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Abstract

The success of MaxSAT (Maximum Satisfiability) solving in re-
cent years has motivated researchers to apply MaxSAT solvers
in diverse discrete combinatorial optimization problems. Group
testing has been studied as a combinatorial optimization problem,
where the goal is to find defective items among a set of items
by performing tests on pools of items. In this thesis work, we
propose a MaxSAT-based framework, called MGT, that solves
the decoding phase of non-adaptive group testing. Such approach
is motivated by past studies over the optimality of the so called
Smallest Satisfying Set. We encode such formulation with par-
tially weighted MaxSAT and extend it to the noisy variant of
group testing. We prove equivalence of a compact MaxSAT-
based encoding and derive guarantees of optimality of its tuning.
We perform extensive experimental evaluation which shows that
MGT grants unprecedented scalability in terms of number of
items handled. Furthermore, MGT performance are impressive
compared to all the other algorithms implemented as test bed.
We leave a wide open window on theoretical perspective trying
to give an interpretation to the observed phase transition with
respect to the number of tests with an easy-hard-easy behaviour.
This kind of transition has been already detected, but never
deeply understood, in other artificial intelligence problem such
as random k-SAT.



Abstract

Il successo nello sviluppo di risolutori per il problema MaxSAT
(massima soddisfacibilità) negli ultimi anni ha motivato i ricer-
catori ad applicare tali codifiche, e quindi i relativi algoritmi, in
diversi problemi discreti di ottimizzazione combinatoria. Il test
di gruppo (Group Testing) è stato studiato come un problema di
ottimizzazione combinatoria, in cui l’obiettivo è quello di trovare,
data una serie di elementi, coloro i quali presentano una certa
caratteristica, in generale chiamata difettosità, eseguendo test
su sottogruppi di essi. In questo lavoro di tesi, proponiamo un
framework basato su MaxSAT, chiamato MGT, che computa
una soluzione per la fase di decodifica dei test in un contesto
non adattativo. Tale approccio è motivato da studi precedenti
sull’ottimalità del cosiddetto Small Satisfying Set (minor in-
sieme di soddisfacibilità). Codifichiamo la citata formulazione at-
traverso una particolare versione di MaxSAT (Partially Weighted)
e la estendiamo con una variante in grado di considerare e gestire
errori nei risultati dei test. Dimostriamo l’equivalenza di due cod-
ifiche basate su MaxSAT, la prima triviale, data la formulazione
del problema di ottimizzazione, e la seconda compatta, in termini
di clausole generate, ottenendone garanzie di ottimalità. A par-
tire da una valutazione sperimentale approfondita mostriamo che
MGT offre una scalabilità senza precedenti in termini di numero
di elementi considerabili nel problema. Inoltre le prestazioni
di MGT sono impressionanti rispetto a tutti gli altri algoritmi
implementati come banco di prova. Per conludere delineiamo
una prospettiva teorica cercando di dare un’interpretazione alla



II

transizione di fase osservata, riguardante la probabilità di suc-
cesso e il comportamento del problema in termini di complessità
temporale come Facile-Difficile-Facile (in letteratura esattamente
definita Easy-Hard-Easy), con dipendenza dal numero di test.
Questo tipo di transizione è già stata osservata sperimentalmente,
ma mai profondamente compresa, in altri problemi di intelligenza
artificiale come la versione randomica di k-SAT.

II



Acknowledgments

I want to thank all the people with whom I spent my time, had
discussions and shared experiences during those five years which
this thesis is a result of. I’m deeply grateful to my hometown
friends Andrea, Luca, Alex and Joseph for their friendship that
has been supporting me throughtout my studying and has been
regenerating during the pauses back home. I want to thank my
dearest friends from university Lorenzo, Alessandro, Simone and
Mario (Mauro, Marione, Bobina) for the time, the suffering and
the joy we spent together. I want to thank Enrico and his way of
being curious all the time about what I have been studying, I keep
and value all of our discussions where we shared the topics of our
research and study which has funnily substituted partnering in a
progressive metal band. I owe my deepest gratitude to my college
friends Giulia, Elisa and Matteo as they have been a life loadstar,
the deepest pool where to sink my doubts, bad feelings and a
constant source of great moments in life. I would like to express
my gratitude to Professor Kuldeep Meel which acquaintance has
changed and determined my academic path. He has given me
several unexpected chance as his student and has contributed
to many achievements during the last two years of my career

III



IV

culminated with the publication for AAAI2020, his dedication
and passion for teaching are unmatched. I also want to thank
Doc. Bishwamittra Ghosh and Professor Jonathan Scarlett for the
effort and the support during the work on the publication. I also
want to thank Prof. Nicola Gatti for accepting to co-supervise
me during this final step of my master degree. I want to thank
my bandmates Leoluca and Francesco, my time with you has
been crucial to fuel me and I wish long life and tons of gigs to
our music projects. I am particularly grateful to Daniele which
friendship has enriched my life as friend, as a music listener, as a
politic expert (well you can put whatever you want as probably
we have discussed about it) since I have known him more than
ten years ago and some of our discussions has for sure inspired
me on understanding the problems I was working on. During
those years I have greatly benefited from the time with my friend
Guido, he has been a constant partner in study since the first year
at Politecnico and my intellectual dept to him is priceless. I want
to thank my roommates Andrea and Rachid for being my second
family during the last years, I feel impossible to describe what has
been living with you for all this time, my ride towards graduation
has been made special by you, just Thank You. I want to thank
my grandmothers Laura and Anna for their unconditional love.
I want to thank my grandfather Angelo for showing every day
me what hard work is. I want to thank my uncle Massimo for
his sharp observations and the passionate discussions we had all
over the years. I want to thank my sister Elena which pure and
soulful love has been warming every time I was back home. I
want to thank my brother Federico for his love, his unmatched
curiosity and passion for science that has inspired me throughout

IV



V

my journey. Finally I want to thank my mother Martina and
my father Francesco without whom this achievement would have
been, without a doubt, impossible. Thank you Mother for the
constant understanding and the teaching on how to appreciate
my achievements. Thank you Father for teaching me how to be
a curious human being. Thank you both for constantly support
my passions.

V



VI

Pasceva nell’orto ignorando la vita
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Nomenclature

Algorithm for Group Testing Symbols

K̂COMP Estimate given by SCOMP

K̂DD Estimate given by DD

K̂ Estimate of a defective set

K Defective set

K̂LP Estimate given by LP

K̂SCOMP Estimate given by SCOMP

K̂SSS Smallest satisfying set

DD DD algorithm

LP Relaxed-LP algorithm

Ps Probability of success of an algorithm

P̂s Unbiased estimate of probability of success of an algorithm

SCOMP SCOMP algorithm
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VIII NOMENCLATURE

Group Testing Symbols

ξ Vector of boolean noise

A Matrix of pooled measurements

x Boolean vector representing the items

y Vector of outcomes of tests

k Number of faulty items

k(x) Number of faulty items of the vector x

m Number of tests

n Number of items

xi i-th items

yi i-th outcomes

Logical Operator and Symbols

|= Is model operator

⊕ Logical XOR

σ Logical assignment to boolean variables

∨ Logical OR

∧ Logical AND

wt(σ) Weight of the assignment (the formula F is implied by
the context)
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NOMENCLATURE IX

wt(Ci) Weight of the i-th clause

Ci i-th CNF clause

F Propositional Formula

CNF Conjuctive Normal Form

Other Symbols

MaxHS MaxHS solver

MaxSAT Maximum-Satisfiability problem

MGT MaxSAT for Group Testing implemented algorithm

P(SAT |X) Probability of SAT of a random k-SAT instance X

SAT Satisfiability problem
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5.3.4 ĈA Estimation Perfomances . . . . . . . . . . . 89

XVII



XVIII LIST OF FIGURES

A.2.1 Probability of Masked Defective . . . . . . . . . 118
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Chapter 1

Introduction

“Bown: Prepare G-pod for EVA, Hal. Made radio contact with
him yet?
Hal: The radio is still dead.
Bown: Do you have a positive track on him?
Hal: Yes. I have a good track.
Bown: Do you know what happened?
Hal: I’m sorry Dave. I don’t have enough information."

2001: A Space Odissey

1.1 Research Area and Motivation

The transition to the new millennium has coincided with an heavy
adoption of computer techniques to all sorts of applications and
problems of real life in the technical, industrial, medical and eco-
nomic fields. While computer science uncontrollably permeates
our society, life and activities, a new frontier of application and
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automation has been revealed in the last decade: Artificial Intelli-
gence. Although artificial intelligence destroys and reinvents the
classic role of the programmer and computer engineer, in parallel
it fills computer science with new philosophical meaning and in
particular renew an even closer relationship with mathematics,
just think of the role of statistics in machine learning or logic
in reasoning. In this sense, mathematical problems, which were
formalized before artificial intelligence took hold, now acquire
new importance and the careful study of their formalization and
resolution techniques is due. In particular the study of the rela-
tion between each problem and their reducibility can lead to the
exploitation of techniques developed for a specific one to solve
other, apparently unrelated, ones by finding a feasible reduction.
Group Testing is a mathematical problem, formalized during the
Second World War, to which innumerable real problems coming
from the most disparate fields are reduced and the research on
its algorithmic solvability has had a rekindle in the last decade,
in particular after the Human Genome Project. The success of
MaxSAT (maximum satisfiability) solving in recent years has mo-
tivated researchers to apply MaxSAT solvers in diverse discrete
combinatorial optimization problems. Group testing has been
studied as a combinatorial optimization problem, where the goal
is to find defective items among a set of items by performing
tests on pool of items. The purpose of this work is to investigate
non-adaptive Combinatorial Group Testing and to seek a valid
non-approximated solution to its decoding phase.

2
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1.2 Work and Contribution

Given a large set of items containing a subset of defective item(s),
the problem of group testing concerns the design and evalua-
tion of tests on pools of items (a pool is a selected subset of all
items) to identify the defective item(s). A test is positive if the
pool contains at least one defective item(s) and negative if it
contains no defective item. Group testing can be viewed as a
sparse inference problem with a combinatorial flavor with diverse
applications, for example, clone screening [BT97], multichannel
access in high speed computer networks [BHKK92], medical ex-
amination [Dor43], statistics [HHW81], compressed sensing and
machine learning [AS12].

Group Testing can be approached in two ways: adaptive and
non-adaptive [AJS19]. In adaptive testing, the test pools are
designed sequentially, wherein each test depends on the outcome
of the previous ones and each outcome drives the designs of the
following pools to be tested. In the case of non-adaptive testing,
all test pools are designed in advance, which allows parallel imple-
mentation. Although adaptive testing allows more freedom in the
design, it does not improve upon non-adaptive testing by more
than a constant factor in the number of required tests [AS12].
The group testing problem, in the non-adaptive variant, which is
studied in this work, can be separated into two phases: design and
decoding [AJS19]. The design phase in which the testing strategy
is chosen, that is, which items to place in which pools. The de-
coding problem consists of determining which items are defective
given the set of tests and their outcomes, and can be formulated as
a combinatorial optimization problem [DHH00, MM12, ABJ14].

3
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In a more practical setting, a noisy variant to group testing is
considered where tests are inverted/flipped according to some
specific random model or in an adversarial manner [AJS19]. In
this work, we pursue the direction of solving the decoding phase
in non-adaptive group testing in both noiseless and noisy settings
by introducing a novel MaxSAT-based approach.

Robert Dorfman formalized group testing during World War
II with the purpose of creating a model to pool sick soldiers with-
out direct testing of every single candidate [Dor43]. Thus, group
testing can be viewed as a pooling strategic problem [ZKMZ13]
with the goal of designing an optimal set of tests of items effi-
ciently such that the test results contain enough information to
determine a small subset of defective items. Another body of
work focuses on the decoding of the pooling results. In particular,
Chan et al. [CCJS11, CJSA14, MM12] find a similarity between
compressed sensing [AAS16, Mal13a] and group testing, and
present the COMP (combinatorial orthogonal matching pursuit)
algorithm for the decoding phase of non-adaptive group testing
in both noiseless and noisy settings. Aldridge et al. [ABJ14]
consider non-adaptive noiseless group testing and propose two
algorithms: DD (definite defectives) and SCOMP (sequential
COMP), which require stronger evidence to declare an item de-
fective; and an essentially optimal but computationally difficult
SSS (smallest satisfying set) algorithm. Alridge has shown the
strict suboptimality of DD algorithm in case less than 0.41 of the
items are defective, its optimality in case more than the half are
defective and the optimality of SSS in case less than half of the
items are defective [Ald17], this has been shown in the bernoulli
non adaptive testing. The recent works [SC16, COGHKL19] have

4
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established performance guarantees for similar computationally
expensive algorithms as SSS. In addition, linear programming
(LP) algorithms have been proposed to approximate the SSS
algorithm with practical runtime [MM12, MS09, CJSA14].

The maximum satisfiability (MaxSAT) problem is an opti-
mization analogue to the SAT (satisfiability) problem. MaxSAT
is complete for the class FPNP , which includes many practical
optimization problems. The added scalability and improvement
of MaxSAT solvers in recent years have encouraged researchers to
reduce several optimization problems into MaxSAT, for example,
optimal planning [RGPS10, ZB12], interpretable rule-based clas-
sifications in machine learning [GM19, MM18], automotive con-
figuration [WZK13], data analysis and machine learning [BHJ15],
automatic test pattern generation for cancer therapy [LK12], etc.
However, to the best of my knowledge, there is no prior work
on group testing that takes benefit from MaxSAT-based solution
approach.

In this work Max-SAT encoding for the Group Testing decod-
ing phase is identified in both noiseless and noisy settings, for the
latter two encoding are proposed, a trivial one and one exploiting
the objective function to dramatically reduce the logical con-
straints, they have been compared and their logical equivalence
has been proved. The proposed logical models has been imple-
mented using a Python based framework relying on a flexible
MaxSAT solver (MaxHS) [DB11]. An extensive experimental eval-
uation has been performed comparing accuracy with state of the
art Linear Programming algorithm [MM12] and with COMP, DD,
SCOMP algorithms [ABJ14]; all those experiments has shown
great accuracy performance of the proposed implementation and

5
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impressive scalability as our model has been able to handle an un-
precedented number of variables. Furthermore the performance in
terms of time complexity of the solver has been studied which has
revealed a phase transition behaviour similar to the one already
observed in random k-SAT [MSL92] that widely open a door
on the relation and difference between combinatorial problem,
constraint satisfaction and optimization problems; in particular
in future it is mandatory to investigate on the potential bridge
between group testing and MaxSAT and such study will probably
be useful for the improvement of MaxSAT solving. A paper ver-
sion of this work has been submitted and approved for publication
to AAAI1 and will be presented at the next conference edition in
february 2020.

1.3 Thesis Structure

• Chapter 2, Grounding Concepts: We present all the
elements relevant to the understanding of this work. In
particular we give an introduction to the Group Testing
problem, we mark out some historical references and we
illustrate the involved reasoning and techniques trying to
get the reader used with Group Testing concepts. We also
present MaxSAT and have a brief discussion over phase
transitions in computer science.

• Chapter 3, Problem Formulation: The beginning of
this chapter contains the notation and preliminaries neces-
sary to formalize our work, in particular it provides defini-

1Association for the Advancement of Artificial Intelligence

6
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tion used by the community and theoretical results useful
to give solid grounds to our work and understand exper-
imental evaluation. We depict and discuss some state of
the art algorithm that has been implemented to test our
framework. Finally we unfold the optimization formulation
of our solution.

• Chapter 4, MaxSAT Encoding and Optimality: We
show the essential MaxSAT encoding, we extend it to the
noisy settings and portray the insight that lead us to the
design and formalization of a compact encoding. Further-
more we mathematically describe the essential optimality
of our model under the assumption of Bernoulli testing and
give a theoretically grounded tuning of its parameter.

