving an upper bound for the probability of changing the initial

solution. In particular, if such upper bound is high, the company will be eager to wait

for new items to come since they have an high probability of improving the original

arrangement.

57

Consider problem (79) where initially only N goods are taken into account:

max
xi

∑N
i=1(c

i)Txi

s.t.
∑N

i=1 x
i ≤ W∑N

i=1 a
ixi ≤ V

0 ≤ xi ≤ di i = 1, ..., N

(80)

Let us call ts solution x∗. Once again these N are assumed to be independently observed

from a probability distribution that represents the entire variety of goods. Waiting for

new items to arrive can be seen as extracting new goods independently from such

distribution.

When a new agent y is added, the problem becomes:

max
xi,y

∑N
i=1(c

i)Txi + y

s.t.
∑N

i=1 x
i + y ≤ W∑N

i=1 a
ixi + ayy ≤ V

0 ≤ xi ≤ di i = 1, ..., N

0 ≤ y ≤ dy,

(81)

By calling x?+ the optimal solution of (81), the stability index of x∗, V (x∗) is defined

as:

V (x∗) = P
{
δy = (cy, Ay, dy) ∈ ∆ : x?+ 6= (x∗, 0)

}
, (82)

(82) defines the probability that the newly arrived item does not improve the initial

solution found on N agents.

Recalling the main result of Chapter 4, the stability index of x∗ should also be bounded

as follows:

PN
{

(δ1, . . . , δN) ∈ ∆N : V (x∗)<ε(s∗)
}
≥ 1− β, (83)

where s∗ denotes the number of support agents of x∗ and β ∈ (0, 1), ε ∈ (0, 1) and the

collection (δ1, . . . , δN) refers to the initial N agents.

58

An high V (x∗) will act as an incentive to wait for more items to arrive since it means it

is more likely to obtain an improvement. As said before in Chapter5, an high s∗ means

high probability to improve the original solution x∗ corresponding to a situation where

the airplane is filled with a good portion of the initial N goods, even suboptimal ones

in order to attain full capacity.

6.3 Simulation setup and numerical results

Following the same reasoning as in section 5.3, the Wait-and-judge scenario approach

theory will be used in order to assess the probability of x∗ changing upon the arrival of

y, validating the results of chapter 4. In a similar fashion, after solving (79), M = 50N

new goods were considered and tested one by one, retrieving an empirical estimate of

the probability of solution change by dividing the number of times the solution changed

by M .

This procedure was repeated for 100 times obtaining a vector of 100 probabilities, each

one associated with one of the 100 initial solutions and their number of support agents.

The probabilities were then plot on a graph to verify they were under the theoretical

bound ε(k), function of the number of support agents of the original solution which is

equivalent to the number of agents with a value different from zero out of the N initial

ones.

The simulation parameters are similar to the ones in 5.3 for the previous example with

some more to be taken into account:

� N number of initial agents or items (extractions);

� M number of subsequent extractions for empirical probability of violation evalu-

ation, fixed to 50N ;

� Dmin and Dmax which are the minimum demand and maximum demand for the

goods. The actual bounds di are extracted from a uniform distribution ranging

between those two values;

59

� W the aircraft maximum weight capacity;

� V the aircraft maximum volume capacity;

� β confidence coefficient for computing the theoretical bound ε(k), always fixed to

10−7;

� Cmin and Cmax values for the maximum and minimum cost coefficient. The actual

ci are extracted from a uniform distribution ranging between those two values.

� amin and amax values for the maximum and minimum density. The actual ai are

extracted from a uniform distribution ranging between those two values.

For all the simulations, W and V are fixed and equal to the weight and volume capacity

of a Boeing 737 MAX 8 aircraft and the densities of the goods range between 900

(approximately the one of polyurethane plastic) and 7000 (close to that of iron).

The results will be grouped by N , varying Dmin and Dmax to show how the probability

of violation and the number of agents contributing to the initial solution vary as well.

Even though the coupling constraints are inequality ones, the results bear resemblance

to the previous case presented in chapter 5 and it can be noticed again how no points

are to be found above the theoretical threshold as it is to be expected when choosing

confidence β = 10−7.

60

6.4 Results for N = 100

In Figure 10, the procedure presented before is repeated four times, in a similar way to

Chapter 5, for different values of Dmin and Dmax, obtaining four different cloud of points

to visualize the impact the two parameters have on the problem. For high Dmax the

number of agents contributing to the original solution tends to decrease, this represent

a situation where customers want to ship very large quantities of their merchandise and

the cargo company is able to pick the best paying few of them to fill up the airplane.

Vice-versa for low Dmax, the air cargo company will have to rely on a broader variety of

goods to exploit the full capacity of the aircraft. One interesting feature is the spread

of the points across the graphs: the higher the difference between Dmin and Dmax the

broader the distribution of the points.

Increasing the gap between minimum and maximum demand corresponds to increasing

the variance of the uniform distribution from which the upper bounds are sampled,

leading to more diverse outcomes and more different numbers of support agents. This

means having more variety of goods with different prices to choose from, leading to

much more diverse outcomes. As it was expected, all points lie below the theoretical

bound ε(k).

