

POLITECNICO DI MILANO

School of Industrial and Information Engineering

Master of Science in Biomedical Engineering

3D CNN for classification of brain MRI

Supervisor: Pietro Cerveri

Thesis of:

Marco Passa

Student ID: 899075

Academic Year 2019-2020

2

Acknowledgements

I would like to thank Prof Cerveri, without his collaboration would not

possible make this partnership.

Then I would like to thank Maria Lusia Mandelli and Yann Cobigo for

the help with the project.

Finally I would to thanks my family (Carla, Sara, Miria, Luca, Marco,

Sesa, Elena, Cynthia e Francesca) for the inspiration and support they have

always transmitted to me.

3

Abstract

Currently there is not established automatic methodology for

identifying patients with language deficits with an AD vs. no-AD

pathology. Neurologists presently diagnose the patient population under a

manual process that is time-consuming and expensive. Convolutional

neural network has been widely used for the image processing in the

medical field in the last years for tasks that were not possible to realize with

the classical software. Research has shown that the CNN can be used in the

medical field for various tasks like image denoising, segmentation and

classification. In this study we build two CNN model: one for 3-D MRI

brain denoising and one for 3-dimensional MRI brain classification to

distinguish patients with language deficits with AD pathology versus no-

AD pathology.

We want to establish if it’s possible use this method also with a very

small data set, made by 45 brain MRI patients for each group and 45 control

subjects. In this context, a good classifier is defined as a model that can

classify at least with the 70% of accuracy on data on which it is not trained

on.

Based on a review of the literature, there are various architecture and

methods to implement efficient CNN model also with small dataset.

Regarding the architecture we used the 3-dimensional version of the

convolutional layer and of the other visual processing layer that is a new

4

introduction in the field and show very good result on 3-dimensional

images. The result with the best model created did not reach the 70% of

accuracy instead the 62%. The all project has not to be consider a fail

because the goal of the project was very difficult to reach for the small

number of data, but still we get closer and during our experiments we

understood which are the best CNN architectures for image processing of

3-dimensional images.

5

Contents

3D CNN for classification of brain MRI ... 1

Acknowledgements .. 2

Abstract .. 3

Contents ... 5

List of figures ... 8

1 Introduction ...11

1.1 Clinical context ...11

1.2 Artificial Neural Network in medicine ...13

1.3 Goals of the thesis ...14

1.4 Result ...15

2 State of art..16

2.1 Clinical context ...16

2.2 Methods for images processing and classification18

3 Method ...20

3.1 Software and hardware ..20

3.2 Dataset ...22

3.2.1 Image Acquisition ...23

3.2.2 Data augmentation and formatting ...24

3.3 Layers ..25

3.3.1 3D-Convolutional layer ..26

3.3.2 3D-Deconvolution layer ...28

3.3.3 3D-Pooling layer ...29

3.3.4 Fully connected layer ..31

6

3.3.5 Batch normalization layer ...31

3.3.6 ReLU layer ..32

3.3.7 Soft maximum layer ...32

3.3.8 Soft maximum with loss layer ..33

3.3.9 Euclidean loss layer ..33

3.3.10 Accuracy layer ..34

3.4 Test and validation protocols ..34

4 Cases ..36

4.1 Case 1: Denoising ...36

4.1.1 Dataset ..37

4.1.2 Training hyper-parameters ...38

4.1.3 Neural Network architectures ...38

4.2 Case 2: Differential diagnostic classification44

4.2.1 Dataset ..44

4.2.2 Training hyper-parameters ...44

4.2.3 Network architecture ..44

5 Result ...53

5.1 Case 1: Denoising ...53

5.2 Case 2: Differential diagnostic classification63

5.2.1 Test phase ...71

6 Discussion and conclusion ..73

6.1 Main findings ..73

6.2 Innovative contributions and relevant aspects of the implemented

methods 75

6.3 Limits and possible improvements ...76

7

6.4 Conclusion...77

7 Appendix ...78

7.1 Artificial Neural Networks..78

7.2 Activation functions and Forward Propagation82

7.3 Training Neural Networks ..83

7.4 Cost Functions ...84

7.4.1 Mean square error ...85

7.4.2 Cross-entropy ..85

7.4.3 Soft-maximum ..86

7.5 Optimization ..87

7.5.1 Gradient Descent ..87

7.5.2 Stochastic Gradient Descend ..89

7.5.3 Momentum ..89

7.5.4 AdaGrad ..90

7.5.5 AdaDelta ...91

7.5.6 Adam ...93

7.6 Back propagation ..95

References ..98

8

List of figures

Figure 1: Example of PPA patient diagnosed as nfvPPA MRI16

Figure 2: Example of PPA patient diagnosed as lvPPA MRI17

Figure 3: Example of healthy subject MRI ..17

Figure 4: Example of MRI without pre-processing ...23

Figure 5: Example of MRI after cropping ...24

Figure 6: Example of MRI after cropping and rotation25

Figure 7: Graphic representation of 3D-convolution layer28

Figure 8: Graphic representation of the differences between convolution

and deconvolution layers ...29

Figure 9: Graphic representation of Max pooling layer130

Figure 10: Graphic representation of Fully connected layer31

Figure 11: Graphic representation of ReLU function ..32

Figure 12: Graphic representation of SoftMax function33

Figure 13: Example of MRI used as input ...37

Figure 14: Example of MRI used as target ..37

Figure 15: Scheme of the model 1 of denoising case ..39

Figure 16: Scheme of the model 2 of denoising case ..40

Figure 17: Scheme of the model 3 of denoising case ..41

Figure 18: Scheme of the model 4 of denoising case ..42

Figure 19: Scheme of the model 5 of denoising case ..43

Figure 20: Scheme of the model 1 of classification case46

Figure 21: Scheme of the model 2 of classification case48

Figure 22: Scheme of the model 3 of classification case49

9

Figure 23: Scheme of the model 4 of classification case51

Figure 24: Scheme of the model 5 of classification case52

Figure 25: Loss function during the training model 153

Figure 26: Image generated by the network model 1 ..54

Figure 27: Histogram representing the error of the input(blue) and the

output(green) respect the target model 1 ...54

Figure 28: Loss function during the training model 255

Figure 29: Image generated by the network model 2 ..56

Figure 30: Histogram representing the error of the input(blue) and the

output(green) respect the target model 2 ...56

Figure 31: Loss function during the training model 357

Figure 32: Image generated by the network model 3 ..58

Figure 33: Histogram representing the error of the input(blue) and the

output(green) respect the target model 3 ...58

Figure 34: Loss function during the training model 459

Figure 35: Image generated by the network model 4 ..60

Figure 36: Histogram representing the error of the input(blue) and the

output(green) respect the target model 4 ...60

Figure 37: Loss function during the training model 561

Figure 38: Image generated by the network model 5 ..62

Figure 39: Histogram representing the error of the input(blue) and the

output(green) respect the target model 5 ...63

Figure 40: Loss function during the training model 164

Figure 41: Accuracy during the training model 1 ..64

Figure 42: Loss function during the training model 265

10

Figure 43: Accuracy during the training model 2 ..66

Figure 44: Loss function during the training model 367

Figure 45: Accuracy during the training model 3 ..68

Figure 46: Loss function during the training model 468

Figure 47: Accuracy during the training model 4 ..69

Figure 48: Loss function during the training model 570

Figure 49: Accuracy during the training model 5 ..71

Figure 50: Accuracy on the test set every 2000 iterations model 572

Figure 51: Table of result of classification accuracy ...73

Figure 52: Main Processing Unit ...79

Figure 53: Example of multilayer feed-forward network implementing two

hidden layers ..81

11

1 Introduction

The majority of brain diseases diagnosis are still based on the evaluation

of a doctor and still are not presents solid software that can automatize the

process. We want to implement a software that is able to recognize and

classify two different cohort of patient with primary progressive aphasia the

non-fluent (nfvPPA) and the logopedic variant (lvPPA) from the 3-

dimension brain MRI image of the subject. To do this we chose to use a

machine learning technique, artificial neural networks. In the present years

these methods are been used with success in a lot of areas, also in the

medical field area. In specific we are going to implement a convolutional

neural network, that is a specific ANN specialized for image processing,

that process the data directly in 3-dimension, that result from the state of art

more efficient on 3-dimension images. The most common problem of the

implementation of ANN in the medical field is the missing of big dataset.

To solve this problem, we are going to experiment different network and

different pre-processing technique for data augmentation till reach the best

model for the task.

