
Politecnico di Milano
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Enhanced particle filter with environment
reconstruction for human pose estimation in

human-robot interaction

Supervisor: Prof. Paolo Rocco
Co-supervisors: Ing. Costanza Messeri

Master Thesis dissertation of:
Lorenzo Rebecchi Id. 893763

Academic year 2018-2019





Contents

1 General Context 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis purpose . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis achievements . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . 10

2 Human Pose Estimation: State of the Art 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Human model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Motion model . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Occlusion Detection . . . . . . . . . . . . . . . . 21

2.4 Analysis and critical issues . . . . . . . . . . . . . . . . . 23

2.4.1 Proposed solutions . . . . . . . . . . . . . . . . . 24

3 Setup 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 RGB-D sensor: Kinect v2.0 . . . . . . . . . . . . 26

3.2.2 MR headset: HoloLens v1.0 . . . . . . . . . . . . 28

3.3 Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Acquisition of the Volumetric Data 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Environment Reconstruction . . . . . . . . . . . . . . . . 34

i



4.2.1 Time of Flight sensors . . . . . . . . . . . . . . . 35

4.2.2 Spatial Mapping . . . . . . . . . . . . . . . . . . 36

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 39

5 Sensor Fusion 41

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Reference Systems Generation . . . . . . . . . . . . . . . 41

5.2.1 Fiducial markers: ChArUco . . . . . . . . . . . . 44

5.2.2 Perspective ’n’ Point problem . . . . . . . . . . . 46

5.3 Implementation of the Mixed Reality ChArUco detection
app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Enhanced Constrained Particle Filter 51

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Virtualized Particle Filter framework . . . . . . . . . . . 51

6.2.1 Human model . . . . . . . . . . . . . . . . . . . . 52

6.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Order of the particle tests . . . . . . . . . . . . . 60

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . 61

7 Experimental Validation 65

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 ChArUco identification experimental validation . . . . . 65

7.3 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3.2 Evaluation metric . . . . . . . . . . . . . . . . . . 71

7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.4 Error rejection . . . . . . . . . . . . . . . . . . . 75

8 Conclusions 77

ii



List of Figures

2.1 Human model schematics . . . . . . . . . . . . . . . . . . 14

2.2 Joint hierarchy . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Flowchart representing the PF algorithm . . . . . . . . . 17

2.4 RGB-D camera reference frame . . . . . . . . . . . . . . 19

2.5 Skeletal Distance constraint . . . . . . . . . . . . . . . . 20

2.6 Visual example of the occlusion check . . . . . . . . . . . 22

2.7 Example of depth map . . . . . . . . . . . . . . . . . . . 22

3.1 Kinect v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 HoloLens v1 . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Example of building modelling in Unity . . . . . . . . . . 30

3.4 Logo displayed when an app is launched. . . . . . . . . . 30

4.1 Frame taken using HoloLens during the Spatial Mapping
procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 ToF Continuous Wavelength camera example . . . . . . 35

4.3 Example of mesh obtained from spatial mapping represent-
ing the laboratory . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Example of mesh and environment compared . . . . . . . 39

5.1 Positioning of the fiducial marker in the workspace . . . 42

5.2 Overview of the reference systems present in the scene . 43

5.3 Composition of a ChArUco board, merging chessboard
pattern and ArUco markers . . . . . . . . . . . . . . . . 45

5.4 Projection of a point from Cartesian space into image plane.
Image taken from OpenCV’s documentation . . . . . . . 46

6.1 Human arm model and joint variables . . . . . . . . . . . 53

iii



6.2 Human model in Unity, animated using the RGB-D camera. 53

6.3 Sequence in the wrist Joint’s Bounding Volume placement 54

6.4 Joint’s Bounding Volume example . . . . . . . . . . . . . 56

6.5 Particle propagation w/o Collision Detection . . . . . . . 57

6.6 process to which a particle is subject at each time step . 59

6.7 Example of particle tests . . . . . . . . . . . . . . . . . . 60

6.8 Process graph . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 Variance of the ChArUco estimation using HoloLens . . . 67

7.2 Workspace and its mesh representation . . . . . . . . . . 68

7.3 Workstation viewed from the Kinect . . . . . . . . . . . 69

7.4 Occlusions highlighted in the Kinect’s depth map . . . . 70

7.5 Example of confidence ellipsoid . . . . . . . . . . . . . . 72

7.6 Graphical comparison between the algorithms . . . . . . 73

7.7 Boxplot representing the volume of propagation . . . . . 74

7.8 Boxplot representing the estimation error . . . . . . . . . 75

iv



Abstract

Collaborative robotics aims at integrating the accuracy and repeatability
of an industrial robot with the skills and flexibility of a human operator in
performing complex tasks, thus increasing the level of adaptability of the
whole team. Robots designed to work side by side with humans often rely
on vision sensors to acquire knowledge about the surrounding environment
and their human partners, both for safety and for coordination issues.

Therefore, a potential improvement in this field consists in increasing
the accuracy of the human pose estimation. This problem requires to
determine in real time the space occupied by the operator, as well as
his/her movements. This goal clashes with the difficulty of acquiring and
correlating enough data while relying on a single fixed sensor.

The purpose of this thesis is to provide an innovative approach that
improves the human pose estimation procedure, while reducing the associ-
ated uncertainty. To this aim, a constrained version of the Particle Filter
algorithm was created. In fact, the traditional Particle Filter algorithm
was integrated with a detailed virtual model of the real environment where
a human operator and a robot can cooperate. Moreover, a constraint
based on the limits of mobility of the human joints was added.

In this way the estimate of the unknown or uncertain human pose
is allowed to propagate in a well-limited volume, whose boundaries are
given by the geometrical surfaces of the operator’s environment and the
ones due to his/her physical structure.

The user’s environment was reconstructed using the Mixed Reality
device Microsoft HoloLens v1, while the human skeletal poses during the
working activity were acquired with the Microsoft Kinect v2.

To build a unique model able to describe the workspace, these data
were merged using a technique based on the simultaneous pose estimation
of a fiducial marker, a ChArUco board.

The results obtained in a comparative experimental validation in a
realistic industrial scenario showed that the improvements to the algorithm
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reduced both the error and the uncertainty associated to the estimation
procedure, respectively of the 25% and of the 90% on average, with respect
to the original Particle Filter version.
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Sommario

La robotica collaborativa mira a integrare la precisione e ripetibilità
dei robot industriali con l’abilità e la flessibilità di un operatore umano
nell’eseguire compiti complessi, aumentando quindi il livello di adattabilità
del team collaborativo. I robot progettati per lavorare fianco a fianco di
utenti umani fanno spesso affidamento su sensori di visione per acquisire
conoscenza circa l’ambiente circostante e i loro collaboratori, per esigenze
sia di sicurezza che di coordinazione.

Di conseguenza un potenziale miglioramento in questo settore è l’in-
cremento della precisione della stima della posa dell’operatore. Questo
problema richiede di determinare in tempo reale lo spazio occupato dal-
l’utente, cos̀ı come i suoi movimenti. Tale obiettivo tuttavia si scontra
con la difficoltà di ottenere dati sufficienti utilizzando un singolo sensore
in posizione fissa.

Questa tesi mira a fornire un approccio innovativo che migliori il
processo di stima e ne riduca l’incertezza. Per perseguire questo scopo
è stata creata una versione di Particle Filter con dei vincoli aggiuntivi.
Infatti l’algoritmo tradizionale del Particle Filter è stato integrato con un
modello virtuale dettagliato dell’ambiente dove si trovano a collaborare
l’operatore e il robot. E’ stato inoltre aggiunto un vincolo basato sui
limiti di mobilità delle articolazioni umane.

In questo modo ai possibili risultati della stima della posa dell’opera-
tore in situazioni di incertezza è consentita la propagazione in un volume
ben definito, i cui limiti sono dettati dalle superfici dell’ambiente di lavoro
e dalla struttura fisica dell’utente.

La ricostruzione della cella di lavoro è stata effettuata utilizzando un
dispositivo per la Realtà Mista, HoloLens v1 di Microsoft, mentre la posa
dello scheletro dell’operatore durante l’attività lavorativa è stata acquisita
utilizzando Kinect v2, sviluppato anch’esso da Microsoft.

Per creare un modello in grado di descrivere lo spazio di lavoro, i dati
sono stati integrati tra loro utilizzando una tecnica basata sulla stima
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simultanea della posa di un marker fiduciario, una scheda ChArUco.

I risultati ottenuti in una validazione sperimentale comparativa in
uno scenario industriale realistico mostrano che i miglioramenti apportati
all’algoritmo riducono sia l’errore che l’incertezza associati al processo di
stima, rispettivamente del 25% e del 90% in media, rispetto alla versione
originale del Particle Filter.
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Chapter 1

General Context

1.1 Introduction

Collaborative robotics is a paradigm of the so-called industry 4.0, where
the collaborative robot (or cobot) is a smart artificial agent specifically
designed to work with humans, while being intrinsically safe. To be
able to work side by side with humans, cobots require the knowledge of
the human motions as well as of the surrounding environment. To this
purpose, a crucial role is played by vision sensors, in particular by RGB-D
cameras, which are able to retrieve both colour and depth images that
encode spatial information. Through these kinds of sensors, in fact, it is
possible to give to the robot a description of the user pose in the working
space.

However, as mentioned in [20], a lot of advancements in this field are
linked to the possibilities of a robot to recognize the users and evaluate
in real time his/her actions, needs or intentions. By integrating this kind
of information in their programs, cobots in future will be able to interact
with their human companions in a more and more humane-like way.

The first step in the process of recognition of the user is the human
pose estimation, which is a difficult problem to address, since a lot of
factors play a vital role in how the user is rendered in an image. In fact,
unexpected movements, bad lighting conditions, partial occlusions of the
human body, self articulation of his/her limbs and presence of complex
geometries in the images are all issues which have to be solved to produce
a suitable accurate estimate.

Particularly interesting is the case where at a certain moment an
object prevents the complete acquisition of the human pose by interposing

5



CHAPTER 1. GENERAL CONTEXT

between the camera and the user. This phenomenon is called occlusion and
is one of the main sources of uncertainty. In fact, without incoming data,
the only way to infer the human pose is to rely on a filtering algorithm, able
to estimate the possible poses from the knowledge acquired in previous
time instants, when the user was properly tracked.

Since uncertainty in the estimation process is directly correlated to
both safety and productivity, its reduction is of paramount importance.
To pursue this goal, an enrichment of the data used in the estimation
procedure might be the most viable way. To obtain new and different
data a new branch of technology, the Mixed Reality, was included in the
framework of the collaborative robotics.

In the last few years Mixed Reality devices began to take place in the
industrial world, in particular as a new way to train and assist during
assembly processes, as shown in [1]. In fact, the Mixed Reality devices
allow the user to project in his/her field of view some additional virtual
contents, called holograms, superimposed to the real environment that
surrounds him/her. This provides a very intuitive, flexible and user-
friendly way to guide the operator through his/her tasks.

Moreover, some of these MR devices are endowed with the capability
of capturing information, in particular volumetric descriptions, related to
the visualized real environment. To do that, they are generally equipped
with a number of sensors, which are capable of gathering information
from the user perspective.

Classical approaches to detect the user environment still consist in
relying on one fixed sensor that cannot fully characterize the working
environment. This leads to an unnecessary increased uncertainty.

The main contribution of this thesis, namely the integration of the
Mixed Reality capabilities into the human pose estimation procedures
realized through a particle filtering algorithm, aims to overcome this
problem.

To exploit the huge amount of data derived from the integration of
a vision sensor and of a Mixed Reality device, this work presents a way
to merge information coming from them. The unified data are used to
generate a more complete model that fully characterizes the operator’s
workspace. This enriched model is then integrated to the human pose
estimation algorithm, increasing its accuracy.
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1.2. STATE OF THE ART

1.2 State of the Art

In literature, several approaches to the human pose estimation problem
can be found.

From a technological point of view, approaches based on RGB-D
cameras, in particular those built on the Time of Flight technology such
as Microsoft Kinect [4], are becoming more and more widespread. This is
happening because, as presented in [10], from the data coming from this
kind of sensor a number of processes are possible in order to perform the
extraction of various features of the user, such as the estimation of the
hands’ pose or the 3D reconstruction of the face.