61

0 10 20 30 40 50 60 70 80 90 100

No. support agents [k]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 100 W = 20882 V = 44

Dmin=1000, Dmax=2000

Theoretical bound

Dmin=10, Dmax=500

Dmin=20, Dmax=600

Dmin=40, Dmax=800

Figure 10: IncreasingDmin andDmax results in higher probability of violations alongside
more support constraints

6.5 Results for N = 200

In Figure 11 N was increased to 200, resulting in lower probability of solution change

per same number of contributing agents, since observing a larger sample from the start

leads to lower the probability of seeing a better good later on. Again the procedure was

repeated different times, in this case more clouds of points were plotted showing that

the number of agents that contribute to the original solution roughly stays the same as

in Figure 8 (in the range 0-100).

62

0 20 40 60 80 100 120 140 160 180 200

No. support agents [k]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 200 W = 20882 V = 44

Dmin=1000, Dmax=2000

Theoretical bound

Dmin=10, Dmax=250

Dmin=40,Dmax=750

Dmin=50, Dmax=550

Dmin=100, Dmax=300

Figure 11

6.6 Results for N = 100, very small Dmax

Figure 12 shows what happens when the upper bounds for the decision variables are

too strict and no coupling constraint is active at the original solution.

This results in a probability of solution change of 1, since a newly arrived agent obtains

a value different from zero but also the previous values for the original agents do not

change. In other words the new solution called x?+ = (x∗, y) where x∗ represent the

original solution with N agents and y a nonzero value for the newly arrived agent.

This case may represent an error in the original planning phase in which the volume

or weight capacities of the aircraft were misinterpreted or a situation where very few

requests are received and the company may decide to delay the flight in order to use

up all the space in the cargo aircraft.

63

0 10 20 30 40 50 60 70 80 90 100

No. support agents [k]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 100 W = 20882 V = 44

Dmin=10, Dmax=100

Theoretical bound

Dmin=10, Dmax=400

Figure 12: In this cases, Dmax was too small to activate one of the two coupling con-
straints, so adding a new agent brings a change to the original solution almost surely
with probability one. Results withDmax = 100 are covered by the ones withDmax = 400
because the points are all concentrated in (100,1).

64

6.7 Results for N = 100, Normal distribution

As in Chapter 5, a simulation was dedicated to demonstrate that the scenario theory

introduced in Chapter 3 and extended for this type of problems in Chapter 4 holds

irrespectively of the distribution the agents are observed from. The results in Figure

13 show that indeed the Wait and judge scenario approach theory is valid indepen-

dently from the probability distribution the agents are sampled from. In a real life

situation, this means that the air cargo company can simply apply the result derived

from the number of support agents without having information on the population of

the items. Similar considerations to section 6.3 can be made with respect to increasing

or decreasing Dmax, Dmin and their difference.

0 10 20 30 40 50 60 70 80 90 100

No. support agents [k]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

 o
f

s
o

lu
ti
o

n
 c

h
a

n
g

e

Empirical probability of solution change vs upper bound, N = 100 W = 20882 V = 44

Dmin=1000,Dmax=2000

Theoretical bound

Dmin=40,Dmax=800

Dmin=20,Dmax=600

Figure 13: Here the di are extracted from a chopped normal distribution. The results
are almost identical to the previous case in which a uniform distribution was used.

65

7 Conclusions

In this research work, methods for assessing the probability of improving the solution of

resource allocation problems were presented. In particular, the type of problems treated

in this thesis were linear programs where some kind of resource was to be shared among

different users, or agents in order to minimize or maximize a cost that depended on

coefficients associated to the agents themselves. These problems involve a finite number

of agents observed from a population from which however more agents can be extracted.

Observing a new agent different from the initial ones and adding it to the problem may

bring an improvement in the value of the cost function, or it may not. Moreover, the

act of searching for a new agent is usually a demanding and time consuming operation

and for this reason assessing the probability of improving the initial solution, called

stability index, upon finding a new agent is important. To this purpose, results from

both the classic and the wait-and-judge scenario theory were employed in order to give

suitable upper bounds for the stability index of a solution.

At first, in Chapter 2, linear problems in standard form where the whole resource must

be allocated and there are no limits to the quantity of that resource assigned to each

agent are considered. For this type of problems, a characterization of the stability index

was already given [5] through the classic scenario approach theory providing an a priori

upper bound to such probability of solution change based only on the number of initial

agents and a user chosen parameter.

Then, in Chapter 3, the main contribution of the thesis is presented. After acknowl-

edging that the previous results provided by the classic scenario approach theory are

not valid for resource sharing problems with upper limits on the quantity of resource

allocated to each agent, a characterization of the stability index in the new context is

provided using the wait-and-judge scenario approach theory. This more recent develop-

ment is employed in order to obtain an a posteriori upper bound to the stability index,

meaning that the initial problem has to be solved in order to observe a quantity that

is used to compute the bound to the probability of solution change.

