
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

Autonomous vehicle heading and
centerline displacement estimation via

computer vision

Advisor: prof. matteo matteucci

Co-advisor: dr. simone mentasti

Master Graduation Thesis by:

paolo cudrano

Student Id n. 878148

Academic Year 2018-2019

politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in

Computer Science and Engineering

Autonomous vehicle heading and
centerline displacement estimation via

computer vision

Relatore: prof. matteo matteucci

Correlatore: dr. simone mentasti

Tesi di Laurea Magistrale di:

paolo cudrano

Matricola n. 878148

Anno Accademico 2018-2019

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

This template has been adapted by Emanuele Mason, Andrea Comi-
nola and Daniela Anghileri: A template for master thesis at DEIB, June
2015.

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

A Mamma e Papà

A C K N O W L E D G M E N T S

I would like to express my sincere gratitude to my advisor, Prof. Matteo
Matteucci, and my co-advisor Simone Mentasti, for all the help they
gave me during the completion of this work.

Thanks also to all my friends for their support. Particular mention
goes to Afroja for always being with me.

Last but by no means least, I’m grateful to my beloved mother for
supporting me during my studies and for raising me the way she did,
regardless of all the difficulties that came into our way.

vii

C O N T E N T S

Abstract xvii

1 introduction 1

2 line detection 7

2.1 Processing pipeline for traditional systems 9

2.1.1 Preprocessing . 9

2.1.2 Feature extraction 13

2.1.3 Model fitting . 15

2.1.4 Tracking . 19

2.2 End-to-end learning-based systems 20

3 lane following 23

3.1 Traditional lane following 24

3.1.1 The perception problem 25

3.1.2 Line models . 27

3.1.3 Planners and control systems 32

3.2 End-to-end lane following 35

ix

4 proposed system 39

4.1 System architecture . 40

4.2 Line detection . 41

4.2.1 Data acquisition and conventions 42

4.2.2 Feature extraction 43

4.2.3 Feature postprocessing 45

4.2.4 Model fitting . 51

4.2.5 Temporal consistency 58

4.3 Lane parameters estimation 63

4.3.1 Centerline shape 64

4.3.2 Heading and lateral displacement 70

4.3.3 Temporal consistency 71

5 results and evaluation 79

5.1 Experimental setup . 80

5.1.1 Dataset . 82

5.2 System evaluation . 84

5.2.1 Qualitative results 85

5.2.2 Quality of the estimation 89

6 conclusions and future work 101

bibliography 105

x

L I S T O F F I G U R E S

Figure 2.1 Common processing pipeline for line detection
systems. 10

Figure 2.2 Example of a fixed ROI highlighted on an image
(left) and its BEV projection (right). Adapted
from [41, Figure 1]. 12

Figure 2.3 Gradient-based features highlighting strong ver-
tical edges in BEV. Adapted from [24, Figure 2]. 14

Figure 2.4 LaneNet (top) and the overall system in which
it is presented (bottom). Adapted from [40]. . . 21

Figure 3.1 The nonlinear transformation applied in Ralph
to determine the best steering action to perform.
Adapted from [84, Figure 3]. 26

Figure 3.2 Reference frame for the Whewell representation.
Adapted from [89]. 30

Figure 3.3 General architecture of an autonomous vehicle
reported in [92]. Adapted from [92]. 33

xi

Figure 3.4 The functional architecture described by Behere
and Törngren [93]. In particular, logic organi-
zation of their functional components (left) and
final architecture (right). Adapted from [93]. . . 34

Figure 3.5 Curvilinear reference frame based on s and y
used in [92]. Adapted from [92]. 35

Figure 3.6 Training (top) and testing (bottom) configura-
tion of the end-to-end system used in DAVE-2.
Adapted from [100]. 37

Figure 4.1 Coordinate systems adopted for vehicle {V},
camera {C} and image {I} reference frames. Adapted
from [104] . 43

Figure 4.2 Raw predictions of our CNN on a road image.
For clarity, the predictions are reported in iso-
lation (left) and overlaying on the image itself
(right). Brighter pixels are associated to higher
predicted values, thus higher confidence of the
network in the presence of a line marking. 44

Figure 4.3 Overall architecture of the CNN used in our
pipeline for feature extraction. 46

Figure 4.4 A front-view image acquired with our vehicle
and the corresponding BEV representation. . . . 47

Figure 4.5 Projection of the CNN predictions into BEV
(right), together with the original predictions
(left) for comparison. 47

Figure 4.6 Results of thresholding (left) and subsequent
morphological post-processing (right) on the
features predicted by the network. 48

xii

Figure 4.7 Window-based line following (WLF) algorithm.
Given the postprocessed feature points (beige),
a window (yellow) is placed where a line is ex-
pected to be found (bottom). In this case, as no
feature points is detected, the window is iter-
atively enlarged. When a feature is matched,
the window (now green) is shrunk and the line
point (red) is selected. Iteratively, the window
is moved in the expected direction of the line
and a new line point is searched and found.
The width of the window is adaptively changed
in order to contain all only the relevant feature
points. If no feature points are found in a patch
(yellow, top of left line), a recovery process tries
again to enlarge the window and search for pos-
sible candidates in a neighborhood. In this ex-
ample, no point is found, and thus the searched
is stopped. Notice how the algorithm is capa-
ble of recognizing the correct lines regardless
of the presence of other spurious detections in
the scene (on the left). Notice also how, thanks
to the adaptive window width, the selected line
points appear fairly aligned and centered, re-
gardless of the conditions of the feature mask
(right line). 54

Figure 4.8 Derivation of the parameters to be estimated,
Theta and Delta. 71

Figure 4.9 Reference for the variable used in the EKF. In
particular, in blue we can find the state of the
filter, θ, ρ and w, while in black are depicted
the measurements PL, PR and other reference
quantities. 73

Figure 5.1 Instrumented experimental vehicle used to ac-
quire the dataset. 81

xiii

Figure 5.2 The 8 trajectories recorded in the dataset, each
featuring different characteristics as driving style,
average speed and lateral position of the vehicle. 83

Figure 5.3 Line detection on a straight road. 86

Figure 5.4 Line detection on an extensive road bend. 86

Figure 5.5 Visualization of the complete output of our sys-
tem, including line detection (green) and cen-
terline estimation (orange). Notice that, in the
BEV image, the position of the center of mass of
the vehicle (red) and the orthogonal line passing
through it (yellow) are shown for completeness. 87

Figure 5.6 Line detection and centerline estimation in pres-
ence of a double bend. Thanks to the odometry
measurements, the system is able to remember
the shape seen in the past (top) and adapt its
estimate of future scene (bottom) accordingly
(notice the change of concavity, typical of dou-
ble bends, which could not be estimated from
the visible scene). 88

Figure 5.7 Examples of the issues registered around the
chicanes. In this particular scenes, the faults are
attributable to the CNN, which fails to identify
the line (top) or identifies a wrong line (bottom). 89

Figure 5.8 A split on the road together with a wore out
marking deceive the algorithm for a few frames.
While it is soon able to recover the tracked esti-
mates during these instants are slightly perturbed. 90

Figure 5.9 Frame captured for Trajectory 7 at t = 105 s,
showing how peaks in the estimation errors are
often correlated with the crossing of a chicane. . 92

Figure 5.10 Restricted evaluation tracks. They do not feature
any chicane, but still include the most interest-
ing testing scenarios: straight road, curve road
and double bend. 93

xiv

Figure 5.11 Behavior of the estimated heading and lateral
displacement in time, compared to the ground
truth provided with the dataset. 94

Figure 5.11 Behavior of the estimated heading and lateral
displacement in time, compared to the ground
truth provided with the dataset.(cont.) 95

Figure 5.12 Absolute error of the estimation of heading and
lateral displacement. 96

Figure 5.12 Absolute error of the estimation of heading and
lateral displacement. (cont.) 97

Figure 5.13 Estimated heading and lateral displacement for
the evaluation on a restricted part of the track
(top), and absolute error of the estimation (bot-
tom). 98

xv

L I S T O F TA B L E S

Table 5.1 MAE for the estimation of heading and lateral
displacement over each entire trajectory in the
dataset. The trajectories are split according to
their driving scenarios, and cumulative mea-
surements over the same category and for the
overall dataset are also indicated for clarity. . . . 91

Table 5.2 MAE for the estimation of heading and lateral
displacement over restricted trajectories. 99

xvi

A B S T R A C T

The ability of autonomous vehicles to maintain an accurate trajectory
within their own road lane is crucial for their safe operation. In the
context of lane following, a measurement of the position of the road
lines is required, together with an estimation of lateral displacement
and orientation of vehicle. At times, the shape of the road centerline is
also required. While several systems are described in the literature, a
sharp cut is often made between perception and control, losing a po-
tentially beneficial link. Moreover their evaluation is rarely performed
with data from real scenarios. In this work, we propose the design of a
vision-based perception system for lane following, capable of robustly
detecting the ego-lane and the parameters needed for controlling the
vehicle’s trajectory. A CNN is employed for the detection of the line
markings, which are then fit in the BEV space to a mathematical
model. The selected representation is given in the intrinsic Whewell
coordinates to facilitate the estimation of the centerline, for which a
specific algorithm is proposed. Heading and lateral displacement of
the vehicle are then computed, and an EKF is employed to stabilize
the results. The overall performance of the system have been evaluated
on real-world data, collected simulating different driving conditions
and featuring different road geometries.

xvii

S O M M A R I O

La capacità di un veicolo a guida autonoma di mantenere una tra-
iettoria accurata all’interno della propria corsia stradale è cruciale
per il loro utilizzo in sicurezza. Nel contesto dei sistemi di manteni-
mento automatico della corsia, la misurazione della posizione della
linea stradale è richiesta, insieme alla stima di scostamento laterale
e orientamento del veicolo. Alle volte, la forma della linea di centro-
strada è ulteriormente richiesta. Mentre diversi sistemi sono descritti
in letteratura, è spesso presente un taglio netto tra sistemi di perce-
zione e controllo, il che fa perdere un collegamento potenzialmente
benefico. Inoltre, la loro validazione è raramente eseguita utilizzando
dati acquisiti in scenari reali. In questo lavoro dunque proponiamo la
progettazione di un sistema di percezione basato su visione per il pro-
blema del mantenimento automatico della corsia, in grado di rilevare
in maniera robusta la propria corsia stradale e i parametri necessari al
controllo della traiettoria. Una CNN è utilizzata per la rilevazione delle
linee stradali, per le quali viene poi stimato un modello nello spazio
della BEV. La rappresentazione scelta è data quindi in coordinate di
Whewell in modo da facilitare la stima della centerline, per la quale
uno specifico algoritmo viene proposto. Orientamento e scostamento
laterale del veicolo sono quindi calcolati, e un EKF è utilizzato per
stabilizzare i risultati. Le performance dell’intero sistema sono quindi
state valuate su dati reali, raccolti simulando diverse condizioni di
guida e geometrie stradali.

xviii

1
I N T R O D U C T I O N

From science fiction novels to research labs all over the world, self-
driving cars have made quite a long way in the last decades, but still
considerable effort has to be invested before they can finally make it
into our everyday life.

The concept of autonomous driving, or more precisely driving au-
tomation according to the Society of Automotive Engineers (SAE) [1],
can be defined as the process of providing a vehicle with the capabil-
ities and the resources necessary to execute sustained driving tasks
with limited or no human intervention.

A substantial amount of research has been dedicated lately to this
topic, with effort coming from both the industry and the academia.
Several reasons are certainly behind this peak of interest, but the most
influential is likely to be the higher level of safety fully autonomous
vehicles would offer in comparison with traditional means of trans-
portation. According to the analyses performed by the U.S. National
Highway Traffic Safety Administration (NHTSA) in the last 10 years,
over 90% of the car crashes registered in the U.S. are believed to be

1

2 introduction

caused by human errors [2]. Furthermore, they reported that alcohol
and drugs abuse, driver distraction and fatigue account for about 40%
of the fatal ones [3], while according to their 2012 survey respectively
30% and 14% of the fatal crashes for that year involved speeding
and lane departure [3], [4]. Analogous figures are observed in Italy,
where the Italian national institute of Statistics (Istituto Nazionale di
Statistica, ISTAT) highlights how most of the accidents in the country
are due to human misbehavior (93.7%), with distraction, failure of
yield right-of-way and speeding accounting overall for 40% of the total
amount [5].

Although autonomous vehicles will hardly be impeccable, they
would not certainly display most of these disruptive human flaws,
and thus determine a potentially large improvement for the safety
of drivers, passengers and pedestrians on the road. Not of primary
importance for the many, but the reduction of car crashes would also
bring economic benefits, given that the annual cost of road accidents
in the U.S. is estimated at $277 billions [3].

Other incentives in favor of autonomous vehicles can be found in
their inherent capabilities at performing optimizations, given their com-
putational power. This added skill could indeed lead to economical
and environmental benefits, with better route planning, traffic manage-
ment, and optimal fuel consumption [6], as well as a potential increase
in the adoption of car sharing alternatives and a consequent reduction
of parking needs [7]. Furthermore, in a completely autonomous sce-
nario, they would relief drivers from the stress caused by commuting,
especially in large cities, and instead leave them with more time to
focus on other activities while taking their everyday rides or even
traveling longer distances [6], [8].

With these incentives in mind, a discrete amount of work has been
performed in the last decades. With its early conception going as back
as at least the 1980s [9], [10], the main forward thrust to the field was
certainly given by the DARPA Grand Challenge [11], [9], organized
by the Defense Advanced Research Projects Agency (DARPA, of the
Department of Defense of the United States) as a way to promote
the development of unmanned ground vehicles. After no participant

introduction 3

succeeded in the first edition of the challenge in 2004, the attendance
nearly doubled the following year, leading to almost all of the par-
ticipating vehicles outperforming the results of the previous edition.
As the challenge was finally completed by several teams [11], the
ground was clear for the organization of the DARPA Urban Challenge
in 2007 [12] and the intensification of the research in the area.

In 2014, SAE International issued a Recommended Practice docu-
ment [13] in order to harmonize the emerging field of autonomous
driving with standardized definitions of the actors and features in-
volved. In this document and its successive revisions of 2016 [14] and
2018 [1], they describe a taxonomy for autonomous vehicles composed
of 6 levels, ranging from no autonomous features (level 0) to full auton-
omy (level 5). Following this classification, at the moment only level
1 and 2 features have been successfully developed and are currently
implemented by many car manufacturers. Among these are adaptive
cruise control, assisted parking and lane keeping technologies. Such
systems however are only meant to support the driver during the ride
and are not guaranteed to behave optimally and safely all the times,
leaving the driver in charge of their supervision and responsible to
correct any misbehavior encountered.

To achieve a partial notion of driver disengagement, although valid
only under particular, strict conditions, level 3 is needed. Notably
however, only one potential level 3 vehicle has ever been released yet.
It is the case of the 2019 Audi A8 from the German manufacturer
Audi AG, featuring their Traffic Jam Pilot, which is allowed to take
full control of the vehicle when in severe traffic. Nevertheless, its full
potential is currently unexploited because not yet approved for sale by
the regulators of most countries [15].

In this context, it is clear that many advances are still needed to
reach a fully functional level 5 technology. On one hand, it is neces-
sary to develop new algorithms in order to achieve full autonomy
in increasingly more scenarios, from urban traffic jams to unpaved
steep mountain roads. Likewise, the systems currently available have
to be significantly improved, in order to provide high reliability and

4 introduction

robustness to the multitude of unpredictable situations they will be
required to face.

In doing so, engineers need to focus at the same time on enabling
the vehicles to sense their surrounding environment and on designing
control techniques capable of governing their operation consistently
and in safety. The perceptual aspect is indeed fundamental for the
vehicle not only to determine its own position, but also, given a func-
tioning control system, to determine how to reach its destination. This,
in turn, has to be done both on a global scale, selecting for instance
what roads to follow on a map, but also on a local scale, dynamically
updating the designed trajectory in order to remain on such road and
avoid collisions with possible obstacle on its way.

With this in mind, it is exactly on the latter task that we base our
research, as the meeting point between perception and control. Here
indeed a particular problem caught our attention, as it has been long
studied, and yet there is margin for several improvements not only
in the more technical aspects, but also in the overall approach taken
towards it.

In this thesis indeed we focus on the problem of lane following for
autonomous vehicles, taking a perspective predominantly oriented to
the perceptual aspects of the task, but keeping also well in sight the
actual requirements and limitations of its control counterpart. We thus
begin by studying how line detection systems work and perfecting
one ourselves; but we then move one step further. A large amount of
literature has been produced in the last decades on line detection sys-
tems [16], [17], analyzing what features to extract and how to extract
them, what curve models suit best their shape, what projective map-
pings could be helpful in the process and which filtering techniques
achieve better results. However, all of these systems have always been
considered as self-standing and thus developed in isolation. Nonethe-
less, while their outputs could still be compared with ground truth
measurements and their results can indeed be quantitatively evaluated,
they are actually not targeting the control goal.

What is really needed by lane keeping systems indeed is not a
detailed description of every sign on the road (which is likely to be

introduction 5

computationally expensive to obtain, and still potentially inaccurate).
Instead, it is an algorithm that can robustly describe only a few, key
parameters of the overall scene and can be then reliably used by a
control system in order to govern the trajectory of the vehicle. For these
reasons, we do not only aim at detecting the line markings delimiting
our vehicle’s lane, as many other works do. Instead, we additionally
refine their representations in order to be optimally employed by the
subsequent controller. For this reason, we develop a technique for
estimating at any given time the shape and position of the centerline,
along with the vehicle’s relative heading and lateral displacement,
parameters of fundamental importance for lane following control
systems.

In the remaining chapters, we start our analysis with an overview of
the lane following problem and a presentation of the state of the art
in this field. To this extent, the literature on line detection algorithms
is first expanded (Chapter 2), followed by a portrayal around the
generality of the lateral control problem, with particular emphasis on
lane following systems (Chapter 3).

In Chapter 4 our work is described. At first, we present the line
detection system we developed, going into the details of each stage of
our processing pipeline. Then, our studies on the centerline shape re-
trieval are discussed, describing at last our approach to the estimation
of heading and lateral displacement of the vehicle.

We validate our system in Chapter 5, presenting our experimental
setup, the custom dataset we recorded and the results we finally
obtained.

At last, Chapter 6 draws our final conclusions and highlights our
contributions, closing with an analysis of the future developments that
could originate from our work.

2
L I N E D E T E C T I O N

The first segment of our analysis concerns the problem of line detection.
This, in the context of autonomous driving, focuses on locating the
position of particular road markings in the proximity of the vehicle.
The search could be directed only to lateral lines or include for example
stop lines, zebra crossings and possible text indications painted on the
pavement. Although dependent on the specific requirements of each
system, the final output of this process is in most cases a mathematical
representation of shape and relative position of each detected line.

These results are usually achieved using one or more cameras,
as they can easily capture colors and all the features used by hu-
mans for the same task [18]. In particular, single camera systems are
considered in most of the approaches, because of their ease of in-
stallation and limited costs [17]. Stereo vision systems are however
sometimes adopted. This is mostly due to their capability to estimate
distances on the scene [18], task harder to perform in monocular ap-
proaches.Nonetheless, other sensors could also be employed. Hata
and Wolf [19] use a LIDAR to detect dashed and continuous lines,

7

8 line detection

together with crosswalks and the position of road boundaries. Specifi-
cally, they analyze the reflective intensity of the measured point cloud
and isolate all road markings thanks to their higher reflectivity. Similar
approaches are taken also by Kibbel et al. [20] and Lindner et al. [21].
While camera systems are easily affordable however, a LIDAR sensor
has significantly higher costs, making their usage also an economic
choice. On the other hand, LIDAR systems can accurately measure
distances and are not affected by changes in illumination, as opposed
to traditional cameras. To obtain some advantages from both sensors,
Huang et al. [22] propose a detection system for multiple lanes that
combines vision and LIDAR. They detect each line marking mainly
from their visual data, but integrate then the findings with the laser
measurements to filter out obstacles and enforce the position of the
road boundaries. In this fashion, they are able to reduce the presence
of false positives and thus improve the overall performances.

Another sensing option is represented by infrared (or thermal) cam-
eras. They can be used indeed thanks to their analogous capability to
detect different reflectivity values. To this end, Fardi and Wanielik [23]
successfully studied their usage in road boundaries detection, but no
further research has been devoted towards their employment with
road markings. It is likely however, in our opinion, that this negli-
gence can be partly attributed to the high economic cost of the sensors
themselves compared to their potential advantages.

Given then the highlighted scenario, and following the tendency
of the literature, in the remainder of this work we focus only on
monocular camera systems, favoring their competitive costs and ease
of operation.

If a camera is indeed chosen, the detection is performed by means of
computer vision. While no universal algorithm has been developed for
this task, a large literature of techniques is available, each exploring
different alternatives or combinations of them. Nevertheless, according
to the literature [18], almost all systems are constructed following a
similar processing pipeline, which we further analyze in the remainder
of this chapter.