1.1 Clinical context

Primary Progressive Aphasia (PPA) is a clinically and pathologically

heterogeneous neurological condition characterized by progressive and

selective language and speech impairment. International guidelines were

able to establish a classification of the main variants [1]. The guidelines use

12

all the knowledge accumulated since the last 20 years based on language

dysfunction, brain atrophy and underlying pathology. In particular, two of

these variants are very difficult to distinguish: the non-fluent (nfvPPA) and

the logopedic variant (lvPPA). The nfvPPA is characterized by grammatical

errors in sentence production, along with motor speech-based effortful and

halting speech production and phonetic-motoric errors of phoneme

distortions [2], damaged in the left inferior frontal gyrus, premotor cortex,

supplementary motor cortex and temporal brain regions, and it is usually

caused by fronto-temporal lobar degeneration (FTLD), mainly tau [3]

(including Pick disease, corticobasal degeneration, progressive

supranuclear palsy). The lvPPA is characterized by short-term memory

deficits for sentence repetition, phonological errors of speech sound

substitution, damaged in the left parietal and temporal brain regions, and it

is usually caused Alzheimer disease pathology (amyloid-Beta plaque

deposition) [4] [5] [6].

Up to now, in-vivo amyloid brain imaging is available through the

fluorinated amyloid positron emission tomography (PET). Instead, no in-

vivo imaging techniques are available to detect tau inclusions alike for

FTLD.

Only pathological reports represent the gold standard to define the

underlying pathology these disorders. Moreover, PET scanning is an

expensive technique and often not available in routine practice. Therefore,

in the clinical routine, these patients are required to go through an extensive

speech and language battery requiring an huge effort from an equip of

specialized professional (neurologist, behavioral neurologist, speech

13

language pathologist, neuroradiologist). At the Memory and Aging Center

of the University California San Francisco (UCSF), it is available the best

characterized cohort of Primary Progressive Aphasia with 20 years of

specific knowledge of this disease. By taking advantage of this cohort, an

automated classifier that learns from this cohort and predicts the underlying

pathology (AD or no AD), it would be of extremely impact in the clinical

contest. The main reason why it is important to predict the underlying

pathology is that therapeutic interventions target specific aggregates

characteristic of the pathology underlying the disease.

1.2 Artificial Neural Network in medicine

Artificial Neural Networks (ANN) offer a powerful set of tools to

analyze clinical data over a vast range of medical applications.

The most common applications are prediction, differential diagnostic

and segmentation task. For example, in a classification problem, we want

to predict in which class a patient would fit after the neural network has

been trained on specific clinical features.

Medical classification can be problematic as it is often based on human

medical judgment. The use of neural network (ANN) in the medical fields

have exploded in the past few years. Like in the other fields principally

because the increased number of data and the dimension of data and for the

introduction of GPU that make possible analyze those big data [7].

The most common problem in the medical field though are the

heterogeneity of the data and the lack of copious data in respect to the other

14

fields [8]. The first problem can be solved by choosing a heterogenous

training set and for the second there is some data augmentation techniques

like rotating the images to generate new data [9].

1.3 Goals of the thesis

The cases of this project are 2:

• Denoising;

• Differential diagnostic classification.

The first case consists in creating a machine learning model that is able

to take a brain scan MRI and produce the same 3-dimensional image as

output but with a reduced quantity of noise. The second case is the creation

of a machine learning based model that can classify the condition of a

patient in 3 class:

• Pib positive;

• Pib negative;

• Control.

The classification is based on the MRI brain image of the patient.

15

1.4 Result

The result obtained shows that with the small data set of images that

was present at this point in the UCSF database is not enough to use machine

learning technique. The model is able to recognize the difference between

the 3 different class, but the number of data is not enough to generalize the

model to the hole population and to classify with good accuracy also data

non present in the training set.

For having good result in term of classification the number of data has

to grow at least of a factor of 10, before this quantity of data will be

accessible the machine learning technique are not efficient.

16

2 State of art

In this chapter I am going to introduce first how is form now diagnosed

and make the classification that we want to automatize and then introduce

the other project that has good result in biomedical image processing

generally using artificial neural network technique.

2.1 Clinical context

From the clinical point of view, the diagnosis of Alzheimer disease and

his form is diagnosed manually by the doctor. The doctor bases his

diagnosis on principally the MRI images of the brain.

For this study, we identify 2 cohorts of patients that were diagnosed as

nfvPPA or lvPPA by the specialized equip, had a 3D T1 structural brain

image, and underwent to a PET scans or had a pathological report [10].

• Cohort 1: 45 PPA patients diagnosed as nfvPPA, with a structural

T1, a negative amyloid PET scan or FTLD as pathology;

Figure 1: Example of PPA patient diagnosed as nfvPPA MRI

17

Cohort 2: 45 PPA patients diagnosed as lvPPA, with a structural T1

positive amyloid PET scan or AD pathology;

Figure 2: Example of PPA patient diagnosed as lvPPA MRI

Cohort 3: 45 Healthy subjects matched to the patients for age and

gender, with a structural T1, and negative for AV-45 amyloid-PET.

Figure 3: Example of healthy subject MRI

18

The cohort 1, nfvPPA patients, are identified by a degeneration of grey

matter in the right temporal lobe (see fig. 1) instead the cohort 2, lvPPA

patients, are identified by degeneration of gray matter in the right parietal

lobe (see fig. 2). The control subjects, cohort 3, do not present gray matter

degeneration in specific region of the brain (see fig. 3) [11] [12].

2.2 Methods for images processing and

classification

The artificial neural networks are becoming very used in the medical

image field. The main tasks for which they ANNs used are: image

denoising, image segmentation, image classification.

This machine learning technique is better respect other ones like super

vector machine because they do not need long preprocessing technique and

has better performance on computational efficiency and accuracy of the

result [13].

The bigger disadvantage of the ANNs respect the other machine

learning techniques is that they need a bigger number of data to generate a

model that can works correctly also with new data non present in the data

set [14].

In this project we are going to use 3D visual layers instead of the

classical 2D visual layers.

The better performance of the 3D visual layers respect the form in 2D

is already proved on task like:

• 3D-MRI segmentation [15]

19

• 3D-MRI denoising

• 3D-MRI classification [16]

Respect this case the difference in our project is that we have a smaller

dataset that is limited to 30 images for three class for the classification case

and 80 pair of MRI images and his denoised correspondence for the

denoising case.

Based on the state of art, for the denoising case the number of images

is sufficient to generate the model. For the classification case we did not

find in the literature papers that use that number of image but only at least

10 times more.

The most used network for the denoising task is the autoencoder for the

state of art, it produces good result also on 3 dimension image [17].

20

3 Method

In this part I explain our choose in term of software and hardware used,

pre-processing and data formatting for the training, the layers used in ours

model and the validation protocols.

3.1 Software and hardware

Along deep learning success in two dimensional image classification

[18], and several other image processing, a lot of frameworks appeared in

the machine learning landscape (TensorFlow (https://

www.tensorflow.org), PyTorch (https://pytorch.org), Caffe

(https://caffe.berkeleyvision.org/)).

We selected Caffe (C++) and more specifically 3D-Caffe.

The former is developed the Berkeley Artificial Intelligence Research

(BAIR) Laboratory UC Berkeley, the later is an three dimensional

extension of Caffe library dedicated to medical images.

The extension consists on adding a dimension the matrix on which are

made the calculation from 4 to 5.

In 3D-Caffe, the blob dimensions are the space 3 dimensions

representing the image, one dimension for the feature created by the

convolution and one dimension for the batch-based learning strategy.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://pytorch.org/
https://caffe.berkeleyvision.org/

21

Caffe and 3D-Caffe require for input files:

• Solver.prototxt: the file defines the type of optimizer, all the

hyper-parameters of the training, the saved parameters and the

file name of the network that will be used for the training;

• List.txt: it contains all the path for the files used for the training;

• Train.prototxt: this file contains the name of the file list of the

training dataset and the architecture of the training network;

• Deploy.prototxt: this file contains the architecture of the network

used for the testing phase. It changes from the training net only

for the elimination of the cost function layer.

Based on the large quantity of parameters to optimize and the size of

the input, most of those libraries, including Caffe, offer graphics processing

unit (GPU) processing capability support.

GPUs allowed deep learning field to grow faster by increasing the speed

of training compared to CPU [19] [20].

The GPU used is a Nvidia Geforce GTX 1080 with 12 Gb of RAM

(https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-

1080/).

Another feature proposed by deep learning frameworks is the

Hierarchical Data Format (HDF5). HDF5 is a versatile data model that can

represent complex data objects and a wide variety of metadata.

This archiving system is well suited to support multiple image format.