66

In Chapter 4, problems with upper limits on each agent and inequality constraints on

the shared resource, instead of equality constraints, were treated. Also in this case, the

results of the classic scenario theory were proved to be not suitable and a characteri-

zation of the stability index was provided by resorting to the wait-and judge variant.

Moreover it was proved that this kind of problems are fundamentally equivalent to the

one proposed in Chapter 3, obtaining similar results.

The theoretical contributions of Chapters 3 and 4 were then validated in Chapters 5

and 6 with two numerical examples. The example in Chapter 5 was about the optimal

allocation of a requested load among different power producers and focused on problems

with upper limits on the agent decision vectors as in the framework of Chapter 3. The

compliance of the stability index with the bound provided in Chapter 3 was empirically

verified by solving a problem with randomly generated agents. In Chapter 6 an aircraft

loading problem was introduced, with inequality constraints on the available resources

as in Chapter 4 and a similar procedure for evaluating the correctness of the theoretical

bound was adopted as in Chapter 5. The results of both simulations were satisfying

and in line with what was predicted in the theory chapters.

7.1 Future work

An interesting direction future works on the subject could take would be providing

a characterization of the stability index for the optimal solutions of nonlinear pro-

gramming problems (NLPs). The differences between the linear and nonlinear duality

theories mean that many of the properties used in this research may not be valid for

nonlinear problems. In particular it is difficult to define appropriate observable quanti-

ties (as s∗) for the characterization of the stability index, since how much the solution

of a nonlinear problem can improve depends on the specific problem at hand.

67

A Scenario approach

Let us consider a generic problem [2]:

min
x∈χ⊆Rd

cTx

s.t. x ∈ χδ, δ ∈ ∆

(84)

Where d denotes the number of decision variables, χ, χδ(i) represent a convex and

closed sets and δ is an uncertain parameter. Problem (84) is affected by uncertainty on

constraints and usually ∆ has infinite cardinality.

The scenario approach theory allows to deal with the uncertainty in (84) guaranteeing

that the solution of the problem has an high probability of being feasible fro all the

constraints in ∆ while keeping the computational cost low unlike other more conserva-

tive techniques.

Consider now problem (84) in which only N randomly and independently extracted

constraints are enforced:

min
x∈χ⊆Rd

cTx

s.t. x ∈
⋂
χδ(i)

i = 1, . . . , N

(85)

Assumption A.1. Problem (85) is always feasible regardless of the specific constraints

extracted δ(1), . . . , δ(N) and its minimizer is unique.

Problem (85), also called scenario program, has a finite number of constraints (N) and

because of this it can be solved with a lower computational effort than (84).

The solution to (85) however cannot satisfy all of the constraints in ∆ but hopefully

a large portion of them. The size of this portion is assessed in a probabilistic way,

introducing the definition of probability of violation:

Definition A.1. - Violation probability [2] The violation probability of a given

x ∈ χ is defined as V (x) = P{δ ∈ ∆ : x /∈ χδ}.

68

By denoting with x∗N the solution of (85), to make sure that x∗N satisfies a large portion

of ∆, V (x∗N) should be under a desired threshold ε but since V (x∗N) is a random variable

itself defined over a set of N independent extractions δ(1), . . . , δ(N) the overall product

probability PN{V (x∗N) > ε} should be bounded. In particular [2] states that:

PN{V (x∗N) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i (86)

(86) holds for all classes of convex problems but it is tight (holds with =) for a special

class of problems called fully supported problems, that will be defined below.

Definition A.2. -Support constraints [2] A constraint of a scenario program is a

support constraint if its removal changes the solution. Moreover, the number of support

constraints is always less than or equal than d, the size of x.

Definition A.3. -Fully supported problem [2] A scenario problem is a fully sup-

ported problem if the number of support constraints is equal exactly to d.

Result (86) is presented by theorem 2.4 of [2], along with another statement valid only

for fully supported problems :

PN{V (x∗N) > ε} =
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i (87)

Typically, coefficients ε ∈ (0, 1) and β ∈ (0, 1) (confidence factor), are chosen in order

to get the required number of extractions N needed to ensure PN{V (x∗N) > ε} ≤ β.

These coefficients must satisfy :

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i = β. (88)

69

A.0.1 Scenario approach with constraint removal

After extracting N constraints, it may be desirable ot remove some of them in order to

improve the value of the cost function. There exist different ways to remove constraints

that can be either optimal or heuristic and while the value of the cost function may

differ depending on which strategy is adopted, the bound on the probability of violation

that will be provided holds regardlessly.

By denoting with θ∗k any solution to (85) that violates k constraints, the following result

from theorem 2.1 of [13] guarantees that:

PN{V (θ∗k) > ε} ≤
(
k + d− 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1− ε)N−i. (89)

It should be noted that removing k constraints is not the same thing as violating k

constraints, since at a later stage in the removal procedure the violated constraints

may be satisfied once again. In order to apply the result (89), the constraints that turn

out to be satisfied later on will be reintroduced into the problem and other ones will

be removed to have exactly k violated constraints in the end.

