
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria
Master of Science in Computer Science and Engineering

A DIVIDE-ET-IMPERA APPROACH TO PATH PLANNING

FOR GROUND COVERING WITH AN UAV

Supervisor:
Prof. Francesco AMIGONI

Master Thesis by:
Simone BIANCHI
Student ID 883360

Academic Year 2019-2020

Abstract

The Coverage Path Planning (CPP) problem is the problem of determining a
path that a robot, in our case an UAV (Unmanned Aerial Vehicle), must follow
in order to cover with its sensors all the points of a target area. In general, 3D
CPP problem is a CPP problem in a 3D environment. The application scenarios
of the 3D CPP are several: surveying, precision agriculture, structural inspec-
tions, covering of ocean floors.CPP problems are known to be NP-hard. Due to
this, optimal solutions are approximated using various methods.In particular, the
problem addressed in this thesis is to cover a 2D area at the ground by solving
multiple CPPs over 2D grids, that are obtained as the result of the intersection of
the 3D environment with |H| horizontal planes at different heights h ∈ H, where
H denotes the set of discrete heights. The UAV uses a sensor with a conic FOV
(Field Of View) that is used to cover the ground.
Our main goal is to reduce the computational cost in a CPP problem. To do this,
we adopt a divide-et-impera approach. In computer science, divide-et-impera is
a method that consists in dividing the initial problem into two or more simple
sub-problems. After that, the solutions of the sub-problems must be combined to
obtain the final result. In our case, we divide the entire environment in smaller
sections that are covered separately through the Art Gallery Problem (AGP) as
a set cover problem in order to find a feasible set of covering points (from which
the target area can be fully covered) and the Travel Salesman Problem (TSP) to
connect them. After the paths over all the zones are produced, a merge algorithm
obtains the final single path that covers the entire target surface.
We introduce two different merge algorithms. The first one solves the problem
more rapidly in terms of computational time but generally produces high cost
paths, vice versa the second one produces paths with less cost than the first al-
gorithm at the expense of a higher computational time. We implement these
algorithms in three different environments and with different FOVs (Field Of
Views) of the UAV sensor. Then we compare the results obtained with the results
obtained without a divide-et-impera approach.

I

Sommario

Il problema del Coverage Path Planning (CPP) consiste nel determinare un per-
corso che un robot, nel nostro caso un UAV (Unmanned Aerial Vehicle), deve
seguire per coprire con i suoi sensori tutti i punti di interesse evitando ostacoli. Il
3D CPP è la versione del problema del CPP in ambienti 3D. Il 3D CPP è fonda-
mentale in molte applicazioni, come la sorveglianza, la ricostruzione di strutture
3D, e il controllo delle semine in agricoltura. Il problema del CPP è NP-hard, per
questo motivo vengono proposte soluzioni che approssimano il risultato ottimo.
In questa tesi trattiamo il problema di copertura di un’area al suolo come una
composizione di più problemi di copertura 2D, poiché suddividiamo l’ambiente 3D
in |H| sezioni orizzontali a diverse altezze prestabilite h ∈ H, dove H è l’insieme
discreto delle altezze. L’UAV utilizza un sensore con un FOV (Field Of Viewe)
conico usato per coprire il terreno.
Il nostro obiettivo principale è quello di ridurre il costo computazionale nei pro-
blemi di CPP. Per fare questo utiliazziamo un approccio divide-et-impera. In
informatica, tale approccio prevede la suddivisione del problema iniziale in uno
o più sottoproblemi più semplici. Successivamente, le soluzioni dei sottoproblemi
devono essere combinate a formare la soluzione del problema iniziale. Nel nostro
caso, dividiamo l’intera mappa in diverse zone più piccole che vengono coperte
separatamente. Nel nostro caso, la copertura viene effettuata da un Art Gallery
Problem (AGP), un problema di set cover il cui obiettivo è quello di trovare un
insieme di punti di copertura che coprano l’intera area di interesse. Successiva-
mente, il Problema del Commesso Viaggiatore (TSP) viene utilizzato per trovare
un tour che connetta i punti di copertura individuati. Dopo aver ottenuto i per-
corsi di copertura di tutte le zone, un algoritmo di unione produce il risultato
finale.
Due algoritmi di unione vengono proposti nella tesi. Il primo produce risultati
con un minore tempo computazionale ma generalmente produce percorsi costosi
per quanto riguarda la distanza, viceversa, il secondo algoritmo ha con un costo
computazionale più elevato ma minori costi di distanza. Implementiamo questi
due algoritmi di unione su diversi ambienti e con differenti FOV (Field Of View)
del sensore dell’UAV. Infine analizziamo e compariamo i risultati ottenuti met-
tendoli a confronto con i risultati ottenuti senza un approccio divide-et-impera.

II

Ringraziamenti

Desidero ringraziare il Professor Francesco Amigoni per la disponibilità mostra-
tami e per gli utili consigli datomi durante questi ultimi mesi.

Ringrazio la mia famiglia, in particolare i miei genitori Beatrice e Marco per
avermi sostenuto economicamente durante questi anni sia economicamente che
moralmente nei momenti più stressanti e in quelli più gioiosi. Un ringraziamento
particolare va a mio papà Paolo che mi ha trasmesso la passione per la tecnologia
sin da bambina e senza di cui non avrei mai intrapreso questa strada. Ringrazio
anche mio zio Flavio che mi ha sempre accompagnata, letteralmente, in questi
anni.

Ringrazio Laura per esserci sempre stata nei momenti belli e in quelli più tristi,
per avermi sempre rallegrato dopo un insuccesso e per avermi sempre spronato
ad affrontare qualsiasi difficoltà con sicurezza e a credere nelle mie capacità.

Infine, ringrazio i miei colleghi universitari che hanno reso più divertente e
piacevole questo percorso.

IV

Contents

Abstract I

Sommario II

Ringraziamenti IV

1 Introduction 1
1.1 Structure of the Thesis . 3

2 State of the Art 4
2.1 Introduction to CPP . 4
2.2 2D Coverage . 5
2.3 3D Coverage . 11
2.4 Multi-UAV Coverage . 21

3 Problem Setting 24
3.1 Problem Statement . 24
3.2 Problem Analysis . 27

4 Algorithms 30
4.1 First step process methods . 30

4.1.1 Art Gallery Problem . 30
4.1.2 A* and Theta* algorithms 31
4.1.3 Travelling Salesman Problem 34

4.2 The Coverage Algorithms . 35
4.2.1 SingleHeight Algorithm . 35
4.2.2 TwoHeights Algorithm . 36

4.3 Second step process - Merge algorithms 37
4.3.1 First Merge Algorithm . 37
4.3.2 Second Merge Algorithm 38

V

5 Experiments 42
5.1 Tools . 42
5.2 Environments . 43
5.3 Results . 44

5.3.1 Environment A . 46
5.3.2 Environment B . 50
5.3.3 Environment C . 54
5.3.4 Summary . 57
5.3.5 TSP solution . 59

6 Conclusions and future works 61

A Occupancy grid maps in all the three environments 63

B Optimal paths maps for all the environments and different FOVs 67

Bibliography 74

List of Tables

2.1 Summary of 2D works presented. 11
2.2 Summary of 3D works presented. 22
2.3 Summary of multi-robot works presented. 23

5.1 Matrix size of each 2D occupancy grid map. 44
5.2 Comparison of results of Environment A and α = 60◦ 47
5.3 Comparison of results of Environment A and α = 85◦ 48
5.4 Comparison of results of Environment B and α = 60◦ 51
5.5 Comparison of results of Environment B and α = 85◦ 52
5.6 Comparison of results of Environment C and α = 60◦ 55
5.7 Comparison of results of Environment C and α = 85◦ 56
5.8 The minimum-cost coverage tour found by the Merge Algorithm 1

the heights merged and their computational time. 58
5.9 The minimum-cost coverage tour found by the Merge Algorithm 2

the heights merged and their computational time. 59
5.10 The minimum-cost coverage tour found by the Merge Algorithm 2

the heights merged and their computational time. 60

VII

List of Figures

2.1 (a)Example of trapezoidal decomposition [10]. (b) The boustrophedon
decomposition [10]. (c) A path using boustrophedon decomposi-
tion [10]. 5

2.2 (a) Cell determination using the Morse based decomposition [1].
(b) and (c) Morse cellular decomposition for h(x) = x21 + x22 in
which the slices are circles. Rather than moving along circular
paths and stepping outward, the robot follows a spiral pattern [1]. 6

2.3 An example of wavefront path [44]. 7
2.4 (a) (b) A solution using Spiral STC algorithm [18]. 8
2.5 (a) Optimal tour when travelling time is minimized first [3]. (b)

Optimal tour when sensing time is minimized first [3]. 9
2.6 (a) The robot will cover area A with boundary B [26]. (b) At the

top is shown a cross section in the plane y = y0, P1, P2 and P3

are points where the surface exceed the threshold slope µ. In the
bottom the area A is projected onto the 2D plane [26]. (c) Shows
the path of the robot starting from SP [26]. 12

2.7 Hemispherical simplification of urban structure and hemispherical
trajectory of UAV [9] . 13

2.8 Sampling scheme and its dual scheme proposed by Latombe and
Gonzalez-Banos to solve a variation of the AGP [23]. 14

2.9 Stateflow diagram illustrating two algorithms based on CSP [16]. . 15
2.10 Path generated by the Cone-TSPN algorithm [33]. 16
2.11 (a) Workplace identification [41]. (b)Coverage trajectory generated

[41]. (c) Mosaic reconstruction [41]. 17
2.12 (a) Grid-based decomposition [31]. (b)Optimal path generated by

wavefront algorithm [31]. (c) Coverage trajectory generated by
cubic interpolation [31]. 18

2.13 (a) Coverage path of the planar region [19]. (b)Coverage path
planning of the high slopes [19]. (c) Diagram of the coverage path-
planning algorithm for bathymetric maps. [19]. 19

VIII

2.14 (a) Hilbert curve with different orders [36]. (b) Coverage tree with
hilbert-based ordering of nodes at each depth and its relationship
to grids in different resolutions [36]. 20

2.15 Flowchart of the system proposed by Barrientos et al. [4]. 21

3.1 (a) Example of 3D decomposition in different planes [2]. (b) Ex-
ample of the FOV varying with height [2]. 25

3.2 Examples of (a) Type 1 (b) Type 2 27
3.3 Division of the entire map in two 3D-zones. On the left a type 1

environment, on the right a type 2 one. 28

4.1 A* grid path versus true shortest path [12]. 32
4.2 Examples of (a) Two different paths (b) Paths merged using the

first algorithm . 39
4.3 Examples of (a) Two different paths (b) Paths merged using the

second algorithm with strategy 1 41

5.1 The 3 target regions at the ground used during the experiments. . 43
5.2 Decomposition of a 3D environment in six grids of Environment C

in Case 1. 45
5.3 Target ground division of the Environment A,B,C. 46
5.4 Computational time of execution of the algorithm in Environment

B with different FOVs . 48
5.5 The coverage tours of Environment A with a α = 85◦. It shows the

paths before the merge. (a) Tour at h2 with SingleHeight algorithm
for the type 1 area. (b) Tour at h2 with the TwoHeight on the type
2 area. 49

5.6 The coverage tours of Environment A with a α = 85◦. (a) Tour
at h2 with Merge Algorithm 1. (b) Tour at h2 with the Merge
Algorithm 2. (c) Tour at h3 with the Merge Algorithm 2. 50

5.7 The coverage tours of Environment B with a α = 60◦. It shows the
paths before the merge. (a) Tour at h5 with SingleHeight algorithm
for the type 1 area. (b) Tour at h1 with the TwoHeight on the type
2 area. (c) Tour at h4 with the TwoHeight on the type 2 area. . . 52

5.8 The coverage tour of Environment B with a α = 60◦ computed
with Merge Algorithm 1. The height are in ascending order. (a)
Tour at h1. (b) Tour at h4. (c) Tour at h5. 53

5.9 The coverage tour of Environment B with a α = 60◦ computed
with Merge Algorithm 2. The height are in ascending order. (a)
Tour at h1. (b) Tour at h3. (c) Tour at h5. 53

5.10 Computational time of execution of the algorithm in Environment
B with different FOVs . 54

5.11 The coverage tour of Environment C with a α = 60◦ computed
with Merge Algorithm 1. The height are in ascending order. (a)
Tour at h1. (b) Tour at h4. (c) Tour at h5. 55

5.12 The coverage tour of Environment C with a α = 60◦ computed
with Merge Algorithm 2. The height are in ascending order. (a)
Tour at h1. (b) Tour at h5. 56

5.13 Computational time of execution of the algorithm in Environment
C with different FOVs . 57

A.1 Six grids represent the occupancy grid maps at different heights of
Environment A in ascending order starting from h0 (the ground)
to h5. Also the division is showed. 64

A.2 Six grids represent the occupancy grid maps at different heights of
Environment B in ascending order starting from h0 (the ground)
to h5. Also the division is showed. 65

A.3 Six grids represent the occupancy grid maps at different heights of
Environment C in ascending order starting from h0 (the ground)
to h5. Also the division is showed. 66

B.1 The coverage tours of Environment A with a α = 60◦. (a) Tour
at h1 with Merge Algorithm 1. (b) Tour at h4 with the Merge
Algorithm 1. (c) Tour at h5 with the Merge Algorithm 1. (d) Tour
at h1 with Merge Algorithm 2. (e) Tour at h4 with the Merge
Algorithm 2. (f) Tour at h5 with the Merge Algorithm 2. 68

B.2 The coverage tours of Environment A with a α = 85◦. (a) Tour
at h2 with Merge Algorithm 1. (b) Tour at h2 with the Merge
Algorithm 2. (c) Tour at h3 with the Merge Algorithm 2. 69

B.3 The coverage tour of Environment B with a α = 60◦ computed. (a)
Tour at h1 with Merge Algorithm 1. (b) Tour at h4 with Merge
Algorithm 1. (c) Tour at h5 with Merge Algorithm 1. (d) Tour at
h1 with Merge Algorithm 2. (e) Tour at h3 with Merge Algorithm
2. (f) Tour at h5 with Merge Algorithm 2. 70

B.4 The coverage tour of Environment B with a α = 85◦ computed. (a)
Tour at h1 with Merge Algorithm 1. (b) Tour at h5 with Merge
Algorithm 1. (c) Tour at h1 with Merge Algorithm 2. (d) Tour at
h2 with Merge Algorithm 2. 71

B.5 The coverage tour of Environment C with a α = 60◦ computed.(a)
Tour at h1 with Merge Algorithm 1. (b) Tour at h4 with Merge
Algorithm 1. (c) Tour at h5 with Merge Algorithm 1. (d) Tour at
h1 with Merge Algorithm 2. (e) Tour at h5 with Merge Algorithm 2. 72

B.6 The coverage tour of Environment C with a α = 85◦ computed.(a)
Tour at h1 with Merge Algorithm 1. (b) Tour at h2 with Merge
Algorithm 1. (c) Tour at h3 with Merge Algorithm 1. (d) Tour at
h1 with Merge Algorithm 2. (e) Tour at h2 with Merge Algorithm
2. (f) Tour at h4 with Merge Algorithm 2. 73

Acronyms

Unmanned Aerial Vehicle (UAV)
Coverage Path Planning (CPP)
Spanning Tree Coverage (STC)
Autonomous Underwater Vehicles (AUV)
Art Gallery Problem (AGP)
Travelling Salesman Problem (TSP)
Neighborhoods-TSP (TSPN)
Field of view (FOV)
Coverage sampling problem (CSP)
Probabilistic Roadmaps (PRM)
Rapidly-exploring Random Tree (RRT)

XII

Chapter 1

Introduction

The applications of UAVs (Unmanned Aerial Vehicles) have increased over the
last years. While they originated mostly in military applications, their use has
rapidly expanded to leisure activities, such as photography and videography, ap-
plications in industrial inspection [6], in agriculture (in precision agriculture for
crop, soil, and irrigation monitoring) [4, 40] and for the inspection of buildings.
Also, another type of robots, called AUV (Autonomous Underwater Vehicle) are
used to cover seafloors [1,19]. The advantages of UAVs and AUVs are: lower risks
for humans and more efficiency and precision in performing the tasks.

