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Abstract

Introduction

Cardiac arrhythmias are the abnormalities or perturbations in the nor-

mal beating of heart. A cardiac arrhythmia is characterized by irregular

rhythm of heartbeat which could be either too slow (<60 beats/min) or

too fast (>100 beats/min) and can happen at any age. The sinus node

sends a depolarization wave over the atrium and depolarizing atrioven-

tricular (AV) node propagating over His-Purkinje system and depolarizes

ventricle in systematic way.

The symptoms of cardiac arrhythmias are complaints of dizziness, pal-

pitations, fast heart beating, and feeling of weakness [1]. Fatigue and

shortness of breath are more often seen in elderly people whereas chest

pain and palpitations are particularly common in younger patients [2].

Atrial fibrillation (AF) is often detected in asymptomatic patients, and

the arrhythmia may become asymptomatic over time or after treatment

[3].
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AF is the most common clinically significant cardiac arrhythmia. In 2014

AF affected approximately 33 million people. It occurs when ectopic foci

in the atria suppress or replace the normal sinus mechanism [2]. AF is

responsible for a high rate of cardiovascular and cerebrovascular morbidity

and mortality, resulting in a high health care cost and public health burden

[4]. Common techniques for AF diagnosis are based on electrocardiogram

(ECG), and can be either in-hospital or ambulatory monitoring, such as

24/48 hours Holter monitors, or event recorders triggered automatically

or by the user when AF symptoms are noticed.

Photoplethysmography is a simple optical technology: it uses one or more

light-emitting diodes to illuminate tissue with different wavelengths. The

intensity of the non absorbed light at each wavelength is measured by

a photo-diode. The light absorption and transmission depends on the

traveled light path, optical density of the tissue, volume of blood present

in the tissue, and blood composition.

The Pulse Wave Form (PWF) of a photoplethysmogram (PPG) consists

of a pulsatile (ac) waveform, which is superimposed on a slowly varying

(dc) baseline with lower frequency components. The systolic phase starts

with a valley that marks the pulse wave begin (PWB) and ends with the

pulse wave systolic peak (PWSP). During the diastolic phase, the small

and downward deflection observed (Dicroctic Notch) corresponds to the

closure of the aortic or pulmonic valve [5]. Technology of photoplethismog-

raphy allows a noninvasive measurement of variations of the blood volume
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over time. PPG has widespread clinical application, with the technology

utilized in commercially available medical devices.

The PPG is accepted as a reliable source for measurements of peripheral

arterial oxygen saturation (SpO2) and pulse rate. Due to its technological

and practical advantages, PPG is becoming increasingly popular in wrist-

worn devices for pulse rate detection.

The aim of the work is evaluate the potential of a set of PPG-derived

measures to discriminate between AF and NSR, and compare the new

algorithm with other published algorithm for the AF detection.

Materials and Methods

The starting point of this study is the creation of the database of simulated

PPG signals with AF events which is used to compare the performances

of three algorithms of AF detection published in literature and one devel-

oped at Politecnico di Milano, which is also validated in this thesis. In

addition to simulated, real PPG data have been analyzed. The simulated

database was created with the PPG simulator proposed by Solosenko [6].

PPG signals affected by AF and without AF have been generated. The

database is composed by several signals which differ each other in terms

of length, signal to noise ratio (SNR) and percentage of AF, it is possible

to set the AF burden value, in order to generate signals completely in AF

(AF burden=1) or signals in normal sinus rhythm (NSR) (AF burden=0).
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The different length used in this study, in terms of number of RR inter-

val, are 50, 100, 150, 200, 250, 300 beats. The different SNR taken into

account are 0, 1, 5, 10, 15, 20, 25 and 30 dB. The simulator is based on

a novel phenomenological model for simulating PPG signals in AF condi-

tions. The model uses RR interval series as input for generating a PPG

signal.

Real PPG data are recorded from 52 patients admitted to the Ospedale

Maggiore Policlinico in Milan, Italy. 23 patients had persistent AF and 29

were healthy subjects (NSR group). All recordings were performed with

the subject in a supine position, at rest. The subject was asked to stay as

still as possible to reduce motion artifacts. The Empatica E4 wristband

was applied on the wrist of the non-dominant arm, with the main part of

the device facing upward, in similar way to a regular wrist watch. Two

minutes recording was acquired for each subject.

An algorithm for the detection of peaks and valleys is performed on each

signal, in this way pulse-to-pulse intervals (PPi) are computed in order to

study the signals. For each signal, 24 parameters have been computed and

analyzed. Parameters studied are: PPi mean, PPi standard deviation,

PPi rMSSD, PPi nrMSSD, ∆PPi standard deviation,Shannon entropy,

sample entropy, five indexes of similarity between each pair of PPG pulses,

pNN10, pNN20, pNN30, pNN40, pNN50, pNN60, pNN70, pNN80, pNN90,

pNN100, Poincarè plot and Lorenz plot. After the computation of the

cited parameters, a t-test is performed to determine if there is a significant

difference between the two groups (AF and NSR).
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An algorithm for the classification is performed in order to classify the

signals in the database as AF or NSR. In this study has been used linear

SVM for classification. For feature selection, a sequential forward floating

search (SFFS) algorithm [7] is used to identify the best subset of features

differentiating the two conditions. The quality of each model is assessed

through train-validation-test split (55% of the data is used as training set,

25% as validation set, 20% as test set), repeated 100 times (bootstrap-

ping). Training and validation sets are used to choose the best model, the

test set to test the model on never-seen data.

The performances of the new algorithm have been compared with three

published algorithms: Lee et al. 2012 [8], Chong et al. 2015 [9] and

Petrenas et al. 2015 [10].

Results

The parameters obtained are studied for signals in AF and signals in NSR.

Boxplots are used to display the distribution of data. For signals with RR

length=300 and SNR=0, SampEn, rMSSD, Lorenz plot standard devia-

tion, S1, S2, pNN10, pNN20, pNN30, pNN40, pNN50, pNN60, pNN80,

pNN90, pNN100 values are significantly different (p<0.05) between NSR

and AF. For signals with RR length=300 and SNR=30, all the parameters

values are significantly different (p<0.05) between NSR and AF.
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(a) (b)

(c) (d)

Figure 1: Colormaps of t-test results for signals with RR length=50 (a), RR
length=300 (b), SNR=0 (c) and SNR=30 (d).

T-test results for signals with RR length=50 and RR length=300 and

for signals with SNR=0 and SNR=30 are shown in Figure 1 where if p-

value<0.05 the block is purple, otherwise is yellow.

In Figure 2 the validation and test accuracy of the classification algorithm

in signals with RR length=50,100 and 300 in function of SNR is shown.

From SNR≥10 both values are almost equal for each length. Best level of

accuracy are find in SNR=30 for RR length=50 and 100, and in SNR=20

for RR length=100.
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Figure 2: Validation and test accuracy for classification algorithm in signals
with RR length=50 (a), RR length=100 (b) and RR length=300



xv

SNR Accuracy TPR TNR

A P L C A P L C A P L C

0 0.884 0.5 0.5 0.5 0.82 1 1 1 0.9237 0 0 0
1 0.8495 0.5 0.5 0.5 0.808 1 1 1 0.8730 0 0 0
5 0.9385 0.5 0.5 0.505 0.971 1 1 1 0.9130 0 0 0.01
10 0.9825 0.52 0.505 0.565 0.984 1 0.99 0.99 0.9774 0.04 0.02 0.14
15 0.99 0.75 0.7 0.76 0.983 1 1 1 0.9907 0.5 0.4 0.52
20 0.99 0.86 0.895 0.88 0.99 1 1 0.99 0.9926 0.72 0.79 0.77
25 1 0.88 0.94 0.91 1 1 1 0.98 1 0.76 0.88 0.84
30 1 0.945 0.975 0.945 1 1 1 0.98 1 0.89 0.95 0.91

Table 1: Accuracy, TPR and TNR for signals with RR length=300 and different
SNR computed for the classification algorithm (A), Petrenas (P), Lee (L) and
Chong (C).

The results for the real PPG data, in which the accuracy is computed

for different number of features used in the classification, show that the

validation accuracy is maximum with 2 featurs. The TPR is maximum

when the features considered are 4.

The comparisons with the different algorithm taken into account is shown

in Table 1 for simulated signals with RR length=300, and in Table 2 for

the real PPG data.

Accuracy TPR TNR

Classification A 0.958 0.995 0.913
Petrenas 0.673 1 0.414

Lee 0.577 1 0.241
Chong 0.596 0.957 0.310

Table 2: Accuracy, TPR and TNR for each algorithm, for real PPG data
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Discussion and Conclusions

The PPG signal, considering the large quantity of devices which are able

to record and thanks to its easy recording method, can give an important

help in the screening and detection of AF and other arrythmias. This

study aims at evaluating the potential of a set of PPG-derived measures

to discriminate between AF and NSR. In signal with high value of SNR

the distribution of the parameters is different in AF and NSR, quite the

opposite, with low values of SNR the distributions of the parameters are

more similar.

The classification algorithm works shows good performances in general,

but the best results are obtained with values of SNR≥10 db. Noise, in

particular motion artifacts, really affects the detection of AF episodes.

Longer signals are better classified, with higher value of accuracy and

TPR. The new algorithm works better than the others algorithms even

with low values of SNR, discriminating well the two rhythms and reducing

the number of false alarms; particularly where classification of the NSR is

considered.



Sommario

Introduzione

Le aritmie cardiache sono anomalie o perturbazioni nella normale atti-

vazione o nel battito cardiaco. L’aritmia cardiaca è caratterizzata da un

ritmo irregolare del battito cardiaco che potrebbe essere troppo lento (<60

battiti/min) o troppo veloce (>100 battiti/min) e può verificarsi a qual-

siasi età. Il nodo senoatriale invia un’onda di depolarizzazione all’atrio

e depolarizza il nodo atrioventricolare (AV) che si propaga sul sistema

His-Purkinje e depolarizza il ventricolo in modo sistematico.

