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Abstract

The goal of this thesis is the identification of the parameters of the Fiala model
for tire-road interaction, in the framework of vehicle lateral dynamics. The con-
sidered procedure relies on the single-track model for vehicle lateral dynamics,
widely used in the literature. The Fiala tire model is embodied in the considered
single-track model, allowing to accurately represent the vehicle dynamics even if
it is performing drifting maneuvers.
The formulated model is used in an identification algorithm, whose goal is to es-
timate the cornering stiffnesses of the wheels and the moment of inertia of the
vehicle. Parameter identification is based on a Linear Fractional Transform (LFT)
formulation of the single-track model, and on the use of a suitable MATLAB tool-
box for parameter identification of nonlinear LFT models.
The procedure is run on data obtained from simulations of the same model, to
check its effectiveness. The estimated parameters are compared to their corre-
sponding values set for the simulation, expecting coinciding results. It is shown
that, although the Fiala model is accurate enough to describe drifting maneuvers,
identifiability is loss when drifting data are included. The suggested solution con-
sists in recognizing and removing the detrimental data.
Finally, the algorithms are run on data retrieved from experimental tests, and the
results are validated by comparing the measurements of the output variables to
the simulated output of the identified model.

KEYWORDS: LFT; Linear-Fractional Transformation; Vehicle; Lateral Dynam-
ics; Single-Track; Tire; Tire model; Tire-road interaction; Fiala; Brush model; Slip;
Side slip angle; Beta; Tire slip angle; Alpha; Drifting; Full Sliding;

1





Sommario

Lo scopo di questa tesi è l’identificazione dei parametri del modello di Fiala per
l’interazione tra uno pneumatico e la strada, nell’ambito della dinamica laterale di
un veicolo. La procedura considerata fa affidamento sul modello bicicletta, larga-
mente utilizzato nella letteratura. Il modello di Fiala di uno pneumatico è incluso
nel modello bicicletta considerato, consentendo di rappresentare accuratamente la
dinamica del veicolo anche se effettua manovre drifting.
Il modello formulato è usato in un algoritmo di identificazione, il cui compito è
stimare le cornering stiffnesses delle ruote e il momento di inerzia del veicolo.
L’identificazione dei parametri è basata su una formulazione Linear Fractional
Transform del modello bicicletta, e sull’utilizzo di un opportuno toolbox MAT-
LAB per l’identificazione dei parametri di modelli non lineari LFT.
La procedura è eseguita su dati ottenuti da simulazioni dello stesso modello, per
verificarne l’efficacia. I parametri stimati sono confrontati ai rispettivi valori impo-
stati nella simulazione, aspettandosi risultati coincidenti. Inoltre è mostrato che,
sebbene il modello di Fiala è sufficientemente accurato per descrivere manovre
drifting, l’identificabilità è persa quando dati corrispondenti al drifting sono in-
clusi. La soluzione proposta consiste nel riconoscere e rimuovere tali dati. Infine,
gli algoritmi sono testati su dati ottenuti da prove sperimentali, e i risultati sono
validati confrontando le misure delle variabili in uscita alle uscite simulate del
modello identificato.

PAROLE CHIAVE: LFT; Linear-Fractional Transformation; Veicolo; Dinamica
laterale; Bicicletta; Pneumatico; Modello di uno pneumatico; Interazione pneumatico-
strada; Fiala; Modello spazzola; Slittamento; Angolo di Side Slip; Beta; Angolo di
Tire Slip; Alpha; Drifting; Full Sliding;
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Chapter 1

Introduction

1.1 Motivations

Modelling of dynamic systems has always covered a role of major importance in
control applications. An accurate model of a system dynamics is typically deter-
minant in control design, when a choice must be made about the class of the
controller, requirements of settling time and robustness or other specifications. A
correct modelling is also relevant when simulations of the system are carried out,
allowing to foresee the behaviour of complex systems by implementing their math-
ematical models in computers and integrating them by means of tailored numerical
methods. For this reason, the model should not be excessively complicated, or its
implementation may be computationally heavy to be run on a computer. Con-
troller design should also take into account for computational complexity, since a
regulator is loaded on a MCU (Micro Controller Unit) with limited capabilities.
In other words, trade-offs between accuracy and complexity of a model must be
considered in most control applications.
This fact also holds for identification algorithms, whose goal is the estimation of
the unknown parameters of the model. The choice of the parameters and the non-
linearity of the model are examples of issues which need to be tackled, to formulate
a functioning and efficient algorithm.

In the framework of vehicle dynamics, there are plenty of control applications
which have become more relevant in the latest period, in both industry and re-
search. One may think of safety instruments, such as ABS and ESC, but also con-
trol design aimed to increase performance and automation of the vehicle, found
for instance in sport cars. An accurate model of vehicle dynamics could be very
useful in these contexts, and a relevant part of vehicle dynamics is covered by the
models for tire-road interaction, or tire model.

The single-track model is widely used in the literature and it is simple and accurate
enough to describe the vehicle motion. However, some of its parameters are not
trivial to be measured, without using expensive measurement tools. An identifica-
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10 INTRODUCTION

tion algorithm proves to be very useful, if one needs to rely on cheap measurements
units, such as an Inertial Measurement Unit (IMU). The identification algorithm
exploits a mathematical model of the system to relate the measurements and the
unknown parameters, so that it can correctly estimate the latter.
The adopted identification method is based on the toolbox for the identification
of nonlinear systems in Linear Fractional Transform formulation, developed by
Della Bona et al. [1]. The Linear Fractional Transform (LFT) is a convenient form
to write nonlinear systems affected by uncertainty, allowing to separate the linear
part of the system, the nonlinear part and the uncertain part. The main advantage
of the toolbox is its applicability to any LFT model. The software also allows to
set options for the identification procedure, which can be tuned to achieve the
desired estimation accuracy and convergence time.
Two realizations of the single-track model in LFT formulation are reported in
Appendix B.

The complexity of the identification algorithm is strictly related to the complexity
of the model. The single-track model has already been tested in an LFT identifi-
cation procedure in previous works [9, 11], providing correct and efficient results.
In these works, however, a linear tire model is considered, which is simple and
accurate for non aggressive driving, but it is not when the system starts drifting.
For this reason, this thesis introduces a more accurate tire model, without ex-
cessively increasing the computational load of the identification algorithm. The
chosen tire model is the one formulated by Fiala [10], which provides an accept-
able compromise since it fits experimental data, but it is not as complicated as
other tire models, such as the Magic Formula from Pacejka.

The estimation algorithm is tested on both simulated and and experimental data.
Promising results are obtained on both ends, but an interesting phenomenon
should be pointed out. The Fiala model is accurate for data corresponding to
intense drifting, but such data lead to extremely incorrect results in the estimated
parameters. The knowledge of the tire model proves to be useful in this case, al-
lowing to detect the responsible data for the loss of identifiability, so that they
can be removed and the accuracy of the results can be recovered.

1.2 Organization

This work is organized in the following chapters:

• Chapter 2 deals with parameter identification for nonlinear models in Lin-
ear Fraction Transform formulation.

• Chapter 3 introduces the single-track model for the vehicle lateral dynam-
ics, the concept of tire model and the Fiala model for tire-road interaction.

• Chapter 4 is dedicated to the developed identification algorithms, whose
goal is the estimation of the unknown parameters of the single-track model.
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Different ways to face the problem are discussed, mainly focusing on the
choice of the tire model and the related issues.

• Chapter 5 sums up the conclusions and suggests possible ways to further
develop this work.





Chapter 2

The LFT Approach to Parameter
Identification of Nonlinear
Systems

The problem of parameter identification formulated over Linear Fractional Trans-
form (LFT) model structures has been a subject of active research for more than 10
years, see, e.g., [6, 2, 5]. In particular, the parameter estimation method proposed
in [5] is here extended to account for nonlinear models.

Consider a nonlinear, time invariant, multi-input multi-output, continuous-time
system

ẋ(t) = f(x(t),u(t), δo)
y(t) = g(x(t),u(t), δo)

(2.1)

where x ∈ Rn, y ∈ Rp, are the state and noise-free output vectors, with u ∈ Rm

being the input vector, and δo ∈ Rq a vector of unknown parameters, and assume
as the output observation equation

y̌(tk) = y(tk) + ε(tk) (2.2)

where tk, k = 1, . . . , N denotes the sampling instant, and εi(tk) is a discrete-time,
zero-mean, white noise of variance σ2

i .

The identification problem can be formulated as follows: given the sampled data
{u(tk), y̌(tk)}Nk=1, find the values of parameters δ̃ minimizing the cost function

J(δ) = 1
2N

N∑
k=1

eT (tk, δ)We(tk, δ) (2.3)

where e(tk, δ) = y̌(tk) − ŷ(tk, δ) is the prediction error between the measured
output y̌(tk) and the output ŷ(tk, δ) predicted by model (2.1), using parameters
δ instead of the true parameters δo and W is a weight matrix.

13
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As it is well known, δ̃ is a maximum-likelihood estimate of the model parameters
δ for output-error plants [8], and can be obtained through well known iterative
optimization procedures such as, for example, the Gauss-Newton algorithm:

δ̂(ν + 1) = δ̂(ν)− α(ν)Ĥ−1(δ̂(ν))g(δ̂(ν)) (2.4)

where ν is the iteration number, α(ν) is the step size, g(δ) : Rq → Rq and
Ĥ(δ) : Rq → Rq×q are the gradient vector and a positive semi-definite approxima-
tion of the Hessian of the cost function with respect to the unknown parameters,
respectively:

g(δ) = 1
N

N∑
k=1

ET (tk, δ)We(tk, δ), (2.5)

Ĥ(δ) = 1
N

N∑
k=1

ET (tk, δ)WE(tk, δ) (2.6)

where E(tk, δ) ∈ Rp×q is the Jacobian of e(tk, δ) and is given by:

E(tk, δ) =
[
∂e(tk,δ)
∂δ1

. . . ∂e(tk,δ)
∂δq

]
(2.7)

In turn, rewriting model (2.1) in a Linear Fractional Transform (LFT) formulation
allows for a direct computation by simulation of the gradient and approximated
Hessian of the cost function [1]:

ẋ(t) = Ax(t) + B1w(t) + B2ζ(t) + B3u(t) (2.8)
z(t) = C1x(t) + D11w(t) + D12ζ(t) + D13u(t) (2.9)
ω(t) = C2x(t) + D21w(t) + D22ζ(t) + D23u(t) (2.10)
y(t) = C3x(t) + D31w(t) + D32ζ(t) + D33u(t) (2.11)
w(t) = ∆z(t) = diag{δo1Ir1 , . . . , δ

o
qIrq}z(t) (2.12)

ζ(t) = Θ(ω(t)) (2.13)

where z ∈ Rnz , ω ∈ Rnω , w ∈ Rnw , ζ ∈ Rnζ are vectors of auxiliary variables, A,
Bi, Ci, Dij are 16 known constant matrices, ri are the sizes of the corresponding
identity matrices Iri in the ∆ block and Θ(ω) : Rnω → Rnζ is a known nonlinear
vector function.