In the field of autonomous robot planning, the Coverage Path Planning (CPP)
problem is a well studied problem. It consists of finding a path that covers a
target area avoiding obstacles. The space may be represented in different ways
[1,10,42,44] and the paths can be computed using different methods [18,35,43,44].
Aiming to cover 3D environments, a number of algorithms have been recently pro-
posed [20,26]. Some methods are based on a two-step optimization process and are
independent from any specific scenario. In the first phase, an AGP (Art Gallery
Problem) is solved, which consists of finding the minimal set of viewpoints (called
covering points) from which the whole target space can be covered. In the second
phase a Travelling Salesman Problem (TSP) is solved, and the shortest tour con-
necting the covering points is computed. [3,39] propose a two-phase optimization
methods using MILP (Mixed Integer Linear Programming) for solving a CPP in
2D environments. Due to the fact that both the AGP and the TSP are NP-hard,
fast algorithms that provide approximate solutions are used in many works to
solve these two problems: for istance Latombe and Gonzalez-Banos in [22, 23]
propose two approximation solutions to solve the AGP as a set cover problem.

In this thesis, a divide-et-impera approach is studied in order to improve the
computational cost solution of CPP problems. In particularly, our goal is to cover

2

a 2D terrain (like an agricultural field) with an UAV that moves in a 3D space. To
cover an area, the UAV has a sensor with a conic shape projecting to the ground
a circle of radius r = h · tan(α) where α is half of the apex angle. Given a discrete
set of heights, we decompose the 3D environment in different horizontal cross
sections, represented as grids, and we solve multiple 2D CPPs. In our case the
paths start from a fixed point at the ground (called depot). Our approach divides
the initial problem into different sub-problems. We divide the environment in
zones with different characteristics. The classification of the types of zone was
introduced by Amigoni and Riva in [2] and by Ghiotti in [21]. They classified
environments into two types:

• Type 1 comprises the environments in which an UAV covers a larger area
when going up, this means that the area covered at given height is always
included in the area covered at a higher height, as in an open field.

• Type 2 includes the environments in which the area that can be covered at
given height is a subset of the area covered at any lower heights, as for an
industrial area with sheds.

Type 1 zones are covered by a SingleHeight algorithm that produces paths
over a fixed height amd selects the one with the minimum cost. Type 2 zones
are covered by a TwoHeight algorithm that computes tours over two heights with
a hierarchical approach, starting from the highest grid and going down, to cover
incrementally the area left uncovered by tours at upper heights. Then it compares
all the tours and selects the minimum-cost tour.

Every zone is covered separately as an independent environment. Firstly, a
set of covering points is founded by the AGP using a greedy approach, then a
TSP connects together the points, using Theta* to calculate the distance cost.

When all the zones are covered we merge the paths to produce a single path
over the entire environment. A similar problem is faced by Galceran et al. in [19]
where they used a divide-et-impera approach to cover the seafloor with an AUV
(Autonomous Underwater Vehicle). We propose two different merge algorithms.

Merge Algorithm 1 selects one path as first and the other path as second. The
edge that merges the two paths together links the last point of the first path to
the first point of the second path.

Merge Algorithm 2 selects one path as external and the other as internal. All
the points of the two paths are analyzed in a greedy way and the solution with
the minimum distance cost will be selected. Calling (p1, p2) the points selected
for the merge, we will have a final path that goes through the external path until

2

1.1. STRUCTURE OF THE THESIS 3

p1 is reached. Then goes to p2 and goes through all the internal path and returns
to the external, returning to the depot.

We implement both algorithms on three different environments with different
UAV sensor’s FOVs. We compare the results obtained with our divide-et-impera
approach with the results obtained with a single CPP over the entire target area.

Merge Algorithm 1 produces results in less computational cost but with a high
distance cost. On the other hand, Merge Algorithm 2 has an high computational
cost but produces better results in terms of distance.

1.1 Structure of the Thesis

The thesis is structured as follows:

• Chapter 2 discusses the state of art of CPP. More specifically: firstly, it
introduces various coverage methods for 2D environments and then works
about 3D CPP and multi-robot CPP are discussed.

• Chapter 3 introduces the problem studied in this thesis. We start describing
the problem statement, how the environment is represented and the char-
acteristics of the UAV. We analyse different types of environments and how
a solution is obtained with our divide-et-impera approach.

• Chapter 4 outlines the divide-et-impera process in all its steps. How the
division is done, the AGP algorithm and the TSP algorithm used. Then
two merge algorithms are described.

• Chapter 5 introduces the simulation environment and the experimental
tools. Then we describe and comment the results obtained.

• Chapter 6 summarizes the obtained results and proposes some possible fu-
ture improvements.

• Appendix A illustrates occupancy grid maps of the environments used to
test the algorithms.

• Appendix B illustrates the maps with the optimal path using both the merge
algorithm for every environment and FOV.

3

Chapter 2

State of the Art

This chapter discusses the most relevant works concerning Coverage Path Plan-
ning (CPP) and will try to compare them to this study. More precisely, the survey
of the works is divided in 2D and 3D approaches.

2.1 Introduction to CPP

Coverage Path Planning (CPP) is the task of determining a path along a set of
points to cover an area or a volume of interest while avoiding obstacles.
There is a large variety of CPP algorithms and many different classifications of
these. The most important classification is the one that divides the algorithms
between the ones that operate a 2D coverage and the others that offer a 3D one.
In the middle of these two groups are those algorithms that are used to cover a
2D surface while moving in a 3D space. In this thesis we refer to this particular
class of CPPs.
Another possible classification is between online and offline algorithms. The
former, take real-time measurements, decisions are calculated and used during
the execution of the algorithm, the latter, have a complete knowledge of the en-
vironment a priori, before execution.
Algorithms can also be divided basing on the type of the trajectory between points,
fixed a priori or computed. For example, fixed trajectory consider a fixed track
like a spiral or a circle, while computed trajectory is demanded to an algorithm.
Often, the fixed trajectory algorithms are also offline but this is not always the
case (our approach is offline with a computed trajectory). Another classification
is on the type of coverage they offer (uniform or non-uniform). In non-uniform
coverage some areas of the target area are skipped because not relevant, while this
do not happen in uniform coverage. CPP is done by a single robot or by two ore
more, in this case we talk about a swarm of robots that interact between them to
reach a common goal.

2.2. 2D COVERAGE 5

(a) (b) (c)

Figure 2.1: (a)Example of trapezoidal decomposition [10]. (b) The boustrophedon decom-
position [10]. (c) A path using boustrophedon decomposition [10].

Environments can be modelled in different ways: polygonal as [10], grid-discretized
as in [44], graph-based as in [42]. In particular, 2D model can be planar surface
in the case of a floor cleaning, lawn moving, land mine detection, etc. In real
scenarios, CPP is often done over 3D environments, for example in the case of
UAVs covering fields, AUVs (Autonomous Underwater Vehicle) covering seabeds,
or robots which are used to inspect the surface of objects like caves or build-
ings. Sometimes 3D environments can be simplified using 2D planar surfaces at
different heights like in [26] and in our thesis.

2.2 2D Coverage

Concerning 2D scenarios, Choset and Pignon [10] proposed an off-line, fixed tra-
jectory approach: the boustrophedon cellular decomposition. It is an extension of
the simplest cellular decomposition: the trapezoidal approach, in which the free
space in the environment is divided in cells of trapezoidal shape. A drawback of
the trapezoidal approach is that it generates many cells that can be merged to form
bigger cells as shown in Figure 2.1(a). The boustrophedon cellular decomposition
resolves this problem. Indeed, the free space is decomposed in non-overlapping
regions, called cells, formed extending a vertical line both up and down from a
vertex and choosing only the ones in which the line does not touch an obstacle in
both the directions as shown in Figure 2.1(b). Then an adjacency graph between
the cells is computed and, in each cell, a coverage path is found by means of
back-and-forth motions. Finally, a path from one cell to another through the
adjacency graph is reckoned as shown in Figure 2.1(c). This approach works only
with polygonal obstacles.

In [1] the authors starting from the boustrophedon cellular decomposition
proposed an evolution based on critical points of a Morse function, i.e., a Morse
function is one that has non-degenerate critical points. A critical point is a point

5

2.2. 2D COVERAGE 6

(a) (b) (c)

Figure 2.2: (a) Cell determination using the Morse based decomposition [1]. (b) and (c)
Morse cellular decomposition for h(x) = x21 + x22 in which the slices are circles. Rather than
moving along circular paths and stepping outward, the robot follows a spiral pattern [1].

ρ ∈ <m and exists a function h : <m → < that has all its partial derivatives
are 0. The point ρ is non-degenerate if and only if its Hessian is not singular.
Considering a single variable function, a critical point corresponds to local max-
imum, local minimum, or an inflection, while non-degenerate critical points mean
points that are a maximum in some directions and a minimum in others. The
authors defined a slice as a “pre-image of a real-valued function”, taking cue
from Canny [8] method in which a slice is a codimension one manifold. While
boustrophedon method extends cell lines from the vertices of the obstacles, the
Morse decomposition traces the cell boundaries where a connectivity changes of
the slice occurs in the free space. This fact occurs at critical points of the Morse
function in correspondence of obstacle boundaries. Different cell shapes and dif-
ferent coverage path patterns can be obtained choosing different Morse functions,
as shown in Figure 2.2(b) and Figure 2.2(c). After the cell decomposition phase,
a path in the adjacency graph is computed and a coverage path in each cell is
generated.

While these two methods divide the environment in cells of different shapes,
there are also methods that rely on a grid based decomposition, where each cell
is equal to another one. This is also the method that we use for our thesis.

Zelinsky [44] presented an off-line grid based coverage method extending the
distance transform path planning method proposed by [27], used to find a path
from a start to a goal. The planner propagates a wavefront from the goal cell to
the starting cell through all free space and around obstacles. A value is assigned
to each cell, starting from the goal with 0 and giving 1 to all the neighbours (a
neighbour cell is a cell directly linked, in the eight directions, to the one con-
sidered) of the goal, and 2 to all the neighbours of the cells marked with 1 and so

6

2.2. 2D COVERAGE 7

(a)

Figure 2.3: An example of wavefront path [44].

on until the initial cell is reached. Then, from the starting cell a coverage path
can be found choosing every time the highest unvisited neighbouring cell until the
goal is reached as shown in Figure 2.3(a).

Gabriely and Ramon [18] proposed the Spiral STC (Spanning Tree Coverage)
algorithm, an online approach with a fixed shape of the path as a spiral. The
algorithm incrementally subdivides the environment in a grid of 2D-size cells,
each one divided in four smaller cells of D-size as represented in Figure 2.4(a).
Starting from the current cell, the robot selects the new 2D-cell to visit in anti-
clockwise direction and adds it to the spanning tree as new edge. This process
is repeated until no new neighbours are discovered. This coincides with the fact
that the robot has reached the end of one side of the spanning tree. At this point
it turns around and traverses the other side of the tree returning to the starting
point. An example of the path computed by Spiral STC algorithm is shown in
Figure 2.4(b).

Another approach based on 2D grid representation is the one proposed by
Riva and Amigoni in [35]. They propose a CPP based on a Greedy Randomized
Adaptive Search Procedure (GRASP). The GRASP was first introduced by Feo

7

2.2. 2D COVERAGE 8

(a) (b)

Figure 2.4: (a) (b) A solution using Spiral STC algorithm [18].

and Resende in [17], and it is a methauristic approach in which each iteration is
composed of two phases: construction and local search. The construction builds
a feasible solution, and then the local search tries to improve it. The GRASP
method for CPP proposed by Amigoni and Riva first calculates an initial cover-
age tour Sinit based on a greedy approach. The greedy approach, at each iteration,
randomly selects a vertex from the set of best vertices that can be reached from
the current node, ordered according to a combination of distance and expected
covered area. The local search procedure consists of two consecutive phases: ex-
change and removal. During an exchange a vertex in Sinit is substituted with a
vertex not in the tour. At the end, when all the possible substitutions have been
calculated, the substitution Sl1 that produces the maximum decreases of the tour
cost is selected. Then, removal excludes one vertex at once from Sl1, and if the
solution is still feasible computes the new tour. Again, among all the new feasible
solutions found by removal, the one with the maximum decreases of tour cost is
selected. In such a way a local optimum is reached.

Tomoioka et al. in [39] propose an offline grid-based CPP method for mobile
surveillance. Their method is based on MILP (Mixed Integer Linear Program-
ming). First they decompose the target area in a grid, then a graph that considers
the possible routes, on the basis of the camera orientation, is constructed. The
tour is computed over it solving a MILP problem with the objective of minimizing
the total travel time of the tour. To guarantee the optimum and find a feasible
tour some constraints must be formulated:

• any target cell is observed from at least one camera candidate,

• the incoming flow of each vertex is equal to the outgoing flow to guaran-
tee closed routes. (The flow f(e) is a non-negative integer variable that

8

2.2. 2D COVERAGE 9

represents the number of times the generated route passes through edge e),

• travelling route constraints for the TSP formulation.

To reduce the solution space without losing any optimal solution, the authors
propose to cluster groups of free cells in large problem instances.

Recently, advanced algorithms based on a two-step optimization process have
been presented. In the first phase an AGP (Art Gallery Problem) is solved,
which corresponds to find the minimal set of viewpoints (called guards or cov-
ering points) that cover the whole free space (see Lee and LIn in [28]). In the
second phase Travelling Salesman Problem (TSP), firstly introduced by Dantzig,
Fulkerson, and Johnson in [14], is solved, which consists in computing the shortest
tour to connect the points selected by the AGP.

(a)

(b)

Figure 2.5: (a) Optimal tour when travelling time is minimized first [3]. (b) Optimal tour
when sensing time is minimized first [3].