A MATLAB API for medical images was proposed by 3D-Caffe.

https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/

22

A single HDF5 file contains two folder in which there are the input files

and the output files saved and compressed.

In the case of the classification the output image is substituted by a

number from 0 to 2 representing the class of the image (0 = Control, 1 =

Pib Neg, 2 = Pib Pos).

3.2 Dataset

Participants of this study were recruited and assessed at the UCSF

Memory and Aging Center (MAC).

Diagnosis for these studies was based on a multidisciplinary evaluation

incorporating neurological, neuropsychological, and nursing assessment by

following the international guidelines.

CNs data were obtained from a cohort of subjects recruited at the MAC

via advertisements and community events. CNs underwent the same

evaluation as patients and were required to have no clinically significant

cognitive or behavioral complaints, performance within one standard

deviation of normal on all cognitive tasks, and to have brought a

knowledgeable informant to verify the absence of clinically significant

cognitive or behavioral problems.

CNs were excluded if they had a history of significant mood disorders,

clinically significant alcohol or drug use, significant vascular disease,

visual problems that would impair test performance, other neurological

conditions, and self-reported deficits in cognition.

23

For this study, we identify two cohorts of patients that were diagnosed

as nfvPPA or lvPPA by the specialized equip, had a 3D T1 structural brain

image, and underwent to a PET scans or had a pathological report.

3.2.1 Image Acquisition

All research was performed in accordance with the Code of Ethics of

the World Medical Association.

All subjects provided informed consent, and the clinical and imaging

protocols were approved by the UCSF Committee on Human Research.

All participants underwent whole-brain imaging on a Siemens TIM Trio

3 Tesla MRI scanner with a 12-channel head coil.

T1-weighted images were acquired with the Magnetization Prepared

Rapid Gradient Echo (MP-RAGE) sequences (240 x 256 matrix; FOV =

256 mm; 160 slices; voxel size = 1.0 x 1.0 x 1.2 mm3; TR = 2300 ms; TE =

2.98 ms; flip angle = 9°).

Figure 4: Example of MRI without pre-processing

24

3.2.2 Data augmentation and formatting

The data augmentation consists in two transformations. The first

transformation was a cropping formatting of the images with the

dimensions 192 x 192 x 180 voxels along the three dimensions.

This last transformation cut out the background of the images

(background being everything except the brain of the subject).

Figure 5: Example of MRI after cropping

Then new images were generated by applying a random rotation,

between ∓9° along each Euclidian direction, on the original set of images.

A ratio of three new images per original image was applied. Both

transformations increase the dimension of the input dataset and reduce the

memory foot print per image. For this task, I developed an application

programming interface (API), based on Insight Toolkit (https://itk.org)

libraries, rotating, cropping the 3D image, and saving the files in HDF5

format.

https://itk.org/

25

Figure 6: Example of MRI after cropping and rotation

3.3 Layers

There are different layers with different architectures based on the task

that they have to perform.

The simplest layer is the fully connected layer, in which all the inputs

are connected to the neurons of the layer and also all the output. The

problem of this layer in image processing is that the number of parameters

become too big.

To solve this problem are used more specialized layers, which

architecture is already modeled for the task. This type of layers is the

convolutional layer, the deconvolutional layer and the pooling layer.

Usually are used in their 2 dimension version on both 2 dimension and 3

dimension image, in this project we will use their 3 dimension version. The

advantage respects the 2D convolution is that the 3D convolution can

process 3D data without any loss of information [21].

26

In the few last years it was used for segmentation task in the biomedical

field [22].

One network very used for biomedical segmentation in his 2D version,

but usable also in 3D version is the U-Net [23]. It consists in a convolution

path to create and analyze more features, plus a deconvolution path to take

back the image at the original dimension.

3.3.1 3D-Convolutional layer

Another important introduction made by LeCun was the convolutional

layer that, inspired by the human neural network of vision, is the basis for

image classification and processing [24].

In an image, nearby voxels can influence each other thus it is important

to extract this information.

The convolutional layers allow this with the use of a filter. In this case,

the filter is a kernel of a specific size (for example 3x3 or 5x5) that moves

across the image. For each point on the image, a value is calculated based

on the filter using a convolution operation.

The advantage of this process is that it is possible to reduce the

parameters across the network whereas keeping the information of nearby

voxels.

After the filters have passed over the image, a feature map is generated

for each filter. These are then taken through an activation function, which

decides whether a certain feature is present at a given location in the image.

27

The parameters that can be chosen in Caffe for the 3-dimension

convolution layer are the kernel in each size, the stride, the padding, the

number of outputs and the activation function of the kernel.

As there is a 3-dimension convolution layer, there are all the others

visual layer in their 3-dimension version like the deconvolution and the

pooling layers.

All these layers work like their 2-dimension version on the adding

dimension.

The deconvolution layer is used in networks like auto encoder network

and U-net. It is used to get back the image to the original dimension in tasks

like denoising or segmentation, when the output have the same dimension

of the input [25] [26].

It works in the opposite way of the convolution layer, generating a

bigger image respect the input image of the layer. The deconvolution layer

needs 4 parameters:

• Kernel dimension: The dimension of the kernel that will filter

the image;

• Stride: How many pixels is moved the kernel during the filtering;

• Pad: Number of pixels added to the image for padding purpose;

• Number of outputs: Number of features generated by the

deconvolution layer. (https://towardsdatascience. com/a-

comprehensive-introduction-to-different-types-of-convolutions-

in-deep-learning-669281e58215)

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

28

Figure 7: Graphic representation of 3D-convolution layer

3.3.2 3D-Deconvolution layer

The 3D-deconvolution layer works in the opposite way of the

convolutional layer. It takes the same parameters as the convolutional layer:

• Kernel dimension;

• Stride;

• Pad;

• Number of outputs.

The difference respect to the convolutional layer is that this type of layer

augments the dimension of the image. The stride number represent how

much the image is going to be augmented during the processing.

29

The convolutional layer is used in denoising or segmentation task to get

back the image to the original dimensions after reducing it in small features

by the convolutional layers [27]. (https://towardsdatascience. com/review-

deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e)

Figure 8: Graphic representation of the differences between convolution and deconvolution

layers

3.3.3 3D-Pooling layer

The output features maps can be sensitive to the location of the features

in the input. To overcome this problem, pooling layers have been

introduced. Pooling layers select specific values on the features maps and

pass through the subsequent layers.

This has the effect of making the resulting down-sampled feature maps

more robust to changes in the position of the feature in the image, referred

to by the technical phrase “local translation in-variance”.

Pooling layers provide an approach to down-sampling feature maps by

summarizing the presence of features in patches of the feature map. Two

https://towardsdatascience.com/review-deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e
https://towardsdatascience.com/review-deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e
https://towardsdatascience.com/review-deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e

30

common pooling methods are average pooling and max pooling that

summarize the average presence of a feature and the most activated

presence of a feature respectively.

The 3-D pooling layer is the 3 dimensional version of the normal

pooling. The pooling is a particular version of the convolution layer where

the output of the kernel is the pixel with the higher value. This layer needs

4 parameters:

• Kernel dimension: The dimension of the kernel that will filter the

image;

• Stride: How many pixels is moved the kernel during the filtering;

• Pad: Number of pixels added to the image for padding purpose;

• Number of outputs: Number of features generated by the

deconvolution layer. (https://principlesofdeeplearning.

com/index.php/2018/08/27/is-pooling-dead-in-convolutional-

networks/)

Figure 9: Graphic representation of Max pooling layer1

https://principlesofdeeplearning.com/index.php/2018/08/27/is-pooling-dead-in-convolutional-networks/
https://principlesofdeeplearning.com/index.php/2018/08/27/is-pooling-dead-in-convolutional-networks/
https://principlesofdeeplearning.com/index.php/2018/08/27/is-pooling-dead-in-convolutional-networks/

31

3.3.4 Fully connected layer

The fully connected layer connects every neuron of the previous layer

with a vector of neurons long has the number of neuron of the layer before.

It is use for classification task before the loss layer. (https:

//www.xenonstack.com/blog/artificial-neural-network-applications/)

Figure 10: Graphic representation of Fully connected layer

3.3.5 Batch normalization layer

Batch normalization layer normalizes the output of a previous

activation layer by subtracting the batch mean and dividing by the batch

https://www.xenonstack.com/blog/artificial-neural-network-applications/
https://www.xenonstack.com/blog/artificial-neural-network-applications/

32

standard deviation. This strategy make the back-propagation more stable

and more efficient [28].

3.3.6 ReLU layer

The ReLU layer is used in both training and test phase. It is usually used

after the convolution or the deconvolution layer to process better no linear

features.

