
Dimensional model reduction of fluid-structure

interaction models.

Master of Science in Biomedical Engineering - Biomechanics and

Biomaterials

Valeria Secchi

896127

Supervisor

Paolo Zunino

Co-Supervisor

Miguel Fernández

Politecnico di Milano

18 December 2019

Acknowledgements

I would like to thank Professor Paolo Zunino, my supervisor, for as-

sisting me in writing this thesis and for his availability. I would also

like to thank Professor Miguel A. Fernández, my co-supervisor, for

the support he gave me during my time at the Inria in Paris. I also

thank the entire Inria team for their disponibility and help during my

stay in France.

Abstract

Fluid-Structure Interaction (FSI) is among the most challenging prob-

lems in engineering. This work aims to study a 2D-0D dimensional

model reduction of FSI. We consider an imcompressible flow, governed

by Navier-Stokes equations, around a rigid obstacle, which may move

with a linear elastic constraint. In particural, we discuss a classic

benchmark problem of computational fluid dynamics (CFD) and FSI,

that is the 2D flow around a disc. The main challenge in this develop-

ment of the 2D-0D reduction model is how to represent the rigid disc

as a point. We formulate a mathematical model that addresses this

problem through the use of Lagrange multiplier method to enforce the

kinematic and dynamic constraints between the solid and the fluid.

Specifically, to deal with the pointwise evaluation of the fluid velocity

at the center of the disc, we replace it with the average of the fluid ve-

locity on the fluid-solid interface. Once the mathematical model has

been formulated, we proceed with the numerical discretization using

the finite element method and FreeFem++ as solver. At the compu-

tational level, our FSI model requires to use a computational mesh for

the fluid domain that does not conform with the profile of the disc. We

have overcome this difficulty by creating an algorithm that calculates

the intersection between a parameterized circumference, representing

the disc, and each edge of the mesh for the fluid domain that crosses

it, using the interpolation of the Gauss point. Then we write the alge-

braic formulation in a matrix form in order to compute the numerical

solution, obtaining a block matrix that represents the fluid structure

interaction. To conclude, we conduct some tests to verify the validity

of the work and we compare the results obtained using the developed

algorithm with results available in literature.

Sommario

I problemi di Interazione Fluido-Struttura (FSI) sono tra i più del-

icati nel campo dell’ingegneria. Questa tesi si propone l’obiettivo

di studiare un modello ridotto 2D-0D di un FSI. Abbiamo consid-

erato un fluido incomprimibile, governato dalle equazioni di Navier-

Stokes, che scorre attorno ad un ostacolo rigido che può muoversi

secondo un modello elastico lineare. In particolare, abbiamo discusso

un classico problema di riferimento nel campo della fluidodinamica

computazionale (CFD) ed in quello di FSI, ovvero un flusso 2D at-

torno ad un disco. La sfida principale nello sviluppo di questo mod-

ello ridotto 2D-0D è stata la ricerca di una rappresentazione efficace

del disco rigido come un solo punto. Abbiamo quindi formulato un

modello matematico che affronta questo problema attraverso l’uso del

metodo dei moltiplicatori di Lagrange per imporre i vincoli cinematici

e dinamici tra il solido ed il fluido. In particolare, per risolvere la dif-

ficoltà della valutazione puntuale della velocità del fluido al centro del

disco, abbiamo sostituito quest’ultima con la media della velocità del

fluido all’interfaccia fluido-struttura. Una volta formulato il modello

matematico, abbiamo proceduto con la discretizzazione numerica uti-

lizzando il metodo degli elementi finiti e FreeFem++ come solutore.

A livello computazionale, il nostro modello FSI richiede l’utilizzo di

una mesh computazionale per il dominio fluido non conforme al profilo

del disco. Questa difficoltà è stata superata creando un algoritmo che

calcola l’intersezione tra una circonferenza parametrizzata, che rapp-

resenta il disco, ed ogni elemento della mesh del dominio fluido che

interseca, utilizzando le formule di quadratura di Gauss. In seguito

abbiamo scritto la formulazione algebrica in forma matriciale per cal-

colare la soluzione numerica, ottenendo una matrice a blocchi che

rappresenta l’interazione fluido-struttura. In conclusione, abbiamo

effettuato alcuni test per verificare la validità del lavoro e abbiamo

confrontato i risultati ottenuti utilizzando l’algoritmo sviluppato con

i risultati disponibili in letteratura.

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Fluid structure interaction problem 2

1.2.1 Simulation’s approach . 3

1.2.2 Problem formulation . 4

2 Mathematical Model 6

2.1 The fluid model: Navier-Stokes equations 7

2.1.1 Stokes . 12

2.2 Lagrange Multiplier . 13

2.3 Mathematical formulation of the reduced FSI Problem 21

3 Numerical discretization 24

3.1 Intersection algorithm . 29

3.2 Gauss Point interpolation . 30

3.2.1 Gauss Point method - Application 31

4 Test cases for the assessment of the reduced model 35

4.1 Obstacle problem with Stokes flow 35

4.1.1 Results of the obstacle problem with Stokes flow 37

4.2 Fluid-structure interaction problem with Stokes flow 47

v

CONTENTS

4.2.1 Flow driven by a unit pressure drop 48

4.2.2 Couette flow and shear layers 52

4.3 Navier-Stokes . 64

4.3.1 Flow driven by a unit pressure drop 64

4.3.2 Von Kármán flow . 68

5 Conclusions 83

6 Code 85

References 99

vi

List of Figures

1.1 Model’s domains . 1

2.1 Navier-Stokes domain: inlet and outlet 8

2.2 Navier-Stokes domain: forces inlet and outlet 9

2.3 Domain 2D-0D . 23

4.1 Mesh: Number of points of the border = 30, Number of points of

the inner circle = 30; ε = 0.1 . 40

4.2 Plot of velocity; Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.1 40

4.3 Mesh: Number of points of the border = 30, Number of points of

the inner circle = 30; ε = 0.05 . 41

4.4 Plot of velocity; Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.05 41

4.5 Mesh: Number of points of the border = 30, Number of points of

the inner circle = 30; ε = 0.025 42

4.6 Plot of velocity; Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.025 42

4.7 Plot of the horizontal component of the velocity along the disc

with radius = 0.1; Unfitted (top) and Fitted (bottom) algorithm . 44

4.8 Plot of the horizontal component of the velocity along the disc

with radius = 0.05; Unfitted (top) and Fitted algorithm (bottom) 45

4.9 Plot of the horizontal component of the velocity along the disc

with radius = 0.025; Unfitted (top) and Fitted (bottom) algorithm 46

vii

LIST OF FIGURES

4.10 Plot of velocity using a mesh not conforming with the disc; Stokes

algorithm; P |Γ4 − P |Γ2 = 1 . 47

4.11 Plot of horizontal (top) and vertical (bottom) component of the

displacement in function of time; Stokes algorithm; k = 1 48

4.12 Plot of horizontal (top) and vertical (bottom) component of the

displacement in function of time; Stokes algorithm; k = 10 50

4.13 Plot of horizontal (top) and vertical (bottom) component of the

displacement in function of time; Stokes algorithm; k = 0 51

4.14 Plot of velocity: Couette flow; mesh without disc 53

4.15 Plot of velocity and pressure profiles: Couette; mesh with one disc 54

4.16 Plot of streamlines velocity field: Couette flow; mesh with one disc 54

4.17 Plot of horizontal (top) and vertical (bottom) component of the

displacement in function of time: Couette flow; mesh with one

disc; k = 10 . 55

4.18 Plot of horizontal (top) and vertical (bottom) component of the

displacement in function of time: Couette flow; mesh with one

disc; k = 1 . 56

4.19 Plot of horizontal (top) and vertical (bottom) component of the

displacement in function of time: Couette flow; mesh with one

disc; k = 0 . 57

4.20 Plot of velocity and pressure profiles: Couette flow; mesh with two

discs; ε = 0.1 . 58

4.21 Plot of streamlines of velocity field: Couette flow; mesh with two

discs; ε = 0.1 . 58

4.22 Plot of horizontal (top) and vertical (bottom) component of the

displacement of the upper disc in function of time: Couette flow;

mesh with two discs; ε = 0.1 . 59

viii

LIST OF FIGURES

4.23 Plot of horizontal (top) and vertical (bottom) component of the

displacement of the lower disc in function of time: Couette flow;

mesh with two discs; ε = 0.1 . 60

4.24 Velocity and pressure profiles: Couette flow; mesh with two discs;

ε = 0.05 . 61

4.25 Streamlines: Couette flow; mesh with two discs; ε = 0.05 61

4.26 Plot of horizontal (top) and vertical (bottom) component of the

displacement of the upper disc in function of time: Couette flow;

mesh with two discs; ε = 0.05 . 62

4.27 Plot of horizontal (top) and vertical (bottom) component of the

displacement of the lower disc in function of time: Couette flow;

mesh with two discs; ε = 0.05 . 63

4.28 Plot of velocity; Navier-Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.1 . . 64

4.29 Plots of horizontal (upper) and vertical (lower) component of the

displacement of the disc in function of time: Navier-Stokes model 65

4.30 Plots of horizontal (upper) and vertical (lower) component of the

displacement: Navier-Stokes model, stiffer structure of the previ-

ous case . 66

4.31 Plots of horizontal (upper) and vertical (lower) component of the

displacement: Navier-Stokes model, null stiffness of the structure 67

4.32 Size and geometric disposition of the computational domain . . . 70

4.33 Model Mesh Von Kármán street; fitted algorithm 71

4.34 Model Mesh Von Kármán street; unfitted algorithm 72

4.35 Velocity contour and Pressure; Literature and Navier-Stokes fitted

algorithm; Re = 40 . 73

4.36 Plot of velocity; Navier-Stokes fitted and unfitted algorithms; Von

Kármán street; Re = 40 . 74

ix

LIST OF FIGURES

4.37 Plot of zoom of the velocity; Navier-Stokes fitted and unfitted al-

gorithms; Von Kármán street; Re = 40 74

4.38 Plot of the horizontal component of the velocity along the disc;

fitted and unfitted algorithm; Re = 40, upper half of the disc . . . 74

4.39 Plot of the horizontal component of the velocity along the disc -

fitted and unfitted algorithm - Re 40, lower half of the disc 75

4.40 Plot of the vertical component of the velocity along the disc; fitted

and unfitted algorithm; Re 40, upper half of the disc 75

4.41 Plot of the vertical component of the velocity along the disc; fitted

and unfitted algorithm; Re 40, lower half of the disc 75

4.42 Plot of streamlines of velocity field; Navier-Stokes fitted and un-

fitted algorithms; Von Kármán street - Re = 40 76

4.43 Plot of pressure; Navier-Stokes fitted and unfitted algorithms; Von

Kármán street; Re = 40 . 76

4.44 Plot of zoom of the pressure; Navier-Stokes fitted and unfitted

algorithms; Von Kármán street; Re = 40 76

4.45 Plot of the pressure along the disc; fitted and unfitted algorithm;

Re 40, upper half of the disc . 77

4.46 Plot of the pressure along the disc; fitted and unfitted algorithm;

Re 40, lower half of the disc . 77

4.47 Plot of velocity; Navier-Stokes fitted and unfitted algorithms; Von

Kármán street; Re = 100 . 77

4.48 Plot of zoom of the velocity; Navier-Stokes fitted and unfitted al-

gorithms; Von Kármán street; Re = 100 78

4.49 Plot of the horizontal component of the velocity along the disc;

fitted and unfitted algorithm; Re 100, upper half of the disc . . . 78

x

LIST OF FIGURES

4.50 Plot of the horizontal component of the velocity along the disc;

fitted and unfitted algorithm; Re 100, lower half of the disc 78

4.51 Plot of the vertical component of the velocity along the disc; fitted

and unfitted algorithm; Re 100, upper half of the disc 79

4.52 Plot of the vertical component of the velocity along the disc; fitted

and unfitted algorithm; Re 100, lower half of the disc 79

4.53 Plot of streamlines of velocity field; Navier-Stokes fitted and un-

fitted algorithms; Von Kármán street; Re = 100 79

4.54 Plot of pressure; Navier-Stokes fitted and unfitted algorithms; Von

Kármán street; Re = 100 . 80

4.55 Plot of zoom of the pressure; Navier-Stokes fitted and unfitted

algorithms; Von Kármán street; Re = 100 80

4.56 Plot of the pressure along the disc; fitted and unfitted algorithm;

Re 100, upper half of the disc . 80

4.57 Plot of the pressure along the disc; fitted and unfitted algorithm;

Re 100, lower half of the disc . 81

xi

Chapter 1

Introduction

1.1 Motivations

The aim of this project is to develop a computational model to describe the

mechanical behavior of thin and slender structures (such as wires) when embedded

into fluid in motion. This result would be important to enable simulations of

phenomena that are still computational too expensive at the moment, such as

the direct simulation of vegetation with winds or with water flows.

(a) Domain 3D-1D (b) Domain 2D-0D

Figure 1.1: Model’s domains

In order to develop a model of 3D-1D interactions, we start from a simplified

case, namely 2D-0D model.