Arain et al. [3] propose different offline grid-based algorithms to solve a prob-
lem of sensor placement for gas detection. The authors limit the movement of the
robot whit a finite set of poses pi = (αi, θi), where αi is a free cell of the space
and θi is an allowed orientation. To compute the shortest path, the authors build
a movement graph, to represent the possible movements of the robot in each cell

9

2.2. 2D COVERAGE 10

of the grid. They define a candidate sensing configuration ci as a tuple (pi, φi, ri),
where pi is the robot pose, φi is the central angle of a circular sector (this circular
sector represents the view of the robot), and ri its radius. To define the cells
observable in the circular sector with center in p a visibility function vp is defined.
They formulate different approaches and compare them. First, they define the
problem as an optimization problem by formulating it as a MILP (Mixed Integer
Linear Programming) problem inspired by the work of Tomioka et al. [39]. They
formulate it as a combination of a Watchman Route Problem (WRP) and an AGP.
But, this formulation becomes practically unfeasible as the number of covering
points grows, because both the WRP and AGP are NP-hard.
So, they consider two variations of a two-step approach:

• In one case, first selects the tour, with the minimum travelling time, that
cover all the target area. And then picks the minimum set of covering points
among the points of the chosen tour. This process is shown in Figure 2.5(a).

• The other approach first finds the minimum set of covering points, and then
uses the TSP to compute the shortest tour as in Figure 2.5(b).

In both cases the problem has a bottleneck in finding the set of minimum covering
points solving the following integer linear programming problem:

minimize CTTs

subject to V C ≥ 1

C ∈ {0, 1}

Let CP be the set of candidate sensing configuration, Ts is a column vector of
size |CP | that represents the sensing cost associated to each covering points, V is
a binary matrix of size n × |CP |, where n is the number of cells in the problem.
V [α, c] is equal to 1 if α ∈ vp(c), 0 otherwise. And C is a column vector of cardin-
ality |CP |, whose elements are binary variables representing if a given candidate
sensing configuration is selected or not. The main contribution of their work is
to propose the conv-SPP algorithm, a variation of the previous integer linear pro-
gramming problem to quickly finding the minimum set of covering points. It is
based on a convex relaxation which introduces sparsity, so it drastically reduces
the number of variables. Furthermore, it generates results very close to the op-
timal ones.

Table 2.1 summarizes all the methods presented, with the most important
characteristics in the foreground.

10

2.3. 3D COVERAGE 11

Reference Algorithm Offline/Online Trajectory

[10]
Boustrophedon cellular decomposition

Adiacency graph
Offline

Fixed
(back-and-forth motion)

[1]
Morse-based decomposition

Adiacency graph
Offline

Computed
(depends on the cell shape)

[44]
Grid based decomposition

Wavefront
Offline Computed

[18]
Grid based decomposition
Spanning Tree Coverage

Online
Fixed

(spiral)

[35]
Grid based decomposition

GRASP (greedy + local search)
Offline Computed

[39]
Grid based decomposition

MILP solution
Offline Computed

[3]
Grid based decomposition

AGP + TSP
Offline Computed

Table 2.1: Summary of 2D works presented.

2.3 3D Coverage

In the last years more and more UAVs are used in the CPP subject. In these
cases the environment is no more a 2D one, but it’s a 3D dimension space, in
which the robots can move not only in a plane but they can move in a space. In
these environments 3D CPP is required, therefore the previous methods cannot
be applied straightforwardly. In the field of 3D CPP the concept of 3D structural
inspection is relevant in which it is necessary to cover 3D-surfaces as boundaries
of buildings, ocean floors, agricultural fields, or automotive parts.

In [26] Hert et al. used a 2D planar algorithm to solve 3D CPP. They propose
an on-line approach for an AUV to cover an unknown underwater environment.
This approach consists in applying a 2D planar algorithm in the successive hori-
zontal planes laying at different depths. In essence this means that the 3D sur-
face is divided in successive planes at different depths and the intersection points
between the planes and the 3D surface that must be covered, are projected onto
the 2D plane. Robot adjusts its height so as to maintain a constant distance from
the ocean floor. A constraint on the environment is formulated as any vertical line
passing through the surface intersects it at exactly one point. Consequently there
is a one-one correspondence between the points in surface and those in the x-y

11

2.3. 3D COVERAGE 12

(a)

(b) (c)

Figure 2.6: (a) The robot will cover area A with boundary B [26]. (b) At the top is shown
a cross section in the plane y = y0, P1, P2 and P3 are points where the surface exceed the
threshold slope µ. In the bottom the area A is projected onto the 2D plane [26]. (c) Shows
the path of the robot starting from SP [26].

plane and some elements as canvas cannot be present in this type of environment.
This kind of non planar surface are called vertically projectively planar surfaces.
This process is shown in Figure 2.1(a) and Figure 2.1(b). The considered 3D
surface is bounded between two threshold surfaces, z = zmin and z = zmax. Each
plane is represented using a semi-approximate cellular decomposition, in which
the space is divided in vertical slices of the same width. The planar environment
is covered zigzagging along parallel straight lines and starting from any point in
the space as shown in Figure 2.6(c). In the projectively planar 3D environment
the same zigzagging motion leads the robot from one grid plane to the next. The
only addition is a vertical movement to pass from one grid to another to take into
account the changes in the height of the terrain.
In our algorithm the 3D space, is divided in successive planes, but the planes
are represented as equivalent grids at different heights with different occupancy

12

2.3. 3D COVERAGE 13

(a) (b)

Figure 2.7: Hemispherical simplification of urban structure and hemispherical trajectory of
UAV [9]

values. This removes the restriction of a vertically projectively planar surface and
does not impose a zigzagging behavior.

Another approach with fixed trajectory is proposed by Cheng et al. [9]. The
authors propose an offline coverage algorithm for urban structures, the buildings
with geometric solids such as cylinders and hemispheres. This simplification allows
the authors to consider the problem as a problem of covering regular non-planar
surfaces, as shown in Figure 2.7(a). In the hemispherical model the structures are
approximated with a coverage hemisphere HC(OC , rC). Also the UAV trajectory
is fixed, since it has to follow a flight hemisphere HF (OC , rF) where the center OC

coincides with the center of the coverage hemisphere, while it holds that rF > rC
meaning that the flight hemisphere is bigger than the coverage one. Intuitively,
the UAV is moving along a sequence of horizontal circles at different altitudes to
cover the area as shown in Figure 2.7(b). Similarly to our work they consider an
UAV with conical FOV (Field Of View).

Bircher et al. [6] propose a two-step offline optimization algorithm to solve a
structural inspection problem, a sub-problem of CPP which consists in finding a
path that covers the whole surface of a desired structure. In this paper the 3D
structure is represented by triangular meshes. The first step consists in selecting
the viewpoints without following an optimization strategy, but trying to make
the connecting path as short as possible. The idea behind this is that sometimes,
due to a continuous sensing device, it is more important the position in the space
of the viewpoints than their number. So, the authors only select a feasible view
point for each triangle.

In many coverage problems due to the NP-complexity of the AGP, a variation

13

2.3. 3D COVERAGE 14

(a) (b)

Figure 2.8: Sampling scheme and its dual scheme proposed by Latombe and Gonzalez-Banos
to solve a variation of the AGP [23].

of the AGP based on random sampling and introduced the first time by Latombe
and Gonzalez-Banos in [22] and [23] has been used. Latombe and Gonzalez-Banos
propose two approximations to solve the AGP as set covering problems for sensor
placement to reconstruct a 3D image. They solve this problem assuming that a
2D layout of an horizontal cross-section of the environment is given.
The first algorithm samples the workspace W at random to have a set of guards
candidates, G, and selects the subset with minimum cardinality. Then a greedy
algorithm is applied to choose at each step the guard with the highest coverage
of the uncovered boundary. First, let X be the set of the elements that must be
covered, R = {R1, R2, ..., RM}, where Ri is the set of elements of X covered by
element gi ∈ G, this is shown in Figure 2.8(a). The set Ri with highest cardinality
is selected and removed from R and the elements of Ri are removed from X and
from the other Rj ∈ R, with j 6= i. The process is repeated until X is empty.
The second algorithm is based on a dual sampling scheme, shown in Figure 2.8(b).
In the basic version of the random sampling algorithm, the complexity grows w.r.t.
the number of samples. Instead, in the dual algorithm, the elements that must be
covered are sampled, to have the possibility to vary the number of guards. So this
time a point is selected from the unseen portion of the perimeter and the region
from which such a point is visible, O(p), is computed. Then O(p) is sampled to
find the position with highest coverage and a new guard is selected. The process
is repeated until the unseen boundary is small enough.

The AGP based on random sampling and reduced to the set cover problem
explained before, is called Coverage Sampling Problem (CSP) by Englot and
Hover [16]. They define the CSP as the problem of finding a feasible covering
set. The watchman route algorithm using dual sampling proposed by Danner and
Kavraki [13] and the reduntant roadmap algorithm proposed by Englot an Hover
in [15] are two examples of CSP. They use a range space representation of the en-

14

2.3. 3D COVERAGE 15

vironment, that consists in a set system (P,Q), where P is a finite set of geometric
primitives of the structure that must be covered, and Q is the robot configuration
space. These two algorithms and their stateflow diagram are illustrated in Figure
2.9, which is taken from [16].

Figure 2.9: Stateflow diagram illustrating two algorithms based on CSP [16].

The watchman route algorithm using dual sampling [13] consists of a first
phase in which the variation of the AGP proposed by Latombe and Gonzalez-
Banos [22], [23], is used. In the second phase a weighted graph is built. This
graph consists of one node for each guard, and one edge for each pair of guards
with weight equal to the length of the shortest collision free path between the two
nodes. To find the shortest free path between two points, Probabilistic Roadmaps
(PRM) are used and an approximation of the TSP is solved over PRM.

The redundant roadmap algorithm [15] solves the variation of the AGP by
randomly sampling configurations until the required structure is covered. To rep-
resent the required structure, the authors use a triangular mesh model obtained
from real sonar data. The first phase lies in building a redundancy roadmap, that
collects the robots configurations and catalogs their sensor observations, creating
a discrete state space from which a inspection path will be built. In a redundancy
roadmap, each point has to be covered a given number of times. So, the first phase
consists in selecting a geometric primitive, that has not been covered the given
number of times yet, and adding to the roadmap a random robot configuration
in the neighborhood of the selected primitive.
In the second phase it is solved an approximate set cover subproblem using a

15

2.3. 3D COVERAGE 16

(a) (b)

Figure 2.10: Path generated by the Cone-TSPN algorithm [33].

greedy algorithm that adds at each iteration the roadmap node with the largest
set of observed primitives not yet in the cover. Then, the set covered is pruned
with an iterative approach. At each iteration a configuration, that is not the
unique observer of a geometric primitive, is randomly removed from the set cover
until every configuration in the set is the unique observer of at least one primitive.
Then, it is invoked a lazy TSP algorithm, the one proposed by Christofides [11],
employing an iterate solution of the Rapidly-exploring Random Tree (RRT) over
all goal-to-goal paths in the tour.

Another important study consists in the trade off between flight-time and cov-
erage: Plonski and Isler [33] propose an offline approach based on a variation of
Neighbourhoods-TSP (TSPN) called Cone-TSPN. In order to capture an image
of a set of chosen points, the algorithm considers a set of inverted cones, each one
with the vertex in one of the chosen points, with slope Π/2−α and a given height
h ∈ H.
The aim is to find a minimal tour that intersects all the cones. Due to the fact
that this problem is NP-hard, the authors find the tour that better approximates
the length of the optimal tour. Let be ĥ the max estimated height, defined as
ĥ/2 ≤ h∗ ≤ ĥ, where h∗ is the maximum height obtained by the optimal tour.
They compare the cost of a tour on cones at the same height with the one of
the tour on cones at different heights. The analysis is different for disjoint cones
and for non-disjoint cones. For disjoint cones at same height a SLICE-VISIT
strategy is proposed. It consists in truncating all cones higher than the ĥ, in-
tersecting all the cones with a plane at height ht, where ht = min(H), and
finding the TSPN tour that visits all the circular cross sections of the cones
in this plane returning to the starting point at height 0. Considering different
heights SLICE-VISIT cannot move higher than min(H) so the authors classi-
fied the cones according to their height performing SLICE-VISIT for each class of

16

2.3. 3D COVERAGE 17

(a) (b) (c)

Figure 2.11: (a) Workplace identification [41]. (b)Coverage trajectory generated [41]. (c)
Mosaic reconstruction [41].

cones, in practice they consider multiple planes. The authors obtain an approxim-
ation factors of the length of tour that is independent from the number of cones in

both cases: for single height O((
max(H)

mean(H)
)2(1+ tan(α))) and for multiple heights

O((1+ log
max(H)

min(H)
)(1+ tan(α))). So the tour at different heights computes tours

shorter than the one at the same height. Authors extend this analyses also for
non-disjoint cones. Notice that, differently from us, Plonski and Isler select points
of interest a priori. Also, their problem is formulated within an Euclidean plane
without obstacles.

Valente et al. in [41] apply the problem of coverage to the precision agriculture.
The authors first decompose the environment, using a grid-based representation
with optimal dispersion dividing the space in cubes. Then the grid is converted
in a graph and the coverage path is computed selecting from the start point the
nearest neighbor cell in gradient order. When more neighbors are present, a cost
function is used to select the best one. Using a depth-limited search a tree of all
the possible coverage paths is built in order to select the one that passes thorough
all the nodes only once. The computed path is shown in Figure 2.11(b).

Nam et al. in [31] describe an offline approach for UAVs CPP in a survey mis-
sion. The method adopted by the authors uses a grid-based decomposition and
a wavefront algorithm. The terrain that must be covered is divided in rectangles
like in Figure 2.12(a) (start position is represented by the rectangle in blue, the
green one is the goal that must be reached from the robot). It is assumed that
the Field Of View of the robot can sense all the rectangle’s area from the centre
of it. After this a wavefront algorithm provides all the solutions from start to the
goal point avoiding obstacles and the one with the best cost is selected as solution
(Figure 2.12(b)). To improve the final result they implemented also a cubic spline

17

2.3. 3D COVERAGE 18

(a) (b) (c)

Figure 2.12: (a) Grid-based decomposition [31]. (b)Optimal path generated by wavefront
algorithm [31]. (c) Coverage trajectory generated by cubic interpolation [31].

algorithm to smooth the path cutting away the angles as in Figure 2.12(c).

Galceran et al. in [19] propose an offline method for covering complex struc-
tures over the ocean floors using an AUV. The idea is to use a 2.5-dimensional
(2.5D) bathymetric map of the floor to distinguish the planar area in the target
zone and the high slopes that represent the 3D objects. Two different algorithms
are then used to cover these two types of zones, producing different paths. Regard-
ing the 2D planar surface, CPP is done by dividing the area with boustrophedon
decomposition and a simple mowing-the-lawn motion producing a path similar
to the one in Figure 2.13(a). For the 3D high slopes the bathymetric map is
intersected with slice planes and an AUV contours the slopes maintaining a fixed
offset from the target surface as we can see in Figure 2.13(b). These two distinct
paths must be merged into one final path that covers the entire seabed as we can
see in the tree in Figure 2.13(c). The problem to merge differents paths is not
specifically addressed in the article, but is important as in our thesis we also have
different paths to be merged into one.