The model in the LFT formulation, although being formally equivalent to the
original one, is now clearly divided in 3 parts (Fig. 2.1):

1. a linear part: equations (2.8 – 2.11);

2. a nonlinear part: equation (2.13), defined by the vector function Θ(ω(t));

3. an uncertain part: equation (2.12), where vector z(t) multiplies matrix ∆ =
diag{δo1Ir1 , . . . , δ

o
qIrq}, collecting the unknown parameters.
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The computation of the predicted output ŷ(tk, δ) (first stage of the scheme in Fig.
2.2) can be dealt with by rewriting model (2.8–2.13) as follows:

M ˙̃x(t) = f̃(x̃(t),u(t, τ ), δ) (2.14)
y(t) = g̃(x̃(t),u(t, τ ), δ) (2.15)

where x̃(t) =
[

x(t)T z(t)T ω(t)T
]T

and

M =

 In 0n×nz 0n×nω
0nz×n 0nz×nz 0nz×nω
0nω×n 0nω×nz 0nω×nω

 (2.16)

f̃(x̃,u, δ) =

 Ax + B1∆z + B2Θ(ω) + B3u
C1x + (D11∆− Inz) z + D12Θ(ω) + D13u

C2x + D21∆z + D22Θ(ω)− ω + D23u

 (2.17)

g̃(x̃,u, δ) = C3x + D31∆z + D32Θ(ω) + D33u (2.18)

thus by sampling the output of a dynamic system defined by the algebraic trans-
formation output (2.15) and by an index-1, semi-explicit DAE system defined by
eq. (2.14), fed by the sampled input u(tk).

The numerical integration of the DAE system (2.14) can be dealt with in MAT-
LAB through the ode15s.m function, which implements a variable order BDF
method and allows to define separately the mass matrix M and the vector func-
tion f̃(x̃,u, δ). Moreover, in order to improve reliability and efficiency, the Jacobian
matrix ∂ f̃/∂x̃ should be analytically computed.

The sensitivity
∂e(tk, δ)
∂δi

= −∂ŷ(tk, δ)
∂δi

= −y′i(tk) (2.19)

can be computed by sampling the output y′i(t) of the following LFT system (second
stage of the scheme in Fig. 2.2):

ẋ′i(t) = Ax′i(t) + B1w∗i (t) + B2ζ
′
i(t) + B1∆δiz(t) (2.20)

z′i(t) = C1x′i(t) + D11w∗i (t) + D12ζ
′
i(t) + D11∆δiz(t) (2.21)

ω′i(t) = C2x′i(t) + D21w∗i (t) + D22ζ
′
i(t) + D21∆δiz(t) (2.22)

y′i(t) = C3x′i(t) + D31w∗i (t) + D32ζ
′
i(t) + D31∆δiz(t) (2.23)

where

∆δi = ∂∆
∂δi

= diag{0r1×r1 , . . . , Iri , . . . ,0rq×rq} (2.24)

w∗i (t) = ∆z′i(t) (2.25)

ζ ′i(t) = ∂Θ(ω)
∂ω

∣∣∣∣∣
ω=ω(t)

ω′i(t) = Θω(ω(t))ω′i(t) (2.26)
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Differentiating eqs. (2.8–2.13) with respect to parameter δi yields:

∂ẋ(t)
∂δi

= A
∂x(t)
∂δi

+ B1
∂w(t)
∂δi

+ B2
∂ζ(t)
∂δi

(2.27)

∂z(t)
∂δi

= C1
∂x(t)
∂δi

+ D11
∂w(t)
∂δi

+ D12
∂ζ(t)
∂δi

(2.28)

∂ω(t)
∂δi

= C2
∂x(t)
∂δi

+ D21
∂w(t)
∂δi

+ D22
∂ζ(t)
∂δi

(2.29)

∂ŷ(t)
∂δi

= C3
∂x(t)
∂δi

+ D31
∂w(t)
∂δi

+ D32
∂ζ(t)
∂δi

(2.30)

∂w(t)
∂δi

= ∂∆
∂δi

z(t) + ∆
∂z(t)
∂δi

(2.31)

∂ζ(t)
∂δi

= ∂Θ(ω)
∂ω

∣∣∣∣∣
ω=ω(t)

∂ω(t)
∂δi

(2.32)

which gives eqs. (2.20–2.26) by renaming the partial derivatives:

x′i = ∂x
∂δi

, z′i = ∂z
∂δi

, ω′i = ∂ω

∂δi
, y′i = ∂ŷ

∂δi
, w′i = ∂w

∂δi
, ζ ′i = ∂ζ

∂δi

By substituting (2.25) and (2.26) in (2.20–2.23) and solving (2.21) and (2.22) with
respect to z′i(t) and ω′i(t) the following time-variant, linear system is obtained,

ẋ′i(t) = Ã(ω(t))x′i(t) + B̃(ω(t))∆δiz(t) (2.33)
y′i(t) = C̃(ω(t))x′i(t) + D̃(ω(t))∆δiz(t) (2.34)

where

Ã(ω(t)) = A +
[

B1∆ B2Θω(ω(t))
]
F(ω(t))

[
C1
C2

]
(2.35)

B̃(ω(t)) = B1 +
[

B1∆ B2Θω(ω(t))
]
F(ω(t))

[
D11
D21

]
(2.36)

C̃(ω(t)) = C3 +
[

D31∆ D32Θω(ω(t))
]
F(ω(t))

[
C1
C2

]
(2.37)

D̃(ω(t)) = D31 +
[

D31∆ D32Θω(ω(t))
]
F(ω(t))

[
D11
D21

]
(2.38)

F(ω(t)) =
[

Inz −D11∆ −D12Θω(ω(t))
−D21∆ Inω −D22Θω(ω(t))

]−1

(2.39)

It must be pointed out that, in the implementation, the Jacobian Θω is simbolically
computed directly from the definition of the function Θ.

Since the second stage requires the value of ω(t) computed in the first stage,
the two systems must be run in cascade, as in Fig. 2.2, that shows the complete
procedures.
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It is also important to underline the fact that the second stage must be executed
as many times as the number of parameters in the δ vector. This is a very critical
part from the computational cost point of view, since the second stage is repeated
many times during the whole estimation procedure.

A solution to increase the computational efficiency was implemented in the Tool-
box. Given the linear ODE (2.33) it is possible to rewrite it as

ẋ′i(t) = Γ2(ω)
[

x′i(t)
∆δiz(t)

]
(2.40)

with

Γ2(ω) =
[[

A B1
]

+
[

B1∆ B2
∂Θ(ω)
∂ω

∣∣∣
ω=ω(t)

]
Γ1(ω)

]
(2.41)

Γ1(ω) =

 Inz −D11∆ −D12
∂Θ(ω)
∂ω

∣∣∣
ω=ω(t)

−D21∆ Inω −D22
∂Θ(ω)
∂ω

∣∣∣
ω=ω(t)


−1 [

C1 D11
C2 D21

]
(2.42)

Analyzing the use of Γ1(ω) and Γ2(ω), it can be noticed that their components can
be evaluated and saved in a CommonTerms vector, during the first stage of the LFT
parameter estimator at all the time instants of the simulation. These terms are
then interpolated and evaluated in every time instant of the second stage in order
to greatly reduce the overall computational cost of the parameter identification
procedure.

It is also worth mentioning that, in order to deal with parameter estimation,
it is essential to rewrite model (2.8−2.13) by introducing normalized unknown
parameters δ̄i, varying between ±1 as parameter δi varies between a maximum
δmax
i and a minimum δmin

i with

δi = (δmax
i + δmin

i )
2 + δ̄i(δmax

i − δmin
i )

2 (2.43)

Deriving the LFT formulation could be non-trivial if carried out manually, to this
aim, a symbolic computing approach, partially developed in [3] with reference
to linear models, has been first fully implemented for application to the general
non-linear case in [1]. Moreover, there is no unique solution.

2.1 Example

As an example consider this simple, purely academic, nonlinear model

ẋ1 = 5x1δ1 + 3 x2

1 + δ2
(2.44)

ẋ2 = u (2.45)
y = x1 + x2 (2.46)
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where δ1 and δ2 are the uncertain parameters. The relevant LFT formulation can
be derived according to the following steps:

1. Collect the uncertain parameters in the vector δ:

δ =
[
δ1 δ2

]T
(2.47)

2. Each parameter δi has to multiply another varying quantity, otherwise, equa-
tions are modified to get the result, in our example:

x2

1 + δ2
→ x2

2
x2 + x2δ2

(2.48)

3. Define:

wj = δizj ,

i = 1, . . . , q,
j = ri−1 + 1, . . . , ri−1 + ri

(2.49)

in our example:

w1 = δ1z1 (2.50)
w2 = δ2z2 (2.51)

4. Compute

z = C1x + D11w + D12ζ + D13u (2.52)

keeping linear dependencies of z from x, w and u while introducing nonlinear
terms in ζ, in our example:

z1 = x1 (2.53)
z2 = x2 (2.54)

5. Compute

ẋ = Ax + B1w + B2ζ + B3u (2.55)
y = C3x + D31w + D32ζ + D33u (2.56)

keeping linear dependencies of ẋ and y from x, w and u while introducing
nonlinear terms in ζ, in our example:

ẋ1 = 5w1 + 3ζ (2.57)
ẋ2 = u (2.58)
y = x1 + x2 (2.59)

6. Define
ζ = Θ(ω) (2.60)

in our example
ζ = ω2

1
ω1 + ω2

(2.61)
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7. Compute
ω = C2x + D21w + D22ζ + D23u (2.62)

keeping linear dependencies of ω from x, w and u while introducing nonlin-
ear terms in ζ, in our example:

ω1 = x2 (2.63)
ω2 = w2 (2.64)

The final LFT formulation is thus given by:

ẋ =
[
5w1 + 3ζ u

]T
(2.65)

z =
[
x1 x2

]T
(2.66)

ω =
[
x2 w2

]T
(2.67)

y = x1 + x2 (2.68)

w =
[
δ1z1 δ2z2

]T
(2.69)

ζ = ω2
1

ω1 + ω2
(2.70)



Chapter 3

Dynamic model of the vehicle

The identification algorithm discussed in Chapter 4 is based on the so-called white
box identification, meaning that it relies on a mathematical model derived from
the laws of physics. The single-track model is obtained from basic force balances
and, under mild assumptions, it is simple enough to be implemented in a compu-
tationally efficient algorithm.

In this chapter, a formulation from literature of the single-track model is shown;
then, the focus is moved on the description of tire-road interaction, i.e. a mathe-
matical model for the friction forces exchanged between tires and road. The Fiala
tire model, also known as "brush" model, has been chosen for this purpose: it is
derived from the laws of physics and it has a simpler expression than the best
known Pacejka model, leading to a less complicated dynamic model and to a more
efficient identification algorithm.