Result (89) can be used to compute the largest k, after fixing β, ε and N , such that the

right hand side of (89) is smaller than β. This allows to select the largest number of

constraints that can be removed while respecting the bounds ε and β on the violation

probability.

A.1 Wait-and-judge scenario approach

The wait-and-judge scenario theory enables for an a posteriori evaluation of the prob-

ability of the solution of a random program Pm changing upon the arrival of a new

agent.

The notion of support constraint is used in the wait-and-judge scenario approach to

provide a stricter bound for the probability of violation than the standard scenario

approach theory, which is useful in the case of problems where the number of support

70

constraints is less than the number of decision variables (non fully supported problems).

The result provided is considered a posteriori because in order to compute the violation

bound the solution to (85) has to be computed first in order to evaluate the number of

support constraints, while the standard scenario approach gives a result valid regardless

of such information, which is more conservative.

Under the assumptions [4] that the problem admits a unique minimizer (if necessary,

recurring to a tie-break rule) and that this minimizer remains unchanged upon removal

of constraints that are not support constraints, the new bound ε(k) can be introduced

as resulting from [4].

Fixing β ∈ (0, 1) (confidence), for any k = 0, 1, . . . , d , there exists one and only solution

t(k) ∈ (0, 1) to the equation:

β

N + 1

N∑
m=k

(
m

k

)
tm−k −

(
N

k

)
tN−k = 0 (90)

where N is the number of initial extractions of constraints. By letting ε(k) = 1− t(k),

under the previous two assumptions it holds that:

PN{V (x∗N) > ε(s∗N)} ≤ β (91)

where x∗N denotes the solution of the initial problem with N extractions, s∗N the num-

ber of support constraints that characterize x∗N , V (x∗N) the probability of violation of

solution x∗N and PN is a probability product assuming the N sampled constraints are

i.i.d..

ε(k) can be extrapolated from (90) through a bisection algorithm.

Similarly to section (A.0.1) a situation where one is allowed to violate constraints in

order to improve the cost value can be evaluated as in [8]. Consider a variant of problem

71

(84):

min
x∈χ,

ξi≥0,i=1,...,N

cTx+ ρ
∑N

i=1 ξi

s.t. f(x, δi) ≤ ξi, i = 1, . . . , N,

(92)

where δi, i = 1, . . . , N is an independent random sample from (∆,F ,P), f(x, δi) is

a convex function for any given δ (referring to the previous notation for (84)) and

χδ = {x : f(x, δ) ≤ 0}. The function f is used to express the regret for violating a

constraint: for a given δ, the regret at x is f(x, δ). If ξi > 0, the constraint f(x.δi) ≤ 0

is relaxed to f(x, δi) ≤ ξi. The probability of violation for (92) can then be defined as

V (x∗N) = P{δ ∈ ∆ : f(x, δ) > 0}, (93)

where x∗N is the optimal solution of (92). This time the number of support constraints

s∗N associated with x∗N will be the number of δi for which f(x∗N , δi) ≥ 0 and similar

conclusions as for (85) can be drawn [8].

With respect to the problems treated in this research, P0,1,2 and D0,1,2 , the above

definition (A.2) applies to D0,1,2 since the theory is defined on problems of that form.

The number of constraints of D0,1,2 directly corresponds to the number of decision

variables in P0,1,2, so the support constraints are linked to the decision variables of

P0,1,2 that are different from zero in the solution. Removing an agent that contributed

to the solution would indeed result in a change. Moreover in the two problems treated

in chapters 5 and 6, d = N , since the agents (decision variables) for the initial problem

are extracted N times.

A.2 MATLAB code

Here the MATLAB code for running the simulations shown in Chapter 5 and 6 is

provided. Note that this code uses IBM ILOG CPLEX to solve the linear programming

problems but it can be replaced by MATLAB linprog if needed without modifying the

code syntax. Moreover the MATLAB Parallel Computing Toolbox is needed when

72

calling parfor. By changing all instances of parfor to for the toolbox is no longer

needed, at the cost of computational speed.

A.2.1 Economic dispatch problem

The function scenario main.m is used to run the complete simulation, calling all the

other auxiliary functions. Its inputs are:

� N , number of initial extractions;

� beta the confidence parameter;

� L the requested load;

� Pmass the maximum power limit for the generators which is equivalent to Pmax

in Chapter 5;

� Cmin and Cmax the minimum and maximum values for the cost coefficients;

� Npoints the number of times the empirical stability index has to be evaluated;

� flag a parameter that when set to 1 switches the problem to the chopped normal

distribution case.