By applying an algorithm as the one presented in [26] it is possible
to obtain from a RGB-D camera the complete pose of a human skeleton
by comparing the data from the sensor with a database. This is the
same functioning at the base of the human tracking capability of the
Kinect sensor. Anyway, when the operator is not completely visible by
the camera the pose of some of his/her articulations cannot be correctly
extracted. This situation is called occlusion.

To overcome the problems due to occlusion several approaches are
possible. In [9] multiple Kinects are used simultaneously to try to prevent
occlusions from happening by mixing different points of views. However
this leads to redundant informations and the need of an integrated archi-
tecture between the various devices. [16] tries to detect and filter out the
occlusion during facial recognition processes.

Another popular approach is to use the pose of the user as the state
of a process to be estimated. The proper choice of an algorithm able to
filter the data acquired from the sensor is therefore mandatory to obtain
a good estimated result. Traditionally, this kind of problem is approached
using the Kalman Filter. However as outlined in [27] the linearity and
gaussianity hypothesis are not suited for this problem and would require
the introduction of either a complex model or a complex approach.

The other filtering algorithm often used in state estimation problems
is the Particle Filter. The algorithm in [17] uses it to overcome the
occlusions happening in a human tracking problem, where the whole pose
of the user is approximated using just its position.

In [7] a comparative study between the Extended Kalman Filter and
the Particle Filter with Bootstrap resampling is presented and showed the
far superior performance of the latter in solving the estimation problem
in a generic setup. In [5] a comparison between the same two techniques
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outlines the importance of including constraints in the Particle Filter
algorithm to propagate. [15] presents a Particle Filtering algorithm able
to address multiple object tracking simultaneously and [18] a mix between
the Particle Filter and the Kalman Filter.

In [13] an approach to track each articulation of the user independently
implementing a Constrained Particle Filter with Bootstrap Resampling
in a collaborative robotics scenario is presented. In this algorithm are
included constraints to take into account the human body size during
the estimation process. Moreover, it includes a novel method to reduce
the uncertainty coming from the occlusion, exploiting the spatial data
coming from a Kinect sensor.

Since the results presented in [13] show that a Particle Filter including
constraints is better performing than the Extended Kalman Filter, this
algorithm has been considered to be the most suitable starting point for
our work.

To further increase the capabilities of this algorithm, we aimed to
reconstruct the workspace in which the cobot and the human operator
are working using a Mixed Reality device. To validate our approach
we considered the work performed in [3] and in [14] which evaluate
respectively the capabilities of Microsoft HoloLens in mapping buildings
and in localize itself in 3D models basing on fiducial markers identification.

1.3 Thesis purpose

The goal of this thesis is to reduce the uncertainty arising in the human
pose estimation process (based on the data coming from a RGB-D camera)
when the user is subject to occlusions. This task was addressed by
acquiring data from multiple sensors, which include a fixed RGB-D camera,
Microsoft Kinect v2, and a wearable Mixed Reality device, Microsoft
HoloLens. Then, a sensor fusion technique is applied to relate the data
coming from those devices, this allows us to estimate the unknown or
uncertain occluded pose.

To pursue this goal, as suggested by [8], we decided to apply the Con-
strained Particle Filter technique. This method approximates recursively
the posterior distribution of the unknown state variable through a finite
set of discrete values also known as ”particles” to which a specific weight
is associated. The weight of each sample represents the likelihood of the
sensor measurement given the state of the particle.

We aimed at reducing the volume in which particles are allowed to
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propagate, to obtain a more accurate estimate. In fact the dimension of
this volume is correlated to the uncertainty of the estimation.

To perform this reduction we applied two theoretical constraints: a
particle (which represents a candidate for the position of the human
articulation which is being tracked) shouldn’t cross a physical object and
it shouldn’t violate the natural range of motion of the corresponding joint.
In this way, particles are prevented from moving in places which are not
realistically reachable by the articulations.

The concept at the basis of the implementation was the generation of
a virtual model representing both the environment and the operator. To
do that two procedures were designed:

• Environment Reconstruction: before starting the working cycle the
workspace is scanned by the operator using HoloLens. A 3D model
of the room is generated in real time and displayed to the user to
allow correction of the errors on the fly. This procedure is designed
to be as intuitive as possible, while not sacrificing the precision.

• Avateering: during the working cycle a virtualized model of the user
is generated based on the data coming from the RGB-D camera
present in the working space. This model is coherently positioned
inside the reconstructed environment. In the human model, called
avatar, the limits of the range of motion of the articulations are
represented as virtual objects, those are used to constrain the
particle motions.

The two models are then integrated with the Constrained Particle
Filter in a 3D development platform. In the obtained virtual environment
the particles are instantiated as virtual objects, which are subject to laws
similar to physics’ ones acting in the real world. Hence in this setup
particles cannot cross virtual surfaces, just like in reality a ball cannot
travel through a wall. In this way we obtained a method to constrain
the particles to lie inside boundaries defined by the programmer. In this
way they take the meaning of representing the positions that the user’s
limbs can occupy in reality, without propagating in unreachable places
representing positions which are occupied, for example by a table or a by
a shelf, or are reachable only with unnatural movements that violate the
human body’s limits.
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1.4 Thesis achievements

The main achievements of this thesis are:

• The successful integration of HoloLens in a collaborative robotics
situation and the fusion of its data to the ones coming from Kinect.

• The reduction of the volume occupied by the particles with respect
to the original Constrained Particle Filter algorithm, presented in
[13], of more than 90% on average. The reduction of this volume
is an indicator of the reduction of the uncertainty of the result of
the estimation procedure. Moreover, in a collaborative scenario
reducing the uncertainty of the estimate means to avoid unnecessary
reductions of the robot working speed.

• A reduction of more than the 25% on average in the estimation
error, again with respect to the original Constrained Particle Filter
algorithm.

1.5 Thesis structure

This thesis is organized as follows.

• Chapter 2 addresses the Human Pose Estimation issue, describing
in detail the Particle Filter algorithm and the Skeletal Distance
constraint. Here also the Occlusion Detection method, used to
constrain the uncertainty under occlusion, is addressed.

• Chapter 3 presents the tools that were used to implement this work,
both hardware and software. More specifically, the hardware and
software instrumentation (Kinect v2, HoloLens v1 and Unity) used
to develop this thesis are illusrated here.

• Chapter 4 aims at giving to the reader an overview of how the
tridimensional model of the working environment is generated. In
particular, the issues coming from the Time of Flight sensors are
outlined and the Spatial Mapping procedure, used to produce a
model of the environment, is presented.

• Chapter 5 deals with the techniques used to refer data coming from
one sensor to the other one. In fact, since we use both a RGB-D
camera and a Mixed Reality headset in our framework, we needed
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a tailored way to be able to merge the data. The method, based
on fiducial markers pose estimation, is described in detail in this
Chapter.

• Chapter 6 shows the core of this thesis contribution, explaining
the details behind the virtualization techniques adopted and how
these are related to the Particle Filter algorithm. A Section is
devoted to describe the Collision Detection procedure designed for
this algorithm.

• In Chapter 7 the performance of the proposed algorithms are tested
on a realistic use-case where a static and a dynamic occlusions are
present.

• In Chapter 8 some conclusions about this work are offered.
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Chapter 2

Human Pose Estimation:
State of the Art

2.1 Introduction

In this Chapter the human pose estimation problem is presented. To
perform this task an RGB-D camera takes data coming from the working
environment where both a human operator and a collaborative robot are
present. Data coming from the camera are communicated in real time
to the robot to make it aware about the human state, provided that the
operator is sufficiently visible. Our intention is to face the problems that
arise when an occlusion happens.

In fact, in this situation an object interposes between the user and
the camera. The main issue when this happens is the degradation of the
performances of the team, since in case of lack of proper tracking the
robot operates at decreased speed or is even stopped, to preserve the user
safety.

The estimation of the human pose at a given time instant based on
the estimate retrieved in the previous instants is generally addressed
through filtering algorithms. Several approaches based on the Kalman
Filter and other Bayesian estimators have been proposed in the literature.
After accurate analyses, in this thesis we implemented a Constrained
Particle Filter algorithm based on the work presented in [8]. In fact, the
Particle Filter technique is an alternative methodology with respect to
the well known extended or unscented Kalman filters, that turns out
to be effective even in the case of non linear systems and non Gaussian
distributions. Moreover, the formulation of the algorithm allows us to
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directly manage occlusion problems by limiting the uncertainty associated
to the estimated pose, based on the depth map comparison, as will be
further clarified in Section 2.2.2.

In this Chapter we will present the implementation of the Constrained
Particle Filter applied to the tracking of human joints, detailing the
choices made in design phase. Eventually, in Section 2.3 we will discuss
the critical issues concerning this algorithm and the proposed solutions.

2.2 Human model

With ”human model” we refer to a complete description of the whole
human pose based on a bunch of numerical variables. In particular we
are interested in determining at every time instant the positions of the
operator’s upper limbs which could be more subject to occlusion during
the usual working activities, namely hands, elbows and shoulders.

To fully characterize their positions, two types of approaches are
possible:

• Joint space: the human model representation in terms of joint
variables is given in Figure 2.1. For each arm, four variables are
needed, since there are 3 DOF in the shoulder and one in the elbow.
Moreover, other degrees of freedom come from the torso’s angle
and from the position in the space of the human, which can be
approximated as a unicycle model, hence adding other 3 DOF.
In order to compute the position of a joint with respect to an
arbitrary reference system the entire direct kinematics has to be
solved, starting from the pose of the unicycle.

Figure 2.1: Human model schematics

• Cartesian space: each joint will be characterized by its Cartesian
coordinates in world reference frame (x, y, z). These can be extracted
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from the data generated by the RGB-D camera using one of the
approaches presented in literature, such as [25]. In order to retrieve
the joint variables the inverse kinematic has to be solved.

The second approach was chosen in view of the fact that occlusions
are easily imported and mapped in a Cartesian framework, whereas it’s
difficult to map them in joint space. Since we can estimate directly the
position of the joints in this space the reconstruction of the pose of the
user’s legs and torso is not needed, thus we will restrict our analysis to
the upper body.

Figure 2.2: Joint hierarchy

Lastly, a hierarchy among joints is established, a visual hint of this
procedure is given in Figure 2.2. In this, the order in which the articula-
tions are considered and their position updated is set according to the
direct kinematics: first the pose of the shoulder is estimated, then of the
elbow and last of the wrist. In this way, when one joint’s position is being
estimated, it is possible to make use of the position of the previous one,
as will be later discussed in Section 2.3.1.

2.3 Particle Filter

The expression Particle Filter refers to a class of non parametric algorithms
used to infer the posterior distribution of the states of a Markov process.
As shown in [23], it is used in a variety of situations including the
Simultaneous Localization And Mapping (SLAM) problem, one of the
hardest faced by robotics, and the tracking of moving objects.

The generic non-linear system to which this kind of algorithm is
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applied can be represented in state space as:{
xk+1 = f(xk, uk, wk)

yk = h(xk, vk)

where wk is the process noise and vk the output one.

The main difference with respect to the well-known Kalman approach
and other parametric estimators is that the PF won’t need a model of
the system or even of the noise. In fact, the posterior distribution of the
state is approximated through a set of samples (particles) which evolve
independently from each other, used to simulate all the possible evolutions
of the unknown state. This filtering technique allows good results even in
case of non-linear systems and hidden states (as in the Hidden Markov
Model).

Each of the N particles, indexed by i, is characterized by its state,
represented as xik, and a weight wi

k, which is proportional to the probability
that the measured state yk is the same as the one of the particle. We
denote with Xk the array containing the state of all the particles.

According to this notation, the posterior distribution can be empiri-
cally approximated as:

p̂(xk|yk, ... , y1) =
N∑

n=1

wi
kδ(xk − xik)

where δ indicates the Dirac’s delta function.

We will now briefly analyse the main steps of the Constrained Particle
Filter algorithm which can be found in [8], to which the interested reader
is referred for more details.

In this algorithms constraints which acts on the weight of the particles
are added to modify the posterior distribution to better approximate the
real evolution of the user’s joints pose.

