

POLITECNICO DI MILANO

Department of Electronics, Information and Bioengineering

Master’s Degree in Automation and Control Engineering

DATA ACQUISITION AND ANALYSIS OF

ENERGY EFFICIENCY IN A CLASSROOM

BUILDING

The thesis presented by:

Arvind Jayakumar, 877297

Supervisor:

Prof. Luca Ferrarini

Correlator:

Ing. Riccardo Babini

2018/2019

i

PAGE INTENTIONALLY LEFT BLANK

ii

Table of Contents

LIST OF FIGURES .. v

LIST OF TABLES ... vii

RINGRAZIAMENTI ... viii

SOMMARIO ... ix

ABSTRACT .. x

LIST OF ABBREVIATIONS ... xi

1 INTRODUCTION ... 1

1.1 State of the Art analysis ... 1

1.2 Thesis objectives .. 2

1.3 Document Structure .. 3

2 COMPARISON BETWEEN THINGSBOARD AND Node-RED 4

2.1 Introduction to ThingsBoard ... 4

2.2 Introduction to Node-RED .. 5

2.3 Open-source community / Maturity ... 5

2.4 Basic technical requirement .. 5

2.4.1 Software requirements .. 6

2.4.2 Technical requirements .. 6

2.5 Programming structures .. 6

2.6 Services Provided ... 7

2.7 Documentation Available .. 8

2.8 Installation of IoT Platforms ... 10

2.8.1 Installation of ThingsBoard .. 10

2.8.2 Installation of Node-RED ... 12

iii

2.9 Possible custom extensions ... 14

2.10 Device connectivity and Management .. 14

2.11 Data Storage ... 15

2.12 Graphical Representation .. 15

2.13 Scalability ... 16

3 IoT CONFIGURATION FOR THE BUILDING .. 17

3.1 Building Assets ... 17

3.2 Problem with ThingsBoard platform .. 18

3.3 Node-RED configuration ... 18

3.3.1 Assets and devices in a classroom .. 19

3.3.2 Network Architecture ... 19

3.4 Classroom Prototype ... 20

3.4.1 Battery State observation .. 20

3.4.2 CO2 Measurement .. 23

3.4.3 Humidity Measurement .. 26

3.4.4 Luminosity Measurement ... 29

3.4.5 Noise Measurement .. 31

3.4.6 People Enumeration ... 31

3.4.7 PIR Measurement ... 33

3.4.8 Seismic level .. 35

3.4.9 Temperature Measurement .. 35

3.4.10 TVOC Measurement ... 38

3.4.11 White Level Measurement .. 40

3.5 Comfort Indices ... 42

3.5.1 Dewpoint Temperature ... 42

iv

3.5.2 Discomfort Index .. 42

3.5.3 Heat Index ... 43

3.5.4 Humidex .. 45

3.5.5 Temperature Humidity Index ... 46

3.5.6 Wind Chill Index ... 47

3.5.7 Summary of Comfort Index results from the dashboard point of view 48

3.6 Application ... 48

3.6.1 People occupancy .. 49

3.6.2 Janitor service ... 49

3.6.3 Average Floor values ... 50

3.6.4 Obtaining weather from Online .. 52

4 MOBILE DEVICE DEPLOYMENT .. 54

4.1 Installation of Node-RED in android platform ... 54

4.2 Flow editor and dashboard in android device .. 54

5 CONCLUSION ... 56

5.1 Possible future works ... 56

6 BIBLIOGRAPHY .. 57

v

LIST OF FIGURES

Figure 2.1 General Architecture of IoT ... 6

Figure 2.2 Command Prompt result for executing Java -version cmd 11

Figure 2.3 Command Prompt result for executing Java -version cmd 11

Figure 3.1 Building Asset and device asset ... 19

Figure 3.2 Network communication between the device and Node-RED 20

Figure 3.3 Node-RED dashboard view for observing the battery state 21

Figure 3.4 Node-RED configuration for observing the battery state 22

Figure 3.5 Node-RED configuration for observing the CO2 .. 24

Figure 3.6 Dashboard view of CO2 Timeseries graph .. 24

Figure 3.7 Dashboard view of Average CO2 Timeseries graph 25

Figure 3.8 Dashboard view of current CO2 via gauge .. 25

Figure 3.9 Node-RED configuration for observing the Humidity.................................... 26

Figure 3.10 Dashboard view of Humidity Timeseries graph .. 27

Figure 3.11 Dashboard view of average Humidity Timeseries graph 28

Figure 3.12 Dashboard view of current Humidity via gauge ... 28

Figure 3.13 Node-RED configuration for observing the Luminosity 29

Figure 3.14 Dashboard view of Luminosity Timeseries graph ... 30

Figure 3.15 Dashboard view of current Luminosity via gauge .. 30

Figure 3.16 Node-RED configuration for observing the Noise level 31

Figure 3.17 Node-RED configuration for observing the peoplein value 32

Figure 3.18 Node-RED configuration for observing the peopleout value 33

Figure 3.19 Node-RED configuration for observing the PIR value 34

Figure 3.20 PIR Visualization in dashboard ... 34

Figure 3.21 Node-RED configuration for observing the seismic level 35

Figure 3.22 Node-RED configuration for observing the temperature level..................... 36

Figure 3.23 Dashboard view of Temperature Timeseries graph 37

Figure 3.24 Dashboard view of average Temperature Timeseries graph 37

Figure 3.25 Node-RED configuration for observing the TVOC level 38

Figure 3.26 Dashboard view of TOVC Timeseries graph ... 39

Figure 3.27 Dashboard view of average TVOC Timeseries graph 40

https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870190
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870191
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870192
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870193
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870194
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870195
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870196
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870197
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870198
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870199
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870200
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870201
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870202
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870203
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870204
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870205
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870206
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870207
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870208
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870209
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870210
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870211
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870212
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870213
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870214
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870215
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870216
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870217
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870218
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870219

vi

Figure 3.28 Node-RED configuration for observing the white level 40

Figure 3.29 Full dashboard view for a classroom ... 41

Figure 3.30 Node-RED configuration for calculating Dewpoint Temperature 42

Figure 3.31 Node-RED configuration for calculating Discomfort Index 43

Figure 3.32 Node-RED configuration for calculating Heat Index 44

Figure 3.33 Node-RED configuration for calculating Humidex 45

Figure 3.34 Node-RED configuration for calculating Temperature Humidity Index 46

Figure 3.35 Node-RED configuration for calculating WCI .. 47

Figure 3.36 Dashboard View of Comfort Index for a classroom 48

Figure 3.37 Node-RED configuration for calculating People occupancy 49

Figure 3.38 Node-RED configuration for janitor service ... 50

Figure 3.39 Node-RED configuration for average floor temperature 50

Figure 3.40 Node-RED configuration for average floor humidity 51

Figure 3.41 Node-RED configuration for average floor carbon dioxide 51

Figure 3.42 Dashboard view of open weather forecast .. 52

Figure 3.44 Node-RED configuration for obtaining the weathercast from open weather

map .. 53

Figure 4.1 Mobile view of Node-RED flow editor ... 55

Figure 4.2 Mobile view of Node-RED dashboard ... 55

https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870220
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870221
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870222
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870223
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870224
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870225
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870226
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870227
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870228
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870229
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870230
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870231
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870232
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870233
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870234
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870235
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870235
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870236
https://d.docs.live.net/0d72f414b67d6b5f/Desktop/MasterThesis/Thesis_Arvind.docx#_Toc26870237

vii

LIST OF TABLES

Table 2.1 ThingsBoard different Software Edition ... 7

Table 2.2 ThingsBoard Installation on different platforms ... 10

Table 2.3 Node-RED Installation on different platforms ... 13

Table 3.1 Building number 25 assets ... 17

Table 3.2 Range and Scale of Discomfort Index .. 43

Table 3.3 Range and Scale of Heat Index ... 44

Table 3.4 Range and Scale of Humidex .. 46

Table 3.5 Range and Scale of Temperature Humidity Index ... 47

Table 3.6 Range and Scale of WCI Index .. 48

viii

RINGRAZIAMENTI

First, I like to thank Professor Luca Ferrarini, Ing. Riccardo Babini and the Daisy

lab team for the collaboration and constant support and made this thesis possible.

Next, I extend my gratitude and special thanks to my family members, especially

to my uncle Dr.Siva Kumar without his support, I could not be able to dream of studying

in this esteemed university.

Nextly, I thank all my friends Abhishekh, Abilash, Harrish, Suganth, Abhishekh Jr,

Seenu, and my dear friend Giuseppe Incandela for supporting me always.

ix

SOMMARIO

La tesi inizialmente fornisce un confronto dettagliato tra le due piattaforme

Internet of Things; sono ThingsBoard e IBM Node-RED e quindi, con l'aiuto della

piattaforma IoT Node-RED, viene presentato un modello prototipo per un'aula per

l'acquisizione di dati dai valori dei vari dispositivi del sensore dal database di time-series

InfluxDB.

