POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA
DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY
COMPUTER SCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE AND AUGMENTED
REALITY FOR ENTERTAINMENT APPLICATIONS

Doctoral Dissertation of:

Darian Frajberg

Supervisor:
Prof. Piero Fraternali

Tutor:
Prof. Cesare Alippi

The Chair of the Doctoral Program:
Prof. Barbara Pernici

2019 — XXXII

Acknowledgements

There are several special people who I feel I am particularly indebted to for hav-
ing in one way or another stood by me all along the way, and without whom this
outcome would not have been possible.

First of all, I would like to thank my family for the permanent, unfaltering sup-
port they have given me not only through my studies but throughout my whole
life, as well as their encouragement to always pursue my dreams regardless of how
challenging they might be or even when it meant being far away from them. I am
grateful to my mum, Fabiana, and my dad, Marcelo, who I owe a big part of this
accomplishment. To my sister, Eliana, who is such an important part of my life.
To my grandparents, who have always taken so much interest in me and are or
would have been so proud of this.

I am deeply and forever thankful to Piero Fraternali, my thesis advisor, for his
support, trust and ability to guide me, which have been invaluable to me not only
for the development of this thesis but for my own personal and academic growth.
He was a role model and his passion and hard work inspired me to do my very best.

Thanks are also due to all my friends and those people who have somehow
always been present. A very special mention to Roman Fedorov, Rocio Nahime
Torres, Carlo Bernaschina, Chiara Pasini and Sergio Herrera, who accompanied
me during this adventure and helped me grow both professionally and personally
and entrusted me with their dear friendship.

A very special gratitude goes to Matias Urbieta, indeed one of the big respon-
sible people for persuading me to do a PhD.

I also want to extend my thanks to Alessandro Bozzon and David Crandall for
their much appreciated reviews.

Abstract

UTDOOR Augmented Reality applications are an emerging class of software
O systems that demand the fast identification of natural objects on mobile and

embedded systems. They arise as an interesting tool to support the cre-
ation of entertainment and educational applications. Artificial Intelligence has
recently exhibited superior performance in a variety of Computer Vision tasks
and can lead to novel Augmented Reality solutions. Nonetheless, their execu-
tion remains challenging and requires non negligible resources for devices with
hardware constraints. The goal of the research presented in this thesis is to ex-
ploit the commoditization of Artificial Intelligence methods and the forthcoming
wave of low-cost mass market Augmented Reality devices, to propose methods,
architectures and components to support the creation and evaluation of solutions
for outdoor Augmented Reality applications efficiently executable on low-power
portable devices. Specifically, the focus is set on entertainment applications that
can play a fundamental role to motivate citizens to contribute for environmental
crowdsourcing purposes, such as data collection. The experimental results demon-
strate how Artificial Intelligence, Computer Vision and Augmented Reality can
be successfully integrated for the construction of novel entertaining solutions for
limited-capacity portable systems.

Contents

(1__Introduction| 1
(L1 Problem Statement!o 2
(1.2 Research questions| 2
(L3 Contributions| 3
[L4 Structure of the thesisd 4

[2 Background| 7
[2.1 Image-based geolocalozationl 7

[2.1.1 Image-to-terrain registration| 8
[2.1.2 Skyline extraction| 8
[2.2 Augmented Reality|. 11
[2.2.1 Mobile Augmented Reality| 11
[2.2.2 Mountain exploration applications| 13
(2.3 Artificial Intelligence on the edgel 14
[2.3.1 Compression techniques| 16
[2.3.2 Optimized model architectures| 16
2.3.3 Hardware acceleration|. 18
[2.3.4 Heterogeneous computing schedulingl 18
2.3.5 Mobile DI, Frameworks 19
[2.3.6 Benchmarking| 19
[2.4 Multi-sensor applications testingl 20
[2.5 Crowdsourcing and Citizen Science| 21
R5I1 Platforms. 21
[2.5.2 Environmental monitoringlo 000 22
6 Usecasdo 23
[2.6.1 Mountain analysis| 24
2.6.2 SnowWatchl o oo 24
2.6.3 Offline Peak Detection for the Webl 25

Contents

3 Image-based geolocalization in natural environments|

[3.1 Requirements| oo

[3.3 Pipeline for skyline detection|

[3.3.1 Pixel-wise skyline detection|.

I;i.;i.z (:Szl!llllll_ y! “‘zs: !15:!‘:‘:! lQ“l

B4 Evaluationl

@4 Outdoor Mobile Augmented Reality Framework|

[4.1 Requirements|

[4.2 The Development Frameworkl

A21

oensor Manager|

I2.2

Data Manager| L.

A2.3

Position Alignment Manager|

f21

Graphical User Intertacel

[4.3 Dimensions of heterogeneous augmentation datal.