1 func t i on Pemp = scenar io main (N, beta , L , Pmass , Cmin ,Cmax, Npoints

, f l a g)

2 t i c

3

4 %% Generators problem

5

6 d=N;

7 Pmin=ze ro s (1 ,N) ;

8 maxslope =5;

9 sigma=ze ro s (1 , Npoints) ;

73

10 Pemp=ze ro s (1 , Npoints) ;

11 f p r i n t f ('Progres s :\n') ;

12 f p r i n t f (['\n' repmat (' . ' , 1 , Npoints) '\n\n']) ;

13

14 pa r f o r g=1: Npoints

15 f p r i n t f ('\b | \n') ;

16 Pmax=abs (round (normrnd (Pmass /2 , 100 , [1 ,N]))) +1;

17 i f f l a g==1

18 end

19 i f f l a g ==0

20 Pmax=randi (Pmass , 1 ,N) ;

21 end

22 C=randi ([Cmin ,Cmax] , 1 ,N) ;

23 Q=randi ([3 , 1 0] , 1 ,N) ;

24

25 [x , s igmaor i , ub , f]= Dispatch so lve improved (N,Q, L , Pmin ,

Pmax,C, maxslope , f l a g , Pmass) ;

26 sigma (1 , g)=s igmaor i ;

27

28 Phat = Monte Carlo (N, ub , x , f , L , maxslope , Pmass , Cmin ,Cmax

, f l ag , Pmass) ;

29 Pemp(1 , g)=Phat ;

30 end

31

32 f i g u r e

33 hold on

34 p lo t (sigma , Pemp, '*')

35 hold on

74

36 p lo t (e p s i l o n (N, d , beta))

37 t i t l e (['Empir ica l p r o b a b i l i t y o f s o l u t i o n change vs upper

bound , N = ' , num2str (N) , ' L = ' , num2str (L)])

38 x l a b e l ('No . support agents [k] ')

39 y l a b e l ('Empir ica l p r o b a b i l i t y o f s o l u t i o n change')

40 toc

41 end

Solve the problem - Dispatch solve improved.m

1 func t i on [x , s igmaor i , ub , f]= Dispatch so lve improved (N,Q, L ,

Pmin ,Pmax,C, maxslope , f l a g , Pmass)

2

3 [S ,Ub,Lmod] =setup2 (N,Q, L , Pmin ,Pmax,C, maxslope , f l a g , Pmass) ;

4

5 Ub=Ub' ;

6 ub=Ub (:) ;

7 ub=nonzeros (ub) ;

8 lb=ze ro s (s i z e (ub)) ;

9 Aeq=ones (s i z e (ub)) ' ;

10 Beq=[Lmod] ;

11 Aineq = [] ;

12 Bineq = [] ;

13

14 S2=S ' ;

15 S2=S2 (:) ;

16 f=S2 ;

17 f=nonzeros (f) ;

18

19 [x , f v a l] = c p l e x lp (f , Aineq , Bineq , Aeq , Beq , lb , ub) ;

75

20 f o r a=1:N

21 Ptot (1 , a) =0;

22 f o r b=1:Q(1 , a)

23 Ptot (1 , a)=Ptot (1 , a)+x (b , 1) ;

24 end

25 end

26

27 f o r t =1: l ength (Ptot)

28 Ptot (1 , t)=Ptot (1 , t)+Pmin(1 , t) ;

29 end

30

31 s igmaor i =0;

32

33 o=ze ro s (1 ,100) ;

34 o (1 , 1) =1;

35

36 f o r t =2: l ength (Q)

37 o (1 , t)=o (1 , t−1)+Q(1 , t−1) ;

38 end

39

40 f o r t =1: l ength (o)

41 i f x (o (1 , t) , 1) ˜= 0

42 s igmaor i=s igmaor i +1;

43 end

44 end

45

46 end

Variables setup - setup2.m

76

1 func t i on [S ,Ub,Lmod] = setup2 (N,Q, L , Pmin ,Pmax,C, maxslope , f l a g ,

Pmass)

2

3 P=ze ro s (N, max(Q(1 , :))) ;

4 S=ze ro s (N, max(Q(1 , :))) ;

5

6 i f f l a g==0

7 f o r a=1:N

8 f o r b=1:Q(1 , a)

9 P(a , b)=(Pmax(1 , a)−Pmin(1 , a))* rand (1 , 1)+Pmin(1 , a) ;

10 S(a , b)=maxslope* rand (1 , 1) ;

11 end

12 P(a , :)=s o r t (P(a , :)) ;

13 S(a , :)=s o r t (S(a , :)) ;

14 end

15 end

16

17 i f f l a g == 1

18

19 f o r a=1:N

20 f o r b=1:Q(1 , a)

21 px=Pmin(1 , a) :Pmax(1 , a) ;

22 mi=(Pmax(1 , a)−Pmin(1 , a)) /2 ;

23 dev=10;

24 p=1./(dev* s q r t (2* pi))*exp ((−(px−mi) . ˆ 2) . / (2* dev ˆ2)) ;

25 P(a , b)=randpdf (p , px , [1 , 1]) ;

26 px =0:1 ;

27 S(a , b)=maxslope*normrnd (1 / 2 , 1 0 , [1 , 1]) ;

77

28 end

29 P(a , :)=s o r t (P(a , :)) ;

30 S(a , :)=s o r t (S(a , :)) ;

31 end

32

33 end

34

35 c = s i z e (P, 1) ;