Recently, Amigoni and Riva in [2] proposed an offline 3D CPP to cover a 2D
surface using an UAV. The problem faced is to cover a field in the least possible
time with a robot that starts in a fixed point and return to this. They discretized
the environment in different 2D planar surface at different heights each one rep-
resented by a grid-based map. The solution adopted is a two-step approach that
combines AGP to select the minimal number of points to cover the target surface
and TSP that search the optimal path that passes through all the points selected

18

2.3. 3D COVERAGE 19

(a) (b) (c)

Figure 2.13: (a) Coverage path of the planar region [19]. (b)Coverage path planning of
the high slopes [19]. (c) Diagram of the coverage path-planning algorithm for bathymetric
maps. [19].

in precedence. In the next chapter this work is studied more as its the starting
point for our thesis.

There are CPP works that propose also a non uniform type of coverage. These
algorithms do not cover the entire target surface but they skip some area because,
for some criteria (can be various and depend on the purpose of the CPP), are not
important towards the goal of the CPP. Because of this the final coverage path
goes only through some zones, reducing the target surface. This approach saves
resources and minimizes the total cost.

Sadat et al. in [36] propose an online non uniform algorithm for CPP of a field.
It can be used in a vast variety of applications such as agriculture, surveillance,
search and rescue, and vegetation monitoring. The solution uses an UAV with a
micro-camera whit a square FOV that has an higher resolution when its distance
from the target surface is minimal. The method exploits the visit over a tree based
on the Hilbert Space Filling Curve (SFC) to calculate a path minimizing the cost
and exploiting the locality of the interesting regions. The tree is constructed in a
way that the nodes within a depth represent a square in the map and a particular
resolution (height from the target surface). Root represents the highest height
while the leaves the height where the camera resolution is at its maximum. The
authors use the Hilbert curve to impose an ordering on the nodes at each level
of the coverage tree. The Hilbert curve is a fractal space-filling curve shown in
Figure 2.14(a). Informally speaking if a robot follows a Hilbert trajectory, it is
certain that it stays close to the recent places that it has visited. This means that
when an interesting region is observed, one can opportunistically assume that the
next node will also be interesting due to the locality preserving feature of the Hil-
bert curve 2.14(b). The final algorithm starts visiting the root of the tree, every

19

2.3. 3D COVERAGE 20

time a node is visited, decides if that is an important area and it is meaningful to
go down the tree increasing the resolution. If is not an important zone, algorithm
goes up in the tree.

(a)

(b)

Figure 2.14: (a) Hilbert curve with different orders [36]. (b) Coverage tree with hilbert-based
ordering of nodes at each depth and its relationship to grids in different resolutions [36].

Lee et al. in [29] propose an online non uniform approach to cover the seafloor
using an AUV with a FOV represented by a rectangular polyhedron. The 3D
environment is simplified by 2D planes at different depths. The solution relies
on the concept of Artificial Island (AI). An AI is an area in a plane in which
there are no obstacles and boundaries. The algorithm works in a recursive way, it
consecutively scans the entire area of a plane before moving up to the next plane.
Now, defining η as the sensor reliability coefficient, zt as the measurement value,
xt as the robot position at time t and m as the environment information and h as
the length of the robot sensor, if the equation η ≤ p(zt ≤ h

2 |xt,m) holds it means
that a boundary or obstacle exists in the upper plane with respect to the current
position. In the other case, when the equation does not hold it means that in
the upper plane in the position where the perception is done in the lower plane,
there is a safe area. Due to this, that area in the covering of the next plane can
be skipped reducing the time end the cost of the final path.

Finally Table 2.2 reports all the 3D CPP methods analyzed in this section and

20

2.4. MULTI-UAV COVERAGE 21

Figure 2.15: Flowchart of the system proposed by Barrientos et al. [4].

the the most important characteristics.

2.4 Multi-UAV Coverage

Regarding the use of multiple robots for CPP, the literature highlights many pro-
posals due to the advantages of extending the CPP from single robot to multiple
robots as the decrease in time, improvements in robustness, and so on. There-
fore many of the works discussed above were transformed and reformulated to
multi-robot coverage like Rekleits et al. [34] who extend the boustrophedon de-
composition to multiple robot scenarios imposing some rules to coordinate the
robots.

Maza and Ollero [30] proposed a method for multi-robot CPP at constant
height. Firstly the target area is decomposed in polygonal regions using sweep
line approach, then each polygon is assigned to a different UAV taking in account
the capabilities of each UAV, like flight endurance and range. Once each UAV
has an area assigned, this is covered by a back and forth motion along rows per-
pendicular to the sweep direction of the polygon so as to ensure the minimum
number of turns in an area.

A multi-UAV approach at constant height is proposed by Barrientos et al. [4].
The aim of their work is to propose an efficient algorithm for precision agriculture
using a multi-UAV system. Initially the target space is divided in different areas
solving a task subdivision and allocation problem with two restrictions: each ro-
bot knows its own characteristics and status but does not know anything about
the other robots. They solve this problem as a negotiation process in which each
robot tries to obtain as much area as possible, rather than assign a region to
a robot using geometric considerations. Then the path to cover each waypoint

21

2.4. MULTI-UAV COVERAGE 22

R
ef

er
en

ce
A

lg
or

it
h

m
O

ffl
in

e
O

n
li

n
e

T
ra

je
ct

or
y

U
n

if
or

m
N

on
-u

n
if

or
m

[2
6]

M
u

lt
ip

le
2
D

p
la

n
es

at
d

iff
er

en
t

h
ei

gh
ts

S
em

i-
ap

p
ro

x
im

a
te

ce
ll

u
la

r
d

ec
om

p
os

it
io

n
O

n
li

n
e

F
ix

ed
(z

ig
za

g
al

on
g

p
ar

al
le

l
li

n
es

)
U

n
if

or
m

[9
]

G
eo

m
et

ri
c

se
m

p
li

fi
ca

ti
on

of
ta

rg
et

co
m

p
le

x
st

ru
ct

u
re

s
O

ffl
in

e
F

ix
ed

(e
m

is
p

h
er

e)
N

on
-u

n
if

or
m

[6
]

A
G

P
+

T
S

P
O

ffl
in

e
C

om
p

u
te

d
U

n
if

or
m

[1
3]

W
a
tc

h
m

an
ro

u
te

al
go

ri
th

m
w

it
h

d
u

al
sa

m
p

li
n

g
(v

a
ri

a
ti

o
n

o
f

A
G

P
b

as
ed

on
th

e
id

ea
of

C
S

P
+

w
ei

gh
te

d
gr

ap
h

)
O

ffl
in

e
C

om
p

u
te

d
U

n
if

or
m

[1
5]

R
ed

u
n

d
a
n
t

ro
ad

m
ap

al
go

rt
ih

m
(v

a
ri

at
io

n
of

A
G

P
b

a
se

d
on

th
e

id
ea

of
C

S
P

+
se

t
co

ve
r

su
b

-p
ro

b
le

m
+

la
zy

-T
S

P
)

O
ffl

in
e

C
om

p
u

te
d

U
n

if
or

m

[3
3]

C
o
n

e-
T

S
P

N
a
t

d
iff

er
en

t
h

ei
gh

ts
(v

ar
ia

ti
on

of
N

ei
gh

b
ou

rh
o
o
d

s-
T

S
P

)
O

ffl
in

e
C

om
p

u
te

d
U

n
if

or
m

[4
1]

G
ri

d
-b

as
ed

d
ec

om
p

os
it

io
n

in
cu

b
es

G
ra

p
h

tr
ee

v
is

it
O

ffl
in

e
C

om
p

u
te

d
U

n
if

or
m

[3
1]

G
ri

d
-b

a
se

d
d

ec
om

p
os

it
io

n
W

av
ef

ro
n

al
go

ri
th

m
(r

ec
ta

n
gl

es
)

C
u

b
ic

sp
li

n
e

to
sm

o
ot

h
th

e
p

at
h

O
ffl

in
e

C
om

p
u

te
d

U
n

if
or

m

[1
9]

2
.5

D
b

at
h
y
m

et
ri

c
m

ap
M

er
ge

o
f

tw
o

d
iff

er
en

t
al

go
ri

th
m

s
(b

o
u

st
ro

p
h

ed
o
n

d
ec

om
p

os
it

io
n

fo
r

p
la

n
ar

ar
ea

,
3
D

co
u

n
to

u
r

fo
r

sl
op

es
)

O
ffl

in
e

F
ix

ed
(m

ow
in

g-
th

e-
la

w
n

,
ci

rc
le

s
fo

r
sl

op
es

)
U

n
if

or
m

[2
]

2D
p

la
n

a
r

su
rf

ac
es

at
d

iff
er

en
t

h
ei

gh
ts

A
G

P
+

T
S

P
O

ffl
in

e
C

om
p

u
te

d
U

n
if

or
m

[3
6]

G
ri

d
b

as
ed

V
is

it
of

a
tr

ee
ex

p
lo

it
in

g
H

il
b

er
t

S
p

ac
e

F
il

li
n

g
C

u
rv

e
O

n
li

n
e

C
om

p
u

te
d

N
on

-u
n

if
or

m

[2
9]

2D
p

la
n

a
r

su
rf

ac
es

at
d

iff
er

en
t

h
ei

gh
ts

C
ov

er
in

g
co

n
se

cu
ti

ve
ly

p
la

n
es

ex
p

lo
it

in
g

A
Is

O
n

li
n

e
D

ep
en

d
s

on
co

ve
ra

ge
al

go
ri

th
m

u
se

d
N

on
-u

n
if

or
m

T
ab

le
2.

2:
S

u
m

m
ar

y
of

3D
w

or
ks

pr
es

en
te

d
.

22

2.4. MULTI-UAV COVERAGE 23

(each point of interest) has to be planned for each robot and it can be solved as
a simple CPP: they have developed an extension of the wavefront planner previ-
ously explained. A scheme of this process is shown in Figure 2.15.

The two previous papers consider only one height of flight for UAVs, while
Basilico and Carpin [5] propose a multi-UAV CPP on two levels for surveillance.
They consider heterogeneous UAVs and divide them in sentinels and searchers,
where sentinels are positioned at higher heights and are tasked to control large
areas and detect some type of events called attacks. Searchers depend on sen-
tinels, since they fly at lower heights and detect with less errors an attack when
notified by the sentinels. The authors model the environment as a grid of equally
sized squared cells and the presence of an attack in a cell c as a loss value l(c).
They define a binary function a(c, t) that indicates if a cell c is attacked at time

t. Their goal is to minimize the overall loss computed as
∑

c∈G l(c)
∫ T
0 a(c, t)dt,

where G is the search domain, and T is a finite time horizon. Their aim is to
cover all the area at risk, so if a zone is safe, no UAV will cover it.

Finally Table 2.3 reports all the multi-robot CPP methods analyzed in this
section.

Reference Algorithm
Online
Offline

Trajectory

[34]
Extension of 2D boustrophedon decomposition

to multiple robots
Offline Fixed

[30]
Polygonal regions decomposition
(each polygon assigned to a root)

Offline
Fixed

(back and forth)

[4]
Division into sub regions

(negotiation between robots to obtain the most wide area)
Offline

Depends on
the CPP used

[5]
2 levels division

UAVs on the upper level cover large areas
UAVs on the lower level cover little areas

Offline Computed

Table 2.3: Summary of multi-robot works presented.

23

Chapter 3

Problem Setting

In this chapter we formalize the problem of our studies. We will describe the
work done by Amigoni and Riva in [2] and by Greta Ghiotti in [21] since it is the
starting point for our considerations. Then, we introduce our idea to improve the
results obtained in these two works.

3.1 Problem Statement

In [2] the authors presented the coverage path planning of a robot that moves in
a 3D space and that must cover a 2D target surface (a field for example).
They considered a single robot that can move in a three-dimensional environment
as an Unmanned Aerial Vehicle (UAV) starting from a fixed cell (called depot)
and returning to the same depot. The robot has to compute a tour such that
the ground of the environment is completely covered by the robot’s sensor at the
minimum cost (either time or distance travelled).

The environment is discretized by 2D planes at different heights and each
plane is modelled as a grid of identical cells with a square shape. We can see this
model in the Figure 3.1(a).

Each cell is defined by a set of coordinates (x, y, z) where x,y denote position
in the plane, while z denotes the height in space. Each cell can be free if the UAV
can move in it or occupied if there is an obstacle that prevents movement. The
depot is always on the ground and is defined by (x, y, 0).

The UAV has a sensor with a conic Field Of View (FOV) that projects to the
ground a circle with a radius equal to r = h · tan(α), where h is the height of cone
and α is half of the apex angle (Figure 3.1(b)). It is assumed that each perception
P (f) (where f is a free cell) is constant and is equal for any f ∈ F for every height.

3.1. PROBLEM STATEMENT 25

(a)

(b)

Figure 3.1: (a) Example of 3D decomposition in different planes [2]. (b) Example of the FOV
varying with height [2].

The goal of the CPP presented was to find a path that covers all the ground
cells that is, ⋃

1<i<k

C(fi) = F (0).

where C(fi) represent all the area covered at the ground from the cell fi, F (0) is
the set of free cells at the ground and k is the length of a generic path. The cost

25

3.1. PROBLEM STATEMENT 26

of a solution is a sum of all the distances to travel from point to point and the
perceptions cost which is a scalar,

c(T) =
k∑

i=2

c(fi−1, fi) +
k−1∑
i=2

P (fi). (3.1)

They classified the environments in two possible types:

1. type 1: an open field (like an agricultural one), where the coverage function
is monotone with respect to the height. In this type of environment the
UAV will cover more area when going up. This is true when it holds the
following equation,

C(f) ⊆ C(f ′), 0 ≤ h < h′ ≤ Hmax.

where C(f) and C(f ′) are respectively the coverage function at f = (x, y, h)
and f ′ = (x, y, h′). An example of this environment can be seen in Figure
3.2(a).

2. type 2: a field where there are open building (like caves). In this case the
area that can be covered at a given height is a subset of the area covered at
any lower height,⋃

f∈F (h′)

C(f) ⊆
⋃

f∈F (h)

C(f), 0 ≤ h < h′ ≤ Hmax.

Figure 3.2(b) shows an example of this environment.

In environments of type 1 they demonstrated that the space of the solutions
can be reduced to only tours over a single fixed height without worsening too much
the optimal solution. Results in this case showed that the optimal tours in terms
of path length are at the highest height with a little FOV apex angle because this
will reduce the number of covering points. When the FOV apex angle gets bigger
the best paths are in the middle heights because when the UAV has a very large
FOV there is no advantage in going up due to the fact that after a certain height
there is not a reduction in the number of covering points. Going at higher levels
in these cases is only counterproductive because of the travel cost of going up.