Figure 11: Graphic representation of ReLU function

3.3.7 Soft maximum layer

The soft maximum layer is used during the test phase. The soft

maximum function is often used in classification task as the last layer

because it generates a values of output that always are equal to 1 if are all

added.

33

Figure 12: Graphic representation of SoftMax function

3.3.8 Soft maximum with loss layer

The soft maximum with loss layer is used during the training phase.

This layer that calculates for each iteration the loss of the output of the

network respect the target and back propagate it to the layer before. It also

writes the value in a text file.

The soft maximum with loss layer produce output that are between 0

and 1 and also for this reason is often used when the output of the network

is the probability to be of a certain class.

3.3.9 Euclidean loss layer

The Euclidean loss layer takes as input the target of the training and the

output generated by the network, compute the loss with the MSE method

34

and back-propagate it to the previous layer. It also writes the value in a text

le.

3.3.10 Accuracy layer

The accuracy layer is used during the training. It compares for every

iteration the output of the network with the target, calculates the accuracy

and writes it in a text file.

3.4 Test and validation protocols

To validate the result of the project we use the cross-validation test [29].

For the denoising case we used 80 images for the training set and 5

images for the test validation set.

The images were randomly chosen and we repeated the training and the

test phase three times with 3 different dataset.

The results are evaluated with a histogram in which is shown the error

of the output image of the network respect to the target compared to the

error between the input image and the target.

For the denoising case we use a dataset of 135 MRI brain images, 45

for each class.

We perform a cross-validation test also on this dataset: we dived

randomly the data set in 90 images for the training and 45 images for the

testing, then we train the network and test the accuracy on the test set. We

repeated the experiment three times.

35

The accuracy of the classification is calculated with the classical

accuracy index: we take the probability output of the network for right class

of the image for every image of the test set, we summed them all together

and then we calculated the mean. The accuracy on the test set is calculated

for every 2000 iterations and shown in a graph and it is calculated as the

mean of the ratio of number of correct predictions to the total number of

input samples.

36

4 Cases

The goal of our study is two folds:

• Denoising;

• Differential diagnostic classification.

Even though the ultimate goal would be the later, it was a necessary

step to go through the former goal in purpose to really understand the

impact of different strategies of layer combination to build a safe

classification algorithm.

4.1 Case 1: Denoising

The implementation of the Denoising neural network follows the goal

to create a well train image filtering capable to reach the results of an

adaptive non-local means denoising process with spatially varying noise

levels [30].

An adaptive local mean filter does not make any assumption about the

noise distribution across the image, making it a perfect candidate for

medical images.

The drawback of this method is the processing takes a long time and are

a heavy step in image processing pipelines.

In this section we are going to show that a well designed neural network

can reach the level of an adaptive non-local filter using a weak time-stamp.

37

4.1.1 Dataset

For the denoising case we used 3D structural FLAIR images from 80

subjects, as target the denoised images.

Data augmentation consists of rotation of 9 degrees. The total number

of images used as input was 320. Then the images are cropped and saved in

HDF5 format as indicate preprocessing paragraph.

Figure 13: Example of MRI used as input

Figure 14: Example of MRI used as target

38

4.1.2 Training hyper-parameters

In this study we used the Adam optimizer (see Appendix for a detailed

description).

Adam optimizer requires 4 hyper-parameters:

• Learning rate

• Beta1

• Beta2

• X (Epsilon)

For the denoising case we used the values of the hyper-parameters

suggested by the original paper of Adam [31].

4.1.3 Neural Network architectures

For the denoising study case we start to build the simplest neural

architecture (autoencoder) [32].

As loss function we choose the mean square error, also called Euclidian

loss function.

The network architecture consists of: one convolution and one

deconvolution with kernel of n x n x n voxels.

Where n is the number of voxels that will define the size of the kernel.

For example, If n = 1, the output will have the same dimension as the input

image.

Additional tests were performed using an additional layer ReLU.

39

The experiment done are the following:

• Model 1 : 1 convolution and 1 deconvolution with kernel’s size

of 1, stride of 1, padding of 0 and number of features generated

32. The deconvolution layer has these parameters: kernel of 1,

stride of 1, pad of 0 and number of features generated is 1, to get

back the image to his original dimension. The input layer is the

HDF5 Data layer that take the dataset of HDF5 file and generated

input and target of the network. The loss function is the Euclidean

loss (or MSE loss) that is the most used when the output are not

classes.

Figure 15: Scheme of the model 1 of denoising case

40

• Model 2: 1 convolution and 1 deconvolution with kernel of 3.

The second model that we build is identically to the first one with

the only exception that the kernel size of the convolutional and

deconvolutional layer are of 3 instead of 1. The kernel of 3 is less

computational efficient but analyzing the voxels at 3 x 3 x 3

groups has to recognize and reduce better the Gaussian noise.

Figure 16: Scheme of the model 2 of denoising case

• Model 3: 1 convolution and 1 deconvolution with kernel of 5.

This model is the same of the first 2, with the only difference that

the kernel stride is larger: 5. This larger kernel is less efficient on

the computational cost but with a larger kernel maybe is able to

reduce the noise better than the model with the kernel of 3.

41

Figure 17: Scheme of the model 3 of denoising case

• Model 4: 1 convolution and 1 deconvolution with ReLU with

kernel 3. This model is the same has the second, with the kernel

size of 3, with the introduction of ReLU layers before the

convolutional and deconvolutional layers. The motivation of the

introduction of ReLU layers in the model is that the ReLU

function is used to process better no linear features, and in the

case of the structure of the brain we are dealing with a lot

particular that are not linear at all.

42

Figure 18: Scheme of the model 4 of denoising case

• Model 5: Three convolution and deconvolution. The last model

we experiment is a more deep convolution and deconvolution

autoencoder. In this new model the parameters of every

convolution layers are: stride of 2, padding of 1, kernel size of 3

and the number of features created are 16 for the first, 32 for the

second and 64 for the third. The deconvolutional layers have

same kernel, padding and stride but the number of features

generated is the opposite: 32 for the first, 16 for the second and 1

for the last. The reason why we tried this model is that a deeper

convolution processes more features in their details and maybe

43

going deeper with the convolution and then rebuilding the same

image with a deeper deconvolution layer can generate a better

denoised image.

Figure 19: Scheme of the model 5 of denoising case

44

4.2 Case 2: Differential diagnostic classification

4.2.1 Dataset

The classification dataset consist in 120 images, 40 for each class that

are control, pib negative and pib positive.

The preprocess, if the images consist only in cropping and data

augmentation, creating new 3 rotated images from the original.

After data augmentation the hole dataset contains 480 MRI brain

images. For the training is used 3/4 of the dataset, the other part is used for

the test phase.

4.2.2 Training hyper-parameters

Also for this case we used the Adam optimizer. We start using the

hyper-parameters suggested by the paper but then we reduce the learning

rate to 0.000001 because 0.001 was to high learning rate for this task.

The batch size for this training is of 4 that is the biggest batch size

possible with the memory of the GPU.

4.2.3 Network architecture

The fundamental element to build a image classification neural network

are:

• Convolutional layers: they are the first layers that process the

image and extract the features that classify the image

45

• Fully connected layer: after the convolutional layers, a fully

connected layer is need to vectorize the image and before the

softmax layer

• Softmax layer: it is the last layer and his output are the image’s

probability to be of a certain class [33].

We try different architecture to understand which is the best for this

task.

From the denoising case we understood that the kernel of three is the

best to catch all the features of the brain so we start experiment a

convolutional neural network using that kernel size.

The architecture tested are these:

• Model 1: 4 convolution layers. The first model we try to use for

the classification task is a 4 convolution layers with one ReLU

layer, one fully connected layer and soft max with loss layer. The

4 convolutional layers has stride of 2, kernel size of 3, padding

of 1 and the number of features generated is 32, 64, and 128. The

ReLU layer is present to process better the non linear

characteristic of the brain. The fully connected layer has to

vectorize the image features generated by the convolutional

layers. This layer then connect with the softmax with loss layer

that is the one that calculate the prediction error and back

propagate it. The accuracy layer is used during the training only

46

to write in a text file the values of the accuracy of the image to

be classified in the right class by the network.

Figure 20: Scheme of the model 1 of classification case

47

• Model 2: 4 convolution layers with first layer stride of 1. The

second experiment for the classification task is the same network

as the first but with the first convolution layer that has a stride of

1 and padding of 0. This change makes the first layer analyze the

features of the brain image in the original dimension. This is less

computational efficient because increase the number of

parameters to train, but analyzing the image in the original

dimension it can also extract more features that characterize the

brain class respect reducing the dimension of the image form the

first convolution. After the 3 convolutional layers there are a

ReLU, to analyze better the non linear part of the brain, the fully

connected or inner product layer and the soft max with loss layer

as the cost function.