Some changes with respect to the literature were implemented in order
to make the algorithm less expensive from a computational perspective.

The steps of the algorithm, represented also in a flowchart in Figure
2.3, for a single update phase are the following:

• Initialization: the first time in which the user is correctly detected
and the target joint tracked N samples (particles) are drawn from
the proposal distribution. The weight of each particle is set to 1/N .
In this phase the distance between the joint subject to the filtering
and the previous one in the hierarchy is computed and stored.
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Figure 2.3: Flowchart representing the PF algorithm
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• State evolution: the state of each particle stored in Xk−1 is propa-
gated according to the distribution p(xk|xk−1).

• Measurement update: if it is available, a new measurement of the
joint position yk is drawn from the sensor and the next phase runs in
Closed Loop, otherwise it is called upon the Open Loop procedure.

• Weight evolution: In this phase the Skeletal Distance check is
performed, as described in Section 2.2.1. Then, if a particle passes
the test, two behaviours are possible according to the Measurement
update outcome:

– Closed Loop: the weight wi
k is assigned to the i-th particle,

proportionally to the likelihood of the observation given the
sample:

p(yk|xik) =
e−

1
2
(yk−xi

k)R
−1(yk−xi

k)√
2π det(R)

where R is a diagonal matrix containing as elements the stan-
dard deviations of the noise acting on the measurements.

– Open Loop: the particle is subject to the Occlusion Detection
procedure which will be described in Section 2.2.2. If it survives,
since there is no value for yk, its weight is set equal to 1/N .

In both cases, the computed weights are stored both in Wk and in
a cumulative weight array:

W k
cumul(i) =

i∑
j=0

wj
k

• Estimated state computation: the estimated state for the joint is
computed as:

x̂k =
1

W k
cumul(N)

N∑
i=0

wi
k x

i
k

• Bootstrap Resampling : particles are duplicated with probability
proportional to their weight, this fundamental step is performed
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in order to avoid degeneracy problems ∗. At the end of this phase
the new array of particles Xk is ready for a new iteration of the
algorithm.

– For each particle a random number r is drawn from a uniform
distribution in the interval [0, 1]

– The array of particle is scanned sequentially according to index
i, when

W k
cumul(i)

W k
cumul(N)

≥ r

the corresponding particle is duplicated and stored in Xk.

2.3.1 Motion model

Figure 2.4: RGB-D camera reference frame

In this Section we will describe how the state of each particle evolves
when the presented Constrained Particle Filter is applied. Due to the
high computational cost of this algorithm, we will present its application
to the problem of estimating the pose of a single joint.

In this formulation, the joint position and speed are expressed in
Cartesian coordinates. This choice allows us to manage the occlusion in
a better way and to avoid to compute the direct kinematics.

∗The degeneracy phenomenon is a common issue related to the formulation of
the generic Particle Filter algorithm. It happens when, after some iterations, all the
particles except a few have negligible weight. Two methods exist to mitigate and
overcome this issue:

– Good choice of the proposal distribution

– Use of resampling techniques

In this thesis the second option has been implemented using the Bootstrap Resampling
approach.
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The state can be thus expressed as s = (x, y, z, ẋ, ẏ, ż) where the
coordinates of the particles are given with respect to camera reference
frame, shown in Figure 2.4.

The Particle Filter is applied to the following discrete time system:{
sk+1 = Ask + νk

yk = Csk + ψk

A =

[
I3x3 I3x3 ∗∆t

0 I3x3

]
C =

[
I3x3 03x3

]
Where νk and ψk represent the process noise, and output noise respec-

tively.

Figure 2.5: Bidimensional representation of the spherical crown in which
particles are allowed according to the Skeletal Distance constraint. DEW

represents the skeletal distance between elbow and wrist. The intensity of
the filler is intended to convey how is distributed the density of particles
in this region.

To reduce the uncertainty of the estimate, to the standard formulation
of the Particle Filter, as already mentioned, constrains are applied. The
one limiting directly the possible values for the states of the particles
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is the Skeletal Distance test. This relies on the distance between two
consecutive joints of the kinematic chain acquired during the Initialization
phase, which is compared to the distances computed between the particles
and the ”father” joint. If a particle violates the Skeletal Distance bound,
this means that its position is too far or too close to the previous joint,
hence its weight is set to zero and it is not subject to other computations
in the Weight evolution phase of the algorithm. The resulting regions for
particles are thus spherical crowns centred in the previous joint of the
kinematic chain, as illustrated in Figure 2.5.

2.3.2 Occlusion Detection

As already stated, the expression occlusion is here used to denote an issue
which prevents the acquisition of a joint position. This can be caused by:

• The presence of an object interposed between the camera and the
target joint

• Noise acting on the scene, such as strong natural light

Since we are dealing with a controlled environment, we assume that
the effects from the latter source of occlusions can be counteracted in
setup phase. Therefore we will restrict our analysis to the first cause. To
bound the uncertainties coming from this situation we implemented a
second type of constraint, the Occlusion Detection procedure, which will
be described in this Section.

When a lack of measurements due to occlusion forces the Constrained
Particle Filter algorithm to run in Open Loop, the particles are propagated
according to the Motion Model and constrained only by the Skeletal
Distance bound, according to what was explained in Section 2.2.1. In this
situation the possible positions of the particles generally exceed the region
of the space hidden behind the object causing the occlusion, thus samples
propagate in visible positions, this causes an unnecessary overestimation
of the uncertainty of the pose.

Since we have at our disposal the data coming from the RGB-D camera,
it is possible to determine whether a particle is in a visible position or not.
This can be done comparing the coordinate Z of the particle with the
depth map. A depth map is a particular type of image in which the pixel
represents a value proportional to a distance, an example of it is given in
Figure 2.9. This distance is the one between the camera and the objects
in the scene measured along axis Z, which is normal to the camera plane.
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Figure 2.6: Visual example of the occlusion check

Figure 2.7: One of the two original image(left)and an example of depth
map obtained using a stereo camera(right). The black regions are com-
posed of pixels with value equal to zero.

The most straightforward approach to perform the distance comparison
is to convert the coordinates of the particles (x, y, z) to the image ones
(u, v) used to identify a pixel in the depth map. To do that, the following
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equations, based on the pinhole camera model, are used:

u = X ∗ fx
Z

+ cx

v = Y ∗ fy
Z

+ cy

where fx, fy are the focal lengths and cx, cy the principal point
coordinates in the image plane. The resulting (u, v) are rounded to
integer numbers. Then it is checked whether the corresponding pixel
value is zero, which is a code used to indicate noisy detections or out
of range distances. If it is zero, the closest non-zero pixel in the image
is taken as reasonable approximation of the depth of that pixel: this
procedure is called neighbour filter.

In the Constrained Particle Filter approach given in [13], if in a time
instant the Occlusion Detection is required, all the pixels of the depth
map are subject to the neighbour filter to eliminate the zero values. In
our implementation we decided instead to save computational effort by
applying it only to the pixels which are of interest for us, hence to those
pixels whose coordinates (u, v) are obtained from the algorithm.

Eventually, as shown in Figure 2.6, the distance encoded in the pixel
at coordinates (u, v), which is the distance perceived by the camera along
the line connecting its focal centre to the particle position along the Z
axis, is compared with the Z coordinate of the particle. If the first one is
the greatest between the two, the particle represents an instance of the
state in which the joint is not occluded. Since this hypothesis conflicts
with the data coming from the camera, encoded in the depth map, it has
to be rejected, hence the particle weight will be set to zero and it will be
eliminated in resampling phase.

To sum up, when the joint is not tracked, all the particles that occupy
positions which are visible from the camera are discarded, since if the
joint had been in those places it would have been found.

2.4 Analysis and critical issues

The Constrained Particle Filter algorithm presented in this Chapter allows
to estimate the human position in real time. However some critical issues
were detected in its assumptions and implementations.

• The particles are allowed to propagate through objects, this can
be misleading and increase the uncertainties of the estimation pro-
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cedure. After an in-depth analysis, it has been found that this
problem stems from the assumption of a working environment not
known a priori and which cannot be explored in any way.

• The Motion Model for each particle doesn’t consider the human joint
limited range of motion. In fact, the only restriction to the particle
possible movements comes from the Skeletal Distance constraint,
which is satisfied provided that they lie on a spherical crown. This,
anyway, allows the samples to move also outside the regions which
are the natural range of motion for the human articulation. There-
fore, when working near the bounds on joint variables, particles
tend to propagate to unrealistic positions.

2.4.1 Proposed solutions

The main contribution of this thesis is to find suitable ways to improve
the presented algorithm. In particular, a deep research has been carried
out to analyse the most suitable and innovative approaches to increase the
accuracy of the resulting estimate. The result, presented in the Chapters
3, 4 and 5, will exploit and integrate several aspects belonging both to
the Mixed Reality field and the robotics to obtain solutions tailored on
our needs.

In the end the solutions which will be implemented to solve the
mentioned issues will be:

• Carrying out a preliminary exploration of the operator’s working
space using a Mixed Reality headset to reconstruct a geometrical
model of the environment, where the user will be tracked by the
RGB-D camera during his/her work, as explained in Chapter 3.

• Creating a tridimensional human model in a virtual environment
using a 3D modelling engine. This operator’s avatar will be placed
in the generated room model, as detailed in Chapter 4. By using
this merged modelling of the working scene it will be possible to:

– Avoid particle propagation through the real world surfaces
mapped previously.

– Map the joint limits in Cartesian space as bounding volumes.
By coupling them with the model movements we will further
limit the space in which particles can propagate, thus reducing
the uncertainty in the joint pose estimate.
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Chapter 3

Setup

3.1 Introduction

The main goal of this thesis is to propose an advancement of the state
of art techniques in estimating the pose of an operator when he is not
completely visible by an RGB-D camera. In Chapter 2 we presented a
Constrained Particle Filter algorithm suitable for this aim and analysed
the main issues that tend to increase the uncertainty of the results.

The proposed method to reduce this uncertainty is to reconstruct
both the user and the working space as integrated virtual models. To
do that, a preliminary exploration phase of the room is performed using
a Mixed Reality device, which generates a mesh describing the volumes
surrounding the user. Then, during the working cycle, a RGB-D camera
tracks the operator’s pose, the data retrieved by this device are combined
to those previously acquired and used to increase the capabilities of the
Particle Filter algorithm.

Therefore, during this project we made use of two devices to acquire
data describing both the environment and the user. Each of those sen-
sors has its own methods, strengths and weaknesses. One of the main
contributions of this thesis is to overcome their individual limitations by
implementing a common framework based on a sensor fusion technique
using fiducial markers recognition, that will be shown in Chapter 4.

In this Chapter we will present a discursive analysis of the devices and
of the software components used to carry out the introduced procedures,
with a short evaluation behind the pros and cons of their choice. The
reader is referred to more specific works, such as [4], if interested in the
technical details behind their functioning.
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3.2 Sensors

The sources of data in our setup are two devices: a RGB-D camera and a
Mixed Reality headset.

The camera is used in this work to recognize the human operator.
Since we are interested in the skeletal pose of the user, which describes the
position and orientation of each joint in the human skeleton, the choice
fell on Microsoft Kinect v2. This camera is very accurate for the task
required to it and embeds all the algorithms needed, but it is obviously a
device designed to be kept fixed in the working space.

Since we are interested in mapping the environment in which the
collaborative team works, we decided to exploit a Mixed Reality headset
to perform the preliminary explorative phase. Those wearable assets add
to the capabilities of a RGB-D camera all the sensors needed to keep
an accurate track of their pose in the space. This feature eliminates the
need to perform an odometric reconstruction based on the data acquired,
which would be required by the Kinect or another RGB-D camera.

Moreover, the chosen device, Microsoft HoloLens, provides algorithms
to convert the raw volumetric data into a more compact and usable form,
the mesh, which will be exploited as explained in Chapter 6 when talking
about the Enhanced Constrained Particle Filter. A mesh models the
environment volumes using a series of basic geometrical shapes, such as
triangles, to delimit the volumes.

