POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione
Master’s Degree in Management Engineering

Wy,
oW 7
A 7

T2
e
v

e

N
“, N
KT

POLITECNICO
MILANO 1863

Master’s Degree Thesis

A digital approach for the automatic
definition of performance evaluation
models for flow-/job-shops

Supervisor Candidate

Prof. Marcello URGO Filippo BORTOLOTTI
Doc. Massimo MANZINI

Student number
905363

Academic year 2019/2020

Abstract

The increasing request of connectivity and interoperability in the manufacturing

sector, in particular for small and middle size companies, creates the need of flexible
and integrated solutions for the management and performance evaluation of a
system.
The objective of this thesis is to define an approach for the representation of a
physical production system and from it developing a procedure for the automatic
generation of performance evaluation models. The approach aims to represent an
ontology based production system in a queuing network trough the definition of
modelling hypothesis and rules. Next step is to apply the model to integrate the
ontology production system to the simulation tool for the performance evaluation.
This integration is possible by analysing both the connected elements to understand
how the data can be extracted from the ontology and how the approximate model
can be imported in the simulation tool. This approach is then verified through the
definition of multiple study case where for each of them, some approximate model
KPIs are compared with the one obtained from a commercial software. Moreover,
a possible representation of assembly system for the performance evaluation tool
has been presented and validated.

Estratto

L’aumento della richiesta di connecttivita e interoperabilita all’interno del settore
industriale crea la necessita di ottenere soluzioni integrate e flessibili per la gestione
e la misurazione delle performance per un sistema produttivo.

L’obiettivo della tesi € quello di definire un approccio per la rappresentazione di
un sistema produttivo fisico e da esso sviluppare una procedura per la generazione
automatica di modelli per la valutazione delle performance. L’approccio mira a
rappresentare un sistema produttivo basato sull’ontologia con un sistema di code
attraverso la definizione di regole e ipotesi di modellizzazione. Il prossimo passo
¢ quello di applicare il modello per intrgrare il sistema produttivo di ontologia al
tool di simulazione per la valutazione delle performance.

Questa integrazione € possible analizzando entrambi gli elementi connessi e capendo
come i dati possano essere estratti dall’ontologia e come il modello approssimato
possa essere importato nel tool di simulazione. Questo approccio € poi verificato
attraverso la definizione di multipli case study dove per ognuno di essi alcuni
KPI del modello approssimato sono confrontati con quelli ottenuti da un software
commerciale. In pil, una possibile rappresentazione di un sistema di assemblaggio
per il tool di valutazione delle performance viene presentata e validata

Table of Contents

List of Tables
List of Figures
1 Introduction

2 State of the art

2.1 Digital system representation L.
2.2 Performance evaluation
2.3 Automatic generation of a performance evaluation model

3 Problem Statement
3.1 Analysis of the production system
3.2 Analysis of the buffer 0oL
3.3 Analysis of the relationship between

4 Solution

4.1 JMT JSIM Formalization
4.1.1 Station definition

4.1.1.1
4.1.1.2

Queue
Source and Sink

4.1.2 Class Definition
4.1.3 Performance Evaluation,
4.2 Data extraction from ontology
4.2.1 Ontology preparation,
4.2.2 Queries definitiono

4221
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5

Physical system stations
Buffer Size 0
Part Types
Process Steps
Assigment of processes steps to machines

II1

10
14
15
17

4.2.2.6 Process steps extraction with Stochastic time . . . 34

4.2.3 Extraction process 36

4.2.4 Data Refinement, 37

4.2.4.1 Physical system stations 37

4242 Buffersize L0 38

4243 Parttypes.o 38

4244 Processsteps 38

4.2.4.5 Assignment of processes steps to machines 39

4.2.4.6 Assignment of stocastic processes steps to machines 39

4247 Parttypeflow 39

4.2.4.8 Buffer and machine merging 40

4.2.4.9 Arrival time and number of population 40

4.3 XML Modelling 40
4.3.1 Heading 44

4.3.2 SOUICE 45

4.3.3 Queuestation 47

434 Sink ... 51

4.3.5 Connections 51

4.3.6 Performance to be evaluated 52

4.3.7 Load of population for closed system 53

4.3.8 Ending 53

4.4 Run Simulation 53
4.4.1 JMT JSIM user interface approach 54

4.4.2 Console simulationrun, 55

4.5 Output Reading and Results Analysis 56

5 Validation of the model 59
5.1 Flowshop 61
5.1.1 Flow Shop single class 61

5.1.2 Flow Shop multiclass 63

5.2 Hybrid flowshop 64
5.2.1 Hybrid flow shop single class 64

5.2.2 Hybrid flow Shop multiclass 66

5.3 Jobshop 68
5.4 Real Industrial case oL 69
5.4.1 JMT JSIM representation 72

6 Conclusion 77
A XML generation 79
Bibliography 81

v

List of Tables

4.1 process plan for SPARQL extraction case study 37
5.1 Process plan flow shop case study 61
5.2 Hypothesis test results for flow shop single class 62
5.3 Hypothesis test results for flow shop single class in blocking situation 62
5.4 Hypothesis test results for low shop multi class 64
5.5 Process plan hybrid flow shop study 65
5.6 Hypothesis test results for hybrid flow shop single class 66
5.7 Hypothesis test results for hybrid flow shop multi class 67
5.8 process plan job shop casestudy 68
5.9 hypothesis test results on job shop production system 69
5.10 processing time of assembly system 71
5.11 hypothesis test results on simplified assembly line 75

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
9.3
5.4
9.5
0.6
5.7
0.8
5.9
5.10
5.11
5.12
5.13
5.14

OntoGui user interface example
Hierarchy of Ontology Modules
Example of a system representation in JMT JSIM user interface . .
Scheme representing JMT JSIM XML structure

OntoGui ontology structure
JMT JSIM representation open hybrid flow shop single class
Ontology structure for system definition
Example for a queuing network with the server.

Solution summary
scheme representing the data extraction process.
Hierarchy of Ontology Modules
SPARQL query case study system representation
XML generation process Lo oo
JMT JSIM simulation parameter

Flow shop physical system
Plant Simulation representation flow shop single class
Plant Simulation representation flow shop multi class
Hybrid flow shop physical system
Hybrid flow shop Plant Simulation system
Plant Simulation hybrid flow shop multi class system representation
Jobshop system representation00
Plant Simulation Jobshop system representation
representation of the assemble hinge
Model of an assembly line similar to the case study one
cosberg assembly line representation
Fork and Join component structure
JMT JSIM representation of Industrial case study
flow shop approximation for the assembly line

VI

11
12
13
13

5.15 Plant Simulation approximation for the assembly line

A.1 XML queue specific generation process

VII

Chapter 1
Introduction

Nowadays, the digital world is acquiring more and more importance. With the new
revolution of Industry 4.0, also manufacturing industry is showing signs of this shift
to the connected environment. The manufacturing industry shows trend towards
automation and data exchange in manufacturing technologies and processes such
as cyber-physical systems, the internet of things devices and cloud computing.
These solutions can be achieved with an interconnected system, where data are
immediately available and updated; grounding on this, a new need of connection
solutions arises.

In particular, manufacturing sector experienced a shift to a continuous improvement
focus exploiting new technologies available on the market. Under this light, also
the production plan design requires solution for the improvement of the efficiency.
During the life cycle of a production system, there could be multiple events that
trigger the change or reconfiguration of the system. Every time the system changes
is it needed to define a new formal representation, a new model of this system
and the performance analysis representation. This performance analysis can be
conducted with an analytical approach or through a simulation by exploiting
different techniques and obtaining results with a different level of detail. The focus
of this thesis is on the simulation side. The process of updating a system can
require multiple step in order to find the best solution. During each step, the
physical model is defined with the new parameters, then the simulation model is
created based on the physical one and the simulation is launched. The performance
are collected and evaluated by comparing the data with the previous one and the
process can start again. A search of the most suitable solution requires multiple
analysis, and for each analysis, multiple update of the system according to the
different representation, such as physical and simulation model.

In the market, there are available simulation tools which let the user define
a single system keeping the formal and performance evaluation representation
connected. The problem is that these software are expensive, which limit their use,

1

1 — Introduction

and have a rigid structure that allows only a little integration with external tools.
In the design and configuration phase, multiple systems, have to be evaluated in
order to obtain the best solution. In this evaluation phase, there are lot of other
elements to be considered together with production KPIs, such as physical location
of the production system, CAPEX and OPEX; these parameters to include in the
choice are scattered along different tools. The lack of integration of the commercial
software requires a manual update of every single representation. A definition of
an automatic tools for the generation and performance estimation of a system
could improve the efficiency of this process. The objective of the thesis is to define
a model for the representation of a physical production system from a ontology
representation to a queuing network representation and, based on that, to develop
a tool for the conduct of automatic performance evaluation without the need of a
manual update.

This solution is possible through the use of open-source tools in order to obtain
the maximum possible flexibility. For this reason, we focus on the use of ontology
representation. The use of an ontology-based representation in the manufacturing
environment is increasing in the lasts years thanks to open standards which allow
the creation of connections between system [1]. The use of an ontology allows
us to formally represent the production system and use this representation as a
way to integrate different software coming from different ICT companies, including
performance evaluation tools.

The first barrier to the diffused use of ontology is an efficient instantiation

and management tool [2]. For this reason, OntoGui software can be adopted to
overcome this obstacle and define the production system with simplicity through
the use of its GUL
Regarding the choice of the simulation tool, we consider the use of Java Modelling
Tool (JMT from now on), a free open source suite. The suite uses an XML data
layer that enables full re-usability of the computational engines. It consists of six
tools, such as SimWiz (Java Simulation Textual) , JSIM Graph (Java Simulation
Graphic), JMVA (Java Mean Value Analysis), JMCH (Java Markov Chain), JABA
(Asymptotic Bound Analysis) and JVAT (Java Workload Analyzer Tool). In
particular, we will consider the use of JMT JSIM that allows exact and approximate
analysis of single-class or multi-class product-form queuing networks, processing
open, closed or mixed workloads.
With this availability of tools whose flexibility allows a high level of iteroperability,
there is the need to understand how to create this connection. After the definition
of the model from the ontology structure to the queuing network representation, the
focus of the research is moved to develop a bridge between the system represented in
the ontology for the performance evaluation process. We will work on the definition
on this connection using the OntoGui for the ontology representation and JMT
JSIM as the performance evaluation tool.

2

1 — Introduction

The results of this thesis will be part of the results of EU funded project called
VLFT: Virtual Leaning Factory Toolkit [3]. The aim of VLFT convey the results
of research activities in the field of digital manufacturing, starting from modelling,
performance evaluation and virtual and augmented reality into the curriculum of
engineering students. The final objective of this project is to use these virtual tools
to support the students in learning complex engineering concepts and enhance
their learning ability. The project consortium is composed of three different uni-
versities in Europe: Politecnico di Milano, Tallinna Tehnikaulikool and Chalmers
Tekniska Hogskola, and two research centers: STIIMA-CNR and MTA-SZTAKI.
VLFT project is supported and funded from ERASMUS +, for this reason they
are defined also activities in collaboration with foreign students and workshop in
project partner premises.

The project also includes the definition of a case study grounding on a real produc-
tion system. The industrial partner is Cosberg, an italian manufacturing company
located in Bergamo area. Cosberg design and create machines and modules for the
automation of assembling processes. One of their new assembly line is used as the
case study to be developed. This case study will be used for the application and
testing for the generation tool developed.

In Chapter 2, one it is defined is is defined the state of the art si discussed, where
it is also explained the use of the tools used. In Chapter 3, it is described the
creation of the model requiring the analysis of both the element of the connection
in order to define hypotheses and rules for the a valid approximation. Chapter 4
discusses how the data defined necessary for the model definition can be obtained
from the ontology and how its model representation has to be encoded to define
the system in JMT JSIM for the performance evaluation. This step requires the
understanding of the OntoGui structure and the XML standard input required by
the simulation software.

Chapter 5 involves the real performance evaluation and its verification to prove
the model ability to approximate the original system.

Final consideration of the possibilities and the limits of the model, and possible
future improvement are defined in Chapter 6 .

Chapter 2

State of the art

In this chapter is being analysed the context in which this thesis is being developed
and what is the current research in the topic defined. In the first part it is
introduced the new connection need that is increasing in the industry. In Section
(2.1 it is defined what are the possible solution for the digital representation of a
system. Section 2.2 discusses about the performance evaluation issue and what is
the solution chosen.

The thesis lies in the new industrial revolution called Industry 4.0 . This new
revolution brings with itself a new definition of system: there are not more small
systems with a limited way to communicate with each others, but everything is
connected. Each system should be able to exchange data with others without any
limitation. In particular, the manufacturing sector shows a great interest in this
change, due to the presence of multiple sub system within a single system: the
physical production line, its digital representation on various tools, the sensors
able to collect data from the line and the KPIs obtained. The different sub-system
representation are all independent, for this reason any update on the real system
requires the change to be manually defined on each of its representation. This
updating process can be addressed by the creation of connections between the
different representations that a change in one of it can also be applied simultaneously
to the linked systems. Due to the increase of digital tools in the industry, the need
of interoperability is more and more critical.

The market already provided some solutions with professional digital tools which
includes "all in one" solutions to include different type of representations of the
system. These software can answer to the need of the manufacturing sector but
present some limitations. For example, the interoperability of the various system
representations is defined only within the tool boundaries, connections from it to
an external one is limited or even not possible. Moreover, these solutions can be
too expensive for small and middle players in the industry forcing them to rely on

4

2 — State of the art

different and scattered solutions. In particular, they have to rely on various tools for
the representation of physical production system and their performance evaluation.
For this reason a change of even a single parameter in the physical system requires
the need to update of the simulation model. During a system creation or update
the number of times that a system has to be changed are countless, each parameters
has its effect on the system, thus, the possibilities to analyse are wide; a lack of
connection is only decreasing the efficiency of the whole process. This issue will be
analysed in detail in this chapter.

Research on the topic has been conducted over the years looking for a way to
create an open system representation which could grant connections with other
digital tools where data are defined in different structures. In particular for the
performance evaluation field this has been deeply studied.

In this problem there are two element to analyse before the definition of a connec-
tion model: the system representation and the performance evaluation.

2.1 Digital system representation

The digital system representation is the key structure of the whole process since all
tools refer to this definition for their execution. Due to its central position, it is
crucial to find a structure that allows the integration of fragmented data models
into a unique model without losing the notation and style of the individual ones.
An effective data model has to include information in relation to both the physical
production system and the intangible representation given by the products and their
production plans. Different solutions can be found in the existing documentation.
[1].

For example, consider the ANSI/ISA-95 [4], which is is an international standard
for the development of interfaces. This standard proves to be effective to represent
processing and production system but has some limits regarding integration with
physical representation tools.

Another solution can be found with the Process Specification Language (PSL)
standard [5]. PSL standard is an ontology-based standard which allows a robust
representation of a process and its characteristic together with a good level of
interoperability.

A valuables standard to consider is The Industry Foundation Classes (IFC) standard
by buildingSMART [6] which provides most of the definitions needed to represent
tangible elements of a manufacturing systems and it is possible to include also
the intangible ones through definitions provided. The connection capability of the
PSL standard is given from the ontology-based structure. An ontology encloses the
representation and the definition of categories, properties and connections between

5

2 — State of the art

entities defined in a single or multiple system. Their open definition allows the
integration without the risk of losing level of details of the data such as the notation
[7].

One of the most common languages for an ontology definition is OWL, Web Ontology
Language, it is a semantic web language designed for ontology representation. The
benefit given from an ontology-based system are countermeasured by a difficulty
instantiation of the OWL ontology which limit their use to the general public. A
solution to this issue is proposed through the use of OntoGui [2]. OntoGui is a tool
presenting a Graphical User Interface for Rapid Instantiation of OWL Ontologies.
The tool allows the definition of both physical production system and product
process plan through a user interface which deeply simplify the process. It can be
possible to see the user interface in Figure 2.1 .

B | System Design

X
Help
PART TYPES PROCESS PLANS
Select v]| seturt Delete Select | ProcessPlan02 V]| seturt Delete Saveon
Local Repo
New of dass | ArtfactType «|in [ProjecttiybridFio || ¢reate New in | ProjecttybridFlow || Create
PROCESS STEPS
lanage Selet rocess Step uccessors of Process Step ssignments of Process Step
52 01 Manage Selected Process Sty s f Process Stey A ts of Process Ste
P2_02 *Local URL: P2_01 P2 02 Machine Machine T
P2.03 = Processing time: EXPONENTIAL { mean chine Type
(=1/lambda)=0.5 } [s] * Resource time = processing time
)]EXPONEN'IAL{ mean (=1/lambda)=0.5 }
s
 Resource usage: 100%
Set URD Set time Delete
v Remove
settype — e
Add Process Step Add successor
Add assignment
addew ||] add g
M2
[P2.03 - Add v
Setdlass | | ManufacturingTask v]
SYSTEMS
Select System Create New System
[Physcasysoz [e | | ot coss in [Protectrvbroron][greate
Machines in System Buffers in System
Manage Selected Machine Manage Connections of Selected Machine Manage Failure Modes of Machine
u; SetURI || Remove || Delete Upstream Downstream ‘ M1_stM_failedSt. 1 o
M4 B1 Remove g§ Remove
set -
Settype Add Connection Add Connection
Add Machine to the System Add Add
aad o2 -
Show only elements n the System Set |[Add ||Dekete

Figure 2.1: OntoGui user interface example

OntoGui is defined by different modules, some of them are pre-defined, while

others provided as input or to be developed. The hierarchy of the ontology modules
is depicted in Figure 4.3.

2 — State of the art

Hierarchy of Ontology Modules

®
kS

@ IFC4_ADD1_exten h
w

I © IFC4_ADD1_rules } [© IFC4_ADD1 J

& dmanufacturing = & 1S014648-10 { © express

: - . Thox
(DataModel)

Abox
(Instances)

@ LbProduciType

@Lmacﬁnerype] l@LibElmemType | I@Li}ﬂuidir\g I

Modules
provided as input
Modules to be

developed

& FactoryProjectd
1

Figure 2.2: Hierarchy of Ontology Modules

2.2 Performance evaluation

Once the system representation has been identified, it is needed to analyse the
second element of the connection model: the performance evaluation.