48

Figure 21: Scheme of the model 2 of classification case

• Model 3: 4 convolution layers and ReLU. The third experiment

consist in a network similar to the previous one but with the

introduction of ReLU layer after every convolutional layer. The

ReLU layer is used to process non linear and has the brain is

49

made only but non linear details, the introduction of the function

after every convolutional layer can improve the processing and

the result of our model. The parameters of the convolutional

layers are the same of the second network and the loss function

used is still softmax with loss.

Figure 22: Scheme of the model 3 of classification case

50

• Model 4: 4 convolution layer, ReLU and pooling. The last

experiment we try is the introducing of the pooling layer. In this

case the stride of the convolutional layers is left at 1 and the

pooling layers make the work to reduce the image of half. The

pooling layer is often used in the image processing task in a block

with first convolutional layer and ReLU. We reproduce this in

our model putting together three blocks composed by

convolutional, ReLU and pooling. After the 3 blocks there is a

fully connected or inner product layer before the soft max with

loss layer to calculate the loss and the accuracy layer to calculate

the prediction accuracy during the training.

51

Figure 23: Scheme of the model 4 of classification case

52

• Model 5: 4 convolution layer, ReLU and batch normalization. In

this experiment we introduce a batch normalization layer after

every convolutional and ReLU layer to make the training more

stable and effective.

Figure 24: Scheme of the model 5 of classification case

53

5 Result

5.1 Case 1: Denoising

For the denoising case the image are evaluated as the difference of the

output image, generated by an image non contained in the training set,

respect the target image. This error is compared with the error of the input

image respect the target image. To graphically show this result we build a

histogram the show the two errors.

On the next result part is also showed the loss function during the

training to analyze how the loss function decrease during the training.

• Model 1: 1 convolution and 1 deconvolution with kernel of 1.

Low performance, the kernel is to small and cannot improve the

gaussian noise present in the MRI images.

Figure 25: Loss function during the training model 1

The loss function shown in the previous images show that the number

of iterations needs to reduce the loss function to his minimum are only

54

around 500, but the result of the network on a test image show that the

network is only able to recreate the image as the input of the network.

Figure 26: Image generated by the network model 1

The histogram representing the error of the output image generate by

the network respect the image (green) versus the error of the input image

respect the target (blue), shows that the model is not able to reduce the noise

of the image and generate a better image.

Figure 27: Histogram representing the error of the input(blue) and the output(green) respect

the target model 1

55

• Model 2: 1 convolution and 1 deconvolution with kernel of 3.

Good result and very efficient network. The dimension of the

kernel is sufficient to reduce the white noise and the number of

parameter is not increase to much respect the one with kernel 1.

Figure 28: Loss function during the training model 2

The loss function and the output generate by this network shown better

result respect the network with kernel of 1. The loss function graph shows

that the function reaches a smaller value, the number of iterations to reach

the minimum is close to the one of the previous experiment. The output

generated by the trained network shows a better image respect the input one

in which the Gaussian noise is reduced, the quality of the output image is

still not good as the target image.

56

Figure 29: Image generated by the network model 2

The histogram shows that the output image has a smaller error

compared with the previous experiment.

Also the big part of the error become more close to the center of the

histogram that represent a small error.

Figure 30: Histogram representing the error of the input(blue) and the output(green) respect

the target model 2

57

• Model 3: 1 convolution and 1 deconvolution with kernel of 5.

Same result with kernel of 3 but the network is less efficient the

number of parameters to train are more.

Figure 31: Loss function during the training model 3

The performance of the network with the kernel of 5 is the same of the

one with kernel of 3 in term of result, instead in term of computational

performance is lower. This can be seen in the loss function graph in which

the number of iterations need to reach the minimum are bigger respect the

previous experiments, but the value reach and the outputs of the network

are the same of the experiment with the kernel of 3. The reason why this

model is less efficient in term of computational performance is that a kernel

of 5 has more parameters to t respect a kernel of 3 and it not shows better

result to justify his use.

58

Figure 32: Image generated by the network model 3

The histogram that compares the output of the target respect to the target

shows that the quality of the image generated is the same of the previous

experiment. Also from the previous image, comparing it with the one of the

experiment with kernel of three, we can see that the white noise is reduce

and the image quality is the same as the previous experiment.

Figure 33: Histogram representing the error of the input(blue) and the output(green) respect

the target model 3

59

• Model 4: 1 convolution and 1 deconvolution with ReLU with

kernel 3. After choosing the best kernel size we introduce a ReLU

layer after the convolutional and the deconvolution. The ReLU

layer improve the result of the network.

Figure 34: Loss function during the training model 4

From the next image we can see that this experiment shows the best

result in term of quality of the image generated. The introduction of the

ReLU layers helps the network to understand and reproduce smaller and

less linear features.

The graph of the loss function during the training shows that the number

of iterations too reach the minimum value is still small, around 2500

iterations. This means that our model is also computation efficient.

60

Figure 35: Image generated by the network model 4

The histogram that compares output image of the model respect to the

input shows that the error is smaller respect the other case, this means that

our output image is very close to the target one and that the Gaussian noise

is drastically reduced.

This can be notice also comparing the visual image generated by the

networks in the different experiments.

Figure 36: Histogram representing the error of the input(blue) and the output(green) respect

the target model 4

61

• Model 5: 3 convolution and 3 deconvolution. The 3 level of

convolution and deconvolution shows same result as the network

before, but the number of iterations needed is 10 times more.

Figure 37: Loss function during the training model 5

The last model that we experiment shows that it needs a bigger number

of iterations to reach his minimum.

The reason why is that this model has 3 level of convolution and each

generated more features respect the previous layer, this make the model has

an increased number of parameters to train respect to the other experiment

and so it needs at least 100’000 iterations to reach his minimum. The result

shows a image that is not good as the one of the previous experiment but

still the Gaussian noise is reduced and the image is better respect the input

one.

62

Figure 38: Image generated by the network model 5

The histogram shows that the error is bigger respect the one of the

previous experiments. The reason why is that using a small dataset we

cannot deploy a big network with a big number of parameters because is

generated an over fitting problem caused by the too high number of

parameters to fit.

63

Figure 39: Histogram representing the error of the input(blue) and the output(green) respect

the target model 5

5.2 Case 2: Differential diagnostic classification

• Model 1: 4 convolution layers. The training of the first network

experiment shows that this network is not able to classify and

recognize the differences between the 3 groups. This can be seen

in both the loss graph, in which the loss function is not stable and

decrescent, and in the accuracy one, that not reach the 70%.

64

Figure 40: Loss function during the training model 1

In both the graph we can also notice that the training is not stable and

continue to oscillate between a minimum and a maximum. The reason why

is that the architecture of this network is not compatible with the task that

we want to implement.

Figure 41: Accuracy during the training model 1

65

• Model 2: 4 convolution layers with the first of stride of 1. The

second experiment shows better result. Processing the image

with the original dimensions in the first layer the network is able

to classify and recognize the difference of the training set images.

The loss function is still not stable but is decrescent, the same for

the accuracy that reach very good value but is not stable during

the training.

Figure 42: Loss function during the training model 2

This network shows to be able to classify the image of the training set

but, using too much iterations to reach the minimum for the loss function

and the maximum for the accuracy function, there will be the overfitting

problem if we want to use the model with a new data not present in the

training set. The reason why is that we use too many times the same image

during the training to reach that number of iterations and the consequence

66

is that the model is too much trained on the training set images and is not

able to generalize to image not present in the training set.

Figure 43: Accuracy during the training model 2

• Model 3: 4 convolution layers and ReLU. Introducing the ReLU

layer after every convolution one make both the loss function and

the accuracy more stable during the training.

67

Figure 44: Loss function during the training model 3

This model shows a more stable and efficient training. The loss function

decreases stable till reach his minimum. The opposite for the accuracy

function that increase stable till reach his maximum of one. As the same of

the denoising case the introduction of the ReLU layers after every

convolutional blocks, makes the network more able to recognize the smaller

and non linear details of the MRI brain scan.

68

Figure 45: Accuracy during the training model 3

• Model 4: 4 convolution layers, ReLU and pooling. The

introduction of the pooling layer not improve the performance of

the network but it makes it worst.

Figure 46: Loss function during the training model 4

As the same of the denoising case, the introduction of the pooling layer

does not help the network to improve the result but instead makes it worst.