Since we have data coming from two different devices using different
formats, we adopted a common method to refer and integrate one to
another based on fiducial markers. Those data are used to estimate the
pose of a camera acquiring an image containing them, hence they introduce
a common reference system with respect to which we are able to express
the poses of the two sensors. The method itself will be further detailed
in Chapter 4, however it is important to notice that the acquisition of a
suitably accurate image for fiducial marker recognition using a movable
camera such as HoloLens required a customized solutions.

In the remaining part of this Section we will present the specific devices
used.

3.2.1 RGB-D sensor: Kinect v2.0

The Microsoft Kinect v2.0, shown in Figure 3.1, is a RGB-D camera
and represents a standard in both the industrial and the research fields.
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Figure 3.1: Kinect v2

It is able to acquire at the same time colour and depth images. From
these, embedded algorithms retrieve skeletal pose of people in line of sight.
Moreover, cheapness, extensive literature and availability of support
scientific material concur to make it a perfect choice for this work.

It acquires colour images with an high resolution camera and the
depth ones using a Continuous Wavelength Time of Flight sensor, whose
characteristics will be discussed in Section 5.1.2. Besides, a clock is used
to synchronize IR emitter and receiver to be able to acquire both an
image where ambient light and infrared light are superimposed and one
where only ambient light is present. Combining these two images it is
possible to obtain also infrared pictures filtered from ambient light.

The spatial information given back by the this sensor is contained in a
particular form of image, called depth map . This discretizes the portion
of world that is seen by the camera into a matrix of pixels. Each pixel is
characterized by its coordinates (u, v) in the image plane. The value of
a pixel in the depth map generated by a ToF camera is assigned in two
steps:

• The time that a light impulse spends travelling back and forth
between the camera and the world is measured, from this measure
it is possible to compute the distance along a specific line of sight.

• This distance is projected along the principal axis of the camera,
this value is at last stored in the pixels.

In this way we obtain infos about the region of space in front of the
camera.

A key feature for this thesis provided from the Kinect is that the
associated libraries and software are capable of tracking and retrieving 3D
positions of the skeleton of up to six people. The algorithm for acquiring
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Figure 3.2: HoloLens v1

skeletal data is based on Machine Learning techniques. The output from
these associates to each human in sight 25 joints, reproducing the poses
of both the main articulations in the human skeleton and the limbs’ ends.
These data serve us as base of knowledge when running the Particle Filter,
they are exploited during the Measurement Update phase.

3.2.2 MR headset: HoloLens v1.0

While the Kinect represents a well-known element in the scientific panorama,
Microsoft HoloLens, shown in Figure 3.2, being released on 30th October
2016, is almost a novelty. This asset bases its Mixed Reality capabilities
on a Universal Windows Platform architecture, a see-through display,
and a number of sensors. Examples of usage of this device can vary
from medical applications, such as in [29], to simulations of robotics and
programming. Moreover, holographic feedbacks are recognized to be the
most effective way to train people to assembly tasks.

This device is designed to be worn, the holographic see-through display
allows the user to visualize virtual objects, known as holograms, displayed
in a way able to reproduce their pose in the real environment. Those
objects can be used to perform a variety of tasks, such as showing
informations or provide an intuitive human-machine interface. Commands
to the headset are given using both hands’ gestures and voice inputs,
while the cursor used to select items in the virtual world is moved using
the gaze direction.

To further increase the realism of the Mixed Reality experience for the
user, holograms are affected by the real world. For example, if an object
interposes between them and the user they are not rendered, simulating
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their hidden position. Another key feature of this kind of device is the
possibility of placing holograms in contact with the real world surfaces.
To do that, these devices need a model of the volumes surrounding them.

This knowledge is acquired by HoloLens using the Spatial Mapping,
that will be described in detail in Section 5.1.2. This technique is based on
the simultaneous acquisition of spatial informations using the embedded
Time of Flight camera and the tracking of the device pose in space. In
fact, as in the Kinect case, HoloLens uses its Time of Flight sensor to
acquire depth maps, which perspectives can be referred one to another
knowing the pose of the device when they are taken. Since HoloLens
mounts an Inertial Measurement Unit, a magnetometer and two stereo
cameras, the localization of the headset is carried out with great precision.
Therefore, the environment is viewed by the device as a series of bounding
volumes, which are modelled using meshes.

One most favourable aspect which led to the choice of a this kind
device instead of a simpler and cheaper sensor is that during the Spatial
Mapping procedure the generated mesh can be visualized in real time as
holograms, therefore any anomaly can be detected and corrected on the
fly, even by a totally untrained operator.

3.3 Unity

In prototyping this thesis we needed a software able to manage and
integrate 3D modelling, Kinect data extraction and Mixed Reality apps
building. The most suitable environment for these tasks was the Unity
engine, its logo is displayed in Figure 3.4. This software allowed to us to
merge together techniques coming from very different fields.

Unity is a powerful 3D development platform which constitutes a
standard for automotive, animation and research fields. As shown in
Figure 3.3, it is able to render complex model of buildings and simulate
various physics effects, such as collisions and gravity. Moreover, it is the
recommanded engine through which a programmer can build Virtual and
Mixed Reality apps. In fact, it is compatible with more than 20 different
platforms, including HoloLens.

Unity provides a simulation environment where the programmer can
design applications including virtual objects as well as their associated
functionalities and test their behaviour even from a graphical perspective.

An app behaves like an object-oriented program, in which each item
is an instance of a class defined by the programmer. Those instances are
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Figure 3.3: Example of building modelling in Unity

Figure 3.4: Logo displayed when an app is launched.

interactively affected by the final user at runtime and can be of several
types depending on their function in the app’s economy.

Tridimensional objects, such are holograms, in Unity are called GameOb-
jects, are characterized by their pose in world coordinates, by a mesh
renderer used to visualize them and by a collider, which is the feature
describing the volume of an object and how it behaves when enters in
contact with other entities. Moreover, several other items called Com-
ponents can be attached to a GameObject to specify its features, giving
the user an almost endless number of customisation options, in order to
simulate every aspect of a real object.

The behaviour of the GameObjects is determined through scripts
in C-sharp, developed and managed in the Visual Studio environment.
These are used to define the logics in the apps and can access and modify
the state of the entities. Programs are based on these scripts and the
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inputs from the user are processed by them.

The Physics module allows to simulate interactions between GameOb-
jects, in particular to detect their eventual collision by computing the
trajectories of a number of points on their collider. Several different
approaches are possible to perform the management of collisions in Unity,
our need for this type of techniques will be clarified in Chapter 6.

An app built in Unity is subdivided in scenes, each of them includes
everything that is present in the environment, both GameObjects and
scripts. Each scene has two subsequent initialization moments, used by
the scripts by calling the methods Awake() and Start(), and a potentially
unlimited sequence of time steps, operations iterated over them are
instantiated using the Update() method.

To sum up, in Unity we found all the tools and techniques which were
needed to get started in building applications simulating the evolution
of the workspace in a 3D modelled environment, reconstructed a priori
using HoloLens, in real time. Some of those tools proved more or less
effective and in the end several different solutions were needed to overcome
problems, particularly when dealing with the Physics module.
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Chapter 4

Acquisition of the Volumetric
Data

4.1 Introduction

In this Chapter we will present the procedures used to generate data that
can replicate and describe in detail the geometrical shape of a generic
room. This is done using HoloLens as a 3D scanner. As it will be explained
in Chapter 6, the obtained tridimensional model will be used to improve
the capabilities of the human pose estimation algorithm.

More specifically the aim of this Chapter is to present a way to
represent the environment in which the user is located without having to
rely on a CAD or another a priori produced model, which would generally
require a lot of time and certain skill to be produced. Moreover, such
model generally doesn’t include movable objects normally present in the
working space, whereas our goal is to include the maximum possible
amount of details.

The procedure presented in this Chapter is an exploration of the
environment, intended to be carried out once and offline and to be
repeated only when a reconfiguration of the room is needed. Practically,
the user scans the working space using HoloLens. The volumetric data
obtained are preprocessed and results are presented in form of meshes,
considered as the most compact and usable form for such information.
Their poses are expressed and saved with respect to the world fixed
reference frame of the Mixed Reality device.
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4.2 Environment Reconstruction

This Section deals with the reconstruction of the bounding volumes
in the environment based on the data acquired by the Mixed Reality
headset. This device is worn by an operator during the scanning process.
This procedure has been designed in order to be as intuitive as possible,
requiring the human to just walk around slowly and scan the space with
his gaze. The operation produces a series of meshes that are continuously
updated and displayed in real time as holograms, as shown in Figure 4.1,
in order to allow error checking. At the end of the process, a simple voice
command allows the operator to store the outcome.

Figure 4.1: Frame taken using HoloLens during the Spatial Mapping
procedure

HoloLens acquires volumetric data using a Time of Flight (ToF) sensor,
which is the same technology used by the Kinect camera for retrieving
data concerning the operator. This kind of sensor is used to obtain depth
maps, but since it is prone to errors its functioning will be further detailed
in Section 4.2.2.

The obtained depth map will be processed in real time by the Spatial
Mapping in order to extract a mesh. Such meshes, composed of a series of
basic polygons such as triangles or squares, have their coordinates fixed in
the tridimensional space according to a global reference frame coinciding
with the world frame of the Mixed Reality headset, which is generated at
the beginning of a scene in Unity.
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Figure 4.2: ToF Continuous Wavelength camera example

Since these technologies are the most recent developments in this field,
in this thesis they have not been modified in any way with respect to
their commercial counterpart, but they have been carefully selected and
tuned in order to obtain the best possible result. The contribution of this
phase will be clarified in Chapter 6, where the integration of the data
coming from the Spatial Mapping with human tracking algorithm will be
explained in detail. The rest of this section will be devoted to give an
insight to the technical details behind these procedures.

4.2.1 Time of Flight sensors

Since both the environment and the human recognition accuracy will
depend upon RGB-D cameras, this Section will present briefly the tech-
nology, namely Time of Flight-based cameras, used to acquire the depth
component of the data. The analysis carried out is found on the informa-
tions provided in [24].

The name Time of Flight in computer vision refers to a technology
used to estimate distances, based on the principle of measuring the time
that a light impulse requires to start from an infrared (IR) emitter, bounce
on the surroundings and come back to an IR receiver, as shown in Figure
4.2. This kind of camera was preferred to another popular technology to
perform depth estimation, namely the stereo camera, due to the higher
frame rate and precision, even though it is vulnerable to noise sources
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and the resolution of the generated depth images is generally lower.

In Continuous Wavelength approaches, the phase shift ∆Φ to which
the signal is subject when it is reflected is the main feature employed
in computing the distance. Since this measurement depends upon the
reflection capacity of the materials in the environment, it is worth pointing
out some of the most likely causes of errors while estimating the depth:

• Concave objects: light impulses are sometimes reflected inside the
cavity several times, this lengthens their time of flight and the
perceived distance is therefore not properly estimated.

• Dark, transparent or highly reflective materials: material which
will absorb too much or too little light can lead to misinterpreted
positions.

• Too much natural light: since natural light include also frequencies
which superimposes to those used by Kinect, this can increase
greatly the noise on the estimation.

Moreover, since the computed distance depends over a periodical
function which gives back results in the interval [0, 2π] there is a bound
on the maximum detectable distance. All these issues concur to force
the use of these sensors indoor, in a controlled environment deprived of
elements which could cause malfunctioning.

However, despite the efforts put in place, the factors which affect
negatively the measures are too many. This is not an issue when estimating
the human pose, since the Kinect can be placed accurately on the scene
and kept fixed, but when it comes to room exploration using HoloLens
the noise becomes relevant and can lead to misinterpreted geometries,
which will in turn affect negatively the human pose estimation procedure.

4.2.2 Spatial Mapping

Applications in Augmented or Mixed Reality can benefit from information
related to the environment surrounding the device. For instance, this data
is useful to allow virtual objects, holograms, to interact with surfaces that
have been recognised, such as walls, tables or chairs. Different techniques
are available, depending also on the device in use, to map the surrounding
environment, in this thesis the ones developed by Microsoft specifically
for HoloLens are considered.
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Figure 4.3: Example of mesh obtained from spatial mapping representing
the laboratory

Spatial Mapping is a technology which aims to convert data coming
from the HoloLens’ depth camera into a more manageable format, called
mesh, exploiting all the sensors available to the device to produce a
complete model of the surrounding environment, as illustrated in Figure
4.3. However, this procedure is computationally expensive and tends to
reduce the overall detail provided by the depth data generated by the
Time of Flight sensor.