I sintomi delle aritmie cardiache sono disturbi di vertigini, palpitazioni,

battito cardiaco accelerato e sensazione di debolezza [1]. La fatica e la

mancanza di respiro sono più frequenti nelle persone anziane, mentre il

dolore toracico e le palpitazioni sono particolarmente comuni nei pazien-

ti più giovani [2]. La fibrillazione atriale (FA) viene spesso rilevata nei

pazienti asintomatici e l’aritmia può diventare asintomatica nel tempo o

dopo il trattamento [3].
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La FA è l’aritmia cardiaca clinicamente significativa più comune. Nel 2014

la FA ha colpito circa 33 milioni di persone. Si verifica quando un pattern

diffuso e caotico di attività elettrica negli atri sopprime o sostituisce il

normale meccanismo del seno [2]. La FA è responsabile di un alto tas-

so di stato patologico cardiovascolare e cerebrovascolare e mortalità, con

conseguenti costi sanitari elevati e per la salute pubblica [4]. Le tecniche

comuni per la diagnosi della FA si basano sull’elettrocardiogramma (ECG)

e possono essere sia ambulatoriali che domiciliari, come i dispositivi Holter

indossati per 24-48 ore o i registratori di eventi attivati automaticamente

o dall’utente quando si notano i sintomi della FA.

La fotopletismografia è una semplice tecnologia ottica, che utilizza uno o

più diodi emettitori di luce per illuminare tessuti con lunghezze d’onda

diverse. L’intensità della luce non assorbita ad ogni lunghezza d’onda è

misurata da un foto-diodo. L’assorbimento e la trasmissione della luce

dipendono dal percorso della luce percorsa, dalla densità ottica del tes-

suto, dal volume di sangue presente nel tessuto e dalla composizione del

sangue.

La forma d’onda del PPG (PWF) è costituita da una forma d’onda pulsa-

tile (ac), che si sovrappone a una linea di base che varia lentamente (dc)

con componenti a frequenza più bassa. La fase sistolica inizia con una valle

che segna l’inizio dell’onda del polso (PWB) e termina con il picco sistolico

dell’onda del polso (PWSP). Durante la fase diastolica, la deflessione pic-

cola e verso il basso osservata (Dicroctic Notch) corrisponde alla chiusura

della valvola aortica o polmonare [5]. La tecnologia della fotopletismogra-
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fia consente una misurazione non invasiva delle variazioni del volume del

sangue nel tempo. Il segnale PPG ha un’applicazione clinica diffusa, viene

utilizzato in dispositivi medici disponibili in commercio.

Il PPG è accettato come una fonte affidabile per le misurazioni della satu-

razione di ossigeno arteriosa periferica e della frequenza del polso. Grazie

ai suoi vantaggi tecnologici e pratici, il segnale PPG sta diventando sem-

pre più popolare nei dispositivi da polso per il rilevamento della frequenza

cardiaca.

Lo scopo di questo lavoro è quello di valutare il potenziale di un gruppo di

misure derivate dal PPG per discriminare FA e NSR, e di fare un confronto

tra il nuovo algoritmo e altri algoritmi pubblicati per la detezione della

FA.

Materiali e metodi

Il punto di partenza dello studio è la creazione del database di segnali

PPG con FA simulati, utilizzato per confrontare le performances di tre al-

goritmi per la detezione della FA e l’algoritmo di classificazione sviluppato

al Politecnico di Milano. Sono stati analizzati sia dati simulati sia dati

reali. Il database simulato è stato creato con il simulatore PPG proposto

da Solosenko [6]. Sono stati generati segnali PPG affetti da FA e senza

FA. Il database è composto da diversi segnali che variano in termini di

lunghezza, rapporto segnale rumore (SNR) e percentuale di FA, è possi-
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bile modificare il parametro AF burden in modo tale da generare segnali

completamente in FA (AF burden=1) o segnali in NSR (AF burden=0).

Le diverse lunghezze utilizzate in questo studio, in termini di numero di

intervalli RR, sono 50, 100, 150, 200, 250, 300 battiti. I diversi SNR presi

in considerazione sono 0, 1, 5, 10, 15, 20, 25 e 30 dB. Il simulatore si basa

su un nuovo modello fenomenologico per simulare segnali PPG in condi-

zioni di FA. Il modello utilizza la serie di intervalli RR come input per la

generazione del segnale PPG.

Per i dati clinici, i segnali PPG sono stati registrati da 52 pazienti ri-

coverati all’Ospedale Maggiore Policlinico di Milano, Italia. 23 pazienti

presentavano FA persistente e 29 erano soggetti sani (gruppo NSR). Tut-

te le registrazioni sono state eseguite con il soggetto in posizione supina,

a riposo. È stato chiesto al soggetto di rimanere il più fermo possibile

per ridurre gli artefatti da movimento. Il cinturino Empathic E4 è sta-

to applicato sul polso del braccio non dominante, con la parte principale

del dispositivo rivolta verso l’alto, in modo simile a un normale orologio

da polso. È stata acquisita una registrazione di due minuti per ciascun

soggetto.

Un algoritmo per il rilevamento di picchi e valli è eseguito su ciascun segna-

le, vengono calcolati gli intervalli da battito a battito (PPi) per studiare

i segnali. Per ogni segnale, sono stati calcolati e analizzati 24 parametri.

I parametri studiati sono: media del PPi, deviazione standard delPPi,

PPi rMSSD, PPi nrMSSD, deviazione standard di DeltaPPi, entropia di

Shannon, sample entropy, cinque indici di similarità tra ogni coppia di bat-



xxi

titi, pNN10, pNN20, pNN30, pNN40, pNN50 , pNN60, pNN70, pNN80,

pNN90, pNN100, Poincarè plot e Lorenz plot. Dopo il calcolo dei parame-

tri citati, viene eseguito un t-test per determinare se esiste una differenza

significativa tra i due gruppi (FA e NSR).

Un algoritmo per la classificazione viene utilizzato al fine di classificare i

segnali nel database come FA o NSR. In questo studio sono state utiliz-

zate SVM lineari per la classificazione. Per la selezione dei parametri, un

algoritmo di ricerca sequenziale in avanti (SFFS) [7] viene utilizzato per

identificare il miglior sottoinsieme di parametri che differenziano le due

condizioni. La qualità di ciascun modello viene valutata mediante sud-

divisione addestramento-validazione-test (il 55% dei dati viene utilizzato

come set di addestramento, il 25% come set di convalida, il 20% come

set di test), ripetuto 100 volte (bootstrap). I set di training e validazione

vengono utilizzati per scegliere il modello migliore.

Le performance del nuovo algoritmo di classificazione vengono confrontate

con tre diversi algoritmi pubblicati: Lee et al. 2012 [8], Chong et al. 2015

[9] e Petrenas et al. 2015 [10].

Risultati

I parametri ottenuti sono studiati per segnali affetti da FA e segnali in

ritmo sinusale (NSR). I boxplot vengono utilizzati per visualizzare la di-

stribuzione dei dati. Per segnali con lunghezza RR=300 e SNR=0, Sam-
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pEn, rMSSD, deviazione standard del Lorenz plot, S1, S2, pNN10, pNN20,

pNN30, pNN40, pNN50, pNN60 , pNN80, pNN90, pNN100 sono signifi-

cativamente diversi (p<0.05) tra NSR e FA. Per segnali con lunghezza

RR=300 e SNR=30, tutti i valori dei parametri sono significativamente

diversi (p<0.05) tra NSR e FA.

I risultati del t-test per segnali con lunghezza RR=50 e lunghezza RR=300

e per segnali con SNR=0 e SNR=30 sono mostrati nella Figura 3 dove se

il p-value<0.05 il blocco è viola, altrimenti è giallo.

(a) (b)

(c) (d)

Figura 3: Mappe dei colori per risultati dei t-test per segnali con lunghezza
RR=50 (a), 300 (b), e con SNR=0 (c) and 30 (d).
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SNR Accuratezza TPR TNR

A P L C A P L C A P L C

0 0.884 0.5 0.5 0.5 0.82 1 1 1 0.9237 0 0 0
1 0.8495 0.5 0.5 0.5 0.808 1 1 1 0.8730 0 0 0
5 0.9385 0.5 0.5 0.505 0.971 1 1 1 0.9130 0 0 0.01
10 0.9825 0.52 0.505 0.565 0.984 1 0.99 0.99 0.9774 0.04 0.02 0.14
15 0.99 0.75 0.7 0.76 0.983 1 1 1 0.9907 0.5 0.4 0.52
20 0.99 0.86 0.895 0.88 0.99 1 1 0.99 0.9926 0.72 0.79 0.77
25 1 0.88 0.94 0.91 1 1 1 0.98 1 0.76 0.88 0.84
30 1 0.945 0.975 0.945 1 1 1 0.98 1 0.89 0.95 0.91

Tabella 3: Accuratezza, TPR e TNR per segnali con lunghezza RR=300 e
diversi valori di SNR calcolate per l’algoritmo di classificazione (A), Petrenas
(P), Lee(L) e Chong(C).

Nella figura 4 è mostrata l’accuratezza di validazione e test dell’algoritmo

di classificazione nei segnali con lunghezza RR=50, 100 e 300 in funzio-

ne del SNR. Per SNR≥10 entrambi i valori sono quasi uguali per ogni

lunghezza. Il miglior valore di accuratezza è in SNR=30 per lunghezza

RR=50 e 100 e in SNR=20 per lunghezza RR=100.

I risultati per i dati clinici, in cui viene calcolata l’accuratezza per diversi

numeri di parametri utilizzati nella classificazione, mostrano che l’accu-

ratezza della validazione è massima con 2 parametri. Il TPR è massimo

quando i parametri considerati sono 4.

