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Abstract

Uncertainty quantification in reservoir simulation often entails the exploration
of high-dimensional parameter spaces, so that a precise characterization of
the uncertainty on outputs could be a computationally intensive problem. A
valid approach in reducing such effort resides in incorporating information re-
trieved by approximated realizations of the model under study. The coupling
of simulations with different levels of fidelity requires the knowledge of how
they correlate with respect to their input configurations, and how to model
such correlation for the scope of prediction. This thesis aims at testing the
predictive capability of a surrogate model for uncertainty quantification of
functional outputs of reservoir simulation in presence of two levels of fidelity.
The proposed methodology considers a functional cokriging predictor for the
high-level simulation outputs which takes advantage of the available data at
different fidelity levels, through the dependence structure between/within lev-
els. We introduce an alternative approach to covariance characterization for
such data, improving its estimation process in presence of several input pa-
rameters. We also propose an extensive comparison with the corresponding
univariate version (functional kriging) built with high-fidelity outputs only,
and estimate their performances for different amounts of available data. The
comparison shows that, in conditions of sparsity of high-fidelity observations,
the prediction with functional cokriging is comparable or better than its alter-
native. In comparison with univariate approaches (functional kriging), the use
of multi-fidelity cokriging allows obtaining high-quality predictions with fewer
high-fidelity outputs, resulting in a sensible reduction of computational time.
This results in an effective reduction of the required computational effort for
the construction of the surrogate model, while a reasonable level of prediction
quality is maintained.
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Sommario

La quantificazione dell’incertezza nell’ambito delle simulazioni di giacimento
spesso implica l’esplorazione di spazi ad alta dimensionalità, rendendo com-
putazionalmente intensiva una precisa caratterizzazione dell’incertezza sugli
output. Un approccio valido nel ridurre tale sforzo consiste nell’incorporare
le informazioni ottenute da realizzazioni approssimate del modello in esame.
L’accoppiamento di simulazioni con diversi livelli di fedeltà richiede la cono-
scenza di come queste correlino rispetto alle loro configurazioni di input e di
come modellare tale correlazione nell’ambito della predizione. L’obbiettivo
della tesi è quello di testare la capacità predittiva di un modello surrogato
per la quantificazione dell’incertezza degli output funzionali di simulazioni di
giacimento in presenza di due livelli di fedeltà. La metodologia proposta con-
sidera un predittore costruito tramite cokriging funzionale per gli output di
alto livello, che utilizzi i dati disponibili a diversi livelli di fedeltà e la strut-
tura di dipendenza presente tra i due livelli e tra le singole osservazioni in
ciascun livello. Introduciamo un approccio alternativo alla caratterizzazione
della covarianza per tali dati, migliorandone il processo di stima in presenza
di numerosi parametri di input. Proponiamo anche un esteso confronto con la
corrispondente versione univariata (kriging funzionale) costruita solo con out-
put ad alta fedeltà, e stimiamo le loro prestazioni al variare della quantità di
dati disponibili. Il confronto mostra che in condizioni di scarsità di osservazio-
ni di alto livello la previsione con il metodo proposto è comparabile o migliore
dell’alternativa. Inoltre, rispetto all’approccio univariato, la scelta di utilizza-
re il cokriging con diversi livelli di fedeltà permette di ottenere predizioni di
buona qualità con un minore utilizzo di output ad alta fedeltà, comportando
una sensibile riduzione del tempo di computazione. Ciò implica un efficace
abbattimento dei tempi di calcolo per la costruzione del modello surrogato,
mantenendo una ragionevole capacità predittiva.
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Introduction

The continuous development of modern technologies in computer sciences have
provided us with the ability to simulate various physical processes whose ex-
perimentation would be otherwise infeasible. However, the effective implemen-
tation of numerical approximations relies strongly on the choice of parameters
whose exact value is mostly uncertain. Reservoir simulation of oil and gas
recovery processes, for one, requires costly on-field inquiries to produce rock
samples for parameters estimation. An important part of such numerical ex-
periments is, therefore, the assessment of how uncertainty among these inputs
propagates in the simulation output. The statistical theory of uncertainty
quantification studies such problems.

Even when realistic reservoir models are available, their complexity often tra-
duces in the inability to explore adequately the whole span of parameters’
admissible values. A possible strategy to speed up the exploring procedure,
for example, could be to consider simplifications of the original model whose
demand in terms of computational resources is reduced. This approach (known
as multi-fidelity) requires the evaluation of how the two resulting outputs are
correlated, and how results from the latter model could replace the lack of
knowledge from the former’s ones.

The purpose of this thesis is to study the problem of uncertainty quantifi-
cation of functional responses when multiple levels of a computer code are
available. We approach the problem within the surrogate modeling framework
focusing in particular on statistical models, for which outputs are considered
as realizations of a stochastic process whose features are to be estimated. As
the statistical theory on complex data has gained paramount importance in
nowadays researches, we opt for an approach that studies simulation results as
functions embedded in suitable abstract spaces. In this we follow the theory
of Functional Data Analysis (FDA, [32]), which provides extensions of com-
mon statistical models (e.g. linear regression, clustering, etc.) to complex
objects, such as curves or surfaces. Following the recent developments in the
surrogate modeling research field, we concentrate our interest on techniques
that consider a dependence structure between data with respect to the spatial
displacement of the inputs. These methods are derived from the framework
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of geostatistics, a branch of statistics originally meant to model phenomena
arising in geography and geosciences. An important step in the construction
of such models is the estimate of the covariance structure of the stochastic
process under study arising from available data, which is often a delicate pro-
cess when dealing with ample uncertainty spaces. In this sense we develop an
alternative approach which exploits a cross-validation technique. The latter
approach allows avoiding the need of sample variogram estimation by focusing
on available data to optimize model parameters through minimization of the
prediction error.

We consider a functional extension of the multivariate statistical model known
as cokriging, implementing the aforementioned improvement to the original
method and comparing it to its univariate declination (functional kriging).
This is aimed at testing whether a secondary variable incorporation could
improve the results in terms of predictive capability, or reducing the computa-
tional effort in building the surrogate model lessening the amount of expensive
code runs needed. In particular we concentrate on reservoir simulation, for
which an extensive literature dealing with model approximations is available.

The thesis structure is organized as follows:

• in Chapter 1 we present a review of the literature regarding functional
extensions to kriging and cokriging and a brief introduction to surrogate
modeling and flow in porous media;

• in Chapter 2 we illustrate the theory of the selected statistical model
(functional cokriging) and describe the cross-validation procedure pro-
posed for modeling the spatial dependence;

• in Chapter 3 we describe the extensive set of synthetic case studies devel-
oped for the comparison tests and the numerical procedures to produce
their approximated counterparts;

• in Chapter 4 we present the original results concerning the comparison
tests between our method and its univariate counterpart.

The last sections is devoted to conclusions, while Appendix A presents the
original computer codes we developed for the analyses.



Chapter 1

State of the art

The aim of this Chapter is to introduce the reader to key concepts in functional
geostatistics and meta-modeling we have employed in the development of this
work. We propose a review of functional geostatistics in literature, explaining
how previous works have inspired us in the development of our approach and
what aspects of novelty our analysis brings to the overall subject. We pro-
pose also a brief introduction to modeling of flow in porous media focusing on
field properties upscaling techniques, as this is the kind of computer experi-
ments presented in order to validate our methods. A detailed discussion of the
statistical model we adopt will follow in Chapter 2.

1.1 Geostatistics for data in Hilbert spaces

In recent years the interest of the scientific community has focused on study-
ing phenomena in which continuous observations can be modeled as curves,
surfaces or more general types of functions (see Ramsay and Silverman [32]
for a complete discussion). Alternatively to the usual approach dealing with
independent identically distributed (i.i.d.) random variables, several examples
can be provided of situations in which observations are endowed with a struc-
ture of dependence with respect to time, space, or both (see Figure 1.1 for
an example). Thus the need for developing a theory for spatially dependent
functional data which can somehow expand well-known concepts of scalar and
multivariate spatial variability and spatial prediction.

1.1.1 Functional random fields

Let (Ω,F,P) be a probability space and H a separable Hilbert space endowed
with the inner product 〈·, ·〉 and the induced norm ‖·‖ (elements of H are
x : T → R, with T ⊆ R compact). A measurable function X : Ω → H

3



4 Chapter 1. State of the art
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Figure 1.1: Example of functional dataset, averages (over 5 years) of mean daily temperature
curves (right) observed at 20 cities in Lombardia, Italy (left).

whose realization x : T → R is an element of H is called functional random
variable, while the realization is the functional datum. Consider a collection
of functional random variables indexed over a subset D of Rd

{Xs, s ∈ D ⊆ Rd}, (1.1)

such a collection will be called functional random field.

In this framework, a functional dataset Xs1 , . . . ,Xsn is the collection of n ob-
servations of the random field (1.1) relative to n locations s1, . . . , sn ∈ D. In
non-trivial situations, a vector of observations X = (Xs1 , . . . ,Xsn)T is char-
acterized by a structure of spatial dependence reflecting the covariance struc-
ture of the generating random process (1.1). For 1 ≤ p ≤ ∞ denote with
Lp(Ω;H) the vector space of measurable functions X : Ω → H such that∫

Ω
‖X‖p P(dω) = E [‖X‖p] <∞ – i.e. ‖X‖ ∈ Lp(Ω) – which is a Banach space

with respect to the norm ‖X‖Lp(Ω,H) = (E [‖X‖p])1/p. Following Menafoglio
et al. [29] we recall the main operative assumption, that is

Assumption 1 (Square integrability). Each element Xs, s ∈ D of the random
field (1.1) belongs to L2(Ω;H).

Given Assumption 1, the expected value ms of the random field can be defined
by Bochner integral as

ms =

∫
Ω

X s(ω)P(dω), s ∈ D, (1.2)

while a measure of (global) spatial dependence can be defined by the covariance
function

C(si, sj) := Cov(Xsi ,Xsj) = E
[
〈Xsi −msi ,Xsj −msj〉

]
, si, sj ∈ D (1.3)

which induces naturally the concepts of (global) variance and semivariogram,
respectively

σ2(s) = E
[
‖Xs −ms‖2] , s ∈ D, (1.4)
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γ(si, sj) =
1

2
Var(Xsi −Xsj), si, sj ∈ D. (1.5)

These functions preserve the same properties as their finite-dimensional ana-
logue (see Chilès and Delfiner [9]). Moreover there is a strict relation between
global covariance and semivariogram with their operatorial counterparts, in
that they represent the trace of the corresponding operator (see Menafoglio
et al. [29] for a theoretical justification), therefore they are also known respec-
tively as trace-covariance and trace-semivariogram.

Concerning the notion of stationarity and isotropy, global definitions can be
stated as follows:

Definition 1. A process {Xs, s ∈ D ⊆ Rd} is said to be (globally) second
order stationary if the following conditions hold:

(i) E [Xs] = m, ∀s ∈ D ⊆ Rd;

(ii) Cov(Xsi ,Xsj) = E
[
〈Xsi −msi ,Xsj −msj〉

]
= C(h), ∀si, sj ∈ D ⊆ Rd

where h = si − sj.

A process is {Xs, s ∈ D ⊆ Rd} is said to be (globally) intrinsically stationary
if the following hold:

(i) E [Xs] = m, ∀s ∈ D ⊆ Rd;

(ii’) Var(Xsi − Xsj) = E
[∥∥Xsi −Xsj

∥∥2
]

= 2γ(h), ∀si, sj ∈ D ⊆ Rd where
h = si − sj.

Definition 2. A second order stationary process {Xs, s ∈ D ⊆ Rd} is said to
be isotropic if

Cov(Xsi ,Xsj) = C(‖h‖), ∀si, sj ∈ D ⊆ Rd, h = si − sj, (1.6)

where ‖·‖ is a norm on D.

The concept of global trace-semivariogram was already present in a pointwise
formulation in Giraldo et al. [16], then Menafoglio et al. [29] provided the
aforementioned definition which extends the previous one to more complex
situations, e.g. when data can be embedded in a generic Sobolev space.

1.1.2 Kriging and Cokriging for real-valued data

Kriging [27] is a minimum-mean-squared-error method of spatial prediction.
It (usually) depends on second order properties of the stochastic process Z(·)
under study, which is known up to a set of observations Z = (Zs1 , . . . , Zsn).
Assuming a structure of spatial dependence between observations, the aim
of kriging is to predict the response at an “unvisited” site s0 with a linear
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combination of available data, that is

Z?
s0

=
n∑
i=1

λiZsi . (1.7)

The choice of weights for the interpolation is performed solving the following
constrained minimization problem:

min
λ1,...,λn∈R

E
[
(Z?

s0
− Zs0)

2
]

subject to: E
[
Z?

s0
− Zs0

]
= 0.

(1.8)

Cokriging is the multivariate extension of kriging in presence of secondary data
that show spatial correlation with the primary variable, often preferred when
the main attribute of interest is sparse while related secondary informations are
abundant. Given the available data {Z(k) = (Z

(k)
s1 , . . . , Z

(k)
snk

); k = 1, . . . , K}
measured at sample locations si, . . . , snk

(which are not constrained to be in the
same position nor the same amount for each variable) the cokriging predictor
for the j-th component Z(j)

s0 takes the following form:

Z(j)?
s0

=
K∑
k=1

nk∑
i=1

λ
(k)
i Z(k)

si
. (1.9)

As for the univariate approach, optimal weights are computed solving mini-
mization problem (1.8).