36 [˜ , F] = s o r t (P == 0 , 2) ;

37 P = P((1 : c) . ' + (F − 1) * c) ;

38

39 c = s i z e (S , 1) ;

40 [˜ , F] = s o r t (S == 0 , 2) ;

41 S = S ((1 : c) . ' + (F − 1) * c) ;

42

43 Ub=ze ro s (N, max(Q(1 , :))) ;

44 f o r a=1:N

45 Ub(a , 1)=P(a , 1)−Pmin(1 , a) ;

46 f o r b=2:(Q(1 , a)−1)

47 Ub(a , b)=P(a , b)−P(a , b−1) ;

48 end

49 Ub(a ,Q(1 , a))=Pmax(1 , a)−P(a ,Q(1 , a)−1) ;

50 end

51

52 f o r g=1: l ength (Pmin)

53 L=L−Pmin(1 , g) ;

54 end

55 Lmod=L ;

78

56 end

Stability index empirical evaluation - Monte Carlo.m

1 func t i on [Phat]=Monte Carlo (N, ub , x , f , L , maxslope ,Pmax, Cmin ,Cmax

, f l ag , Pmass)

2 M=50*N;

3

4 Aineq = [] ;

5 Bineq = [] ;

6 Beq=[L] ;

7 Pmaxnew=randi (Pmax, 1 ,M) ;

8 Cnew=randi ([Cmin ,Cmax] , 1 ,M) ;

9 Qnew=randi ([3 , 1 0] , 1 ,M) ;

10 Pmin=ze ro s (1 ,M) ;

11

12 [Snew , Ubnew ,Lmod] = setup2 (M, Qnew, L , Pmin , Pmaxnew , Cnew ,

maxslope , f l a g , Pmass) ;

13 pa r f o r j =1:M

14 ubmod=[ub ; nonzeros (Ubnew(j , :) ')] ;

15 fnew=[f ; nonzeros (Snew(j , :))] ;

16 lbnew=ze ro s (s i z e (ubmod)) ;

17 Aeqnew=ones (s i z e (ubmod)) ' ;

18 xnew = cp l ex l p (fnew , Aineq , Bineq , Aeqnew , Beq , lbnew , ubmod

) ;

19

20 i f not (i s e q u a l ([z e r o s (Qnew(1 , j) , 1)] , xnew(end−(Qnew(1 , j

)−1) : end , 1)))

21 v i o l (1 , j) =1;

22 end

79

23 end

24 n v i o l=sum(v i o l) ;

25 Phat=n v i o l /M;

26

27 end

Theoretical bound - epsilon.m

1 func t i on out = e p s i l o n (d ,N, bet)

2 out = ze ro s (d+1 ,1) ;

3 f o r k = 0 : d

4 m = [k : 1 :N] ;

5 aux1 = sum(t r i u (l og (ones (N−k+1 ,1)*m) ,1) ,2) ;

6 aux2 = sum(t r i u (l og (ones (N−k+1 ,1) *(m−k)) ,1) , 2) ;

7 c o e f f s = aux2−aux1 ;

8 t1 = 0 ;

9 t2 = 1 ;

10 whi l e t2−t1 > 1e−10

11 t = (t1+t2) /2 ;

12 va l = 1 − bet /(N+1)*sum(exp (c o e f f s −(N−m')* l og (t))) ;

13 i f va l >= 0

14 t2 = t ;

15

16 e l s e

17 t1 = t ;

18 end

19 end

20 out (k+1) = 1−t1 ;

21 end

80

Optional graphical prompt - gui3.m Running this function gives a graphical

prompt to make running the simulation easier. It comes with preset values that can be

modified.

1 func t i on gui3

2 prompt = {'Number o f agents (N) : ' , 'Confidence (beta) : ' , 'Goal (

L) : ' , 'Max power (Pmass) : ' , 'Max cos t (Cmax) : ' , 'Min cos t (Cmin

) : ' , 'Number o f po in t s on graph (Npoints) ' , 'Gaussian f l a g ' } ;

3 d l g t i t l e = ' Input' ;

4 dims = [1 3 5] ;

5 de f input = {'100' , '1e−6' , '5000' , '400' , '60' , '20' , '1000' , '0' } ;

6 answer = inputd lg (prompt , d l g t i t l e , dims , de f input) %c e l l array

7

8 Pemp=scenar io main (str2num (answer {1}) , str2num (answer {2}) ,

str2num (answer {3}) , str2num (answer {4}) , str2num (answer {6}) ,

str2num (answer {5}) , str2num (answer {7}) , str2num (answer {8}))

9 end

A.2.2 Air cargo loading problem

The function scenario main2.m is used to run the complete simulation, calling all the

other auxiliary functions. Its inputs are:

� N , number of initial extractions;

� beta the confidence parameter;

� W the weight capacity of the plane;

� V the volume capacity of the plane;

� Umin and Umax the minimum and maximum values for the cost coefficients;

81

� Dmin and Dmax the minimum and maximum values for the distribution from

which the upper bounds are extracted;

� Npoints the number of times the empirical stability index has to be evaluated;

� flag a parameter that when set to 1 switches the problem to the chopped normal

distribution case.

