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Sommario

La classificazione della morfologia della superficie terrestre è essenziale per la
comprensione di molti processi che occorrono nel pianeta ed è parte di diver-
si studi multidisciplinari. Recenti studi dimostrano come l’estrazione delle
forme morfologiche sia un’area di studio in continua evoluzione, supportata
anche dall’incremento della disponibilità di dati ad alta risoluzione, tra cui i
Modelli Digitali di Elevazione (DEM). Un DEM è una rappresentazione del-
la superficie terrestre attraverso una griglia i cui valori sono cono costituiti
dall’elevazione rilevata nell’area di interesse. Questi modelli possono essere
sfruttati per la individuazione delle proprietà di interesse sia da algoritmi eu-
ristici che da quelli basati sull’apprendimento automatico dai dati. Per poter
raggiungere buoni livelli sia di precisione che di efficienza, la scelta del tipo
di rappresentazione dei dati è di vitale importanza nella progettazione dei
metodi che sfruttano i DEM. Una possibile raffigurazione sono le cosiddette
surface network, ovvero reti delle superfici, che hanno dimostrato di essere
efficaci in diversi studi topologici. Diversamente dai precedenti modelli di
apprendimento basati dui dati, che codificano i DEM come immagini e ap-
plicano le ormai consolidate tecniche convolutive, in questa tesi esploriamo
l’applicabilità del Machine Learning sui grafi per il riconoscimento automati-
co delle forme morfologiche dalle reti delle superfici. In particolare vedremo
i metodi per l’identificazione delle sommità delle montagne, che imparano
dalle surface networks e da una base dati definita come "gold standard", cioè
contente le coordinate geografiche di montagne note. Il modello è stato alle-
nato e testato con i Modelli Digitali di Elevazione e le montagne note della
Svizzera.
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Abstract

The classification of the Earth surface into landforms is essential for under-
standing many physical processes that occur in the planet and is the focus of
multi-disciplinary studies. In the recent years, automatic landform extraction
has emerged as a promising research area, supported by the increasing avail-
ability of high resolution Digital Elevation Models (DEMs). DEMs comprise
a grid of elevation values, to which different heuristic or data-driven algo-
rithms can be applied for characterizing the terrain features of interest. The
choice of the data representation is of primary importance in the design of
DEM data analysis approaches, to achieve a landform extraction method that
is both efficient and precise. One such representation, the surface network,
has proved effective for many topological studies. Unlike previous data-driven
leaning-based methods, which encode DEMs as images and apply standard
convolution operators, in this paper we explore the suitability of Machine
Learning on graphs for the automatic recognition of landforms from surface
networks. We discuss a method for identifying mountain summits, which
learns from a surface network and from a gold standard data set containing
the coordinates of peaks in a region. The model has been trained and tested
with Switzerland DEM and mountain summit data.
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Chapter 1

Introduction

Analyzing and mapping the Earth surface is an important task for a great
variety of sciences, such as hydrology, morphometry and morphology, and for
applications such as environment monitoring and urban planning. With the
proliferation of digital imagery and of its derived products, such as Digital
Elevation Models (DEMs), the automatic analysis of the Earth surface with
computer-aided tools has become the de facto standard and several research
works have proposed methods for extracting landforms from DEM data auto-
matically [1] [2][3] [4]. Among the landforms, mountains have attracted sub-
stantial research efforts, due to their prominent role in hydrogeological risk
and water supply. The problem of characterizing mountains is well-known
to be difficult, due to the lack of a single definition of what a mountain is,
which sparkled different approaches to mountain analysis [5, 6].

Mountain peaks identification from DEM data is a specific case of land-
form detection: given the DEM representation of an area of the Earth surface,
the goal is to identify the coordinates of the points that belong to a moun-
tain landform. A further restriction is summit identification, which aims at
determining the coordinates of a single point representing the summit of the
mountain.

Computer-aided mountain summit identification can help improve the
accuracy and completeness of Voluntary Geographical Information Systems
(VGIS), which depend on the contribution of volunteers for the quality and
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quantity of their data. For example, at the moment the popular Open Street
Map (OSM) system contains ≈ 506, 097 mountain peaks, of which 36,25%
miss the altitude value. Machine intelligence could be exploited to improve
the situation: rather than waiting for the spontaneous contribution of volun-
teers, one could push automatically extracted candidate mountain summits,
with their coordinates and altitude, to a crowds of volunteers, soliciting them
to verify such candidate entities and add the valid ones to the VGIS.

A common characteristic of state-of-the-art mountain identification algo-
rithms is that they rely on manually selected features (e.g., altitude, slope,
curvature, local relief, elevation, prominence, isolation, etc), apply heuristic
rules, and require parameters to be manually configured by the user. The
selection of the features to use and of the parameters values to obtain the
most accurate identification is a non trivial task, especially when multiple
parameters are involved.

In a previous work [7] the supervisors of this thesis have explored the use
of data-driven learning-based methods for mountain summit identification
and investigated the use of Deep Learning (DL) and Convolutional Neural
Networks (CNN) [8] [9] as an alternative to heuristic algorithms that require
the manual selection of landform features and parameters. The idea is to let
a deep neural network learn the optimal features and parameters for recog-
nizing mountain summits directly from the data encoded as bi-dimensional
images. Under this formulation, mountain summit identification becomes a
pixel-level binary classification task, whereby for each DEM cell a prediction
is made whether it contains a summit or not. This requires training the net-
work on a suitable gold standard, built from existing peak collections, so that
the DL classifier learns the significant knowledge on the positioning of moun-
tain summits embodied in the available maps and applies such knowledge to
infer the localization of peaks nnot present in the cartography. At training
time, the DL model is fed with positive and negative examples, extracted
from the DEM data and from the coordinates of existing summits. At in-
ference time, the input to the trained DL model is a set of images extracted
from DEM data, different from those used for training, and the output is a
map that assigns to each pixel/DEM location the probability of representing
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a mountain summit.
In this thesis, we investigate a different learning-based approach to moun-

tain summit identification from DEM data. Instead of treating the DEM data
as a pseudo-image and applying CNN models from the image analysis do-
main, we extract the surface network of the Earth from the DEM data and
address mountain summit identification as a graph node classification task.
Surface networks are graph based topological data structures, which allow a
representation of the geometry and topology of the Earth surface well suited
to such applications as generalisation, drainage network analysis and route
planning [10].

Graph Deep Learning (GDL) is a branch of Machine Learning that ex-
tends the architectures and techniques of Deep Learning beyond Euclidean
domains (such as those of sequence and grid data), enabling inference on
data defined in other domains such as graphs [11]. Graph-indexed data oc-
cur in many applications, where some signal is associated to nodes connected
by links that express some relationship between nodes. Examples of such
structures are common in applications for recommender systems, computer
graphics, social network analysis, and life sciences.

The possibility or representing the Earth surface by means of a surface
network, which encodes the surface salient points, some of their features, and
their topological relations, raises the question of the applicability of GDL to
landform identification. In this thesis we investigate such a question, with
a specific focus on mountain summit detection, to understand how GDL
architectures perform on surface network data and compare to both heuristic
method and learning-based methods that encode DEM data as images.

For the graph construction we explored the method in [12] , where the
DEM data is analyzed locating critical points (nodes): peaks, pits and sad-
dles and their connection though path (edges): ridges (connect saddles with
peaks) and channels (connect saddles with pits).

The idea is to let the methods to learn the optimal parameter configu-
ration for recognizing mountain summits, by training it on a suitable gold
standard.

The methods selected were Logistic Regression[13] for a baseline and
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GraphSAGE[14] a more complex one that performs node classification based
on the aggregation of neighbours information based on the graph topology.
To generate the gold standard we exploit existing cartography (OSM and
Swiss3DNames). Considering that the critical points are enriched with fea-
tures derived from the surface, it was implemented also Node2Vec [15] as a
step for learning representations for the topology which cannot be represented
trivially in an euclidean space.

The nodes of the graph are labeled based on such gold standard to train
and evaluate the proposed methods. We compare the results with other
existing methods from the literature, analyzing their performance and the
possible points for improvement in future work.

The contribution of this thesis can be described as follows:

• We formulate the mountain summit identification task as a node classi-
fication problem, in which traditional and graph ML models are trained
by supplying to it the DEM data encoded as a graph based on surface
networks.

• We experiment such methods in a mountainous region in Switzerland,
using SRTM data at three degree resolution as input and peak coordi-
nates from the OpenStreetMap (OSM) and SwissNames3D public data
sets as gold standard.

• We evaluate the performance of the model, based on a distance-based
heuristic and compare with other methods and we discuss the possible
directions of improvement of the proposed approach.

The thesis is organized as follows. In chapter 2 we present a review of the
state of the art of the heuristic methods and the Deep Learning approaches to
extract landforms and, in particular, peaks summit from SRTM DEM data
and evaluate the obtained results. We also introduce the reader to the topic
of Graph Deep Learning, a specific family of models applying on networks.

In chapter 3 we introduce the concept of surface network and the related
studies for building networks from DEMs. Then The Main Machine Learning
models involved in this work are then discussed.
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In chapter 4 we explain the techniques adopted for building the graph
followed by our workflow for data pre-processing, peak extraction and post
processing with the proposed Deep Learning approaches and the replicated
heuristics methods.

In chapter 5 we illustrate the choice of parameters for each examined
method and perform a quantitative and qualitative analysis on the results.

Finally, in chapter 6 we summarize our work and discuss future improve-
ments.
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Chapter 2

Related Work

In the following sections we will describe methods and techniques related
to the main pourpose of this work: automatically extract peaks using DEM
data. In Section 2.1 we will see more classical and heuristic methods of
computer science which directly interact with DEMs for the identification of
peaks. Section 2.2, instead, is an introduction to Deep Learning, the building
block for the techniques used in the development of our workflow for learning
how to extract peaks from graphs built over DEMs.

2.1 Mountain peaks extraction from DEM

One of the earliest attempts of extracting surface specific points, like peaks,
from discrete terrain elevation data was done by K.Peucker and H.Douglas in
[16]. They described several methods designed to detect landforms like pits,
peaks, passes, ridges, ravines, and breaks, given an array of sampled, quan-
tized terrain elevations. Their work analyzed topographic features of grid
cells according to the patterns of elevation changes between neighbour cells.
The results are limited, as stated in [17], because of the encountered problems
with single cell pits in flat areas due to high signal-to-noise ratio. Under the
bigger landform detection problem goes the subproblem of mountains peaks
identification. The pioneer work [3] introduces an automated method for
classifying generic terrain features extracted from DEMs. Their two-class
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Figure 2.1: Morphometric classes
Figure illustrating the six morphometric classes that can be extracted from
a raster DEM. Image courtesy Peter Fisher, Jo Wood and T. Cheng [6].

system differentiates mounts, the elevated features, and non-mounts, the re-
maining terrain features. Despite some limitations of the algorithm, also this
work has been affected by the quality of digital data. Indeed, the authors of
[17] show how DEM errors affect the computation of the derived attributes.
There exist six morphometric classes that can be identified in a DEM by
analyzing the eight direct neighbours elevations, and an example can be seen
in Figure 2.1. Many studies and researches have been done to further extend
the basic eight-neighbours method for extracting the morphometric classes.
With a new perspective in [5] the authors show that based on the scale with
which we analyze the terrains we can classify them differently. This goes in
the direction of fuzzy set theory of terrain analysis. Peter Fisher, Jo Wood
and T. Cheng [6] explored the fuzziness of multi-scale landscape morphome-
try where they stated that any location can be allocated to a specific class,
but the class to which a location is assigned may vary considering different
scales. Indeed, an area that is a channel by considering its eight direct neigh-
bours can be part of a ridge for a larger scale, considering, for example, not

7



Figure 2.2: Landserf application
(A) Landserf fuzzy feature extraction for peak classification and

(B) Landserf peak classification. Examples in a small area of Lake District
using OS Terrain 50 DEM

only the adjacent cells but also the ones that are connected to their neigh-
bours. They showed how is it possible to combine classification at different
scales for finding peaks. The method is implemented in the Landserf1 appli-
cation [18]. An example where we can see the fuzzy concept of "peakness", i.
e. how much a given location belongs to the class of peak, can be seen in fig-
ure 2.2 (A) where red denotes a higher value of peakness. These techniques
are further explored with a qualitative work in [19] and two use cases are
reported: the Ben Nevis area, containing 19 peaks, and the Ainsdale coastal
sand dunes. They show that some areas that have large value of peakness are
actually corresponding to real peaks present in the dataset of known peaks
used by authors, while some others are not associated with any summit. The
algorithm outcome is strongly influenced by its tunable parameters. The
Landserf tool implements also a heuristic technique, based on the more clas-
sical method of the eight direct neighbours, which considers that a location
may be considered a peak if its altitude is higher than a given treshold and
there is a minimum elevation difference w.r.t its adjacent cells [18]. These

1http://www.landserf.org/
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quantities are two tunable parameters. An example can be seen in figure 2.2
(B). The yellow areas indicate the locations which are part of the extent of a
mountain, while the red color denotes the summit of a mountains. With yet
another approach, presented in [20], and implemented in Landserf, the tool
allows to extract peaks from DEMs also by building a so called Metric Sur-
face Network. It consists, essentially, in a graph with weighted edges whose
vertexes are the critical points (peaks, pits and saddles) of a surface while the
edges are the critical lines (channels and ridges). Also this method is sub-
ject to parameters tuning for optimization. Still considering 3x3 windows of
DEM cells for the analysis of the locations for possible summits, the author
of [21] and [22] combines topographic and morphologic criteria. According
to these works a point, to be considered a peak, must reside in a non-flat
area, must be the highest within its eight neighbors and must have at least
a certain horizontal and vertical distance from other candidate peaks. The
author, with a further qualitative study in [23] analyzes in detail the shape
of a peak. By evaluating DEM data of the Kamnik Alps in Slovenia they
show that shapes are dependent on each other and are not universal. The
shape examination improves peak detection even though it is considered still
as a very complex task to be generalized and solved by only authomated
methods.

Apart of studying the elevation of a cell relative to its adjacent ones, there
have been developed also methods that considers the shape of a peak relative
to its neighbours. Similarly to [6], in [24] the authors consider mountains
peaks as fuzzy entities and define a multi-scale peaks extraction algorithm
based on local properties such as topographic position, number of summits
in the neighborhood, relief, relative altitude and mean slope. The algorithm
returns the peak class membership of a point expressed by a value suitable to
further analysis through the application of a treshold. The effect of varying
the treshold and the scale is presented through a qualitative evaluation.

Other studies, like [25] of J. Jasiewicz and F. Stepinski, focused in ap-
plying pattern recognition approaches for classifying and mapping landforms.
They identified the so called geomorphon, a simple ternary pattern that serves
as base archetype for building more complex morphometric landforms. There
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are 498 geomorphons that constitute a comprehensive and exhaustive set of
all possible morphological terrain types including all the standard elements
of landscape, as well as unfamiliar forms. This approach of classification is
significantly different from classical methodologies, indeed, it uses tools of
computer vision rather than tools of differential geometry. The geomorphons
can be then mapped to the more classical morphometrical classes.

SAGA GIS 2 constitue another important tool in the field of landform
detection. It has been usen in [26] where the authors propose a worklow for
Digital Terrain Analysis (DTA) and landform reconition and extraction from
DEM. They analyze the most used terrain attributes, like slope, curvature
and elevation, and combine different landfrom recognition methods, like dig-
ital topography. hidrology and morphology. The results show that different
landforms are better characterized by different resolutions. In particular,
higher resolutions allow to distinguish between more classes in the context
of Fuzzy Landform Classification.

An important work based on heuristic approaches introduced in [27] de-
termines the prominence and isolation for the mountains, two important
features characterizing peaks. Prominence is a measure of the independence
of a summit and it is computed by finding the minimum vertical distance
needed to descend from the peak to to ascend to a higher one. Isolation,
instead, measures the minimum distance of a summit from another one with
higher elevation. For each peak in the world these two values are calculated
and the results compared with the PeakBagger dataset 3. When computing
the prominence for the summits a so called divide tree is built which rep-
resent the connection with the higher ones (except of the root of the tree
which is the highest). These connections follow the path of descent from the
peak until the lowest points, which is a saddle, before restarting to climb up
a higher one. This tree can be thought like a sampling of the critical points
and critical lines from the (metric) surface networks.

2http://www.saga-gis.org/en/index.html
3http://www.peakbagger.com/
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2.2 Deep Learning

Artificial Intelligence (AI) is the field that studies the creation of computer
systems able to mimic the human cognitive functions in order to solve non
trivial problems. Machine Learning (ML) is a subfield of Artificial Intel-
ligence that develops solutions that do not rely on explicitly programmed
instructions to perform a certain task, but exploit a data-driven approach, in
which patterns are learned from training data. Learning can be supervised,
semi-supervised or unsupervised [28]. Furthermore, Deep Learning (DL) is a
class of Machine Learning algorithms that relies on deep neural networks to
learn data representations, which recently experienced great success, thanks
to the vast amount of training data and to the increasing computational
power available nowadays. DL models, have proved capable of achieving
high quality results in a wide range of Computer Vision tasks, such as image
classification, detection, localization and segmentation. In particular, it is
easy to feed the above mentioned techniques, with euclidean data such as
feature vectors, or images. The performance of Machine Learning algorithms
heavily depend on the data they are fed with; the choice of the representa-
tion for the data on which they are applied requires important efforts on the
design of preprocessing pipelines and data transformation. In cases were we
have too much data engineering the relevant features or when we’re in the
domain of non-Euclidean data, the task of preparing the input to feed ML
or DL models could be more challenging. To cope with this, there is a field
called Rresentation Learning which goes in the direction of learning repre-
sentations of the data that make it easier to extract useful information when
building classifiers or other predictors. Deep Learning techniques are formed
by the composition of multiple non-linear transformations with the goal of
yielding more useful representations, as stated in [28]. The organization of
the AI fields can be seen in Figure 2.3. In this section, we will do an overview
of main concepts on these areas.
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Figure 2.3: Artificial Intelligence fields
Figure showing how Artificial Intelligence can be hierarchically organized in
subfields. Deep Learning can be seen as a specific field of Representation
Learning, that is by itself a specific field of Machine Learning, a subset of

the broader class of Artificial Intelligence methods.
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2.2.1 Artificial Neural Networks

The basic model over which are built many and more complex Deep Learn-
ing models are the so called Artificial Neural Networks, which are vaguely
inspired by the biological neural networks that constitute animal brains. The
neural network itself is not an algorithm but rather a framework for many
different machine learning and, consequently, deep learning algorithms to
work together and process complex data inputs. Their ability of learning
from examples without being programmed for a specific task made them a
breakthrough in many fields. Learning can be seen as as the process of ad-
justing internal parts of the model in order to approximate some unknown
function f ∗, just by feeding the network with different examples of data. For
example, for a classifier, f ∗ may be a function that maps an input x into a
category y. An artificial neural network defines a mapping y = f(x;θ) where
the values of the parameters θ are learned such that f ∗ would result as the
best approximation function.