I confronti con i diversi algoritmi presi in considerazione sono mostrati

nella Tabella 3 per segnali simulati con lunghezza RR=300 e nella Tabella

4 per i dati clinici.
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Figura 4: Accuratezza di validazione e test dell’algoritmo di classificazione per
segnali con lunghezza RR=50 (a), 100 (b) e 300 (c)
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Accuratezza TPR TNR

Classification A 0.958 0.995 0.913
Petrenas 0.673 1 0.414

Lee 0.577 1 0.241
Chong 0.596 0.957 0.310

Tabella 4: Accuratezza, TPR e TNR per ogni algoritmo per i dati clinici

Discussione e conclusioni

Considerando la grande quantità di dispositivi che sono in grado di regi-

strare e grazie al suo semplice metodo di registrazione, il segnale PPG può

fornire un aiuto importante nello screening e nel rilevamento di AF e altre

aritmie. Questo studio mira a valutare il potenziale di una serie di misure

derivate dal PPG per discriminare tra AF e NSR. I risultati dimostrano

che in segnali con alto valore di SNR la distribuzione dei parametri è dif-

ferente in AF e NSR, al contrario, con valori bassi di SNR le distribuzioni

dei parametri sono più simili.

L’algoritmo di classificazione mostra buone performaces, i migliori risul-

tati si ottengono con valori di SNR≥10 db. Il rumore, in particolare gli

artefatti causati dai movimenti, influenza molto il rilevamento di episodi

AF. I segnali più lunghi sono meglio classificati, con un valore più alto

di precisione e TPR. Il nuovo algoritmo di classificazione funziona meglio

degli altri algoritmi considerati anche con valori bassi di SNR, discrimi-

nando bene i due ritmi e riducendo il numero di falsi allarmi; questi risul-

tati sono ottenuti in particolare quando la classificazione del NSR viene

considerata.



Chapter 1
Introduction

This chapter shows a global view on atrial fibrillation, its epidemiology

and the methods to diagnose it. Signals that are involved in diagnosis are

described, in particular photopletysmogram.
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Atrial Fibrillation

Cardiac arrhythmias are the abnormalities or perturbations in the normal

activation or beating of heart myocardium. A cardiac arrhythmia is char-

acterized by irregular rhythm of heartbeat which could be either too slow

(<60 beats/min) or too fast (>100 beats/min) and can happen at any age.

The sinus node sends a depolarization wave over the atrium and depolariz-

ing atrioventricular (AV) node propagating over His-Purkinje system and

depolarizes ventricle in systematic way.

There are many types of cardiac arrhythmias or abnormal heart beat-

ing. The normal rhythm of heart is called as sinus rhythm (NSR) which

can be disturbed through failure of automaticity as a sick sinus syndrome

(SSS) or as an inappropriate sinus tachycardia. The seriousness of car-

diac arrhythmias depends on the presence or absence of structural heart

disease [1]. The symptoms of cardiac arrhythmias are complaints of dizzi-

ness, palpitations, fast heart beating, and feeling of weakness [1]. Fatigue

and shortness of breath are more often seen in elderly persons whereas

chest pain and palpitations are particularly common in younger patients

[2].

The pathogenesis of cardiac arrhythmias has three basic mechanisms: the

enhanced or suppressed automaticity, triggered activity, or re-entry. The

automaticity is a natural property of all myocytes. The various factors

which may suppress or enhance automaticity are heart ischemia, scarring,

electrolyte disturbance, heart medications, old age, and other factors. The
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Figure 1.1: Example of electrocardiograms of different arrythmias. From top to
bottm: sinus rhythm, nodal rhythm, heart block, atrial flutter, atrial fibrillation
and ventricular fibrillation.

suppression of automaticity of the sinoatrial (SA) node can result in sinus

node dysfunction and in SSS which is a common indication for perma-

nent pacemaker implantation. The enhanced automaticity can result in

multiple arrhythmias for both atrial and ventricular arrhythmias. The

triggered activity which usually occurs after earlier and delayed depo-

larizations initiates spontaneous multiple depolarizations, and results in

precipitating ventricular arrhythmias. The re-entry is a common mech-

anism of arrhythmogenesis which includes bidirectional conduction and

unidirectional block. The micro level re-entry occurs with VT from con-

duction around the scar of myocardial infarction (MI), and macro level

re-entry occurs via conduction through Wolff–Parkinson–White syndrome

concealed accessory pathways [1].
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Atrial fibrillation (AF) is the most common clinically significant cardiac

arrhythmia. It occurs when a diffuse and chaotic pattern of electrical

activity in the atria suppresses or replaces the normal sinus mechanism

[2]. AF is responsible for a high rate of cardiovascular and cerebrovas-

cular morbidity and mortality, resulting in a high health care cost and

public health burden [4], this condition accounts for 1% of the National

Health Service budget in the United Kingdom and $16–26 billion of annual

US expenses. In Denmark the cost attributable to AF in the study [11]

was estimated to be e73–98 million for year and in Italy the estimated

mean costs per patient per year is e613-1213 [12]. Atrial fibrillation is of-

ten detected in asymptomatic patients, and the arrhythmia may become

asymptomatic over time or after treatment [3].

In 2014 AF affected approximately 33 million people. Australia, Europe,

and the USA had highest reported prevalence of AF (1% in the adult

population), but the prevalence of AF in low-income and middle-income

countries was probably underestimated [13].The worldwide age-adjusted

prevalence of AF, as estimated in the 2010 Global Burden of Disease

Study[14], is 596 per 100,000 men and 373 per 100,000 women. Approxi-

mately 3–5 million individuals in the USA have AF. The frequency of AF

in the general population is progressively increasing as a result of greater

life expectancy, increased prevalence of risk factors for AF, and improved

survival after myocardial infarction [4]. With population ageing, AF is

expected to affect more than 8 million people in the USA by 2050, and in

Europe, AF is projected to increase from the current estimated prevalence

of 8.8 million to approximately 18 million in 2060 [13]. The reasons of this
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Figure 1.2: Comparison ECG of a normal heart rhythm and AF; (a) ECG of
a normal heart rhythm. (b) ECG of a AF episode, it is possible to visualize
the hallmarks of AF, that are: irregular rhythm, absence of distinct P-waves,
presence of f-waves and rapid ventricular rhythm

increase are attributed to the increasing life expectancy worldwide and its

now well established the fact that the elder the patient, the greater the

risk to develop AF [15].

It is believed that the natural history of AF is progressive, initially being

nonsustained and induced by trigger activity (paroxysmal AF). However,

these bouts of AF induce electric alteration within the atrial myocardium

(electrical remodelling), which may also promote or accelerate myocardial

apoptosis and fibrosis (anatomical remodelling). Eventually, the alteration

of the atrial myocardial substrate contributes to maintain AF (persistent

AF) by means of complex self-sustained electrical activity [16], therefore

it is important an early detection of the pathology.

Common techniques for AF diagnosis are based on electrocardiogram

(ECG), and can be either in-hospital or ambulatory monitoring, such as

24/48 hours Holter monitors, or event recorders triggered automatically

or by the user when AF symptoms are noticed.
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From an electrocardiographic point of view, AF is characterized by the

absence of P waves. The P waves are replaced by absolutely uneven small

amplitude deflections (f-waves); these are followed by QRS complexes that

follow each other at different intervals [17]. However, these methods suffer

from several drawbacks. For paroxysmal AF, the arrhythmia episodes

are irregular and might not occur during the measurement period (24/48

hour Holter monitoring only detect AF in 30% to 60% of the cases [18]). If

worn for longer periods, the electrodes can easily become uncomfortable

and possibly cause skin irritations. Monitoring tool obtrusiveness and

high cost can also lead to low patient acceptance rate. Since AF patients

experience an irregular flow in the blood vessels photoplethysmography

can be used as an alternative method for ECG when estimating heart rate

(HR) and heart rate variability (HRV) [19].

1.1 Signals

The signals that may be used for AF detection are

• Electrocardiogram (ECG) [20] [21] [22] [18] [23];

• Intracardiac Electrogram (IEGM) [24];

• Implantable Loop Recorders (ILR) [25];

• Photoplethysmogram (PPG) [10], [26], [8], [9].
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1.1.1 Electrocardiogram

The surface ECG characteristics are a direct reflection of pathophysiologic

events in the atrium and can be used in studying AF. By analyzing the

ECG through a variety of signal processing techniques it is possible to

find clinically useful information that can be used to better understand

and treat AF. Some of the advantages of using the ECG are the ability to

record data for a long time period, the minimal risks involved compared

with invasive electrophysiologic study, and the ECG’s reflection of the

global activity in the atria and ventricles during AF [27]. The ECG it is a

noninvasive study which measures the electrical currents or impulses that

the heart generates during a cardiac cycle. At every beat, the heart is de-

polarized to trigger its contraction. This electrical activity is transmitted

throughout the body and can be picked up on the skin with electrodes.

This is the principle behind the ECG. An ECG machine records this ac-

tivity via electrodes on the skin and displays it graphically. The ECG

machine processes the signals picked up from the skin and produces a

graphical representation of the electrical activity of the patient’s heart.

The basic pattern of the ECG is logical:

• electrical activity towards a lead causes an upward deflection;

• electrical activity away from a lead causes a downward deflection;

• depolarization and repolarization deflections occur in opposite directions-
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Figure 1.3: ECG waveform with characteristic waves and intervals. From left
to right P wave, QRS complex, T wave and U wave.

The basic pattern of this electrical activity (Figure 1.3) comprises three

waves, which are named P, QRS (a wave complex), and T. The first de-

flection is the P wave and represents depolarization of atrial muscle cells.

It does not represent contraction of this muscle, nor does it represent fir-

ing of the sinoatrial node. The QRS complex represents depolarization of

ventricular muscle cells; the Q portion is the initial downward deflection,

the R portion is the initial upward deflection, and the S portion is the

return to the baseline, the isoelectric point. After the depolarization, ven-

tricular muscle repolarizes, and this event is great enough in amplitude to

generate the T wave [28].