Depending on the degree of stationarity assumed for the underlying process,
kriging can be applied through different methods (see Cressie [10] and Chilès
and Delfiner [9] for a complete discussion) such as:

• ordinary kriging, in which a constant unknown mean is assumed through-
out the whole domain;

• universal kriging, in which the process is modeled as sum of a determinis-
tic term (drift), such as a linear trend model based on known covariates,
and a zero-mean stochastic term (residual):

Zs = ms + δs =
L∑
l=0

βlfl(s) + δs. (1.10)

Both methods can be extended to cokriging, assuming a similar decomposition
for each component k of the multivariate process:

Z(k)
s = m(k)

s + δ(k)
s =

L∑
l=0

βkl f
k
l (s) + δ(k)

s , k = 1, . . . , K, (1.11)

which includes the ordinary cokriging case when L = 0 and fk0 (s) = 1 for each
location s.
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1.1.3 Kriging and Cokriging for functional data review

The first attempt in functional geostatistics is proposed by Goulard and Voltz
[19], who consider functions known up to a finite and small set of points.
Observations are thus embedded in a classic multivariate framework, and two
approaches are presented: either performing a cokriging prediction and then
reconstructing the shape of the whole unsampled curve fitting a parametric
model (Cokrige first, Fit later Predictor or CFP) or fitting a parametric model
over the whole sample of curves and predicting the parameters at an unsampled
site (Fit first, Cokrige later Predictor of FCP). While the former method relies
strongly on the assumption that prediction of individual values would honour
the shape of the curve and constrains the analysis only on equally-sampled
curves, the latter assumes that all curves can be satisfactorily fitted with the
same parametric model, though relaxing the need of equal sampling for all
observations in the sample. Goulard and Voltz proposed also a fully-functional
approach to kriging (Curve Kriging Predictor or CKP), defining the predictor
for curves in a temporal domain T as

X ?
s0

(t) =
n∑
i=1

λi(t)Xsi(t), t ∈ T, (1.12)

and carrying out the computation of empirical variogram through numerical
integration or fitting a parametric model.

CKP approach was recovered and developed by Giraldo et al. [17] who im-
proved the smoothing process by means of a functional extension of Leave-One-
Out Cross-Validation [35] along with the introduction of basis representation
for both observations and weights, namely

Xsi(t) =
L∑
l=1

ailBl(t), i = 1, . . . , n, t ∈ T, (1.13)

λi(t) =
L∑
l=1

bilBl(t), i = 1, . . . , n, t ∈ T, (1.14)

where {Bl(t)}Ll=1 are appropriate basis functions (e.g. Fourier basis functions or
B-splines). The use of finite dimensional representation allows to reduce func-
tional prediction to a multivariate problem, resembling therefore FCP tech-
nique, while the choice for a proper number L of basis functions is performed
through Cross-Validation or other standard approaches in FDA framework (see
Ramsay and Silverman [32] for a complete discussion).
Another approach exploiting basis expansion is the one of Nerini et al. [30], in
which the proposed expansion for weights is the following:

λi(t, v) =
L∑
j=1

L∑
l=1

cijlBj(t)Bl(v), t, v ∈ T. (1.15)
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This choice of weights allows to build an infinite-dimensional extension to
cokriging predictor, namely

X ∗s0(t) =
n∑
i=1

∫
T

λi(t, v)Xsi(v)dv, t ∈ T, (1.16)

which is known as cokriging predictor based on functional data. In both cases,
however, the choice of basis expansion could produce difficulties in estimating
unidirectional (marginal) variograms and consequently fitting Linear Models
of Coregionalization [9] due to high dimension [20].

Bohorquez et al. [3] introduced a representation for curves through Empirical
Functional Principal Components [21], which allows to work with an orthogo-
nal basis, i.e. the eigenfunctions {ξk(t)}Kk=1 of the covariance operator of Xs

C(Y) = E[〈Xs,Y〉Xs], Y ∈ L2, (1.17)

and to represent curves with their associates principal components scores,
namely

fj(si) = 〈Xsi , ξj〉, j = 1, . . . , K, i = 1, . . . , n. (1.18)

This approach reduces significantly the number of basis functions needed to
represent observations while keeping a fairly good approximation of them,
mostly due to the suitable property of variance maximization along those di-
rections.

After these attempts to coerce functional observations into a classic multi-
variate setting, several authors proposed a much general framework in which
functional observations are considered as elements of suitable abstract spaces.
This new paradigm known as Object-Oriented Data Analysis or OODA (see
Marron and Alonso [26] for a recent review), although more complex from
the technical point of view, allow to exploit all the information embedded in
data incorporating raw observations in the estimation process, while former
techniques required “lossy” data representations.

Following this approach, Menafoglio et al. [29] developed the framework for
functional random fields shown in Section 1.1.1, recovering the CKP predic-
tor (1.12) and solving the original minimization problem (1.8) in light of the
new setting. Another improvement was the proposal of an iterative algorithm
to overcome the issue of estimating both drift component and spatial depen-
dence structure of a non-stationary process, which extended the approach of
Caballero et al. [8] and Ignaccolo et al. [22].

Finally, Bohorquez et al. [4] and Grujic et al. [20] extended the analysis to
multivariate functional random fields, namely

{Ξs, s ∈ D ⊆ Rd}, (1.19)
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where Ξs = (X 1
s (t), . . . ,X P

s (t)) are elements of HP = H⊕ · · · ⊕H, direct sum
of abstract spaces (e.g., Hilbert or Sobolev space). While the former explored
only the case of constant mean processes, the latter embraced the lesson of
Menafoglio et al. [29] and developed a complete framework for universal co-
kriging of functional data, which can benefit from secondary informations in
prediction that are not even constrained to belong to the same abstract space,
e.g. mixing functional observations with scalar ones. For the development of
our analysis we will follow the latter approach, which will be detailed in Chap-
ter 2, as it allows to preserve all the information within observations, giving us
a greater flexibility in modeling spatial behaviours and relationship between
primary and secondary data.

1.2 Meta-modeling in computer simulation

Since the beginning of computer simulation as a way to overcome limits of
physical experimentation, often too complex or even infeasible for some pro-
cesses, assessing the relationship between inputs and outputs of a simulation
has been of primary importance. Mathematical models (and their computer
counterparts) have reached a considerable level of complexity, which often im-
plies a significant computational effort: this, paired with the uncertainty over
input parameters involved in modeling, has made the exploration of the whole
input space an infeasible yet necessary step for the majority of numerical mod-
els exploited nowadays.

1.2.1 Surrogate modeling

One of the most developed approaches to the issue relies on the construction
of meta-models (also known as surrogate models), approximations of the full
numerical model built from a small set of simulations, which allow to obtain a
“cheap” response (in terms of computational effort) useful in several processes
as prediction, uncertainty quantification and parameter optimization. One of
the approaches first proposed in the literature on this matter is the response
surfaces method [6], which entails fitting scalar simulation outputs with a
polynomial (usually of second-order) through linear regression.

In recent years the literature on this matter has been largely developed, with
several proposals spacing from improvements to the aforementioned response
surfaces to cutting-edge methods involving machine learning and neural net-
works (see Yeten et al. [39], Forrester and Keane [15] and Aliyev and Durlof-
sky [2] for an overview of principal methodologies). Among these techniques
kriging-based approaches, exploiting spatial dependence of outputs with re-
spect to their input configurations’ mutual distances, have gained great im-
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portance as an effective way to reduce computational effort and the overall
number of simulations of the original code.

1.2.2 Multi-fidelity modeling

An important improvement in meta-modeling theory was the introduction of
the concept of multi-fidelity simulation. This paradigm consists on building
several copies of the same code with different levels of complexity, e.g. vary-
ing the amount of underlying modeled physics or the size of single discrete
units of computation. Therefore it is possible to provide for the same input
configuration several outputs mutually correlated and with different demand
for computational resources. In this sense, each level provides an improving
approximation of the underlying processes involved, going from a broader and
computationally efficient one (usually indicated as low-fidelity or lo-fi) to the
finest and most computationally intensive available (high-fidelity or hi-fi).

Kennedy and O’Hagan [23] proposed to build a surrogate model exploiting sev-
eral levels of code and assuming a structure of covariance between them, giving
rise to a “dependency chain” in which each higher-fidelity level is related to the
subsequent one by an autoregressive model. The resulting prediction of a hi-fi
output at an unsampled configuration is a function of both other existing hi-fi
samples and lower level ones obtained from the same input configuration. This
technique shares, albeit from a bayesian point of view, the same theoretical
framework of kriging, leading to a similar predictor and providing the same
estimate of the variance.

On these initial assumptions several authors have studied the multi-fidelity
approach as a technique to further reduce the computational effort of building a
surrogate, extending the analysis from the original scalar problem by Kennedy
and O’Hagan to multi-dimensional outputs and even functional ones in several
context such as fluid dynamics or geosciences (see e.g. Thenon et al. [37] for
an application in reservoir engineering).

In this work we focus the analysis on functional outputs in presence of two
levels of fidelity in computer code, building the functional cokriging predictor
described by Grujic et al. [20]. This approach is used to estimate outputs
across input space and relative uncertainty over input parameters. Our choice
is motivated by three main aspects:

• great flexibility of cokriging with respect to other methods, since the
technique allows to study both stationary and non-stationary processes;

• the property of being an exact interpolator, i.e, predicting the response
at any sampled location produce the simulation output itself, which is
desirable when dealing with totally deterministic algorithms;
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Figure 1.2: Example of grid discretization of Norne reservoir model, coloured by cells poros-
ity (left) and log-permeability (right).

• the possibility of working with functional observation without any pre-
processing step, while other methods require scalar or at most vectorial
output, which often entails a higher level of information loss.

1.3 Reservoir simulation of geological models

Simulation of an oil reservoir refers to the construction of a mathematical
model, i.e. a set of equations subject to certain assumptions, that describes
the physical processes taking place in a reservoir. These models are usu-
ally formulated in terms of coupled Ordinary or Partial Differential Equa-
tions (ODEs/PDEs) over a continuous domain, which can be subsequently
discretized into a grid representation (see Figure 1.2 for an example) and solved
with schemes such as Finite Elements [24] or Finite Volume methods [14] in
order to produce an approximation of the solution for the general equations.

1.3.1 Mathematical model

The theoretical framework of reservoir modeling is the description of fluid flow
in porous media, which is characterized by two main equations:

• macroscopic fluid mass conservation:

∂ (Φρ)

∂t
+∇ · (ρu) = m̃, (1.20)

where Φ is the porosity of the reservoir, ρ and u respectively the fluid’s
density and macroscopic velocity and m̃ a source/sink term;

• Darcy’s Law of fluid flow in porous media [11]:

u = −K

µ
(∇p− ρg) , (1.21)
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where u is fluid’s velocity, ρ, p and µ respectively its density, pressure and
viscosity, K the symmetric tensor of absolute permeability (or hydraulic
conductivity) [1] and g the gravity vector.

The two equations coupled under the assumption of constant density allow to
derive the pressure equation:

−∇ ·
[

K

µ
(∇p− ρg)

]
= q̃, (1.22)

which can provide the steady-state behaviour of the model in terms of pressure
and velocity in presence of a single-phase flow (e.g., water, oil or gas).

The equations describing two-phase flow can be derived writing Darcy’s law
for each phase, i.e., in absence of gravity:

uj = −krj
µj
∇pj, (1.23)

where j refers to the phase and krj is the relative permeability [1] of the j-th
phase (j = w for water and j = o for oil). The former equation is paired with
mass conservation for each phase expressed in terms of saturation (volume
fraction) Sj:

∂ (ΦρjSj)

∂t
+∇ · (ρjuj) = m̃j, (1.24)

which, under the assumption of constant density and negligible capillary pres-
sure (i.e. pc(Sw) = pw − po = 0), gives the following system of equations:

∂Sw
∂t

+∇ · [utf (Sw)] = q̃w

−∇ · [λt (Sw) K∇p] = q̃t,
(1.25)

where ut is the total fluid velocity, λt = krw
µw

+ kro
µo

is the total mobility and f(Sw)

is the Buckley-Leverett fractional fluid function [7]. Another mathematical
model for reservoir simulation is the black-oil model [38], which generalizes the
aforementioned ones to situations involving a gaseous phase and the presence
of dissolved gas into oil. In this work we will exploit the latter model, since
our interest is to simulate processes in which are involved both water, oil and
gas phases.

1.3.2 Upscaling techniques

Given the fine scale nature of field properties, such as rock porosity or perme-
ability, realistic reservoir models involve a large number of computational cells.
This fine scale description could make the simulation costly from the compu-
tational point of view, while the uncertainty over parameters (often generated
from a few field measurements) should require several runs to produce a cor-
rect estimate of the output. One way to reduce single-run computational cost
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is to consider a coarse realization of the reservoir with few cells, estimating the
equivalent properties value of a coarse scale cell from the fine-scale cells laying
within. We distinguish between three main approaches:

• purely local procedures, in which coarse scale parameters are computed
by considering only the fine scale region corresponding to the target coarse
block;

• global procedures, in which the whole fine scale model is simulated for
the calculation of coarse scale parameters;

• extended local procedures, in which a region corresponding to each coarse
scale plus a border (or ring) is considered when computing upscaled pa-
rameters.