Artificial Neural Networks are based on a collection of connected units or
nodes called artificial neurons whose connections, that have a shallow simi-
larity with the biological synapses, can transmit a signal from one artificial
neuron to another. Once a neuron receives a signal (usually represented by
a real number) can process it and then send the outcome to the other neu-
rons to which is connected. Generally, the output of each artificial neuron
is computed by some non-linear function of the sum of its inputs, while the
connections between artificial neurons are called edges. To the edges between
neurons are then associated some weights that represent the strength of the
connection and are the parts of the model that can be adjusted during the
learning process. As we can see in Figure 2.4, each neuron i is fed with a
vector of real numbers x, i.e., the outcomes of the processing of the other
neurons connected to i; in this case we refer to xj as the output of node j
feeding node i. Each input will be then multiplied by the weights wij associ-
ated to the edges that connect the neurons j to neuron i and summed with
the results of the other multiplications. There is, essentially, a dot product
between the vectors x and w representing, correspondingly, the input data

13



and the weights of the edges connecting the neurons. Then, the summation
of the multiplications is used as an input to a non-linear activation function
g which will produce the final signal yi.

As an example of non-linear activation function we may consider the
binary step (which is also present in Figure 2.4) and write the output signal
yi as:

yi = g(x) =

1 if x ·w ≥ 0

0 otherwise
(2.1)

Figure 2.4: Artificial Neuron
Figure taken from [29] depicting the computational structure and the flow

of information between neurons in an Artificial Neural Network.

One of the most well known example of ANN are the Feedforward Neural
Networks, also called Multilayer Perceptrons (MLPs). As stated in [30],
these models are called feedforward because information flows from x, which
generally represents the data, through the intermediate computations used
to define f , and finally to the output y. MLPs are acyclic, i.e they do not
include feedback connections.

Feedforward Neural Networks are called networks because they are typi-
cally represented by composing together many different functions. An exam-
ple may be f(x) = f (3)(f (2)(f (1)(x))) where there are three functions (f (1),
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f (2) and f (3) connected in a chain. Usually we say that the functions consti-
tute the layers and we refer to f (1) as the first layer, f (2) as the second layer
and so on.

In Figure 2.5 we can see a general architecture of a (Deep) FNN. The
difference between FNN and the deep ones consist in the number of layers.
Deep FNN are in general composed by many more layers than the normal
ones. It is important to highlight that the functions that constitute the chain
can be cosidered as computational layers composed by different numbers of
neurons. Essentially the stacked layers of neurons can be associated to the
chain of funcions, and each layer’s functionality is given by the combination
of the processing units, i.e. the neurons, that constitute the layer. The layers
can be then organized as: input layers (L1), where the network is fed with
the examples (usually constituted by vectors of real numbers), hidden layers
(L2, L3, L4), which usually receive the outcome of the computations of the
input layers, and the output layers (L5) that are fed with the signals coming
from the hidden layers and whose output constitute the model response to
the data. For example, if the model is trying to classify images, each different
yi representing the output may indicate the probability for the input picture
to belong to a given class (cat, person, building, car, etc...). Organizing the
neurons in layers allows to have powerful models that are able to learn really
complex functions, or at least quite close approximations to an ideal f ∗.
Also notice that this particular kind of Deep Feedforward Neural Network
is a Fully-Connected one. As we can still see from Figure 2.5, except of the
input and output layers, each neuron from each layer is connected to all the
neurons from the previous layer and to all the neurons of the next layer. The
exception of the input and output layer is given by the fact that, as we said,
the input layer receives the example so its neurons have no incoming edges
from other neurons, while the output layer receives only the signals from the
computations from the previous layer but is not feeding other layers since
its result constitute the final approximation of the function f ∗. The overall
length of the chain gives the depth of the model, the term from which arose
"deep learning" name.

15



Figure 2.5: A Deep Feedforward Neural Network
Figure taken from [31] showing the computational structure of a Deep

(Fully-Connected) Feedforward Neural Network and the Layers that can be
distinguished between input layers L1, hidden layers L2, L3,L4 and output

layers L5.
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2.2.2 The learning process

As we said, the parts of the neural networks models which are usually modi-
fied to better approximate the objective function f ∗ are the edges connecting
the neurons and their associated weights. Again as an example consider a
supervised learning where human labeled data is used for training an arti-
ficial neural network that is classifying the content of images. The learning
process is mainly constituted by three phases, the forward propagation, the
loss computation and the backward propagation (often named just backprop-
agation). The first one occurs by feeding the network with examples, passing
them across all the network and applying the transformations of each neuron.
The outcome of the output layers can be interpreted as the network’s pre-
diction for the content of the image. After the output is calculated for each
example that is given to the model, an error, usually called loss, is computed
between what is the real content of the image and what is the neural network
predicting. Here the last phase, the backpropagation, takes part. The loss is
then propagated through all the neurons of the hidden layers and it is used
to adjust the weights of the edges to reduce to the minimum the error. This
process can be visualised in Figure 2.6. The objective is to make the loss as
close as possible to zero the next time we will use the network for a predic-
tion. For doing so, the gradient descent technique it is used; it changes the
weights of the edges with small increments by calculating the derivative (or
gradient) of the loss function. Gradient descent tunes the weights in order to
descend towards a global minimum of the loss function of what is predicted
against which are the real values of the examples. If we think at the neural
network as a composition of functions, gradient descent tries to find the best
θ∗ for the function f(x;θ) representing the network in order to minimize the
loss between the ideal f ∗ and the actual approximating function f(x;θ).

2.2.3 Deep Learning on GIS

The latest improvements of Artificial Intelligence and Deep Learning made
them suitable for replacing specific task algorithms. Also in the field of Com-
puter Vision, for tasks such as image classification, detection, localization and
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Figure 2.6: Learning phases of a Neural Network
Figure representing the learning phases of an Artificial Neural Network. (1)

Forward propagation: the training data is passed across all the neural
network and the outcome of the output layers represents the network’s

prediction. (2) Loss: represents how far the prediction is from the objective
f ∗. (3) Backpropagation: the propagation of the loss to all the neurons in
the hidden layers that contribute to the output. Image courtesy Jordi

Torres [32]
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segmentations [33], the advancements of Deep Learning allowed a remarkable
improvement of the performances compared to traditional methods. Specific
models of Deep Learning, the Convolutional Neural Networks (CNN), have
proved a great ability in dealing with images. As stated in [34] they have
been used in several works of geoscience and remote sensing as an important
tool for the analysis of aerial images. Specifically, in [35] and [36], CNNs
have been applied for aerial images segmentation, tackling land cover and
objects mappings, in which each pixel is assigned a given class (e.g. road,
car, vegetation, building, etc). Artificial Intelligence has been proved also of
being effective for the analysis of DEM data. Models such as the Multilayer
Perceptron have been applied in [37] for classifying the above-ground ob-
jects by having as main target the separation of the high-standing structures
(trees and building) from their surrounding terrain. In [38] the authors used
DL on Airbone laser scanning (ALS) point cloud data for extracting digital
terrain models (DTMs). Their method allows to classify points by using an
image-like classification approach. Indeed, they map the relative height dif-
ference of each point with respect to its neighbours (in a square window) to
an image.

Digital Elevation Models in some areas of the Earth lack of good resolu-
tion. To overcome this problem in [38] the authors proposed the so called
DEM super resolution, a technique that improves the resolution for a DEM
on basis of some learning examples. With a different approach in [39] and
[40] there have been suggested techniques which involve the synthetic gener-
ation of terrain images by using a specific model of DL, the Deep Generative
Adversarial Neural Networks (GANs).

Recently, the authors in [41] proposed the usage of CNN for extracting
peaks from DEMs by creating patches of dimension 31x31x3 representing
parts of the physical region delimited by the DEM. Each patch is a square
of 31x31 pixels, where every pixel is a cell of the DEM raster containing
the elevations. The patches containing the elevations are then treated like
images, which makes them really suitable for models like CNN. The authors
showed how is it possible to use Deep Learning methods to train a model with
terrain data represented as DEMs capable of identifying mountain summits.
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Figure 2.7: Diagrammatic representation of the types of graphs
The blue circles represent the vertexes (or the nodes), while the gray lines
represent the connections among the nodes, i. e. the edges. The figure shows
how can be defined 8 categories of graphs based on the type of edges.

Based on their work, we are extending the application DL for extracting
peaks from digital elevation models by building graphs, specifically surface
networks, over the DEMs and then applying Deep Learning on the graphs.

2.2.4 Deep Learning on Graphs

In mathematics, and more specifically in graph theory, a graph is a structure
amounting to a set of objects in which some pairs of the objects are in some
sense "related". The objects correspond to mathematical abstractions called
vertices (also called nodes or points) and each of the related pairs of vertices is
called an edge (also called an arc or line) [42]. Typically, a graph is depicted
in diagrammatic form as a set of dots for the vertices, joined by lines or
curves for the edges. An example of diagrams can be seen in Figure 2.7.

Graphs naturally exist in a wide diversity of real world scenarios, e.g.,
social graph in social media networks, citation graph in research areas, user
interest graph in electronic commerce area, knowledge graph, etc. In Figure
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2.7 we can see a categorization of graphs based on their type of edges. For
an undirected graph, an unordered pair of nodes that specify a line joining
these two nodes are said to form an edge. For a directed graph, the edge is
an ordered pair of nodes. If an edge is representing a relation in a family,
for example a member father of another member, the nodes represent the
members while the directed edge represents in which direction is going the
relation. In the context of directed graphs there can be made a distinction
between cyclic and acyclic graphs, i.e if the graphs do contain a cycle or not.
A cycle of a graph G is a subset of the edge set of G that forms a path such
that the first node of the path corresponds to the last. A weighted graph
is a graph in which a number (the weight) is assigned to each edge. Such
weights might represent for example costs, lengths or capacities, depending
on the problem at hand. The unweighted graphs, instead, do not have a
cost associated or they all have the same cost usually set to 1. Also it can
be distinguished between sparse or dense graphs. In the last ones there is
an edge between all the possible pairs of vertexes in the graph, while in the
sparse this is not happening.

There exist also graphs with features associated to the nodes, i.e. some
numerical or categorical attribute representing properties in the domain of
the graph. Figure 2.8 shows a diagram representing such kind of graphs. For
example if the graphs are representing sentences and the nodes are words,
instances of attributes may be the length of the word, its position in the
sentence and the word class (noun, verb, adjective, etc).

Being able to analyze properly these kind of graphs means being able to
make good use of the information hidden in the structure of the graphs. An
increased attention has been devoted to the topic in the last few decades
[43]. In particular, the utilization of Machine Learning on graphs became
an important and ubiquitus task with applications ranging on very heteroge-
neous fields [44]. Examples of ambits of implementation go from classifying
the role of a protein in a biological interaction graph, to predicting the role
of a person in a collaboration network, from recommending new friends to
a user in a social network to predicting new therapeutic applications of ex-
isting drug molecules whose structure can be represented as a graph. For
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Figure 2.8: Graph with attributes
The depicted graph is containing three vertexes and three edges. For each
of the the nodes it is also present a vector ai containing the properties of

the node. In this particuar case each vector is composed by a fixed number
K of attributes, arranged in an ordered list, from a

(1)
i to a(K)

i .

achieving these tasks some typical problems need to be addressed on graphs.
Usually node classification, link prediction and community detection are the
main concerns, but also some other specific problem as a combination of the
basic ones, such as subgraph classification or entire graph classification, can
be evaluated. Node classification aims to correctly classify the nodes as be-
longing or not to a given category. For example in a molecule the nodes may
represent the atoms which we want to categorize as belonging to a chemical
element. A diagrammatic representation of a molecule and its correspond-
ing graph can be seen in Figure 2.9 (b). Link prediction problem, instead,
goes in the direction of being able to predict the existence of a connection
between two nodes and, more specifically, in the case of weighted graphs, the
strength of the connection which can be represented by a real number. In
Figure 2.9 (a) we can see an example where having a community of members
represented with nodes we may want to predict a future connection, i.e. link
prediction, among members which are not already in contact. Community
detection, instead, aims to cluster sets of nodes sharing specific properties
that are intended to belong to a certain group. Figure 2.9 (a) can be an
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Figure 2.9: Graph models of reality
Abstract representation two real world situations suitable for graphs. (a)
Social Network instance with the members depicted as nodes and their

relationships as edges. (b) Molecule representation where the nodes are the
atoms and the edges are the molecular bonding. Image taken from [45]

example where the two groups are formed by the members depicted in blue
and red respectively. Other derived subproblems of the above described ones
can be, for example, subgraph classification where the purpose is to classify
entire portions of the original graph, comprehensive both of the nodes and
the edges. Graph classification, instead, aims at classifying the entire graph
with a category from a given domain. Still in the context of molecules, the
purpose may be to classify the graph as "drug" or "non drug". Many ma-
chine learning applications seek to make predictions or discover new patterns
using graph-structured data as feature information.

ML can automate functions, such as image classification, that are easy
for a human to do, but hard to turn into a discrete algorithm for a computer.
Deep learning allows us to transform large pools of example data into effective
functions to automate that specific task. This is doubly true with graphs;
they can differ in exponentially more ways than an image or vector thanks
to the open-ended relationship structure. The central problem in machine
learning on graphs is finding a way to incorporate information about the
structure of the graph into the machine learning model. Graphs usually lack
of a common structure either between two different graphs refering to the
same domain, either among the nodes and the edges of the same graph. For
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example in a situation where two graphs represent two different communities,
with the nodes representing the individuals and the edges representing the
relations among the nodes, it would be really improbable to have the same
number of nodes and edges. Also among the same graph the vertexes are
generally having different numbers of edges connecting to their neighbours.
Traditional methods that use machine learning algorithms with graphs rely
on handcrafted features for encoding the graph structural information. Also,
using directly the graphs as input for machine learning algorithms has a high
computational and space cost [43]. Recent approaches overcome the problem
by learning graphs embeddings, i.e. converting graphs into low dimensional
space in which the graph information is preserved. This allows to use the
embeddings of the graps as input to downstream machine learning models.
Methods that create embeddings from graphs are part of the field of rep-
resentation learning [44]. There exist, however, also deep learning models
which are able to handle directly graphs as inputs for performing tasks such
as classification and regression of the entire graph, parts of it or its nodes.
Standard machine learning algorithms generally rely on grid data structures
(in 1, 2 and 3 dimensions). Convolutional Neural Networks (CNNs), one of
the most successful examples of deep learning algorithms, exploit grid data
structures and the translational equivalence/invariance with respect to this
grid [46]. One of the key challenges of extending CNNs to graphs is the lack
of vector-space structure and shift-invariance making the classical notion of
convolution elusive [47]. In their work, the authors of [46] showed how is it
possible to extend these properties for graphs. Then, even though the dis-
tincion is not sharp and the two categories may overlap, deep learning on
graphs can be distinguished mostly in two groups of methods: representa-
tion learning through graph embedding and graph deep learning with direct
application of the models over the graphs.

Graph Embedding

As stated in [43], the problem of graph embedding is related to two traditional
research problems: graph analytics and representation learning. Particularly,
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Figure 2.10: Graph Embedding
Figure taken from [43] representing the taxonomy of graph embedding.

graph embedding aims to represent a graph as low dimensional vectors while
the graph structures are preserved. Previous work addressed to this prob-
lem as a pre-processing step using hand-engineered statistics, such as node
degree, to extract structural information. In contrast, representation learn-
ing approaches treat this problem as a machine learning task itself, using a
data-driven approach to learn embeddings that encode graph structure [44].
In their survey the authors of [43] show a graph embedding taxonomy based
on the problem setting and on the used technique. This distinction is showed
in Figure 2.10.

Most of the embedding methods work in an unsupervised manner, i.e.
the algorithms have no prior knowledge about how the embeddings should
be done or for which downstream machine learning task the embeddings will
be used. There exist however also some graph embedding approaches which
can be categorized as supervised which make use of regression numerical
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Figure 2.11: Encoder-decoder approach
Figure taken from [44] representing an overview of the encoder-decoder

approach. First, the encoder maps the node, vi, to a low-dimensional vector
embedding, zi, based on the node’s attributes and/or local neighborhood
structure. Then, the decoder extracts user-specified information from the
low-dimensional embedding, which can be the local neighborhood of vi or a
classification label associated to vi. By jointly optimizing the encoder and
decoder the system learns to compress information about graph structure.

attributes or classification labels in order to optimize the embeddings.
In the context of unsupervised node embedding a really common frame-

work is the so called encode-decode one where the encoder maps each node to
a low-dimensional vector (the embedding), while the decoder decodes struc-
tural information about the graph from the learned embeddings (Figure 2.11).
The vast majority of the works use a pairwise decoder which assigns a graph
proximity measure (expressed by real a value) to pairs of embeddings, i.e
quantifies the proximity of the two nodes in the original graph. Applying
such decoder to a pair of embeddings (zi,zj) returns a reconstruction of the
proximity between vi and vj in the original graph. Finally, a loss function
` measures how far the decoded proximity value is from the real proximity
value. According to the measure loss ` the encoder is then tuned in order to
produce embeddings that would minimize the distance between the decoded
proximities and the real ones.