In type 2 environments was invented a coverage tour over multiple heights.
It is assumed that only the cells at height K can cover all the target cells at
h0 because the openings in obstacles and buildings can occur only at height K
(assuming that the openings are only at hmin 6= h0). The coverage algorithm cal-
culates paths over the combinations of height K (fixed) and a level h ∈ (H \ h0)

26

3.2. PROBLEM ANALYSIS 27

(a) (b)

Figure 3.2: Examples of (a) Type 1 (b) Type 2

where H is the set of all the heights. Firstly an ArtGallery procedure finds the
covering points at height h, then ArtGallery is called again at height K to cover
the cells at the ground that can not be covered from height h. From height K is
assumed that all the cells at the ground can be covered. Lastly, a TSP procedure
is called to find a path between the covering points that minimizes the distance
cost. In this case results showed that a path over a single height is never preferred
over a path over 2-height because like in case 1 going up can reduce the number
of the covering points, reducing the total cost too.

Regarding computational cost the algorithms with the most significant impact
are the AGP and TSP. Results showed that AGP time depends on the extension
of the area to cover (larger is the area bigger is the time to compute AGP) while
TSP depends on the number of covering points (TSPt = O(n)).

3.2 Problem Analysis

The problem that we face in this study is to obtain a better computational cost
of the coverage algorithm presented in the previous section.

Our approach is a divide et impera process. In computer science a divide et
impera approach consists in simplyfing the problem in two or more sub-problems
that are more simple to resolve. After that, the solutions of the sub-problems
must be combined together to produce the final result.
In our case, we divide the entire map into different 3D-zones producing different
paths that must be merged into one unique path to obtain the coverage path of

27

3.2. PROBLEM ANALYSIS 28

the entire environment.

A 3D-zone is a 3D portion of the entire map such that the set of cells contained
in the 3D-zone at the ground is equal to the set of cells contained in the 3D-zone
at the other heights, in other terms the area of the zone in all the heights must be
equal to the area of the zone at the ground. Also, we assume that each sub-zone
does not intersect with a different one and that the union of all the sub-zones is
equal to the entire map,

xi ∩ xj = 0, xi ∪ xj = X ∀j 6= i

where X is the entire 3D map and xi and i = 1, ..., n represents the 3D-zones in
which is divided X.

The division of the map is done such that a 3D-zone have the characteristics
of only one environment (type 1 or type 2) and is not a mixed type environment.
By doing this, we can cover the ground with SingleHeight algorithm if the portion
of the map is type 1, or TwoHeight algorithm if the portion of the map has the
characteristics of type 2 maps. In Figure 3.3 we can see a simple environment
division into two distinct 3D-zones of different types. In the end we will have a
path (starting from a common depot and returning to it) for every 3D-zone in
which the entire map is divided.

Figure 3.3: Division of the entire map in two 3D-zones. On the left a type 1 environment, on
the right a type 2 one.

All these paths must be merged into one unique path minimizing its distance

28

3.2. PROBLEM ANALYSIS 29

cost. The resulting path will have the same depot of the paths merged and a
number of covering points equal to the sum of covering points of the two paths
excluding the depot for one of them. A similar process is done in [19] and is
described in the previous chapter.

Using this divide et impera approach, we have a reduction in terms of com-
putational time because AGP has to work on a little portion of the target area,
and the number of covering points obtained with AGP is limited, especially with
larger FOVs, helping TSP to obtain a path in less time with respect to obtaining
a path over the entire environment.

To this possible reduction of computational time corresponds a possible worsen-
ing in the distance cost because the TSPs over the zones are optimal only over
the area covered. In fact merging paths that have TSP local optimality over a
3D-zone does not produce an optimal path over the entire area.

29

Chapter 4

Algorithms

In this chapter we describe all the algorithms used in our 2-step approach. Firstly
we present the methods that are used to calculate the covering paths in the 2
different types of environments introduced in Chapter 3. Then we describe two
different merging algorithms.

4.1 First step process methods

In this section we analyse the methods used to find the covering points through
AGP and the ones used to produce a path with TSP.

4.1.1 Art Gallery Problem

The AGP is the very first step of our entire process. AGP represent a visibil-
ity problem born from a real-world problem of guarding an art gallery with the
minimum number of guards. From this, AGP was studied a lot during the years
and is defined as a minimum number of guards in a environment, which together
can view the whole environment. This problem is NP-hard also in simple envir-
onments.

We solve the AGP as a set cover problem, so our aim is to find the smallest
possible number of cells, called S, that together can cover all the target cells on
the ground F (0) (in our case F0 represent the ground of the zone on which the
AGP is called). The set cover problem is again a NP-hard problem, but in [38] the
authors demonstrated that the number of covering points found by general greedy
approaches is, at most, OPT · log|F (0)|, where OPT is the number of covering
points of the optimal solution of the AGP.
We propose a greedy algorithm, choosing at each iteration the guards with the
highest number of cells covered among the remaining uncovered target cells at the

4.1. FIRST STEP PROCESS METHODS 31

ground (h0). When more than one guards cover the same number of cells, one is
selected randomly. After a covering point is selected, it is removed from the set of
possible covering points and the covered cells are removed from the target cells.
Therefore, the next covering point is selected from those that cover the remaining
uncovered cells. The algorithm finishes when all the target cells are covered. AGP
is described in Algorithm 1.

Function ArtGallery(h, F(0)) is

while isempty(F(0)) do
s =arg max(CoverageArea(h, F(0)))
S.Insert(s)
F(0) = F(0) \ C(s)

end
return S

end
Function CoverageArea(h, F(0)) is

return the number of cells at the ground of the 3D-zone covered by
each cell at height h in the environment

end
Algorithm 1: Art Gallery function

In the AGP algorithm, the CoverageArea function will return the candidate
covering cells for our paths. In our case, the candidate covering cells are selected
among the cells within the borders of the 3D-zone on which the AGP is called. To
obtain the set of these cells we manually set the boundaries of the 3D-zone that
we are considering and a simple algorithm selects all the cells in these borders.
In our solution, we must produce a set of covering points through AGP for every
3D-zone in which is divided the entire environment.

4.1.2 A* and Theta* algorithms

We use Theta* search algorithm to compute the distances between covering points
before applying the TSP and after to obtain the complete path between the cov-
ering points. Since Theta* is based on A* algorithm we quickly introduce this
before speaking of Theta*.

A* algorithm

The A* algorithm [25] is an extension of Dijkstra algorithm. A* uses a heuristic
function h(s) to choose a neighbour vertex without exploring all the neighbour
vertices. This heuristic function is an estimation of the cost from the current
vertex s to the goal. A* maintains two values for every vertex: the g-value g(s)

31

4.1. FIRST STEP PROCESS METHODS 32

Figure 4.1: A* grid path versus true shortest path [12].

that is the length of the shortest path from the start to the current vertex, and
the parent value parent(s). A* uses two sets: open and closed to evaluate the
vertices.

• The open set is a priority queue (based on the g-value g(s) of every vertex
plus the heuristic function h(s), g(s) = g(s) + h(s)), that contains the
discovered vertices that are not evaluated yet.

• The closed list is the set of vertices already evaluated.

A* uses the UpdateV ertex(s, s′) function to update the g and parent values of
an unexpanded visible neighbor s′ of s using the procedure ComputeCost(s, s′).
ComputeCost updates the g and parent values only if the sum between the ac-
tual distance from the start to the current vertex g(s) and the cost of the path in
straight line between s and s′, c(s, s′), is lower than the actual distance between
s′ and start, g(s′). When the goal is reached, the algorithm ends. The procedure
is reported in Algorithm ??.

If h(s) is admissible (it never overestimates the cost of reaching the goal) and
consistent (its estimate is always less than or equal to the estimated distance
from any neighboring vertex to the goal, plus the cost of reaching that neighbor.),
A* guarantees to find the shortest path on a graph restricted to the grid shape,
but this shortest path does not correspond to the shortest path in the continuous
environment as shown in Figure 4.1. For this reason Theta* algorithm was de-
veloped firstly in [12] and used today in many covering problems like ours.

Theta* algorithm

Theta* was firstly introduced by Daniel et al. in [12]. The main difference between

32

4.1. FIRST STEP PROCESS METHODS 33

Theta* and A* is in the ComputeCost function where two possible paths can be
found: Path 1 as before is the path in straight line, instead, Path 2 considers also
the path from the start vertex to parent(s) and from parent(s) to s′, if s′ has line-
of-sight to parent(s). This allows the parent of a vertex to be any vertex. Again
the g and parent value of s′ are updated only if the sum of the g(parent(s)) and
c(parent(s), s′) is lower than the shortest path from the start vertex to s′ found
so far. The new pseudocode of ComputeCost function is described in Algorithm
2.

Function ComputeCost (s, s′)is
if LineOfSight(parent(s),s’) then

// Path 2

if g(parent(s)) + c(parent(s), s′) < g(s′) then
parent(s′)=parent(s)
g(s’)= g(parent(s)) + c(parent(s),s′)

end

else
// Path 1

if g(s) + c(s, s′) < g(s′) then
parent(s′) = s
g(s′) = g(s) + c(s, s′)

end

end

end
Algorithm 2: Pseudocode for Theta* algorithm [12].

Distances with Theta*

In our problem Theta* is used not only to calculate the final path between all the
covering points but also to calculate the matrix distances that is used by TSP to
find the optimal order of visit. To do this, a variation of Theta* is used. The
goal is removed and the algorithm is iterated for each coverage point returned by
AGP. Substituting at each iteration the starting vertex with the current cover-
age point we calculate the g-value that corresponds to the distance between the
pair of points considered. When all the points are visited the distance matrix is
generated and passed to the TSP.

33

4.1. FIRST STEP PROCESS METHODS 34

4.1.3 Travelling Salesman Problem

Once the covering points are selected, it is necessary to find an order to visit them.
The TSP returns the shortest tour that visits each covering point and go back to
the starting one, given in input the set of covering points and distances between
them. Like the AGP it is a NP-hard problem, and its complexity increases with
the number of covering points.

It was formulated as an integer program for the first time by Dantzig, Fulker-
son, and Johnson [14]. In our coverage problem we follow their formulation.
Once the AGP has returned the selected points S, we want to minimize the trav-
elling distance between them.
Before applying TSP, we transform the 3D environment in a weighted graph G,
where the vertex of G are the cells of the environment and the edges have a weight
equal to the distance dij between each pair of vertex i and j of G. dij is calculated
using Theta* (explained in Section 4.1.2).
Let V be the set of vertices of the graph G. Then the total travelled distance is
the sum of the distances of the vertices in the tour:

travelledDistance =
∑

(i,j)∈V

di,jxi,j .

Where xi,j is a binary variable, that is 1 if cell(i, j) ∈ tour, 0 otherwise.
The tour should pass only once through each vertex:∑

j∈V
xi,j = 2,∀i ∈ V.

Therefore for every vertex i exactly two of the associated xi,j variables should
be equal to 1 so that the condition above is true, meaning that a vertex xi can
appear only one time in a path (one, when from a generic cell we go to the cell
xi and two, when from xi we go to another cell). At this moment we can produce
solutions that are not connected tour, finding subtours. So we add a constraint
to eliminate subtours, requiring that for each nonempty subset Sub of the set of
covering points V , the number of edges between the vertices of Sub must be at
most |Sub| − 1, so: ∑

i,j∈V,i 6=j

xi,j ≤ |Sub| − 1,∀Sub ⊂ V, Sub 6= 0.

34

4.2. THE COVERAGE ALGORITHMS 35

So finally the integer program becomes:

minimize
∑

(i,j)∈E

di,jxi,j

subject to
∑
j∈V

xi,j = 2 ∀i ∈ V

∑
i,j∈Sub,i 6=j

xi,j ≤ |Sub| − 1, ∀Sub ⊂ V, Sub 6= 0

xi,j ∈ {0, 1}

This is only one of the possible methods that can be used to produce a solution
to a TSP problem, in literature there lot more of this for example Neighbourhoods-
TSP (TSPN) described in Chapter 2.

4.2 The Coverage Algorithms

In this section we describe how the two-phase method previously proposed is
applied to the environments of Case 1 and Case 2 presented in Chapter 3.
Type 1 comprises all the environments with a monotone behavior, as the case of
covering a field. Basically we cannot have an obstacle at height h if this obstacle
is not present at height h′ < h.
Instead, Type 2 includes the environments in which the area that can be covered
at a given height is a subset of the area covered at any lower heights.
We decided to formulate two different algorithms for the two cases:

• SingleHeight algorithm for Type 1,

• MultiHeights algorithm for Type 2.

4.2.1 SingleHeight Algorithm

SingleHeight Algorithm is used to cover environments of Type 1 described in
Chapter 3. As we have seen, to cover this type of area it is sufficient to generate
a path over each 2D plane independently with AGP and TSP and then select the
path with the minor distance cost. This is possible because we are sure that if
we have not an obstacle at height h we are sure that an obstacle is not present at
height h′ < h (with (x, y) = (x′, y′))
As shown in Algorithm 3, the SingleHeight algorithm considers each of the 2D
grids at the different heights h ∈ (H \ h0). Firstly, the ArtGallery procedure
is applied to every grid to find the covering points. Then Theta∗ is called to
calculate the distances between each pair of covering points. Eventually, the TSP
algorithm is applied |H| − 1 times every time using the covering points of the 2D

35

4.2. THE COVERAGE ALGORITHMS 36

grid considered. This means that we obtain |H| − 1 different tours, each one with
a different cost, for every height h ∈ (H \h0). The SingleHeight algorithm selects
the tour with the minimum cost.

Function SingleHeight (F(0),H)is
for h ∈ (H \ h0) do

tourh = 2phases(h,F(0))
if First Iteration then

tour=tourh
else

if c(tourh) ≤ c(tour) then
tour= tourh

end

end

end
return tour

end
Function 2phases (h, F(0))is

S = ArtGallery(h,F(0))
D = Theta* (S)
tour = TSP(S,D)
return tour

end
Algorithm 3: Pseudocode for SingleHeight algorithm [2].

4.2.2 TwoHeights Algorithm

In Case 2 the situation is different, and we must consider all the possible tours
at multiple heights. We assume that given a set of discrete heights H, for only
one height K ∈ (H \ h0) :

⋃
f∈F (K)C(f) = F (0) that means that only the cells

at height K can cover the target cell at the ground. K is the minimum height
excluding the ground.
Hence, all the possible combinations of heights h ∈ (H \ h0) with a fixed element
that is height K must be considered to find the minimum covering tour.
Initially, the TwoHeights algorithm computes the 3D graph G. Then each pair of
heights K,h with h 6= K is considered one at a time: firstly, the covering points
are found with the ArtGallery procedure at h. After, the algorithm computes
the uncovered cells at the ground and the ArtGallery at height K is called in
order to find the guards of the remaining uncovered cells at the ground. Later,
the distances between each pair of covering points are calculated using Theta*.
At the end, the TSP is applied to the covering points and their distances. When

36

4.3. SECOND STEP PROCESS - MERGE ALGORITHMS 37

the costs of all the tours are derived, the best combination of two heights is chosen
and returned.