Our goal was to obtain from this process lightweight data representing
continuous virtual surfaces (since our need for them is to constitute a
boundary on which our virtual objects can collide) able to reproduce the
geometry of the workspace. In this, the Spatial Mapping proved to be an
invaluable asset, for the reasons that will be now be briefly described.

Generally, the depth maps acquired by a Time of Flight camera
are used to generate point clouds. This format of data converts the
information stored in the pixels, i.e. their coordinates on the image plane
(u, v) and their values p, which are measures of distance from the camera,

37



CHAPTER 4. ACQUISITION OF THE VOLUMETRIC DATA

in a series of points whose Cartesian coordinates express exactly the same
information as the original depth map, but can be referred to a reference
system chosen by the user. Therefore, a point cloud is essentially a change
of reference system for the 3D points described by the depth map’s pixels,
which instead of being expressed as a triplet (u, v, p) are expressed in the
Cartesian standard (x, y, z) with respect to an arbitrary reference frame.
Point clouds have the same number of points of the original depth map,
thus are a heavy piece of information, and the space between them is void
instead of a continuous surface, hence this format is not suitable for our
needs.

The Spatial Mapping further elaborates the data stored in a point
cloud to achieve the result that we were looking for. In fact, in a mesh
the surfaces defining volumes are represented as a series of triangles, each
one stored as three vertices to be read in a counter-clockwise order. To be
more compact, adjacent polygons share one edge, thus needing to store
just one additional point. Each triangle approximates a set of coplanar
points in the point cloud, hence the mesh will need far less points to
represent the same surface. Moreover, these surfaces are continuous,
therefore a planar surface in reality is rendered as a plane composed of
small triangles. Unfortunately, if a region of the depth map presents
irregularities the corresponding mesh will be degraded, but less than the
corresponding point cloud.

Since the Mixed Reality device is designed as wearable, it is subject
to a localization procedure which updates at each time step a mobile
reference frame attached to it. Position and orientation are estimated on
the base of a number of sensors embedded in the headset, such as a Inertial
Measurement Unit, a magnetometer and two depth-sensing stereocameras.
Thanks to this feature, the generated meshes are positioned in the space
according to a fixed reference system.

To further increase the accuracy of the output of this process the raw
Spatial Mapping procedure can be improved by exploiting the Spatial
Understanding asset. With this, during their acquisition, meshes undergo
a process of object recognition aimed at discerning planes and ensuring
they are represented correctly while reducing the noise, which can generate
outlying vertices. In particular, this is a good way to ensure that the
errors coming from the Time of Flight sensor are rejected. Furthermore,
meshes are cropped and composed in order to avoid holes or overlapping,
thus planes are precisely described.

On one hand, the usage of the Spatial Understanding capability has
the advantage of rejecting a number of errors present in the depth map.
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On the other hand, this procedure tends to reduce the details present in
the standard Spatial Mapping meshes. For example, details such as small
objects lying on a table tend to be not represented, and very often the
concavities of furnitures such as shelves are filled up.

In the end, we decided to not apply the Spatial Understanding filter,
since our goal is to map as accurately as possible the volumes with
which the operator can interact, and therefore this filter would prevent
us to render adequately boxes and shelves which could be present in the
environment. The degradation to which planar surfaces (in particular
the floor) are subject without the Spatial Understanding were considered
acceptable in our setup.

However, we strongly recommand the usage of this powerful tool to
map rooms and environments when not interested in the smaller details.

4.3 Implementation

Figure 4.4: Example of mesh and environment compared

To apply the Spatial Mapping technique we implemented an app in
Unity developed to run on HoloLens. This app has three key features: the
capability of tracking the user’s head pose in the workspace, the Spatial
Mapping mesh acquisition and the real time displaying of the acquired
mesh.

Regarding the first feature, the standard for Mixed Reality apps is to
merge the tracking capabilities of the device with the simulation ones of
Unity to superimpose virtual and real world in the user’s vision. To do
that the virtual world is mapped in the real one thanks to the sensors
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of the Mixed Reality device. The operator’s point of view in the virtual
world is simulated by Unity with a virtual camera represented in the
scene. This determines what is shown to the user through the holographic
display at each time instant. The position of the virtual camera in the
virtual world is updated using the tracked movements of the real headset,
in this way there is coherence between the real and virtual pose of the
camera.

The implementation of the Spatial Mapping capabilities in our work
was performed relying on the Mixed Reality ToolKit distributed by
Microsoft. The app built in Unity includes in a single scene all the
GameObjects needed to obtain the meshes and store them with coordi-
nates expressed with respect to the fixed reference frame of the device.

The interface between the HoloLens’ operative system managing the
raw spatial data and the Spatial Mapping methods is constituted by a com-
ponent called Surface Observer, which manages the low level extraction
of meshes.

The meshes are then processed by the Spatial Mapping Observer
according to parameters set up in design phase, to map a fixed volume
of 5x5x5 meters with up to 2000 polygons for cubic meter. This element
contains all the methods used to manage the meshes, store, update and
discard them. Moreover, it determines the volumes in which the Surface
Observer must work, in this way not all the data coming from the sensors
have to be considered in real time.

The final result is shown to the user as a hologram representing the
lattice of meshes, in this way he can evaluate if there is any region which
has been mapped unsatisfactorily. Again, this reprojection of the result
is based on the tracking capabilities of the Mixed Reality device.

When the process is terminated, a vocal command is used to store the
mesh and close the app. The final result of the process is displayed in
Figure 4.4, side by side with a picture of the workspace.
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Sensor Fusion

5.1 Introduction

The goal of this phase is to retrieve the homogeneous transformation
matrix that allows us to relate the volumetric data coming from HoloLens
to those acquired through the Kinect.

Since it is possible to extract the pose of a fiducial marker from a
picture, the data correlation is practically done as follows: while an
operator wearing the Mixed Reality headset scans a fiducial marker, the
pose of the camera relative both to the one of the marker and to its own
world reference frame will be estimated and stored. Meanwhile the same
estimation is performed also for Kinect, already present on the scene in
the same position that will be used later in human tracking.

Through an appropriate composition of the retrieved homogeneous
transformation matrices it is possible to refer data coming from the two
sensors to one another one.

5.2 Reference Systems Generation

In this Section we aim to realize the data transfer between different
sensing devices. To do that, we exploited a fiducial marker and we placed
it in a location that it is visible by both HoloLens and Kinect, as shown in
Figure 5.1 from the perspective of Hololens. To obtain the transformation
matrices needed to correlate the data coming from the devices, first the
images taken by them have to undergo several passages to identify the
marker, as presented in [22]. From the outcome of the identification
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Figure 5.1: Positioning of the fiducial marker in the workspace, viewed
from the point of view of the user wearing HoloLens.

phase, it is possible to derive the solution of the Perspective And Point
(PnP) problem, which addresses the issue of estimating the pose of a
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Figure 5.2: Overview of the reference systems present in the scene

calibrated camera given a set of coplanar points in Cartesian space and
the corresponding projections on the image plane. The result of this
solution is a transformation matrix expressing the pose of the marker
with respect to the camera reference system.

In Figure 5.2 a graphical representation of our setup is provided.
According to it, we define the origin of the reference system associated
to HoloLens as H1, the one associated to Kinect as Okin and the last,
associated to the fiducial marker, as Ochar. The homogeneous transfor-
mation matrices between these three frames are obtained by estimating
the marker pose, and we will denote them as Akin,char and A1,char.

Since HoloLens is a mobile device, it refers its data to a fixed reference
frame generated when the Mixed Reality applications are launched. This
corresponds to the position of the user’s head at the time instant when
the app is launched. We called this H0 and its pose with respect to the
world reference frame is unknown to us. However, the Mixed Reality
device has the embedded capability to track its pose changes with respect
to H0, in this way we can obtain A0,1 and thus we can reconstruct H0

pose.

To be able to compare data coming from Kinect and from HoloLens
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we will need to compose the matrices mentioned before. The composition
needed is:

A0,kin = A0,1 A1,char A
−1
kin,char

It is worth to mention that the reference systems presented here have
been simplified to make more clear this brief theoretical discussion. In
the real implementation, since different software environments are needed
by the devices to obtain the transformation matrices, the conventions
adopted to express them are different and must be uniformed prior to the
composition.

5.2.1 Fiducial markers: ChArUco

A fiducial marker is a (generally) planar figure with a predefined and
known shape and dimension, which can be easily and uniquely identified
using a camera. Examples of fiducial markers in the everyday context are
the QR codes, used to encode tickets.

The standard techniques used in research and robotics to deal with the
single camera localization problem are based on evaluating the deformation
to which the image of the marker undergoes with respect to the normal
view. From this knowledge the relative pose between the marker and the
camera is computed. In this work a further step is taken, by using this
technique to fuse together data coming from different sources estimating
simultaneously the pose of the marker. This operation would require an
high level of accuracy, in particular when dealing with a mobile camera.

ChArUco boards (see Figure 5.3) are a type of fiducial marker, which
composes the best features from ArUco markers, presented in [2], often
used in robotics, with the classical chessboard pattern. The pose of the
chessboard can be better estimated thanks to the greater number of
points available, corresponding to the internal vertices between black and
white squares. Therefore, ChArUco boards were chosen among the other
possible markers.

To work with this type of markers the OpenCV library was exploited.
This is a well known open source library mainly used in Computer Vision
and very intuitive in managing the images. Its integration with in the
Mixed Reality app was one important contribution to this thesis, since
customized ChArUco based functions have been implemented. To estimate
the pose of a ChArUco board the following steps have been applied:

44



5.2. REFERENCE SYSTEMS GENERATION

Figure 5.3: Composition of a ChArUco board, merging chessboard pattern
and ArUco markers

• Identify the ArUco markers.

• Estimate the pose of each marker .

• Interpolate the positions of the chessboard corners.

• Estimate the pose of the board.

ArUco markers, one of the two components of a ChArUco board, see
Figure 5.3, are square planar patterns constituted by a number of bits
(also square) inside a black border. The infos associated to a marker are
an id, which is generally an integer number encoded in its internal bits,
its size in meters and two vectors relating the centre of the marker to
the camera location. Four sets of coordinates representing the marker
corners’ positions with respect to the marker centre can be also easily
obtained and converted between image coordinates and Cartesian ones,
those are used to solve the pose estimation problem.

It is important to notice that the estimation of a single marker, namely
of four coplanar points, is subject to ambiguity, particularly when the
camera is not close to the marker. Since a ChArUco board requires two
subsequent procedures for estimating its pose and the second one includes
chessboard vertices (which are more precisely detected), the greater
accuracy of the result lessens the risk of such errors. The main drawback
is that, to obtain this better outcome, the images must be acquired at
higher resolution and the camera have to be perfectly calibrated.

A point particularly critical in the fiducial marker estimation is repre-
sented by the need of ideal lighting conditions and a very little motion blur.
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Figure 5.4: Projection of a point from Cartesian space into image plane.
Image taken from OpenCV’s documentation

These issues are solved in [6], proposing a different estimation procedure
with respect to the classical one adopted in the OpenCV library. Anyway,
due to the complexity of the solution mentioned in this reference, we
relied on a simpler approach to reduce the magnitude of the errors, as
will be explained in Section 5.3.

5.2.2 Perspective ’n’ Point problem

To obtain the homogeneous transformation matrix relating the reference
system of a calibrated camera and the one of the marker the Perspective
’n’ Point problem has to be solved. This deals with computing the pose
of the camera when the coordinates of a series of points are known both
in Cartesian space and on the image plane, as shown in Figure 5.4. The
output of this process is the matrix of extrinsic parameters describing the
rotation and translation needed.

This problem can be formalized through the following equation:

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



r11 r12 r13 tx
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Where (X, Y, Z) are the coordinates of a point in the Cartesian camera
reference system and (u, v) the corresponding image reference system
ones. The other matrices represent, from left to right, the camera matrix
containing the intrinsic parameters estimated in calibration, a matrix nec-
essary to uniform the dimensions and the matrix of extrinsic parameters,
which contains all the quantities we are looking for.