3.1 The single-track model

The main idea of the single-track model is to consider the wheels as if they were
lumped together on the same front or rear axle at its centerline. The main quan-
tities involved in the dynamic model are depicted in Figure 3.1., where

• u and v are the longitudinal (parallel to the vehicle main direction) and
lateral (orthogonal to the latter) components of the speed of the Center of
Gravity.

• The side-slip angle β is defined as:

β = arctan
(
v

u

)

• ψ is the yaw angle, between the vehicle main direction and an inertial refer-
ence frame;

21
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Figure 3.1: Single-track vehicle model (the figure show the quantities used to derive the motion
model).

• r is the yaw rate;

• a and b are respectively the distances of the front axle and the rear axle from
the CoG;

• δ is the steering angle. A steering gain G must be considered if δ is retrieved
from the steering wheel, in this case it may differ from the actual steering
angle.

• A wheel’s tire-slip angle is defined as the angle made up of the wheel’s speed
vector, and its projection along the wheel’s main direction. Front and rear
tire slip angles can be computed as follows:

αf = −β − a r
u

+Gδ αr = −β + b
r

u

playing an important role when defining the tire model.

To further simplify the model, the following assumption are enforced:

• ground slope, longitudinal load transfer, and pitching and rolling motions
are neglected;
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• a linear tire model is considered, i.e.,

Ff = Cfαf Fr = Crαr

where Ff , Fr are the front and rear lateral forces and Cf , Cr are the front
and rear cornering stiffness;

• sideslip and steering angle are small enough to introduce the approximations
sin(x) ≈ x and cos(x) ≈ 1;

• the vehicle is rear-wheel drive and braking forces are neglected;

• the vehicle velocity is slowly varying, i.e., the Newton equation related to
the longitudinal motion is considered at steady state.

Under the previous assumptions, single-track model’s equations can be expressed
through the following dynamical system:

v̇ = 1
m

(Ff + Fr)− ur

ṙ = 1
Iz

(aFf − bFr)

ψ̇ = r

Ff = Cfαf

Fr = Crαr

αf = −β − a r
u

+Gδ

αr = −β + b
r

u

β = arctan
(
v

u

)

(3.1)

where m and Iz are the vehicle mass and moment of inertia.
The time evolution of the kinematic states is given by:

ẋ = u cosψ − v sinψ
ẏ = u sinψ + v cosψ

(3.2)

where x, y are the Cartesian coordinates of the vehicle center of mass with respect
to an inertial reference frame.

3.2 Fiala model (brush model) for tire-road in-
teraction

Experimental evidence shows that the linear tire model is not accurate for large
values of the tire-slip angle. Therefore the single-track model in (3.1) may be
incorrect, if the vehicle undergoes intense drifting.
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Figure 3.2: Tire scheme. The involved quantities in the tire model are shown.

Pacejka formulated a more accurate nonlinear tire model, which relates Fy, i.e.
the lateral force exchanged between tire and road due to friction on the contact
patch, and α, the tire-slip angle, as follows:

Fy = D sin [C arctan [Bα− E [Bα− arctan [Bα]]]] (3.3)

where B, C, D, E are suitably chosen coefficients.

Pacejka model is also referred to as "Magic Formula", since it has no physical
background but it accurately fits experimental data.

On the other hand, the Fiala model is derived from the laws of physics: the main
idea consists in considering the contact patch, the surface between tire and road,
covered with brushes which bend when they touch the road (for this reason it is
also known as brush model). The formula of the Fiala model is:

Fy =

Cz
(

1− |z|
zsl

+ z2

3z2
sl

)
|z| < zsl

µFzsign(α) |z| ≥ zsl

where C is the tire cornering stiffness, α is the tire-slip angle, z = tan(α), µ is the
dynamic friction coefficient between the materials of tire and road. zsl is defined
as

zsl = 3µFz
C

(3.4)
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By performing suitable substitutions in (3.3), the Fiala model formula becomes

Fy = C

z
(

1− |z|
zsl

+ z2

3z2
sl

)
|z| < zsl

zsl
3 sign(α) |z| ≥ zsl

(3.5)

If α maintains sufficiently small values, the approximation z = tan(α) ≈ α can be
introduced.

The quantity zsl is a bound on z delimiting the Full Sliding region. According to
the Fiala model, when the tire-slip angle α reaches a sufficiently high value, the
lateral force acting on the tire during cornering is no more dependent on α and
it is capped at a fixed value: this condition is called Full Sliding (for the sake of
brevity it will be addressed as FS hereon).
While the vehicle is not in the FS region, it can be noticed that Fy is a cubic
function of α. Therefore it is much simpler than the Pacejka formula in (3.3), so
it is more suitable for a computationally efficient identification algorithm.

Figure 3.3: A comparison between Pacejka and Fiala models.

Figure 3.3 shows a graphical comparison between the two models. The most no-
ticeable difference is the absence of the decreasing slope of the FS zone in the Fiala
model. However, it will be shown in the following chapter that FS data are detri-
mental for the identification of the cornering stiffnesses and need to be discarded,
therefore choosing the Pacejka formula to accurately model FS data would bring
no benefit and would only increase the complexity of the algorithm.
Regarding the implementation of the Fiala model in MATLAB, it graphically
resembles a saturation. However, min() and max() MATLAB functions are not
compatible with the toolbox for LFT identification. Instead, the function abs()
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is compatible and can be exploited to represent the model:

z = tan(α)

y(z) = z

(
1− |z|

zsl
+ z2

3z2
sl

)

f(z) = 1
2

(∣∣∣∣y(z) + zsl
3

∣∣∣∣− ∣∣∣∣y(z)− zsl
3

∣∣∣∣)
Fy = Cf(z)

(3.6)



Chapter 4

Parameter identification in the
LFT formulation of the Single
Track Model

The identification algorithm is based on the single-track model. It has already
been stated that the purpose of this work is to provide an estimate of the cornering
stiffnesses; however, a few adjustments allow to simplify the identification problem
and also estimate the vehicle moment of inertia around its z-axis, Iz.

4.1 Setup of the identification problem

4.1.1 Definition of the accessible inputs and outputs of the
system

Consider the equations of the single-track model (3.1):

v̇ = 1
m

(Ff + Fr)− ur

ṙ = 1
Iz

(aFf − bFr)

ψ̇ = r

Ff = Cfαf

Fr = Crαr

αf = −β − a r
u

+Gδ

αr = −β + b
r

u

β = arctan
(
v

u

)

27
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In every implementation of the identification algorithm in this work, the following
5 variables are defined as accessible, i.e. they are known functions of time and they
provide data to perform the identification.

• u, the longitudinal velocity;

• δ, the steering angle;

• r, the yaw rate;

• ay, the lateral acceleration of vehicle CoG. ay is given by:

ay = v̇ + ur.

Comparing ay with the first equation of (3.1), it can be computed as:

ay = 1
m

(Ff + Fr). (4.1)

• β, the sideslip angle.

4.1.2 Identification goal

The final purpose of the identification procedure is to estimate Cf and Cr. How-
ever, a suitable choice of the coefficients to identify allows also to estimate Iz.
Model (3.1) can be rewritten as:

v̇ = Cf
m

(
−β − a r

u
+Gδ

)
+ Cr
m

(
−β + b

r

u

)
− ur

ṙ = a
Cf
Iz

(
−β − a r

u
+Gδ

)
− bCr

Iz

(
−β + b

r

u

)
ψ̇ = r

Assuming that all other coefficients are known, the goal is to identify the three
ratios:

δ1 = Cf
m

δ2 = Cr
m

δ3 = Cf
Iz

Once the three ratios are estimated, the computation of Cf , Cr and Iz is straight-
forward.

Cf = mδ1 Cr = mδ2 Iz = m
δ1

δ3
(4.2)
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4.2 Identification from simulated data: linear model

From this section onwards, results of the implemented LFT identification algo-
rithms are shown and discussed. They are all based on the LFT identification
toolbox, but they differ from each other for the choice of the tire model: linear
and Fiala models will be considered.

The linear model lends itself to a simple explanation of the implemented code,
which is similar for the algorithms in the following sections. Moreover, it provides
satisfactory results for the identification when tested on experimental data, if the
tire slip angles are small.

Listing 4.1: Definition of the known parameters and loading of the accessible variables

% Data
mass = 2; % [kg] vehicle mass
a = 0.15; % [m] CoG -front axle distance
b = 0.11; % [m] CoG -rear axle distance
Gsteer = 1;

d1lim = [0 100];
d2lim = [0 100];
d3lim = [0 1000];

load('data ')

The first code section is shown in Listing 4.1. The known parameters are defined
as well as the boundaries on the unknown parameters d1lim, d2lim, d3lim. These
values also determine the starting values of the parameters, used in the first iter-
ation of the identification algorithm. They are computed as the average of each
parameter’s boundaries.
The accessible variables are loaded by means of load(’data’). The initial values
of the state variables of the LFT form are also retrieved in this way: these are
required to numerically integrate the system using the function lftSolver.

Listing 4.2: Definition of lftfun

%% Load lft function
lftfun = singleTrackLftLinear (a, b, Gsteer , d1lim , d2lim

, d3lim);
lftfun. DeltaVal = diag ([0 0 0]);

M = max(output);
m = min(output);
for i=1: length(M)
nominal (i)=(M(i)-m(i));
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end
lftfun.ISO. Nominal = nominal ;

In Listing 4.2 the struct lftfun is defined, containing the implementation of the
LFT single-track model. A more thorough explanation of the involved variables
is given in Appendix A; a detailed formulation of the single-track LFT form is in
Appendix B.

Listing 4.3: LFT toolbox settings

%% LFT toolbox settings
LFTsolverOptions = lftSet('SensAlgorithm ', 'ode15s ',...
'SolutionTimeSpan ', t,...
'SolutionInterpMethod ', 'spline ',...
'OversamplingMethod ', 'spline ',...
'RelTol ', 1e-3,...
'AbsTol ', 1e-6...
);
LFToptimOptions = lftOptSet ('StartOptimSample ', 1,...
'Display ', 'iter ',...
'StepTolerance ', 1e-6,...
'MaxIter ', 60,...
'TolFun ', 1e-9...
);

The settings for the LFT solver are saved in the struct LFTsolverOptions. The
chosen numerical method is ode15s, a stiff method which allows to use a variable
step. Each step should satisfy a prescribed tolerance on the local error, given by
RelTol and AbsTol: these are suitably chosen to attain satisfactory results in the
identification, and terminate the algorithm in a reasonable time. Indeed, the iden-
tification procedure integrates the LFT system at each iteration along the time
span associated to SolutionTimeSpan, so this operation should not be too long.
The settings for the LFT identification algorithm are stored in LFToptimOptions.
These include the criteria to terminate the algortithm, StepTolerance, MaxIter
and TolFun.
Further options are available for lftSet and lftOptSet but they are not the main
focus of this treating. The interested reader can find them in Appendix A.