• Chapter 5, Experimental Results and Evaluation:
We illustrate the setup of our experiments in terms of
implementations, problem instances, evaluations metrics
and adopted bounds. We start with a study over the
accuracy of the framework and analyze its behavior in
order to delineate dependency from the problem parameters
(number of items, number of faulty, noise etc). We then
study the computation effort of the algorithms, we try
to interpret the behaviour and we picture a theoretical
perspective following the observed phase transition.

• Chapter 6, Conclusion and Future Research Direc-
tion: We summarize both the theoretical and the empirical
results. We set forth all the possible future directions that
we aim to pursue and we outline the novel open problems
that we are proposing to the computer science community.

7
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Chapter 2

Grounding Concepts

“Strangers passing in the street
By chance two separate glances meet
And I am you and what I see is me
And do I take you by the hand
And lead you through the land
And help me understand
The best I can”

Pink Floyd, Echoes

The goal of this chapter is to introduce the reader to the
mathematical and logical problems we are dealing with, mainly
Group Testing. As those mathematical environment are rich of
formalism and theoretical results we try to give an intuitive and
brief introduction to them to picture a significant overview of
the main implication and issues that arise when trying to solve
them, leaving, when not strictly needed, the heavy formalism to
the concrete contribution of our work. Furthermore this chapter
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present real world application of the studied topic and tries to
make the reader understanding its importance and why it is
crucial.

2.1 Introduction to Group Testing

Robert Dorfman, in his seminal paper of 1943 [Dor43], published
in the Annals of Mathematics Statistics, presented the Group
Testing problem. The main contribution of his work is to describe
a statistically grounded method to reduce the tediousness of the
testing work and to make more elaborate and more sensitive
inspections economically feasible. The context of his publication
was the Second World War when the American army was encoun-
tering the spread of the syphilis among his battalions. The United
States Public Health Service was able to test a single candidate
with good accuracy, by the so-called "Wasserman-type" blood
test, but the large size of the population made unpractical to test
directly every single soldier because of the cost of each test. They
commissioned Dorfman to work out a method to dramatically
reduce the number of tests required to weed out all syphilitic men
called up for induction. So Dorfman made the following claim:
“The germ of the proposed technique is revealed by the following
possibility. Suppose that after the individual blood sera are drawn
they are pooled in groups of, say, five and that the groups rather
than the individual sera are subjected to chemical analysis. If
none of the five sera contributing to the pool contains syphilitic
antigen, the pool will not contain it either and will test negative.
If, however, one or more of the sera contain syphilitic antigen,
the pool will contain it also and the group test will reveal its pres-

10
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ence. The individuals making up the pool must then be retested to
determine which of the members are infected". From the above
reasoning Group Testing was born. Dorfman was suggesting to
compress the information through the testing phase in order to
reduce the number of test (from n, where n is the number of
candidates) required to discover the uncompressed one. The first
step represents the higher degree of compression; when further
testing phases are conducted the degree of compression reduces
until the original information is recovered. While in computer
science the advantage of compression is likely to be on the re-
duced size of the information1, here is on on the number of tests
performed, so Group Testing is useful when performing a test is
really expensive and the syphilis problem is the first practical
problem which was attacked with this technique.

2.1.1 An Intuitive Example of Group Testing

To ease the reader understanding of the general problem we
provide another simple practical example. Imagine to have a
large set (size n) of electrical bulb which are connected in series
and imagine that at least one bulb is faulty, so none of the bulbs
will light up as the series is broken. In this case we are pooling all
the bulb in a single group and performing a single test instead of n
obtaining the information that at least 1 bulb is broken or, using
the common terminology of the field, defective. At this point we
want to identify precisely which are the defectives one(s). We can

1To keep track of the belonging of item to each pool and the results of
each test the information needed can be larger compared to encoding the
original one. Information on how to encode a group testing instance can be
seen in Section 3.1.3

11
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Figure 2.1.1: Group testing applied to the electric bulb problem

test each bulb individually, performing n tests or we can design
pools in which we connect in series a subset2 (size ñ) of bulbs.
In case the series light up (negative outcome) we are ruling out
ñ item, with certainty about their non-defectiveness. In case the
series does not light up (positive outcome) it reveals that at least
one of the ñ item is defective and we have to consider other subset
of the pools to identify the broken bulb(s). This procedure to
dynamically design pools coincide with adaptive testing previously
mentioned in Section 1 and more deeply presented in Section
2.1.2. Note that if we have the information of the precise number
of faulty item k and k = 1, the procedure become a divide et
impera algorithm really similar to a dichotomic search and, if we
proceed dividing by two the size of each pools, the number of
tests needed to exactly identify the faulty one is exactly log2(n).

2The subsets are the "pools" previously mentioned by Dorfman

12
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Figure 2.1.2: Adaptive Group Testing and binary search

2.1.2 Adaptive and Non-Adaptive Group Testing

Group testing, as anticipated in the introduction, can be ap-
proached in two different ways: adaptive and non-adaptive. In
an adaptive algorithm, the tests are conducted one by one , and
the outcomes of previous tests are assumed known at the time of
determining the next pool to test. In a non-adaptive algorithm,
no such information is available in determining a test. Thus,
it can be interpreted as if all tests are specified simultaneously,
although in practice the real reason can be the collection of such
information is too time-consuming or too costly. A compromise
between the two types of algorithms is realized by the so-called
multistage algorithm in which tests are divided into several stages
where the stages are considered sequential but all tests in the
same stage are treated as nonadaptive . The early history of
group testing was all based on sequential algorithms even though,

13
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in the 90’s, the focus has been shifting due to the general influ-
ence of the popularity of parallel computing, and also due to the
need of nonadaptive algorithms in the application of clone library
screening.

Adaptive Group Testing

Adaptive group testing can be seen as a recursive procedure
in which a first design of pool is performed, and then, by the
information retrieved from the tests the next pools are designed,
and so on and so forth until the solution has been reconstructed.
In practice a dynamic reasoning is performed over the partial
information retrieved step by step. Since a sequential algorithm
possesses more information at testing, clearly, it requires fewer
number of tests than a nonadaptive algorithm in general; so
the main advantage of adaptive group testing is the reduction of
number of tests required to obtain a solution with no misclassified
items. It is worth mentioning that it has been proved that this
reduction is negligible as the number of tests reduces only by a
constant factor with respect of number of items [AS12].

There are several formalized adaptive algorithm that extends
the work proposed by Dorfman, one of the two most important
is Li’s s-stage algorithm [Li62], which extends the Dorfman pro-
cedure from 2 to s stages. The other one is Hwang’s Generalized
Binary Splitting algorithm which apply the concept of dichotomic
search to Group Testing. Hwang [Hwa72] suggested a way to
coordinate the applications of binary splitting such that the total
number of tests can be reduced. The idea is, roughly, that there
exists in average a defective in every n

k items, where k is the num-
ber of defectives. Instead of catching a contaminated group of

14
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Algorithm 1 General Adaptive Algorithm
1: procedure AdaptiveGroupTesting(S)
2: H = ∅ . set of Healty items
3: F = ∅ . set of Faulty items
4: if TestPool(S) = True then
5: if |S| = 1 then
6: F ← S

7: else
8: listofpools ← DesignPools(S)
9: for all P ∈ listofpools do

10: Hi, Fi ← AdaptiveGroupTesting(P )
11: H ← H ∪Hi

12: F ← F ∪ Fi
13: else
14: H ← S

15: return H, F

Figure 2.1.3: Binary Tree Representation of a General Sequential Algorithm

15
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size about half of the original group, which is the spirit of binary
splitting, one could expect to catch a much smaller contaminated
group and thus to identify a defective therein in fewer number of
tests. There are other algorithms such as nested class algorithms,
merging algorithms [HD73], competitive algorithms [MA14] and
doing more than cite them is beyond the scope of this section.
Historically, the main goal of group testing is to minimize the
number of tests. Therefore sequential algorithms have dominated
the literature. Note that for the (n, k) model, the asymptotic
information-theoretical lower bound is (that will be presented
later on in Section 3.1.5):

log2

(
n

k

)
≈ k log2(

n

k
) (2.1.1)

Since we can use the binary splitting algorithm to identify a
positive item in at most log2(n) tests, k · log2(n) tests suffice
for the (n, k) model. By the closeness of k · log2(n) with the
information bound, we can say the (n, k) model is practically
solved [AJS19]. On the other hand, the determination of exact
optimal (n, k) algorithm is very difficult.

2.2 Non-Adaptive Group Testing

A group testing algorithm is non-adaptive in the sense that it
does not adapt to the outcomes of previously performed tests,
the constraint is that all tests must be specified without knowing
the outcomes of other tests. But why are nonadaptive algorithms
necessary? There are two scenarios. The first comes from a
time constraint: all tests must be conducted simultaneously.

16
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The second comes from a cost constraint: the cost of obtaining
information on other tests could be prohibitive. A mathematical
study of nonadaptive Combinatorial Group Testing algorithms
does not distinguish these two causes. The main characteristic
of a non-adaptive algorithm is that two phases are distinguished:
design phase and decoding phase. There is implicitly a third
phase, in between the two, which is the testing phase, but, as an
algorithm is not in charge of such phase, it is not considered in
the mathematical study and the tests outcomes are considered
an implicit result of the design phase.

In order to introduce the design phase we give a brief definition
of the representation of the design in a combinatorial fashion.
In combinatorial group testing the pools are represented by a
m × n boolean matrix A (where m is the number of tests and
n is the number of items). Each Aij cell of the matrix represent
the belonging of the j-th item to the i-th test, so Aij = 1 if and
only if the j-th item belongs to the pool of the i-th test.

2.2.1 Design Phase

The design phase is necessarily the first to be performed and is
based on grouping all the candidates item in pools. This passage
of the algorithm is the one that take care of the requirements from
the application scenario, the cost-constraint and so the number
of tests that can be performed. In general the design phase
must compute a matrix A that has the best trade-off between
the number of tests and the quality of the information encoded
after the collection of outcomes. The requirements from specific
scenarios can vary a lot and we try to introduce the design phase
in the more general way as possible.

17
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The first detail to note, that distinguish the design of pools
from adaptive testing, is that pools must be non-disjoint in order
to retrieve relevant information and to have chance to recover the
exact defectiveness of each item. Let’s consider the opposite for
once and let’s have disjoint pools. If you know the exact number
of faulty items (k) in your set, then you can feel lucky enough to
design at least k unit pool and try your chance to get in those
exactly the defective ones, in order to get an exact 3 information,
and this is just a not so smart or statistically reasonable idea.
What we get from this trivial observation is that pools must share
some of their elements and we are looking for a sharp way to
overlap pools in order to obtain the most information from a
number of tests m� n.
So how to design pools with no, even partial, information about
which are the most promising candidates? The techniques are
divided in two main groups: deterministic design and random
design.

Deterministic Design

The key point of a deterministic design is to obtain pools which
satisfy some property that represents minimum requirements for
A to be able to identify the k elements. Those property are called
k-separability and k-disjunctness.

3Remember that a positive test tells you that at least one item in the
pool is faulty, so the only chance to exactly identify the faulty ones, in case
the pools are disjoint and you can not rule out other member of a positive
pool with information from other tests, is that the positive pool is a unit
pool, so it contains only one item.

18
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Definition 2.2.1. Consider a testing matrix A ∈ {0, 1}m×n, we
write X for the set of all items:
A is called k-disjunct if, for all subset Υ ⊂ X with |Υ| ≤ k:

∀i ∈ Υ{, ∀j ∈ Υ

∃t ∈ {1,m}|Ait = 1, Atj = 0
(2.2.1)

We can also define it by saying that A is k-disjunct if the union
of any k columns does not contain any other column4.

Definition 2.2.2. Consider a testing matrix A ∈ {0, 1}m×n.
A is called k-separable if, for all pairs of distinct subsets B,C ⊂ X
of cardinality |B|, |C| ≤ k, we have:∨

b∈B
Ab 6=

∨
c∈C

Ac (2.2.2)

We can also define it by saying that A is k-separable, if boolean
sums of sets of k columns are all distinct.

The k-separating property on A implies that any set of items
with up-to k non-zeros can be recovered exactly from the designed
pools [DH06]. So we have guarantees that the compression is
lossless and a recovery with no error is possible. However, in
general the recovery problem requires searching over all subsets.
The k-disjunct property simplifies the search, and a simple al-
gorithm exactly recovers the faulty items [DH06] (see COMP
in Section 3.2.2). The same algorithm can be used with pools
that does not satisfy both properties, albeit losing the correctness
guarantee. Following those statements we can say that, once the
set of items and their defectiveness are fixed, the only element

4Of course not including the ones in the union
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which determine the quality of compression and the recoverabil-
ity of the defectiveness information is determined by A alone.
There are some results about the number of rows m (number
of tests) and number of column n (number of items) required
to obtain a k-disjunct and k-separable matrix, all those results
are extensively studied and reported in Pooling design and non-
adaptive group testing [DH06]. We cite the most important and
representative. Let be, for a given set of parameters P , md(P )

the minimum number of rows (pools) and nd(P ) the maximum
number of columns (items) for a disjunct matrix, ms(P ) and
ns(P ) for a separable one. Let’s fix n and define the parameter
P = (n, k), where k is the number of defectives.

Theorem 2.2.1. For a k-separable matrix(
n

k

)
≤

m∑
i=k−1

(
m

i

)
(2.2.3)

Corollary 2.2.1.1. for n� k

ms(n, k) ≥ k log n(1 + o(1)) (2.2.4)

Theorem 2.2.2. For a k-disjunct matrix

md(n, k) ≥min

{(
k + 2

2

)
, n

}
(2.2.5)

Given those results we recognize lower bounds on number of
tests m that describe how effectively we can reduce the number
of tests from n to keep guarantees of correctness (k-separability)
and to have a trivial decoding phase (k-disjunct), so we know
when a construction with such properties exist and we can apply
techniques to obtain it. There are several deterministic techniques

20
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to obtain those properties and their discussion is beyond the scope
of this work. To whom may want to get more information about
design we suggest Pooling design and non-adaptive group testing
[DH06]. Those results also underline the fact that deterministic
designs are not feasible in every settings and scenarios, this
motivates the study and adoption of random designs.

Random Design

In the last section we briefly introduced k-disjunct and k-separable
matrices. A general observation is that although the methods to
construct those matrices are highly efficient when they exist, their
existence is rare. On the other hand, a random design, regardless
of which type, usually exists for all m and n. Of course, the
price to be paid is that there is no guarantee that they will
identify all items correctly. Therefore, there might be positive
items unidentified, called unresolved positives, or negative items
unidentified, called unresolved negatives. A surprising thing is
that most random designs do well in restricting the number of
unresolved positives or unresolved negatives. There are four types
of random design:

• Random Incidence Design (RID). Each cell in A has prob-
ability q of being 1.

• Random k-set design(RkSD). Each column inA is a random
k-subset of the set [m] = {1, 2, ...,m}.

• Random distinct k-set design (RDkSD). RkSD except the
columns are distinct.

21
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• Random r-size design (RrSD). Each row in A is a random
r-subset of the set [n] = {1, 2, ..., n}.

In this work we focus on the random design, as it has the strongest
guarantees of applicability. In particular we use the Bernoulli
design which is a version of a RID where the probability is the
same for all the cell of the matrix A so that the belonging of
items to a pool is sampled with a Bernoulli process Be(q,m).
Bounds and theorem of recoverability under such design will be
presented in Section 3.1.5.

2.2.2 Decoding Phase

Once the outcome of test are known and fixed, given the matrix
of pooled measurements A, to recover the defectiveness of the
candidates it’s required to decode the information encoded after
the design and testing phase. The previous phases basically give
constraint over the defectiveness of items. We can see this phase as
a reasoning over a knowledge base where new information can be
deduced through an inference process. The main contribution of
this work is on this process, so decoding phase will be extensively
discussed later on in Section 3.2. We now mention the most
important past contribution and related work.

