
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Procedural generation of realistic building
layouts from graphs

Relatore: Prof. Francesco Amigoni
Correlatore: Dott. Matteo Luperto

Tesi di Laurea Magistrale di:
Stefano Carideo, matricola 898536

Anno Accademico 2018-2019

Sommario

Nel campo della robotica mobile autonoma, testare piattaforme e algoritmi
in scenari reali può essere difficile per varie ragioni. Una soluzione comune
è quella di utilizzare simulazioni, le quali permettono un completo control-
lo dello scenario sperimentato. Tuttavia, i risultati ottenuti sono solidi e
generalizzabili soltanto se ottenuti simulando ambienti realistici. Dato che
ottenere planimetrie di edifici reali non è semplice, e in alcune applicazioni
è necessario un elevato numero di ambienti, un’alternativa è quella di gene-
rare edifici in modo procedurale. Tuttavia, nonostante siano state proposte
tante tecniche di generazione di edifici, nessuna è focalizzata sul ricreare le
caratteristiche di veri edifici e allo stesso tempo scalare su ambienti di medie
e grandi dimensioni.

L’obiettivo di questa tesi è di generare proceduralmente edifici realistici,
che possono essere usati come ambienti simulati per ottenere prestazioni si-
mili a quelle ottenute in ambienti reali. Per farlo, imponiamo che gli edifici
generati abbiano la topologia (cioè lo stesso grafo rappresentante i collega-
menti tra le stanze) di veri edifici. Formuliamo il problema di generazione
dell’edificio come un problema di ottimizzazione MIQP, che minimizza gli
scostamenti delle dimensioni delle stanze dai loro valori originali nell’edifi-
cio in ingresso, e al contempo impone come vincoli rigidi il rispetto della
topologia delle stanze.

Per valutare gli edifici che generiamo, confrontiamo le prestazioni ottenu-
te in due esperimenti con robot simulati. Il primo si basa sulla lunghezza dei
percorsi pianificati tra alcune stanze, mentre il secondo considera il tempo
e la distanza percorsa richiesti dal robot per completare l’esplorazione del-
l’ambiente. Entrambi gli esperimenti confermano che è possibile ottentere, in
media, prestazioni molto simili tra gli edifici originali e quelli generati. Tut-
tavia, abbiamo riscontrato alcuni problemi nelle prestazioni di esplorazione
quando l’edificio originale contiene un numero elevato di stanze non rettan-
golari, visto che sono individualmente più difficili da esplorare e non possono
essere ricreate con il nostro metodo, che gestisce solo stanze rettangolari.

I

Abstract

In the field of autonomous mobile robotics, testing platforms and algorithms
in real settings can be difficult for various reasons. A common solution is to
utilize simulations, which allow complete control over the entire setting of
the experiments. However, the results are truthful and can be generalized
only if realistic environments are used. Since retrieving real world building
floor plans is not an easy task, and in some applications a large number of
environments is needed, an alternative is to generate layouts in a procedu-
ral way. However, while multiple layout generation techniques have been
proposed, none of them focuses on recreating the features of real building
layouts while also being able to scale well to medium and large environments.

The goal of this thesis is to procedurally generate realistic building lay-
outs, which can be used as simulation environments to obtain performance
similar to those obtained in the original layouts. To do so, we impose that
the generated layouts share the same topology of the rooms of real world
building layouts. We formulate the layout generation as a MIQP problem
optimization, which minimizes the the deviation of the sizes of the rooms
from their values in the original layout, while enforcing as hard constraints
the same topology of the rooms as the original layout. We then show how the
proposed method is able to generate multiple large-scale realistic buildings.

To evaluate the building layouts we generate, we compare the perfor-
mance obtained by two experiments with simulated robots. The first is
based on the length of the paths planned between some rooms, while the
second considers the time and the length of the path traveled by the robot
to complete the exploration of the environment. Both experiments confirm
that it is possible to obtain, on average, very similar performance across the
original layouts and the generated ones. However, we found some issues with
exploration performance when the original layout contains a large number of
non-rectangular rooms, since they are individually more difficult to explore
and we can’t recreate them because our method handles only rectangular
rooms.

III

Contents

Sommario I

Abstract III

1 Introduction 1

2 State of the art 5
2.1 Autonomous mobile robotics 5
2.2 Experiments in robotics . 7
2.3 Layout generation . 9

2.3.1 Evolutionary computation 11
2.3.2 Treemaps . 15
2.3.3 Grammars . 16
2.3.4 Machine learning . 17
2.3.5 Operations research 18
2.3.6 Other approaches . 19

2.4 Summary . 20

3 Problem formulation 21
3.1 Research motivation . 21
3.2 Problem statement . 23
3.3 Method properties . 23
3.4 Summary . 24

4 Proposed solution 25
4.1 Proposed methodology . 25
4.2 Generation method . 29

4.2.1 MIQP problem . 29
4.2.2 Original method . 29
4.2.3 Proposed method . 31

4.3 Summary . 32

V

5 System architecture 33
5.1 System pipeline . 33
5.2 XML model . 34
5.3 XML parser . 36

5.3.1 Room rectangularization 36
5.3.2 Room variance . 38

5.4 Intermediate model . 39
5.5 Layout generator . 41

5.5.1 Model . 41
5.5.2 Implementation . 48
5.5.3 Cycle decomposition 50

5.6 Drawer . 52
5.7 XML Writer . 53
5.8 Summary . 54

6 Experimental results 55
6.1 Generated layouts . 55

6.1.1 Area control . 55
6.1.2 Generation issues . 57

6.2 Generation examples . 60
6.3 Simulated robot setup . 63

6.3.1 ROS . 63
6.3.2 Stage . 65
6.3.3 Exploration package 66
6.3.4 Navigation stack . 67
6.3.5 SLAM package . 67
6.3.6 Map preparation . 68

6.4 Planning experiments . 68
6.4.1 Office 1 . 69
6.4.2 School 2 . 71
6.4.3 Planning results considerations 73

6.5 Exploration experiments . 73
6.5.1 Exploration data overview 74
6.5.2 Exploration data analysis 74
6.5.3 Exploration results considerations 80

6.6 Summary . 81

7 Conclusions and future developments 83

Bibliography 87

VI

Chapter 1

Introduction

In the field of autonomous mobile robotics, testing platforms and algorithms
in real settings can be difficult for various reasons, like the cost and the
time required for setting up the robot and the complexity in recreating the
desired controlled conditions of the environment. To overcome these issues, a
common solution is to utilize simulations, which allow complete control over
the entire setting of the experiments. However, in order to obtain results
similar to those obtainable in real world situations, it is necessary to use
simulated environments that represent well the real ones in which the robot
is supposed to work.

As discussed by in [1], this is not usually the case, since most of the simu-
lated environments employed in robot experiments are based on non-realistic
layouts, like grid-based maps or labyrinths, which can be easily created in a
consistent number. A possible solution could be using, for experiments, en-
vironments inspired from real world existing buildings. However, retrieving
real world building floor plans is not an easy task, and in some applications a
large number of environments is needed. An alternative to get real floor plans
is to generate them in a procedural way. This can be a valid approach only
if the structure of original building layouts is maintained. While multiple
layout generation techniques have been proposed in different contexts, like
some based on machine learning approaches [2, 3] or evolutionary strategies
[4,5], none of them focuses on recreating the features of real building layouts
while also being able to scale well to medium and large environments.

The goal of this thesis is to procedurally generate realistic building lay-
outs, which can be used as simulation environments, where a robot can
obtain performance similar to those obtainable in the original layouts, when
considering simulated robot experiments. Since we aim to generate realistic
layouts with structural features similar to those of the real ones, we impose

1

that the generated layouts have the same topology graph of the original en-
vironments, which means that we use as an input to our method a graph
representing the connection between rooms. The generation method we uti-
lize is inspired and adapted from the one proposed in [6], which formulates
the layout generation as a MIQP problem optimization. In particular, we
consider as input for each generation a single original layout, represented in
a graph format. We then define the adjacencies between rooms, described
in the topology graph, as hard constraints of the problem, and minimize the
deviation of the sizes of the rooms from their original values in the input
layout. We found that our generation method can generate successfully also
large layouts, while its main limitation is that the rooms are restricted to a
rectangular shape.

To evaluate the realistic building layouts we generate, we compare the
performance obtained by two experiments with simulated robots performed
in them. The first is based on the path planning between pairs of rooms,
with an analysis of the lengths of the paths planned between them. As sec-
ond experiment, we perform repeated exploration runs on various generated
layouts and on their original counterpart. We utilize as performance metrics
the time and the length of the path traveled by the robot to complete the ex-
ploration of each environment. Both experiments confirm that it is possible
to obtain, on average, very similar performance across original layouts and
generated ones. This confirms our hypothesis that procedurally generated
buildings are realistic and are similar with their real counterpart. However,
we found some issues with exploration performance when the original lay-
out contains a large number of non-rectangular rooms. The reason is that
these rooms are individually more difficult to explore and we can’t recreate
them in generated layouts since our method considers all rooms as rectangles.

The thesis is structured as follows.
In Chapter 2 we present an overview of the state of the art of experiments

in robotics and of layout generation, starting with an brief introduction of
the main concepts of autonomous mobile robotics and then describing the
platforms utilized to perform simulated experiments. After that, we review
some of the most significant layout generation techniques, focusing on their
approach and their limits.

In Chapter 3 we introduce the context of the problem addressed in this
work, followed by its formal formulation. We also define the main require-
ments of our generation method.

In Chapter 4 we present an overview of the method that we propose
to perform the procedural generation of realistic layouts, focusing at the

2

beginning on the various phases of the technique and then on the specific
generation method we employ, presenting it also in its original formulation
as proposed in [6].

In Chapter 5 we describe the implementation of our system in detail,
focusing on each component and data structure utilized in the entire process.

In Chapter 6 we provide some considerations on our system, focusing on
the main issues found and presenting some examples of generated layouts.
We then introduce the setup utilized in the experiments, which are presented
afterwards along with their results and final considerations.

In Chapter 7 we present a summary of our work, the conclusions, and
some possible future developments.

3

4

Chapter 2

State of the art

In this chapter, we present an overview of the state of the art of procedural
layout generation, which is the task of creating the map of a building starting
from structural and topological parameters, and in particular of its appli-
cation to autonomous mobile robotics. The use of procedurally generated
building layouts could provide numerous realistic simulated environments
for testing and developing robots. Simulation tools in robotics are impor-
tant because allow to run algorithms in a controlled setting without the need
of a physical platform and environment. At first, we introduce autonomous
mobile robots with some of their most relevant features. Next, we discuss
experiments in robotics, identifying the important tools employed in this
field, and the issues that restrict their effectiveness. Finally, we review some
layout generation techniques, focusing on the approach they are based upon
and their limits.

2.1 Autonomous mobile robotics

Autonomous mobile robotics is the field that studies robots that are supposed
to move and act in a specific environment without the continuous interven-
tion of a human operator. When a robot needs to navigate in an environment
it requires a map, which is a spatial representation that includes obstacles
and walls to define where the robot can actually travel and where it can’t.
There are different types of maps. Three examples are provided in Figure
2.1, in which the same building is represented with metric maps. In Figure
2.1a it is reported the original floor plan of the building. An example of
metric map used as robot environment is pictured in Figure 2.1b. It is a
perfect information layout map, that describes the structure of the building
by defining the walls of the rooms. The example in Figure 2.1c is an oc-

5

(a) Original floor plan (b) Metric layout map

(c) Occupancy grid map

Figure 2.1: Example of office metric maps

cupancy grid map. As discussed in [7], these kind of maps are fine-grained
grids defined over the continuous space of locations. Each cell is associated
with an occupancy value, which describes the probability of that location to
be an obstacle. They are the common map representation used by robots
to navigate the environment. Usually the occupancy grid maps are 2D, but
the same concept can also be expanded to 3D worlds. However, one of their
main problems is the number of cells, since an high resolution of the grid,
while improving precision, also leads to significant computational expenses.

The map can be provided beforehand the run, or created directly while
traveling. In the first case the robot only needs a localization system in
addition to the navigation one, while in the second case a much more com-
plicated system is required since this problem is Simultaneous Localization
and Mapping. As discussed by Durrant-Whyte and Bailey in [8], this task is
based on a continuous learning of the map (both creating and updating it)
paired with a constant localization in it. The problem of navigating around
an unknown environment in order to collect enough information to create
a complete map is called exploration, and it is another task that is widely
studied in this field. Some examples of works that study this problem are
[9], [10], and [11].

6

2.2 Experiments in robotics

Both SLAM and exploration are some of the most complex and important
problems in autonomous mobile robotics. Their study and development de-
mand thorough testing. However, running a real robot in a real environment
requires both space and time to setup the experiments. A common solution
is the use of simulations, in which the algorithms can be tested on modeled
robots in a virtual environment, with a complete control of the entire setting
of the experiment.

A much more limited alternative to real and simulated runs (online exper-
iments) is the use of offline experiments, that are based on the prerecorded
data acquired by a robot in a specific environment. This approach excludes
any kind of interaction between the robot and the world, including also the
navigation itself, so it can’t be used to test for example exploration algo-
rithms, but only tasks that just require sensors readings like SLAM.

As discussed by Amigoni et al. in [1], offline experiments are used by
83.6% of the reviewed papers for SLAM evaluation. This can be explained
by the fact that offline experiments require the acquisition of the data only
once, reducing the overhead for the researchers, but limiting the choice of
the entire setting and platforms (map, sensors, robot, exploration and nav-
igation method, ...) that are made by the authors of the specific dataset
employed. Some examples of such datasets are Radish [12] and RAWSEED
[13, 14], which are both made by university researchers and are based on
campus buildings (mainly indoor environments). Considering the online ex-
periments, most of the publications employed simulations instead of real
robot runs. However, it is important to note that only 21.5% of the simu-
lated experiments used a real building as map, while in the other cases the
layout was based on non-realistic maps, usually grid-based and handcrafted
to test specific isolated features, like closed loops or labyrinths.

In fact, even if simulations have the advantage of allowing experimenta-
tion with almost any kind of environment, they can only be truthfully useful
and hopefully generalizable if a realistic layout is used, as otherwise the fea-
tures present in a certain custom map may be totally different from those of
a real building.

There are some datasets that provide a very detailed 3D representa-
tion of a small amount of buildings, like AI2-THOR [15] and 2D-3D-S [16].
These systems are more indicated for applications that require high fidelity
in both visualization and interaction between the world and the objects of
the simulated world. However, the maps that they provide are very limited
in number.

7

When testing SLAM or exploration algorithms the focus is typically on
the map itself. In these cases, there are more suited frameworks like Stage
[17], a lightweight 2D simulator. A bitmap image provided by the user is
used to create the environment as input map, while both sensors and actua-
tors are already implemented with various models. The user can also create
plugins to expand and customize the capabilities of the engine and of the
models provided. A more advanced simulator is Gazebo [18], which includes
both high-quality graphics and a complex physic simulation based on Open
Dynamics Engine1. There is also an improved sensors and actuators model-
ing, that allows accurate and extensive interactions between the robot and
the environment. Both these systems can also handle multi-robot settings
and are usually utilized in conjunction with ROS.

ROS (Robotic Operating System) [19] is a framework employed in robotics.
It can be used seamlessly with simulated robots or with real ones, since it
provides both hardware and software abstractions, organizing the single ele-
ments of the system in nodes, which operate individually and communicate
between them with a message-passing protocol managed directly by ROS.
There is a package manager with a large amount of already implemented
algorithms and real hardware controllers. The distributed nature of ROS
also allows the execution of a complete system on different devices. An ex-
ample is a real robot with limited computational capabilities that relies on
an external computer to perform SLAM and exploration tasks.