Listing 4.4: Setting of AlgebraicStartingValues

% Setting of AlgebraicStartingValues
algebraicStartingValues = zeros (9 ,1);
algebraicStartingValues (7) = 1e -6;
algebraicStartingValues (6) = u(1);

InitialConditions = struct('StateInitialConditions ',
initialConditions ,...
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'AlgebraicStartingValues ', algebraicStartingValues...
);

The passage in Listing 4.4 allows a proper initialization of the algorithm.
’AlgebraicStartingValues’ is a vector collecting arbitrary initial values for the
z and ω variables of the LFT system.

ASV =
[
z1(0) z2(0) z3(0) ω1(0) ω2(0) ω3(0) ω4(0) ω5(0) ω6(0)

]T
It is not important how these values are set, since lftSolver automatically com-
putes a set of consistent initial conditions when it is called. However, some of
these variables may appear at the denominator in the LFT system: if a division
by zero is detected at the initial time instant, the algorithm returns error and
terminates. By setting the corresponding elements of AlgebraicStartingValues
to a non-zero value, this issue is removed.
In the case of singleTrackLinear, the interested variables are u and αf : they
appear at the denominator in some elements of θ(ω) (see B.1 and B.2 for details).

Listing 4.5: Identification algorithm

Input = struct('Type ', 'interpolated ', 'Samples ', input ,
'Time ', t);

% Identification algorithm
[DELTA_opt , fval , J, grad , H, CN , history ] = lftOptDelta

(lftfun , Input , InitialConditions , LFTsolverOptions ,
output , LFToptimOptions );

[delta0 , deltaOpt ] = norm2abs (lftfun , lftfun.DeltaVal ,
DELTA_opt );

H = H(:,:, end), CN = CN(end)

%% Results
Cf = mass* deltaOpt (1)
Cr = mass* deltaOpt (2)
Iz = mass* deltaOpt (1)/ deltaOpt (3)

In the last section of code, the identification procedure is run. First of all, the
matrix collecting the input variables of the LFT system, u and δ, and the time
vector are stored in the struct ’Input’, which is fed to the function performing the
identification, lftOptDelta. The latter is iteratively called by norm2abs which,
at each iteration, chooses values of the unknown parameters δ1, δ2 and δ3 to
minimize the cost function J . When it terminates, the function returns delta0,
i.e. the values of the unknown parameters at the start of norm2abs, and deltaOpt,
the optimal values.
The function lftOptDelta returns, at each iteration, the Hessian and its Condition
Number. Their values at the final iteration are saved in H and CN: they provide an
interesting index to evaluate the quality of the estimate.
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Finally, Cf , Cr and Iz are computed, accordingly to (4.2).

4.2.1 Simulation setup

The identification algorithm is run on simulated data, to show that it gives correct
results in an ideal setup. The known parameters are set to similar values of the
experimental setup of Section 4.4, so that comparable results can be attained.

Vehicle mass m 2 kg

Distance of front axle from C.O.G. a 0.15 m

Distance of rear axle from C.O.G. b 0.11 m

The unknown parameters are set to arbitrary values; these are the parameters the
algorithm longs to estimate.

Front wheels’ cornering stiffness Cf 3 N/rad

Rear wheels’ cornering stiffness Cr 4 N/rad

Vehicle moment of inertia Iz 0.03 kgm2

The input variables u and δ are shown in Figure 4.1. u(t) is constant and equal to
1m/s, δ(t) is a sinusoid of amplitude 0.2rad and frequency 1rad/s.

Figure 4.1: Simulated input variables.

The simulated system has been implemented in Simulink and it is integrated with
ode15s, the same method used by lftSolver. The results of the identification
procedure are summarized in the following table.
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Figure 4.2: Simulated trajectory of the vehicle.

Parameter δ Real Value Estimated Value % Error

Front Tire Cornering Stiffness Cf 3 3.0176 +0.59%

Rear Tire Cornering Stiffness Cr 4 4.0058 +0.14%

Moment of Inertia Iz 0.03 0.0298 −0.67%

4.3 Identification from simulated data: Fiala model

A possible step to improve the identification algorithm is introducing the Fiala
tire model in the LFT single-track model. Thus, the tire model should be more
accurate for higher values of the tire-slip angles, w.r.t. the linear one.
In Appendix B.2 a LFT formulation embedding Fiala model is reported. Besides
a different choice of the nonlinear variables, the main change is given by the
introduction of parameter zsl which, recalling (3.4), is equal to:

zsl = 3µFz
C

µ and Fz can be considered fixed if the vehicle is driven at reasonably low speed;
however the cornering stiffness is unknown, so a priori information on zsl should



34
PARAMETER IDENTIFICATION IN THE LFT FORMULATION OF THE SINGLE

TRACK MODEL

not be available. In the simulated setup, zsl is considered constant and equal to 1
for the sake of simplicity and to remark that the algorithm works properly. This
assumption is dropped when treating experimental data: a method to retrieve zsl
from data is suggested in Subsection 4.3.3.

The implemented code slightly differs from the one of the previous section. In the
following, only the differing lines are discussed.

Listing 4.6: Definition of known parameters - Fiala

% Data
mass = 2; % [kg] vehicle mass
a = 0.15; % [m] CoG -front axle distance
b = 0.11; % [m] CoG -rear axle distance
Gsteer = 1;
zsl = 1;

d1lim = [0 100];
d2lim = [0 100];
d3lim = [0 1000];

Same choice of the known parameters and of the boundaries on the unknown ones
is made, except for the introduction of zsl.

Listing 4.7: Definition of lftfun - Fiala

%% Load lft function
lftfun = singleTrackLftFiala (a, b, Gsteer , zsl , d1lim ,

d2lim , d3lim);

The struct lftfun should be assigned by calling the proper function implementing
the modified single-track model in its LFT form, named singleTrackLftFiala.
The settings for the LFT solver and identification are the same as for the linear
model, hence they are omitted.

Listing 4.8: Setting of AlgebraicStartingValues - Fiala

% Setting of AlgebraicStartingValues
algebraicStartingValues = zeros (11 ,1);
algebraicStartingValues (6) = 1e -6;
algebraicStartingValues (10) = u(1);

InitialConditions = struct('StateInitialConditions ',
initialConditions ,...

'AlgebraicStartingValues ', algebraicStartingValues...
);

Since vector ω has changed, algebraicStartingValues should be updated ac-
cordingly.
The remaining code lines are identical to Listing 4.5.
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4.3.1 Simulation setup

As in Section 4.2, the identification algorithm is run on simulated data. The choice
of known and unknown parameters for the simulation is unchanged.
Known parameters:

Vehicle mass m 2 kg

Distance of front axle from C.O.G. a 0.15 m

Distance of rear axle from C.O.G. b 0.11 m

Unknown parameters:

Front wheels’ cornering stiffness Cf 3 N/rad

Rear wheels’ cornering stiffness Cr 4 N/rad

Vehicle moment of inertia Iz 0.03 kgm2

Two different sets of simulated data are generated, to be tested on the identification
algorithm. The first set is computed with the same input variables of section 4.2,
and is referred as Non-drifting conditions. The second set is obtained from higher
longitudinal speed and steering angle, which cause the lateral forces acting on the
tires to enter the Full Sliding zone. The latter is particularly interesting as it shows
that, if any tire is in full sliding, the identification procedure does not estimate
correctly the unknown parameters.

The simulation is run on Simulink, using the numerical method ode15s, the same
of lftSolver, setting the same tolerance options on both.

4.3.2 Non-drifting conditions

When the system is fed by the inputs of Figure 4.3, the simulated output allow to
estimate correctly the parameters, as shown in the table below.

Parameter δ Real Value Estimated Value % Error

Front Tire Cornering Stiffness Cf 3 3.041 +1.37%

Rear Tire Cornering Stiffness Cr 4 3.992 −0.20%

Moment of Inertia Iz 0.03 0.0301 +0.33%
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Figure 4.3: Simulated input variables.

4.3.3 Drifting conditions: the Full Sliding zone

In this section, the case in which a wheel of the single-track is in Full Sliding (FS)
will be treated. In Chapter 3, it has been remarked that FS is a condition achieved
in Fiala tire model when

tan(α) ≥ zsl

where α is the tire slip angle of the considered tire. When this situation occurs,
the lateral force no longer depends on the tire slip angle but it is capped to a fixed
value which, quoting equation 3.5, can be computed as

FFS = C
zsl
3

where C is the wheel’s cornering stiffness.
In other words, the involved tire is drifting.

In our simulation environment, zsl is set to 1, Cf = 3 and Cr = 4. Naming αf and
αr the front and rear tire slip angles, Ff and Fr the front and rear lateral forces,
FS can be recognized if the following conditions are satisfied:

tan(αf ) ≥ 1 Ff = 1N tan(αr) ≥ 1 Fr = 4
3N ≈ 1.3N (4.3)

Under the former two conditions, the front wheel is in FS. The latter two mean
that the rear wheel is in FS. If all the four conditions are satisfied, both wheels
are in FS.

To show that in the simulation of section 4.3.2 FS is not occurring on neither
wheel, in Figures 4.4 and 4.5 the tire slip angles and lateral forces of both wheels
are plotted.

Comparing with the aforementioned (4.3) conditions, it is evident that FS is not
attained.
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Figure 4.4: Front tire slip angle and lateral force. Full Sliding not occurring.

Figure 4.5: Rear tire slip angle and lateral force. Full Sliding not occurring.

To obtain greater values of α and F , it suffices to increase the value of either the
simulated longitudinal speed u or the steering angle δ. For instance, the amplitude
of δ can be increased to 0.4 rad/s, maintaining the same frequency and the same
u as in the previous cases, to obtain the set of simulated data of Figure 4.6.
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Figure 4.6: Simulated input variables. δ is increased w.r.t. Figure 4.3

Front and rear α and F change consequently, as shown in Figures 4.8 and 4.9. In
this case, FS is achieved on the rear wheel: it is evident from the saturation of the
rear lateral force, and it can be checked that the two latter conditions of 4.3 are
satisfied.
The LFT identification algorithm is again run on the simulated data. However,
the table below reports remarkable errors in the estimated parameters, which are
not met when Full Sliding does not occur.

Parameter δ Real Value Estimated Value

Front Tire Cornering Stiffness Cf 3 35.5056

Rear Tire Cornering Stiffness Cr 4 8.7704

Moment of Inertia Iz 0.03 0.3132

These results are not only extremely incorrect, but they are also very sensitive
to the initialization of the algorithm, meaning that they consistently change if
a different starting value of the unknown parameters is set. In some cases, the
algorithm does not even terminate.
More interestingly, the Condition Number of the Hessian at the final iteration is
subject to a sheer increase w.r.t. the non-drifting situation. Indeed

CN = 8.0520 · 104

is greater than CN = 2.4946 ·103 obtained from the non-drifting data. This result
proves that the problem is ill-posed and requires an alternative procedure to be
tackled. The suggested solution is explained in Section 4.4.
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Figure 4.7: Simulated trajectory of the drifting vehicle.