Going back to the work of Malyutov and co-authors in the
1970s (see [Mal13b] for a review of their contribution), they es-
tablished an analogy between noisy group testing and Shannon’s
channel coding theorem [Sha48]. The idea is to treat the recov-
ery of the defective set as a decoding procedure for a message
transmitted over a noisy channel, where the testing matrix A

represents the codebook used to translate the message. Atia and
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Saligrama, recalling such ideas, [AS12] mimics the channel coding
theorem’s results and obtains an upper bound of O(k log n) on
the number of tests required. In terms of decoding algorithms, the
similarity between compressed sensing and group testing (as dis-
cussed in [Mal13b], [AAS16]) has been used in [CCJS11, CJSA14]
by Chan et al. to present testing algorithms for both noiseless
and noisy non-adaptive group testing. In particular, the authors
introduce the Combinatorial Basis Pursuit (CBP), Combinatorial
Orthogonal Matching Pursuit (COMP) algorithms, and their noisy
versions (NCBP and NCOMP). They prove universal lower bounds
for the number of tests needed to get a certain success probability
and upper bounds for the algorithms they are introducing. The
COMP algorithm allows the strongest bounds in their paper to
be rigorously proved, and will be the considered as a baseline
algorithm in this work (see section 3.2.2). Other approaches
to classical instances of group testing have been proposed in
the literature. In particular, its natural integer-programming
(IP) formulation has been addressed by Malioutov and Malyutov
[MM12], Malyutov and Sadaka [MS09] and Chan et al. [CJSA14]:
noticing that group testing allows an immediate IP formulation,
it is possible to relax the integer program and solve the associated
linear version [MM12].

2.2.3 Error Tolerant Model: Noiseless and Noisy
Testing

"Someone thinks of a number between one and one million (which
is just less than 220). Another person is allowed to ask up to
twenty questions, to each of which the first person is supposed
to answer only yes or no. Obviously the number can be guessed
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by asking first: Is the number in the first half-million? and then
again reduce the reservoir of numbers in the next question by
one-half, and so on. Finally the number is obtained in less than
log2(1000000) questions. Now suppose one were allowed to lie
once or twice, then how many questions would one need to get
the right answer? One clearly needs more than n questions for
guessing one of the 2n objects because one does not know when
the lie was told. This problem is not solved in general."

This citation is from Stanislaw M. Ulam (1909-1984) autobi-
ography Adventures of a Mathematician [Ula76] and it introduces
error inside a dichotomic search. In particular Ulam’s problem is
a group testing problem with one defective and at most one or
two erroneous tests. In general, more defectives and more errors
may be considered. Group Testing algorithm has been devised
in order to control and handle error in the testing phase. In par-
ticular decoding technique in non-adaptive testing can consider
error and inverted test. Those techniques are crucial because
most of the real scenarios present some kind of error probability.
The error in general is called noise, this derive by the fact that
group testing has been paired with communication techniques
and problems, in particular compressed sensing.

In order to introduce the used noise model we anticipate the
notation that will be later on presented to represent the outcome
of test. The vector y of length m represents the outcome of tests,
in particular yi = 1 if the i-th test is positive, yi = 0 otherwise.
One of the simplest noise models simply considers the scenario
where these values are flipped independently at random with a
given probability.

Definition 2.2.3 (Symmetric Noise). In the binary symmetric
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noise model, the i-th test outcome is given by

yi =

{∨
(xjAij) with probability d

1−
∨

(xjAij) with probability d
(2.2.6)

2.3 Application of Group Testing

5 Sobel and Groll listed in their early paper [SG59] some basic
applications to unit testing in industrial processes, such as the
detection of faulty containers, capacitors, or Christmas tree lights.
A prevalent type of fault in the manufacture of electrical circuits
is the presence of a short circuit between two nets of a circuit.
Short testing constitutes a significant part of the manufacturing
process. Several fault patterns can be described as variations or
combination of these types of faults. Applications of short testing
ranges from printed circuit board testing and circuit testing to
functional testing. Recently solutions based on group testing
have been proposed in other manufacturing contexts, such as
integrated circuits [KR06] and molecular electronics [SFG+03].
We list some additional applications here; note that this list is
certainly not exhaustive, and is only intended to give a flavour
of the wide range of contexts in which group testing has been
applied, many of these applications motivate our focus on non-
adaptive algorithms. In many settings, adaptive algorithms are
impractical, and it is preferable to fix the test design in advance.

5This section is a revision of [AJS19, Section 1.7], a survey paper on
group testing
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2.3.1 Biology

Group testing was born to solve a problem in a medical scenario,
so it is no surprise that it has found many more uses in this field,
as summarised, for example, in [BBTK96, CH08, DH06]. Appli-
cation in the medical fields are really common in DNA testing,
for example modern sequencing methods search for particular
subsequences of the genome in relatively short fragments of DNA
[DHH00, SBC+02, SAZ09]; since samples from individuals can
be easily mixed group testing allow to a significant reduction
in the number of tests required to isolate individuals with rare
genetic conditions [BBTK96, GGC91] and non-adaptive methods
are the common one [DHH00, EGB+10, EGN+15].
A variant of adaptive testing algorithm that has been proposed to
estimate the number of defectives [BBHH+17], instead of identify
the faulty ones. The estimation can be useful to run a group
testing algorithm as it gives an information about the number
of faulty items and is an important problem in biological and
medical applications [Swa85, CS90]; it is used to estimate the
proportion of organisms capable of transmitting the aster-yellows
virus in a natural population of leafhoppers [Tho62], estimating
the infection rate of yellow-fever virus in a mosquito population
[WHB80] and estimating the prevalence of a rare disease using
grouped samples to preserve individual anonymity [GH89].
We briefly remark that group testing has also been used in many
other biological contexts – see [DHH00, Section 1.3] for a review.
For example, this includes the design of protein–protein inter-
action experiments [MDM13], high-throughput drug screening
[KW09], and efficient learning of the Immune–Defective graphs
in drug design [GJS17].
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2.3.2 Commmunications

Group testing has had also an important roles in communication
scenarios. A really common application is in Multiple Access
Channel in which several user can communicate with a single
receiver. Adaptive protocols based on group testing to schedule
transmissions has been introduced by Hayes [Hay78] which were
further developed by many authors (see [Gal85] for a review).
There are subsequent complementary non-adaptive applications
developed in works such as [KG85] (using random designs) and
[DBV02] (using designs based on superimposed code construc-
tions). A similar argument for the related problem of Code-
Division Multiple Access (CDMA) is used in [Var95]. Another
communication related scenario in which group testing is applied
is Cognitive radio networks where ‘secondary users’ can oppor-
tunistically transmit on frequency bands which are unoccupied by
primary users, see for example [AAES08]. Network tomography
and anomaly discovery Group testing has been used to perform
(loss) network tomography; that is, to detect faults in a computer
network only using certain end-to-end measurements which has
been modeled with a connected graph topology. This motivates
the study of graph-constrained group testing, which is an area of
interest in its own right [GH07, JD08].

2.3.3 Information Technology

Problems in computing has been paired with group testing one
because of the shared discrete nature, for example in the Data
Storage and Compression field Kautz and Singleton [KS64] de-
scribe early applications of superimposed coding strategies to
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eciently searching punch cards and properties of core memories.
Hong and Ladner [HL02] describe an adaptive data compression
algorithm for images with a parallel with Hwang’s algorithms
[Hwa72] and has been furtherly extened by Hong in [YS04].
Several problem in cybersecurit field has been attacked with
group testing technique, in particular with non-adaptive proce-
dure. For example Xuan et al- [XSTZ10] describe how to detect
DOS attacks with group testing algorithm. Goodrich and Madej
[GAT05, Mad89] applied group testing to the problem of identify
changed files using collection of hashes.
Cormode and Muthukrishnan [CM03] show that the identifica-
tion of "hot" items in a database can be achieved using both
adaptive and nonadaptive group testing, even in the presence of
noise. A related application is given in [WZC18], which considers
the problem of identifying ‘heavy hitters’ (high-traffic ows) in
Internet traffic. In [ZH17] we find application to bloom filters.

2.3.4 Computer Science

Finally, group testing has been applied to a number of problems
in statistics and theoretical computer science. The chronologically
first example are search problems [DHH00, Erd]. Furthermore
group testing has been related to compressed sensing and inter-
preted as a sparse inference problem in several work in both the
efforts to try to solve an abstract group testing instance or to
apply it to concrete problem. Gilbert, Iwen and Strauss [GIS08]
discuss the relationship between group testing and compressed
sensing, following such work [MV13] shows how group testing can
be used to perform binary classification of objects, and [EM14]
develops a framework for testing arrivals with decreasing defec-
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tivity probability. Similar ideas can be used for classification by
searching for similar items in high dimensional spaces [SFJ14]. A
very interesting application is in learning classication rules that
are interpretable by practitioners, such applications often use
techniques similar to our contribution. For example, in medicine
we may wish to develop a rule based on training data that can
diagnose a condition or identify high-risk groups from a number
of pieces of measured medical data (features). However, standard
machine learning approaches such as support vector machines or
neural networks can lead to classication rules that are complex,
opaque and hard to interpret for a clinician. For reasons of sim-
plicity, it can be preferable to use sub-optimal classification rules
based on a small collection of AND clauses or a small collection of
OR clauses. In [EVM15, MVED17], the authors show how such
rules can be obtained using a relaxed noisy linear programming
formulation of group testing 3.2.4. Lastly classical problems in
theoretical computer science has been reduced to group test-
ing, including pattern matching [CEPR10, Ind97, MP04] and
the estimation of high degree vertices in hidden bipartite graphs
[WLY13]. In addition, generalizations of the group testing prob-
lem are studied in this community in their own right, including
the ‘k-junta problem’ (see for example [Bla10, BC16, MOS04]).
Further studies of the K-junta problem and its variations are
[BBHH+17], [MOS04] and [ABRW15, AS07].

2.4 Maximum Satisfiability

The maximum satisfiability problem (MaxSAT) is the problem of
determining the maximum number of clauses, of a given Boolean
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formula in conjunctive normal form, that can be made true by an
assignment of truth values to the variables of the formula. The sat-
isfiability problem (SAT) is the decision problem of determining if,
given a boolean formula, it exists a satisfying assignment to vari-
ables such that every clause in the formula is satisfied. MaxSAT

is an extension of SAT problem, since its completeness under the
FPNP class it is able to represent optimization problems.

2.4.1 Mathematical formulation

Definition 2.4.1. Being F a boolean formula, c ∈ F any clauses
belonging to F and σ an assignment {0, 1}n 6 to each variable
constrained in F , the general formulation of a MaxSAT problem
is

σopt = argmax
σ

∑
C∈F

1{σ |= C} (2.4.1)

MaxSAT can be approached in different fashion and with
different degree of expressivity. To add more expressivity is
possible to give weight to each clause c ∈ F , so now the problem
is to maximize the weight of the satisfied clauses.

Definition 2.4.2. Being F a boolean formula, c ∈ F any clauses
belonging to F , σ an assignment {0, 1}n to each variable con-
strained in F and wt(C) the weight function which returns the
weight associated to a clause C, the formulation of a weighted
MaxSAT problem is

σopt = argmax
σ

∑
C∈F

wt(C) · 1 (2.4.2)

6Here n denote the number of variables constrained by F
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A further degree of of expressivity is obtained dividing clauses
in two classes: Hard and Soft. Hard clauses (Fh) are the one
that must be mandatory satisfied, so any assignment must satisfy
this subset of clauses. Soft clauses (Fs) are not mandatory to be
satisfied, and they can be weighted or the weight can be uniform
so that the problem is to maximize the number of Soft clauses
satisfied, given that Hard ones are satisfied.

Definition 2.4.3. Being F a boolean formula, FH ⊆ F the
subset of hard clauses, Fs ⊆ F the subset of soft clauses, σ an
assignment {0, 1}n to each variable constrained in F and wt(C)

the weight function which returns the weight associated to a
clause C, the formulation of a weighted MaxSAT problem is

σ∗ = argmax
σ|∀C∈Fh,σ|=C

∑
C∈Fs

wt(C) · 1{σ |= C}

Note that Partially Weighted MaxSAT can be encoded inWeighted
MaxSAT by giving ∞ weight to Hard clauses.

2.4.2 Solving Techniques

There are two approaches to solve Max-SAT: approximation
algorithms based on heuristics [AL97, BP98] that compute near-
optimal solutions and exact algorithms that compute optimal
solutions. Heuristic algorithms are fast and do not provide any
guarantee about the quality of their solutions, while exact algo-
rithms are not so fast but provide a guarantee about the quality
of their solutions. Regarding exact algorithms, there have been
substantial performance improvements in the last years with
the annual Max-SAT competition. Now one of the challenge is
to turn exact Max-SAT into a competitive generic approach to
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solve combinatorial optimization problems and this work aims
to push towards this direction. Max-SAT solvers are usually
based on one the following techniques: branch and bound ap-
proach [AMP03, LW66], unsatisfiability-based approach [MSP07],
and satisfiability-based approach [ABL13]. In our implementa-
tion we used a robust MaxSAT solver called Max-HS [DB11]
which adopts satisfiability-based technique. Specifically, MaxHS
solves the optimization problem by solving sub-instances of SAT
using a SAT-oracle while performing arithmetic reasoning in or-
der to exploit strength of both modern SAT-solver and integer
programming solvers as CPLEX.

2.4.3 Applications

Solving with MaxSAT is important from a practical perspective.
Many interesting real-world problems have been expressed as
MaxSAT, from areas such as electronic design automation (EDA),
planning, probabilistic inference, and software upgradeability.
There are potential applications in bioinformatics, scheduling,
and combinatorial auctions as well. Given the success story
of SAT solvers, which can be treated as a black box to solve
very large problems arising from industrial applications, and the
close relationship of MaxSAT and SAT, now the application of
MaxSAT to real-world problem are arising and are giving strong
and surprising results.

2.5 Phase Transition in Computer Science

Phase transitions are familiar phenomena in physical systems. In
general a phase transition is observed when a state of a system
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tend to change with respect to some parameters. The term
phase transition (or phase change) is most commonly used in
physics to describe transitions between solid, liquid, and gaseous
states of matter, as well as plasma in rare cases. A phase of a
thermodynamic system and the states of matter have uniform
physical properties. During a phase transition of a given medium,
certain properties of the medium change, as a result of the change
of external conditions, such as temperature, pressure, or others.
Years of research has revealed that a phase transition also occur in
many probabilistic and combinatorial models, including random
versions of some classic problems in theoretical computer science.
We briefly present SAT phase transition as it is useful to analyze
observed behaviour in the experimental evaluation of our model.

2.5.1 SAT Phase Transition

Propositional satisfiability (SAT) is the problem of deciding if
there is an assignment for the variables in a propositional formula
that makes the formula true. SAT is of considerable practical
interest as many AI tasks can be encoded quite naturally in SAT

(also the the process of encoding reveal a problem called SMT).
SAT is known for being a NP-complete problem, so is in its
worst case untractable, even if over the year efficient heuristic has
been developed, and is at the core of study of NP-completeness
and complexity theory [Kar72]. Random instance of SAT has
revealed, with fixed length k of clauses (this is called k-SAT)7

a phase transition from satisfiability to unsatisfiability and an

7Note that, when k ≥ 3 every SAT problem is reducible to k-SAT, 1-SAT
is trivial and 2-SAT is in the P complexity class.
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Figure 2.5.1: This figure illustrates the phase transition of a 3-SAT in
terms of Satisfiaibility and Hardness of the problem. On the y axis there’s
P(SAT |X) with fixed N = 40) (for the dotted line the reference measure
is computational cost in terms of time), and on the x-axis the ratio r.

easy-hard-easy behaviour.