2.1 processing pipeline for traditional systems 9

Only exception to this view is the case of some learning-based
methods. This class of approaches have arisen in the last years thanks
to the enormous improvements registered by deep learning methods
and convolutional neural networks. With these tools, the traditional
techniques have been revolutionized. However, while in most cases
learning approaches are integrated with the pipeline, substituting or
improving a single stage within it, end-to-end approaches have also
been developed. These methods do not rely on any pipeline and are
dependent only on a learning technology, thus differing completely
from traditional techniques.

As both approaches deserve our attention, in the rest of this chapter
we present a detailed description of each stage of the traditional
pipeline, along with a brief overview of end-to-end systems and their
novel approach.

2.1 processing pipeline for traditional

systems

As confirmed by the literature [18], [17], the most common vision-
based processing pipeline for line detection systems is composed
of four stages: preprocessing, feature extraction, model fitting and
line tracking (Figure 2.1). From a system to another however, a few
differences could be noted. In some works, for instance, we cannot
distinguish between the latter two stages, as they are both coupled and
indivisible [24]. Nonetheless, a general description of the main archi-
tecture should provide enough details to appreciate also its variations.

2.1.1 preprocessing

For each frame acquired, the processing begins with some preliminary
operations. Their aim is to reduce the clutter in the recorded images
as well as to highlight the relevant information they contain.

10 line detection

Figure 2.1: Common processing pipeline for line detection systems.

For this purpose, one common operation has to do with the reduc-
tion of acquisition noise. Ding et al. [25], for instance, design a specific
two-dimensional Gaussian kernel to reduce the impact of noise and
brighten the color of line markings. For the same purpose, Gaussian
smoothing is used by Kim and Lee [26]. In addition, depending on the
camera used, other sources of acquisition noise could become relevant,
leading for example to vignetting or wrong exposure [18]. Yet, several
modern cameras can correct these artifacts internally with real-time
adaptive techniques [27], or at least provide complete access to their
internal configurations to allow a third-party software to perform the
changes [28]. For this reason, their treatment is outside the scope of
this work.

The problem worsens when we consider also the effect of different
weather conditions and night-time illumination, as they severely distort
how colors are captured [29, Chapter 2 and 3]. It is therefore important
for the system to cope with a large range of disturbances, from the lens
flare due to direct sunlight to the soft light of rainy days, and from the
reduced view in presence of fog to the artificial illumination during
night-time [18]. Moreover, irregular shadows are often present on the
road, coming from trees or other vehicles, and abrupt illumination
changes can additionally be registered when entering and exiting a
tunnel or passing under a bridge [18], [16]. To mitigate this conditions,
Huang et al. [22] utilize date, time and Earth location to estimate the

2.1 processing pipeline for traditional systems 11

position of the sun and correct their detections in areas under direct
sunlight. In an analogous context, Rasmussen [30] describes a similar
approach to predict the position of shadows and reduce the presence
of false positives. Other solutions often involve the transformation of
the image into different color spaces. In this context, Sun et al. [31]
propose the HSI space to enhance the color of each road marking
and mitigate the illumination changes. Son et al. [32] instead claim
that most line features are easily retrieved in the YCbCr space, and
construct their algorithm based on this consideration.

Shifting our attention from color to shape, it is known that every
shape, when captured on an image, is geometrically distorted. This
effect is due to the perspective projection of the 3-dimensional world
object to the 2-dimensional space of the camera [33]. For this reason,
for example, lines that are parallel in the world appear to intersect
in the image. Although natural, this effect additionally hinders the
detection of lines, as it prevents any algorithm from reasoning on
their real-world shape, enforcing their parallelism or comparing them
with local maps. To mitigate this issue however, an additional prepro-
cessing operation can be applied. This consists in the rectification of
the image by means of perspective warping, to obtain the so-called
Bird’s Eye View (BEV) [34], [35]. Its computation requires the camera
to be calibrated, operation that could be performed once, beforehand,
or repeatedly at run-time with more sophisticated algorithms [36].
Many are the systems relying on this procedure , with some using
it to enhance edges and similar features [37], [24], [38], while others
to rectify the road lines and represent them with an accurate world
model [39], [40].

Besides the camera calibration parameters, in some cases also the
vanishing points are estimated directly from the scene [42]. Worth
mentioning is, among all, the CHEVP (Canny/Hough estimation of
vanishing points) algorithm, designed by Wang et al. [43] in their work
on line detection. Often, the vanishing points are used as a support for
different tasks, as the definition of a Region of Interest (ROI) [44], [32]
or the adaptive calibration of the main camera [38]. Sometimes instead,
their computation is even exploited within the line fitting stage [45].

12 line detection

Figure 2.2: Example of a fixed ROI highlighted on an image (left) and its
BEV projection (right). Adapted from [41, Figure 1].

As we mentioned above, it is not uncommon to see algorithms
focusing only on a particular region of the scene, named the Region
of Interest (ROI). This allows them to save computational resources,
while also focusing their attention on what they assume to be the most
important portion of the scene. While its boundaries are usually fixed
and predefined [18], some variations are possible. To further reduce
the computational needs of their system, Wu et al. [46] redefine their
ROI according to its content, in order to minimize its dimension. For
the same purpose, Hsiao et al. [47] use the position of the vanishing
points and estimate where the lines should be found. Finally, Mammeri
et al. [48] even exploit a segmentation algorithm (Maximally Stable
Extremal Regions, or MSER) to shrink the ROI for the subsequent
stages.

At last, we notice from the literature that, at times, the vehicle is
assumed to feature also other components. Particularly common is
in this case the presence of an object detection system, essential to
identify vehicles and pedestrians on the road and thus avoid collisions.
When this information is processed externally and is thus provided

2.1 processing pipeline for traditional systems 13

with no costs, it can be certainly exploited also by a line detection
system. In this fashion, Huang et al. [22] evaluate in their algorithm the
presence of occluding objects around the vehicle, in order to discard
the portions of their images where these are found. Although they rely
on a LIDAR for the measurements, their technique can be traced back
to the well-known GOLD system of Bertozzi and Broggi [49]. In this
pioneering work however, the authors not only consider the obstacle
detection as an integral part of the line detection system, but also they
completely rely on vision for both tasks.

2.1.2 feature extraction

Once the image has been prepared, it is important to extract some of
the features characterizing the road markings [18]. To this end, this
stage is ultimately required to determine which parts or pixels of an
image are likely to belong to a road marking. Although numerous
algorithms and techniques have been developed throughout the years,
they can be classified in four groups, each based respectively on
gradient, color, segmentation and machine learning.

Gradient-based methods are designed noticing that the color dif-
ference between each road marking and the pavement gives rise to a
strong edge. They thus propose to locate the road markings by looking
for relevant edges in the image, which usually requires evaluating
their gradients. Most of these methods can be applied, in principle, to
both the front-view image recorded or its projection into BEV. Among
the simplest methods, traditional edge detectors such as the Sobel
operator and the Canny algorithm [29, Chapter 5] have been widely
adopted [44], [45], especially for their fast execution, although they
require a fine-grain tuning of their parameters and are very sensitive
to noise and illumination changes. To attenuate this problem, steerable
filters are at times used [50], while not uncommonly custom techniques
are designed to better improve their response. Jiang et al. [24] combine
a customized distance transform (DT) with a simple edge detector to
eliminate false edge points. To speed up the computation instead, Li

14 line detection

Figure 2.3: Gradient-based features highlighting strong vertical edges in BEV.
Adapted from [24, Figure 2].

and Nashashibi [51] proposes a modified version of the Canny detector
with some observation on the expected shape of the line markings.

Instead of edges, some systems rely on color features to highlight
the position of each marking. They thus search the image for white or
yellow regions strongly standing out against the pavement. To this end,
they often require the image to be projected in different color spaces.
As a clear added benefit, these techniques can further classify lines
according to their color, enabling subsequent modules to analyze their
semantic meaning according to the traffic laws. In this context, after
studying the properties of line markings in the YCbCr, Son et al. [32]
propose a threshold-based mechanism to separately isolate white and
yellow road markings, arguing that their technique is robust against
changes in the illumination conditions.

Less common, segmentation algorithms can be used to isolate the
road from the rest of the scene, or even to isolate the lane markings
from the pavement., as proposed by González and Özgüner [52] in
their system based on histogram-based segmentation.

Last but not least, the large improvements registered in recent
times by machine learning algorithms gave rise to a new class of
learning-based techniques for the detection of lines. The early work
of Kim [53] in this sense explored the usage feed-forward neural net-
works, support-vector machines (SVM) and naive Bayes classifiers to
determine from an image patch if a pixel belongs to a line marking.
In his experiments moreover, all these methods outperformed a tra-
ditional baseline. Nevertheless, these learning techniques remained
mostly unnoticed in the subsequent years, until the real revolution
arrived with convolutional neural networks (CNN). Already in 2014,

2.1 processing pipeline for traditional systems 15

Kim and Lee [26] introduced a CNN as a fall-back mechanism for their
traditional gradient-based algorithm. Shortly after, Huval et al [54]
present their positive analysis on the application of CNNs to the over-
all line detection task, based on the attempts of several research groups
during the previous years. Following the same path, He et al. [55]
develop their Dual-View CNN (DVCNN), a network relying on both
front-view and BEV, and capable of detecting line markings and other
road signs painted on the pavement. More standard is instead the
architecture proposed by Chen et at. [56], where a computationally
optimized encoder-decoder CNN is in charge of detecting road lines
and highlighting its position on an image mask.

To conclude this section, we must mention that most of the presented
methods can also be combined into an hybrid form, as demonstrated
by the work of Southall and Taylor [57].

2.1.3 model fitting

Knowing where all line markings are, traditional systems usually
aim at describing the lines with a mathematical representation. This
benefits them as it is usually more compact to store and easier to
manipulate for the estimation of derived quantities, such as the relative
orientation and the curvature of each line.

As usually more than one road line is present in the scene, a common
issue when coming to this stage is the association of each feature
points to its respective line. This effect is often worsen by the fact
that several feature detectors do not merge together each segment
of a dashed line, consequently splitting the line in several pieces.
Although no affirmed solution can be found in the literature, several
works rely on probabilistic methods. RANSAC, in particular, is used
by Kim [53] to robustly select the most appropriate control points
for its fitting procedure. Its variation of the algorithm is combined
with a segment-grouping mechanism to fit left and right lines at once
and evaluate their adequacy. Borkar et al. [58] instead combine for
the same purpose RANSAC with a low-resolution Hough transform.
More complex algorithms have also been designed. In their work,

16 line detection

Hur et al. [59] introduce the concept of supermarkings and propose
an algorithm to link them with remarkable results. They combine a
low-level association method with an energy minimization algorithm
based on conditional random field (CRF) graphs, finally demonstrating
how their system is capable to recognize and correctly group even
intersecting dashed lines. Reusing the concept of supermarkings, Chen
et al. [56] design a similar grouping algorithm to postprocess the
output of their CNN. At first, they aggregate nearby feature points
with a clustering algorithm, and then they rely on the connected
component labeling (CCL) technique to link them together when
corresponding to the same line. Furthermore, following the rising
trend highlighted in Section 2.1.2, recent works rely more consistently
on learning methods also for these aspects. In this context, Neven
et al. [40] design their deep learning approach, LaneNet, to not only
recognize each line markings, but also to separate them into each
different line. To do this, they introduce a custom CNN decoder,
developed to generate specific features for each image point. The
values they assume are then trained so that, when processed by a
clustering algorithm, they lead each line into a different cluster.

Once the feature points are ready, a fitting algorithm can finally find
a compact representation of the underlying line. Before discussing the
algorithms however, a model has to be chosen. For road lines, a large
variety of models is available, and according to the literature, we can
distinguish between parametric and non-parametric ones.

Even before analyzing the most common choices however, another
clarification has to be made. While some authors fit their models
directly within the image space [44], this is seldom useful, as such
representation is meaningless in the world space. On the contrary,
most works assume that the image has already been projected into
BEV, either before or after extracting the features. For this reason, we
will mostly focus on the latter case, although most considerations are
be valid also for the former.

To begin with, parametric models are characterized, as expected, by
a finite number of parameters, which entirely determine their shape
and position within the plane. They thus serve as a very compact

2.1 processing pipeline for traditional systems 17

representation of a curve, which allows them to be stored very effi-
ciently. However, a compact representation translates also in a reduced
expressive power for the model, able to represent real curves only
under certain constraints. What is then important to evaluate are the
limitations imposed by such constraints.

The simplest class of parametric model can be found in polynomial
curves. In particular, straight lines are often chosen when interested in
a region of the road particularly close to the vehicle. Under this condi-
tion indeed, any line covers only a limited distance and does not have
enough space to strongly deviate from a linear approximation [25]. At
times, straight lines are also adopted for systems confined to highway
scenarios [60]. This significantly simplifies the fitting problem and
allows the usage of robust fitting methods, such as Hough transform,
maintaining low computational costs [60].

Higher order polynomials are adopted instead for curved roads. In
particular, second [61] and third [62] degree models are usually se-
lected, the latter being more versatile, while the former less expressive
and thus more robust to overfitting.

Thanks to their high flexibility, splines are also widely adopted. A
spline is non other than a constrained piecewise polynomial, and it
possesses a potentially large expressive power thanks to its capability
to adapt parameters (and order) along its domain. This comes at the
price of less robustness, issue to consider when tuning the number
of break points and smoothness conditions. In this context, Huang
et al. [22], and Kim [53] adopt cubic splines as their models. The
former explain moreover how their choice allows them to follow, at
times, even lines with the less common shapes. Wang et al. [63] instead
exploits the versatility of B-splines to design an active contour model.
Catmull-Rom splines are instead introduced by Wang et al. [43] and
reconsidered later, with the work of Zhao et al. [36], for their smooth
results.

Studying the shape of most highways, Gehrig et al. [64] discuss
the possibility to introduce clothoids as a model choice. They argue
indeed that large roads are designed enforcing slow changing curva-
tures, distinctive trait of clothoid functions. With this in mind, they

18 line detection

then propose a mathematical system to relate a clothoid line in nat-
ural parametrization to its projection on the image. Their derivation
assumes the knowledge of the lane width and the full calibration of
the camera. Expanding this model, McCall and Trivedi [65] integrate it
with a tracking technique and adapt it for their line detection system
VioLET.

Selected an appropriate parametric model, particular algorithms
are usually considered for fitting it to the retrieved feature points.
Among all, very frequent is the choice of least squares methods and
variations. In this regard, González and Özgüner [52] use first the
ordinary least square algorithm to fit the image with straight lines and
obtain an overall estimate of the road orientation. Then, once all line
markings have been detected, a weighted least square fitting optimizes
the parameter of their polynomial model.

As these implementations are strongly sensitive to outliers, Labayrade
et al. [66] adopt an M-estimator. This is nothing but a variation of the
traditional weighted least squares formulation, where a lower weight
is given to points very far from the model. In this way, outliers are left
with a marginal influence on the estimate [29, Chapter 10].

When only straight lines are expected, the Hough transform [29,
Chapter 10] is widely adopted, as in [67] and [42]. Kuk et al. [68]
moreover develop a faster variation of the algorithm adding a few
customized constraints. In Springrobot, their autonomous vehicle, Li
et al. [69] apply instead the adaptive randomized Hough transform
(ARTH), a probabilistic version of the algorithm they designed.

In the rest of the cases, solutions based on RANSAC [29, Chapter 10]
are very common. To support this claim, Kim [53], Kim and Lee [26],
Borkar et al. [58], and Huang et al. [22] all adopt it at some stage
of their algorithm. Lipski et al. [70] instead employs RANSAC to
determine width and orientation of the road at fixed distances from
vehicle, estimates that are then used to model the shape of the road.

At last, it is important to mention also non-parametric frameworks.
In this case, the representation of the line does not depend on only
a finite set of parameters, but is instead largely less constrained and
is depends only on the measured data. Given the openness of the

2.1 processing pipeline for traditional systems 19

situation, no general representation or fitting algorithms is shared in
this context. We can mention however the work of Ruyi et al. [24], who
opt for a weak lane model in order to achieve complete adaptability
to each road shape. In their system, the line model is indirectly repre-
sented by the state of a particle filter, updated at each step with the
features just extracted.

Finally, we conclude this section with a warning. The above discus-
sion was intentionally developed focusing only on single-lane systems.
In this category, only the so-called ego-lane (i.e. the line where the
vehicle is found) is modeled. We must point out however that it is
clearly possible to extend this study in order to include several lines.
Nevertheless, they will not be treated here, as they fall outside of the
objectives of this work.

2.1.4 tracking

At the end of the pipeline, it is important to enforce the temporal
consistency of the results obtained. In this fashion, the estimates on
the position and shape of each line remain robust to occasional noise
as well as missed measurements.

When parametric models are used, the most common associated
techniques revolve around the concept of Kalman filtering. In particu-
lar, Wu et al. [71], Lim et al. [44], and Labayrade et al. [66], all rely on
a standard Kalman filter (KF) for the tracking of their line. Moreover,
we register that such basic filter is also adopted for lines expressed in
polar coordinates [58] and it is successfully applied for the tracking
of derived parameters such as line heading and curvature or vehicle
lateral displacement from the centerline [65].

With nonlinear dynamics or more complex scenarios, the extended
Kalman filter (EKF) is instead usually applied, as can be noticed in the
approach of Tian et al. [72]. In the work of Zhao et al. [36] instead, their
spline model is tracked thanks to an EKF. To this end, they consider a
state vector composed of all the control points of their spline.

20 line detection

When the models are non-parametric instead, the most associated
tracking method is the particle filter (PF), as used by Kim [53], Zhou
et al. [73], and Ruyi et al. [24].

2.2 end-to-end learning-based systems

As introduced at the beginning of this chapter, learning techniques
experienced a tremendous rise in the last decade. As a direct conse-
quence, what was before not possible in many fields, might be worth
studying now.

This exact same fate applies to a specific branch of line detection
systems: end-to-end deep-learning systems.

Although no system is yet ready for this challenge, we find it useful
to mention some promising results.

To this end, we start from the work of Neven et al. [40]. They
present a system that acquires an image and outputs a polynomial
representation of all the road lines in the scene. For reference, its
architecture is depicted in Figure 2.4. They begin by feeding each new
frame into two separate CNNs. The smaller one, H-Net, is responsible
for estimating the calibration parameters of the camera, in order to
ultimately project the results on the world frame. At the same time,
the second and bigger network, LaneNet, combines two tasks. On
one hand, it detects which image pixels belong to a road marking,
thus producing a prediction mask. On the other hand instead, it
associates to each pixel some specific features, trained to allow for
an easy separation, via clustering, of each different line on the road.
In this way, each line is ultimately represented by a different binary
mask. What they miss however to integrate in their end-to-end system,
and have to cover with additional components, is the fitting of a line
model. In their overall system, they do so by projecting each mask on
the world reference frame and fitting its points with a third degree
polynomial curve.

In like manner, John et al. [74] devise a complex learning system
to simultaneously perform road and line detection. As they combine

2.2 end-to-end learning-based systems 21

Figure 2.4: LaneNet (top) and the overall system in which it is presented
(bottom). Adapted from [40].

different models, their system is not technically end-to-end. However,
they show how the road and line representations could, in principle,
be completely learned. They adopt a CNN to detect the road surface,
and then pass the same extracted features to an extra trees regression
model, trained to predict the location of each road line. With the
same features moreover, they are able to also indicate a semantic
interpretation for each of these line.

In conclusion, as an end-to-end system has yet to be developed, we
must mention that some concerns have already arisen regarding the
feasibility of its actual adoption in the field of autonomous driving.
In fact, the biggest drawback of end-to-end approaches lies in their
limited explainability. As a consequence, if their internal functioning
cannot be easily interpreted, it becomes very hard to guarantee all
safety standards are respected [75].

3
L A N E F O L L O W I N G

The problem of lane following (also known as lane centering or lane
keeping) is a particular instance of the vast field of lateral control.
This consists, as the name suggests, in the control of the overall lateral
behavior of a vehicle, operation that involves modulating its steer-
ing angle but also requires to properly understand its dynamics to
guarantee its full stability and safe operation.

In this context, lane following consists in performing lateral con-
trol with a planned trajectory that maintains the vehicle within the
boundaries of its ego-lane on the road.

With first attempts in the early 1990s, this task has a long his-
tory [76]. At that time of course, rudimentary sensors and restricted
computational capabilities constrained their algorithms and limited
their effectiveness. As years passed however, new hardware was devel-
oped and new algorithms proposed until, with time, the approaches
adopted were consolidated. Thereafter, systems were expected to first
detect the lines on the pavement, then plan a compatible trajectory,
and finally act on the vehicle accordingly [77].

23

24 lane following

As our work focuses on these type of systems, in this chapter we
present in details their operation and analyze their strengths.