69

This can be notice by both loss function and accuracy graph, they are

less stable and also the values that they reach are smaller for the accuracy

and bigger for the loss function.

Figure 47: Accuracy during the training model 4

• Model 5: 4 convolution layers, ReLU and batch normalization.

The introduction of the normalization layer produces the more

stable and effective training.

70

Figure 48: Loss function during the training model 5

The introduction of the batch normalization layer produces the best

result of all experiments. The two graphs show that the values and the stable

of the two functions are superior with this network respect the other case.

The reason why is that using a patch based training, the process of

normalization of the images after every convolutional block, makes the

network more able to classify the images in the right group.

71

Figure 49: Accuracy during the training model 5

5.2.1 Test phase

The last model is been test with the cross-validation accuracy test

described in the methods section. The reason why we test the accuracy on

all the training iterations is to understand which is the best number of

iterations for the model and when over fitting problem on the test data start

to influence the model.

72

Figure 50: Accuracy on the test set every 2000 iterations model 5

The graph shows that the number of iterations to reach the maximum

accuracy on the test set are 10’000, this mean that our model is

computational efficient.

The value of accuracy reach is low 0.63, but also from the literature we

see that the number of images that we have is too small to reach better result

in term of accuracy on the test set.

After the 20’000 iterations the overfitting problem starts to affect the

model and the performance bringing it back till reach the 0.54.

The reason why is that the small number of images are used too much

times during the training and so the overfitting problem start very early to

affect the CNN during the test phase.

73

6 Discussion and conclusion

In this part I will introduce the main findings of this project and explain

the innovative contributions and relevant aspects of the implemented

methods.

Then I will tell about the limits and possible improvements for this work

and i will end the chapter with a conclusion.

6.1 Main findings

In the next picture shows the result for the classification case.

In the first column there are the model, in the second the accuracy

reached during the training and in last column shows the accuracy on the

test set.

For the first and third model the accuracy is not calculated because the

accuracy on the training set is too low to work on the test set.

Figure 51: Table of result of classification accuracy

74

The best CNN model that we created is still not able to perform a good

classification on our clinical case.

The reason why is that the number of data is too small to create a

convolutional neural network model that is then able to generalize to data

that are not present in the training set.

Also if the main goal of the thesis is not was not reached during our

experiment we understood which type of network architecture was the best

to create the most performant model.

For what concern the network architecture we discover that the best

block of layer to perform the classification task is composed by

convolutional layer, ReLU layer and batch normalization layer in series.

The architecture that performs the best result is composed by the block

previous described repeated for 4 times but with a small number of features

created.

The 4 blocks of layers perform a deep processing of the image that is

needed to recognize all the features of the brain. The few numbers of

features created is for the overfitting problem.

With a small data set the overfitting problem become more relevant.

With a low the number of features created there are less parameter to fit and

this balance in part the problem of have a small dataset regarding the over

fitting problem.

The add of the ReLU layer shows increase the efficiency of the artificial

neural network on both the denoising case and the classification case.

The reason why is that this layer produce a better processing of the non

linear features.

75

The details of the brain are all non linear structure and so the ReLU

layer improve the performance of the network.

The batch normalization layer improves also the efficiency of the

model. The reason is that all the images has different intensity caused by

different external factor and so a normalization of the batch make all the

image with the same threshold and more detectable by the other layer.

Another discover about the network is that the pooling layer, if insert in

the basilar block, do not help the model to classify better the MRI brain

scan, but produce worst result both in the classification case and in the

denoising case.

6.2 Innovative contributions and relevant aspects of

the implemented methods

The most important contribution that we bring is the best type for the

most efficiency convolutional neural network for image classification with

a small dataset of brain MRI.

The network consists in 4 blocks repeated in series, the block is

composed by:

• 3D-convolution layer;

• ReLU layer;

• Batch normalization layer.

76

To make the network effective also with a small dataset the number of

features generated by the network has to be low because in this way we

overcome the overfitting problem.

The pooling layer, if added to the principal block, produces worst result

so we suggest to do not use this layer in visual processing task instead use

a convolutional layer with the stride of two to reduce the dimension of the

image during the creation of deep features.

6.3 Limits and possible improvements

The limits of the project are that with a small dataset of 30 images for

each class is very difficult crate a model that can classify the image with an

high accuracy.

For now is not present a dataset that contains more images about the 3

class the we try to classify.

The possible improvements that I would like to try to implement is to

download the ADNI dataset that contain a more then thousand brain MRI,

but divided only in two class (Alzheimer and control), and try to see which

is the minimum number of images necessary to produce a model with a

accuracy of at least of 90% on the test set.

This experiment can show us which is the minimum number of images

that we need to build a good classifier also with the 3 classes.

Another improvements that I would like to try is to use the transfer

learning.

77

Use the information stored by the network in the first case training for

the second case.

To do that we create a model that has 2 output, in specific we add

together the most efficient model of the denoising case with the most

efficient model of the classification case.

Then we train the model on the denoising training set.

Finish the first training we make the second with our reset all the weight

and biases of the network. This technique may allow to overcame the over

fitting problem and generate a model more efficient also with the dataset

present today.

6.4 Conclusion

The model generated was not able to predict the test data with an

accuracy superior of the 70%.

The reason why is that the ANN technique need a number of data that

is not always present especially in the medical field.

We understood and reported some architecture details that make the

network more efficient also with a small number of data.

My work at UCSF is still not finish and we will try other

implementation and technique in this field of machine learning like the

transfer learning to implement a better model.

78

7 Appendix

In this part I will introduce the artificial neural network and all his

components.

The main components of neural networks are the layers, the cost

function and the back-propagation algorithm.

These concepts are before introduced in more general way and then I

start to enter in the details also with the mathematical formulas.

7.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are computational models that have

emerged as a result of a simulation of the biological nervous system to

perform a variety of tasks.

As a resemble of the biological system, ANNs acquire knowledge

through a learning process.

ANNs have been around for 50 years and basically they are a type of

machine learning used in supervised learning.

Machine learning used algorithms to extract information from data and

represent it in some type of model.

We then can use these models to infer things about other data we have

not yet modeled.

Compared to the classical machine learning, ANNs attempts to create a

network of “nodes” working in parallel as we assume the human brain

does.

79

The first neural network was introduced in 1957 by Frank Rosenblatt as

a simplified model of a neuron called the perceptron [34].

The perceptron is a linear-model binary classifier with a simple input-

output relationship. The perceptron receives multiple input signals at

multiplied by their weights 𝑊𝑖, sums them up, and feeds an activation

function g(x) that defines an output y.

During the learning phase, the perceptron changes the weights to

minimize the error until all the record inputs are correctly classified.

(https://www.simplilearn.com/what-is-perceptron-tutorial)

Figure 52: Main Processing Unit

The main limitation of the perceptron was its inability to solve nonlinear

problems. Only years later, in 1974, the first non-linear processing

capabilities of ANNs were reported and since then the interest of the

https://www.simplilearn.com/what-is-perceptron-tutorial

80

scientific community increase exponentially boosted with the increase in

computational power together with the advances in computer technology

[35].

ANNs are inspired by the biological neuron with three principal

components:

• Dendrites: input connections with other neurons;

• Cell body: the central part of the neuron when the signal is

processed;

• Axons: the output connections to other neurons.

ANNs are indeed represented as a set of nodes called neurons and

connections between them. The connections have weights and represent

their strengths.

The basic architecture of a neural network has 3 layers:

• Input layer: this layer is the interface with the environment;

• Hidden layer: this is the computational layer;

• Output layer: this is the layer where the output is stored. Different

neural network architecture can be built using multiple layers. In

particular, the use of multiple hidden layers could help in solving

complex problems. This type of architecture defined the so-called

multilayer Feed-Forward networks.

(https://www.xenonstack.com/blog/artificial-neural-network-

applications/)

https://www.xenonstack.com/blog/artificial-neural-network-applications/
https://www.xenonstack.com/blog/artificial-neural-network-applications/

81

Figure 53: Example of multilayer feed-forward network implementing two hidden layers

Each layer has one or more artificial neurons which differs by each

other for the activation function that serves to the specific purpose of the

layer.

82

7.2 Activation functions and Forward Propagation

Activation functions control the behavior of the artificial network.

Depending of the application, multiple activation functions are available.

Most of the time the activation shape follows the sigmoid profile,

simulating the ring process of neurons.

The most common functions are:

• Linear: function where the dependent variable has a linear

relationship with the independent variable;

• Logistic: function that converts independent variable of near-

infinite range into simple probabilities between 0 and 1. Its

characteristic is then to reduce values or outliers without

removing them;

• TanH: a hyperbolic trigonometric function, it transforms the

independent variable to a range between -1 and 1. Its advantage

is that can deal easily with negative number;

• SoftMax: generalization of logistic regression, it can be applied

to continuous data and can contain multiple decision boundaries.