Definition 2.5.1 (Random k-SAT). A random k-SAT problem
consists of L clauses, each of which has k literals chosen uni-
formly from the N possible variables and the N possible negated
variables. Let be X = (N,L, k) a class, R(X) denotes problems
drawn from this class and P(SAT |X) denotes the probability
that a problem drawn at random from the class X is satisfiable.

It has been conjuctured that for a class X, fixing k and L
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there exist a threshold on the ratio α = L
N that characterize the

transition from SAT(P(SAT |X) = 1) to UNSAT(P(SAT |X) =

0). Mitchell, Selman, and Levesque [MSL92] observed that the
median hardness of the instances is very nicely characterized by
this single parameter α. They observed that instance hardness
peaks in a critically constrained region determined by α alone.
For random 3-SAT this region has been experimentally shown to
be around α ≈ 4.26 and has provided challenging benchmarks
as a test-bed for SAT solvers. Basically when the problem is
under-constrained or over-constrained it is likely to be easy to
solve, the critical region represents a confusion region where the
state can be equally likely between SAT and UNSAT (in terms
of probability) and so for the solver, even if is not calculating
any probability, is getting harder to find a solution8. Figure
2.5.1 shows this phenomenon in both Satisfiability and Hardness
transitions. Study on phase transition has been important for
the theoretical understanding of SAT and in general Constraint
Satisfaction Problem. Achlioptas and Oglan [ACO08] studied
CSP algorithm and determined algorithmic barrier from phase
transition. In particular they studied random graph coloring and
proved that completely analogous phase transition also occurs
both in random k-SAT and in random hypergraph 2-coloring.
And that, for each problem, its location corresponds precisely
with the point were all known polynomial-time algorithms fail.

At the heart of statistical physics, discrete mathematics, and
theoretical computer science, lie mathematically similar counting

8Note that SAT-solvers are based on complete algorithms and always
grant to find a solution in finite time, but not in polynomial time unless
P = NP
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and optimization problems. This situation leads to a transgres-
sion of boundaries so that progress in one discipline can benefit
the others. Relating the phase transition phenomenon for 3-SAT
to statistical physics, Kirkpatrick and Selman [KS99] showed that
the threshold has characteristics typical of phase transitions in
the statistical mechanics of disordered materials. Physicists have
studied phase transition phenomena in great detail because of the
many interesting changes in a system’s macroscopic behavior that
occur at phase boundaries and so Computer Scientist have done,
even if not deep enough. In fact it is still not formally known
whether there even exists a critical constant αc such that as L
grows, almost all 3-SAT formulas with α < αc are satisfiable and
almost all 3-SAT formulas with α > αc are unsatisfiable. Over
this observation take place the work of Martin et al. [MMZ01].
They presents the tools and concepts designed by physicists to
deal with optimization or decision problems in an accessible
language for computer scientists and mathematicians covering
in detail the Random Graph, SAT and the Traveling Salesman
problems. They observed that the potential connections between
discrete mathematics, theoretical computer science and statis-
tical physics become particularly obvious when one considers
the typical properties of random systems. The way physicists
and mathematicians proceed is quite different. Theoretical physi-
cists generally do not prove theorems, rather they attempt to
understand problems by obtaining exact and approximate results
based on reasonable hypotheses. In this sense modern computer
scientist, when studying phase transition, has approached it in a
"physicist" way and we will do so with our observation later on
in Section 5.3.
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Chapter 3

Problem Formulation

“No nit not.
Nit no not.
Nit nit folly bololey.
Alife my larder.”

Robert Wyatt, Alifib

3.1 Notation and Preliminaries

We use capital boldface letters such as X to denote matrices,
while lower boldface letters x are reserved for vectors/sets. For a
matrix X, Xi represents the i-th row of X while for a vector/set
x, xi represents the i-th element of x and Xi,j represents the
element of the i-th row and j-th column. We use the notion of a
sparse vector.
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Definition 3.1.1. A Boolean vector x ∈ {0, 1}n with dimension
n is called a sparse vector if the number of non-zero elements∑n

i=1 xi � n.

3.1.1 Boolean Logic and CNF

Definition 3.1.2. A propositional formula F in Conjunctive Nor-
mal Form (CNF) with n boolean variables x = {x1, x2, . . . , xn}
is defined as a conjunction of clauses, where each clause Ci is a
disjunction of literals. A literal can be either a variable xi or its
complement ¬xi.

Definition 3.1.3. We define σ an assignment to variables and
xi ∈ x. σ(xi) denote the value assigned to xi in σ. The proposi-
tional satisfiability (SAT) problem finds a satisfying assignment
or witness σ∗ to variables in x that makes F evaluate to 1 (True).
Given a CNF formula F =

∧
iCi,

σ∗ |= F ⇐⇒ ∀i, σ∗ |= Ci

wherein
σ∗ |= Ci ⇐⇒ ∃x ∈ Ci, σ∗(x) = 1

In this work, we focus on the weighted variant of CNF wherein
a weight function is defined over clauses.

Definition 3.1.4. For a clause Ci and weight function wt(·).
wt(Ci) denote the weight of clause Ci. A clause Ci is hard if
wt(Ci) =∞; otherwise, wt(Ci) <∞, Ci is called a soft clause.

To avoid notational clutter, we overload wt(·) to denote the
weight of an assignment or clause, depending on the context.
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Definition 3.1.5. We define the weight of an assignment σ as
the sum of weights of the clauses that σ satisfies. Let 1{true} = 1

and 1{false} = 0. Formally,

wt(σ) =
∑
i

wt(Ci) · 1{σ |= Ci}

3.1.2 MaxSAT

Definition 3.1.6 (MaxSAT). Given a formula F and weight
function wt(·), the problem of MaxSAT is to find an assignment
σ∗ that has the maximum weight, i.e.,

σ∗ = MaxSAT(F,wt(·)) ⇐⇒ ∀σ 6= σ∗,wt(σ∗) ≥ wt(σ)

We use additional lighter notation to denote an optimal assign-
ment using

σ∗ |=
opt

F ⇐⇒ σ∗ = MaxSAT(F,wt(·))

to denote an optimal assignment, so a MaxSAT solution, to a
formula F when the context allow to imply function wt(·).

Our formulation will have positive clause weights, hence
MaxSAT corresponds to satisfying as many clauses as possi-
ble, and picking the strongest clauses among the unsatisfied ones.
Borrowing terminology from the community focused on develop-
ing MaxSAT solvers, we are solving a partial weighted MaxSAT
instance wherein we mark all the clauses with ∞ weight as hard,
and clauses with other positive value less than ∞ weight as soft,
and asking for a solution that optimizes the partial weighted
MaxSAT formula. Knowledge of the inner workings of MaxSAT
solvers and the encoding of representations into weighted MaxSAT
instances are not required for this thesis.
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3.1.3 Group Testing

Combinatorial Group Testing

Definition 3.1.7 (Items Vector). Let x ∈ {0, 1}n be a vector
of n items, where xi = 1 denotes a defective item and xi = 0

denotes a non-defective item. Let k(x) =
∑n

i=1 xi be the number
of defective items in x. We will use k instead of k(x) to denote
the number of defective items when the input x is clear from the
context.

Definition 3.1.8 (Pooling Matrix). We define a matrix of pooled
measurements A ∈ {0, 1}m×n with m tests, where Aij denotes
the j-th item of the i-th row (or test) of A. Specifically, Aij = 1

if the j-th item belongs to the i-th test, and Aij = 0 otherwise.

Definition 3.1.9 (Outcomes Vector). We define the Boolean
vector y ∈ {0, 1}m, where yi represents the outcome of the i-th
test:

yi =

{
1 if ∃j ∈ {1, . . . , n}, Aij ∧ xj = 1

0 otherwise

In order to model a noisy setting, we allow tests to return
inverted/flipped outcomes.

Definition 3.1.10 (Boolean Noise Vector). We define a boolean
vector ξ ∈ {0, 1}m such that the i-th test gives an inverted
outcome iff ξi = 1 and ξi = 0 otherwise. In the noisy setting, we
modify the definition of y as follows:

yi =

{
1 if ∃j ∈ {1, . . . , n}, (Aij ∧ xj)⊕ ξi = 1

0 otherwise
Here ⊕ represents the logical XOR operator.
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Group Testing Set Definition

Definition 3.1.11 (Defective Set). We define a defective set K a
subset K ⊆ N where K contains all the defective items (xj = 1).
N = {1, n}, where n = |x|.

K = {j : xj = 1}

Definition 3.1.12 (Satisfying Set). Given a pool design A and
outcomes y, we shall call a set of items L ⊆ N a satisfying set
if group testing with defective set L and test design A would
lead to the outcomes y. Clearly the defective set K itself is a
satisfying set. If we express a decision problem with constraints
generated from pool design A and outcome y a non-satisfying
set is a set that does not satisfy such constraints.

Definition 3.1.13 (Decoding Algorithm). A decoding algorithm
is a method to estimate the defective set from the test outcomes;
that is, a function

K̂ : {0, 1}m → P(N )

where we write , that associates to each outcome vector y a subset
K̂ ⊆ N of the items. We write P(N ) for the power set of N .

Definition 3.1.14. A item j is said to be and intruding non-
defective if it is non-defective and it never appears in any negative
tests.

(xj = 0)∧ 6 ∃i(Aij = 1 ∧ yi = 0)

Definition 3.1.15 (Masked Defective). A item j is said to be
a masked defective if it is defective and it never appears in a
positive tests that does not contains any other positive item.

(xj = 1)∧ 6 ∃i(Aij = 1 ∧ yi = 1∧ 6 ∃l 6= j((Aij = 1 ∧ xl = 1))
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Figure 3.1.1: An example of a group testing problem, including a masked
defective and an intruding non-defective, in the terminology we introduce
here.

3.1.4 Stochastic Models

We consider Bernoulli trials [AJS19] to model a stochastic group
testing instance. In particular, we consider three i.i.d. Bernoulli
processes. A vector of item x is a bernoulli process ∼ Bern(p)

such that {
xj = 1, with probability p

xj = 0, with probability 1− p
(3.1.1)

an item is defective independently with probability p < 0.5. Then
we use a random model to design matrix A, in particular we
use bernoulli process as a Random Incidence Design (see Section
2.2.1) such that each item has a probability item i belongs to test
j independently with probability q, and in the noisy setting, a
test outcome is inverted independently with probability d < 0.5.
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3.1.5 Group Testing Bounds

Definition 3.1.16 (Success Probability). Under the exact recov-
ery criterion, the (average) error probability for noiseless group
testing with a combinatorial prior is

P(err) :=
1(
n
k

) ∑
K:|K|≤n

P(K̂(A,y) 6= K)

where y is related to A and K via the group testing model and
the probability P is over the randomness in the test design A (if
randomized), the group testing model (if random noise is present),
and the decoding algorithm K̂ (if randomized).
We call

P(suc) := 1− P(err)

the success probability.

We note that this average error probability refers to an average
over a uniformly distributed choice of defective set K, where we
can think of this randomness as being introduced by nature.
Even in a setting where the true defective set K is actually
deterministic, this can be a useful way to think of randomness
in the model. Since the outcomes of the tests only depend on
the columns of the test matrix A corresponding to K, the same
average error probability is achieved even for a fixed K by any
exchangeable matrix design (that is, one where the distribution
of A is invariant under uniformly-chosen column permutations).
This includes Bernoulli, near-constant tests-per-item, and doubly
regular designs, as well as any deterministic matrix construction
acted on by uniformly random column permutations. We now
introduce some bound on probability of success that will be used
in the experimental section.
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Theorem 3.1.1 (Counting Bound). Any algorithm (adaptive or
nonadaptive) for recovering the defective set with m tests has
success probability satisfying

P(suc) ≤ 2m(
n
k

)
Corollary 3.1.1.1. In particular, P(suc)→ 0 as n→∞ when-
ever

m ≤ (1− η) log2

(
n

k

)
(3.1.2)

for arbitrarily small η > 0.

Remark. From an information-theoretic viewpoint, this result
essentially states that since the prior uncertainty is log2

(
n
k

)
for a

uniformly random defective set, and each test is a yes/no answer
revealing at most 1 bit of information, we require at least log2

(
n
k

)
tests. Because the result is based on counting the number of
defective sets, we refer to it as the counting bound, we will mostly
use the asymptotic version in the experimental evaluation.

Using Stirling approximation we can obtain a simpler bound
that is interestingly similar with the number of tests required by
the adaptive binary splitting algorithm.

Corollary 3.1.1.2. P(suc)→ 0 as n→∞ whenever

m ≤ k log2(
n

k
)(1 + o(1)) (3.1.3)

Following the reasoning of Counting Bound, it will be useful
to think about how many bits of information we learn (on average)
per test. Using an analogy with channel coding, we shall call
this the rate of group testing. In general, if the defective set K
is chosen from some underlying random process with entropy H,
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then for a group testing strategy with m tests, Aldridge, Johnson
and Scarlett [AJS19] define the rate to be H/m . In particular,
under a combinatorial prior, where the defective set K is chosen
uniformly from the

(
n
k

)
possible sets, the entropy is H = log2

(
n
k

)
,

leading to the following definitions.

Definition 3.1.17 (Group Testing Rate). Given a group testing
strategy under a combinatorial prior with n items, k defective
items, and m tests, we define the rate [AJS19] ∆:

∆ =
log2

(
n
k

)
m

(3.1.4)

Definition 3.1.18 (Achievable Rate). Consider a group testing
problem, possibly with some aspects fixed (for example, the
random test design or the decoding algorithm), in a setting where
the number of defectives scales as k = k(n) according to some
function (e.g., k(n) = Θ(nγ) with γ ∈ (0, 1)). We say [AJS19] a
rate ∆′ is achievable if, for any δ, ε > 0, for n sufficiently large
there exists a group testing strategies with a number of tests
m = m(n) such that the rate satisfies

∆ =
log2

(
n
k

)
m

> ∆′ − δ (3.1.5)

and the error probability P(err) is at most ε.

Remark. The Counting Bound also implies the so-called strong
converse: The error probability P(err) tends to 1 when m ≤
(1− η) log2

(
n
k

)
for arbitrarily small η > 0, which corresponds to

a rate ∆′ ≥ 1
1−η > 1.

For the noisy settings, recalling the symmetric noise model
defined in 2.2.3 where the noise is a Bernoulli process with prob-
ability d then (from the work of Johnson [Joh17]):
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Theorem 3.1.2 (Noisy Group Testing Bound). Any algorithm
(adaptive or nonadaptive) for recovering the defective set with
m tests, given a noise symmetric model with probability d, has
success probability satisfying

P(suc) ≤ m(1−H(d))

log2
(
n
k

)
where H(d) is the binary entropy function

H(d) = −d log2(d)− (1− d) log2(1− d)

Corollary 3.1.2.1. In particular, P(suc)→ 0 as n→∞ when-
ever

m ≤
k log(nk )

log2−H(d)
)(1− η) (3.1.6)

for arbitrarily small η > 0.

3.2 Non-Adaptive Group Testing Decoding
Phase

In this thesis we focus the effort on study an optimal and general
way to decode an instance of non-adaptive group testing. In
particular we study and analyze the optimality of the so-called
model SSS [BJA13] from which we derive a novel encoding and
propose a MaxSAT framework. This section aim to introduce
the formulation of the problem in both noiseless and noisy (error
tolerant) settings. In order to do that we refer to the most
important related work and cite the algorithm which has lead
the improvement and motivated us to adopt the proposed model.
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3.2.1 Compressed Sensing and K̂SSS

An important body of work on non-adaptive group testing has
underlined the relation and the parallel between group testing
and compressed sensing. Group testing is related in spirit to
compressed sensing (CS). In CS we are given an n-dimensional
sparse signal with support size k. Random projections of the
sparse signal are obtained. The goal is to identify the support
set while minimizing the number of projections. Group testing
can be viewed as a boolean version of CS where we apply a
measurement matrix (A) to a sparse vector corresponding to
the defective set with the goal of reconstructing the support, i.e.
identify the defective items. Compressed sensing is set in the
context of real vector spaces with additive noise, while group
testing studies the same problem in the boolean setting and with
Bernoulli noise. Recent works on group testing drew parallels
with Compressed Sensing, in particular using the assumption on
sparsity of signal to recover the set K computing the Smallest
Satisfying Set K̂SSS , which is the satisfying set (from definition
3.1.12) with the smallest cardinality.