In contrast with these approach however, recent new achievements
led to a large increase of attention towards end-to-end solutions. In fact,
while their inception is not new and dates back to the late 1980s [10],
modern hardware and software technologies finally brought them to
a competitive level. For this reason, although they remain out of the
focus of our work and are still not mature enough, we briefly highlight
their potential and discuss their drawbacks at end of this chapter.

3.1 traditional lane following

While the first road-following systems for automotive vehicles began
to be researched in the late 1980s and exploited road boundaries as
a guide [78], [79], [80], the research focus widened at the beginning
of the next decade to also include lines. One of the first rudimentary
lane following systems is described by Manigel and Leonhard [81]. In
the meantime, vehicle steering control was studied on a theoretical
level [82], [83].

Soon, the first complete work arrived, when in 1996 Pomerleau and
Jochem [84] successfully developed their Rapidly Adapting Lateral
Position Handler, RALPH. Through a series of detailed manipulations
and engineering considerations, they were able to process the images
acquired by a camera and produce the correct steering commands
for their vehicle. Innovative was also their testing method, which is
probably what gained them popularity. With their Navlab 5 test bed
vehicle, they completed a U.S. coast-to-coast highway journey from
Washington, D.C. to San Diego, in which Ralph had control of the
vehicle for 98.1 percent of the distance traveled (i.e. 2, 850 miles).

In the subsequent years, several new works were proposed to modify
and improve the lateral control systems for this task [85].

In this way however, only half of the problem was always considered,
and this lead to a progressive decoupling of the control models from
the respective perception task. Line detection systems began to be

3.1 traditional lane following 25

intensively studied, as reported in Chapter 3, but at the time they
were only considered as mere self-standing tasks, used at the most for
delivering lane departure warnings. Waiting for them to be perfected,
new control systems were being tested using computer simulations [86]
or in real but implausible scenarios [87].

As a consequence, when complete systems were again proposed a
decade later, their architecture was naturally constituted of two sepa-
rate components: first, a line detector refined to retrieve the position
of the ego-lane and its centerline, and then, a control system able
to maintain the required trajectory. This is the case of the vehicles
presented by Liu et al. [61] and Hammarstrand et al. [88]. With the
latter moreover, testing on real-world scenarios was finally introduced.

In these circumstances however, perception and control cannot ben-
efit from their mutual cooperation and their development is instead
constrained withintheir respective boundaries. We notice indeed that
the lane detection is performed without knowledge of what measure-
ments are important for the control and that this, in turn, does not
provide additional information to the vision system.The result is thus
a potential loss of performance on the overall lane following task and
is an important aspect to consider for any further development.

Respecting the current state of the art however, in the next sections
we will separately explore both components and their structure, treat-
ing first the perception task and then the planners and control methods
employed. In between, a discussion on the lane models commonly
adopted acts as a link between the two topics.

We conclude this section with a glance to some known commercial
systems.

3.1.1 the perception problem

To sense the environment and perceive the road lines, different sensors
can be used. Analogously to what happens for line detection systems
(see Chapter 2)), cameras are the most popular, for their ability to
detect the same features humans seek, together with their ease of
usage.

26 lane following

Figure 3.1: The nonlinear transformation applied in Ralph to determine the
best steering action to perform. Adapted from [84, Figure 3].

Due mostly to the bad quality of their cameras, early methods
relied predominantly on low level features of the recorded images
and did not spend effort in modeling the observed lines. Instead, they
exploited colors and geometric considerations in order to find the most
appropriate steering command to execute.

In this regard, Pomerleau and Jochem [84] in their system Ralph
(Rapidly adapting lateral position handler) begin by devising a non-
linear transformation to produce the same effects on the image of
applying a particular steering command for a fraction of time (Fig-
ure 3.1). They then observes that, if the command applied is the
optimal one, this operation should completely straighten the lines.
To find the optimal command then, they just need to try for several
possible steering actions, and select the one that better linearizes the
detected lines.

With this clever technique, they could spare themselves the inconve-
nience of modeling each road configuration and estimating a trajectory
from it. Besides, as they report about their coast-to-coast experience,
the lack of strict dependence on the lines themselves allowed Ralph
to continue along its path even when it encountered worn or missing
markings. At those times indeed, they found it would still manage to
rely on road boundaries and other similar features. In rainy weather

3.1 traditional lane following 27

for example, only guidance for its operation were the tracks left on
the wet pavement by the tires of preceding vehicles. Nevertheless, this
extreme simplification has also its disadvantages. They don’t expand
on it, but scenarios such as line splits or wore out pavement could pro-
duce numerous false positives and lead to destructive consequences if
no modeling of the actual road markings is performed. Moreover, the
task becomes a lot harder when we leave the highways and approach
urban scenarios.

These drawbacks, together with the advancements in sensing tech-
nologies, exposing more detectable features, led in the subsequent
years to a departure from these techniques towards more stable algo-
rithms based on the mathematical modeling of road markings [61].While
in the meantime the studies on control models kept advancing, these
techniques rapidly converged into the vast world of line detection
methods (see Chapter 2), which is where we find them today.

Only in later times, additional sensors have been experimented to
support single cameras. This is the case of radar, introduced in the work
of Hammarstrand et al. [88] to measure the heading of other vehicles
and sense stationary objects, such as guardrails, in order to obtain clues
on the geometry of the road. With this consideration, they are able to
correctly estimate the shape of several highway roads, including tracts
with a strong curvature. Thanks to these measurements moreover,
when they find themselves on a road bend, they can determine with
better precision whether a vehicle perceived in front of them is actually
on their trajectory or if, instead, it is just traveling on a parallel lane.

3.1.2 line models

Assuming the lines are correctly detected, attention should be devoted
to the representation used to describe them and ultimately commu-
nicate them to the control system. In this section, we analyze the
implications of each different representation. Before doing so however,
we introduce the topic with a theoretical review of the mathematical
properties of plane curves.

28 lane following

3.1.2.1 Background on plane curves

Considering the Euclidean space R2, and given an interval I ∈ R, a
plane curve γ can be represented as a continuous vector function

γ : r : I→ R2 (3.1)

which corresponds to

γ : (x, y) = (fx(t), fy(t)) , t ∈ I (3.2)

This generic formulation is known as parametric representation, as it
relies on the parameter t. If we consider this to be a description of
time, Equation 3.1 represents the trajectory of a particle moving along
the curve.

The support of the curve (Γ) is then defined as the image of r, i.e.
the set of points (x, y) ∈ R crossed by the curve.

It is obvious from its definitions that infinite functions r share the
same support Γ . We say that each of those functions is a different
parametrization of the same curve and that a map ϕ : I→ Ĩ such that

r̃(ϕ(t)) = r(t) ∀t ∈ I (3.3)

realizes a re-parametrization of γ in γ̃.
For our purposes, only the support Γ of a curve is important, regard-

less of its specific parametrization. For this reason, several alternative
representation can be exploited.

At first, we can consider the so-called implicit representation,

F(x, y) = 0 (3.4)

However, this type of formulas are very hard to manipulate, as x and y
are potentially non-separable. For this reasons, the explicit representation
is instead often used:

y = f(x) (3.5)

A model in this form is very easy to employ thanks to the immedi-
ate correspondence between the x and y variables. Moreover, their
separation simplifies the optimization process for interpolation and

3.1 traditional lane following 29

fitting tasks. Nevertheless, not any line can be represented in this way.
Indeed, the model is itself a function, and as such no two y’s can be
mapped to the same x. This implies that the line cannot wrap on itself
and must instead always move forward in the x-direction.

Conversely, Going back to the parametric framework, a particu-
lar parametrization, said natural parametrization (or also arc-length
parametrization), describes exactly the support of a curve with no
dependence from the arbitrariness of t. To develop its derivation, we
need to first define the length (or arc-length) of a curve `, which is

` =

∫
I
||r ′(τ)||dτ (3.6)

where r ′ represents the first derivative of the trajectory r. If we then
define also the cumulative length of a curve

s(t) =

∫ t
t0

||r ′(τ)||dτ , t0 = inf(I) (3.7)

and this integral exists, we can then use s(t) as a map to re-parametrize
our original curve, obtaining

γs : rs : R→ R2

rs(s) = r(s(t)) , t ∈ I
(3.8)

The cumulative arc-length s is also known as the natural parameter.
All these representations are strictly dependent on the position

and orientation of the coordinate frame used to define them. It is
desirable at times to model the curve in such a way to be independent
of any coordinate transformation. Since s is completely unrelated to
the reference frame and is only dependent on a property of the curve
itself, it is possible to exploit it to introduce yet another couple of
useful representations. The Whewell representation (Figure 3.2) indeed
relates the arc-length s of a curve to its tangential angle ϑ:

ϑ = f(s) (3.9)

while the Cesàro representation relates the arc-length s to its curvature
κ:

κ = f(s) (3.10)

30 lane following

Figure 3.2: Reference frame for the Whewell representation. Adapted
from [89].

Not mentioned before, the curvature can be shown to be

κ(s) = ||r ′′(s)|| =
dϑ

ds
(3.11)

Because of their dependence only on properties of the curve, these
representations are said to be given as intrinsic equations. The correspon-
dence of these latter frameworks with explicit x− y representation can
be achieved integrating according to the well-known Fresnel integrals:

x =

∫
cos(ϑ)ds

y =

∫
sin(ϑ)ds

(3.12)

3.1.2.2 Representations for road line modeling

Looking first at the representations proposed in works on perception,
explicit models cover almost the totality of the cases. This is due to their
strong dependence on line detection systems (see Section 3.1.1), which
are almost completely represented in this fashion (see Section 2.1.3).
As already reported, common models here are low-order polynomials

y = Pn(x) = anx
n + · · ·+ a1x+ a0, n ∈ {1, 2, 3} (3.13)

3.1 traditional lane following 31

and cubic splines

y = si(x) with xi 6 x < xi+1

s.t.

si(xi+1) = si+1(xi+1)

s ′i(xi+1) = s
′
i+1(xi+1)

(∗)

with

s0, . . . , sk cubic polynomials,

x0, . . . , xk+1 knots of the spline

(3.14)

(∗): additional smoothness constraints

For what concerns the control task instead, explicit models are
seldom adopted. As Hammarstrand et al. [88] argue indeed, these
models are not appropriates for sensor fusion and road modeling. On
the contrary, they point out how parametric models and especially
intrinsic Whewell representations are more suitable for this task. While
most other works do not focus directly on line detection, they generally
assume that either the trajectory to be followed is represented with
Whewell or Cesàro equations [90], [88], or they are provided with
heading, curvature and other parameters easily retrievable from such
representations [91].

To this regard, common intrinsic models are usually constructed on
polynomials, as they are easy to manipulate and at the same time have
often enough expressive power. In fact, in a Whewell frame, low order
polynomials respectively represent the following curves:
order 0: ϑ(s) = ϑ0 straight line (orientation

ϑ0)

order 1: ϑ(s) = 1
R · s+ ϑ0 circle (radius R)

32 lane following

order 2: ϑ(s) = 1
2
dκ
ds · s

2 + 1
R0
· s+ ϑ0 clothoid or Euler spiral

Even when explicit x− y models are adopted in control, as in the
work of Liu et al. [61], no particular advantage is presented, and
instead the computation of curvature, lateral displacement and road
slope require more effort.

At the same time, the major drawback encountered when working
with intrinsic parametrizations is evident when they need to be re-
projected on a Cartesian space, for example to get integrated with
other information. In this case, it is necessary to integrate the curve
over its whole length, operation performed numerically and thus fairly
expensive. Moreover, it is not possible to retrieve the position of a line
at a given x or y coordinate without solving a nonlinear equation, as
no closed form solution exist. This applies also when trying to intersect
it with other geometric elements in the Cartesian space.

To conclude then, we have seen that explicit representations register
more preferences from most perception systems, while intrinsic models
are more employed in control. This fact constitutes already a problem
in itself, as it undermines the coupling between the two components
of the system. Besides, both representations present their advantages
and disadvantages, dependent on the computations to be performed
and the scenarios observed. Therefore, while this discrepancy is not
beneficial for the overall system, it is not clear which option should be
preferred, and probably no unique solution exists. Nonetheless, during
the development of both components, more cooperation should be
achieved, analyzing and exploiting the common needs in each specific
occasion.

3.1.3 planners and control systems

Perceived the environment and bearing in mind the considerations
made on lines representations, what is left for the system is to reason
on the information acquired, decide its following action and perform it.
These tasks are usually assigned to a macro-component called planner
(although other common names are decision system or control system).

3.1 traditional lane following 33

Figure 3.3: General architecture of an autonomous vehicle reported in [92].
Adapted from [92].

Its purposes are various. On a global scale, it can select from a map
the best path to reach a destination and update it in time as new infor-
mation is received. On a local scale, it is responsible for determining
the best trajectory on the road to remain inside the appropriate lane,
respect the traffic laws and avoid collisions on the way, be they with
other vehicles or with unexpected obstacles.

At times, its responsibilities are split in two according to the time
frame within which they are operated. In this fashion, we can alterna-
tively consider only the higher level component as the proper planner
and refer to the local one as the controller [92]. This latter architecture
is depicted in Figure 3.3.

In general, Behere and Törngren [93] accurately present this topic
and propose a detailed description of their functional architecture.
As also depicted in Figure 3.4, they identify three macro-components,
which they call perception, decision & control, and vehicle platform
manipulation. Notably, they highlight in their work the changes of
representation required form one stage to the next, prescribing all com-
munications to be referred to the world coordinate frame at decision
time, and referred then to the ego-vehicle for its actuation. It is inter-
esting to notice moreover that they decouple the physical details of the
actuation system from the decision stage with a dedicated abstraction
layer.

34 lane following

Figure 3.4: The functional architecture described by Behere and Törngren [93].
In particular, logic organization of their functional components (left) and final
architecture (right). Adapted from [93].

Entering into the details of lane following, the responsibilities of
the planner are more limited and have been studied in several works.
Although some of these methods are now outdated, Chaib et al. [94]
present a study on the performances of H∞ control, self-tuning regu-
lators, PIDs and fuzzy systems. From their experiments, they obtain
comparable results, with a slight predominance of self-tuning con-
trollers over the others. Regarding the mentioned fuzzy systems, they
can be found in several solutions for lateral control, as the work of
Pérez et al. [95], and Wang et al. [91]. In a similar context, Sotelo [96]
presents his design of non-linear kinematics and lateral control law for
their vision-based system.

Li et al. [97], on the contrary, develop a large hierarchical motion
planning system and validate it to perform as lane follower, avoid-
ing obstacles at need. In their perception algorithm, solely based on
LIDARs, they retrieve each lateral line and, after some processing,
determine the optimal path to follow. During their analysis, each
candidate path is sampled and stored as a set of positions x and y,
headings ϑ and local curvatures κ. Finally, Arrigoni et al. [92] propose
a motion planner based on model predictive control. They devote par-
ticular attention to the optimization problem, adopting an algorithm
based on accelerated particle swarm optimization (APSO). In their
work, the road shape is described through third order polynomials in
a curvilinear reference frame s− y (Figure 3.5), where y is the lateral
offset of the vehicle from the lane center.

3.2 end-to-end lane following 35

Figure 3.5: Curvilinear reference frame based on s and y used in [92].
Adapted from [92].

3.2 end-to-end lane following

In contrast with what we have seen for traditional systems, end-to-end
lane following modules do not present a division in sub-components.
Instead, a unique module performs the whole task. In particular, a
complex neural network usually receives the information from some
sensors, almost always including a camera, and is then able to deter-
mine the correct steering action to perform.

This technique was first adopted in the pioneering work of Pomer-
leau [10] on road following. He feeds the measurements of a monocular
vision system and a LIDAR to a traditional neural network, training it
to determine the best direction to take to remain on the road. Being an
end-to-end system, the output of his network is a vector of 45 possible
direction to be taken and thus directly indicates the steering command
to execute.

Coming to modern days, the learning elements now adopted are
convolutional neural networks and their architecture is usually more
complex. In this regard, Chen and Huang [98] present a CNN-based
system able to determine the steering angle needed to remain on
the road. They do so using the comma.ai driving dataset [99], and

36 lane following

evaluating their software on prerecorded videos they achieve a frame-
wise mean error of 3.26 degrees. However, as they do not test their
system inside the loop–letting it perform the chosen steering action–it
is hard to evaluate the actual performance of their method.

With a more complete system, Bojarski et al. [100] present their
advancements on DAVE-2, a deep end-to-end module for lateral con-
trol developed by NVIDIA and inspired by the DARPA Autonomous
Vehicle (DAVE, a terminated project developed by the U.S. Depart-
ment of Defense, [101]). To train their model they record the image
seen by a human driver and his steering commands. The scene is also
captured using two additional, front-facing cameras mounted on each
side of the windshield in order to perform data augmentation. After
satisfactory results in simulation, they test their overall system on the
road, driving autonomously 98% of the time in relatively brief drives.
Although their system is not perfected, they argue that this approach,
compared to traditional techniques, will eventually lead to better per-
formances, as the learning machine can automatically assimilate an
internal representation of the features most needed for the task.

First to combine lateral and longitudinal control is the work of
Yu et al. [102]. To begin, they collect their training data using the
Baidu street view platform and share them as the Baidu Driving
Dataset (BDD).They then propose for the longitudinal control of their
system a stacked convolutional LSTM able to directly generate the
acceleration commands to be executed. Their lateral control is instead
performed by large CNN and operates based on the estimated curva-
ture instead of the steering angle. With proper training, this component
is reported to converge to an acceptable mean squared error (MSE) af-
ter relatively few epochs, but it is hard to evaluate its effectiveness as it
is not clear how inaccurate estimations of the curvature are propagated
into the actual heading of the vehicle.

In conclusion, we deem important to point out that, as for end-
to-end line detection systems (Section 2.2), the same safety concerns
have been raised, with the aggravating difference that lane following
systems are not only required to perceive the environment correctly,
but also to act on it, with consequences potentially more dangerous.

3.2 end-to-end lane following 37

Figure 3.6: Training (top) and testing (bottom) configuration of the end-to-
end system used in DAVE-2. Adapted from [100].

4
P R O P O S E D S Y S T E M

In the presented analysis of the state of the art on the overall lane
following problem, we outlined the difficulties of current systems
and highlighted a lack of overall agreement in their architecture. In
particular, we registered an affirmed misalignment between works in
perception and control, which not only leads to inefficiencies, but also
constitutes a possible limit to the potential of both components. As
we pointed out, for instances, the representations commonly adopted
in perception are often derived from works on line detection and are
not consistent with the needs of the control counterpart. Moreover,
this marked separation complicates the real-world testing of the com-
plete algorithms, operation already hard to perform for articulated
automotive systems.

This condition is somehow more relaxed for end-to-end solutions,
not requiring explicit representations of the detected lines, but the
safety concerns raised in their regards and the difficulties in certifying
such techniques discourages us to pursue that path.

39

40 proposed system

Given these observations, we propose the design and development of
a novel perception system for the task of line following inspired by the
requirements of its control counterpart. To this end, the system should
be able not only to detect the ego-lane markings,but also to estimate
shape and position of its centerline, and determine heading and lateral
displacement of the vehicle with respect to it. These parameters are
of fundamental importance from the point of view of control systems,
as they allow for a correction of the trajectory in order to maintain a
safely centered position on the ego-lane. The result of our work is then
a system maintaining an internal representation analogous to the one
used by the controller, promoting, and not impeding, the exchange of
information between the two modules.

Given also the lack of testing in real-world scenarios for most lane
following systems, we additionally require our work to be evaluated
on real-world data, avoiding potentially misleading simulations.

With this in mind then, in the rest of this chapter we describe our
approach, providing first an overall description of the architecture we
propose, and entering, then, into the details of each component.

4.1 system architecture

The main objective of our system is to provide the lateral control
unit with the necessary information to safely act on the vehicle and
maintain it within its ego-lane.

As already mentioned, this requires the knowledge of a few key
aspects. At first, it is necessary to retrieve the shape of the road and
its relative position respect to the vehicle, with specific attention to
the line markings delimiting its ego-lane.With this information then,
what is missing for the control is a precise estimate of the relative
orientation and displacement of the vehicle with respect to its optimal
trajectory, usually placed at the ego-lane center.

For this reason, the overall architecture of our system begins with
a line detection stage. This is intended to identify the line markings
in successive frames and additionally determine their position within

4.2 line detection 41

a vehicle-centered world reference frame. This is fundamental for the
successive stage, dealing mostly with the estimation of the parameters
required by the controller. In particular, given a representation of
the two lateral lines, this second stage is appointed to estimate the
position and shape of the centerline and track it over time. With this
measurement, it can potentially determine how much the vehicle
is distant and unaligned from the optimal trajectory, passing this
information to the control section to correct its course. At this stage
however, the noise associated with all the preceding estimates will
have accumulated, and thus a filtering technique will be necessary to
correct the final estimation and provide the controller with accurate
information.