In base ai valori di temperatura e umidità relativa, sono stati calcolati gli indici di

comfort. Inoltre, la scala del comfort e il valore di ogni indice vengono visualizzati nella

dashboard dell'utente. Inoltre, utilizzando questi indici, possiamo comprendere la

condizione e la qualità della classe e come robusto il sistema di controllo per il sistema

HVAC funziona.

Quindi i dati raccolti vengono analizzati e utilizzati per lo sviluppo di applicazioni

come il servizio di bidello, l'occupazione corrente in una classe, vengono sviluppati la

media di alcuni parametri fisici come temperatura, umidità e CO2 per un pavimento.

Infine, viene presentata l'estensione della piattaforma mobile e il modo in cui

possiamo utilizzarle in modo efficiente.

x

ABSTRACT

The thesis initially gives a detailed comparison between the two Internet of Things

platforms; they are ThingsBoard, and IBM Node-RED and then, with the aid of the Node-

RED IoT platform, a prototype model for a classroom for acquiring data from the various

sensor device’s values form the InfluxDB time-series database is presented.

Based on the temperature and relative humidity values, the comfort indices were

calculated. Moreover, the scale of the comfort and the value of each index is displayed in

the user's dashboard. Furthermore, utilizing these indices, we can understand the

condition and quality of the classroom and how robust the control system for the HVAC

system is working.

Then the collected data are analyzed and utilized for developing applications such as

janitor service, current occupancy in a classroom, Average of some physical parameters

such as temperature, humidity, and CO2 for a floor are developed.

Finally, the extension to the mobile platform and how we can efficiently utilize them

are presented.

xi

LIST OF ABBREVIATIONS

API Application Program Interfaces

cmd Command

CoAP Constrained Application Protocol

CSS Cascading Style Sheets

DB Database

e Vapour pressure

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ID Identification

IoT Internet of things

IP Internet Protocol

IT Information Technology

JS Java Script

JSON JavaScript Object Notation

MQTT Message Queue Telemetry Transport

msg Message

NoSQL Non-Structured Query Language

npm Node Package Manager

RH Relative Humidity

SQL Structured Query Language

T Temperature

PAGE INTENTIONALLY LEFT BLANK

xii

1

1 INTRODUCTION

This chapter was dedicated to the reasoning behind this thesis work. In the first

section 1.1, a state of art analysis carried out. Then, the central thesis objectives based on

the instruction given by the professor are presented in the second section 1.2. Finally, the

structure of the thesis document was described in section 1.3 to navigate through the

report for the reader quickly.

The IoT is a system of interrelated computing devices, mechanical and digital

machines, objects, people, or animals that are provided with a unique identifier and

ability to transfer data over a network without requiring human-to-human or human-to-

computer interactions. The thing in the IoT in here is the Building, the classrooms and

the sensor devices in them, these devices can be assigned to an IP address, and data are

transferred through the network through the assigned IP’s through the server. The IoT

will increase the ubiquity of the internet so we can connect our desktop or mobile devices

to monitor the data, in extension, analysis them to control them.

1.1 State of the Art analysis

The first building ever constructed buildings were primitive shelters made from

stones, sticks, animal skin, and other natural materials. While they hardly resembled the

steel, glass, cement that make up our modern-day buildings such as home, schools, office,

hospitals, same as the early day structures, the modern buildings have the same purpose

of providing a comfortable space for the people who are inside.

If we look in deep-down, the present-day buildings are complex concatenations of

structures, systems, and technology. Over time, each of the components inside a building

has been developed and improved continuously, allowing the modern-day building

owners to make lighting, security, heating, ventilation, and air conditioning systems to

work independently based on the input conditions.

In today’s era, energy matters a lot, and there is a necessity of using them in an

optimized manner to have zero percent wastage. To have these people are beginning to

look outside the four walls, and which allows them to consider the impact of the variation

in building power usage on the electrical grid and also the global environment.

2

For this technological artwork to be possible, we are using the sensors and

actuators (as our senses and body parts) along with the Internet thus all together becomes

the IoTs, with all these things a building can communicate its state to the operators,

occupants of the building, to the electrical grids, to the computer and also to the nearby

buildings (if they are sharing the resources) a building system like this are known as the

smart buildings. These intelligent buildings use IT during the operation to connect with a

variety of subsystems, which typically operate independently, so this system can share

information to optimize total building performance. In a nutshell, Smart buildings look

beyond the building equipment within the four walls, which allows us to empower with

new levels of visibility and actionable information.

1.2 Thesis objectives

Currently, many IoT software platforms provide solutions for the smart building,

in which most of them offer both fully developed priced version and some of them gives

open-source community software. Notion of this thesis is to find and study the open-

source community IoT platform in its all possible dimension in order to discover the

potential ability of that particular platform chosen and to compare with others in the

market and to provide a comparison summary in the first half and in the second half to

pick the best platform and develop data acquisition model through them. So that one who

is using this thesis work can have a full overview of the studied platforms in its

rudimentary level and how to use them for making a building “Smart.”

As said above in the second phase of the thesis work, I have developed a full IoT

model for the university building, the building taken contains four floors, and fifteen

classrooms and each classroom has one Envisense sensor module which contains thirteen

different sensors per module, in total one ninety-five sensor devices our notion is to

obtain the data from InfluxDB time-series database, visualize them via “Dashboard”

through the chosen IoT platform in computer and then I have also extended the study by

developing full dashboard for the android mobile devices.

Finally, the data collected from the devices are analyzed. Based on the analysis we

have developed small applications such as average floor temperature, humidity, carbon

dioxide level, the current occupant level of a classroom, scheduling the cleaning work for

3

a janitor through email notification and this will ease the work for the person who is

monitoring the building premises and also for the peoples who are utilizing the building

area.

1.3 Document Structure

Chapter 2 is fully dedicated to discussing overall ability, functionality, and basic

requirements for using the platforms. In a nutshell, it provides a comparison with one

other IoT platform. In chapter 3, we will be moving with the configuration of each sensor

and its implementation in the IoT platform and its dashboard. Chapter 4 provides the

configuration and deployment in the mobile device(i.e., android supported devices). Then

in Chapter 5 will gather the results from Phase one and Phase two of the thesis and will

draw a detailed conclusion.

In chapters 3 and 4 are fully dedicated to IoT development for the building in two

different platforms, one is the deployment in the personal computer and the other in a

mobile device. One who is reading chapter 3’s sensor configuration section, one can find

similarities this because they are configured in the same procedure. For security concerns,

the report does not have any information about the credentials, server IP address, and

device ID, and algorithms. However, the reader can get a general idea of how the works

have been carried out.

 In a nutshell, these procedures can be used for any building with small changes

according to things used.

4

2 COMPARISON BETWEEN

THINGSBOARD AND Node-RED

This chapter describes the entire phase one of the thesis work, which is to choose

and study two IoT platforms and to give a detailed genal comparison between the

platforms, i.e., ThingsBoard and Node-RED. Both platforms are opensource communities

(i.e., for using the platform, no license is required). For the sake of argument, every

paragraph will describe ThingsBoard first and then the Node-RED platform.

2.1 Introduction to ThingsBoard

The ThingsBoard is an IoT platform for data collection, processing, visualization,

and device management. It enables device connectivity via industry standard IoT

protocols such as MQTT, CoAP, and HTTP and supports both cloud and on-premises

deployments. It combines scalability, fault-tolerance, and performance, so we will never

lose our data. It provides provisions, monitors, and securely controls our IoT entities

using rich server-side APIs. We can also define relations between our devices, assets (in

our case, it is building, floors, and classroom) and costumers or any other entities. As said,

we collect and store telemetry data in a scalable and fault-tolerant way, and we can

visualize the data in the flexible dashboard, and this dashboard can also be shared with

customers [1]. The collected data can also be processed with the aid of rule chins, which

will transform and normalize our data.

The ThingsBoard supports various database options such as SQL, NoSQL, and

Hybrid databases in its premium versions. Then allows us to choose where to store main

entities and where to store telemetry data.

The ThingsBoard allows three levels of controls. The first level is the system

administrator who has the ability create new tenants and manage widgets and servers,

the second level is the tenant administrator, who can describe and configure everything

in the ThingBoard and finally the customer user, this level can able monitor the

dashboard which is created by the tenant administrator, In a nutshell, this level has

minimal capacity. Moving further, ThingsBoard allows multitenancy so that with the aid

of a single system administrator, we can manage multiple tenants.

5

2.2 Introduction to Node-RED

 Node-RED is a programming tool for wiring together hardware devices, APIs, and

online services [2]. It provides us with a browser-based editor that makes it easy to wire

together flows using the full range of nodes in the palette that can be deployed in runtime

in a single click. JS functions can be created within the editor window using a rich text

editor. A built-in library function allows us to save services and flows for re-use. This

entire program module was built on Node.js by taking full advantage of its event-driven,

non-blocking-model. This makes it ideal for running at the edge of the network on low-

cost hardware such as Raspberry pi as well as in the cloud.