3.2.2 Related Decoding Algorithms

We now present some algorithm which concepts lead to K̂SSS
adoption and that have been implemented in order to benchmark
the proposed solution. Their investigation has the purpose to
make the reader understanding why is smart to find the solution
with less faulty items and which hindrance undergoes the process
to decode an instance of non-adaptive group testing.
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COMP

The simpler inference algorithm, in the noiseless settings is con-
structed on the following reasoning: if an item appears in a
negative test, then it cannot be defective.

Definition 3.2.1. We consider the guaranteed not defective
(ND) set

ND := {j : ∃t|Atj = 1 ∧ yt = 0}

and write
PD = ND{N

for the set of possible defectives (PD).

The algorithm called Baseline algorithm and is also known as
Combinatorial Orthogonal Matching Pursuit (COMP) [CCJS11].
This algorithm compute the set of possible defectives (PD) de-
duced from testing matrix A and outcome vector y and return
it as an estimate of K. Note that K̂COMP is a satisfying set (by
Definition 3.1.12), in fact it is the largest satisfying set. Thus
if the true defective set K is the unique satisfying set then the
COMP algorithm certainly finds it. If it is not unique then the
COMP algorithm can only make false positive errors (declaring non-
defective items to be defective), and never makes false-negative
errors (declaring defective items to be non-defective).

Lemma 3.2.1. The estimate K̂COMP generated by the COMP algo-
rithm is a satisfying set (in the sense of Definition 3.1.12) and
contains no false negatives. Every satisfying set is a subset of
K̂COMP, so K̂COMP is the unique largest satisfying set. Hence:

K ⊆ K̂COMP
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Such algorithm has the guarantee to find the exact solution
in case the recovery matrix A is k-disjunct. COMP can aim to give
a solution also with design that does not have such properties,
but guarantee of exact solution are lost. This is because k-
disjunctness implies that every non-defective item appears in at
least one negative test, hence there are no intruding non-defectives.
However, notice that k-disjunctness is a very restrictive property,
since it imposes restrictions on all sets S of cardinality ≤ k.

DD

The Definitive Defective DD algorithm, proposed by Aldridge,
Baldassini and Johnson [BJA13], assumes that each item is non-
defective unless there is a certain simple proof that it is defective.
It is conceptually the opposite of COMP. The motivation behind
such algorithm is that once the possible defective (PD) items
have been identified, some other elements can be identified as
being definitely defective (DD). The key idea is that if a positive
test contains exactly one possible defective item, then we can in
fact be certain that such item is defective. This algorithm uses the
possible defectives PD found in the COMP algorithm as a starting
point (step 1). Then, for each positive test which contains a single
item from PD, declare the corresponding item to be defective
(step 2), and all remaining items are declared to be non-defective
(step 3). Notice that steps 1 and 2 in the DD algorithm make
no mistake; in particular step 1 just isolates all items that are
non-defectives, which can then be ignored, thus allowing us to
restrict our attention to the items in PD. The set PD contains
the k true defectives, plus a (random) number g of intruding non-
defectives (see 3.1.14), meaning we can analyse the m× (k + g)
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submatrix S, corresponding to the items in PD. Step 2, in turn,
isolates the definitely defective items of PD. After step 2 we
are then left with g intruding non-defectives that haven’t been
discarded in step 1 and some masked defectives (see definition
3.1.15). Hence only step 3 can make a mistake, which occurs
when there are masked defectives which are erroneously declared
to be non-defective. One justification for DD is the observation
that removing nondefective items from a test does not affect the
outcome of the test, so the problem is the same as if we use
the submatrix with columns in PD. In addition, the principle
to assume non-defective unless proved otherwise (used by DD)
should be preferable to the rule ‘assume defective unless proved
otherwise’ (used by COMP) under the natural assumption that
defectivity is rare. Intuitively K̂DD is a lower approximation of
the Smallest Satisfying Set K̂SSS , in fact when K̂DD is a satisfying
set then it coincides with K̂SSS .

Lemma 3.2.2. The estimate K̂DD generated by the DD algorithm
has no false positives.

K̂DD ⊆ K

Conversely, the COMP algorithm assumes that these unknown
items are defective, thereby often making false positive errors.
The main difference between the DD algorithm of Alridge et al.
[BJA13] and the COMP algorithm of Chan et al. [CCJS11] is that
COMP succeeds if and only if g = 0, whereas DD can succeed for
positive g.
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Sequential-COMP

SCOMP is an algorithm due to Aldridge, Baldassini, and Johnson
[BJA13] that builds a satisfying set by starting from the set of
definite defectives (DD) and sequentially adding new items until
a satisfying set is reached. The name comes from ‘Sequential
COMP’, as it can be viewed as a sequential version of the COMP al-
gorithm. This algorithm is an improvement over the DD algorithm
and it uses K̂DD to build another estimate K̂SCOMP and improve
such result.

Definition 3.2.2 (Unexplained Test). Given an estimate K̂, we
say that a positive test is unexplained by K̂ if its pool contains no
element from K̂. Note that a set K̂ ⊆ PD of possible defectives
being a satisfying set is equivalent to there being no unexplained
positive tests.

Since each unexplained test must contain at least one of
the masked defectives in K \ K̂DD, we might consider items in
PD that appear in many unexplained tests as most likely to be
defective. The SCOMP algorithm uses this principle to sequentially
and greedily extend K̂DD to a satisfying set, by seeking items which
explain the most currently unexplained tests. This is an attempt
to exploit all the information available at each step, which is
updated every time an item in PD is added to K̂. Note also
that the set of all possible defectives is satisfying, so the SCOMP
algorithm does indeed terminate. Even if SCOMP is difficult to be
analyzed from a theoretical perspective, Aldridge et al. [BJA13]
give experimental evidence that it outperforms DD.
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3.2.3 Optimal Solution: SSS

Under the assumption of sparsity of x (k � n) DD and SCOMP try to
approximate a solution which consider less faulty items as possible
and justify the outcome y. Such solution is called the Smallest
Satisfying Set K̂SSS . In the work of Aldridge et al. [BJA13]
such algorithm, called SSS algorithm, is considered unfeasible as
the problem to solve is hard as an integer linear programming
problem. In that work SSS is considered essentially optimal and
in small (n ∈ {100, 500}) settings is used as a benchmark to the
other proposed algorithms. The essential optimality of such model
will be underlined in Section 4.3 and to avoid redundancy will
not be presented here. It is interesting to notice the analogy with
Chvatal’s approximation algorithm to the set covering problem
(or just ‘set cover’) – see [Vaz01] for a discussion. Given a set
U and a family of subsets S ⊆ P(U), set cover requires us to
find the smallest family of subsets in S whose union contains
all elements of U . This optimisation problem is NP-hard, as for
a putative solution optimality cannot be verified in polynomial
time. In 1979, Chvatal [Chv79] proposed an approximate solution
by choosing, at each stage, the set in S that covers the most
uncovered elements. The algorithm produces a solution which
can be at most H(|U|) times larger than the optimal. Similarly,
SCOMP chooses defective items in a greedy manner to ‘cover’ (or
in our terminology, ‘explain’) as many tests as possible, until
all tests are explained. So similarly, SCOMP guarantees to find a
satisfying set with no more than kH(k) ≈ k ln k items.

Theorem 3.2.3 (NP-Hardness of K̂SSS). Given the matrix of
pooled measurements A and the outcome vector y, the problem
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of computing the Smallest Satisfying Set K̂SSS is NP-Hard.

Our goal is to find a way to compute the K̂SSS efficiently
enough, as polynomial time is not achievable, in order to make
such solution feasible and scalable so that becomes applicable as
the other proposed algorithms to real problems.

Combinatorial Optimization Formulation

Given the measurement matrix A ∈ {0, 1}m×n and test vector
y ∈ {0, 1}m, we attempt to find the smallest set of defective items
in x, where each item in x is defective with equal probability by
a combinatorial prior. In the noiseless setting, we minimize the
following function subject to the constraints (i.e., there are at
least one defective item(s) in a positive test and no defective item
in a negative test).

min

n∑
j=1

x̂j

subject to
n∑
j=1

Atj x̂j ≥ 1 when yt = 1

n∑
j=1

Atj x̂j = 0 when yt = 0

x̂j ∈ {0, 1}

which is an integer linear programming problem, known to be NP-
Hard. We want that the optimal x̂ will be close to the true input
vector x, since taking x̂ = x will satisfy the constraints. In general,
we think of each vector x̂ ∈ {0, 1}n as the indicator function of
some putative defective set L, with L = L(x̂) := {j : xj = 1}.
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The first two constraints ensure that L is satisfying, by considering
the positive and negative tests respectively. Hence, each x̂ that
achieves the minimal value of the linear program is the indicator
function of a satisfying set of minimal size, i.e., K = {j : x̂j = 1}
is a smallest satisfying set.

3.2.4 Noisy Extension

Each of the presented algorithms has extension in the noisy
settings that allow to model a wrong test outcome, this is a
natural feature of the non-adaptive approach. The presentation
of each variant is beyond the scope of this thesis. We now present
the extension to the ILP formulation of K̂SSS .

In the noisy setting, each test may be inverted/flipped in
one of two ways: original test finds a defective item(s) but the
noisy output indicates that all items are non-defective, and vice
versa. In the noisy setting, we minimize noise variable ξi while
preferring x to be the sparsest [MM12] with i.i.d. prior on both x

and ξ. In this setting, the constraints are similar to the noiseless
setting except that now a test may be flipped.

min
n∑
j=1

xj + λ
m∑
i=1

ξi (3.2.1)

The objective function is formulated as to obtain the sparsest
and less noisy solution, where the parameter λ ∈ R+ balances
the trade-off between the amount of noise and the sparsity of the
solution. In Section 4.3, we discuss how to set the value of λ and
the essential optimality of this model under sparsity assumption
(k � n).
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Linear Programming Relaxations:

Linear programming (LP) algorithms have been proposed as a
way to approximate K̂SSS with practical runtime, by solving a
relaxed version of the smallest satisfying set problem. They can
be paired with SCOMP in that sense, in fact has been shown that
linear programming are the most efficient and accurate state of
the art method to approximate K̂SSS and has in general great
performance in decoding a non-adaptive instance in the same
setting [MM12]. Because of this LP-relax method will be the main
benchmark to the extensive experimental analysis of our MaxSAT

framework in terms of accuracy and runtime. The following
formulation is the LP-relaxed version of 3.2.1, which is the noisy
settings. The noiseless formulation can be trivially derived by
removing the slack variables ξi so it is not included to avoid
redundancy. This formulation underlines the parallel between
group testing and compressed sensing, in fact the relaxation
trivially consider the two set of variables x̂ and

min
n∑
j=1

x̂j + λ
n∑
i=1

ξi

subject to x̂j ≥ 0

ξi ≥ 0

ξi ≤ 1
n∑
j=1

Atj x̂j + ξj ≥ 1 when yt = 1

n∑
j=1

Atj x̂j = ξt when yt = 0
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Chapter 4

MaxSAT Encoding and
Optimality

"The purpose of computation is insight, not numbers."

Richard Hamming

This chapter describe the theory behind the primary con-
tribution of this thesis, MGT, a MaxSAT-based framework for
solving the decoding phase of non-adaptive group testing. We
first discuss the MaxSAT encoding for both noiseless and noisy
setting. Later we propose a compact MaxSAT encoding for the
noisy setting and prove its soundness and equivalence with the
trivial encoding. Finally, we discuss how to set the value of λ
showing the essential optimality of the model under Bernoulli
testing assumption.
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4.1 MaxSAT Encoding

We first describe the MaxSAT encoding for the noiseless setting
and later extend the formulation to noisy setting.

4.1.1 Noiseless Setting:

We consider a unit soft clause that tries to falsify each xj in the
objective function 3.2.3. The weight of the soft clause is 1, which
is derived from the coefficient of xj in the objective function in
Eq. 3.2.3:

Sj := ¬xj ; wt(Sj) = 1.

To encode the constraints associated with the tests, we con-
struct hard clauses in the MaxSAT query. Recall that Ai,j = 1

denotes the j-th item being included in the i-th test. When the
outcome of the i-th test is positive (yi = 1), there must be at least
one defective item included in that test. Therefore, we construct
the following hard clause when yi = 1:

Ci :=
∨

j|Aij=1

xj ; wt(Ci) =∞.

On the other hand, when yi = 0, all items included in the i-th
test must be non-defective. Therefore we construct the following
hard clause when yi = 0:

Ci := ¬(
∨

j|Ai,j=1

xj); wt(Ci) =∞.

In this case, we apply de Morgan’s law on clause Ci to convert it
into CNF, Ci =

∧
j|Ai,j=1 C̃ij , where C̃ij is defined as follows:

C̃ij := ¬xj ; wt
(
C̃ij

)
=∞.
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Finally, the MaxSAT formula F is the conjunction of all
clauses:

F :=
n∧
j=1

Sj ∧
m∧

i=1,yi=1

Ci ∧
m∧

i=1,yi=0,j|Ai,j=1

C̃ij . (4.1.1)

Since all clauses Sj , Ci, C̃ij are in CNF, no further translation
is required. Once the MaxSAT formula F is formulated, an off-
the-shelf MaxSAT solver takes formula F and weight wt(·) as
inputs and returns an optimal assignment to the variable xj . We
find the defective items according to the optimal assignment as
follows.

Construction 4.1.1 (Mapping of MaxSAT to K̂SSS). Consider
the assignment σ∗ = MaxSAT(F,wt(·)). Then item j is detected
to be defective if σ∗(xj) = 1. Hence

xj ∈ K̂SSS ⇐⇒ σ∗(xj) = 1

4.1.2 Noisy Setting:

In addition to Sj , we construct unit soft clauses that try to falsify
each noise variable ξi, ξ represents the boolean vector of all the
noise variable. The weight of each soft clause is λ 1 which is the
coefficient of ξi in Eq. 3.2.1:

Ni := ¬ξi; wt(Ni) = λ.

In the noisy setting, test yi is inverted when ξi = 1, and
otherwise yi remains same. Hence, we construct hard clauses Ci
for positive tests and C̃i for negative tests as follows:

1As we consider Bernoulli noise with i.i.d. variables the weight is uniform
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Ci :=
( ∨
j|Ai,j=1

xj

)
⊕ ξi when yi = 1,

C̃i := (
∧

j|Ai,j=1

¬xj)⊕ ξi when yi = 0.

Here the hard clauses Ci and C̃i have XOR operators in
their definitions; that is, these clauses are not in CNF. We first
translate these clauses into CNF and then call an off-the-shelf
MaxSAT solver for the optimal solution. All translated CNF
clauses have weight ∞. Next, we discuss the translation in detail.

• For a positive test output (yi = 1), if there are ti literals in
the clause

∨
j|Ai,j=1 xj , standard CNF translation generates

(ti+1) CNF clauses while translating (
∨
j|Ai,j=1 xj)⊕ξi. For

example, (x1 ∨ x2 ∨ x3)⊕ ξ is translated into 4-clause CNF
as (¬ξ∨¬x1)∧ (¬ξ∨¬x2)∧ (¬ξ∨¬x3)∧ (w∨x1∨x2∨x3).

• For a negative test output (yi = 0), if there are ti literals in∧
j|Ai,j=1 ¬xj , standard CNF translation generates (ti + 1)

CNF clauses while translating (
∧
j|Ai,j=1 ¬xj) ⊕ ξi. For

example, (¬x1 ∧ ¬x2 ∧ ¬x3)⊕ ξ is translated into 4-clause
CNF as (¬x1∨ξ)∧(¬x2∨ξ)∧(¬x3∨ξ)∧(¬ξ∨x1∨x2∨x3).