The standard 12-lead ECG is the most commonly used non-invasive tool

for diagnosing electrical abnormalities, including AF. In the ECG, AF

is characterized by rapid atrial activity that is irregular in timing and
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morphology: discrete P waves are absent and replaced by an oscillating

baseline that consists of low-amplitude fibrillatory f-waves. The charac-

teristics of f-waves (shape, amplitude, and regularity) vary from patient

to patient. The pattern of atrial activity could be similar to atrial flutter

in some cases, mostly regular and with high amplitude f-waves, while in

other cases it can have lower amplitude, be less regular, or both. Atrial

rates detected from the ECG in AF vary between 240 and 540 beats per

minute (bpm) with an average of 350 bpm, with changes in the presence of

anti-fibrillatory drugs (slower rates) or acetylcholine (faster rates). During

AF the ventricular heart rate results more irregular than in NSR, but less

irregular than atrial activity because the atrioventricular node regulates

the electrical trigger from atrial to ventricular tissue. The atrial activity is

the most interesting for AF study and its waveforms are superimposed on

the ventricular signals. Unfortunately, the atrial signals are much smaller

(10 times lower in amplitude) than those related to ventricles (QRS com-

plexes), thus the diagnostic applications based on P waves’ analysis are

compromised and computationally expensive. Furthermore, relying on

body surface potential, the electrical image on the body surface is blurred

with a low spatial definition in comparison to the potentials recorded in-

side the atria in an endocardial electrogram. There is substantial overlap

between rates during atrial flutter and AF and so distinguishing between

these two conditions is clinically important since the treatment may be

different. During AF, the RR intervals, and hence the ventricular rate, is

commonly irregular. However, ventricular activity of this sort is present

not only in AF, but also in a variety of other arrhythmias, for example
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multifocal atrial tachycardia, atrial flutter with variable atrioventricular

(AV) block, frequent premature atrial complexes, and sinus arrhythmia.

Conversely, AF may be present with a regular ventricular rate, as in the

case of AV block with artificial ventricular pacing. Although irregular

ventricular activity is commonly associated with AF, it often fails as the

sole diagnostic criterion. In fact, the presence of AF has been shown to

be under-recognized in paced patients, with important adverse clinical

consequences since the RR intervals are regular [27]. The main disadvan-

tage of the ECG is the low suitability for continuous long-term monitoring

[18].

1.1.2 Intracardiac Electrogram

Intracardiac electrograms (IEGM) are recordings of cardiac potentials

from electrodes directly in contact with the heart. Unipolar electrograms

represent the potential difference between an “exploring electrode” in con-

tact with the extracellular space of the active tissue, and “indifferent elec-

trode” used as reference, which is at a distance from the heart. Ideally,

this is placed at infinite distance, in practice, a chest patch, or, more com-

monly, the “Wilson central terminal” have been used as approximations

of indifferent electrodes. Bipolar electrograms represent the potential dif-

ference between two closely spaced electrodes, and they produce a better

signal-to-noise ratio than unipolar electrogram. Bipolar signals are calcu-

lated as the algebraic difference between the two unipolar electrograms at
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the two sites, using the same reference [29]. IEGM records the electrical ac-

tivity within the various chambers of the heart using multipolar electrodes

placed inside the heart. While conventional electrocardiograms from the

body surface are recorded at a paper speed of 25 mm/second, IEGMs

are recorded at a much higher paper speed of 100 to 200 mm/second.

EGMs allow clinicians to record the atrial activity directly in situ usually

by passing catheter-guided electrodes through one of the major veins into

the atria (endocardial signals). While ECG shows the electrical activ-

ity of all the heart, IEGM records the local wavefronts of depolarization

and repolarization that pass below the electrode at the tip of the lead.

The amplitude of the recorded electrical signal is 10 times greater than

the amplitude of an ECG signal. The amplitude, frequency content and

morphology of IEGMs depend on the location of the electrodes, the car-

diac rhythm, posture, respiration and drugs. The amplitude of the atrial

IEGM tends to be smaller and/or more spatially and temporally variable

during AF than in NSR. Furthermore, the spectral coherence of IEGMs

from two separate atrial sites is highly reduced during AF in comparison

to other atrial rhythms. The analysis of IEGMs is used in diagnostic pro-

cedures as well as for guiding therapeutic interventions .The high level of

accuracy, temporal and spatial detail is paid with the elevated invasivity

of the recording system [27] [30].
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1.1.3 Implantable Loop Recorders

Devices like Implanted Loop Recorders (ILRs) are typically inserted sub-

cutaneously for ECG recording through closely spaced electrodes on their

surface. Asymptomatic brady- and tachyarrhythmia events can been au-

tomatically record by ILRs and patients can manually signal symptomatic

events using a handheld activator. ILRs cannot detect AF using P waves

because their amplitude tends to be too small, but rely only on the analysis

of RR intervals. Considering space, power and battery constraints, algo-

rithms should be computationally simple and the recorded information

must be condensed and summarized due to memory size restrictions. Fur-

thermore, a big amount of repetitive or unimportant data can overwhelm

the physician and hinder his analysis. Thus, this kind of device typically

stores extremely detailed information only for a small subset of meaning-

ful episodes, while general information is tabulated across all the episodes.

In most implantable devices data is extracted during follow-up visits so

the clinician can become aware of the presence of a new onset of AF af-

ter potentially 6 months from the time of the first AF occurrence. Some

newer devices have wireless alert capabilities which automatically send an

alarm to clinicians when an AF burden threshold is exceeded. This can

dramatically improve anticoagulation therapy, reducing the risk of stroke

in asymptomatic patients. ILR ECG is different from a near-field signal

recorded by bipolar electrodes within the heart. The frequency content is

lower like the amplitude of R waves and this, with the higher possibility

of noise and artifacts, makes R wave sensing more challenging than with
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intracardiac signals. On the other hand a subcutaneous device is less in-

vasive than an intracardiac electrogram and causes less discomfort during

everyday life compared to constant ECG monitoring [27] [30].

1.1.4 Photoplethysmogram

Photoplethysmography is a simple optical technology, it uses one or more

light-emitting diodes to illuminate tissue with differing wavelengths. The

intensity of the non absorbed light at each wavelength is measured by

a photo-diode. The light absorption and transmission depends on the

traveled light path, optical density of the tissue, volume of blood present

in the tissue, and blood composition.

The Pulse Wave Form (PWF) of a PPG (Figure 1.4) consists of a pulsatile

(ac) waveform, which is superimposed on a slowly varying (dc) baseline

with lower frequency components. The ac component is attributed to car-

diac synchronous changes in the blood volume with each heartbeat. The

dc component is influenced by respiration, sympathetic nervous system ac-

tivity, and thermoregulation. The systolic phase starts with a valley that

marks the pulse wave begin (PWB) and ends with the pulse wave sys-

tolic peak (PWSP). The amplitude between this two points represents the

pulse wave amplitude (PWA) whereas the time occurring between them is

the Pulse Wave rise time (PWRT). During the diastolic phase, the small

and downward deflection observed (Dicroctic Notch) corresponds to the

closure of the aortic or pulmonic valve. A slight peak called diastolic peak
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Figure 1.4: Pulse wave form of PPG with pulse wave characteristics.

(PWDP) follows the dicrotic notch. Finally, the pulse wave end (PWE)

is marked by another valley at the end of the diastolic phase. Systolic

phase (rise time) varies only in a narrow range inversely proportional to

the heart rate compared to the pulse wave duration (PWD) [5].

Technology of photoplethismography allows a noninvasive measurement

of variations of the blood volume over time. PPG has widespread clinical

application, with the technology utilized in commercially available medical

devices, for example in pulse oximeters, vascular diagnostics and digital

beat-to-beat blood pressure measurement systems. The basic form of PPG

technology requires only a few opto-electronic components (Figure 1.5):

a light source to illuminate the tissue (e.g. skin), and a photodetector to

measure the small variations in light intensity associated with changes in

perfusion in the catchment volume. [31]

The PPG is accepted as a reliable source for measurements of peripheral

arterial oxygen saturation (SpO2) and pulse rate. Due to its technological
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Figure 1.5: Photoplethysmography and photopletysmographic waveform. An
Infrared LED illuminates the skin and the photo-detector measures changes in
light absorption due to blood flow.

and practical advantages, PPG is becoming increasingly popular in wrist-

worn devices for pulse rate detection. It is possible to apply a PPG sensor

on the patient by using a dedicated wristband device; such device can

be applied on the patient without causing discomfort even for prolonged

acquisitions.

Smartphones have become ensconced into our lives, and their utility is ever

expanding. Once used only for communication, smartphones have come

to replace the wrist watch, provide camera and navigation functions that

allow easy access to the Internet. More recently, they have become pow-

erful tools in monitoring our health. There are smartphone-enabled glu-

cometers, blood pressure cuffs, oximeters, and even heart monitors. This

present a challenge to physicians, namely the interpretation of diagnostic
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information captured on smart phones, in particular cardiac arrhythmias

[32].

Currently, the methods of using a smartphone to detect and monitor AF

can be divided into two groups. The first group simply uses a download-

able application and hardware that already exists on modern smartphones,

the camera and lamp, which transform the smartphone in a photopletys-

mogram [9]. The second group uses a pair of external electrodes, either

built into the case or as a stand-alone -unit that communicates with an ap-

plication downloaded to the phone, like Alivecor Kardia Mobile [33].

1.2 AF detection algorithms

In literature, there are many algorithms for the detection and analysis of

AF. Several algorithms have been developed to detect AF which either

rely on the absence of P-waves or are based on RR variability. Since there

is no uniform depolarization of the atria during AF and consequently no

discernible P-waves in the ECG, their absence has been utilized in the

detection of AF. However, locating the P-wave fiducial point is very diffi-

cult because the low amplitude of the wave itself makes it susceptible to

corruption by noise. The methods in the second category are based on RR

interval dynamics and do not require identification of the P-wave.

It is possible divide the algorithms present in literature into two major

classes:
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• Methods based on atrial activity analysis;

• Methods based on ventricular response analysis.