Function TwoHeights (F(0),H)is
for h ∈ (H \ h0) do

S = ArtGallery(h,F(0))
// the already covered cells are removed

U = F(0) \ C(S)
S = S ∪ArtGallery(K,U)
D = Theta∗(S)
tourh = TSP(S,D)
if First Iteration then

tour=tourh
else

if c(tourh) ≤ c(tour) then
tour= tourh

end

end

end
return tour

end
Algorithm 4: Pseudocode for TwoHeights algorithm [2].

4.3 Second step process - Merge algorithms

In this section we describe two different algorithms to merge different paths. Both
the algorithms are used to merge the paths greedly over all the heights. This
means that having two different zones, the path1 at height h ∈ H \ h0 is merged
to the paths2 of all the heights H \ h0.
Our algorithms do the merge operation between two paths but can be extended
to merge more paths by simply merging the paths 2-by-2.

4.3.1 First Merge Algorithm

This is a plain algorithm and is the most simple and is faster than the other one
in terms of computational times.
The main idea is to go select a path as first and a path as second. The sequence of
the final path will be all the points of the first path until the last one (excludind
the depot at the end) and then all the points of the second path (excluding the
depot at the beginning). With this method two edges are eliminated and one new

37

4.3. SECOND STEP PROCESS - MERGE ALGORITHMS 38

link is added. To decide which of the two paths goes first a control is done (see
Algorithm 5).
The order of the covering points is maintained through the merge because the
new path obtained goes fully through one path before to go to the other one.
An example of two paths merged can be seen in Figure 4.2. In this case the path
in blue is selected as first path (it maintain its first edge and loses the last one),
while the red path is the second (loses first edge and maintain the last one). Edge
in yellow is the new edge that connects the last point of the path 1 to the first
point of path 2.

Function FirstMergeAlgorithm ()is
for h ∈ H \ h0 do

path1 = path1 at height h
for h′ ∈ H \ h′0 do

path2 = path2 at height h′

cost, pathh,h′ = MergePath(path1,path2)

end

end
// select the path with minor cost and return it

end
Function MergePath1 (path1, path2)is

eliminate = lastEdge1 and firstEdge2
if lastEdge1 + firstEdge2 < firstEdge1 + lastEdge2 then

// swap the two paths (path1 becomes path2 and

viceversa)

// eliminate = firstEdge1 and lastEdge2
end
lastNode1 = path1[end] \ depot
firstNode2 = path2[1] \ depot
newEdge = Theta∗(lastNode1,firstNode2)
newCost = costPath1 + costPath2 − eliminate+ newEdge

end
Algorithm 5: Pseudocode for the first Merge algorithm.

4.3.2 Second Merge Algorithm

This algorithm is more complex than the previous one. The idea is to choose a
path as external and the other as internal. The external maintains the depot with
its first and last edges. The internal becomes a closed polygon, loses its depot
and the edges connected to them (first and last edges of the initial path) gains an
edge from the last point to the first one.
An example of this merging technique can be seen in Figure 4.3. Blue path is the
external one, while red with the yellow closing edge is internal. In purple the new

38

4.3. SECOND STEP PROCESS - MERGE ALGORITHMS 39

(a) (b)

Figure 4.2: Examples of (a) Two different paths (b) Paths merged using the first algorithm

edges using the strategy 1.
The algorithm iterates over all the possible pair of points of path 1 and path 2
(such as p1 and p2 where the former is a point in path 1 and the latter a point in
path 2) to retrieve the path with the least cost possible.
When, after going through the internal path, we must return to the external one
two strategies are considered and the one with the lesser cost is choosed as we
can see in Algorithm 6.
Generally to search for the optimal solution in terms of cost distance the algorithm
runs two times changing internal path with the external one and then chooses the
result with less cost. For a particular type of map division this in not mandatory
(as we will see in Chapter 5) because the optimal results will always be with one
path as internal and the other as external.

39

4.3. SECOND STEP PROCESS - MERGE ALGORITHMS 40

Function SecondMergeAlgorithm ()is
for h ∈ H \ h0 do

path1 = path1 at height h
for h′ ∈ H \ h′0 do

path2 = path2 at height h′

cost, pathh,h′ = MergePath(path1,path2)

end

end
// select the path with minor cost and return it

end
Function MergePath2 (path1, path2)is

external = path1
internal = path2 + // modifications to transform the path in

a closed polygon

for ci ∈ external \ depot do
for c′j ∈ internal do

newEdge1 = Theta*(ci, c
′
j)

if Theta*(c′j , ci+1) ≤ Theta*(c′j−1, ci+1) then

// strategy1

newEdge2 = Theta*(c′j , ci+1)

else
// strategy2

newEdge2 = Theta*(c′j−1, ci+1)

end
newCost = // calculates the new cost eliminating

edges non used and adding new edges

end

end

end
Algorithm 6: Pseudocode for the second Merge algorithm.

40

4.3. SECOND STEP PROCESS - MERGE ALGORITHMS 41

(a) (b)

Figure 4.3: Examples of (a) Two different paths (b) Paths merged using the second algorithm
with strategy 1

41

Chapter 5

Experiments

In this chapter we are going to focus on the experimental results of the algorithms
explained in Chapter 4. In the first part of the chapter, we are going to concentrate
on the tools used and on the images used to simulate environments on which we
used our CPP technique. Then, in the second part we will report some results
and we will compare the different covering tours, their costs, and computational
times of the tours obtained with the merge algorithm with respect to the tours
over the entire environment.

5.1 Tools

We implement our algorithms in Matlab. We run Matlab on a machine with
a 2.4 GHz Intel Core i5 CPU and a RAM of 8GB .
As said in the previous chapters we have to solve TSP, for this reason we use an
optimization tool. We use a MILP solver: Gurobi [24], a free optimization tool
that works with Matlab.
We implement all the algorithms on the basis of the pseudocode reported in
Chapter 4.

We suppose to work with two different types of UAVs:

• one equipped with 1.7 mm lens, that has approximate 170 degree FOV, so,
since we consider half apex angle, we will refer to it as α = 85◦;

• the other equipped with 2.8 mm lens, that has approximate 120 degree FOV,
so, since we consider half apex angle, we will refer to it as α = 60◦.

Both the UAVs have a fixed camera. So, we execute every algorithm two times,
each time considering a different FOV.

5.2. ENVIRONMENTS 43

(a) (b) (c)

Figure 5.1: The 3 target regions at the ground used during the experiments.

We feed our algorithms with occupancy grid maps derived from the images
representing the 2D grids in which the 3D environments are decomposed. To
reduce the computational time we consider occupancy grid maps with maximum
size of 100×100 (cells), which is the size of the corresponding matrix in Matlab.
All the occupancy grid maps with size larger than this threshold are scaled by a
factor 0.1 using subsampling. For instance, if we consider an occupancy grid map
of size 600× 700, it is scaled by a factor 0.1. This means that each submatrix of
size 10 of the occupancy grid map is replaced by one, if the number of ones in the
submatrix is bigger than the number of zeros, by zero otherwise.
Occupancy grid maps with size bigger than 1000× 1000 are not considered in our
experiment. These limitations only have the aim of reducing the computational
time, although our algorithms can work with images of every size.

We build our 3D environments, concatenating along the third dimension the
2D grids at different heights.
About the environment we only have one constraint valid for every algorithm: any
cell in our 2D grids can be reached from any other cell. Practically, we cannot
have white spaces closed by a black line without entrance (for example: closed
yards).

5.2 Environments

We choose 3 different environments, which target area (h0) is shown in Figure
5.1. During this chapter we will refer to the environment in Figure 5.1(a) as
Environment A, to the one in Figure 5.1(b) as Environment B, and to the one in
Figure 5.1(c) as Environment C. All the environments are taken from real maps,

43

5.3. RESULTS 44

Environment A is from the map of McKenna mout site [37], Environment B is from
the map of the Tech Institute of Northwestern University [32], and Environment
C from the map of Bovisa Campus of Politecnico di Milano [7], but they have
been modified in order to create distinct zones of different types as explained in
Chapter 3.
Table 5.1 reports the sizes of the 2D grids in every environment.

Environment Matrix size 2D grid

Environment A 60× 70
Environment B 80× 70
Environment C 63× 71

Table 5.1: Matrix size of each 2D occupancy grid map.

We discretize our 3D environments at six heights H = {h0, h1, h2, h3, h4, h5}.
Each height corresponds to a horizontal cross section taken every two meters, so
H = {0, 2, 4, 6, 8, 10} m. In our environments the grid map at h1 is equal to the
grid map at h0, that represents the ground. For each environment we consider 6
images that are the result of the intersection between a plane at height hi ∈ H
and the 3D environment (Figure 5.2). These images correspond to the occupancy
grid maps at a given h of the considered 3D environment, a black cell corresponds
to an obstacle, while a white one corresponds to a free area in which the UAV
can move.
As said in previous chapters we have two possible scenarios: Case 1 and Case 2.

For our experiments we manually divide the three environments in distinct
areas that are of Type 1 or Type 2. Every map id divided in two zones, one of
type 1 and one of type 2. We can see the division used in Figure 5.3 that shows
the only the ground plane (h0) because as we said in Chapter 3 the division is
equal for all the planes. In Appendix A we can see how the maps evolve vertically
and how the obstacles change at different heights.

5.3 Results

In this section we will illustrate the results of the two merge algorithms compared
also with the results obtained without map division. The results studied are in
term of distance cost and computational time.

The term configuration is used to indicate the environment and FOV. The
environment can be Environment A, Environment B, and Environment C. The
FOV can be α = 60◦ or α = 85◦. For instance, a configuration is Environment A
with α = 60◦.

44

5.3. RESULTS 45

Figure 5.2: Decomposition of a 3D environment in six grids of Environment C in Case 1.

The images of the paths merged are arranged in ascending order according to
height.
They are coloured using a grey-scale:

• lighter shades of gray for higher obstacles,

• darker shades of grey for lower obstacles,

• with white for the free area in every level,

• black for the obstacle present at the height of the tour.

Furthermore, we use different colours and notation to represent the total tour.
More precisely:

• a full circle represents the beginning of a continuous path at a given height
(with continuous path we refer to a path in the same plane, without changing
height),

• a diamond indicates the end of a continuous path at a given height (repres-
ents a change in the height),

• an empty circle represents a covering point and a number indicates the order
of exploration of the tour.

In all the environments the depot is situated in point d = (1, 1, 0), so d is the
point (1,1) on the ground (h0).

45

5.3. RESULTS 46

(a) (b) (c)

Figure 5.3: Target ground division of the Environment A,B,C.

5.3.1 Environment A

Environment A is divided in two vertical sections by a line in the middle such
that area on the left is of type 1 and covered by SingleHeight algorithm and the
area on the right is covered by a TwoHeight algorithm because is of type 2 (see
Figure 5.3(a)).
Since the depot is situated in d = (1, 1, 0), for Merge Algorithm 2 it is sufficient to
study the results with left path as external and the path on the right as internal.
We merged the two paths for every possible combination of heights and we can
see the results in Table 5.2 with α = 60◦ and in Table 5.3 with a α = 85◦.
As we could expect, the Merge Algorithm 2 produces better results over the Merge
Algorithm 1. This is because the Merge Algorithm 2 greedily searches the best
pair of points on which the merge operation operates, while the first algorithm
selects only a pair of points (last point of path 1 and first point of path 2).
With this environment and with this particular division choosed, the Merge Al-
gorithm 2 with both FOVs improves the cost solution of the CPP on the entire
map. This rarely happens and it is highly linked to how the map is divided.

Regarding computational time, we can see in bar chart of Figure 5.4 that the
larger the FOV, littler the computational time is. This happens because com-
putational time (ct) highly depends on TSP and the number of covering points
(when we have a larger FOV, less covering points we have because a wider area
is covered on the ground). We can see that both the merge algorithms speed up
the ct with respect to the CPP calculated over the entire map. To the advant-
age of distance cost with the Merge Algorithm 2 that we have seen previously,
corresponds a disadvantage in terms of ct. Merge Algorithm 2 spends more time
to validate all the possible pairs of points, while Merge Algorithm 1 has only one

46

5.3. RESULTS 47

Results with 2-height algorithm

cost h1 cost h1,2 cost h1,3 cost h1,4 cost h1,5

1135.9151 613.9418 479.0015 426.7281 469.0775

Results with Merge Algorithm 1

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 1260.3845 990.5457 943.8797 931.6059 960.0786

SingEight2 981.6202 685.7205 649.0638 579.2133 659.7604

SingEight3 900.5088 574.4583 520.6913 505.6983 555.5524

SingEight4 847.6542 536.3045 482.5376 467.5446 507.3987

SingEight5 803.339 521.9893 468.2224 453.2294 520.9815

Results with Merge Algorithm 2

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 1121.8723 911.9299 885.3924 814.4777 888.6609

SingEight2 859.5627 629.5705 618.1039 567.1327 623.3047

SingEight3 785.1672 512.3199 464.1151 503.9135 533.7238

SingEight4 757.8401 482.705 431.8854 434.4963 464.695

SingEight5 755.1784 469.246 418.5112 408.0476 459.0962

Table 5.2: Comparison of results of Environment A and α = 60◦

candidate pair of points to merge.
Figure 5.5 shows two paths before the merge operation. Instead, Figure 5.6

shows the same two paths merged into one:

• Figure 5.6(a) shows the path obtained with the Merge Algorithm 1.

• Figures 5.6(b) and 5.6(c) shows the path obtained with the Merge Algorithm
2.

47

5.3. RESULTS 48

Results with 2-height algorithm

cost h1 cost h1,2 cost h1,3 cost h1,4 cost h1,5

366.8773 287.4305 312.7131 347.265 352.257

Results with Merge Algorithm 1

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 395.2571 354.5934 350.8713 356.5019 434.8559

SingEight2 363.6192 355.9169 327.4895 380.6969 376.1821

SingEight3 368.8093 311.107 332.6796 379.7168 381.3722

SingEight4 401.4152 343.7129 365.2855 410.7659 413.9781

SingEight5 391.3952 333.6929 355.2655 404.2225 403.9581

Results with Merge Algorithm 2

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 318.5742 337.5679 346.2264 328.3108 410.746

SingEight2 317.0689 342.8023 419.7275 312.6508 371.1372

SingEight3 329.84 268.3715 311.0179 281.642 363.5605

SingEight4 336.079 300.2398 326.5274 326.3954 391.0104

SingEight5 338.4103 302.2258 324.9596 307.2878 388.2201

Table 5.3: Comparison of results of Environment A and α = 85◦

Figure 5.4: Computational time of execution of the algorithm in Environment B with different
FOVs

48

5.3. RESULTS 49

(a) (b)

Figure 5.5: The coverage tours of Environment A with a α = 85◦. It shows the paths before
the merge. (a) Tour at h2 with SingleHeight algorithm for the type 1 area. (b) Tour at h2
with the TwoHeight on the type 2 area.