Under the encoder-decoder framework we can find numerous methods
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for embedding graphs; their differences vary based on their encoding func-
tion, decoding funcion, proximity measure and loss function. For example,
DeepWalk [48] and node2vec [15], two really adopted algorithms in graph
embedding literature, are using deep learning with random walks statistics.
In graph theory, given a graph and a starting point, we select a neighbor of
it at random, and move to this neighbor; then we select a neighbor of this
point at random, and move to it. The (random) sequence of points selected
this way is a random walk on the graph. Their key innovation is optimizing
the node embeddings so that nodes have similar embedding if they tend to
co-occur on short random walks over the graph. Instead of using a determin-
istic measure of graph proximity, the methods based on random walks use a
flexible and stochastic measure of graph proximity, which has led to superior
performance in a number of settings [49]. Both methods, however, are failing
to leverage node attributes during encoding which can be a hard limitation
considering that node attributes can be higly informative with respect to the
node’s position and role in the graph. Also, these methods are inherently
transductive like said in [transductive], i.e. they can only generate embed-
dings for nodes that were present during the training phase, and they cannot
generate embeddings for previously unseen nodes unless additional rounds
of optimization are performed to optimize the embeddings. This is highly
problematic for domains that require generalizing to new graphs after train-
ing. Other methods, like Deep Neural Graph Representations (DNGR) [50]
and Structural Deep Network Embeddings (SDNE) [51] implement encoders
that do not use only the graph structure in order to compress the informa-
tion about a node’s local neighbor but they incorporate also the information
about the node. These two methods also differ from the previous ones be-
cause they use a unary decoder instead of a pairwise one. However, also these
approaches are not using attribute information about the nodes and they are
strictly transductive and cannot generalize across graps. They are also really
costly because the dimension of the autoencoder is fixed and equal to the
number of vertexes inside the graph which can be really a huge problem for
graphs with millions of nodes. Similarly, some recent node embedding ap-
proaches designed encoders that rely on a node’s local neighborhood, but not
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Figure 2.12: Neighborhood-aggregation encoder algorithm
Figure taken from [44] representing the pseudocode of the

neighborhood-aggregation encoder algorithm.

necessarily the entire graph. The idea is to generate embeddings for a node
by aggregating information from its local neighborhood. The aggregation in
this context relies on nodes features or attributes to generate embeddings.
For example, a social network might have text data (e.g., profile information)
or the nodes of a molecule, i.e. the atoms, can have features regarding their
chemical properties. The neighborhood aggregation methods leverage this
attribute information to inform their embeddings. In cases where attribute
data is not given, these methods can use simple graph statistics as attributes
such as node degrees. These methods are often called convolutional because
they represent a node as a function of its surrounding neighborhood, in a
manner similar to the receptive field of a center-surround convolutional ker-
nel in computer vision [52]. During the encoding phase the neighborhood
aggregation methods build up the representation in an iterative/recursive
fashion. As showed in [44] the procedure can be represented with an algo-
rithm whose pseoudocode can be seen in Figure 2.12. The initial node embed-
dings are set to be equal to the nodes attributes that are usually represented
as vectors. At each iteration of the encoder algorithm, nodes aggregate the
embeddings of their neighbors, using an aggregation function that operates
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over sets of vectors. Then, for each node, the aggregated neighborhood vector
is combined with the node’s previous embedding of the last iteration gener-
ating a new embedding which will be assigned to the node. Finally, this
combined embedding is fed through a neural network layer and the process
repeats. As the process iterates, the node embeddings contain information
aggregated from further and further reaches of the graph. The encoder is
forced to compress all the neighborhood information into a low dimensional
vector such that, as the process iterates, the dimensionality of the embed-
dings remain constrained. After K iterations the process terminates and the
final embedding vectors are output as the node representations. Different
recent approaches fall into the setting illustrated in the algorithm of figure
2.12. Graph Graph Convolutional Networks (GCN) [52], column networks
[53] and GraphSAGE [14] all follow the neighborhood aggregation principle
but differ primarly in how the aggregation (line 4) and vector combination
(line 5) are performed. These algorithms exploit a set of trainable parame-
ters, i. e. the aggregation functions and the weight matrices of the neural
network layer W, which specify how to aggregate information from a node’s
local neighborhood. Differently from the encoder-decoder approaches listed
before, the neighborhood aggregation encoder algorithm share the trainable
parameters across the nodes. The parameter sharing increases efficiency (i.e.
the parameter dimensions are independent of the size of the graph), provides
regularization, and allows this approach to be used to generate embeddings
for nodes that were not observed during training [14]. Also, differently from
the algorithms of the encoder-decoder framework which are by default un-
supervised, the neighborhood aggregation approaches can also incorporate
task-specific supervision from node classification tasks in order to learn the
embeddings. The task-specific supervision can be seen as a different way of
computing the loss between the embedded vector and the desired one rep-
resented by the supervision. This allows for more fine tuned embeddings
depending on the task we want to achieve.

Based on the convolutional node embedding algorithms it is possible also
to define subgraphs embeddings where the goal is to encode a set of nodes and
edges into a low-dimensional vector embedding. The basic intuition behind
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these approaches is that they equate subgraphs with sets of node embeddings.
They use the convolutional neighborhood aggregation idea (i.e., Algorithm
in Figure 2.12) to generate embeddings for nodes and then use additional
modules to aggregate sets of node embeddings corresponding to subgraphs.
An example is the work in [54] where Duvenaud et al. introduced the so
called “convolutional molecular fingerprints”, a sum-based approach, where
they create representations for subgraphs of molecular graphs by summing
all the individual node embeddings in the subgraph. The node embeddings
are generated using a variant of the Algorithm in Figure 2.12. Differently
from the sum-based techniques where they sum the node embeddings for the
whole graph, the graph-coarsening approaches, such as the ones of Deferrard
et al. [55] and Bruna et al. [46], stack convolutional and "graph coarsening"
layers. In the graph coarsening layers nodes are clustered together and the
clustered node embeddings are combined using element-wise max-pooling.
After clustering, the new coarser graph is again fed through a convolutional
encoder and the process repeats. These approaches place considerable em-
phasis on designing convolutional encoders based upon the graph Fourier
transform. Since naive versions of these encoders have complexity O(|V |3),
with |V| the number of vertexes, the authors of [55] introduce an approxima-
tion of the encoders by using the Chebyshev polynomials. However, as stated
in [44], the introduced approximations make the graph coarsening methods
conceptually similar to the algorithm in Figure 2.12.

Regarding the taxonomy showed in the survey [43] for the graph embed-
ding input in our work we focused on "graph with auxiliary information"
with vector features representing properties of the nodes. For what concerns
the output, instead, for our case was suitable to consider as objective the cre-
ation of "node embeddings" where for each node the embedding is a vector in
a low dimensional space. We focused mainly on the "deep learning" embed-
ding techniques because, as stated also in the survey, they are quite robust
and effective and have been widely used in the field of graph embedding.
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Graph Deep Learning

In Section 2.2.4 we said that we wanted to distinguish between deep learn-
ing techniques aiming to create embeddings and the ones that learn directly
on graphs. We refer as Graph Deep Learning techniques to the latter ones.
However, this distinction is not sharp and the graph embedding techniques
can be seen just as an intermediate step towards the global task of learn-
ing from graphs. Indeed, the neighborhood aggregation approaches that can
also incorporate task-specific supervision from node classification tasks can
be seen as more general algorithms which apply directly deep learning over
the graphs. They first learn how to encode the graph and then solve the
specific ML task, such as classification, regression, etc., by applying more
classical algorithms from ML literature. Indeed, we presented the Graph-
SAGE [14] model as a graph embedding technique which acts in an unsu-
pervised manner. Nonetheless it can also be seen as a deep learning model
that learns directly from graphs when incorporating supervised information
such as labels for nodes. Also Deferrard et al. in their work [55] present their
model not as an embedding algorithm but rather as a direct deep learning
model on graphs which extends the concept of convolution from euclidean
domains to irregular ones such as the graphs. The embedding step, however,
as stated by [44], constitute an important part for these algorithms too, such
that enables them to learn the proper representations for solving specific ML
tasks. The models that rely on the Fourier transform, such as the one of
Deferrard [55], are called spectral models. As stated in [11] a key criticism
of spectral approaches is the fact that the spectral definition of convolu-
tion is dependent on the Fourier basis (Laplacian eigenbasis), which, in turn
is domain-dependent. It implies that a spectral CNN model learned on one
graph cannot be trivially transferred to another graph with a different Fourier
basis. In their work the authors of [11] solved partially the problem by being
able to generalize over graphs with different number of edges. However, when
dealing with tasks such as graph classification, their model still requires to
keep fixed the number of nodes, i.e. the different graphs which are classified
can have different number of edges but require to have the same number of
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Figure 2.13: Categorization of deep learning methods on graphs
Figure taken from [57]. The authors divide the existing methods into three
categories: semi-supervised, unsupervised and recent advancements. The

semi-supervised methods can be further divided into Graph Neural
Networks and Graph Convolutional Networks based on their architectures.
Recent advancements include Graph Recurrent Neural Networks and Graph

Reinforcement Learning methods.

nodes. Still in the context of spectral methods the authors of [56] attempted
to advance deep learning for graph-structured data by incorporating another
component: transfer learning. By transferring the intrinsic geometric infor-
mation learned in the source domain, their approach can construct a model
for a new but related task in the target domain without collecting new data
and without training a new model from scratch.

In their work the authors of [57] proposed a categorization of the deep
learning methods on graphs that can be seen in Figure 2.13. We worked
mainly with the unsupervised deep learning methods,specifically with graph
auto-encoders such as node2vec [15], and with the semi-supervised graph
convolutional networks such as graphSAGE [14] and the convolutional neural
networks in the spectral domain of [55]. It is important to highlight that in
our work the algorithms which are categorized as semi-supervised in [57] can
be and have been used in a supervised context. In semi-supervised approaches
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only a few nodes have additional supervised inoformation such as node labels,
i.e it is also used an amount of unlabeled data during training, while in the
supervised cases all the nodes have such information. As we will see in
Chapter 3 the graphs used in this work are the so called Surface Networks
where the nodes have attributes given by terrain conformation while the
labels for the classification task is given by their category (peak / non peak).
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Chapter 3

Overview of the relevant
techniques and graph learning
architectures

3.1 Surface networks

In math by surface is intended a function f of one or more variables. In geog-
raphy one is usually interested in those functions for which two of the inde-
pendent variables denote location in a geographic domain; that is, functions
f(u,v) where (u,v) denotes a point within a geographic coordinate system. A
topographic surface in which altitude is a function of position is a convenient
prototype. Surface Networks are an abstraction of the 2-dimensional sur-
faces by storing only the most important (also called fundamental, critical
or surface-specific) points and lines in the surfaces.

Surface networks allow to abstract the Earth’s surface and store its funda-
mental properties. These networks can be represented as graphs whose nodes
and edges are extracted from the Earth’s shape by finding its critical points.
In math, the critical points can be classified as maxima (or peaks), minima
(or pits) and saddles (or passes). If we define a surface’s function y = f(x),
then we can think at the maxima as those points whose value of the function
f(x) is the highest compared to their neighbours. We can distinguish be-
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Figure 3.1: Critical Points
Figure illustrating the 3 types of critical points of a continuous surface.

tween local maxima and global maxima; local maxima are the points whose
function value is the largest within a given range, while a global maximum
is the point that has the highest value for the entire domain of the function.
Accordingly, local minima are those points whose value of the function is the
smallest within a given range, while the global minimum is the smallest for
the entire function. Finally saddles are those points that are connected to
two local (global) maxima and to two local (global) minima. The connection
to the local maxima is given by following the two most steepest ascent paths
starting from the saddle and reaching the maxima, while the local minima
are reached by following the two most steepest descend paths. Examples of
critical points for a 3-dimension surface defined by a function z = f(x, y),
such as the Earth, can be seen in Figure 3.1.

Surface networks capture the topological relations between the critical
points of a continuous surface. In a surface network, every saddle is con-
nected, at least, to two maxima and to two minima. The paths with the
steepest ascents starting from a saddle connect it to the maxima, while the
paths with the steepest descents connect it to the minima. The resulting
graph of critical points and critical lines connecting them is termed surface
network (Pfaltz 1976) [58]. An example of surface network for a portion of
the Latschur Mountains in Western Carinthia, Austria can be seen in Figure
3.2. Surface networks represent special types of graphs with the vertexes set
consisting of the critical points and the edges set consisting of the critical
lines.
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Figure 3.2: Surface Network
Figure illustrating a surface network. The critical points are evidenced with

red for peaks (maxima), black for pits (minima) and green for passes
(saddles). In morphology the connections between saddles and maxima
points are called ridges and here represented with a yellow line, while the
connections between saddles and minima are called channels, here showed
with a blue line. Image taken from the work of Sanjay Rana and Jeremy

Morley in [58].
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Figure 3.3: DEM raster
Figure illustrating a portion of DEM raster containing elevations expressed

in meters.

3.1.1 Building Surface Networks from Raster Data

Contemporary Geographical Information Systems (GISs) for representing
Earth’s surface are using as a main data structure the so called digital eleva-
tion models (DEMs). A DEM can be defined as a raster (a grid of squares,
also known as a heightmap when representing elevation) or as a vector-based
triangular irregular network (TIN). We used as terrain representations mainly
the rasters, i.e. matrices containing the elevations for the areas they were rep-
resenting. Different sources for the DEMs can be cited, such as Laser Imag-
ing Detection and Ranging (LiDAR) or Shuttle Radar Topography Mission
(SRTM) missions [59]. By using DEMs, the critical points and their con-
nections cannot be evaluated like in classical differential topology where we
analyze the derivatives of the surface. Instead, DEMs are an approxima-
tion of surfaces and they are not continuous; indeed each cell of the matrix
represent a different elevation, and moving from a cell to another leads to
discontinuous changes. An example of a small portion of a DEM containing
elevations can be seen in Figure 3.3.

Traditional methods for finding the critical points and their connections
involve considering for each cell its eight direct neighbours, and based on
the comparison among this neighbourhood it can be classified as : peak, pit,
pass, ridge, channel, plane. A cell is considered a maximum (peak) if it is the
highest one among its 8 neighbours, while it is a minimum (pit) if it is the
lowest one. A cell is a saddle (or pass) if it is the highest point considering
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the direction given by two of its neighbours that are not adjacent among
them and it is the lowest point considering another direction given by other
two non adjacent cells of its neighbours. An area composed by nine (or more)
cells where all have the same elevation is a plane. Finally, the channels are
composed by a sequence of cells surrounded by higher ones, while the ridges
are a sequence of higher cells compared to the neighbours. These six basic
morphometric classes can be identified with the eight-neighbours method,
and an example can be seen in Figure 2.1.

The method of Shigeo Takahashi [12] for the creation of surface net-
works suggests that features like critical points and their connections come
from the theory of differential topology and they should satisfy some topo-
logical formulas. The most important one is the Euler-Poincarè formula
which states that the total number of critical points for a surface satisfies
this property: #maxima - #saddles + #pits = 2. Here # means "num-
ber of". As said in [12] the eight direct neighbours method finds a set of
critical points which does not satisfy this rule. Shigeo Takahashi proposed
an algorithm for extracting critical points that preserves the validity of the
Euler-Poincarè formula. The proposed method is based on the Delaunay
triangulation for defining the neighborhood of a cell without incurring in
unwanted critical points which happens with standard methods like the one
proposed by Peucker and Douglas in [16]. The Delaunay triangulation is a
subdivision of a set of points into a non-overlapping set of triangles, such
that no point is inside the circumcircle of any triangle. In practice, such
triangulations tend to avoid triangles with small angles. In the case study of
DEMs the triangulation is defining for each cell of the matrix which of the
adjacent cells is a neighbour, i.e. not all the adjacent cells are considered
anymore neighbours. As we can see in Figure 3.4 each cell is surrounded
by other eight cells but there is not a connection with all of them. Instead
of extracting critical points directly from DEMs, Wood suggested in [60] a
method for specifying bi-variate quadratic surface patches at raster points.
These surface patches make possible to identify the directions of steepest de-
scent and ascent and allowing then to identify the critical points and critical
lines. The great benefit of the bi-variate quadratic surfaces is that they can
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Figure 3.4: Delaunay Triangulation
Figure illustrating a portion of DEM and the Delaunay triangulation. The

red dots represents the cells of the raster while the blu lines how the
triangulation is setting the neighbours of each cell.

be fitted to windows of any size enabling to perform the analysis on a desired
level of scale. However, this approach does not guarantee consistency of the
extracted network. Still based on the idea of interpolating surfaces B. Schnei-
der proposes in [61] a simpler bilinear interpolation scheme allowing a less
flexible but more rigorous method in terms of continuity. These researches
sometimes refer to the surface networks as metric or weighted surface net-
works. These versions assign a weight to the edges of the graph; the most
common kind of weight is the difference of elevation between the two nodes
considered.

3.2 Machine Learning Techniques

In this section we will see an overview of the main Machine Learning tech-
niques we used for extracting peaks from DEMs.
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3.2.1 Logistic Regression

Logistic regression is a classification algorithm used to assign observations to
a discrete set of classes. Unlike linear regression which outputs continuous
number values, logistic regression transforms its output using the logistic
sigmoid function to return a probability value which can then be mapped to
two or more discrete classes. In ML logistic regression is the go-to method
for binary classification problems (problems with two class values).

Mathematically, a binary logistic model has a dependent variable with
two possible values, such as pass/fail, win/lose, true/false, etc.; these are
represented by an indicator variable, where the two values are labeled "0"
and "1". The dependent variable has a relationship with a set of independent
variables called regressors or predictors. The goal of logistic regression is to
find the best fitting model to describe the relationship between the dependent
variable (also called dichotomous characteristic of interest or response or
outcome variable) and the set of independent variables. The probability or
odds of the response taking a particular value is then modeled based on
the combination of values taken by the predictors and the parameters of
the model. Then, we define log-odds l, i.e. the logarithm of the odds, as
a linear combination of the predictor x1 with the parameters βi, including
the constant term β0. For example, for a model with one predictor x1 the
log-odds is computed as:

l = ln(o) = β0 + β1x1 (3.1)

where the coefficients βi are the parameters of the model and o the odds.
The corresponding odds, i.e. the outcomes of the response, are then the
exponent:

o = bβ0+β1x1 (3.2)

where b is the base of the logarithm and exponent.
In classification we are determining the probability of an observation to
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be part of a certain class or not. Therefore, we wish to express the probability
with a value between 0 and 1. A probability close to 1 means the observation
is very likely to be part of that category. In order to rescale the odds values to
be between 0 and 1, the probability is expressed using the following equation:

y =
eβ0+β1x1

1 + eβ0+β1x1
(3.3)

where the equation above is defined as the sigmoid function with b set as e
(Euler’s number) in the original odds and y is the predicted output.