Stage and Gazebo can be used to test a large variety of maps and algo-
rithms. To do so, a map layout is needed to be recreated in the simulated
world. This can be done both by handcrafting a bitmap file or by using
a dataset with specific buildings already encoded in a certain format (not
necessarily in image files ready to be utilized directly in a simulator). These
collections of floor plans are usually composed of layouts of the university
campuses where the researchers who created the dataset work. Some exam-
ples are the MIT [20], the KTH [21] and the HouseExpo [22] datasets. In
particular, the MIT and KTH datasets are based on the buildings of their
respective university campuses and are encoded in XML files with the tech-
nique proposed in [23]. This format is based on the concept of graph with a
floor as root of the XML, which contains the various spaces (rooms, the nodes
of the graph) with a label to represent their type (e.g., corridor or classroom)
and their geometrical structure, and the portals that consist of connections
between two spaces (like doors, the arcs of the graph). Their main limitation
is that even if they contain a relative large amount of floor plans, they are

1http://www.ode.org

8

very homogeneous as they include very similar layouts multiple times, and in
particular they are all campus buildings, so not representative of the various
classes of maps.

According to Amigoni et al. in [24], it is possible to use simulations in the
evaluation of SLAM algorithms and obtain results comparable to real robot
runs. In particular they propose a system to automate experimental runs in a
simulated environment, overcoming in this way also the issue of variability of
results (that is present even with real robots). This result is very important
as some of the metrics used to evaluate SLAM algorithms require additional
data to supplement those provided by the onboard sensors. In fact, the
metric [25] that they use needs the ground truth information of the robot
pose, which is the real position of the robot in the environment. The robot
computes its estimated pose with odometry, which is the integration of the
distance covered by wheels over time. However, the sensor readings from the
wheels are not very precise, so the cumulative error can increase a lot over
time. As discussed in [7], it is possible to improve the localization provided by
the odometry in a probabilistic way, using data received from other sources,
like laser sensors. Still, this corrected pose is still an estimation, so it can’t
be used as ground truth. In simulated settings it is easy to get the ground
truth data of the robot position, while in a real setting with a physical robot
it requires the use of complex and costly equipment, like the OptiTrack2

system employed in [24] and the hardware utilized in [26].
However, an intrinsic limitation of their automated evaluation approach

is that the simulated maps, as already reported in [1], need to be realistic
in order to be actually significant in relation to real world environments.
In particular, it is underlined the importance of the topological structure
of the map, which is the adjacency relation between the various rooms of
the layout. Another limitation is the quantity of realistic maps available,
since we need a large amount of them to obtain consistent results. However,
this is not always possible to do as it is difficult to retrieve a large dataset
composed of maps that are both realistic and heterogeneous.

To solve this problem, we decided to increase the number of available
realistic maps by generating them in a procedural way.

2.3 Layout generation

In this section we introduce the task of layout generation, and then present a
general, not exhaustive, collection of methods that address this task divided

2https://optitrack.com/

9

by approach, focusing in particular on how they would behave when applied
to generate layouts with specified features. The layout is a representation
of the floor plan of a building. While the map is focused more on the struc-
ture of the walls and of other obstacles, like furniture, the layout includes
information about the rooms, like their geometry, their function, and their
connections.

The procedural layout generation is a technique that, starting from an
initial set of input parameters, produces as output a layout that follows as
much as possible the properties defined by the input data. The nature of the
input parameters depends on the method itself and on the representation
format used for the layout. Typically, the parameters are topological and
structural. The topological parameters are the adjacency relations of the
rooms, representing the connections between them, which are usually the
doors. These parameters are commonly expressed in a graph format, in which
the nodes represent rooms and the edges the connections between them. The
structural parameters are the geometrical and functional properties of the
rooms, like their sizes, their aspect ratio and their type.

As we want to generate realistic layouts, we need a generation technique
that allows enough control on the result, since we want to impose the features
that would make the resulting layout realistic.

As discussed in [27], the layout generation topic is not only considered
in the field of Computer Science, but also in Architecture, so there is a large
variety of methodologies. Some of them require a lot of interaction by the
user as their main goal is more to assist an architect than to automatize the
entire creation process.

Even in pure generative techniques there are different goals. In fact,
some methods are focused towards generating layouts with a large amount
of structural details, like rooms and facades forms, while others are aimed
to keep a topological resemblance with the input data provided.

In addition to that, there is also a difference in the quantity of input
data required by the various generation processes. In some cases a lot of
information and parameters are provided to create a layout that adheres
to most if not all of the initial constraints, which can be for example the
requested adjacency of the rooms. In other cases just few basic parameters
are needed by the system. This increases its degree of freedom but also allows
for less control on the final solution by the user. In fact, in some works the
explicit goal is to try to recreate a realistic building, by strictly following the
parameters provided by an expert user or by another layout, while in other
approaches the objective is to create quickly a lot of plausible buildings,
for example to populate a large 3D scene, disregarding many details of the

10

generated floor plans.
As last remark, most of the works are based on small buildings, usu-

ally residential houses, without focusing on the scalability of the method to
medium and large layouts. It is also clear that some approaches can handle
only problems with a very restrict number of rooms, at times even stating
the limit themselves or showing the largest building produced.

In the following subsections we analyze some of the most interesting and
studied approaches for the layout generation problem, dividing the works by
methodologies.

2.3.1 Evolutionary computation

As presented in [28], evolutionary computation is a broad category of algo-
rithms that are based on the idea of population composed of individuals,
where each one contains a possible solution to the problem, and at each gen-
eration (iteration of the algorithm) the population is updated. This happens
with two operators, mutations and selection. The first acts on each individ-
ual, changing in a random way their embedded solutions by a small margin,
while the second operates on the population in its entirety, by removing the
worst individuals after an evaluation with s fitness function, that is a cost or
utility function employed to rate at each iteration the various solutions and
to check the termination condition (if it is not just set as a certain number
of generations to run).

These methods perform well especially with a very large search space,
that is the set of possible solutions that can be formulated and from which
the best one has to be found. There are multiple variants of evolutionary
techniques, like genetic algorithms and evolutionary strategies. Some ap-
proaches that are based on evolutionary computation are reviewed in [29]
and [30]. We present here some interesting works, divided by method.

Genetic algorithms

Genetic algorithms (GA) are a very popular optimization and search method-
ology that models a possible solution of the problem, called in this case geno-
type, with a particular low-level encoding format that is usually binary, so
with a sequence of bits. As reviewed in [31], the genotype of each individual
is modified by operators to improve the fitness function. In the general case
genetic algorithms have three operators. The first, selection, chooses some
individuals (typically the most fit) to be bred, while the second, crossover,
creates new individuals by combining the two genotypes of the selected par-
ents with a certain strategy. An example of crossover from [31] is pictured in

11

Figure 2.2: Example of crossover

Figure 2.2, where the genotype of the parents is transferred to the children
by copying directly the genes until a certain point, after which the target of
the copy is exchanged between the offspring. There are also more complex
strategies to combine two original genotypes. The third operator is mutation.
It operates changing the genotype locally in a certain random fashion by a
small amount, acting directly on the genotype string. After the application
of the operators, there will be new individuals that replace the original ones
in the population. However, it is possible to adopt an elitism method that
carries to the new generation the best individuals in any case, guaranteeing
that the value of the fitness function won’t decrease over time since at each
generation the best solutions can’t be lost.

An example that applies this technique is [32], that uses GA in different
contexts. In fact, the goal is to generate a multi-level flat by producing ini-
tially the single floors and then, with the interaction of a user, combine them
to form the entire building. This work states that the maximum number of
rooms of a single floor that can be generated is 11.

A more advanced use of GA is in [33], where the layout representation is
based on a grid and the rooms are considered spaces that occupy a certain
amount of adjacent cells. A complex fitness function tries to enforce the
input parameters, but it can’t guarantee to always satisfy them all. In the
corresponding thesis [34] it is presented the example in Figure 2.3, in which
on the left it is pictured the generated office as retrieved from the genetic
algorithm process, while on the right it is shown the same floor plan with
some post correction steps. This work states that medium/large layouts are
impractical to solve because of the exponential growth of the search space
(the office in Figure 2.3 is considered one of the largest layouts that is possible
to generate with this method) and even in smaller cases it is not guaranteed
that all objectives are actually satisfied.

Other evolutionary algorithms

Evolutionary algorithms are the superclass of genetic algorithms, in which
there are various techniques that are based on the same concept of pop-
ulation, but that handle the genotype representation and the associated

12

operators in a different way. The reason why genetic algorithms are the
most famous and common ones is their low-level encoding of the solution,
which increases the generality of the method since don’t require a complete
understanding of the problem to be solved.

There are various works that utilize a particular kind of evolutionary
algorithm, like in [35], where the goal is to create an interactive application
that generates some unrefined layouts using generic parameters and an input
target building. In particular, the system compares local neighborhoods
similarity between the given floor plan and the one that is being generated,
and utilizes this value as one of the multiple objectives of the fitness function.
The operators employed are local transformations of the rooms, that allow
movements, rotations, and swaps. The results are unrefined because they
are meant to be starting drafts for architects.

Another system is [36]. The peculiarity of this work is that the fitness
function also includes a similarity term based on the user ratings of previously
generated layouts. One of the main issues of this method is the difficulty
in the creation of a large dataset of rated environments, which must be
provided in a considerable number while keeping the scores assigned in a
consistent way during the entire process. Moreover, this strong dependence
on user ratings can misguide the generation towards solutions that are not
necessarily good but just contain particular features present in other highly
rated layouts.

Evolutionary strategies

Evolutionary strategies (ES) differs from the previous evolutionary tech-
niques because they are not based on the idea of genotype and breeding
(with crossover), but more on the iterative application of selection and mu-
tations. There is still a population of individuals, each one of them with a

(a) Original (b) Corrected

Figure 2.3: Example of office generated with a genetic algorithm

13

candidate solution evaluated with the fitness function, but in this case the
individuals are not combined between them. Instead, they are only mutated
with very problem-specific operators. The selection guarantees that par-
ticularly bad solutions are discarded (and replaced with freshly generated
ones). The mutations can still perform modifications that decrease the value
of a solution, so that it is possible to evade from local maxima, which are
sub-optimal solutions that can’t no longer be improved by moving locally.

There are two very promising layout generation systems that follow this
approach. The first, called Evolutionary Program for the Space Allocation
Problem (EPSAP), is proposed by Rodrigues et al. in [4,37], where an evolu-
tionary strategy is coupled with a stochastic hill climbing (SHC) technique,
which is a local optimization algorithm that tries to improve a given function
with small movements, but not necessarily in the direction of the best local
improvement. The evolutionary strategy guarantees the constant presence of
multiple feasible solutions, one for each individual, and applies operations to
the layouts on a global scale, aligning walls and assuring the feasibility of the
layout. These operators are applied at each ES generation, but only after the
SHC optimization, which acts on a local scale to manipulate geometrically
the rooms. The system accepts as input both geometrical and topological
parameters. A further improvement of this method has been proposed with
enhanced capabilities, among which the generation of multi-level buildings,
in [38], while a practical application of it, with also the purpose of optimiz-
ing thermal performance of the generated layouts, is [39]. An example of
the enhanced method in [38] is reported in Figure 2.4, where a medium size
building is successfully generated.

The second method is proposed by Guo et al. in [5]. Even in this case
the procedure is divided in two steps, but here they are purely sequential.
The first step is a multi-agent system finalized to find a feasible layout for
the rooms according to the topology constraints. This system employs bub-
ble agents that can be spheres or capsules (the system considers multi-level
buildings) and, by the application of interaction rules (attraction, repulsion,
...) among them, provides in the end a certain topological layout mapped in
space. The second part is the evolutionary strategy, that acts on the con-
version of the previous layout to a grid-based representation and optimizes
the entire building manipulating the geometrical features of the rooms with
two specific operators. The first is the local movement of a boundary of a
room, while the second is optional and is based on the swap of two rooms
in the layout. The fitness function of the ES is calculated with a weighted
sum of four criteria (topology, size, aspect ratio, and building shape). The
main issues of this approach are scalability, the grid-based model, and that

14

Figure 2.4: Example of building generated with the EPSAP method

the evolutionary strategy algorithm used is too simple and can get stuck in
local maxima.

2.3.2 Treemaps

Treemapping is a method to subdivide a rectangle in a hierarchical way by
nesting tiles (still rectangles) according to a certain derivation tree and it
is typically used to visualize data in a clear and expressive way. Squarified
treemaps, proposed in [40], try to solve an issue of the original concept, re-
ported in Figure 2.5, which is the presence of tiles with a very large aspect
ratio, by using a more complex recursive algorithm. These structures are
used in [41] to represent the layout of a house, which is generated by sub-
dividing the initial boundary in areas according to their use (private, social,
and service area) and then subdividing again the regions to create the rooms.
In this method there are input parameters to assure the sizes and the ad-
jacency of rooms, which guide the subdivision in tiles and the allocation of
the rooms to each one of them. Once the treemap has been generated, the
system proceeds with the creation of doors and corridors, designed consider-
ing internal walls and the shortest path on them that connects the rooms as
defined in the input data, even if the resulting corridor has a strange form.
This method works only for (very) small layouts in which there is a clear sub-
division of regions (that can be expanded over the three areas considered).

15

Figure 2.5: Example of derivation of a treemap from a tree

In fact, this framework is conceived to handle real-time house generations.
A much more advanced approach based on treemaps is [42], in which

rectified treemaps, that are similar to squarified treemaps and guarantee cus-
tomized aspect ratios and also area proportions among tiles, are used as basis
for a genetic algorithm optimization. In this case the scalability is better,
but there are still limits in the constraints definition and in the polishing
required to get the final output. One example of layout generated with this
method, taken from [42], is in Figure 2.6.

2.3.3 Grammars

Grammars in theoretical computer science are sets of defined rules used to
form valid strings according to a certain defined syntax. They don’t encode
the meaning (semantics) but only the structure.

One of the first works to utilize grammars to generate layouts is [43]. The
proposed approach is to capture a certain architectural style by creating a

Figure 2.6: Example of office generated with the Evolutionary Treemap method

16

language based on basic shapes, which can be combined using grammar rules
to create an entire building. The grammar rules are defined manually by an
expert. In particular, it is presented as example the generation of a Palladian
villa.

In general there are two main ways grammars can be employed in layout
generation. The first is to define a grammar to describe the structure of
a building and using it directly to generate some solutions (which are syn-
tactically valid strings). A method proposed in [44] is based on an initial
derivation of a certain number of layouts, from which the user can choose
one to consider as final result or to further modify with the same set of
rules. A similar system developed by Leblanc et al. in [45] is based on a
programmatic way to apply derivations, where the input data is a program
that defines the order and the conditions of the operations to be applied to
the layout.

The second approach is to use as in the previous case the grammar to
define the structure of the layout, but then to utilize a particular algorithm
(usually a genetic one) to apply rules like in [46] or to represent the building
itself as in [47], where the walls are directly encoded as genotype. The fitness
functions are utilized to evaluate the quality of the structure of the layouts,
like the respect of the adjacency and the sizes of the rooms. In both cases
only small houses can be generated.

Some of the main issues of these methodologies are the difficult formu-
lation of high level constraints in a clear and direct way, and the scalability
with buildings of medium/large sizes (at least in an autonomous way).

2.3.4 Machine learning

Nowadays machine learning techniques are studied and employed in a large
number of fields. Machine learning utilizes statistics to create models that
can learn some specific features from provided data, and later perform pre-
dictions on similar data. There are examples of applications also to the
layout generation problem.