1

1.2 Fluid structure interaction problem

1.2 Fluid structure interaction problem

Fluid-structure interaction (FSI) is a multiphysics coupling between the laws that

describe fluid dynamics and structural mechanics. This phenomenon is charac-

terized by interactions (which can be stable or oscillatory) between a deformable

or moving structure and a external or internal fluid flow.

When a fluid flow encounters a structure, stresses and strains are exerted on the

solid object - forces that can lead to deformations. These deformations can be

quite large or very small, depending on the pressure and velocity of the flow and

the material properties of the actual structure.

If the deformations of the structure are small enough and the variations in time

are also relatively slow, the fluid’s behavior will not be greatly affected by the

deformation, and we can concentrate ourselves only with the resultant stresses

in the solid parts. However, if the variations in time are fast, greater than a few

cycles per second, then even small structural deformations will lead to pressure

waves in the fluid. These pressure waves lead to the radiation of sound from

vibrating structures. Such problems can be treated as an acoustic-structure in-

teraction, rather than a fluid-structure interaction.

If the deformations of the structure are large, the velocity and pressure fields of

the fluid will change as a result, and we need to treat the problem as a bidirec-

tionally coupled multiphysics analysis: the fluid flow and pressure fields affect

the structural deformations, and the structural deformations affect the flow and

pressure.

Fluid-structure interaction problems and multiphysics problems in general are

often too complex to be solved analytically. They have to be studied by means

of experiments or numerical simulation. Research in the fields of computational

2

1.2 Fluid structure interaction problem

fluid dynamics and computational structural dynamics is still ongoing but the

maturity of these fields enables numerical simulation of fluid-structure interac-

tion. Some works that deal with fluid-interaction model are for example [2], [8]

and [1].

1.2.1 Simulation’s approach

Two main approaches exist for the simulation of fluid-structure interaction prob-

lems:

• Monolithic approach: the equations governing the flow and the structure

are solved simultaneously

• Partitioned approach: the equations governing the flow and the displace-

ment of the structure are solved separately, with two distinct solvers, and

coupling is achieved through sub-iterations

The monolithic approach requires a code developed for this particular combina-

tion of physical problems whereas the partitioned approach preserves software

modularity because an existing flow solver and structural solver may be coupled.

Moreover, the partitioned approach facilitates solution of the flow equations and

the structural equations with different, possibly more efficient techniques which

have been developed specifically for either flow equations or structural equations.

However, stability of the coupling algorithm is not always garanteed in parti-

tioned simulations.

In conclusion, the partitioned approach allows reusing existing software which is

an attractive advantage, but stability of the coupling method needs to be taken

into consideration.

3

1.2 Fluid structure interaction problem

1.2.2 Problem formulation

The interaction of a flexible structure with a flowing fluid in which it is submersed

or by which it is surrounded gives rise to a rich variety of physical phenomena with

applications in many fields of engineering, for example, the stability and response

of aircraft wings, the flow of blood through arteries, the response of bridges and

tall buildings to winds, the vibration of turbine and compressor blades, and the

oscillation of heat exchangers.

A fluid-structure problem is defined by the fluid equations, the structure equa-

tions and by the transmission conditions at the fluid-structure interface:

uf = us (1.1)

σf · nf + σs · ns = 0 (1.2)

where u is the velocity and σ is the stress, respectively of the fluid (f) and the

structure (s).

These conditions are the key ingredients when deriving the energy equality of

the continuous fluid-structure system. When relations (1.1) and (1.2) are satis-

fied after time discretization, one says that the method is strongly coupled. A

monolithic method is typically strongly coupled and, hopefully, is stable in the

energy norm.

A straightforward way to satisfy the discrete counterpart of (1.1) and (1.2) is to

simultaneously solve the fluid and the structure problems in a unique solver with

a monolithic approach, as already explained in the previous section. However,

this approach needs ad hoc software development and results in a global solver

4

1.2 Fluid structure interaction problem

which is less modular than two distinct fluid and structure solvers. In particular

it is difficult to devise efficient global preconditioners, and to maintain state-of-

the-art schemes in each solver. With the partitioned method, the fluid and the

structure are solved with their own software and this increases the capabilities

of evolution and optimization of each code. Among the partitioned schemes, we

can distinguish the weakly coupled ones from the strongly coupled. A scheme

is said to be weakly (or loosely) coupled when (1.1) and (1.2) are not exactly

satisfied at each time step. When sub-iterations are performed at each time step,

the transmission conditions (1.1) and (1.2) can be enforced with a high accuracy

even though two different solvers are used and so the method is not weakly cou-

pled. Nevertheless, partitioned procedures are often used to implement weakly

coupled schemes. Indeed, many fluid-structure interaction problems, in particu-

lar in aeroelasticity reference, can be solved in practice without enforcing exactly

(1.1) and (1.2), [7].

5

Chapter 2

Mathematical Model

With computational models playing an ever increasing role in the advancement

of science, it is important to understand what does it mean to model something;

recognize the implications of the conceptual, mathematical and algorithmic steps

of model construction; and comprehend what models can and cannot do. Models

cannot replace experiments nor can they prove that particular mechanisms are at

work in a given situation. But they can demonstrate whether or not a proposed

mechanism is sufficient to produce an observed phenomenon.

A mathematical model is a quantitative representation of a natural phenomenon.

Like all other models used in science, its aim is to represent as incisively as pos-

sible a given object, a real phenomenon or a set of phenomena (mathematical

model of a physical system, chemical system or biological system). Often the

model is a representation of the reality not perfect, but however faithful.

Mathematical modeling is indispensable in many applications, is successful in

many further applications, it gives precision and direction for problem solution

and it enables a thorough understanding of the system modeled. Moreover it

prepares the way for better design or control of a system and allows the efficient

6

2.1 The fluid model: Navier-Stokes equations

use of modern computing capabilities.

Computers can be used to perform numerical calculations. There is a large ele-

ment of compromise in mathematical modelling. However the majority of systems

in the real world are far too complicated to be model in their full complexity.

2.1 The fluid model: Navier-Stokes equations

In fluid dynamics, the equations of Navier-Stokes constitute a system of non-linear

partial derivative differential equations (PDEs) that describe the behaviour of a

viscous fluid at a macroscopic level. The fluid is considered as a tightly deformable

continuous [3].

The Navier-Stokes equations can be derived from the basic conservation of mo-

mentum and continuity equations applied to properties of fluids.

They arise from the application of Newton’s second law to fluid motion, together

with the assumption that the stress in the fluid is the sum of a diffusing viscous

term (proportional to the gradient of velocity) and a pressure term. They re-

sult in a system of nonlinear partial differential equations; however, with certain

simplifications (such as 1-dimensional motion) they can sometimes be reduced to

linear differential equations. Nonlinearity in particular makes them difficult or

impossible to solve; this is what causes the turbulence and unpredictability in

their solutions.

We make the assumption that mass is not added or removed from the system.

As result, continuity equation turn out to be:

dρ

dt
+∇ · (ρu) = 0

7

2.1 The fluid model: Navier-Stokes equations

For an incompressible fluid, the density is constant. Setting the derivative of

density equal to zero and dividing through by a constant ρ, we obtain the simplest

form of the continuity equation:

∇ · u = 0

Let us now consider Newton’s second law with the momentum conservation

expressed for an open system with several inlets and outlets like the one illustrated

in the picture below:

Figure 2.1: Navier-Stokes domain: inlet and outlet

F = m
du
dt

+
∑

moutuout −
∑

minuin

m
du
dt

=
∑

minuin −
∑

moutuout + F

8

2.1 The fluid model: Navier-Stokes equations

where:

m
du
dt

= m

[
1

m

∫
V

∂

∂t
(ρu)dV

]
=

∫
V

∂

∂t
(ρu)dV

Figure 2.2: Navier-Stokes domain: forces inlet and outlet

∑
minuin −

∑
muout = −

∫
A

u(ρu · n)dA = −
∫
V

∇ · (ρuu)dV

F =

∫
V

ρgdV −
∫
A

ndA+

∫
A

n ·TdA

with:

• g = gravity force

• p = pressure

• n unit vector normal to the surface

• T viscous stress tensor

9

2.1 The fluid model: Navier-Stokes equations

Since

∫
A

pndA =

∫
V

∇pdV

and

∫
A

n ·TdA =

∫
V

∇ TdV

F =

∫
V

ρgdV −
∫
V

∇pdV +

∫
V

∇ ·TdV =

∫
V

(ρg−∇p+∇ ·T)dV

∫
V

[
∂

∂t
(ρu) +∇ · (ρuu) + ρg−∇p+∇ ·T

]
dV = 0

This derivation gives the equation for conservation of momentum, that is:

∂

∂t
(ρu) +∇ · (ρuu) + ρg −∇p+∇ · T = 0

In case of incompressible and Newtonian fluid, the constitutive stress/strain law

is:

T = µ[∇u + (∇u)T]

with ∇ u =

∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z

and µ is the dynamic viscosity

10

2.1 The fluid model: Navier-Stokes equations

We consider an incompressible and Newtonian fluid so we can rewrite the equa-

tions in a more compact way:

∇ · u = 0

µ = constant

∇ · (∇u)T = ∇(∇ · u) = 0

∇ · µ[∇u + (∇u)T] = ∇ · (µ∇u) = µ∇2u

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p+ µ∇2u + ρg

• Acceleration term: change of velocity with time

• Convective term: force exerted by a particle of fluid by the other particles

of fluid surrounding it

• Pressure term: fluid flow in the direction of the largest change in pressure

• Diffusion term: this term describes how fluid motion is damped

• Body force term: external forces that act on fluids, such as the gravitational

force

Navier-Stokes equations can be used to determine the velocity vector field that

applies to a fluid, given some initial conditions. The solution is a vector field to

every point in a fluid, at any moment in a time interval. It is usually studied

in three spatial dimensions, although the two (spatial) dimensional case is often

useful as a model, and higher-dimensional analogues are of both pure and applied

11

2.1 The fluid model: Navier-Stokes equations

mathematical interest. Once the velocity field is calculated, other quantities of

interest such as pressure or temperature may be found using dynamical equations

and relations.

Navier–Stokes equations are useful because they describe the physics of many

phenomena of scientific and engineering interest. They may be used to model the

weather, ocean currents, water flow in a pipe and air flow around a wing. The

Navier Stokes equations, in their full and simplified forms, help with the design

of aircraft and cars, the study of blood flow, the design of power stations, the

analysis of pollution, and many other things.

2.1.1 Stokes

The equation of motion for Stokes flow can be obtained by linearizing the steady

state Navier-Stokes equations. The inertial forces are assumed to be negligible

in comparison to the viscous forces, and eliminating the inertial terms of the

momentum balance in the Navier–Stokes equations reduces it to the momentum

balance in the Stokes equations:

µ∇
2u−∇p+ f = 0

∇u = 0

where ρ is the fluid density and u the fluid velocity. To obtain the equations

of motion for incompressible flow, it is assumed that the density, ρ , is a constant.

Furthermore, we can consider the unsteady Stokes equations:

ρ
∂u
∂t

+ µ∇2u−∇p+ f = 0

12

2.2 Lagrange Multiplier

The Stokes equations represent a considerable simplification of the full Navier-

Stokes equations, especially in the incompressible Newtonian case. They are the

leading-order simplification of the full Navier-Stokes equations, valid in the dis-

tinguished limit Re → 0.

A Stokes flow has no dependence on time other than through time-dependent

boundary conditions. This means that, given the boundary conditions of a Stokes

flow, the flow can be found without knowledge of the flow at any other time.

The resulting equations are linear in velocity and pressure, and therefore can

take advantage of a variety of linear differential equation solvers.

2.2 Lagrange Multiplier

Another important mathematical tool that we will use is the Lagrange Multiplier

method, because it allows us to enforce constraints, such as boundary conditions,

at the level of the weak formulation.

In general, Lagrange multiplier method allows us to maximize or minimize func-

tions with the constraint that we only consider points on a certain surface. To

find critical points of a function f(x, y, z) on a level surface g(x, y, z) = C (or

subject to the constraint g(x, y, z) = C), we must solve the following system of

simultaneous equations:

∇f(x, y, z) = λ∇g(x, y, z) = 0

we can write this as a collection of four equations in the four unknowns x, y, z,

and λ:

13

2.2 Lagrange Multiplier

fx(x, y, z) = λgx(x, y, z)

fy(x, y, z) = λgy(x, y, z)

fz(x, y, z) = λgz(x, y, z)

g(x, y, z) = 0

The variable λ is called a Lagrange multiplier.

In finite element methods, the Dirichlet boundary conditions can be enforced

by using Lagrange multipliers and by solving related saddle point problems. By

combining both discretization methods it is possible to profit from the advan-

tages of both methods. Therefore, the Lagrange multiplier method provides a

necessary but not sufficient condition for optimization in constrained problems.

Now let’s formulate the problem more rigorously from a mathematical point of

view:

14

2.2 Lagrange Multiplier

Let A be an open set in Rp+q and a ∈ A. Let f :A→ R and g1, ..., gp:A→ R with

g1, ..., gp ∈ C1 (A) (functions with continuous partial derivative functions) such

that the range of the Jacobian matrix

(
∂gi
∂xj

(a)

)
for i = 1, . . . , p and j = 1, . . . , p+ q

is p. Let S = x ∈ A / gi(x) = 0, i=1,...,p and let’s suppose that a ∈ S.