 The flows created in Node-RED are stored using the JSON program format, which

can be easily transported for sharing with others if needed, and even we can publish the

flow online so anyone can utilize our work. The MQTT nodes can properly configure TLS

connections. The software is an open-source JS Foundation project which licenses under

Apache License 2.o.

2.3 Open-source community / Maturity

 In the majority of the IoT software available in the market are providing the

opensource community with different functionalities and of courses, each one has pros

and cons of its own. For using this service, we do not need to pay anything to the service

provider. On the other hand, the product provider is under development (i.e., In

Continuous testing stage), so it is not as stable as the paid versions. By using the

opensource, we are not restricted to follow the manuals; we have many open doors to use

utmost.

 ThingsBoard opensource is named “Community Edition,” and the version

provided is 2.4.1 [1], and there is no particular name for Node-RED opensource, and the

software version provided currently is 1.0.0 [2].

2.4 Basic technical requirement

 This paragraph describes the software skill set requirements for both platforms.

The reader can find similarities in requirements; this is because both platform bases are

the same, and then a detail description of the instrument requirements such as sensors,

actuators, and so are presented in detail.

6

2.4.1 Software requirements

 To get started with IoT should have some basic knowledge in programmings such

as JAVA, JS, JSON, and SQL, and further, we should have some introduction to web page-

based programming language scripts such as HTML and CSS. We can use the JS

programming structure for both the software modules in stock, and a detailed explanation

will be given in the program structure paragraph.

2.4.2 Technical requirements

From Fig 2.1, one can see the general architecture layout of IoT working. It consists

of three modules in major. The 1st module includes of the IoT devices, and 2nd module is

the IoT software platform chosen, and finally, the 3rd module is the server-side

application, if we need to set up an IoT we need these three things apart from other

advance things.

In the 1st module, we need to configure two things. Firstly, we need to have a

physical device (i.e., Sensor devices), and secondly, it should be connected to the network.

The 2nd module is the bridge between the 1st and 3rd module. In this module, we will do

our major part of work, such as configuring the devices, describing the relationship

between the hierarchy’s, configuring the database, and finally designing the dashboard.

2.5 Programming structures

ThingsBoard programming structure is a little different apart from the

programming logic. We need to do some additional work. Firstly, we need to have a clear

idea about the hierarchy of the system which we are dealing with. In our work, the system

is the building which we took. So, the whole building will be on the top in the hierarchy

Figure 2.1 General Architecture of IoT

7

and hallways, classrooms, and devices will be in the lower levels. In doing this way, we

are defining which assets contain what and what has a relationship with what. Then we

need to configure the devices for collecting the telemetry data, visualize the data via the

dashboard, and the platform, we are pushing data to store in the time-series database.

The logics are written in the JS format.

 On the other hand, the Node-RED provides a browser-based editor which provides

a flow-based. The nodes can be deployed from the pallet in just a single click in the

runtime. Then we need to configure the nodes; the programming format is in JS. In single

flow, we need to set everything such as input nodes where we get the data, and we have

the function nodes where we write the logic (i.e., which describes what we want to do with

the input telemetry data), and the output of the logics will be taken and configured to

database where will store the data, to the dashboard for data visualization and debug

node.

2.6 Services Provided

 ThingsBoard provides two kinds of services [1]. First, the “Community Edition”

and the second is the “Professional Edition.” The community edition is 100% open source

and provides us with community support, unlimited devices and assets, unlimited

software updates, and we can also opt to contribute to the developments. In the

Professional edition, we have many types of edition available on the bases of devices and

assets, and they are tabulated below.

Edition Name No of Devices Configured No of Assets configured

Maker 10 10

Prototype 100 100

Startup 500 500

Business 1000 1000

Enterprise Unlimited Unlimited

Table 2.1 ThingsBoard different Software Edition

8

From both kinds of service, we able to configure everything like device management,

assets management, visualizing the data, processing the data, and white labeling service

are available only for the professional edition.

 In Node-RED provides only opensource [2], and there is no paid version with the

aid this platform we can bale to configure mostly everything in the field of IoT. We can

also customize the node so that we can also develop the required process through this and

deploy it to the flow.

2.7 Documentation Available

 In the ThingBoard, we have more documentation [1] available in both written

guides and getting started videos. In the documents available in the websites will initially

section provides with the following,

• Hello World - In this section, we will learn how to collect IoT device data using

MQTT, HTTP or CoAP and visualize it on a simple dashboard

• End users IoT dashboards – This section provides how we can perform the

essential operation over Devices, Customers, and Dashboards.

• Device data management – In this section, we will learn how we can perform an

essential operation over device attributes to implement practical device

management use cases.

• Getting Started with rule engines – In this section, we will learn about the

ThingsBoard rule engine and how to enable filtering of incoming telemetry

messages.

The second section of the document deals with the device connectivity through various

protocol and provides multiple additional things, and they are as follows,

• Connect devices using ThingsBoard HTTP API – In this section, we will learn how

to connect devices using HTTP protocol and ThingsBoard built-in payload.

• Connect devices using ThingsBoard MQTT API – In this section, we will learn how

to connect devices using MQTT protocol and ThingsBoard built-in payload.

• Connect devices using ThingsBoard CoAP API – In this section, we will learn how

to connect devices using CoAP protocol and ThingsBoard built-in payload.

9

• Connect devices using ThingsBoard IoT Gateway – In this section, we will learn

how to deploy IoT Gateway in our local network and route messages from our

devices to the cloud.

The third section of the document provides about “Data visualization” in this, we have

instruction about how to configure complex ThingsBoard dashboard.

• Visualizing assets data using maps and tables – From this section, we able to get

the information about how to create a new dashboard, visualize data from the asset

attributes using entities table and map widgets.

• Dashboard states, aliases and widget actions- In this section, we will learn, how to

add and configure new dashboard states, create various aliases, visualize the

attributes data using the image map widget, create actions in different widgets in

order to navigate between states, visualize telemetry data using analog and digital

gauges and the time-series widget.

• Remote device control and alarm management – In this, we will learn about, add

and use the node widget, create alarm rules, handles alarms using the alarm

widget, and then how to make the dashboard public.

• Basic widget settings – In this, we will learn about how to change widget title,

background, colors, widget title, background, colors, fonts, shadows, and so.

• Latest values map widget – in this, we will learn how to display our devices with

the telemetry data on the time series map widget and modify the widget's

properties.

• Time series map widget – in this section, we will learn about how to display our

device with the latest telemetry data on the time series map widget and modify the

widget properties.

In the fourth section of the guide, we will learn about the “Data Processing and action”

with the aid of the Thingsboard rule engine. Then the fifth section of the guide deals with

the introduction to the IoT data analytics (these features work only with the professional

edition). Finally, the document says about some advanced features in the ThingsBoard.

10

Comparing to ThingsBoard, Node-RED has very little documentation but is sufficient

to get started with. In the documentation section [2] we have installation guides,

frequently asked question apart from this we need to focus on the followings,

• User Guide – This section comprehensive of Getting started in which we have

details about how to create flow, Node-RED concepts, and using the Node-RED

editor. Secondly, we have a description of configuring Node-RED, such as the

setting file, setting options, securing Node-RED, and logging. Then we have guides

about “Using Node-RED” in this section we have details about what are the core

nodes, adding nodes to the palette (since we have large set of libraries), how to use

the function nodes in which we will write all our logics, then working with the

context and messages, using environmental variables, working with projects,

configuring Node-RED, and Finally command-line Admin. At the end of the guide,

we have an advanced concept – embedding into an existing application.

2.8 Installation of IoT Platforms

This section explains the installation procedures for Thingsboard and Node-RED

platforms.

2.8.1 Installation of ThingsBoard

To ThingsBoard community edition is supported in various platforms [1] and they

are tabulated below,

PLATFORMS

LIVE DEMO On ThingsBoard server

ON-PREMISE

Ubuntu

Redhat

Windows

Raspberry pi3

Docker + windows/linux/mac os

Maveen

Cluster setup

CLOUD Digital ocean

Table 2.2 ThingsBoard Installation on different platforms

11

From the above, our interest for the sake of the thesis is to install on the Windows

platform on a personal computer to do that one has to follow the following steps.

STEP 1

• We need to check the java version in our computer, in order to perform this we

need to lunch the command prompt as administrator and need to write the cmd as

“Java -version,” and we need to get output as shown in figure 2.2 and if this not

installed we need to download java from oracle. Make sure that java server virtual

machine is installed because the ThingsBoard platform does not support the other

formats.

• Nextly, we need to check the Java compiler version in the system by executing the

cmd as “Javac -version” and the results will be as shown figure 2.3

Figure 2.2 Command Prompt result for executing Java -version cmd

Figure 2.3 Command Prompt result for executing Java -version cmd

12

STEP 2

This step is very straight forward; in this, we need to download the ThingsBoard

Community edition form the Git Repository.