4.4 Removal of Full Sliding data

FS data are a conceivable cause of the incorrect estimate obtained in the previous
section. When any tire is in FS, the dynamics of single-track model’s equations are
no more dependent on the input variables. For this reason, these variables end up
providing no information for the identification, whose accuracy is compromised.
A possible solution consists in removing detrimental FS data. The whole set of
data could be divided in multiple segments of non-FS data, and the identification
algorithm could be run on each one of them; the results of each procedure could
be averaged to provide the final estimate.
However, a criterion is necessary to recognize FS data. This is not a trivial task, as
it requires an estimate of the lateral forces without knowing the wheels’ cornering
stiffnesses.

The following sections explain the algorithm to discriminate FS data and the
reasoning behind it. Interestingly, the algorithm does not require any knowledge
on zsl, in fact, the procedure also allows to estimate it.
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Figure 4.8: Front tire slip angle and lateral force. Full Sliding not occurring.

Figure 4.9: Rear tire slip angle and lateral force. Full Sliding is occurring.

4.4.1 Estimation of the lateral forces

Recalling the second equation of the single-track model (3.1)

ṙ = 1
Iz

(aFf − bFr)

and the definition of ay from 4.1

ay = 1
m

(Ff + Fr)

these equations can be exploited to compute the lateral forces:

Ff = bmay + Iz ṙ

a+ b

Fr = amay − Iz ṙ
a+ b

(4.4)
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Thus, Ff and Fr can be estimated without making any assumption on the tire
model and without any knowledge on the cornering stiffnesses. However, ṙ and Iz
are needed in the computation. The former can be obtained from the derivative
of r (performed on sampled data throughout a suitable FIR filter); the latter is
an unknown parameter and it has to be estimated.
The estimate can be obtained by means of the LFT identification of Section 4.2,
based on the linear tire model. Since it is accurate only for small values of the
tire slip angle, the procedure is run on data corresponding to low αf and αr. For
instance, we can include only data for tire slip angles lower than a third of their
maximum values.
To verify if this idea is feasible, the identification is run on the simulated data
from Section 4.3.3, based on Fiala model, which at a certain point undergo FS.
The identification returns the following results:

Parameter δ Real Value Estimated Value % Error

Front Tire Cornering Stiffness Cf 3 2.6485 −11.72%

Rear Tire Cornering Stiffness Cr 4 3.7005 −7.49%

Moment of Inertia Iz 0.03 0.0299 −0.33%

As we could expect, the estimated cornering stiffnesses are subject to a consistent
error, due to the discrepancy between linear and Fiala models. Since lateral forces
obtained from Fiala are always lower than the linear ones in absolute value, con-
sidering the linear model for the identification leads to smaller estimated cornering
stiffnesses. However, this doesn’t hold for Iz, which is retrieved from δ1 and δ3:

δ1 = Cf
m

δ3 = Cf
Iz

Iz = m
δ1

δ3

Cf from δ1 and δ3 should be subject to the same error and it is inherently can-
celed in the computation of Iz. Therefore, the estimate of Iz is correct, which is
the purpose of this identification.
The estimated lateral forces can now be computed, and they are shown in Fig-
ure 4.10. Comparing them with Figures 4.8 and 4.9, it can be noticed that they
perfectly resemble each other, proving the correctness of the estimate.

The lateral forces are plotted as functions of their respective tire slip angles in
Figures 4.11 and 4.12: since we are referring to simulated data, we expect to rec-
ognize the Fiala model. These plots are extremely useful to visualize the criterion
to discriminate FS data, exposed in the next section.



42
PARAMETER IDENTIFICATION IN THE LFT FORMULATION OF THE SINGLE

TRACK MODEL

Figure 4.10: Estimated lateral forces.

Figure 4.11: Estimated Ff (αf ).

Figure 4.12: Estimated Fr(αr).
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4.4.2 Criterion to discriminate Full Sliding data

By definition, FS is occurring when z ≥ zsl, where z = tan(α). The quantity zsl
is unknown, therefore this condition can’t be verified. However, FS can also be
recognized from the lateral force which, according to Fiala model, saturates to
a specific value, Czsl/3. By assuming that the tire slip angle is small enough to
introduce the approximation z = tan(α) ≈ α, the boundary on Ffia(α) can be set
as

Fsl = Ffia(αsl) = C
αsl
3

αsl is unknown, but we can define Flin as the lateral force computed from the
linear model and notice that

Flin(αsl)
3 = Cαsl

3 = Fsl

It can be proven that:∣∣∣∣∣Flin(α)
3

∣∣∣∣∣ < |Ffia(α)| iff |α| < αsl∣∣∣∣∣Flin(α)
3

∣∣∣∣∣ ≥ |Ffia(α)| iff |α| ≥ αsl

(4.5)

The second inequality is obvious, since Ffia cannot be greater than Fsl while Flin
is equal to Fsl for α = αsl and greater for higher values of α. The proof of the first
inequality is less trivial, but it can be easily understood by noticing that Flin(α)
and Ffia(α) have the same derivative over α in the origin, so Flin/3 is lower than
Ffia, for values of α up to αsl (for which they are equal).
Equation (4.5) is a valid criterion to detect FS data, but Flin requires the cornering
stiffness C to be computed, which is unknown. The estimated Cf and Cr from the
LFT identification of Section 4.4.1 are useful for this scope, although they are
slightly lower than the actual ones. To compensate for this fact, equation (4.5)
can be modified by multiplying a corrective coefficient kcorr to the left hand side
of the inequalities (only the first one is rewritten for the sake of brevity).∣∣∣∣∣kcorrC3 α

∣∣∣∣∣ < |Ffia| iff |α| < αsl (4.6)

kcorr ∈ [1; 3) can be suitably tuned to satisfy the user’s requests. In particular:

• kcorr close to 1 is advisable if the user decides to account as many data as
possible, with the risk of including FS data; this case is shown in Figure 4.13,
with reference to the data from Figure 4.12. In this situation, Fiala model
for identification should provide better results, as it is more accurate than
the linear one for large tire slip angles, close to αsl.

• kcorr close to 3 should be selected if the user desires to consider only data
corresponding to low tire slip angles. In this way, the linear model may fit
data rather well, and it can be used in a less complex identification procedure,
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which would also terminate faster since it considers fewer data. However, the
user should be careful of not excluding too many data or the quality of the
estimate could be compromised. kcorr = 3 is a pathologic case, as the criterion
(4.5) becomes

|Cα| < |Ffia|

which is not possible, since |Flin(α)| is greater or equal to |Ffia(α)|, ∀α. If
such kcorr is chosen, the criterion would exclude all the data.

Figure 4.13: kcorr = 1. All data above the red line are taken, including the FS ones.

Figure 4.14: kcorr = 3. All data below the red line are excluded, almost no data are taken.

Figure 4.15: kcorr = 1.4 is a good compromise, allowing to discard only FS data.
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4.4.3 Comments to implementation

In this section a brief explanation of how the explained ideas have been imple-
mented is given, helped by portions of code.
The initial LFT identification to estimate Iz is the same explained in Section 4.2.
However, it is not run on the whole set of data, but only on the first segment of
data in which longitudinal speed is nonzero and the tire slip angles are lower than
a third of their maximum value. This choice allows to avoid divisions by zero in
the LFT model and selects only data that roughly fit the linear tire model. The
results of the identification are saved in the variables CfLFT, CrLFT, IzLFT.
The variables ṙ, αf and αr are computed from the model and ṙ is used to esti-
mate the actual lateral forces as in (4.4). They are saved in the vectors fialaF
and fialaR. The lateral forces given by the linear tire model are computed by
multiplying CfLFT and CrLFT respectively by αf and αr. These are saved in the
vectors linearF and linearR.
Listing 4.9 is the iteration that performs the distinction of FS data and non FS
data. For each sample, the algorithm does the following operations:

• It checks if u or αf are zero and, if they are, the data sample is discarded.
Such values cause divisions by zero in the LFT model and they should be
neglected. When a datum with nonzero u and αf is detected, the correspond-
ing time instant is saved in the vector part. This vector records the initial
time instant of each data segment, which is necessary to select the correct
initial conditions of each one of them, required by the LFT identification.

• If u and αf are nonzero, criterion (4.5) is tested on the current data. If it is
satisfied for both the front and rear wheels, non FS data are recognized and
they are saved in struct_y{j}, struct_u{j} and struct_time{j}, which
respectively record the output, the input, and the current time instant. The
variable j is the index of the current data segment.

• If the (4.5) is not satisfied, a FS datum is detected. The highest value among
|αf |, |αr| and the previously stored αsl is saved and assigned to the variable
αsl.
The variable αsl is set to zero at the start of the algorithm, so that it can be
replaced as soon as FS is recognized. If it is not, the maximum value among
|αf | and |αr| is assigned to αsl (this case means that FS never occurs and
all the partitioning becomes pointless).
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Listing 4.9: Data partitioning algorithm

% Partitioning
i = 1;
j = 1;
part (1) = 1;
eps = 1e -6;
alphasl = 0;
while i < n

if (abs(alphaf(i)) <=eps || abs(u(i)) <=eps) % neglect
data which cause divisions by zero in the model

j = j + 1;
while (abs(alphaf(i)) <=eps || abs(u(i)) <=eps)

i = i + 1;
end
part(j) = i;
else % no division by zero , the algo can compare

linear and Fiala to detect FS
if (abs(corr* linearF (i)/3) <= abs(fialaF(i)) &&

abs(corr* linearR (i)/3) <= abs(fialaR(i))) % low
slip , data are stored

struct_y {j}(i - part(j) + 1,:) = output(i ,:);
struct_u {j}(i - part(j) + 1,:) = input(i ,:);
struct_time {j}(i - part(j) + 1,:) = t(i ,:);
i = i + 1;

else % full sliding , i++ until both tires go
back in low slip mode and data are not stored
alphasl = max ([ abs(alphaf(i)) abs(alphar(i))

alphasl ])
j = j + 1;
while (( abs(corr* linearF (i)/3) > abs(fialaF(i))

|| abs(corr* linearR (i)/3) > abs(fialaR(i)))
&& i < n)

i = i + 1;
end

part(j) = i; % the start of the new segment is
stored. It 's required to compute the initial
conditions

end
end

end

zsl = tan( alphasl );
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Once the segments and the vector part are stored, a vector of initial conditions is
defined for each segment and it is assigned the correct values.

Listing 4.10: Assignment of the initial conditions.

% Storing the initial conditions of each partition
for K = 2:j
initialConditions {K} = [v(part(K)) r(part(K))]';
end

The lateral speed of the vehicle C.o.G. v can be easily computed as u tan(β).
The LFT identification algorithm of Sections 4.2 or 4.3 is run on each data segment.
The choice of the algorithm depends on which tire model is desired. The results of
each identification are saved in the struct delta_Opt. Also the cost function’s value
J at the end of each identification is saved, and proves to be useful to compute
the average of all the results.