Upscaling procedures largely depend on the setting of reservoir and types of
flow considered: while single-phase flow needs the upscaling of porosity and
absolute permeability, two-phase flow requires also relative permeability to be
upscaled. However, it is possible to obtain an accurate coarse scale model for
a two-phase flow upscaling only porosity and absolute permeability, neglecting
the contribution of relative permeability in the procedure and leading to a
more efficient computation of the coarse model: some theoretical justifications
to this approach are presented in Durlofsky [13]. The adopted upscaling scheme
in this work is the following:

• porosity on the coarse scale will be computed simply averaging fine scale
values over each target coarse block, since it suffices to ensure that pore
volume is conserved between different scales;

• permeability will be upscaled with a single-phase equivalent volume flow
approach (see Rizzo [34, Chapter 2] for a technical discussion), therefore
taking into account only absolute permeability, which is consistent with
the aforementioned results.





Chapter 2

Universal Trace-Cokriging for
functional data

The aim of this chapter is to present the problem of optimal spatial predic-
tion for multivariate functional random fields and develop a universal Trace-
Cokriging method from the theoretical point of view, detailing the mathemati-
cal formulation of the predictor, the analytical solution to the problem and the
available approaches to parameters inference. In this work we will follow the
approach of Menafoglio et al. [29] and Grujic et al. [20] for the development of
the predictor, introducing a cross-validation approach to range optimization
within the fitting of valid covariance models.

2.1 Theoretical framework

LetHk, k = 1, . . . , K a separable Hilbert space endowed with the inner product
〈·, ·〉Hk

and D a Euclidean spatial domain in Rd, d ≥ 1. Given a probability
space (Ω,F ,P) we indicate by X (k)

s , where s is a spatial index overD, a random
element on (Ω,F ,P) in Hk. Since we will consider multivariate random fields,
we denote with {X s, s ∈ D} a multivariate random process on (Ω,F ,P) taking
values in the Cartesian space HK = H1 ×H2 × . . . HK : each element X s is a
vector of K random elements in H1, . . . , HK respectively:

X s =
(
X (1)

s , . . . ,X (K)
s

)T
. (2.1)

To define first and second order properties of the field we proceed by analogy
with the classical framework described in Chapter 1, calling ms ∈ HK the
spatial mean of the process at location s in D, that is:

ms = E [X s] =
(
m(1)

s , . . . ,m(K)
s

)T
, m(k)

s = E
[
X (k)

s

]
, (2.2)

15



16 Chapter 2. Universal Trace-Cokriging for functional data

and defining the map C : D ×D → RK×K that determines the trace-covario-
grams and cross-trace-covariograms as follows:

(s,u) 7→ C (s,u) ∈ RK×K

Ckl (s,u) = E
[
〈X (k)

s −m(k)
s ,X (l)

u −m(l)
u 〉
]
.

(2.3)

In this work we assume that every element X (k)
s of the multivariate process X s

is non stationary, i.e., it can be represented as a sum of a deterministic mean
(drift) and a zero-mean globally second order stationary residual

X (k)
s = m(k)

s + δ(k)
s , (2.4)

where drift term is assumed to be non-constant within space D and it is mod-
eled as a functional linear model

m(k)
s =

L∑
l=0

a
(k)
l fl(s) (2.5)

where a(k)
l are (functional) coefficients in Hk and fl(·) scalar regressors known

over the entire domain D. Furthermore, we assume that residuals are globally
second order stationary in the sense of Menafoglio et al. [29], that is, the mul-
tivariate trace-covariogram structure depends only on the increments between
locations:

C (s,u) = C̃ (s− u) ∀s,u ∈ D, (2.6)

for some map C̃ : D → RK×K , which for ease of notation will be denoted
hereafter simply by C.

2.2 Predictor equations

Consider a series of measurement locations s1, . . . , sNj
(j = 1, . . . , K) over the

domain D and the partial observation X (j)
s1 , . . . ,X

(j)
sNj

of the j-th component of
the multivariate process at these locations. Under the former assumption, the
aim of trace-cokriging is to predict the k-th element X (k)

s0 of X s at a target
location s0 in D with the best linear unbiased predictor within the class of
linear predictors of the form:

X (k)λ
s0

=
K∑
j=1

Nj∑
i=1

λjiX (j)
si
. (2.7)

In order to find the optimal weight λ?ji, j = 1, . . . , K, i = 1, . . . , Nj, we proceed
by solving the constrained optimization problem of minimizing mean square
error of prediction under the unbiasedness constraint, that is:

min
λji∈R

j=1,...,K
i=1,...,Nj

E
[∥∥X (k)λ

s0
−X (k)

s0

∥∥2
]

subject to: E
[
X (k)λ

s0
−X (k)

s0

]
= 0.

(2.8)
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Recalling the random element decomposition (2.4) and (2.5) we can write

E
[
X (k)λ

s0

]
=

K∑
j=1

Nj∑
i=1

λjim
(j)
si
, (2.9)

so that the unbiasedness constraint in (2.8) reads as

Nk∑
i=1

λkifl(si) = fl(s0) ∀l = 0, . . . , L;

Nj∑
i=1

λjifl(si) = 0 j 6= k, ∀l = 0, . . . , L.

(2.10)

The objective functional in (2.8) can be expanded in terms of the trace- and
cross-trace-covariograms as

E
[∥∥X (k)λ

s0
−X (k)

s0

∥∥2
]

= Ckk (0)

+
K∑
j=1

Nj∑
i=1

K∑
j′=1

N ′j∑
i′=1

λjiλj′i′Cjj′ (si − si′)

− 2
K∑
j=1

Nj∑
i=1

λijCkj (si − s0) ,

(2.11)

while performing a Lagrangian relaxation, introducing K (L+ 1) multipliers
to account for the constraint, leads to the following equation:

E
[∥∥X (k)λ

s0
−X (k)

s0

∥∥2
]

= Ckk (0)

+
K∑
j=1

Nj∑
i=1

K∑
j′=1

N ′j∑
i′=1

λjiλj′i′Cjj′ (si − si′)

− 2
K∑
j=1

Nj∑
i=1

λijCkj (si − s0)

+ 2
L∑
l=0

µkl

(
Nk∑
i=1

λkifl(si)− fl(s0)

)

+ 2
L∑
l=0

K∑
j=1
j 6=k

µjl

 Nj∑
i=1

λjifl(si)

 .

(2.12)
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After taking partial derivatives of (2.12) with respect to variables λ and µ we
obtain the following system of linear equations:

K∑
j=1

Nj∑
i=1

λjiCjj′ (si − si′) +
L∑
l=0

µj′lfl (si) = Cj′k (si′ − s0) ,

∀j′ = 1, . . . , K, ∀i′ = 1, . . . , Nj′ ;

Nk∑
i=1

λkifl(si) = fl(s0) ∀l = 0, . . . , L;

Nj∑
i=1

λjifl(si) = 0 j 6= k, ∀l = 0, . . . , L.

(2.13)

When k = 1, system (2.13) can be expressed in matrix form as follows:

C11 C12 · · · C1K F1 0 · · · 0

C21 C22 · · · C2K 0 F2 · · · 0
...

... . . . ...
...

... . . . ...
CK1 CK2 · · · CKK 0 0 · · · FK
F T

1 0 · · · 0 0 0 · · · 0

0 F T
2 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

... . . . ...
...

... . . . ...
0 0 · · · F T

K 0 0 · · · 0





λ1

λ2

...
λK

µ1

µ2

µ3

...
µK


=



c10

c20

...
cK0

f01

0

0
...
0


(2.14)

where
[Cmn]ij = Cov

(
X (m)

si
,X (n)

sj

)
= Cmn (si − sj) ,

Fj =


f0 (s1) f1 (s1) · · · fL (s1)

f0 (s2) f1 (s2) · · · fL (s2)
...

...
...

...
f0

(
sNj

)
f1

(
sNj

)
· · · fL

(
sNj

)

 ,

λj =


λj1

λj2
...

λjNj

 , µj =


µj0

µj1
...
µjL

 ,

cj0 =


Cjk (s1 − s0)

Cjk (s2 − s0)
...

Cjk
(
sNj
− s0

)

 , f0j =


f0 (s0)

f1 (s0)

· · ·
fL (s0)

 .
Solving the linear system with respect to λ’s and µ’s allow to obtain the desired
best linear unbiased predictor X (k)?

s0 =
∑K

j=1

∑Nj

i=1 λ
?
jiX

(j)
si with the associated
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trace-variance given by

σ2
k (s0) = Ckk (0)−

K∑
j=1

Nj∑
i=1

λjiCkj (si − s0) +
L∑
l=0

µklfl (s0) . (2.15)

2.3 Parameters inference

The strategy for parameter inference can be analogous to that performed in
conventional multivariate cokriging: functional regression [32] is used to esti-
mate functional drift for each element of the multivariate functional data, e.g.
performing ordinary least squares regression. Then, estimates of trace-auto
and trace-cross covariances are computed on the estimated functional resid-
uals and admissible covariance structures are fitted with the linear model of
coregionalization (LMC, Goovaerts [18]).

Given the assumption of spatial dependence between observations, improve-
ments on drift and residuals estimation can be obtained by a generalized least
squares approach. However, the latter is possible only after an estimation of
the structure of spatial dependence, so that an iterative algorithm needs to
be performed in order to jointly estimate drift and spatial dependence: this
procedure is described in Algorithm 1.

Algorithm 1. Given a realization x(k) = (x
(k)
s1 , . . . , x

(k)
sn ) of the k-th compo-

nent of the non-stationary multivariate functional random field {X s, s ∈ D}
representable as in (2.4):

1. estimate drift vector m through Ordinary Least-Squares method and set
m̂s := m̂OLS

s ;

2. compute residual estimate δ̂ = (δs1 , . . . , δsn) by difference δ̂ = x− m̂;

3. estimate the trace-semivariogram γ(·) of the residual process {δs, s ∈ D ⊆
Rd} from δ̂, fit a valid LMC γ(·, θ̂) and derive the estimate Σ̂ of Σ;

4. estimate drift vector m̂ through Generalized Least-Squares method taking
as covariance matrix Σ̂;

5. repeat 2.-4. until convergence has been reached.

After drift estimation it is possible to proceed with the estimate of dependence
structure in the stationary case, obtained by replacing to the observations
the estimated residuals computed with Algorithm 1. In this case auto and
cross-covariance estimation can be performed by means of trace-variography
approach by Menafoglio et al. [29], which formulate the following estimators:

• trace variogram estimator:

γk,k(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

∥∥∥X (k)
si
−X (k)

sj

∥∥∥2

; (2.16)
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• trace cross-variogram estimator:

γk,l(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

〈
X (k)

si
−X (k)

sj
,X (l)

si
−X (l)

sj

〉
; (2.17)

where N(h) denotes the set of pairs (i, j) approximately separated by a vector
h, i.e., such that si − sj ∼ h. In practice, inference and fitting over high
dimensional input spaces is limited to omni-directional variograms due to the
well-known curse of dimensionality [12]. Other estimators are available in lit-
erature for cross-variograms estimation (e.g. pseudo trace cross-variogram es-
timator [20]), the choice of which depends on the assumptions of the statistical
model and the design of the experiment under study. In this work we choose
the estimator defined in Equation (2.17) given the isotopic nature of data in
reservoir experiments, i.e., the set of locations in which the primary variable
is measured is a subset of the one in which secondary variables measurements
are available.

The process of fitting trace-variogram and trace cross-variogram with a valid
LMC, i.e., the estimate of optimal parameters value within a given family
of valid models, is usually performed through maximum likelihood or least
squares procedures ([10, Sect 2.6]). When dealing with high dimensional input
spaces this task can be difficult due to sparsity of available sampled locations.
This issue, especially present in cases when data come from computationally
expensive computer code, often results in the lack of good fit and predictive
capability of geostatistical models. In the following analysis we will consider
a cross-validation approach to variogram fitting, in particular we will select
a family of valid models and focus on optimal range estimation. We discard
sill optimization since it is possible to show that both kriging and cokriging
prediction is invariant with respect to the choice of sill, so that we consider
this parameter fixed. The procedure we adopt is detailed in Algorithm 2.

Algorithm 2. Given a realization x = (xs1 , . . . , xsn) of the multivariate func-
tional random field {X s, s ∈ D}, a valid LMC γ(·, r) and a set of Nr candidate
range values r1, . . . , rNr :

1. split available training data into K subsets ( folds) T1, . . . , TK;

2. for each range rj, build K cokriging predictors X ?(−k)
s with training data

X \ Tk and covariance model γ(·, rj);

3. compute the average cross-validation sum of squared errors

SSEj =
K∑
k=1

SSE
(k)
j =

1

K

K∑
K=1

∑
i∈Tk

∥∥X ?(−k)
si

− xsi

∥∥2
(2.18)

4. choose j? such that j? = arg minj=1,...,Nr
SSEj.