49

5.3. RESULTS 50

(a)

(b) (c)

Figure 5.6: The coverage tours of Environment A with a α = 85◦. (a) Tour at h2 with Merge
Algorithm 1. (b) Tour at h2 with the Merge Algorithm 2. (c) Tour at h3 with the Merge
Algorithm 2.

5.3.2 Environment B

As we can see in Figure 5.3(b) Environment B is divided in two horizontal sections
by a line in the middle such that the upper area is of type 2 and covered by
TwoHeight algorithm and the bottom area is covered by a SingleHeight algorithm
because is of type 1.
Due to the position of the depot, we have for the Merge Algorithm 2 that the
optimal result is always when the upper path is chosen as external and the other
one as internal like we said in Chapter 4.
We merged the two paths for every possible combination of heights and we can see
the results in Table 5.4 with α = 60◦ and in Table 5.5 with α = 85◦. From these

50

5.3. RESULTS 51

Results with 2-height algorithm

cost h1 cost h1,2 cost h1,3 cost h1,4 cost h1,5

1082.9853 655.6984 537.7494 485.6224 525.3479

Results with Merge Algorithm 1

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 1153.1592 920.9133 830.7629 812.5528 863.7998

SingEight2 1017.2754 727.7656 656.4581 648.133 710.5606

SingEight3 944.4761 675.3497 625.4589 589.71471 653.5303

SingEight4 909.8902 628.2992 590.8226 576.4279 603.8985

SingEight5 919.0005 620.4854 570.7592 562.2253 596.807

Results with Merge Algorithm 2

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 1094.0253 859.2474 816.6287 809.8505 841.3824

SingEight2 922.4969 677.6926 647.094 640.2957 664.5666

SingEight3 870.6769 620.0147 571.366 569.4752 608.9132

SingEight4 822.8105 569.961 520.2932 488.4063 562.4777

SingEight5 798.952 585.2586 482.8592 502.8436 559.3134

Table 5.4: Comparison of results of Environment B and α = 60◦

results we can see that in comparison to the CPP over the entire map the results
in terms of distance costs are worse. This is because the merge algorithms do not
optimize the sequence order of the path points as the TSP does. For example, in
Figures 5.8(b) and 5.8(c) we can see a loss of cost distance between point 13 and
point 14 because the edge between them intersects the path. For this reason, these
results in terms of cost distance can be optimized with an ordering algorithm over
the merged path.
Computational time can be seen in bar chart in Figure 5.10.
An example of paths before the merge operation can be seen in Figure 5.7. While
paths merged with Merge Algorithm 1 and Merge Algorithm2 can be seen in
Figures 5.8 and 5.9 respectively.

51

5.3. RESULTS 52

Results with 2-height algorithm

cost h1 cost h1,2 cost h1,3 cost h1,4 cost h1,5

390.3060 348.7825 365.2342 358.2449 363.3426

Results with Merge Algorithm 1

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 541.2642 536.9533 536.9958 544.1752 533.8881

SingEight2 566.1608 553.0682 568.184 576.5365 537.4695

SingEight3 587.1449 570.8453 588.126 596.4028 555.7753

SingEight4 574.8739 570.3498 570.1987 577.1941 565.7908

SingEight5 565.8822 561.2862 558.1052 564.7776 563.6747

Results with Merge Algorithm 2

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 425.9936 445.7524 467.9127 473.7134 476.8786

SingEight2 416.0002 468.7828 459.9214 466.2329 472.868

SingEight3 419.5755 464.7465 464.0838 469.2323 474.76

SingEight4 430.5171 474.658 466.2287 477.8185 482.9152

SingEight5 435.2204 479.0014 471.5643 479.9337 480.7143

Table 5.5: Comparison of results of Environment B and α = 85◦

(a) (b) (c)

Figure 5.7: The coverage tours of Environment B with a α = 60◦. It shows the paths before
the merge. (a) Tour at h5 with SingleHeight algorithm for the type 1 area. (b) Tour at h1
with the TwoHeight on the type 2 area. (c) Tour at h4 with the TwoHeight on the type 2
area.

52

5.3. RESULTS 53

(a) (b) (c)

Figure 5.8: The coverage tour of Environment B with a α = 60◦ computed with Merge
Algorithm 1. The height are in ascending order. (a) Tour at h1. (b) Tour at h4. (c) Tour at
h5.

(a) (b) (c)

Figure 5.9: The coverage tour of Environment B with a α = 60◦ computed with Merge
Algorithm 2. The height are in ascending order. (a) Tour at h1. (b) Tour at h3. (c) Tour at
h5.

53

5.3. RESULTS 54

Figure 5.10: Computational time of execution of the algorithm in Environment B with different
FOVs

5.3.3 Environment C

From Figure 5.3(c) we clearly see how the division on this environment is done.
With respect to the other two environments considered, the distance from the two
zones created to the depot is not clearly distinct. For this reason, the optimal
solutions with Merge Algorithm 2 must be searched either with path 1 as external
and path 2 as internal or vice versa.
Table 5.6 and Table 5.7 shows the results with α = 60◦ and 85◦, respectively.
Figures 5.11 and 5.12 show the optimal paths with Merge Algorithm 1 and Merge
Algorithm 2 respectively (both FOVs have α = 60◦).

54

5.3. RESULTS 55

Results with 2-height algorithm

cost h1 cost h1,2 cost h1,3 cost h1,4 cost h1,5

993.1080 553.1403 449.9711 440.9308 423.2185

Results with Merge Algorithm 1

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 1018.8887 744.2128 676.3749 674.6393 658.2405

SingEight2 905.3447 634.6412 547.1454 561.8577 545.4589

SingEight3 897.3258 625.6625 521.7925 542.6041 520.106

SingEight4 871.7413 600.078 518.4575 523.2383 494.5215

SingEight5 857.3932 585.7299 495.333 497.9647 512.7477

Results with Merge Algorithm 2

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 960.5906 719.5033 647.6455 637.6901 647.4389

SingEight2 849.5283 582.5113 542.5369 531.9106 499.3295

SingEight3 835.4182 561.5676 465.0597 486.3601 464.0007

SingEight4 804.2014 548.7517 449.6981 460.5839 455.5957

SingEight5 788.7397 528.3 431.2133 445.8455 419.1476

Table 5.6: Comparison of results of Environment C and α = 60◦

(a) (b) (c)

Figure 5.11: The coverage tour of Environment C with a α = 60◦ computed with Merge
Algorithm 1. The height are in ascending order. (a) Tour at h1. (b) Tour at h4. (c) Tour at
h5.

55

5.3. RESULTS 56

Results with 2-height algorithm

cost h1 cost h1,2 cost h1,3 cost h1,4 cost h1,5

348.1252 274.0452 253.5698 268.2682 276.9552

Results with Merge Algorithm 1

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 398.2015 334.2426 311.9353 334.8074 383.6234

SingEight2 352.619 309.2252 306.9228 329.7949 333.0219

SingEight3 380.4107 320.6568 310.8015 333.6736 382.1596

SingEight4 386.7044 328.1405 318.2852 351.1573 389.6433

SingEight5 390.3236 331.0177 321.1624 344.0345 392.5205

Results with Merge Algorithm 2

h1 h1,2 h1,3 h1,4 h1,5

SingEight1 333.3615 330.7866 311.5033 305.7504 373.3984

SingEight2 306.641 288.4127 302.9018 294.4379 332.0501

SingEight3 308.4737 283.3438 283.5136 322.5556 330.4208

SingEight4 333.3524 282.3175 294.3332 343.7993 358.7993

SingEight5 332.3116 288.0087 304.0844 298.2785 336.9355

Table 5.7: Comparison of results of Environment C and α = 85◦

(a) (b)

Figure 5.12: The coverage tour of Environment C with a α = 60◦ computed with Merge
Algorithm 2. The height are in ascending order. (a) Tour at h1. (b) Tour at h5.

56

5.3. RESULTS 57

Figure 5.13: Computational time of execution of the algorithm in Environment C with different
FOVs

5.3.4 Summary

Tables 5.8 and 5.9 report the optimal results with different Merge Algorithms and
FOVs over all the three environments.
From the two tables we can observe that the in general the Merge Algorithm
1 produces worse results in terms of distance cost but the total computational
time is less than Merge Algorithm 2. Between the two FOVs used, the larger one
produces better results because, as we said in precedence, if we have a very large
FOV, from an height h we can cover more cells at h0 with respect of a small FOV.
This means that we will have a quicker computational time due to the fact that
the number of covering points is reduced in scenarios with a large FOV.
Regarding the combination of heights that produces the optimal results in the
three environments we have different results depending on the FOV used. In
scenarios with α = 60◦ we have both high heights, while with α = 85◦ we gener-
ally have two low heights. In the first case the tour cost decreases with increasing
of height. This is due to the fact that going up in height is possible to reduce the
number of covering points and so the distances between them (due to the use of
Theta*), even if we have an higher cost moving to/from the depot. Instead, with
α = 85◦ the results are different, the tours at intermediate heights are the best.
This is due to the fact that having a very large FOV (170◦) at a lower height,
there is no advantage in going up. Indeed, from a certain height reducing the
number of covering points is no longer possible.
Results and heights that produce the optimal result highly depend on the area

57

5.3. RESULTS 58

to be covered. For example if we apply another division of the environment B
we will have different results. If the type 1 zone is bigger we will have a higher
height, vice versa if the zone is more little the height will likely reduce. The same
will happen with type 2 zone. Appendix A shows the all the heights of the maps
used for our experiments.
In Appendix B we can see the optimal coverage paths over the three environments
with different FOVs.

Minimum-cost tour with Merge Algorithm 1

α Minimum-cost tour Height Computational time

Environment A
60◦ 453.2294 Singleh5 , Twoh1,4 119,015 sec
85◦ 311.107 Singleh3 , Twoh1,2 72,38 sec

Environment B
60◦ 562.2253 Singleh5 , Twoh1,4 130.7115 sec
85◦ 533.8881 Singleh1 , Twoh1,5 69,752 sec

Environment C
60◦ 306.9228 Singleh2 , Twoh1,3 135,392 sec
85◦ 318.2447 Singleh2 , Twoh1,2 68,2143 sec

Table 5.8: The minimum-cost coverage tour found by the Merge Algorithm 1 the heights
merged and their computational time.

58

5.3. RESULTS 59

Minimum-cost tour with Merge Algorithm 2

α Minimum-cost tour Height Computational time

Environment A
60◦ 408.0476 Singleh5 , Twoh1,4 134,8525 sec
85◦ 268.3715 Singleh3 , Twoh1,2 84 sec

Environment B
60◦ 482.8592 Singleh5 , Twoh1,3 145,3227 sec
85◦ 416.0002 Singleh1 , Twoh1,1 81,1896 sec

Environment C
60◦ 419.1476 Singleh5 , Twoh1,5 146,6181 sec
85◦ 320.613 Singleh4 , Twoh1,2 282,3175 sec

Table 5.9: The minimum-cost coverage tour found by the Merge Algorithm 2 the heights
merged and their computational time.

5.3.5 TSP solution

A different approach with respect to the merge algorithms is here described.
It is based again on a divide-et-ipera approach. After the environment is divided
and the coverage paths for each zone are produced (again, through AGP and
TSP), another TSP over all the coverage points is done. This, will produce a
path over the entire environment with the points.
The TSP between all the covering points is done in a greedy way over all the
heights combination (as we have done with the merge algorithms) We observed
that there is a big improvement in the distance cost result and the computational
cost is similar to those registered with merge algorithms, at least with the FOV
with α = 85◦. Instead, with the FOV with α = 60◦ the computational time is very
high due to the large number of covering points. As we have seen in precedence,
TSP computational time grows linearly with the number of coverage points. So,
with this approach when we use a very little FOV sensor, we have a very high
computational time.

In Table 5.10 we can see the best results obtained in the three environments
with different FOVs. As fo the merge algorithms the results an vary with a dif-
ferent division of the map. We can see that the computational time with α = 60◦

is very high, also higher to the cp of the CPP over the entire map. This, is the
most significant drawback of this method because the cp will continue to grow
reducing the FOV.

59

5.3. RESULTS 60

Minimum-cost tour with TSP solution

α Minimum-cost tour Height Computational time

Environment A
60◦ 214.15 Singleh4 , Twoh1,3 133,7003 sec
85◦ 184.42 Singleh3 , Twoh1,2 69,574 sec

Environment B
60◦ 219 Singleh5 , Twoh1,5 174,3227 sec
85◦ 118.53 Singleh5 , Twoh1,5 68 sec

Environment C
60◦ 228.54 Singleh5 , Twoh1,4 171,3855 sec
85◦ 123.04 Singleh3 , Twoh1,2 69,3174 sec

Table 5.10: The minimum-cost coverage tour found by the Merge Algorithm 2 the heights
merged and their computational time.

60

Chapter 6

Conclusions and future works

In this work, we implemented a divide-et-impera approach to solve multiple 2D
CPP (Coverage Path Planning) problems over the 2D grids in which a 3D en-
vironment is decomposed with the aim to decrease the computational cost of a
CPP problem solution. In our case the CPP produces a tour that allows an UAV
(Unmanned Aerial Vehicle) with a given covering sensor to cover a target area at
the ground.

Our criterion to divide the initial problem is based on the type of environment.
We have two different types of possible environments.

Type 1 considers the environments with a monotone behavior of the covering
function. This means that the area covered at given height is always included in
the area covered at a higher height.
Type 2 includes the environments in which the area that can be covered at a given
height is a subset of the area covered at any lower heights.
Each zone in which the initial map is decomposed, is covered separately through
the AGP (Art Gallery Problem) to find the minimum number of covering points
and the TSP (Travel Salesman Problem) to connect them, using Theta* to cal-
culate the distance cost.

After all the paths are calculated, a merge algorithm is required to produce a
solution to the initial problem. We proposed two different merge algorithms. One
produces high distance cost paths with less computational time, while the second
gives better results in terms of distance cost but with much more computational
time.

We implemented and tested our algorithms in three different environments
using different FOVs (Field Of View) for the robot’s sensor and discretizing each
3D environment over six heights H = h0, h1, h2, h3, h4, h5.

62

Results highly depend on the environments and on how the division of the map
is done. With a large FOV we have better results with lower heights, vice versa
with a smaller FOV we have that the solution is produced by a combination of
high heights.
We saw the differences between the two merge algorithms in terms of distance
cost and computational time. The former is better with Merge Algorithm 2, the
latter with Merge Algorithm 1.

Future works could investigate more deeply the aspect of the map division in
order to find the particular division that produces better results. Another future
work, could be a study to further improve the computational time, discarding some
heights that surely don’t give a better solution with respect to other heights.