Finally, the results are averaged to obtained the final estimate, which is computed
as a weighted mean of the results stored in delta_Opt. The weight can be chosen
as:

• the number of data of each segment, assuming that an identification is more
accurate, if it is run on more data. In that case, the vector δ of estimated
parameters is computed as:

δ = δ1l1 + ...+ δnln
l1 + ...+ ln

where δi is the i-th result stored in delta_Opt, li is the length of the i-th
segment.

• the value of J associated to each segment, assuming that the more accurate
an identification, the lower J. In that case, δ is computed as:

δ = δ1/J1 + ...+ δn/Jn
1/J1 + ...+ 1/Jn

where Ji is the value of the cost function at the end of the i-th identification.

• A mixed strategy can be envisaged, computing δ as:

δ = δ1l1/J1 + ...+ δnln/Jn
l1/J1 + ...+ ln/Jn

(4.7)

4.4.4 Simulated results

The algorithm embodying data partitioning and LFT identification is tested on
the data from Section 4.3.3, in which the system undergoes FS at a certain time.
The system’s inputs and trajectories can be found in Figures 4.6 and 4.7.
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The partitioning divides the data set in two segments, removing the data corre-
sponding to FS, as shown in 4.16. FS is detected and zsl is retrieved, obtaining:

zsl = 0.9744

which is close to the real value zsl = 1.

Figure 4.16: Comparison of αr before and after the partitioning.

The LFT identification is run the two segments, attaining the following results,
respectively for the first and the second segment.
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Parameter δ Real Estimated % Error J

Front Tire Cornering Stiffness Cf 3 3.0390 +1.30%

Rear Tire Cornering Stiffness Cr 4 4.0651 +1.63% 5.01115 · 10−6

Moment of Inertia Iz 0.03 0.0293 −2.33%

Parameter δ Real Estimated % Error J

Front Tire Cornering Stiffness Cf 3 3.0697 +2.32%

Rear Tire Cornering Stiffness Cr 4 4.0903 +2.26% 1.0265 · 10−5

Moment of Inertia Iz 0.03 0.0300 0%

By averaging the results, according to the mixed strategy (4.7), the final estimates
are obtained.

Parameter δ Real Value Estimated Value % Error

Front Tire Cornering Stiffness Cf 3 3.0535 +1.78%

Rear Tire Cornering Stiffness Cr 4 4.0770 +1.92%

Moment of Inertia Iz 0.03 0.0297 −1%

4.5 Identification from experimental data and
validation

In this section the discussed identification algorithms are run on data retrieved
from tests on the experimental setup of Section 4.5.1.
It should be noted that the available data do not include cases in which the
system is drifting: the values of αf and αr remain quite low in the considered
tests and FS is not detected. Therefore, the algorithm for removal of FS data will
not be validated in this section. However, the estimates of the lateral forces from
experimental data are discussed, allowing to verify if the results make sense and
if they suggest future tests on drifting data.
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4.5.1 Experimental setup

A 1:10 scale car-like vehicle (Fig. 4.17) inspired by the ones used by ETH and
Georgia Institute of Technology researchers [7, 12], has been adopted to test the
autonomous drifting control strategy.
The platform is a RWD car, actuated by a current controlled brushless motor,
and equipped with four independent suspensions and an electric steering servo
along with a rear differential. The car can be either manually controlled with a
standard RC radio system, or can autonomously drive thanks to the installation
of an embedded PC Odroid XU4 that runs a ROS control architecture. In both
situations, an Arduino UNO provides a bidirectional communication with steering,
propulsion, and wheel encoders.

Moreover, the car is equipped with an IMU, providing linear acceleration, angular
velocity and attitude measurements, and a marker that allows to track vehicle
position and orientation at a frequency of 100 Hz using a 12-camera OptiTrack
motion tracking system, which has been used to estimate vehicle longitudinal and
lateral velocities.

Figure 4.17: The experimental platform.

The steering servo dynamics has been identified by mounting the IMU on one of
the front wheels and by recording the yaw rate in response to a step of the angular
position of the servo. It has been verified that servo dynamics is well reproduced
by a first order low-pass filter, with cut-off frequency of 50 rad/s and a delay of
0.04 s, when the wheels are not touching ground, and 0.06 s when the car is lying
on ground.

Vehicle mass and COG position have been measured with a weight balance, while
the estimation of the other parameters has been conducted using the methodology
described in [4], which is based on the minimization of the error between measured
yaw rate and lateral velocity and the ones obtained by forward simulating vehicle
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dynamic model (3.1). In particular, the lower bound on the value of the yaw
moment of inertia (0.015 Kgm2) has been taken as the yaw moment of inertia of
the car without the hardware component mounted. This value has been estimated
by hanging the car to the tip of an industrial manipulator equipped with a torque
sensor, and measuring the reaction torque to a trapezoidal angular speed profile
applied to the vehicle yaw axis. The upper bound has been taken as the yaw
moment of inertia obtained by concentrating the whole mass of the vehicle at the
front, mf , and rear, mr, axles: Jmaxz = mfa

2 +mrb
2.

Car parameters have been identified using an eight-shaped trajectory. The results
are reported in Table 4.1.

Table 4.1: Experimental Platform Data

Mass 1.9 Kg
Yaw moment of inertia 0.03 Kgm2

Distance of COG from front axle 0.1368 m
Distance of COG from rear axle 0.1232 m
Tyre-ground friction coefficient (carpet) 0.35
Front wheels’ cornering stiffness (carpet) 47.86 N rad−1

Rear wheels’ cornering stiffness (carpet) 127.77 N rad−1

Tyre-ground friction coefficient (wood flooring) 0.22

Maximum steering angle ± 45 deg
Steering servo actuator bandwidth 8 Hz
Steering servo actuator delay 0.09 s

4.5.2 Linear

The algorithm based on the linear tire model, discussed in Section 4.2, is run
on data retrieved from a test carried at low speed and steering angle. The input
variables and the trajectory of the vehicle are shown in Figures 4.18 and 4.19.

The identification procedure sets the known parameters to the following values:

Vehicle mass m 1.9 kg

Distance of front axle from C.O.G. a 0.1368 m

Distance of rear axle from C.O.G. b 0.1232 m

Steering gain G 1.1

The results of the estimation are shown in the table below.
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Figure 4.18: Input variables.

Parameter δ Real Value Estimated Value % Error

Front Tire Cornering Stiffness Cf 47.86 49.4435 +3.3%

Rear Tire Cornering Stiffness Cr 127.77 105.1553 −17.7%

Moment of Inertia Iz 0.03 0.0725 +142%

A mismatch can be noticed w.r.t. the nominal values. To check if the accuracy of
the results is acceptable, data can be validated by comparing the output measure-
ments to the output variables of the LFT model, when fed by the same inputs.
Figure 4.20 shows that the identified model is sufficiently accurate to describe the
behavior of the system.

FS is not expected in these data, but the algorithm for lateral forces estimation
has been tested to verify if it works correctly on data corresponding to low tire slip
angles. Figures 4.21 and 4.22 report the estimated lateral forces as functions of
αf and αr, showing that they fit to the linear tire model. Values corresponding to
low longitudinal speed or low αf could lead to noticeable spikes, due to divisions
by values close to zero in the LFT model.
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Figure 4.19: Trajectory of the vehicle.
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Figure 4.20: Comparison between measured output variables and simulated output variables.
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Figure 4.21: Front lateral force as function of αf .

Figure 4.22: Rear lateral force as function of αr.
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4.5.3 Fiala: non-drifting

To test the identification algorithm based on the Fiala model from Section 4.3, a
different data set is chosen, from an experiment conducted at higher speed and
sterring angle than the previous test. The input variables and the trajectory are
reported in Figures 4.23 and 4.24.

Figure 4.23: Input variables.

Figure 4.24: Trajectory of the vehicle.
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The identification procedure sets the known parameters to the following values:

Vehicle mass m 1.9 kg

Distance of front axle from C.O.G. a 0.1368 m

Distance of rear axle from C.O.G. b 0.1232 m

Steering gain G 1.0255

Full Sliding boundary zsl 0.2149

The results of the estimation are shown in the table below.

Parameter δ Real Value Estimated Value % Error

Front Tire Cornering Stiffness Cf 47.86 44.8325 −6.32%

Rear Tire Cornering Stiffness Cr 127.77 113.2773 −11.34%

Moment of Inertia Iz 0.03 0.0860 +187%

As in the previous section, a comparison between measurements and simulated
data is conducted to validate the results.

Figure 4.25 shows that, although a slight error is obtained in the estimated pa-
rameters, the identified model is accurate.

In Figures 4.26 and 4.27, Ff (αf ) and Fr(αr), obtained from their estimated values,
are reported. It is evident that the front lateral force fits the Fiala model more
accurately than the linear one, justifying the usage of the identification procedure
based on the Fiala model.
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Figure 4.25: Comparison between measured output variables and simulated output variables.
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Figure 4.26: Front lateral force as function of αf . The FS boundary is represented as the
vertical dashed line.

Figure 4.27: Rear lateral force as function of αr.





Chapter 5

Conclusions and future
improvements

In this work an identification algorithm based on the single-track model for vehicle
lateral dynamics and on the Fiala tire model has been implemented and tested on
simulated data with promising results. The problem of Full Sliding has been intro-
duced and discussed, and a method to tackle it has been suggested and discussed.
We concluded that, if such data are removed from the whole data set, identifia-
bility can be recovered. The algorithms have been tested on experimental data,
showing they can achieve a good performance in estimating the required parame-
ters, either when the linear and the Fiala models are considered as identification
models.

In future, drifting experimental data could be considered, to test the effectiveness
of the partitioning algorithm and its robustness.
Other future improvements of the algorithm could include the identification of
other parameters of the single-track model, such as the distances of front and rear
axles from the C.o.G. a and b, and the steering gain G.
An interesting test could be carried out to verify the robustness of the identifica-
tion. Indeed, the side-slip angle is retrieved from expensive optical measurements
in the experimental setup. A cheaper mean to obtain measurements of the vehicle
position is the GPS, but it is susceptible to noise: one may think that geolocation
is typically subject to a certain radius of uncertainty. This disturbance can be
modelled as a white noise with nonzero mean, which could be implemented in a
simulated setup to test the robustness of the algorithm towards it.
All the considered algorithms are meant for offline applications, since the whole
data set is known prior to the identification. Therefore, an implementation of the
LFT toolbox for online applications would be interesting, as it would allow to
estimate the parameters in real time, while the data are being collected. In the
case of drifting maneuvers, the partitioning algorithm could be useful to the on-
line algorithm, which can collect enough data from start-up to the first aggressive
cornering to correctly estimate the unknown parameters. Thus, the system would
have enough information to recognize Full Sliding.
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Appendix A

User Manual

A.1 A nonlinear model

The nonlinear system chosen to help understanding the use of the toolbox is a
simple mass, spring and damper system, depicted in Fig. A.1 and described by
the following model:

ẋ1 = x2 (A.1)

ẋ2 = −k1

m
x1 −

k2

m
x3

1 −
c

m
x2 + 1

m
u (A.2)

y = x1 (A.3)

where x1 is the position of the mass, x2 is the velocity, the constants m, k1, k2 and
c are respectively the mass, the linear stiffness coefficient, the nonlinear stiffness
coefficient and the damping coefficient, the input u is an external force applied to
the mass and the output y of the system is the position of the mass.