It is said that the function f has a relative extremum conditioned by the

equations gi(x1, . . . , xp, xp+1, . . . , xp+q) = 0 for i = 1, . . . , p when there exists a

neighborhood U of a in Rp+q such that f(x) ≤ f(a) or f(x) ≥ f(a) ∀x ∈ S ∩ U .

In the first case a is a maximum relative conditioned, and in the second case a

is a minimum relative conditioned.

Notice that saying relative is similar to local and that saying conditioned is

because of ligature conditions (constraints of gi).

Theorem 1 Lagrange Multipliers Under the conditions of the establishment of

the problem above, if in addition f ∈ C1(A), then for the function f to have an

extremum relative conditioned at the point a, it’s necessary to exist p real numbers

λ1, . . . , λp such that the function L = f + λ1g1 + · · · + λpgp fulfills dL(a)=0.

(λ1, ..., λp are called Lagrange multipliers.)

Let’s suppose furthermore that gi, f ∈ C2(A) i = 1, ..., p and at the point a ∈ A,

is verified that dL(a)=0. Then for that f to have at a a minimum (respectively

maximum) relative conditioned is sufficient d2L(a)(h, h) > 0∀h ∈ Rp+q with h 6= 0

resp. < 0) and dgi(a) = 0, i = 1, ..., p.

15

2.2 Lagrange Multiplier

There is another important apllication of the Lagrange Multiplier, deepened in

several studies ad exemples in [11], [12], [5], : when it is used to impose the

boundary conditions for PDEs and now we will go deeper in this explanation.

There are many situations where the boundary conditions are in fact constraint

relations, for example where a point on the boundary is required to follow a

prescribed path or where there is some form of cyclic continuity in the problem.

These types of condition are difficult to impose on a problem when direct solution

methods are used.

The method of Lagrange mulipliers can help in many cases. It has been shown

that it is not computationally easy to handle the Dirichlet (essential) boundary

condition if the variational principle requires fulfillment of these conditions. All

Dirichlet type boundary conditions can be imposed through the use of Lagrange

multipliers and it will be used to illustrate the method.

To explain the Lagrange Multiplier method for imposing boundary conditions

for PDEs we consider a saddle point variational formulation which is equivalent

to the variational problem: given the bilinear form a(·, ·) V × V → R, given

f ∈ V ′ find u ∈ V such that

a(u, v) = 〈f, v〉Ω ∀v ∈ V (2.1)

This problem is chosen only for notational simplicity; the following statements

are also valid for other second-order elliptic problems such as, e.g., the equations

of linear elasticity and Stokes problem.

First of all we present here some recalls.

16

2.2 Lagrange Multiplier

Let Ω ∈ Rd (d = 2, 3) be a bounded and simply connected domain with sufficiently

smooth boundary Γ = ∂Ω, and n(x) is the exterior unit normal vector which is

defined almost everywhere for x ∈ Γ. The coefficient functions aji (x) are assumed

to be sufficient smooth satisfying aij(x) = aji(x) for all i, j = 1, ..., d, x ∈ Ω.

The interior boundary trace of a given function f(x), x ∈ Ω is:

γint0 f(x) := lim
Ω3x̃→x∈Γ

f(x̃) for x ∈ Γ = ∂Ω

The associated conormal derivative is:

γint1 u(x) = lim
Ω3x̃→x∈Γ

d∑
i,j=1

nj(x)aji(x̃)
∂

∂x̃i
u(x̃) for x ∈ Γ = ∂Ω (2.2)

The scalar partial differential operator is:

(Lu)(x) = −
d∑

i,j=1

∂

∂xj
[aji(x)

∂

∂xi
u(x)] for x ∈ Ω ⊂ Rd (2.3)

We aim to solve the following problem:

Lu = f on Ω

u = g on Γ
(2.4)

And the Green’s fist formula:

a(u, v) =

∫
Ω

(Lu)(x)v(x)dx+

∫
Γ

γint1 u(x)γint0 v(x)dsx (2.5)

The Dirichlet boundary conditions are now formulated as side conditions, and

the associated conormal derivative corresponds to the Lagrange multiplier. If we

start from Green’s first formula we obtain by introducing the Lagrange multiplier

λ := γintu ∈ H− 1
2 (Γ) the following saddle point problem:

17

2.2 Lagrange Multiplier

Find (u, λ) ∈H1(Ω)xH−
1
2 (Γ) such that

a(u, v)− b(v, λ) =
〈
f, v
〉

Ω

b(u, µ) =
〈
g, µ
〉

Γ

(2.6)

is satisfied for all (v, µ) ∈ H1(Ω)×H 1
2 (Γ). Here we have used the bilinear form

b(v, µ) :=
〈
γint0 v, µ

〉
Γ

for (v, µ) ∈ H1(Ω)×H
1
2 (Γ).

Let’s now investigate the unique solvability of the saddle point problem (2.6), in

order to do that we have to report and apply the following theorem.

Theorem 2 Let X and Π be Banach spaces and let A : X → X’ and B : X →

Π′ be bounded operators. Further, we assume that A is V0˘elliptic,

〈
Av, v

〉
≥ cA1 ||v||2X for all v ∈ V0 = kerB (2.7)

and that the stability condition

cs||q||Π ≤ sup
0 6=v∈X

〈Bv, q〉
||v|| X

for all q ∈ Π (2.8)

is satisfied.

For g ∈ ImXB and f ∈ ImV g A there exists a unique solution (u, p) ∈ X × Π

of the variational problem

〈
au, v

〉
+
〈
Bv, p

〉
=
〈
f, v
〉

〈
Bu, q

〉
=
〈
g, q
〉 (2.9)

18

2.2 Lagrange Multiplier

where p is a Lagrange Multipler p ∈ Π and (u,v) ∈ X × Π satisfying

||u||X ≤
1

cA1
||f ||X′ +

(
1 +

cA2
cA1

)
cB||g||Π′ , (2.10)

with cAi is positive constant and

||p||Π ≤
1

cs

(
1 +

cA2
cA1

){
||f ||X′ + cBc

A
2 ||g||Π′

}
. (2.11)

Since,

kerB := v ∈ H1(Ω) :
〈
γint0 v, µ

〉
Γ

= 0 for all µ ∈ H−
1
2 (Γ) = H1

0 (Γ). (2.12)

we have the ker B-ellipticity of the bilinear form a(·,·). So we need to establish

the stability condition:

cs||µ||H− 1
2 (Γ)
≤ sup

06=v∈H1(Ω)

〈γint0 v, µ〉Γ
||v||H1(Ω)

for all µ ∈ H−
1
2 (Γ). (2.13)

Lemma 1: The stability condition (2.13) is satisfied for all µ ∈ H−
1
2 (Γ).

Finally we can conclude the unique solvability of the saddle point problem (2.6)

due to Theorem 2.

Recall that the bilinear form a(·,·) in the saddle point formulation (2.6) is only

H1
0 -elliptic. However, it can be reformulated to obtain a formulation where the

modified bilinear form ã(·,·) is now H1-elliptic.

Since the Lagrange multiplier λ := γint1 u ∈ H− 1
2 (Γ) describes the conormal deriva-

tive of the solution u, using the orthogonality relation we have

∫
Ω

f(x)dx+

∫
Γ

λ(x)dsx = 0 (2.14)

19

2.2 Lagrange Multiplier

And with the Dirichlet boundary condition γint0 u = g we also have

∫
Γ

γint0 u(x)dsx =

∫
Γ

g(x)dsx. (2.15)

Hence we can reformulate the saddle point problem (2.6) to find (u, λ) ∈ H1(Ω)

× H−
1
2 such that∫

Γ

γint0 u(x)dsx

∫
Γ

γint0 v(x)dsx + a(u, v)− b(v, λ) =

〈f, v〉Ω +

∫
Γ

g(x)dsx

∫
Γ

γint0 v(x)dsx

(2.16)

b(u, µ) +

∫
Γ

λ(x)dsx

∫
Γ

µ(x)dsx = 〈g, µ〉Γ −
∫

Ω

f(x)dx

∫
Γ

µ(x)dsx (2.17)

is satisfied for all (v, µ) in H1(Ω)x H−
1
2 (Γ).

The modified saddle point problem (2.16) and (2.17) is uniquely solvable, and

the solution is also the unique solution of the original saddle point problem (2.6),

i.e. the saddle point formulations (2.16)–(2.17) and (2.6) are equivalent.

20

2.3 Mathematical formulation of the reduced FSI Problem

2.3 Mathematical formulation of the reduced FSI

Problem

Since we are dealing with a fluid structure problem, we look at it as one system

of equations for the fluid, one for the solid and one for the coupling conditions

that link the other two.

We consider the incompressible flow around a rigid obstacle. The obstacle may

be force to move according to a linear elastic constraint.

To bluid our mathematical model we considered first the system of equations

for the fluid part:

−∂tu−∆u+∇p = 0 in Ω

divu = 0 in Ω

σ(u, p) · n = p̂ on Γp

u = 0 on Γu

In particular, we consider here a simplified version of the classical FSI prob-

lem involving a rigid body immersed into a flow.

Precisely, we assume that the rigid body is a disc with a small radius with respect

to the characteristic dimension of the domain Ω. For this reason, calling F the

total force induced by the fluid on the solid the equations of motion of the body

are the following:

md̈+ kd = F on Σ

d̈ = ∂2d

Finally, we have to enforce the coupling conditions between the fluid and the

21

2.3 Mathematical formulation of the reduced FSI Problem

solid models. Since the object is small, the velocity of the points on Γ can be

identified with the velocity of its center of mass, namely the point x. Then, the

kinematic condition may be written as u(x) = ḋ. However, this condition is only

partially satisfactory because it does not take into account of the distribution of

the velocity around the object. Then, we decide to replace the pointwise eval-

uation of the fluid velocity at the center of mass with the average of the fluid

velocity on the fluid-solid interface. In this way we get:

1

|Σ|

∫
Σ

u = ḋ

We proceed similarly for the equilibrium of forces. Precisely the force induced by

the fluid on the object is:

F = − 1

|Σ|

∫
σ(u, p) · n

Finally this is the system of coupling conditions:

1
|Σ|

∫
Σ
u = ḋ on Σ

F = − 1
|Σ|

∫
σ(u, p) · n = L

Considering the average technique we equalize the velocity of the center of

the disk, ḋ, and the average of the speed of the flow along the disk, 1
|Σ|

∫
Σ
u. In

this way we have a reduced problem.

Using the Lagrange Multiplier method to enforce the kinematic and dynamic con-

straints between the solid and the fluid, we obtain the following weak formulation

of the reduced FSI Problem:

22

2.3 Mathematical formulation of the reduced FSI Problem

Figure 2.3: Domain 2D-0D

(∂tu, v) + (∇u,∇v)− (p, divv) + (q, divu) + L(
1

|Σ|

∫
Γ

v − ξ)+

+ (m + kd)ξ +M(1
|Σ|

∫
Γ
u− ḋ) = 0 (2.18)

∀v ∈ H1(Ω)

∀q ∈ L2(Ω)

∀L,M, ḋ ∈ R2

The term 1
|Σ|

∫
Γ
u ∈H 1

2 so it can be integrated and the integral is a finite number.

23

Chapter 3

Numerical discretization

Mathematical modeling is the discipline of representing a physical phenomenon

in mathematical terms. Most of these models (equations of linear elasticity,

Navier-Stokes equations of fluid mechanics, Maxwell equations of electromag-

netism, etc...) are written as a partial differential equation (PDE) or a system

of PDE defined on a suitable domain of Rn, n= 1,2,3. Boundary (and possibly

initial) conditions complete the model. For the numerical discretization of such

problem we use the finite element method, thoroughly explained ad exemple in

[10].

The finite element method approssimation of the problem results in a system

of algebraic equations. The method approximates the unknown function over the

domain. To solve the problem, it subdivides a large system into smaller, simpler

parts that are called finite elements. The simple equations that model these finite

elements are then assembled into a larger system of equations that models the

entire problem. FEM then uses variational methods from the calculus of varia-

tions to approximate a solution by minimizing an associated error function.

24

We use a finite element discretization with a non uniform partition Th
Ω of Ω

of triangular element, where h is the characteristic size.

Given an admissible triangulation TΩ
h the finite element space is defined as follows:

Xk
h(Ω) =

{
vh ∈ C 0(Ω) : v|k ∈ Pk(k)∀k ∈ TΩ

h

}
We use a P1/P1 for the fluid discretization. More precisely, we use equal order

X1
h(Ω) approximation for velocity and pressure

In certain circumstances, most often for implementation reasons, it would be ex-

tremely useful to be able to work with equal order finite-elements, which unfortu-

nately are not stable. Increasing the polynomial degree would result in additional

computational costs and may be not the optimal strategy if the solution is not

regular enough. Stabilization strategies have been proposed in the literature to

make it possible to work with equal order finite-elements.