In pursue of havingour system work requiring only minimal infor-
mation, we design it to rely just on monocular vision, being the most
common choice in line detection as well as lane following systems.
Cameras, indeed, have the ability to distinguish colors and other im-
portant features exploited by humans when driving. However, they
introduce some difficulties when dealing with distance measurements,
issues we need to cope with. Finally, although this could potentially
be enough, we also assume odometry measurements are also available
from the vehicle and can be used to filter our estimates in time.

4.2 line detection

Assuming the vehicle is on the road, we begin our pipeline detect-
ing the lines delimiting its ego-lane. To this end, we start from the
traditional framework for line detection presented in Chapter 2 and
customize it for two, concurrent reasons.

In order to match the best performing algorithms in the literature,
we first require our system to employ up-to-date techniques. This is
especially true for the low level operations, such as the extraction of
features, often dependent on the physical capabilities of the machines
adopted. For this reason, our features are extracted directly from raw
images, and instead of maintaining an unprofitable preprocessing

42 proposed system

stage, we move the cleaning and preparation of the extracted data
afterwards, to what we define a postprocessing stage. Of course, the
suppression of the preprocessing component is only made possible by
the absence of substantial noise in the acquired images, as we assume
the utilized cameras are in line with the current standards and feature
up-to-date noise-correction apparatuses.

On the other hand, as the ultimate purpose of our line detection
system is not to represent the lateral lines but to provide the necessary
information for the subsequent centerline estimation stage, the internal
representation used need not be the same of common line detection
works. In particular, the models usually employed are easy to fit
and clear to interpret by humans as output of this stage, but do not
explicitly carry the right information on the position of the centerline
itself. For this reason, in spite of being externally compliant with the
usual system architecture, our model fitting stage exposes essential
differences.

4.2.1 data acquisition and conventions

The first, yet obvious step within the system, the necessary data need
to be acquired. To this end, we expect the acquisition process to be
performed with a vehicle, equipped with the necessary sensors. In
particular, we expect an RGB camera to be mounted on top of it,
facing forward. Additional sensor, such as Lidar, radar, global posi-
tion systems (GPS) and inertial navigation systems (INS) could be
installed, although will not be used for our work. Encoders and analo-
gous instrumentation could be used for the generation of odometry
measurements.

For the entire scope of our work, we represent the vehicle following
the coordinate systems indicated by the ISO 8855 [103], with the origin
on the ground below the center of mass of the vehicle, and axis x,y
and z pointing respectively forward, left and up. The camera reference
frame has its origin set in the optical center of the camera and the
same orientation as the vehicle’s frame. Finally, for the image plane,
the origin of the system is set in the upper-left corner, with the u axis

4.2 line detection 43

Figure 4.1: Coordinate systems adopted for vehicle {V}, camera {C} and
image {I} reference frames. Adapted from [104]

pointing right and v pointing down. For clarity, these reference frames
are depicted in Figure 4.1.

4.2.2 feature extraction

In any computer vision system, the main purpose of feature extraction
techniques is to highlight the characteristics of the image most relevant
for the respective task to perform. In line detection, this ultimately
translates into the identification of the image points most likely to
represent a line marking. In the rest of this document, we refer to these
points as feature points.

While older techniques employed image filters and often compli-
cated computer vision algorithms to better select these points, modern
approaches usually resort to machine learning methods. This is thanks
to their capability to automatically learn what characteristics to look
for in the image and, if well-trained, to do so regardless of illumination
changes, adverse weather and clutter in the image.

44 proposed system

Figure 4.2: Raw predictions of our CNN on a road image. For clarity, the
predictions are reported in isolation (left) and overlaying on the image itself
(right). Brighter pixels are associated to higher predicted values, thus higher
confidence of the network in the presence of a line marking.

For this reason, we exploit a convolutional neural network (CNN)
specifically trained for this task and already available to us1. Such
network is based on U-Net [105], an architecture originally developed
for biomedical applications and later become popular for any segmen-
tation task. Taking in input a front-facing image of the road recorded
from any vehicle, its output is a single-channel integer image repre-
senting the expected position of each road marking on the pavement.
Although not precise in a statistical sense, each pixel on this image can
be interpreted as a weight, from 0 to 255, indicating how much confi-
dent the network is of the presence of a road marking in such position
(Figure 4.2). Usually, this values are binarized through thresholding,
in order to obtain a simple image mask, but we leave this task to our
postprocessing stage for reasons that will then become clear.

The architecture of our network (Figure 4.3) follows the structure
of the original U-Net, with the only difference that the input is down-
scaled to 512x256 to improve the network speed on low-power devices.
With this configuration indeed, the network allows predictions up
to almost 100 Hz on a NVIDIA Jetson Xavier, a known embedded
computing board used in its development and testing.

The network is trained from scratch on the Berkeley DeepDrive
Dataset [106], an extensive dataset for autonomous driving widely
used for line markings detection as well as for the detection of road

1 The network was developed and trained by Simone Mentasti, Department of Elec-
tronics Information and Bioengineering, Politecnico di MIlano.

4.2 line detection 45

object and driveable area and for the task of instance segmentation. It
provides more than 1100 hours of driving featuring different weather
and illumination conditions as well as driving scenario, making it
perfect to achieve the robustness required for autonomous driving
task.

In this regard, we point out that since the network was trained on
raw road images, it intrinsically learned to cope with most artifact, such
as noise and clutter on the image, changes in illumination conditions
and even obstruction. It is for this reason that we can safely avoid a
preprocessing stage in our pipeline.

4.2.3 feature postprocessing

The features extracted at the previous stage are still raw and could not
be used by our model fitting module unless two particular operations
are first performed.

On one hand, these features, which are now just an image of weights,
need to be interpreted and converted into a representation that clearly
indicates which points are to be considered as part of a line marking.
To do so, usually a thresholding technique is adopted, transforming
the image into a binary mask. Implicitly, this operation assumes that
pixels with values higher than the fixed threshold are likely enough
to actually represent a line marking and can thus be taken as feature
points.

At the same time, on the other hand, the scene we are currently
processing is represented only on a front-view image. However this
is very impractical to be used for line detection. What the literature
commonly adopts is instead the bird’s eye view representation (BEV).
The projection of our front-view image and the relative feature points
are depicted in Figure 4.4 and Figure 4.5. This is achieved through a
projective transformation that rectifies the ground plane of the image
exploiting the camera parameters. For this operation we assume then,
of course, that the camera has been calibrated.

Before we develop in details this computation, it is important to
notice that the order of application of these operations is not invariant

46 proposed system

Figure 4.3: Overall architecture of the CNN used in our pipeline for feature
extraction.

4.2 line detection 47

Figure 4.4: A front-view image acquired with our vehicle and the corre-
sponding BEV representation.

Figure 4.5: Projection of the CNN predictions into BEV (right), together with
the original predictions (left) for comparison.

and significantly changes the result. The only way to avoid losing
information in the process is to first project the image weights into
the BEV plane, and to perform the thresholding once there, as shown
in Figure 4.6. Indeed, the computation of the BEV requires an in-
verse warping, operation that entails interpolation. If we were then
to perform the thresholding operation before the image warping, the
overall result would not be binary, as the interpolation would generate
many values in the whole range allowed. As a consequence, we would
need to apply an additional threshold, losing information content and
computational time.

At last, the resulting mask in BEV, which we will define asMbev, pro-
vides already a good representation of the line markings in the scene.
However, we notice two minor issues. On one hand, we could register
several small false detections throughout the image, accentuated in
more challenging scenarios. On the other hand instead, the contour of

48 proposed system

Figure 4.6: Results of thresholding (left) and subsequent morphological
post-processing (right) on the features predicted by the network.

the detected regions appears often undulating and clearly not smooth,
issue that could slightly affect the rest of the algorithm. Therefore, to
improve even more the performances of the subsequent stages, we
perform an additional step and apply a chain of two morphological
closing operations to the Mbev, obtaining M ′

bev (Figure 4.6). This final
mask and the feature points it contains will finally be sent to the next
module along our pipeline.

4.2.3.1 BEV computation

We spend now a moment to properly define the computation of the
BEV image, since it often recurs in our work as in line detection
systems in general, and it is thus worthy of a proper explanation.

We begin with a few, basic definitions. We define a point in the
image and in the world as, respectively,

xc =

u

v

w

 ∈ P2, X =

X

Y

Z

W

 ∈ P3,

with W and w homogeneous coordinates in the respective spaces.
Additionally, we consider the calibration matrix of the camera as

P =

| | | |

PX PY PZ PW
| | | |

 ,

4.2 line detection 49

and we assume this is known since the camera is calibrated. We remind
the reader that, by the definition of camera matrix,

xc = PX (4.1)

The idea now is to design a projective transformation Hbev that maps
every point in the current image plane to a point in a new image plane,
which will become the BEV plane. In this plane, all ground points are
rectified, meaning that the perspective distortion to the shape of every
object on the ground, including the line markings, will be removed.
This can only be obtained under the strong assumption that every
point in the original image belongs to the ground plane πG : Z = 0. Of
course, this does not hold for every pixel, as many external regions
could be inadvertedly included in the scope of the transformation.
For the objects in those regions, the resulting shape will be then even
more distorted. This does not constitute an issue however, as in the
subsequent stages of our pipeline we will only consider the pixels
coming from line markings, and therefore this imprecise pixels will
implicitly be excluded by the processing.

We notice that, for a point on this ground plane πG, the following
holds

xc =

| | | |

PX PY PZ PW
| | | |

X

Y

0

W

=

| | |

PX PY PW
| | |

︸ ︷︷ ︸

PπG

X

Y

W

︸ ︷︷ ︸

XπG

(4.2)

50 proposed system

To simplify the computation, we additionally define two parameters,
controlling respectively the portion of ground plane to be included in
the BEV image, ROIw, and the resolution of the resulting image, Rbev:

ROIw =

ROIwxmin
ROIwxmax
ROIwymin
ROIwymax

 , Rbev =

Rbevw
Rbevh

Given all this, the projective transformation that maps image points xc
into the corresponding BEV points xbev can be obtained as follows.

Pw←cπG
= P−1πG (4.3)

Hcoords =

0 −1 0

−1 0 0

0 0 1

 (4.4)

sx =
Rbevw

ROIwymax − ROIwymin

sy =
Rbevh

ROIwxmax − ROIwxmin

tx = sx ·ROIwymax

ty = sy ·ROIwxmax

(4.5)

Hview =

sx 0 tx

0 sy ty

0 0 1

 (4.6)

Pbev←wπG
= Hcoords Hview (4.7)

Hbev = P
bev←w
πG

Pw←cπG
(4.8)

such that
xbev = Hbev xc (4.9)

4.2 line detection 51

4.2.4 model fitting

With the image mask received from the previous stage, we can now
work on representing the feature points it contains with an appropriate
line model. Here, two problems arise.

First, we soon notice that, in general, we expect to find and model
two lines from a single image, corresponding to the left and right
boundaries of the ego-lane. However, looking at the feature mask, it
contains no information on which point is associated to which line.
This becomes even more complicated when multiple lanes are present
in the scene, as for example on a large highway. It is thus fundamental
to devise a method to preemptively distinguish between different line
markings in the same image.

As a second problem, an appropriate line model has to be selected
to properly model the detected markings. As we analyze this issue
later, we must recall from the introduction to this chapter that, for our
purposes, what is most valuable is the support given to the centerline
estimation, and not to the measurement of the specific position of each
line. Finally, a model fitting procedure has also to be applied. However,
as its choice could potentially depend on the line model adopted, we
discuss both problems contextually.

4.2.4.1 Feature points selection

The image mask obtained from the previous stage contains a large
number of feature points, and at the same time does not provide any
information on how these can be grouped together into different lines.
Moreover, noise and false detections could be also present.

To put the situation in order,the purpose of this component is then to
select a reduced and highly reliable group of points as representative
of each line marking, doing so for each line of interest on the road.
In our case, this translates into the left and right boundaries of the
ego-lane.

This procedure has several requirements. On one hand, the most
important task to perform is the identification of which feature points

52 proposed system

are associated to any single line, separating them accordingly.However,
in more complex scenarios this is not enough. Indeed, some times
it is also necessary to separate some feature points even within the
same line. We can think for example at the case of a split in the road,
where only the inner section of the line has to be considered. On the
contrary, at times it is also necessary to aggregate points that seem to
belong to different lines. This is the case, instead, of dashed road lines,
where each segment needs to be manually connected to the others in
systems where this process is not automatically executed at the feature
extraction step. them.

Even more so, selecting only a limited a number of reliable points
for each line of interest instead of using a large unprocessed group,
has the side advantage to speed up the model fitting and potentially
improve the estimation.

For all these reasons, we proceed with the design of a specific
algorithm. In doing so, a particular yet simple consideration helps us
remarkably in our job. To properly appreciate it, we first need to point
out a few facts. First of them is that, in our overall system, we are not
trying to detect any line in the scene, but we are instead looking only
for road lines, usually lying on the pavement and respecting certain
constraints in terms of shape and position. Moreover, we are observing
the scene from a very specific and known view-point, which is the
front-view of a vehicle. We can alsoassume that the vehicle itself is on
the road and, most of the times, within a lane. All this information can
then certainly be exploited to our advantage.

Indeed, in this context,we soon notice that the line markings belong-
ing to the ego-lane can be easily individuated in the region of the road
closer to the vehicle. From there, we can see them extending further
on the pavement, following the shape of the roadway.

If we could then always detect them in the lower end of the image,
we could then easily retrace them upwards and be sure to be always
following the right marking, independently of its shape. Notice also
that this is intrinsically their function, to visually indicate us how the
road developsfrom our current position. Furthermore, to maintain

4.2 line detection 53

the size of the lines constant during our search, this can better be
performed on the BEV image.

This is exactly the idea behind our algorithm, which is able to search
for a line in the lower end of the image and follow it upwards along
its shape thanks to a mechanism of moving windows. For this reason,
we refer to it as the Window-based line following (WLF) algorithm.

As the algorithm starts, two windows wl and wr are initialized at the
bottom of the BEV, respectively to the left and right of the ego-vehicle.
Proceeding independently, their purpose is to follow the respective
line of feature points on the BEV plane without any constraints on its
expected shape. At each position visited by a window, an analysis of
the enclosed image patch is conducted and the centroid of the largest
connected component found is selected. This point will be saved and
subsequently passed to the next stage for the actual fitting, as the most
representative point of the windowed region. For the analysis of the
connected components we refer to the algorithm proposed by Grana
et al. [107]. In addition, to ensure that the line is properly followed, the
orientation and size of the window are adaptively changed, rotating
it as the line bends and shrinking or enlarging its width to match
the size of the most relevant connected component found. After a
centroid Pi is then selected, the window is translated upwards in the
BEV, with a direction and orientation determined by the position of
the last few points detected. If, at some point, the window is located
on a completely empty patch, its size is temporarily increased and the
operation is repeated for a few times, in order to find the closest fea-
tures and recenter. However, if after a few iterations none are found,the
line is considered lost and the algorithm terminates. Otherwise, the
computation ends as the windows touch the upper edge of the BEV
image. At that time, the sequence of centroids collected along the way
{Pli = (xi, yi)}i is passed to the next component. For clarity, we refer
to these points as line points. These points are limited in number and
their position is very reliable. Nevertheless, a small amount of noise
could be registered as the lines in the image mask present irregular
borders.

To conclude this section, the overall process is depicted in Figure 4.7.

54 proposed system

Figure 4.7: Window-based line following (WLF) algorithm. Given the post-
processed feature points (beige), a window (yellow) is placed where a line is
expected to be found (bottom). In this case, as no feature points is detected,
the window is iteratively enlarged. When a feature is matched, the window
(now green) is shrunk and the line point (red) is selected. Iteratively, the
window is moved in the expected direction of the line and a new line point
is searched and found. The width of the window is adaptively changed in
order to contain all only the relevant feature points. If no feature points are
found in a patch (yellow, top of left line), a recovery process tries again to
enlarge the window and search for possible candidates in a neighborhood. In
this example, no point is found, and thus the searched is stopped.
Notice how the algorithm is capable of recognizing the correct lines regard-
less of the presence of other spurious detections in the scene (on the left).
Notice also how, thanks to the adaptive window width, the selected line
points appear fairly aligned and centered, regardless of the conditions of the
feature mask (right line).

4.2 line detection 55

4.2.4.2 Line fitting: x–y frame

Given the measured sequence of line points {Pli = (xi, yi)}i=0,...,n for
each line l, we can finally find the best model able to represent them.
We carry on this process independently for each interested line and, for
this reason, in the remainder of this section we will refer to a generic
detected line as l. A natural choice in line detection systems is to adopt
a representation within the world reference frame. We point out that
the similarity transformation between BEV and world space is given
by the relation

XπG =
(
Pbev←wπG

)−1
xbev (4.10)

In this frame, the easiest choice is to apply a polynomial model.
However, first and second order polynomials are often not able to
capture the whole structure/shape of the line, while third order are
highly sensitive to noise and tend easily to overfit. Despite this draw-
back could be attenuated with a more robust fitting algorithm, these
models will never have enough expressive power to achieve the higher
precision we need in our work.

In response to this known issue, cubic spline are often employed.
For our experiments, we focus on cubic smoothing splines [108] as the
spline model more versatile and at the same time efficient.

Indeed, they are able to capture each detail of the road geometry and
to attenuate the effect of small random noise among the line points.
However, their representation is too complex to be of any assistance
for our purposes.

4.2.4.3 Line fitting: s–ϑ frame

To be able to manipulate a simple model, and at the same time correctly
describe the road, another class of models can be explored. For this rea-
son, we consider here intrinsic models, and in particular the Whewell
representation. In this study, we will generically consider a single
marking l, and to lighten up the notation we will stop mentioning it
explicitly when this does not lead to any ambiguity.

Considering a generic line marking l, to transform its line points
into the Whewell intrinsic framework, we need to perform several

56 proposed system

steps. For the time being, we fix for convenience the origin of this new
coordinate system on the first line point detected, P0 = (x0, y0). From
here, we can easily measure the euclidean distance ∆si between each
line point Pi and its successor Pi+1. At the same time, we can also
evaluate the orientation ϑi with respect to the x axis of their connecting
segment PiPi+1.

Assuming the line points are sampled close enough, we can then
approximate the cumulative arc-length si of each point Pi as

si =

∫Pi

P0
ds ≈

i−1∑
k=0

∆sk (4.11)

In this fashion, we construct a sequence of points S(s,ϑ) = {P(s,ϑ)
i =

(si, ϑi)}i in the s− ϑ (or Whewell) space.
This sequence, while describing each line point with the same preci-

sion, has now the advantage to be representable as a 1-dimensional
function

ϑ = f(s) (4.12)

independently from its original shape and orientation.
If we model f as a polynomial, we obtain a simple model yet with

sufficient expressive power (see Section 2.1.3), and approach at the
same time the representations used in lateral control.

Despite this potential improvement, however, if we do proceed as
described, we do not obtain good results. It is clear then that a substan-
tial issue is lying underneath. What is happening indeed is that the
points in x− y are affected by a small amount of random noise, which
displaces them from the precise location of the line marking. These
artifacts are completely normal and likely attributable to disturbances
in the acquisition or false positives in the feature extraction. However,
despite being imperceptible in the x− y frame, they severely disrupt
the fitting in s− ϑ. As points oscillate around the line indeed, their
absolute position remains almost unchanged/untouched, but their
relative orientation, ϑ, severely fluctuates.

The only way to solve this issue and still exploit the advantages of
the Whewell space would be if the noise itself was eliminated before-
hand.Fortunately, we have already encountered a model very robust

4.2 line detection 57

to noise: smoothing splines. What we propose then is to employ the
advantageous characteristics of such model and couple them with
the simplicity of the s− ϑ implementation. In particular, we design a
preprocessing step where a smoothing spline removes the mentioned
noise and realigns each point on their best-fitting line. Then, instead
of maintaning this model and its complexity, we just sample the re-
constructed line within the fitting bounds and project the obtained
noise-free points into our s− ϑ frame, where we can now construct the
desired polynomial representation.

Following the considerations in [92], in the final version of our
software the specific model adopted is a third degree polynomial,
which can be represented as

ϑ = f(s) = as3 + bs2 + cs+ d (4.13)

In particular, each coefficient is thought to be modeling a specific aspect
of the curve, making the model very flexible. First, d is responsible
for the initial orientation of the curve, at the origin. Second, c controls
instead the curvature of the line, determining how sharp a bend in the
road is at each distance from the origin. At last, we can think of a and b
as respectively the acceleration and the velocity by which the curvature
changes along the road, and they provide together an extensive range
of variability to model a large variety of configurations.

As the points are sampled from a single, smooth line, the fitting pro-
cedure adopted can be as simple as linear least square. This technique
is indeed known to be incompatible when the data used may contain
outliers. In our situation, this is not possible, and therefore least square
remains a valid and computationally-optimal alternative. The fitting
with this technique can be described as follows.
Given the model

ϑ(s) = wTφ(s) =
(
a b c d

)

s3i

s2i

si

1

 (4.14)

58 proposed system

and given the data

Φ =

— φT1 —

...