This function is often used in a classification problem;

• Rectified linear unit (ReLu): a function that activates a node only

if the input is above a certain positive quantity. Above this

threshold, the function has a linear relationship with the

dependent variable [36].

83

7.3 Training Neural Networks

A characteristic of the neural networks is their iterative learning

process. At each step, the weights and biases associated with the inputs are

adjusted based on the correct label known in advanced (as in supervised

learning).

The biases are added to the inputs to ensure that at least a few nodes per

layer will be activated regardless of signal strength. Initially, random

weights and biases are assigned, and the output is calculated using the

activation functions in the hidden layers, the resulting output is then

compared with the desired ones. Errors are then propagated back, allowing

the system to adjust the weights and the biases, thereby allocating

significance to certain bits of information or minimizing others.

During this phase, the algorithm adjusts the weights of the network only

if the output does not match the label.

The “blame” of the error is though divided across the contributing

weights. In a feed-forward multilayer network, this can be challenging

because of the many weights connecting each input with the output.

The error is defined as the difference between the network output and

the actual output value for the training example. The key is how we

distribute the blame across the different layers of the network.

Each hidden node is responsible for a portion of error in each of the

neurons to which it has a forward connection. Each portion is divided

accordingly to the connection weight between the hidden and the output

node.

84

In each layer is summed up by the total number of neurons, and

progressively is updated for each layer.

7.4 Cost Functions

In the field of machine learning minimizing the cost function is the

central point of the game.

The cost function represents the objective of a problem. For example,

in a maximum likelihood problem, we try to estimate how much a set of

data drift from a parametric function, e.g. a polynomial function, through a

probability distribution.

The Gaussian probability distribution is used most of the time. Like

every cost, the learning process is going to try to minimize it. In the example

of the maximum likelihood, the optimization scheme will be to change the

parameters of the parametric function to fit closer the set of points.

In other words, minimize the negative logarithm of the probability

distribution in the case of a Gaussian.

In this section, I am going to present the few cost functions used

throughout this study and, in a second section, different schemes to

optimize it.

The last section will focus more in detail on how the back propagation

is integrated in these different schemes.

85

7.4.1 Mean square error

As mentioned, the cost function is the key element of the optimization.

It represents a metric of success of our problem. The most representative

cost function, in machine learning, is the mean square error function:

(1)

The mean square error measure the difference between the objective

function Ii, e.g. an image, and the engine output 𝐼𝑖̃ for the datum i. The

element i is one of n elements. The dot product ensures the concavity of the

problem, easing the convergence.

Although very simple, the mean square error cost function is a powerful

objective function and is certainly the most popular cost function across

machine learning fields. However, it does not adapt well to every type of

problems. In the following paragraphs, I am going to expose few cost

functions useful for the type of problems encountered in this study.

7.4.2 Cross-entropy

Cross-entropy loss measures the performance of a classification model

whose output is a probability value between 0 and 1. The measure is based

on the average number of bits needed to identify an event drawn between

estimated probability distribution and the true distribution.

86

The cross entropy is efficient when the number of classes are big and it

is a not symmetric function.

The formula is this:

(2)

7.4.3 Soft-maximum

Soft-max function takes an N-dimensional vector of real numbers and

transforms it into a vector of real number in range (0,1).

Instead of selecting one maximum value, it breaks the whole (1) with

maximal element getting the largest portion of the distribution, but other

smaller elements getting some of it as well. This property of soft-max

function that it outputs a probability distribution makes it suitable for

probabilistic interpretation in classification tasks.

Due to the desirable property of soft-max function outputting a

probability distribution, we use it as the final layer in neural networks.

For this we need to calculate the derivative or gradient and pass it back

to the previous layer during back-propagation.

(3)

87

7.5 Optimization

Optimizing, or minimizing, the cost function ℒ is an active field of

research.

One of the major algorithm for optimization is the gradient descent

algorithm, also known as steepest descent. However, many other algorithms

were proposed in the literature.

In this section we are going to describe the major optimization

algorithm used in deep learning, starting with the Gradient descent.

7.5.1 Gradient Descent

The gradient descent [37] is a first order minimization scheme.

Let ℒ be a parametric cost function depending of the set of d parameters

𝜔 = {𝜔1, 𝜔2, . . . , 𝜔𝑑−1}, d being the dimensionality of the problem. The

total differential of ℒ, can be written as:

(4)

Where the superscript T represents the transpose of the vector 𝑑𝜔. In

other words, a small variation of ℒ can be thought as an infinitesimal motion

in each dimension of the tangent space represented by the gradient of the

cost function ∇ℒ.

When the gradient is null, we consider being at one local extremum of

the ℒ.

88

A second order of the cost function expansion would help the analysis

of the local curvature of the function, i.e. analysis of the Hessien

components.

However, the problem would rise up to a O(d x d) algorithm, quickly

overwhelming the physical capabilities of now days hardware.

Instead, we can favor the variation of the weights, 𝜔, to follow the

tangent: 𝑑𝜔 = − 𝜂∇ℒ. In other words: 𝑑ℒ = − 𝜂(∇ℒ)𝑇∇ℒ.

The dot product is a positive value, and if the learning rate, 𝜂 , is chosen

positive, then the variation of the cost function is always decreasing.

The gradient descent, as presented, is a very efficient, versatile and

widely used algorithm. Between two iterations, (i) and (i - 1), the vector of

weights is updated the following way:

(5)

The choose of the learning rate value is central. If the learning rate is

too small, then the convergence is slaw and the chance to converge into a

local minimum is high. On the other hand, if the learning rate is too high,

the chance to go over the global minimum is high and the algorithm might

never converge.

However, the main flaws of the algorithm are the speed and the local

extrema. Several methods were developed that overcome these difficulties.

For instance, one can implement a greedy strategy to test the algorithm

through a grid of learning rate values.

89

7.5.2 Stochastic Gradient Descend

Another variant, more adequate for neural network, is the stochastic

gradient descend [38], also known as on-line strategy.

Instead of minimizing using the entire set of data, the stochastic gradient

descent updates the weights at each datum, decreasing the memory burden

caused by large amount and the size of data.

In deep learning, using a complex set of layers, this strategy can

“bottleneck” the algorithm. A midground was found using mini-batch of

data.

In the following paragraphs, I am going to outline the main strategies

that have been developed to overcome the gradient descent algorithm

limitations.

7.5.3 Momentum

The momentum method [39] was introduced in 1964 by Polyak. The

algorithm was proposed to increase the speed of the gradient descent.

(6)

(7)

90

The additional velocity term forces the update of the weights, at the

iteration (i), to stay close to the previous iteration (i - 1). The weight 𝜇,

between [0,1], regulates the importance of the previous iteration velocity,

and the term 𝜇v(𝑢) resembles to the physical momentum, explaining the

name of the method.

A weight of 𝜇 = 0.9 is usually used in optimization problem.

On the importance of initialization and momentum in deep learning

Momentum is a strategy for make Stochastic Gradient Descend more

efficient, in particular for do not be stuck in local minima.

The error on which is compute the back propagation is not calculated

on only the last interaction but also on the one before multiplied for a factor

beta (usually 0.9). This shrewdness creates a “momentum” that make the

function more stable and do not stop in the local minima.

7.5.4 AdaGrad

Adaptive Online Gradient Descent [40] introduces a different approach

to update the learning rate.

The equation (8) describes the AdaGrad algorithm.

The element 𝜎𝑗
(𝑖)

 represents the j-th element of the (i)-th iteration of the

vector 𝜎.

The vector 𝜎 is the sum of square of all the cost function gradients until

the (i)-th iteration. The goal of AdaGrad is to monotonically decrease the

learning rate using the function 𝜎.

91

(8)

One of the drawbacks of the method comes from the important weight

the function 𝜎 will apply on the learning rate after cumulating many

iterations.

Causing the search of a minimum to stall. The coefficient 𝜀 is added to

prevent the zero-machine division. The update of the weights is done the

following way:

(9)

7.5.5 AdaDelta

Adadelta [41] is also an adaptive learning rate method which improve

AdaGrad algorithm equation (8).

The algorithm is presented equation (10).

The improvement is defined in two aspects and target to lower the

aggressivity on the learning rate decrease.

The first part of the improvement reduced the cumulus of the squared

gradient of the cost function into a window, 𝜔, representing the 𝜔 past

iterations.