Some of these approaches, like [2] and [3], are based on Bayesian net-
works to learn layouts, but with different scopes. Bayesian networks [48]
are models that employ Bayesian inference to predict a certain event given
the probability that another one happened. In the first case the predictive
model is trained with a provided dataset in order to learn the topology and
the basic geometrical features of the rooms and produce a so called architec-
tural program, that is the layout specifications. The architectural program
is later optimized with the Metropolis-Hastings algorithm [49], a statistical

17

sampling method to estimate a certain distribution, using local operations
that manipulates the layout by sliding walls and swapping rooms. A complex
cost function tries to guide the optimization towards the desired architec-
tural program. Differently, in [3] the Bayesian network is used to predict the
rooms sizes and positions which, after a manual placement in the layout by
the user, are further optimized with a simulated annealing approach in two
steps. Simulated annealing [50] is a probabilistic technique used to approxi-
mate in a fast way the global optimum of a function. The first step involves
local operations to improve the position and orientation of the rooms, while
the second step refines the sizes. In both cases a relatively large dataset is
required to train the model.

A particular approach has been proposed by Feng et al. in [51], in which
the focus is optimizing large layouts according to some crowd flow metrics,
that are based on the potential movements of people in the environment. A
regressor [52], which is a predictor that learns a given function, is trained
with the proper complete agent-based simulations to evaluate in a fast way
an approximation of their costs instead of running dedicated simulations each
time. This improvement is used during the optimization performed with a
Metropolis-Hastings algorithm, that applies local operations and evaluates
at each generation the cost of the layout using the regressor. This evalua-
tion would be impracticable if the entire agent-based simulations had to be
repeated at each iteration.

2.3.5 Operations research

A different and interesting approach to the layout generation problem has
been proposed by Wu et al. in [6]. This method is based on a hierarchical
framework that employs a Mixed Integer Quadratic Programming (MIQP)
formulation, which is solved with an external solver (they used Gurobi3).
The Mixed Integer Quadratic Programming is an operations research prob-
lem that contains both integer variables (in this case mainly binaries) and
some particular quadratic formulations of the objective function. This sys-
tem accepts as hard constraints the building boundary, the adjacency be-
tween rooms, and some geometrical values like min/max aspect ratio and
sizes, while, as soft constraints, the target sizes of the rooms that the opti-
mization tries to reach. This method handles only rectangular-shaped rooms
in its basic formulation, but scales reasonably well with large layouts even
if, for the generation of large buildings, a hierarchical framework is used.
In this latter case the optimization is performed at different levels, at first

3http://www.gurobi.com

18

Figure 2.7: Example of building generated and later improved with the MIQP method

creating some high-level regions and then formulating other sub-problems
in each space and so on until the desired degree of detail is reached. One
downside of this hierarchical framework is that the problems have to be re-
formulated each time in a dedicated way, even though this allows a complete
customization of each level of generation. The MIQP problem is formulated
by representing each room with its position (coordinates of the lower-left
angle), size, and orientation (vertical or horizontal), while the constraints
guarantee input parameters application and other structural features, like
non-overlapping. A hierarchical approach is used also in refining the layout
after a generation, formulating in an autonomous way the sub-problems re-
quired to close some holes in the building by updating the nearest rooms,
which are decomposed in two rectangles in order to have a more complex
structure that can be exploited. In Figure 2.7 it is reported an example
taken from [6] of a building generated with this approach and further im-
proved with the rooms decomposition and updating.

2.3.6 Other approaches

The layout generation problem has been studied also with other dedicated
approaches. In [53] two algorithms are proposed to generate buildings in real-
time. The first method is very basic and produces only simple houses, while
the second generates at first a graph, and then places it in the space. A final
procedure to create internal walls is not implemented but only described.

In [54] and [55] some systems are presented that are intended more as
interactive guide for architects rather than generative frameworks. In the
first case a knowledge base is created by discussing with experts, which will
be later exploited by the system to automatically check if the inserted layout
is feasible. In the second paper the system creates the starting layout and

19

offers hints and information each time the user interact with the layout. To
do so, the system considers various constraints and costs (the work is focused
on the minimization of cuts of pre-cast concrete slabs required to realize the
building).

Another different approach based almost entirely on graphs is [56], in
which a planar dual graph is generated from the starting floor plan. Once
the layout is represented in this way, it can be subjected to automatic or
user-based transformations, like addition or deletion of single rooms. At the
end of the entire process, the graph can be reconverted in a proper floor plan
for final refining.

2.4 Summary

In this chapter we presented various approaches and techniques related to
robotic experiments and to layout generation methods. In the first part we
introduced autonomous mobile robots. In the second we highlighted the im-
portance of simulations for robotic development and their limits, which are
specifically related to the use of realistic buildings. At last, we discussed
various layout generation techniques, underlining that just few of them can
actually handle specific input parameters to create mid/large scale environ-
ments while allowing the user to control the presence of particular features
in the generated buildings.

20

Chapter 3

Problem formulation

In this chapter, we present a formal definition of the problem addressed in
this thesis and the approach proposed to solve it. We start by presenting the
research context of this work, focusing in particular on the definition we use
of realistic simulation of indoor buildings and why such realistic simulations
are needed in robotics. We then set the goal of the thesis. Afterwards, we
introduce the main characteristics required by a system that would be able
to tackle the formulated problem.

3.1 Research motivation

In the field of autonomous mobile robotics, as discussed in Chapter 2, simula-
tions are a fundamental tool for researchers and developers to test platforms
and algorithms in a cheap and controlled way.

As reported in [1], simulations commonly employ non-realistic environ-
ments like grid-based closed loops and labyrinths. There are also competi-
tions based on simulated rescue operations, in which the goal is to explore a
certain unknown environment in order to find and rescue survivors. However,
also in these cases the maps are handcrafted and not always with realistic
buildings as target. One of these competitions is the RoboCup Rescue Sim-
ulation Virtual Robot League1. In Figure 3.1 are shown two examples of
maps used in the 2019 edition. These layouts are clearly not realistic.

Simulations can be utilized to train and test robots. However, if the
environments employed are too simple and don’t contain real building fea-
tures, then the robots can’t reproduce the same performances in real world
situations. On the contrary, using realistic layouts in simulations leads to
comparable results as evidenced in [24].

1https://rescuesim.robocup.org/

21

Figure 3.1: Example of maps used in the RC2019RVRL competition

The easiest possibility for using realistic layouts in simulations is to use
floor plans of actually existing real world buildings. Unfortunately, even if
converting real floor plans to layouts usable in the various robot simulators
is not a particularly difficult task, retrieving a large amount of real building
floor plans is not always easily possible in practice for their availability.

This is particularly true when hundreds, or even thousands of different
buildings are required for testing a given methodology, as in deep reinforce-
ment learning methods. One of the proposed solutions is to directly use
floor plans of entire university campuses, which are available to researchers,
as is done with the MIT campus dataset [20] and the KTH one [21], that
overall contain 197 buildings and 940 floors. However, as discussed in [1],
one of their main problems is the homogeneity of the included layouts, which
in these particular cases is caused by the repetition of very similar building
floor plans, since these datasets are both based on university campuses.

As previously seen in the state of the art of layout generation discussed
in Chapter 2, there are different interpretations of what a realistic layout
is. For example, the concept of realistic can be intended as representing in
a good way the external shape of a building or following the rules specified
by an expert. Another definition of realistic can be derived from [1], in
which the structural realism of a map is discussed. We decided to adopt this
concept, that is based on both structural and topological features that must
be consistent between real buildings and the ones used in the simulations.

22

Figure 3.2: Layout with corresponding graph

3.2 Problem statement

The goal of this thesis is to generate in a procedural way realistic building
layouts, so that it is possible to increase the number of available environments
for simulated robotic experiments, while keeping the same performance ob-
tained in real layouts. To do so, the generated layouts should be similar
to real ones. Because of that, we consider as realism the correspondence of
structural and topological properties between a real building and the one we
generate.

As input data, we assume to already have a graph representation of the
original floor plan. In particular, we utilize as input a graph representing
the geometrical structure and the adjacency relations of the rooms. It is
created from an original building floor plan and it still contains the position
of every element (e.g., walls and doors) of each room. There are various
techniques to create this kind of graph, like [23]. We utilize the same graphs
used in [57], from which an example is reported in Figure 3.2. In this format
there are also encoded the types of the rooms, represented in the figure as
different node symbols. At the end of the process, we provide the generated
layout in the same format of the input, which contains all the information
about the structural elements. In this way, it is compatible with any method
that already accepts the original graph format, while allowing it to be drawn
directly in order to be used in robot simulations.

3.3 Method properties

In order to produce realistic buildings as output, our system needs to possess
the following properties.

23

In contrast to other layout generation techniques, which either require
a large dataset of floor plans to learn or architectural rules to be directly
inserted by experts, our method should be usable by robotic researchers
with just a small amount of real building plans available. These floor plans
will constitute the foundation of the generative process. In this way, the
availability of a few dozen floor plans could be used to generate hundreds or
thousands of them. To do so, the objective is to be able to generate multiple
different environments for simulations starting from just a single original
building plan.

The generation method doesn’t necessarily need to generate new envi-
ronments in real-time, as is often the case within the field of procedural
content generation. Our goal is to generate mid/large layouts that reflect
in an accurate way features of real buildings, rather than to populate large
scenarios with many simple ones. Still, since the main idea is to increase the
number of available floor plans, the system should take a reasonable time to
produce an output, possibly in the order of minutes.

The fundamental feature that we want to guarantee is the topological
structure, that is the adjacency between rooms. The structural features,
considered as the geometrical properties of the rooms, are also important but
not as much as the topology. In fact, it is not strictly required to generate
rooms with complex structure and even rectangles are fine. For our intended
application, what is actually important is that the sizes of the original rooms
are maintained to a certain degree in the generated layout.

Another important property of the system is the compatibility of both
input and output formats with other common datasets, like the MIT and
KTH ones, which follow the format presented in [23]. In this way, these
datasets can be used as input to generate thousands of buildings.

In general, there is no need to generate multi-level buildings but only
single-level floor plans.

3.4 Summary

In this chapter we introduced the problem of generating realistic layouts for
simulation purposes. Next, we set the goal of the thesis and specified the
input and output of our system. Finally, we defined the properties that must
be respected by a generation system to be used for our purposes.

24

Chapter 4

Proposed solution

In this chapter, we propose a method for addressing the problem defined in
Chapter 3 by providing an overview of the system we develop to perform the
procedural generation of realistic layouts of indoor buildings.

4.1 Proposed methodology

Since the topology structure, namely the connection between different rooms,
is the most important feature that we have to guarantee in the generated
layouts, we base our approach on the graph representation of the original
building.

As discussed in the last chapter in Section 3.2, we start from a graph
representation of the original building floor plan. The problem of creating
this graph from a building floor plan has already been addressed in previous
works, like [23] and [58]. In particular, we consider a slightly modified version
of the MIT format, which is still based on a XML representation of rooms
as spaces connected by portals. In fact, we can also adapt our parser to use
their datasets. In Figure 4.1 it is reported a fragment of the XML graph of
the layout of a school, where it is possible to see the definition of a room (the
space element) that still represents the original floor plan, since it includes
the position of the room and its structural elements, like the walls.

The input XML layout is processed into a plain-text file, which is the
proper graph representation that we utilize as layout specification for the
generation process. It includes the rooms sizes, their aspect ratio, and the
adjacency between them. This format can be used to modify the layout
specification or even to create a new one by hand. It is also possible to
manually add specific constraints regarding the position of rooms in the
generated layout. An example of an intermediate model file is in Figure 4.2.

25

Figure 4.1: Fragment of the XML model of a layout

26

In this case it is possible to see the definition of the rooms with their sizes
and their type. The boundary is the space available to generate the layout,
and corresponds to a rectangle with the specified weight and height. At
the end of the file there is the proper topology graph, represented as a list
of adjacency between rooms, with additional information about the specific
connection.

Figure 4.2: Fragment of the intermediate model of a layout

The intermediate model is used as input data for a layout generation
technique inspired and adapted from the one proposed in [6], which is based
on a MIQP formulation optimized with an external solver. The choice of
starting from this method is motivated by the fact that such approach scales
well even to medium and large layouts, and the definition of the constraints
in a very explicit way can be used to guarantee that the generated building
respects entirely the topology structure considered in input. Our formulation
can handle only rectangles as rooms. This is not an issue for us since we don’t
care too much about particular shapes of the rooms, as stated previously in
Section 3.3.

At the end of the generation process, the layout we obtain is drawn and
converted to the same XML format utilized for the input.

The various phases of our method are reported in Figure 4.3. In Figure

27

(a) Original floor plan (b) Original layout in graph format

(c) Topology graph (d) Generated output

Figure 4.3: Phases of our method

4.3a is shown the floor plan of the original building. Its conversion into
the XML graph format is not directly considered in this thesis. In Figure
4.3b is pictured this graph model, which can be utilized to draw each room
with the same location and structure of the original floor plan. Between the
rooms, it is possible to see points that represent the portals, that are the
connections between rooms (e.g., doors or passages). In Figure 4.3c is shown
the topology graph of the layout, which is part of the intermediate model
along with the sizes of the single rooms. In the figure it is possible to see the
nodes of the graph colored according to the room type. The corridors are
red, the entrances are yellow, and the generic rooms are blue. The result of
our generation process, that is stored in the same graph format of the input
layout, is displayed in Figure 4.3d.

In the following section we present the generation method, while in the
next chapter we will discuss the complete system in detail.

28

4.2 Generation method

Considering the state of the art of layout generation techniques discussed in
Section 2.3, we found that most of them are not adequate for our goal, since
they can’t handle mid or large layouts and enforce all the input constraints
at the same time. The method we decided to employ is based on the one
proposed by Wu et al. in [6], which is based on the formulation of the layout
generation as a MIQP problem.

4.2.1 MIQP problem

In the operations research field, the Mixed Integer Quadratic Programming
(MIQP) problem is a variant of the Mixed Integer Programming problem.

The formulation of an optimization problem is based on the definition of
variables, which can be continuous or integer. The solving methods involve
finding the value of the variables that either maximize or minimize a speci-
fied objective function while satisfying all the defined constraints, which are
conditions that define the feasible combinations of values of the variables.
The objective function is designed to reflect the goal of the specific situa-
tion for which the optimization problem is formulated. Since there are many
complex methods to solve these problems, it is common to use solvers, which
are mathematical software with various algorithms already implemented in
a very efficient way.

The two main characteristics of the MIQP are the possibility to work
with both continuous and integer variables, and that the objective function
can be quadratic. An overview of quadratic problems can be found in [59]
and [60]. Like in the linear case (MILP), the most common solving method
of these problems is based on branch-and-bound [61].

4.2.2 Original method

As previously introduced in Section 2.3.5, the method proposed in [6] utilizes
a MIQP optimization problem to generate the layout in a grid-based space.
The input data required is the list of the rooms, considered as rectangles,
with their target size (width and height), and their minimum and maximum
aspect ratio. The aspect ratio is the ratio between the width and the height
of the room, or viceversa, since the value is always considered ≥ 1. Another
input that must be defined is the boundary of the layout, which is provided as
a closed line on the grid. These are the mandatory information required. It
is possible to specify also the adjacency between rooms, the absolute position

29

of a room in the space, and the adjacency between a room and the boundary.
In the basic formulation, each room is defined by five variables:

• x : integer variable that specifies the position of the bottom-left corner
of the room along the x axis (horizontal).

• y : integer variable that specifies the position of the bottom-left corner
of the room along the y axis (vertical).

• w : integer variable that specifies the width of the room, which is its
size along the x axis.

• h: integer variable that specifies the height of the room, which is its
size along the y axis. In the original paper it is called depth.