The mass and the linear stiffness coefficient are assumed as known and are equal
to m = 1 Kg and k1 = 20 N/m respectively, while the nonlinear stiffness and the
damping coefficients have to be identified, thus δ1 = c, δ2 = k2.

m

k1,k2

c

u

Figure A.1: A nonlinear mass, spring, damper system
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An equivalent LFT reformulation of the model is thus given by:

ẋ =
[

x2
−k1
m
x1 − 1

m
w1 − 1

m
w2 + 1

m
u

]
(A.4)

z =
[
x2 ζ

]T
(A.5)

ω = x1 (A.6)
y = x1 (A.7)

w =
[
δ1z1 δ2z2

]T
(A.8)

ζ = ω3 (A.9)

and the only non-null matrices relevant to formulation (2.8–2.13) are

A =
[

0 1
−k1
m

0

]
, B1 =

[
0 0
− 1
m
− 1
m

]
, B3 =

[
0
1
m

]
(A.10)

C1 =
[
0 1
0 0

]
, D12 =

[
0
1

]
(A.11)

C2 =
[
1 0

]
(A.12)

C3 =
[
1 0

]
(A.13)

In order to perform parameter identification two scripts must be created:

• spring_lft.m: the function script, called in the main script, where the LFT
form is defined.

• main.m: the main script where the data are loaded, the identification problem
is defined and all the main functions are called.

A.2 spring_lft.m

As already mentioned, the spring_lft.m script is a function called in the main
script where the LFT model is defined.

In this first line (Lis. A.1) the function output lftfun is declared, which is the
description of the LFT model. The input parameters are the known parameters
of the model, m and k1, and as many (2-dimensional) row vectors as the unknown
parameters, containing the limits for the constrained search optimization. In this
example we have two vectors k2lim and clim.

Listing A.1: Declaration of the function

function [lftfun] = spring_lft (k1 ,m,k2lim ,Clim)

Then, we have to specify the number of inputs u, states x, outputs y and omega
variables ω of the LFT model, these definitions will later be used to correctly
create and size the linear time invariant matrices of the LFT model.
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Listing A.2: Definition of the number of inputs u, states x, outputs y and omega variables ω
of the LFT model

% definition of the number of inputs , states , outputs and
omega of the LFT

u_count = 1;
x_count = 2;
y_count = 1;
om_count = 1;

A.2.1 DeltaSym and theta_sym

We will now define the matrix ∆, named DeltaSym, as shown in Lis. A.3.

Listing A.3: Definition of the matrix ∆

% definition of the matrix delta
DeltaSym = {

'parName ' 'indStartDiag ' 'indStopDiag ' 'LowerBound '
'HigherBound ' 'toIdentify ', 'lb', 'ub';

'c' 1 1 Clim (1) Clim (2) 1 -1 1;
'k2' 2 2 k2lim (1) k2lim (2) 1 -1 1;

};
delta_count = 0;
for i=2: size(DeltaSym ,1)

delta_count = delta_count + DeltaSym {i ,3} - DeltaSym
{i ,2} + 1;

end

In this matrix the first row, not to be modified, simply acts as a guide for the
construction of the matrix itself.

The first column contains the names of the unknown parameters, in our case ’c’
(second row) and ’k2’ (third row).

The second and third column are used to indicate the first and last position of
the unknown parameter on the ∆ matrix’s diagonal. In our case the unknown
parameters appears only once in the ∆ matrix, respectively c = δ1 in position
(1,1) and k2 = δ2 in position (2,2).

In the fourth and fifth column the lower and upper bound of the unknown param-
eters are defined.

The sixth column can be filled with 1 or 0 if we, respectively, want or don’t want to
identify the parameter. In the latter case the parameter will be maintained fixed
at its initial value.

The seventh and eighth column should always be respectively filled with −1 and
1, defining the lower and upper bound of the limits in normalized form.
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At last, once completed the definition of the DeltaSym matrix, the number of
elements in the diagonal of matrix ∆ is computed.

The next lines (Lis. A.4) create the column vector ζ named theta_sym, after
having defined an array of symbolic ω.

Please note that in case of two or more ω the initial if’ condition can be skipped.

Finally, the number of components of the vector ζ is determined.

Listing A.4: Definition of the vector ζ

% definition of the matrix theta (= ZETA)
if om_count == 1

om = sym (['om1_1 ']);
else
om = sym('om', om_count );
end

theta_sym = [
om (1)*om (1)*om (1);
];

theta_count = size(theta_sym ,1);

A.2.2 LTI matrices

Initially, all matrices of the LFT formulation are filled with zeros (Lis. A.5), then
the only non-null elements are defined (Lis. A.6).

Listing A.5: Construction of the LTI matrices

% construction of the matrices of the LTI part
LTI = struct(...

'A', zeros(x_count , x_count ),...
'B1', zeros(x_count , delta_count ),...
'B2', zeros(x_count , theta_count ),...
'B3', zeros(x_count , u_count ),...
'C1', zeros(delta_count , x_count ),...
'D11 ', zeros(delta_count , delta_count ),...
'D12 ', zeros(delta_count , theta_count ),...
'D13 ', zeros(delta_count , u_count ),...
'C2', zeros(om_count , x_count ),...
'D21 ', zeros(om_count , delta_count ),...
'D22 ', zeros(om_count , theta_count ),...
'D23 ', zeros(om_count , u_count ),...
'C3', zeros(y_count , x_count ),...
'D31 ', zeros(y_count , delta_count ),...
'D32 ', zeros(y_count , theta_count ),...
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'D33 ', zeros(y_count , u_count ));

Listing A.6: Definition of the LTI matrices

% definition of the matrices
% dx1 = x2
LTI.A(1 ,2) = 1;
% dx2 = -k1/m*x1 -1/m*w1 -1/m*w2 +1/m*u
LTI.A(2 ,1) = -k1/m;
LTI.B1 (2 ,1) = -1/m;
LTI.B1 (2 ,2) = -1/m;
LTI.B3 (2 ,1) = 1/m;

% z1 = x2
LTI.D12 (2 ,1) = 1;
% z2 = zeta
LTI.C1 (1 ,2) = 1;

% om1 = x1
LTI.C2 (1 ,1) = 1;
% LTI.C2 (2 ,1) = 3;

% y1 = x1
LTI.C3 (1 ,1) = 1;

We are finally able to construct the lftfun struct, which is the output of the
function, by initially defining it and then calling the lft_finalize function.

Listing A.7: Definition of the lftfun struct

% initial definition of the LFTfun
lftfun = struct(...

'LTI ', LTI ,...
'DeltaSym ', { DeltaSym },...
'DeltaVal ', zeros(delta_count , delta_count )...

);

% save additional data for reference purpose
lftfun. theta_sym = theta_sym ;
lftfun. u_count = u_count ;
lftfun. x_count = x_count ;
lftfun. y_count = y_count ;
lftfun. om_count = om_count ;
lftfun. theta_count = theta_count ;
lftfun. delta_count = delta_count ;

% function to finalize the definition of LFTfun
lftfun = lft_finalize (lftfun);
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Figure A.2: Input force a) and position b)

end

A.3 main.m

The main.m script is where all the data are loaded, where the solver options
are defined and, finally, where all the main functions are called to tackle the
identification process.

The data used for parameter identification will be collected by applying the input
(Fig. A.2 a))

u(t) = 500 sin(0.1t) (A.14)

and sampling the output of system (A.1–A.3) (Fig. A.2 b)), assuming the following
values for the parameters to be identified:

c = 8 Ns/m (A.15)
k2 = 13 N/m3 (A.16)

Of course, since this is an ideal case, an almost perfect convergence to the actual
values of the parameters is expected.
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The time vector and the input values are stored in the file F.mat, while the output
values are stored in the file lft_y.mat. Note that the output values are always
assumed to be evaluated at the time instants of the time vector in the input matrix.

As shown in Lis. A.8, after a very generic clean up of the workspace, command
window and of the possible figures open, the script begins by loading the input
and output data of the system, that will be used for identification.

Listing A.8: Loading of the input and output data

clc , clear all , close all

%import input (Force 'F') NB every input or state comes
with its timevector

load F.mat;
t = F(: ,1);
F = F(: ,2);

%import the output ( position 'x')
load('lft_y ');

Then, before defining the lftfun struct, the known parameters of the model, in
our case m and k1, are defined, as well as the limits of the constrained search on
the optimal values of the parameters (Lis. A.9).

In this case, wide ranges have been defined, in order to show the capabilities of
the tool. For the identification of multiple parameters of more complex systems,
in order to speed up the estimation procedure, it is recommended to choose rea-
sonable ranges in which the LFT identification Toolbox should find the optimal
solution.

Listing A.9: Definition of the lftfun struct

% definition of the constant and known parameters
k1 =20; %[kN/m]
m=1; %[Kg]

% definition of the limits of the uncertain parameters
%in this case the values to be found is 'k2=13' and 'c

=8'
k2lim = [1 200];
Clim = [1 200];

%load lft function and solver options
lftfun = spring_lft (k1 ,m,k2lim ,Clim);

In the case of multiple outputs their influence on the cost function (2.3) can be
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weighted through the matrix W:

W =


W1 0 . . . 0
0 W2 . . . 0
0 0 . . . 0
0 0 . . . Wp

 (A.17)

in turn, the weightsWi can be defined by defining the vector lftfun.ISO.Nominal
as the vector

α =
[
α1 α2 . . . αp

]T
(A.18)

αi = 1√
Wi

(A.19)

where lftfun is the structure containing the description of the LFT model.

One possible choice is:
Wi = 1

(Mi −mi)2 (A.20)

where Mi is the highest value of yi and mi is the lowest one, which can be easily
implemented as:

Listing A.10: Definition of the lftfun.ISO.Nominal vector

M = max(lft_y);
m = min(lft_y);
for i=1: length(M)

alpha(i) = M(i) - m(i);
end
lftfun.ISO. Nominal = alpha;

The next piece of code defines the options for the LFT Solver (see Section A.4),
the (struct) input and the initial conditions of the model’s state variables.

Listing A.11: Definition of options for the LFT solver, the input and the initial conditions of
the model’s state variables

%load LFT solver options
LFTsolverOptions = lftSet('RelTol ', 1e-4,...