The coefficients βi of the logistic regression algorithm are estimated from
the training data by means of the maximum-likelihood estimation. In statis-
tics, maximum likelihood estimation (MLE) is a method of estimating the
parameters of a statistical model, given observations. Maximum-likelihood
estimation is a common learning algorithm used by a variety of machine
learning algorithms. The best coefficients would result in a model that would
predict a value very close to 1 (e.g. male) for the default class and a value
very close to 0 (e.g. female) for the other class. The intuition for maximum-
likelihood for logistic regression is that a search procedure seeks values for
the coefficients βi that minimize the error in the probabilities predicted by
the model to those in the data (e.g. probability of 1 if the data is the primary
class). The sum of errors for all the predictions constitutes the so called cost
function which represents how far the model coefficients βi are from the opti-
mal ones, i.e. the values of the coefficients for which the model would be able
to perfectly classify the training samples. When the predictions are totally
wrong, the cost function outputs a higher number; while, if the predictions
are closer to the ones in the training data the cost function value reduces.
When tuning the coefficients βi the loss function is useful to understand if
the change can lead to better results. A minimization algorithm is then used
to optimize the best values for the coefficients such that to reduce at the
minimum the cost function for the training data. This is often implemented
in practice using efficient numerical optimization algorithms such as Stochas-
tic Gradient Descent (SGD), i.e. a gradient-based optimization method for
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minimizing the cost function. Various improvements of the classic Stochastic
Gradient Descent (SGD) algorithm emerged during the years: an example
is Adam [62] which uses adaptive learning rates and second-order curvature
informations.

3.2.2 Node2vec

As we saw in Section 2.2.4 node2vec [15] is an algorithmic framework for
representational learning on graphs. Given any graph, it can learn continuous
feature representations for the nodes, which can be then used for various
downstream machine learning tasks, such as node classification. Learning
representations from highly structured objects such as graphs is useful for a
variety of machine learning applications. Besides reducing the engineering
effort, these representations can lead to greater predictive power.

This fundamental idea of the algorithm is closely related with some recent
advancements in representational learning for natural language processing
which opened new ways for feature learning of discrete objects such as words.
Among these, the Skip-gram model [63] aims to learn continuous feature
representations for words by optimizing a neighborhood preserving likelihood
objective. The Skip-gram technique scans over the words of a document, and
for every word it aims to embed it such that the word’s features can hold
properties about nearby words (i.e., words inside some context window). The
word feature representations are learned by optmizing the likelihood objective
using Stochastic Gradient Descent as optimization function [63]. The Skip-
gram objective is based on the distributional hypothesis which states that
words in similar contexts tend to have similar meanings [64]. That is, similar
words tend to appear in similar word neighborhoods.

With a similar approach node2vec aims to learn features representations
for the nodes of the graph such that they represent the structure of the
network. By choosing an appropriate notion of neighborhood, node2vec can
learn representations that organize nodes based on their network roles and/or
communities they belong to. This framework learns to generate for each
node of a graph low-dimensional representations, often called embeddings or
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features, which can then be used for downstream machine learning tasks. The
authors formulate the feature learning in networks as a maximum likelihood
optimization problem, i.e. to maximize the likelihood of preserving network
neighborhoods of nodes in a d -dimensional feature space, where d is the
number of features we want to use for representing the node.

Feature Learning

Given a network G = (V, E) the authors define as f : V → Rdthe map-
ping function from nodes to the feature representations we aim to learn for
downstream prediction task. Here d is a parameter specifying the number of
dimensions of our feature representation. Equivalently, f is a matrix of size
|V| × d parameters. For every source node u ∈ V , they define NS(u) ⊂
V as a network neighborhood of node u generated through a neighborhood
sampling strategy S. The objective function is defined as:

max
f

∑
u∈V

logPr(NS(u)|f(u)) (3.4)

By varying f, the embedding function, we want to maximize the log-
probability of observing a network neighborhood NS(u) for a node u condi-
tioned on its feature representation, i.e., find the best f such that the learnt
features represent as much as possible the most representative neighborhood
of the source node u.

This is method based on the Skip-gram architecture which have been
originally developed in the context of natural language. Given the linear
nature of text, the notion of a neighborhood can be naturally defined using
a sliding window over consecutive words. Networks, however, are not linear,
and thus a different notion of a neighborhood is needed. To resolve this issue,
the authors propose a randomized procedure that samples many different
neighborhoods of a given source node u. The neighborhoods NS(u) are not
restricted to just immediate neighbors but can have vastly different structures
depending on the sampling strategy S.
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Figure 3.5: BFS and DFS Strategies
Figure taken from [15] illustrating the difference between BFS and DFS

strategies.

Sampling strategy

In classic search strategies there are two extreme, opposite, approaches for
generating neighborhood set(s) NS of k nodes: Breadth First and Depth
First. With Breadth-first Sampling (BFS) the neighborhood NS is restricted
to nodes which are immediate neighbors of the source; with Depth-first sam-
pling (DFS), instead, the neighborhood consists of nodes sequentially sam-
pled at increasing distances from the source node.

The breadth-first and depth-first sampling represent extreme scenarios
in terms of the search space they explore leading to interesting implications
on the learned representations. As said by the authors, there are two kinds
of similarities when dealing with graphs: homophily and structural equiva-
lence. Under the homophily hypothesis nodes that are highly interconnected
and belong to similar network clusters or communities should be embedded
closely together (e.g., nodes s1 and u in Figure 3.5 belong to the same network
community). In contrast, under the structural equivalence hypothesis nodes
that have similar structural roles in networks should be embedded closely to-
gether (e.g., nodes u and s6 in Figure 3.5 act as hubs of their corresponding
communities). The authors highlight how BFS and DFS strategies play a
key role in producing representations that reflect either of the above equiva-
lences. In particular, the neighborhoods sampled by BFS lead to embeddings
that correspond closely to structural equivalence. In DFS, the sampled nodes
more accurately reflect a macro-view of the neighborhood which is essential in

44



Figure 3.6: Random Walk
Figure taken from [15] illustrating a random walk procedure. α is

controlling the transition probability.

inferring communities based on homophily. Based on the above sampling dif-
ferencies the authors design a flexible neighborhood sampling strategy which
allows to smoothly interpolate between BFS and DFS. They achieved this
by developing a flexible biased random walk procedure that can explore
neighborhoods in a BFS as well as DFS fashion.

The neighborhood sampling is controlled by two parameters, p and q,
defining the probabilities of of revisiting the same nodes or moving farther
from the source node t. The authors define the transition probability on
edges (v,x) as πvx = αpq(t, x)· wvx, where

αpq(t, x) =


1/p if dtx = 0

1 if dtx = 1

1/q if dtx = 2

(3.5)

and dtx denotes the shortest path distance between nodes t and x. Note that
dtx must be one of 0, 1, 2, and hence, the two parameters are necessary and
sufficient to guide the walk.

Parameter p, also called return parameter, controls the likelihood of im-
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mediately revisiting a node in the walk. Setting it to a high value ensures
that we are less likely to sample an already-visited node in the following two
steps. Parameter q, instead, allows the search to differentiate between “in-
ward” and “outward” nodes. As we can see in Fig. 3.6, if q > 1, the random
walk is biased towards nodes close to node t.

The overall process of node2vec can be resumed in three phases: 1) pre-
processing to compute transition probabilities, 2) random walk simulations
and 3) optimization of the embedding function f using SGD. More details
can be seen in the paper of the authors [15], especially for the random walks.

3.2.3 GraphSAGE

As we saw in Section 3.2.2, the basic idea behind node embedding approaches
is to use dimensionality reduction techniques to distill the high-dimensional
information about a node’s graph neighborhood into a dense vector embed-
ding [14] to be then used for downstream machine learning tasks such as
classification or regression. We saw that node2vec learns to create embed-
dings for the nodes of a graph based on their neighborhood. A different
approach, named GraphSAGE [14] (SAmple and aggreGatE), apart from
the position of the node in the graph, leverages the signals, i.e. properties,
of the nodes.

Most of the existing approaches require that all nodes in the graph are
present during training of the embeddings; these previous approaches are in-
herently transductive and do not naturally generalize to unseen nodes. How-
ever many applications require generating embeddings for unseen nodes, or
entirely new (sub)graphs. The authors present GraphSAGE as a general
inductive framework that exploits node feature information (e.g., text at-
tributes) to efficiently generate node embeddings for previously unseen data.
Instead of training individual embeddings for each node, the model learns
a function that generates embeddings by sampling and aggregating features
from a node’s local neighborhood. This inductive capability is essential when
dealing with graphs or nodes which are evolving (as may be the users of social
media) or are unseen during training (for example new posts of the users).
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Figure 3.7: GraphSAGE sample and aggregate approach
Visual Illustration of the GraphSAGE sample and aggregate approach.

Image taken from [14]

As highlighted by the authors, by leveraging node features (e.g., text
attributes, node profile information, node degrees) GraphSAGE can behalf
as embedding function which generalizes to unseen nodes. By incorporating
node features in the learning algorithm, it can simultaneously learn the topo-
logical structure of each node’s neighborhood as well as the distribution of
node features in the neighborhood [14]. The key idea behind this approach
is that it can learn how to aggregate feature information from a node’s local
neighborhood. An example of the process of sampling and aggregation can
be seen in Figure 3.7.

Embedding Generation

Before describing how the parameters are learned, suppose the model is al-
ready trained and we can then generate the embeddings for the nodes. In
particular we assume that we have learned the parameters of K aggregator
functions (denoted as AGGREGATEk,∀k ∈ {1, ..., K} in Figure 3.8) which
are aggregating information from node neighbors. Also we have to assume
that a set of weight matrices Wk,∀k ∈ {1, ..., K} have been already learned;
they are used to propagate information between different layers of the model,
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Figure 3.8: GraphSAGE Algorithm - Embedding Generation
GraphSAGE algorithm illustrating the steps for creating the embeddings

also called "search depth" by the authors.
As shown in Figure 3.8 we assume that in input are provided the entire

graph G(V , E) and the features for all the nodes {xv,∀v ∈ V}. We will
denote with k the current step in the outer loop (which the authors also
refer to as the depth of the search) and with hk the node’s representation
at this step. The algorithm proceeds as follows: First, each node v ∈ V
aggregates the representations of the nodes in its immediate neighborhood,
{hk−1u ,∀u ∈ N (u)}, into a single vector hk−1N (u). This aggregation step depends
on the representations generated at the previous iteration of the outer loop
(i.e. k−1), where for k = 0 the representations coincide with the initialization
vectors, i.e. the nodes initial features. The aggregation of the neighbor
representations can be done by a variety of aggregator architectures (denoted
by the AGGREGATE placeholder in the algorithm), which we will see more
in detail in the following sections. After aggregation the algorithm proceeds
by concatenating the node’s current representation hk−1u with the aggregated
neighborhood vector, hk−1N (u); this concatenated vector is then fed through a
fully connected layer with nonlinear activation function σ, which transforms
the representations to be used at the next step of the algorithm, i.e. it
generates hkv ,∀v ∈ V , the vector representing the embedding at step k. The
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final embedding at step K is denoted by the authors as zv ≡ hKv .

Neighborhood definition

Given the set {u ∈ V : (u, v) ∈ E} representing all the nodes to which v is
connected, in Figure 3.8 the authors use the expression N (v) to denote the
set of sampled nodes representing the neighborhood of node v. They define
N (v) as a fixed-size uniform draw from the set of all connected nodes. Also,
at each iteration k, is drawn a different uniform number of samples which
allows to control the memory usage and the expected time of a single batch.

Learning the parameters of GraphSAGE

In the work where the authors present GraphSAGE [14] there is not an
explicit definition of the loss function for supervised tasks, such as is the
purpose of our work. Indeed they present the work mostly for unsupervised
tasks (i.e. without having labels on the nodes) by letting the reader know that
the model is adaptable for supervised tasks by modifying the loss function
with a cross-entropy one. However, the same authors present in another work
a review of different Graph Deep Learning models [44] where they also show
how is it possible to define the loss function for GraphSAGE in a supervised
manner.

Assume to have a binary classification label (such as True or False, Female
or Male, etc..) yi ∈ Z associated with each node. To learn to map nodes to
their labels, the embedding vectors, zi, are fed through a logistic (or sigmoid)
function ŷ = σ(zᵀi θ) where θ represents the vector of trainable parameters.
With the vector of parameters θ we include both the Wk, ∀k ∈ {1, ..., K}
and the parameters for the aggregator functons. We can then compute the
cross-entropy loss between these predicted class probabilities ŷ and the true
labels y as follows:

L =
∑
vi∈V

yilog(σ(zᵀi θ)) + (1− yi)log(1− σ(zᵀi θ)). (3.6)
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The gradient is computed according to equation 3.6 and can be then back-
propagated through the encoder to optimize its parameters.

Aggregator Architectures

When dealing with networks, the nodes’ neighbors have no natural ordering;
thus the aggregator functions we introduced above must operate over an
unordered set of vectors. An aggregator function is said to be symmetric
when it is invariant to the permutations of the input nodes; this ensures that
the neural network model can be trained and applied to arbitrarily ordered
node neighborhood feature sets. The authors examined three different types
of aggregator functions:

1. Mean Aggregator: the first candidate aggregator function is the
mean operator which is simply taking the elementwise mean of the
vectors in {hk−1u ,∀u ∈ N (u)}.

2. LSTM Aggregator: the authors introduce also a more complex ag-
gregator based on LSTM (Long Short Term Memory) Neural Networks
[65], essentially neural networks which are recurrent and are having
loops, i.e. the output of the network at the previous step is used to
feed again the network itself at the current time step. Moreover, apart
from the loops, LSTM are also able to keep some memory of the past
iterations, adapting between shorter and longer windows of steps back
in time (the part of the name long-short refers to this ability). It is
important to highlight that LSTM are not symmetric, so they are not
permutation invariant. The authors adapt LSTMs to operate on an un-
ordered set by simply applying the LSTMs to a random permutation
of the node’s neighbors.

3. Pooling Aggregator: finally, the authors examine the pooling aggre-
gator which is both symmetric and trainable. In this approach, each
neighbor’s vector is independently fed through a fully-connected neu-
ral network; following this transformation, an elementwise max-pooling
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operation is applied to aggregate information across the neighbor set:

AGGREGATEpool
k = max({σ(Wpoolh

k
ui

+ b), ∀ui ∈ N (u)}), (3.7)

where max denotes the element-wise max operator and is a nonlin-
ear activation function. In principle, the function applied before the
max pooling can be an arbitrarily deep multi-layer perceptron, but
the authors focused on simple single-layer architectures. As we saw in
Section 2.2.1, the multi-layer perceptron can be thought of as a set of
functions that compute features for each of the node representations in
the neighbor set. By applying the max-pooling operator to each of the
computed features, the model effectively captures different aspects of
the neighborhood set. Apart from the max operation in equation 3.7
other symmetric vector function, such as mean-pooling, can be applied.
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Chapter 4

Learning to find mountains

4.1 Methods under evaluation

In this Section, we explain in more detail the heuristic methods used in this
thesis to extract peaks from DEM data, describe their parameters and their
input and output format.

4.1.1 Landserf Peak Classification

This algorithm is part of the Landserf Tool [66] and it focuses only on peak
extraction and does not take into account scale during the analysis. It defines
a peak as a point with at least a certain elevation and surrounded by points
with an elevation lower at most by a given amount. The user has to set the
following parameters:

• Minimum Height of a Peak. This value represents the minimum
elevation (in meters) a point must have to be considered as a peak; all
points that do not satisfy this criterion are discarded. This is useful
because it allows to filter out some points that can resemble a peak but
are too low to really be a peak. In the equations below, the parameter
is represented as minheight.

• Minimum Drop Surrounding Peak. This value contributes to de-
termine whether a given point is to be considered as a peak summit,
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as part of the extent of a peak or none of the two classes. It represents
the maximum elevation difference a point can have with respect to a
candidate peak, to be considered as part of its extent. In the equations
below, it is represented as mindrop .

The algorithm performs the search by iterating over each cell of the DEM
and tests if the following rules are complied:

Epoint ≥ minheight and Epoint ≥ Emin +mindrop (4.1)

with Emin being the minimum elevation in the DEM. If the rule is re-
spected then the cell is considered a valid candidate and the algorithm starts
analyzing its neighbors sorted by decreasing elevation and proceeds as fol-
lows:

• if a neighbor has a higher elevation it stops the analysis and goes on
with the next point. This cell can be part of the extent of another peak
but cannot be considered as a peak itself

• all neighbors whose elevation Epoint respect the Equation 4.2 are added
to the candidate peak extent and their neighbors are checked recur-
sively too. The extent will be later used to calculate the peak summit
location.

• the analysis continues until there are no remaining points or the current
relative drop is greater than the user-defined Minimum Drop parame-
ter.

At the end, a list of cells is formed that are part of peak extent and, only
if the last relative drop is greater than Minimum Drop, the summit position
is calculated: the center of the extent is determined by averaging the position
of all the components; then the point with the highest elevation and nearest
to the center is considered as the peak summit.

0 ≤ EcandidatePeak − Epoint ≤ mindrop (4.2)
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4.1.2 Landserf Surface Classification

This method is still part of the Landserf Tool and it aims at classifying a
surface into 6 categories: pits, channels, passes, ridges peaks and planar
regions. For identifying these categories in a surface it first builds a Metric
Surface Network [60], which is a Surface Network similar the one we built
but achieved through a different method relying on linear interpolation of
heights. The method works with 3 parameters:

• windows size defines number of cells along one side of the square
window centered on the currently analyzed point,with values ranging
from 7 to 75, sampled with a step of 2;

• curvature tolerance value determines, instead, how convex/concave
(’sharp’) a feature must be before it can be considered part of any class,
with values corresponding to 0.1, 0.5, 2, 4, 6. Curvature is recorded
as a dimensionless ratio, with typical tolerance values ranging from 0.1
to 0.5. Larger values tend to increase the proportion of the surface
classified as planar, leaving only the sharpest features identified.

• distance decay, to determine the importance of the cells near the
center of the window with respect to those at the edges, with values
ranging from 0 to 4 with a step of 1.

4.2 Input Data

In Chapter 3 we saw how surface networks can be considered a useful rep-
resentation of the topological properties of the shape that build the graphs
are the Digital Elevation Models. The source we used for our files is the
Shuttle Radar Topography Mission (SRTM) DEM provided by NASA [59].
SRTM DEM data are organized into a regular grid containing for each cell
the elevation for the given coordinate, and they can be distinguished among
STRM1 DEM and SRTM3 DEM. The distinction comes from the different
resolutions they are subject to, i.e. how dense are the measurements avail-
able for a given area. DEM1 grids are relative to resolutions of 1 arc-second,
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while DEM3’s resolution is in the order of 3 arc-seconds. Figure 3.3 showed
an intuitive example how the elevation data can be organized in grids.