We consider a stabilization term (to be added to the standard Galerkin formu-

lation) defined, in general, as a symmetric positive bilinear form on Qh, denoted

as

(s, p) : Qh ×Qh −→ R

s(ph, qh) = γ
∑
K∈Th

h2
K

∫
K

∇ph · ∇qhdΩ

• γ = stabilization coefficient

• T h
Ω = computational grid

• h2
K = area of element K

• uniformly stable for any equal order space pair

• guarantees only a linear convergence rate

25

Below it is rewritten the equation (2.18) in the discretization form with the Brezzi-

Pitkaranta stabilization term.

(∂tuh, vh) + (∇uh,∇vh)− (ph, divvh) + (qh, divuh)− γ(h2∇ph,∇qh)+

L(
1

|Σ|

∫
Γ

vh − ξh) + (md̈h + kdh)ξh +M(
1

|Σ|

∫
Γ

uh − ḋh) = 0
(3.1)

We write the algebraic formulation in matrix form in order to compute the nu-

merical solution.

We choose to use FreeFEM++ as software, since it is as a popular 2D and 3D

partial differential equations (PDE) solver.

FreeFEM is a partial differential equation solver for non-linear multi-physics sys-

tems in 2D and 3D. Problems involving partial differential equations from several

branches of physics, such as fluid-structure interactions, require interpolations of

data on several meshes and their manipulation within one program.

FreeFEM++ includes a fast interpolation algorithm and a language for the ma-

nipulation of data on multiple meshes.

FreeFEM is written in C++ and its language is a C++ idiom.

We build the fluido-structure matrix considering the structure as an obstacle

and we obtain the following result:

FSI =

F I

I ′ Z

u1

u2

p

L1

L2

=

0

0

0

0

0

26

• Z is a matrix (2x2) filled with zeros.

• To compute the matrix F we used a transient Stokes solver in matrix form,

already present in the Documentation of FreeFem++, [6].

• To compute the matrix I we define a partition of the curve in segments that

conform to the mesh of Ω and integrate the basis functions of each element

that contains a segment of the parameterized curve on that segment.

After that we add three blocks to the matrix in order to consider also the move-

ment of the structure.

FSI =

F 0 I

0 0 M

I ′ L S

u1

u2

p

L1

L2

d1

d2

=

u1n-1
τ

u2n-1
τ

0

−d1n-1
τ

−d2n-1
τ

m(2d1n-1−d1n-2
τ2

)

m(2d2n-1−d2n-2
τ2

)

• F = Stokes matrix - for the first group of test cases

(∂tu, v) + ν(∇u,∇v)− (p, divv) + (q, divu)− γ(h2∇p,∇q)

We used a Back Euler descretization for ∂tu.

• F = Navier Stokes matrix - for the second group of test cases

(∂tu, v) + ν(∇u,∇v)− (p, divv) + (q, divu)− ((u∇)u, v)+

γτSUPG/PSPG(∇p+ u∇u,∇q + v∇v)

27

where the convective non linear term is descritized iteratively:

((u∇)u, v) = (un∇)un−1, vn)

We update the stabilization term for the new equation, we replace Brezzi-

Pitquaranta term with the SUPG/PSPG stabilization, moltipling it with a

factor γ = 0.1.

τ =
1

(

√
4
dt2

+ 4
u2n−1

h2
+ 16µ2

h4
)

• I = Fluid-structure interface matrix

(L · 1

|Σ|

∫
Γ

v)

(M · 1

|Σ|

∫
Γ

u)

• S = Structure matrix

(md̈+ kd)

• L = Lagrange multiplier matrix

(L · ξ)

• M =

(Mḋ)

FSI =

F 0 I

0 0 M

I ′ L S

 M = (− 1
τ
)

1 0

0 1

 L =

−1 0

0 −1

To compute the block I we have to develop two new algorithms in FreeFem++:

28

3.1 Intersection algorithm

1. Intersection algorithm

2. Gauss interpolation

3.1 Intersection algorithm

The intersection algorithm aims at calculating the intersection between the pro-

file of the obstable and the computational mesh.

As a first step we considered the 2D-0D coupling problem.

The intersection algorithm is devided in some steps:

1. Given a set of ordered point, take the first and the second to form a segment

(ex. point n. 1 and n. 2)

1. Select the triangular element in which is located the first point of the seg-

ment (ex. point n. 1 belongs to the red triangle in the first picture)

2. Loop on the three edges of the selected triangle and look for intersection

between the segment considered and the edge (ex. green point in the second

picture)

3. Move to the adjacent triangle to the edge to which the point of intersection

found belongs (ex. red triangle in the second picture)

4. Loop on the two edges of the triangle that have not been considered yet

(ex. red edges in the third picture) and find the new intersection point

5. Repete the procedure until the triangle considered is the same as the one

to which the second point of the segment belongs (ex. point n. 2 belongs

to the red triangle in the second picture). In this way I have identified all

the elements that intersect the curve between the points considered

29

3.2 Gauss Point interpolation

6. Change segment: the first point become the previous second (ex. n. 2) and

the second point become the follow one in the ordered set of points (ex. n.

3)

7. Continue until every point has been considered

3.2 Gauss Point interpolation

In numerical analysis, a quadrature rule is an approximation of the definite inte-

gral of a function, usually stated as a weighted sum of function values at specified

points within the domain of integration. An n-point Gaussian quadrature rule, is

a quadrature rule constructed to yield an exact result for polynomials of degree

2n-1 or less by a suitable choice of the nodes xi and weights ωi for i = 1, ..., n.

The most common domain of integration for such a rule is taken as [1,1], so the

rule is stated as ∫ 1

−1

f(x)dx =
n∑
i=1

ωif(xi)

30

3.2 Gauss Point interpolation

which is exact for polynomials of degree 2n-1 or less. This rule is known as the

Gauss-Legendre quadrature rule.

3.2.1 Gauss Point method - Application

Once that all the intersection points are located we can proceed with the inte-

gration of the basis function only of the triangular elements involved with the

intersection.

∫ 1

−1

φk(F -1(α(t)))|α′(t)|dt '
2∑
i=1

φk(F -1(α(ti)))|α′(ti)|ωi

F (x) =

[
(x2 − x0) (x1 − x0)
(y2 − y0) (y1 − y0)

] [
x
y

]
+

[
x0

y0

]

• φk is the basis function of the element k

• α(ti) = traslation from interval [-1,1] to [a,b] α(ti) = a+b
2

+ b−a
2
ti

• ti = Gauss Point

t1 =
√

1
3
and t2 = −

√
1
3

• F(x) = allows to pass from the global to the local reference system , where

x0,1,2 and y0,1,2 represent the coordinates of the vertexes of the triangle that

we are considering

• weight ωi = 1

31

3.2 Gauss Point interpolation

I has a size of (nv x 2), where nv = number of vertexes of the triangular mesh.

The first column corresponds to the first component of u, u1, in the equation

(3.1), the second column to the second component, u2, and the third component

to p.

The k-row is filled with the integrated basis function of the corresponding ele-

ment. The rows corresponding to element that do not intersect the parameterised

curve are filled with zeros.

I :

u10 u10

u20 u20

p0 p0

...
...

u1k u1k

u2k u2k

pk pk
...

...

u1n u1n

u2n u2n

pn pn

I =

...
...

0 0

0 0

0 0
...

...∫ 1

−1
φk 0

0
∫ 1

−1
φk

0 0
...

...∫ 1

−1
φi 0

0
∫ 1

−1
φi

0 0
...

...

The last step of the algorithm consists in solve the complete matrix of the fluid-

structure with the desired boundary conditions.

For the right hand side vector:

32

3.2 Gauss Point interpolation

rhs =

u1n-1
τ

u2n-1
τ

0

d1n-1
τ

d2n-1
τ

m(2d1n-1−d1n-2
τ2

)

m(2d2n-1−d2n-2
τ2

)

vou =

u1

u2

p

L1

L2

d1

d2

In the right hand side vector we have terms coming from the discretization of

first and second degree derivatives:

∂tu =
un−un-1

τ

ḋ =
dn−dn-1

τ

d̈ =
dn−2dn-1+dn-2

τ

33

3.2 Gauss Point interpolation

FSI =

...
...

0 0

0 0

0 0
...

...∫ 1

−1
φk 0

0
∫ 1

−1
φk

0 0
...

...∫ 1

−1
φi 0

0
∫ 1

−1
φi

0 0
...

...

0 0

0 0

− 1
τ

0

0 − 1
τ

. . . 0 0 0 . . .
∫ 1

−1
φk 0 0 . . .

∫ 1

−1
φi 0 0 . . .

. . . 0 0 0 . . . 0
∫ 1

−1
φk 0 . . . 0

∫ 1

−1
φi 0 . . .

−1 0

0 −1

m
τ2

+ k1 0

0 m
τ2

+ k2

34

Chapter 4

Test cases for the assessment of the

reduced model

To validate our model we proceed now making some test cases through which we

analyze quantitatively the reduced model and the numerical discretization.

4.1 Obstacle problem with Stokes flow

Flow around a fixed or oscillating cylinder has received continued attention in

the past few decades. In addition to being a building block in the understanding

of bluff body dynamics, it has a large number of applications in many engineer-

ing situations. This study is the first step to investigate the feasibility of three

dimensional coupled fluid structure computations using a one-dimensional model

for the structure.

As first example we consider the unit square Ω(0, 1)2 containing a disc with radius

R.

Let Γ1,Γ2,Γ3,Γ4 be the sides of the square ordered counterclockwise starting from

35

4.1 Obstacle problem with Stokes flow

the base.

The boundary conditions imposed are:

• Neumann boundary condition ∂u
∂n
− p · n = p̂ · n, with p̂ = 1 on Γ4

• Neumann boundary condition ∂u
∂n
− p · n = 0 on Γ2 (As a result the flow is

driven by pressure jump from Γ4 to Γ2, which is a unit pressure drop).

• Dirichlet boundary condition u = 0 on Γ1 and Γ3

• A set of points that parametrize a circonference

To validate the results obtained with the reduced model we compare them with

those obtained from a full model, namely a fitted mesh Stokes’ algorithm with

an empty circle inside. Then we evaluate the model error of the reduced model.

The error is calculated as the L2 norm.

L2Error =

√
χ ∗ (us1 − u1)2 + (us2 − u2)2

(u2
1 + u2

2)

χ =

 1 if (x− xc)2 + (y − yc)2 > δ

0 otherwise

• xc, yc = coordinates of the center of the circle

• δ = radius of the circle outside which we want to calculate our error

• us, u = velocity vectors of the mesh of Stokes algorithm and the fitted mesh,

respectively

where xc and yc are the coordinates of the center of the circle, δ is the radius of

the circle outside which we want to calculate our error (it is necessary compare

the error considering a circle bigger than one of the mesh) and ud and u are the

velocity vectors of the mesh of Stokes algorithm and the fitted mesh, respectively.

36

4.1 Obstacle problem with Stokes flow

4.1.1 Results of the obstacle problem with Stokes flow

We consider the disc in the center of the domain which is a 1x1 square, so:

xc = 0.5, yc = 0.5

To evaluate the error more accurately we compare the two algorithms using a

conforming mesh with respect to the fluid-structure interface.

The number of points on each edge and on the inner circle are constant for

each mesh: namely 30 and 30 points respectively. Each mesh is illustrated below

with the respective results of the velocity field.

ε δ L2Error
0.1 0.2 0.0755484
0.05 0.2 0.131741
0.025 0.2 0.162833

"Th" is the mesh for our algorithm and "Thd" is the one for FreeFem++ imple-

mented Stokes algorithm. "np" is the number of points for the edge, "ic" is the

number of points for the internal disc and "r" is the radius of the disc.

1 int np = 120;

2 int ic = 240;

3 real r = 0.025;

4 border C01(t=0,1){x = t; y = 0; label = 1; }

5 border C02(t=0,1){x = 1; y = t; label = 2; }

6 border C03(t=0,1){x = 1-t; y = 1; label = 3; }

7 border C04(t=0,1){x = 0; y = 1-t; label = 4; }

8 border bo(t=0, 2*pi){x=r*cos(t) + 0.5; y=r*sin(t) + 0.5 ; label =

5; }

37

4.1 Obstacle problem with Stokes flow

9 mesh Th = buildmesh(C01(np)+C02(np)+C03(np)+C04(np)+bo(+ic));

10 mesh Thd = buildmesh(C01(np)+C02(np)+C03(np)+C04(np)+bo(-ic));

Since the intersection algorithm do not compile an intersection point when it co-

incides with a node of the mesh, we move the parametrized circle of 0.00000525,

which is the smallest amount that the mesh takes into account, in an arbitrary

direction (we chose the positive vertical direction).

FreeFem++ code for the error is:

1 real L2error = sqrt(int2d(Thd)((((x -0.5) ^2 + (y -0.5) ^2) > 0.2)

*(((u-ud)^2+(v-vd)^2)/(ud^2+vd^2))));

As you can see from the following example, expecially the last one, even if the

meshes are constructed in the same way and the size of the number of points of

each edge is the same, as is the number of points on the disc, the mesh is not the

same because of the difference between the full disc and the empty one.