• o: binary variable that specifies the orientation of the room, which can
be either vertical or horizontal.

The problem is based on finding the best allocation of rooms in the space
defined by the boundary. This is performed by considering the objective
function as the sum of two quadratic terms, which respectively control the
total filling of the boundary and the closeness to the target sizes.

The validity of the generated layout is ensured by two constraints. The
first imposes that every room is completely inside the boundary, while the
second guarantees the non-overlapping of the rooms.

To satisfy the additional requirements, like the adjacency of rooms, there
are other constraints. The most important are the aspect ratio constraints,
which enforce the respect of the minimum and maximum values defined as
input by considering the width, the height, and the orientation of the room,
and the adjacency constraints, which impose the overlapping of the two
specified rooms which, combined with the non-overlapping constraints, lead
to the overlapping of just their borders.

The method can be expanded with a hierarchical framework, which allows
to improve the details of single rooms and to generate large layouts efficiently.

The concept of improving rooms is utilized to close holes in the layout. It
is based on the decomposition of the rooms around the hole into multiple rect-
angles. In particular, each room is considered as the union of two rectangles
of the same size, obtained by dividing the original room along a random di-
rection. A new optimization problem is formulated on this local sub-domain,
using additional constraints to restrict the possible modifications of the new
layout with respect to the initial situation. With this process, it is possible
to obtain rooms with non-rectangular shapes.

30

The generation of large-scaled layouts is based on separating the complete
generation into multiple problems. The first one is used to divide the initial
boundary into macro-regions, which are later considered the boundaries for
other problems. Utilizing this iterative process, it is possible to generate
very large layouts with many simple optimization processes.

The formulated generation problem is very hard to solve, since there are
many variables and the search space is huge. However, it is possible to accept
sub-optimal solutions if they fulfill all the constraints and are obtained in a
reasonable time.

4.2.3 Proposed method

The method we propose is based on the same mathematical formulation,
but with continuous variables instead of integer ones. Since we need to
guarantee the topological and structural properties of the original layout,
we always employ the constraints to control the adjacency, the size, and the
aspect ratio of the rooms. In fact, our input data contain all the adjacency
relations and, for each room, also the minimum and maximum values for
both the size and the aspect ratio. We consider the boundary only as a
rectangle, while in the original formulation it could have complex shapes.
The two reasons for this are that the layout specification is prepared in an
autonomous way from an input layout, and that setting particular shapes
of the boundary would restrict the generation process itself. However, it is
still possible to manually add obstacles in the intermediate model in order
to model the boundary in a specific shape.

Since the method already scales well on the number of rooms, we decided
to not implement the hierarchical framework.

Instead, we found difficulties in finding solutions in reasonable time when
cycles are present in the layout graph. To mitigate this issue, we develop a
cycle decomposition technique that formulates in an autonomous way a local
sub-problem around a cycle, and then utilizes the found solution to help the
complete generation.

We also added parameters to account for the wall thickness and variable
sizes of the doors between the rooms.

Since our formulation includes more constraints than the original one, the
optimization process is typically harder to solve. For this reason, we added
parameters to the objective function that allow the user to define weights
for specific rooms, and in this way to control implicitly the optimization
performed by the solver.

31

4.3 Summary

In this chapter we proposed a method to generate in a procedural way re-
alistic layouts. Our technique is based on the extraction of the topological
and structural features from the original plan. This process is performed by
creating a graph representation of the original layout, which is saved in an
intermediate file. This model, that can be manually modified or even created
from scratch, is then used as input data for a generation method based on
[6], which produces as output a new layout that is guaranteed to respect the
topological structure defined in input.

32

Chapter 5

System architecture

In this chapter, we describe the implementation of the system proposed in
Chapter 4. We start presenting a general overview of the system architecture,
focusing on the pipeline structure and the layout format involved at each
step. After that, we discuss each component of our software, highlighting its
role in the generation process, the encountered problems, and how they have
been addressed.

5.1 System pipeline

Our system can be described with the pipeline pictured in Figure 5.1. The
circles represent the data structures employed for the layout, while the
squares are the components that operate on them, for example with con-
versions or generations. Our system starts from an input layout in XML
format that is used for generating new building layouts. As discussed in the
previous chapter, we assume that we already have this file, which is derived
from the original floor plan with methodologies like [23]. The XML model
can already be considered a graph representation of the layout, since it is
defined with spaces (the rooms) connected by portals. However, this format
still contains all the locations of the rooms, including the coordinates of the
walls. Since we just need the adjacency and the sizes of the rooms, we per-

Figure 5.1: System pipeline

33

form a conversion that extracts this information from the XML format. As
it can be seen in the pipeline, the result of this procedure is the intermediate
model, which is encoded as a plain-text file. This new format allows the user
to manually modify the layout structure and add new constraints which are
later considered in the generation process. When the intermediate model is
ready, another parsing is performed in order to prepare the MIQP formu-
lation with the provided data. This procedure is straightforward, since the
intermediate format contains the parameters used in the optimization prob-
lem. Once the generation is completed, the resulting layout is both drawn
to file and saved in the same XML format utilized for the input layout.

Our system is entirely implemented in Python. In the rest of the chapter
we describe each element of the pipeline in detail.

5.2 XML model

The first data structure of the pipeline corresponds to the input of our sys-
tem. The original floor plan is considered already converted in XML format,
which is also used to store the output at the end of the generation process.
This format is based on the layout elements described in [23], but encoded
differently in the actual file.

In both formats there is a complete description of the rooms and their
adjacency. Each room is considered a space element, while connections be-
tween them are specified as portals. All the used coordinates are absolute in
the floor space and are expressed as x and y pairs. A fragment of a XML
model file was shown in Figure 4.1. The root of the XML tree in our for-
mat is the building element. Among its direct children there are different
optional metadata fields. The only required element among them is scale,
which is composed of represented_scale and real_distance. They are used
to define the metric scale of the layout. In particular, the real_distance el-
ement contains the size of the doors as a single value (it is assumed that
all the doors in the layout have the same size, and the default is 90 cm),
while represented_scale measures how many units (which is the integer unit
of measure used to express coordinates) correspond to the size of a door as
defined in the other field. The layout itself is described in the floor element,
that is a direct child of building and contains spaces, into which there is the
list of space elements that represent the rooms. The format of space is:

• id: unique string that identifies the space. It is used in the definition
of portals connections.

34

• type: the general type of the room, which is usually one between R -
generic room, C - corridor, and E - entrance.

• label: a more detailed description of the type of the room, which
identifies its main function (e.g., classroom, bathroom, office, ...).

• centroid: the position of the centroid of the room.

• bounding_box: the axis-oriented rectangle that circumscribes the
room.

• bounding_polygon: the ordered list of points that define the bound-
ary of the room as a polygon.

• space_representation: the ordered list of linesegments of the room.
Each linesegment is composed of the following elements:

– id: unique string that identifies the linesegment, used when rep-
resenting a portal to define the connection in the portal list.

– points: two points that define the starting and the ending of
the entity considered by the linesegment (usually a wall, if it is a
portal then the points share the same coordinates).

– class: type of the linesegment entity. Can be wall or portal.

– type: type that describes the portal, which can be explicit in
case of a door or another generic passage with a barrier, and
implicit if there is no physical barrier but the two spaces are still
considered different. The case of vertical portals, included in the
original MIT format, is not considered as we handle only single-
level buildings.

– features: not implemented, it should describe the type of door
in case of portal.

• portals: the list of portals that are related to the current space. The
portal element is formed by:

– linesegment: id of the linesegment that this portal refers to. In
case of explicit portal it represents the door.

– class: used to define if the portal is horizontal, as in our case, or
vertical.

– type: the same type defined in the associated linesegment.

– direction: used to represent the direction of the portal, that can
be one-way or both. We only handle the latter case.

35

– target: the list of ids of the spaces that this portal connects. It
defines the adjacency relations between the rooms.

– features: it is not implemented as in the linesegment case.

5.3 XML parser

The XML parser is the component that performs the conversion of the layout
from the XML format to the intermediate one. The goal of this process is to
extract the layout specification needed for the generation process. In fact,
while the XML model contains the exact location of each structural element
of the layout, like walls and doors, the intermediate model just represents
the adjacency graph and the room sizes.

While the adjacencies between rooms are retrieved directly from the XML
format since it is already based on a graph, the main problem is the definition
of the size of all the rooms. In fact, the parser receives in input the rooms
as polygons, while the result must be the size of a rectangle, since this is
the only shape that is handled by our generation method. In particular, the
intermediate model needs to contain the minimum, maximum, and target
sizes (width and height), and the minimum and maximum aspect ratio.

The boundary of the layout in the intermediate model is assumed to be
a rectangle. To define its width and height (wb, hb), the parser considers the
bounding box of the original layout.

wb = xmax − xmin

hb = ymax − ymin

There are two issues in the conversion of the rooms. The first is the
presence of non-rectangular shaped spaces, while the second is the definition
of the margin allowed as minimum and maximum for the sizes and the aspect
ratio of the rooms. In the rest of the section, we discuss them in detail and
present the solutions we devised to solve them.

5.3.1 Room rectangularization

When converting the spaces into their intermediate model representation, it
is possible that an input room is not rectangular. This is an issue that needs
to be dealt with, since our generation method can only handle rectangular
shaped rooms. However, our approach is focused on mid and large environ-
ments, like offices and schools, so we can usually consider the approximation
of the shape of these rooms as a rectangle without relevant issues. An ad-
ditional problem is how the original floor plan was subdivided into spaces.

36

(a) Single complex space (b) Composition of simple spaces

Figure 5.2: Example of different subdivisions of corridors in spaces

(a) (b)

Figure 5.3: Examples of problematic corridors

We assume that each space is more or less a rectangle, so that in case of
complex structures, the space is actually considered as multiple spaces with
implicit portals between them. For example, Figure 5.2 shows a floor plan
with a corridor structure that is considered as with a single complex space
in the first picture, and as multiple connected spaces in the second.

In the examples in Figure 5.3, the rooms in gray don’t cover their en-
tire bounding box, which is colored in red. These cases are common in real
layouts and are usually considered as single spaces in the XML model. In
Figure 5.3a, the bounding box still represents the main shape of the room,
and considering the small lateral rectangle separately increases the topologi-
cal complexity of the graph for no reason. Similarly, some rooms can contain
oblique walls like in Figure 5.3b.

While we would prefer to handle just simple rectangular rooms, we de-

37

velop a method to approximate problematic rooms based on their area. We
consider the aspect ratio of the final room equal to that of the bounding box
of the original space. To do so, we compute the area of the polygon that
defines the original space. This value is by definition less than (or equal to)
the area of the entire bounding box of the room, since the polygon shape
is the part of surface of the bounding box that is effectively occupied. In
particular, we consider the square root of their ratio, defined as:

ratio =

√
areapolygon
areabbox

=

√
areapolygon

(xmax − xmin) · (ymax − ymin)

This value is used to scale the sizes of the original bounding box to compute
the target sizes of the room converted in rectangular shape. These sizes w∗

and h∗ are calculated as:

w∗ = (xmax − xmin) · ratio
h∗ = (ymax − ymin) · ratio

5.3.2 Room variance

Once the target sizes of the converted room are defined as sizes of the rectan-
gle, we need to consider how much they are allowed to vary in the generation
process, since the MIQP formulation that we employ requires as hard con-
straints for each room a minimum and maximum value for the width, the
height, and the aspect ratio. We decided to leave the definition of these
bounds to the user, which has to insert three parameters. These parameters
are expressed as percentage and are different between the corridors and the
other rooms. In particular, the user defines the positive and negative margin
for generic rooms and only the absolute value for corridors. The reason is
that corridors usually require a much larger variance than the other rooms,
which should be kept as close as possible to their target sizes. To prevent that
the negative percentage could produce unrealistic room sizes, like corridors
too narrow that don’t allow the transit of people, we utilize an additional
parameter mindim to enforce minimum guaranteed sizes of the rooms.

wmin = max(mindim, (xmax − xmin) · (ratio− variance−))
hmin = max(mindim, (ymax − ymin) · (ratio− variance−))
wmax = (xmax − xmin) · (ratio+ variance+)

hmax = (ymax − ymin) · (ratio+ variance+)

The aspect ratio is computed with a more complex formula with a quadratic
term. We still use the minimum and maximum variance provided, but in this

38

case we don’t multiply them directly since it would create extreme values
for the rooms with an already high aspect ratio. The formula is based on
the sum of two terms that depends on the average of the variances. In
particular, the second term is quadratic in the aspect ratio, so that its effect
is significant only with rooms with an high aspect ratio. Each term also
includes a weighting parameter (α and β). The values we utilized are α = 1.5

and β = 0.2. The minimum and maximum aspect ratio (armin and armax)
are computed from the original one (ar∗) in this way:

varianceavg =
variance+ − variance−

2

armin = max(1, ar∗ − α · varianceavg − β · varianceavg · (ar∗ − 1)2)

armax = ar∗ + α · varianceavg + β · varianceavg · (ar∗ − 1)2

5.4 Intermediate model

The intermediate model is a text-based list of entities that compose the
layout specification. It is created by the system by converting the XML file.
This representation is later mapped directly to the MIQP problem.

Some information is lost during this conversion, as the initial XML format
contains the rooms positions and structures while the intermediate model
only their sizes and adjacency. This model also includes the size of the
boundary into which the generation method will try to place the rooms.
The intermediate model file can be easily checked and modified by hand, or
even created completely from scratch. It is also possible to add here some
additional constraints to the model, like the position of some rooms within
the boundary.

As we seen in Figure 4.2, the model file is divided in different sections,
delimited by a blank line and the name of the next one. In each line the
delimiter between values is just a space. There is no specific end-of-line
symbol. Each line that begins with "#" is commented. Not all sections are
required, since some of them are used for optional constraints that are not
employed by the converter.

If not specified otherwise, the sections are considered as lists, with each
element on a new line after the initial section delimiter. All the values in
square brackets represent optional elements. The sections are:

• rooms:

– id : the unique name of the room. It is automatically provided
by the converter as the combination of the letter corresponding

39

to the type of the room and a progressive number starting from
0 (e.g., R5 it is the sixth room with the type "R").

– minw, maxw, minh, maxh: the minimum and maximum sizes
(width and height) of the room. They are hard constraints.

– targetw, targeth: the room target sizes that the optimization pro-
cess tries to achieve. They represent the soft constraints of the
problem.

– minar, maxar : the minimum and maximum aspect ratio of the
room. They are hard constraints.

– rtype: the type of the room. In the layouts that we used there
are just: R - generic room, C - corridor, and E - entrance.

– label : the label of the room. It usually describes the function of
the room (e.g., classroom, bathroom, office, ...).

– [onB] : optional constraint that imposes that this room needs to
directly touch at least a side of the external boundary.

• boundary:

– w, h: they represent the size of the boundary, which must be de-
fined to formulate the MIQP problem. They are hard constraints.

– It is also possible to add in this section a list of obstacles. They
are not used by the converter and can only be inserted manually.
They are defined as:

∗ id : the unique name of the obstacle.
∗ x, y : the position of the bottom-left corner of the obstacle

(which is a rectangle like the rooms) in the boundary space.
∗ w, h: the (fixed) sizes of the obstacle.

• adjacencies:

– id1, id2 : the ids of rooms to consider as connected. As only
double-sided portals are considered, all the adjacency between
rooms are assumed symmetric as well.

– mina: the minimum size of the adjacency. It is usually the door
size. The conversion process automatically assign the door size
value both to explicit and implicit portals. This is an hard con-
straint.

– atype: the type of adjacency. It is used to define explicit and
implicit portals.