Chapter 3

Synthetic reservoir models
generation

The aim of this Chapter is to present the set of synthetic reservoir models
used in testing our approach. All scenarios are derived from the model SPE1
of Society of Petroleum Engineers (SPE) project for comparative solutions
and benchmarks. For each scenario we will detail field properties, simulation
scheme and the upscaling procedure performed to obtain coarser realization
necessary to following testing. All the simulations performed in this work
exploit the reservoir simulator OPM Flow [33], a fully-implicit black-oil simu-
lator. Upscaling is performed with the upscaling module of MRST reservoir
simulator [25], a set of routines for single and two-phase upscaling. In order
to solve the fluid flow problem, several input data must be set, distinguished
into two type: external data and field data. Some examples of external data
are the injection and production well positions, which can be varied for fea-
sibility studies over new reservoirs or to optimize the oil production in the
existing ones. Field data are quantities such as porosity and permeability,
which characterize the reservoir.

3.1 SPE1 model

The SPE Comparative Solution Project (www.spe.org/web/csp) is a compar-
ative solution projects organised by the Society of Petroleum Engineers. The
purpose of the projects has been to provide benchmark datasets which can
be used to compare the performance of different simulators or algorithms. In
particular, SPE1 reservoir model is an example of black oil reservoir simula-
tion derived by a comparison study in Odeh [31]. It is also part of the open
access datasets of the OPM project (available at https://github.com/OPM/
opm-data.git). The structure is a regular Cartesian grid of 100 × 100 × 3
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Figure 3.1: SPE1 model grid coloured by layers quote, dimensions are expressed in field
units (feet).

Property Value

Initial reservoir pressure (psia @8400ft) 4800
Gas injection rate (MMSCF/D) 100
Maximum oil production rate (STB/D) 20000
Minumum oil rate (STB/D) 1000
Minimum flowing bottomhole pressure (psi) 1000
Wellbore radius (ft) 0.25
Skin (–) 0
Capillary pressure (psia) 0
Reservoir temperature (◦F) 200
Gas specific gravity (–) 0.792

Table 3.1: Reservoir properties of SPE1 model.

hexaedral elements (cells) of dimension 100 ft along x and y-axis with variable
thickness (respectively 20, 30 and 50 ft) along the z-axis. The reservoir is
provided with two wells, as it is portrayed in Figure 3.1:

• one gas injector located at Grid Point (1,1) on Layer 1,

• one oil producer at Grid Point (100,100) on Layer 3.

Data related to initial conditions of the reservoir and production constraints
are listed in Table 3.1. The model is endowed with two phases, oil and gas,
with the presence of dissolved gas into oil. The Pressure-Volume-Temperature
(PVT) functions for all phases are listed in Table 3.2, 3.3, 3.4, 3.5 and 3.6,
while Table 3.7 shows oil and gas relative permeability (respectively kro and
krg) as functions of gas saturation level sg. Since there are only two phases
present in the simulation, water relative permeability krw is set to zero at any
saturation level. All the aforementioned data are taken from Odeh [31].
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Reservoir pressure
(psia)

FVF
(RB/MSCF)

Viscosity
(cp)

Density
(lbm/ft3)

Pseudo Gas
Potential (psia2/cp)

14.7 166.666 0.008000 0.0647 0.0
264.7 12.093 0.009600 0.8916 0.777916e+07
514.7 6.274 0.011200 1.7185 0.267580e+08
1014.7 3.197 0.014000 3.3727 0.875262e+08
2014.7 1.614 0.018900 6.6806 0.270709e+09
2514.7 1.294 0.020800 8.3326 0.386910e+09
3014.7 1.080 0.022800 9.9837 0.516118e+09
4014.7 0.811 0.026800 13.2952 0.803963e+09
5014.7 0.649 0.030900 16.6139 0.112256e+10
9014.7 0.386 0.047000 27.9483 0.251845e+10

Table 3.2: Gas PVT Functions.

Reservoir pressure
(psia)

FVF
(RB/STB)

Viscosity
(cp)

Density
(lbm/ft3)

Solution GOR
(SCF/STB)

14.7 1.0620 1.0400 46.244 1.0
264.7 1.1500 0.9750 43.544 90.5
514.7 1.2070 0.9100 42.287 180.0
1014.7 1.2950 0.8300 41.004 371.0
2014.7 1.4350 0.6950 38.995 636.0
2514.7 1.5000 0.6410 38.304 775.0
3014.7 1.5650 0.5940 37.781 930.0
4014.7 1.6950 0.5100 37.046 1270.0
5014.7 1.8270 0.4490 36.424 1618.0
9014.7 2.3570 0.2030 34.482 2984.0

Table 3.3: Saturated Oil PVT Functions.

Reservoir pressure
(psia)

FVF
(RB/bbl)

Viscosity
(cp)

Density
(lbm/ft3)

Gas/Water Ratio
(SCF/bbl)

14.7 1.0410 0.3100 62.238 0.0
264.7 1.0403 0.3100 62.283 0.0
514.7 1.0395 0.3100 62.328 0.0

1014.7 1.0380 0.3100 62.418 0.0
2014.7 1.0350 0.3100 62.599 0.0
2514.7 1.0335 0.3100 62.690 0.0
3014.7 1.0320 0.3100 62.781 0.0
4014.7 1.0290 0.3100 62.964 0.0
5014.7 1.0258 0.3100 63.160 0.0
9014.7 1.0130 0.3100 63.959 0.0

Table 3.4: Saturated Water PVT Functions.
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Reservoir pressure
(psia)

FVF
(RB/STB)

Viscosity
(cp)

Density
(lbm/ft3)

4014.7 1.6950 0.5100 37.046
9014.7 1.5790 0.7400 39.768

Table 3.5: Undersaturated Oil PVT Functions.

Reservoir
pressure
(psia)

FVF
(RB/bbl)

Viscosity
(cp)

Density
(lbm/ft3)

4014.7 1.0290 0.3100 62.964
9014.7 1.0130 0.3100 63.959

Table 3.6: Undersaturated Water PVT Functions.

sg krg kro

0.000 0.0000 1.0000
0.001 0.0000 1.0000
0.020 0.0000 0.9970
0.050 0.0050 0.9800
0.120 0.0250 0.7000
0.200 0.0750 0.3500
0.250 0.0125 0.2000
0.300 0.1900 0.0900
0.400 0.4100 0.0210
0.450 0.6000 0.0100
0.500 0.7200 0.0010
0.600 0.8700 0.0001
0.700 0.9400 0.0000
0.850 0.9800 0.0000
1.000 1.0000 0.0000

Table 3.7: Relative permeability data for Oil and Gas phases.
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3.2 Rock characterization

Rock properties represent the core of our synthetic model, since we focus on
establishing the relation between uncertainty over field parameters and the
output of the simulation. Since porosity and permeability are the main prop-
erties characterizing reservoir behaviour, we developed a procedure to produce
random fields of these two properties over our domain which represent admis-
sible conditions for a realistic reservoir.

3.2.1 Porosity field

We generate an instance of a random field for porosity with the gstat package
of R software, with given mean and variance, assuming a structure of spatial
dependence over the domain. This approach allows to reproduce the general
behaviour of rock, in which changes in porosity are gradual, instead of as-
suming a pure random noise process which would have been non-compliant
with realistic conditions. Since the purpose of our analysis is the production
of several instances of the model through upscaling procedures, we consider
for porosity simulation a covariance model which is linear near the origin,
such that upscaling will be effective while respecting the overall structure of
the model. We choose an exponential covariance model, characterized by the
following semivariogram function:

γexp(h, S, r) =


0 h = 0,

S

(
1− exp

(
‖h‖
r

))
h 6= 0,

(3.1)

in which h ∈ R3 is the distance between to locations within the domain, S
represent the variance of the process at great distance (also known as sill) and
r is the range of the covariance model, i.e., a measure of how fast the spatial
dependence scales with distance. We consider two locations being independent
realization of the process when their distance is approximately 3r, value often
denoted as effective range (see Figure 3.2 for an example). In order to build
a realistic porosity field we consider a geometric anisotropy for the covariance
model. Geometric anisotropy entails that variance between different locations
is a function of both magnitude and direction of the distance vector h. This
effect is obtained performing a linear transformation of h, namely, taking a
semivariogram function of the form

γ̃(h) = γ(‖Ah‖), h ∈ R3, (3.2)

where A is a 3×3 symmetric matrix whose eigenvectors represent the main
directions of variation for the process, while the eigenvalues scale the sill pa-
rameters along their associated directions. The choice of an anisotropic ran-
dom field is meant also to affect the upscaling procedure, which operates along
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Figure 3.2: Left: Realization of exponential random field with S = 1 and 3r = 30; Right:
theoretical variogram function with sill (red dashed line) and effective range (black dashed
line).

Cartesian axes, in order to better simulate the issue of upscaling a fine-scale
field into a coarser one. For the simulation of the porosity fields we choose the
anisotropy matrix A written as

A = ΛDΛT (3.3)

where Λ is the rotation matrix

Λ =
[
v1 v2 v3

]
=

cos
(

5π
12

)
− sin

(
5π
12

)
0

sin
(

5π
12

)
cos
(

5π
12

)
0

0 0 1


which perform a counter-clockwise rotation of the Cartesian axes of 75 degrees
with respect to the positive x direction on the x-y plane, whileD is the diagonal
matrix

D =

1 0 0

0 0.5 0

0 0 0.12


which perform a rescaling of the sill along second and third main direction.
Figure 3.3 show graphically the transformation we operate on Cartesian axes.

3.2.2 Permeability field

The generation of permeability fields is usually obtained taking permeability
values as function of porosity within the same cell. We choose to exploit a
relation of the form

log (K) = a (Φ(x) + ε(x)) + b (3.4)

where K is permeability, Φ porosity and ε an independent zero-mean random
error with equal covariance structure. Parameters a and b are deterministic
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Figure 3.3: Left: Effect over Cartesian axes (black) of the linear transformation given by
anisotropy matrix A (red); Right: realization of exponential anisotropic random field gen-
erated with matrix A.

and can be tuned to modify the resulting permeability field. The condition we
choose to impose over these two parameters are the following:

• the expected value of the resulting permeability field must match some
given value m, so that if Φ ∼ N(µΦ, σ

2
Φ) and ε ∼ N(0, σ2

ε) with Φ ⊥ ε

then
log(K) ∼ N

(
aµΦ + b, a2

(
σ2

Φ + σ2
ε

))
(3.5)

therefore it must be

E [K] = exp

(
aµΦ + b+ a2

(
σ2

Φ + σ2
ε

2

))
= m; (3.6)

• the dispersion around the expected value µK is controlled by Chebyshev
inequality

P
(
|K − µK |

σK
≥ C

)
≤ 1

C2
, C ≥ 2 (3.7)

where σK is the standard deviation of permeability, so that fixing Cheby-
shev bound at 95% (C ∼= 4, 5) it must be

σ2
K = exp

(
2aµΦ + 2b+ a2

(
σ2

Φ + σ2
ε

)) (
exp

(
a2
(
σ2

Φ + σ2
ε

))
− 1
)

=
( s
C

)2

(3.8)
for some given value s.

Solving for the unknowns a and b allow to obtain the desired permeability field,
which will be correlated with porosity depending on the ratio between σ2

Φ and
σ2
ε . Finally, since we consider permeability as an isotropic tensor, namely

K =

kx 0 0

0 ky 0

0 0 kz

 (3.9)

we will generate only kx permeability values, assuming ky = Cxykx and kz =

Cxzkx for some constants Cxy, Cxz ∈ (0, 1].
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Figure 3.4: An example of local upcaling of porosity between fine level (left) and coarse one
(right), with distribution histograms (bottom).

3.3 Parameters upscaling

Given a Cartesian fine grid with nx× ny × nz cells and a Cartesian coarse one
with ncx × ncy × ncz, we define the directional scale factors as

sx =
nx
ncx

; sy =
ny
ncy

; sz =
nz
ncz
. (3.10)

Since our model has a low nz = 3, we will consider upscaled realizations with
fixed scale factor sz = 1. We choose to build two different coarse realizations
of our model, namely:

• one with scale factors sx = 2, sy = 2, sz = 1 denoted as COARSE50, with
50× 50× 3 cells;

• one with scale factors sx = 4, sy = 4, sz = 1 denoted as COARSE25, with
25× 25× 3 cells.

These two realizations, coupled with the original model (hereafter denoted
with name FINE ) will be the reservoir realizations under study in the following
analyses.

In order to produce the coarser realizations of SPE1 model we perform the
upscaling of porosity and absolute permeability with a single-phase approach
(as mentioned in Section 1.3.2). The core of the procedure is to define a relation
between different levels of the grid, i.e., a map linking each coarse block to the
fine ones lying within. Since we opt for even scale factors over x and y-axis, fine
and coarse grids are matching in both cases, that is, cells faces of the coarse
grid are aligned with fine grid ones. Moreover, the resulting partition is exactly
uniform, having respectively 4 and 16 fine-scale cells per target coarse block.
These two aspects are of primary importance when performing single-phase
local upscaling, since the procedure aims at resolving the equivalent volume
flow problem between two levels. An odd number of cells per coarse block or
non-matching faces can therefore result in distorted upscaled fields. One of the
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effects worth mentioning when performing local upscaling of field properties,
as shown in Figure 3.4, is the reduction of the span and the tendency of values
to cluster around the median of the fine-scale distribution.