— φTn —

 , φi =
(
s3i s2i si 1

)T
(4.15)

ϑ =

ϑ1
...

ϑn

T

(4.16)

then,

ŵLS =
(
ΦTΦ

)−1
ΦTϑ (4.17)

As a last remark, we point out however that this model is valid only
within its fitting interval and it does not allow extrapolations if not for
very restricted sections. Indeed, although polynomial intrinsic models
are widely used to model short tracts of the road, they cannot be used
to represent long sections. The limitation of these representations is
in fact that outside of a certain interval, they grow to infinity in the
theta-dimension, and this characteristic reflects back on the Cartesian
frame with the generation of spirals. One aspect to monitor then when
using these models is the formation of undesired spirals when working
in regions where no points were collected.

4.2.5 temporal consistency

Up to now, our system is capable of processing an acquired image and
detect the line markings within it on a frame-by-frame basis. However,
as it is used to process image sequences, most of the information
that could be saved from one frame and exploited in the next is
currently lost. For this reason, in general, line detection systems feature
a mechanism to enforce the temporal consistency of their detections.
This also gives more robustness to the overall system in case the
acquisition process fails for some, isolated frames or too much noise
in the images prevents a correct detection.

4.2 line detection 59

In our system, the temporal consistency is enforced in several ways.
First, the information from our past estimates is used to facilitate the
feature points selection and improve the results of the WLF algorithm.
In particular, if a line was detected in the last frame, the search for
a new one is started exactly where the previous was found, saving
computational time and avoiding the uncertainty of blindly searching
the whole region. Moreover, when during the search a line is lost,
because no feature points are found within a window even after
enlarging it, instead of quitting the search and keep only the points
so far collected, we can start a recovery procedure. This is based on
the idea that, if a line was there previously detected, it should now
still be found in the same region. The loss of track could then have
been caused, for example, by a temporary object partly obstructing the
view of the line, an imperfection in the acquired image that impedes
its detection (e.g. lens flare) or the simple discoloration of the line
marking due to wear and weather conditions. In all such cases, what
the algorithm could do is to remember the shape of the previous line
and move along it until new feature points are discovered close to
such path. By doing so the algorithm assumes that when this happens
the temporary disturbance has been surpassed and the new features
enable it to reconnect with the lost line.

The other, more structured way to exploit the temporal information,
is to use it on the line models themselves, introducing a tracking
framework to filter their measurements. These algorithms can reduce,
on one hand, the impact of noise and false detections, while on the
other are also capable of stabilizing the lines and predicting their
shapes and positions even if a few measurements are missed. Notice
however that their task is not as trivial, as the vehicle is in motion on
the road. For this reason, not only new portions of the lines become
visible only in new frames, but also the aspect of the past ones is
successively distorted by the consecutive shifts of view-point.

To better comprehend the details of these latter solutions then, in
the following sections we analyze at first how to stabilize the position
of each line, tracking their origins, and then how their actual shape
can be filtered in time.

60 proposed system

4.2.5.1 Origin tracking

At this point, the origin O of each line is refreshed at each frame with
the position of the closest line point detected

O = P0 = (x0, y0) (4.18)

However, we have no guarantees on the correctness of such point,
which could be affected by noise, or on how far from the vehicle it will
be detected each time. Moreover, leaving this mechanism unaltered
would generate several inconsistencies in the overall measurements if
the line shape is instead tracked, as it will be in the next section. For
these reasons, this behavior must be corrected. We do so introducing a
simple tracking algorithm.

In principle, we could track the complete position of the origin,
(x0, y0), but this would be complex and redundant. To understand
this claim, we can think of a plausible line marking l and fix an x
coordinate close to the vehicle, xf. Regardless of its shape then, we can
always determine at which ordinate yf, l intersects the line x = xf. This
is the same as measuring the lateral offset of l with respect to a fixed
forward distance from the vehicle and perpendicularly to the x axis. In
this way, we can fix xf at a reasonable distance (for us, xf = 2m) and
perform the tracking only on the single quantity yf.

Of course then, the initial origin O of our line must be preemptively
moved to lie on the line x = xf. This however only requires a simple
computation, as we can do it with a horizontal translation of the line
model in the intrinsic s− ϑ space. The only value needed to compute
is then the arc-length sf associated to the intersection point. As there
is no closed-form correspondence between s− ϑ and x− y, we would
need to solve an integral equation of the form∫ sf

0
cos ϑ(σ)dσ = xf (4.19)

Nevertheless, this potentially expensive computation is quickly
solved with the usage of a lookup table: at first, the closest point
to x = xf in the table is directly accessed, obtaining its arc-length.
Then, starting from it, we can iteratively integrate the formula with

4.2 line detection 61

significantly small increments ∆σ and stop right after passing xf. No-
tice that this operation could achieve arbitrary precision as long as the
increments ∆σ are kept small enough.

Once sf is determined, then the model of the line is translated
horizontally of such quantity, applying a transformation

τ : s 7→ s− sf (4.20)

At last, we can track the offset yf. The algorithm used is a simple
sliding window filter. From our tests, a simple moving average (MA)
achieves good performances with a regular driving, while a weighted
moving average (WMA), more dynamic, is needed for a more aggres-
sive driving style. Formally, the two methods are described respectively
as

ŷfk,MA =
1

n

n−1∑
i=0

yfk−i

ŷfk,WMA =
2

n(n+ 1)

n−1∑
i=0

(n− i)yfk−i

(4.21)

where k is considered the current state and n is the characteristic
parameter of the filters, indicating the maximum number of successive
samples to consider in the computation, which is performed iteratively.

The result of filter y ′f, together with the fixed abscissa xf, are finally
assigned as new origin Otr of the tracked line, and this closes the
tracking of the line position. What is left now, is to track its shape and
this will be covered by the next section.

4.2.5.2 Line tracking

As the vehicle moves on the road, the shape of the line markings in
front of it changes. However, this change is slow and any point part of a
line marking remains several seconds in the scene before disappearing.
We can then assume that a line detected in one frame will be not the
same but very similar to the line detected in the subsequent one. It is
thanks to this consideration that it is possible and simple to introduce
a tracking algorithm into the pipeline.

62 proposed system

As already mentioned in Section 2.1.4, the literature on line detection
is mostly oriented towards Bayesian filters, treating especially Kalman
filters (KF) and extended Kalman filters (EKF). However, these methods
rely on a model of the vehicle dynamics and expect measurements
of its kinematic behavior over time, information that is not always
available and that, as we will shortly see, is not indispensable.

What we propose is instead a line filtering approach that entirely
relies on vision and is based on the recursive least squares (RLS)
adaptive filter [109].

While the Bayesian techniques only look at the measured parameters
of a model, and smooth then their changes over time, this method
directly acts on the detected points, searching a line that best fits the
new measurements but is also in accordance with the old ones.

In particular, we design this adaptive filter to receive in input, at
each time step, the set of line points observed in the respective frame.
With these, its overall model estimate is updated, following a weighted
least squares scheme. Entering the filter with a full weight, points are
considered to lose importance as they age, and thus their weight is
exponentially reduced over time. The reduction factor µ is typically
named, for this reason, the forgetting factor of the filter. With this mech-
anism, the filter is able to maintain memory of any past experience and
at the same time to always focus on the most recent data. Computa-
tionally moreover, the filter is not required to physically keep memory
of each point ever seen, and instead a smart update rule is widely
known.

For a cubic polynomial model as ours, this goes as follows. Recalling
at first Equation 4.13, i.e.

ϑ = f(s) = as3 + bs2 + cs+ d (4.13 rev.)

of parameters w

wt =
(
at bt ct dt

)T
(4.22)

Given also the observations, at time t,

sti =
(
s3ti s2ti sti 1

)T
, i = 1, . . . , n (4.23)

4.3 lane parameters estimation 63

ϑt =
(
θ3ti θ2ti θti 1

)T
(4.24)

and finally assuming our real process to be constituted of a determin-
istic term, which we seek, and a stochastic one, which we want to
remove,

ϑ(t) = Stwt +η(t), η(t) ∼ N(0, Σ) (4.25)
we can then incrementally update our model parameters w by com-
puting, for each i = 1, . . . , n

eti = ϑti −w
Tsti (4.26)

R̃ =

(
1+

1

µ
sTti R sti

)−1

(4.27)

R =
1

µ

(
R−

1

µ
R sti R̃ s

T
ti
R

)
(4.28)

∆w = eti · R sti (4.29)

w = w+∆w (4.30)

We remark that the proposed approach does not operate directly
on the parameters of the model. Indeed, the underlying idea is to
perform, at each step, a weighted least square estimation over all the
data received, with weights exponentially decreasing in time. Of course
the recursive formulation then makes the computation feasible and
faster than many alternatives. The main advantage of this approach is
that no assumption is needed on the behavior of the parameters and it
is instead only the accumulation of points through time to smooth the
results. Moreover, since it works with points, only a single parameter,
µ, needs to be tuned.

4.3 lane parameters estimation

Given the complete and stable representation of the two lateral lines,
we can now estimate the fundamental parameters needed by a control
unit to maintain the vehicle within its lane. This stage is usually

64 proposed system

not present in line detection works and is the core of our technique,
realizing the link between perception and control.With exactly this in
mind, we aim then to estimate the fundamental parameters needed
by a control unit to maintain the vehicle within its lane. These are in
particular the shape of the centerline, defining the trajectory to follow,
and the heading and lateral displacement of the vehicle with respect
to it. With their knowledge in fact, a planner can study the optimal
trajectory and recognize how distant it is from such goal, in order to
appropriately plan how to correct its course acting on the steering.

4.3.1 centerline shape

We begin from the estimation of the centerline. Given a representation
of the two lateral road lines, our goal is to model the line passing
exactly between them and, in our case, defining the center of the road.

In principle, this is not a trivial task. Indeed, as no parallelism
between the two lines was enforced, it is hard to even give a formal
definition of such line. Even then, no closed form solutions or helpful
analytical manipulation are available, and only numerical techniques
can be adopted.

If the lines were parallel, the centerline could be defined as the locus
of points at equal distance from each line along rays orthogonal to
them. In this case, one could then scan one line and, for each visited
point, cast an orthogonal ray until the other line is met. As the lines
are parallel, this ray will intersect both lines orthogonally. Thus, the
midpoint of this ray will belong to the centerline.

Regardless, we did not enforce the parallelism of the two lines,
because of two important considerations. First of all, this assumption
would limit the expressive power of our system, since road lines are
by design not parallel in several scenarios, such as in correspondence
of highways on-ramps and off-ramps. However, what made us desist
from it were mostly the slight variations of the extrinsic parameters of
the camera registered when driving on the road. These fluctuations
are very common and regard mostly the pitch angle of the camera.
Their generation is usually attributable to the encounter of bumps on

4.3 lane parameters estimation 65

the road or changes of load weight of the vehicle respect to when the
camera was calibrated. Although these oscillations are not an issue
for the rest of the system, which is robust enough to adapt them, they
have the undesirable effectof representing parallel lines as converging
or diverging in the BEV plane.

Given these considerations, we can see two possible ways to achieve
our goal and estimate the position and shape of the centerline. The first,
more mechanical but also computationally expensive, is based on the
concept of distance transform (DT). Formally, the distance transform
is a computer vision operation able to compute, for each pixel in a
binary image, its minimum distance to any white patch. If we were
to represent then the two lateral lines as a binary mask, we could
apply this tool to collect the points with a maximum distance. Indeed,
between the two lines, the values of the DT will be increasing until a
ridge is formed. With another computer vision operation, such ridge
could then be isolated. To cope with the possible insurgence of noise
and false detection, we could at last apply our WLF algorithm and
finally use the detected points to fit a model to the centerline.

This technique however, although straightforward, would be severely
expensive from a computational point of view, as each aforementioned
operation is highly demanding.

Moved also by this reason, with this work we propose (and describe
in the following section) an alternative solution, exploiting the intrinsic
parametrization of the lines—additional motivation for choosing this
type of representations.

4.3.1.1 Lateral lines re-projection

Given two lateral lines in the Whewell representation (s− ϑ), we ask
ourselves how to find their centerline, as the line running exactly
between them. In the following we present our solution.

First of all, instead of relying on the models characterizing each line,
we aim at employing directly the line points used for their fitting. These
indeed still contain all the information needed on the shape of each
line, but are substantially easier to manipulate than their counterparts,
representations too compact for the task.

66 proposed system

In this regard, our proposed solution employs together the line
points coming from both lines and aims at computing a model that
best represents both together, as a sort of "mean" model of the two.
This consideration comes from the observation that the shape of the
centerline is clearly influenced by the shape of both lines.

To do this however, the line points must be first projected, together,
into a space where they are both comparable and, at the same time,
only their respective shape is highlighted. This operation, key to this
technique, can be performed in different ways, working in the x− y
frame as well as in the s− ϑ frame. In the following, we begin present-
ing some of these variations of the general algorithm, concluding with
a detailed description of the one we ultimately designed for our final
system.

To begin, a first idea could be to remain in x− y and try to project
each point towards the center of the lane. However, ti is not obvious
how to proceed. In an optimal scenarios, with parallel lateral lines,
the optimal solution would require to scan one line and cast a ray
from each visited point until it intersects with the other line. The
midpoint then between the original starting point and this intersection
can be considered part of the centerline. Collected then several points
with this method, a line model could be fit. This method however,
although precise, requires a high number of intersection operations,
which are computationally demanding to perform for a line in intrinsic
coordinates.

Looking at alternatives, we devise and test the following possible
transformations.

1. The two lateral lines are divided in horizontal stripes of fixed
length by several horizontal segments. As these segments span
from the left marking to the right one, their midpoint is then
taken as candidate projected point.

2. After the same horizontal division used in item 1, from each end
of the dividing segment we cast a ray orthogonal to the respec-
tive lateral line. We consider then the angle formed by these two
rays and construct its bisector. We take then as candidate pro-

4.3 lane parameters estimation 67

jected point, the intersection between this line and the respective
horizontal segment.

3. We proceed as in item 2 to obtain the bisector, but we then
intersect it with both lateral lines. The midpoint between these
two meeting points is taken as candidate projected point.

From this study, we see that none of these simple methods is able
to complete satisfactorily the task. In particular, the most accurate
technique seems to be item 1, although it miserably fails as soon as a
line with large curvature is tested.

Discourages by these results, we design a more complex process,
starting from another interesting consideration and working, this time,
in the s− ϑ frame. Before we begin, we notice that, given a line in s− ϑ
with fixed curvature (i.e. a circle), the following holds

s = R ϑ (4.31)

This is valid however only in a very restricted number of cases, so
technically it is of no particular help for us. However, for the time
being, let’s consider it valid. Moreover, taking into account the center
of curvature C of a line, i.e. the point lying on the normal direction
and at a distance equal to the radius of curvature of the line, let’s
additionally make the following assumptions:

• the two lateral lines (ll,lr) and the centerline (lc) share the same
center of curvature (C):

Cll ≡ Clr ≡ Clc ≡ C (4.32)

• the center of curvature varies smoothly from one frame the next

Ct ≈ Ct−1 (4.33)

With this setup, we can define a simple procedureto project each
line point towards to road center, without computing intersections
or similar expensive computations. Indeed, although we will reason
in the Cartesian space, what we will actually do is only to define

68 proposed system

a linear transformation for the points in both lines within the s− ϑ
frame. This transformation aims at rescaling each line in order to make
their shapes comparable, and at that point fit the mentioned "mean"
model. In particular, it is supposed to rescale the arc-distances between
successive points, as if each point was translated closer to the road
center.

In practice, repeating this steps for both lateral lines—here generi-
cally indicated as l—the procedure prescribes the following.

1. Compute Ct from lt−1c , using its heading and radius of curvature.

2. Find the line ll0 passing through Ct and Pl0 , the first line point
in l.

3. Find the line ll1 passing through Ct and Pl1 , the second line
point in l.

4. Compute Rl = ||Pl0 −C
t||2.

5. Compute ∆ϑl1 = ll0 • ll1 .

6. Compute ∆sl1 = Rl ·∆ϑl1 .

7. Compute ∆sc1 = Rc ·∆ϑl1 .

8. Obtain the ratio rsl =
∆sl1
∆sc1

.

9. Define for convenience

sc0 = Rc ·∆ϑl0 (4.34)

At this point, with the ratio in Equation 4.34, we can then define a
coordinate transformation from the lateral line to the centerline and
vice versa, all remaining into the parametric framework:

sci = sc0 + rsl
(
sli − sl0

)
= sc0 + rsl · sli (4.35)

To recap then, with this transformation we are ultimately able to
take all the points detected on both lines and collapse them onto
the centerline in order to proceed with its fitting. We know that this

4.3 lane parameters estimation 69

procedure is based on false assumptions, but as it produces good
results.we maintain it in the pipeline as probably such assumptions,
although not correct, were still good enough to produce a reasonable
approximation of what we are seeking.

At last, the candidate points obtained are collected and passed to
a model fitting algorithm. However, this operation is not as simple
here as a least squares fitting, like it was for the lateral lines. Indeed,
the points from the two lines, although reprojected and lying in the
same space, are still representing two different models, and thus could
be different between each other. In order for our centerline to reflect
characteristics of the shape of both lines then, we take the following
steps. At first, we model with a simple polynomial the projected points
from each line, with a quick least squares fitting. We then sample the
two obtained curves in s− ϑ then, and for each pair of values we take
their average. As a result, we obtain a set of points, still in s− ϑ, that
represent at best both lines and that can be easily fit with a cubic
polynomial, obtaining at last our final centerline model.

4.3.1.2 Centerline origin

As parametric models only describe the shape of a line, we are still
missing where to set the origin of our estimated centerline Oc. Notice
that this task is crucial, as the centerline will actually appear in the
center only if this point is chosen correctly. To obtain then an estimate
as much accurate as possible, we proceed with some steps.

To obtain an initial, rough estimate, the origin is at first maintained
from the previous time-step

Otc ← Ot−1c

With this value, a temporary centerline is generated. While we can
assume for this line to have a correct shape, its origin is considered
approximated, and we are thus aware it could be slightly unaligned
with the actual road shape.

Nevertheless, we consider this estimate good enough and search for
the position on the centerline P̃ = (x̃, ỹ) = lc(s̃) in which a normal line

70 proposed system

l̃ is set to pass through the center of mass of the vehicle CM. Formally,
this point can be defined through the system:

CM ∈ l̃

P̃ ∈ l̃

l̃ ⊥ lc

(4.36)

What we have obtained is a line passing through the center of mass
CM and orthogonal to the temporary centerline. As this approximated
version is not completely reliable, we can assume the actual centerline
origin will be close, but not on, the intersection point found. What we
can assume is that the orthogonal line found will instead remain the
same. If this is the case, what we could do as our next step is to exploit
this orthogonal line and find its intersection with the lateral curves, as
they can be directly measured and relied on. At last, the final estimate
of the centerline origin can be obtained calculating the position of the
midpoint between such intersections. This point indeed is by definition
exactly in the middle of the road, assuming the orthogonal line was
correct.

4.3.2 heading and lateral displacement

If we obtained a model for the centerline as we described in the
previous section, then the computation of the additional parameters
needed by control, heading and lateral displacement, is trivial.

At first, we notice indeed that the heading of the vehicle is already
represented by ϑ. All we need to do is find the point where to compute
it. As it turns out, this is not as simple, since, for the control of the
vehicle, we want to perform our measurements along the line passing
through its center of mass CM. As this requires us to pass from
intrinsic to extrinsic coordinates, no closed form formulas are available,
and we have to solve a simple nonlinear equation. In particular, with
reference to Figure 4.8, we need to look for a line l̃, passing through
CM and crossing the centerline lc perpendicularly; formally, we search

4.3 lane parameters estimation 71

Figure 4.8: Derivation of the parameters to be estimated, Theta and Delta.

for a value s̃, corresponding to a point along the centerline Oc, such
that:

CM ∈ l̃

Oc ∈ l̃

l̃ ⊥ lc

(4.37)

Once this point is found, heading Θ and lateral displacement ∆ can
be found trivially, as:

Θ = ϑ(s̃) (4.38)

∆ =

+||Oc −CM||2 if Ocy > 0

−||Oc(s̃) −CM||2 if Ocy < 0
(4.39)

Notice that the sign of ∆ is defined by convention.

4.3.3 temporal consistency

if we were to take a moment and evaluate the performance of our sys-
tem up to now, we would be extremely disappointed. Indeed, on one
hand, the shape and position of the centerline would be oscillating and
unsatisfactory, while on the other, more importantly, the parameters
estimated would not match the reality.