For our work we focused mainly on the Switzerland territory and we used
both the SRTM1 DEMs with resolution of 1 arch-second and the STRM3
with 3 arch-second, that in areas realtively far from the poles correspond
approximately to 27m-30m for DEM1, i.e. we have a measurement of eleva-
tion every 27m-30m, and 70m-90m for DEM3. The data collected in SRTM1
DEM is then divided into a series of tiles of 3601x3601 cells for each tile and
every one is spanning 1 degree in latitude and 1 degree in longitude. Ac-
cordingly, for STRM3, we have 1201x1201 cells per tile. Tile N47E008, for
example, contains the elevations arranged in the grid for the area between
longitude from 8◦E to 9◦E and latitude from 47◦N to 48◦N.

4.3 Algorithm for building the graph

Among the methods illustrated in Chapter 3 for building surface networks
from DEMs we opted for the algorithm of Shigeo Takahashi [12]. However,
we introduced some modifications to tackle a problem of misclassified criti-
cal points. As Shigeo Takahashi said, classical methods like eight neighbours
fail in extracting a number of critical points that respects the Euler-Poincarè
formula. The main problem in the eight-neighbours method is the appear-
ance of many unwanted saddles due to lack of smoothness of DEMs, making
the formula invalid. The proposed algorithm in [12] tackles this problem by
determining a unique surface interpolation from the given samples. For this
purpose triangulation is used since it offers the most commonly adopted lin-
ear interpolation and does not incur unwanted critical points. A suggested
triangulation in the paper is the Delaunay because it avoids thin triangles
that are undesirable for sound linear interpolations. Essentially, by introduc-
ing a triangulation the set of neighbours for each cell may reduce to a smaller
number, avoiding the appearance of the unwanted passes. In fact, with tri-
angulation we can define the neighbours of each sample and then introduce
the criteria for critical points. If we consider a point P its neighbours are
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Figure 4.1: Triangulated DEM
Figure illustrating how the neighborhood is established between the cells.

Image taken from Shigeo Takahashi’s work in [12].

those points that are adjacent to P in the triangulation. An example referred
to the DEM raster in Figure 3.3 can be seen in Figure 4.1. The method we
decide to use is based on the work of Takahashi [12] but it will not implement
the proposed triangulation due to the misclassified saddles as local maxima.

4.3.1 Criteria for finding Critical Points

Shigeo Takahashi’s algorithm considers a circular list of neighbours for each
point P in a counter-clockwise (CCW) order with respect to xy-coordinates
(or latitude/longitude if based on the DEM’s coordinates). The criteria for
critical points is as follows:

peak |∆+| = 0, |∆−| > 0, Nc = 0
pit |∆−| = 0, |∆+| > 0, Nc = 0
pass |∆+| + |∆−| > 0, Nc = 4
where the following notation are used:
n the number of neighbors of P
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∆i the height difference between Pi(i = 1, 2, ..., n) and P
∆+ the sum of all positive ∆i(i = 1, 2, ..., n)

∆− the sum of all negative ∆i(i = 1, 2, ..., n)

Nc the number of sign changes in the sequence ∆1, ∆2,..., ∆n, ∆1

By using these criteria in combination with Delaunay triangulation it is pos-
sible to maintain the Euler-Poincarè formula. However, for our graph we
decided to not use the triangulation, instead we kept all the eight neighbours
and then applied the criteria. The reason for this choice is due to the fact
that with triangulation more than 20% of the saddles for the different areas
we analyzed became local maxima. If our purpose would be a study of the
semantics of these graphs the correctness of the topological rules would be
fundamental. Instead, we are trying to understand if it is possible to cate-
gorize the nodes of the graph as being or not a mountain peak. Using the
information about the category of the nodes in the features that carachterize
them, i.e. knowing in advance what kind of critical point is a node (mini-
mum, maximum or pass), increases the semantic knowledge we have about
the graph. Instead, including many saddles in the set of local maxima would
make the feature of the category for the nodes less important and less dis-
criminative for the learning purpose. We decided, then, to build the graphs
by using the above criteria for distinguishing among the different types of
critical points but considering always the eight direct neighbours instead of
making a selection based on triangulation. When considering a cell and its
eight direct neighbours we may refer to them as patches. An example of how
triangulation would incorrectly assign a maximum to a patch that instead
would not be a critical point can be seen in Figure 4.2.

Finally, since we said that the data collected by STRM is organized in
different tiles, particular attention should be given to the cells on the bor-
ders of the different grids. Indeed, each cell in the corner has only three
neighbours, while each cell on the border (except the corner) has five neigh-
bours. To tackle this problem we padded each tile’s border with the cells
from the adjacent tiles. For example, considering the grid of 3601x3601 cells
for the tile N47E008, the cell at position (0,0) has as neighbours inside its
tile the cells (0,1), (1,1) and (1,0). Then, to these internal neighbours are
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Figure 4.2: Incorrect classification of cell with triangulation
Figure illustrating how the cell with elevation 580, which is not belonging
to any morphological class, would be added to the set of maxima in case of

the illustrated type of triangulation.

added the ones coming from the adjacent tiles, in this case the cell at position
(3600,3600) from grid referring to N48E007, the cells (0,3600) and (1,3600)
from N47E007 and the cells (3600,0) and (3600,1) from N48E008. Specular
approaches are adopted for the other corners and borders of the tiles.

4.3.2 Handling degenerate critical points and paths

There are two kinds of degenerate critical points that can arise when extract-
ing them from DEMs: level regions and duplicate passes.

The level regions, or as we said in Chapter 2.1 the planes, are those
patches that all have the same altitude. These kind of regions can extend
beyond the standard nine cells patch. They are the result of the discrete
quantization that leads to limited precision of the height values. A simple
solution may be to consider the entire group of points having the same eleva-
tion as a single point. However, as suggested by S. Takahashi, this may not
be a good idea if the flat area is surrounding a critical point in its interior,
like in Figure 4.3(a). Instead, a second ordering is introduced, in the sense
that when there is a tie between the elevations we consider a second factor
for deciding which cell should be considered as higher. Similarly to the pro-
posed method, in our implementation we used lexicographical ordering with
respect to the xy-coordinates, where for x and y we can think at the row
and column index inside the raster. Suppose, for example that cells (34,121)
and (35,122) from the same grid have the same altitude 765m. In this case
the second cell is considered as higher. Since the DEM is a set of samples
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Figure 4.3: Level region
A level region: (a) a level region surrounding a pit and (b) the effect of

introducing a second ordering. Image taken from S. Takahashi’s work [12]

on a single-valued function z = f(x, y), there are no two samples that have
identical xy-coordinates. Indeed, if there is a tie for the x coordinate if the
cells are on the same row of the grid, they cannot be on the same column,
hence y would be different. Although this solution depend on the choice of
x and y ordering, it enables uniform data manipulation by converting the
degenerate critical points to non-degenerate ones.

The second type of degenerate case are the duplicate passes from which
is possible to extract two or more passes. With the criteria for the critical
points of Takahashi [12] that we modified, each saddle is supposed to be
connected to two maxima and to two minima points. Starting from the pass
and following the two steepest ascents we would reach the two maxima while
following the steepest descents we would reach the two minima. Degenerate
saddles, instead, can be connected to three or four maxima and three or
four minima respectively. In the case of three minima and maxima it means
that there are six direct neighbours of the saddle whose path lead to a critical
point; the three steepest descents lead to the minima, while the three steepest
ascents lead to the maxima. The same consideration is valid for four minima
and four maxima. Obviously, due to the arrangement of the raster as a
matrix is not possible to have more than eight neighbours for a cell. The
method of Shigeo Takahashi tackles this problem by splitting the degenerate
saddles in two or three passes, depending on the number of changes in the
sign. It modifies then also the criterion for the passes as:

pass |∆+| + |∆−| > 0, Nc = 2 + 2m(m = 1, 2, ...)

This problem, however, is not an issue because respecting the Euler-
Poincarè formula is not our main concern. We kept then using saddles with

59



more than four critical points connected.

4.3.3 Connecting critical points

We said that a surface network is a graph constituted by a set of vertexes,
the critical points, and a set of edges, the critical lines, connecting the critical
points. The ridges and channels constitute the physical path connecting the
critical points. The ridges connect saddles to peaks (maxima) while the
channels connect them to the pits (minima). The last type of morphological
patch, the plane, is instead resolved by the second ordering factor and its
never present in our graphs. Saddles are always connected to at least two
maxima and two minima, with a maximum of four maxima and four minima.
Instead there is never a connection between maxima and minima or between
two saddles.

The graph is intended to be undirected, i.e. all the edges are bidirec-
tional. First, we find all the locations for the critical points by applying the
Takahashi’s modified criteria. Considering a DEM we scan all the grid and
consider always a cell and its eight neighbours and apply the crtieria to decide
if it is a critical point and which type it is. Then, for finding the connections
between the saddles and the minima and maxima we analyzed the adjacent
cells to the ones in which we evaluated the presence of a saddle. Suppose P0

is one of these locations containing a saddle. Then, in the neighborhood of
P0 there are other eight cells, P1, P2, ..., P8. We ordered these cells such that
they would constitute a circular sequence around P0; consider, as an example,
the following clockwise ordered sequence based on the coordinates of the grid
starting form the upper-left one {P1, P2, P3, P4, P5, P6, P7, P8}. Then, in this
sequence we look for the subsequences constituted by the higher neighbours
and the ones constituted by the lower elevations. Consider, as an exam-
ple, P0’s elevation as 700m, while the ones of the adjacent cells, in order
from P1 to P8 as the sequence {710, 715, 690, 700, 720, 680, 675, 720}. Then
among this sequence we can find the following subsequences of higher points:
SH1 = {P8, P1, P2} with elevations {720, 710, 715} and SH2 = {P4, P5} with
elevations {700, 720}. The tie about considering P4 higher or lower than P0
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Figure 4.4: Higher and lower subsequences
Circled with blue we have the cell where the saddle is supposed to be
located. Then around it there are four subsequences composed by the

adjacent cells, two with higher elevations and are circled in red, two with
lower elevations, circled in green.

has been resolved with the second ordering. If the matrix coordinates start
with (0,0) in the upper-left corner and we increase the values of the coordi-
nates by moving down for the rows and moving right for the columns, then
P4 results being a higher cell. The lower sequences are, instead, the follow-
ing: SL1 = {P3} with elevations {690} and SL2 = {P6, P7} with elevations
{680, 675}. An illustration can be seen in Figure 4.4.

Among these subsequences we look for the highest value when dealing
with higher sequences and for the lowest when dealing with lower sequences.
These chosen cells will be the starting point for, respectively, steepest ascend
path and steepest descend path. By applying this procedure in our example
the subsequences reduce to SH1 = {P8}, SH2 = {P5}, SL1 = {P3} and
SL2 = {P6}. For finding the paths to the critical points we look for the
steepest ascend path for the cells in the higher sequences and for the steepest
descend path for the lower sequences. Consider, for example, the cell of P8

which constitute the starting point for the path to a maxima. For finding
the steepest ascend we check the elevation of all its neighbours and choose
as part of the path the one with the highest altitude. In this case would be
the cell with 750 m. Then again we look at the adjacent cells to the last
one added to the path and opt for the highest one. We continue applying
this procedure and add cells to the path until we reach the location of a
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Figure 4.5: Paths and connections to the critical points
This figure shows in brown the ridges, i.e. the paths from the saddle

(circled in blue) to the maxima and in green the channels, i.e. the paths to
the minima. The blue lines represent the edges in the graph.

maxima found previously. For simplicity suppose that the cell is already
the cell of a maxima. Similar procedure is applied for finding the connected
minima. Figure 4.5 illustrates how this procedure can find the paths to the
four connected critical points.

Notice that the edges connecting the critical points don not follow strictly
the paths. Indeed, surface networks graphs are an abstraction and the edges
cannot follow the physical lines; edges are delimited by the coordinates of
the saddle and the coordinates of the critical point. We can also see that
the steepest ascend paths are part of the ridges, while the steepest descends
are the channels. This procedure is highly inspired by the method of Shigeo
Takahashi for splitting the saddles.

4.3.4 Degenerate paths

Due to the lack of smoothness of the shape given by the DEM it may happen,
as we can see in Figure 4.6, that both steepest ascend (descend) paths reach
the same maxima (minima). In that case we removed the double edge and
forced the connection with the closest maxima (minima) in terms of distance
of cells inside the raster and which is not already present in the saddle edges.
By making this reassignment of the duplicated edges we kept a slight recur-
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Figure 4.6: Rearrangement of edges
The blue lines represent the edges of the graph computed following the

paths. The red line represents the new connection with a local maxima that
was not reachable with the steepest ascent path.

rent structure inside the graph in the sense that we know for sure that all
the saddles have four connected critical points, two maxima and two minima.
The case with six or eight critical points can be easily reduced to four by
splitting the saddle into two saddles with coincident location but different
paths for different critical points. Keeping this small recurrence in the graph
revealed to be useful when dealing with Deep Learning methods for graphs
that require to have a common structure among the nodes. However, except
of the saddles, the peaks and the pits have a really unpredictable number of
connections, starting from one edge to even more than a hundred for few of
them.

4.3.5 Enrichment of the graph with features

The graph presented until now reflects a surface network (even though it is
not respecting the Euler-Poincarè rule). It contains a set of vertexes, the
critical points, and a set of edges, built over the critical lines. When dealing
with Deep Learning for graphs some approaches require just the structure of
the graph as input to learn from, but some other techniques can use some
signals on the nodes or on the edges for better learning the properties of the
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nodes and the graph.

Signals on the edges

For methods that can handle weights on the edges, like node2vec [67], we
used the slope as a representation of the steepness of the path. The signal of
the slope, for each edge between nodes i and j, is then computed as:

sij = ∆distij/ | ∆elevij | (4.3)

where ∆distij is the distance expressed in meters between the cells where
the two nodes of the graph are located, while | ∆elevij | is the difference of
elevation between the two cells in absolute value.

For the distance we had to consider that the Earth’s surface is not flat
and we cannot compute the distance like in an Euclidean plane. We used the
haversine formula to calculate the great-circle distance between two points
on a sphere given their longitudes and latitudes, i.e. the shortest distance
over the Earth’s surface (without considering any hill). First, we considered
the location of the cells inside the grid relative to the tile’s global position
expressed as latitude and longitude, i.e. we calculated the specific latitude
and longitude coordinate of each cell based on their position inside the grid.
Then, the haversine formula is used to compute the distance as follows:

∆distij = R · c (4.4)

where R = 6, 371m is the Earth’s radius, while c is computed as:

c = 2 · atan2(
√
a,
√

(1− a)) (4.5)

with atan2(x, y) defined as the angle in the Euclidean plane, given in ra-
dians, between the positive x-axis and the ray to the point (x, y) 6= (0, 0).
atan2(x, y) is intended to return a correct and unambiguous value for the
angle θ in converting from cartesian coordinates (x, y) to polar coordinates
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(r, θ). It is defined as:

atan2(y, x) =



arctan( y
x
) if x > 0

arctan( y
x
) + π if x < 0 ∧ y ≥ 0

arctan( y
x
)− π if x < 0 ∧ y < 0

+π
2

if x = 0 ∧ y > 0

−π
2

if x = 0 ∧ y < 0

undefined if x = 0 ∧ y = 0

(4.6)

Finally, a is the Haversine computed as follows:

a = sin2(∆φ/2) + cos(φi) · cos(φj) · sin2(∆λ/2) (4.7)

where φi is latitude for node i, while λi is the longitude.

Signals on the nodes

Other methods for Deep Learning on graphs, like GraphSAGE [14], during
the learning process use a set of signals representing the properties of each
node. Among the possible features of the nodes we considered both the
topological properties of the graph, like the degree of the node or the type of
critical point represented, and the terrain properties, like elevation or slope.
In what follows consider that, although for the saddles we have a recurrent
topology in the number of critical points to which they are connected, for
the maxima and the minima it is not possible to replicate any structure,
indeed they have a really large range of possible numbers of neighbours.
Consider also that with GraphSAGE the edges represent just the existence
of a relation between two nodes, i. e. that they are connected, and it is
not possible to use signals on the edges. GraphSAGE also requires that for
each node we are using a vector of signals of fixed length, meaning that we
are using the same features for each node. Then, for features like the slope
which involve a relation between two nodes, if we would use all the signals
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that are possible to construct for that feature between the considered node
and all of its neighbours we would have also really different sizes for the sets
representing the signals. For being able to keep fixed the length of the vector
containing the signals for the nodes, for features for which it is possible to
calculate a variable number of signals depending on the number of neighbours
we considered uniformly only the average, the maximum and the minimum
of the set of signals for that feature. For example, for the slope, if a node
has ten neighbours, first we computed all the ten possible slopes and then
we calculated the average, the maximum and the minimum values as the
signals representing the node’s slope. The features we identified for building
the nodes’ signals are then the following:

• elevation: a real value expressed in meters representing the altitude of
the cell inside the DEM where is located the node.

• degree: a natural number consisting in the number of neighbours to
which the node is connected.

• critical point type: categorical attribute representing which kind of crit-
ical point there is at the location of the node. The possible values are
{peak,saddle,pit}.

• slope: as we stated before the slope is computed based on the neigh-
bours. We compute all the slopes with all the connected nodes by using
the Formula 4.3 but without the absolute value when computing the
difference of elevation:

sij = ∆distij/∆elevij (4.8)

between the node i and each of the connected nodes j and then the
following variants:

– average slope: the average value of the set of all the slopes

– maximum slope: the maximum slope in the set

66



– minimum slope: the minimum value in the set

• absolute slope: we compute all the slopes with all the connected nodes
by using the Formula 4.3 and then its derived features:

– average absolute slope: the average value of the set of all the slopes

– maximum absolute slope: the maximum slope in the set

– minimum absolute slope: the minimum value in the set

• distance from neighbours: this is another feature that depends on how
many neighbours a node has. We compute all the distances by using
the Formula 4.4 and then its derived features:

– maximum distance from neighbors: the maximum distance in the
set

– minimum distance from neighbors: the minimum distance in the
set

– average distance from neighbors: the average value of the set of
all the distances

• elevation drop: this feature is strictly related with the terrain around
the location of evaluated node. It quantifies how much difference of
elevation there is between the altitude of a considered node and the
neighbor cells around it. If for example we consider a peak, we are
expecting it to be the highest cell withing the grid of 3x3 cells centered
in the location of the node. But it can also be important to understand
the magnitude of this difference with the neighbors because mountains
can have different shapes regarding the summit. There are mountains
whose summit is really evident and is rising among the neighborhood
while others have a more flat behaviour and can extend over different
cells (more like hills). This feature is then measured as the difference
of elevation between the altitude at the location of the node and the
altitudes of the adjacent cells.
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To account to possible mountains with a bigger summit extension we
considered also the elevation drop between the altitude of the cell of
the considered node and farther adjacent cells. In a grid of 3x3 when
we consider the drops we are considering cells at a distance of 1, i.e.
we move away of 1 cell from the location of the considered node. For
DEM STRM3 we considered also the difference with cells at distance 2
and 3 away from the center of the grid, i.e. the border cells respectively
in the a 5x5 grid and 7x7 grid. By considering that at the latitude of
Switzerland one cell of STRM3 covers a distance between 70-90 meters,
this means that we included an area of 200m-250m. This value (200m)
is important also in the graph labeling step as we will see in Section
4.4.2 and accounts to the fact that the real location of a mountain can
differ from the ones available in the public databases.