STEP 3

• In this step, we need to set up a database to continue the installation procedure of

the ThingsBoard platform. So, PostgreSQL is used as our database.

• This database can be download from the PostgreSQL website and can be

configured for local running, and After the installation, we need to create a new

database as “ThingsBoard.”

STEP 4

• This step is carried out after the deployment of the database; in this, we will install

the ThingsBoard via command prompt.

• Open the command prompt as a system administrator and change the working

directory to the folder where we had to download the ThingsBoard software.

• Then we need to write the “install-bat” as cmd; this command is used to install

the batch file.

STEP 5

• After the installation, we can start and stop the ThingsBoard Server from the

command prompt by following cmd.

▪ NET START THINGSBOARD (for starting the ThingsBoard Server)

▪ NET STOP THINGSBOARD (for Stopping the ThingsBoard Server)

• The ThingsBoard can run from the Ip address http://localhost:8080/.

2.8.2 Installation of Node-RED

 Node-RED is built on Node-js; this makes it ideal for running at the edge of the

network on low-cost hardware such as the Raspberry Pi [2]; the supported platforms are

tabulated below.

http://localhost:8080/

13

PLATFORM

Run locally
Windows

Docker + Linux/mac OS

On a Device

Raspberry Pi

Beagle Bone Black

Interacting with Arduino

Android

In the Cloud

IBM Cloud

Sensetecnic FRED

Amazon Web Service

Microsoft Azure

Table 2.3 Node-RED Installation on different platforms

The installation procedure is not as complicated as the ThingsBoard, and our

interest in point of the thesis is to Run locally in our window computer and on a device

(Android).

STEP 1

To install IBM Node-RED, we need Node.js. If it is not installed on the computer,

we can download it from https://nodejs.org/en/ site.

STEP 2

After installing the Node.js, lunch the Node.js command prompt, this will

automatically set our environment for the usage of the Node.js and npm.

In this command prompt, the cmd “npm install -g –unsafe-perm node-red”

is used to install the Node-RED as a global module along with its dependencies. Once the

installation is done, we will get a message about the installation.

STEP 3

After the installation, we start the server via the following cmd, in any web browser

on the computer via http://localhost:1880/.

• Node-red (For starting the server with flow deployed)

https://nodejs.org/en/
http://localhost:1880/

14

• Node-red –safe (For starting the server without flow used)

• Ctrl + c (To Stop the server)

Then we are moving to an installation procedure for installing Node-RED on a mobile

device. Firstly, we need to install the Termux app from the play store; this application

makes it easy to run the Node-RED on android devices. After installing it in the prompt

type the following cmd lines,

“apt update

apt upgrade

apt install coreutils nano node.js

npm i -g –unsafe-perm node-red

node-red”

 By executing this line in the application, it will install Node-RED in the mobile

device, and then we can start the server by using the same cmd mentioned above, and

then we can point a browser to http://localhost:1880 to access the editor window [2].

2.9 Possible custom extensions

 The software considered is opensource and allows us to contribute to the core and

mostly to the additional development of the software. Apart from this, we are interested

in the nodes, not the core developments, both the software platforms allow us to develop

customized nodes for our work. Most of the commonly used nodes are available in the

libraries in both the platforms. Since the IoT is a growing platform now, there are no fully

developed libraries available platform in the market. As explained above, with the aid of

customized nodes, we can build function as per our requirements. Especially in the Node-

Red, we can develop nodes which can even communicate with other software platforms

apart from IoT platforms. Nodes are produced by using JS and JSON scripts.

2.10 Device connectivity and Management

 Since both platforms are open-source, one can easily conclude that there will be a

limitation in number device connectivity. Nevertheless, there is no such limitation on

both platforms we can connect millions of devices via platforms. However, the thing that

http://localhost:1880/

15

matters a lot dealing with the payload, and if we are using a vast number of the device,

then we need to have a quite powerful machine to manage the payloads.

While choosing the sensor devices which send value to the platform through server

instances and we are caring about the data, then data lose when the server down will be a

problem. So, there should be local data storage within the sensor modules; this should be

programmed in such a way that the whole server instance is down, then this module

should store the data during that time and then needs to push the stored values when the

server comes back to live again.

 Both the platforms manage the devices very well in their way; in the ThingBoard,

there is sperate device management, and its account for in the list and even the other

assets relationship with a particular device is specified, so it is excellent to audit the log if

any problem arises. Similarly, in the Node-RED, it depends on the programmer because

while configuring the devices, he/she needs IoT devices pointed to the log files. As per the

IBM Node-RED, it is highly recommended to connect the MQTT or HTTP or CoAP nodes

to a debug node; this activity is carried out to check or audit the log while any problem

occurs.

2.11 Data Storage

 The most crucial thing in any IoT platform is the supportiveness and connectivity

of databases, and many of the IoT deals with telemetry data, and most of the data are

continuously obtained, so we need to connect a “Time-series database” to be in a safer

side. In the ThingsBoard for using the community edition, it is recommended to use the

PostgreSQL database apart from this; we use the NoSQL database and the Hybrid

database. Similarly, in the Node-RED, it supports a wide variety of database, and there is

no restriction or recommendations like ThingsBord.

2.12 Graphical Representation

 Both platforms support and have an excellent GUI. Like the way how we are

configuring the nodes, devices, and database in the platform in a similar manner, the

dashboard (GUIs) also configured. Whichever device need to be displayed in the

dashboard panel we need to configure them individually, and we need to set up everything

such as what kind of widget we need, at what time we design instance the values should

16

be updated to the gadgets and even the physical appearances such as the size, color, text

formats, and their size there are predefined setups these are not predefined because the

Dashboards are highly subjected to change based on the projects we are undertaken.

2.13 Scalability

 Both platforms support scalability but in their way. Firstly, in ThingsBoard, as said

in the previous paragraphs, the platforms support millions of devices, and each device

needs to be programmed individually. However, in the Nod-RED, the process is not much

complicated as the ThingBoard. In Node-RED, the process is not much complicated; we

can export similar flows and edit the nodes according to the devices.

17

3 IoT CONFIGURATION FOR THE

BUILDING

3.1 Building Assets

The IoT is setting up for a university building, the model building taken consisting

of four floors (i.e., the ground floor, first, second, and third floor). The other building

assets are known from table 3.1.

BUILDING FLOOR CLASSROOM DEVICE

Building 25

Floor 0

D01 Envisense sensor module

D02 Envisense sensor module

D03 Envisense sensor module

D04 Envisense sensor module

Floor 1
D11 Envisense sensor module

D12 Envisense sensor module

Floor 2

D21 Envisense sensor module

D22 Envisense sensor module

D23 Envisense sensor module

D24 Envisense sensor module

D25 Envisense sensor module

Floor 3

D31 Envisense sensor module

D32 Envisense sensor module

D33 Envisense sensor module

Table 3.1 Building number 25 assets

The model building has 14 classrooms, and each class has an Envisense sensor

module. This sensor module consists of the following sensor device,

• Humidity

• Luminosity

18

• People counting

• People tracking

• PIR attendance detection

• Quality of the area

• Seismic level

• Temperature

• Thermal camera

• TVOC level measurement

The sensors in the sensor module are connected into the server, and data are

transmitted through MQTT protocol, and firmware updates can be done via this protocol

or through the chosen IoT platform.

3.2 Problem with ThingsBoard platform

Initially, the configuration started with ThingsBoard, but the problem with this IoT

platform was that it did not allow us to connect with the InfluxDB because the platform

supports only the PostgreSQL. Our primary requirement in the thesis point of view is to

acquire the sensorial data from the InfluxDB, and since the platform does not support the

required database, there is a necessity to change the database or the platform. To change

a different database that is supported by the platform, we will have specific problems like

the additional cost to buy the database, then we need to reconfigure the networks, and

there will be a problem of losing previously stored data. So, the best option is to change

the IoT platform, and since we are focusing the free or community edition and so we do

not have the problem of spending the money on the license and the architecture and

programming language for most of the IoT platforms are similar. Thus, the decision had

taken, and the entire project is furtherly carried out with the IBM Node-RED, which is

explained in detail in the upcoming section.

3.3 Node-RED configuration

The programming configuration and other requirements for the Node-RED are

described already in detail in chapter 2 under section 2.4 & 2.5, Now in this section one

can see the detailed description about how the Node-RED platform is used to acquire the

current time-series data from the InfluxDB and the data are displayed in the User’s

19

dashboard this will help the building administrator to have an idea about the assets and

also to understand about the current behavior of that particular asset viewed if the

building has many assets and then furtherly collected data are analyzed to find the trend

and also control the HVAC and also are used for developing applications.