3.4 Simulation outputs

For each level of the model we run the simulation over ten years with a time
step of one month, recording at each time step the production curves recorded
at the production well. Three main output curves are of interest in our model:

• Gas Oil Ratio over time (GOR), the ratio of the volume of gas that comes
out of solution to the volume of oil at standard conditions, related to the
initial pressure of the reservoir with respect to the bubble point (pressure
at which dissolved gas liberates from oil); it is a dimensionless quantity
in metric units, while in field units it is measured in Standard Cubic Feet
per Stock Tank Barrels (SCF/STB);

• Oil Production Rate over time (OPR), measured in Stock Tank Barrels
per day (STB/D), is the ratio at which oil is produced; it is a primary
index of efficiency of a production plant, and within simulations it is
usually constrained to be less or at most equal to the maximum plant
production capacity;

• Oil Production Total over time (OPT ), measured in STB, is the cu-
mulative production of oil; most of the insights obtained from reservoir
simulation exploit OPT curves to compute economic indexes (such as Net
Present Value) for decision making.

Since our model is provided with only one production well the overall field
behaviour coincides with the one of the well, so that from now on we will refer
at each output curve with the prefix “F-” standing for Field.

3.5 Synthetic reservoir models

In order to test the functional cokriging approach detailed in Chapter 2 as a
surrogate model for prediction we propose two synthetic models built on the
SPE1 reservoir model. For each model we generate porosity and permeability
layers with the procedure described in Section 3.2.1 and 3.2.2, build coarse
instances through upscaling, establish a set of uncertain parameters within
the simulation and produce the aforementioned functional outputs for each
configuration over the input space. After the generation of the output curves,
which will be the subject of spatial prediction, we test the capability of our
method with respect to the Universal Trace Kriging approach by Menafoglio
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et al. [29]. Universal Trace Kriging is a functional univariate method for spatial
prediction of curves, which can be retrieved from our approach imposing only
one level of output, i.e., it represents the situation in which no secondary data
is available together with the target response.

3.5.1 Model A

The first model we propose for evaluation is built with a single instance of
porosity field with given mean, sill and range, upon which permeability is
computed separately for each layer of the model. This model is intended to
reproduce the behaviour of a reservoir with homogeneous porosity layers. Ta-
ble 3.8 summarizes the input parameters chosen for the initialization of this
model. The resulting fields of porosity are displayed in Figure 3.5, while Fig-

Parameter Value

Φ (frac)
range 400.000
sill 5.0E-4
mean 0.225

kx (md)

Layer 1
mean 500.000
std. dev. 160.908

Layer 2
mean 50.000
std. dev. 17.200

Layer 3
mean 200.000
std. dev. 42.779

Scale factor kx/ky 1.000
Scale factor kx/kz 10.000
Rock compressibility (psi−1) 3.0E-6

Table 3.8: Input parameters for Model A reservoir.

ure 3.6 shows the distribution of permeability over the grid. After the gener-
ation of the fine scale fields we perform the upscaling procedure in order to
obtain the COARSE50 and COARSE25 realizations of the reservoir model,
whose first layer are compared to the corresponding FINE one in Figure 3.7
and 3.9. Also, Figure 3.8 and 3.10 show the effect of upscaling on the overall
distribution of porosity and permeability: as expected, values tend to concen-
trate around modes of the distribution.
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Figure 3.5: Porosity field for Model A, per layer.
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Figure 3.6: Histogram of permeability field for Model A.
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Figure 3.7: Comparison of Model A porosity in Layer 1 for three levels of grid refinement,
from FINE (left) to COARSE25 (right).
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Figure 3.8: Histogram of Model A porosity distribution for three levels of grid refinement.

FINE COARSE50 COARSE25

Layer 1

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

0

2500

5000

7500

10000

x

y

2.2 2.4 2.6 2.8 3.0

LogPermeability

Figure 3.9: Comparison of Model A log-permeability (x-direction) in Layer 1 for three levels
of grid refinement, from FINE (left) to COARSE25 (right).
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Figure 3.10: Histogram of Model A log-permeability (x-direction) distribution for three
levels of grid refinement.
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Parameter Value

Φ (frac)

range 300.000

Layer 1
sill 2.0E-4
mean 0.050

Layer 2
sill 2.5E-4
mean 0.150

Layer 3
sill 3.0E-4
mean 0.250

Kx (md)

Layer 1
mean 500.000
std. dev. 160.908

Layer 2
mean 50.000
std. dev. 17.200

Layer 3
mean 200.000
std. dev. 42.779

Scale factor kx/ky 1.000
Scale factor kx/kz 10.000
Rock compressibility (psi−1) 3.0E-6

Table 3.9: Input parameters for Model B reservoir.

3.5.2 Model B

The second model we propose for evaluation is built computing a single in-
stance of random field with given range, upon which both porosity and per-
meability are computed separately for each layer of the model. The aim is to
reproduce a reservoir with heterogeneous layers, whose behaviour will be closer
to realistic reservoirs one. Table 3.9 summarizes the input parameters chosen
for the initialization of this model. The resulting fields of porosity are dis-
played in Figure 3.11, while Figure 3.12 shows the distribution of permeability
over the grid. Similarly with Model A, after the generation of the fine scale
fields we perform the upscaling procedure in order to obtain the COARSE50
and COARSE25 realizations of the reservoir model. Figure 3.13 and 3.15 show
the comparison of Layer 1 properties for the three levels. As for Model A, up-
scaling properties affects the overall distributions with a concentrating effect,
as it can be seen in Figure 3.14 and 3.16. Being a more realistic realization of
reservoir, this latter model will be object of two numerical experiments which
will differ in the chosen set of uncertain parameters.
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Figure 3.11: Porosity field for Test B, per layer.
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Figure 3.12: Histogram of permeability field for Test B.
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Figure 3.13: Comparison of Model B porosity in Layer 1 for three levels of grid refinement,
from FINE (left) to COARSE25 (right).
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Figure 3.14: Histogram of Model B porosity distribution for three levels of grid refinement.
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Figure 3.15: Comparison of Model B log-permeability (x-direction) in Layer 1 for three levels
of grid refinement, from FINE (left) to COARSE25 (right).
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Figure 3.16: Histogram of Model B log-permeability (x-direction) distribution for three levels
of grid refinement.





Chapter 4

Numerical results

The aim of this Chapter is to present the case studies we have developed in or-
der to validate our approach. We test the Universal Trace-Cokriging predictor
with three experiments, varying either the reservoir model under study or the
characterization of the uncertainty over the simulation. We detail the construc-
tion of the dataset for each test: a description of the input space, the sampling
strategy and the result of the numerical simulation. All numerical evaluations
of reservoir models are performed on the HPC facilities of the Laboratory for
Modeling and Scientific Computing MOX (https://mox.polimi.it). The
construction of our predictor is performed with the R package fdagstat by
Grujic et al., which extends the routines of gstat package to the functional
framework. In order to validate our approach we develop an extensive com-
parison with the Universal Trace-Kriging method by Menafoglio et al. [29].
This latter approach does not account for secondary data, and represent the
univariate version of the technique described in Chapter 2 (i.e. setting K = 1).
It is thus fitted only on the fine-scale responses, i.e., without considering the
low fidelity model.

4.1 Test 1

The first experiment we propose is realized with Model A and two uncertain
parameters over the simulation. In order to choose the actual uncertainties
we follow a common approach in literature (see e.g. Bottazzi and Della Rossa
[5] and Grujic et al. [20]), considering constant multipliers over porosity and
vertical permeability (z-axis) for all layers, while keeping fixed horizontal per-
meability along x and y directions. These two factors will be hereafter referred
as POROm and PERMZm. Table 4.1 summarizes range and distribution of
the uncertain parameters, which we set accordingly to previous works in this
research area. The difference in range is due to the aforementioned exponential
relationship between porosity and permeability, so that the latter need a wider

37
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Layer Parameter Min Max Distribution

all POROm (–) 0.8 1.2 Uniform
all PERMZm (–) 0.5 2.0 Uniform

Table 4.1: Uncertain parameters for Test 1.
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Figure 4.1: Input configurations for Test 1, train (red) and test (black) set; values are
rescaled within the unit square.

range of variability in order to produce effective changes in the output. After
establishing the uncertainties within the simulation, we generate the input con-
figurations of the reservoir model in order to produce the functional outputs
for the analysis. We build two distinct sets of data from the two dimensional
input space given by the uncertain parameters (see Figure 4.1):

• a train set of 120 configurations, generated with a Latin Hypercube Sam-
pling (LHS, McKay et al. [28]) approach and evaluated with all levels of
flow simulation (FINE, COARSE50 and COARSE25);

• a test set of 400 configurations on a regular grid over the input space,
evaluated only with FINE level flow simulation.

Table 4.2 summarizes the computational effort in simulating a single config-
uration at each fidelity level. These estimates, although computed in an un-
controlled environment and therefore not precise, suggest that the ability to
incorporate lower fidelity outputs in place of extending the number of high
fidelity ones could improve drastically the efficiency of the whole procedure.
The functional outputs of the numerical simulations for the highest fidelity

level are portrayed in Figure 4.2, while Figure 4.3 shows the comparison of the
outputs for a single configuration with respect to fidelity levels, which appear
to be somewhat similar. Graphical inspection also reveals that both FGOR
and FOPR curves are bounded functions, so that embedding them in the L2
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Fidelity Level Min p0.25 p0.50 p0.75 Max mean

FINE 149.664 165.169 174.304 181.983 198.059 173.680
COARSE50 18.469 20.895 22.086 23.825 33.833 22.373
COARSE25 3.780 4.801 5.075 5.396 6.258 5.052

Table 4.2: Summary of computation time for Test 1; values are expressed in seconds.
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Figure 4.2: Functional outputs of Test 1 for FINE level coloured by parameters POROm
(top) and PERMZm (bottom).
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Figure 4.3: Comparison of functional outputs with respect to fidelity level for Test 1.
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Figure 4.4: FGOR curve transformation procedure. Left: Original curve with straight line
fitted through the early non-flat response. Right: The resulting curve.
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Figure 4.5: FOPR curve transformation procedure. Left: Original curve with second-order
polynomial fitted on pre and post-plateau values. Right: The resulting curve.

space of square-integrable functions is not appropriate for our purposes. This
is due to the fact that L2 geometry is only suitable for unconstrained data
presenting shifts in amplitude, while constraints within data entail a shift in
phase. Following the approach of Grujic et al. [20] we propose the following
ad-hoc procedures for the transformation of constrained functions:

• for FGOR curves, identify the time step whose derivative is non-zero,
fit a simple regression model to early post-flat values and substitute the
initial flat output with the regression solution;

• for FOPR curves, substitute the region containing constant values with a
second-order polynomial fitted through regression of pre and post-plateau
values.

These two procedures are visually explained respectively in Figure 4.4 and
Figure 4.5.

The scheme we adopt to test our method is to compare the results of the
prediction on test set varying the amount of fine-scale outputs in the train set.
The procedure is the following:
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Figure 4.6: Left to right: Experimental designs with increasing high-fidelity evaluations (red
dots) among low-fidelity (black squares) ones; nFINE/nCOARSE is the proportion of FINE
evaluations with respect to COARSE ones.

1. choose the number of input hi-fi configurations for the construction of
the predictor;

2. select the actual configurations over the whole train set with a Condi-
tioned Latin Hypercube Sampling approach;

3. compute the Universal Trace-Kriging predictor with the selected subset;

4. extend the FINE subset of curves with the COARSE ones;

5. compute the Universal Trace-Cokriging predictor with the extended set;

In order to preserve coherence between training sets with different amount of
hi-fi curves, we select each set of hi-fi curves such that it is a superset of the
previous one. Figure 4.6 show three different realizations of the experimental
design as the amount of high-fidelity outputs increases, where our selection
criterion is clearly depicted: each red point in one plot is present in the right-
adjacent one.

Two preliminary steps are necessary to construct both kriging and cokriging
predictors, namely:

• the selection of a suitable form for the drift component of the functional
process, usually a complete polynomial of given degree in the input vari-
ables;

• the choice of a fitting method for LMC parameters estimation from the
auto and cross trace-variograms estimates, as discussed in Section 2.3.

The first step is usually data-driven, in that the separation of drift term is
needed to recover a stationary residual term upon which the variogram es-
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timate could be performed. Step-wise procedures to select the optimal drift
term for a realization of non-stationary stochastic processes are available in
literature (see e.g. Menafoglio et al. [29]), however in our analysis we decide to
consider only first and second degree complete polynomials. This choice resides
in the need of preserving as much information as possible within the available
data, and to allow the drift parameters’ estimation process to be effective: as
the number of regression parameters exceeds the number of observations, the
resulting least-square matrix becomes non-invertible. For what concerns the
second step, we decide to test both least-squares and cross-validation methods
for LMC parameter estimation, since there is no a-priori evaluation technique
to select the best approach.

The two resulting statistical models are then used to predict the test set out-
puts and summarize the predictions by computing the sum of squared errors
(SSE) of each prediction, that is:

SSEi =
∥∥∥X (1)

i −X
?(1)
i

∥∥∥2

L2
; (4.1)

In order to better appreciate the magnitude of the error all SSE’s are normal-
ized by by the average squared norm of the entire test set (400 simulations):

SSEn
i =

SSEi

1
400

∑400
i=1

∥∥∥X (1)
i − µ(1)

∥∥∥2

L2

(4.2)

where µ(1) is the mean of the test set. When dealing with transformed data,
our choice is to compute the prediction SSE’s with respect to the transformed
unconstrained curves.