The choice of design for a manufacturing system comes from the evaluation of their
performance in the production process [1]. For this evaluation two main approaches
can be used:

o Analytical model: using mathematical or symbolic relationships to provide a
formal description of the system

o Simulation models: designing a dynamic model of an actual dynamic system
for the purpose either of understanding the behavior of the system or of
evaluating various strategies (within the limits imposed by a criterion or set
of criteria) for the operation of the system.

Analytical model proves faster results but with more approximation while simulation
one can provide a higher level of precision but it is a slower process, moreover,
this high level can only be reached from a really formal and wide definition of the
original production system.

A lot of simulation commercial tools are available on the market but most of them
lack of the connectivity capabilities needed. Moreover, the objective is to rely on
open source software that can be accessible from a wider audience. We consider
the use of JMT [8] tool. This tool is an open source software developed from

7

2 — State of the art

Politecnico di Milano and Imperial College London based on Java language. It
provides six different tools performance evaluation, capacity planning, workload
characterization, and modelling of computer and communication systems. The one
used for the simulation is JMT JSIM which allows the discrete-event simulation
for the analysis of queuing network and Petri net models through a intuitive user-
interface; it can be possible to see an example in Figure 2.3. The simulation is
based in queuing network which is a really important feature to the future definition
of the model.

JMT JSIM is particularly interesting since it works through a XML layer to

JSIMgraph - Graphical Queueing Network and Petri Net Simulator - ValidationXMLProjectHybridFlow_open jsimg
File Edit Define Solve Help

Brml s |2 F| B >nad
hESHE»©-SEIPO[|~=

BT

-
e
*

B
-

o= 1 e e - Sink Class -
st _,_IJ_ S —>4|j S
ﬁ”gﬁ_w_”ﬁ”ﬁ”ﬁﬁ”"?"‘”ﬁ‘

'Séuui_G!nssi N e —>!|)
| o | ‘%bglj:”:”:”f“f""c"*“ﬁzi

‘™S

Figure 2.3: Example of a system representation in JMT JSIM user interface

connect the model definition to the analytical and simulation engine, a scheme
can be found in Figure 2.4. In fact the system to be analysed can be defined
through the GUI or through an XML format input. The second method allows the
possibility of integration with the ontology by defining an appropriate XML based
on the ontology model created.The great diffusion of this markup language makes
the integration easier.

2.3 Automatic generation of a performance eval-
uation model

Once the tools used have been defined, it is needed how to understand how
automatically generate the simulation model which can be represent the ontology

8

2 — State of the art

g ™~ /
S JM\-’A PAS JSIM JMODEL .

l__I____l__I___ L__T

] i
|
[XML Layer l
T
Analytical Simulation
Engine Engine

Figure 2.4: Scheme representing JM'T JSIM XML structure

system.

The challenge of modelling is to define a general workflow to be applied for different
systems but able to represent them correctly. All the steps for the definition of
models and its application have been studied and defined at the end of the previous
century [9]. The model has to be created with clear hypothesis and rules defining
its field of application.

The new challenge is to define the connection between the system representation
and the performance evaluation. Connection between an ontology based system
and an JMT JSIM XML codification is not been defined yet. On the other side,
there are tools for the extraction of data from the ontology exploiting SPARQL
queries. For this reason a coding phase is required to create the connection once
the data are obtained.

With this analysis concluded it can be possible to move to the problem statement
phase of chapter 3, where all the hypothesis and rules of the modelling are defined
according to the knowledge collected in this chapter.

Chapter 3
Problem Statement

In this chapter it defined the model for the system representation. This model
grounds on a set of rules and hypothesis that are defined by an analysis on the
problem presented in Chapter 1.

The chapter is organized as follow: analysis of the problem and identification
of the issues that requires modelling hypotheses, production system issue analysis
(Section 3.1), buffer issue analysis (Section 3.2) and buffer and machine relationship
analysis (Section 3.3).

The starting point of the modelling is the structure that defines the data rep-
resentation in the tools used for the physical system representation and for the
performance evaluation.

A production system in order to be suitable for this model has to respect the
following assumptions:

1. It must represent a flow shop, hybrid flow shop or a job shop;

2. All machines assigned to each process step can be visited with the right
sequence from the part types, thus, the production plan has to be feasible
with respect to the physical system:;

3. each machine has a dedicated buffer;

4. The product of a process plan strictly follow the flow defined, there are no
split, for example reworking.

OntoGui product and physical representadio present an ontology-based formal-
ization which can be find represented in Figure 3.1 [10]. In particular, the modules
represent:

o IfcTypeProduct: Definition of part types;
10

3 — Problem Statement

IfcObjectDefinition

IfcObject

lgcTypeObject|

IfcContext

IfcTypeProduct

IfcProjectLibrary| IfcControl

Y

IfcTypeProcess

IfcProduct

Figure 3.1: OntoGui ontology structure

o IfcTypeProcess: Definition of specific process plans;
o IfcProcess: Definition of specific production process steps;

o IfcProduct: Definition of factory elements like Buffer elements, Machine tools,
Pallets;

o IfcGroup: Definition of transformation systems;

o IfcControl: Definition of a work plan (e.g. production plan) to control the
behaviour of a system.

From this structure, which can also be defined as process-based, the physical system
and the products are defined separately. The reason of this formalization can be
found in the high interoperability that it grants. This tree structure allows the data
to be integrated but on the same way to maintain their original representation.

On the other side JMT JSIM adopt a flow based formalization which results in
a merge between the process plan with the physical system. This structure is easier
for an user to be understood and applied but limits the possible exchange of data
with other tools. This difference between the two formalizations makes necessary
the process of create a model to move from one to another. The differences requires
definition of hypotheses and rules to limit and approximate the system that can be
represented from the model.
It is needed to start from the idea that is at the base of the different representations.
From one side there is the ontology, a way to create flexible data model by integrating
various knowledge domains without loss for any individual one. On the other side
there is a queuing network structure with a very limited flexibility, also due to the
presence of a user interface with increase the restrictions. This difference can be
seen by looking at the data representation of ontology from Figure 3.1 and the
structure of queuing network in Figure 3.2

Before continuing it is important to understand how the the creation of a
production system is defined in OntoGui. This step will help the reader to have a
clear idea on the following steps, please refers to Figure 2.1 for a view on the user

11

3 — Problem Statement

g Hormormo .

Source Class01 - Sink-Class01

=

"o

Figure 3.2: JMT JSIM representation open hybrid flow shop single class

interface. The definition part can be defined into two parts, the first one defines
the creation of a library for the production plan, while in the second defines the
creation of a subfolder, where the previous library is imported, where the physical
system is designed and the process steps can be assigned to the physical machine.

A complete production plan definition is composed into three main steps: the
part type is created, a process plan assigned to the part is created, process steps of
the plan are defined and for each of them it is defined the order and the processing
time. In order to define the physical system the subfolder has to be created and
the previous library imported; at this point it is possible to define each buffer and
machine element in the system with their parameter such as buffer size, and define
the physical connection. Last step is to assign each process step to the machine
needed in order to define the connection between the physical system and the
process plans. For this reason, what really connects the product and the physical
machines is the assignment of a precise machine, or multiple ones in case of parallel
processing, to a process step of a determined process plan to produce/assemble a
part type. This representation of a product defines the ontology as process plan
based.

Thus, the real link between the two entities, physical system and production
plan, is the machine assigned to the process step. As it is discussed later this
definition is critical and must always be considered during the modelling process.
The concept expressed in the previous lines is depicted in Figure 3.3, where the
ramification clearly shows the two part of the ontology connecting trough the
machine assignment. Excluding that point, there is no other connection, thus, due
to this logic, the buffer has no product assignment.

This representation has a great impact on the modelling that will be developed
in the following steps, needing the creation of precise rules and hypothesis on
the representation of the buffers. Moving to the queuing network, before going
into detail it is important to focus its main characteristic. A queuing system is
defined by one or more “customers” waiting for a service by one or more "servers”.
Queue forms due to a not perfect balance between the arrival rate of the customers

12

3 — Problem Statement

Figure 3.3: Ontology structure for system definition

and the service rate of the service. An example can be found in Figure 3.4 A

Source ProductHFS01 - - M3 - Sink ProductHFS01

Figure 3.4: Example for a queuing network with the server

queuing network has different characteristic in the analysis: the number of the
population, the arrival process, the service process, the queue configuration and
the queue discipline. For some of these parameters there is the need to create some
assumption which are defined along the chapter.

Due to this different structure, process plan is assigned differently to the physical
system. The user must define the “class” which represent the products, and the
physical production system. At this point the assignment of the production/assem-
bly processes to the machines is direct, there is no process plan to define.

As explained in Chapter 2, in this kind of network each station is composed in 3
main parts: the queue section, the service section and the routing section. The first
one is responsible for the buffer of the station, the second one to the processing
time and the last one to the direction that each product is taking after leaving the
station. For this reason, the definition of the physical system is merged with the
one of each part type and its process plan.

The addition of the process step characteristic within a station parameter
represents a critical change compared to the Ontology definition. There is a
merging of information that in the original representation are kept separated and
finds the only point of contact through the assignment of the machine to a single
process step. In this way, a queuing network eliminates the need of defining a

13

3 — Problem Statement

process plan separately. This define that the new representation necessary for the
performance evaluation is Flow Based which simply means that for each product it
is necessary to define all the machine visited with their processing time and set the
routing of the part types from machine to machine.

The new radical change is the basis of the modelling of the new system. The
first objective is to understand what needs to be limited passing from an open and
flexible model to a strict one. Following this which information are necessary to
operate from production plan based to flow based system.

3.1 Analysis of the production system

In this section, the first problem related to the difference between a flow-based logic
and a production plan logic is analysed. The two different data structures have a
different system definition and it is needed to find an approach to pass from first to
the second.It has been seen how the two different codification change the system
definition. In a practical way, moving from the first to the second means starting
from a product with its production plan and obtain a list of all the machines visited
from the product. Doing this for all the part type of the system completes the
process.

These two different approaches also change the way to define the type of pro-
duction system. Let us start from the hypothesis that all the part type defined in
the same ontology library are assigned to the same physical system and there it is
not possible to define the system without one of them. With this approximation, a
production system is composed of: part types and their process plan and a physical
system where the process steps are assigned to. There can’t be any process step
that is not assigned to an existing machine. System with more flexibility such as
open shop can be easily distinguished from more rigid one such as flow shop, due
to the presence of multiple following process steps. For other cases, without the
definition of the production system it can’t be possible to operate this distinction.
For example, a flow shop and a job shop from only the point of view of the process
plan cannot be defined, it is its assignment on physical machines that creates the
type definition. On the other side in the queuing network the physical system
defined together with the process steps, so there is no space for flexibility. These is
no possibility to assign the process steps of a “class” to another system.
Moreover, system with less constraints, such as open shop, grants higher flexibility
but this flexibility requires a wider analysis of the ontology structure. For this
reason, in order to start the analysis with more focus, it has been defined another
hypothesis which limits the field of application of the model: only systems that can
be included under the categories of flow shop, hybrid flow shop (flow shop with

14

3 — Problem Statement

parallel machines) and job shop without parallel machines are considered. Opening
the definition to more complex system would increase greatly the definition of the
model. Once the model is defined it can be possible to go back and remove some
constraints and start again a new analysis.

Another issue that need to be faced in before continuing with the in-depth analysis
of the XML input file, regards the buffers station of the physical system.

3.2 Analysis of the buffer

This problem comes from the different concept of buffer between the Ontology
defined structure and the queuing network. In OntoGui the buffer is an independent
element of the production system, completely separated from the machines, on the
other way in queuing network there is no real representation of the buffer. The
buffer is represented as the queue section inside a station. Within the same station,
as wrote before, there is both the queue and the service section, where the last one
represents the machine in the Ontology. This duality of a station creates a great
issue to be solved.

Going back to the concept of production plan and flow-based representation,

it’s critical to understand how the buffer issue can be faced in these two different
models. Starting from the ontology, the part types are connected to the physical
system through the process steps which have the machines assigned; on the other
side there is no real direct connection with the buffers. It is no possible to act on
the linking between a buffer and a product. This relationship can be easily deduced
in case of simpler production system such as flow shop; in fact in relation to the
this system, if a buffer is connected downstream a machine and upstream another,
and both of them are visited in succession from a certain part type, this means
that also the buffer is being crossed from the same product. In cases where there
is more than one buffer between two machines, it is not feasible to claim that the
path of the part types crosses the buffer.
This lack of information is a cause of great uncertainty which need to eliminate
for the fact that the model to be developed is going to be applied from a program,
which is not able to reason like a human mind in case of ambiguous situation
like this one. First of all there is to consider that the model is already limited to
production system such as: flow shop, hybrid flow shop and job shop which are
already limiting the variety of buffer configuration.

Starting from this point it is important also to point out again that the ontology
is not containing any information on how buffers are being assigned to products.
For this reason, even if it was possible to convert with any change the production
system it would still be a certain level of lack of data for a correct and reliable

15

3 — Problem Statement

performance evaluation. Due to this issue, it is easier to have a new hypothesis
that there is only one buffer before each machine, this solution is also going to
become handy in following problems. This new rule can look like a limitation
but considering the constraints we already have and the lack of parameters in the
ontology, it has a limited impact, with great improvement in term of performance
evaluation and on the reliability of the model within its hypothesis.

The definition of a single, machine-dedicated buffer puts a limit in the use of this
model to already defined ontology production system. This approach let the user
define its own approximation so that the results can be as closest as possible to its
own point of view in the buffer management.

Within a buffer station there are various possible strategies that can be imple-
mented. The first one is the queue policy, so how products in queue should behave
while waiting in the buffer. It can be defined into two levels, a general station
level and a part type level. For the station specific level, it represents the general
queue policy without distinction between classes of product. For this policy the
best general approach is the non-pre-emptive scheduling for all the queue element.
It grants a better modelling for the production system considered in the hypothesis
already made.

Going to focus on the single part type it can be possible to define a queue policy
also for the single product. Due to the lack of this definition in the ontologies taken
into analysis and the need of simplify the initial model, it is decided that the best
option is to use for all buffer a FCFS logic. The policies chosen represent the most
common type for the production system analysis, so these hypotheses still grant
the most general approach as possible in terms of queue policies.

Another parameter to analyse is the “drop rule”, so how each station should behave
with the products within it when there is a blocking situation in the system.

It is important to define this parameter since it has a great effect on the system
performance. Discarding a product other than keep it waiting in the queue until the
next one has space again can have multiple impact such as on throughput and time
spent in the system. Considering the kind of system it is being modelled, it can be
easily excluded a rule based on dropping the product out of the system such as it
could be modelled a real person queue for a service provided. The logic to follow
is to be able to represent at the best the majority as possible of the production
system that respect the boundaries expressed by the hypothesis. For this reason,
the best rule to apply would be the block after service one. In this way, the part
types that have just finished their operation in a station must wait in the service
station until the end of blocking if they find the buffer of the following station full.

After a definition of the main hypothesis for the buffer part of a station there is
the need also to define some rules for the processing. In the ontology, it is possible
to define a wider set of processing rules thank to the fact of the great versatility of
the structure, on the other side from the queuing network the regulation can be

16

3 — Problem Statement

more imiting. The machines are considered to process only one product per time,
so each process step has 100% usage on each station, considering a processing time
which is always load independent and that can be defined only trough deterministic
or exponential distribution. The last hypothesis is simply defined in order to
develop a model that is able to consider more than one time distribution, so a
being able to recognise the kind of input, but to keep easier the creation of it.

3.3 Analysis of the relationship between

The last step of this first part of analysis is focusing on the difference between
the definition of the machine and the buffer for the two models. To recap, in the
ontology defined structure the machine is considered independent from the buffer,
on the other side for the queuing network the two elements are merged into one
represented from a queue. Through some specific modelling that is explained in
detail for JMT JSIM tool it can be possible to represent also in a queuing network
the machine separated from the buffer. Since there is the possibility to merge
the two element or keep them separated it is useful to think about the possible
implication of this choice, later this analysis can also be supported with some
testing.

The merging strategy would prove to be difficult considering all the possible existing
production systems, and the infinite combination of configuration would make the
assignment of the right buffer size to the dedicated machine hard. Instead, thanks
to the hypothesis defined in the previous steps, by creating a unique buffer before
each machine, the fusion process is direct with no space for mistakes.

On the other side, by keeping the original ontology structure, a modification of the
system definition to split the element is required. This change would go against the
basic hypothesis of a queuing network, which obviously define the queue as basic
structure, possibly creating issue in the performance calculation. In conclusion,
leaving the station divided the system is reflecting better the ontology structure,
on the other side the merged structure is more faithful to the queuing network
structure. We choose to adopt the queuing network merged structure. The creation
of the previous hypothesis already grants a great applicability of this merging
solution, hoping in the most accurate performance analysis.

In the next chapter with the definition of the single section of a queue it is also
analysed this last choice by testing to make sure that it is the best one for the
model definition.

Once these initial hypotheses have been defined, the system application field where
the model is applicable has been limited. This reduction comes at the cost of
excluding those systems that presents very few constraints in terms of product

17

3 — Problem Statement

routing, such as open shop, or those that presents a not simple buffer configuration.
The rules have been set to guarantee a better reliability of the model to the
production system the user want to analyse.

The next step of the process is the development of the real resolution model. From
a deep analysis of the XML file, all the different JMT JSIM structure are going to

be coded and the whole logic to move from the ontology to the simulation will be
defined.

18

Chapter 4
Solution

This chapter deals with the effective application of the model defined in Chapter
3 in order to develop the connection between the ontology-based system and the
queuing network.