For DEM STRM1 to mantain the same distances and to keep fixed
the number of features involved we had to use different distances from
the center of the grid. Indeed, for STRM1 1 cell covers around 27m-
30m, which means that if we would consider only cells at distance 1,2
and 3 we wouldn’t cover an area more than 90m. We decided then to
use hops of 2, 5 and 8 cell distances from the cell where the involved
node is located, covering approximately the same area of 200m-250m
of distance from the center cell. An example of how these areas overlap
and which areas are taken into account for the calculation can be seen
in figure 4.7.

Finally, we have to consider that if we use as features for our models all
the elevation drops, first of all the number is really high, second, and
most important, this feature will be subjective to the relative location
of the node’s neighbor with which have been computed the difference.
This would be a bias if, for example, during the training would happen
that for the peaks all the neighbors located in the top-left cell have
a similar elevation with the node’s cell. Then, if in the test set there
would be some peak which is not having a neighbour in the top-left cell
with a similar elevation it would have less probabilities to be correctly
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identified. We need to have order invariant features to be able to
generalize as much as possible. To achieve this important property
and to not have a huge number of features, as happened for the other
features, we are keeping the average, minimum and maximum values
for each level. This means that we compute the elevation drop for all
the cells ad distance 1 and then calculate the average, minimum and
maximum values as final signals to be used on the graph. We did this
for 3 levels both for STRM1 and STRM3 as it can be seen in figure
4.7.

4.4 Graph Labeling

Deep Learning and in general Machine Learning models need trusted exam-
ple data to learn from. Learning mountains from a graph can be achieved
in different ways. In this work we tried to learn which nodes of the graph
correspond to the locations of the peaks of mountains. Note that here "peak
of a mountain" is not the same of a "peak" of a surface network, even though
they may coincide. Indeed in surface networks peaks are synonyms of max-
ima (always local, except of the case of global maxima that is the highest
summit of the Earth, mount Everest). Instead, "peak of a mountain" or
"summit of a mountain" are referred to the mountains that are registered in
cartography or that are traditionally recognized by society. This means that
not all the maxima of the Earth’s surface have been recognized as mountains.
A local maxima that is almost flat or whose elevation is really low, for ex-
ample a hill with really low slope, is often not registered neither in maps or
public databases because society did not recognize them as mountains and
didn’t give a name to those locations. Also it is not even guaranteed that
public databases and maps have the precise location for all the mountains. It
depends often how historically they have been built and the social value that
had those locations. Often these public data sets are mostly built by volun-
teers and cannot be assumed to be 100% complete. Considering these aspects
that influence where mountains are traditionally located we can state that
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Figure 4.7: Cells involved in elevation drop
Illustration showing how STRM1 and STRM3 DEMs can be overlapped
when computing the elevation drop. In red we have the cell representing

the location where a critical point is supposed to have been found with the
techniques we have seen in Section 4.3.1. Then, for STRM3, we consider the
cells in yellow with bold border. In the figure we can see 3 levels of distance
from the center, leading to 3x3, 5x5 and 7x7 grids. The drop is computed
between the red cell and the adjacent ones when dealing with 1 level of

distance; instead, with distance 2, for example, we consider the border cells
of the 5x5 grid and we calculate the difference of elevation with the red cell.
For STRM1 we can see that we can cover the same areas by considering
that the data is more resoluted and that we can approximate the STRM1
location with the center of the STRM3 location shown in green, i.e. one cell
in STRM3 corresponds to 9 cells (3x3) in STRM1. By doing this we keep
the number of computed features fixed and we are also covering roughly the

same area, leading to a more consistent set of features when switching
between the graphs built over different DEMs.
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not all the locations where there is a maxima of the graph are "real peaks".
Often, the locations of the "real mountains" are tens of meters far from some
node of the graph that corresponds to a maxima. More rarely, the location
of a node is few meters apart of an area registered as "peak" in one of our
datasources, and really few times they were coincident. We have then that
the nodes locations do not match to the areas of the peaks registered in the
data in our posses and we need to find a way to create a correspondence
between the locations given by the different sources.

4.4.1 Ground truth

We said initially that we need trusted examples from which to learn. For our
specific task we need then a set of "real peaks" or "trusted peaks" having a
position that is known with acceptable certainty. These examples are said
to constitute the Ground Truth. They are not used only for training the
machine learning models but also for making a comparison between which
peaks the models we trained are able to extract and the ones extracted by
other algorithms from literature. However, the reasons which makes impos-
sible to have an exact overlap between the locations of the "real peaks" and
the peaks of the surface network also makes impossible to have an ideal gold
standard. Then we should account the fact that there is noise in the ground
truth when we will evaluate the model output. It may happen for example
that the model predicts as being a peak the node for a given location where
it is not registered any "real summit", a so called false positive. However
we may consider the fact that the peak was missing from the ground truth.
Implementation of techniques for coping with label noise like [68] are not
part of this work but it may be for future developments.

The data sets we used for our ground truth refer to the Switzerland ter-
ritory. We used two different publicly available databases: OpenStreetMap1

(OSM) and SwissNames3D2. We merged the peaks of the two databases by
considering that their locations were overlapping when their distance was

1https://www.openstreetmap.org
2https://shop.swisstopo.admin.ch/en/products/landscape/names3D

71



Figure 4.8: Mountain peaks distribution
(a) contains the peaks from SwissNames3D, (b) peaks from OpenStreetMap
and (c) their combination in the Switzerland territory. Image courtesy [41]

lower than 80m. We considered them potentially the same mountain summit
and kept only one of the two after a manual inspection of the correctness of
the choice. The resulting ground truth data set contains 12,788 peaks. Their
distribution can be seen in Figure 4.8.

4.4.2 Label assignement to nodes

After deciding which areas of the world to use as the ground truth we had to
decide how to match the nodes of the surface network with the locations of
the "real peaks" from the ground truth. Considering the results achieved in
[41] we decided to keep the same maximum distance of 200m for the matching
between the locations of the elements of the ground truth and the nodes of
the surface network. Indeed, for each "real peak" in the ground truth, if
there is a node whose category is a maximum and whose distance from the
location in the ground truth is less than 200m then to that node is assigned
a label "1" meaning that in our data that example will correspond to a peak.
Here we are talking specifically about maxima nodes because it may happen
that for an area in the ground truth the closest node found may be a pit or
a saddle. In that case we ignored those points and continued increasing the
distance since a maxima would be found or the maximum distance of 200m
reached.
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4.5 Development of Graph learning-based meth-

ods

The goal of this work is to explore the application of Graph Deep Learning
techniques for identifying the location of mountain summits. The previous
work [7] developed a Deep Learning method which leverages Convolutional
Neural Networks fed with small grids (patches) extracted from DEMs. CNNs
are really powerful models which achieved great results for pattern recogni-
tion and image classification. As the authors showed, the patches extracted
from DEMs can be considered as images where the cells containing eleva-
tions can be treated as pixels whose values represent the intensity on a given
channel, allowing then to exploit the CNN and their capabilities. This work,
instead, focused more on treating DEMs as digital (non-continuous) surfaces
over which locate specific points, called critical points, and their connections.
It is therefore possible to build a graph representing these particular spots
and their links where the nodes are the critical points and the edges represent
the relationship existing between them.

At the time we started this work, numerous works arose exploiting Deep
Learning and Artificial Neural Networks on graphs (ref. 2.2.4). We tried to
cover the following approaches alone or combined for learning to classify the
nodes of the surface networks extracted from the DEMs.

4.5.1 Logistic Regression

Logistic Regression (ref. Section 3.2.1) is a classical Machine Learning model
which works on euclidean data, i.e. a setting where for every observation of
a phenomenon there exists a record which can be represented as a vector
with numerical (but also categorical) values. Considering our case, we used
the Logistic Regression model with the vectors of signals representing the
nodes properties of the surface network built over the DEMs, i.e. each node
of the graph represents a record constituted by its features. These features
are referred as "handcrafted" in the sense that have been built following the
process in section 4.3.5. Furthermore, from the handcrafted features there
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have been selected the most meaningful ones according to the procedure in
section 4.7. Finally, after building the graph and computing the signals for
the critical points we have a set of nodes with their relative features (ele-
vation, slope, degree, drop, node type) and binary labels (peak/non peak).
While this is a suitable scenario for a supervised binary classification task,
the graph topology is not used directly due to it’s relational structure which
is hard to fit into an euclidean space. It can be, however, interpreted as a
useful mean for finding the locations of the candidate nodes and for calculat-
ing their signals. We can consider these experiments also as a strong baseline
to be used as comparison for the more advanced Deep Learning models.

As we will see in the next section, another kind of features which can
be used as input are the ones learned with Node2vec and GraphSAGE. This
setting is supervised where for each vector of signals (or learned embeddings)
there is also a label given by matching the nodes with the ground truth
peaks, as described in section 4.4.2. The graph labels are then assigned to
the embeddings of the nodes and the dataset splitted into training, validation
and test accordingly to the division we will see in Section 4.6. In the setting
of a binary classification the output of the model is then a probability value
for each node of belonging or not to a given class, which in our case can be
thought as a "peakness" value.

Hyper-parameters

For logistic regression we used the sklearn python library [69] which allows to
run a Logistic Regression model with a series of parameters to be customized,
such as, for example, the used loss or the weights of the classes. Below we
describe each one of the parameters:

• Class Weight : a numeric value used during training phase to give more
importance to the error made in misclassifying a class instead of an-
other. Giving weight 2 to class 1, for example, means multipying by 2
the loss value given by wrongly classying an element of class 1 to be-
long to class 0. This means that the total loss would be higher if many
records belonging to class 1 are wrongly predicted as belonging to class
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0. This parameter con be really useful when considering imbalanced
datasets as ours. The values we tried were [0.5, 0.6, 0.7, 0.8, 0.9, 1,
1.25, 1.5, 1.75, 2, 5].

• Regularization is a very important technique in machine learning to
prevent overfitting. Mathematically speaking, it adds a regularization
term in order to prevent the coefficients to fit too much the data such
that to overfit. There are two techniques of regularization we adopted,
and they are refered as L1-norm and L2-norm (L1 and L2 abbreviated).
As we will see in Section 4.7, the key distinction between these tech-
niques is that L1 shrinks the less important feature’s coefficient to zero
thus, removing some features. With L2, instead, the coefficients can
be really close to 0, but never equal, thus all the features are always
part of the model. We tested then these two configuration parameters
in combination with different sets of features. L1 altogether with the
set of all the handcrafted features for letting the model to chose and L2
with a selected set of features previously with the method of Greedy
Forward Search reported in Section 4.7.

4.5.2 Node2Vec

As we saw in Section 3.2.2, Node2vec is an unsupervised deep learning model
which learns to generate embeddings for the nodes of a graph. Its input is a
representation of the graph given by a set of tuples expression of the edges,
each connecting two nodes. Furthermore, Node2vec can be fed also with a set
of weighted edges, with a real positive value representing the weight of that
edge. In case of both negative and positive weights the edges are considered
to be directed. The input is then only the structure of the graph, i.e. only
the edges describing the existence of a relationship between two nodes. It is
an unsupervised setting because there is no classified data used for training
the model.

As we saw in section 3.2.2 the main concern with Node2vec is creating
representations for the nodes in the form of embeddings such that they are
representative of the neighborhood of each node in the graph. This means
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that based on the structure given by the graph, it is possible to create em-
beddings which are describing the role and/or the position of the node in the
graph. These embeddings do not represent yet a prediction for the nodes of
being or not a peak; indeed, as we can see in Figure 4.9, Node2vec constitute
a step of representation learning as part of a bigger pipeline of models. For
being able to achieve our main goal, i.e. to classify correctly the nodes of the
graph as peak or not-peak, a classifier, such as Logistic Regression, needs to
be fed and trained with the embeddings created with node2vec. We will see
more specifically in the next section how logistic regression can be used in
sequence with node2vec.

Hyper-parameters

As most of the Deep Learning models also Node2vec is subject to a flex-
ible architecture which needs to be tuned through the choice of its hyper
parameters. They can be described as following:

• p, also called return parameter, controls the likelihood of immediately
revisiting a node in the walk;

• q allows the search to differentiate between “inward” and “outward”
nodes, i.e. it controls the probability of moving farther from the source
node;

• d dimension of the embedding, i.e. number of feature representations
to learn;

• k context size, i.e. number of nodes considered when the emebdding is
built;

• l it is length of of the random walk based on which the exploration is
stopped after a number of l nodes are visited;

• r it sets the number of random walks to be done for each node.

In the Appendix we can see the grid of tested values. The optimal combina-
tion of the found parameters is:
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The selection of the features is reported Appendix B. The best choice
resulted in using the selected features with Greedy Forward Search and L2
regularization with 0.7 as class weight for the positive one.

4.5.3 GraphSAGE

This is a Deep Learning model which leverages both the graph topology and
the node features to learn to classify the nodes of a graph. Its input are
graphs, such as the surface networks generated from the DEMs; they are
represented by means of a set of edges connecting the nodes and a set of
vectors of signals generated from the surface properties. The features are
selected according to the procedures in sections 4.3.5 and 4.7.

GraphSAGE combines, both the representation learning techniques, like
Node2vec, and the classification ability, such as logistic regression. Indeed, for
making the final prediction, GraphSAGE creates an embedding per each node
of the graph by including the information from their neighborhood. The in-
tuition behind this method is that at each step, nodes aggregate information
of their local neighbourhood (topology and node features if available) and as
the process moves forward, nodes acquire information of farther away nodes.
At each iteration of the encoder algorithm, nodes aggregate the embeddings
of their neighbors (using a learnable aggregation function that operates over
sets of vector) and the aggregated neighborhood vector is combined with the
node’s embedding from the previous iteration. The final outcome is reached
similarly as with logistic regression: the nodes are labeled by matching the
peaks of the Ground Truth (refer to chapter 4.4.2) and the model learns to
predict the grade of "peakness" of the nodes by giving as output a numerical
value between 0 and 1. GraphSAGE uses these labels to optimize the model
tuning such that it will learn to classify unseen nodes also over unseen graphs
which will have similar features and similar topology. The model learns to
create representative embeddings, regarding both the features and the topol-
ogy of the edges, which are then used as input for a fully connected network
which will output the probability of the node of being classified as peak or
not-peak. The model is then tuned to reduce at the maximum the predicition
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Figure 4.9: Pipeline of the models
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error.
Considering that graphSAGE is able to generate embeddings in its inter-

mediate steps, we also extracted the learned ones from the final stages of the
trained model and used as input for the Logistic Regression model as we did
with node2vec. Again the output is a set of numerical values between 0 and
1 representing the probability of the node of being or not classified as peak.
The pipeline from the input data to the final outcome can be seen in Figure
4.9.

Hyperparameters

Graphsage has a complex architecture and various parameters. For finding
the optima configuration we performed a Grid Search for the best combi-
nation. The choice of the values to be tested in the Grid Search have been
explored through a Parameter Sensitivity Analysis which values are reported
in the Appendix A.1. It essentially consists in keeping the architecture fixed
with its base hyperparameters setting except for one which is evaluated with
values different from the standard configuration. Depending on how much
its variation affects the final performance of the model its values are explored
more exhaustively (if it has a big impact) or kept close to the base one (if its
change do not affect much). The core parameters for the model are reported
as follows.

• Aggregator : it decides how to create the embedding for the nodes by
aggregating in different ways the current node features with the ones
of its sampled neighbors. It can be a mean pool (element-wise), max
pool, mean (of the vector) and LSTM.

• Embeddings dimension: parameter which influences the complexity of
the network and sets the number of real values which we want the final
embedding to be composed of.

• Sampling : the number neighbours to be sampled at each iteration of
the learning process.
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• K : number of layers to explore. K=1 means only the immediate neigh-
bors, i.e. the connected nodes, K=2 also the neighbors of the neighbors,
and so on for increasing K. We left if K=2 as it was for the original
model.

Other typical parameters of Deep Learning models consist in the choice of:

• learning rate (how fast the model learns);

• dropout (leave out randomly some parts of the model during the train-
ing phase to avoid overfitting);

• batch (number of samples to consider during each iteration of the train-
ing phase);

• weight decay (parameter for L2 regularization);

We modified the architecture and introduced also a class weight to cope
with the high imbalance. In table A.1 we can see values used for the sensitiv-
ity analysis while in table A.2 the final grid search, where in blank we have
the found optimal configuration which can be resumed with the following
values: class weight = 0.7, aggregator = LSTM, number of layers = 2 (it was
the default), embedding layer 2 = 32, embedding layer 1 = 512, sampling
layer 2 = 5, sampling layer 1 = 5, learning rate = 0.001, dropout = 0, weight
decay = 0, batch = 512. Also, the best result is achieved with the entire set
of features.

4.6 Dataset

We partitioned the Switzerland territory in three distinct regions: training,
validation and testing. We can see in Figure 4.10 how these areas are dis-
tributed. The choice of the validation and testing cells is not random; it has
been made based on the Ground Truth described in Section 4.4.2 to have the
GT peaks distributed so that 80% of the peaks belong to the training and
validation areas and 20% to the testing area. The same dataset is used for all
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Figure 4.10: Territory distribution of the datasets
Image courtesy [41]
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DEM #maxima #minima #saddles #edges #matched GT
DEM3 56986 46313 260704 1075200 5367
DEM1 157943 145456 999311 4176641 6462

Table 4.1: Switzerland graph components

the presented architectures; for each DEM cell, both STRM3 and STRM1,
first the critical points are extracted, then the connections between them are
indivudated. When the graph is ready the signals (elevation, slope, degree,
drop, node type) for the nodes are computed and then labels (peak/not-
peak) assigned. The graph is then splitted in three parts, depending on the
coordinates of the nodes, matching the three areas highlighted in Figure 4.10.
Considering the technique we saw in Section 4.4.2 we could partially match
the ground truth with the graph structure. Indeed, in the Switzerland ter-
ritory we could identify the existence of 7223 summits. Regarding STRM3,
it was possible match 5367 peaks of the ground truth to nodes of the graph
build over the DEM3, while the graph over STRM1 has 6462 of these peaks
matched to the nodes. This means that there are some regions were it wasn’t
possible to find any critical point, specifically local maxima, that could match
the location of the peaks in the ground truth. The overall number of nodes,
their type distribution, number of edges and number of matched peaks for
the Switzerland area can be seen in Table 4.1.