40

• [positions]:

– id : the room to consider in a fixed position. At most one possible
constraint of this type is allowed for each room.

– posx, posy : the coordinates, within the boundary space, of the
point that needs to be covered by the specified room.

• [connections]:

– id : the room to consider in this constraint. Differently from the
previous case, here the same room can have multiple entries, one
for each time its id is repeated in the list.

– p1x, p1y, p2x, p2y : p1 and p2 are two points that need to be
both covered by the specified room. This constraint can be used
to also control the orientation of the room (if there is a restriction
of the aspect ratio), by specifying a pair of points that can only
be covered with a certain orientation.

• [clusters]:

– clusterid : the unique name of the cluster. After the cluster id, it
must follow a list of rooms that belong to that cluster. Multiple
clusters can be defined in this section leaving a blank line between
the end of the list of rooms belonging to a cluster and the next
cluster id. The list of rooms is defined as:

∗ id : the room that belongs to this cluster.

∗ x, y : the coordinates of the specified room.

5.5 Layout generator

The layout generation is performed through the solution of a MIQP problem.
The input data of this formulation is retrieved from the intermediate model
file. The layout specification, contained as plain-text format, is parsed and
stored into a Layout object. This class is the foundation of the entire gen-
eration process, since it is used to store both the input parameters and the
output layout.

5.5.1 Model

In this section we will present in detail our formulation of the MIQP problem.

41

As discussed in the previous chapter, the topology of the layout is an
hard constraint of the optimization problem. There are hard constraints
also to guarantee the minimum and maximum sizes of the rooms.

Another property we would like to enforce is that the area of the gener-
ated layout corresponds as much as possible to the original one. However,
this can’t be expressed in quadratic terms, since it would require a quadratic
difference of the areas (already quadratic). Therefore, we decided to keep
the objective function originally proposed in [6], while also introducing some
parameters to control in a better way the generation process. As in the orig-
inal formulation, the objective function is the weighted sum of two terms,
both quadratic:

min λcover · Ecover + λerror · Eerror (5.1)

The first term controls the total area of the layout, guiding the optimiza-
tion toward the filling of the entire boundary with the rooms. In particular,
we added a parameter ρcover to control the importance of each room in this
summation. The area term is:

Ecover = (wb · hb)−
rooms∑

i

(wi · hi) · ρcoveri (5.2)

The first product is the total area available in the boundary and it is used to
keep the term positive. The summation operates on each room, computing
the area of the single rooms weighted with ρcoveri , which is intended to
decrease the importance of specific rooms in the entire term (usually the
corridors). Weighting more this part of the objective function with λcover
leads to fill the given boundary, expanding as much as possible every room.

The second term of the objective function tries to minimize the total
divergence of the rooms sizes from the target ones given in input. As the
error is already computed with a product, the term operates on the width
and on the height independently. It also considers the orientation o of the
room, that is a binary variable which represent the orientation of the room,
to guarantee the right comparison between the target sizes. In particular,
o = 0 means that the room is placed horizontally, with the width larger than
the height, while with o = 1 the room has a larger height than width. The
error term is:

Eerror =
rooms∑

i

ρerrori ·((hi−oi ·w∗
i −(1−oi)·h∗i)2+(wi−(1−oi)·w∗

i −oi ·h∗i)2)

(5.3)
Also in this case there is a parameter ρerrori that allows a specific weight for
certain rooms (typically to reduce the importance of errors of the corridors).

42

The rest of the summation is the sum of the error between the sizes of the
room hi and wi, and their target values h∗i and w∗

i , which are defined in the
intermediate file, as seen in Section 5.4. In particular, the orientation variable
oi is used to consider the correct enforcement of the target size according
to the alignment assumed by the room in a specific solution, selecting for
example if the height hi of the room should be compared with the target
height or width, which are respectively h∗i and w∗

i .
The constraints used by our formulation are linear and usually affects all

the rooms. A list of the constraints and their explanation is provided below.

Minimum size constraint

This constraint is already present in the original formulation and is used to
enforce the correct minimum sizes according to the room orientation. The
only difference is that in our case both minimum sizes are enforced at the
same time by using as minD the minimum between the minimum width and
height, and their maximum as maxD.{

h ≥ minD + (maxD −minD) · o
w ≥ minD + (maxD −minD) · (1− o)

∀ rooms (5.4)

Maximum size constraint

This is a new constraints that we implemented. It is the dual of the previous
constraint and its use is to constraint the maximum sizes of the rooms. In
the original formulation in [6], the maximum size is typically restricted by
the aspect ratio. We still utilize it, but we also added this constraint to
control in particular the corridor width. In fact, using just the aspect ratio
and the minimum sizes for the corridors is difficult to control their effective
sizes, since they are usually very long but narrow, so with a high variance
on the aspect ratio. With this constraint we can enforce both maximum
sizes at the same time, producing very long corridors but with also complete
control of the maximum width. As in the previous case, minD and maxD
are respectively the minimum and the maximum among the maximum sizes
inserted as hard constraints. In the implementation of [6], there is a similar
constraint that sets the maximum size of the corridors according to their
orientation. However, it operates only with a fixed size parameter, which is
imposed on a single side of the corridors according to their orientation.{

w ≤ maxD + (minD −maxD) · o
h ≤ maxD + (minD −maxD) · (1− o)

∀ rooms (5.5)

43

Aspect ratio constraint

The aspect ratio constraint is the same of the one implemented in the orig-
inal formulation. It is the first constraint that includes the constant M,
which is a large number utilized in formulating logical operations through
binary variables, which are integer variables restricted to the values 0 and
1. Here the constant M is used to control the enforcement of two alterna-
tive cases, expressed as different constraints, which are exclusively nullified
by the addition or subtraction of M (according to the state of the binary
variable) that guarantees that the constraint is valid for any allocated value
of the other variables involved. We decided to actually enforce the aspect
ratio constraint on every room except the corridors. The reason is that we
already have the minimum and maximum size constraints and it is difficult,
especially in converted layouts, to define good aspect ratio values for long
corridors. Another important remark is that we only check the minimum
and maximum aspect ratio, while the target value is not considered here but
only in the error term of the objective function.

minAR · h ≤ w +M · o
maxAR · h ≥ w −M · o
minAR · w ≤ h+M · (1− o)
maxAR · w ≥ h−M · (1− o)

∀ rooms \ corridors (5.6)

Inside constraint

This constraint guarantees that each rooms remains in its entirety inside the
boundary. It is implemented in the same way of the original formulation. wb

and hb are respectively the width and height of the boundary.{
x+ w ≤ wb

y + h ≤ hb
∀ rooms (5.7)

Non-overlap constraint

Another fundamental constraint enforces the non-overlapping of different
rooms. The differences between the original implementation and ours are
the continuous nature of the variables (that doesn’t affect the constraint
formulation) and the addition in our case of the walldim parameter, which
controls the wall thickness by leaving a certain gap between the rooms. In
order to formulate this constraint, four additional binary variables are used
for each pair of rooms, with the goal of controlling the simultaneous acti-
vation of the corresponding constraints. In fact, each auxiliary variable ω

44

is used to specify the relative direction (up, down, left, and right) of the
second room with respect to the first one. This constraint operates also on
the obstacles, if defined, that act as fixed rooms to not be overlapped.

xi ≥ xj + wj + walldim−M ·(1− ωright)

xi + wi + walldim ≤ xj +M ·(1− ωleft)

yi ≥ yj + hj + walldim−M ·(1− ωup)

yi + hi + walldim ≤ yj +M ·(1− ωdown)

ωright + ωleft + ωup + ωdown ≥ 1

∀ i, j : rooms, i 6= j (5.8)

Adjacency constraint

The adjacency constraint is used to guarantee the connection between two
rooms by forcing them to share a common wall with at least a certain length.
Our version is slightly more complex than the original one since we added
the wall thickness and additional constraints to enforce that the room is at
least larger as the connection on the side selected for the adjacency. The
main idea is still the same: using an auxiliary binary variable α for each
adjacency to select if the connection is horizontal or vertical, imposing in
that direction also enough touching length between the rooms. This length
is defined by the minAdjacency parameter, that usually represents the size of
the door. However, the actual enforced value is computed by also considering
the doorUtilization parameter, which is used to model the additional amount
of space required for structural reasons.

This constraint forces an overlap of adjacent rooms, which will effectively
just touch on the border because of the non-overlap constraint. In the origi-
nal paper there is also a more advanced version of adjacency constraint, that
is used to guarantee a connection between a certain room and two others, or
at least one of them. We don’t utilize this version of adjacency but only the

45

described one.

minA =
minAdjacency

doorUtilization
xr1 ≤ xr2 + wr2 + walldim−minA · α
xr1 + wr1 + walldim ≥ xr2 +minA · α
yr1 ≤ yr2 + hr2 + walldim−minA · (1− α)
yr1 + hr1 + walldim ≥ yr2 +minA · (1− α)
wr1 ≥ 2 · walldim+minA · α
wr2 ≥ 2 · walldim+minA · α
hr1 ≥ 2 · walldim+minA · (1− α)
hr2 ≥ 2 · walldim+minA · (1− α)

∀ (r1, r2,minAdjacency) ∈ adjacency

(5.9)

Position constraint

This is an optional constraint that is used to force a specified room to pass
over a certain fixed point within the boundary space. There is an analogous
constraint in the original formulation that operates also on two points. It
works by simply imposing that the point is inside the rectangle covered by
the room. Only a single fixed point can be set for each room.

xi ≤ xfixed
xi + wi ≥ xfixed

yi ≤ yfixed
yi + hi ≥ yfixed

∀ i : rooms, i is fixed (5.10)

Connection constraint

This is the two points version of the position constraint. The idea is the
same, with both points that are constrained to be inside the room. The
peculiarity of this constraint is that multiple pairs of points can be imposed
to be inside the same room.

xi ≤ xp1
xi + wi ≥ xp1

yi ≤ yp1
yi + hi ≥ yp1

xi ≤ xp2
xi + wi ≥ xp2

yi ≤ yp2
yi + hi ≥ yp2

∀ (i, p1, p2) : connections (5.11)

46

Boundary constraint

This optional constraint is used to guarantee that a room touches at least one
side of the boundary. It is a simplified version of the original one, since ours
doesn’t account for obstacles. We decided to ignore them because they are
not used by the converter. Also in this case, four auxiliary binary variables β
are used to select the boundary side to touch for each room. It is also possible
to use global β variables to force all the rooms affected by this constraint to
be on the same boundary side.

xi + wi ≥ wb −M ·(1− βright)
xi ≤M ·(1− βleft)

yi + hi ≥ hb −M ·(1− βup)
yi ≤M ·(1− βdown)

βright + βleft + βup+βdown ≥ 1

∀ i : rooms, i fixed to boundary

(5.12)

Cluster constraint

This is a new optional constraint that we use to fix relative positions among
a certain group of rooms, which is called cluster. While the previous con-
straints enforce the location of a room within the boundary given one or
two fixed points, in this case the specified coordinates are considered rela-
tive between the rooms of the same cluster. In fact, the cluster itself can be
freely positioned within the boundary, as long as all the other constraints
of the rooms allow that. The functioning of this constraint is similar to the
position constraint defined previously, but with two differences. The first is
that the enforced point is not fixed but is composed of two additional con-
tinuous variables, xcluster and ycluster, that specify the position within the
boundary of the entire cluster. In fact, this constraint forces that each room
is located in a certain relative position to the cluster. The coordinates of the
room in the cluster space are xf and yf , which are defined in the intermedi-
ate model in Section 5.4. The second difference is the addition of a margin
parameter, which allows a certain deviation from the fixed coordinates by
enlarging the room sizes when enforcing the position constraint. This leads
to a larger degree of freedom in the positioning of the room by the solver.
The margin parameter can be set zero (eliminating this additional offset) or
even increased. It is possible to insert the same room in different clusters.

47

Figure 5.4: Overview of Gurobi API

In this way, the room is affected by both constraints at the same time.
xi −margin ≤ xfij + xclusterj

xi + wi +margin ≥ xfij + xclusterj

yi −margin ≤ yfij + yclusterj

yi + hi +margin ≥ yfij + yclusterj

∀ i : rooms, j : clusters, i ∈ j

(5.13)

5.5.2 Implementation

The optimization is performed with Gurobi 8.1 [62], using the Python API to
interface the solver with our system. Gurobi is a state of the art commercial
solver, able to solve optimization problems of different nature, both linear
and quadratic. The API architecture is described in the reference manual1

with the structure represented in Figure 5.4. Gurobi allows to customize the
optimization process through various parameters. We utilize the following:

• TimeLimit : allows to define a maximum time limit for the optimiza-
tion. We need to set this parameter since we are only interested in a
good solution and not in the optimal one (which could require a huge
amount of time to be found because of the complexity of our problem).
The typical time limit we use is 4 minutes.

• Presolve: controls the presolve level, which are preprocessing algo-
rithms that try to reduce the search space of the problem and make
the model easier to solve. We use Presolve = 2, which corresponds to
the most aggressive level.

1https://www.gurobi.com/documentation/8.1/refman/index.html

48

• Heuristics: it is the percentage of time allocated in MIP problems to
the heuristics. The default value is 0.05, which means that the solver
tries to find new solutions instead of improving the current bounds in
only 5% of the runtime. We use a very high value of this parameter
(usually between 0.6 and the maximum allowed, which is 1) since our
model often requires a lot of efforts to even just find a feasible solution.
This is one of the most important parameters that the user has to set.
For smaller and simpler layouts, 0.6 is usually enough, while complex
ones require a much higher value.

• MIPFocus: defines the high-level strategy utilized by the solver. There
are three specific strategies and we found that different layouts perform
better with different values of this parameter. We usually utilize the
value 2 by default. With this strategy, the solver focuses on proving
the optimality of the found solutions.

The generation workflow begins with the loading of the layout specifi-
cation from an intermediate model file, usually created by the XML parser.
This parsing procedure is very simple, contrary to the one described in Sec-
tion 5.3, since the intermediate model embeds all the input parameters of the
MIQP problem. A Layout object is instantiated and filled with all the input
data. Once this procedure ends, the system prepares the Gurobi model by
creating the objective function and all the constraints utilized in the specific
problem. When the model is filled, the optimization process begins. After
the defined time limit, the system stores the best solution found inside the
Layout object itself. In the worst case, if no solution is found the program
terminates here. If a solution is found, the Layout object is saved in a dump
file using the pickle2 library, which serializes and stores the class in a binary
file, allowing its content to be reloaded in the future. After that, the system
draws the generated layout in an image file, which can be used to quickly
examine the result of the generation. At the end of the process, the system
saves the generated layout in a XML file, which follows the same format of
the initial input.

The optimization in some cases fail in identifying a feasible solution due
to the computational complexity of the given instance of the problem. In
particular, we found that this method works very well even with a large
number of rooms, but can have problems in finding solutions when the layout
contains cycles. To mitigate this issue, we develop a cycle decomposition
technique that is based on solving a sub-problem with a lower number of

2https://docs.python.org/3/library/pickle.html

49

(a) Layout with two cycles
(b) Layout with a single cycle

Figure 5.5: Example of cycles in the layout graph

rooms and then applying some additional constraints when solving the global
generation problem. We now present this method in detail.