The code for the stokes comparison agorhithm is:

1 fespace Vhd(Thd , P1);

2 Vhd ud, vd;

3 Vhd uoldd , voldd;

4 fespace Qhd(Thd , P1);

5 Qhd pd;

6 Qhd ppd;

7 fespace Xh(Thd , [P1 , P1, P1]);

8 varf aad ([ud , vd, pd], [uud , vvd , ppd])

9 = int2d(Thd)(

10 (ud*uud+vd*vvd)/dt

11 +(dx(ud)*dx(uud) + dy(ud)*dy(uud) + dx(vd)*dx(vvd) + dy(

vd)*dy(vvd))

38

4.1 Obstacle problem with Stokes flow

12 + gamma*hTriangle ^2*(dx(pd)*dx(ppd) + dy(pd)*dy(ppd))

13 - pd*(dx(uud) + dy(vvd))

14 + ppd*(dx(ud) + dy(vd))

15)

16 + int1d(Thd , 1, 3, 5)(10e+20*ud*uud + 10e+20*vd*vvd)

17 ;

18 varf bb ([uoldd , voldd], [uud , vvd])

19 = int2d(Thd)(

20 ((uoldd*uud+voldd*vvd)/dt)

21)

22 ;

23 varf bcl (unused , uud)

24 = int1d(Thd , 4)(1*uud)

25 ;

26 matrix Ad = aad(Xh, Xh, solver = UMFPACK);

27 matrix Bd = bb(Xh, Xh);

28 real[int] bd = bcl(0, Xh);

29 real[int] sold(Xh.ndof), aux(Xh.ndof);

30 int m, Md = T/dt;

31 Xh [w1, w2 , wp] = [uoldd , voldd , ppd];

32 sold = w1[];

33 for (m = 0; m < Md; m++){

34 aux = Bd*sold; aux += bd;

35 sold = Ad^-1 * aux;

36 }

37 w1[]= sold; ud=w1; vd= w2; pd=wp;

38 cout << " u, v, pw = " << sold << endl;

39 plot(pd, [ud , vd], value=true , wait=true , cmm="t=" +m*dt, fill =1)

;

39

4.1 Obstacle problem with Stokes flow

(a) Unfitted Algorithm (b) Fitted Algorithm

Figure 4.1: Mesh: Number of points of the border = 30, Number of points of the
inner circle = 30; ε = 0.1

(a) Unfitted Algorithm. (b) Fitted Algorithm.

Figure 4.2: Plot of velocity; Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.1

40

4.1 Obstacle problem with Stokes flow

(a) Unfitted Algorithm (b) Fitted Algorithm

Figure 4.3: Mesh: Number of points of the border = 30, Number of points of the
inner circle = 30; ε = 0.05

(a) Unfitted Algorithm. (b) Fitted Algorithm.

Figure 4.4: Plot of velocity; Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.05

41

4.1 Obstacle problem with Stokes flow

(a) Unfitted Algorithm (b) Fitted Algorithm

Figure 4.5: Mesh: Number of points of the border = 30, Number of points of the
inner circle = 30; ε = 0.025

(a) Unfitted Algorithm. (b) Fitted Algorithm.

Figure 4.6: Plot of velocity; Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.025

42

4.1 Obstacle problem with Stokes flow

It is useful report the values of the velocity components on the interface of the

disc with the fluid. In this way we can check if values on the disc are small as it

appears from the images above.

To this purpose let’s create two graphs with the horizontal component of velocity

as a function of the x itself, both for the fitted algorithm and for the unfitted one.

We chose to represent only the horizontal component since it is more relevant in

this case where the only input is an unitary horizontal pressure on the left edge

of the square.

The results obtained are satisfactory as we note that they are always very close

to zero, for both models, fitted and unfitted, with a maximum value of deviation

of the null value of the order of hundredths. These results are a good validation

of the unfitted model since it results correctly in a null velocity along the disk,

seen as an obstacle.

43

4.1 Obstacle problem with Stokes flow

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.4 0.45 0.5 0.55 0.6

vx

x coordinates of disc

X component of velocity on the disc respect to the x axis - Unfitted algorithm

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.4 0.45 0.5 0.55 0.6

vx

x coordinates of disc

X component of velocity on the disc respect to the x axis - Fitted algorithm

Figure 4.7: Plot of the horizontal component of the velocity along the disc with
radius = 0.1; Unfitted (top) and Fitted (bottom) algorithm

44

4.1 Obstacle problem with Stokes flow

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x coordinates of disc

X component of velocity on the disc respect to the x axis - Unfitted algorithm

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x coordinates of disc

X component of velocity on the disc respect to the x axis - Fitted algorithm

Figure 4.8: Plot of the horizontal component of the velocity along the disc with
radius = 0.05; Unfitted (top) and Fitted algorithm (bottom)

45

4.1 Obstacle problem with Stokes flow

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.47 0.48 0.49 0.5 0.51 0.52 0.53

vx

x coordinates of disc

X component of velocity on the disc respect to the x axis - Unfitted algorithm

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.47 0.48 0.49 0.5 0.51 0.52 0.53

vx

x coordinates of disc

X component of velocity on the disc respect to the x axis - Fitted algorithm

Figure 4.9: Plot of the horizontal component of the velocity along the disc with
radius = 0.025; Unfitted (top) and Fitted (bottom) algorithm

46

4.2 Fluid-structure interaction problem with Stokes flow

4.2 Fluid-structure interaction problem with Stokes

flow

In this case we consider fluid-structure interaction problem described in section

3. This is a time dependent problem and we use it to validate the behaviour of

the structure. We consider the same condition of the first test case:

• Neumann boundary condition ∂u
∂n
− p · n = p̂ · n, with p̂ = 1 on Γ4

• Dirichlet boundary condition u = 0 on Γ1 and Γ3

• A set of points that describe a circonference with a radius, ε, equal to 0.1

• A time interval from 0 to 1 with a time-step of 0.05

(a) Unfitted Algorithm. (b) Mesh, border size = 90.

Figure 4.10: Plot of velocity using a mesh not conforming with the disc; Stokes
algorithm; P |Γ4 − P |Γ2 = 1

We can see that the plot is slightly different from the previous ones, even though

the boundary conditions imposed are the same, because the mesh does not con-

form with the disc.

47

4.2 Fluid-structure interaction problem with Stokes flow

4.2.1 Flow driven by a unit pressure drop

We impose an unitary pressure on the left edge and look at how the structure

moves in the fluid.

We plot the displacements [dx, dy] in function of the time t of the two directions,

x and y:

m = 1, k = 1, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.11: Plot of horizontal (top) and vertical (bottom) component of the
displacement in function of time; Stokes algorithm; k = 1

48

4.2 Fluid-structure interaction problem with Stokes flow

We can note that in the horizontal direction (first picture) the structure goes on

from it’s starting point, moving from left to right, and it is what we expected

since the only force is the pressure that pushes the disc forward. In the vertical

direction (second picture) there is a slight oscillation of negligible magnitude and

this is in accordance with the imposed boundaries conditions, since there are no

forces applied in the vertical direction.

The displacement of the disc depends also from the value of "k" which is the

stiffness of a body. It is a measure of the resistance opposed by an elastic body to

deformation. As we can see in chapter 3, "k" is a value included in the "matrix

of the structure", "S", the last block added to the block matrix, which modifies

the characteristics of the structure itself and therefore allows to modify the inter-

action with the fluid. For this reason the disk will move more with a small value

of the rigidity of the body as this will oppose a lower resistance to displacement,

but, with a higher value of k you will notice the oscillations due to the will of the

structure to resist the movement.

Considering what has just been explained we repeat the same test with a dif-

ferent value of k and we see how the displacement change in the two directions.

49

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 10, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.12: Plot of horizontal (top) and vertical (bottom) component of the
displacement in function of time; Stokes algorithm; k = 10

With k = 10, the disc moves along the x-axis with an oscillation motion that

seems to progressively stabilize towards equilibrium.

50

4.2 Fluid-structure interaction problem with Stokes flow

The following images represents the case with a null resistance offered by the

body, k = 0.

m = 1, k = 0, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.13: Plot of horizontal (top) and vertical (bottom) component of the
displacement in function of time; Stokes algorithm; k = 0

From the graphs above we note that the structure moves more, than with k = 1

and k = 10 and without oppose any resistance to the movement.

51

4.2 Fluid-structure interaction problem with Stokes flow

4.2.2 Couette flow and shear layers

As second test for the obstacle test-case we impose a Couette flow.

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space be-

tween two surfaces, one of which is moving tangentially relative to the other.

The Couette flow is characterized by a constant shear stress distribution.

In laminar flow regime, the velocity profile is linear. The configuration often takes

the form of two parallel plates or the gap between two concentric cylinders. The

flow is driven by virtue of viscous drag force acting on the fluid. The Couette

configuration models certain practical problems, like flow in lightly loaded journal

bearings, and is often employed in viscometry and to demonstrate approximations

of reversibility.

To impose the Couette flow in our simulations we use the following boundary

conditions that allow us to obtain a linear velocity profile in the domain:

• u = 1 on Γ3

• u = -1 on Γ1

52

4.2 Fluid-structure interaction problem with Stokes flow

Indeed, if we represent, as it is showed in the following picture, the flow without

any disc, we can see the linear flow on the domain. This thpe of flow is also called

a shear layer.

Figure 4.14: Plot of velocity: Couette flow; mesh without disc

As soon as we disrupt the flow with an obstacle, the disc in our case, we can

notice that the flow is not linear anymore, as shown in the previous case where

there are no obstacles, and we can study the movement of the disc in both the

directions x and y. This instability is usually called the Taylor vortex instability

of a Couette flow.

53

4.2 Fluid-structure interaction problem with Stokes flow

To study more accurately the movement of the disc, we shift the disc from the
center to the upper part of the domain, in order to break the symmetry of the
model.

xc = 0.5 and yc = 0.75

Figure 4.15: Plot of velocity and pressure profiles: Couette; mesh with one disc

Figure 4.16: Plot of streamlines velocity field: Couette flow; mesh with one disc

54

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 10, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.17: Plot of horizontal (top) and vertical (bottom) component of the
displacement in function of time: Couette flow; mesh with one disc; k = 10

55

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 1, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.18: Plot of horizontal (top) and vertical (bottom) component of the
displacement in function of time: Couette flow; mesh with one disc; k = 1

56

4.2 Fluid-structure interaction problem with Stokes flow

Now we repeat the same test with a null value of k.

m = 1, k = 0, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.19: Plot of horizontal (top) and vertical (bottom) component of the
displacement in function of time: Couette flow; mesh with one disc; k = 0

As in the previous case, we note that the structure moves more, even if not a lot,
than with k = 1 and k = 10.

57

4.2 Fluid-structure interaction problem with Stokes flow

Now we add another disk to the domain in order to have a symmetrical output
of the velocity field.
We use the following data:

xc = 0.5 and yc = 0.75 is the position of the first disc.
xc = 0.5 and yc = 0.25 is the position of the second disc.

ε = radius = 0.1.

Figure 4.20: Plot of velocity and pressure profiles: Couette flow; mesh with two
discs; ε = 0.1

Figure 4.21: Plot of streamlines of velocity field: Couette flow; mesh with two
discs; ε = 0.1

Figure 4.21 shows the formation of a Taylor vortex at the center of the domain.

58

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 10, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.22: Plot of horizontal (top) and vertical (bottom) component of the
displacement of the upper disc in function of time: Couette flow; mesh with two
discs; ε = 0.1

59

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 1, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.23: Plot of horizontal (top) and vertical (bottom) component of the
displacement of the lower disc in function of time: Couette flow; mesh with two
discs; ε = 0.1

60

4.2 Fluid-structure interaction problem with Stokes flow

Now we repeat the same test, but halving the size of the diameter of the discs.

xc = 0.5 and yc = 0.75 is the position of the first disc.
xc = 0.5 and yc = 0.25 is the position of the second disc.

ε = radius = 0.05.

Figure 4.24: Velocity and pressure profiles: Couette flow; mesh with two discs;
ε = 0.05

Figure 4.25: Streamlines: Couette flow; mesh with two discs; ε = 0.05

61

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 10, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.26: Plot of horizontal (top) and vertical (bottom) component of the
displacement of the upper disc in function of time: Couette flow; mesh with two
discs; ε = 0.05

62

4.2 Fluid-structure interaction problem with Stokes flow

m = 1, k = 10, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.27: Plot of horizontal (top) and vertical (bottom) component of the
displacement of the lower disc in function of time: Couette flow; mesh with two
discs; ε = 0.05

This test case is qualitatively similar to the one with ε = 0.1.

63

4.3 Navier-Stokes

4.3 Navier-Stokes

The last step is to complete Navier-Stokes’ equation with the convective term.

Only the matrix S is modified, as explained in the third chapter.

The complete equations becomes:

(∂tu, v) + ν(∇u,∇v)− (p, divv) + (q, divu) + ((u∇)u, v)+

−γτSUPG/PSPG(∇p+ u∇u,∇q + v∇v) + (L,
1

|Σ|

∫
Γ

v − ξ)+

+(md̈+ kd)ξ + (M,
1

|Σ|

∫
Γ

u− ḋ) = 0

(4.1)

4.3.1 Flow driven by a unit pressure drop

As the first test for Navier Stokes’ equation, we impose an unitary pressure on the
left edge and look at how the structure moves in the fluid, as we did for Stokes’
algorithm. The comparison with Stokes flow test case will serve for validation of
the code.