The creation of a connection between the two environment and the automatic
generation of the model is developed through different steps depicted in Figure 4.1

1 JMT ISIM A 3 XML SIMULATION
FORMALIZATION e ToA ON GENERATION o

Figure 4.1: Solution summary

5. OUTPUT
READING AND RESULTS
ANALYSIS

Section 4.1 addresses the analysis of the XML input file for the queuing network.
All the needed JMT JSIM elements are analysed and their XML codification is
defined. In this way, it is possible to understand the data needed for the definition
of the simulation model.

In Section 4.2, the process of the data extraction from the ontology is analysed,
defining what are the possibilities and describing the whole process to obtain all
the information needed.

Section 4.3 deals with the XML generation. All data obtained from the ontology
are used to generate the different elements needed to define the queuing network
model.

Section 4.4 explains how the simulation works and how to set the necessary param-
eters.

Section 4.5 addresses the definition of an approach for the output reading process
and their analysis, by explaining where are the results saved and how to automate
the activity.

19

4 — Solution

4.1 JMT JSIM Formalization

After the definition of the problem to be faced and the basic hypothesis, it is needed
to understand how the different elements are defined according to the ontology and
the XML logic.

It is needed to operate a process of “reverse engineering” to understand how the
various information collected in the ontology are represented in the queuing network.
After this part, the actual “conversion” is operated. Due to the different codification
of knowledge, once both are defined, the aim is to understand how to move from
the ontology to the XML. This process has been thought to be the most efficient
share the content of the modelling.

The first part of the chapter is dedicated to describing the process of getting an
empirical definition of the multiple structure needed in XML input format.

On the JMT documentation [8] it is not possible to find any XML codification of
the different element on JMT JSIM; this lack of information leads to the choice of
personally develop a codification for each structure is needed.

This long process can be conducted by defining single stations, saving the file
and read the output which contains the XML structure. Step by step, increasing
continuously the complexity of the structure, it can be possible to understand the
rules that define the elements.

The analysis has been limited only to the feature of the tool needed for our
application.

The process to obtain the needed information from the ontology is explained in
Section 4.2, from now on it will be considered as if everything needed is immediately
available.

In the following subsection it is described how each element needed in JMT
JSIM can be represented with the XML input. For each element described it is
also presented their representation through the JMT JSIM graphical user interface
to give the reader a better understanding.

4.1.1 Station definition
4.1.1.1 Queue

The main element in JMT JSIM is the “Queue”. A Queue is a station which
includes a queue section, service section and routing section.

The queue section is the part that represent the buffer of the station. In this part
it is possible to set the capacity (the buffer size) and the queue policy. The first
one can be set to infinite or to a finite number; for this modelling it is important
to set this number equal to the buffer size plus 1. This setting is due to the fact
that for a queuing network the buffer size is not equal to the maximum number of

20

4 — Solution

customer but it is smaller of one unit, in fact the number of customers represents
the one waiting in the queue and the one that is being serviced. In the queue
policy tab, it is possible to select a non-preemptive scheduling or a preemptive one;
according to the hypothesis it is considered to use a non-preemptive policy. Once
this assignment is concluded, the class specific queue policies must be set.

FCF'S: first come first served;

LCFS: last come first served;

RAND: random,;
o SJB: shortest job first;

According to the assumptions presented in Chapter 3 the standard queuing
policy is set as FCFS.
Moving to the next policy there is the drop rule; for this parameter it has been
already be assumed that all stations follow a block after service logic, where here it
is defined BAS Blocking.
Next section of the station is the service station. In this section it is possible to set
the policies in relation to the processing activities for the products in the machine.
It can be set the number of servers, in case of parallel machining for two identical
machines, and service time distribution. For each class of products, it is possible
to set different strategies:

e Load independent;

Load dependent;

Zero-time services;

Disabled;

According to the assumptions of Chapter 3 a load independent strategy has been
decided as standard.

The next and the last section of a Queue is the routing section. This section is the
responsible of directing the product that has finished its process activity to the
right following station. Between the set available on JMT, here are defined the two
routing policy used in the modelling:

o Random: “with this strategy, jobs are routed randomly to one of the stations
connected to the routing device”;

21

4 — Solution

» Probabilities: “with this algorithm you can define the routing probability for
each outgoing link”;

The random routing is used for all the stations with only one possible destination,
in fact the implementation of random routing is the easiest one and where the path
is already constrained by the connections, such as flow shop, there is no need to
develop a more detailed routing strategy.

On the other side "Probabilities" strategy requires a deeper analysis to understand
how it can be used for the product path where there is more than one choice, such
as hybrid flow shop or job shop.

4.1.1.2 Source and Sink

Once the buffers and the machines are defined, it is needed to understand how
the products flow through the system. In queuing network there are two types
of class to define: open and closed. Each one requires a different configuration of
the production system. In particular, the open one needs the definition of two
additional stations: Source and Sink.

The sink is the element generating the part type arriving in the system according
to a determinate arrival time. The sink on the contrary is the station where parts
exit the production system. In term of parameters these two stations are very
limited, indeed, for the source it is only possible to set the routing policy. The
arrival time is set in another tab, where is possible to set all the classes present in
the system. The Sink has no possibility to have any customization since it is the
last station visited and the part types after that are disappearing from the system.

4.1.2 Class Definition

Next step is to understand how the products can be defined within the production
system. In “Define customer classes” it is possible to set the part types. For each
class it is possible to act on some different setting according to the type: open or
closed. For both it is possible to set the priority and the reference station, which
represent the station where the product is starting the routing in the system. In
general, for all open classes it is necessary to set the arrival time according to
the preferred time distribution; as the service station for the model developed
the choice of time distribution is limited only to deterministic and exponential.
Regarding the reference station, as wrote in the paragraph before, for all open
classes it must be set a source. On the other side for closed class, it is needed to
set the population, which represents the number of part type in the system, and
the reference station as the first machine of its production plan. This kind of class

22

4 — Solution

can be used to represent these systems where the products that are produced or
assembled are moving on a pallet. Thanks to the pallet, it is possible to consider
the pallet itself at the part type that is undergoing the processes. In this way
the class is considered closed since the pallet in the system are limited. In case
that their number is high it can be useful to analyse if it has any effect on the
performance and, if not, consider the class as open.

4.1.3 Performance Evaluation

Last point to be analysed is the reason for the creation of this model: the perfor-
mance evaluation.

In the ontology codification there is no direct correspondence between the possible
performance to evaluate and the one that are available in JMT JSIM. So, for the
sake of a general application it has been decided to include the automatic evaluation
of certain performance if the user requires. The performance to be evaluated are:

» Response time per station;
e Queue time per station;

« Utilization per station;

o Throughput per station;

e System throughput;

o System response time;

The choices should be able to give the user a clear view on the system general
performance. In case of additional needs, it is the duty of the user to manually
add the needed one through the user interface.

A performance is chosen from a set of predefined set including the most elementary
ones such as station throughput, queue time and system response time. The
definition is possible from the tab “define performance indices”. The performance
that includes “system” in the name are system specific and can be set for the
evaluation of a specific class or all. All the other performance, except those which
have a name of a determined element in the name such as sink or fork, can be applied
at a single station by specifying it under “Station/Region” column. Moreover, it
can be possible also to set the confidence interval and the maximum relative error
of the simulation.

Once the structure of the JMT JSIM element is defined and the use and parameters
definitions of each of them are clear, it can be possible to start the XML reading
for the codification of the elements’ representation. Only with a perfect idea of

23

4 — Solution

the features of the different elements and their functioning it can be possible to
understand the XML structure.

4.2 Data extraction from ontology

This section explains the process of data extraction from the ontology, these data
are used in next section (Section 4.3) to create the XML model. The use of the
different tools is presented for the process and the final elaboration is realized with
Python.

The process is composed by several steps, the first is the "Ontology preparation"
where it is required to find a feasible way to access to the ontology, the second
step is the "definition of the queries" in order to extract the information needed.
The third step is the "extraction process', where a tool using the query to extract
the information has been developed using Python language. The last step is the
'refinement of the data" obtained in the previous step. Trough this last step, the
data are converted in another representation suitable for the XML definition.

In figure 4.2 the scheme for the extraction of data from the ontology is depicted.

1. ONTOLOGY 2. QUERIES 3. EXTRACTION 4. DATA
PREPARATION DEFINITION PROCESS REFINEMENT

Figure 4.2: scheme representing the data extraction process.

4.2.1 Ontology preparation

This step deals with the preparation of the ontology to the data extraction. As
explained in the chapter introduction it is important to define a way to access to
the ontology. Different ways are possible which can be resumed into two main
alternative: direct access on a local ontology or remote access. Each one of the two
possibilities has its own point of advantage and its weaknesses.

Regarding the local access, its benefits are correlated to the simplicity of use. A
local ontology allows the user access to its information without the need of external
support such as internet connection and remote servers. The data are always
accessible when working in local and protected from external unwanted access.
On the other side a remote access gives the user the possibility to work on the
ontology from everywhere with the only need of an internet connection. Moreover,
the use of a server can reduce the risk of a data loss since they can be stored with

24

4 — Solution

multiple backup. The most important aspect of this possibility it that it allows
also the use of a remote machine for all the processes required for the performance
evaluation of the required system.

Following the analysis of the pros and cons defined before it has been decided to
follow a remote access approach due to the vision of a future remote computing of
all the processes. Moreover, uploading the ontology on a server allows user from
all over the world to access them improving opportunities of team work. The use
of a remote server requires the search for the right tool for this operation. Ontogui
has been developed with an add-on to include an integration with Stardog [11]
which is a commercial RDF database, which allows SPARQL query, transactions,
and OWL reasoning support. For our use Stardog gives the possibility to create
databases on a remote server where to save the ontologies and to make SPARQL
queries for the data extraction process this add-on gives the user the possibility to
upload the ontology directly on Stardog. The possibility to access Stardog directly
from Ontogui enables the users to access directly to the ontology trough the user
interface they already knows.

For the first phase it is needed to create a database on Stardog server and upload
the ontology needed.

4.2.2 Queries definition

The ontologies, as the RDF database, are particularly suitable to a reading through
SPARQL query. SPARQL [12] is a semantic query language for database which
allows the user to write queries against data that follow RDF specification.
This parts regards the real definition of the SPARQL queries that are developed
for the extraction of the needed data for the XML development.
First it is needed to understand what are the needed data, after that different type
of queries have been developed for the different cases. Some information require
more than one SPARQL query while others can be directly obtained with a single
one. Before continuing please refer to the Figure 4.3 to see the ontology structures
and the modules it is composed.

In the following, we report an explanation of all the pre-defined modules: [13]

o statistics: basic concepts about probability distributions and descriptive
statistics. (http://www.ontoeng.com/statistics). [14]

o fsm: basic concepts to model a Finite State Machine
(http://www.learninglab.de/ dolog/fsm/fsm.owl). [15]

» sosa: Sensor, Observation, Sample, and Actuator (SOSA) Core Ontology
(http://www.w3.org/ns/sosa/). [16]

« ssn: Semantic Sensor Network Ontology (http://www.w3.org/ns/ssn/). [17]
25

4 — Solution

Hierarchy of Ontology Modules

:
: —
(erovmime | (romo]
‘ - - Thox
(DataModel)
. V Abox

@ LbProduciType

P - — (Instances)
@ LbMachineType | [© LiElementrype | (& wouang | 5

Modules
provided as input

& FactoryProjectd
1

Figure 4.3: Hierarchy of Ontology Modules

Modules to be
developed

expression: formalization of Algebraic and Logical expressions
(http://www.ontoeng.com/expression). [18]

osph: ontology modeling Object States and Performance History, while inte-
grating fsm, statistics, ssn, sosa, expression (http://www.ontoeng.com/osph).
[19]

list: ontology defining the set of entities used to describe the OWL list pattern.
(https://w3id.org/list). [20]

express: ontology that maps the key concepts of EXPRESS language to OWL
(https://w3id.org/express). [21]

IFC_ADD1: ifcOWL automatically converted from IFC__ADD1.exp .

IFC_ADDI1_rules: add class expressions to ifcOWL derived from WHERE
rules in IFC_ADD1.exp .

IFC_ADDI1_ extension: integration of modules and general purpose extensions

of ifcOWL.

factory: specialization of ifcOWL with definitions related to products, pro-
cesses, and systems.

dmanufacturing module further specializes the industrial domain of discrete
manufacturing.

26

4 — Solution

» powertrain: ontology that defines specific concepts for the powertrain domain.

In every SPARQL query, it is needed to define the prefix defined in Listing 4.2

PREFIX list: <https://w3id.org/list\string#> \\
PREFIX express: <https://w3id.org/express\string#> \\

3| PREFIX ifc: <http://ifcowl.openbimstandards.org/IFC4\string_ADD1\

string#> \\
PREFIX factory: <http://www.ontoeng.com/factory\string#=>\\

5| PREFIX dm: <http://www.ontoeng.com/dmanufacturing\string#>\\

PREFIX osph: <http://www.ontoeng.com/osph\string#>\\

PREFIX fsm: <http://www.learninglab.de/~dolog/fsm/fsm.owl\string#>\\

PREFIX ifcext: <http://www.ontoeng.com/IFC4\string_ADDI\
string_extension\string#>

PREFIX ssn: <http://www.w3.0rg/ns/ssn/>\\

PREFIX sosa: <http://www.w3.0rg/ns/sosa/>\\

PREFIX stat: <http://www.ontoeng.com/statistics\string#>

Listing 4.1: SPARQL query prefix

In the following sub-sub-section it is analysed each needed SPARQL query, pre-
senting also what parameters must be changed according to the modules of the
ontology to be modelled

4.2.2.1 Physical system stations

The aim of this SPARQL query is to obtain data about the physical station of
the system, like the machines and the buffer of the production system. The data
needed are for each element to obtain:

o name of element;

o ame of physical system;

o type of element: MachineTool or BufferElement;

o downstream element.

In order to obtain these information it is developed the SPARQL query in

Listing 4.2:

27

4 — Solution

PREFIX LINES

select distinct ?sys ?elem ?class ?downstreamElem

FROM <http://ifcowl.openbimstandards.org/IFC4_ADD1>

FROM <http://www.ontoeng.com/IFC4_ADD1_extension>

FROM <http://www.ontoeng.com/factory>

FROM <http://www.ontoeng.com/dmanufacturing>

FROM <http://www.ontoeng.com/SUB_LIBRARY>

where {

get systems

?sys rdf:type/rdfs:subClassOf*x factory:TransformationSystem .
get elements in system

?7sys ifcext:hasAssignedObject|~ifcext:hasAssignmentTo ?elem .
downstream connection

OPTIONAL{

7elem ifcext:isConnectedToElement|~ifcext:isConnectedFromElement
?downstreamElem .

}

class

7elem rdf:type ?class .

FILTER (?class != owl:NamedIndividual)

}

Listing 4.2: SPARQL query Physical system stations

The only parameter that needs to be changed is the one defined as: SUB_ LIBRARY]
which should be substituted with the ontology module name where the physical
system is defined.

4.2.2.2 Buffer Size

The objective of this SPARQL query is to obtain the data related to the elements
in the physical system and their buffer size. The information obtained are:

name of element;

name of physical system;

type of elements: MachineTool or BufferElement;

buffer size.

28

4 — Solution

PREFIX LINES

select distinct ?sys ?elem ?class ?buffCap

FROM <http://ifcowl.openbimstandards.org/IFC4_ADD1>

FROM <http://www.ontoeng.com/IFC4_ADD1_extension>

FROM <http://www.ontoeng.com/factory>

FROM <http://www.ontoeng.com/dmanufacturing>

FROM <http://www.ontoeng.com/SUB_LIBRARY>

where {

get systems

?sys rdf:type/rdfs:subClassOf*x factory:TransformationSystem .
get elements in system

?7sys ifcext:hasAssignedObject|~ifcext:hasAssignmentTo ?elem .

class
7elem rdf:type ?class .
FILTER (?class '= owl:NamedIndividual)

buffer capacity

OPTIONAL{

?elem ssn:hasProperty ?prop .

?prop rdf:type factory:BufferCapacity .
?prop osph:hasPropertySimpleValue ?buffCap .
}

}

Listing 4.3: SPARQL query Buffer Size

Also in for this SPARQL query, the only parameter to be changed is SUB_ LIBRARY/
that has to be substituted with the module of the ontology where the physical
system has been defined.

With this SPARQL query and the previous one, the physical system is defined.
4.2.2.3 Part Types

The first step for the collection of the information regarding the production plan is
to extract the part types present in the system together with their process plans.
The data obtained are:

o name of part type;

« name of process plan of part type.

29

4 — Solution

PREFIX LINES

select distinct ?parttype ?pplan

FROM <http://ifcowl.openbimstandards.org/IFC4_ADD1>
FROM <http://www.ontoeng.com/IFC4_ADD1_extension>
FROM <http://www.ontoeng.com/factory>

FROM <http://www.ontoeng.com/dmanufacturing>

FROM <http://www.ontoeng.com/LIBRARY>

FROM <http://www.ontoeng.com/SUB_LIB>

WHERE {

?parttype rdf:type owl:NamedIndividual .

?parttype rdf:type/rdfs:subClassOf*x factory:ArtifactType .
OPTIONAL {?parttype ifcext:hasAssignedObject|~ifcext:
hasAssignmentTo ?pplan . }

}

Listing 4.4: SPARQL query Part types

In this query, it is needed to define two parameters: LIBRARY and SUB_ LIB.
This duality is defined due to he fact that for the ontology definition has been
chosen to define the part type and their process plan on an library ontology module.
While the physical system is defined in an ontology module which is a InSubFolder
that has imported the previous modules. So when both information are required,
it is needed to select both the modules.

In the SPARQL query, LIBRARY word needs to be replaced with the name of the
library module while SUB_LIB word must be substituted with the InSubFolder
ontology module name.

4.2.2.4 Process Steps

Once the part types with their associated production plans have been extracted, it
is possible to extract the data related to the single process steps of each plan.
The choice to collect these information in two different queries is due to the fact
that by keeping them separated it is possible to make a specific query for a specific
production plan. The data obtained are:

¢ part type name;
« name of process plan of part type;
o process step name of process plan;

* process step Successor namme.