For each one of the four combinations of the aforementioned preliminary steps,
we test the predictive capability of our method for the three output curves,
considering either COARSE50 or COARSE25 as low-fidelity output. There-
fore there are 24 different combinations for the test, distinguished by drift
term degree, fitting method, target output curve and low-fi level. However,
due to instability of the numerical routines within the process of variogram
fitting and for solving the cokriging system, only a subset of these test are
conclusive. In particular, only the combinations involving least-squares (LS)
allow to actually compute the desired predictors, while using cross-validation
results in instability while inverting the cokriging variance matrix. Also, the
choice of second-order drift produces residuals with too much noise resulting
in lack of convergence for the least-squares variogram fitting procedure. As
a consequence we focus our interest in comparing the predictors built with
first-order drift and least-squares, whose performances are depicted in terms
of normalized SSE’s distribution in Figure 4.7 (where secondary variable is
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Figure 4.7: Comparison of Test 1 normalized SSE’s distribution for increasing ratio of hi-fi
response available; predictors are computed with LS variogram fitting, first-order polynomial
drift and COARSE50 output as secondary variables.
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Figure 4.8: Comparison of Test 1 normalized SSE’s distribution for increasing ratio of hi-fi
response available; predictors are computed with LS variogram fitting, first-order polynomial
drift and COARSE25 output as secondary variables.

COARSE50) and Figure 4.8 (where COARSE25 is used). At first glance, the
performances of our method improve as the amount of hi-fi outputs avail-
able increases (as expected), while the gain with respect to the single-fidelity
one decreases. Moreover, the gain in predictive capability is more evident for
FGOR and FOPR curves, which present a higher level of uncertainty in out-
put with respect to the initial configuration. Finally, we can observe that the
choice of the COARSE25 response in computing the cokriging predictor leads
to a worse performance overall: such results are probably due to the impactful
simplification of the underlying model given by the upscaling procedure.
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Layer Parameter Min Max Distribution

all POROm (–) 0.8 1.2 Uniform
all PERMZm (–) 0.5 2.0 Uniform

Table 4.3: Uncertain parameters for Test 2.
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Figure 4.9: Input configurations for Test 2, train (red) and test (black) set; values are
rescaled within the unit square.

4.2 Test 2

The second experiment we propose is realized with Model B, with the same
uncertain parameters considered for Test 1. Table 4.3 summarizes their range
and distribution. As for Test 1, we build two sets of data from the two dimen-
sional input space given by the uncertain parameters (see Figure 4.9):

• a train set of 120 configurations, generated with Latin Hypercube Sam-
pling and evaluated with all levels of flow simulation;

• a test set of 400 configurations on a regular grid over the input space,
evaluated only with FINE level flow simulation.

The functional outputs of the numerical simulations for the highest fidelity
level are portrayed in Figure 4.10, while Figure 4.11 shows the comparison of
curves with respect to fidelity levels and Table 4.4 the summary of computation

Fidelity Level Min p0.25 p0.50 p0.75 Max mean

FINE 288.179 304.025 313.409 326.150 357.650 315.088
COARSE50 37.074 40.415 41.852 42.951 48.114 41.886
COARSE25 6.781 7.620 8.043 8.608 10.969 8.202

Table 4.4: Summary of computation time for Test 2; values are expressed in seconds.
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Figure 4.10: Functional outputs of Test 2 for FINE level, coloured by parameters POROm
(top) and PERMZm (bottom).

times. We observe a slightly different shape of the outputs with respect to
Test 1, even if the overall behaviour of the curves is similar. This is due to
the nature of the underlying model which shares with the previous part of the
implementation.

Unlike Test 1, in this case the cross-validation approach does not suffer from
numerical instability when building the cokriging predictor. Moreover it allows
to produce predictions also when a second-order polynomial is chosen as drift
model, while the traditional LS approach suffers from a lack of convergence
as in the previous test. We perform the same transformations of the FGOR
and FOPR curves in order to remove the bounded behaviour, whose results
are portrayed in Figure 4.12.

The results of the comparison for this test when the low-fidelity response is
COARSE50 are presented in Figure 4.13 and 4.14, while Figure 4.15 and 4.16
show the ones obtained with COARSE25 outputs. Test 2 partially confirms
the results of Test 1 in terms of predictive capability gain in conditions of high-
fidelity outputs sparsity. This gain, although visually noticeable, appears re-
duced with respect to Test 1 results, probably due to the increased complexity
of the simulation. While cross-validation allows to fit a valid model even when
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Figure 4.11: Comparison of functional outputs with respect to fidelity level for Test 2.
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here is only qualitative.
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Figure 4.13: Comparison of Test 2 normalized SSE’s distribution for for increasing ratio
of hi-fi response available; predictors are computed with LS variogram fitting, first-order
polynomial drift and COARSE50 output as secondary variables.
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Figure 4.14: Comparison of Test 2 normalized SSE’s distribution for increasing ratio of
hi-fi response available; predictors are computed with cross-validation variogram fitting,
first-order (top) and second-order (bottom) polynomial drift. Level COARSE50 is used as
secondary variable.
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Figure 4.15: Comparison of Test 2 normalized SSE’s distribution for increasing ratio of hi-fi
response available; predictors are computed with LS variogram fitting, first-order polynomial
drift and COARSE25 outputs as secondary variables.
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Figure 4.16: Comparison of Test 2 normalized SSE’s distribution for increasing ratio of
hi-fi response available; predictors are computed with cross-validation variogram fitting,
first-order (top) and second-order (bottom) polynomial drift. Level COARSE25 is used as
secondary variable.
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Layer Parameter Min Max Distribution

1 POROm (–) 0.8 1.2 Uniform
1 PERMZm (–) 0.5 2.0 Uniform
2 POROm (–) 0.8 1.2 Uniform
2 PERMZm (–) 0.5 2.0 Uniform
3 POROm (–) 0.8 1.2 Uniform
3 PERMZm (–) 0.5 2.0 Uniform

Table 4.5: Uncertain parameters for Test 3.

Fidelity Level Min p0.25 p0.50 p0.75 Max Mean

FINE 162.441 173.053 177.611 183.197 459.796 203.995
COARSE50 21.479 23.151 23.934 24.713 29.967 24.096
COARSE25 12.724 14.003 15.164 16.113 17.400 15.099

Table 4.6: Summary of computation time for Test 3; values are expressed in seconds.

second-order polynomial drift is chosen, the resulting predictor does not im-
prove its performances with respect to the first-order one. In fact, Figure 4.14
and 4.16 show clearly that testing our predictor with second-order drift over
FOPT curves as target results in worse performances for both COARSE50 and
COARSE25 levels with respect to first-order one. As for Test 1, the use of the
lowest fidelity level produces worse predictions for both LS and cross-validation
approaches. Finally, we observe that performances on FOPT curves predic-
tion improve with respect to Test 1 in terms of median error, while results on
FOPR outputs are equivalent to the single-fidelity predictor.

4.3 Test 3

The last numerical experiment we perform exploits again reservoir model B
with an approach to uncertainty that is more adherent to common practice in
reservoir simulation. We consider multipliers for porosity and vertical perme-
ability in each layer for a total of six uncertain parameters, whose range and
distribution are described in Table 4.5. Dealing with a 6-dimensional space
a uniform sampling approach is infeasible; hence both train and test set will
be sampled with a space filling design (Latin Hypercube). We build the usual
two sets of data from the 6-dimensional input space given by the uncertain pa-
rameters (see Figure 4.17 for the marginal two-dimensional representations):

• a train set of 100 configurations, evaluated as previous tests with all levels
of flow simulation;

• a test set of 400 configurations, evaluated only with FINE level flow
simulation.
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Figure 4.17: Pairs plot of input configurations for Test 3, train (red) and test (black) set;
values are rescaled within the unit hypercube.

Figure 4.18 shows the comparison between fidelity levels, while FINE output
curves are portrayed in Figure 4.19 and 4.20 with colouring based on every
uncertain parameter; computation times are summarized in Table 4.6.

After transforming the FGOR and FOPR outputs accordingly to previously
described procedures, we construct the comparison between our method and
the single-fidelity approach. Due to the increased number of dimension the
approach of variogram fitting through least-squares results in a lack of conver-
gence for every combination. Moreover, since our main interest is to compare
the two approaches for reduced amounts of hi-fi observations, a second order
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Figure 4.18: Comparison of functional outputs with respect to fidelity level for Test 3.
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Figure 4.19: Functional outputs of Test 3 for FINE level coloured by parameter POROm in
Layer 1 (top), Layer 2 (middle) and Layer 3 (bottom).
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Figure 4.20: Functional outputs of Test 3 for FINE level coloured by parameter PERMZm
in Layer 1 (top), Layer 2 (middle) and Layer 3 (bottom).



4.3. Test 3 53

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

FGOR FOPR FOPT

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

10−8

10−6

10−4

10−2

100

nFINE/nCOARSE50 ratio

no
rm

al
iz

ed
 S

S
E

UCoK(COARSE50) UK

Figure 4.21: Comparison of Test 3 normalized SSE’s distribution for increasing ratio of hi-fi
response available; predictors are computed with cross-validation variogram fitting, first-
order polynomial drift and COARSE50 outputs as secondary variables.
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Figure 4.22: Comparison of Test 3 normalized SSE’s distribution for increasing ratio of hi-fi
response available; predictors are computed with cross-validation variogram fitting, first-
order polynomial drift and COARSE25 outputs as secondary variables.

polynomial drift is undesirable due to the number of regression coefficients
necessary for modeling. We therefore opt for a first-order polynomial drift and
cross-validation variogram fitting, which produces the distributions of nor-
malized SSE’s summarized in Figure 4.21 when COARSE50 is the secondary
variable and Figure 4.22 when COARSE25 is. The results are in agreement
with previous tests; moreover median error for FGOR and FOPR predictors at
10% ratio between hi-fi and lo-fi observations decreases of almost one degree of
magnitude. This gain in performances is due to the increased dimensionality
of the uncertainty space, in which FINE observations alone are not enough to
characterize the spatial dependence between outputs. One last aspect of the
comparison of the two methods is worth mentioning: if we compare median
normalized SSE’s values across the different FINE-COARSE ratios, we observe
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that our method allows obtaining similar results with respect to its univariate
alternative with fewer high-fidelity outputs. This result is of particular im-
portance, since the computational time needed for the construction of the two
predictors is strictly related to the amount of simulated curves. In particular,
from the inspection of FGOR results displayed in Figure 4.22 we can conclude
that UCoK performance with 30% of FINE curves available is similar to the
ones of UK predictor built with 70% of such curves. Assuming the mean times
of computation reported in Table 4.6 as a fair indicator of the actual compu-
tational effort for one simulation run at each level of fidelity, we can obtain an
estimate of the computational cost needed to build each predictor. In the afore-
mentioned case, as the total amount of COARSE curves is 100, the estimated
cost of the 30%-UCoK predictor is 203.995× 30 + 15.099× 100 = 7629.75 sec-
onds, while the estimated cost of the equivalent single-fidelity predictor (with
70% FINE curves) is 203.995 × 70 = 14279.65. The ratio of the two values
is 7629.75/14279.65 ' 0.53, that is, in order to get a similar predictive result
the multifidelity approach is almost twice as fast as the univariate one. The
incorporation of secondary data in form of proxy solution therefore improves
the overall prediction, while being computationally less demanding in terms of
resources.



Conclusions

The aim of this work has been the development of a multi-fidelity approach to
surrogate modeling, exploiting a functional cokriging statistical model within
the research area of reservoir simulation. In this framework, the lack of knowl-
edge in modeling parameters often results in high-dimensionality of the input
uncertainty space. In order to prevent the issues of fitting a valid model to
variogram estimates through least-squares in such ample spaces, we have es-
tablished a cross-validation procedure for variogram fitting. This approach,
although limited to a single family of valid models and range optimization,
allows us to estimate valid covariance matrices even in conditions of high spar-
sity of sampled locations. We have also developed an extensive procedure
to compare the aforementioned method with the most recent geostatistical
single-fidelity approach available in literature. We tested the predictive per-
formances of our approach on three types of output curves in the reservoir
simulation framework with different levels of variability with respect to uncer-
tainty on input. The results of our numerical experiments allow us to draw
the following considerations:

• The transformation procedures applied to constrained curves represent
an effective tool in lack of a better geometry in which to embed such
functions. However, the choice of a quadratic substitution for FOPR
curves could be improved, e.g. by taking into account the degree of
smoothness in correspondence to junctions with a spline-based approach.

• The impact of drift estimation on the prediction is decisive, since the
choice of a too consistent deterministic component could result in the
loss of the spatial dependence structure in the residuals.

• Our method performs better than its single-fidelity counterpart when
the FINE-COARSE ratio is low, and the gain in performances is more
conspicuous as the dimensionality of the input space increases. This
is probably due to the difficult characterization of simulation outputs
in presence of a low number of high-fidelity data, accentuated by the
increased sparsity typical of larger input spaces.

• The predictive capability of the model is affected by the level of ap-
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proximation of the low-fidelity model: a significant simplification of the
fine-grid simulation, although computationally more efficient, results in
the inability to bring information on the high-fidelity output.