Figure 4.28: Plot of velocity; Navier-Stokes model; P |Γ4 − P |Γ2 = 1; ε = 0.1

64

4.3 Navier-Stokes

We plot the displacements [dx, dy] in function of the time t of the two directions,

x and y:

m = 1, k = 1, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.29: Plots of horizontal (upper) and vertical (lower) component of the
displacement of the disc in function of time: Navier-Stokes model

65

4.3 Navier-Stokes

m = 1, k = 10, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.30: Plots of horizontal (upper) and vertical (lower) component of the
displacement: Navier-Stokes model, stiffer structure of the previous case

66

4.3 Navier-Stokes

m = 1, k = 0, T = 5, dt = 0.005, number of points of each edge of the mesh =
120

Figure 4.31: Plots of horizontal (upper) and vertical (lower) component of the
displacement: Navier-Stokes model, null stiffness of the structure

We can see that the trend of the fluid-structure interaction is the same as for the
model of Stokes. The values of the disc movement are also similar. So we notice
a consistency in the two algorithms.

67

4.3 Navier-Stokes

4.3.2 Von Kármán flow

In fluid dynamics, a Von Kármán vortex street is a repeating pattern of swirling

vortices, caused by a process known as vortex shedding, which is responsible for

the unsteady separation of flow of a fluid around blunt bodies. It is named after

the engineer and fluid dynamicist Theodore von Kármán and is responsible for

such phenomena as the "singing" of suspended telephone or power lines and the

vibration of a car antenna at certain speeds. This problem is deeply studied ad

exemple in [4] and [9].

A vortex street will only form at a certain range of flow velocities, specified by

a range of Reynolds numbers (Re), typically above a limiting Re value of about

90. The (global) Reynolds number for a flow is a measure of the ratio of inertial

to viscous forces in the flow of a fluid around a body or in a channel, and may be

defined as a dimensionless parameter of the global speed of the whole fluid flow:

ReL =
UL

ν0

where:

• U = the free stream flow speed

• L = a characteristic length parameter of the body or channel

• ν0 = the kinematic viscosity parameter of the fluid, which in turn is the

ratio:

ν0 =
µ0

ρ0

between:

• ρ0 = the fluid density.

68

4.3 Navier-Stokes

• µ0 = the fluid dynamic viscosity

For common flows (the ones which can usually be considered as incompressible

or isothermal), the kinematic viscosity is everywhere uniform over all the flow

field and constant in time, so there is no choice on the viscosity parameter, which

becomes naturally the kinematic viscosity of the fluid being considered at the

temperature being considered. On the other hand, the reference length is always

an arbitrary parameter, so particular attention should be put when comparing

flows around different obstacles or in channels of different shapes: the global

Reynolds numbers should be referred to the same reference length. The reference

length can vary depending on the analysis to be performed: for a body with circle

sections such as circular cylinders or spheres, one usually chooses the diameter;

for an airfoil, a generic non-circular cylinder or a bluff body or a revolution body

like a fuselage or a submarine, it is usually the profile chord or the profile thick-

ness, or some other given widths that are in fact stable design inputs; for flow

channels usually the hydraulic diameter about which the fluid is flowing. The

range of Re values will vary with the size and shape of the body from which the

flow glides, as well as with the kinematic viscosity of the fluid. Over a large Re

range (40 < Re < 105 for circular cylinders; reference length is d: diameter of

the circular cylinder) eddies are shed continuously from each side of the circle

boundary, forming rows of vortices in its wake. The alternation leads to the core

of a vortex in one row being opposite the point midway between two vortex cores

in the other row. Ultimately, the energy of the vortices is consumed by viscosity

as they move further down stream, and the regular pattern disappears.

When a single vortex is shed, an asymmetrical flow pattern forms around the body

and changes the pressure distribution. This means that the alternate shedding

of vortices can create periodic lateral forces on the body, causing it to vibrate.

If the vortex shedding frequency is similar to the natural frequency of a body

69

4.3 Navier-Stokes

or structure, it causes resonance. It is this forced vibration that, at the correct

frequency, causes suspended telephone or power lines to "sing" and the antenna

on a car to vibrate more strongly at certain speeds.

In this section we aims to test the reduced fluid-structure interaction model using

the Von Karman vortex street case. We considered as a reference the Placzek’s

paper [9] which study the fluid-structure interaction between a Newtonian incom-

pressible fluid and a cylinder. We will use the same computational domain of the

paper and it is represented in Fig. 4.32 with the cylinder of diameter d.

Figure 4.32: Size and geometric disposition of the computational domain

As values used to compute Navier-Stokes test we used µ = 0.0035, ρ = 1 and

accordingly ν = 0.0035.

70

4.3 Navier-Stokes

The mesh is refined to achieve a more precise result in terms of speed and pressure.

We add an inner rectangle and two circle. The outer circle is in accordance with

the computational domain explained above and the inner one has the same radius

of the hole in the fitted mesh, as we already have done for Stokes case in the section

4.1.1.

Figure 4.33: Model Mesh Von Kármán street; fitted algorithm

The parameters of the mesh are the following:

• Outer rectangle: upper and lower border have 140 points, right and left

have 40 points.

• Inner rectangle: upper and lower border have 250 points, right and left have

100 points.

• Outer disc: 140 points.

• Inner disc: 90 points.

71

4.3 Navier-Stokes

Figure 4.34: Model Mesh Von Kármán street; unfitted algorithm

Once the domain was fixed and reproduced with an appropriate mesh, different

tests were made to validate the model.

The first test is with a Reynolds number equal to 40. Below are reported the

images of the velocity and the pressure fields. We can notice that, due to the not

enough high Re number, there is no evidence of vortex.

In order to calculate the correct minimum time to use, we have used the relation

72

4.3 Navier-Stokes

between Strouhal number and Reynolds number data taken from the mentioned

paper.

In particular we define the Strouhal number as:

St = fs
d

uin

Precisely, given St(Re), d, uin we calculate fs that is the characteristic frequency

of vortex shedding. Then, we know that to observe the detachment of a vortex

the numerical simulation time must be T > 1
fs
.

For our tests we have, in the first case, Re = 40 and a correspondent St = 0.11

and consequently the time = 3.85 and in the second case, Re = 100 so St = 0.16

hence t = 5.6.

Below are reported the images of velocity contour and pressure, using Re =

40, taken from the paper already mentioned before. We notice that the results

are comparable with the one we obtained with our namely fitted model, which

results are reported in the netx pages.

Figure 4.35: Velocity contour and Pressure; Literature and Navier-Stokes fitted
algorithm; Re = 40

73

4.3 Navier-Stokes

Now we consider the disc cut in half by the x-axis and we plot separately the

velocity and the pressure on the upper half of the disc and on the lower one

respect to the abscissa.

Re = 40, vx = 1.4 on Γ4 and vy = 0 on Γ1 and Γ3, T = 10,
dt = 0.05, ε = 0.1

Figure 4.36: Plot of velocity; Navier-Stokes fitted and unfitted algorithms; Von
Kármán street; Re = 40

Figure 4.37: Plot of zoom of the velocity; Navier-Stokes fitted and unfitted algo-
rithms; Von Kármán street; Re = 40

Upper half of the disc

−0.5

0

0.5

1

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x

−0.5

0

0.5

1

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x

Figure 4.38: Plot of the horizontal component of the velocity along the disc; fitted
and unfitted algorithm; Re = 40, upper half of the disc

74

4.3 Navier-Stokes

Lower half of the disc

−1

−0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x
−1

−0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x

Figure 4.39: Plot of the horizontal component of the velocity along the disc -
fitted and unfitted algorithm - Re 40, lower half of the disc

Upper half of the disc

−0.2

−0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x
−0.2

−0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x

Figure 4.40: Plot of the vertical component of the velocity along the disc; fitted
and unfitted algorithm; Re 40, upper half of the disc

Lower half of the disc

−0.5

−0.4

−0.3

−0.2

−0.1
0

0.1

0.2

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x

−0.5

−0.4

−0.3

−0.2

−0.1
0

0.1

0.2

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x

Figure 4.41: Plot of the vertical component of the velocity along the disc; fitted
and unfitted algorithm; Re 40, lower half of the disc

75

4.3 Navier-Stokes

Figure 4.42: Plot of streamlines of velocity field; Navier-Stokes fitted and unfitted
algorithms; Von Kármán street - Re = 40

Figure 4.43: Plot of pressure; Navier-Stokes fitted and unfitted algorithms; Von
Kármán street; Re = 40

Figure 4.44: Plot of zoom of the pressure; Navier-Stokes fitted and unfitted algo-
rithms; Von Kármán street; Re = 40

76

4.3 Navier-Stokes

Upper half of the disc

−1

−0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x

−1

−0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x

Figure 4.45: Plot of the pressure along the disc; fitted and unfitted algorithm; Re
40, upper half of the disc

Lower half of the disc

−1

−0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x

−1

−0.5

0

0.5

1

1.5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x

Figure 4.46: Plot of the pressure along the disc; fitted and unfitted algorithm; Re
40, lower half of the disc

The second test is performed using the same mesh as the previous case. The

Reynolds number chosen is 100.

Re = 100, vx = 3.5 on Γ4 and vy = 0 on Γ1 and Γ3, T =
15, dt = 0.05, ε = 0.1

Figure 4.47: Plot of velocity; Navier-Stokes fitted and unfitted algorithms; Von
Kármán street; Re = 100

77

4.3 Navier-Stokes

Figure 4.48: Plot of zoom of the velocity; Navier-Stokes fitted and unfitted algo-
rithms; Von Kármán street; Re = 100

Upper half of the disc

−1

0

1

2

3

4

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x

−1

0

1

2

3

4

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x

Figure 4.49: Plot of the horizontal component of the velocity along the disc; fitted
and unfitted algorithm; Re 100, upper half of the disc

Lower half of the disc

−3

−2

−1
0

1

2

3

4

5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x
−3

−2

−1
0

1

2

3

4

5

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vx

x

Figure 4.50: Plot of the horizontal component of the velocity along the disc; fitted
and unfitted algorithm; Re 100, lower half of the disc

78

4.3 Navier-Stokes

Upper half of the disc

−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x

Figure 4.51: Plot of the vertical component of the velocity along the disc; fitted
and unfitted algorithm; Re 100, upper half of the disc

Lower half of the disc

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x
−1.5

−1

−0.5

0

0.5

1

1.5

2

0.44 0.46 0.48 0.5 0.52 0.54 0.56

vy

x

Figure 4.52: Plot of the vertical component of the velocity along the disc; fitted
and unfitted algorithm; Re 100, lower half of the disc

Figure 4.53: Plot of streamlines of velocity field; Navier-Stokes fitted and unfitted
algorithms; Von Kármán street; Re = 100

79

4.3 Navier-Stokes

Figure 4.54: Plot of pressure; Navier-Stokes fitted and unfitted algorithms; Von
Kármán street; Re = 100

Figure 4.55: Plot of zoom of the pressure; Navier-Stokes fitted and unfitted algo-
rithms; Von Kármán street; Re = 100

Upper half of the disc

−10
−8
−6
−4
−2

0
2
4
6
8

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x
−10
−8
−6
−4
−2

0
2
4
6
8

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x

Figure 4.56: Plot of the pressure along the disc; fitted and unfitted algorithm; Re
100, upper half of the disc

80

4.3 Navier-Stokes

Lower half of the disc

−10
−8
−6
−4
−2

0
2
4
6
8

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x
−10
−8
−6
−4
−2

0
2
4
6
8

0.44 0.46 0.48 0.5 0.52 0.54 0.56

p

x

Figure 4.57: Plot of the pressure along the disc; fitted and unfitted algorithm; Re
100, lower half of the disc

Considering the results obtained from the velocity profiles first, we notice that,

while for the "fitted" model we have values always very close to zero, both in

vertical and horizontal direction and both for the upper and the lower semicircle

of the disc, instead in the "unfitted" model the values result to be much higher,

until reaching the values of the input velocity, that is 1.4 for Re = 40 and 3.5 for

Re = 100. Above all, the major discrepancy of the velocity results occurs at the

fluid-structure interface on the downstream side of the disc, as can be seen from

the images Fig.4.36 and its zoom Fig.4.37 and Fig.4.47 and its zoom Fig. 4.48.

We notice also that after the interaction with the disc, the unfitted model fails

to reproduce a region where the velocity is lower, almost null, compared to that

present in the rest of the domain.

Concerning the pressure, we notice that both in the case of Re = 40 and in

that of Re = 100, the "Unfitted" model does not succeed to mimic the "Fitted"

one. Especially in the case of Re = 100, we notice that in the reduced model no

vortexes are formed, as it happens for the full model. In fact, the vortices are

originated because ∇p along the circumference of the disc drops substantially and

the negative pressure generates instability. In particular we observe a pressure

drop from 8 to -6 for the upper semicircle and from 8 to -8 for the lower one. For

81

4.3 Navier-Stokes

the reduced model, first of all, there is an important difference in the results of

the upper and lower semicircles: the pressure profile of the inferior semicircle is

more similar to how it should be, reaching a pick of almost 6 on the left part of

the disc, decreasing gradually until a value of -6 on the left part. The pressure

on the superior part of the disc, instead, has a fluctuating trend that doesn’t

allow the formation of a vortex to happen, fact that it is noticed instead for what

concerns the lower part, shown with a zoom in the image Fig. 4.55.