30

4 — Solution

PREFIX LINES

select distinct ?pplan ?task ?successor

FROM <http://www.ontoeng.com/LIBRARY>

FROM <http://www.ontoeng.com/SUB_LIB>

WHERE{

VALUES ?pplanstr {"http://www.ontoeng.com/LIBRARY#PROCESS PLAN"}
BIND (URI(?pplanstr) AS ?pplan)

?pplan rdf:type owl:NamedIndividual .

?pplan rdf:type/rdfs:subClassOfx ifc:IfcTaskType .
?pplan ifcext:isNestedByObject|~ifcext:nestsObject ?task.
OPTIONAL { ?task ifcext:isPredecessorToProcess|”~ifcext:
isSuccessorFromProcess ?successor . }

}

Listing 4.5: SPARQL query Process Steps

In this SPARQL query, it is important to notice the PROCESS PLAN param-
eter. As wrote, this is due to the fact that this SPARQL query is process plan,
specific in order to collect the data in an ordered way. Since a process plan is part
type specific in order to collect the data of all process steps this SPARQL query
must be used for as many interrogation as the number of process plan replacing
each time in place of the word PROCESS PLAN the name of the process plan
extracted in subsubsection 4.2.2.3.

The parameter LIBRARY and SUB__LIB are defined as the previous SPARQL
queries.

4.2.2.5 Assigment of processes steps to machines

This SPARQL query is the used to collect the data representing the assignment of a
machine of the physical system to the process step related to a certain process plan.
The processing time is also defined with the help of this query. The production
flow of a part type within the physical system is defined using this query, in the
case the processing time is not defined as a deterministic value, a second SPARQL
query is needed.

So from the data obtained in this step are:

e part type name;

name of process plan of part type;

process step name of process plan;

process step machine assignment;

31

4 — Solution

 time distribution of processing time;

» processing time or, for stochastic distribution, its URI;

PREFIX LINES
PREFIX osph: <http://www.ontoeng.com/osph#>

PREFIX fsm: <http://www.learninglab.de/~dolog/fsm/fsm.owl#>

PREFIX ssn: <http://www.w3.0rg/ns/ssn/>
PREFIX sosa: <http://www.w3.0rg/ns/sosa/>

select ?parttype ?pplan ?task ?timeDet ?timeStoch ?stochDistr ?
machine ?durationDet ?durationStoch ?7usage # ?restype ?res ?

machinetype

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

<http:
<http:
<http:
<http:
<http:
<http:
<http:
<http:
<http:
<http:
<http:

WHERE{

The selected process plan is a user-defined parameter
VALUES ?pplanstr {"http://www.ontoeng.com/LIBRARY#PROCESS PLAN

"}

//ifcowl.openbimstandards.org/IFC4_ADD1>
ontoeng.
ontoeng.
ontoeng.
ontoeng.
ontoeng.
ontoeng.
ontoeng.
ontoeng.
ontoeng.
ontoeng.

[/ wWww
[/ wWww
//www.
[/ wWww
[/ wWww .
[/ wWww
//www.
//wWww .
[/ wWww
[/ wWww

com/IFC4_ADD1 extension>
com/factory>
com/dmanufacturing>
com/FactoryProject0l>
com/LibMachineType>
com/LibElementType>
com/LibProductType>
com/LibBuilding>
com/SUB_LIB>
com/LIBRARY>

BIND (URI(?pplanstr) AS ?pplan)

get process plans
?pplan rdf:type owl:NamedIndividual .

?pplan rdf:type/rdfs:subClassO0fx ifc:IfcTaskType .
?parttype ifcext:hasAssignedObject|~ifcext:hasAssignmentTo ?

pplan .

?parttype rdf:type/rdfs:subClassOfx factory:ArtifactType .

get tasks in a process plan

32

4 — Solution

?pplan ifcext:isNestedByObject|~ifcext:nestsObject ?task.

get default processing time (deterministic)
OPTIONAL{?task ifc:taskTime_IfcTask/ifc:
scheduleDuration_IfcTaskTime/express:hasString ?timeDet.}
get default processing time (stochastic)
OPTIONAL{
?task ifc:taskTime_IfcTask/ifcext:hasStochasticDuration/osph
:isQuantitySampledFrom ?timeStoch.
?7timeStoch rdf:type ?stochDistr.
FILTER (?stochDistr != owl:NamedIndividual)

get resources where the task can be executed (it can be a
resource or a resource type)
?task ifcext:hasAssignedObject|”~ifcext:hasAssignmentTo ?
restype .
?restype ifcext:typesObject|"~ifcext:isDefinedByType ?res .
OPTIONAL{
?res ifcext:hasAssignedObject|~ifcext:hasAssignmentTo ?
machine .
?machine rdf:type/rdfs:subClass0fx factory:MachineTool .

}
OPTIONAL{
?res ifcext:hasAssignedObject|”~ifcext:hasAssignmentTo ?
machinetype .
?machinetype rdf:type/rdfs:subClass0fx factory:
MachineToolType .

?machinetype ifcext:typesObject|~ifcext:isDefinedByType ?
machine .

}

get resource time and usage
OPTIONAL{
?res factory:usage_ProductionResource ?restime.
get resource consumption overriding the default processing
time (deterministic)
OPTIONAL{ ?restime ifc:scheduleWork_IfcResourceTime/express:
hasString ?durationDet . }
get resource consumption overriding the default processing
time (stochastic)

33

4 — Solution

OPTIONAL{ ?restime ifcext:hasStochasticWork/osph:
isQuantitySampledFrom ?durationStoch . }
get resource usage
OPTIONAL{ ?restime ifc:scheduleUsage_IfcResourceTime/express
:hasDouble ?usage . }
}
}

Listing 4.6: SPARQL query Process Steps Machine assignment

Also this SPARQL query is process plan specific.
The parameters that need to be replaced are LIBRARY, SUB_LIB and PRO-
CESS_PLAN as defined in Process Step query.
For this query four more prefixes have been defined.
Otherwise, if stochastic distribution are are used to characterize the processing
times, a second SPARQL query is needed to extract those values. This SPARQL
query is described in the following section.

4.2.2.6 Process steps extraction with Stochastic time

The last SPARQL query is used to extract the exponential time distribution
value. According to the assumptions defined in subsection 4.1.2, only exponential
distribution are possible in the stochastic model. This query is only limited to the
collection of the lambda for exponential distribution. So from the data obtained in
this step are:

o URI name;
« stochastic distribution;

o exponential lambda value.

PREFIX LINES

PREFIX osph: <http://www.ontoeng.com/osph#>

PREFIX fsm: <http://www.learninglab.de/~dolog/fsm/fsm.owl#>
PREFIX ssn: <http://www.w3.0rg/ns/ssn/>

PREFIX sosa: <http://www.w3.0rg/ns/sosa/>

select ?distrib ?probDistrClass ?ExpLambda

FROM <http://www.ontoeng.com/statistics>
FROM <http://ifcowl.openbimstandards.org/IFC4_ADD1>

34

4 — Solution

FROM <http://www.ontoeng.com/IFC4_ADD1_extension>
FROM <http://www.ontoeng.com/factory>

FROM <http://www.ontoeng.com/dmanufacturing>

FROM <http://www.ontoeng.com/LibMachineType>

FROM <http://www.ontoeng.com/LibElementType>

FROM <http://www.ontoeng.com/LibProductType>

FROM <http://www.ontoeng.com/LibBuilding>

FROM <http://www.ontoeng.com/SUB_LIB>

FROM <http://www.ontoeng.com/LIBRARY>

WHERE{

The selected process plan is a user-defined parameter

VALUES ?distribstr {"http://www.ontoeng.com/LIBRARY#
STOCHASTIC_VALUE"}

BIND(URI(?distribstr) AS ?distrib)

get probability distributions

?distrib rdf:type owl:NamedIndividual .

?distrib rdf:type/rdfs:subClassOfx stat:
ProbabilityDistribution .

?distrib rdf:type ?probDistrClass.
FILTER (?probDistrClass != owl:NamedIndividual)

Exponential distrib

OPTIONAL{ ?distrib stat:hasLambda_ExponentialDistr ?ExpLambda
.}

}

Listing 4.7: SPARQL query Process Steps Stochastic

This SPARQL query is defined as URI name specific. From the SPARQL query
in subsubsection 4.2.2.5 in case of stochastic value the output of the interrogation
is the URI name of the numeric value. With this SPARQL query it is possible to
interrogate the ontology on that specific stochastic processing time. Due to this
specific request the ontology has to be interrogated through the SPARQL for all
the URI name obtained in the previous step.
With this last step the queries definition process is finished and it can be possible
to move at the extraction process.

35

4 — Solution

4.2.3 Extraction process

This step involve the detection of the most appropriate way to extract the data
needed through the SPARQL query defined in the previous step (see section 4.2.2).
Since Python has been chosen as the main environement for developing the resolu-
tion, it is needed to find a way to implement the SPARQL query through it. The
library SPARQLwrapper [22] has been chosen in order to integrate in the code the
SPARQL query interrogation.

This library helps in creating the query URI and operating a results conversion
allowing the user to easy manage the data. Regarding this last point SPARQL-
wrapper is able to change the output format into the most diffused one such as
JSON, XML and N3 (Notation3). Between these solutions it has been chosen the
JSON format.

The code developed to process the SPARQL interrogation on the ontology database
is reported in Listing 4.8.

5| sparql.setQuery (

from SPARQLWrapper import SPARQLWrapper, JSON

sparql = SPARQLWrapper ("QUERY_ENDPOINT")

nnon

SPARQL QUERY CONTENT
nnn)

sparql.setReturnFormat (JSON)
results = sparql.query().convert ()

Listing 4.8: SPARQL query code

The adoption of this library supports the extraction process and allows the
user to focus on the design of the SPARQL queries. The only parameters which
requires a modification are the QUERY__ENDPOINT, that exactly represent the
endpoint where is required to make the interrogation, the query database URL and
the SPARQL QUERY CONTENT where it is needed to insert the query defined
before.

It is important to report a critical aspect of this library, it has not been possible to
implement a remote SPARQL query to a database requiring authentication for the
connection.

Using the Listing 4.8, it is possible to extract the needed data from the ontology,
but these data are defined in JSON format. In the next subsection it is discussed
how to refine these information in format suitable for the XML generation.

36

4 — Solution

4.2.4 Data Refinement

The last step of the data extraction addresses the transformation of data from the
JSON format to the data structures needed for the of XML generation.

In the following sections, for each SPARQL query described in 4.2.2; the format of
the data needed for generating an XML file is presented and discussed.

It is defined a small case study so that it can be possible to see the output structure
applied to a real case. The physical system is depicted in Figure 4.4, with a buffer
size of 10 units for both buffers, the process plan associated is reported in Table 4.1

= = =

Figure 4.4: SPARQL query case study system representation

M2

PART PRODUCTION | PROCESS | PROCESSING TIME MACHINE
TYPES PLAN STEPS TIME DISTRIBUTION | ASSIGNED
P01 01 1s Exponential M1
Product01 | ProcessPlan01 P01 02 1.1s Deterministic M2
P02 01 09s Exponential M1
Product02 | ProcessPlan02 P02_02 195 Fxponential N3

Table 4.1: process plan for SPARQL extraction case study

4.2.4.1 Physical system stations
The output needed is represented by two lists of lists:

o physical station_list: a list of list, where each sublists contains the data
about all the element in the system, the physical system name and the element
type. The number of list is equal to the number of element in the system. It
is strucutred as follow.

[[M2’, "PhysicalSys01’, "MachineTool’], [M1’, "PhysicalSys01’, "MachineTool’],
['B2’, "PhysicalSys01’, 'BufferElement’], ['B1’, "PhysicalSys01’, 'BufferEle-
ment’]]

o physical conn: a list of list where each sublist is composed of 2 element, the
first one is the station considered, the second one is the downstream element.

37

4 — Solution

The lenght of the list represent the number of connections in the physical
system. The strucure is as follow:
[[7M177 7B27]7 [’BQ,, ,MQ,], [’Bl’, ,Ml’]]

4.2.4.2 Buffer size

The output needed is buffSize list which is a list of list where each sub-list is
composed of two items, the buffer element name and its buffer size. The length of
the list represents the number of buffer in the system. It is structured as follow:

[[7B27, 7107]7 [’B]_’, 710’”

4.2.4.3 Part types

The output needed represented by two lists of lists:

e product_ classes:a list of list where each sub-list is composed of two items, the
part type name and the process plan assigned. The length of the list represent
the number of part type in the system. It is structured as follow:
[[ProcessPlan02’, "Product02’], ["ProcessPlan01’, "Product01’]]

o prod_list: : This list of list is generated following the definition of the previous
one and its sub-list is composed of five element which has been defined only as
parameters that need to be substituted. In fact the five element are: product
name, ARRIVAL_TIME, 0, FIRST MACHINE, DISTRIBUTION. Only the
product name can be defined, the others are replaced with the actual values
in the following SPARQL queries. The third element represent the priority of
the product but the feature has not been implemented so it is not changed. It
is structured as follow:

[[Product02’, ’ARRIVAL_TIME’, 0, 'M1’, 'DISTRIBUTION’], ['Product01’,
"ARRIVAL_TIME’, 0, 'M1’, 'DISTRIBUTION’]|

4.2.4.4 Process steps

The output needed is process plan_classes which is a list of list of list where
each sub-sub-list contains the following elements: process step name, process step
successor (if existing), process plan name and part type. Each sub-list represent a
determined part type.

It is structured as follow:

[[[P02 02, 'ProcessPlan02’, "Product02’], [P02_01’, "P02_02’, 'ProcessPlan02’,
"Product02’]], [[P01_02’, "ProcessPlan01’, 'Product01’], [P01_01", 'P01_02", "Pro-
cessPlan01’, "Product01’]]]

38

4 — Solution

4.2.4.5 Assignment of processes steps to machines

The output needed is process_plan machines time which is a list of lists which
follows the same structure list of list of list as process plan_classes. Each sub-
sub-list contains the following element: Part type, process plan name, process step
name, machine assigned to process step name, time distribution and time value.
Regarding the last value, as explained in Process Steps machines assignment (in
section 4.2.4.4), in case of stochastic time distribution, it represents the URI of the
time value which is used as input in the next query.

It is structured as follow:

[[Product02’, "ProcessPlan02’, 'P02_02’, 'M2’, "ExponentialDistribution’, ’d4b7{h22}
29f7-4564-a115-04£c5245¢574’], ['Product02’, 'ProcessPlan02’, "P02_ 01", 'M1’, "Ex-
ponentialDistribution’, ’6d6dd362-7067-43e3-bc89-9daa2¢905812]], [[Product01’,
"ProcessPlan01’, "P01__02’, "M2’, "ExponentialDistribution’, '4ad4966b-6781-499c¢-
b86b-70cc16380b1d’], [Product01’, 'ProcessPlan01’, "P01_01’, '"M1’, ’Exponen-
tialDistribution’, ’44934528-f9be-40c7-8fbe-bade75dab735’]]]

4.2.4.6 Assignment of stocastic processes steps to machines

For this query the output needed is the same list defined in Process Steps (section
4.2.2.5 machines assignment process_plan_machines time. Indeed, the aim of
this data refinement is to find the time value for the stochastic distribution and
substitute it in place of the URI.

It is structured as follow:

[[Product02’, "ProcessPlan02’, "P02_02’, 'M2’, ’ExponentialDistribution’; ’1.0’],
["Product02’, "ProcessPlan02’, 'P02_ 01", '"M1’, ’ExponentialDistribution’, "1.1]],
[Product01’, "ProcessPlan01’, ’P01_ 02’, '"M2’, ’ExponentialDistribution’, ’0.97],
[Product01’, "ProcessPlan01’, "P01_01’, 'M1’, ExponentialDistribution’, ’1.0’]]]

The direct refinement of data obtained from the ontology . is concluded with
this step It is needed to define other lists crossing the information in the output
defined in this section.

4.2.4.7 Part type flow

Due to the change from a process plan-based production system to a flow-based
production system. It is needed to define for each part type its flow in system.
This means to define the machine visited and their processing time. For this reason,
a script that takes as input process plan_machines time and filters the data in
order to obtain a structure feasible for the XML definition has been developed.
The output is a list of list defined as product_ process, structured as follow:

39

4 — Solution

[Product02’, 'M2’, "1.0’, "ExponentialDistribution’, '"M1’, ’1.1°, ’Exponential Distri-
bution’], [Product01’, "M2’, ’0.9’, "ExponentialDistribution’, "M1’, ’1.0’, "Exponen-
tialDistribution’]]

4.2.4.8 Buffer and machine merging

The data obtained from the ontology represent a system defined of both buffer and
machine, while the model definition is based on a queuing network, where the two
elements are represented from the queue. It is needed to define an approach to
define this redefinition from the two data structure.

The merging of a buffer and a machine can be defined easier thanks to the use of
hypothesis which define that for each machine there must be maximum one buffer
and that each buffer is specific for a single machine (section 3.3. With this rule, it
is easy to merge the two different element, since the queue element can be defined
with the information coming from a machine an its buffer upstream, if present.
In order to apply this hypothesis two list have been defined:

o machineSize list: represents the maximum number of customer of the new
defined queue (buffer size + 1). It is structured as follow:
(M2, 6], PMT”, 6]];

e physical Mergedconn: represent the new connection of the physical system
once the buffer are excluded. It has the same structure as physical conn
(subsubsection 4.2.2.1):

(ML, M2

4.2.4.9 Arrival time and number of population

Last missing data for the definition of the XML is related to the part types.
According to the type of system analysed, it is needed to defined the arrival time
of the products in the system, in case of an open one, or the number of products
present in the system, in case of a closed one.

These two parameters are defined in prod_list. Since in the ontology this value has
not been defined, it is required a manual input from the user. This step must be
completed before the XML creation. For this reason it has been decided to include
it in the data refinement phase.