Since an ArUco marker is composed of four points corresponding to its
corners, whose coordinates are defined with respect to the centre of the
marker, this problem is overdetermined, in view of the fact that solutions
for classical approaches exist for a number of points greater or equal to
3. The reader is directed toward [26] for more details. The usage of a
ChArUco board, due to the presence of an higher number of points in its
structure, is supposed to give back better results provided that all the
camera intrinsic parameters have been correctly computed.

Such parameters are used to describe the various deformations which
an image undergo when captured by a camera. They have to be estimated
through a calibration procedure, as explained in [19]. To obtain a properly
high precision, several iterations have been necessary, particularly because
of the movable nature of HoloLens. This device is prone to higher errors
due to image blur and marker positioning at the border of the image,
where distortion errors are greater.

In order to reduce the impact of these issues, the estimated pose of
the marker is subject to an average over a number of frames, to avoid
errors coming from a single distorted image.

Finally, since we needed an accurate calibration, we will now introduce
the error function which describes the goodness of the calibration proce-
dure, the so called reprojection error. This quantity corresponds to the
error (in pixels) committed when trying to superimpose the projection of a
previously detected point to its position in the image plane. It is generally
considered a good calibration the one which gives back a reprojection
error inside the interval [0, 1], measured in pixels. With our iterated
process we reached projection errors around 0.5 pixels for HoloLens and
of 0.2 pixels for Kinect, which we considered good enough. Again, the
less accurate result obtained using HoloLens is grounded in its movable
nature.
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5.3 Implementation of the Mixed Reality

ChArUco detection app

The app built for HoloLens in Unity implements the detection of ChArUco
boards instead of a single ArUco marker ∗, to improve accuracy. However,
the increased precision came at the price of needing a far more accurate
camera calibration.

To import the OpenCV libraries into the Unity framework a customized
dynamic-link library (dll) was built, wrapping the functions needed, such
as detectMarkers, into code able to convert variables and data from C-
sharp environment of Unity to the C++/C required from OpenCV. In this
way we obtained the corresponding function that we called, for instance,
libraryDetectMarkers. In this way the functions of OpenCV are made
available to the Mixed Reality app.

The estimation of the board pose performed by those functions is done
according to the what was described in Section 5.2.2.

At each time step the estimated pose is processed to reduce the noise
on the estimate result. To do that, pose variations which are too little,
due for example to the respiration of the user, are filtered out with an
high-pass filter, and the resulting estimated pose is averaged over several
time instant to reduce the effect of a single misjudged pose.

This last step is particularly important, since HoloLens is a movable
camera. In fact, it is sufficient a slight motion blur or a bad light to prevent
the marker detection or, worse, to generate a misjudged estimation. The
latter is far more cumbersome, since it is difficult to detect and reject
while processing data. Thus, the filtering of the incoming data results to
be useful to reduce the impact of these sources of noise.

The resulting estimated pose is visually displayed to the operator by
showing an hologram which is placed on the ChArUco reference system
origin. Is is important to notice that to obtain a perfect alignment between
the 3D coordinates of an object in the real world and the corresponding
hologram projected on the see-through display, to that a user can see them
perfectly superimposed from his point of view, a calibration procedure,
known as SPAAM, should be carried out, in a way similar to the one shown
in [21], otherwise a tolerance factor on the precision of the alignment
needs to be taken in consideration.

∗The ArUco detection app which was the starting point for our implementation
can be found at: https://github.com/KeyMaster-/HoloLensArucoTracking
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When the operator is satisfied of the result, a voice command is used
to load the next scene.

Regarding the homogeneous matrices composition, the trivial issue
of composing the matrices of rotation needed to refer the generated
model to the Kinect reference system is complicated by the different
conventions used. In fact, while Unity is left handed and uses quaternions
to express rotations, Kinect and OpenCV are right handed, but the first
uses quaternions and has its y-axis pointing upwards, whereas the latter
uses axis-angle and the corresponding y-axis points down. These formats
have to be uniformed before applying the transform to the room model
obtained in Chapter 4.
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Chapter 6

Enhanced Constrained
Particle Filter

6.1 Introduction

In this Chapter we will present the improvements designed to increase the
accuracy of the Constrained Particle Filter presented in Chapter 2. To
do that, the volumetric data acquired through the Mixed Reality device
during the Environment Reconstruction phase are used. These data will
be imported in Unity, which was introduced in Chapter 3, together with
the implementation of the Particle Filter and the assets needed to perform
the human pose extraction from the data of the Kinect.

The presented technique was designed to improve the performances
of the Constrained Particle Filter by further reducing the volume where
the particles can propagate, thus reducing also the uncertainty related to
the occluded human pose. Since the main structure of the algorithm is
not changed with respect to the one presented in Chapter 2, here only
the additional features will be detailed. These are concentrated in the
State Evolution phase of the algorithm, since we are modifying the way
in which particles can propagate.

6.2 Virtualized Particle Filter framework

In the Particle Filter the samples (particles) represent candidates to
where the unknown or uncertain human pose joint could be located.
For this reason we want to discard all those particles which violates
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physical constraints. In particular, we are interested in avoiding particles
propagating through objects or outside the natural range of motion of the
human joints. We call the regions of space which fulfil these boundaries
”reachable volumes”. To ensure that the particle remain in these volumes
we started by importing the Particle Filter in Unity.

In Unity the model of the room generated in Chapter 4 can be imported
and aligned with the Kinect reference system. In this way objects seen
by the sensor can be placed in the corresponding position in the virtual
world. In addition this simulated environment allows us to instantiate an
articulated virtual model of a human detected by the camera. We will
call the animated ensemble avatar and will be further detailed in Section
6.2.1.

In this virtual environment it is possible to instantiate each particle
as a GameObject, which is the virtual equivalent of a physical object.
In fact, they can move, collide and be visualized from the graphical
simulator of Unity for debug purposes. Since our goal is to keep the
particles inside the reachable volumes in the real world, we modelled the
limits of these volumes with virtual surfaces, again instantiated in Unity
as GameObjects.

This solution allowed us to convert the problem of confining particles
to reachable volumes in the real world to the one of performing Collision
Detection in the virtual one, since it is sufficient for us to avoid that
particles travels through virtual surfaces to ensure that they fulfill the
limits. We call Collision Detection the procedure used to determine
whether two virtual objects touch or not.

At first we assumed that the Physics module of Unity would be suffi-
cient to reach this goal. Anyway, to substantially improve performances,
in the end we decided to implement our own Collision Detection technique,
which will be later described in Section 6.3.

6.2.1 Human model

In this Section we will show the details behind the production of the
human avatar used in our work as human model inside Unity.

First, it is important to remark that the choices discussed in Section
2.2, about the usage of Cartesian coordinates and joint hierarchy, are
still applied here. We will then show the improvements derived from
importing this model into a virtual tridimensional environment. Here,
the user pose is modelled through a set of joints. An important difference
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Figure 6.1: Human arm model and joint variables

between the approach shown in Chapter 2 and the one presented here is
that, while producing the avatar, also the joints’ orientations (which can
be retrieved from Kinect) are considered.

In the following explanation we will refer to the human model with
the same methodology that we normally use for a robot, as shown in
Figure 6.1. To this aim, we recall the concept of kinematic chain for an
arm as it was defined when introducing the joint hierarchy in Chapter
2: first comes the shoulder, then the elbow and last the wrist. The body
part included between two articulations will be called link.

Figure 6.2: Human model in Unity, animated using the RGB-D camera.

We proceeded by associating to the pose of each joint in the real world
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the following objects in Unity:

• A GameObject representing the corresponding pose in the virtual
environment. In Figure 6.2 those objects are the small cubes.

• A GameObject, the cylinders in Figure 6.2, representing the previous
link in the kinematic chain. This means that the forearm will be
associated to the wrist, the homer is associated to the elbow and
something that is equivalent to the collarbone is associated to the
shoulder. The length of the link is estimated based on the skeletal
dimensions derived from the data coming from Kinect.

• The ”Joint’s Bounding Volume” for the particles which is used
to estimate the position of the following joint, based on the joint
variable limits.

The concept of Joint’s Bounding Volume will be now detailed. Since
we want to avoid the particles to model erroneous poses for the human
body, we are interested in determining if they violates the physical range
of motion of the joint to which they are associated. To do that we
exploited the concept of kinematic chain, that allows us to proceed to the
estimation of a specific joint relying on the knowledge of the position of
the previous ones. In this way, for example, after that we computed the
pose of the shoulder and of the elbow we know that the wrist should lie
on a specific plane.

Figure 6.3: Sequence in the wrist Joint’s Bounding Volume placement

The Joint’s Bounding Volumes are modelled as GameObjects and
positioned before the particles which they should constrain are propagated,
as shown in Figure 6.3. The figure describes how, at each time step, the
elbow position in Unity is updated after the shoulder, and simultaneously
also the pose of the bounding volume for the wrist’s particles is placed.
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Then, the pose of the wrist is estimated, with or without the measurement
availability. Since when the state of the particles is evolved the Joint’s
Bounding Volume is already in place, the particles will be restrained in
their evolution inside it by the Collision Detection procedure described in
Section 6.3.

The shape of the Joint’s Bounding Volumes is obtained from the liter-
ature in [11] and they have to respect the following equations, according
to the nomenclature of the joint variables described in Figure 6.1:
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To implement these equations two strategies are possible: to keep the
volumes shape fixed in a worst case scenario or to update the dimensions
of the surfaces at each time step. The latter is obviously more tricky and
requires to derive the joint variables from the orientations of the joints,
which are known to us.

However, since we assumed in this thesis that occlusions are possible
only for the wrist and focused our attention only on this joint, it is possible
to see that once the orientation of the elbow is known the wrist pose
depends only upon parameter α4. Since the bounds on α4 are independent
from the other parameters, the two approaches mentioned before converge
to the same one. Therefore it is sufficient to fix a volume according to
the fourth equation.

The obtained volume for the wrist theoretically should be a plane.
However this proved to be an hypothesis too strict, since when the
motion of the wrist is perpendicular to the plane the number of particles
respecting the bounding volume will decrease dramatically. Therefore the
planar assumption was relaxed and the volume extended also in the third
dimension.

The Skeletal Distance constraint introduced in Chapter 2 forces the
particles associated to the wrist to lie on a spherical crown around the
elbow, at a distance corresponding approximatively to the length of the
forearm. Introducing also the Joint’s Bounding Volume derived from the
mentioned equations, the remaining propagation space is a 3D sector of
arc, as shown in Figure 6.4.

55



CHAPTER 6. ENHANCED CONSTRAINED PARTICLE FILTER

Figure 6.4: Joint’s Bounding Volume example. Frontal view(left), lateral
view (right)

This procedure represents our implementation of the limitations on
joint variables and is not expensive from a computational point of view.
In fact, the update of the pose of the bounding volume is performed
simultaneously to the previous joint of the kinematic chain, the elbow,
once at each time step. All the particles are then subject to the Collision
Detection procedure, but this represents a fixed computational cost, as
further explained in Section 6.3, thereforewe can conclude that there is
no real loss of performance.

To animate the final model illustrated, in Figure 6.2, a technique
known as avateering was applied. This is an innovative approach used
to let an operator interact with a virtual environment directly with its
body, bypassing the strict need of a physical interface with the machine.
In fact, it couples the virtual avatar of the human to the skeletal poses
retrieved from Kinect.

It is worth to briefly analyse here how Kinect extracts skeletal poses
from depth maps, since we make an extensive use of those data. An
example of the same kind of technique is given in [4]. In this paper
a method (even more precise than the one natively included in the
Kinect SDK) for estimating the human pose starting from a single depth
map is proposed. It relies on the comparison between a point cloud
generated from the depth map and a database of previously acquired
meshes represented all the possible poses of a user. Once a correspondence
is found, a refinement technique is applied to customize the skeleton to
the particular body measures of the operator.
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Hence, to sum up, Kinect estimates the skeleton pose as a whole
and provides at each time step both position and orientation of each
articulation of the skeleton. The frequency at which those data are
refreshed is of 30 FPS, therefore it is not the bottleneck in our estimation
process.