Part of the problem is certainly lying in the fact that temporal consis-
tency hasn’t been enforced on the whole centerline estimation. Besides,

72 proposed system

it is true that at least the lateral lines are tracked, providing some
degree of robustness, but it is also true that we actually estimate the
centerline only based on the line points, and not the model, of each
detected line. To solve this issue, at first, we introduce a tracking
framework for the centerline analogous to the one presented in Sec-
tion 4.2.5.2 and based on the RLS method. This is perfectly fit for
this task, as of points computed to represent the centerline are highly
reliable thanks to their derivation and thus readily usable inside the
filter.

With this system in place, the situation significantly improved, with
the centerline maintaining now good shape. The other parameters
however, are still far from satisfactory.

We suspect the cause of this issue has to be foundinto the numerous
approximations we had to introduce to estimate their values. Besides,
their estimation comes at the end of a long pipeline, and since the
path between sensors and estimates is very long, several noise sources
could have slipped in unnoticed. Even more so, the estimation of these
parameters is performed completely through multiple indirect mea-
surements, starting from the position of the lateral lines (direct)and
passing from the centerline (indirect) before reaching the actual vari-
ables.For all these reasons, what comes to our minds is that maybe
a tracking framework should be introduced to smooth out their esti-
mation. As the values to be estimated cannot be directly measured
and are instead computed indirectly, Due to their need of indirect
measurements, what comes to mind is theBayesian filter framework.
Moreover, as the measuring process for these values is very complex
and largely nonlinear, the extended Kalman filter (EKF) seems to be
the best option to select.

4.3.3.1 EKF for parameters tracking

We set up an extended Kalman filter to smooth the estimation of some
of the parameters required by the control system. Before we enter into
its details, Figure 4.9 depicts the main actors at play for this estimation.

Our state is for these reasons composed by θ, heading of the vehicle
relative to the centerline, ρ, signed normalized lateral displacement,

4.3 lane parameters estimation 73

Figure 4.9: Reference for the variable used in the EKF. In particular, in blue
we can find the state of the filter, θ, ρ and w, while in black are depicted the
measurements PL, PR and other reference quantities.

and w, width of the road. Notice that, this way, we formally split the
lateral displacement Delta into the two variables ρ and w, one measur-
ing direction and percentage of the offset, and the other capturing the
actual width of the road. We made this choice for two reasons: more
importantly, this change simplified the definition of the measurement
function, important to obtain fast convergence; and in addition, this
allows us we obtain the additional estimate of w, useful support for
some control systems.

As we do not consider the motion of the lines in time and assume
instead their positions to be nearly fixed from one frame to the next,the
state equation of our filter is the one of a simple random walk model.

As for the measurements instead, we consider the intersection points
PL and PR, already computed in section Section 4.3.1.2, at the end of
the computation of the centerline.

74 proposed system

As a consequence, the state space model representation of our sys-
tem can be shown as

x =

θ

ρ

w

 , z =

xPL

yPL

xPR

yPR

 (4.40)

xt = xt−1 +wt, wt ∼ N(0, Q) . (4.41)

zt = h(xt) + vt, vt ∼ N(0, R) . (4.42)

where the measurement function h is

h(x) =

xCM − w

2 (1− ρ) sin θ

yCM + w
2 (1− ρ) cos θ

xCM + w
2 (1+ ρ) sin θ

yCM − w
2 (1+ ρ) cos θ

 , (4.43)

with CM = (xCM, yCM) center of mass of the vehicle.
As a result of its introduction, the EKF significantly improves the

performances of the system. However, we can still find some scenarios
where, regardless of the filtering technique used, we have not enough
information to make reasonable estimations. For this reason, in the
next section we explore the possibility to expand the information we
use, opening up to the introduction of the odometry into our system.

4.3.3.2 Odometry introduction

Regardless of how much we tune our system or improve our algorithm,
certain scenarios seem to remain impossible to estimate, both in the
centerline and, often, also in the lateral lines. Among them, typical
is the case of double curves. As much as we refine the tuning of
our system to achieve smoother transitions and keep the estimates,
if wrong, at least under control, we notice that there will always be
another possible curve where this new configuration is instead not
enough to maintain the estimates controlled.

4.3 lane parameters estimation 75

The reason for this limitation lies in the fact that, for how much
advanced it could be, our system is not able to look backwards. There-
fore, we can still try to adapt the estimates and smooth the changes
in order to match the variations of shape most seen on the road, but
there are potentially infinite road configurations over which our filter
can do nothing.

Thinking for example at a double curve, when this is completely
ahead of the vehicle, its estimation is simple and accurate, as the
whole line can be observed. As the vehicle proceeds forward then, its
measurements change, adapting to the double curve, while the tracking
smooths out this transition, delaying the effect of newer detections in
favor of older ones. This produces a smooth an acceptable estimation.
However, when the vehicle will have begun the second curve, and the
first will be entirely at his back the situation becomes more interesting.
If we consider the measured line, this clearly fits the curve ahead.
However, if we extrapolate it backwards, it will behave as if in presence
of only one single curve, as it is not aware of what behind the vehicle,
leading to completely wrong estimates. When we introduce tracking in
the mix instead, this will use the information from the past to reduce
the curvature of the measured, new line. As the filter updates its
model at fixed time intervals, its parameters simply indicate for how
long each measurement still influences its final estimate. If then we
assume that, in this particular case, the algorithm is perfectly tuned,
the combination of new detection and previous measurements with its
parameters will generate exactly the real shape of the double curve.
In this case however, we can now just think of traversing the same
curve, with the same trajectory, but at lower speed. In this case, the
time taken by the vehicle to reach the same point in the curve is larger.
Thus, if the filter maintains the same tuning, many past measurements
of the first curve that were before still fresh in its memory, are now
fading away. As a result, its extrapolation performance will be less
pronounced. Since this thought experiment can be constructed for
any road and any system configuration, it demonstrates us that there
always exist some configurations where our tracking is not enough to
produce correct estimates, and it is clear that this aspect constitutes a

76 proposed system

structural limitation of the current algorithm and not just a problem
in its setup.

To complicate things, this issue has strong repercussions also on the
estimation of Θ and ∆. Indeed, as shown, these parameters are always
computed keeping the center of mass of the car CM as reference, and
this point is obviously inside the car and thus behind the observed
scene. To perform these measurements, we then have to extrapolate
backwards our line estimates of a few meters. Therefore, although this
short distance cannot completely disrupt the values read, if the line
model we are following does not reflect the reality this computation is
clearly faulty.

In search of a solution, we realize that while it is not possible for
us to observe the lines behind us, we have an advantage: as we are
moving forward on the road, what is behind of us now, must have
been ahead of us before. In other words, as while we are driving on
our lane we can see its shape for decades of meters ahead, instead of
forgetting this information as soon as we move past it, we can exploit
it and store it for future usage. With this data then, after some time we
can model non only the road ahead, but also the one already behind
our vehicle.

The only problem in doing so is that we have no information on
our motion or, as it is the same, on the motion of the lines with
respect to us. Nevertheless, a possible source of this information is the
odometry captured by the vehicle. With it, we can proceed as follows.
At each time step, while estimating the lateral lines, the line points
detected are contemporarily stored. At the next time step then, we
can project these points backwards using the odometry measures in
order to reflect the motion of our vehicle, and then add them to the
new detections to perform the fitting. As we move forwards, more
and more points are accumulated, representing regions of the road not
observable anymore. This way, the region where our lateral lines are
fit grows also backwards. As we move further down the road however,
it is not convenient to store these points indefinitely, as we would
need a complex model to represent the shape of the road for longer
tracts. Since we just need to know the position of the lines nearby

4.3 lane parameters estimation 77

the vehicle, what we can then do is to maintain only past line points
within 5-10m from it. This way, our simple models could still well
represent the overall lines, with the benefit that we are only fitting
actual data and not resorting to extrapolation. As we are resorting to
the odometry measures, notice moreover that these data are usually
noisy and tend to soon drift away from the correct trajectory. However,
as we only keep points for the last few seconds of the journey, what we
only need is the relative displacement occurred within a short distance.
Therefore, despite measurement errors are still present, these are not
large enough to negatively impact on our estimates.

To conclude, with the introduction of the odometry into the pipeline,
our algorithm is complete and performs as intended. As a consequence,
in the following chapter a formal evaluation of its performances will
be presented.

5
R E S U LT S A N D
E VA L U AT I O N

Once the system is ready we can proceed with its evaluation, in order
to validate the techniques we adopted and at the same time compare
their performances with the rest of the literature.

The validation of a system can in general be done in several ways,
according to the type of problem it solves, the tools at one’s disposal
and the nature of the system itself. As it is the engineer’s job to
solve practical problems, engineering systems often require a practical
evaluation. When the field of study has a solid history to support
its members, standard validation techniques are usually available, in
the form of software and procedures designed specifically for that
purpose. In Computer Science however, and in particular along the
branches of Artificial Intelligence, a long tradition is yet to be formed.
It is probably for this reason that when we came to this important
stage in the life of our system, we could not find the desired support
from the literature, and had to rely, at last, only on our own means.

79

80 results and evaluation

Thus, since no relevant acclaimed dataset is available on the field, we
employ, at last, our own research vehicle and the data collected with it
for this purpose. In the remained of this chapter then, we first explore
the details of our technical setup and the characteristics of the dataset
collected with it, and only after, at last, we perform and describe our
evaluations.

5.1 experimental setup

As already mentioned, our entire evaluation is based on the data
collected with the instrumented vehicle shown in Figure 5.1. For our
purposes, this is equipped with the following sensing instrumentation.

camera The images are recorded using a ZED stereo-camera with a
resolution of 672x376. For reasons not dependent on our work,
the acqusition is performed at 100 Hz, and a subsequent down-
sampling brings the framerate down at 33 Hz.

gps To record trajectory of the vehicle and lane coordinates, as we will
soon mention, a Swiftnav RTK GPS is employed.

encoders Finally, wheel and steering encorder units are mounted to
retrieve the odometry measurements.

For what concerns our software system instead, its development is
based mostly on the Python programming language, for its propensity
to allow a very fast prototyping of new experiments and solutions. In
fact, if a research system is implemented from scratch, as it happens
for ours, several times no clear solution of a problem is known, and
being able to quickly experiment on different alternatives is crucial for
the final success of the problem.

This potential advantage however is usually paid in computational
time and efficiency, as it is the case of our system. Although some
components have been directly implemented in C++, most of our soft-
ware was developed as a research tool, for the fast implementation and
testing of new ideas, and not for running in a production environment.
What this also means is that a substantial margin for optimization

5.1 experimental setup 81

Figure 5.1: Instrumented experimental vehicle used to acquire the dataset.

is present, and despite not performing at real-time at the moment, it
offers full potential for future improvements of this kind. In fact, the
CNN described in Section 4.2.2 is already capable of running at 13 ms
per frame on a regular embedded platform, while a lighter version in
our possession of the same network can even reach 5 ms per frame.
Besides, the WLF algorithm, strictly iterative, is currently implemented
in full using Python, which is known for its slow capability of process-
ing iterations. By the same token, several computer vision operations
are performed without particular optimizations and with no support
for GPU computation. If all these aspects were to be fixed, for example
implementing each component within a C++ framework, then great
speedups should be registered. Even more so, all our experiments
have been completed resorting to limited computational resources. In
particular, in different situations we employed respectively

• a MacBook Pro (13- inch, 2016), with a 2 GHz Intel Core i5 CPU
and 16 GB 1867 MHz LPDDR3 RAM;

• a Jetson Xavier embedded board;

• a server environment with 1 dedicated 12 GB GeForce GTX 1080

Ti out of 8 shared, 40 shared 2.20 GHz Intel Xeon E5 CPU, and
shared 256 GB RAM.

82 results and evaluation

5.1.1 dataset

The dataset we employ for our entire evaluation has been acquired by
our research group 1 and is one of few where the information recorded
allows for the construction of a proper ground truth for the lateral
control environment.

All data within it have been acquired on the Aci-Sara Lainate (IT)
racetrack and test track. With a length of almost 1, 5 km, this circuit
presents an optimal configuration for real street testing, thanks to its
long straights, ample radius curves and narrow chicanes, together with
several lane splitting and intersections.

The 8 laps recorded feature speeds ranging from 3 m/s up to 15 m/s
and a spectrum of different driving styles, from the observance of an
optimal trajectory in the middle of the road to a strongly oscillating
one, registering heading changes for up to 40

◦ and substantial lateral
oscillations. To further differentiate the samples, two runs were also
performed driving in the opposite direction, while in a couple of
them an alternative route to avoid one of the chicanes. This mixture
guarantees the heterogeneity of the dataset, suitable for testing the
robustness of the algorithm in all driving scenarios. Figure 5.2 depicts
the trajectories recorded in each ride to highlight their variability.

As the recordings were taken in sequential days, they do not cap-
ture, on the contrary, inclement weather conditions. In most of the
recordings moreover, the illumination is more than acceptable, and all
of them are performed during day-time.

As introduced above, among the measurements performed in each
ride, the position of the vehicle is registered with fine-grained pre-
cision thanks to the RTK GPS adopted. With this information, the
trajectory of the vehicle is reconstructed and utilized as ground truth.
In addition to this information, the position of the lateral line markings
is preemptively recorded thanks to the GPS receiver installed on the

1 The dataset here described has not been collected by the author, and his contribution
was minimal in its overall realization. Said dataset and the modalities of its collection
are here described only as the dataset is intensively used in the development and
evaluation of the author’s work and it is thus pertinent to this discussion.

5.1 experimental setup 83

Figure 5.2: The 8 trajectories recorded in the dataset, each featuring different
characteristics as driving style, average speed and lateral position of the
vehicle.

84 results and evaluation

experimental vehicle. From these data, the ground truth for Θ, ∆ and
the centerline shape can be generated. This process requires to map the
desired area, discretize the overall route in several control points and
finally, for each of them, to define the polynomials required by the lat-
eral control algorithm. With the measured track boundaries, the road
centerline is computed as the medium value of the two boundaries
and it is then reshaped to guarantee a sample point each ds = 0.5m.
This specific value for ds consents to bypass the oversampling of the
GPS signals, while still ensuring smoothness and accuracy of the road
map. At regular intervals ds then, third order polynomials are used to
represent the centerline, each extending for the following 30 meters.
It can be statistically demonstrated that this technique is a reasonable
approximation of the centerline and obtains good results even well at
distances of 30m from the vehicle. While this model will describe the
ground truth for the centerline shape, the lateral displacement of the
vehicle is computed as its distance to the closest sampled centerline
point and its heading is extracted from the estimated trajectory as their
tangent direction.

5.2 system evaluation

Given the extensive dataset at our disposal, we set off to evaluate our
system. To do so, we run our full pipeline on each of the 8 trajecto-
ries, recording our measurements of the lateral lines and estimates of
centerline, heading and lateral displacement, together with the overall
internal state of the algorithm.

Obtained all the results, we can proceed to evaluate them in two
ways. At first, these data can be visualized, and we can use this
representation to perform a qualitative analysis of the strengths and
deficiencies of our system in each different observed scenario. Indeed,
during a complete driving test many situations arise, and while it is
true that some of them could trigger inaccurate estimates, it is very
important to associate these episodes with their most likely cause.
Once this is done, since we are also provided with a ground truth, we

5.2 system evaluation 85

can enter into the details of each scenario and perform a quantitative
analysis of the output.

Notice that both steps are important and not mutually exclusive.
Indeed, let’s assume for example that, at some point of a driving test,
a particular scene or environmental condition completely disrupts the
estimation process of our system. From such event, if we only relied on
a single evaluation method, two possible unwanted situations could
arise.

On one hand, an overall quantitative analysis could remain unaf-
fected if the disruption has place on a short time scale, and we could
thus overlook the problem. This however would leave its original cause
at large, free to come back in more serious situations, leading to system
failures and potentially even crashes.

On the other hand, if the disruption was prolonged in time but
associated to a single, long-lasting and unforeseeable reason (e.g. tem-
porary signs direct the vehicles outside of their lanes in the proximity
of a crash site), then an evaluation of the system based only on the
quantitative measurements would unjustly penalize it. Instead, the
data acquired during that time frame should be isolated, and the eval-
uation should also be performed considering only the unaffected part.
Moreover, with this approach, if the disturbances are are determined to
be due to a system malfunction, then specific effort could be devoted
only to solving that particular issue.

5.2.1 qualitative results

With the amount of information registered from each driving test, we
proceed by steps. At first, we can look into the output of the single line
detection system, monitoring its behavior on each different scenarios
encountered and highlighting any possible issue they could present,
together with their achievements.

We start by describing, through Figure 5.3, the general output of
our system on a frame taken on a straight road and presenting no
particular difficulties. In the image, we highlighted the lines detected
and modeled by our algorithm, together with their representation

86 results and evaluation

Figure 5.3: Line detection on a straight road.

Figure 5.4: Line detection on an extensive road bend.

in BEV. Moving to a more interesting example, in Figure 5.4 we can
observe the system dealing instead with a bend in the road. Thanks
to its versatile intrinsic representation of the lines and the harmonic
collaboration of each component in the pipeline, the algorithm is able
to precisely describe both lines.

As we confirmed our system can perform line detection on the most
basic scenarios, we can then introduce the estimation of the centerline
and complete the overall picture.

To this end, Figure 5.5 proposes once more the simple scenario
analyzed in Figure 5.3, but adds our estimated centerline. As we will
do again in the rest of this chapter, the visualization range of the BEV
is set here to include, in black, a portion of the road behind the camera.
In this way, we can then use this image to display all the elements of
the estimated road geometry. In this case, the position of the center
of mass CM the vehicle is included, together with the normal line
passing through it (indicated as l̃ in Section 4.3.1.2).

5.2 system evaluation 87

Figure 5.5: Visualization of the complete output of our system, including
line detection (green) and centerline estimation (orange). Notice that, in the
BEV image, the position of the center of mass of the vehicle (red) and the
orthogonal line passing through it (yellow) are shown for completeness.

As we mentioned in Section 4.3.3.2, the introduction of the odometry
was crucial for the the system to correctly model the road in non-trivial
scenarios. To highlight then its importance, in Figure 5.6 we consider
the case of a double bend. When the vehicle has yet to enter the bend
and this is completely ahead of it, the odometry measures are actually
not needed, as the versatile line models adopted by the system were
already fully capable of representing it. What we show here however
is how the system is now capable of modeling the entire bend even
when already half-way through it and most of it is not visible anymore
from the camera.

With these examples, we observed how our system behaves appro-
priately in general driving situations. Nonetheless, we observed some
particular scenarios still able to challenge it.

Above all, the three chicanes in the track represent an almost insur-
mountable obstacle for our algorithm. Analyzing all the results as in
Figure 5.7, we found this to be associated mostly with three important
issues. The first one is merely technical and is related to the field of
view of our vision system, often unable to capture large parts of the
line because of its high curvature. Although we have no power on this
issue, we can instead act on the second one, which has to do with our
feature extraction stage. The CNN we employ, indeed, often misses
important detections when inside a chicane, probably influenced by
never seeing a road structure so irregular during training. At last, even

88 results and evaluation

Figure 5.6: Line detection and centerline estimation in presence of a double
bend. Thanks to the odometry measurements, the system is able to remember
the shape seen in the past (top) and adapt its estimate of future scene (bottom)
accordingly (notice the change of concavity, typical of double bends, which
could not be estimated from the visible scene).

if the features are correctly detected, we experienced difficulties not in
modeling the actual line, task fairly simple with our intrinsic line rep-
resentation, but instead in updating the tracked estimates fast enough.
The abrupt shape changes of these road elements, in particular, pose a
serious challenge to our line tracking systems.

Aside from these curves, minor issues were also registered in cor-
respondence of a sudden break in one of the line markings, due for
example to the intersection with another artery of the track (Figure 5.8).
Nevertheless, the system displayed a good degree of robustness to this
disturbances and was able to continue its task with only minimal and
temporary consequences.

To conclude then, this analysis convinces us that, at least on a
qualitative point of view, the system is capable of performing as
required in the most common driving scenarios. Some situations still

5.2 system evaluation 89

Figure 5.7: Examples of the issues registered around the chicanes. In this
particular scenes, the faults are attributable to the CNN, which fails to identify
the line (top) or identifies a wrong line (bottom).

affect it, as intersections with other roads, but it is robust enough
to recover and continue its task. Some road configurations however
completely overcome its capabilities in occasion of strong curvature
changes or uncommon road geometries (e.g. in a chicane).

5.2.2 quality of the estimation

Reassured about the strengths of our system and aware of its weak-
nesses, we can consciously proceed with a quantitative evaluation of
its capabilities. In particular, as the system was designed to aid the
planning and control unit in the task of lane following, we directly eval-
uate its final output: the estimated heading Θ and lateral displacement
∆ of the vehicle.

As we need to assess the response of the system in a long interval,
it is important to select an appropriate evaluation metric. Since we do
not require it to be differentiable, and we have no reason to impose

90 results and evaluation

Figure 5.8: A split on the road together with a wore out marking deceive
the algorithm for a few frames. While it is soon able to recover the tracked
estimates during these instants are slightly perturbed.

different weights on each error according to its magnitude, we adopt
the mean absolute error (MAE), defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.1)

where yi and ŷi are respectively the predicted and true values, and n
is the number of points considered. As opposed to other alternative
metrics moreover, the MAE provides also a clearer interpretation of its
results, being just the average error registered among the data.