5.5.3 Cycle decomposition

The cycle decomposition is a technique that helps finding a solution if the
generation does not succeed. The first step is to find a cycle in the layout
graph. Two example of layouts with cycles are shown in Figure 5.5. To
operate on the graph, we employ NetworkX [63], which is a popular Python
library to study and visualize graphs. In particular, since we work with pla-
nar graphs, we utilize the minimum cycle basis [64] to identify the minimum
length cycles that don’t contain internal chords. A chord is an edge that
connects directly two non-consecutive nodes of the cycle, like the red edge
in Figure 5.6a. We also want minimum cycles, so without internal shortest
paths like the red one in Figure 5.6b. Internal connections like these can
be problematic in two ways. The first is that the sub-problem could ignore
these connections and impose positions for the cycle rooms that prevent the
presence of other internal rooms between them. The second issue is that in
case of a graph like the one in Figure 5.7, if the system selects the cycle com-
posed of all the nodes connected by black edges, then the sub-problem would
be equal to the global problem since all the original rooms are considered.

If there are multiple cycles with no inner connections, a parameter allows
the user to choose the longest or the shortest one. The choice between the
two depends on the specific layout, but usually selecting the longest cycle
works better.

Once the target cycle is identified, a new graph is created with all the
rooms that compose the cycle. After that, every room directly adjacent to

50

(a) Cycle with a chord (b) Non-minimum cycle

Figure 5.6: Example of graph cycles with internal connections

them is also added, including the edges between such nodes.
When the new graph is ready, it is used to formulate a new problem

with only these rooms. The result of this generation, which is performed
with a lower time limit than the global one, typically 40 seconds compared
to 4 minutes in the global generations, is utilized only to extract the center
positions of the rooms that compose the cycle. These locations are stored
in a new cluster, which structure has been previously defined in Section 5.4.
Finally, the cluster is normalized. This procedure, as can be seen in Figure
5.8, is a translation of all the positions of the rooms to ensure that the
coordinates are the lowest possible. The reason behind this is that we only
need their relative position, while their absolute location is later determined
in the global generation by adding to these coordinates the cluster offset,
which is the same for the entire cluster. In this way, the generation process
is free to place the cluster anywhere in the boundary, while keeping the
relative distances between the rooms.

Figure 5.7: Example of large non-minimum cycle

Once this entire process ends, the system prepares the new global gener-
ation, adding the retrieved cluster to the layout specification. This problem
corresponds to the one formulated initially, with the addition of the cluster

51

Figure 5.8: Normalization of the cluster

constraints, defined in Section 5.5.1, to impose the relative positions of the
rooms of the cycle previously decomposed.

If no solution is found even in this case, the system performs another
cycle decomposition. However, the rooms already in clusters are removed
from the graph before the cycle retrieval. If there are no more cycles to
decompose, the program terminates.

The goal of this method is to help the global generation by restricting
the possibilities for some variables, specifically the most problematic ones,
which are the positions of the rooms that compose cycles.

A issue of this technique is that it could create unfeasible clusters. In fact,
this method doesn’t account for rooms that are not immediate neighbors of
the rooms that compose the cycle. To try to solve these issues, we utilize the
margin parameter of the cluster constraints. This parameter, as defined in
Section 5.5.1, increases the freedom of placement of the rooms of the clusters,
allowing the global generation process to deviate by a small margin from the
positions imposed by the sub-problem. The value of the margin parameter
that we typically use is 5.

5.6 Drawer

After the generation process is complete and a layout is found, the system
draws it to an image file. We don’t consider furniture, windows, or other
elements of the building, but just the walls and the connections between the
rooms. An example of generated layout can be seen in Figure 5.9.

52

Figure 5.9: Example of generated layout

The represented elements in the image are the walls, the labels of the
rooms, and the connections between them. In particular, the system uti-
lizes the original portal type to define whether a portal should be a door
or an implicit portal. The width of the door corresponds to the minimum
adjacency size defined in the layout specification, while its position is always
assumed to be at the center of the wall shared by the two adjacent rooms.
An example of both kind of connections is shown in Figure 5.10.

5.7 XML Writer

The final operation performed by the system is to store the generated layout
in an output file, utilizing the same XML format of the input. In this way it is
possible to use both layouts with the same tools, with no need to implement
a new parser for another format.

The id of each space in the output doesn’t correspond to their original
value in the input file, but rather to the id that we assigned to the room in
the intermediate model, presented in Section 5.4. This makes them easily
recognizable in the XML file. Moreover, since the ids we define correspond
to the type of the room joined by the order of the room in the list of all
spaces (e.g., R2 is the third room in the file with type "R"), it can also be

53

Figure 5.10: Example of explicit and implicit portal representations

derived in an easy way from the original file with a simple parsing procedure.

5.8 Summary

In this chapter we described the implementation of our system. We started
illustrating the pipeline of the entire process, which operates at each stage
with a different data structure for the layout. We then discussed each com-
ponent in detail, focusing in particular on the issues they face and how they
solve them.

54

Chapter 6

Experimental results

In this chapter, we present some building layouts generated with our method
and the experiments we performed to validate them. We start showing some
examples of generations, making considerations on the parameters used and
how they affect the results. Next, we introduce the infrastructure that we
utilize to perform the experiments. After that, we present the two experi-
ments we decided to use to evaluate the realism the generated layouts. The
first one involves static path planning between rooms, while the second one
involves exploration of the environments by a simulated robot. For both the
experiments, we present and comment their results.

6.1 Generated layouts

In this section we make some considerations about the generation process.
At first, we cover how to control the area of the generated layouts. We then
discuss some issues we found when running the method. Finally, we present
some examples of generated layouts.

6.1.1 Area control

As our method starts from the layout of a building and generates from it
new different layouts with the same structure, we can compare the main
features of the generated layouts against the initial one. But while every
layout generated with our method is guaranteed to respect the topology
graph defined in input, it is not possible to impose the equivalence of areas
between the input layout and the generated one. However, the user can
utilize the λcover parameter of the objective function defined in Section 5.5.1
to guide the optimization process and control in an implicit way the area of
the generated layout.

55

Figure 6.1: Original layout of a school

This parameter weights the sum of the two terms Ecover and Eerror of the
objective function of the MIQP problem. In general, using a value λcover = 1,
like in the original formulation in [6], leads to layouts with a much larger area
than the original one, since the boundary size is automatically defined as the
bounding box of the original layout, which can be an overapproximation of
the original boundary for layouts like the one shown in Figure 6.1.

The area of the building is influenced directly by three factors in the
optimization. The first is the cover term Ecover of the objective function,
that is an explicit maximization of the total sum of the areas of each room.
The second factor is the other term of the objective function, Earea, which
minimizes the displacement of the sizes of the rooms from the target ones.
The third factor is the minimum and maximum sizes of the rooms, which
are hard constraints and guarantee that the width and height of each gener-
ated room don’t deviate much from the original values defined in the layout
specification.

We found that a λcover value between 0.1 and 0.2 allows to generate
layouts with areas similar to the original ones, even when the bounding box
used as boundary doesn’t fit very well the original shape of the building, like
the school in Figure 6.1. Lower values like 0.001 or less can be used, but
the resulting area will be much smaller than the original. In addition to the
λcover, it is also possible to tune the optimization process using the ρcover
and ρerror parameters, allowing a finer control of the importance of the two
terms of the objective function with specific values for each room. Their
default values are 1 for each room.

In Figure 6.2 we show an example of generated layouts with different
λcover. The generated layout with the area closer to the original in Figure
6.2a is the one with λcover = 0.1, which is shown in Figure 6.2c. The gener-

56

(a) Original - 1530 m2 (b) Generated - 2278 m2 - λcover = 1

(c) Generated - 1448 m2 - λcover = 0.1 (d) Generated - 1268 m2 - λcover = 0.0001

Figure 6.2: Comparison of generated layouts of a school with different values of λcover

ated version with λcover = 0.0001 is smaller but still relative close, while the
one with λcover = 1 is completely different considering the area.

6.1.2 Generation issues

We accept any solution found by the optimization process, since the hard
constraints of the MIQP formulation assure that every feasible solution re-
spects the topology graph and the rooms sizes defined in input. However,
there is no guarantee that the solver can actually find a solution in a certain
amount of time.

In these cases it is possible to help Gurobi by changing some of its param-
eters, defined in Section 5.5.2. In particular, increasing the TimeLimit and
the Heuristics values can provide a massive help to the solver. In addition,
it is also possible to enlarge the boundary size in the layout specification to
facilitate the search of a feasible solution.

Here, we present the main issues that we found with our method.

57

Figure 6.3: Example of non-rectangular rooms in the original layout

(a) Original (b) Approximated

Figure 6.4: Examples of approximation of a non-rectangular room

Non-rectangular rooms

The first issue is caused by particular room structures in the input layouts.
An example is shown in Figure 6.3, in which the corridors C8, C9, and C11
have non-rectangular shapes. The XML parser approximates these rooms
with the technique presented in Section 5.3.1. However, utilizing these ap-
proximations can lead to an unfeasible layout specification. In fact, the
conversion procedure is based on keeping the original area for the rectangu-
lar room, but since the final aspect ratio is the one of the initial bounding
box, the resulting room will be shorter and wider in case of a corridor like the
one reported in Figure 6.4, where in red is represented the original bounding
box and in gray the room.

If the original room has a relative small area, but a large bounding box
caused by an highly irregular profile, like the corridor C11 in Figure 6.3,

58

(a) (b)

Figure 6.5: Examples of cycles

then it is possible that the approximated room is too short to connect all
the required rooms.

To solve this issue, a possible solution is to increase the variance+ and
variance− values, which are used, like discussed in Section 5.3.2, by the
XML parser to specify larger bounds for the sizes of the rooms in the layout
specification. However, utilizing high values for variance+ and variance−

leads to a much larger search space of the MIQP problem, which increases
the difficulty of the solver in finding feasible solutions.

Presence of cycles of rooms in the topology graph

Another issue, already discussed in Section 5.5.2, is the presence of cycles of
rooms in the topology graph. Imposing the adjacency between the rooms of
a cycle is harder than the normal case, since it is not just a problem of finding
the right locations of the rooms but also the right sizes. In particular, the
main difficulty is the correlation that exists between the sizes of the rooms
of a cycle. In fact, while a trivial solution like the one reported in Figure
6.5a can be found if there are no additional constraints beyond to form a
cycle, in a more complex scenario like in Figure 6.5b, the final room to close
the cycle is constrained in both position and size.

In small and medium layouts, the solver can manage this additional com-
plexity and find a feasible solution without too much difficulties. However,
this become a noticeable issue if the layout contains a large number of rooms.
Moreover, this problematic is not addressed in the methods presented in the
state of the art in Section 2.3, since most of them don’t consider large layouts,

59

completely avoiding this issue.
The cycle decomposition technique, described in Section 5.5.3, helps the

solver in these situations by isolating a cycle, solving a sub-problem limited to
those rooms, and then keeping their relative positions in the global generation
problem.

The use of this method is optional, since it doesn’t guarantee to actually
find a solution and it can even prevent the generation of the layout. In fact,
the relative positions fixed in the sub-problems could be unfeasible in the
global formulation of the problem, since they don’t account for the presence
of rooms that aren’t directly part of the cycle or immediate neighbors. In
addition, another downside of this technique is that it requires an additional
global generation each time it is applied, until a solution is found or until
there are no more cycles to decompose. Even if the TimeLimit of the sub-
problem is typically chosen lower than the original one, it is usually better
to try multiple Gurobi parameters choices before applying this method.

6.2 Generation examples

In this section we present some layouts generated with our system. The
dataset we utilized is composed of schools and offices of medium and large
scale.

For each instance of the problem, defined as the combination of the layout
specification and all the used parameters, Gurobi always finds the same
solution. However, it is possible to obtain multiple different layouts from
the same layout specification in input by introducing small perturbations in
it. To do so, the most simple and effective way we found is fixing a location
of a certain room with the position constraint. This allows to generate a
large number of layouts from the same input, as originally specified in the
requirements in Section 3.3.

All the generations are performed on a computer with a 1.7 GHz Intel
Core i7 processor and 8GB of DDR3 RAM. The main computational bound
was the dual core CPU, while the memory usage was relatively low.

Office 1

In Figure 6.6 is shown the original layout and three generated versions of a
medium sized office. The layout in Figure 6.6b is the layout generated di-
rectly from the input layout. To generate the other two, we fixed the position
of the room E1 within the boundary by manually editing the intermediate
model file. In this way, we obtained two generated layouts that are different

60

(a) Original - 1590 m2 (b) Generated - 1325 m2 - λcover = 0.1

(c) Generated - 1618 m2 - λcover = 0.1 (d) Generated - 1379 m2 - λcover = 0.1

Figure 6.6: Office 1

from the first one. We can see that the general structure is similar between
all the layouts, and in particular the largest rooms in the original layout are
still the largest in the generated versions.

School 1

In Figure 6.7 is shown the generation of a large scale school. In this example,
we can see that our method handled well the generation of a large layout,
since despite the bounding box is not fit to the original building shape, the
areas of the two layouts are very similar.

School 2

The generation of this layout, pictured in Figure 6.8, is more difficult than
the previous examples because of the presence of a cycle. To find a feasible
solution, we employ the cycle decomposition technique illustrated in Section
5.5.3. We report in Figure 6.9a the layout generated for the sub-problem,
which contains less rooms than the global one. The complete result of the
generation is shown in Figure 6.9b.

61

(a) Original - 7166 m2

(b) Generated - 7124 m2 - λcover = 0.2

Figure 6.7: School 1

62

Figure 6.8: Original - 2764 m2

6.3 Simulated robot setup

As stated in Section 3.2, we want to generate realistic building layouts to
perform experiments with simulated robots on a large number of environ-
ments with consistent results. To evaluate if the layouts that we generate are
similar to the original ones, we utilize two approaches. The first is to consider
the length of the paths planned between some rooms, while the second is the
time and the traveled distance required to explore the environment. If these
values are similar in the generated layouts and in the original environments,
then we can say that the former ones are "functionally" similar to the latter
ones, meaning that the effort of performing tasks in them is comparable.

We perform these experiments with a simulated robot, utilizing a setup
based on ROS and Stage. In this section we are going to describe this setup.

6.3.1 ROS

As introduced in the state of the art in Section 2.2, ROS (Robotic Operating
System) [19] is an open-source framework employed in robotics that provides
services like hardware abstraction, low-level device control, and standard im-
plementations of commonly-used functionalities. ROS is based on packages
that can be either written and built with the help of the provided tools
and libraries, or directly retrieved through a dedicated package management
system. ROS acts as an operative system, organizing the executions and

63

(a) Layout generated for the sub-problem

(b) Generated - 2473 m2 - λcover = 0.1

Figure 6.9: School 2

64

the communications of the software components in use, even across different
machines.

The execution of programs is modular and based on the concept of node,
which is a process that performs computation. Each node implements a
particular functionality, that can be both hardware or software related (e.g.,
controlling a sensor, localizing the robot, ...).

The exchange of information between nodes is handled directly by ROS.
In particular, the nodes communicate utilizing messages, which are data
structures that contain typed fields. These fields can be primitive types
(e.g., integer, floating point, Boolean, ...), arrays, or nested structures.

These messages are routed between nodes using a publisher/subscriber
protocol based on topics. A topic is the name reserved by a node to publish
messages. In this way, the messages are not exchanged directly from a node
to another, but are rather published on a topic and available to anyone that
is subscribed to it. This allows multiple nodes to send or to receive the same
messages, while keeping a decentralized architecture since the nodes aren’t
directly aware of the execution of other nodes.

An alternative communication paradigm offered by ROS is the service.
Services are based on a request/reply interaction between two nodes. In
particular, the format of the communication is based on a pair of different
data structures, one for the request and one for the response. With this
system, the communication is directly between a single provider of the service
and an individual requester, which sends a request and waits for the response.