The source of AF is in the atrial cells and heart conduction pathway, conse-

quently, methods based on atrial activity can convey significant diagnostic

information. However, in many recorded cardiac signals, the presence of

the ventricular activity can disturb the atrial activity, because of his much

larger amplitude, and also the presence of potential noise and artifacts su-

perimposed can affect the atrial activity. Standard 12-lead ECG may not

be enough to study atrial activity, because the number of electrodes is too

small and their location is not ideal for AF detection. For atrial analysis a

stable, high quality signal is required. It is difficult to obtain in real-time

long-term recordings.

To conclude, atrial activity analysis, even if is highly effective, is not the

most suitable approach for an automatic screening application, since sim-

plicity of use, global acceptance and robustness to noisy tracings are im-

portant requirements. Methods based on the ventricular response, instead,

are intended to capture the irregular, rapid nature of AF by exploiting the

most prominent feature of cardiac signals, such as QRS peaks for ECG

and systolic peaks for blood pressure signals. The ventricular response

can be easily detected by non-invasive devices applied on the skin, mak-

ing it a useful tool for long term monitoring and automatic screening [30].

Parameters evaluated in AF detection algorithms will be discussed in the

next chapter.



Chapter 2
Materials and methods

In this chapter there is a description of the analyzed data, the algorithms

used for characterization and classification of AF vs. NSR.
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2.1 Database

2.1.1 Simulated database

The signals studied in this work are obtained from a PPG simulator is

developed by Solosenko in collaboration with the Kaunas University of

technology [6]. The simulator is based on a novel phenomenological model

for simulating PPG signals in AF conditions. The model uses RR interval

series as input for generating a PPG signal. The model accounts for

the presence of premature beats by introducing amplitude and time scale

factors which modify pulse width and amplitude, thus making it possible

to simulate ectopic beats and certain rhythms such as bigeminy known to

cause false alarms in RR interval-based AF detection.

The model consists of two main parts, namely, modeling of a single PPG

pulse and concatenation of pulses into a connected signal. A PPG pulse

is modeled as a linear combination of three functions: one log-normal

waveform and two Gaussians. The log-normal function is defined as:

φ1(t;m,σ1) =

{
1

t
√

2πσ2
1

e
−(ln(t/m))2

2σ21 t > 0

0 t ≤ 0

(2.1)

where t is the time, m is a scale parameter, and σ2
1 is a shape parameter.

The Gaussian waveform is defined by:

φi(t, σi) =
1√

2πσ2
i

e
t2

2σ2
i (2.2)
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where σ2
i is a width parameter. Then, the PPG pulse is modeled as

a linear combination of weighted, time-shifted, and time-scaled versions

ofφ1(t;m,σ1), φ2(t, σ2), and φ3(t, σ3) in this way:

φ(t; θ) = w1φ1(t− τ1;m,σ1) +
3∑
2

wiφi(t− τi;σi) + a (2.3)

where a denots a DC offset. θ is a vector that includes all model parame-

ters

θ = [w1, w2, w3, τ1, τ2, τ3,m, σ1, σ2, σ3] (2.4)

This parameters of the PPG are estimated by nonlinear least sqares fit-

ting,

J(θ) =

∫ ∞
−∞

(y(t)− φ(t; θ)2dt) (2.5)

θ̂ = arg min
θ
J(θ)θ (2.6)

where θ̂ is the vector minimizing the difference between PPG pulse tem-

plate y(t) and the model PPG φ(t; θ). Prior to minimization each PPG is

normalized to unit amplitude. Since pulse morphology varies considerably

depending on factors such as age and medical condition, a set of template

PPG pulses is employed.

A PPG pulse is composed of a systolic part and diastolic part, where the

width of each part depends on the adjacent RR intervals. Another factor

is the PPG pulse amplitude related to ventricular filling time and, accord-

ingly, to the length of the RR interval. For example, in sinus rhythm, the

ventricular filling time does not change much from beat to beat, leading
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to negligible pulse amplitude variations. On the contrary, a premature

beat causes diastole to be shorter, reducing the amplitude of the resulting

pulse. The model proposed by [6] assumes that the amplitude of the pre-

mature pulse changes exponentially. Since a premature beat is followed

by a compensatory pause, sufficiently long to fill the ventricles with extra

blood, the subsequent pulse will have larger amplitude. The amplitude

of a PPG pulse is assumed to be proportional to rk, which denotes the

RR interval preceding the kth pulse, unless the beat is premature when

the relationship between the length of the current RR interval and the

diastolic period can be characterized by an exponential function,

x(n) =
K∑
i=1

sk(n− δk) + v(n) (2.7)

where K denotes the number of pulses in the connected signal. The noise

v(n) is generated by filtering white noise, where the filter is determined

by the spectral properties of motion artifacts extracted from PPG signals

in MIMIC database.

The simulated database was created with the PPG simulator [6]. PPG

signals affected by AF and without AF have been generated. The database

is composed by several signals which are different each other in terms of

length, signal to noise ratio (SNR) and percentage of AF, it is possible to

set the AF burden value, in order to generate signals completely in AF

(AF burden=1) or signals in NSR (AF burden=0). The different length

used in this study, in terms of number of RR interval, are 50, 100, 150,
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Figure 2.1: Graphical User Interface of PPG simulator [6].

200, 250, 300. The different SNR taken into account are 0, 1, 5, 10,

15, 20, 25 and 30; 0 db and 30 db are the limits set by the developer.

The percentage of AF considered, for an easiest comprehension, are 0 and

100, in order to obtain signals in normal sinus rhythm and signals in atrial

fibrillation rhythm. The sampling frequency is set to 100Hz. In Figure 2.1

it is shown the graphical user interface of the simulator. It is possible to

set the number of RR intervals, median AF episode length, AF and APB

burden, and the PPG noise SNR. To create NSR signal the parameter

AF burden has to be set to 0, if this value is equal to 1, an AF signal is

generated. It is also possible to generate different signals at the same time.

In the lower part of the Figure 2.1 it is possible to modify the sampling

frequency of the signal and set the pulse type.
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2.1.2 Clinical database

The clinical database is populated by PPG signals recorded from 52 pa-

tients admitted to the Ospedale Maggiore Policlinico in Milan, Italy. 23

patients had persistent AF and 29 were healthy subjects (NSR group).

All recordings were performed with the subject in a supine position, at

rest. The subject was asked to stay as still as possible to reduce motion

artifacts. The Empatica E4 wristband (Figure 2.2) was applied on the

wrist of the non-dominant arm, with the main part of the device facing

upward, in similar way to a regular wrist watch. Two minutes recording

was acquired for each subject.

The Empatica E4 wristband is a wearable wireless device designed for

continuous, real-time data acquisition in daily life. The device is equipped

with sensors for the registration of different bio-signals: an electrodermal

activity sensor, an infrared thermopile, a 3-axis accelerometer and a PPG

Figure 2.2: Empatica E4 wristband
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sensor which measures the PPG signal. The PPG is sampled at 64Hz

[26].

2.2 Peak detection and parameters compu-

tation

An algorithm for the detection of peaks and valleys is performed on each

signal, in this way pulse-to-pulse intervals (PPi) are computed in order

to study the signals. The algorithm performs a low pass averaging on

the signal, useful to reduce noise and exploited in minima detection. The

convoluted signal is lowest in zones which have very small values in a wide

zone nearby, those points are to be identified as minima. First section

of the algorithm identifies local maxima,then a second section identifies

local minima on the low filtered signal. To be a minimum, a point must

be smaller than its neighborhood and smaller than the signal half a beat

earlier and half a beat later. For every minimum found in the low filtered

signal, a search in their 0.1 seconds neighborhood for the lowest minima in

the original signal (which will be considered as true minima) is performed.

For each pair of minima, the algorithm transfers only those that:

• are closer than three seconds to the next one (otherwise there is

likely a gap between the two, therefore the current peak might be

right before a zero padded noisy zone);
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• are not coincident with the next one (this is evidently a mistake)

• are more than 0.25 second far from the previous minimum (it is

physiologically impossible to have two heart depolarizations closer

than 0.25 of second, due to heart refractariety)

Only the local maxima which come right after a minimum point are saved.

Whenever two peaks are too distant (PPi >1.5 seconds) the second one is

been erased.

For each signal, 24 parameters have been computed and analyzed. Param-

eters studied are: PPi mean, PPi standard deviation, PPi rMSSD, PPi

nrMSSD, ∆PPi standard deviation,Shannon entropy, sample entropy, five

indexes of similarity between each pair of PPG pulses, pNN10, pNN20,

pNN30, pNN40, pNN50, pNN60, pNN70, pNN80, pNN90, pNN100, Poincarè

plot and Lorenz plot.

2.2.1 Time domain heart rate parameters

Time domain analysis of AF recordings usually includes the mean and

standard deviation of normal-to-normal (SDNN) PP intervals, root mean-

square differences of successive normal-to-normal PP intervals (rMSSD),

and percentage of interval differences of successive normal-to-normal PP

intervals greater than different interval of time in term of ms, the most

used is pNN50 [27].
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For a PP time series made of N intervals, the standard deviation is defined

as:

SD =

√√√√ 1

N − 1

N∑
i=1

|PPi − µ|2 (2.8)

where µ is the mean of the PP series,

µ =
1

N

N∑
i=1

PPi (2.9)

SD and rMSSD are time-domain tools used to assess heart rate variabil-

ity (HRV). The root mean square of the successive differences is defined

as:

rMSSD =

√√√√ 1

N − 1

N∑
i=2

|PPi − PPi−1|2 (2.10)

rMSSD is usually normalized by the mean value of the RR time series

(nrMSSD), because subjects have different mean heart rates,

nrMSSD =
rMSSD

µ
(2.11)

The percentage of interval differences of successive intervals greater than

x ms (pNNx, with x=[10,20,. . . , 100]) is computed. It is defined as the

mean number of times in which the change in successive normal sinus

(NN) intervals exceeds x ms.