3.3.1 Assets and devices in a classroom

With the aid of Figure 3.1, one can understand what are all the sensor device in the

sensor module. The blue area in the figure is the sensor module, and the gray area is the

classroom, and in general, the figure indicates that the device asset is inside the classroom

asset. This kind of module is what installed in the classroom, in general, for any building

which is made up of concrete and bricks are always considered as assets, and rooms and

classroom are considered as building assets and any electronic device in it will be regarded

as device assets.

3.3.2 Network Architecture

In this section, from Figure 3.2 we can understand the network architecture

scheme, this scheme helps the reader to know how the data is acquired from the device

which is installed in the building to the Node-RED platform. The sensors in Envisense

module are all IoT gateways, and so the module itself an IoT gateway, The portal is

Figure 3.1 Building Asset and device asset

20

configured in a way so that observed time-series data are stored in the InfluxDB database

continuously, and in the Node-RED IoT platform, the InfluxDB node is configured by

entering the server ID, Database username and credentials. By doing the mentioned

procedures, we can able to connect with the database, and with the aid of the SQL query

and JavaScript, we can obtain the data field such as temperature, humidity, and so other

fields.

3.4 Classroom Prototype

This section will explain the detail configuration of each sensor in the module and

its purpose of measuring the physical quantity. One can see how the data is acquired from

the DB and visualized via the dashboard and how the data is analyzed for furtherly and

utilized for the development of the application. The configuration is for per classroom,

and the same model can be scalable to other classes in the building with small changes.

Each sensor configuration in Node-RED is explained separately in their respective field

sections.

 As mentioned earlier, the details about the credentials, IP address, and algorithms

are not explained in the section because of the security concerns; only the general

procedures are explained. The model of the overall dashboard for a classroom prototype

can be seen from Figure 3.29.

3.4.1 Battery State observation

The Envisense sensor module is incorporated with the battery source, which is

used as a standby and utilized when the power failure and the sensor module consist of a

Figure 3.2 Network communication between the device and Node-RED

21

local data storage unit that is used whenever the server instance is down. This act

observing the battery state is a safety feature, and by this, we will ensure that there is no

data loss whenever the server instance is down.

So, there is a primary necessity to observe the state of the battery. This observation

will check whether the battery state is low or not, and if the battery is low, then the output

will be triggered as “TRUE,” or else the output will be “FALSE.”

Figure 3.3 shows the configuration for observing the battery state via the Node-

RED platform. From that figure, you can see that an “Injection node” is used to trigger

the operation further after the deployment of the flow. This injection node’s output is the

input to a counter, and when each time counter gets input from the injection node, then

it will add one with the previous integer value, and initially, the counter is set at zero. This

counter variable is the replication of the primary id column, and it is synchronized with

the primary id column in the DB. So, the counter value will be continuously updated in

the query node in each time the injection node is triggered, and this query is used to fetch

the row data from the battery column entry in the InfluxDB database. The value fetched

from the database will be in an array object with two entries on being the primary id

column value, and the other is the corresponding battery state. Since we are interested in

the battery state, so we need to split the array object, and for splitting the object, the split

node is used; this will split the value in array object and returns the mentioned scalar

value. The output from the split node is transported in the msg.payload variable to the

other nodes.

The msg.payload variable is the generic variable of the Node-RED platform we

need to convert the variable name and this to set in name indicating the particular module

Figure 3.3 Node-RED dashboard view for observing the battery state

22

this will be very helpful when we are auditing the log files because we have other sensor

values to be observed and all will be stored in the same msg.payload format, and so when

we are doing auditing, we cannot be able to understand which data is for what. So, it’s

strictly recommended to change the default variable name.

The battery state is displayed in the dashboard, and if the battery state is low, it

configured in a way in the Node-RED platform to send an email to maintenance person

automatically without the permission from the Building administrator this is done in this

way because the battery is the primary requirement in the module to ensure to provide

power when the power source is failed and to maintain functionalities of the onboard

memory device, the dashboard output stating the battery state can be seen from the

Figure 3.4.

Figure 3.4 Node-RED configuration for observing the battery state

23

3.4.2 CO2 Measurement

According to a study from the Harvard School of Public Health found that carbon

dioxide has a direct, negative effect on human decision-making and cognition [3]. These

impacts were observed at CO2 levels that most people and their children   are frequently

exposed to. So, the exposure to CO2 is not only on the outside; nowadays, even inside the

classrooms, offices, and homes, we are exposing to CO2. So, there is a strong

recommendation to us to measure the CO2 level at the school since a student averagely

spends around more than half of the day inside the classroom, and since an increase in

CO2 level harms the human health, we need to maintain the CO2 concentration in

recommended levels.

So, for all reasons mentioned above we need to maintain the appropriate CO2 level

in the room, our Envisense module has a CO2 measurement sensor, and the

Configuration of CO2 sensor in the Node-RED platform can be seen from Figure 3.5

shows the configuration for observing the CO2 level via the Node-RED platform. From

that figure, you can see that an “Injection node” is used to trigger the operation further

after the deployment of the flow. This injection node’s output is the input to a counter,

and when each time counter gets input from the injection node, then it will add one with

the previous integer value, and initially, the counter is set at zero. This counter variable is

the replication of the primary id column, and the values form the counter is synchronized

with the primary id column in the DB. So, the counter value will be continuously updated

in the query node in each time the injection node is triggered, and this query is used to

fetch the row data from the CO2 column entry in the InfluxDB database. The value fetched

from the database will be in an array object with two entries on being the primary id

column value, and the other is the corresponding CO2 value. Since we are interested in

the CO2 value, so we need to split the array object, and for dividing the object, the split

node is used; this will split the value in array object and returns the mentioned scalar

value. The output from the split node is transported in the msg.payload variable to the

other nodes.

24

Figure 3.5 Node-RED configuration for observing the CO2

Figure 3.6 Dashboard view of CO2 Timeseries graph

25

The CO2 value from the split node is then fed to a function nodes, which has the

function to change the default variable name to the msg.carbondioxide this is done

because it will be useful when we checking the log files then it pushes the msg to the

dashboard (which is used for the building administrator visualization) and other

functions nodes such as average node, alert node.

The average function node which will take the average over the last one hour (i.e.,

500 samples) and will push the value to the specified dashboard. Finally, the alert node

Figure 3.7 Dashboard view of Average CO2 Timeseries graph

Figure 3.8 Dashboard view of current CO2 via gauge

26

has a function that will describe the state of the carbon dioxide level in the classroom. The

time-series CO2 graph is seen from Figure 3.6, the average CO2 time-series graph and the

alert message are seen in figure 3.7, and the current value of the CO2 is seen from the

gauge(Figure 3.8).

3.4.3 Humidity Measurement

The indoor air quality is vital for the health and academic success of the students.

So, to maintain good air quality apart from other factors, humidity is one of the essential

elements for keeping the air quality good in the given area (i.e., classroom) [4]. The ideal

humidity level is around 30-50%, and any deviations outside these parameters can affect

the student's and professor's health. Both low and high level of humidity has an adverse

effect, so we need to maintain an average level concerning any internal and external

changes.

So, for all reasons, as mentioned above, we need to maintain the appropriate

humidity level. Our Envisense module has a humidity measurement sensor, and the

Configuration of humidity sensor in the Node-RED platform can be seen from Figure 3.9.

Figure 3.9 Node-RED configuration for observing the Humidity

27

From that Figure 3.9, you can see that an “Injection node” is used to trigger the

operation. Further, after the deployment of the flow, this injection node’s output is the

input to a counter, and when each time counter gets input from the injection node, then

it will add one with the previous integer value, and initially, the counter is set at zero. This

counter variable is the replication of the primary id column, and it is synchronized with

the primary id column in the DB. The counter value will be continuously updated in the

query node in each time the injection node is triggered, and this query is used to fetch the

row data from the humidity column entry in the InfluxDB database. The value fetched

from the database will be in an array object with two entries on being the primary id

column value, and the other is the corresponding humidity value. Since we are interested

in the humidity value, so we need to split the array object, and for dividing the object, the

split node is used. This will split the value in an array object and returns the mentioned

scalar value. The output from the split node is transported in the msg.payload variable to

the other nodes.

The humidity value from the split node is then fed to three function nodes firstly

to the message setting node, which has the function to change the default variable name

to the msg. humidity, this is done because it will be useful when we were checking the log

files or debug node, then it also has the function to return the message to the dashboard

(which is used for the building administrator visualization). Secondly, the average

function node which will take the average over the last one hour (i.e., 3600 samples) and

Figure 3.10 Dashboard view of Humidity Timeseries graph

28

will push the value to the specified dashboard. Thirdly to the alert node function and

which will describe the level of the humidity level in the classroom. The time-series

humidity graph is seen from Figure 3.10, the average humidity time-series graph and the

alert message are seen in figure 3.11, and the current value is seen via the gauge this can

be seen from Figure 3.12.