4.3 XML Modelling

JMT JSIM queuing network representation can be realized through the GUI by
defining placing the element needed and setting their parameter in a user friendly
environment. The system defined, once it is saved, is stored in a file with .jsimg

40

4 — Solution

format where it is formalized with a XML structure. This file acts both as an
input and as an output, for this reason it is possible to create the XML input file
direct with an algorithm. The possibility of use the XML as both input and output
creates the opportunity to learn the element codification by defining it through the
GUI and see how it is represented in the output.
The XML file is composed of the following parts:

e heading;

 source definition;

e queue definition;

« sink definition;

» connections definition;

o performance to be evaluated;

» preload;

ending.

All the part are defined in details in the following sub-sections.

Before continuing with the definition of the XML section it can be useful to
understand the method used for the definition of the XML codification of each
section. The learning process is constructed as follow: each station analysed in the
previous paragraph is inserted alone in a new model with a single class defined,
and the file is saved in its .jsimg format. At this point the file is opened as a text
file so the XML codification can be easily seen. With the first observation, it is
possible to see what is the general definition of the station is, for example how
the main parameters are encoded. Once these steps are concluded it is possible to
increase the complexity of the system by adding more classes. This part is critical
since for each station there are parameters and policies specific for each class, then
it’s of the utmost importance to understand how the codification is defined when
there is one than one class processed in a queue.

To conclude this analysis, it is needed to consider the production system as a series
of machines, then the next step is to definite a series of station connected to each
other. The connection between queue is also a part that is needed to be defined.
This process has been completed for all the elements needed for the model defined.
There are other stations present in JMT JSIM that have not been analysed because
the XML input coding was not needed for the model considering the hypothesis
defined.

Moreover there is to define the class processed in the system and in case of open

41

4 — Solution

system, the elements for their generation and ending: the source and the sink.
All the steps are described in the following section with greater detail where each
XML string has given a specific name. For a better visualization of the XML
generation process refers to Figure 4.5. The image explains the flow to follow in
the definition of the XML input referring to name of the part of code needed

42

4 — Solution

QUEUE DEFINITION

AREA

[XML Generation Tree

Define the head of
the XML input:
Head string

Are the part type
open or closed
class?

Open

Closed

Declare the classes
with open
codification:
Open class string

—

Declare the classes
with closed
codification:
Closed class string

e

Define the source :
Source string

S 2

Define the sink:
Sink string

R A—

Add sources and
sinks connections to
queues:
Preload string

e

Define the preload
of the population in
the first station:
Preload string

.

Add the connection
between the first
and the last queue
of the process plan
for each class:

Connection string

~

Define the queue

Define the queue

v

v

Routing:
is the queue the last

one in the process
step?

Routing:
is the queue the last

one in the process
step?

No/yis

— v

YLS\NO
\

Follow the process

Route the part type

plan to the sink

Route the part type
to the queue
assigned to the first
process step

Follow the process
plan

T

T —

Queue definition

over?

Queue definition

over?

J

Yes

Yes'

RO

Define connections
between queue:
Connection string

——

 Emm—

Define closing of
XML input:
End string

Figure 4.5: XML generation process

43

4 — Solution

4.3.1 Heading

The first part of the XML file is composed by the heading. This part defines the
XML codification, explicating the version, the ISO standard followed and other
series of information. This part needs attention during for its generation since it
contains the date and time of the last save of the file and the information regarding
the file path. In the first two lines where it is needed to define the name of the file,
as the FILE__NAME and the time and date according to a 24-character string of
the following form: Thu Nov 7 23:32:38 2019.

In line 3 it is needed to set the following settings:

o directory path of JMT: replace this information in DIR_ PATH_JMT;

o number of maximum samples for simulation: replace this number in MAX_ SAMPLE}

« file name: replace the file name in FILE NAME.

<?7xml version="1.0" encoding="ISO—-8859—1" standalone="no"7>

<archive xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance"' name="
FILE NAME. jsimg" timestamp="DATE TIME"
xsi:noNamespaceSchemal.ocation="Archive.xsd ">

<sim disableStatisticStop="false" logDecimalSeparator="."
logDelimiter="," logPath="DIR PATH JMT" logReplaceMode="0"
maxSamples="MAX_ SAMPLE" name="FILE_NAME. jsimg" polling="1.0"
xsi:noNamespaceSchemalocation="SIMmodeldefinition .xsd">

Listing 4.9: head string

The second part of the heading includes the definition of the classes of products.
For each class all the information that were present in “Define customer classes” in
JMT JSIM | except the arrival time, must be defined following the “class string”
structure:

<userClass customers="NUMBER CUST" name="CLASS" priority="PRIORITY"
referenceSource="SOURCE" type="closed"/>

Listing 4.10: Closed class string

<userClass name="CLASS" priority="PRIORITY" referenceSource="SOURCE"
type="open" />

Listing 4.11: Open class string
Where:

« NUMBER, CUST: number of products in the system. Only for closed class;
44

4 — Solution

o CLASS: name of the part type;
o PRIORITY: priority;
» SOURCE: station or source where the class is starting the process.

To define the heading it is necessary to have a list where there are all the class
of the production system and their characteristic defined in the bullet points.

4.3.2 Source

We consider to use a single source element for each open class generated. In this
way, it is be possible to add other stations between the source and the first station
without influencing all the other classes.

The station is composed in two parts: RandomSource which represents the arrival
of the product, and the Router, which is responsible for the product path.

The codification of the source starts with the definition of the name of the station.
Due to the hypothesis that for each source there can generate only one part, the
service strategy parameter, and later also the router one, does not need reiteration
for more than one class. In "RandomSource" section, it is needed to define the
part type that is generated in the source and its arrival time, in Listing 4.12 it is
possible to see the exponential encoding. The next section of the station is the
router. In this case, even if there is only one class in the source, it has already
been implemented the probability routing coding. Considering the presence of
only one part type it can also be applied a random routing logic since the only
connection possible it to the first machine of the process plan, but in this way it
can be possible to implement easily in the future a single source for multiple class
if needed. Here is the source definition string.

'S

<node name="SOURCE NAME">

<section className="RandomSource">

<parameter array="true"' classPath="jmt.engine.NetStrategies.
ServiceStrategy" name="ServiceStrategy ">

<refClass>CLASS</refClass>

s|<subParameter classPath="jmt.engine.NetStrategies.ServiceStrategies.
ServiceTimeStrategy " name="ServiceTimeStrategy ">

<subParameter classPath="jmt.engine.random.Exponential" name="
Exponential" />

7|[<subParameter classPath="jmt.engine.random.ExponentialPar" name="

distrPar ">

s|<subParameter classPath="java.lang.Double" name="lambda">

<value>PROC_TIME</value>

</subParameter>

45

11

12

14
15
16

17

18

19

NI

NN N NN

-~

4 — Solution

</subParameter>
</subParameter>

3| </parameter>

</section>

<section className="ServiceTunnel"/>

<section className="Router">

<parameter array="true" classPath="jmt.engine.NetStrategies.
RoutingStrategy " name="RoutingStrategy ">

<refClass>CLASS</refClass>

<subParameter classPath="jmt.engine.NetStrategies.RoutingStrategies.
EmpiricalStrategy "' name="Probabilities ">

<subParameter array="true" classPath="jmt.engine.random.
EmpiricalEntry " name="EmpiricalEntryArray ">

<subParameter classPath="jmt.engine.random.EmpiricalEntry" name="
EmpiricalEntry ">

<subParameter classPath="java.lang.String" name="stationName ">

<value>NEXT_STATION</value>

</subParameter>

s|<subParameter classPath="java.lang.Double" name="probability ">
i|<value>CONN_PROB</value>

</subParameter>

s|</subParameter>

</subParameter>
</subParameter>
</parameter>
</section>
</node>

Listing 4.12: source string
Where:
« SOURCE_NAME is the name of the source;
o CLASS is the name of the class/part type;

« PROC_TIME is the arrival time of the part type in the system;

o« NEXT_ STATION represents the machine that is next to the source; in this

case the first machine visited from the part type

o« CONN_ PROB represents the probability for the class to visit the machines

defined in NEXT__STATION; which in this case is 1.

In order to define all the source station, a list with the product type name, source
name and the first machine visited has been created. Using also a list with the
information necessary about the product such as product name, arrival time and
its distribution, it is easy to define all the source. It is just required for each source
to substitute the value in caps lock with the class parameters. It is important

46

N N

4 — Solution

to identify the time distribution of the arrival time and so choose the right XML
coding for that.

4.3.3 Queue station

This station is the most critical of the entire definition since there can be multiple
product processed in a single station and each of them has different requirements.
As already introduced, the station is composed by three parts: queue, service and
routing section.

For each of these parts, every class must be defined separately from the others,
creating a series of parameters and sub parameters.

For any doubt in the source definition process, please refers to Figure A.1 where it
is possible to see all the necessary steps together with the XML string needed the
step.

The definition of the station starts with the name declaration and after that it
start the modelling of the queue section with the buffer size and the drop strategies.
This is defined in Listing 4.13.

<node name="MAC NAME">

<section className="Queue">

<parameter classPath="java.lang.Integer"' name="size ">
<value>BUFFER,_ SIZE</value>

5|</parameter>

<parameter array="true" classPath="java.lang.String" name="
dropStrategies ">

[insert DROP RULE CLASS SPECIFIC STRING for all the classes defined
in the station|

</parameter>

Listing 4.13: head buffer string

Since the drop strategy is class specific it must defined for each class, using
Listing 4.14

<refClass>CLASS</refClass>

<subParameter classPath="java.lang.String" name="dropStrategy ">
<value>BAS blocking</value>

</subParameter>

Listing 4.14: drop rule class specific string

The closing parameter at the end must be inserted after the definition of all class
specific strings to close the drop rule definition.

After the drop strategy, it is needed to define the queue policy. The definition is
composed from two parts: a section specific and a class specific. We implemented a
FCFS strategy according to the hypothesis. It is possible to find the two strings as

47

o

4 — Solution

<parameter classPath="jmt.engine.NetStrategies.QueueGetStrategies.
FCFSstrategy ' name="FCFSstrategy"' />
<parameter array="true" classPath="jmt.engine.NetStrategies.
QueuePutStrategy " name="QueuePutStrategy ">
[insert QUEUE STRATEGY CLASS SPECIFIC STRING for all the classes
defined in the station]
</parameter>

5|</section>

Listing 4.15: Queue strategy string

<refClass>CLASS</refClass>
<subParameter classPath="jmt.engine.NetStrategies.QueuePutStrategies.
TailStrategy ' name="TailStrategy"/>

Listing 4.16: Queue strategy class specific string

At this point, it is needed to define the service section, thus, specify the charac-
teristic of the part processing.
The first parameter to be defined is “MaxJob” which is the number of servers for
the station, which in our model is set to 1. This parameter is considered machine
specific (in Listing 4.17).
The next one is the number of visits, which according to the part type definition is
also equal to 1 since the products are not visiting the station more than one time.
This parameter is composed of sub parameters which are class specific, so there is
the need to repeat the strings for each class in the machine (Listing 4.18 for the
station string and Listing 4.19 for the class specific).
Last parameter of the section is the processing time, also this part is defined of one
station specific string (Listing 4.20) and class specific sub-string (Listing 4.21). For
this specification there is the need to verify the type of time distribution so that it
can be used the correct modelling. This operation must be repeated for each part
type that is processed in the machine.
The construction of this section is realized by having the following data:

e List of all the machines name and for each of them all the product that
have a process within the machine together with processing time and time
distribution.

o Buffer dimension for each machine

48

N

NI

N}

- W

[un

S

08

4 — Solution

<section className="Server">
<parameter classPath="java.lang.Integer" name="maxJobs">

s|<value>l</value>

</parameter>

Listing 4.17: service section string

<parameter array="true" classPath="java.lang.Integer" name="
numberOfVisits ">
[insert SERVICE VISIT CLASS SPECIFIC STRING for all the classes
defined in the station]

3|</parameter>

Listing 4.18: Service number of visit string

<refClass>CLASS</refClass>

<subParameter classPath="java.lang.Integer" name="numberOfVisits">
<value>l</value>

</subParameter>

Listing 4.19: service visit class specific string

<parameter array="true" classPath="jmt.engine.NetStrategies.
ServiceStrategy " name="ServiceStrategy ">
[insert SERVICE STRATEGY CLASS SPECIFIC STRING for all the
classes defined in the station|

</parameter>

</section>

Listing 4.20: service strategy station string

<refClass>CLASS</refClass>

<subParameter classPath="jmt.engine. NetStrategies. ServiceStrategies.
ServiceTimeStrategy " name="ServiceTimeStrategy ">

<subParameter classPath="jmt.engine.random.Exponential" name="
Exponential" />

<subParameter classPath="jmt.engine.random.ExponentialPar" name="
distrPar ">

<subParameter classPath="java.lang.Double" name="lambda">

)| <value>PROC_TIME</value>

</subParameter>
</subParameter>
</subParameter>

Listing 4.21: service strategy class specific string

Regarding the "service strategy class specific string" it is shown the exponential
distribution coding with PROC_TIME equal to the lambda.

49

N

™)

N

4 — Solution

The last section of this element is the “Router”. It defines the destination of
products leaving the station. The routing strategy is set as probabilities for all
the class, even if the system is a flow shop in order to keep the modelling as much
generic as possible.

The generation of this section is possible by having all the connections between
machines for each class. As defined in section 4.2.4.7, for each class it is possible to
define its path in the different stations. By using this list it is possible to assign
the correct routing to each class.

First it is defined the station specific string (Listing 4.22, then, with a simple
cycle of the class specific strings (Listing 4.23) for all classes in the system and a
substitution of the key work in CAPS LOCK it is possible to generate the router
section. It’s important to notice that in case of multiple downstream station for
one class, there is the need to repeat the routing string for all the following stations
(Listing 4.24) . The level of cycling can be understood by looking at the text right
alignment.

<section className="Router">

<parameter array="true"' classPath="jmt.engine.NetStrategies.
RoutingStrategy " name="RoutingStrategy ">
[insert ROUTING CLASS SPECIFIC STRING for all the classes defined
in the station |

</parameter>

</section>

</node>

Listing 4.22: routing section string

<refClass>CLASS</refClass>
<subParameter classPath="jmt.engine.NetStrategies.RoutingStrategies.
EmpiricalStrategy " name="Probabilities">

s|<subParameter array="true"' classPath="jmt.engine.random.

EmpiricalEntry " name="EmpiricalEntryArray ">
[insert ROUTING DOWNSIREAM STATION SPECIFIC STRING for all the
classes defined in the station|

</subParameter>

</subParameter>

Listing 4.23: Routing class specific string

<subParameter classPath="jmt.engine.random.EmpiricalEntry" name="
EmpiricalEntry ">
<subParameter classPath="java.lang.String" name="stationName">

s|<value>NEXT STATION</value>

</subParameter>
<subParameter classPath="java.lang.Double" name="probability ">
<value> CONN_PROB</value>

50

4 — Solution

7|</subParameter>
s|</subParameter>

Listing 4.24: routing downstream station specific string
The queue definition process is summarized with reference to XML strings of code

in Figure A.1.

4.3.4 Sink

in Appendix, Chapter A The last element to be analysed it the sink. For our model
it has been decided that there is a specific sink for each class of products.

<node name="SINK NAME">
<section className="JobSink"/>

3|</node>

Listing 4.25: sink string

To define the the system sinks, it is created a list that for all the class contains the
following information:

e type name;
o sink name;
 last machine visited from the product;

This list is used also in define the connection between the last machine and the
sink.

It is needed to replace the word SINK_NAME with the name of the sink. The last
machine information is used in the next step.

4.3.5 Connections

Once all the system elements have been defined there is still the need to connect
them according to the physical connections defined in the ontology.

The only information required is the name of one station and the name of the
connected one. With the use of the list "physical Mergedconn" (section 4.2.4.8 the
connections are defined easily. For open class systems, in addition to the physical
stations, also source and sink have to be considered. While for closed system,it is
needed to consider the additional connections given by the link between the last
machine of a process plan and the first one.

The XML structure for the connection is structured as reported in Listing 4.26:

51

4 — Solution

<connection source="SOURCE" target="TARGET" />

Listing 4.26: connection string

This structure really fits with the definition of couple of connections decided. With
a simple cycle for all the number of connection and by replacing the SOURCE and
TARGET variables, the generation of this part of the XML input can be easily
done.

4.3.6 Performance to be evaluated

It is possible to set the performance to be analysed also through the XML input.
The definition is easier and reflects the structure present in the user interface. The
XML is reported in Listing 4.27

<measure alpha="ALPHA" name="NAME"' nodeType="STATION" precision="
PRECISION" referenceNode="NODE" referenceUserClass="CLASS" type="
TYPE" verbose='"false"/>

Listing 4.27: performance evaluation string
The variables are defined as follow:

o« ALPHA = 1-Confidence Interval;

e NAME : name of the performance, it is not the performance to be analysed
but a way for JMT JSIM to classify the performance. In the model it has been
defined as “Station name + class to be evaluated + type of performance”; for
example “M1_ Classl_Throughput”;

o STATION: specify if the performance is station specific or global, in the first
case insert “station” otherwise leave it empty;

o PRECISION: the value for the maximum relative error;

o NODE: station where the performance has to be evaluated, if it is a system
performance leave it empty;

o CLASS: if the performance is class specific insert here the class name;

o TYPE: kind performance to be analysed, for example throughput or residence
time;

For the XML generation, it is needed to cycle between all the machines and all
the classes processed in them to obtain all the performance which are station/class
specific.

52

4 — Solution

4.3.7 Load of population for closed system

In case of closed class product, it is needed to place the existing population inside
the production system. In particular, in the station where is assigned the first
process step. This assignment of the population is possible through the listing
reported in Listing 4.28

<preload>
<stationPopulations stationName="ORIGIN STATION">
<classPopulation population="POP NUMB" refClass="CLASS" />
</stationPopulations>

s|</preload>

Listing 4.28: preload string

It is needed to define the loading for each station that is the reference station for a
closed class, and for each station it is important to declare the class population for
all the part types. This solution requires a cycle within a cycle.