6.3.2 Stage

Since the focus of our experiments is the planning and the exploration of
the environment, we decided to utilize Stage since we don’t require high
fidelity simulations. Stage [17], as already introduced in Section 2.2, is a
lightweight 2D simulator that model a single or multiple robots in a virtual
world. It models the uncertainty affecting the dynamics and the perception
of robots, but not their physical interaction with the environment. We use
it to simulate a generic differential drive robot equipped with a frontal laser
range scanner sensor, with a field of view of 270◦ and a range of 30 m.

Stage accepts the description of the setting, which includes the bitmap
image representing the environment and the parameters required to model
the robot, as a world file. The input floor plan is represented as a black and
white image, specifying with white pixels the free space and with black ones
the obstacles, which in our case are only the walls of the building layout.

65

Figure 6.10: Snapshot of a Stage simulation

Stage, as specified in its documentation1, models the odometry error in
a simplistic way, by continuously adding a constant error defined randomly
at the start of the simulation.

A snapshot of a Stage simulation is shown in Figure 6.10.

6.3.3 Exploration package

As stated in Section 2.1, the exploration task is based on navigating around
the environment, collecting information in order to create a complete map.
We utilize the standard explorer package [65] of ROS, which is based on co-
ordinated multi-robot explorations but can also be used with a single robot.
This package provides multiple frontier-based algorithms, with different ex-
ploration strategies available. A frontier is the boundary between the known
and unknown regions of the map. An example of map partially explored is
shown in Figure 6.11, with some frontiers indicated in red. The strategy
that we employ sets as new goals points on the nearest frontiers, using as
distance the length of the expected travel path of the robot. Once a goal is
reached, a new one is generated until there are no frontiers left to explore.

Figure 6.11: Example of frontiers between explored and unexplored regions of a map

1http://rtv.github.io/Stage/group__model__position.html

66

Figure 6.12: Architecture of the ROS Navigation stack

6.3.4 Navigation stack

To allow the simulated robot to reach the goals created by the explorer
package, we utilize the ROS navigation stack [66]. Its structure is shown in
Figure 6.12. The navigation stack covers all the functionalities required by
the robot to navigate an environment, receiving as inputs the sensor data
and the known map. In particular, the navigation stack is based around the
move_base module, that coordinates the operations of the global and the
local planners.

The global planner is the component that considering as input the posi-
tion of the robot, the goal location, and the map, decides which path should
be taken by the robot to reach the goal. This decision is based on the
costmap, which is an occupancy grid map that assigns at each cell of the
grid a cost. The costmap is utilized to enlarge the obstacles of the map with
the size of the robot, so that the robot won’t collide with them.

The computed path is then utilized by the local planner, which is similar
to the global planner but operates on a local costmap, which is a restriction
of the global costmap that considers only the immediate surroundings of the
robot. The typical size of the local costmap is 6 m for both width and height.
The goal of the local planner is to directly control the motors of the robot
to follow the defined path calculated by the global planner.

6.3.5 SLAM package

Both the navigation and the explorer packages require a map to operate.
As discussed in Section 2.1, the task of creating a map while keeping the
robot localized is SLAM (Simultaneous Localization and Mapping). We use
the ROS wrapper for the OpenSlam’s GMapping implementation, which is

67

based on [67] and [68].
GMapping is a particle filter SLAM algorithm that utilizes information

from odometry and laser sensors to learn the grid map. As discussed in [7], a
particle filter considers a finite number of hypotheses (the particles), which
are utilized to store the candidate maps of the environment (as in the case
of GMapping), the estimated pose, or both.

The odometry and the raw laser range scanner data are provided to
GMapping directly by Stage.

Figure 6.13: Map of Office 1

6.3.6 Map preparation

To use both the original and the generated layouts in Stage, we need to
convert the XML file to a bitmap image. The system we employ draws each
linesegment, which structure has been defined in Section 5.2, representing a
wall as a line with a predefined width. The portals are considered all explicit
and with the same size, which is taken from the real_distance element. To
draw them, the system just adds a white segment, corresponding to the size
of the door, over the location of the portal linesegment. An example of
bitmap image prepared with this method is shown in Figure 6.13.

6.4 Planning experiments

The first experiment we perform is to check if the travel distance between
two rooms doesn’t change in a significant way in the generated layouts with
respect to the original environment. In particular, we consider for the paths
only the rooms marked as entrances (E) in the input layout.

The methodology we adopt is to utilize themakePlan service of the global
planner to retrieve the plan between each pair of rooms. This service allows
to insert manually both the starting and the goal pose.

68

All the generated layouts utilized in this experiments are generated with
λcover = 0.1

6.4.1 Office 1

The first layout we analyze is the same office presented in Section 6.2. This is
a medium size building with five entrances. We utilized the three generated
layout shown in Figure 6.6 and two other generated layouts, obtained by
fixing the location of E1 in different points of the space.

Figure 6.14: Path planning results for the Office 1 layout. The numbers indicate the
path between two entrances (e.g., 0-1 indicates the path between the entrance E0 and
E1)

In Figure 6.14 it is shown the data retrieved from the path planning. On
the horizontal axis there are the various paths between the rooms, which are
symmetric and so taken just once for each pair of rooms. On the vertical
axis it is represented the path distance. In particular, the blue column cor-
responds to the original layout, while the orange one is the average between
the five generated layouts, with the respective standard deviation.

It is possible to notice from both the data in Figure 6.14 and the layouts
in Figure 6.15 that the first four entrances (E0, E1, E2, and E3) are in the
same region, while the remaining one (E4) is on the other side of the building.
This feature is present in both the original layout and in the generated ones.

69

(a) Original layout

(b) Generated layout

Figure 6.15: Comparison of entrances between the original Office 1 layout and a gen-
erated one

70

6.4.2 School 2

The second layout we consider is the second school presented in Section 6.2.
This is a large scale layout. As in the previous case, we utilize the technique
of fixing rooms to generate multiple variants with the same input layout.
Like the last example, also in this layout there are five entrances.

Figure 6.16: Path planning results for the School 2 layout

In Figure 6.16 it is shown the data retrieved for this environment. It
emerges, from both the graph and the layouts in Figure 6.17, that the en-
trances are more uniformly distributed in this environment than in the last
one. However, there are large deviations in values of the generated layouts,
especially in the paths that connect E4 to the other entrances. In Figure
6.17a it is possible to see that the entrance E4 is on the right side of the orig-
inal building, while in two reported generated layouts there are two opposite
situations. In fact, in Figure 6.17b the room is very far from all the other
entrances, while in the other example in Figure 6.17c, E4 is much closer to
them.

Still, on average we can see that the generated layouts are similar to the
original one, despite the large scale of the specific layout that could have
caused much larger oscillations in the values.

71

(a) Original layout

(b) First generated layout

(c) Second generated layout

Figure 6.17: Comparison of E4 between the original School 2 layout and two generated
ones

72

(a) (b)

Figure 6.18: Comparison between two situations from the same topology structure

6.4.3 Planning results considerations

Given the data obtained above and from other similar layouts, that we omit-
ted for brevity, we can say that the generated layouts maintain, on average,
a similarity in the distance between rooms. This is a positive result, since in
the generation method we only account for the topology graph, disregarding
the problem of keeping the rooms evenly distanced in the resulting layouts.

In particular, we expect some degree of deviation in the generated layouts
with this metric, since the adjacencies we consider in the generation allows
swaps of rooms. An extreme example of this is shown in Figure 6.18, where
the same topology graph allows both cases. This is a limit of utilizing the
adjacency relations between the rooms as a graph. However, in practical
scenarios, we expect on average a certain degree of consistency in the rooms
distances.

6.5 Exploration experiments

The second experiment we perform to validate the similarity of the original
layouts and the generated ones is based on the exploration performance in
such environments.

The metrics we consider are the exploration time and the traveled dis-
tance of the robot required to complete the exploration process. To obtain
this data, we perform ten exploration runs on each environment. If the robot
gets stuck during the exploration, we repeat that run.

For this experiment, we consider a total of twelve environments, five
offices and seven schools. For each one of them, we run an exploration in the

73

original building layout and in two generated layouts obtained with different
parameters. In particular, we utilize a layout generated with λcover = 0.1

and one with λcover = 0.2 for each environment.
In each exploration run, the starting point is always the same, and cor-

responds to the same room (an entrance) across all the three variants.

6.5.1 Exploration data overview

We summarize the results we obtained from each run of exploration with a
t-SNE, which is a machine learning technique proposed by Maaten et al. in
[69] to reduce the dimensionality of data for visualization purposes. We uti-
lize this method to represent multiple variables in a single two-dimensional
graphic. In addition, with this technique it is possible to evidence the pres-
ence of clusters in the data. To produce the graph in Figure 6.19, we com-
bined the exploration time, the traveled path, and the area of the layout.

In the graph, each marker color represents a different layout, while the
marker shape defines the variant in the following way: the crosses are the
original layouts, while the circles and the squares are the layouts generated
with the values of λcover as reported in the legend (indicated respectively as
cover01 and cover02 for λcover = 0.1 and λcover = 0.2).

Most environments are well clustered. This means that there are no
noticeable differences between the exploration performance in the original
layouts and in their generated versions. If a single run of a layout is far
from the cluster of the same environment, like for example the isolated point
of School 3 that is positioned near the Office 3 cluster, it is reasonable to
conclude that there was an issue during the exploration of that specific run.
In fact, this School 3 run presented anomalies.

However, the layout Office 5, which is colored in black in the figure, is
divided in two different clusters. One for the runs of the original layout and
the other for the explorations of the generated layouts. We now analyze in
detail this particular layout, comparing it to others in order to identify the
reason of this strange behavior.

6.5.2 Exploration data analysis

Since Office 5, reported in Figure 6.20, is a rather small office, we decided
to compare it to other similar sized layouts. In this case, we consider Office
4 and School 5, which can be seen in Figure 6.21

From these pictures, it is possible to notice that Office 5 is composed
of many non-rectangular rooms, especially regarding the corridors structure.

74

Figure 6.19: t-SNE that summarize the exploration data results

75

Figure 6.20: Original layout of Office 5

(a) Office 4 (b) School 5

Figure 6.21: Original layouts of Office 4 and School 5

76

(a) Office 5 (b) Office 4

(c) School 5

Figure 6.22: Comparison of map areas of Office 5, Office 4, and School 5

On the contrary, Office 4 and School 5 are mainly composed of rectangular
rooms.

In Figure 6.22 the areas of the original and generated versions of these
layouts are reported. Except for School 5, where for λcover = 0.2 a layout
larger than the original has been created, the areas are similar across the
layouts.

In Figure 6.23 the exploration times of these three layouts in all their
variants are shown. In Figure 6.23c, the exploration times of School 5 are
extremely similar between the original layout and the generated ones. Of-
fice 4 is slightly worse but still consistent, while in Office 5 the exploration
performance is significantly different.

This pattern is present also considering the traveled path of the robot
reported in Figure 6.24. In Figure 6.24c, it is interesting that the average
traveled path for the λcover = 0.1 variant is higher than the others, despite
being the smaller layout and the one with the fastest exploration. This
can be caused by a particular initial position of the robot in this generated
layout, since all the exploration runs on the same layout starts in the same
room, which can be in favorable or unfavorable location with respect to the
exploration strategy employed. As discussed previously in Section 6.4.3, it
is not possible with our topology graph to provide the specific position of a

77

(a) Office 5 (b) Office 4

(c) School 5

Figure 6.23: Comparison of exploration times of Office 5, Office 4, and School 5

(a) Office 5 (b) Office 4

(c) School 5

Figure 6.24: Comparison of traveled distances of the explorations of Office 5, Office 4,
and School 5

78

(a) Office 5 (b) Office 4

(c) School 5

Figure 6.25: Comparison of exploration times and traveled distances divided by the area
of the layout for Office 5, Office 4, and School 5

room in respect to the others.
One of the problems with the two metrics we utilized is that they depend

on the total area of the specific layout. In fact, if a layout is larger, the robot
would take a longer time to navigate it completely, with also an increased
total traveled distance.

While we utilized the same values of the λcover parameter for all the lay-
outs, it is possible to control the area of the generated layout by changing the
weights of the objective function, as discussed in Section 6.1.1. This allows
to generate layouts with a much similar area than the ones we considered in
this experiment.

However, this process must be performed manually and can require a
long time to find the right value for all the involved parameters. Instead, to
check the dependency of the exploration time and of the traveled distance
on the layout area, we just perform a division to normalize the two metrics
on the area. These results can be seen in Figure 6.25.

It is interesting to notice in particular the values of Office 4, pictured in
Figure 6.25b. With this normalization, the exploration time of the λcover =
0.2 variant becomes very similar to the one of the original layout. This means
that this generated layout is similar to the original one from an exploration

79

point of view, and that the difference in the exploration performance in
Figure 6.23 and Figure 6.24 depends on the area of the layout. We expect
to obtain similar performance results in this environment with an extensive
tuning of the cover parameters to increase the area of these generated layouts.

6.5.3 Exploration results considerations

Considering the data acquired in this experiment, we state that our gener-
ation method can provide layouts with exploration performances similar to
the original ones. This means that we can successfully generate multiple
realistic building layouts that behave like the real world ones that we utilize
as input in our generation process. However, we identified two issues that
can lead to a significant difference in exploration time and length of traveled
path.

The first is the presence of non-rectangular rooms in the original layouts.
This can be an issue both for the generation itself, as discussed in Section
6.1.2, and for the exploration. In fact, we are limited with our method to
generate rectangular rooms, which are easier to explore by the robot. The
reason is that a non-rectangular room can require multiple observations (and
thus multiple exploration goals) to be completely mapped, since a complex
room shape can limit the line of sight of the laser range scanner of the
robot. An example of this situation is shown in Figure 6.26, where the the
robot represented by the blue arrow has just entered the room. However, the
onboard laser range scanner is limited to view the green portion of the room.
The red dashed line is the line of sight limit caused by the structure of the
room. This leads to the creation of additional frontiers for the room on the
boundary between the green and the red regions. In this way, a single room
can take much longer to be fully explored, extending the entire exploration
process in both time and distance required.

The second issue is the variability of the connections between the rooms.
In fact, the same problem of the swap of the rooms introduced in Section 6.4.3
can affect both the starting position of the explorations and the corridors
configurations of the generated layout, reducing, or increasing, the original
distance and time required to reach another part of the building. Since we
utilized an exploration strategy based on the nearest frontiers, this issue was
probably minimized in our exploration runs. However, like in the previous
case of path planning, we expect these differences to be, on a global scale,
on average negligible.

80

Figure 6.26: Example of line of sight limitation of the onboard laser range scanner in a
non-rectangular room

6.6 Summary

In this chapter, we discussed at first the issues of our generation method.
After that, we presented some examples of generated layouts. Next, we
described the setup of the experiments we perform, their results, and some
observations on them, concluding that the major issue in both the generation
and the explorations experiment is the presence of non-rectangular shaped
rooms in the original layout.

81

82

Chapter 7

Conclusions and future
developments

In this thesis, we proposed a procedural generation method to produce a
large quantity of realistic layouts of buildings. In this way, we can utilize
environments in robot simulations that are representative of real world ones.

We started reviewing the state of the art of procedural layout generation
techniques. In particular, we focused on the scalability of the methods for
procedural generation to handle medium and large scale environments and
how on well they perform while respecting the features specified in input.

We also discussed the concept of realism when applied to layouts. The
definition we use is based on the similarity of the structure of the original
layouts to the generated ones, focusing in particular on the topology graph
and the sizes of the rooms.

We utilized these concepts to propose a procedural layout generation
method that, given in input a building layout, preserves the original topology
graph while minimizing the deviation of the sizes of the rooms from their
original values in the original layout. To perform this generation, we based
our method on a MIQP optimization problem. This technique allows the
definition of specific hard constraints, which can be utilized to enforce both
the adjacencies defined in the original topology graph and that the sizes of
the rooms don’t deviate too much from the original ones, while guaranteeing
scalability to medium and large layouts.