Once all clauses are translated into CNF, we formulate F as
follows.

F :=
n∧
j=1

Sj ∧
m∧
i=1

Ni ∧
m∧

i=1,yi=1

Ci ∧
m∧

i=1,yi=0

C̃i (4.1.2)
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In the noisy setting, we find the defective items and noisy
tests from the optimal assignment to the variables of F as follows.

Construction 4.1.2 (Mapping of MaxSAT to K̂SSS in Noisy Set-
tings). Consider the assignment σ∗ = MaxSAT(F,wt(·)). Then
item j is detected to be defective if σ∗(xj) = 1, and test i is
declared inverted if σ∗(ξi) = 1.

4.2 A Compact Encoding for Noisy Setting

Since the MaxSAT query in the noisy setting has XOR operators
in the definition, its translation to CNF generates additional
clauses proportional to t number of variable tested in each test
(on average q ·n clauses, see Section 3.1.4). In general it’s not true
that less clauses lead to easier solution, there are several example
in the SAT literature that prove the opposite. We propose both
model then we experimentally verify that the compact encoding
enhance dramatically the scalability of the proposed algorithm.

4.2.1 Intuition and Formulation

The improvement over the encoding is done by leveraging the soft
clauses derived from objective 4.1.2. The intuition is that the
hard clauses formulated in XOR has the two logical components
(faultiness and noisiness) that are both minimized by the refer-
enced objective function. XOR force the exclusive satisfiability,
but we claim that the pairing of relaxed XOR(OR) with the ob-
jective function will lead to the same solution. The formulation
of the objective function is pushing the solution to consider less
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noise as possible and less faulty as possible and the solution has
a bonus in form of weight λ to not have noise, then it will never
be optimal to satisfy both condition in OR. This observation
combined with the fact that ξi variable is constrained only by
clauses generated by test i suggest us that the XOR constraints
are implied by the relaxed formulation.

Formally, we propose a compact encoding, where we replace
XOR with OR in both Ci and C̃i and define relaxed clauses C ′i
and C̃ ′i respectively. We first define the relaxed clauses C ′i and
C̃ ′i, and then provide the theoretical guarantee of the optimal
solution of the compact encoding:

C ′i :=
( ∨
j|Ai,j=1

xj

)
∨ ξi when yi = 1,

C̃ ′i := (
∧

j|Ai,j=1

¬xj) ∨ ξi when yi = 0.

4.2.2 Equivalence of Encodings

Let σ = MaxSAT(F,wt(·)) be the optimal assignment to the
variables in the MaxSAT formula F . Here we slightly abuse
notation and define σ |=

opt
F to represent that σ is the optimal

solution of a MaxSAT formula F .

Lemma 4.2.1. Being σ an assignment, if

σ |=
( m∧
i=1,yi=1

Ci ∧
m∧

i=1,yi=0

C̃i ∧
m∧

i=1,yi=1

C ′i ∧
m∧

i=1,yi=0

C̃ ′i

)
then:

σ |=
opt

F ⇔ σ |=
opt

F ′ (4.2.1)
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Remark. Lemma 4.2.1 is trivially provable as both encoding share
the same soft clauses, so if an assignment σ satisfy hard clauses
for both encoding, then it is absurd that it is optimal exclusively
for one of the two.

Theorem 4.2.2 (Equivalence of XOR and Compact Encoding).
Let F be a MaxSAT formula in the noisy setting, and F ′ be the
compact encoded formula with the above relaxation of XOR. Then
σ is an optimal solution to F iff σ is an optimal solution to F ′,
i.e., although F 6= F ′, it holds that

σ |=
opt

F ⇐⇒ σ |=
opt

F ′ (4.2.2)

Remark. The intuition behind Theorem 4.2.2 is that an optimal
solution to F minimizes a weighted sum of the sparsity and the
number of tests flipped, and an optimal solution to F ′ minimizes
a weighted sum of the sparsity and the number of tests whose
constraints are ‘ignored’. By taking the tests marked ‘flipped’ in F
and marking them as ‘ignored’ in F ′, we find that any solution to
F has a matching solution to F ′. Moreover, the optimal solution
to F ′ does not label ‘ignored’ for any test that is already consistent,
since any solution doing so could be improved by marking that test
as ‘not ignored’. Hence, in any optimal solution to F ′, replacing
‘ignored’ by ‘flipped’ gets us to a matching solution to F . We
proceed by formalizing this intuition.

Proof. Since F and F ′ differ only in the hard clauses Ci and C ′i
(similarly C̃i and C̃ ′i), and an optimal assignment of a MaxSAT
formula always satisfies all hard clauses, by Lemma 4.2.1

σ |=
opt

F ′ ⇔ σ |=
opt

F
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can be proved if we prove that

σ |=
opt

F ′ ⇒ σ |= Ci

σ |=
opt

F ⇒ σ |= C ′i
(4.2.3)

and
σ |=

opt
F ′ ⇒ σ |= C̃i

σ |=
opt

F ⇒ σ |= C̃ ′i
(4.2.4)

We can prove 4.2.3 using a proof by contradiction. Let be σ an
assignment such that σ |=

opt
F ′ and σ 6|= Ci;

we use logical equivalence

A⊕B ⇔ (A ∨B) ∧ (¬A ∨ ¬B)

on Ci to attain

Ci :=
(( ∨

j|Ai,j=1

xj

)
∨ ξi

)
∧
(
¬
( ∨
j|Ai,j=1

xj

)
∨ ¬ξi

))
.

Expanding the definition of

C ′i := (
∨

j|Ai,j=1

xj) ∨ ξi

we consider two distinct case, when ξi is assigned by σ to true
and when ξi is assigned to false.
When σ |= ¬ξi, then, as σ |= C ′i, σ assign at least one xj
constrained in C ′i to true, hence σ |= Ci as both part of the
disjunction are satisfied, contradiction.
Now recall that F ′ has the soft clause Sj := ¬xj and Ni := ¬ξi
and that ξi is constrained only by C ′i.
When σ |= ξi, as σ is optimal to F ′, it is an absurd that σ
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satisfy both ξi and
∨
j|Ai,j=1 xj , because it will exists a trivial

assignment σ̂ such that wt(σ̂) > wt(σ), and σ will not be optimal,
contradiction.
Hence σ |= ¬(

∨
j|Ai,j=1 xj) and σ |= Ci, which is a contradiction

for either assignment of ξi. Therefore,

σ |=
opt

F ′ ⇒ σ |= Ci

Note that the above holds as we are considering separately each ξi,
for both positive and negative assignment, which are constrained
only by one and exclusive Hard constraint (C ′i).
We now prove σ |=

opt
F ⇒ σ |= C ′i using a proof by contradiction.

Let σ |=
opt

F and σ 6|= C ′i. When σ |= Ci, either σ |= ξi or

σ |= (
∨
j|Ai,j=1 xj). Hence σ |= C ′i, which is a contradiction.

Therefore, σ |=
opt

F ⇒ σ |= C ′i, which ends the proof of claim

4.2.3.
We can prove 4.2.4 with similar reasoning and to avoid redundancy
we don’t include such proof in this section. Therefore, recalling
Lemma 4.2.1

σ |=
opt

F ⇐⇒ σ |=
opt

F ′

QED

4.3 Optimality of K̂SSS and λ Trade-Off

K̂SSS is an estimate to the set K given a group testing problem
and is important to prove the essential optimality of such estimate
in the Bernoulli testing. In the objective function for the noisy
setting in Eq. 3.2.1, the parameter λ decides the trade-off between
the number of defective items and the number of inverted tests. In
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our MaxSAT encoding λ is the weight associated with soft clauses
describing noise, as depicted in section 4.1.2. This tradeoff lead
the solution between sparsity and noisiness of tests and the value
of this parameter must be optimal for the considered setting.

4.3.1 Overview

We consider the decoding in the Bernoulli random design (see sec-
tion) 3.1.4, this random design does not require the experimenter
to understand and accurately implement tricky combinatorial
designs, as it does not necessarily require accurate knowledge of
the number of defectives, or how many tests will be performed.
Furthermore, recent work [AS12] has shown that the Be(q) design
is asymptotically close to optimal when k � n. Since we model
both defectivity and noise using i.i.d. Bernoulli trials in the
stochastic model, we can set the appropriate value of λ from the
associated probability p and d.

4.3.2 Background

Suppose each item is defective independently with probability
p < 0.5 and each test gets inverted independently with probability
d < 0.5 (symmetric Bernoulli noise, see Definition 2.2.3). Then
for a candidate defective set x and recovered set x̂, finding the
optimal solution requires minimizing P[x̂ 6= x], which is equiva-
lent to maximizing the posterior probability P[x|A,y] [ABJ14],
in the noisy settings we denote the posterior as P[x, ξ|A,y].
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4.3.3 Derivation

By definition of P[x, ξ|A,y]:

P[x, ξ|A,y] =
P[x, ξ,A,y]

P[A,y]
(4.3.1)

In the decoding phase A and y are known and fixed, so being x

and ξ vectors of independent variables we know the proportional-
ity of this posterior:

P[x, ξ,A,y]

P[A,y]
∝ P[x]P[ξ] (4.3.2)

Remember that k(x) is the number of defectives. Then being
τ(x,A,y) the Hamming distance between the output y and the
expected output that one would get if there were no noise, that
is, the number of inverted tests. In order to get a tighter notation
we can write τ(x,A,y) = ρ(ξ) =

∑m
i=1 ξi. Then by the definition

of P[x] and P[ξ]:

P[x] = pk(x)(1− p)n−k(x)

P[ξ] = dρ(ξ)(1− d)m−ρ(ξ)

and then

P[x]P[y] =

pk(x)(1− p)n−k(x)dρ(ξ)(1− d)m−ρ(ξ) =

= (1− p)n
( p

1− p

)k(x)
(1− d)m

( d

1− d

)ρ(ξ)
hence, being term (1− p)n and (1− d)m constant with respect
to x and ξ,

P[x, ξ|A,y] ∝
( p

1− p

)k(x)( d

1− d

)ρ(ξ)
(4.3.3)
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Remember that we are looking for the Maximum a-posteriori
Probability,

max
x,ξ

( p

1− p

)k(x)( d

1− d

)ρ(ξ)
(4.3.4)

so applying the log we get:

log

(( p

1− p

)k(x)( d

1− d

)ρ(ξ))
=

k(x) log
( p

1− p

)
+ ρ(ξ) log

( d

1− d

)
taking the negative of the log we get a minimization:

min
x,ξ

log
(1− p

p

)
k(x) + log

(1− d
d

)
ρ(ξ)

normalizing:

min
x,ξ

k(x) +
log
(
1−d
d

)
log
(
1−p
p

)ρ(ξ) (4.3.5)

Recall Eq. 3.2.1:

min

n∑
j=1

xj + λ

m∑
i=1

ξi

by the definition of k(x) and ρ(ξ) we can argue that solve this
problem is optimal to minimize probability P[x̂ 6= x] and we
have now the optimal λ, maximizing the posterior probability
P[x, ξ|A,y].

λ =
log
(
1−d
d

)
log
(
1−p
p

) (4.3.6)

In that sense compute the K̂SSS is optimal in the noisy set-
tings under a combinatorial bernoulli prior and with symmetric
bernoulli noise with the above λ. The extension to noiseless
settings is trivial and is not reported to avoid redundancy. By
the previously mentioned work [BJA13], under the assumption
that k � n our model is asymptotically optimal.
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Chapter 5

Experimental Results and
Evaluation

“Through the day

As if on an ocean

Waiting here,

Always failing to remember

why we came, came, came

I wonder why we came”

Brian Eno - By This River

5.1 Experiment Preliminaries

We now discuss preliminaries of our experimental evaluation; in
particular we illustrate the implementation, the setup of instances,
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the evaluation metrics and the question that we aim to answer.

5.1.1 About the Implementation of Algorithms

We have developed a prototype implementation of MGT to solve
the decoding phase of non-adaptive group testing in both the
noiseless and noisy settings. All the algorithms has been devel-
oped in the same Python 3.6 framework. In the implementation
of our novel algorithm (MGT), we employ MaxHS [DB11] as the
underlying MaxSAT solver. Not that MaxHS is not the best
performing state of the art solver, so in theory the performance
of our model can be even higher, we used this solver as it allow us
to give a timeout to the solver and output the best solution found
at the time.1 We compare MGT with a state-of-the-art approach
namely, the approximated linear programming relaxation ap-
proach (LP) that also solves the decoding phase of non-adaptive
group testing [MM12]. We compare to the LP relaxation ap-
proach, implemented using CPLEX by IBM2 as the underlying
solver. The formulation of the LP relax is as defined in section
3.2.4 and when a non-integer solution is found we assign x̂ = 1

when x̂ ≥ 0.5, 0 otherwise. We set the cut-off time of both LP
and MaxHS solvers to be 100 seconds. If an optimal solution
is not found within the cut-off time, MaxHS returns the current
best solution. We’ve also implemented COMP, DD and SCOMP (see
section 3.2), which can solve the noiseless case but not the noisy,
and we have done few experiment with these compared to our

1In the noiseless settings such feature was never triggered as the time
complexity was far less than the set timeout (100 seconds).

2This makes the comparison even more relevant as also MaxHS uses
CPLEX library to solve sub-problems in the solving
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algorithm. LP is the main rival of our implementation as it’s the
best in approximate K̂SSS [MM12]. First round of experiments
has been conducted on machine in concession by the National
Supercomputer Center of Singapore. The definitive round of
experiment has been conducted on a local machine equipped with
Intel core i7(3.4 GHz) and 8 GB of RAM. Every instances to be
solved has a memory limit for each algorithm of 2 GB and the
instances has been run sequentially. The results reported on this
work are from the definitive round of experiments.

5.1.2 Setup of Instances

We uses stochastic model as defined in Section 3.1.4 with a
combinatorial prior to group testing candidate set, symmetric
bernoulli noise and bernoulli model for the testing matrix A. To
model a group testing instance in general we proceed as follows.

• choose the number of defective items k for a fixed number
of items n defining a ratio variable β = k

n (β ∈ [0.01, 0.1])

• Then the item vector x is generated with k = βn defective
items.

• consider a Bernoulli process with probability q = (log 2)/k

to construct measurement matrix A3

• in the noisy setting, we consider another Bernoulli process

3This is known to be the best probability to be set for Bernoulli test-
ing, even if this probability consider k to be known in general our model
doesn’t need such information. This value is used as the best to bench-
mark/comparison purposes.
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with probability d < 0.5 to generate the noise vector ξ; in
the reported experiment d = 0.05

• recover a solution and compute metrics

• repeat the experiment for l = 100 trials to ensure statistical
consistency.

5.1.3 Evaluation Metrics

We evaluate accuracy of algorithm (MGT, LP, COMP, DD, SCOMP)
based on the Hamming distance and probability of success, which
are defined below.

• Hamming distance: Given an item vector x and the
recovered solution x̂, the Hamming distance h(x, x̂) is the
number of items that are wrongly detected in either of the
two ways: a non-defective item detected as defective, or a
defective item detected as non-defective. Formally

h(x, x̂) =
n∑
j=1

1(xi 6= x̂i)

• Probability of success P̂s: The probability of success
is defined as the probability of attaining zero Hamming
distance in the recovered solution. Formally,

P̂s =

∑l
i=1 1{h(xi, x̂i) = 0}

l

where xi is the randomly generated item vector at the i-th
trial and x̂i is the associated recovered solution. P̂s is an
unbiased estimator of Ps, see definition 3.1.16.
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5.1.4 Question Answered

The main purpose of the experimental evaluation is to answer
the following questions during the evaluation of both MGT and
other algorithms.

1. How does MGT scale with respect to the number of items
n, the number of defective items k, and the number of tests
m?

2. How does the accuracy and runtime performance of MGT

compare to existing state-of-the-art approaches?