4.3.8 Ending

After the definition of the production system in its entirety the XML generation
can be concluded with the following string:

</sim>
</archive>

Listing 4.29: end string

With these 2 lines of code the XML input can be considered completely modelled.
Before concluding it is important that the reader understand that this XML input
codification is the results of analysis on the output and continuous testing of input
generation. Some information can be omitted during the input but once the file has
been saved, the new .jsimg file presents more parameters than the one generated.
This is because through the user interface inside each station is possible to see the
parameter specific for all classes, also those have no process step assigned to that
machine. For this reason, JMT JSIM accept the XML file where the parameters
not needed are not defined , but once the file is opened from the user interface all
the parameters are saved in the file.

4.4 Run Simulation

Once concluded the XML modelling phase the representation of the production
system on XML is obtained and it can be opened and analysed through the use of
JMT JSIM.

53

4 — Solution

At this point there is the real phase of performance evaluation. In previous Section
subsection 4.3.6, it has been defined the possibility to include some predefined
performance for the existing stations and the system in general. Moreover the user
has the possibility to set the preferred parameter choosing from a wide set.

In this section, we described how the simulation can be run in a more or less
automatic approach.

The classic method is the use of the user interface of JMT while the other involve
the use of the pc console. The two approach are described and analysed in order
to evidence point of strength and weakness. It is taken in hypothesis that all the
performance have already been defined in the previous section.

4.4.1 JMT JSIM user interface approach

This approach is the common one since it involve the use of the user interface
which is specifically design also for this aim.

Trough the "simulation parameter" setting, depicted in 77 is possible to access to a
set of parameter which can look limiting compared to other simulation software.
As it can be seen in the picture the user can have access to:

e simulation random seed;

e maximum simulation duration;
o maximum simulated time;

e maximum number of samples;

e animation update interval;

Define simulation parameters %

Simulation Parameters
Define simulation parameters and initial customer locations.

Simulation random seed: J‘ v
Maximum duration (sec): J‘ v infinite
Maximum simulated time: | @ infinite
Maximum number of samples: I 1,000,000 :ﬂ || no automatic stop
Animation update interval (sec): | 1 :ﬁ v animati

Initial customer locations:

Jobs located in Router, Fork, Logger and Cl. itch are treated as amiving into these stations.

| ™ M2 M1

Class1 ‘ 0 0 0

Figure 4.6: JMT JSIM simulation parameter

It can be possible to notice that it is not possible to set any parameter for the
analysis of the transient. This is due to the fact that JSIM performs automatically

54

4 — Solution

the transient detection, based on spectral analysis, computes and plots on-line the
estimated values within the confidence intervals. This feature release the user who
is not practical with these setting from the risk of making error due to the lack of
experience.

Once these parameters have been set it can be possible to launch the simulation.
Once clicked the button a new interface is opened where it is possible to see the
simulation ongoing. For each of the performance previously defined it can be
possible to see live the simulation progress. If the simulation constraints (such
as maximum processing time) allows the simulation to get a results within the
confidence interval and the maximum relative error, the user sees a green check,
otherwise in case of yellow or red there is the need to act on simulation parameters
or performance precision.

At this point, it is important to remember that the simulation results are not saved
on a separate file but on the same XML input. For this reason after a simulation if
the data obtained are meant to be kept the file need to be saved. At this point if
the original XML file is opened is possible to see the results coded after the closing
of the previously defined XML input, so after the "</jmodel>" line.

Going back to the user interface, there is another useful feature for the simulation
process, the what-if analysis. It gives the possibility to the user to launch multiple
simulation changing in each of them a parameter. It is possible to act on: arrival
rates and service rates of a singular station, for just one or all the classes, and on
the seed. This last parameter is in particular interesting. In fact, by conducting a
what-if analysis changing the seed, it can be possible to set the number of simulation
that are to be run with different seed. Since seed has no direct effect on the results
this change allows the user to run multiple simulation without the need of launch
each of them singularly and save the data.

Also in this case the results are saved in the XML file. In Section (4.5) it is
analysed the output format and the procedure to extract these data for an analysis
is discussed.

4.4.2 Console simulation run

This second approach is the one that allows for a higher automation. In fact, in
the point of view of a completely automatic process which lead from the ontology
to their performance evaluation, this path is the one to be followed.

Even if this approach is the best one in terms of future automatic application it
has some limits. First of all trough this approach it is only possible to have access
to a way more limited set of simulation parameters: the seed and the maximum
simulation time. In fact as it can be possible to see through the documentation on
the console these are only two settings possible.

In Listing 4.30 the command that need to be launched from the console for the

55

4 — Solution

run of the simulation:

java —cp JMT-singlejar —1.0.3.jar jmt.commandline.Jmt sim XML_FILE
PATH —seed SEED —maxtime MAX TIME

Listing 4.30: console command for the launch of the simulation
Where:
« XML _ FILE PATH represent the location of the file on the PC
o SEED represent the simulation random seed
o MAX_ TIME represent the maximum simulation time

It is important that the command is launched from the location of the java
executable file, which for example in the computer used for the simulation is:
C:/Program Files (x86)/Java/jrel.8.0_ 211 /bin/

Once the simulation is completed it is generated a file which is named as the XML
file plus "-result". In this file there are stored only the result of the performance
analysis.

Another limit of this approach is represented by the need of multiple simulations.
While for the user interface approach there is the what-if analysis with the console
there is the need to launch multiple time the console command. The issue in this
is due to the fact that it can be possible that if the console is taking a little more
time to complete the analysis and the command is launched again, there can be
error or at least a smaller number of simulation than needed.

Moreover, if an XML file it is opened trough the JMT JSIM user interface, it can
be possible that the tool fills automatically some missing parameter, such as wrong
routing policies, or routing missing probabilities, while launching the simulation
trough the console requires a perfect input.

After all these consideration, it has been decided that the best way of action is the
use of the user interface for the launch of the simulation.

4.5 QOutput Reading and Results Analysis

In this section it is analysed the process of accessing the results of a user interface
launched simulation and how it can be possible to save them. As introduced in
previous section section 4.4, the performance are saved on the same XML input
file after the closing of the model.

First of all it is analysed how the codification works for a normal simulation and
then the analysis is expanded to the what-if analysis.

They data are encoded as Listing 4.31

56

N

w

o

~

4 — Solution

n n

<results elapsedTime="3161" logDecimalSeparator="." logDelimiter=",
pollingInterval="1.0" xsi:noNamespaceSchemaLocation="Results.xsd">

<measure alpha="0.99" analyzedSamples="20480" discardedSamples="1520"
finalValue="0.8830009274216856" name="M1_Throughput" nodeType="
station" precision="0.03" referenceClass="" referenceStation="MI1"
state="1" type="5">

<sample lastIntervalAvgValue="0.8837670231940549" lowerBound="
0.8564216390206626" meanValue="0.8848770789862674" simulationTime=
"14226.600076748122" upperBound="0.9152884250373146" />

<sample lastIntervalAvgValue="0.8828154645686694" lowerBound="
0.8564216390206626" meanValue="0.8848770789862674" simulationTime=
"24349.89351539046" upperBound="0.9152884250373146" />

<sample lastIntervalAvgValue="0.86590315547372" lowerBound="
0.8601599321025973" meanValue="0.8830009274216856" simulationTime=
"24915.77665936853" upperBound="0.9070880693266152" />

</measure>

</results>\newline

Listing 4.31: XML result codification

It is possible to see that the encoding involve three different main lines: results,
measure and sample.

The first one represents, the opening of the results part by clarifying some parame-
ters; it is closed after all the performance. Measure introduce the single performance
analysis by defining some parameter which identify the performance such as the
station and classes taken in analysis, the evaluation precision and all the other
value set in the XML definition in subsection 4.1.3. Moreover it is defined the final
value, which represent the performance value. Moving to sample it is possible to
find some intermediate results, this can be seen by looking at "simulated time".
Once this data location is well defined is possible to extrapolate the information
needed for a better display and for a future results analysis. The extraction is
conducted trough the development of a python script which access the XML file
and copy only the valuable information on a Excel file so that it can be possible for
the user to have the data ready for use. Moreover it can be also possible to develop
some analysis directly in the script trough the use of dedicated library. This last
implementation has not been conducted yet.

Once this simpler simulation results have been analysed it can be possible to move
to the what-if analysis. with this new kind of simulation the data displayed on the
XML file have some differences. In Listing 4.32 it is depicted the new coding.

57

4 — Solution

o S I w

-~

n n

<results elapsedTime="0" logDecimalSeparator="." logDelimiter="
pollingInterval="0.0" xsi:noNamespaceSchemalLocation="Results.xsd">

2|<measure alpha="0.99" analyzedSamples="10" name="M1_All
classes. Throughput" nodeType="station" precision="0.03"
referenceClass="All classes" referenceStation="M1" type="5">

<sample lowerBound="0.8684821692048661" meanValue="0.8813253280233613
" upperBound="0.8945540389881116" validity="true"/>

<sample lowerBound="0.8667800313806752" meanValue="0.8812530230981305
" upperBound="0.8962175454014092" validity="true"/>

s|<sample lowerBound="0.8725772672511427" meanValue="0.8853356082998474
" upperBound="0.898472576199752" validity="true" />

<sample lowerBound="0.8717453573791785" meanValue="0.8853871588866736
" upperBound="0.899462704659873" validity="true"/>

<sample lowerBound="0.8742652996836974" meanValue="0.8866605630077312

"

</measure>\newline

Listing 4.32: XML result codification what-if

For this alternative the main change is given to the fact that the sample line
represent each simulation launched with the different seed. So in order to define the
performance evaluation result it is necessary to make a statistical analysis. In the
developed method it simply involve the calculation of the average and the standard
deviation which are needed for the phase of validation of the model.

In ?7? it can be found the final version of the code

58

Chapter 5

Validation of the model

This chapter has the aim to apply the modelling defined in Chapter 4 to some
defined cases studies in order to verify that the performance evaluated form the
model are representing the one of the real system.

In a first phase, we check that the physical system modelled from the ontology
exactly represents the real one and respects the hypothesis discussed in Chapter 3.
In the second phase, we check that the XML is designed as it is defined according
the model.

Once the physical system is confirmed to be as it was designed to be represented, it
can be possible to proceed to the validation process. This validation is executed by
designing a second simulation model following the hypothesis defined in Chapter 3.
The second simulation system is modelled in TECNOMAX Plant Simulation, a
commercial software, using a manual creation instead of an automatic one as for
the model to be verified.

The performance evaluated from the two systems are collected and compared
making the hypothesis that the Plant Simulation system represent the original
ontology system.

The validation process is conducted through a hypothesis test. It aims at verifying
if the two population under study belong to the same population, thus if the
simulation models represent the same production system. The KPIs analysed are
listed in the following:

e system throughput;
« product average lifespan;
o throughput for each machine;

« machine utilization for all stations;

59

5 — Validation of the model

The hypothesis test is defined for two population which are independent and with
unknown variance [23]. It is assumed o # 0.
The test is conducted with p significance level of 0.05 on the following hypothesis:

o Ho:pr=po
o Hy:py # po

Where 11 represents the actual average value for the real system, which is
represented from Plan Simulation system, while us the performance value in the
defined model.

The hypothesis zero defines that the two system performance come from the same
population, thus, the model represents the original system, while hypothesis one
define that the two performances obtained are from different populations so the
two systems are not related.

Both the simulation are conducted with 50 experiments.

The simulation model is validated on the following types of production systems:

o flow shop: single and multi class
o hybrid flow shop: single and multi class
e job shop

Moreover, in addition to the three production systems, it is defined the modelling
for the Cosberg assembly line industrial case study is addressed.

For all the case study, the model is able to define both open and closed system,
but in this validation only the open definition is analysed.

Regarding the simulation parameter, for Plant Simulation it is considered to start
the performance analysis after 72h which is hypothesised to be enough time to
exclude effect of the transient period. The simulation is run for 144 hours. In
JMT JSIM, it is not possible to set these parameter so it has been set a confidence
interval of 0.95.

For each hypothesis test, the results are collected in a table which represent the
following information for each performance evaluated:

e X: mean value of the performance

S: standard deviation of the performance

t: t-student obtained from the test

P: p-value obtained

Result: if is "Significant" there are strong evidence to reject the Hy; if it is
"Not Significant" there are weak evidence to reject the Hy

The JMT JSIM queue system obtained for all the case studies are defined in ?7.
60

5 — Validation of the model

5.1 Flow shop

This case study is designed as the most basic one.It is composed of three machines,
each of them with its own buffer upstream. All the products start their process
plan in M1 and end it in M3. Moreover, the buffers are designed with a buffer size
of 10 units.

The production system is designed as depicted in Figure 5.1, with a production
plan represented in Table 5.1.

oL oL o{

Figure 5.1: Flow shop physical system

PART | PRODUCTION | PROCESS | PROCESSING TIME MACHINE
TYPES PLAN STEPS TIME DISTRIBUTION | ASSIGNED
P1 01 1.3 s Exponential M1
Classl ProcessPlan01 P1 02 14s Deterministic M2
P1_03 1.2s Exponential M3
P2 01 1.3s Exponential M1
Class2 ProcessPlan02 P2 02 1.1s Deterministic M2
P2_03 1.2s Exponential M3

Table 5.1: Process plan flow shop case study

5.1.1 Flow Shop single class

For the open system case, deterministic arrival rate of 1.8 second/piece is set. The
production system is created in the ontology and then imported on the Stardog
database.

After this phase the Python script is launched. At this point, it is needed to define
the arrival rate of the parts.

The XML is generated through the steps described in Chapter 4 and the simulation
is launched.

For the validation phase, the physical system is manually generated as shown in
Figure 5.2.

61

5 — Validation of the model

et [

£ = L] .4

\ 4.
Exp

EventController erimentManager

W - —gaa—— b =mag-—— 0 -PJ
L — | | — L —

_ — _

Source Buffer M1 Buffer1 M2 Buffer2 M3 Drain

Figure 5.2: Plant Simulation representation flow shop single class

Through the experiment manager, all the KPI defined in the first part of the
chapter have been defined and a simulation of 72h is launched.
The results are reportred in Table 5.2.
From the results given from the hypothesis test it not possible to reject the Hy,

< JMT S l;lant Sunulatlosn ¢ P Result

Avg. Lifecycle | 10.10562871 | 0.134591826 10.1471 0.0688 1.9400 | 0.0553 | Not Significant
TH tot 0.555537892 | 0.000179303 | 0.55555409 | 1.62357E-05 | 0.6362 | 0.5262 | Not Significant
TH M1 0.555528053 | 0.000124524 | 0.555557639 | 6.29418E-06 | 1.6779 | 0.0966 | Not Significant
TH M2 0.555638886 | 0.000172923 | 0.555559028 | 1.39702E-05 | 3.2549 | 0.0016 Significant
TH M3 0.555537892 | 0.000179303 | 0.555556481 | 1.59463E-05 | 0.7302 | 0.4670 | Not Significant

% M1 0.722019306 | 0.007629821 | 0.722410044 | 0.00247821 | 0.3444 | 0.7313 | Not Significant
% M2 0.779729853 | 0.008801027 | 0.7776741 | 0.002002292 | 1.6105 | 0.1105 | Not Significant
% M3 0.66686127 | 0.006035616 | 0.666597409 | 0.001693463 | 0.2976 | 0.7666 | Not Significant

Table 5.2: Hypothesis test results for flow shop single class

thus p; = po for all the performances except the throughput of station M2. All
the KPIs can be considered representative of the original system.

Once this test is executed, it can be useful to make another test with the production
system under high utilization condition. For the open system case, exponential
arrival rate of 1.5 second/piece is set. Moreover, the buffers are reduced to a buffer
size of 5 units.

The simulation is launched and the data are collected giving the results reported
in Table 5.3

PS JMT

< g < g t P Result
Avg. Lifecycle 10.1471 0.0688 10.10562871 | 0.134591826 | 1.9400 | 0.0553 | Not Significant
TH tot 0.55555409 | 1.62357E-05 | 0.555537892 | 0.000179303 | 0.6362 | 0.5262 | Not Significant

TH M1 0.555557639 | 6.29418E-06 | 0.555528053 | 0.000124524 | 1.6779 | 0.0966 | Not Significant
TH M2 0.555559028 | 1.39702E-05 | 0.555638886 | 0.000172923 | 3.2549 | 0.0016 Significant
TH M3 0.555556481 | 1.59463E-05 | 0.555537892 | 0.000179303 | 0.7302 | 0.4670 | Not Significant

% M1 0.722410044 | 0.00247821 | 0.722019306 | 0.007629821 | 0.3444 | 0.7313 | Not Significant
% M2 0.7776741 2.00E-03 | 0.779729853 | 0.008801027 | 0.2313 | 0.8181 | Not Significant
% M3 0.666597409 1.69E-03 0.66686127 | 0.006035616 | 0.2976 | 0.7666 | Not Significant

Table 5.3: Hypothesis test results for flow shop single class in blocking situation

62

5 — Validation of the model

The results of the new hypothesis test proves that Hy must be rejected, defining
that the two test population are not the same for all the KPIs. For this reason it is
possible to claim that the system analysed is is not representative of the original.
This validation evidences the inability of the model to represent system with high
utilization of machine combined with a variability of arrival time and process step
due to stochastic time distribution. This issue is probably a consequence of the
blocking dynamics and a different definition of drop strategies that have not been
analysed.

After this first set of tests, new flow shop systems are designed in order to understand
at which level of saturation and variability the modelling can be representing. The
first important change is done by changing the arrival time from exponential
distribution to deterministic, in this way the first origin of uncertainty can be
excluded. This new hypothesis can also be feasible by considering that the flow
shop has a feeding system which is always ready to launch the product in the line
according to a deterministic arrival rate.

Trough multiple tests it is possible to deduce that this modelling creates validity
issues when the machines have a utilization rate over around 80%. This analysis
confirm the previous hypothesis that defines the lack of validation in case of multiple
blocking situations.