Considering this brief explanation, it is possible to say that to make the
avatar reproduce the trajectories of movement executed by the user in real
time two approaches can be adopted, similarly to what happens in robot
programming: one in joint space and one in Cartesian space. We chose
the Cartesian approach, since it is more straightforward and coherent
with the strategies applied used for the rest of the model. However, since
the orientations are also known, we exploited them to determine the
orientation of the Joints’ Bounding Volumes.

6.3 Collision Detection

Figure 6.5: Particle propagation through a volume without and with
Collision Detection in Unity

In this Section we will describe the main improvement applied to the
Particle Filter algorithm presented in Chapter 2. This is the Collision
Detection capability, which is a method introduced to determine how the
particles represented in Unity as virtual objects interact with the other
GameObjects. This is a key feature of our work, since on this interaction
is based our capability to limit the particles’ movements.

An example of the applicability of this procedure is illustrated in
Figure 6.5. In this picture, with the Unity standard that we used through
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this entire work, the particles are rendered as light blue spheres, the user
forearm and wrist as green objects, the elbow and homerus are rendered
with dark blue colour and the shoulder and collarbone with yellow. The
green lattice represents a planar surface (in this example a table) that
we modelled in Unity with a simple tridimensional volume in a position
correspondent to the one that it has in the real world. Therefore, we can
say that the green lattice corresponds to a real world surface on which
the user is placing his hand.

In the figure marked with ”A”, where the Collision Detection is not
performed, when the operator moves his wrist close to the table the
particles are able to move through it. On the other hand, the picture
marked ”B” shows the result with the Collision Detection enabled, which
prevents the particles to propagate through the object.

The Collision Detection test is performed in the State Evolution phase,
as can be seen in Figure 6.6, and is designed to prevent particles to cross
surfaces present in the workspace modelled in Unity, which can be part
of the mesh reconstructing the room, of the Joints’ Bounding Volumes or
of any other boundary of interest. In view of that, the issues outlined in
Section 2.4 are solved.

To perform this detection we initially relied on the Physics engine
already present in Unity, which was supposed to be able to manage the
high number of objects moving on the scene. This engine tries to recognize
when the GameObject representing a particle is in contact with a surface
at discrete time steps. Anyway, if an object travels through another
completely in the time between two updates, the collision is not detected,
preventing our algorithm to work properly.

By enabling the suitable options, it is possible to force Unity to
interpolate the trajectories travelled by the objects. Unfortunately, since
this interpolation is performed over the whole collider (which is a lattice
of points distributed on the outer surface of the GameObject) associated
to each particle, the process is computationally very heavy, resulting in
an excessive slow down of the execution. Moreover, it often happens that
to preserve an appearance of real time performance Unity performs the
trajectory interpolation only over a part of the particles. This results in
a situation where a number of particles are not checked and are able to
cross the surfaces which should contain them.

To sum up, since the standard built-in assets are not satisfactory, a
workaround to solve this problem was designed by exploiting the raycasting
technique. The raycast is a built-in method in Unity used to verify if

58



6.3. COLLISION DETECTION

Figure 6.6: process to which a particle is subject at each time step

and where a collision happens along a line connecting two points in a
3D environment. It projects a line, called ray, along a specific direction
from a starting point and gives as feedback the point in which it touches
the first object. If the ray doesn’t encounter any obstacle on its way, or
reaches its maximum length, specified by the programmer, it returns a
boolean ”false” value.

The Collision Detection test based on raycasting takes place during
the State Evolution, when the new state xk is computed starting from
xk−1. When a new position for the particle is computed, a ray is cast
from the elbow position at time k to the wrist position proposed by the
particle, which is xk. If the ray ”impacts” a virtual object, the particle
is violating one or more boundaries, hence its position is set to the one
of the impact point, its weight is set to zero and we will say that it is
”colliding”. Moreover, a flag is enabled, which will prevent the particle to
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be subject to any other check and to be considered during the Weight
Evolution phase.

By propagating the ray from elbow to wrist we ensure that neither
the proposed pose for the wrist nor for the forearm are in violation of any
physical boundary, provided that they are mapped inside Unity using the
Spatial Mapping technique shown in Chapter 4.

The Collision Detection technique based on raycast proved to be fast
enough, in fact around 500 rays increase the computational time of 1
ms. Moreover, since this procedure is carried out at each time step, it
generates a fixed loss of FPS, whereas the standard Physics module would
slow down when more collisions are detected.

6.3.1 Order of the particle tests

Figure 6.7: Example of particle check result in case of occlusion. The
spherical crown allowed by skeletal distances is cropped to a section of an
arc by the joint variables limitations. Particles lying in positions visible
by the camera are discarded. Particles eliminated due to collision are
outlined by a red cross.

The tests to establish if the position of a particle is valid are carried out
following a specific order. If one check is failed the particle is discarded,
its weight is set to zero and it will be deleted in phase of resampling. It
is important to notice that the discarded particles are not subject to any
other procedure, this is done to avoid wasting time. In this way we tried
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to reduce at a minimum the executions of the Occlusion Detection test,
which is the most complex procedure and can slow down the application.

The order is:

• Collision Detection: explained in detail in Section 6.3, it is used
to enforce the joint variable limits and to prevent the particles to
cross the surfaces which were reconstructed in the virtual world as
discussed in Chapter 4.

• Skeletal Distances: checks if the particles lie at a suitable distance
with respect to the previous joint. It is exactly the same procedure
explained in Section 2.3.1.

• Occlusion Detection: it is carried out only when an occlusion occurs
and the algorithm is running in Open Loop. With respect to the
literature it relies on a lighter implementation of the neighbour filter
to fill up the holes in the depth map, applying it only to those pixels
which are tested, as shown in Section 2.3.2.

The final result of all these procedures is that the volume where the
particles are allowed to propagate is strictly reduced, using all possible
knowledge about the human and the working environment. A visual
example of this fact is given in Figure 6.7. It is important to notice that
the Occlusion Detection is applied only when the algorithm is running in
Open Loop and is based on data coming from the RGB-D camera. The
reason behind this choice, instead of relying on a virtual simulation where
particles are visible, lays in the fact that it helps managing the case when
an occlusion not mapped a priori in the ”Environment Reconstruction”
phase happens.

6.4 Implementation

To implement the Enhanced Constrained Particle Filter we used Unity,
which provided the framework to build the app integrating 3D models
of the workspace built with HoloLens and data coming from the Kinect,
which are used to model the operator. In Figure 6.8 are illustrated the
data fluxes and the sequence of procedures performed before arriving
at the Particle Filter application, with a distinction between the upper
part of the graph, which contains all the processes performed offline with
respect to the main working cycle, and the lower part of the figure, where
the online procedures, which are the focus of this Chapter, are contained.
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Figure 6.8: Process graph

In Unity, an interface for Kinect was created using the specific library
KinectForWindows. This interface is constituted by two classes, one
managing the body data acquisition, called Body Source Manager, and
one responsible of retrieving and processing the depth map, named Depth
Source Manager. At each time step, the Body Source Manager provides
a set of data containing the tracking state for each joint and its complete
pose. This pose is converted to be compatible with the reference system
of Unity, which is left-handed-based whereas the Kinect works by relying
on right-handed frame. At each joint is coupled a GameObject, according
to the avatar described in Section 6.2.2.

Before launching the pose estimation algorithm, the room model ob-
tained through the Spatial Mapping must be imported in Unity. This
model is stored with a file containing the composition of the homogeneous
transformation matrices used to align the room model to the Kinect refer-
ence system. The meshes uploaded in Unity are automatically converted
in GameObjects. The pose of these objects is then modified applying the
homogeneous transformation matrix computed before, converted in the
Unity standard, which is to use quaternions to express rotations.

The Particle Filter is implemented in Unity as a class containing as
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attributes the vector of particles and all the support variables needed to
run the algorithm. The Particle Filter is associated with a GameObject
whose position coincides with the estimated state of the wrist.

When a human comes in sight, the Particle Filter initializes the
particles creating a set of instances of the Particle GameObject around
the first valid position in which the joint is tracked by Kinect.

The Particle class associated to the homonymous GameObject is
responsible of managing at each time step all the procedures which
involve a single particle. Those are the weight computation, the state
evolution, the Skeletal Distance test and the Collision Detection.

The operations implying knowledge of all the particles, which are the
state estimation and the resampling, are performed by the Particle Filter
directly, accessing the state of the particles when needed.

During the State Evolution phase, as explained in Section 6.3.2, the
Collision Detection is performed. The Skeletal Distance test is executed
in the Weight Computation phase. At each time step the Particle Filter
calls the method of the Particle class for computing the weight in Closed
Loop or the one in Open Loop, depending on the joint tracking state.

The Occlusion Detection test is performed by a method of the Depth
Source Manager class, which contains the depth map as an attribute. A
preliminary step to this test is to convert the pose of a particle in the
depth image space using the Coordinate Mapper from the Kinect library.
We used this built-in function to avoid to have to calibrate the depth
camera.

As already mentioned in Chapter 2, the depth map has pixels with
values equal to zero corresponding to measurements not valid. To fill
these ”voids” in the depth map we decided to use the neighbour filter,
which approximates a pixel with zero value with the closest pixel whose
value is different from zero. Since filtering the entire depth map (which
contains 512x424 pixels, with a lot of zeros) at each time step is very time
consuming, our choice was to fill the zeros in the depth map with the
neighbour filter only for those pixels which are required for the Occlusion
Detection procedure.
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Chapter 7

Experimental Validation

7.1 Introduction

In this Chapter we will present the experiments carried out to validate
this work.

We are interested in assessing the performance of our work, in partic-
ular, focusing on the results achieved with respect to the following two
aspects:

• The accuracy of the pose estimation of the ChArUco board using
HoloLens. We are interested in characterizing how much the stability
of the estimates is affected by the motion of this device when it is
worn by the operator.

• The reliability of the estimate achieved through the application of
the Particle Filter technique when the improvements proposed in
Chapter 6 are applied. We are particularly interested in assessing
the goodness of the estimated position and the volume in which
particles are distributed.

7.2 ChArUco identification experimental val-

idation

First of all we validated the accuracy of the estimate of the ChArUco
marker pose using the standard OpenCV functions, which as outlined in
[28], yields good results when the camera is kept fixed. We were interested
in the performance using HoloLens since the movement of the user heavily
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affects the accuracy of the estimation, this would in turn prevent the
correct alignment of the room model to the reference system of Kinect.

It is a known issue that the goodness of the recognition and pose
estimation of a fiducial markers is strictly linked to the quality of the
image taken. In particular, key aspects for an accurate estimation process
are a good lighting, an high resolution image and a relative stillness of
both camera and marker. To overcome problems arising by the lack of
one or more of these conditions, several approaches are possible, like the
one proposed in [6].

In our setup we were able to provide both a good lighting and high
resolution images. Anyway, since HoloLens is a wearable device, the
stillness of the camera cannot be guaranteed, considering that the user
cannot be perfectly still due to physiological functions such as breathing.
Therefore it is reasonable to assume that a slight blurring of the image
will often be present.

Considering that HoloLens is not suitable for running computationally
intensive programs to correct errors coming from the motion blur, we
decided to use the standard assets and perform an evaluation of the
stability of the measurements obtained from the device.

Therefore, to evaluate the loss of accuracy that wearing HoloLens
would produce in the estimation process, we evaluated the performance
obtained in three situations:

• keeping the device still on a support

• wearing it while standing

• wearing it while sitting

When HoloLens is worn the user tried to be as still as possible. We
compared the results to understand how much the fact that HoloLens is
worn affects the accuracy of the obtained measures.

The results of the tests are displayed in Figure 7.1. The accuracy of
the detection was evaluated using as indicator the variance of the distance
measurements along the Z axis of the camera, that is the direction along
which the estimated positions are more spread. We analysed the accuracy
of the estimated marker position as a function of the distance between
the device and the actual marker during the detection.

Our focus was on the range in which the operator is more probably
located during the detection, thus between one meter and one meter
and sixty centimetres away from the board, but we considered also the
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Figure 7.1: Variance of the ChArUco estimation using HoloLens

extreme case in which the span is two meters. More than 300 samples for
each distance were taken in a similar lighting condition.