SD, nRMSSD and pNN are used to quantify beat-to-beat variability. Since

AF exhibits higher variability than NSR, these metrics can be used to de-

tect AF when higher than a previously fixed threshold [8] [9] [34] [35].
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2.2.2 Entropy

Approximate entropy (ApEn), is a measure of signal randomness. It rep-

resents the likelihood that similar patterns of observations will not be fol-

lowed by other similar observations. When there are many similar values

in a time series ApEn will be small, for example in NSR; a less predictable

and more complex process has a greater ApEn, as in AF. Given N points,

the ApEn(m, r, N) is approximately equal to the negative average natural

logarithm of the conditional probability that two sequences that are sim-

ilar for m points remain similar, that is, within a tolerance r, at the next

point. ApEn is defined as

ApEn(m, r,N) = ln

[
Cm
N (r)

Cm+1
N (r)

]
(2.12)

where Cm
N expresses the prevalence of repetitive patterns of length m in

the series. The ApEn algorithm counts each sequence as matching itself,

a practice carried over to avoid the occurrence of ln(0) in the calculations.

This step has led to discussion of the bias of ApEn [36] [27]. There-

fore, the sample entropy (SampEn), not counting self-matches, has been

introduced. SampEn reduces the bias of ApEn by avoiding counting self-

matches, it can be used on shorter series, it is more consistent than ApEn

and it is easier to compute [37]. Given N points, SampEn(m, r, N) is

the negative natural logarithm of the conditional probability that two se-

quences similar for m points remain similar at the next point within a tol-

erance r, where self-matches are not included in calculating the probability.
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Therefore a lower value of SampEn also indicates more self-similarity in

the time series [37]. SampEn is computed as

SampEn(m, r,N) = − ln

[
Am(r)

Bm(r)

]
(2.13)

where Am(r) is the total number of matches of length m+1 and Bm(r)

the total number of matches of length m [38].

Shannon entropy (ShE) is a common entropy definition in information

theory. In information theory, entropy measures the amount of uncertainty

of a random quantity [39] [40]. The entropy of a random variable X is

defined to be

H(x) = −
∑
x

P (x) log2 P (x) (2.14)

where the sum is over all values x that the variable X can take, and P(x) is

the probability of the value x occurring. In AF detection, ShE of the PP

intervals is used to quantify the regularity of pattern in time series. The

ShE of NSR is expected to be smaller to the one of AF or other cardiac

arrythmias [9].

2.2.3 Shape analysis

To assess wave similarity, five indexes are computed (S1, S2, S3, S4

and S5). Each wave is represented as a point of the p-dimensional real

space, the normalized waves are points belonging to the p-dimensional

unitary sphere. The morphological dissimilarity between a pair of waves



Materials and methods 29

is evaluated using the standard metric of the sphere to compute their

distance

Dij = arccos(wNi · wNj ) (2.15)

where wNi and wNj represent the ith and j th normalized waves, i.e.

wNi =
wi
||wi||

(2.16)

and (·) denotes the scalar product. The measure of similarity is ob-

tained by calculating the relative number of similar pairs of waves in the

recording. The similarity depends on the threshold ε used in evaluating

the similarity, if the distance between two waves is lower than ε, waves

are considered similar. Value of ε used are the same proposed in [26],

ε = [π/2, π/4, π/8, π/16, π/32].

2.2.4 Poincarè plot

In the Poincaré plot, each RR interval is plotted versus the preceding one;

it should be noted that this type of plot is also referred to as the Lorenz

plot. The pattern of such a plot can be inspected to distinguish AF from

other supraventricular tachycardias such as atrial flutter where ventric-

ular response is not as irregular as in AF. During sinus rhythm (SR),

successive RR intervals are centered around the main diagonal forming an

ellipsoid-like pattern, and each RR interval is strongly dependent on the

preceding RR interval. During AF, the irregularity of RR intervals results
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Figure 2.3: Examples of Poincarè plot in Chong et al. 2015, on the left Poincarè
plot of a signal without AF, it is possible to see that all the points are in the
zone 0; on the right Poincarè plot of a signal with AF, the points are in all the
regions. Signals without noise generated with the simulator, with length of 300
beats.

in a widely scattered distribution which is representative of disorganized

atrial activity combined with atrioventricular conduction properties (Fig-

ure 2.4).

Poincarè plot is used as a measure of organization of the heart beat, in

[9] is used to characterize ∆PPi dynamics and to discriminate premature

atrial (PAC) and ventricular (PVC) contractions episodes from those of

AF and NSR. Poincarè plot is divided into seven regions, which represent

permutations of all possible sequences “short” and “long” based on three

consecutive pulse intervals. If the pattern obtained by the beats is irregular

and with trajectories at all regions the signal is marked as AF, if all the

trajectories stay in the zone 0 is NSR, see Figure 2.3.

The Lorenz plot is made plotting each ∆PP interval time against the

following ∆PP interval time. The parameter Lor used in the analysis is
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Figure 2.4: Examples of Poincarè plot, on the left Poincarè plot of a signal
without AF, on the right Poincarè plot of a signal with AF. Signals without
noise generated with the simulator, with length of 300 beats.

computed by the multiplication between the standard deviations for the

transverse direction (Sd1) and the longitudinal direction (Sd2).

Lor = Sd1 · Sd2. (2.17)

2.2.5 Turning Point Ratio

Turning Points Ratio measures the randomness of fluctuations within a

data set and the degree of independence in a time series. It calculates

the amount of turning points to the maximum number of possible turning

points. Turning point is found if both the preceding and succeeding points

are either greater or lower. Given 3 quantities a,b and c, b is a turning

point if a > b < c, or a < b > c. It is expected in random data set of
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arbitrary length N, that the number of possible turning points is 2N−4
3

,

with a standard deviation of
√

16N−29
90

[41].

After the computation of the parameters cited, a t-test is performed to

determine if there is a significant difference between the two groups of

signals, AF and NSR.

2.3 Classification

A classification algorithm takes as input the matrix of observations F and

a vector label. The matrix of observations has dimension NxM, where N is

the number of signals and M the number of features. Since values of fea-

tures extracted may differ by order of magnitudes, Z-score normalization

was applied to transform each feature distribution so that it has zero mean

and unitary standard deviation. The vector label has dimension Nx1, it

has value 0 if the signal is NSR, and 1 if the signal is AF. In this study.

for the classification linear SVMs are used.

SVMs are a family of separation methods for classification and regression

developed in the context of statistical learning theory. They have been

shown to achieve better performance in terms of accuracy with respect

to other classifiers in several application domains, and to be efficiently

scalable for large problems. A further important feature is concerned with

the interpretation of the classification rules generated. Support vector

machines identify a set of examples, called support vectors, which appear
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to be the most representative observations for each target class. In a way,

they play a more critical role than the other examples, since they define

the position of the separating surface generated by the classifier in the

attribute space [42].

For feature selection, a sequential forward floating search (SFFS) algo-

rithm [7] is used to identify the best subset of features differentiating the

two conditions. Briefly, starting from the empty set of features, the feature

xi that maximizes the objective function (Yk1Xi) when combined with the

features Yk that have already been selected, is added. After this forward

step, SFFS performs backward steps as long as the objective function in-

creases. A backward step consists in removing from Yk the feature that

makes the objective function increase.

The quality of each model is assessed through train-validation-test split

(55% of the data is used as training set, 25% as validation set, 20% as test

set), repeated 100 times (bootstrapping). Training and validation sets are

used to choose the best model, the test set to test the model on never-

seen data. The data split took into account the outcome (responder/non-

responder).

2.4 AF Detection algorithms

In this work, different algorithms are used to detect AF in the simulated

database. It has been used different algorithms: Lee et al. 2012 [8],
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Chong et al. 2015 [9], Petrenas et al. 2015 [10] and Solosenko et al. 2019

[43].

2.4.1 Lee et al. 2012

Lee developed a comprehensive iPhone application for collection of pul-

satile time series followed by real-time detection of AF using: rMSSD,

ShE and SampEn. The iPhone App was developed using the Objective-C

programming language. For the pulsatile acquisition, the camera of an

iPhone 4S was placed on either the index or middle finger of partecipants

for two minutes prior to (see Figure 2.5), and immediately after, cardiover-

sion. The iPhone 4S videos were recorded and pre-processed resampling

the signal, then a peak detection algorithm has been performed. The sig-

nal was divided in 64-beat segment and then normalized rMSSD, ShE and

SampEn were computed.

Figure 2.5: Camera placement for the pulsatile acquisition in [8]
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The condition for AF detection is based on each threshold value of the

three statistical methods THRm, THSE and THSA: rmSSD normalized

has to pass the threshold, rMSSD/mean ≥ THRm, and at least one of

ShE or SampEn has to be higher than the corresponding threshold, ShE

≥ THSE and/or SampEn ≥ THSA. Thresholds’ values found, using the

MIT-BIF AF and NSR databases, are: THRm=0.130, THSE=0.76 and

THSA=1.3. With iPhone 4S data and combination of all the three meth-

ods, the detection accuracy is 0.9951 with THRm=0.115, THSE=0.55 and

THSA=0.76.

2.4.2 Chong et al. 2015

Chong proposed an algorithm, used in arrhythmia discrimination using

a a smartphone, which can differentiates between NSR, AF, PVC and

PAC. The algorithm combines rmSSD of successive RR differences and

ShE with Poincarè plot (or TPR) and pulse rise and fall times to increase

the sensitivity of AF discrimination and add new capabilities of PVC and

PAC identification. The 88 participants of the study were instructed to

place their index or middle finger on a standard phone camera with the

flash turned on for 2 min. Videos of their fingertip blood flow intensity

were pre-processed extracting the region with best signal quality from

the green signal, which is the band signal with the best signal fidelity.