• An important issue of the prediction is computing the numerical solu-
tion of the kriging system, since the condition number of the covariance
matrix increases sometimes dramatically when considering multivariate
processes. A possible explanation resides in the choice of the experimen-
tal design: whenever two points in the input space are too close together,
the corresponding rows of the covariance matrix become almost linearly
dependent, making the whole matrix close to be singular. When this
occurs the result is the inability to compute a valid solution, restricting
the potential applicability of the method.

In light of these considerations, we now discuss on some possible future devel-
opment in this context:

• a comparison study on real scenarios, considering more complex reser-
voir models and more precise uncertainty characterizations, would be a
first step in demonstrating the capability of our method in the surrogate
modeling field;

• the extension of cross-validation procedure to different families of valid
models would allow to cope with more general spatial dependence struc-
tures (e.g., quadratic near the origin, discontinuous or characterized by
anisotropy);

• the implementation of more reliable solving method of the cokriging sys-
tem, as discussed before, may overcome the numerical instability intro-
duced with the addition of secondary variables to the statistical model;

• since we focused on exploring the uncertainty input space without actu-
ally considering how different factor affect the variability in the resulting
simulation, we suggest the realization of a study on variance-based sen-
sitivity analysis for functional data (e.g. extending the theory of Sobol
indices [36]).

To sum up, we believe that these analyses establish a good starting point for
the adoption of functional cokriging methods in the uncertainty quantification
field. Also, the great generality with respect to admissible outputs and the
flexibility in modeling stochastic processes allow our techniques to be extended
to a broader set of numerical experiments.
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Appendix A

Numerical tests codes

This Appendix present three original R codes developed for the numerical tests
presented in Chapter 4. Our codes exploit the following existing packages:

• fda (www.functionaldata.org) and fda.usc (www.jstatsoft.org) for
the representation through basis functions and the computation of func-
tional norms;

• fdagstat (github.com/ogru/fdagstat) for the actual trace-cokriging
predictor construction;

• caret (github.com/topepo/caret/) to construct folds in cross-valida-
tion procedures;

• purrr (purrr.tidyverse.org) for handling errors arising from compu-
tation.

A.1 TransformFGOR

TransformFGOR() function transforms FGOR curves whenever the initial out-
put is flat, as described in Chapter 4. This behaviour is usually due to the
input settings of the reservoir model: in conditions of unsaturated oil as the
initial pressure at well bore is greater than the bubble point no gas evolves
from the oil, inducing constant FGOR output.
1 TransformFGOR <- function(curves , tstep , offset=5, precision =1e-2,

max.values=4, t.max=floor (0.8*length(tstep))) {
2
3 nstep <- length(tstep)
4 nobs <- ncol(curves)
5
6 if( nstep != nrow(curves) ) stop(’Number of evaluation per curve and

timesteps must coincide. Exiting! ’)
7
8 l <- vector ()
9 res <- matrix(NA, nrow=nstep , ncol=nobs)
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10
11 for( i in 1:nobs ) {
12
13 ## detect index of breakthrough point
14 l[i] <- max(which(abs(diff(curves [2:t.max ,i])) <= precision))
15
16 ## if flat response is detected
17 if(l[i] != -Inf) {
18
19 ## add offset to improve estimation performances
20 l[i] <- l[i] + offset
21
22 ## separate the remaining part of the curve
23 x.tmp <- tstep [-(1:l[i])]
24 y.tmp <- curves [-(1:l[i]),i]
25
26 ## regression on initial non -flat values
27 df.tmp <- data.frame(y=y.tmp [1:max.values], x=x.tmp[1:max.values ])
28 g <- lm(y ~ x, data=df.tmp)
29
30 ## regression solution for initial flat response
31 x.est <- tstep [1:l[i]]
32 y.est <- predict(g, newdata=data.frame(x=x.est))
33
34 ## substitute regression solution to original curve flat response
35 res[ ,i] <- c(y.est , curves [-(1:l[i]),i])
36
37 } else {
38
39 ## no flat response
40 res[ ,i] <- curves[ ,i]
41 }
42 }
43
44 return(res)
45
46 }

A.2 TransformFOPR

TransformFOPR() function transforms FOPR curves whenever they reach the
maximum production rate, as described in Chapter 4. This behaviour is due
to the initial settings of the reservoir model: one of the parameters in input is
the maximum production capacity of wells, whose value cannot be exceeded.

1 TransformFOPR <- function(curves , tstep , offset=4, upper.bound) {
2
3 nstep <- length(tstep)
4 nobs <- ncol(curves)
5
6 ## offset must be an even number
7 offset <- ifelse(offset %% 2 == 1, offset -1, offset)
8
9 if( nstep != nrow(curves) ) stop(’Number of evaluation per curve and

timesteps must coincide. Exiting!’)
10
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11 l.min <- vector ()
12 l.max <- vector ()
13 res <- matrix(NA, nrow=nstep , ncol=nobs)
14
15 for( i in 1:nobs ) {
16
17 if( all(curves[ ,1] < upper.bound) ) {
18 ## plateau is not reached
19 res[ ,i] <- curves[ ,i]
20 } else {
21
22 ## detect indexes of plateau boundary
23 l.min[i] <- min(which(curves[,i] >= upper.bound))
24 l.max[i] <- max(which(curves[,i] >= upper.bound))
25
26 if( l.min[i] == l.max[i] ) {
27 ## false positive , plateau reached only at one timestep
28 res[ ,i] <- curves[ ,i]
29 } else {
30
31 ## select pre and post -plateau indexes
32 idx.pre <- max((l.min[i]-offset) ,1):l.min[i]
33 idx.post <- l.max[i]:(l.max[i]+ offset)
34
35 ## fit quadratic linear model to pre and post -plateau values
36 x.tmp <- tstep[c(idx.pre ,idx.post)]
37 y.tmp <- curves[c(idx.pre ,idx.post), i]
38 df.tmp <- data.frame(x=x.tmp , y=y.tmp)
39 g <- lm(y ~ poly(x, degree=2, raw=TRUE), data=df.tmp)
40
41 if( l.min[i] == 1 ){
42 ## plateau starts at first value (no ramp -up)
43 x.est <- tstep[l.min[i]:(l.max[i]+ offset/2)]
44 } else {
45 ## plateau occurs after ramp -up phase
46 x.est <- tstep[(l.min[i]-offset/2):(l.max[i]+ offset/2)]
47 }
48
49 y.est <- predict(g, newdata=data.frame(x=x.est))
50
51 ## substitute plateau with regression solution
52 res[ ,i] <- curves[ ,i]
53 res[tstep %in% x.est ,i] <- y.est
54 }
55 }
56 }
57
58 return(res)
59
60 }

A.3 FitRangeCV

FitRangeCV() function allows to optimize the range parameter within a family
of valid variogram models, computing the k-fold cross-validation SSE for each
value of range and selecting the one whose associated error is minimum.
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1 FitRangeCV <- function(coord , idx , tstep , curves.l1 , curves.l2=NULL ,
drift.frml=’~ .’, model.name=’Sph’, n.lags=NULL , lag.max=NULL ,
n.folds=5, seed=NULL) {

2
3 ## exit if required packages are missing , otherwise load them
4 if(!require(fda)) stop()
5 if(!require(fda.usc)) stop()
6 if(!require(fdagstat)) stop()
7 if(!require(purrr)) stop()
8 if(!require(caret)) stop()
9

10 diag.len <- sqrt(ncol(coords))
11
12 ## check if seed is provided
13 if( is.null(seed) ) stop(’Cross -Validation requires setting a seed.

Exiting!’)
14
15 ## compute r.min and r.max if not provided
16 if( is.null(r.min) ) r.min <- 0.1*diag.len
17 if( is.null(r.max) ) r.min <- 0.8*diag.len
18
19 ## compute lag.max if not provided
20 if( is.null(lag.max) ) {
21 warning(’Maximum lag missing , it will be computed (for high number of

samples this could be slow)...’)
22 lag.max <- 0.6*diag.len
23 }
24
25 ## build folds and ranges sequence
26 set.seed(seed)
27 folds <- caret:: createFolds(y=idx , k=n.folds , list=TRUE)
28 ranges <- seq(r.min , r.max , by =0.05)
29 res <- NULL
30
31 if( is.null(curves.l2) ) {
32
33 ## only one variable provided , i.e., trace -kriging
34 for( i in 1: length(ranges) ) {
35
36 r <- ranges[i]
37 tmp <- NULL
38 for( f in 1:n.folds ) {
39
40 f.idx <- folds[[f]]
41 frml <- drift.frml
42
43 ## build fdagstat object
44 g.cv <- fstat(NULL , vName="Fine",

scalar=FALSE ,Coordinates=coord[idx[-f.idx], ],
Functions=as.data.frame(curves.l1[ ,idx[-f.idx ]]))

45
46 ## OLS estimate of drift component
47 g.cv <- estimateDrift(frml , g.cv , Intercept=TRUE)
48
49 ## variogram estimate (not used for fitting)
50 g.cv <- fvariogram("~.", g.cv, Nlags=n.lags , LagMax=lag.max ,

ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
51
52 ## adding valid model with given range
53 g.cv <- fitVariograms(g.cv, model=vgm(psill=1, model=model.name ,
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range=r), fitSills=FALSE , fitRanges=FALSE)
54 g.cv <- addCovariance(g.cv, type=’omni’)
55
56 ## iterate GLS drift estimate and residuals computation
57 for ( j in 1:5 ) {
58 g.cv <- estimateDrift(frml , g.cv, .type="GLS", Intercept=TRUE)
59 g.cv <- fvariogram("~.", g.cv , Nlags=n.lags , LagMax=lag.max ,

ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
60 g.cv <- fitVariograms(g.cv , model=vgm(psill=1, model=model.name ,

range=r), fitSills=FALSE , fitRanges=FALSE)
61 if( j == 5 ) {
62 ## rescale sill
63 mm <- max(sapply(g.cv$model$omni , function(el) el$psill ))
64 g.cv$model$omni$Fine$psill <- g.cv$model$omni$Fine$psill / mm
65 }
66 g.cv <- addCovariance(g.cv , type=’omni’)
67 }
68
69 ## prevent errors due to numerical instability of matrix inversion
70 prdct <- function(g, a, b, c) { predictFstat(g,

.newCoordinates=a, .what=b, .type=c) }
71 prdct2 <- purrr:: possibly(prdct , otherwise = NA)
72 ck.pred <- prdct2(g.cv, coord[idx[f.idx], ], "Fine", "UK")
73
74 ## compute prediction error
75 if( any(is.na(ck.pred)) ) {
76 tmp[f] <- NA
77 } else {
78 ## build basis representation to compute norms
79 sse.cv <- NULL
80 normconst.tmp <- NULL
81 bspbasis <- create.bspline.basis(range(tstep), nbasis =30)
82 real <- Data2fd(argval=tstep , y=curves.l1[

,idx[f.idx]], basisobj=bspbasis)
83 pred <- Data2fd(argval=tstep , y=ck.pred$Forecast ,

basisobj=bspbasis)
84
85 if( length(f.idx) == 1 ) {
86 ## one curve per fold , no need to normalize
87 tmp[f] <- fda.usc::norm.fd(real - pred)^2
88 } else {
89 ## compute mean function for SSE normalization
90 real.mean <- Data2fd(argval=tstep , y=rowMeans(curves.l1[

,idx[f.idx]]), basisobj=bspbasis)
91 for( j in 1:ncol(curves.l1[ ,idx[f.idx]]) ) {
92 sse.cv[j] <- fda.usc::norm.fd(real[j] - pred[j])^2
93 normconst.tmp[j] <- fda.usc::norm.fd(real[j] - real.mean)^2
94 }
95
96 ## normalize SSE
97 normconst.cv <- sum(normconst.tmp)/ncol(curves.l1[

,idx[f.idx]])
98 sse.norm.cv <- sse.cv/normconst.cv
99

100 ## compute mean SSE within fold
101 tmp[f] <- mean(sse.norm.cv)
102 }
103 }
104 }
105
106 ## compute mean SSE between folds
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107 res[i] <- mean(tmp , na.rm=TRUE)
108 cat(sprintf(’r = %.2f | value = %.7f (NA = %d)\n’, r, res[i],

sum(is.na(tmp))))
109
110 }
111
112 ## select argmin of sse vector
113 range.best <- ranges[which.min(res)]
114 cat(sprintf(’chosen r = %.2f \n’, range.best))
115
116 } else {
117
118 ## two variables provided , i.e., trace -cokriging
119 for( i in 1: length(ranges) ) {
120
121 r <- ranges[i]
122 tmp <- NULL
123 for( f in 1:n.folds ) {
124
125 f.idx <- folds[[f]]
126 frml <- drift.frml
127
128 ## build fdagstat object
129 g.cv <- fstat(NULL , vName="Fine", scalar=FALSE ,

Coordinates=coord_train[idx[-f.idx], ],
Functions=as.data.frame(curves.l1[ ,idx[-f.idx ]]))

130 g.cv <- fstat(g.cv, vName="Coarse", scalar=FALSE ,
Coordinates=coord_train , Functions=as.data.frame(curves.l2))