82

Chapter 5

Conclusions

My thesis aims to create a 2D-0D dimensional model for the reduction of fluid-

structure interaction. We want to reproduce the flow of an incompressible fluid

(2D) around a disc (0D), which has to be modelled as a point due to the imposed

zero dimensionality. This was our first problem to face and, in order to solve it,

we created a suitable mathematical model that enforce the boundary conditions

between the solid and the fluid by means of Lagrange multipliers. We proposed a

numerical discretization to address our problem as a finite element problem and

we used FreeFem++ as solver. We wrote the algebraic formulation in a matrix

form in order to compute the numerical solution, obtaining a block matrix that

represents the fluid structure interaction. We created an algorithm that uses

Gauss point interpolation to find the intersection between the mesh of the fluid

domain, which does not conform with the disc, and the disc itself. To model the

disc we created a parameterized circumference, approximated by a set of points

connected by segments. We have thus computed the intersection of each segment

of the parameterized disc and the edges of the mesh of the fluid domain. It was

also necessary to find a way to consider a pointwise velocity for the disc modelled

as a point and, to deal with this issue, we replaced the velocity of the fluid with the

average velocity of the fluid on the fluid-solid interface. We have consequently

83

carried out tests for the assessment of the reduced model, namely "Obstacle

problem with Stokes flow", compared with a full model. we showed that, in this

case, the two models produce comparable results. Then we modified the the

computational model of the fluid structure interaction,to take into account of the

constitutive equation for a disc which may move with a linear elastic constraint.

We tested the respective algorithm reproducing different conditions around the

fluid, such as the Couette’s flow, and then we studied the movement of the disc.

Finally, we completed the mathematical model considering a fluid governed by

Navier-Stokes equations and we reproduced the same test of the previous case

studying the movement of the disc to verify the validity of the code. The last test

carried out consists in reproducing Von Kármán street and compare the results

of the developed algorithm of the reduced model with the simulations based on

the full 2D model. This last test gave the most interesting results because it

highlights the weaknesses of the model and consequently suggest the problems to

be solved to improve the model presented here.

In conclusion, the reduced method fails to capture the decrease in pressure which

cause the origin of the vortexes of Von Kármán street. We need to find a more

suitable formulation so that the pressure gradient is captured correctly.

84

Chapter 6

Code

1
2 int np;
3 np = 200;
4 real[int] xx(np+1);
5 real[int] yy(np+1);
6 int i;
7 int j;
8 int TNumber;
9 real[int] TN (500);

10 int ee;
11 int k;
12 int l;
13 int d;
14 int nh;
15 real[int] S1P0 (2);
16 real[int] S1P1 (2);
17 real[int] S2P0 (2);
18 real[int] S2P1 (2);
19 real[int] SP0(2);
20 real[int] SP1(2);
21 real[int] INTX (500);
22 real[int] INTY (500);
23 real[int] I2(2);
24 int TNumberw;
25 int TNumberq;
26 TNumberq= 500;
27 real[int] I0(2);
28 real[int] I1(2);
29 nh = 0;
30 real r = 0.05;
31
32 for (int cir = 0; cir < np+1; cir ++)
33 {

85

34 xx[cir] = r*cos (2*pi/np*cir)+0.5000005;
35 yy[cir] = r*sin (2*pi/np*cir);
36 }
37
38 border C01(t=0 ,1.0){x=t*4.25 -1.0;y= -1.0; label =1;};
39 border C02(t=0 ,1.0){x=3.25;y=2.0*t -1.0; label =2;};
40 border C03(t=0 ,1.0){x=3.25 -4.25*t;y=1.0; label =3;};
41 border C04(t=0 ,1.0){x=-1.0;y=1.0 -2.0*t;label =4;};
42 border co(t=0,2*pi){x=cos(t)*0.3+0.5;y=sin(t)*0.3;};
43
44 border bo(t=0, 2*pi){x=r*cos(t) + 0.5; y=r*sin(t) ; label = 5; }
45
46 border C11(t=0 ,1.0){x=t*3.25 -0.25;y= -0.5;};
47 border C12(t=0 ,1.0){x=3.0;y=1.0*t -0.5;};
48 border C13(t=0 ,1.0){x=3.0 -3.25*t;y=0.5;};
49 border C14(t=0 ,1.0){x= -0.25;y=0.5 -1.0*t;};
50
51 mesh Th = buildmesh(C01 (140)+C02 (40)+C03 (140)+C04 (40)+bo(90)+co

(140)+C11 (250)+C12 (100)+C13 (250)+C14 (100));
52
53 plot(Th, [xx , yy], grey=false , wait = 0);
54
55 real SMALLNUM = 1.e-10;
56
57 func real perp(real [int] u, real [int] v) {
58 return u[0]*v[1]-u[1]*v[0];
59 }
60
61 func real dot(real [int] u, real [int] v) {
62 return (u’*v);
63 }
64
65 func int
66 inSegment(real [int] P, real [int] SP0 , real [int] SP1)
67 {
68 if (!(SP0[0] == SP1 [0])) { // S is not vertical
69 if (SP0[0] <= P[0] && P[0] <= SP1 [0])
70 return 1;
71 if (SP0[0] >= P[0] && P[0] >= SP1 [0])
72 return 1;
73 }
74 else { // S is vertical , so test y coordinate
75 if (SP0[1] <= P[1] && P[1] <= SP1 [1])
76 return 1;
77 if (SP0[1] >= P[1] && P[1] >= SP1 [1])
78 return 1;
79 }
80 return 0;
81 }

86

82
83 func int intersect2DSegments(real [int] S1P0 , real [int] S1P1 ,

real [int] S2P0 , real [int] S2P1 , real [int] I0 , real [int] I1
)

84 {
85 real [int] u = S1P1 - S1P0;
86 real [int] v = S2P1 - S2P0;
87 real [int] w = S1P0 - S2P0;
88 real D = perp(u,v);
89
90 // test if they are parallel (includes either being

a point)
91 if (abs(D) < SMALLNUM) { // S1 and S2 are

parallel
92 if (perp(u,w) != 0 || perp(v,w) != 0) {
93 return 0; // they are NOT

collinear
94 }
95 // they are collinear or degenerate
96 // check if they are degenerate points
97 real du = dot(u,u);
98 real dv = dot(v,v);
99 if (du==0 && dv==0) { // both

segments are points
100 if ((S1P0 [0] != S2P0 [0]) || (S1P0 [1] !=

S2P0 [1])) // they are distinct points
101 return 0;
102 I0 = S1P0; // they are the

same point
103 return 1;
104 }
105 if (du==0) { // S1 is a

single point
106 if (inSegment(S1P0 , S2P0 , S2P1) == 0) //

but is not in S2
107 return 0;
108 I0 = S1P0;
109 return 1;
110 }
111 if (dv==0) { // S2 a single

point
112 if (inSegment(S2P0 , S1P0 , S1P1) == 0) //

but is not in S1
113 return 0;
114 I0 = S2P0;
115 return 1;
116 }
117 // they are collinear segments - get overlap (

or not)

87

118 real t0, t1; // endpoints of
S1 in eqn for S2

119 real [int] w2 = S1P1 - S2P0;
120 if (v[0] != 0.) {
121 t0 = w[0] / v[0];
122 t1 = w2[0] / v[0];
123 }
124 else {
125 t0 = w[1] / v[1];
126 t1 = w2[1] / v[1];
127 }
128 if (t0 > t1) { // must have t0

smaller than t1
129 real t=t0; t0=t1; t1=t; // swap if

not
130 }
131 if (t0 > 1 || t1 < 0) {
132 return 0; // NO overlap
133 }
134 t0 = t0 <0? 0 : t0; // clip to min

0
135 t1 = t1 >1? 1 : t1; // clip to max

1
136 if (t0 == t1) { // intersect is

a point
137 I0 = S2P0 + t0 * v;
138 return 1;
139 }
140
141 // they overlap in a valid subsegment
142 I0 = S2P0 + t0 * v;
143 I1 = S2P0 + t1 * v;
144 return 2;
145 }
146
147
148 // the segments are skew and may intersect in a

point
149 // get the intersect parameter for S1
150 real sI = perp(v,w) / D;
151 if (sI < 0 || sI > 1) // no

intersect with S1
152 return 0;
153
154 // get the intersect parameter for S2
155 real tI = perp(u,w) / D;
156 if (tI < 0 || tI > 1) // no

intersect with S2
157 return 0;

88

158
159 I0 = S1P0 + sI * u; // compute S1

intersect point
160 return 1;
161 }
162
163
164 for (k = 0; k < (xx.n-1); k ++) // loop on the segments
165 {
166
167 TNumber = Th(xx[k],yy[k]).nuTriangle;
168 TN[nh] = TNumber; // vector containing the triangle ’s numbers

with points of the segment
169
170 nh = nh +1;
171
172 INTX[l] = xx[k]; // vector with x coordinates of my

intersection
173 INTY[l] = yy[k]; // vector with y coordinates of my

intersection
174
175 while (TNumber != Th(xx[k+1], yy[k+1]).nuTriangle) // while the

element is different from the element of the next point
176 {
177
178 for(i = 0; i< 3; i++) // loop on edges of each triangle
179 {
180
181 if (i == 0) {d = 1;}
182 if (i == 1) {d = 2;}
183 if (i == 2) {d = 0;}
184
185 S1P0 [0] = xx[k];
186 S1P0 [1] = yy[k];
187 S1P1 [0] = xx[k+1];
188 S1P1 [1] = yy[k+1];
189 S2P0 [0] = Th[TNumber][i].x;
190 S2P0 [1] = Th[TNumber][i].y;
191 S2P1 [0] = Th[TNumber][d].x;
192 S2P1 [1] = Th[TNumber][d].y;
193
194 real z = intersect2DSegments(S1P0 , S1P1 , S2P0 , S2P1 , I0

, I1);
195
196 if (i == 0) {ee = 2;}
197 if (i == 1) {ee = 0;}
198 if (i == 2) {ee = 1;}
199

89

200 if (((abs(I0[0] - I2[0]) > SMALLNUM) || (abs(I0[1] - I2
[1]) > SMALLNUM)) && ((I0[0] != 0) || (I0[1] != 0))) //
condition point different from the previews point found

201
202 {
203
204 TNumberw = Th[TNumber].adj((ee)); // adjacent triangle

of triangle TNumber from edge ee
205
206 l=l+1;
207
208 INTX[l] = I0[0]; // xcordinate of intersection point
209 INTY[l] = I0[1]; // ycordinate of intersection point
210
211 I2[0] = I0[0];
212 I2[1] = I0[1];
213
214 I0[0] = 0;
215 I0[1] = 0;
216
217 TNumberq = TNumber; // previews triangle number to

avoid to go back with the intesection already founq
218 TNumber = TNumberw;
219
220 TN[nh] = TNumber;
221
222 nh = nh +1;
223
224 break;
225
226 }
227
228 else
229
230 {
231
232 continue;
233
234 }
235 }
236 }
237
238 l = l+1;
239
240 INTX[l] = xx[k+1];
241 INTY[l] = yy[k+1];
242 }
243
244 int s;

90

245 int t;
246
247 s=1;
248
249 for(t = 0; t < INTX.n; t++){
250 if ((INTX[t] != 0) && (INTY[t] != 0)){
251
252 s = s+1; // number of the intersections points found
253
254 }
255 continue;
256 }
257
258 int tt;
259
260 real[int] NTF(s-2);
261
262 NTF = TN;
263
264 real[int , int] M(2,2);
265 real[int] q1dPointRefNewxy1 (2);
266 real[int] q1dPointRefNewxy2 (2);
267 real[int] csieta1 (2);
268 real[int] csieta2 (2);
269 real detM;
270 real[int] x1(2);
271 real[int] alphaminusx1fir (2);
272 real[int] alphaminusx1sec (2);
273 real[int] basisfunc1(s);
274 real[int] basisfunc2(s);
275 real[int] deralpha (2);
276 real[int , int] invM (2,2);
277 real[int] basitot(s);
278 int ii;
279 int jj;
280 int ni;
281 real[int] PP0(2);
282 real[int] PP1(2);
283 int ll;
284 real[int] N1(3);
285 real[int] N2(3);
286 ll = 0;
287 real[int] omega (2);
288 omega = [1, 1];
289 real norm2alpha;
290
291
292 // 2d basis functions
293

91

294 func real phif(real[int] xi, int l) {
295 if (l == 0)
296 return 1.-xi[0]-xi[1];
297 else if (l == 1)
298 return xi[0];
299 else
300 return xi[1];
301 }
302
303 // 1d quadrature points
304 real [int] q1dPointRef (2);
305 q1dPointRef [0] = -sqrt(1. / 3.);
306 q1dPointRef [1] = sqrt(1. / 3.);
307 real q1dWeightRef = 1.;
308 real [int ,int] q1dPoint (2,2);
309
310 int nv = Th.nv;
311 real[int , int] C(3*nv ,2);
312 C = 0.;
313
314 for(ii = 0; ii < s - 2; ii ++) // loop on the segment
315 {
316 PP0 [0] = INTX[ii];
317 PP0 [1] = INTY[ii];
318
319 PP1 [0] = INTX[ii + 1];
320 PP1 [1] = INTY[ii + 1];
321
322 for (jj = 0; jj < 2; jj ++)
323 {
324
325 q1dPointRefNewxy1[jj] = (PP0[jj]+PP1[jj])/2 + ((PP1[jj]-PP0