Pulse beat-to-beat detection was performed. The signal was divided in 60-

beat segment. The arrythmia discrimination algorithm is detailed in the
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Figure 2.6: Flowchart of arrythmia discrimination algorithm proposed by
Chong [9].

flowchart in Figure 2.6. After the computation of the statistical methods,

the parameters are compared with their thresholds. If they are less than

their thresholds, the pulsatile time series is classified as NSR without

PAC or PVC. Otherwise, the algorithm goes to next step and check if

the pulsatile time series is AF, PAC or PVC studying Poincarè plot and

TPR.

Since the signals studied are completely in NSR or AF, the discrimination

that I made in the replication of the algorithm is: if the values of rMMSD,

ShE and TPR are less than the thresholds the pulsatile time series is

classified as NSR, otherwise as AF. The optimal rMSSD, ShE and TPR

threshold values are derived as 0.09275, 0.3800 and 0.3600. The method

detects NSR with accuracy of 0.9626.
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Figure 2.7: Flowchart of low-complexity detection of AF in continuous long-
term monitoring algorithm proposed by Petrenas [10].

2.4.3 Petrenas et al. 2015

The study of Petrenas describes an AF detector whose structure is well-

adapted both for detection of subclinical AF episodes and for implementa-

tion in a battery-powered device for use in continuous long-term monitor-

ing applications. A key aspect for achieving these two properties is the use

of an 8-beat sliding window, which thus is much shorter than the n-beat

window used in most existing AF detectors, must used is 128-beat sliding

window. The building blocks of the proposed detector include ectopic beat

filtering, bigemini suppression, characterization of RR interval irregular-

ity, and signal fusion. With one design parameter (α), the performance

can be tuned to put more emphasis on avoiding false alarms due to non-

AF arrhythmias or more emphasis on detecting brief AF episodes. The

results show that the detector performs really good on the MIT-BIH AF

database, with high sensitivity and specificity (97.1% and 98.3%, respec-

tively). The detector can be implemented with just a few arithmetical

operations (8 multiplications, 2 divisions and 45 addition/subtractions)
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and it does not require a large memory buffer thanks to the short window.

In the preprocessing, the simple 3-point median filter is used for reduc-

ing the influence of ectopic beats in the RR series. The filter is defined

by

rm(n) = median{r(n− 1), r(n), r(n+ 1)}, (2.18)

where r(n) is the length of the nth RR interval (in seconds). Median

filtering is also useful for rejecting outlier RR intervals due to missed QRS

complexes. An exponential averager is perform to track the “trend” in

the RR interval series, and it is defined by

rt(n) = rt(n− 1) + α(r(n)− rt(n+ 1)), (2.19)

where α (0<α<1) determines the degree of smoothing, the lowpass cut-

off frequency. Since the exponential averager in 2.19 Techniques of fil-

tering, like forward-backward filtering, have to be used to achieve linear

(null) phase. For RR interval irregularity, in a sliding detection window of

length N (N =8), located at time n the number of all pairwise RR interval

combinations differing more than γ seconds (γ=0.03s) is determined, and

normalized with its maximum value N(N − 1)/2,

M(n) =
2

N(N − 1)

N−1∑
j=0

N∑
k=j+1

H(
∣∣r(n− j)− r(n− k)

∣∣− γ), (2.20)

where H(·) is the Heaviside step function and 0 ≤ M(n) ≤ 1. M(n)

is based on the same principle as is sample entropy estimation. The ra-

tio between Mt(n), a smoothed version of M(n) obtained by exponential
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averaging, and the RR interval trend rt(n) provides a feature of RR irreg-

ularity,

It(n) =
Mt(n)

rt(n)
, (2.21)

where the division by rt(n) is to emphasize RR irregularity at higher heart

rates. It(n) is close to 0 for regular rhythms since the difference between

pairs of RR intervals is usually smaller than γ, whereas It(n) approaches 1

during AF. It is well-known that bigeminy can be incorrectly interpreted

as AF when the detection is based on the RR. To discriminate bigeminy it

is useful study introduce another measure of the RR irregularity, defined

as

B(n) =

(∑N−1
j=0 rm(n− j)∑N−1
j=0 r(n− j)

− 1

)2

, (2.22)

where N is an even-valued integer. For bigeminy and NSR 2.22 is approx-

imately 0 because rm(n) and r(n) are quite similar. For AF the variation

in rm(n) is lower than in r(n) because of the median filtering, and thus

Bt(n), which results from averaging filter of B(n), will increase indicating

RR irregularity. Signal fusion is employed to produce the decision function

O(n): O(n) is equal to Bt(n) if Bt(n) does not exceed a fixed threshold δ,

otherwise is equal to It(n),

O(n) =

{
It(n) Bt(n) ≥ δ

Bt(n) Bt(n) < δ
(2.23)

where δ in the study is equal to 2× 10−4. AF is detected whenever O(n)

exceeds η, a fixed threshold set equal to 0.725.
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Figure 2.8: The output of each building block of the algorithm proposed by
Petrenas [10] for (a) an AF episode and (b) bigeminy.

All the algorithms explained are performed on the database, in order to

make a comparison with the classification made and study the accuracy,

TPR and TNR of each AF detection algorithm.



Chapter 3
Results

In this chapter the results of the work are presented. In the first section the

comparison between AF and NSR signals is illustrated. The second section

shows the results of classification, in particular accuracy, TPR and TNR.

The last section compares the classification algorithms.
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3.1 Characterization of AF vs. NSR

The parameters obtained are studied for signals in AF and signals in NSR.

Boxplots are used to display the distribution of data, they are based on

a five number summary (“minimum”, first quartile (Q1), median, third

quartile (Q3), and “maximum”). Figure 3.1, Figure 3.3 and Figure 3.2

show the comparisons of parameters for signals with length of 300 RR

intervals between the worst scenario, signal with SNR=0, and the best

one, SNR=30. T-test is performed to determine if there are significant

parameters differences between NSR and AF.

Figure 3.1 compares ShE, SampEn, rMMSD and Lorenz plot standard de-

viation values of NSR and AF signals with SNR=0 and SNR=30. Figure

3.2 compares similarity indexes values of NSR and AF signals with SNR=0

and SNR=30. Figure 3.3 compares the percentage of interval differences

of successive intervals greater than x ms (pNNx, with x=[10,20,. . . , 100])

values of NSR and AF signals with SNR=0 and SNR=30. For signals with

RR length=300 and SNR=0, SampEn, rMSSD, Lorenz plot standard de-

viation, S1, S2, pNN10, pNN20, pNN30, pNN40, pNN50, pNN60, pNN80,

pNN90, pNN100 values are significantly different (p<0.05) between NSR

and AF. For signals with RR length=300 and SNR=30, all the parameters

values are significantly different (p<0.05) between NSR and AF.

To display the results of the t-test colormaps are used. A binary color

classification is made, if p-value of the t-test is significant (p-value<0.05)

the corresponding block is purple, otherwise is yellow.
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Figure 3.1: Shannon Entropy, Sample Entropy, rMSSD and Lorenz Plot SD
comparison for signals with RR length=300 and SNR=0, in the upper part of
the figure, and with RR length=300 and SNR=300, in the lower part of the
figure. ∗ in the boxplot means that the p-value resulting from the t-test is less
than 0.05. a.u=arbitrary unit.
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Figure 3.2: Similarity indexes comparison for signals with RR length=300 and
SNR=0, in the upper part of the figure, and with RR length=300 and SNR=300,
in the lower part of the figure. ∗ in the boxplot means that the p-value resulting
from the t-test is less than 0.05. a.u=arbitrary unit.
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Figure 3.3: pNN comparison for signals with RR length=300 and SNR=0, in
the upper part of the figure, and with RR length=300 and SNR=300, in the
lower part of the figure. ∗ in the boxplot means that the p-value resulting from
the t-test is less than 0.05.
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Figure 3.4: p-value resulting from t-test signals with RR length=50 and differ-
ent SNR. Blocks in yellow represent p-value≥0.05, blocks in purple represent
p-value<0.05

Figure 3.4 shows the p-values colormap obtained for signals with RR

length=50 and different SNR. It is possible to notice that parameters

are significantly different for NSR and AF for SNR values bigger than 1.

With SNR=0 there is no significant different except for seven parameters,

nRMSSD, SampEn, S1, S2, M, NN10 and NN40. The t-test shows also

that there is no significant SampEn difference for NSR and AF for almost

all SNR values.

Figure 3.4 shows the p-values colormap obtained for signals with RR

length=300 and different SNR. It is possible to notice that parameters

are significantly different for NSR and AF for SNR values bigger than 5.

With SNR=1 there is no significant different except for five parameters,

SampEn, S1, S2, M and NN10.



Results 47

Figure 3.5: p-value resulting from t-test signals with RR length=300 and dif-
ferent SNR. Blocks in yellow represent p-value≥0.05, blocks in purple represent
p-value<0.05

Figure 3.6 shows the p-values colormap obtained for signals with different

RR intervals length and SNR=0. The parameters SampEn, S1 and S2 are

significant different for NSR and AF for each length. For RR length=250

and RR length=300 parameters are significantly different for NSR and

AF.

Figure 3.7 shows the p-values colormap obtained for signals with differ-

ent RR intervals length and SNR=30. The parameters are significantly

different for NSR and AF for all the values of RR length. The only two

yellow block in the colormap are SampEn for RR length=50 and M for

RR Length=200. In Figure 2 validation and test accuracy
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Figure 3.6: p-value resulting from t-test signals with different RR length and
SNR=0. Blocks in yellow represent p-value≥0.05, blocks in purple represent
p-value<0.05

Figure 3.7: p-value resulting from t-test signals with different RR length and
SNR=30. Blocks in yellow represent p-value≥0.05, blocks in purple represent
p-value<0.05
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3.2 Classification

3.2.1 Simulated data

In this section results of classification in simulated PPG signals are illus-

trated. Figure 3.8 shows validation accuracy and test accuracy for signals

with RR length=50, 100 and 300 in function of SNR . It can be observed

for RR length = 50, that the accuracy increases since SNR=10, after this

point it is almost constant; the validation accuracy is higher than test

accuracy for SNR values lower than 10, then they have almost the same

value. For RR length=100, the accuracy increases since SNR=10, after

this point it is almost constant; the validation accuracy and test accuracy

have almost the same value. For RR length=300, passing from SNR=0 to

SNR=1 causes a decrease in accuracy and then it increases since SNR=10,

after this point it is almost constant; the validation accuracy and test ac-

curacy have the same value.