Figure 3.11 Dashboard view of average Humidity Timeseries graph

Figure 3.12 Dashboard view of current Humidity via gauge

29

3.4.4 Luminosity Measurement

Lighting is a dominant factor in the brain’s ability to focus. Studies show that

learners in brightly lit environments got higher grades than those in dimly lit classrooms

[5]. It seems that poor lighting reduces the effectiveness of the brain’s power to gather

data. And full-spectrum lighting (like natural light) works best to improve behavior,

create less anxiety and stress, and improve overall health. To make sure that the proper

lighting is available, we need to check the luminosity level in the room.

So, for all reasons, as mentioned above, we need to maintain the appropriate

luminosity level. Our Envisense module has a luminosity measurement sensor, and the

configuration of the luminosity sensor in the Node-RED platform can be seen from Figure

3.13. From the figure, one can see that an “Injection node” is used to trigger the operation

further after the deployment of the flow. This injection node’s output is the input to a

counter, and when each time counter gets input from the injection node, then it will add

one with the previous integer value, and initially, the counter is set at zero. This counter

variable is the replication of the primary id column, and the counter is synchronized with

the primary id column in the DB. The counter value will be continuously updated in the

query node in each time the injection node is triggered, and this query is used to fetch the

row data from the luminosity column entry in the InfluxDB database. The value fetched

Figure 3.13 Node-RED configuration for observing the Luminosity

30

from the database will be in an array object with two entries on being the primary id

column value, and the other is the corresponding luminosity value. Since we are

interested in the luminosity value, so we need to split the array object, and for dividing

the object, the split node is used; this will split the value in array object and returns the

mentioned scalar value. The output from the split node is transported in the msg.payload

variable to the other nodes.

Figure 3.14 Dashboard view of Luminosity Timeseries graph

Figure 3.15 Dashboard view of current Luminosity via gauge

31

The luminosity value from the split node is firstly sent to the message setting node

which has the function to change the default variable name to the msg.luminosity this is

done because it will be useful when we checking the log files or debug node then it also

has the function to return msg to the dashboard (which is used for the building

administrator visualization) this can be seen from the Figure 3.14 which show the time-

series graph with some past data and current value can is seen via the gauge such as in

Figure 3.15.

3.4.5 Noise Measurement

Our onboard Envisense module has noise measurement to measure the indoor

noise. We need to maintain the sound in an appropriate dB because the excessive noise

level can create a negative learning environment [6]. The configuration in the Node-RED

platform to obtain the noise level is shown in the Figure. Currently, there is no observation

observed form this sensor. But their purpose of configuring in IoT platform because to

use soon by the building administrators.

3.4.6 People Enumeration

Tracking the movement of people is an essential notion of the smart building

because humans use all the things inside the building or classroom or an office (in our

case by students or by professors or by maintenance people or some other university

Figure 3.16 Node-RED configuration for observing the Noise level

32

officials) and so by tracking them we can automatically control the devices such as light,

ventilation and heating appliances and make them work automatically, this can eradicate

the human negligence, and this will set a path to use the energy and resource in a most

optimized manner. Moreover, in our ground, the installed Envisense module from the

classroom has a thermal camera and counters. The thermal camera will detect how many

people inside and outside and updates in people in counter, and with the value-from PIR

and value from the people inside, we can obtain the classroom occupancy; this is

explained in section 3.6.1.

3.4.6.1 People In

With the aid of the thermal camera and counter, we count the total number of

people inside the classroom, and the Node-RED configuration for obtaining the people in

value is seen from Figure 3.17.

3.4.6.2 People Out

With the aid of the thermal camera and counter, we count the total number of

people inside the classroom, and the Node-RED configuration for obtaining the people

out value is seen from Figure 3.18.

Figure 3.17 Node-RED configuration for observing the peoplein value

33

3.4.7 PIR Measurement

The Passive Infrared sensor is mostly used as motion detectors; in general, this

sensor is correlated with lighting device switching on/ off automatically when it detects.

The Configuration of the PIR sensor in the Node-RED platform can be seen from

Figure 3.19. From the figure, we can see that an “Injection node” is used to trigger the

operation further after the deployment of the flow. This injection node’s output is the

input to a counter, and when each time counter gets input from the injection node, then

it will add one with the previous integer value, and initially, the counter is set at zero. This

counter variable is the replication of the primary id column, and it is synchronized with

the primary id column in the DB. The counter value will be continuously updated in the

query node in each time the injection node is triggered, and a query is used to fetch the

row data from the PIR column entry in the InfluxDB database. The value fetched from the

database will be in an array object with two entries on being the primary id column value,

and the other is the corresponding PIR value. Since we are interested in the PIR value, so

we need to split the array object, and for dividing the object, the split node is used; this

will split the value in array object and returns the mentioned scalar value. The output

from the split node is transported in the msg.payload variable to the other nodes.

Figure 3.18 Node-RED configuration for observing the peopleout value

34

The PIR value from the split node is then fed first to the message setting node

which has the function to change the default variable name to the msg.carbondioxide this

is done because it will be useful when we are checking the log files then it also has the

function to return msg to the dashboard.

Figure 3.19 Node-RED configuration for observing the PIR value

Figure 3.20 PIR Visualization in dashboard

35

3.4.8 Seismic level

In our onboard Envisense module has a sensor to measure the seismic level, but

currently, we are not observing the value from this sensor, but still, the configuration is

made in the IoT platform and used soon. the setup for observing the seismic level via the

Node-RED platform can be seen from the Figure

3.4.9 Temperature Measurement

The temperature is an essential factor in any room or office, or building or home

because and inappropriate heat can cause discomfort for people who are inside the

building [7]. So, the place like classrooms should be taken utmost care because of

discomfortable (too high temperature or too low temperature) can affect the students’

performance.

So, for all the reasons mentioned above, we need to maintain the appropriate

temperature level. Our Envisense module has a temperature measurement sensor, and

the Configuration of the temperature sensor in the Node-RED platform can be seen from

Figure 3.6 shows the configuration for observing the temperature level via the Node-RED

platform. From that figure, you can see that an “Injection node” is used to trigger the

operation further after the deployment of the flow. This injection node’s output is the

input to a counter, and when each time counter gets input from the injection node, then

Figure 3.21 Node-RED configuration for observing the seismic level

36

it will add one with the previous integer value, and initially, the counter is set at zero. This

counter variable is the replication of the primary id column, and the counter is

synchronized with the primary id column in the DB. The counter value will be

continuously updated in the query node in each time the injection node is triggered, and

this query is used to fetch the row data from the temperature column entry in the

InfluxDB database. The value fetched from the database will be in an array object with

two entries on being the primary id column value, and the other is the corresponding

temperature value. Since we are interested in the temperature value, so we need to split

the array object, and for breaking the object, the split node is used; this will cut the value

in array object and returns the mentioned scalar value. The output from the split node is

transported in the msg.payload variable to the other nodes.

The temperature value from the split node is then fed to three function nodes firstly

to the message setting node which has the function to change the default variable name

to the msg.temperature this is done because it will be useful when we checking the log

files or debug node then it also has the function to return msg to the dashboard (which is

used for the building administrator visualization). From the message setting node to the

average function and alert nodes, the average function node will take the average over the

Figure 3.22 Node-RED configuration for observing the temperature level

37

last one hour (i.e., 3600 samples) and will push the value to the specified dashboard.

Thirdly to the alert node function and which will describe the level of the temperature

level in the classroom. The entire temperature sensors dashboard visualization can be

seen from the figure.

Figure 3.23 Dashboard view of Temperature Timeseries graph

Figure 3.24 Dashboard view of average Temperature Timeseries graph

38

3.4.10 TVOC Measurement

For maintaining the indoor air quality apart from the humidity and temperature,

we need to check the level of volatile organic compounds inside the room because the VOC

has potential health effects such as Sensory Irritation, Cognitive abilities, and sick

building syndrome [3].

So, for all the reasons, as mentioned above, we need to maintain the appropriate

TVOC level. Our Envisense module has a TVOC measurement sensor, and the

Configuration of TVOC sensor in the Node-RED platform can be seen from Figure 3.25.

From the figure, we can see that an “Injection node” is used to trigger the operation

further after the deployment of the flow. This injection node’s output is the input to a

counter, and when each time counter gets input from the injection node, then it will add

one with the previous integer value, and initially, the counter is set at zero. This counter

variable is the replication of the primary id column, and it is synchronized with the

primary id column in the DB. The counter value will be continuously updated in the query

node in each time the injection node is triggered, and this query is used to fetch the row

data from the TVOC column entry in the InfluxDB database. The value fetched from the

Figure 3.25 Node-RED configuration for observing the TVOC level

39

database will be in an array object with two entries on being the primary id column value,

and the other is the corresponding TVOC value. Since we are interested in the TVOC value,

so we need to split the array object, and for breaking the object, the split node is used; this

will split the value in array object and returns the mentioned scalar value. The output

from the split node is transported in the msg.payload variable to the other nodes.