3. Do we observe any interesting behavior of the runtime of
MGT?

4. Does MGT follow known bounds on the number of tests for
recovery?

5. How efficient is the compact encoding compared to the
naive encoding in the noisy setting?

5.1.5 Adoption of Bounds

The black line in each graph denotes the bound on m that allows
non-zero Ps (see Definition 3.1.16). For the noiseless settings
the adopted bound is the asymptotic version of the Counting
Bound 3.1.1.1, so the threshold on m in the noiseless setting
[BJA13, AJS19]:

m̃ = log2

(
n

k

)
(5.1.1)

For the noisy settings the adopted bound is the asymptotic version
of the bound proposed by [Joh17] (see Theorem 3.1.2.1) where d
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is the probability on noisy tests, and

H(d) = −d log2 d− (1− d) log2(1− d)

is the binary entropy. So the threshold on m in the noiseless
setting

m̃n =
k log(nk )

log2−H(d)
(5.1.2)

5.2 Empirical Results on Accuracy

The first outcome on which we focus is the accuracy in terms
of Ps. We compare the proposed algorithm MGT with the im-
plementation of COMP, DD, SCOMP and in particular LP. Figure
5.2.1 anticipates the results about accuracy. MGT outperform all
the algorithm and LP is the closest one in term of P̂s. For an
extended comparison LP is chosen as a test-bed for MGT.

5.2.1 Varying the Number of Items:

To start we observe whether MGT follows the theoretical bound
on the number of tests m for non-zero probability of success
(P̂s > 0) in both noiseless and noisy settings. In Figure 5.2.2, we
show graphs where we vary m and plot the corresponding P̂s for
different choices of the number of items n. For each choice of n,
we set the number of defective items with β = 0.03. In all graphs,
we find that empirically P̂s becomes non-zero after m exceeds the
theoretical bound in both MGT and LP. Moreover, P̂s increases
and becomes closer to 1 as m increases and becomes closer to n.
As we observe more closely, we find that in the noiseless setting,
P̂s quickly becomes 1, whereas more tests are required to reach
the same level of P̂s when we consider the noisy setting. We
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Figure 5.2.1: Accuracy trend, with respect to m, for all the implemented
algorithms with a really simple, in terms of scalability, test case.

note that being the ratio β fixed in this experiment the shape of
the curve remain qualitatively invariant and the proximity with
the bounds remain proportionally the same. This observation
will be extended in combination with other experiments later. In
terms of accuracy, MGT and LP show a similar performance in
the noiseless setting. However, MGT outperforms LP in the noisy
setting, and the difference is more for higher values of n. This
result suggests the effectiveness of MGT over LP in terms of the
quality of the recovered solutions and so the calculation of non-
approximate solution of K̂SSS . Being β = 0.03 a sparse regimen
we also experimentally verify that our model is asymptotically
optimal with sparsity assumption, as probability P̂s becomes
non-zero with m = m̃+ ε and ε ≈ 0.
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Figure 5.2.2: Effect of the number of items n on the probability of success
in both the noiseless (figures in the top row) and noisy (figures in the
bottom row) settings. In each graph k = 0.03n, and for the noisy setting,
d = 5%. For n = 1000 in the noisy settings LP can not recover solutions
due to a memory-limit error, anyway with the set timeout recovery success
of MGT was not relevant.
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5.2.2 Varying the Number of Defective Items:

In Figure 5.2.3, we vary the number of defective items with respect
to β ∈ [0.01, 0.1] and show its effect on the probability of success
in both the noiseless and the noisy settings4.

Empirically we find that for fixed number of items n, as we
increase the number of defective items k, more tests are required
to reach the same level of the probability of success in both
MGT and LP. In addition, when β is much higher (≈ 0.1), 100%

recovery often becomes unachievable for random Bernoulli tests
even if m = n in both the noiseless and noisy settings. Remember
that in section 5.2.1 we observed that with a fixed β the function
P̂s(m) remain qualitatively the same with respect to n. Recalling
also the definition of the considered lower bound (see theorem
3.1.1, 3.1.2) we can say that in the Bernoulli setting the ratio
β characterize the possibility to extend the lower bound to be
a precise threshold which trigger Ps > 0. In other word, being
β a measure of the sparsity of x, we empirically show that the
near-optimality of Bernoulli design is determined by β, such near
optimality dramatically disappears with β → 0.1.

5.2.3 Scalablity Analysis:

We experiment with higher values of the number of items n
to observe the scalablity performance of both MGT and LP in
the noiseless setting, and show the result in Figure 5.2.4 with
3% defective items. Both LP and MaxSAT solvers are given
equal computation resources, but LP reached the shared memory

4We show here the plot for the two extreme value, we put additional plots
in the Appendix
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Figure 5.2.3: Effect of the number of defective items k on the probability
of success in both the noiseless (figures in the top row) and noisy (figures
in the bottom row) settings. In each graph, n = 500 and for the noisy
setting, d = 5%.
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limit when n > 2000. Interestingly, we find that MGT shows an
impressive scalablity for higher values of n. In particular, we
run MGT for n = 16000 and β = 0.01 successfully, and it can
potentially go further as the timeout was never triggered in the
noiseless settings. We have also experimented with more defective
items β > 0.05 for up to n = 10000, where the accuracy of MGT

starts deteriorating even if we allow more tests. To conclude, this
scalablity result shows the promise of applying MaxSAT solvers
in various practical combinatorial optimization problems.

5.2.4 Efficiency of the Compact Encoding:

In Figure 5.2.5, we show the runtime performance of both the
compact encoding and the naive encoding (encoding with XORs)
on the similar choice of parameters. We empirically find that the
runtime of the naive encoding is higher than that of the compact
encoding as we consider more tests. Moreover, for higher values
of n and k, the naive encoding often becomes intractable. This
result suggests that the compact encoding not only provides a
theoretical guarantee of optimality (see Section 4.2), but also is
efficient in practice than the naive encoding.

5.3 Runtime Analysis and Phase Transition

We compute the average runtime of all trials, and in Figure 5.3.1,
we present it while varying the number of tests m for both the
noiseless and the noisy settings (see also Figure B.0.6). In all
graphs, we find that both MGT and LP require more runtime
in the noisy setting than in the noiseless setting, which points
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Figure 5.2.4: Probability of success for increasing values of n in the
noiseless setting. In each graph, k = 0.03n. Due to memory limit of
2 Gigabyte 5 LP fail to compute solution for n > 2000. Such memory
limitation is the same for both algorithm.
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Figure 5.2.5: Runtime performance of the compact encoding and the naive
encoding for the noisy setting of non-adaptive group testing.

out the effect of noise on the computation process. Moreover,
LP takes less time than MGT as m increases in both settings,
and the difference is more in the noisy setting. MGT reveals an
exponential behaviour with respect to m in the noisy settings.
In this context, LP applies relaxation in the integer programs
to achieve performance boost in terms of runtime and finds an
approximate solution. However, in this MaxSAT-based formula-
tion, the MaxSAT solver finds an optimal solution while costing
relatively higher runtime. The noisy settings runtime reveal the
limit of MGT, in fact as we have noise the increasing of number
of tests m, to which follows an increasement of boolean variable
in the encoding, determine an exponential time behavior which
is not observed in LP, even if LP undergoes memory limit error6.
Compact encoding (see Section 4.2) relieve such problem, as in
the XOR encoding with n > 200 solutions are never feasible, but
we are still not able to compute solution with n > 2000 with noise

6Such limit is shared for both MGT and LP

81



82
CHAPTER 5. EXPERIMENTAL RESULTS AND

EVALUATION

0 200 400
number of tests, m

MGT

tim
e 

(s
)

n = 500, k = 15
LP
log2(n

k )

0 200 400 600 800
number of tests, m

MGT

tim
e 

(s
)

n = 750, k = 22
LP
log2(n

k )

Figure 5.3.1: Computation time in the decoding phase of group testing in
both the noiseless settings. In each graph, k = 0.03n.

considering a timeout of 100 seconds as done in the experiment.
We hope to overcome this problem with the adoption of more
powerful MaxSAT solver.

5.3.1 Noiseless Phase Transition

In the noiseless setting, we observed a phase transition of accuracy
in both MGT and LP with easy-hard-easy behaviour of runtime.
Specifically, the runtime increases until reaching a peak near
the theoretical bound on m, then decreases quickly, and again
increases as m increases, but never with exponential behavior.
In fact the peak reached around m̃ is never approached again.
This observation reveals the easy-hard-easy nature, at least in its
interpretation as a combinatorial optimization problem, of group
testing, where the difficulty of a problem instance changes due to
changing the number of tests m. The nearness with theoretical
bound on tests denotes that the probability of success also goes
from zero to non-zero during the easy-hard-easy transition. This
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Figure 5.3.2: Noiseless Group Testing phase transition, in blue the estimate
of Ps and in dotted green runtime.

behaviour is similar to the phase transition observed in the SAT
problem of random k-CNF formulas [COP13, CR92, DSS15] pre-
viously presented in Section 2.5. A random k-CNF formula (each
clause in the formula has at most k literals) goes from SAT to
UNSAT as the number of clauses increases, and the computation
time near the transition gives a similar trend to what we have
observed here (remember figure 2.5.1). Although phase transi-
tion is known in SAT instances, in our study we find that the
decoding phase of noiseless non-adaptive group testing shows
similar characteristics. It is evident that we can connect Ps to
P(SAT |X) probability of SAT (note that P(SAT |X) goes from
1 to 0 while Ps goes from 0 to 1), m (number of tests) to L
number of clauses and so on for all the interested parameter. The
really interesting thing is that time is observed for SAT-solving
and MaxSAT-solving, so we are comparing time for two strongly
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related problem, while probability of SAT and probability of
success of decoding of Non-Adaptive Group Testing belongs to
really different domain and the connection between them is really
fascinating. The first is an intrinsic property of a formula that is
always decidable, while the second is the effective capability of
reconstructing information after a compression is performed. All
the noiseless study reveal that the bell that determine the transi-
tion Easy-Hard and Hard-Easy stands on the "area" before m̃, so
before P̂s > 0 as reported in Figure 5.3.2 and Figure B.0.5. This
phase transition behavior should be deeply investigate, better
understood as it could build a strong bridge between optimization
problem, SAT and compression theory helping on developing the
understanding of them.

Table 5.3.1 report the number of tests which correspond to
the peak of runtime varying n and the defective/item ratio β,
we denote this specific number of tests with mc, which can be
paired with the αc of random k-SAT problem (see Section 2.5.1).
Surprisingly with fixed β the threshold mc remain constant, and
starts to depend from n with higher value of the ratio β. This
changing of behaviour is similar to the validity of the lower bound
as a threshold to trigger probability of success Ps > 0 observed
in Section 5.2.2 and also the constancy with respect to n starts
to disappear with the lessening of sparsity assumption.

5.3.2 Understanding Runtime Behaviour and Ĉ Es-
timate

In order to better understand this behaviour we ask ourself the
following question: Is this behaviour a consequence of the solving
technique or is an intrinsic characteristic of the problem? From
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β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

n = 100 0.16n 0.27n 0.38n 0.49n 0.54n
n = 200 0.17n 0.27n 0.39n 0.5n 0.55n
n = 300 0.173n 0.273n 0.393n 0.503n 0.553n
n = 400 0.17n 0.28n 0.39n 0.51n 0.63n
n = 500 0.168n 0.278n 0.388n 0.508n 0.638n
n = 600 0.167n 0.277n 0.397n 0.507n 0.637n
n = 700 0.171n 0.281n 0.391n 0.511n 0.631n
n = 800 0.171n 0.281n 0.391n 0.511n 0.641n
n = 900 0.171n 0.281n 0.391n 0.511n 0.641n
n = 1000 0.171n 0.281n 0.391n 0.511n 0.641n

Table 5.3.1: Number of tests, expressed as a fraction of n, which corre-
sponds to the peak of runtime for different (n, β). Data are collected from
MGT.

Figure 5.3.3 and Figure B.0.4 we learn that also LP and SCOMP
undergo the easy-hard-easy behaviour and such transition follow
MGT runtime. The fact that COMP and DD does not manifest such
trend can be easily motivated observing that both does not exploit
all the information available and, when the information is not
trivial, they simply ignore it and output a largely approximate
solution. Recalling the difference between SCOMP and DD (see
Section 3.2.2) it’s easy to motivate the fact that SCOMP, after
the phase transition behaviour, has the same runtime of DD and
this indicate that the region with the more unexplained test by
DD (see Section 3.2.2 for a discussion over their differences) is
the one under the bell and around mc. Since the main cause
of unexplained test is the presence of masked defectives (see
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Figure 5.3.3: Noiseless runtime trend in seconds reported for all the
algorithm

Definition 3.1.15), we derive that Bernoulli random design provide
an high number of masked defectives in the range of m underlying
the bell of the Easy-Hard-Easy transition. We observe then that
any algorithm that tries to learn the most information available
will find it harder around the threshold mc, where the intrinsic
nature of information becomes Hard to decompress, so we make
the following conjecture.

Conjecture 5.3.1 (Hardness Threshold). Given a group testing
instance with n items, k = βn defectives and m tests, there exists
a mc such that, being mp > m̃ the minimum number of tests such
that P(suc) > 0 and A the algorithm that achieves the highest
possible rate ∆′(n, k,mp), then

cA(β,mc) ≥ cA(β,m) ∀m ∈ {1, n} (5.3.1)

where cA(β,m) is the time required by algorithm A to output a
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solution for such instance.
In particular we claim that, under bernoulli testing assumption
being fixed p, q and n

mc = argmax
m∈{1,n}

(mβ(1− q(1− pq)n−1)m) (5.3.2)

The last part of the conjecture derives from the C-estimate defini-
tion 5.3.2.

Remark. This conjecture tries to conceptualize all the observations
over the runtimes of the implemented algorithms. The concept
that we draw is that, given the whole range of possible number
of test r = {1, n}, under some sparsity regimen β, there is a sub-
interval r′ ⊂ r in which the problem becomes harder because of
the nature of the information. In particular any accurate enough
algorithm which tries to obtain the most from the available
information, so tries to achieve the highest possible rate ∆′ (see
Definition 3.1.17) where Ps > 0 is possible, will manifest an Easy-
Hard-Easy transition with a peak of Hardness corresponding to
the critical mc.

The presence of masked defectives under the hardness bell,
observed, suggest us to derive the probability of an item to be a
masked defective.

Definition 5.3.1 (Masked Defective Probability). Given a group
testing instance with K sampled from a Bernoulli process Be(β, n).
Being the pooling matrix A of a Bernoulli design Be(q,m), then
the probability Pmd to pick up an item which is a masked defective
(see Definition 3.1.15) is:

Pmd = β((1− q(1− pq)n−1)m (5.3.3)
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We can interpret this probability as the hardness to decode
each single test. From such probability we present an intuitive
estimate of the complexity of decoding information of a non-
adaptive group testing instances, which is the normalization
of Pmd weighted by number of tests m. The main purpose of
this estimate is to give an interpretation to the phase transition
behaviour.

Definition 5.3.2 (C-Estimate). Given a noiseless decoding in-
stance of non-adaptive group testing, with K sampled from a
Bernoulli process Be(β, n) and pooling matrix A designed with a
Bernoulli design Be(q,m). Being A an algorithm which achieves
the best achievable rate for mp > m̃, then we define the C-
Estimate:

ĈA =
∥∥mβ(1− q(1− pq)n−1)m

∥∥
m

(5.3.4)

where
‖f(x)‖x =

f(x)− fmin
fMax − fmin

Such estimate is normalized to 1, where 1 represents the maximum
hardness to decode an instance and output an estimate K̂A with
respect to m.