'AbsTol ', 1e-8,...
'SolutionInterpMethod ', 'spline ',...
'SolutionTimeSpan ', t,...
'SensAlgorithm ', 'ode15s ',...
'OversamplingMethod ', 'spline ' );

%define the input
Input = struct('Type ', 'interpolated ', 'Samples ', F, '

Time ', t);
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%define the initial conditions of the model 's state
variables

InitialConditions = struct('StateInitialConditions ', [0;
0]);

Similarly, the options for the LFT optimizer (see Section A.5) and the initial
guess of parameters in normalized form1 are defined before running the estimation
through the optimizer.

The identified parameters (not normalized) are finally presented through the
norm2abs function and the Hessian and its condition number are shown.
Listing A.12: Definition of options of the LFT optimizer, the initial guess of parameters in
normalized form and start of the identification

%load LFT estimator options
LFToptimOptions = lftOptSet ('Display ', 'iter ',...

'MaxIter ', 120, ...
'TolFun ', 1e-8 ...
);

% estimate
% initial guess of parameters in normalized form
lftfun. DeltaVal = diag ([0 0]);

% estimation
[DELTA_opt ,fval ,J,grad ,H,CN , history ] = lftOptDelta (

lftfun ,Input , InitialConditions , LFTsolverOptions ,lft_y
, LFToptimOptions );

norm2abs (lftfun , lftfun.DeltaVal , DELTA_opt );

H=H(:,:, end), CN=CN(end)

A.3.1 Results

The results obtained by running the main.m script are shown in the command
window as in Fig. A.3

In the first part of the command window informations on all iterations are shown:
the first column reports the number of the iteration, the second the value of the
cost function, the third the norm of each step, the fourth the first-order optimality
measure and the last the number of conjugate gradient iterations taken.

At the end of the identification the fmincon function, that is the function used
to minimize the cost function, will print the stopping criteria that stopped the

1An initial guess equal to zero means that the initial guess of the parameter is equal to the
mid-point in between the search limits.
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LFT identification task 

 

                                Norm of      First-order  

 Iteration        f(x)          step          optimality   CG-iterations 

     0           0.712623                         0.374                 

     1           0.141291        1.02064          0.257           1 

     2          0.0107467       0.362213         0.0711           1 

     3        0.000548436       0.142858         0.0057           1 

     4        1.99397e-05      0.0622938       0.000652           1 

     5        7.03737e-08      0.0157541        3.2e-05           1 

     6        1.76169e-08    0.000873076       2.46e-07           1 

     7        1.75299e-08    2.00117e-07        1.8e-06           1 

 

Local minimum possible. 

 

fmincon stopped because the final change in function value relative to  

its initial value is less than the selected value of the function tolerance. 

 

<stopping criteria details> 

 

----------------------------------------------------------------------------------------- 

|  Name            |  Initial Value  |  Optimal Value  |  Lower Bound  |  Higher Bound  | 

----------------------------------------------------------------------------------------- 

|  c               |  100.5          |  7.9995         |  1            |  200           | 

|  k2              |  100.5          |  12.9996        |  1            |  200           | 

----------------------------------------------------------------------------------------- 

 

H = 

 

    1.9477    0.2527 

    0.2527   30.0364 

 

 

CN = 

 

   15.4409 

 

>> 

Figure A.3: Results of identification
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identification. In our case the stopping criteria is the final change in function value
relative to its initial value, which is less than the selected value of the function
tolerance: 10−8. It is also possible to click on <stopping criteria details> to
have more details about the stopping criteria trigger.

Then, the norm2abs function prints the optimal values found by the LFT Identi-
fication Toolbox for the unknown parameters, along with their name, the initial
guess values and the search limits. In the example, the values found by the LFT
Identification Toolbox, after 7 iterations, are:

c = 7.9995 Ns/m (A.21)
k2 = 12.9996 N/m3 (A.22)

which correspond respectively to a 0.0062% and 0.0031% error, with respect to
the real values of the parameters.

A.4 LFT Solver

The LFT solver function, which is not directly used in the main script, is the
most important part of the LFT Toolbox since it is the heart of the optimization
function.

The LFT solver function, as its name suggests, solves the nonlinear, time invariant
LFT model given the initial state, the input and the options. The solver function
is called as follows:

Listing A.13: Call of the LFT solver

[output , internalSolution , CommonTerms ] =
lftSolver (lftfun ,Input , InitialConditions ,

lftSolverOptions );

The outputs of the function are:

• output: a matrix of 1+p columns, where p is the number of system outputs.
The first column is the time vector t, while the other p columns are the
output components of the system evaluated at time instants in vector t.

• internalSolution: a matrix of 1 +m+ n+ nz + nω + p columns, where m,
n, nz and nω are respectively the number of inputs, states, z variables and
ω variables. The first column is the vector of the time instants chosen by
the solver and in the other columns we find, in order, the inputs, the state
variables, the z variables, the ω variables and the outputs, evaluated at the
time instants of the first column.

• CommonTerms: a struct containing the matrices of the LFT model both fixed,
relative to the linear part of the system and time-variable, relative to the
non-linear part of the system.



74 USER MANUAL

The inputs are the following:

• lftfun: struct containing the LFT model (in our example defined by the
function spring_lft.m).

• Input: struct composed by:

– Type: defines the type of the input: discontinuous, interpolated or
continuous.

– Samples: defines the values, for each time instants, of the inputs.

– Time: defines the time vector of the inputs.

• InitialConditions: contains the vector of the initial conditions of the state
variables of the LFT system.

• lftSolverOptions: struct containing the solver options composed by:

– RelTol: relative tolerance on the solution (default 10−3).

– AbsTol: absolute tolerance on the solution (default 10−6).

– MaxOrder: maximum order of accuracy for ode15s solver (default 5).

– BDF: variable setting the use of BDF method (default off).

– InitialStep: initial stepsize (default 10−3).

– MaxStep: maximum stepsize (default not defined).

– NumberOfSteps: maximum number of steps (default not defined).

– ShowIntTime: boolean variable setting the printing in the command
window of the time instant of each step (default false).

– SolutionInterpMethod: type of interpolation that should be executed
on the input values (default linear).

– OversamplingMethod: type of interpolation that should be executed on
the output values (default linear).

– SolutionTimeSpan: time vector on which the output should be evalu-
ated.

– Sensitivity: For Sensitivity = 0 the solver simply simulates the
LFT system. For Sensitivity = ’pX’, with X equal to the number of
the unknown parameter, it is possible to execute the sensitivity of the
outuput with respect to the chosen unknown parameter (default 0).

– SensAlgorithm: algorithm to be used to compute the sensitivity (de-
fault ode15s).

– CommonTerms: vector of common terms of the first stage (solver in sim-
ulation configuration) that can be passed to the sensitivity solver in
order to be almost 100 times more rapid than the first stage.
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A.5 LFT Optimizer

As for the LFTsolverOptions in Sec. A.4 we are going to explain all the compo-
nents of this struct:

• TolFun: lower bound on the change in the value of the objective function
during a step (default 10−3).

• MaxStep: maximum amplitude of the step in the optimization procedure
(default not defined).

• NumberOfSteps: maximum number of steps of the optimization procedure
(default 2).

• PolynomialDegree: degree of the interpolating polynomial in case of con-
tinuous type input (default empty).

• RelTolX: relative tolerance (default 10−3).

• MinNormGrad: minimum value of the norm of the gradient (default 10−3).

• EpsilonLambda: maximum value of tolerance for the zero (default 10−6).

• MaxIter: maximum number of Newton iterations for the calculation of the
step (default 20).

• Display: flag for printing in the command window the Newton iterations
for the search of the optimal step (default off).

• StartOptimSample: first time instant, as position in the time vector, from
which the algorithm should begin the optimization process (default 1).

To summarize, the function requires the following inputs:

• lftfun: LFT model of the system.

• Input: input variables struct.

• InitialConditions: initial conditions struct.

• LFTsolverOptions: solver options struct.

• lft_y: outputs matrix (in our example a vector).

• LFToptimOptions: optimizer options struct.

The output of the function are:

• DELTA_opt: row vector containing the identified parameter in normalized
form.

• fval: final cost function’s value.

• J: column vector containing the values of the cost function at each step.

• grad: matrix containing the value of the gradients at each step.
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• H: struct containing the Hessian matrices at each step.

• CN: vector containing the condition number at every step.

• history: matrix containing the values of the unknown parameters at each
step.



Appendix B

LFT formulation of the
single-track model

B.1 Linear tire model

Starting from the single-track model in canonical representation:



v̇ = Cf
m

(
−β − a r

u
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− ur
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)
ψ̇ = r

ẋ = u cosψ − v sinψ
ẏ = u sinψ + v cosψ

If only r, ay and β are chosen as output variables, the system can be reduced to
the first two equations only.
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The state vector x and output vector y can be defined as:

x =
[
v r

]T
y =

[
r ay β

]T
=
[
x2 w1 + w2 ζ1

]T
77
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while the unknown parameter matrix δ and the auxiliary vectors w and z are
given by:

δ =
[
Cf
m

Cr
m

Cf
Iz

]T
w =

[
z1δ1 z2δ2 z3δ3

]T
z =

 −ζ1 − aζ2 +Gu2
−ζ1 + bζ2

−aζ1 − a2ζ2 + aGu2


the vector ζ and the auxiliary vector ω are:

ζ = θ(ω) =


arctan

(
ω1
ω3

)
ω2
ω3
ω2ω3
ω5ω6
ω4


ω =

[
x1 x2 u1 w1 w2 w3

]T
(B.1)

and finally vector ẋ:

ẋ =
[
ẋ1
ẋ2

]
=
[
w1 + w2 − ζ3
w3 − b

a
ζ4

]

B.2 Fiala tire model

If the Fiala model is chosen in place of the linear tire model, the equations of the
single-track Model become:

v̇ = Cf
m
f(αf ) + Cr

m
f(αr)− ur

ṙ = Cf
Iz
af(αf )− Cr

Iz
bf(αr)

where f(α) is the Fiala tire model (3.5):

f(α) =

z
(

1− |z|
zsl

+ z2

3z2
sl

)
|z| < zsl

zsl
3 sign(α) |z| ≥ zsl

recalling that z = tan(α).
The state vector x and output vector y can be defined as:

x =
[
v r

]T
y =

[
r ay β

]T
=
[
x2 w1 + w2 ζ1

]T
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the unknown parameter matrix δ and the auxiliary vectors w and z are given by:

δ =
[
Cf
m

Cr
m

Cf
Iz

]T
w =

[
z1δ1 z2δ2 z3δ3

]T
z =

 ζ2
ζ3
aζ2


the vector ζ and the auxiliary vector ω are:

ζ =



arctan
(
ω1
ω7

)
f(−ω6 − aω2

ω7
+Gω8)

f(−ω6 + bω2
ω7

)
ω2ω7
ω4ω5
ω3


ω =

[
x1 x2 w1 w2 w3 ζ1 u1 u2

]T
(B.2)

where f(·) is the implemented form of the Fiala model, shown in equation (3.6).
Finally, vector ẋ is defined as:

ẋ =
[
ẋ1
ẋ2

]
=
[
w1 + w2 − ζ4
w3 − b

a
ζ5

]
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