The TVOC value from the split node is then fed to three function nodes firstly to

the message setting node, which has the function to change the default variable name to

the msg.TVOC is done because it will be useful when we are checking the log files or debug

node, then it also has the function to return msg to the dashboard (which is used for the

building administrator visualization). Secondly, the average function node which will take

the average over the last one hour (i.e., 3600 samples) and will push the value to the

specified dashboard. Thirdly to the alert node function and which will describe the level

of the TVOC level in the classroom. The entire TVOC sensors dashboard visualization can

be seen from the figure.

Figure 3.26 Dashboard view of TOVC Timeseries graph

40

3.4.11 White Level Measurement

The white level measurement is related to the white noise measurements; for now,

we are not using this sensor; it's set up for the future purpose. But the configuration is

done in the platform, and at the time of using the node will be deployed, and the

configuration in the Node-RED platform is seen from Figure 3.28.

Figure 3.27 Dashboard view of average TVOC Timeseries graph

Figure 3.28 Node-RED configuration for observing the white level

41

Figure 3.29 Full dashboard view for a classroom

42

3.5 Comfort Indices

With the measurement of temperature and relative humidity from the classroom,

we can able to calculate the various scales of comfort indices, and they are as follows.

3.5.1 Dewpoint Temperature

By calculating the dewpoint value, we can necessarily measure the atmospheric

moisture in the classroom [8]. The TD value can be calculated based on equation 3.1, and

TD value is displayed in the user’s dashboard (Figure 3.15), and the configuration in Node-

RED is merely effortless and can be seen from Figure 3.30. We use a function node

(Dewpoint) where it gets the value of temperature and relative humidity from the global

variable of RH and T from the sensor measurements using the get function, the equation

3.1 is written in the function node, and then a new value is calculated every time the

injection node is triggered.

𝑻𝑫 = (
𝑯

𝟏𝟎𝟎
)

𝟏
𝟖⁄

× (𝟏𝟏𝟐 + 𝟎. 𝟗 × 𝑻) + 𝟎. 𝟏 × 𝑻 − 𝟏𝟏𝟐 (3.1)

3.5.2 Discomfort Index

By calculating the discomfort index, we can able to figure out how the occupants

in the classroom feel [9]. The DI value is calculated by using equation 3.2, and the Scale

of discomfort index is read from table 3.5, and the configuration in Node-RED is merely

effortless, and it is seen from Figure 3.31. We use a function node (Discomfort Index)

where it gets the value of temperature and relative humidity from the global variable of

RH and T from the sensor measurement using the get function. The equation 3.2 is

Figure 3.30 Node-RED configuration for calculating Dewpoint Temperature

43

written in the same node function node. And then, a new value is calculated and updated

in the dashboard every time the injection node is triggered.

𝑫𝑰 = 𝑻 − (𝟎. 𝟓𝟓 × (𝟏 − 𝟎. 𝟎𝟏𝑯) × (𝑻 − 𝟏𝟒. 𝟓)) (3.2)

Range of Discomfort Index Scale of Comfort

Below 21oC No discomfort

21oC to 24oC Under 50% population feels discomfort

24oC to 27oC Most 50% population feels discomfort

27oC to 29oC Most of the population feels discomfort

29oC to 32oC Everyone feels severe stress

Above 32oC State of a medical emergency

Table 3.2 Range and Scale of Discomfort Index

3.5.3 Heat Index

The heat index (HI) or humiture is an index that combines air temperature and

relative humidity, and HI is sometimes referred to as the apparent temperature, which is

a measure of how hot it feels [10]. The range of heat index and scale of comfort can be

read from Table 3.4, the value of HI is calculated by equation 3.3, and the configuration

in Node-RED is merely comfortable. We use a function node (Heat Index) where it gets

the value of temperature, and relative humidity from the global variable of RH and T from

Figure 3.31 Node-RED configuration for calculating Discomfort Index

44

the sensor measurements using a get function, and the equation 3.3 is written in the node,

and the new value is calculated every time the injection node is triggered, and the scale is

selected based on the value obtained through the calculating the equation 3.3 and then

HI value and the corresponding scale of comfort is then pushed to dashboard the

configuration in the Node-RED can be seen from the Figure 3.32.

𝑯𝑰 = 𝟎. 𝟓 × (𝑻 + 𝟔𝟏 + [(𝑻 − 𝟔𝟖) × 𝟏. 𝟐] + [𝑹𝑯 × 𝟎. 𝟎𝟗𝟒])

(3.3)

Range of Heat Index Scale of Comfort

26oC to 32oC

Caution: fatigue is possible with

prolonged exposure and activity.

Continuing activity could result in heat

cramps.

32oC to 41oC

Extreme caution: heat cramps and heat

exhaustion are possible. Continuing

activity could result in heatstroke.

41oC to 54oC

Danger: heat cramps and heat exhaustion

are likely; heatstroke is probable with

continued activity.

Above 54oC Extreme danger: heat stroke is imminent.

Table 3.3 Range and Scale of Heat Index

Figure 3.32 Node-RED configuration for calculating Heat Index

45

3.5.4 Humidex

The humidex (short for humidity index) is an index number used by Canadian

meteorologists to describe how the weather feels too average person by combining the

effect of heat and humidity [4]. The range and scale of Humidex can be read from Table

3.4, and the value of humidex is calculated by equation 3.4, and vapor pressure is

calculated by using equation 3.5, the value is used in humidex equation, and the

configuration in Node-RED merely is easy we use a function node (humidex) where it gets

the value of temperature and relative humidity from the global variable of RH and T in

the sensor measurements using a get function and the equation 3.4 and equation 3.5 are

written in the function node, and whenever the injection node is triggered new value is

calculated and pushed to the dashboard node configuration for humidex is seen from

Figure 3.33.

𝑯𝒖𝒎𝒊𝒅𝒆𝒙 = 𝑻 + (
𝟓

𝟗
× 𝒆−𝟏𝟎) (3.4)

e =(𝟔. 𝟏𝟏𝟐 × 𝟏𝟎(𝟕.𝟓×𝑻 (𝟐𝟑𝟕.𝟕+𝑻)⁄)×(𝑯
𝟏𝟎𝟎⁄)) (3.5)

Figure 3.33 Node-RED configuration for calculating Humidex

46

Range of Humidex Scale of Comfort

20oC to 29oC Little to no discomfort

30oC to 39oC Some discomfort

40oC to 45oC Significant Discomfort; avoid exertion

Above 45oC Dangerous; Heatstroke quite possible

Table 3.4 Range and Scale of Humidex

3.5.5 Temperature Humidity Index

With the measure THI, we can able to find the reaction of the human body to a

combination of heat and humidity [10] [7]. From the equation 3.6, we can calculate the

THI value, and from the Table 3.6 we can read the range and scale of comfort of the THI

and the configuration in Node-RED merely is simple, and we use a function node

(Temperature Humidity) where it gets the value of temperature, and relative humidity

form the global variable of T and RH using a get function, and the equation 3.6 is written

in the function node, and the new value is calculated every time the injection node is

triggered, the configuration in the Node-RED can be seen from the Figure 3.34.

𝑻𝑯𝑰 = [[𝟏. 𝟖 + 𝑻𝒂 − (𝟏 −
𝑯𝒂

𝟏𝟎𝟎
) × (𝑻𝒂 − 𝟏𝟒. 𝟑)] + 𝟑𝟐]

(3.6)

Figure 3.34 Node-RED configuration for calculating Temperature Humidity Index

47

Range of Temperature Humidity

Index
Scale of Comfort

Below 68 No discomfort

68<THI<72 Slightly discomfort

72<THI<75 Discomfort

75<THI<79 Alert

Above 79 Emergency

Table 3.5 Range and Scale of Temperature Humidity Index

3.5.6 Wind Chill Index

The wind chill index measures how cold people feel when outside. The wind chill

is based on the rate of heat loss from exposed skin caused by wind and cold [11]. As the

wind increase, it draws heat from the body, driving down skin temperature and eventually

the internal body temperature the windchill index value is calculated by the equation 3.7

and the range and scale can be read from the Table 3.7 and the configuration in Node-

RED merely is easy we use a function node (Windchill Index) where it gets the value of

outside temperature and wind speed (these values are obtained through third-party

weather prediction platforms, and details of this will be explained in the upcoming section

3.6.4) from the global variable using a get function, and the equation 3.7 is written in the

node, and the new value is calculated every time the injection node is triggered, the

configuration in the Node-RED can be seen from the Figure 3.35.

𝑾𝑪𝑰 = 𝟏𝟑. 𝟏𝟐 + 𝟎. 𝟔𝟐𝟏𝟓 × 𝑻𝒂 − 𝟏𝟏. 𝟑𝟕 × 𝑽𝟎.𝟏𝟔 + 𝟎. 𝟑𝟗𝟔𝟓 × 𝑻𝒂 × 𝑽𝟎.𝟏𝟔 (3.7)

Figure 3.35 Node-RED configuration for calculating WCI

48

Range of WCI Index Scale of Comfort

-1.11 to -9.4 Low Risk

-9.4 to -26.11 Moderate Risk

-26.11 to -45.56 Cold

-45.56 to -59.44 Extreme

-59.44 below Very Extreme

Table 3.6 Range and Scale of WCI Index

3.5.7 Summary of Comfort Index results from the dashboard point of view

The above all section explains how to calculate the comfort indices in Node-RED

and all the comfort indices values are displayed in the dashboard we can see this form the

Figure 3.14. By going through Figure 3.36, we can notice that from the “discomfort index,”

it shows that “most 50% population feels discomfort” because of the controller where not

well tuned at the moment of reading.