1 func t i on x= scenar io main2 (N, beta ,W,V,Umax, Umin , Dmin ,Dmax,

Npoints , f l a g)

2 %% Fl i gh t weight capac i ty problem

3 d=N;

4 ngoods=N;

5 sigma=ze ro s (1 , Npoints) ;

6 Pemp=ze ro s (1 , Npoints) ;

7 f p r i n t f ('Progres s :\n') ;

8 f p r i n t f (['\n' repmat (' . ' , 1 , Npoints) '\n\n']) ;

9 pa r f o r g=1: Npoints

10 f p r i n t f ('\b | \n') ;

11

12 [x , s igmaor i , f , Values , Aeq , Beq , Aineq , Bineq , Wei , lb , ub]=

f l i g h t s o l v e (N, beta ,W,V,Umax, Umin , Dmin ,Dmax, ngoods ,

f l a g) ;

13 sigma (1 , g)=s igmaor i ;

14

15 Phat = Monte Carlo2 (N, Values , x , f , Aeq , Beq , Aineq , Bineq ,

Wei , lb , ub , Dmin ,Dmax, Umin ,Umax, ngoods , f l a g) ;

16 Pemp(1 , g)=Phat ;

17 end

18 f i g u r e

82

19 hold on

20 p lo t (sigma , Pemp, '*')

21 hold on

22 p lo t (e p s i l o n (d ,N, beta))

23 t i t l e (['Empir ica l p r o b a b i l i t y o f s o l u t i o n change vs upper

bound , N = ' , num2str (N) , ' W = ' , num2str (W) , ' V = ' , num2str (V

) , ' Dmin = ' , num2str (Dmin) , ' Dmax = ' , num2str (Dmax)])

24 x l a b e l ('No . support agents [k] ')

25 y l a b e l ('Empir ica l p r o b a b i l i t y o f s o l u t i o n change')

26

27 end

Solve the problem - flightsolve.m

1 func t i on [x , s igmaor i , f , Values , Aeq , Beq , Aineq , Bineq ,W, lb , ub ,

e x i t f l a g]= f l i g h t s o l v e (N, beta ,W,V,Umax, Umin , Dmin ,Dmax, ngoods ,

f l a g)

2

3 Values=randi ([Umin ,Umax] , 1 , ngoods) ;

4 minDemand=randi ([Dmin ,Dmax] , 1 , ngoods) ;

5 i f f l a g == 1

6 px=Dmin :Dmax;

7 mi=(Dmax−Dmin) /2 ;

8 dev =10000;

9 p=1./(dev* s q r t (2* pi))*exp ((−(px−mi) . ˆ 2) . / (2* dev ˆ2)) ;

10 minDemand=round (randpdf (p , px , [ngoods , 1]) ') ;

11

12 alpha=rand (1 , ngoods) ;

13 Values=alpha .*minDemand ;

14 end

83

15

16 ub=minDemand' ;

17 lb=ze ro s (ngoods , 1) ;

18 D e n s i t i e s=randi ([9 5 0 , 7 0 0 0] , 1 , ngoods) ;

19 A=ones (1 , ngoods) ;

20 B=(1./ D e n s i t i e s) ;

21 Aeq = [] ;

22 Beq = [] ;

23 Aineq=[A;B] ;

24 Bineq=[W;V] ;

25 f=−Values ' ;

26 [x , f va l , e x i t f l a g] = cp l ex l p (f , Aineq , Bineq , Aeq , Beq , lb , ub) ;

27

28 i f e x i t f l a g ˜= 1

29 x = [] ;

30 re turn

31 end

32

33 s igmaor i =0;

34 f o r t =1: l ength (x)

35 i f x (t , 1) ˜= 0

36 s igmaor i=s igmaor i +1;

37 end

38 end

39

40 end

Stability index empirical evaluation - Monte Carlo2.m

1 func t i on [Phat]=Monte Carlo2 (N, Values , x , f , Aeq , Beq , Aineq , Bineq ,

84

W, lb , ub , Dmin ,Dmax, Umin ,Umax, ngoods , f l a g)

2

3 M=50*N;

4

5 v i o l=ze ro s (1 ,M) ;

6 Aeq = [] ;

7 Beq = [] ;

8 pa r f o r j =1:M

9 Demandnew=randi ([Dmin ,Dmax]) ;

10 Value=randi ([Umin ,Umax]) ;

11

12 i f f l a g == 1

13 px=Dmin :Dmax;

14 mi=(Dmax−Dmin) /2 ;

15 dev =1000;

16 p=1./(dev* s q r t (2* pi))*exp ((−(px−mi) . ˆ 2) . / (2* dev ˆ2)) ;

17 Demandnew=round (randpdf (p , px , [1 , 1]) ') ;

18 alpha=rand (1) ;