The results obtained, as illustrated in Figure 7.1, showed that the
variance of the estimate when the device is fixed on a support is almost
negligible. Differently, when HoloLens is worn the spreading of the data
increases, but the result is considered acceptable.

A secondary but important effect highlighted by the results of the
test is that an offset on the position measured along the Z axis of the
camera is always present. This offset has a magnitude of 8 cm when the
distance between user and camera is 0.80 m and decreases until it vanishes
when the span is 1.60 m. We compensated this offset a posteriori, when
composing the homogeneous transformation matrices.

We speculated that this offset is due to a light misalignment between
the Z axis of the Hololens’ main camera and the headset reference system.

Against our predictions, the difference between the variance of the
samples acquired while sitting and while standing is not significant. There-
fore the precautions taken to increase the accuracy were to perform the
marker acquisition at a distance of 1.60 m from it and to try to be as still
as possible, since placing HoloLens on a support, which would have been
the best solution, in our case was not a viable option.
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7.3 Particle Filter

We evaluated the performance of the Enhanced Constrained Particle
Filter algorithm is a realistic assembly task where some occlusions, due
to the motion of a robot and to the presence of certain geometries (i.e. a
shelf), will occur from the perspective of the Kinect camera.

7.3.1 Setup

Figure 7.2: Workspace and its mesh representation

The setup for this experiment, shown in Figure 7.2.B from the user
perspective, includes a cobot, several boxes and a shelf unit containing
the components needed for the assembly procedure.

Figure 7.2.A displays the mesh reconstructed in Unity from the same
perspective. Meshes were acquired using HoloLens according to the
procedures explained through Chapters 4 and 5.

In Fig 7.3 the workspace is presented from the point of view of the
Kinect and the sources of occlusion are highlighted. We assumed that in
a realistic industrial scenario, two types of occlusions could occur:

• The one marked with number one 1 in Figure 7.3, which occurs
when the human inserts his arm inside the shelf, is mapped a priori
in the ”Environment Reconstruction” phase and is hence present in
the meshes describing the environment.

• The occlusion marked with number 2, which simulates an occlusion
due to the motion of the robot arm. Thus, it cannot be neither
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Figure 7.3: Workstation viewed from the Kinect

known a priori nor mapped through the HoloLens during the ”En-
vironment Reconstruction” phase.

We distinguished the occlusion typologies on the basis of their pre-
dictability and of their impact on the volume in which particles can
propagate.

Considering the predictability two categories of occlusions can be
distinguished:

• Static: an occlusion that is possible to map a priori of the working
cycle and is fixed in the environment, hence its geometry is captured
when the ”Environment Reconstruction” is executed. Occlusions of
this type can be caused by things like shelves, boxes or monitors,
objects that are needed to perform the working activity and always
present on the scene.

• Dynamic: an occlusion caused by something that was not possible
to detect in the ”Environment Reconstruction” phase. These can
be generated by the robot itself interposing one of its links between
the user and the camera, by a self-occlusion of the operator or by
something being added in an unexpected way into the scenery.

On the other hand, also considering the impact of an occlusion on the
volume of propagation of the particles two distinctions are possible:
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• Complex: an occlusion in which the surrounding objects heavily
affects the volume reachable by the particles preventing them from
moving in at least two directions, thus heavily affecting the volume
of propagation. An example is a situation in which a user moves its
hand inside a concave object, like a shelf unit, in this case one of the
outer surfaces of the object occludes the wrist while the others, like
the upper and lower shelves, will prevent the particles propagation.

• Simple: an occlusion in which the surrounding geometry limits the
particles in just one direction. This is the case when the wrist is
occluded near a table. In this case particles are more free to evolve.

Figure 7.4: Occlusions highlighted in the Kinect’s depth map

As shown in figure 7.4, in our environment the occlusion 1 is complex
(since the operator has to introduce its hand between the shelves) and
static, whereas occlusion 2 is simple and dynamic. We included both the
typologies of occlusions multiple times in the same working activity to
try to better highlight what difference the improvements implemented
can make.

Regarding the algorithms tested we used three different variants of
Particle Filter, progressively increasing the complexity:

• Original: the original Constrained Particle Filter algorithm de-
scribed in Chapter 2, which include the Skeletal Distance and the
Occlusion Detection verifications.

• Joint’s Bounding Volume: this includes, beyond the capabilities of
the Original algorithm, also the avatar generation and therefore the
Joint’s Bounding Volume described in Section 6.2.2.
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• Complete: the Enhanced Constrained Particle Filter algorithm
described in Chapter 6, that includes all the improvements described
in this thesis. If a 3D model of the room and the associated
homogeneous transformation matrices are not available, it falls back
to the Joint’s Bounding Volume variant, with exactly the same
performances.

The activity which the operator is performing is the assembly of some
components of an emergency button. During this procedure the tasks
which lead to an occlusions are:

• The withdrawal of two components, a ferrule and half of the outer
case of the button, from the shelf. Both these operations cause a
static occlusion (from occlusion 1, as shown in Figure 7.4 A).

• The withdrawal of the other half of the outer case of the button
and then of the screws needed to finish the assembly, these two
subsequent operations cause two occurrences of dynamic occlusion
(from occlusion 2, as shown in Figure 7.4 B).

7.3.2 Evaluation metric

As key performance indicators of our algorithm we used the following
measures:

• The error between the estimate of the Particle Filter algorithm
being tested and a reliable measurement of the wrist’s position. To
perform this test we removed the occlusion and used the Kinect to
evaluate the position of the wrist to obtain a ”ground truth”. Then,
during the experiments, the estimated position corresponding to the
ground truth was stored. The distance from these two quantities
was used as a measurement of the prediction error.

The ground truth was chosen in a position corresponding to a
complex static occlusion. This means that the Complete algorithm
in its estimation procedure includes also the knowledge about the
environment geometry. On the other hand, the Joint’s Bounding
Volume version will highlight what kind of performance can be
reached without a model of the environment, just considering the
modified model for the human body.

• The volume in which particles are spread, which is proportional to
the uncertainty of the data. Since in literature, as in [12], the number
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of particles which are close to the robot is used to determine the
maximum speed at which it can work, we considered this measure
directly related to the productivity.

Our choice of a significant volume was the confidence ellipsoid
containing the 95% of the particles, an example of which is shown
in Figure 7.5. The length of the semi-axes of this ellipsoid are
proportional to the variance of the particles’ distribution in the
space and to the level of confidence that we want to obtain, thus
capturing the dispersion of our samples.

Figure 7.5: Example of confidence ellipsoid containing the 95% of the
particles

It is important to notice that the procedure presented for the volume
computation is carried out before the Resampling phase and doesn’t
include the particles which have a weight equal to zero, since they
are in violation of the constraints.
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7.3.3 Results

We collected data relative to 25 cycles per each algorithm considered
(see Section 7.3.1). Each dataset contains all the data concerning one
assembly procedure, during which two dynamic occlusions and two static
ones occur.

Figure 7.6: Graphical comparison between the algorithms when a static
occlusion occurs

In Figure 7.6 is shown a qualitative comparison between the propaga-
tion region of the Original algorithm (denoted with B) and the Complete
one (marked with C) under the condition of static occlusion viewed from
two different perspectives. Since Unity meshes are difficult to interpret
visually, the figures on the first column, marked with ”A”, present the
best possible approximation of the same points of view. The upper layer
of images shows what is seen by the Kinect, whereas in the lower one the
user perspective is given.

In the images, the red rectangle is used to highlight the shelf unit, the
pink lines to display the table contour, the green ellipses the position of
the robot present on the background and, last but not least, the yellow
square shows the goal region for the operator.
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As can be seen the particles, rendered in Unity as light-blue spheres,
are far more spread when the Original version of the algorithm is used, and
they tend to propagate uniformly in the region not visible to the Kinect,
this is generated both by the shelf and also in part by the operator.

On the other hand, the figures marked with C show that particles are
well constrained inside the shelf unit (that was mapped a priori using
HoloLens), coherently with the task that the operator was performing.

Figure 7.7: Boxplot representing the volume of propagation

The results obtained, displayed in fig 7.7, show a clear reduction of the
volume occupied by the particles applying the Joint’s Bounding Volume,
which decreases of one order of magnitude the volume of propagation. In
particular, also the variance of the result is diminished, because of the
improved rejection of erroneous phenomena in the particle propagations,
which will be detailed in Section 7.3.4.

Regarding the distance between real and estimated pose we found
again that adding more constraints the estimation result is improved,
as highlighted in Figure 7.8. Adopting the Joint’s Bounding Volume
algorithm the estimation error is reduced by the 21.7%, the Complete
version of the Particle Filter further improves the result, reaching a
reduction of the 28.3%.
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Figure 7.8: Boxplot representing the estimation error

7.3.4 Error rejection

Particularly interesting for us was the fact that the introduction of the
virtualized human model prevented several errors present in the Original
algorithm:

• In case of occlusion the particles tends to cumulate behind the body
of the user. This happens because particles positions visible from
the camera are eliminated. Being the surviving particles free to
move on the spherical crown determined by the Skeletal Distance,
they will tend to position behind the user, which with its body
generated a non visible zone which respects the Skeletal Distance
bound.

• If a hand is very close to the body, Kinect often misjudges its
position and interprets this situation as an occlusion. In this case,
exactly as in the previous, the particles will tend to cluster behind
the user. Also the solution is the same.

• In case of occlusion particles tend to propagate uniformly behind the
object hiding the joint. This tends to move the estimated position
farther behind the occlusion unnecessarily.
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All the mentioned errors are solved by the introduction of the Joint’s
Bounding Volume explained in Chapter 6, which effectively rejects this
type of phenomenon.
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Conclusions

In this work we proposed a sensor fusion technique capable of relating
the volumetric data, describing the operator’s workspace, obtained using
a Mixed Reality device, Microsoft HoloLens, to the information from
a RGB-D camera, Microsoft Kinect, with embedded human tracking
algorithms. We succeeded at this task by relying upon the simultaneous
estimation of a fiducial marker pose using both the devices.

We then applied a customized constrained version of the traditional
Particle Filter algorithm to address the problem of estimating the human
wrist pose in the case it is unknown or uncertain, namely in the case of
occlusions or noisy measurements.

To this aim we modelled the operator as a virtual avatar, whose
movements were coupled to the actual human motions using the data
acquired by Kinect. We constrained the motions of this human model by
taking into account the joint’s range of motion of the real arm. Moreover,
we further added to the avatar the constraints provided by the physical
environment where the human is located and works. To do that, we relied
on the replica of the geometrical volumes of the workspace provided by
the HoloLens in the form of meshes. We integrated the model of the
environment, the avatar and the Particle Filter together inside a single
application.

Thus, in this application the particles of the Particle Filter, represent-
ing the candidate positions for the operator’s articulations, are constrained
in their movements based on three elements:

• The shape and range of motion of the user’s body, acquired via the
Kinect and modelled in the avatar.

• The geometry of the workspace, captured in the room model coming
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from the Mixed Reality device. Thanks to this model, it is possible
to simulate collision between the particles and the physical surfaces.

• The regions visible to the Kinect. When an occlusion happens and
the articulation being tracked is lost, the particles which represent
positions of the joint visible to the Kinect are rejected. In fact,
those particles are not coherent with the incoming data, which tell
us that the joint is hidden.

We validated our method in a realistic industrial assembly task. The
efficacy of our improvements was assessed in a test comparing our complete
algorithm, with and without exploiting a model of the workspace, and
the original formulation of the Constrained Particle Filter.

The results highlighted that our improved formulation of the Particle
Filter is more accurate than the original version. In fact, with respect to
the latter, it was able to:

• Reduce the estimation error by the 25% on average.

• Reduce the size of the volume of the distribution of the particles in
the workspace by the 90% on average.

We considered the reduction of the particles dispersion particularly
relevant, since in a collaborative scenario when the human pose can be
estimated more precisely (with less uncertainty) the robot is less likely to
be required to reduce its working speed unnecessarily. Thus, the significant
reduction of the volume combined with the more precise estimation result
is a key feature in increasing the productivity of the collaborative team.
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