92

In this window, the cumulus is replaced by a running average of the

squared gradient of the cost function.

The second part of the improvement adds a weight, 𝜇, on the update of

the velocity, the same way it was introduced in the momentum method

equation (7). As in the momentum method, the weight 𝜇 = 0.99.

(10)

The weights are updated the same way as it was done in AdaGrad, as it

was done in Adadelta is an adaptive learning rate method introduced in the

2012 and it is based on AdaGrad with a little variation: it use a different

function to update the learning rate but it is still monotone decrescent and

based on the past error.

Need one hyper-parameter more respect AdaGrad: 𝛽. The introduction

of Beta prevents learning rate to decay to fast, that was the biggest problem

of AdaGrad method.

(11)

93

(12)

(13)

(14)

AdaDelta works in the same way as AdaGrad with the only exception

of the introduction of the term 𝛽 in the function 𝜎. The hyper-parameter 𝛽,

that usually is 0.999, make the learning rate decay less fast that was the

biggest problem with AdaDelta. This introduction made the new optimizer

more efficient respect the older one.

7.5.6 Adam

Adam is the newer optimizer introduced in deep learning introduced in

2015.

It uses two methods already existent: AdaDelta and Momentum. The

combination of these two methods shows the best result in term of velocity

and stability of the convergence.

This optimizer needs three hyper-parameters plus the learning rate to

run: 𝛼, 𝛽 and 𝜖

94

(15)

(16)

(17)

(18)

(19)

Adam use at the same time the Momentum and the AdaDelta method.

The momentum is represented by the function 𝛼𝑀(𝑖) and AdaDelta by

the function 𝜎.

They work exactly in the same way as the original algorithms by they

are used together to update the parameters.

The union of the two algorithms make Adam the most efficient and fast

optimizer for machine learning in neural network.

95

7.6 Back propagation

Back propagation algorithms are a family of methods used to efficiently

train artificial neural networks following a gradient descent approach that

exploits the chain rule.

The main feature of back propagation is its iterative, recursive and

efficient method for calculating the weights updates to improve the network

until it is able to perform the task for which it is being trained.

Back propagation uses the chain rule to see how much the cost function

derivatives is sensitive to every weights and biases of the network.

(20)

(21)

(22)

(23)

96

(24)

(25)

(26)

(27)

(28)

The example is the simple type of network, 4 neurons connected in

series. The goal is to decrease in most the efficient way the cost function.

The cost function is the difference between the output of the network

and the target. In this case the cost function is calculate MSE method.

One time we calculate the cost function, the parameters of the network

have to be optimized to make the cost function decrease.

97

The back propagation uses the partial derivatives of every weights and

biases of the network with respect of the cost function to see how the cost

function is sensitive to them all and base on this change it.

To calculate the derived of the first weight and biases the formula are

shown before, to calculate the second weight and biases the back

propagation uses the chain rule.

As shown in the formula before, with the chain rule is possible to use

the derivative before to calculate the chaining with the derived of the weight

before [42].

98

References

[1] Gorno-Tempini M. L., Hillis A. E. and Weintraub S. Classification of primary progressive
aphasia and its variants. Neurology, 2011.

[2] Ogar J. M., Dronkers N. F., Brambati S. M., Miller B. L. and Gorno-Tempini M. L. Progressive
nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord,
2007.

[3] Josephs K. A., Duffy J. R., Strand E. A., Whitwell J. L., Layton K. F., Parisi J. E. and Petersen
R. C. Clinicopathological and imaging correlates of progressive aphasia and apraxia of
speech. Brain, 2006.

[4] Mesulam M., Wicklund A., Johnson N., Rogalski E., Leger G. C., Rademaker A. and Bigio E.
H. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia.
Ann Neurol, 2008.

[5] Spinelli E. G., Mandelli M. L., Miller Z. A., Santos-Santos M. A., Wilson S. M., Agosta F. and
Gorno-Tempini, M. L. Typical and atypical pathology in primary progressive aphasia
variants. Ann Neurol, 2017.

[6] Santos-Santos M. A., Rabinovici G. D., Iaccarino L., Ayakta N., Tammewar G., Lobach I. and
Gorno-Tempini, M. L. Rates of Amyloid Imaging Positivity in Patients With Primary
Progressive Aphasia. JAMA Neurol,2018.

[7] Lahabar S. High Performance Pattern Recognition on GPU. Academia, 2008.

[8] R. Nayak and Ting B. K. H. Artificial Neural Networks in Biomedical Engineering: A Review.
Elsevier, 2001.

[9] Perez L. and Wang J. The Effectiveness of Data Augmentation in Image Classification using
Deep Learning. CoRR, 2017.

99

[10] Vonk J. M. J., Jonkers R., Hubbard H. I., Gorno-Tempini M. L., Brickman A. M. and Obler L.
K. Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic,
and semantic primary progressive aphasia. J Int Neuropsychol Soc, 2019.

[11] Ranasinghe K. G., Kothare H., Kort N., Hinkley L. B., Beagle A. J., Mizuiri D. and Nagarajan
S. S. Neural correlates of abnormal auditory feedback processing during speech
production in Alzheimer’s disease. Sci Rep, 2019.

[12] Battistella G., Henry M., Gesierich B., Wilson S. M., Borghesani V., Shwe W. and Gorno-
Tempini M. L. Differential intrinsic functional connectivity changes in semantic variant
primary progressive aphasia. Neuroimage Clin, 2019.

[13] Payan A. Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional
neural networks. ArXiv, 2015.

[14] Wen J. Convolutional Neural Networks for Classification of Alzheimer’s Disease: Overview
and Reproducible Evaluation. ArXiv, 2018.

[15] Masoumi H. Automatic liver segmentation in MRI images using an iterative watershed
algorithm and artificial neural network. ArXiv, 2009.

[16] Ibrahim W. H. MRI brain image classification using neural networks. ArXiv, 2013.

[17] Chen H. Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network
(RED-CNN). ArXiv, 2017.

[18] Krizhevsky A. ImageNet Classification with Deep Convolutional Neural Networks. ArXiv,
2012.

[19] Bahrampour S. Comparative Study of Caffe, Neon, Theano, and Torch for Deep Learning.
Open-Review, 2016.

[20] Jia Y. Caffe: Convolutional Architecture for Fast Feature Embedding. Acm, 2014.

100

[21] Yu L. Automatic 3D Cardiovascular MR Segmentation with Densely-Connected Volumetric
Con-vNets. Springer International Publishing, 2018.

[22] Hwang H. 3D U-Net for Skull Stripping in Brain MRI. Applied Sciences, 2018.

[23] Abdulkadir A. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse
Annotation. MICCAI, 2016.

[24] LeCun Y. Convolutional Neural Networks Applied to House Numbers Digit Classification.
ArXiv, 2012.

[25] Bui T. D. 3D Densely Convolutional Networks for Volumetric Segmentation. ArXiv, 2017.

[26] Cicek O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.
ArXiv, 2016.

[27] Noh H. Learning Deconvolution Network for Semantic Segmentation. ArXiv, 2015.

[28] Ioffe S. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. ArXiv, 2015.

[29] Refaeilzadeh P. Cross-Validation. Springer, 2008.

[30] Manjon J. V. Adaptive non-local means denoising of MR images with spatially varying
noise levels. PubMed, 2010.

[31] Kingma D. P. Adam: A Method for Stochastic Optimization. ArXiv, 2014.

[32] Gondara L. Medical Image Denoising Using Convolutional Denoising Autoencoders. ArXiv,
2016.

101

[33] Giacinto G. Design of effective neural network ensembles for image classification
purposes. Elsevier, 2001.

[34] Rosesenblatt F. The Perceptron: a probabilistic model for information storage and
organization in the brain. Cornell Aeronautical Laboratory, 1958.

[35] Jain A. K. Artificial neural networks: a tutorial. IEEE, 1996.

[36] Jones S. A. Analysis of different activation function using back propagation neural
network. Journal of Theoretical and Applied Information Technology, 2013.

[37] Hochreiter S. Learning to Learn Using Gradient Descent. Canadian Institute for Advanced
Research, 2001.

[38] Amari, S. Backpropagation and stochastic gradient descent method. Elsevier, 1993.

[39] Castillo E. A Very Fast Learning Method for Neural Networks Based on Sensitivity Analysis.
Journal of Machine Learning Research, 2006.

[40] Duchi J. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.
Journal of Machine Learning Research, (2011).

[41] Zeiler M. D. AdaDelta: An Adaptive Learning Rate Method. ArXiv, 2012.

[42] le Cun Y. A Theoretical Framework for Back-Propagation. CMU, 1988.