We propose a supplementary discussion over C-Estimate in
Section A.2. In Figure 5.3.4 we present some empirical results
which sustain the conceptual correctness of the intuition behind
ĈA. For each instance We set p = β and q = log 2

k obtaining

ĈA =

∥∥∥∥∥mβ
(

1− log 2

k

(
1− log 2

n

)(n−1))m∥∥∥∥∥
m

In fact ĈA qualitatively predict the trend of runtime for both
SCOMP and MGT, while LP manifest a slightly different behaviour
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Figure 5.3.4: ĈA estimation compared with real time complexity of algo-
rithm: from top to bottom MGT, SCOMP, LP

89



90
CHAPTER 5. EXPERIMENTAL RESULTS AND

EVALUATION

and reach its maximum hardness after the threshold mc even if
it also manifest easy-hard-easy behaviour around such threshold.
Recall that we define ĈA to estimate the trend of hardness for
the best algorithm A (i.e. the algorithm that achieves the best
rate ∆′), in this sense it is correct that MGT is better charac-
terized by ĈA. To compare the estimate ĈA to the empirical
results we normalize the time experiment to 1, where 1 is the
maximum. Picturing ĈA we have given an intuitive meaning
to the Easy-Hard-Easy phase transition and we believe that a
deeper understanding of such behaviour and its theoretical study
promise to build bridge between computer science problems and
unveil some aspect of the nature of computation.
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Chapter 6

Conclusions and Future
Research Direction

“Last and least is me. Mingus. I wrote the music for dancing

and listening. It is true music with much and many of my

meanings. It is my living epitaph from birth til the day I first

heard of Bird and Diz. Now it is me again.”

Charles Mingus

In this work, we presented MGT, a novel MaxSAT-based
formulation for solving the decoding phase of non-adaptive group
testing in both the noiseless and the noisy settings. For the
noisy setting, we proposed a compact encoding with a proof of
soundness, claiming to decrease runtime following a reduction of
clauses by leveraging the objective function. We have derived the
optimality of our model and found a theoretically optimal value
of the trade-off between noisiness and faultiness (parameter λ)
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RESEARCH DIRECTION

for Bernoulli Testing. We largely investigate the behaviour of our
algorithm and compare it with other state of the art solutions.
To summarize our empirical study, MGT, following known bound
on the number of tests for recovery (see Section 3.1.5), shows
an impressive scalablity and can solve group testing instances
with up to n = 16000 and β = 0.03 in the noiseless setting,
which no prior work can handle to the best of our knowledge
and in fact none of the comparing algorithms achieve. The
experiment over noisy settings prove our claim and show that the
compact encoding outperforms the naive encoding w.r.t. runtime
by a large margin, which highlights the practical applicability of
the compact encoding with added optimality guarantee. In the
noisy settings MGT largely outperforms LP in terms of accuracy,
however this setting denote a flaw, partially solved with the
compact encoding, as with increasing m the instances becomes
exponentially harder in terms of time. We hope in future works
to experiment with different MaxSAT solver than MaxHS and to
achieve larger scalability in noisy settings. Anyway the spatial
complexity support the usage ofMaxSAT as LP fails with n > 1000

in the noisy settings due to memory limit. In general the accuracy
outcomes of MGT underline the optimality of K̂SSS .

In addition, the runtime behavior of MGT in noiseless settings
indicates a phase transition revealing the easy-hard-easy nature
of group testing and its deep empirical study lead us to conjecture
5.3.1. An intuitive meaning of such behaviour has been identified
with the derivation of ĈA, now we will look for a theoretical way to
argue and formally prove 5.3.1 since the empirical results largely
sustain our claim. We are opening a new problem so various future
directions can be pursued. For a better understanding of phase
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transition we suggest and aim to build a parallel with physics
and to use model from such field to describe phase transition
with good accuracy, following the approach in works such [KS99,
MMZ01](see Section 2.5.1 for a discussion). Those directions
are promising in order to unveil the nature of combinatorial
optimization problem, decoding information problem and their
relations.
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Appendix A

Proof and Derivations

In this appendix we report the proofs that were not crucial to the
understanding of the work, but are important for the formalism.

A.1 NP-Hardness of K̂SSS
We reduced our problem, which was the decoding of results from
test in a non-adaptive fashion of Group Testing, in particular
compute the so called K̂SSS , to a Maximum-Satisfiability problem
which is a known NP-HARD problem. To make stronger our
argument is useful to prove that our problem is at least HARD as
the one we are reducing it to. The following proves Theorem 3.2.3.
In the way to prove that our problem is a NP-HARD problem
I’ve identified a known NP-HARD problem that is suitable to
be reduced to our problem in polynomial time. For this purpose
we refer to the 1972 Karp article [Kar72] which show the NP-
Completeness of some combinatorial decision problem. In our
proof we will refer to the NP-Hardness of the Minimum Vertex
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Cover.

A.1.1 What is Vertex Cover:

Definition A.1.1. A vertex cover V ′ of an undirected graph
C = (V, E) is a subset of V such that, being E = {(u, v) : u, v ∈ V}

∀e ∈ E ⇒ (u ∈ V ′) ∨ (v ∈ V ′)

that is to say it is a set of vertices V ′ where every edge has at
least one endpoint in the vertex cover V ′. Such a set is said to
cover the edges of C. It is one of Karp’s 21 NP-complete problems
[Kar72]. The optimization problem (Minimum Vertex Cover)
is known to be NP-Hard.

A.1.2 Proof

Reduction:

First of all we must reduce the optimization version of Vertex
Cover into a decoding Non-Adaptive Group Testing instance
with items vector x, outcome vector y and pooling matrix A.
The reduction is as follows:

• to each vertex v ∈ V is assigned a variable (an item) to be
recovered xj , so |x| = |V| = n, as above vj is associated to
xj

• the matrix m× n of pooled measurements A is defined as
Aij = 1 ⇐⇒ ei = (vj , v) ∨ ei = (v, vj) ∈ C 1

1There’s a 1:1 mapping between edges and tests, vertex and items; an
items belongs to a test if and only if its associated vertex is part of the edges
associated to the test
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• to each edge e ∈ E is assigned a test yi = 1, so |y| = |E| = m,
to simplify we will enumerate the associated test and edges
in the order in which they are associated such that yi is
associated to ei

A decoding instance has been identified, now, once the solution
K̂SSS is computed we must specify which vertex cover is associ-
ated: an item (variable xj) is recovered as faulty, so xj ∈ K̂SSS ,
if and only if the vertex associated to xj , vj ∈ V ′.
So far we have defined V ′ associated to an estimate x̂. By the
definition of a vertex cover V ′ we claim that V ′ is a vertex cover
and in particular is the Minimum Vertex Cover.

Lemma A.1.1. Let be K̂SSS the estimate associated to (A,y)

and let be V ′ the set of vertex associated to K̂SSS , then V’ is the
minimum vertex cover of C.

Proof. of A.1.1: Let’s prove that V ′ is a vertex cover.
Let’s assume that V ′ is not a vertex cover, that is there exist edge
ei = (vj , vk) ∈ E such that vj , vk /∈ V ′.
By the definition of our reduction there must exist a test yi,
associated to ei, such that Aij = Aik = 1. Hence a K̂SSS
must contain either xk or xj , as it is a Satisfying Set, that is a
contradiction.
Let’s now prove that V ′ is a Minimum Vertex Cover.
Assume that there exist a V ′′ such that |V ′′| < |V ′| and V ′′ is a
vertex cover of C.
Then for each e = (vj , vk) ∈ E vj or vk ∈ V ′′.
The tests are generated only by the edges, so the constraints on a
satisfying set K̂ to (A,y) are generated only by edges definition.
By the definition of the reduction, each e generate a constraints
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over a satisfying set K̂ that is (xj ∈ K̂) ∨ (xk ∈ K̂).
Hence V ′′ is associated to a satisfying set K̂′ to (A,y) which have
|V ′′| faulty items. |K̂SSS | > |K̂′′| is a contradiction as K̂SSS is
the smallest satisfying set to (A,y) by definition. QED

A.2 Concepts and Derivation of C-Estimate

In Section 5.3.2 we presented an estimate of the normalized
time complexity of an accurate enough algorithm A, ĈA. Such
estimate comes from the empirical study of the observed easy-
hard-easy behaviour. In Figure 5.3.3 we observed that such
behaviour is shown by MGT, SCOMP and LP, while DD and COMP
runtimes follow linearly number of tests m. In section 3.2.2 we
presented the concepts behind COMP, DD and SCOMP. Recalling such
concepts we try to interpret the behaviour focusing the attention
on the differences between DD and SCOMP. The first gives a lower
approximation of K̂SSS (which is exactly computed by MGT) and
consider an item to be defective when an easy and trivial proof
of its defectiveness is available. In particular DD "marks" an item
when it is defective and appears in at least one pool without any
other defectives. We can express the same concept by defining
the defectives in K̂DD as the defectives that are not masked ones
(see Masked Defective Definition 3.1.15). SCOMP computation
take place over the K̂DD, after such set is obtained this algorithm
consider all the tests y and verify if there is any test which is not
explained by the considered estimate. In particular the i-th test
is unexplained by an estimate set K̂ (hence K̂ is not a satisfying
set by Definition 3.1.12) when it has a positive outcome and there
is no item of its pool Ai which is contained by K̂. SCOMP does not
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terminate until there is no unexplained test remaining and marks
items as defectives (i.e. add items to K̂) in a greedy manner2,
so the estimate K̂SCOMP refine the solution K̂DD. Since MGT (by
empirical evidence and theoretical optimality under Bernoulli
design) is the algorithm that achieves the best rate, while LP and
SCOMP compute solution which are an approximation of K̂SSS we
can argue with such empirical results in support of our Conjecture
5.3.1. But why COMP and DD do not manifest the same complexity
behaviour? Both algorithms chooses defectives with simple and
approximate constraint over their defectiveness, the first compute
an over estimate of K making false positives errors, in particular
it computes the largest satisfying set (see Lemma 3.2.1), and the
latter computes an under estimate of K making false negatives
errors. In particular DD, as stated before, under approximate
K̂SSS and is the starting point for the computation of SCOMP.
We focus on the difference between those two algorithm (DD and
SCOMP) to give a meaning of the easy-hard-easy phase transition.

A.2.1 Probability of Picking a Masked Defective

The presence of unexplained test under the hardness bell (see
Figure 5.3.3) underline also the presence of the highest number
of masked defectives under such bell. A masked defective is an
item, which is a defective but never appears without any other
defectives in a pool of a test. We can see the presence of this
particular defectives in a designed set of pools as a measure of the
difficulty of computation over the encoded information. In Figure

2At each step SCOMP chooses the items which is contained by the highest
number of unexplained tests
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Figure A.2.1: Plot of the Pmd with the time per m ratio normalized to 1
for each algorithm.

A.2.1 we plot all the time complexity (over the range m ∈ (1, n))
divided by the number of tests m 3 in order to visualize "how
much" an individual tests add difficulty of the computation. We
also plot the derived probability of a Masked Defectives and we
noticed that this probability is highly related to the other function
plotted, it expresses qualitatively the "hardness per test" concept
and bounds the empirical values.

Derivation of Pmd

We now recall Definition 5.3.1 of Pmd and we express how this
probability has been derived.

We want to express the probability that picking up at random
3In order to compare the complexity all the runtimes are normalized to 1
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an item from a group testing instance, such item is a defective
and in particular is a masked one by Definition 3.1.15. Since
the two process of generating a set with subset of defective K
and design of matrix A are independent and being all the items
sampled as i.i.d

Pmd = P[ItemDefectivity]P[MaskedIfDefective]4

Recalling that the subset K is generated by a bernoulli process
with probability p < 0.5 then P[Defectivity] = p. Consider each
pool independetly we can decompose P[MaskedIfDefective] and
obtain

P[MaskedIfDefective] =

P[BelongToPoolsWithNoDefectives]{ =

(P[NotBelongToPool]P[BelongWithDefectives])m

So we are considering the joint probability of each independent
pool for an item, in particular for each pool the item satisfy the
condition if it does not belong to pool or, in case in it does belong,
at least another defectives is in that pool.
Furthermore we can decompose P[BelongWithDefectives] as :

P[BelongWithDefectives] =

P[BelongToPool]P[PoolWithNoDefectives]{ =

P[BelongToPool](1− (P[NoItemDefectivity]+

P[ItemDefectivity]P[NotBelongToPool])n−1)

Explaining the above decomposition we are decomposing the
"Belong with Defectives" to: "if an item belong to the pool" then

4This probability is the probability of appearing in a pool only with at
least one defective
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"there must be at least one defectives in such pool", the latter
is the complementary of saying "there is no defective in such
pool". Furthermore the probability inside the complementary
can be expressed as: "if an item is not defective then can be
either belong or not belongs to such pool" joint with "if an item
is defectives then it must not belongs to such pool". With 1− P
we obtain the complementary probability.
Since the pools A are generated with Bernoulli process with
probability q and being the other independent elements exactly
n− 1 we obtain:

P[MaskedIfDefective] =

(1− q + q(1− (1− p+ p(1− q))n−1))m

and putting together

Pmd =

p(1− q + q(1− (1− p+ p(1− q))n−1))m

With some with some trivial passage we finally obtain

Pmd = p(1− q(1− pq)n−1)m

Note that 1 − q(1 − pq)n−1 can be directly derived as q is the
probability of belonging to a pool and (1−pq)n−1 is the geometric
series with argument pq < 1, so it is the summation of each
independent probability of the other items to not belong to such
pool if they are defectives.

A.2.2 From Pmd to ĈA

Pmd describes, given the parameter of a group testing instances,
the probability that picking up an item such item is a masked



A.2. CONCEPTS AND DERIVATION OF
C-ESTIMATE 121

0 100 200
number of tests, m

0.0

0.2

0.4

0.6

0.8

1.0

tim
e/

m

n = 250, k = 8
COMP
DD
SCOMP
LP
MGT
CA

log2(n
k )

Figure A.2.2: Plot of the ĈA with the runtime normalized to 1 for each
algorithm.

defective (Definition 3.1.15). We suggested that this probability
can estimate the time complexity over number of tests ratio, so
the "hardness per test" and verified it empirically(Figure A.2.1).
We are seeking a meaning of the easy-hard-easy behaviour and
proving empirically the relation between Pmd with the hardness
of an instance can delineate the concept we are looking for. In
particular being Pmd the estimate of the "hardness per test" we
can simply multiply it per m and obtaining so an estimator of
the "general hardness" of an instance. In figure A.2.2, where we
plot all the runtimes normalized to 1, we show how qualitatively
ĈA estimate the hardness of each instances and we can observed
that the "trivial reasoner" does not follow in any way this trend,
indeed the shape and the dependency from m is qualitatively the
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same. Instead, the more accurate algorithms manifest a pretty
similar, in some range identical, correlation to ĈA with respect
to m and this correlation is higher considering the algorithm that
achieves the highest rate, MGT.



Appendix B

Additional Plot



124 APPENDIX B. ADDITIONAL PLOT

0 500 1000 1500 2000
number of tests, m

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 su
cc

es
s n = 2000, k = 20

LP
MGT
log2(n

k )

0 500 1000 1500 2000
number of tests, m

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 su
cc

es
s n = 2000, k = 60

LP
MGT
log2(n

k )

0 1000 2000 3000 4000
number of tests, m

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 su
cc

es
s n = 4000, k = 40

MGT

0 1000 2000 3000 4000
number of tests, m

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 su
cc

es
s n = 4000, k = 120

MGT

Figure B.0.1: Scalability analysis in noiseless settings.
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Figure B.0.2: Scalability analysis in noiseless settings.
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Figure B.0.3: Runtime Trend in Noisy Settings.
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Figure B.0.4: Easy-Hard-Easy Phase Transition in Noiseless Settings for
MGT, LP, COMP, DD, SCOMP
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Figure B.0.5: Easy-Hard-Easy Phase Transition in Noiseless Settings for
MGT and LP
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Figure B.0.6: Runtime Trend in Noisy Settings.
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