19 Value=alpha .*Demandnew ;

20 end

21

22 Density=1/randi ([9 5 0 , 7 0 0 0] , 1) ;

23 Anew=[Aineq [1 ; Density]] ;

24 fnew=[f ;−Value] ;

25 ubnew=[ub ; Demandnew] ;

26 lbnew=[lb ; 0] ;

27 xnew = cp l ex l p (fnew , Anew , Bineq , Aeq , Beq , lbnew , ubnew) ;

28

85

29 i f not (i s e q u a l (0 , xnew(end)))

30 v i o l (1 , j) =1;

31

32 end

33

34 end

35 n v i o l=sum(v i o l) ;

36 Phat=n v i o l /M;

37 end

Theoretical bound - epsilon.m

1 func t i on out = e p s i l o n (d ,N, bet)

2 out = ze ro s (d+1 ,1) ;

3 f o r k = 0 : d

4 m = [k : 1 :N] ;

5 aux1 = sum(t r i u (l og (ones (N−k+1 ,1)*m) ,1) ,2) ;

6 aux2 = sum(t r i u (l og (ones (N−k+1 ,1) *(m−k)) ,1) , 2) ;

7 c o e f f s = aux2−aux1 ;

8 t1 = 0 ;

9 t2 = 1 ;

10 whi l e t2−t1 > 1e−10

11 t = (t1+t2) /2 ;

12 va l = 1 − bet /(N+1)*sum(exp (c o e f f s −(N−m')* l og (t))) ;

13 i f va l >= 0

14 t2 = t ;

15

16 e l s e

17 t1 = t ;

18 end

86

19 end

20 out (k+1) = 1−t1 ;

21 end

Optional graphical prompt - gui2.m Running this function gives a graphical

prompt to make running the simulation easier. It comes with preset values that can be

modified.

1 func t i on gui2

2

3 prompt = {'Number o f e x t r a c t i o n s (N) : ' , 'Confidence (beta) : ' , '

Weight capac i ty (W) : ' , 'Volume capac i ty (V) : ' , 'Max value (Umax)

: ' , 'Min value (Umin) : ' , 'Min demand (Dmin) : ' , 'Max demand (

Dmax) : ' , 'Number o f po in t s on graph (Npoints) ' , 'Switch to

chopped gauss ian (1 f o r yes) ' } ;

4 d l g t i t l e = ' Input' ;

5 dims = [1 3 5] ;

6 de f input = {'100' , '1e−6' , '20882' , '44' , '60' , '20' , '1000' , '2000' ,

'1000' , '0' } ; %p o s s i b l y lower Dmax

7 answer = inputd lg (prompt , d l g t i t l e , dims , de f input) %c e l l array

8

9 scenar io main2 (str2num (answer {1}) , str2num (answer {2}) , str2num (

answer {3}) , str2num (answer {4}) , str2num (answer {5}) , str2num (

answer {6}) , str2num (answer {7}) , str2num (answer {8}) , str2num (

answer {9}) , str2num (answer {10}))

10

11 end

87

References

[1] G. Calafiore and M. Campi. The scenario approach to robust control design. IEEE

Transactions on Automatic Control, 51(5):742–753, 2006.

[2] M. Campi and S. Garatti. The exact feasibility of randomized solutions of uncertain

convex programs. SIAM Journal on Optimization, 19(3):1211–1230, 2008.

[3] M. Campi, S. Garatti, and M. Prandini. The scenario approach for systems and

control design. Annual Reviews in Control, 33(2):149 – 157, 2009.

[4] M. C. Campi and S. Garatti. Wait-and-judge scenario optimization. Mathematical

Programming, 167(1):155–189, January 2018.

[5] Alessandro Falsone, Kostas Margellos, Simone Garatti, and Maria Prandini. Lin-

ear programs for resource sharing among heterogeneous agents: The effect of ran-

dom agent arrivals. 2017 IEEE 56th Annual Conference on Decision and Control

(CDC), pages 3853–3858, 2017.

[6] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1st edition, 1997.

[7] David Luenberger and Yinyu Ye. Linear and Nonlinear Programming, volume 67.

01 1984.

[8] Simone Garatti and Marco Campi. Risk and complexity in scenario optimization.

Mathematical Programming, 11 2019.

[9] Kurt Eisemann. The primal-dual method for bounded variables. Operations Re-

search, 12(1):110–121, 1964.

[10] Ahsan Ashfaq and Akif Khan. Optimization of economic load dispatch problem

by linear programming modified methodology. 05 2014.

[11] Felix Brandt. The Air Cargo Load Planning Problem. PhD thesis, 09 2017.

88

[12] Kuancheng Huang and Heng Lu. A linear programming-based method for the

network revenue management problem of air cargo. Transportation Research Part

C: Emerging Technologies, 7, 05 2015.

[13] Marco Campi and Simone Garatti. A sampling-and-discarding approach to chance-

constrained optimization: Feasibility and optimality. Journal of Optimization The-

ory and Applications, 148:257–280, 02 2011.

89