To validate the realism of the layouts generated with our method, we
performed two types of experiments, where we compared the performance of
a robot performing a task in a generated environment with the performance
obtained by the same robot in the real world building counterpart. We first
considered the path planning between pairs of rooms, focusing on how the

83

length of the paths planned vary across the original layout and the generated
ones. We found that the lengths of planned paths are similar on average (over
multiple generated layouts) to those measured in the original layout, even
if we don’t consider the distances between rooms in the generation method
but only the topology graph. The second experiment we performed is the
exploration of the environments with a simulated robot. In this case, we
focused on evaluating if the exploration time and the length of the traveled
path required to complete the exploration process is similar between real
world and simulated environments. Across the tested layouts, we found that
most of them share similar performance with the original layout, meaning
that our method successfully generated realistic building layouts. However,
in some isolated cases, our method generates layouts that don’t perform like
their original versions. We identified the cause of this problem, which is
caused by the complex structure of some rooms of the original layouts. In
fact, our method can only generate rectangular rooms, which are easier to
explore by the robot than non-rectangular shaped ones.

In conclusion, our procedural generation method performs well in gen-
erating realistic layouts, handling also medium and large scale ones, even if
there are some limitations that can affect both the generation process and
the experiments performed on the generated layouts. In fact, as we discussed
in Section 6.1.2, non-rectangular shaped rooms and cycles in the input graph
can increase the computational complexity of the generation, and even pre-
venting it in some extreme cases.

We now list some possible future developments of our work.

• Combined rooms: to allow the generation of non-rectangular shaped
rooms, we can introduce a technique similar to the one proposed in [6]
to decompose the rooms in multiple rectangles. While this approach is
theoretically possible, it could increase significantly the computation
required to find a solution. Since we consider mainly medium and
large scale layouts, the effect of few non-rectangular rooms is typically
negligible on average, but it can be a major issue with smaller layouts.

• Modular regions: to reduce the complexity of the optimization prob-
lem, we can divide the layout in regions, which will be generated in-
dependently and joined afterwards. An approach like this can be seen
as an enhancement of the method utilized to generate large environ-
ments with the hierarchical framework in [6], since in our case the
sub-problems would be automatically generated. In addition, the con-
nection of the various regions can be done utilizing constraints like the

84

connection constraint, defined in Section 5.5.1, to impose the positions
of the rooms that connect them.

• Detailed portals: at the moment, the portals are only characterized
by their type (explicit or implicit). However, it is possible to improve
their modeling in various ways. For example, the generation method
already handles variable door sizes for each portal, but this value is
not used in the XML parser. Another possible addition is to consider
the presence of multiple doors between two rooms, as with large rooms
that need to allow the flow of large crowds (e.g., conference rooms,
cafeterias, ...).

• Boundary regularization: it is possible to introduce a post-processing
phase to regularize the external shape of the layout, which now can be
irregular like we saw in Figure 6.7b. This procedure can consist on
the alignment of the walls of the external rooms. In this case, we also
need to limit the maximum deformation allowed, so that the result-
ing sizes of the rooms wouldn’t deviate too much from their original
specifications.

• 3D generation: it is possible to extend our system to produce a 3D
model of the generated environments. In addition, for more realistic
simulations, we can also integrate other generation methods to generate
furniture and textures. In this way, it is possible to use our 2D layouts
as starting point to recreate some photorealistic 3D environments.

85

86

Bibliography

[1] F. Amigoni, M. Luperto, and V. Schiaffonati, “Toward generalization of
experimental results for autonomous robots,” Robotics and Autonomous
Systems, vol. 90, pp. 4–14, 2017.

[2] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated residential
building layouts,” ACM Transactions on Graphics (TOG), vol. 29, no. 6,
p. 181, 2010.

[3] J. F. Rosser, G. Smith, and J. G. Morley, “Data-driven estimation of
building interior plans,” International Journal of Geographical Informa-
tion Science, vol. 31, no. 8, pp. 1652–1674, 2017.

[4] E. Rodrigues, A. R. Gaspar, and Á. Gomes, “An evolutionary strategy
enhanced with a local search technique for the space allocation problem
in architecture, part 1: Methodology,” Computer-Aided Design, vol. 45,
no. 5, pp. 887–897, 2013.

[5] Z. Guo and B. Li, “Evolutionary approach for spatial architecture layout
design enhanced by an agent-based topology finding system,” Frontiers
of Architectural Research, vol. 6, no. 1, pp. 53–62, 2017.

[6] W. Wu, L. Fan, L. Liu, and P. Wonka, “MIQP-based layout design for
building interiors,” in Proceedings of Computer Graphics Forum, vol. 37,
pp. 511–521, Wiley Online Library, 2018.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[8] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part I,” IEEE robotics & automation magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[9] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings of the 1997 IEEE International Symposium on Compu-

87

tational Intelligence in Robotics and Automation, pp. 146–151, IEEE
Computer Society, 1997.

[10] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the ef-
ficiency of frontier-based exploration strategies,” in Proceedings of ISR
2010 (41st International Symposium on Robotics) and ROBOTIK 2010
(6th German Conference on Robotics), pp. 1–8, VDE, 2010.

[11] F. Amigoni and V. Caglioti, “An information-based exploration strat-
egy for environment mapping with mobile robots,” Robotics and Au-
tonomous Systems, vol. 58, pp. 684–699, 2010.

[12] A. Howard and N. Roy, “The robotics data set repository (radish),”
2003. http://radish.sourceforge.net/.

[13] A. Bonarini, W. Burgard, G. Fontana, M. Matteucci, D. G. Sorrenti,
and J. D. Tardos, “Rawseeds: Robotics advancement through web-
publishing of sensorial and elaborated extensive data sets,” in Proceed-
ings of IROS’06 Workshop on Benchmarks in Robotics Research, 2006.

[14] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci,
D. Migliore, D. Rizzi, D. G. Sorrenti, and P. Taddei, “Rawseeds ground
truth collection systems for indoor self-localization and mapping,” Au-
tonomous Robots, vol. 27, no. 4, pp. 353–371, 2009.

[15] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi,
“AI2-THOR: An interactive 3D environment for visual AI,” ArXiv,
vol. abs/1712.05474, 2017.

[16] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-semantic
data for indoor scene understanding,” arXiv preprint arXiv:1702.01105,
2017.

[17] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm Intel-
ligence, vol. 2, pp. 189–208, 12 2008.

[18] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in Proceedings of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, (Sendai, Japan),
pp. 2149–2154, Sep 2004.

[19] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in Proceedings of ICRA Workshop on Open Source Software,
2009.

88

[20] E. Whiting, J. Battat, and S. Teller, “Generating a topological model of
multi-building environments from floorplans,” in Proceedings of CAAD
(Computer-Aided Architectural Design) Futures 2007, pp. 115–28, July
2007.

[21] A. Aydemir, P. Jensfelt, and J. Folkesson, “What can we learn from
38,000 rooms? Reasoning about unexplored space in indoor environ-
ments,” in Proceedings of 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2012.

[22] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng, “HouseExpo:
A large-scale 2D indoor layout dataset for learning-based algorithms on
mobile robots,” arXiv preprint arXiv:1903.09845, 2019.

[23] E. Whiting, J. Battat, and S. Teller, “Topology of urban environments,”
in Proceedings to Computer-Aided Architectural Design Futures (CAAD-
Futures) 2007, pp. 114–128, Springer, 2007.

[24] F. Amigoni, V. Castelli, and M. Luperto, “Improving repeatability of
experiments by automatic evaluation of SLAM algorithms,” in Proceed-
ings of 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7237–7243, IEEE, 2018.

[25] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner, “On measuring the accuracy of SLAM
algorithms,” Autonomous Robots, vol. 27, no. 4, p. 387, 2009.

[26] H. Chen, X. Zhao, J. Luo, Z. Yang, Z. Zhao, H. Wan, X. Ye,
G. Weng, Z. He, T. Dong, and S. Schwertfeger, “Towards generation and
evaluation of comprehensive mapping robot datasets,” arXiv preprint
arXiv:1905.09483, 2019.

[27] D. Lobos and D. Donath, “The problem of space layout in architecture:
A survey and reflections,” Arquiteturarevista, vol. 6, no. 2, pp. 136–161,
2010.

[28] A. Eiben and M. Schoenauer, “Evolutionary computing,” Information
Processing Letters, vol. 82, no. 1, pp. 1 – 6, 2002.

[29] K. Dutta and S. Sarthak, “Architectural space planning using evolu-
tionary computing approaches: a review,” Artificial Intelligence Review,
vol. 36, no. 4, p. 311, 2011.

89

[30] V. Calixto and G. Celani, “A literature review for space planning op-
timization using an evolutionary algorithm approach: 1992-2014,” in
Proceedings of XIX Congresso da Sociedade Ibero-americana de Gráfica
Digital 2015, CUMINCAD, 2015.

[31] J. McCall, “Genetic algorithms for modelling and optimisation,” Journal
of Computational and Applied Mathematics, vol. 184, no. 1, pp. 205 –
222, 2005. Special Issue on Mathematics Applied to Immunology.

[32] M. Verma and M. K. Thakur, “Architectural space planning using ge-
netic algorithms,” in Proceedings of The 2nd International Conference
on Computer and Automation Engineering (ICCAE), vol. 2, pp. 268–
275, IEEE, 2010.

[33] R. W. Flack and B. J. Ross, “Evolution of architectural floor plans,” in
Proceedings of European Conference on the Applications of Evolutionary
Computation, pp. 313–322, Springer, 2011.

[34] W. F. Robert, Evolution of Architectural Floor Plans. PhD thesis, Fac-
ulty of Computer Science, Brock University, 2010.

[35] N. Sönmez, “Architectural layout evolution through similarity-based
evaluation,” International Journal of Architectural Computing, vol. 13,
no. 3-4, pp. 271–297, 2015.

[36] A. Bahrehmand, T. Batard, R. Marques, A. Evans, and J. Blat, “Opti-
mizing layout using spatial quality metrics and user preferences,” Graph-
ical Models, vol. 93, pp. 25–38, 2017.

[37] E. Rodrigues, A. R. Gaspar, and Á. Gomes, “An evolutionary strategy
enhanced with a local search technique for the space allocation problem
in architecture, part 2: Validation and performance tests,” Computer-
Aided Design, vol. 45, no. 5, pp. 898–910, 2013.

[38] E. Rodrigues, A. R. Gaspar, and Á. Gomes, “An approach to the multi-
level space allocation problem in architecture using a hybrid evolution-
ary technique,” Automation in Construction, vol. 35, pp. 482–498, 2013.

[39] E. Rodrigues, Automated floor plan design: generation, simulation, and
optimization. PhD thesis, 2014.

[40] M. Bruls, K. Huizing, and J. J. Van Wijk, “Squarified treemaps,” in
Data Visualization 2000, pp. 33–42, Springer, 2000.

90

[41] F. Marson and S. Musse, “Automatic real-time generation of floor plans
based on squarified treemaps algorithm,” International Journal of Com-
puter Games Technology, vol. 2010, 2010.

[42] B. J. De Vlugt, “Modern optimization algorithms and applications: Ar-
chitectural layout generation and parallel linear programming,” 2015.

[43] W. J. Mitchell, The Logic of Architecture: Design, Computation, and
Cognition. Cambridge, MA, USA: MIT Press, 1st ed., 1990.

[44] H. Hua, “A bi-directional procedural model for architectural design,” in
Proceedings of Computer graphics forum, vol. 36, pp. 219–231, Wiley
Online Library, 2017.

[45] L. Leblanc, J. Houle, and P. Poulin, “Component-based modeling of
complete buildings,” in Proceedings of Graphics Interface 2011, GI ’11,
pp. 87–94, Canadian Human-Computer Communications Society, 2011.

[46] M. A. Rosenman, “The generation of form using an evolutionary
approach,” in Evolutionary Algorithms in Engineering Applications,
pp. 69–85, Springer, 1997.

[47] T. Schnier and J. S. Gero, “Learning genetic representations as alter-
native to hand-coded shape grammars,” in Artificial Intelligence in De-
sign’96, pp. 39–57, Springer, 1996.

[48] C. M. Bishop, Pattern recognition and machine learning. Springer Sci-
ence+ Business Media, 2006.

[49] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge Uni-
versity Press, 2007.

[50] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing.,” Science, vol. 220 4598, pp. 671–80, 1983.

[51] T. Feng, L.-F. Yu, S.-K. Yeung, K. Yin, and K. Zhou, “Crowd-driven
mid-scale layout design.,” ACM Transactions on Graphics (TOG),
vol. 35, no. 4, pp. 132–1, 2016.

[52] A. Liaw and M. Wiener, “Classification and regression by randomforest,”
R news, vol. 2, no. 3, pp. 18–22, 2002.

[53] J. Martin, “Algorithmic beauty of buildings methods for procedural
building generation,” Computer Science Honors Theses, 2005.

91

[54] R. Rajapaksha, K. Jayawardena, and S. Fernando, “A knowledge base
approach for efficient home floor plan generation applying polygon based
representation,” in Proceedings of 8th International Conference on Ubi-
Media Computing (UMEDIA), pp. 324–329, IEEE, 2015.

[55] H. Liu, Y.-L. Yang, S. Alhalawani, and N. J. Mitra, “Constraint-aware
interior layout exploration for pre-cast concrete-based buildings,” The
Visual Computer, vol. 29, no. 6-8, pp. 663–673, 2013.

[56] X.-Y. Wang, Y. Yang, and K. Zhang, “Customization and generation of
floor plans based on graph transformations,” Automation in Construc-
tion, vol. 94, pp. 405–416, 2018.

[57] M. Luperto and F. Amigoni, “Predicting the global structure of indoor
environments: A constructive machine learning approach,” Autonomous
Robots, vol. 43, no. 4, pp. 813–835, 2019.

[58] M. Luperto and F. Amigoni, “Extracting structure of buildings using
layout reconstruction,” in Proceedings of International Conference on
Intelligent Autonomous Systems, pp. 652–667, Springer, 2018.

[59] B. C. Eaves, “On quadratic programming,” Management Science,
vol. 17, no. 11, pp. 698–711, 1971.

[60] R. Fletcher, Practical Methods of Optimization; (2nd Ed.). New York,
NY, USA: Wiley-Interscience, 1987.

[61] R. Fletcher and S. Leyffer, “Numerical experience with lower bounds
for MIQP branch-and-bound,” SIAM Journal on Optimization, vol. 8,
no. 2, pp. 604–616, 1998.

[62] L. Gurobi Optimization, “Gurobi optimizer reference manual,”
http://www.gurobi.com.

[63] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network struc-
ture, dynamics, and function using NetworkX,” in Proceedings of the 7th
Python in Science Conference (G. Varoquaux, T. Vaught, and J. Mill-
man, eds.), (Pasadena, CA USA), pp. 11 – 15, 2008.

[64] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch, “An O(m2n)
algorithm for minimum cycle basis of graphs,” Algorithmica, vol. 52,
no. 3, pp. 333–349, 2008.

92

[65] T. Andre, D. Neuhold, and C. Bettstetter, “Coordinated multi-robot
exploration: Out of the box packages for ROS,” in Proceedings of IEEE
GLOBECOM WiUAV Workshop, Dec. 2014.

[66] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in Proceedings of International Conference on Robotics and Au-
tomation, 2010.

[67] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transactions
on Robotics, vol. 23, no. 1, p. 34, 2007.

[68] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
SLAM with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings of the 2005 IEEE international
conference on robotics and automation, pp. 2432–2437, IEEE, 2005.

[69] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

93