We also studied the ability of the methods to generalize over unseen areas.
Apart the test set which is still part of Switzerland where the mountains are
expected to have similar features since they belong to Alps, we wanted to
understand if summits belonging to mountain ranges can be identified with
the model trained over Switzerland. We used as ground truth the peaks
provided by OSM. Given that OSM is a VGIS based on the spontaneous
collaboration of its users, not all the areas have mountain data as complete
as the Switzerland territory, which may lead to a biased generalization test.
We decided then to analyze only territories which have OSM mountain data
with a coverage similar to that of Switzerland.
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4.7 Feature Characterization

We described in Section 4.3.5 how to enrich the graphs with signals describ-
ing their properties. Node2vec is using only the topology so there are no
handcrafted features that need to be selected. Instead, with GraphSAGE
and Logistic Regression we tried to understand which of these features are
having more impact on the final result and if there is the need of reducing
their number.

Since the handcrafted features are almost all derived from the elevation
and the distance between nodes it doesn’t seem strange that they are related.
More specifically the Pearson correlation coefficient [70] is a statistical test
for measuring relationship, or association, between two continuous variables.
It is one of the most known methods for measuring the association between
the variables of interest, giving information about the magnitude of the as-
sociation, or correlation, as well as the direction of the relationship. As we
can see in figure 4.11, the correlation matrix shows the existence of a relevant
correlation among the group of the drop features, and also a discrete corre-
lation among the ones of the slope. Features with high correlation are more
linearly dependent and hence have almost the same effect on the dependent
variable. It seems normal for example that the "drop" at level 1 is related
with the "drop" at level 2, as a continuation of the surface. Also, some
Machine Learning methods may be affected on the final performance from
redundant features, hence is common practice to remove the unnecessary
ones.

There exist various methods in Machine Learning for selecting the best
features to be used in a model. A classical approach is based on the Pearson
correlation matrix we saw in Figure 4.11 and consists in keeping only one
of two features that are correlated. Another approach is using a regularizer
inside the model itself which assisgns a coefficient of importance to the fea-
tures. The model then shrinks these coefficients for the unnecessary features
close or equal to 0. Two really common regularizers in Machine Learning
are L1-norm and L2-norm; the first one can lead the coefficients for the less
important features to be 0, i.e. to not be considered, while with the second
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Figure 4.11: Correlation matrix of the handcrafted features

84



they can only get close to 0 but are never totally excluded. These techniques
have been proved to work well with data laying on an Euclidean space, i.e.
a setting where for each record we have a given number of variables, often
called regressors or attributes, and a label representing the outcome. In our
setting, despite the fact that we can consider the nodes as records where the
signal represent the values of the regressors and the node label is the outcome,
we have other several dimensions given by the topology of the graph which
cannot be stored as a numerical or categorical feature due to the multiple
relationships between the nodes. For the baseline experiments with Logis-
tic Regression we could then adopt the L1-norm or L2-norm regularizers as
part of the model; while for coping with the topology dimensions exploited
in GraphSAGE, we adopted another method, called Greedy Forward Search,
which essentially allows to incrementally add features to the model until a
decay of performance is observed (Algorithm 1).

The measure used for understanding the goodness of the model has been
the F1 Score which is widely used for models where the data is highly im-
balanced towards a class. Indeed, as we saw in Table 4.1, for the graph built
with DEMs from STRM3 we have 5367 positive labels over 364003 nodes
and for STRM1 this imbalance is even higher: 6462 over 1302710 nodes. For
computing the F1 Score we first have to calculate the so called True Positives
- TP, representing the correctly predicted nodes as being peaks, the False
Positives - FP, counting for the wrongly classified nodes as peaks while they
were labeled as non peaks and the False Negatives - FN, the locations where
there exists a peak but it is classified as non peak. The F1-measure can be
then expressed as:

F1 =
2 · precision · recall
precision+ recall

, (4.9)

where precision and recall are defined as follows:

precision =
TP

TP + FP
(4.10)
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recall =
TP

TP + FN
. (4.11)

Algorithm 1 Features Greedy Forward Search
1: F ← ∅, where F is the set of chosed features.
2: A ← {f1, f2, .., fn}, with A representing the set of all the features.
3: F1 ← 0, measure representing the goodness of the set F
4: best_F1 ← 0
5: while F1 >= best_F1 do
6: best_F1 ← F1

7: F1 ← 0

8: bestindex← 0

9: for i← 1 to length(A) do
10: fi ← getElementAtPosition(A, i)
11: current_F1 ← computeF1(F ∪ fi)
12: if current_F1 > F1 then
13: F1 ← current_F1

14: best_index← i

15: if F1 > best_F1 then
16: F ← F ∪ getElementAtPosition(A, best_index)

17: A ← removeElementAtPosition(A, best_index)

Following the Algorithm 1 and based on the curves in the Appendix B
we found that the best subsets of features for GraphSAGE and Logistic
regression are:

• GraphSAGE best features (refer to Figure B.1): maximum drop level
3, elevation, degree, average drop level 3, average drop level 1, minimum
drop level 1, average slope, average distance from neighbors, maximum
slope, count equal elevation level 2, numeric type, minimum drop level
2, minimum drop level 2, average drop level 2, maximum drop level 2,
minimum slope, minimum drop level 3, count equal elevation level 1
and maximum distance from neighbors.
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• Logistic Regression best features (refer to Figure B.2): minimum
drop level 3, average drop level 2, degree, elevation, average distance
from neighbors, numeri type, average drop level 3, average slope, max-
imum slope, minimum slope, minimum distance from neighbors, max
drop level 2 and average drop level 1.

4.8 Evaluation procedure

The common output for the experimented methods is a probability for the
candidate nodes for being a peak or not. Their location corresponds to a
geographic position (latitude, longitude), which may correspond or not to
mountain peak; these coordinate have been also used to filter out all the
extracted peaks that are out of the area under evaluation. To determine
whether an extracted peak from a node corresponds to a ground truth peak,
we use a distance threshold (200m, in the evaluation described in Chapter
5). The steps for the comparison, whose pseudocode is given in Algorithm
2, are as follows:

• Calculate the distance between each extracted peak and every ground
truth peak.

• For each pair, save the tuple (extracted peak, ground truth peak, dis-
tance), only if the distance is lower than the established threshold.

• Order all tuples by increasing distance.

• Loop through the ordered list of tuples. Consider the extracted peak
of the current tuple as a True Positive only if both the extracted and
ground truth peaks have not already been used before to define other
True positive peaks; otherwise, discard the current tuple.

• The extracted peaks that have a distance to all the ground truth peaks
greater than the threshold are considered as False Positives. Also, the
extracted peaks that appear in a saved tuple, but have not been selected
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as true positive ones, because they were dominated by the extracted
peaks in some other tuple, are classified as False Positives.

• The ground truth peaks for which no matching extracted peak has been
identified are considered as False Negatives.

Algorithm 2 Post Processing
NEPeaks← length(ExtractedPeaks)

2: for i← 0 to NGT− 1 do
GTP← GTPeaksi

4: for j ← 0 to NEPeaks− 1 do
EP← ExtractedPeaksj

6: Distance← calculateDistance(GTP,EP)

if Distance < 200 then
8: Distancesend ← (EP,GTP,Distance)

TruePositives← ∅
10: Distances← sorted(Distances)

NDistances← length(Distances)
12: for i← 0 to NDistances− 1 do

PeakTuple← Distancesi
14: GTP← PeakTupleGTP

EP← PeakTupleEP

16: if GTP in GTPeaks and EP in ExtractedPeaks then
TruePositivesend ← PeakTuple

18: remove(GTPeaks,GTP)

remove(ExtractedPeaks,EP)

20: FalsePositives← ExtractedPeaks
FalseNegatives← GTPeaks =0

In summary:

• True Positives are the extracted peaks that have a correspondence to
a ground truth peak
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• False Positives are the extracted peaks that have no correspondence
with a ground truth peak

• False Negatives are ground truth peaks that the method was not able
to match to any extracted peak

True negatives, i.e. locations that do correspond to non-peak sites, are more
challenging to define because the number of potential candidates is much
bigger to those of the other types: the input graph from DEM3 has around
360,000 nodes, from which only 5367 are local maxima labeled positively,
meaning that only less than 1% are ground truth peaks. To cope with such
an unbalance, we use the Precision-Recall curve in the assessment, rather
than other methods such as the ROC curve, as suggested in [71] for scenarios
with highly imbalanced classes.

To better quantify the accuracy of the tested methods, we considered the
mean distance error of each algorithm. In this way, the assessment consid-
ers not only the presence of a match between a ground truth peak and an
extracted peak, but also their distance (the lower, the better).
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Chapter 5

Evaluation

5.1 Overview of the Evaluation

In this chapter, we perform a quantitative and qualitative analysis of the im-
plemented DL and ML models and the studied heuristic methods. First of all,
we present a comparison in terms of inputs, parameters and outputs of the in-
volved methods, both heuristics and ML models and discuss their differences
when extracting peaks and their applicability. After a post processing of he
outputs, we evaluate the adopted DL models against the replicated heuristic
methods and the baseline ML ones in terms of the Precision-Recall achieved
with the method in Section 4.8 and analyze why one performs better than
the other. The methods under evaluation are:

• Peak Classification,

• Landserf Surface Classification,

• Node2Vec,

• Logistic Regression,

• GraphSAGE.

The final qualitative analysis is useful to understand the different definitions
of what is a peak of the various methods; furthermore, it underlines the
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need to perform a further study on the False Negative peaks which present
non-morphological features.

5.2 Parameter Selection

We performed the training process on the Switzerland territory, in particular
we used the area with coordinates between latitude 46 to 47 and longitude
7 to 8 has been used as a validation set for the DL and ML models, as
we demonstrate in Figure 4.10. We calculated precision and recall for Peak
Classification and Landserf Surface Networks [18] using the Landserf tool [66]
and the DL and ML models that we implemented. For all the methods we
assessed the list of the extracted peaks, with the corresponding coordinates.
We performed the evaluation as explained in Chapter 4, using a a 200 meters
distance treshold to determine if the candidate peaks correspond to a peak
listed in the ground truth dataset. We selected the treshold using as reference
the previous works and choosing the less restrictive value; in [3] the authors
applied a minimum distance between two mountains using a 150m window;
in [23], the author employed a horizontal threshold to filter peaks and tested
150m and 200m as values. Furthermore, in the area under study, shown in
Figure 4.10, the average distance between any two peaks in the ground truth
data set results to be 44km, which is, as expected, much larger than the
200m threshold value used in the peak comparison metrics.

Each method executes with different parameters, which must be set
heuristically. For each parameter, when the original specification of the
method already provided an optimal or suggested value, we adopted it. Oth-
erwise, we sampled the values from the parameter space and all the resulting
parameter combinations (i.e., tuples of sampled values) are tested. For the
DL and ML models, before we used them in this stage we performed a tuning
based on the hyperparameters we provide in Section 4.5 in combination with
the set of features we selected with the methods in Section 4.7. The set of
values we selected for each algorithm is then as follows.
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5.2.1 Heuristic methods

Here we present the selected heuristic methods of the Landserf Application
which we use as comparison. We describe the input, the parameters and the
output.

Peak Classification The method takes as input the DEM files and has
two configurable parameters: the minimum height, in meters, that a point
must possess to be considered as a candidate peak; values from 400m to
4500m with a step of 50m were employed for this parameter and theminimum
drop in meters, that a point must have from a peak to be considered part of
its extent; for this, we used values from 500m to 0m with a step of 5m. This
yielded 8373 configurations. Its output is a matrix for each cell of the DEM
saying if it is a peak or not and their extent.

Landserf Surface Classification As Peak Classification, also this
method takes in input DEM files and works with 3 parameters: window size,
the number of cells along one side of the square window centered on the
currently analyzed point, with values ranging from 7 to 75, sampled with a
step of 2; curvature tolerance, to choose how convex/concave a feature must
be to be considered part of any class, with values corresponding to 0.1, 0.5,
2, 4, 6; and distance decay, to determine the importance of the cells near
the center of the window with respect to those at the edges, with values
ranging from 0 to 4 with a step of 1. The total number of combinations of
parameters for this method was 875. The output is a Metric Surface Network
from which are selected the peaks and their locations constitute the set of
predicted summits.

The raw output for both the heuristic methods is post processed into a
list of candidate peaks locations from the input area of the DEM.

5.2.2 Machine Learning

As we present in Section 4.5 the three methods we implemented work with
different inputs but we can achieve a common output through the following
steps.
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Node2Vec is an unsupervised Graph Deep Learning model which pro-
duces a set of learned features for the nodes of a graph. It has in input
the topology of the network expressed through the edges represented with
tuples in the form <node1,node2>. The best architecture can be found in
the Appendix A.2. The output is a set of embeddings of each of the nodes
comparing in the tuples. The learned representations are then used as input
for a classifier such as Logistic Regression.

Logistic Regression is a classical Machine Learning model which works
on euclidean data. Its input are the vectors of features characterizing the
nodes, which can be either the handcrafted ones or the learned ones. The
best architecture uses 0.7 as class weight, with L2-normalization and the
features selected in Section 4.7. The output is a probability for each node of
belonging to a class. This allows to have a common evaluation method also
for Node2Vec whose output can be used as input for Logistic Regression.

GraphSAGE is a Graph Deep Learning model which learns to classify
a graph nodes. Its input are both the network structure and the handcrafted
features of the nodes. The choice of the best architecture is performed using
a Grid Search like presented in the Appendix A.1. The best features set was
the one including the features. Its output is a set of probabilities for each
vertex of the graph representing the membership to a class.

We have that for both For Logistic Regression and GraphSAGE the out-
put is a probability for each node to belong to the "mountain peak" class. By
filtering on this probability, we obtained a list of nodes which, since each node
corresponds to a DEM cell, we could map to a set of latitude and longitude
coordinates of candidate mountain peaks.
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Figure 5.1: Logarithmic probability distribution assigned to each node of the
graph by the Logistic Regression model with handcrafted features
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Figure 5.2: Logarithmic probability distribution assigned to each node of the
graph by the GraphSAGE model

In Figures 5.1 and 5.2 we present a comparison between the distribution
of the probabilities generated by the GraphSAGE and Logistic Regression
with handcrafted features. We can observe that both had a high density in
the range between 0 and 0.1, highlighting the fact that many nodes of the
graph had low probability of being a peak. Indeed, from a graph of around
50.000 nodes for the validation area just around 1479 nodes are labeled as
being peaks. As we move towards higher values, their frequency decreases
showing less frequent predictions that that node was a peak. Even though
the two models work with different data, their distributions are comparable
and show a similar shape. Then, considering these probabilities we generated
sequentially a range of 1000 tresholds of "peakness" and we applied them as
a filter to the list of predictions. This yielded to 1000 configurations both for
GraphSAGE and the Logistic Regression. These configurations provided a
spectrum of results and enabled an analysis for understanding each algorithm
behaviour of the considered territory.
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Figure 5.3: Pareto dominant precision-recall curve of the tested methods

5.3 Quantitative Analysis

In this section we present a quantitative comparison of the implemented Ma-
chine Learning models and the heuristic methods in terms of results achieved
by analyzing the Precision-Recall curves in Figure 5.3 and the numerical re-
sults in Table 5.1.

Regarding the Machine Learning models we iterate over the output prob-
abilities and calculate the Precision-Recall curve. We generate a sequence
of “peakness” thresholds and filter the output set of probabilities for all the
nodes of the graph. All the nodes having probability below the treshold were
classified as "non-peaks" while the ones upper were classified as "peaks". For
the heuristic methods, instead, for each parameters combination we gener-
ated a different list of peaks. Then, both for the machine learning models
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and the heuristic methods, to determine if a peak in the provided list matches
or not a real mountain peak in the GT data set we applied the procedure
described in Section 4.8.

In the Precision-Recall curve in Figure 5.3 we can see that the Peak
Classification (green) and GraphSAGE (orange) have the highest perfor-
mance, with the first slightly better in some cases. Logistic Regression
with Node2Vec (purple) embeddings does not perform well showing that the
topology, which is its unique input, it is not a feature representative of the
"peakness". Logistic Regression with handcrafted features (blue) also shows
a similar performance to the best methods, even if lower than GraphSAGE,
due to the fact the the structure of the graph is not included. Landserf Sur-
face Network (red), instead, shows having inferior performance compared to
the other heuristic method, Peak Classification, which remains the primary
method of comparison. Also, for Landserf Surface Network, the precision-
recall curve is not smooth, showing that is affected more than the other
methods from the different parameter configurations.

Parameters Validation Testing
Precision Recall Precision Recall

Peak Classification E1450-D20 0,7 0.49 0.64 0.56
Landserf Surface Network W7-D1-S1-C6 0.7 0.2 0.66 0.2
Logistic Regression 0.3 0.7 0.38 0.64 0.41
GraphSAGE 0.327 0.7 0.48 0.65 0.51
Node2Vec 0.1 0.06 0.3 0.05 0.3

Table 5.1: Evaluation results
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Figure 5.4: Comparison between a Metric Surface Network built with Land-
serf Tool and a Surface Network built with our custom method. The MSN
critical paths are represented with the yellow and blue lines, respectively the
ridges and channels. The orange pins represent the critical points of the MSN.
The white lines represent instead the edges extracted with our method; still
regarding our Surface Network, the yellow pins are the local maxima while
the blue ones are the saddles. The local maxima with id 38704 in the figure
is associated to a peak of the Ground Truth. It is possible to notice how
the MSN critical points are disposed far from the Ground Truth peak and
also an incompleteness regarding the critical paths of the MSN which do not
always reach a critical point.