131
132 ## OLS estimate of drift component
133 g.cv <- estimateDrift(frml , g.cv , Intercept=TRUE)
134
135 ## variogram estimate (not used for fitting)
136 g.cv <- fvariogram("~.", g.cv, Nlags=n.lags , LagMax=lag.max ,

ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
137
138 ## adding valid model with given range
139 g.cv <- fitVariograms(g.cv, model=vgm(psill=1, model=model.name ,

range=r), fitSills=FALSE , fitRanges=FALSE)
140 g.cv <- addCovariance(g.cv, type=’omni’)
141
142 ## iterate GLS drift estimate and residuals computation
143 for ( j in 1:5 ) {
144 g.cv <- estimateDrift(frml , g.cv, .type="GLS", Intercept=TRUE)
145 g.cv <- fvariogram("~.", g.cv , Nlags=20, LagMax =0.60,

ArgStep =30.4 , useResidual=TRUE , comments=FALSE)
146 g.cv <- fitVariograms(g.cv , model=vgm(psill=1, model=model.name ,

range=r), fitSills=FALSE , fitRanges=FALSE)
147 if( j == 5 ) {
148 ## rescale sills
149 mm <- max(sapply(g.cv$model$omni , function(el) el$psill ))
150 g.cv$model$omni$Fine$psill <-

g.cv$model$omni$Fine$psill / mm
151 g.cv$model$omni$Coarse$psill <-

g.cv$model$omni$Coarse$psill / mm
152 g.cv$model$omni$Fine.Coarse$psill <-

g.cv$model$omni$Fine.Coarse$psill / mm
153 }
154 g.cv <- addCovariance(g.cv , type=’omni’)
155 }
156
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157 ## prevent errors due to numerical instability of matrix inversion
158 prdct <- function(g, a, b, c) { predictFstat(g,

.newCoordinates=a, .what=b, .type=c) }
159 prdct2 <- purrr:: possibly(prdct , otherwise = NA)
160 ck.pred <- prdct2(g.cv, coord_train[idx[f.idx], ], "Fine", "UcoK")
161
162 ## compute prediction error
163 if( any(is.na(ck.pred)) ) {
164 tmp[f] <- NA
165 } else {
166 ## build basis representation to compute norms
167 sse.cv <- NULL
168 normconst.tmp <- NULL
169 bspbasis <- create.bspline.basis(range(tstep), nbasis =30)
170 real <- Data2fd(argval=tstep , y=curves.l1[

,idx[f.idx]], basisobj=bspbasis)
171 pred <- Data2fd(argval=tstep , y=ck.pred$Forecast ,

basisobj=bspbasis)
172
173 if( length(f.idx) == 1 ) {
174 ## one curve per fold , no need to normalize
175 tmp[f] <- fda.usc::norm.fd(real - pred)^2
176 } else {
177 ## compute mean function for SSE normalization
178 real.mean <- Data2fd(argval=tstep , y=rowMeans(curves.l1[

,idx[f.idx]]), basisobj=bspbasis)
179 for( j in 1:ncol(curves.l1[ ,idx[f.idx]]) ) {
180 sse.cv[j] <- fda.usc::norm.fd(real[j] - pred[j])^2
181 normconst.tmp[j] <- fda.usc::norm.fd(real[j] - real.mean)^2
182 }
183
184 ## normalize SSE
185 normconst.cv <- sum(normconst.tmp)/ncol(curves.l1[

,idx[f.idx]])
186 sse.norm.cv <- sse.cv/normconst.cv
187
188 ## compute mean SSE within fold
189 tmp[f] <- mean(sse.norm.cv)
190 }
191 }
192 }
193
194 ## compute mean SSE between folds
195 res[i] <- mean(tmp , na.rm=TRUE)
196 cat(sprintf(’r = %.2f | value = %.7f (NA = %d)\n’, r, res[i],

sum(is.na(tmp))))
197
198 }
199
200 ## select argmin of sse vector
201 range.best <- ranges[which.min(res)]
202 cat(sprintf(’chosen r = %.2f \n’, range.best))
203
204 }
205
206 return(range.best)
207
208 }
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A.4 TestPerformances

TestPerformances() function encloses the whole performance testing proce-
dure, allowing to perform prediction for increasing amounts of hi-fi data with
either Universal Trace-Kriging or Universal Trace-Cokriging. Also, it is possi-
ble to select the desired variogram fitting routine between cross-validation and
maximum likelihood.

1 TestPerformances <- function(tstep , coord.train , coord.test , curves.l1,
curves.l2=NULL , curves.test , idx=NULL , drift.frml=’~ .’, method=’CV’,
model.name=’Sph’, n.lags=NULL , lag.max=NULL , seed=NULL ,
filename=ifelse(is.null(curves.l2, ’UK’, ’UCoK’))) {

2
3 ## exit if required packages are missing , otherwise load them
4 if(!require(fda)) stop()
5 if(!require(fda.usc)) stop()
6 if(!require(fdagstat)) stop()
7 if(!require(purrr)) stop()
8 if(!require(caret)) stop()
9

10 ## check if seed is provided
11 if( is.null(seed) ) stop(’Sampling strategy requires a seed. Exiting!’)
12
13 ## if no list of indexes is provided , create one
14 if( is.null(idx) ) {
15
16 idx <- list()
17 for( i in 1:10 ){
18 if( i < 10 ) {
19 ## select a subset of input indexes
20 set.seed(seed)
21 nsample <- i*0.1
22 if( i == 1 ) {
23 ## no previous indexes selected
24 past.idx <- NULL
25 } else {
26 ## store indexes from previous run
27 past.idx <- idx[[i-1]]
28 }
29 ## conditioned LHS for new points , previous ones are included
30 idx[[i]] <- clhs::clhs(coord.train , nrow(coord.train)*nsample ,

include=past.idx , progress=FALSE)
31 idx[[i]] <- sort(idx[[i]])
32 }else{
33 ## all indexes are selected
34 idx[[i]] <- 1:nrow(coord.train)
35 }
36 }
37 }
38
39 g <- list()
40 pred.all <- list()
41 sse <- list()
42 normconst <- list()
43 sse.norm <- list()
44
45 out.file <- paste0(output.file , format(Sys.time(), "%y%m%d-%H%M%S"),

’.txt’)
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46
47 for(i in 1:10) {
48
49 if( i == 1) cat(paste0(’-- Building ’, out.file , ’ predictor --\n’ )
50 cat(’\nInitializing block ’, i, ’/’, 10, ’\n’)
51 cat(file=out.file , ’\nInitializing block ’, i, ’/’, 10, ’ ’,

append=TRUE)
52
53 ## building gstat object
54 g[[i]] <- fstat(NULL , vName="Fine", Coordinates=coord.train[idx[[i]],

], Functions=as.data.frame(curves.l1[ ,idx[[i]]]), scalar=FALSE)
55
56 if(!is.null(curves.l2)) {
57 ## add secondary variable if provided
58 g[[i]] <- fstat(g[[i]], vName="Coarse", Coordinates=coord.train ,

Functions=as.data.frame(curves.l2), scalar=FALSE)
59 }
60
61 ## OLS estimate of drift component
62 frml <- drift.frml
63 g[[i]] <- estimateDrift(frml , g[[i]], Intercept=TRUE)
64
65 if( method == ’CV’ ) {
66
67 ## range optimization with cross -validation
68 range.best <- FitRangeCV(coord.train , idx[[i]], tstep , curves.l1,

curves.l2, drift.frml , model.name=’Sph’, seed=seed +1)
69
70 ## add valid model
71 g[[i]] <- fvariogram("~.", g[[i]], Nlags=n.lags , LagMax=lag.max ,

ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
72 g[[i]] <- fitVariograms(g[[i]], model=vgm(psill=1, model=model.name ,

range=range.best), fitSills=FALSE , fitRanges=FALSE)
73 g[[i]] <- addCovariance(g[[i]], type=’omni’)
74
75 ## iterate GLS drift estimate and residuals computation
76 for ( j in 1:5 ) {
77 g[[i]] <- estimateDrift(frml , g[[i]], .type="GLS", Intercept=TRUE)
78 g[[i]] <- fvariogram("~.", g[[i]], Nlags=n.lags , LagMax=lag.max ,

ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
79 g[[i]] <- fitVariograms(g[[i]], model=vgm(psill=1,

model=model.name , range=range.best), fitSills=FALSE ,
fitRanges=FALSE)

80 if( j == 5 ) {
81 ## rescale sill(s)
82 mm <- max(sapply(g[[i]]$model$omni , function(el) el$psill ))
83 g[[i]]$model$omni$Fine$psill <- g[[i]]$model$omni$Fine$psill / mm
84 if( !(is.null(curves.l2)) ) {
85 g[[i]]$model$omni$Coarse$psill <-

g[[i]]$model$omni$Coarse$psill / mm
86 g[[i]]$model$omni$Fine.Coarse$psill <-

g[[i]]$model$omni$Fine.Coarse$psill / mm
87 }
88 }
89 g[[i]] <- addCovariance(g[[i]], type=’omni’)
90 }
91 } else if (method == ’ML’) {
92 ## ML variogram fitting , with default range value
93 range.best <- NA
94 ## add valid model
95 g[[i]] <- fvariogram("~.", g[[i]], Nlags=n.lags , LagMax=lag.max ,
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ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
96 g[[i]] <- fitVariograms(g[[i]], model=vgm(psill=1, model=model.name ,

range=range.best), fitSills=FALSE , fitRanges=TRUE)
97 g[[i]] <- addCovariance(g[[i]], type=’omni’)
98
99 ## iterate GLS drift estimate and residuals computation

100 for ( j in 1:5 ) {
101 g[[i]] <- estimateDrift(frml , g[[i]], .type="GLS", Intercept=TRUE)
102 g[[i]] <- fvariogram("~.", g[[i]], Nlags=n.lags , LagMax=lag.max ,

ArgStep=mean(tstep), useResidual=TRUE , comments=FALSE)
103 g[[i]] <- fitVariograms(g[[i]], model=vgm(psill=1,

model=model.name , range=range.best), fitSills=FALSE ,
fitRanges=TRUE)

104 if( j == 5 ) {
105 # rescale sill(s)
106 mm <- max(sapply(g[[i]]$model$omni , function(el) el$psill ))
107 g[[i]]$model$omni$Fine$psill <- g[[i]]$model$omni$Fine$psill / mm
108 if( !(is.null(curves.l2)) ) {
109 g[[i]]$model$omni$Coarse$psill <-

g[[i]]$model$omni$Coarse$psill / mm
110 g[[i]]$model$omni$Fine.Coarse$psill <-

g[[i]]$model$omni$Fine.Coarse$psill / mm
111 }
112 }
113 g[[i]] <- addCovariance(g[[i]], type=’omni’)
114 }
115 }
116
117 ## prediction of test set curves
118 pred.all[[i]] <- predictFstat(g[[i]], .newCoordinates=coord.test ,

.what="Fine", .type=ifelse(is.null(curves.l2, ’UK’, ’UcoK’)))
119
120 ## build basis representation
121 sse[[i]] <- vector ()
122 bspbasis <- create.bspline.basis(range(tstep), nbasis =30)
123 real <- Data2fd(argval=tstep , y=curves.test , basisobj=bspbasis)
124 pred <- Data2fd(argval=tstep , y=pred.all[[i]]$Forecast ,

basisobj=bspbasis)
125
126 ## compute prediction error
127 for(j in 1:ncol(curves.test)) {
128 sse[[i]][j] <- fda.usc::norm.fd(real[j] - pred[j])^2
129 }
130
131 ## compute mean function for SSE normalization
132 normconst.tmp <- NULL
133 real.mean <- Data2fd(argval=tstep , y=rowMeans(curves.test),

basisobj=bspbasis)
134 for(j in 1:ncol(curves.test)) {
135 normconst.tmp[j] <- fda.usc::norm.fd(obs[j]-obs.mean)^2
136 }
137 cat(’.’)
138
139 ## normalize SSE
140 normconst [[i]] <- sum(normconst.tmp)/ncol(curves.test)
141 sse.norm[[i]] <- sse[[i]]/normconst [[i]]
142
143 ## print outputs both to file and console
144 cat(file=out.file , ’ done\n’, append=TRUE)
145 cat(file=out.file , ’\n’, append=TRUE)
146 sink(out.file , append=TRUE); print(g[[i]]$model); sink()
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147 cat(file=out.file , ’> minimum normalized SSE:’, min(sse.norm[[i]]) %>%
log10 (), ’ (log10)\n’, append=TRUE)

148 cat(file=out.file , ’> mean normalized SSE: ’, mean(sse.norm[[i]])
%>% log10(), ’ (log10)\n’, append=TRUE)

149 cat(file=out.file , ’> median normalized SSE: ’, median(sse.norm[[i]])
%>% log10(), ’ (log10)\n’, append=TRUE)

150
151 cat(’ done\n’)
152 cat(’> minimum normalized SSE:’, min(sse.norm[[i]]) %>% log10(), ’

(log10)\n’)
153 cat(’> mean normalized SSE: ’, mean(sse.norm[[i]]) %>% log10(), ’

(log10)\n’)
154 cat(’> median normalized SSE: ’, median(sse.norm[[i]]) %>% log10 (), ’

(log10)\n’)
155 }
156
157 final <- list(model=g, idx=idx , pred=pred.all , norm.const=normconst ,

sse.norm=sse.norm)
158
159 return(final)
160
161 }
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