3.6 Application

The primary purpose of collecting the data is to utilize it and find the trend, and

based on the data, we can decide and to calculate other correlated values, and we are

developing some application collected data, etc.

Figure 3.36 Dashboard View of Comfort Index for a classroom

49

3.6.1 People occupancy

From section 3.4.6. So to find out the people occupancy we need to utilize the values from

the people in and people out values and idea behind to calculate the people occupancy is

just simple math we need to make the difference between the people in and people out.

For doing this, we do not want to connect the database again. As explained in section

3.4.5.2 and 3.4.5.3, these variables are already set as a global variable, so we can call the

global variables via getting function and find the difference between them to see the

occupancy, and these values are displayed in the dashboard. The program configuration

is shown in Figure 3.37.

3.6.2 Janitor service

Again, with the help of the section 3.4.5, we can develop janitor service, the idea

behind this is we can automate the process of scheduling the cleaning service. To

implement this, we need to count the people with the help of the value from the people

detection sensor, and we will set the threshold to indicate the cleanliness of the area as

clean, somewhat litter, an area completely litter. Moreover, this implantation in Node-

RED is shown in Figure 3.38

Figure 3.37 Node-RED configuration for calculating People occupancy

50

3.6.3 Average Floor values

3.6.3.1 Average floor temperature

The average floor temperature can be done by getting the values of the classroom

on each floor. For the sake of the documentation, The configuration is just for the ground

floor (floor 0), and the same type of setup is done for the rest of the stories.

The average floor Node-RED configuration is shown in Figure 3.39,

Figure 3.38 Node-RED configuration for janitor service

Figure 3.39 Node-RED configuration for average floor temperature

51

3.6.3.2 Average floor Humidity

The average floor humidity can be done by getting the values of the classroom on

each floor. For the sake of the documentation, The configuration is just for the ground

floor (floor 0), and the same type of setup is done for the rest of the stories.

The average floor Node-RED configuration is shown in Figure 3.40,

3.6.3.3 Average floor Carbon dioxide level

The average floor carbon dioxide can be done by getting the values of the classroom

on each floor. For the sake of the documentation, The configuration is just for the ground

floor (floor 0), and the same type of configuration is done for the rest of the stories.

The average floor Node-RED configuration is shown in Figure 3.41,

Figure 3.40 Node-RED configuration for average floor humidity

Figure 3.41 Node-RED configuration for average floor carbon dioxide

52

3.6.4 Obtaining weather from Online

The “Openweather.Ltd” provides an online weather forecast and to get this forecast

inside we are using an Openweathermap node and configuring them with an API from the

open weather website the obtained data will be in an object and so to split the data in here,

we are using the function node to split the values and pushes the split value to the

dashboard. This configuration can be seen from Figure 3.42, and the user dashboard can

be seen from Figure 3.43.

Figure 3.42 Dashboard view of open weather forecast

53

Figure 3.43 Node-RED configuration for obtaining the weathercast from open weather map

54

4 MOBILE DEVICE DEPLOYMENT

This section will explain how to install the Node-RED IoT platform in the android

platform and how it can be used for our application. The section says about the endless

possibilities in the mobile platform, and the work is not carried in-depth as it carried in

chapter 3.

4.1 Installation of Node-RED in android platform

To use the Node-RED in an android platform, we need to install the “Tremux app” from

the android app store and use the flowing command lines at the prompt window.

apt update

apt upgrade

apt install coreutils nano nodejs

npm i -g –unsafe-perm node-red

node-red

Then after installing the Node-RED, we can point a browser that is on our phone to

http://localhost:1880.

4.2 Flow editor and dashboard in android device

The configuration is done in the PC, and the same program can be imported to the

mobile platform. However, we want to limit our self while using less function than using

in pc. From the general idea, the mobile device needs to be configured for application

purposes like for janitor where he/she can see the state of floor cleanliness. The

visualization of the Node-RED flow editor in the mobile platform can be seen from Figure

4.1, and the dashboard is seen in Figure 4.2. In a nutshell, this chapter is to show that

there are possibilities to work on an IoT platform on a mobile device.

http://localhost:1880/

55

Figure 4.1 Mobile view of Node-RED flow editor

Figure 4.2 Mobile view of Node-RED dashboard

56

5 CONCLUSION

This chapter summarizes the results of the thesis work and explains the possible

future works.

Making the traditional building as “Smart Building” we are efficiently utilizing the

resources without wastage. The point of this thesis observing the physical parameters

such as temperature, humidity, etc., make them visualize in GUI with the aid of the IoT

platform. By monitoring the data, we can have a general idea about the classroom

condition, and we can improve the classroom environment if needed, and also, we can ha

a prediction about the power usage in a day.

5.1 Possible future works

In the future, if the university decides to make every building on the campus to be

smart, then the Amazon web service can be used as a possible choice of the platform; the

same work can be shifted and can be scaled for the use.

Utilizing AWS, we can use machine learning or artificial neural networks to analyze

the data. And then, this analyzed data can be used by the controllers if they need it.

57

6 BIBLIOGRAPHY

[1] The ThingsBoard Authors, "ThingsBoard Documentation," ThingsBoard , [Online].

Available: https://thingsboard.io/docs/.

[2] Node-RED, "Documentation," IBM, 2016. [Online]. Available:

https://nodered.org/docs/.

[3] J. G. Allen, P. MacNaughton, U. Satish, S. Santanam, J. Vallarino and J. D. Spengler,

"Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and

Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure

Study of Green and Conventional Office Environments," Environmental Health

Perspective, vol. 124, no. 6, pp. 805-812, 2016.

[4] D. N, B. HL and B. CM, "The Importance of Humidityin the Relationship between

Heat and Population Mental Health: Evidence from Australia," PLOS ONE, pp. 1-

15, 2016.

[5] S. A. Samani and S. A. Samani, "The Impact of Indoor Lighting on Students’

Learning Performance in Learning Environments: A knowledge internalization

perspective," International Journal of Business and Social Science, vol. 3, no. 24,

pp. 127-136, 2012.

[6] B. Goswami, D. Y. Hassan and D. A. J. Sarma, "The Effects of Noise on Students at

School: A Review," International Journal of Latest Engineering and Management

Research , vol. 3, no. 1, pp. 43-45, 2018.

[7] M., Puteh, M. h. Ibrahim and M. Adnan, "Thermal Comfort in Classroom:

Constraints and Issues," ELSEVIER, vol. 46, pp. 1834-1838, 2012.

[8] L. A. Wood, "The Use of Dew-Point Temperature in Humidity Calculations,"

JOURNAL OF RESEARCH of the Notional Bureau of Standards , pp. 117-122, 1970.

58

[9] J. Mazon, "The influence of thermal discomfort on the attention index of teenagers:

an experimental evaluation," International Journal of Biometeorology, vol. 58, no.

5, pp. 717-724, 2014.

[10] A. GB, B. ML, and P. RD, "Methods to Calculate the Heat Index as an Exposure

Metric in Environmental Health Research," Environmental Health Perspectives,

vol. 121, pp. 1111-1119, 2013.

[11] R. Osczevski and M. Bluestein, "The new Wind Chill Equivalent temperature chart,"

American metrological Society, pp. 1453-1458, 2005.

[12] D. Goodman and M. Morrison, JavaScript Bible, Sixth Edition, Indianapolis: Wiely

Publishing, Inc., 2007.

[13] K. Henderson, The Guru's Guide to Transact-SQL, Boston: Addison-Wesley

Longman Publishing Co., Inc., 2000.

[14] Z. Chaczko and R. Braun, "Learning Data Engineering: Creating IoT Apps using the

Node-RED and the RPI Technologies," in 16th International Conference on

Information Technology Based Higher Education and Training (ITHET) , Ohrid,

Macedonia, 201`7.

[15] "IoT sensor integration to Node-RED platform," 17th International Symposium

INFOTEH-JAHORINA (INFOTEH), pp. 185-189, 2018.

[16] "IoT Considerations, Requirements, and Architectures for Smart Buildings—Energy

Optimization and Next-Generation Building Management Systems," IEEE Internet

of Things Journal, vol. 4, pp. 269-283, 2017.

[17] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, "Internet of Things (IoT)

communication protocols," in 8th International Conference on Information

Technology (ICIT) , Amman, 2017.

[18] X. F, Y. LT, W. L, and V. A, "Internet of things," International Journal of

Communication System, 2012.

59