5.1.2 Flow Shop multi class

The introduction of an additional class in the system, with respect to the single
class case, is very important in order to understand if the coding of XML input file
has been done correctly since there are lot of parameters and policies that required
specific definition for each class.

The physical system is defined as the single class case (Section 5.1.1).

The buffer size set to 10 units and the deterministic arrival rate for classes is set to
3.2 seconds/piece. All the steps defined in the single class system are followed to
get the simulation results

For the validation phase, the physical system is manually generated as shown in
Figure 5.3

For the KPI evaluation, the hypothesis test is defined and it is possible to accept
the hypothesis Hy for all the performance excluding the residence time for both
the classes where Hy must be rejected. With these results is possible to claim
that excluding the analysis of the time spent in the system, the model defined is
representing correctly the original model in case of flow shop multi class. The test
results are reported in Table 5.4.

63

5 — Validation of the model

. .
2 B
faae L1 .4
)
EventController ExperimentManager

=
J i e | — — —/ —
o[- —pmng-——— - —goo-————— - -bj
Source -] —_ -} —) —_
= = =1
Buffer M1 Bufferl M2 Buffer2 M3 Drain
|

Sourcel M

Method

Figure 5.3: Plant Simulation representation flow shop multi class

< JMT S };ant Slnlulatlosn ¢ p Result
Avg. LifecycleClI1 | 3.32892328 | 0.200414556 3.153 0.0632 5.9196 | 0.0000 Significant
Avg. LifecycleCl12 | 3.219436661 | 0.111485052 3.3019 0.0582 4.6366 | 0.0000 Significant
TH Cl1 0.71427388 | 9.27506E-05 | 0.714286111 | 5.45382E-06 | 0.9309 | 0.3542 | Not Significant
TH CI2 0.714259007 | 0.000104372 | 0.714286188 | 5.85824E-06 | 1.8386 | 0.0690 | Not Significant
TH M1 1.428495245 | 0.00033491 | 1.428569907 | 6.63393E-06 | 1.5761 | 0.1182 | Not Significant
TH M2 0.71384861 | 0.003085645 | 0.714284799 | 3.64674E-06 | 0.9996 | 0.3200 | Not Significant
TH M3 0.714713034 | 0.003711223 | 0.714284877 | 3.63589E-06 | 0.8158 | 0.4166 | Not Significant
TH M4 1.42852105 | 0.000317255 | 1.428572299 | 1.08957E-05 | 1.1416 | 0.2564 | Not Significant
% M1 0.714850847 | 0.003795642 | 0.714148202 | 0.001182145 | 1.2498 | 0.2144 | Not Significant
% M2 0.535291585 | 0.00274613 | 0.535053227 | 0.007030371 | 0.2233 | 0.8238 | Not Significant
% M3 0.535622751 | 0.002714064 | 0.536373955 | 0.007029775 | 0.7049 | 0.4825 | Not Significant
% M4 0.713251123 | 0.00383822 | 0.714056798 | 0.001101641 | 1.4267 | 0.1569 | Not Significant

Table 5.4: Hypothesis test results for flow shop multi class

5.2 Hybrid flow shop

Next case study to analyse if the hybrid flow shop. This system is a variant of the
traditional flow shop due to the introduction of parallel machining. In fact there is
the first introduction of multiple path due to the presence of two parallel machines.
The physical system is depicted in Figure 5.4 with a production plan reported in
Table 5.5. Moreover, the buffers are designed with a buffer size of 10 units.

5.2.1 Hybrid flow shop single class

This first version of the case study is developed to test the probability routing
policy developed in the Section 4.3. In fact as anticipated in the introduction of
the chapter the existence of more machines in parallel requires the definition of the
probability routing policy which needs to be tested with first this case study and
later with the job shop one (Section 5.3).

The product enter in the system with an arrival rate of 0.8 second/piece with a
deterministic time distribution.

64

5 — Validation of the model

M2
e e

Figure 5.4: Hybrid flow shop physical system

PART | PRODUCTION | PROCESS | PROCESSING TIME MACHINE
TYPES PLAN STEPS TIME DISTRIBUTION | ASSIGNED
P1_01 0.5s Exponential M1
Classl ProcessPlan01 P1 02 0.7s Deterministic M2, M3
P1_03 0.5s Exponential M4
P2_01 0.5s Exponential M1
Class2 ProcessPlan02 P2 02 0.8s Deterministic M2, M3
P2_03 0.5s Exponential M4

Table 5.5: Process plan hybrid flow shop study

Once also this control is done, it can be possible to move to the performance
evaluation process through the what-if analysis simulation. When this step is
completed, the results extraction script is used to collect the statistical data needed
for the validation.

The Plant Simulation is depicted in Figure 5.5. The simulation is launched providing

— —
QEE———

| B —_—
Buffer1 Station2

— — — =
> Qoa——t : : - Ch- =
| I | — L —
)} _
Source Buffer Stationt FlowControl — 5 Buffer2 Stationd Drain
Qe+
| B —_—
]

Buffer3 Station3

Figure 5.5: Hybrid flow shop Plant Simulation system

the results reported in Table 5.6

Given the results of the test, it is possible to accept the hypothesis Hy for all the
performance excluding the residence time for both the classes where Hy must be
rejected. With these results, it is possible to claim that,as the flow shop multi class
case (Section 5.2.1), the time spent in the system of the model is note representative

65

5 — Validation of the model

< JMT S l;lant Slmulatlosn ¢ P Result
Avg. Lifecycle | 2.913016265 | 0.03319615 2.5811 0.0065 69.3835 | 0.0000 Significant
TH tot 1.250064675 | 0.000251148 | 1.250000926 | 8.30608E-06 | 1.7939 | 0.0759 | Not Significant
TH M1 1.249987056 | 0.000149556 | 1.250001929 | 4.62766E-06 | 0.7029 | 0.4838 | Not Significant
TH M2 0.625557713 | 0.003977853 | 0.625001929 | 4.21546E-06 | 0.9880 | 0.3256 | Not Significant
TH M3 0.624981158 | 0.004328469 | 0.625002932 | 3.17184E-06 | 0.0356 | 0.9717 | Not Significant
TH M4 1.250064675 | 0.000251148 | 1.250003472 | 8.14692E-06 | 1.7223 | 0.0882 | Not Significant
% M1 0.624041111 | 0.006873223 | 0.625140348 | 0.001079496 | 1.1172 | 0.2666 | Not Significant
% M2 0.437093633 | 0.005538254 | 0.437942924 | 0.001220323 | 1.0589 | 0.2922 | Not Significant
% M3 0.436511067 | 0.006290487 | 0.437528077 2.02E-05 1.1432 | 0.2557 | Not Significant
% M4 0.62670151 | 0.007130288 | 0.624878484 | 0.001082145 | 1.7874 | 0.0770 | Not Significant

Table 5.6: Hypothesis test results for hybrid flow shop single class

of the original system. For the other KPIs the model is verified.

5.2.2 Hybrid flow Shop multi class

For the hybrid flow Shop multi class case, the arrival rate is set to 1.4 second/pieces
with a deterministic time distribution.
The Plan Simulation system is represented in Figure 5.6 and the performances of
the two different model are evaluated according to the methods developed.

From the KPIs obtained, the hypothesis test is completed obtaining the results

4 wir
[e L] 4
SR
EventController ExperimentManager — —
[e
— — -"J
Source Buffer M2
i /i — Drain
[e [+ IS e
— — —
Buffer2 M1 Buffer3 M4
— /1
[I o i +J
— —
Bufferl M3 Drainl

Sourcel

M|

Method

Figure 5.6: Plant Simulation hybrid flow shop multi class system representation

reported in Table 5.7

From the KPI evaluation, the hypothesis test is defined and it can be possible to
accept the hypothesis Hy for all the performance excluding the residence time for
both the classes where Hy must be rejected. With these results is possible to claim

66

5 — Validation of the model

< JMT 5 P}’(lant Slmulatlosn ¢ P TestResult
Avg. LifecycleCI1 | 3.32892328 | 0.200414556 3.153 0.0632 5.9196 | 0.0000 Significant
Avg. LifecycleCl2 | 3.219436661 | 0.111485052 3.3019 0.0582 4.6366 | 0.0000 Significant
TH Cl1 0.71427388 | 9.27506E-05 | 0.714286111 | 5.45382E-06 | 0.9309 | 0.3542 | Not Significant
TH CI12 0.714259007 | 0.000104372 | 0.714286188 | 5.85824E-06 | 1.8386 | 0.0690 | Not Significant
TH M1 1.428495245 | 0.00033491 | 1.428569907 | 6.63393E-06 | 1.5761 | 0.1182 | Not Significant
TH M2 0.71384861 | 0.003085645 | 0.714284799 | 3.64674E-06 | 0.9996 | 0.3200 | Not Significant
TH M3 0.714713034 | 0.003711223 | 0.714284877 | 3.63589E-06 | 0.8158 | 0.4166 | Not Significant
TH M4 1.42852105 | 0.000317255 | 1.428572299 | 1.08957E-05 | 1.1416 | 0.2564 | Not Significant
% M1 0.714850847 | 0.003795642 | 0.714148202 | 0.001182145 | 1.2498 | 0.2144 | Not Significant
% M2 0.535291585 | 0.00274613 | 0.535053227 | 0.007030371 | 0.2233 | 0.8238 | Not Significant
% M3 0.535622751 | 0.002714064 | 0.536373955 | 0.007029775 | 0.7049 | 0.4825 | Not Significant
% M4 0.713251123 | 0.00383822 | 0.714056798 | 0.001101641 | 1.4267 | 0.1569 | Not Significant

Table 5.7: Hypothesis test results for hybrid flow shop multi class

that excluding the analysis of the time spent in the system, the model defined is
representing correctly the original model in case of hybrid flow shop multi class.

67

5 — Validation of the model

5.3 Job shop

Last case study defined for the validation of the model is a job shop. This is the
most complex system due to the fact that each part type has its own routing.
The physical system is depicted in Figure 5.7. Each buffer of the system has been
designed with a capacity of 10 units, and all the arrival rates of the three classes
are set to a value of 2.5 second/piece, following a deterministic time distribution.
The process plan is defined in Table 5.8.

The simulations on both tools are launched and the performance evaluated are

wr@

Figure 5.7: Jobshop system representation

PART PRODUCTION | PROCESS | PROCESSING TIME MACHINE
TYPES PLAN STEPS TIME DISTRIBUTION | ASSIGNED
PJS01_01 155 Exponential M1
ProductJS01 | ProcessPlanJS01 | PJS01_ 02 0.7 s Exponential M3
PJS01 03 0.7 s Exponential M5
PJS02 01 0.6s Exponential M2
ProductJS02 | ProcessPlanJS02 | PJS02 02 0.8s Exponential M4
PJS02_ 03 0.7s Exponential M5
PJS03 01 0.6 s Exponential M2
ProductJS03 | ProcessPlanJS03 | PJS03_ 02 0.7 s Exponential M3
PJS03 03 0.8 s Exponential M4

Table 5.8: process plan job shop case study

collected and analysed. The result are reported in Table 5.9

The results of the hypothesis test on the case study shows that, excluding the
residence time, it is possible to accept Hy, so to claim that the KPIs from the
model represent of the original system performance.

68

5 — Validation of the model

SourceProd01

SourceProd03

SourceProd02

EventController

| | | o |
ﬂ—ﬁ—_m—%—b-_'ﬁr
[=l

B1 M1

1

ExperimentManager

[+ S 1+ o
| B

DrainP03

DrainP02

&l

DrainP01

Figure 5.8: Plant Simulation Jobshop system representation

< JMT < I;lant Slmulatlosn ¢ P Result
Avg. LifecycleCl1 | 4.731905105 | 0.035843824 4.7588 0.0168 4.8042 Significant
Avg. LifecycleCl2 | 4.04364859 | 0.019447675 4.5327 0.2909 11.8612 0 Significant
Avg. LifecycleCl3 | 3.429976029 | 0.019216564 4.3714 0.2772 23.9572 0 Significant
TH Cl1 0.400006546 | 3.76E-05 | 0.400000772 | 6.25E-06 1.0702 | 0.2872 | Not Significant
TH CI12 0.39999624 4.45E-05 | 0.400000386 | 6.67E-06 0.651 | 0.5166 | Not Significant
TH CI3 0.400002903 | 2.72E-05 0.4 5.14E-06 0.7411 | 0.4604 | Not Significant
TH M1 0.399999951 | 3.90E-05 | 0.399998843 | 4.47E-06 0.1997 | 0.8422 | Not Significant
TH M2 0.800011519 | 4.89E-05 | 0.800003858 | 6.56E-06 1.0976 | 0.2751 | Not Significant
TH M3 0.800029413 | 8.48E-05 | 0.800000772 | 9.42E-06 2.3736 | 0.0196 Significant
TH M4 0.800013836 | 0.000111162 | 0.800000772 | 9.06E-06 0.8283 | 0.4095 | Not Significant
TH M5 0.800002412 | 0.000147352 | 0.800001157 | 8.14E-06 0.0601 | 0.9522 | Not Significant
% M1 0.599201655 | 0.004271045 | 0.600319716 | 0.001674158 | 1.7234 | 0.088 | Not Significant
% M2 0.479837102 | 0.002889523 | 0.64035372 | 0.000999362 | 371.2309 0 Significant
% M3 0.560127685 | 0.004151241 | 0.560166901 | 0.001556616 | 0.0625 | 0.9503 | Not Significant
% M4 0.639262597 | 0.004161988 | 0.639987164 | 0.001074138 | 1.192 | 0.2362 | Not Significant
% Mb 0.559532056 | 0.003236309 | 0.559575437 | 0.001777352 | 0.0831 | 0.934 | Not Significant

Table 5.9: hypothesis test results on job shop production system

5.4 Real Industrial case

The case study addresses on the analysis of the assembly process of hinge for

furniture doors.

The hinge is depicted in Figure 5.9. This case differs from

the previous ones due to the assembly process involving the presence of different
component in the system. In particular, this process of the hinge assembly considers
the assembly of some sub-assemblies and some components in different stations of
an assembly line.
The assembly line is composed of a linear conveyor capable of handling pallets, and

69

5 — Validation of the model

Clip
Pin

Hinge Arm

Connector 2
Grub Screw

Spring
Connector 1

Box Assembly

U-bolt

Figure 5.9: representation of the assemble hinge

a set of assembly stations. In each one a component is added to the hinge, while it is
blocked into the pallet. Each assembly station is equipped by with a feeding system
conveying the needed component. Each feeding group is designed with a vibratory
bowl feeder, a linear rail and a pacing selector to compose the component. This
solution grants the feeding application for a wide range of components of different
sizes and materials. An example of an assembly line is shown in Figure 5.10.

Figure 5.10: Model of an assembly line similar to the case study one
In this specific case, the pallets, moved by the conveyor, pass 9 stations corre-
sponding to 8 (+1) assembly operations. These operations are described below:

1. Arm feeding: an arm is conveyed to the assembly line and tightened into the
pallet.

2. Grub screw screwing: a grub screw is conveyed to the station, aligned to the
corresponding hole on the arm and screwed. Processing time: 0.9 s

70

5 — Validation of the model

3. Clip alignment: a clip is conveyed to the line and inserted in the arm, hooking
it to the grub screw. Its holes are aligned with those of the arm.

4. Clip riveting: insert rivet into arm and clip and riveting holes.

5. Rod/spring alignment: the rod/spring sub-assembly is conveyed to the line.
Its holes are aligned with those of the arm.

6. Assembly riveting: inserting rivet into the holes of the arm and assembly and
riveting.

7. Box alignment: a box is conveyed on the line and aligned with the arm.
8. U-bolt insertion: a U-bolt is inserted in the holes of arm and box.

9. Control: a vision system controls the presence of all components in the
assembly. If the assembly is not complete or has defects, a slide is opened in
which the assembly to be discarded is conveyed.

All the operations are defined with an exponential time distribution, the processing
time is defined in In Table 5.10

OPERATION PROCESSING TIME
Arm feeding 0.7s
Grub screw screwing 0.9s
Clip alignment 0.7s
Clip riveting 0.5s
Rod/spring alignment 1s
Assembly riveting 0.5s
Box alignment 0.7s
U-bolt insertion 0.6s
Control 0.8 s

Table 5.10: processing time of assembly system

At the end of the line the pallet is brought to a lift where it lowered to a conveyor
that flow under the assembly conveyor. This second conveyor redirects all the pallet
in a buffer at the start of the assembly line where they can start again the cycle.
From there it is delivered to the beginning of the line where it is ready to start a
new assembly process. Since the sub-assembly is moving on the whole line on a
pallet, it can me modelled as the pallet itself. In this way instead defining a pallet
that is moving from station to station with the sub-assembly, it is considered a
pallet that at each station get a component through an operation and at the end
of the last process (Control) a fully assembled hinge is obtained.

71

5 — Validation of the model

A system representation is depicted in Figure 5.11
The use of a pallet defined in a fixed number in the system would required the

Arm Clip Rivet

Feeder feeder feeder

Start of . Grub screw - S
Arm feeding > screwing Clip aligmnment Clip riveting

Pallet conveyor

Grub
screw
feeder

\

\

Y

??;zti? | — Control - U-bolt insertion |« Box alignment |« Assembly riveting
U-bolt Box
feeder feeder

Figure 5.11: cosberg assembly line representation

designed of a closed system, but due to their high number, their presence is not
having influence on the performance of the system. Therefore the assembly process
can be designed as an open one.

The second issue of this particular system is the assembly process. In OntoGui
the implementation of assembly process is possible, but only in "OWL Individual
Manager". This means that the definition of the system is more complicate and
different from the one defined through "System Design" where it is not possible to
set relationship between part types. Moreover, an assembly system does not satisfy
the hypothesis defined in Chapter 3. For these reason it cannot be represented
through the model defined, so in order to have a JMT JSIM representation it has
been defined manually.