5.2 system evaluation 91

MAE(Θ) [deg] MAE(∆) [m]

Driving style: straight

Trajectory 1 5.503 1.996

Trajectory 4 4.753 1.706

Trajectory 5 5.400 1.698

Trajectory 7 2.551 0.739

4.501 1.518

Driving style: oscillating

Trajectory 2 6.571 1.813

Trajectory 3 5.915 1.708

Trajectory 6 6.528 1.986

Trajectory 8 5.165 0.908

6.039 1.592

5.343 1.559

Table 5.1: MAE for the estimation of heading and lateral displacement over
each entire trajectory in the dataset. The trajectories are split according to
their driving scenarios, and cumulative measurements over the same category
and for the overall dataset are also indicated for clarity.

As we are all set, we begin with an evaluation of the overall perfor-
mances of the system on the entire dataset. Table 5.1 reports the MAE
for the estimation of heading and lateral displacement over each of the
8 trajectories analyzed. These are divided into two main driving styles,
straight and oscillating, in order to facilitate the interpretation of their
results.

With mean errors above 5 degrees for the heading and 1.5 m for the
lateral displacement, we are not particularly satisfied of these results.
However, we recall the issues and adverse scenarios we observed in
Section 5.2.1, and in particular, the dooming effect of the chicanes on
the performance of an otherwise acceptable system. To better evaluate
this effect, we then analyze our estimated values and their deviation

92 results and evaluation

Figure 5.9: Frame captured for Trajectory 7 at t = 105 s, showing how peaks
in the estimation errors are often correlated with the crossing of a chicane.

from the ground truth data during time, reporting in Figure 5.11 and
Figure 5.12 our findings for each one of the 8 trajectories.

As suspected, looking at the representations of the absolute error
(Figure 5.12), we can see the presence of roughly three peak regions,
each associated to a chicane in the road. This is confirmed also by the
values assumed by the ground truth (Figure 5.11) within those regions,
suggesting also that the sharp change of curvature and orientation of
the chicanes might even be disrupting the ground truth computation.
Notice also that large errors are reported also at the beginning and
end of each trajectory, and this is also probably attributable to issues
in the ground truth computation.

Contrarily, outside of these regions, where the driving scene are
more common and expected by the algorithm, the estimated parame-
ters seem to be consistently following the ground truth.

To clarify this situation, we can then inspect the conditions bringing
the system to failure, analyzing the scene recorded in the correspond-
ing instants and the line there detected. Examining for instance the
overall recording in Trajectory 7, a clear peak is present in both heading
and lateral displacement right before t = 105 s. Checking the data
available, at that point in time we can observe that the vehicle was
indeed crossing a chicane Figure 5.9.

As this evaluation is then negatively biased by the presence of
unnatural scenarios, what we can do is to validate our results only on
isolated sections of the whole trajectory. Continuing on the instance of
Trajectory 7, we can then isolate a driving section where only traditional

5.2 system evaluation 93

Figure 5.10: Restricted evaluation tracks. They do not feature any chicane,
but still include the most interesting testing scenarios: straight road, curve
road and double bend.

road shapes are found. Considering then only the portion of the lap
where t > 105 s (Figure 5.10), the respective section of the track
includes, in order: a straight tract, a double bend and a long curve.
Given this multitude of road shapes, this part of track remains a
perfect scenario for testing our system. We can also perform the same
operation on the results shown in Trajectory 8, in order to represent
both driving styles. Also in this driving scenario, the last chicane
is passed for t > 105 s. The results of this restriction, reported in
Table 5.2 and depicted in Figure 5.13, are now severely improved, with
a mean heading error of only 1.8 degrees for the straight driving and
3.8 degrees for the oscillating one. The lateral displacement remains
instead stationary below 1 m.

We can already appreciate the precision obtained with our system,
especially considering it only relies on vision and vehicle odome-
try. However, it would be interesting to compare its performances
with another lane following system, or even better with the actual
requirements of a lateral control module, but to the best of the au-
thor’s knowledge, no work in the field has been published featuring a
comparable evaluation.

94 results and evaluation

Figure 5.11: Behavior of the estimated heading and lateral displacement in
time, compared to the ground truth provided with the dataset.

5.2 system evaluation 95

Figure 5.11: Behavior of the estimated heading and lateral displacement in
time, compared to the ground truth provided with the dataset.(cont.)

96 results and evaluation

Figure 5.12: Absolute error of the estimation of heading and lateral displace-
ment.

5.2 system evaluation 97

Figure 5.12: Absolute error of the estimation of heading and lateral displace-
ment. (cont.)

98 results and evaluation

Figure 5.13: Estimated heading and lateral displacement for the evaluation
on a restricted part of the track (top), and absolute error of the estimation
(bottom).

5.2 system evaluation 99

MAE(Θ) [deg] MAE(∆) [m]

Driving style: straight

Trajectory 7 (restr.) 1.817 0.738

Driving style: oscillating

Trajectory 8 (restr.) 3.799 0.743

Table 5.2: MAE for the estimation of heading and lateral displacement over
restricted trajectories.

6
C O N C L U S I O N S A N D
F U T U R E W O R K

Lane following systems are categorized at the lowest of 5 levels of
autonomy by the international standards, and are supposed to be one
of the simplest building blocks to achieve full autonomy. However, as
we started our research full of hope, the more we made our way into
the field, and the more open space we found.

We began our work with the objective of studying the functioning
of lane following systems and developing a solution to be coupled to
control models already present in the literature. Moreover, we intended
to do so with vision, as cameras are widely available and affordable,
and at the same time are the only sensor able to precisely retrieve color
and texture, important for our task.

To this end, we analyzed the state of the art and presented the
details on the approaches adopted in the literature. With this step,
we gained knowledge on the overall topic of lane following and on
the most common ways of solving it. We noticed also here the first

101

102 conclusions and future work

discrepancies between different systems, as some of the works are
more focused on the control part while others pursue the whole task.
Also for this reason, the systems analyzed in the literature did not
provide any clear architecture. We could instead notice a substantial
lack of datasets for validation , together with general reluctance for
real-world testing, as opposed to computer simulations.

We designed our perception system as composed of two stages. At
first a custom designed line detector is adopted to retrieve the position
and shape of the lateral lines. Then, a second component uses them
to produce an estimate of position and shape of the road centerline,
together with heading and lateral displacement of the vehicle.

In particular, we started the development of our line detection al-
gorithm in accordance to the processing pipeline usually adopted,
but soon performed several changes. Working on raw images, our
first pipeline component oversees the extraction of features from the
acquired frame. These are then postprocessed and finally a model
is fit and tracked. Of particular relevance is our choice for the line
model adopted, as we do not rely on Cartesian representations and
recur instead to the Whewell intrinsic formulation. This is never seen
in line detection, but is instead often adopted in control, for its good
properties in modeling roads and trajectories. We can think of this
choice as, in some sense, the missing link between the field of line
detection and that of control.

With a method to detect the lateral lines and directly represent them
in a convenient form, the subsequent stage is where the estimation
of the parameters needed for control is made. This task represents
a novel estimation technique for the centerline and guarantees more
robustness to the overall estimation with the implementation of a
Bayesian filter.

Completed the system, we evaluated its performance on real data,
designing its tests to cover as many different driving scenarios as
possible. Remarkably, our system is capable of maintaining good
performances in most of the analyzed scenarios, producing reliable
estimates of the centerline shape and position, together with the head-
ing and lateral displacement of the vehicle. Furthermore, even more

conclusions and future work 103

important is the fact that we can obtain such results relying only on
vision and vehicle odometry.

While this is clearly the most relevant result of our work, additional
contributions can be found not only in the system developed but also in
the approaches adopted . In particular, we demonstrate the possibility
of linking perception and control, here through the specific line models
adopted, while at the same time showing the competitiveness of this
choice. The system realized satisfies then our original goal of unifying
the perception task in lane following problems under a single system.

On a separate note, we point out that, in the process of creating this
system, we also developed a fully functional line detector, capable of
working also independently from the rest of the systme. Only when
coupled with control problems however, its choice of the intrinsic
models gives greater returns.

Given our positive results, it is however possible to identify sev-
eral improvements for what concerns the computational load of the
system and the dataset used for its validation. In particular, we con-
sider above all a complete enhancement of the system to achieve
real-time performances. This would require at first a porting of the
main algorithms to C++, language more suited for real-time embed-
ded platforms. Secondarily, several optimization could be performed
on the overall implementation, regardless of the language adopted.
Indeed, the architecture of the current system is designed to allow for
fast prototyping of new solutions and variants, as it is often needed
in a research environments, but it does so without considering the
computational overhead introduced. Achieving a running frequency
of 30 Hz, the system could then be integrated with a control software,
realizing its final purpose. This configuration would at first allow us
to test its performances in-the-loop and, subsequently, on our actual
experimental vehicle.

With reference instead to the possible testing environments for
lane following systems, testing on real data remains the best choice.
The dataset we adopted however presented several difficulties. To
begin, ti only provided 8 different recordings, often not enough to test
multiple alternatives of the same algorithm without overfitting them.

104 conclusions and future work

Moreover, the generation of its ground truth is deliberately declared
approximated, thus leading to systematic errors in the performance
evaluations. Even more so, the possibility to test a new working al-
gorithm on an isolated track is of course beneficial, but for the final
deployment of this type of systems, eventually also highways-driving
and finally urban-driving need to be tackled. In this context, it would
then be largely beneficial for the research community the generation
and diffusion of a customized dataset, grouping hundreds of different
trajectories, recorded in different scenarios and roads.

At last, we would like to address some considerations to the set of
sensors needed for the task. In parituclar, at the moment we are only
using a monocular camera and the information from the wheels and
steering encoders of the vehicle. Nevertheless, in some occasions, the
data from the encoders could not be provided, and thus the algorithm
would have to robustly adapt and cope with the lack of information,
possibly failing. What could instead be done, is to resort to other
components to generate the odometry. The most common methodology
in this sense, given also our usage of a camera, is known as visual
odometry. Implementing this technique in our work would allow us
to rely only on images for the overall estimation, making the system
portable to potentially any road vehicle.

B I B L I O G R A P H Y

[1] SAE International. Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems. 2018. doi:
https://doi.org/10.4271/J3016_201806. url: https://doi.
org/10.4271/J3016_201806 (cit. on pp. 1, 3).

[2] Nidhi Kalra and Susan M Paddock. “Driving to safety: How
many miles of driving would it take to demonstrate autonomous
vehicle reliability?” In: Transportation Research Part A: Policy and
Practice 94 (2016), pp. 182–193 (cit. on p. 2).

[3] Daniel J Fagnant and Kara Kockelman. “Preparing a nation
for autonomous vehicles: opportunities, barriers and policy
recommendations.” In: Transportation Research Part A: Policy and
Practice 77 (2015), pp. 167–181 (cit. on p. 2).

[4] NHTSA National Highway Traffic Safety Administration. U.S.
Department of Transportation 2012 Traffic Safety Facts FARS/GES
Annual Report. 2012. url: https://crashstats.nhtsa.dot.gov/
(visited on 11/13/2019) (cit. on p. 2).

105

https://doi.org/https://doi.org/10.4271/J3016_201806
https://doi.org/10.4271/J3016_201806
https://doi.org/10.4271/J3016_201806
https://crashstats.nhtsa.dot.gov/

106 Bibliography

[5] Istat Istituto nazionale di statistica. Incidenti stradali Anno 2018.
2019. url: https://www.istat.it/it/archivio/232366 (vis-
ited on 11/13/2019) (cit. on p. 2).

[6] Fábio Duarte and Carlo Ratti. “The impact of autonomous
vehicles on cities: A review.” In: Journal of Urban Technology 25.4
(2018), pp. 3–18 (cit. on p. 2).

[7] Wenwen Zhang, Subhrajit Guhathakurta, Jinqi Fang, and Ge
Zhang. “Exploring the impact of shared autonomous vehi-
cles on urban parking demand: An agent-based simulation
approach.” In: Sustainable Cities and Society 19 (2015), pp. 34–45

(cit. on p. 2).

[8] Chana J Haboucha, Robert Ishaq, and Yoram Shiftan. “User
preferences regarding autonomous vehicles.” In: Transportation
Research Part C: Emerging Technologies 78 (2017), pp. 37–49 (cit.
on p. 2).

[9] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey
Oliver. “Autonomous vehicles: challenges, opportunities, and
future implications for transportation policies.” In: Journal of
modern transportation 24.4 (2016), pp. 284–303 (cit. on p. 2).

[10] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in
a neural network.” In: Advances in neural information processing
systems. 1989, pp. 305–313 (cit. on pp. 2, 24, 35).

[11] Guna Seetharaman, Arun Lakhotia, and Erik Philip Blasch. “Un-
manned vehicles come of age: The DARPA grand challenge.”
In: Computer 39.12 (2006), pp. 26–29 (cit. on pp. 2, 3).

[12] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA
urban challenge: autonomous vehicles in city traffic. Vol. 56. springer,
2009 (cit. on p. 3).

[13] SAE International. Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems. 2014. doi:
https://doi.org/10.4271/J3016_201401. url: https://doi.
org/10.4271/J3016_201401 (cit. on p. 3).

https://www.istat.it/it/archivio/232366
https://doi.org/https://doi.org/10.4271/J3016_201401
https://doi.org/10.4271/J3016_201401
https://doi.org/10.4271/J3016_201401

Bibliography 107

[14] SAE International. Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles. 2016.
doi: https://doi.org/10.4271/J3016_201609. url: https:
//doi.org/10.4271/J3016_201609 (cit. on p. 3).

[15] Christiaan Hetzner. “Audi, BMW, others frustrated by hurdles
slowing launch of self-driving cars.” In: Automotive News Europe
(2019). url: https://europe.autonews.com/automakers/audi-
bmw - others - frustrated - hurdles - slowing - launch - self -

driving-cars (visited on 11/13/2019) (cit. on p. 3).

[16] Sandipann P Narote, Pradnya N Bhujbal, Abbhilasha S Narote,
and Dhiraj M Dhane. “A review of recent advances in lane de-
tection and departure warning system.” In: Pattern Recognition
73 (2018), pp. 216–234 (cit. on pp. 4, 10).

[17] Hui Zhou and Han Wang. “Vision-based lane detection and
tracking for driver assistance systems: A survey.” In: 2017 IEEE
International Conference on Cybernetics and Intelligent Systems
(CIS) and IEEE Conference on Robotics, Automation and Mechatron-
ics (RAM). IEEE. 2017, pp. 660–665 (cit. on pp. 4, 7, 9).

[18] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz.
“Recent progress in road and lane detection: a survey.” In:
Machine vision and applications 25.3 (2014), pp. 727–745 (cit. on
pp. 7–10, 12, 13).

[19] Alberto Hata and Denis Wolf. “Road marking detection using
LIDAR reflective intensity data and its application to vehicle
localization.” In: 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC). IEEE. 2014, pp. 584–589 (cit. on
p. 7).

[20] Jörg Kibbel, Winfried Justus, and Kay Furstenberg. “Lane esti-
mation and departure warning using multilayer laserscanner.”
In: Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.
IEEE. 2005, pp. 607–611 (cit. on p. 8).

https://doi.org/https://doi.org/10.4271/J3016_201609
https://doi.org/10.4271/J3016_201609
https://doi.org/10.4271/J3016_201609
https://europe.autonews.com/automakers/audi-bmw-others-frustrated-hurdles-slowing-launch-self-driving-cars
https://europe.autonews.com/automakers/audi-bmw-others-frustrated-hurdles-slowing-launch-self-driving-cars
https://europe.autonews.com/automakers/audi-bmw-others-frustrated-hurdles-slowing-launch-self-driving-cars

108 Bibliography

[21] Philipp Lindner, Eric Richter, Gerd Wanielik, Kiyokazu Tak-
agi, and Akira Isogai. “Multi-channel lidar processing for lane
detection and estimation.” In: 2009 12th International IEEE Con-
ference on Intelligent Transportation Systems. IEEE. 2009, pp. 1–6

(cit. on p. 8).

[22] Albert S Huang, David Moore, Matthew Antone, Edwin Olson,
and Seth Teller. “Finding multiple lanes in urban road networks
with vision and lidar.” In: Autonomous Robots 26.2-3 (2009),
pp. 103–122 (cit. on pp. 8, 10, 13, 17, 18).

[23] Basel Fardi and Gerd Wanielik. “Hough transformation based
approach for road border detection in infrared images.” In:
IEEE Intelligent Vehicles Symposium, 2004. IEEE. 2004, pp. 549–
554 (cit. on p. 8).

[24] Jiang Ruyi, Klette Reinhard, Vaudrey Tobi, and Wang Shigang.
“Lane detection and tracking using a new lane model and
distance transform.” In: Machine vision and applications 22.4
(2011), pp. 721–737 (cit. on pp. 9, 11, 13, 14, 19, 20).

[25] Yong Ding, Zheng Xu, Yubin Zhang, and Ke Sun. “Fast lane
detection based on bird’s eye view and improved random sam-
ple consensus algorithm.” In: Multimedia Tools and Applications
76.21 (2017), pp. 22979–22998 (cit. on pp. 10, 17).

[26] Jihun Kim and Minho Lee. “Robust lane detection based on con-
volutional neural network and random sample consensus.” In:
International conference on neural information processing. Springer.
2014, pp. 454–461 (cit. on pp. 10, 15, 18).

[27] U Seger. “HDR imaging in automotive applications.” In: High
Dynamic Range Video. Elsevier, 2016, pp. 477–498 (cit. on p. 10).

[28] Xiangjing An, Erke Shang, Jinze Song, Jian Li, and Hangen He.
“Real-time lane departure warning system based on a single
FPGA.” In: EURASIP Journal on Image and Video Processing 2013.1
(2013), p. 38 (cit. on p. 10).

Bibliography 109

[29] David A Forsyth and Jean Ponce. Computer vision: a modern
approach. Prentice Hall Professional Technical Reference, 2002

(cit. on pp. 10, 13, 18).

[30] Christopher Rasmussen. “RoadCompass: following rural roads
with vision+ ladar using vanishing point tracking.” In: Au-
tonomous Robots 25.3 (2008), pp. 205–229 (cit. on p. 11).

[31] Tsung-Ying Sun, Shang-Jeng Tsai, and Vincent Chan. “HSI color
model based lane-marking detection.” In: 2006 IEEE Intelligent
Transportation Systems Conference. IEEE. 2006, pp. 1168–1172 (cit.
on p. 11).

[32] Jongin Son, Hunjae Yoo, Sanghoon Kim, and Kwanghoon Sohn.
“Real-time illumination invariant lane detection for lane depar-
ture warning system.” In: Expert Systems with Applications 42.4
(2015), pp. 1816–1824 (cit. on pp. 11, 14).

[33] Richard Hartley and Andrew Zisserman. Multiple view geometry
in computer vision. Cambridge university press, 2003 (cit. on
p. 11).

[34] Ivan S Kholopov. “Bird’s Eye View Transformation Technique
in Photogrammetric Problem of Object Size Measuring at Low-
altitude Photography.” In: International Conference" Actual Issues
of Mechanical Engineering" 2017 (AIME 2017). Atlantis Press.
2017 (cit. on p. 11).

[35] Anuar Mikdad Muad, Aini Hussain, Salina Abdul Samad,
Mohd Marzuki Mustaffa, and BURHANUDDIN YEOP Ma-
jlis. “Implementation of inverse perspective mapping algorithm
for the development of an automatic lane tracking system.”
In: 2004 IEEE Region 10 Conference TENCON 2004. IEEE. 2004,
pp. 207–210 (cit. on p. 11).

[36] Kun Zhao, Mirko Meuter, Christian Nunn, Dennis Müller, Ste-
fan Müller-Schneiders, and Josef Pauli. “A novel multi-lane
detection and tracking system.” In: 2012 IEEE Intelligent Vehicles
Symposium. IEEE. 2012, pp. 1084–1089 (cit. on pp. 11, 17, 19).

110 Bibliography

[37] Ruyi Jiang, Reinhard Klette, Tobi Vaudrey, and Shigang Wang.
“New lane model and distance transform for lane detection and
tracking.” In: International Conference on Computer Analysis of
Images and Patterns. Springer. 2009, pp. 1044–1052 (cit. on p. 11).

[38] Marcos Nieto, Jon Arróspide Laborda, and Luis Salgado. “Road
environment modeling using robust perspective analysis and
recursive Bayesian segmentation.” In: Machine Vision and Appli-
cations 22.6 (2011), pp. 927–945 (cit. on p. 11).