62

Appendix A

Occupancy grid maps in all the
three environments

Here we can see how the three environments used for our experiments develop
vertically.

• Figure A.1 shows the occupancy grid maps of Environment A

• Figure A.2 shows the occupancy grid maps of Environment B

• Figure A.3 shows the occupancy grid maps of Environment C

63

64

(a) (b)

(c) (d)

(e) (f)

Figure A.1: Six grids represent the occupancy grid maps at different heights of Environment
A in ascending order starting from h0 (the ground) to h5. Also the division is showed.

65

(a) (b)

(c) (d)

(e) (f)

Figure A.2: Six grids represent the occupancy grid maps at different heights of Environment
B in ascending order starting from h0 (the ground) to h5. Also the division is showed.

66

(a) (b)

(c) (d)

(e) (f)

Figure A.3: Six grids represent the occupancy grid maps at different heights of Environment
C in ascending order starting from h0 (the ground) to h5. Also the division is showed.

Appendix B

Optimal paths maps for all the
environments and different
FOVs

Here, is presented a list of figures that represent the optimal paths with both
merge algorithms for each environment.

Environment A

The following images are:

• Figures B.1(a), B.1(b) and B.1(c) show the optimal path with α = 60◦ and
Merge Algorithm 1.

• Figures B.1(d), B.1(e) and B.1(f) show the optimal path with α = 60◦ and
Merge Algorithm 2.

• Figure B.2(a) shows the optimal path with α = 85◦ and Merge Algorithm
1.

• Figure B.2(b) and B.2(c) show the optimal path with α = 85◦ and Merge
Algorithm 2.

67

68

(a) (b) (c)

(d) (e) (f)

Figure B.1: The coverage tours of Environment A with a α = 60◦. (a) Tour at h1 with
Merge Algorithm 1. (b) Tour at h4 with the Merge Algorithm 1. (c) Tour at h5 with the
Merge Algorithm 1. (d) Tour at h1 with Merge Algorithm 2. (e) Tour at h4 with the Merge
Algorithm 2. (f) Tour at h5 with the Merge Algorithm 2.

69

(a)

(b) (c)

Figure B.2: The coverage tours of Environment A with a α = 85◦. (a) Tour at h2 with Merge
Algorithm 1. (b) Tour at h2 with the Merge Algorithm 2. (c) Tour at h3 with the Merge
Algorithm 2.

Environment B

The following images are:

• Figures B.3(a), B.3(b) and B.3(c) show the optimal path with α = 60◦ and
Merge Algorithm 1.

• Figures B.3(d), B.3(e) and B.3(f) show the optimal path with α = 60◦ and
Merge Algorithm 2.

• Figure B.4(a) and B.4(a) shows the optimal path with α = 85◦ and Merge
Algorithm 1.

70

• Figure B.4(c) and B.4(d) show the optimal path with α = 85◦ and Merge
Algorithm 2.

(a) (b) (c)

(d) (e) (f)

Figure B.3: The coverage tour of Environment B with a α = 60◦ computed. (a) Tour at h1
with Merge Algorithm 1. (b) Tour at h4 with Merge Algorithm 1. (c) Tour at h5 with Merge
Algorithm 1. (d) Tour at h1 with Merge Algorithm 2. (e) Tour at h3 with Merge Algorithm
2. (f) Tour at h5 with Merge Algorithm 2.

71

(a) (b)

(c) (d)

Figure B.4: The coverage tour of Environment B with a α = 85◦ computed. (a) Tour at h1
with Merge Algorithm 1. (b) Tour at h5 with Merge Algorithm 1. (c) Tour at h1 with Merge
Algorithm 2. (d) Tour at h2 with Merge Algorithm 2.

Environment C

The following images are:

• Figures B.5(a), B.5(b) and B.5(c) show the optimal path with α = 60◦ and
Merge Algorithm 1.

• Figures B.5(d) and B.5(d) show the optimal path with α = 60◦ and Merge
Algorithm 2.

• Figure B.6(a), B.6(b) and B.6(c)shows the optimal path with α = 85◦ and
Merge Algorithm 1.

• Figure B.6(d),B.6(e) and B.6(f) show the optimal path with α = 85◦ and
Merge Algorithm 2.

72

(a) (b) (c)

(d) (e)

Figure B.5: The coverage tour of Environment C with a α = 60◦ computed.(a) Tour at h1
with Merge Algorithm 1. (b) Tour at h4 with Merge Algorithm 1. (c) Tour at h5 with Merge
Algorithm 1. (d) Tour at h1 with Merge Algorithm 2. (e) Tour at h5 with Merge Algorithm
2.

73

(a) (b) (c)

(d) (e) (f)

Figure B.6: The coverage tour of Environment C with a α = 85◦ computed.(a) Tour at h1
with Merge Algorithm 1. (b) Tour at h2 with Merge Algorithm 1. (c) Tour at h3 with Merge
Algorithm 1. (d) Tour at h1 with Merge Algorithm 2. (e) Tour at h2 with Merge Algorithm
2. (f) Tour at h4 with Merge Algorithm 2.

Bibliography

[1] Ercan U Acar, Howie Choset, Alfred A Rizzi, Prasad N Atkar, and Douglas
Hull. Morse decompositions for coverage tasks. The International Journal of
Robotics Research, 21(4):331–344, 2002.

[2] Francesco Amigoni and Alessandro Riva. Path planning for ground covering
with an uav moving at discrete heights. In International Joint Conference
on Artificial Intelligence – European Conference on Artificial Intelligence /
International Conference on Machine Learning / International Conference
on Autonomous Agents and Multiagent Systems. Federated AI for Robotics
Workshop (FAIR), 2018.

[3] Muhammad Asif Arain, Marco Trincavelli, Marcello Cirillo, Erik Schaf-
fernicht, and Achim J Lilienthal. Global coverage measurement planning
strategies for mobile robots equipped with a remote gas sensor. Sensors,
15(3):6845–6871, 2015.

[4] Antonio Barrientos, Julian Colorado, Jaime del Cerro, Alexander Martinez,
Claudio Rossi, David Sanz, and João Valente. Aerial remote sensing in agri-
culture: A practical approach to area coverage and path planning for fleets
of mini aerial robots. Journal of Field Robotics, 28(5):667–689, 2011.

[5] Nicola Basilico and Stefano Carpin. Deploying teams of heterogeneous uavs
in cooperative two-level surveillance missions. In Proceedings of the 2015
IEEE International Conference on Intelligent Robots and Systems (IROS),
pages 610–615. IEEE, 2015.

[6] Andreas Bircher, Kostas Alexis, Michael Burri, Philipp Oettershagen,
Sammy Omari, Thomas Mantel, and Roland Siegwart. Structural inspec-
tion path planning via iterative viewpoint resampling with application to
aerial robotics. In Proocedings of the 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 6423–6430. IEEE, 2015.

[7] Bovisa campus Politecnico di Milano. Environment B. https://goo.gl/ztFzUj,
2018.

74

BIBLIOGRAPHY 75

[8] John F Canny and Ming C Lin. An opportunistic global path planner. Al-
gorithmica, 10(2-4):102–120, 1993.

[9] Peng Cheng, James Keller, and Vijay Kumar. Time-optimal uav trajectory
planning for 3d urban structure coverage. In Proceedings of the 2008 IEEE
International Conference on Intelligent Robots and Systems (IROS), pages
2750–2757. IEEE, 2008.

[10] Howie Choset and Philippe Pignon. Coverage path planning: The
boustrophedon decomposition. In Proceedings of the 1997 International Con-
ference on Field and Service Robotics, pages 3–91, 1997.

[11] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

[12] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-angle
path planning on grids. Journal of Artificial Intelligence Research, 39:533–
579, 2010.

[13] Tim Danner and Lydia E Kavraki. Randomized planning for short inspection
paths. In Proceedings of the 2000 IEEE International Conference on Robotics
and Automation (ICRA), volume 2, pages 971–976. IEEE, 2000.

[14] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-
scale travelling-salesman problem. Journal of the operations research society
of America, 2(4):393–410, 1954.

[15] Brendan Englot and Franz Hover. Planning complex inspection tasks using
redundant roadmaps. In Proceedings of the 17th annual ACM symposium on
User interface software and technology, pages 232–240. ACM, 2011.

[16] Brendan Englot and Franz S Hover. Sampling-based coverage path planning
for inspection of complex structures. In Proceedings of the 22nd International
Conference Automated Planning and Scheduling, pages 29–37, 2012.

[17] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive
search procedures. Journal of global optimization, 6(2):109–133, 1995.

[18] Yoav Gabriely and Elon Rimon. Spiral-stc: An on-line coverage algorithm
of grid environments by a mobile robot. In Proceedings of the 2002 IEEE
International Conference on Robotics and Automation (ICRA), volume 1,
pages 954–960. IEEE, 2002.

BIBLIOGRAPHY 76

[19] Enric Galceran, Ricard Campos, Narcıs Palomeras, David Ribas, Marc Car-
reras, and Pere Ridao. Coverage path planning with real-time replanning
and surface reconstruction for inspection of three-dimensional underwater
structures using autonomous underwater vehicles. Journal of Field Robotics,
32(7):952–983, 2015.

[20] Enric Galceran and Marc Carreras. Efficient seabed coverage path planning
for asvs and auvs. In Proceedings of the 2012 IEEE International Conference
on Intelligent Robots and Systems (IROS), pages 88–93. IEEE, 2012.

[21] Greta Ghiotti. Planning paths for covering environments with uavs moving at
discrete heights. Master’s thesis, Politecnico di Milano, Scuola di Ingegneria
Industriale e dell’Informazione – Dipartimento di Elettronica, Informazione
e Bioingegneria, 2018.

[22] Héctor González-Banos. A randomized art-gallery algorithm for sensor place-
ment. In Proceedings of the seventeenth annual symposium on Computational
geometry, pages 232–240. ACM, 2001.

[23] Héctor González-Banos and Jean-Claude Latombe. Planning robot motions
for range-image acquisition and automatic 3d model construction. AAAI Fall
Symposium, 1998.

[24] Gurobi. Gurobi reference manual. https://goo.gl/zRxUfv, 2018.

[25] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[26] Susan Hert, Sanjay Tiwari, and Vladimir Lumelsky. A terrain-covering al-
gorithm for an auv. In Junku Yuh, Tamaki Ura, and George A Bekey, editors,
Underwater Robots, pages 17–45. Springer, 1996.

[27] Ray Jarvis. Distance transform based path planning for robot navigation.
In Yuan-Fang Zheng, editor, Recent Trends in Mobile Robots, pages 3–31.
World Scientific, 1993.

[28] D Lee and Arthurk Lin. Computational complexity of art gallery problems.
IEEE Transactions on Information Theory, 32(2):276–282, 1986.

[29] Tae-Seok Lee, Jeong-Sik Choi, Jeong-Hee Lee, and Beom-Hee Lee. 3-d terrain
covering and map building algorithm for an auv. In 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 4420–4425. IEEE,
2009.

BIBLIOGRAPHY 77

[30] Ivan Maza and Anibal Ollero. Multiple uav cooperative searching opera-
tion using polygon area decomposition and efficient coverage algorithms.
In Rachid Alami, Raja Chatila, and Hajime Asama, editors, Distributed
Autonomous Robotic Systems 6, pages 221–230. Springer, 2007.

[31] L H Nam, Loulin Huang, X J Li, and Jianfeng Xu. An approach for cover-
age path planning for uavs. In 2016 IEEE 14th International Workshop on
Advanced Motion Control (AMC), pages 411–416. IEEE, 2016.

[32] Mccormick Northwestern. Environment B. https://goo.gl/XvcBcq, 2018.

[33] Patrick A Plonski and Volkan Isler. Approximation algorithms for tours of
height-varying view cones. The International Journal of Robotics Research,
38(2–3):224–235, 2019.

[34] Ioannis Rekleitis, Ai Peng New, Edward Samuel Rankin, and Howie Choset.
Efficient boustrophedon multi-robot coverage: an algorithmic approach. An-
nals of Mathematics and Artificial Intelligence, 52(2-4):109–142, 2008.

[35] Alessandro Riva and Francesco Amigoni. A grasp metaheuristic for the cov-
erage of grid environments with limited-footprint tools. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems, pages
484–491. International Foundation for Autonomous Agents and Multiagent
Systems, 2017.

[36] Seyed Abbas Sadat, Jens Wawerla, and Richard VAughan. Fractal traject-
ories for online non-uniform aerial coverage. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 2971–2976. IEEE,
2015.

[37] McKenna Mout Site. Environment A. https://goo.gl/T1bqH4, 2018.

[38] Petr Slavık. A tight analysis of the greedy algorithm for set cover. Journal
of Algorithms, 25(2):237–254, 1997.

[39] Yoichi Tomioka, Atsushi Takara, and Hitoshi Kitazawa. Generation of an
optimum patrol course for mobile surveillance camera. IEEE Transactions
on Circuits and Systems for Video Technology, 22(2):216–224, 2012.

[40] João Valente, Jaime Del Cerro, Antonio Barrientos, and David Sanz. Aerial
coverage optimization in precision agriculture management: A musical har-
mony inspired approach. Computers and electronics in agriculture, 99:153–
159, 2013.

BIBLIOGRAPHY 78

[41] João Valente, David Sanz, Jaime Del Cerro, Antonio Barrientos, and
Miguel Ángel de Frutos. Near-optimal coverage trajectories for image mosa-
icing using a mini quad-rotor over irregular-shaped fields. Precision agricul-
ture, 14(1):115–132, 2013.

[42] Anqi Xu, Chatavut Viriyasuthee, and Ioannis Rekleitis. Optimal complete
terrain coverage using an unmanned aerial vehicle. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation (ICRA), pages
2513–2519. IEEE, 2011.

[43] Simon X Yang and Chaomin Luo. A neural network approach to complete
coverage path planning. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), 34(1):718–724, 2004.

[44] Alexander Zelinsky, Ray A Jarvis, JC Byrne, and Shinichi Yuta. Planning
paths of complete coverage of an unstructured environment by a mobile robot.
In Proceedings of International Conference on Advanced Robotics, volume 13,
pages 533–538, 1993.

	Abstract
	Sommario
	Ringraziamenti
	Introduction
	Structure of the Thesis

	State of the Art
	Introduction to CPP
	2D Coverage
	3D Coverage
	Multi-UAV Coverage

	Problem Setting
	Problem Statement
	Problem Analysis

	Algorithms
	First step process methods
	Art Gallery Problem
	A* and Theta* algorithms
	Travelling Salesman Problem

	The Coverage Algorithms
	SingleHeight Algorithm
	TwoHeights Algorithm

	Second step process - Merge algorithms
	First Merge Algorithm
	Second Merge Algorithm

	Experiments
	Tools
	Environments
	Results
	Environment A
	Environment B
	Environment C
	Summary
	TSP solution

	Conclusions and future works
	Occupancy grid maps in all the three environments
	Optimal paths maps for all the environments and different FOVs
	Bibliography