[jj])/2)*q1dPointRef [0]; // first Gauss point traslated
326
327 q1dPointRefNewxy2[jj] = (PP0[jj]+PP1[jj])/2 + ((PP1[jj]-PP0

[jj])/2)*q1dPointRef [1]; // second Gauss point traslated
328
329 deralpha[jj] = ((PP1[jj] - PP0[jj])/2);
330
331 }
332
333 M = [[(Th[NTF[ii]][1].x - Th[NTF[ii]][0].x) , (Th[NTF[ii

]][2].x - Th[NTF[ii]][0].x)],
334 [(Th[NTF[ii]][1].y - Th[NTF[ii]][0].y) , (Th[NTF[ii

]][2].y - Th[NTF[ii]][0].y)]
335]; // Matrix of trasformation coordinate
336
337 invM = [[M(1,1) , - M(0,1)],
338 [- M(1,0) , M(0,0)]

92

339]; // inverse of M
340
341 detM = 1./((M(0,0)*M(1,1)) - (M(0,1)*M(1,0)));
342
343 x1 = [Th[NTF[ii]][0].x, Th[NTF[ii]][0].y];
344
345 alphaminusx1fir = (q1dPointRefNewxy1 - x1);
346 alphaminusx1sec = (q1dPointRefNewxy2 - x1);
347
348 csieta1 [0] = (alphaminusx1fir [0]* invM (0,0)+alphaminusx1fir

[1]* invM (1,0))*(detM);
349 csieta1 [1] = (alphaminusx1fir [0]* invM (0,1)+alphaminusx1fir

[1]* invM (1,1))*(detM);
350 csieta2 [0] = (alphaminusx1sec [0]* invM (0,0)+alphaminusx1sec

[1]* invM (1,0))*(detM);
351 csieta2 [1] = (alphaminusx1sec [0]* invM (0,1)+alphaminusx1sec

[1]* invM (1,1))*(detM);
352
353 norm2alpha = sqrt((deralpha [0])^2 + (deralpha [1]) ^2); //

norm 2 of the alpha trasformation
354
355 for(int kk = 0; kk <3; kk++){
356 N1[kk] = phif(csieta1 , kk); // shape functions with first

Gauss point
357 N2[kk] = phif(csieta2 , kk); // shape functions with

second Gauss point
358 ll = ll+1;
359 int ig = Th[NTF[ii]][kk];
360 C(3*ig ,0) += (1./(2* pi*r))*(N1[kk]* norm2alpha*omega [0]

+ N2[kk]* norm2alpha*omega [1]); // sum of the basis functions
integrated on each subsegment with two Gauss points

361 C(3*ig+1,1) += (1./(2* pi*r))*(N1[kk]* norm2alpha*omega [0]
+ N2[kk]* norm2alpha*omega [1]);

362 }
363 }
364
365 real T=10;
366 real dt = 0.05;
367 int ntime = T/dt;
368 real time =0;
369 real gamma = 0.01;
370 real m=1;
371 real k1=10;
372 real k2=10;
373 real d1 = 0;
374 real d2 = 0;
375 real d1old =0;
376 real d2old =0;
377 real d1oldold =0;

93

378 real d2oldold =0;
379 real mu =0.0035;
380
381 // Fespace
382 fespace Vh(Th, P1);
383 int nVh = Vh.ndof;
384 Vh u, v;
385 Vh uu, vv;
386 Vh uold , vold;
387 Vh p;
388 Vh pp;
389 Vh udata , vdata;
390 Vh nul;
391 Vh veln;
392
393 fespace Rh(Th,P0);
394 Rh tauK , uxK , uyK;
395
396 macro e11(u,v) dx(u) //
397 macro e22(u,v) dy(v) //
398 macro e12(u,v) ((dx(v) + dy(u))*0.5) //
399 macro dn(u) (dx(u)*N.x+dy(u)*N.y) //
400 macro div(u,v) (dx(u)+dy(v)) //
401
402 func real negP(real tt) {
403 if (tt < 0)
404 return tt;
405 else
406 return 0.0;
407 }
408
409 real [int] auxf1(nVh);
410 real [int] auxf2(nVh);
411
412 fespace Yh(Th, [P1 , P1, P1]);
413
414
415 // string flname1 = "x_plot_NS ";
416 // string flname2 = "y_plot_NS ";
417 // ofstream valuesx(flname1);
418 // ofstream valuesy(flname2);
419
420 udata = 3.5;
421 udata = 0;
422
423 for (int g = 0; g < ntime; g++){
424
425 time += dt;
426

94

427 varf aa ([u, v, p], [uu, vv , pp])
428 = int2d(Th)(((u*uu+v*vv)/dt))
429 + int2d(Th)(2.0* mu*(e11(u,v)*e11(uu,vv) + e22(u,v)*e22(uu,vv

) + 2.0* e12(u,v)*e12(uu ,vv)))
430 + int2d(Th)(uu*(uold*dx(u) + vold*dy(u)) + vv*(uold*dx(v)

+ vold*dy(v)))
431 - int2d(Th)(p*(div(uu, vv)))
432 + int2d(Th)(div(u, v)*pp)
433 // + int2d(Th)(gamma*hTriangle ^2*(dx(p)*dx(pp) + dy(p)*dy(pp)

)) // Brezzi - Pitkaranta
434 + int2d(Th)(0.5*(uu*u + vv*v)*div(uold ,vold))
435 + int2d(Th)(tauK *([uold*dx(u)+vold*dy(u) + dx(p), uold*dx(

v)+vold*dy(v) + dy(p)]’*[uold*dx(uu)+vold*dy(uu)+dx(pp), uold*
dx(vv)+uold*dy(vv)+dy(pp)])) // Total stabilization

436 - int1d(Th, 2) (0.5* negP(uold * N.x + vold* N.y)*(u*uu + v
*vv)) // backflow stabilization

437 + int1d(Th, 1, 3)(10e+20*v*vv)
438 + int1d(Th, 4)(10e+20*u*uu + 10e+20*v*vv) // parabolic profile
439 ;
440
441 uxK = uold;
442 uyK = vold;
443 tauK= 0.1*(1.0/(sqrt (4.0/(dt^2) +4.0*(uxK^2 + uyK^2)/(

hTriangle ^2) + 16.0*mu*mu/(hTriangle ^4))));
444
445 //udata = 21.875*y*(2-y)*4; // parable
446 //vdata = 0; // parable
447 udata = 3.5; // couette
448 vdata = 0;
449
450 varf rhsfuu(unused , uu)
451 //= int1d(Th, 4)(1*uu) // pressure
452 = int1d(Th, 4)(10e+20* udata*uu) // parabolic profile
453 //+ int1d(Th, 1, 3)(1*uu) // velocity null Gamma 1 e 3
454 //+ int1d(Th, 3)(10e+20*uu) // Couette
455 //+ int1d(Th, 1)(-10e+20*uu) // Couette
456 + int2d(Th)((1./ dt)*uold*uu)
457 ;
458
459 varf rhsfvv(unused , vv)
460 = int1d(Th, 1, 3)(0*vv) // velocity null Gamma 1 e 3
461 + int1d(Th, 4)(vdata*vv) // parabolic profile
462 + int2d(Th)((1./ dt)*vold*vv)
463 ;
464
465 auxf1 = rhsfuu(0,Vh);
466
467 auxf2 = rhsfvv(0,Vh);
468

95

469 matrix A = aa(Yh, Yh, solver=UMFPACK);
470
471 real[int , int] C4(2,2);
472 C4 = 0;
473
474 real[int , int] LLM(2,2);
475 real[int , int] KM(2,2);
476 real[int , int] STM(2,2);
477
478 LLM = [[-1,0],
479 [0,-1]
480];
481
482 real[int , int] MLM(2,2);
483
484 MLM = (1/dt)*[[-1,0],
485 [0,-1]
486];
487
488 real[int , int] EV(C.n, 2);
489
490 EV = 0;
491
492 KM = [[(m/(dt^2)) + k1 , 0],
493 [0, (m/(dt^2)) + k2]
494];
495
496 matrix FS = [[A, C, EV],
497 [C’, C4 , MLM],
498 [EV’, LLM , KM]
499];
500
501 set (FS, solver = sparsesolver);
502
503 real[int] rhs(FS.n);
504 real[int] sol(FS.n);
505 real[int] L1(1);
506 real[int] L2(1);
507
508 for (int mm = 0; mm < nVh; mm++)
509 {
510 rhs [3*mm] = auxf1[mm];
511 rhs [3*mm+1] = auxf2[mm];
512 }
513
514 rhs[FS.n-4]=(- d1old/dt);
515 rhs[FS.n-3]=(- d2old/dt);
516 rhs[FS.n-2]=(m*((2* d1old -d1oldold)/(dt^2)));
517 rhs[FS.n-1]=(m*((2* d2old -d2oldold)/(dt^2)));

96

518
519
520 sol = FS^-1 * rhs;
521
522 for (int nl = 0; nl < u.n; nl ++)
523 {
524 u[][nl] = sol[3*nl];
525 v[][nl] = sol[3*nl+1];
526 p[][nl] = sol[3*nl+2];
527 }
528
529 L1 = sol[sol.n-4];
530 L2 = sol[sol.n-3];
531 d1 = sol[sol.n-2];
532 d2 = sol[sol.n-1];
533
534 plot([u,v], p, wait=0,value=true ,coef =0.1);
535
536 uold=u;
537 vold=v;
538 d1oldold = d1old;
539 d2oldold = d2old;
540 d1old = d1;
541 d2old = d2;
542
543 cout << time << "= t" << endl;
544
545 }

97

References

[1] M. Fernández. Coupling schemes for incompressible fluid-structure inter-

action: Implicit, semi-implicit and explicit. Computers Fluids, 55:59–108,

2011.

[2] L. Formaggia, A. Quarteroni, and A. Veneziani. Cardiovascular Mathemat-

ics: Modeling and simulation of the circulatory system. MS&A. Springer

Milan, 2010.

[3] G. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes

Equations: Volume I: Linearised Steady Problems. Springer Tracts in Natural

Philosophy. Springer New York, 2013.

[4] M. Gerouache. Etude numérique ed l’instabilité de bénard-karman derrière

un cylindre fixe ou en mouvement périodique. dynamique de l’ecoulement

et advection chaotique. Ph.D. thesis Ecole Polytechnique de l’Université de

Nantes, 2000.

[5] R. Glowinski, T.-W. Pan, T. Hesla, and D. Joseph. A distributed lagrange

multiplier/fictitious domain method for particulate flows. International jour-

nal of Multiphase Flow, 25:755–794, 1999.

[6] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–

265, 2012.

98

REFERENCES

[7] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,

J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans,

C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao,

K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu,

J. Magerlein, R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski, A. P. Ran-

dles, D. Reynolds, B. Rivière, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan,

M. Shephard, A. Siegel, B. Smith, X. Tang, C. Wilson, and B. Wohlmuth.

Multiphysics simulations: Challenges and opportunities. The International

Journal of High Performance Computing Applications, 27(1):4–83, 2013.

[8] F. Laurino and P. Zunino. Derivation and analysis of coupled pdes on mani-

folds with high dimensionality gap arising from topological model reduction.

Mathematical Modelling and Numerical Analysis, 06 2019.

[9] A. Placzek, J. Sigrist, and A. Hamdouni. Numerical simulation of an os-

cillating cylinder in a cross-flow at low reynolds number: Forced and free

oscillations. Computers Fluids, 38:80–100, 01 2009.

[10] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential

Equations. Springer Series in Computational Mathematics. Springer Berlin

Heidelberg, 2009.

[11] S. Salsa. Partial Differential Equations in Action: From Modelling to Theory.

Universitext. Springer Milan, 2008.

[12] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary

Value Problems: Finite and Boundary Elements. Texts in Applied Math-

ematics. Springer New York, 2007.

99

	1 Introduction
	1.1 Motivations
	1.2 Fluid structure interaction problem
	1.2.1 Simulation's approach
	1.2.2 Problem formulation

	2 Mathematical Model
	2.1 The fluid model: Navier-Stokes equations
	2.1.1 Stokes

	2.2 Lagrange Multiplier
	2.3 Mathematical formulation of the reduced FSI Problem

	3 Numerical discretization
	3.1 Intersection algorithm
	3.2 Gauss Point interpolation
	3.2.1 Gauss Point method - Application

	4 Test cases for the assessment of the reduced model
	4.1 Obstacle problem with Stokes flow
	4.1.1 Results of the obstacle problem with Stokes flow

	4.2 Fluid-structure interaction problem with Stokes flow
	4.2.1 Flow driven by a unit pressure drop
	4.2.2 Couette flow and shear layers

	4.3 Navier-Stokes
	4.3.1 Flow driven by a unit pressure drop
	4.3.2 Von Kármán flow

	5 Conclusions
	6 Code
	References