[39] Seung-Nam Kang, Soomok Lee, Junhwa Hur, and Seung-Woo
Seo. “Multi-lane detection based on accurate geometric lane es-
timation in highway scenarios.” In: 2014 IEEE Intelligent Vehicles
Symposium Proceedings. IEEE. 2014, pp. 221–226 (cit. on p. 11).

[40] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool. “Towards end-to-end lane de-
tection: an instance segmentation approach.” In: 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2018, pp. 286–291 (cit.
on pp. 11, 16, 20, 21).

[41] Yang Yang Ye, Xiao Li Hao, and Hou Jin Chen. “Lane detection
method based on lane structural analysis and CNNs.” In: IET
Intelligent Transport Systems 12.6 (2018), pp. 513–520 (cit. on
p. 12).

[42] Shengyan Zhou, Yanhua Jiang, Junqiang Xi, Jianwei Gong,
Guangming Xiong, and Huiyan Chen. “A novel lane detec-
tion based on geometrical model and gabor filter.” In: 2010
IEEE Intelligent Vehicles Symposium. IEEE. 2010, pp. 59–64 (cit.
on pp. 11, 18).

[43] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. “Lane
detection using B-snake.” In: Proceedings 1999 International Con-
ference on Information Intelligence and Systems (Cat. No. PR00446).
IEEE. 1999, pp. 438–443 (cit. on pp. 11, 17).

[44] King Hann Lim, Kah Phooi Seng, Li-Minn Ang, and Siew Wen
Chin. “Lane detection and Kalman-based linear-parabolic lane
tracking.” In: 2009 International Conference on Intelligent Human-

Bibliography 111

Machine Systems and Cybernetics. Vol. 2. IEEE. 2009, pp. 351–354

(cit. on pp. 11, 13, 16, 19).

[45] Yue Wang, Dinggang Shen, and Eam Khwang Teoh. “Lane
detection using spline model.” In: Pattern Recognition Letters
21.8 (2000), pp. 677–689 (cit. on pp. 11, 13).

[46] Shinq-Jen Wu, Hsin-Han Chiang, Jau-Woei Perng, Chao-Jung
Chen, Bing-Fei Wu, Tsu-Tian Lee, et al. “The heterogeneous sys-
tems integration design and implementation for lane keeping
on a vehicle.” In: IEEE Transactions on Intelligent Transportation
Systems 9.2 (2008), pp. 246–263 (cit. on p. 12).

[47] Pei-Yung Hsiao, Chun-Wei Yeh, Shih-Shinh Huang, and Li-
Chen Fu. “A portable vision-based real-time lane departure
warning system: day and night.” In: IEEE Transactions on Vehic-
ular Technology 58.4 (2008), pp. 2089–2094 (cit. on p. 12).

[48] Abdelhamid Mammeri, Azzedine Boukerche, and Zongzhi
Tang. “A real-time lane marking localization, tracking and
communication system.” In: Computer Communications 73 (2016),
pp. 132–143 (cit. on p. 12).

[49] Massimo Bertozzi and Alberto Broggi. “GOLD: A parallel real-
time stereo vision system for generic obstacle and lane detec-
tion.” In: IEEE transactions on image processing 7.1 (1998), pp. 62–
81 (cit. on p. 13).

[50] Joel C McCall and Mohan M Trivedi. “An integrated, robust
approach to lane marking detection and lane tracking.” In: IEEE
Intelligent Vehicles Symposium, 2004. IEEE. 2004, pp. 533–537 (cit.
on p. 13).

[51] Hao Li and Fawzi Nashashibi. “Robust real-time lane detection
based on lane mark segment features and general a priori
knowledge.” In: 2011 IEEE International Conference on Robotics
and Biomimetics. IEEE. 2011, pp. 812–817 (cit. on p. 14).

112 Bibliography

[52] Juan Pablo Gonzalez and Umit Ozguner. “Lane detection using
histogram-based segmentation and decision trees.” In: ITSC2000.
2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.
00TH8493). IEEE. 2000, pp. 346–351 (cit. on pp. 14, 18).

[53] ZuWhan Kim. “Robust lane detection and tracking in challeng-
ing scenarios.” In: (2008) (cit. on pp. 14, 15, 17, 18, 20).

[54] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song,
Joel Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar,
Toki Migimatsu, Royce Cheng-Yue, et al. “An empirical evalu-
ation of deep learning on highway driving.” In: arXiv preprint
arXiv:1504.01716 (2015) (cit. on p. 15).

[55] Bei He, Rui Ai, Yang Yan, and Xianpeng Lang. “Accurate and
robust lane detection based on dual-view convolutional neutral
network.” In: 2016 IEEE Intelligent Vehicles Symposium (IV). IEEE.
2016, pp. 1041–1046 (cit. on p. 15).

[56] Ping-Rong Chen, Shao-Yuan Lo, Hsueh-Ming Hang, Sheng-
Wei Chan, and Jing-Jhih Lin. “Efficient Road Lane Marking
Detection with Deep Learning.” In: 2018 IEEE 23rd International
Conference on Digital Signal Processing (DSP). IEEE. 2018, pp. 1–5

(cit. on pp. 15, 16).

[57] Ben Southall and Camillo J Taylor. “Stochastic road shape es-
timation.” In: Proceedings Eighth IEEE International Conference
on Computer Vision. ICCV 2001. Vol. 1. IEEE. 2001, pp. 205–212

(cit. on p. 15).

[58] Amol Borkar, Monson Hayes, and Mark T Smith. “Robust lane
detection and tracking with ransac and kalman filter.” In: 2009
16th IEEE International Conference on Image Processing (ICIP).
IEEE. 2009, pp. 3261–3264 (cit. on pp. 15, 18, 19).

[59] Junhwa Hur, Seung-Nam Kang, and Seung-Woo Seo. “Multi-
lane detection in urban driving environments using conditional
random fields.” In: 2013 IEEE Intelligent Vehicles Symposium (IV).
IEEE. 2013, pp. 1297–1302 (cit. on p. 16).

Bibliography 113

[60] Vijay Gaikwad and Shashikant Lokhande. “Lane departure
identification for advanced driver assistance.” In: IEEE Transac-
tions on Intelligent Transportation Systems 16.2 (2014), pp. 910–918

(cit. on p. 17).

[61] Jing-Fu Liu, Jui-Hung Wu, and Yi-Feng Su. “Development of
an interactive lane keeping control system for vehicle.” In: 2007
IEEE Vehicle Power and Propulsion Conference. IEEE. 2007, pp. 702–
706 (cit. on pp. 17, 25, 27, 32).

[62] Soonhong Jung, Junsic Youn, and Sanghoon Sull. “Efficient lane
detection based on spatiotemporal images.” In: IEEE Transac-
tions on Intelligent Transportation Systems 17.1 (2015), pp. 289–295

(cit. on p. 17).

[63] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. “Lane
detection and tracking using B-Snake.” In: Image and Vision
computing 22.4 (2004), pp. 269–280 (cit. on p. 17).

[64] Stefan K Gehrig, Axel Gern, Stefan Heinrich, and Bernd Wolter-
mann. “Lane recognition on poorly structured roads-the bots
dot problem in California.” In: Proceedings. The IEEE 5th Interna-
tional Conference on Intelligent Transportation Systems. IEEE. 2002,
pp. 67–71 (cit. on p. 17).

[65] Joel C McCall and Mohan Manubhai Trivedi. “Video-based lane
estimation and tracking for driver assistance: survey, system,
and evaluation.” In: (2006) (cit. on pp. 18, 19).

[66] Raphaël Labayrade, Jerome Douret, Jean Laneurit, and Roland
Chapuis. “A reliable and robust lane detection system based
on the parallel use of three algorithms for driving safety as-
sistance.” In: IEICE transactions on information and systems 89.7
(2006), pp. 2092–2100 (cit. on pp. 18, 19).

[67] Seokjun Kang and Dong Seog Han. “Traffic Lane Estimation
using Road Width Information.” In: 2017 IEEE 7th International
Conference on Consumer Electronics-Berlin (ICCE-Berlin). IEEE.
2017, pp. 53–54 (cit. on p. 18).

114 Bibliography

[68] Jung Gap Kuk, Jae Hyun An, Hoyong Ki, and Nam Ik Cho.
“Fast lane detection & tracking based on Hough transform with
reduced memory requirement.” In: 13th International IEEE Con-
ference on Intelligent Transportation Systems. IEEE. 2010, pp. 1344–
1349 (cit. on p. 18).

[69] Qing Li, Nanning Zheng, and Hong Cheng. “Springrobot: A
prototype autonomous vehicle and its algorithms for lane detec-
tion.” In: IEEE Transactions on Intelligent Transportation Systems
5.4 (2004), pp. 300–308 (cit. on p. 18).

[70] Christian Lipski, Bjorn Scholz, Kai Berger, Christian Linz, Timo
Stich, and Marcus Magnor. “A fast and robust approach to
lane marking detection and lane tracking.” In: 2008 IEEE South-
west Symposium on Image Analysis and Interpretation. IEEE. 2008,
pp. 57–60 (cit. on p. 18).

[71] Pei-Chen Wu, Chin-Yu Chang, and Chang Hong Lin. “Lane-
mark extraction for automobiles under complex conditions.”
In: Pattern Recognition 47.8 (2014), pp. 2756–2767 (cit. on p. 19).

[72] Min Tian, Fuqiang Liu, and Zhencheng Hu. “Single camera
3D lane detection and tracking based on EKF for urban intelli-
gent vehicle.” In: 2006 IEEE International conference on vehicular
electronics and safety. IEEE. 2006, pp. 413–418 (cit. on p. 19).

[73] Yong Zhou, Rong Xu, Xiaofeng Hu, and Qingtai Ye. “A robust
lane detection and tracking method based on computer vision.”
In: Measurement science and technology 17.4 (2006), p. 736 (cit. on
p. 20).

[74] Vijay John, Zheng Liu, Seiichi Mita, Chunzhao Guo, and Kiyosumi
Kidono. “Real-time road surface and semantic lane estimation
using deep features.” In: Signal, Image and Video Processing 12.6
(2018), pp. 1133–1140 (cit. on p. 20).

[75] Philip Koopman and Michael Wagner. “Autonomous vehicle
safety: An interdisciplinary challenge.” In: IEEE Intelligent Trans-
portation Systems Magazine 9.1 (2017), pp. 90–96 (cit. on p. 21).

Bibliography 115

[76] Sadayuki Tsugawa. “Vision-based vehicles in Japan: Machine
vision systems and driving control systems.” In: IEEE Trans-
actions on industrial electronics 41.4 (1994), pp. 398–405 (cit. on
p. 23).

[77] Alireza Khodayari, Ali Ghaffari, Sina Ameli, and Jamal Flahat-
gar. “A historical review on lateral and longitudinal control of
autonomous vehicle motions.” In: 2010 International Conference
on Mechanical and Electrical Technology. IEEE. 2010, pp. 421–429

(cit. on p. 23).

[78] Richard S Wallace, Anthony Stentz, Charles E Thorpe, Hans P
Moravec, William Whittaker, and Takeo Kanade. “First Results
in Robot Road-Following.” In: IJCAI. Citeseer. 1985, pp. 1089–
1095 (cit. on p. 24).

[79] Matthew Turk, DAVIDG Morgenthaler, Keith Gremban, and
Martin Marra. “Video road-following for the autonomous land
vehicle.” In: Proceedings. 1987 IEEE International Conference on
Robotics and Automation. Vol. 4. IEEE. 1987, pp. 273–280 (cit. on
p. 24).

[80] Darwin Kuan and UMAKANT Sharma. “Model based geomet-
ric reasoning for autonomous road following.” In: Proceedings.
1987 IEEE International Conference on Robotics and Automation.
Vol. 4. IEEE. 1987, pp. 416–423 (cit. on p. 24).

[81] Jürgen Manigel and W Leonhard. “Vehicle control by computer
vision.” In: IEEE Transactions on industrial electronics 39.3 (1992),
pp. 181–188 (cit. on p. 24).

[82] Bakhtiar B Litkouhi, Allan Y Lee, and Douglas B Craig. “Estima-
tor and controller design for lanetrak, a vision-based automatic
vehicle steering system.” In: Proceedings of 32nd IEEE Conference
on Decision and Control. IEEE. 1993, pp. 1868–1873 (cit. on p. 24).

[83] Ju Yong Choi, Seong Jae Hong, Kyoung Taik Park, Wan Suk Yoo,
and Man Hyung Lee. “Lateral control of autonomous vehicle by
yaw rate feedback.” In: KSME international journal 16.3 (2002),
pp. 338–343 (cit. on p. 24).

116 Bibliography

[84] Dean Pomerleau and Todd Jochem. “Rapidly adapting machine
vision for automated vehicle steering.” In: IEEE expert 11.2
(1996), pp. 19–27 (cit. on pp. 24, 26).

[85] Sadayuki Tsugawa, Hiroaki Mori, and Shin Kato. “A lateral
control algorithm for vision-based vehicles with a moving target
in the field of view.” In: in the Field of View,” in IEEE International
Conference on Intelligent Vehicles. Citeseer. 1998 (cit. on p. 24).

[86] Jing-ming Zhang and Dian-bo Ren. “Lateral control of vehicle
for lane keeping in intelligent transportation systems.” In: 2009
International Conference on Intelligent Human-Machine Systems
and Cybernetics. Vol. 1. IEEE. 2009, pp. 446–450 (cit. on p. 25).

[87] Soichi Ibaraki, Shashikanth Suryanarayanan, and Masayoshi
Tomizuka. “Design of Luenberger state observers using fixed-
structure H/sub/spl infin//optimization and its application to
fault detection in lane-keeping control of automated vehicles.”
In: IEEE/ASME Transactions on Mechatronics 10.1 (2005), pp. 34–
42 (cit. on p. 25).

[88] Lars Hammarstrand, Maryam Fatemi, Ángel F García-Fernández,
and Lennart Svensson. “Long-range road geometry estima-
tion using moving vehicles and roadside observations.” In:
IEEE Transactions on Intelligent Transportation Systems 17.8 (2016),
pp. 2144–2158 (cit. on pp. 25, 27, 31).

[89] Whewell equation. 2019. url: https://en.wikipedia.org/wiki/
Whewell_equation (visited on 11/25/2019) (cit. on p. 30).

[90] Sung Gu Yi, Chang Mook Kang, Seung-Hi Lee, and Chung
Choo Chung. “Vehicle trajectory prediction for adaptive cruise
control.” In: 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE.
2015, pp. 59–64 (cit. on p. 31).

[91] Xinyu Wang, Mengyin Fu, Hongbin Ma, and Yi Yang. “Lat-
eral control of autonomous vehicles based on fuzzy logic.” In:
Control Engineering Practice 34 (2015), pp. 1–17 (cit. on pp. 31,
34).

https://en.wikipedia.org/wiki/Whewell_equation
https://en.wikipedia.org/wiki/Whewell_equation

Bibliography 117

[92] Stefano Arrigoni, Edoardo Trabalzini, Mattia Bersani, Francesco
Braghin, and Federico Cheli. “Non-linear mpc motion planner
for autonomous vehicles based on accelerated particle swarm
optimization algorithm.” In: 2019 AEIT International Conference
of Electrical and Electronic Technologies for Automotive (AEIT AU-
TOMOTIVE). IEEE. 2019, pp. 1–6 (cit. on pp. 33–35, 57).

[93] Sagar Behere and Martin Törngren. “A functional reference ar-
chitecture for autonomous driving.” In: Information and Software
Technology 73 (2016), pp. 136–150 (cit. on pp. 33, 34).

[94] Salim Chaib, Mariana S Netto, and Said Mammar. “H/sub/spl
infin//, adaptive, PID and fuzzy control: a comparison of con-
trollers for vehicle lane keeping.” In: IEEE Intelligent Vehicles
Symposium, 2004. IEEE. 2004, pp. 139–144 (cit. on p. 34).

[95] Joshué Pérez, Vicente Milanés, and Enrique Onieva. “Cascade
architecture for lateral control in autonomous vehicles.” In:
IEEE Transactions on Intelligent Transportation Systems 12.1 (2011),
pp. 73–82 (cit. on p. 34).

[96] Miguel Angel Sotelo. “Lateral control strategy for autonomous
steering of Ackerman-like vehicles.” In: Robotics and Autonomous
Systems 45.3-4 (2003), pp. 223–233 (cit. on p. 34).

[97] Xiaohui Li, Zhenping Sun, Dongpu Cao, Zhen He, and Qi
Zhu. “Real-time trajectory planning for autonomous urban driv-
ing: Framework, algorithms, and verifications.” In: IEEE/ASME
Transactions on Mechatronics 21.2 (2015), pp. 740–753 (cit. on
p. 34).

[98] Zhilu Chen and Xinming Huang. “End-to-end learning for lane
keeping of self-driving cars.” In: 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2017, pp. 1856–1860 (cit. on p. 35).

[99] Eder Santana and George Hotz. “Learning a driving simulator.”
In: arXiv preprint arXiv:1608.01230 (2016) (cit. on p. 35).

118 Bibliography

[100] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bern-
hard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel,
Mathew Monfort, Urs Muller, Jiakai Zhang, et al. “End to end
learning for self-driving cars.” In: arXiv preprint arXiv:1604.07316
(2016) (cit. on pp. 36, 37).

[101] Y Lecun, E Cosatto, J Ben, U Muller, and B Flepp. “Dave:
Autonomous off-road vehicle control using end-to-end learn-
ing.” In: DARPA-IPTO Final Report (2004). url: http://net-
scale.com/doc/net-scale-dave-report.pdf (cit. on p. 36).

[102] Hao Yu, Shu Yang, Weihao Gu, and Shaoyu Zhang. “Baidu
driving dataset and end-to-end reactive control model.” In: 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE. 2017, pp. 341–346

(cit. on p. 36).

[103] Road vehicles — Vehicle dynamics and road-holding ability — Vo-
cabulary. Standard. Geneva, CH: International Organization for
Standardization, Dec. 2011 (cit. on p. 42).

[104] Nick Schneider and Marius Cordts. Cityscapes Calibration. 2016.
url: https://github.com/mcordts/cityscapesScripts/blob/
master/docs/csCalibration.pdf (visited on 04/30/2019) (cit.
on p. 43).

[105] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net:
Convolutional networks for biomedical image segmentation.”
In: International Conference on Medical image computing and computer-
assisted intervention. Springer. 2015, pp. 234–241 (cit. on p. 44).

[106] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike
Liao, Vashisht Madhavan, and Trevor Darrell. “Bdd100k: A di-
verse driving video database with scalable annotation tooling.”
In: arXiv preprint arXiv:1805.04687 (2018) (cit. on p. 44).

[107] Costantino Grana, Daniele Borghesani, and Rita Cucchiara.
“Optimized block-based connected components labeling with
decision trees.” In: IEEE Transactions on Image Processing 19.6
(2010), pp. 1596–1609 (cit. on p. 53).

http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
https://github.com/mcordts/cityscapesScripts/blob/master/docs/csCalibration.pdf
https://github.com/mcordts/cityscapesScripts/blob/master/docs/csCalibration.pdf

Bibliography 119

[108] Ryan Tibshirani. Advanced Methods for Data Analysis (36-402/36-
608), Lecture notes: Smoothing Splines. 2014. url: https://www.
stat.cmu.edu/~ryantibs/advmethods/notes/smoothspline.

pdf (visited on 11/28/2019) (cit. on p. 55).

[109] Marco C Campi. “Exponentially weighted least squares iden-
tification of time-varying systems with white disturbances.”
In: IEEE Transactions on Signal Processing 42.11 (1994), pp. 2906–
2914 (cit. on p. 62).

https://www.stat.cmu.edu/~ryantibs/advmethods/notes/smoothspline.pdf
https://www.stat.cmu.edu/~ryantibs/advmethods/notes/smoothspline.pdf
https://www.stat.cmu.edu/~ryantibs/advmethods/notes/smoothspline.pdf

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	Abstract
	Sommario

	1 Introduction
	2 Line detection
	2.1 Processing pipeline for traditional systems
	2.1.1 Preprocessing
	2.1.2 Feature extraction
	2.1.3 Model fitting
	2.1.4 Tracking

	2.2 End-to-end learning-based systems

	3 Lane following
	3.1 Traditional lane following
	3.1.1 The perception problem
	3.1.2 Line models
	3.1.3 Planners and control systems

	3.2 End-to-end lane following

	4 Proposed system
	4.1 System architecture
	4.2 Line detection
	4.2.1 Data acquisition and conventions
	4.2.2 Feature extraction
	4.2.3 Feature postprocessing
	4.2.4 Model fitting
	4.2.5 Temporal consistency

	4.3 Lane parameters estimation
	4.3.1 Centerline shape
	4.3.2 Heading and lateral displacement
	4.3.3 Temporal consistency

	5 Results and evaluation
	5.1 Experimental setup
	5.1.1 Dataset

	5.2 System evaluation
	5.2.1 Qualitative results
	5.2.2 Quality of the estimation

	6 Conclusions and future work
	Bibliography