For each method, we select a point in the precision-recall curve with a rea-
sonably good trade-off between precision and recall (specifically, we consider
the point where all the methods get close to 70% precision). This level of
precision it is suggested also by the analysis of the test predictions, showing
similar results when the methods are applied in with the same configuration,
i.e., it is a precision level which guarantees a good level of generalization.
Indeed, in Table 5.1 Peak Classification and GraphSAGE, which are the two
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best methods, in the same setting of parameters and features used to achieve
70% of precision in the validation set they reach around 65% of precision
with comparable recall.

We selected Landserf Surface Network Classification as first heuristic al-
gorithm as comparison method due to the underlying concept of the Surface
Network created by searching critical points. Based on the results, it did
not present a great performance in this area compared to the other methods,
which we attribute not only to the method in which such surface network
was created (Wolf-Pfaltz [72]), but also to the terrain features that are cal-
culated in base to a series of parameters that act as additional filter. We can
see in Figure 5.4 a Metric Surface Network [72] built with the Landserf tool,
which is the base for the Surface Network Classification, compared with the
Surface Network we implemented. In the MSN the critical points were not
always reached by a critical path, such as a ridge or a channel, leading to
an incomplete representation. Also, most of the critical points are disposed
far from the ridges which contain most of the Ground Truth peaks. While
other methods found in average ≈1100 peaks in the validation area Landserf
Surface Classification only found 505.

Node2Vec, which uses only the topology of the network, is not able to
create meaningful representations of the nodes sufficient for a classification
task. Indeed the handcrafted features are rich in information derived from
the elevations contained in the DEM that the topological structure cannot
account by itself.

Regarding the other three methods Logistic Regression, GraphSAGE and
Peak Classification, the Figure 5.3 shows three close curves. The effective-
ness of Peak Classification is also supported by the work [7] in which the
authors compared the effectiveness to Peak Classification over other state of
the art methods for the same territory. The simple but effective reasoning
behind this method is the definition of mountain encoded in the algorithm:
a mountain is a point with a certain elevation higher than its neighbourhood
by a given amount. Our grid search of the two parameters on Peak Classifi-
cation aims to find the combination of elevation and drop values that lead to
the best performance. In a similar way, Logistic Regression method searches
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for the combination of values of the different selected features of the nodes.
GraphSAGE follows a similar reasoning, however, it also takes into account
the underlying graph topology, while Logistic Regression only takes as input
a vector of features for each node. GraphSAGE aggregates the node features
based on the graph structure, and this extra information allows the method
to improve its performance with respect to Logistic Regression.

Figure 5.5: Clustering of the Ground Truth peaks based on the handcrafted
features
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Figure 5.6: Distribution of the values for the main features for the peaks of
the Ground Truth on the different areas of Train, Validation and Test

From the results in Figure 5.3 we infer that the features obtained from
each node from the graph structure is good enough to carry a classification
task even with such a trivial Machine Learning algorithm as Logistic Re-
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gression, and yet if we add a more complex one that takes into account the
topology of the graph we are able to improve the performance. This is not a
contradiction of what we said about Node2Vec: the topology is not a suffi-
cient information alone, but a method such as GraphSAGE can benefit from
this information to aggregate knowledge from the neighborhood.

To contribute to the idea that the extracted features are useful, in Figure
5.5 we can observe the results of K-means clustering (k = 5, selected using
elbow method). The figure shows the ground truth peaks where the color
of the points represents the value of the cluster each point was assigned.
From this figure we can appreciate three main areas: red, black and blue. In
particular, based on their geographic localization it is easy to associate the
black cluster with the pre-alps and the blue one with the alps. This is of
particular interest, to understand that the features selected are in fact useful
to capture enough geographical information to characterize the mountains.
Also, the features have a quite uniform distribution over the different areas.
Indeed, in Figure 5.6 we can see how most of the features of the Ground
Truth peaks have really similar distribution across the different areas of train,
validation and test. The few exceptions are given by the elevation which
confirms the result of the clustering. Indeed in the validation and, especially,
in the test areas most of the mountains are alpines having their elevations
concentrated between the range 2000-3000m. For the training area, instead,
we can see that the distribution has a concentration of values also around the
800-1000m, corresponding to mountains with lower elevation from the north
of Switzerland.

5.4 Qualitative Analysis

Although a quantitative analysis, based on a specific ground truth data set,
shows that Peak Classification, Logistic Regression and GraphSAGE dis-
cussed in Section 5.3 present a “similar” performance, a visual inspection of
results was also performed.

To provide the reader an intuition of the mountain peaks that the methods
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are able to identify, in Figure 5.7 we show examples of different mountain
peaks found by GraphSAGE and Peak Classification for the True Positives
have and agreement rate of ≈ 46%. One might think that given that Logistic
Regression and GraphSAGE use the same data structure the agreement rate
would be higher and in fact it is: ≈ 51% but not for much.

Figure 5.7: True positives examples found by: Peak Classificaion and Graph-
Sage (green), Peak Classification (red) and GraphSAGE (blue)

Figure 5.8 presents examples of False Positives for GraphSAGE and Peak
Classification. In this case, the agreement rate is of ≈ 50%. If we consider
that we have methods that learned from a Ground Truth the characteristics
(or feature values) that make a certain point in the Earth a mountain, and
such methods agree that a given point not listed in the ground truth is
considered a mountain, we can certainly think that such peaks might be
missing from such list. In particular, from human observation, for example
from Figure 5.8 of such points, we can consider that this is true for some of
the cases.
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Figure 5.8: False Positives examples found by: Peak Classificaion and Graph-
Sage (green), Peak Classification (red) and GraphSAGE (blue)

5.5 Impact of the Non-Morphological Nature

of Groud Truth Peaks

In Section 5.4 we saw that due to the resolution constraints it happens than
there are peaks from the Ground Truth which are not associated to any node
of the graph. In fact, for DEM3 there are 259 peaks (15%) from the Ground
Truth which are not matched with any node of the built Surface Network
within an acceptable distance (200m).
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Figure 5.9: Surface Network and Ground Truth peaks: the red lines represent
the edges of the surface, the green pins are local maxima of graph matching
a Ground Truth peak, while orange ones are not associated to any node
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Figure 5.10: DEM representation on small areas around GT peaks, where
darker colors indicate higher altitude and the red triangle indicates the po-
sitioning of the GT peak. A corresponds of a GT with a node, B and C
corresponds to peaks no represented by any node.

In Figure 5.9 we show examples of peaks that were not associated to any
node in the graph (orange markers) as well as the peaks that have a node
associated and the edges. Given that, as mentioned before, the DEM is an
approximation of the Earth, if we observe the raw values we can understand
why a local maxima was not created in the graph close to those areas. In
Figure 5.10 we show examples of DEM values for some of the peaks displayed
in Figure 5.9. For the case of A, we can see that the higher point is the
immediate neighbour cell to the one that corresponds to the GT peak (≈
90m), while in the other two cases it is not clear that the point is a local
maxima, and thus no node is associated.

By making a comparison with Peak Classification we find that 159 of those
259 missed peaks are shared as False Negatives, i.e., that also the heuristic
method is not able to find. We inspect then the other unmatched peaks to
understand if there is a pattern between them. The peaks we analyzed can
be related with the cases in Figures 5.11 and 5.12.

In Figure 5.11 the image in the right shows that at the location of the
Ground Truth peak (in blue) there is the beginning of an area with higher
elevation, more specifically a sequence that can be associated to a ridge.
Another example, in Figure 5.12, shows the same situation, where the coor-
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Figure 5.11: Example of missed peak of the Ground Truth. In the figure
in the left we have in orange a missed peak of the Ground Truth. In the
middle figure there is a gray scale of the elevations for the surrounding area,
where the light blue marked pixel is the location of the GT peak. Darker
gray represents higher elevation. In the right figure with the red color is
represented the area having higher elevation than the GT peak (in blue)
while in green delimited the area with lower elevation.

dinates of the Ground Truth peak is at the extremity of a ridge.
The remaining unmatched peaks cannot be associated to any morpho-

logical landform. This makes emerge again the issue of defining "what" is a
mountain. Most of the unmatched peaks of the Ground Truth are not well
defined morphologically; indeed they are present in the maps for cultural and
historical reasons. Considering that the Surface Network we implemented is
based only in the identification of the critical points associated to the land-
forms of a surface, these "non-morphological" peaks can not be associated to
the graph and a measure of the goodness of the models should be performed
without taking into account these spefic kind of peaks.

To account with the impact of the non-morphological nature of ground
truth peaks over the Machine Learning models we replicated the experiments
by not including in the set of false negatives the peaks of the Ground Truth
which were not matched with any of the nodes of the graph, i.e., they were
not in the range of 200m. We excluded then the 259 false negatives associated
to the unmatched peaks from the computation of the precision-recall to allow
a better assessment of the quality of the methods.
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Figure 5.12: Example of missed peak of the Ground Truth. In the upper
figure we have an example of a Ground Truth peak (in blue) which it wasn’t
possible to be assigned to any local maxima within a range of 200m. The
closest local maxima is indicated in yellow at a distance of 330m. In the
bottom left figure it is represented the elevation of the area on a gray scale;
darker pixels mean higher elevation for the corresponding cell. The pixel
at the center of the figure (with the light blue marker) is related with the
elevation of the Ground Truth peak while the darkest pixel in the upper right
position is the one of the local maxima. To understand better the difference
of elevation, in the bottom right figure we can see in blue the pixel for the
missed Ground Truth, in red all the pixels with higher elevations and in green
all the pixels with lower elevation.
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Figure 5.13: Pareto dominant precision-recall curve of the Machine Learning
methods

Parameters Validation Testing
Precision Recall Precision Recall

Logistic Regression 0.3 0.7 0.46 0.63 0.49
GraphSAGE 0.327 0.7 0.55 0.62 0.50

Table 5.2: Evaluation results
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Fromm the curves in 5.13 we can see that GraphSAGE still performed
slightly better than Logistic Regression. They key factor for the best results
of GraphSAGE is in exploiting entirely the surface network, both the sig-
nals and the structure, representing a sort of relationship between the nodes
properties. Logistic Regression exploits only the handcrafted features, which
have, however, a good quality for performing a classification of the nodes.

We can say that the proposed methods have a good performance com-
parable with the state of the art heuristic methods. When excluding the
non-morphological peaks the models show a discrete improvement achieving
also a good generalization capacity as showed in Table 5.2 over the test set.
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Chapter 6

Conclusion and future work

In this thesis we study the use of Machine Learning techniques for node
classification for learning to find peaks in surface networks created from DEM
files, an approach that to the best of our knowledge has not been employed
in the past for this purpose. The proposed method requires only a Ground
Truth dataset, which may be chosen based on availability or suitability to the
specific application scenario, with the possibility to be scaled to test areas of
any size. We merged two different open source datasets of peaks and removed
the duplicated ones, based on a distance rule that proved to be efficient; this
may vary depending on the quality of the initial data.

We replicated state of the art heuristic methods for finding peaks and
we faced with the main issues of these kind of methods: first there is an
amount of parameters the user must set to be able to obtain the desired
terrain features and second problem is the lack of a fair comparison between
different methods. We agree with the literature on the difficulty of defining
“what is a mountain”.

We analyzed the problem of peak extraction and developed a process to
transform the DEMs into Surface Networks, the training data for the Ma-
chine Learning models and, more specifically, for the Graph Deep Learning
ones. We use the elevation to find the critical points of the Earth’s Surface,
among which there are represented the peaks, and we enrich the graph with
meaningful signals representing the properties of the surface.

111



With such data, we managed to train a model that in the selected area
performs equally with the state of the art methods. The main reason for
which it wasn’t possible to improve the results of the heuristic methods is
that a set of peaks are not assigned to any node of the Surface Network. The
inclusion of those Ground Truth peaks in the graph through the exploitation
of other kind of landforms can be a future step.

We provide an in-depth quantitative analysis of the three Machine Learn-
ing architectures and discuss on why one architecture is better than the other.
GraphSAGE, with all the handcrafted features, is able to achieve the best
result because it exploits both the rich signals of the nodes and both the
knowledge of the disposal of the nodes in the graph. Logistic Regression
performs quite well, even if not like GraphSAGE, showing that the features
of the Surface Network are slightly representative. Node2Vec shows, instead,
that the topology alone is not sufficient for this kind of classification.

An evaluation in Switzerland territory, a region characterized by highly
dense peak distribution, showed promising results. Still, we divided the eval-
uation of our method in two steps: (1) the quality of the data structure
(surface network) and (2) the performance of the method, given that the
methods were not able to classify nodes that are not present in the graph,
since the graph could not contain local maxima that the resolution of the
DEM does not allow to find.

6.1 Future work

Our future work pursues a number of directions:

• since using higher DEM resolution to create the surface network intro-
duces too much of noise to the graph, we will investigate how to use a
multi-scale approach to add information missing with lower resolution
while preventing excessive noise on the data;

• given that the approaches proposed showed a promising results, we can
investigate the use of more complex method such us geometric deep
learning ones [11];
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• use ensemble learning to improve performance, by taking the best of
image- and graph-based terrain representations and DL models;

• introduce new kind of landforms in the surface network, such as at he
endpoints of the ridges, which may allow to assign part of the unlabeled
peaks from the Ground Truth to one of the nodes of the graph.
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Appendix A

Deep Learning Tests

In this Chapter we are showing how we performed the choice of the best
architecture for the Deep Learning models, GraphSAGE and Node2Vec.

A.1 GraphSAGE

In this Section we show the explored hyper-parameters space for choosing
the best architecture for the GraphSAGE model.

A.1.1 Hyper-parameters space analysis

For deciding which hyper-parameter values to test in the Grid Search for the
model tuning we performed a sensitivity analysis; it is the study of how the
uncertainty in the output of a mathematical model or system (numerical or
otherwise) can be divided and allocated to different sources of uncertainty
in its inputs. In this case the uncertainty is about the impact that the
different hyperparameters have on the final model performance. In table
A.1 we can see the tested values for the Sensitivity Analysis for GraphSAGE
hyper parameters. We can see that for the core parameters of the model, such
as the aggregator, sampling dimension and embedding dimension respectively
in figures A.1,A.2 (level 1), A.4 (level 2) and A.3 (level 1), A.5 (level2) there
is no clue in the choice for creating the Grid Search, so opted for two values,
the default one plus another having good performance. For parameters such
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Hyper-Parameter Value1 Value2 Default Value3 Value4
Aggregator Mean Pool Max Pool Mean LSTM
Class Weight 0.5 0.6 0.7 0.8
Max Degree 8 16 128 64 64
Samples1 5 10 25 15
Samples2 0 5 10 15 25
Samples3 5 10 0 15 20
Batch Size 64 128 512 256 1024
Validate Iteration 1250 2500 5000 10000 20000
Validate Batch Size 32 64 256 128 512
Dropout 0.2 0.5 0 0.7
Weight Decay 0.001 0.01 0
Dimension Embeddings 1 8 32 128 512
Dimension Embeddings 2 8 32 128 512
Learning Rate 0.0001 0.01 0.01 0.1 0.00001

Table A.1: Explored values with the sensitivity Analysis

as weight decay and dropout which are more inherent with Deep Learning
models in general, we can see that the standard value is already the best, so
there was no reason for evaluating also the others.

Although we didn’t explore in deep the performance implications, this
analysis helps also in reducing the parameters space considering that the
time for the training is not trivial.

Based on the impact of the values we could reduce the space search to the
ones in table A.2 for a total number of 3072 experiments. In bold we have
the chose value after the Grid Search. We want to highlight that when we
created the experiments for finding the best architecture we were not aware
of the group drop features at any level. Indeed we can see that for 70%
precision the recall is around 39%, 9% less compared of what we achieved
by including also the drop features. For a lack of time we couldn’t repeat
all the experiments of the tuning but we believe that including also the drop
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Figure A.1: Effect of the variation of the Aggregator

Figure A.2: Effect of the sampling at layer 1
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Figure A.3: Effect of the dimension of the embeddings at layer 1

Figure A.4: Effect of the sampling at layer 2
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Figure A.5: Effect of the dimension of the embeddings at layer 2

Figure A.6: Effect of the weight decay
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Figure A.7: Effect of the dropout

during the grid search wouldn’t modify much the architecture. Indeed, the
standard configuration and the tuned ones have really similar performances.

A.2 Node2Vec

For the Node2Vec choice of hyper-parameters we estimated the performances
with a Grid Search by starting with the values set as default by the authors
and then increased and decreased them. This led to a total number of 729
experiments whose parameters are reported in table A.3. In figure A.8 we can
see in green the base architecture compared to the best ones achieved through
the exploration of the grid search. The best architecture results in being
p=0.01, q=1, d=128, r=20, k=10, l=20. We can see how the performance
is not comparable with Logistic Regression or GraphSAGE, suggesting that
the surface features are much more important the the role of the nodes inside
the network.
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Hyper-parameter Value1 Value2 Value3 Value4
Aggregator Mean Mean Pool Max Pool LSTM
Class Weight 0.7
Max Degree 2 16 128
Samples 1 5 25
Samples 2 5 25
Samples 3 0 10
Batch Size 128 512
Validate Iteration 5000
Validate Batch Size 128 512
Dropout 0
Weight Decay 0
Dimension Embeddings 1 32 512
Dimension Embeddings 2 32 512
Learning Rate 0.001 0.01

Table A.2: Grid for the Parameter Search for GraphSAGE

Parameter Value1 Default Value2
p 0.01 1 100
q 0.01 1 100
l 20 80 100
r 2 10 20
k 2 10 20
d 8 128 256

Table A.3: Grid for the Parameter Search for Node2Vec
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Figure A.8: Comparison of performance achieved with different configura-
tions
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Appendix B

Features Selection

In this section we are showing how we evaluated the effect of the features
both for GraphSAGE and Logistic Regression.

B.1 Greedy Forward Features Selection

We can see in figures B.1 and B.2 the advancement of the features choice
with greedy forward search. We can notice that the curves have a slightly
different evolution: Logistic Regression reaches its best performance after
adding a few features, while graphSAGE is more sensitive to new features
and it exhausts its improvement almost with the entire set of features. It
is important to highlight that using all the features instead of the selected
subset leads to the same results for both of the models as we can see in Figure
B.3.

B.1.1 Importance of the Features

In Figure B.3 we can see the effect of using only elevation with GraphSAGE.
Although the other features are derived also from the elevation, it cannot be
used alone, leading to worse performances.
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Figure B.1: Greedy Forward Feature selection for GraphSAGE

132



Figure B.2: Greedy Forward Feature selection for Logistic Regression
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Figure B.3: Effect on the performance between using all the features or a
subset
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