Figure 3.9 shows true positive rate (TPR) and true negative rate (TNR)

for signals with RR length = 50, 100 and 300 in function of SNR. In

Figure 3.9(a) it can be observed, for RR length = 50, that the TPR

passing from SNR=0 to SNR=1, decreases and then it increases since

SNR=10, after this point it is almost constant. For RR length=100, the

TPR increases since SNR=10, after this point it is almost constant. For

RR length=300, passing from SNR=0 to SNR=1 causes a decrease in TPR

and then it increases since SNR=10, after this point it is almost constant.
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Figure 3.8: Validation and test accuracy for classification algorithm in signals
with RR length=50 (a), RR length=100 (b) and RR length=300
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For SNR≥10, the TPR for each RR length is over 0.91 (TPR1050=0.918,

TPR10100=0.954, TPR10300=0.984).

In Figure 3.9(b) it can be observed, for RR length = 50, that the TNR

passing from SNR=0 to SNR=1, decreases and then it increases since

SNR=10, after this point it is almost constant. For RR length = 100, TNR

decreases passing from SNR=0 to SNR=5, then it increases and becomes

constant, except for a small deflection in SNR=20. For RR length=300,

passing from SNR=0 to SNR=1 causes a decrease in TNR and then it

increases since SNR=10, after this point it is almost constant. The TNR

for each RR length for SNR≥10 is over 0.96.

3.2.2 Clinical data

In this section results of classification in clinical signals are illustrated.

In Figure 3.10 validation accuracy and test accuracy in function of the

number of features selected (n) are shown. It is possible to observe that

validation accuracy is almost higher than test accuracy. The number of

features n which maximize the validation accuracy is 2, after this value

the accuracy decreases. In Figure 3.11(a) TPR in function of the number

of features selected is shown. TPR increases with number of features since

n=4, then it decreases until n=19 where it increases in n=20, after this

value it decreases.
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Figure 3.9: TPR and TNR of classification for different lengths of signal: 50,
100 and 300.
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Figure 3.10: Validation accuracy and test accuracy of classification for different
number of features in clinical data.
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In Figure 3.11(b) TPR in function of the number of features selected is

shown. TPR have almost the same value for each number of features n,

it decreases with higher n.
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Figure 3.11: TPR and TNR of classification for different number of features in
clinical data.

3.3 Comparison of AF Algorithms

In this section results of comparison between the classification algorithm

(A) and existing AF detection algorithms (Petrenas, Lee and Chong) are
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presented. In Table 3.1 and Table 3.2 the results are computed consid-

ering, for the existing algorithms, AF detection right when at least one

episode of AF is detected, in case of AF signals, and when no one episode

of AF is detected, in case of NSR signals. Table 3.1 shows accuracy, TPR

and TNR for the different algorithms in function of SNR in signals with

RR length = 100. The accuracy for each algorithm increases with the SNR

until SNR=25, then it decreases except for Petrenas. TPR has optimal

values for each existing algorithm, the worst cases are in Chong’s algo-

rithm with SNR=20 and SNR=30 (TPR20Chong = TPR30Chong = 0.88).

TNR increases with SNR for Lee and Chong. In Petrenas TNR increase

until SNR=25 and then it decreases. For the classification algorithm the

TPR increase with the SNR since SNR=25 and then it decreases, TNR

has optimal value even with low SNR values.

SNR Accuracy TPR TNR

A P L C A P L C A P L C

0 0.7555 0.495 0.497 0.5 0.522 0.99 1 0.98 0.9490 0 0 0.02
1 0.8630 0.5 0.5 0.52 0.7830 1 1 0.98 0.9430 0 0 0.06
5 0.9060 0.525 0.51 0.55 0.8480 1 1 1 0.9170 0.05 0.02 0.1
10 0.9760 0.66 0.625 0.695 0.9540 0.99 1 0.95 0.9790 0.33 0.25 0.44
15 0.9865 0.905 0.84 0.83 0.9740 1 0.99 0.93 0.999 0.81 0.69 0.73
20 0.9706 0.955 0.94 0.875 0.9467 0.99 0.98 0.88 0.9611 0.92 0.9 0.87
25 0.9945 0.955 0.985 0.92 0.99 1 1 0.91 0.9919 0.99 0.97 0.93
30 0.9835 0.965 0.975 0.915 0.9590 0.98 0.99 0.88 1 0.95 0.96 0.95

Table 3.1: Accuracy, TPR and TNR for signals with RR length=100 and differ-
ent SNR computed for the classification algorithm (A), Petrenas (P), Lee (L)
and Chong (C).

Table 3.2 shows accuracy, TPR and TNR for the different algorithms

in function of SNR in signals with RR length = 300. The accuracy for

each algorithm increases with the SNR. TPR has optimal values for each

existing algorithm, for the classification algorithm the TPR increase with
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SNR Accuracy TPR TNR

A P L C A P L C A P L C

0 0.884 0.5 0.5 0.5 0.82 1 1 1 0.9237 0 0 0
1 0.8495 0.5 0.5 0.5 0.808 1 1 1 0.8730 0 0 0
5 0.9385 0.5 0.5 0.505 0.971 1 1 1 0.9130 0 0 0.01
10 0.9825 0.52 0.505 0.565 0.984 1 0.99 0.99 0.9774 0.04 0.02 0.14
15 0.99 0.75 0.7 0.76 0.983 1 1 1 0.9907 0.5 0.4 0.52
20 0.99 0.86 0.895 0.88 0.99 1 1 0.99 0.9926 0.72 0.79 0.77
25 1 0.88 0.94 0.91 1 1 1 0.98 1 0.76 0.88 0.84
30 1 0.945 0.975 0.945 1 1 1 0.98 1 0.89 0.95 0.91

Table 3.2: Accuracy, TPR and TNR for signals with RR length=300 and differ-
ent SNR computed for the classification algorithm (A), Petrenas (P), Lee (L)
and Chong (C).

the SNR. TNR increases with SNR for each algorithm, for the classification

algorithm TNR has optimal values even with low SNR values.

Tabel 3.3 shows accuracy, TPR and TNR for the different algorithms in

signals from clinical database. The algorithm with an higher accuracy is

the classification algorithm, then Petrenas, Chong and Lee. TPR values

are high and similar to 1 in each algorithm. TNR values are low for

each existing algorithm, but for the classification algorithm the value is

0.913.

Accuracy TPR TNR

Petrenas 0.673 1 0.414
Lee 0.577 1 0.241

Chong 0.596 0.957 0.310
Classification A 0.958 0.995 0.913

Table 3.3: Accuracy, TPR and TNR for each algorithm, for clinical data



Chapter 4
Discussion and conclusions

In this chapter, the results obtained in this work are discussed, evaluating

the efficiency of the classification algorithms. In the last part limits of this

work and future developments are presented.
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4.1 Discussion and conclusions

The PPG signal, considering the large quantity of devices which are able

to record and thanks to its easy recording method, can give an important

help in the screening and detection of AF and other arrythmias. Nowadays

smartphones and smartwatches are part of the daily life of all people

making easier the health monitoring, including the cardiac health.

This study aims at evaluating the potential of a set of PPG-derived mea-

sures to discriminate between AF and NSR. In signals with high value of

SNR the distribution of the parameters is always significantly different in

AF and NSR, quite the opposite, with low values of SNR the distributions

are more similar. This is likely to be due to the noise that worsens the

peak detection. Focusing on the duration of the signal, signals with RR

length=50 have more parameters that are significantly different than sig-

nals with RR length=300, in which the t-test better performs for SNR=0

than SNR=1.

The classification algorithm has good results, the best results (i.e., for

signals with RR length = 100, accuracy=0.9825 for SNR=10db, accuracy

= 0.99 for SNR=15db, 20db and accuracy=1 for SNR=25db and 30db) are

obtained with values of SNR≥10 db. It suggests that noise, in particular

motion artifacts, really affects the detection of AF episodes. Comparing

the results for the classification algorithm A in Table 3.1 and Table 3.2,

is possible to observe that longer signals are better classified, with higher

value of accuracy and TPR. The classification algorithm works better
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than the others even with low values of SNR. High values of TPR and

TNR indicate that the discrimination between the two rhythms is well

performed and it reduces the number of false alarms.

The classification algorithm classifies well also clinical data, being the

number of features that maximizing the accuracy 2. If the purpose is to

maximize the TPR, in order to detect a major number of AF episodes, the

number of features increases to 4. As reported in Table 3.3 the algorithm

work better than the other taken in consideration, particularly for the

right classification of the NSR.

In the end, it is possible to conclude that the significant difference between

AF and NSR signals depends more on SNR than length of the signal and

that the classification algorithm works better than the others considered

in this study, with high level of accuracy and TPR even with a small

number of feature selected, this is demonstrated with generated signals

and also with clinical data.

4.2 Limitation of the study and future de-

velopments

The main limit of this study are generated signals used to evaluate the

classification algorithms, since the data are generated completely affected

by AF or completely NSR. It would be useful study signals that are more
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close to the reality, using clinical databases. It may be interesting to

consider the length of the AF episode detected and compares it with the

real episode. Another limitation of this study is the use of Petrenas algo-

rithm instead of Solosenko algorithm [43], because it is an improvement

of the first one but it has been just published and I did not have the time

to reproduce it. With these consideration, future development could be

a study with only clinical data in which also the length of the episodes

detected is compared.

Given the spread and impact on the quality of life of heart diseases, an-

other development could be a creation of a classification algorithms for

different type of arrythmias, not focused only AF and NSR, but which

can investigate also the others.
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