5.4.1 JMT JSIM representation

In JMT JSIM, , the process of modelling two or more products merging into a
single one is a delicate step due to the structural limit of the tool itself.

The software presents two elements that can be used for representing such a process:
the fork and the join. The first one let the user define the creation from one class of
multiple class, the second one merge again the class created. For technical details
please refers at the JMT user manual [8]. These two elements allow the definition
of component but have the limit that in order to merge two or more components

72

5 — Validation of the model

with the join, these components must have been created from the job in the fork
element. This means that in order to represent the flow of component, they must
be generated in the fork from an original class; it is not possible to represent
their arrival in the system in another way. This limitation defines constraints
in terms of path definition: if in the real system the components enter in the
system from the feeders, in this representation they must be generated at the start
of the line and and convey them in the feeding stations. Moreover, due to the
join constrains that requires that only part type created from the original one
in the fork can merge together again, it is not possible to change the part type
definition during the processing, for example by changing in the assembly station
from semi-finished-part0O1 to semi-finished-part02. For this reason, it is not possible
to define the change of the product to be assembled during the assembly system.
In Figure 5.12, the component structure generation and merging through the fork
and join element is depicted.

PARTTYPE SOURCE Fork 1 M1 Join 2 M3 FINISHED PRODUCT SINK

Figure 5.12: Fork and Join component structure

With these constraints an assembly process can be defined as follow. The
finished product is generated from a source and is directed to a fork where all
the components using "Multi-Branch Class Switch" strategy. The original part is
directed to the first assembly machine and each component is conveyed to its own
dedicated feeding system. Each feeding system is represented as a queue station
with really high or infinite buffer size and with a processing time lower than the
line throughput in order to have the component always available for the arrival of
the part to be assembled. Upstream each assemble station, a join element has to
be defined. In to that join are directed the component for the assembly operation
and the semi-finished product. With a "Quorum" join policy, the component from
the feeding system waits for the semi-finished part in the join element and once
it arrives they are merged into the original part type. By repeating this process
for all the assembly process, it is possible to define the whole system. With these
hypothesis is possible to represent the assembly system as depicted in Figure 5.13

In order to evaluate if the system designed can represent the assembly process

73

5 — Validation of the model

Figure 5.13: JMT JSIM representation of Industrial case study

correctly, we also defined a simplified case where the whole line can be approximate
to a flow shop. The hypothesis made is that the feeding system of the component
to the main line can be excluded from the analysis. This is due to the fact that the
buffers of the various feeders have such capacity that there is no starvation risk.
Moreover, the availability of the feeding sub-system is such high that its effect on
the performance of the line is that low to justify that the effect are minimal. Each
station of the flow shop represents an assembly operation even if the component
are no more present.
The flow shop approximation is depicted in Figure 5.14

Once both the system are designed, the performance can be evaluated setting

Source 1 © Armfeeding . Grub screw screwing Clip alignment “ Clip riveting -~ Rod/spring alignment -

S'_"k 1 . Control . U-bolt insertion . Box alignment . Assembly riveting

Figure 5.14: flow shop approximation for the assembly line

an exponential arrival rate of 1.5 second/piece. It is decided to compare the
system throughput and system residence time. Due to the high complexity of the
component system the simulation could not be concluded multiple time due to pc
memory limit. For this reason the residence time performance can not be defined
as the previous case study and as the the counterpart in the simplified system.
The previous analysis cannot be used as statistical proof for the validation of the
model due to the lack of statistic samples. For this reason it is is decided to use
the approximate flow shop system for the performance evaluation and its following
hypothesis test. The assembly line is defined with buffers with a capacity of 4 units
and the product entering the system with an arrival rate of 1.5 second/piece with
a deterministic time distribution.

74

5 — Validation of the model

The Plant Simulation model is depicted in Figure 5.15
The simulation is launched for both model and the performance evaluated are

EventController ExperimentManager

1 | o | — —1 — | o | — | o | — | o |

J-b @ug——— b —@ma-—— b —ama——— [—agoa— b —@ag————— 0

—_ | | | = —_ | = | M| | =) _ | = | M|

Source B1 ArmFeeding B2 GrubScrescrewing B3 ClipAlignmeiB4 ClipRivetingB5 RodSpringAlignment
—i L | i 1 —i L | 1 L |
]—4- -+ -+ o] T+ ~OE e 1+ BEg-—< 4 —<——apn-
_ _ —_ —_ _ _ —_ —_
Drain Control B9 UBoltInsertion B8 BoxAlignment B7 AssemblyRiveting B6

Figure 5.15: Plant Simulation approximation for the assembly line

collected for the hypothesis test. The results of the test are represented in Table 5.11.
In the table, the name of the machines have been approximated to with the position
of the process step in the process plan, for example" Grub screw screwing' process
is M2 since it is the second process.

< JMT . l;(lant Snnulatlosn " P Restlt
Avg. LifecycleCl1 | 10.8979683 | 0.059751504 10.9137 0.0344 1.613426231 | 0.10986755 | Not Significant
TH Cl1 0.66666945 | 5.68081E-05 | 0.666667284 | 8.58659E-06 | 0.26655819 | 0.790369413 | Not Significant
TH M1 0.666655736 | 2.25934E-05 | 0.666667438 | 2.33833E-06 | 3.643097996 | 0.00043292 Significant
TH M2 0.666656601 | 3.49013E-05 | 0.666670293 | 5.69631E-06 | 2.737783449 | 0.007346897 Significant
TH M3 0.666655327 | 3.06473E-05 | 0.666669599 | 6.54728E-06 | 3.220274927 | 0.001737897 Significant
TH M4 0.666662424 | 4.07467E-05 | 0.666668904 | 7.95219E-06 | 1.103796651 | 0.272384311 | Not Significant
TH M5 0.666647397 | 5.88546E-05 | 0.666671373 | 8.29617E-06 | 2.852403155 | 0.005292875 Significant
TH M6 0.666653818 | 4.67096E-05 | 0.66667037 | 8.95371E-06 | 2.46090704 | 0.015607571 Significant
TH M7 0.666663197 | 4.92391E-05 | 0.666670139 | 1.11667E-05 | 0.972163724 | 0.333362527 | Not Significant
TH M8 0.666659987 | 5.47193E-05 | 0.666669367 | 1.01701E-05 | 1.191778267 | 0.236226314 | Not Significant
TH M9 0.66666945 | 5.68081E-05 | 0.66666929 | 8.79903E-06 | 0.019637693 | 0.984372322 | Not Significant
% M1 0.466610944 | 0.00243742 | 0.466674667 | 0.001257711 | 0.164280538 | 0.869848657 | Not Significant
% M2 0.600074581 | 0.003991912 | 0.600175062 | 0.001293321 | 0.16932081 | 0.865893322 | Not Significant
% M3 0.4662784 | 0.002198178 | 0.466541836 | 0.001317062 | 0.726922592 | 0.469006264 | Not Significant
% M4 0.332980303 | 0.001838139 | 0.33327762 | 0.000906156 | 1.025856341 | 0.307484805 | Not Significant
% M5 0.666105573 | 0.003609182 | 0.666781846 | 0.001636544 | 1.206688356 | 0.230456956 | Not Significant
% M6 0.333484388 | 0.001785565 | 0.333291618 | 0.00083986 | 0.690795223 | 0.491327225 | Not Significant
% M7 0.4668604 | 0.002614847 | 0.46662704 | 0.001372498 | 0.558757774 | 0.577601587 | Not Significant
% M8 0.39953295 | 0.001819914 | 0.399962049 | 0.001104303 | 1.425337925 | 0.157236806 | Not Significant
% M9 0.533881962 | 0.00234743 | 0.533544877 | 0.001516017 | 0.852971164 | 0.39575522 | Not Significant

Table 5.11: hypothesis test results on simplified assembly line

From the table it is possible to evidence that for the throughput for M1, M2, M3,
M5 an M6 the results prove that there are enough evidence to reject Hy so for
these performance the model is not representative of the Plant Simulation system.

75

5 — Validation of the model

For the other performance it is possible to affirm that H, cannot be rejected so
they are representative of the system.

Overall, the model proves to be valid to represent the system on the most general
performance such as the average life cycle of a product in the system and the system
throughput. For the unverified performance, it is possible to affirm that they are
a consequence of the buffer size. In fact in the flow shop case study validation it
has been proven that small buffer size creates more blocking situations even with a
low utilization of machines which reduce the ability of the model to represent the
original system

76

Chapter 6
Conclusion

In this thesis it has been develop a model to represent production system in order
to evaluate their performances. This model is necessary for developing a way to
create a way of exchange information from the physical system and the performance
evaluation representation. The choice of the tools in support of the process has been
determined by the need of interoperability in order to have a solution which could
be, in the future, integrated in a deeper network of connections. For this reason
the data of the system are based on an ontology structure and the performance
evaluation tool is an open source queuing network based on a XML layer.

First, the model has been defined through the analysis of the two data structure
available, on one side the ontology formalization and on the other one a queuing
network. In order to have a reliable model for the representation of the original
system, some hypothesis have been defined in order to limit its field of application
and be able grant an accurate modelling. The main hypothesis is the possibility to
apply this model only to flow shop, hybrid flow shop and job shop. Moreover, it is
also defined that each machine in the system can be connected upstream only with
one buffer, and that buffer has to be dedicated only to the use of the machine.
After this step it has been defined the approach for the resolution model which
can be divided in three main phases: data extraction from the ontology, generation
of the queuing network simulation model and reading and anlysis of the results.
For the data extraction it has been made use of SPARQL query to interrogate the
ontology on a remote server and later the information obtained have been refined
in order to make them suitable for the following phase of the generation of the
model. In this phase, the XML input structure of the queuing network has been
analysed to learn how to define the needed element and generate a complete system.
The performance model has been generated through the use of Python language to
code an algorithm for the automatic conversion from the data obtained from the
ontology to the XML input representation. Last phase involved the reading of the
results in order to collect the data on the performance evaluated.

7

6 — Conclusion

Last step of the thesis is the validation of the model. Even if the pure conversion
from ontology to queuing network was defined correctly it must be verified that
the model defined, on which the conversion process was built, could approximate
the performance of the original system accurately. For this reason case studies
have been defined, and their performance have been analysed through the defined
model and a commercial software which was approximate to be representing of
the original system. The results have been compared through a hypothesis test to
verify if the model could be representative of the original production system.
From this last analysis it was defined that the model developed is able to correctly
represent the system under normal machine load. The only KPI that is not
representative of the system is the time spent in the system and as consequence
the other pure time indicators. This issue can be traced back to the different data
structure of the two system, in fact the performance evaluation tools is queuing
network based, which has a different behaviour in certain situation. Regarding
this last point it has in fact been observed that under high machine load (more
than 80%),which leads to blocking situation in the system, the model defined is
no more representative of the system, having all the KPIs failing the hypothesis
test. The issue is probably generated by the different queuing management within
the software structure. It is required in the future a more detailed analysis on
the blocking situation in order to understand what created this and how it can be
possible to solve it, by for example developing more hypothesis.

Regarding assembly systems, it has been identified a way to manually integrate it
into the performance evaluation tools. In order to validate the model it has been
designed a flow shop model which could approximate the assembly line and from
its performance it has been conducted the validation. The model has proved to be
reliable for the system performance such as average life cycle of a product in the
system and system throughput but some machine throughput cannot be considered
reliable. Also in this case it is a consequence of the blocking events due to the
low buffers size. Future work on this topic is required so that it can be possible
to validate the representation defined, and, moreover, have a complete process
to start from the ontology defined, and obtain a system representation. At this
very moment research on the ontology side are being conducted so soon it will be
possible to work with a more accessible way to define assembly systems. Moreover,
a progress in the blocking situation analysis is going to give a real benefit also for
the representation of system with buffer with low capacity as the industrial case

defined.

78

Appendix A

XML generation

79

A — XML generation

START

XML queue generation tree

Define station name;
queue section,
buffer size and

general string drop
strategy:

Head buffer string

o

Define class specific
drop strategy:
Drop rule class
specific string

Are all the classes
processed in the
station defined with
a drop strategy?

Yes

Define general string
queue strategy:
Queue strategy string

4

Define class specific
string queue
strategy:
Queue strategy class
specific string

Are all the classes
processed in the
station defined with

queue strategy?

Yes

N S

Define Service
Section with
maxJob:
Service Section

string

v
Define class specific
string number of
visit:

Service visit class
specific string

Are all the classes
processed in the
station defined with
number of visit?

Yes

Define general string
service strategy:
Service strategy

station string

station definition is
over

Yes

R

Are all queue in the
system defined?

Are all the classes
processed in the

station defined with
Routing strategy?

Yes
P E—
Are all the
downstream station
for the specific class
defined with Routing

strategy?
2

A

Define downstream
station specific string
Routing strategy:
Routing downstream
station specific string

A

——
Define class specific
string Routing

strategy:
Routing class
specific string
—

Define Router
Section with general
string Routing
strategy:
Routing section

string

Yes

Are all the classes
processed in the
station defined with

service strategy?
A

Define class specific
string service
strategy paying
attention on the time
distribution:
Service strategy

class specific string

Figure A.1: XML queue specific generation process

80

Bibliography

Walter Terkaj and Marcello Urgo. «Ontology-based Modeling of Production
Systems for Design and Performance Evaluationy. In: (Nov. 2014), pp. 748—
753 (cit. on pp. 2, 5, 7).

Walter Terkaj. «OntoGui: A Graphical User Interface for Rapid Instantiation
of OWL Ontologies». In: (2017) (cit. on pp. 2, 6).

VLFT Project Website. 2019. URL: https://www.Vvlft.eu/ (visited on
12/02/2019) (cit. on p. 3).

International Society of Automation. «ISA-95: the international standard for
the integration of enterprise and control systems». In: () (cit. on p. 5).
National Institute of Standards and Technology. «Process Specification Lan-
guage (PSL)». In: (2008) (cit. on p. 5).

buildingSMART. IFC Overview. URL: http://buildingsmarttech.org/
specifications/ifc-overview (cit. on p. 5).

M. Shahbaz H.K. Lin J.A. Harding. «Manufacturing system engineering
ontology for semantic interoperability across extended project teams». In: Int.
Journal of Production Research 42.24 (), pp. 5099-5118 (cit. on p. 6).

M.Bertoli G.Casale G.Serazzi. JMT User manual. 2018. URL: http://jmt.
sourceforge.net/Papers/IMT_users_Manual.pdf (visited on 12/02/2019)
(cit. on pp. 7, 20, 72).

Swee K. Leong Charles R. McLean. «A Process Model for Production System
Engineering». In: (1995) (cit. on p. 9).

URL: https://www.w3.0rg/community/1bd/2014/12/12/ifcowl-ontology
-file-added- for-ifc4_addl/ (cit. on p. 10).

URL: https://www.stardog.com/ (cit. on p. 25).
URL: https://www.w3.0rg/TR/rdf-sparql-query/ (cit. on p. 25).

G. Pedrielli W. Terkaj. «ProRegio Deliverable VFF». In: (2017), p. 1 (cit. on
p. 25).

81

https://www.vlft.eu/
http://buildingsmarttech.org/specifications/ifc-overview
http://buildingsmarttech.org/specifications/ifc-overview
http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf
http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf
https://www.w3.org/community/lbd/2014/12/12/ifcowl-ontology-file-added-for-ifc4_add1/
https://www.w3.org/community/lbd/2014/12/12/ifcowl-ontology-file-added-for-ifc4_add1/
https://www.stardog.com/
https://www.w3.org/TR/rdf-sparql-query/

BIBLIOGRAPHY

N = =
= O © o N O Ot

—_— — — — — — — — — —
]
DO

URL: http://www.ontoeng.com/statistics (cit. on p. 25).

URL: http://www.learninglab.de/~dolog/fsm/fsm.owl (cit. on p. 25).
URL: http://www.w3.0rg/ns/sosa/ (cit. on p. 25).

URL: http://www.w3.0rg/ns/ssn/ (cit. on p. 25).

URL: http://www.ontoeng.com/expression (cit. on p. 26).

URL: http://www.ontoeng.com/osph (cit. on p. 26).

URL: https://w3id.org/list (cit. on p. 26).

URL: https://w3id.org/express (cit. on p. 26).

URL: https://rdflib.github.io/sparqlwrapper/ (cit. on p. 36).
Erich Leo Lehmann. Testing statistical hypotheses. 1986 (cit. on p. 60).

82

http://www.ontoeng.com/statistics
http://www.learninglab.de/~dolog/fsm/fsm.owl
http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/
http://www.ontoeng.com/expression
http://www.ontoeng.com/osph
https://w3id.org/list
https://w3id.org/express
https://rdflib.github.io/sparqlwrapper/

	List of Tables
	List of Figures
	Introduction
	State of the art
	Digital system representation
	Performance evaluation
	Automatic generation of a performance evaluation model

	Problem Statement
	Analysis of the production system
	Analysis of the buffer
	Analysis of the relationship between

	Solution
	JMT JSIM Formalization
	Station definition
	Queue
	Source and Sink

	Class Definition
	Performance Evaluation

	Data extraction from ontology
	Ontology preparation
	Queries definition
	Physical system stations
	Buffer Size
	Part Types
	Process Steps
	Assigment of processes steps to machines
	Process steps extraction with Stochastic time

	Extraction process
	Data Refinement
	Physical system stations
	Buffer size
	Part types
	Process steps
	Assignment of processes steps to machines
	Assignment of stocastic processes steps to machines
	Part type flow
	Buffer and machine merging
	Arrival time and number of population

	XML Modelling
	Heading
	Source
	Queue station
	Sink
	Connections
	Performance to be evaluated
	Load of population for closed system
	Ending

	Run Simulation
	JMT JSIM user interface approach
	Console simulation run

	Output Reading and Results Analysis

	Validation of the model
	Flow shop
	Flow Shop single class
	Flow Shop multi class

	Hybrid flow shop
	Hybrid flow shop single class
	Hybrid flow Shop multi class

	Job shop
	Real Industrial case
	JMT JSIM representation

	Conclusion
	XML generation
	Bibliography