[4.4 Outdoor Mobile AR application for mountain exploration|

4.4.1 Framework instantiationl L.

T4

Data management|

T3

Dimensions of heterogeneous augmentation datal

T

Usage evaluation|.,

(> Deep Learning model optimization for low-power systems|

[>.1 Requirements|o

[5.2 Model optimization|. L.

o1

Depthwise Separable Convolutional Neural Networkl

{6 Deep Learning inference optimization for low-power systems|

6.1 Requirements| o0

621

Generation-time optimizations|

2.2

Compile-time optimizations/.

6.2.3

Initialization-time optimizations

2.4

Configuration time optimizations|.

6.2.5

Run-time optimizations|

6.2.6

Layers coverage|

Contents

[6.3.1 Experimental setup| 7

6.32 Metricd 79

[6.3.3 Experimental results]00 79

6.4 Discussionl.o 82
[6.4.1 Limits to generalization 82

[7 Multi-Sensor Mobile Application Testing Framework| 83
[(.1 Requirements| o 83
(7.2 'T'he Testing Frameworkl 85
[(2.1 Architecturel oo 86

[7.2.2 Implementation| 88

(.3 Fvaluationl 89
(7.3.1 Casestudy| 89

[7.3.2 Experimental setup| 90

(3.3 Metrics 92

[7.3.4 Experimental results| 93

(4 Discussionl. 94
[7.4.1 Limits to generalization 94

[7.4.2 Limits to fidelity]., .. 96
nclusions and Future Wor 97

BID grap 99

|[Appendix A Comprehensive inference time experimental results| 113

CHAPTER

Introduction

Outdoor Augmented Reality (AR) systems provide a new way of navigating and
interacting with an environment by overlaying useful information directly on top
of what the user sees [21]. These solutions analyze sensor readings and perceptu-
ally enrich the real-world view with contextual information to enable knowledge
acquisition and exploration. The emergence of consumer low-cost wearable devices
and, in particular, the proliferation of mobile devices offers bright prospects for
the development and mass adoption of entertainment Augmented Reality applica-
tions, spanning areas such as gaming [161], tourism [120], cultural heritage [211]
and education [14].

The recent success of Artificial Intelligence is tightly coupled to the Deep Learn-
ing (DL) breakthrough [129]. This was originated in 2012, when Krizhevsky et
al. |121] participated in the Large Scale Visual Recognition Challenge (LSVRC)
[187] with a Convolutional Neural Network [130] and won by a significant margin,
thus empirically demonstrating the enormous potential of Deep Learning data-
driven approaches. Since then, remarkable results have been achieved in many
areas, such as medicine [59] [139] [173], autonomous vehicles [35], speech recogni-
tion [91] and translation |208|, which are changing people’s lives [125]. Computer
Vision (CV) has been one of the most favored fields, even surpassing human-level
performance in multiple benchmarks [59] [85] [201] [173].

The outstanding advances of the Computer Vision field and the widespread use
of mobile devices offer unique opportunities for their combination towards the con-
struction of enhanced and massive engaging Mobile Augmented Reality (MAR)
systems [110|. Such integration has the potential to provide MAR systems not
only the ability to project and augment the real-world, but also to analyze and
understand the surrounding environment, thus providing better user experience.

1

Chapter 1. Introduction

Nonetheless, the development of CV-enhanced Mobile Augmented Reality systems
poses several technical challenges, such as achieving high recognition accuracy and
real-time performance, while dealing with multiple sensor fusion, unreliable con-
nectivity, heterogeneous architectures, and limited resources, such as computation,
storage, memory and battery.

1.1 Problem Statement

The goal of this thesis is to study the feasibility of integrating Artificial Intelli-
gence, Computer Vision and Augmented Reality fields towards the construction
and support of massive entertainment applications able to provide an improved
user-experience. This thesis aims at answering such question and illustrates a use
case in which the problem has been successfully addressed.

Problem Statement:

Given the commoditization of Artificial Intelligence methods and the forthcom-
ing wave of low-cost mass market Augmented Reality devices, propose meth-
ods, architectures and components to support the creation and evaluation of
solutions for outdoor Augmented Reality applications efficiently executable on
low-power and heterogeneous portable devices.

We tackle the development of outdoor Mobile Augmented Reality applications
featuring intelligent Computer Vision to exploit the surrounding visual context
captured by the camera and thus, compensate potential projection errors caused
by other typical noisy sensors (e.g. GPS, accelerometer, magnetometer). We
specifically focus on the efficient deployment of Artificial Intelligence within mobile
and embedded systems with limited resources and heterogeneous architectures.
In contrast to traditional Augmented Reality systems purely based on location
and/or motion sensors, the proposed approach requires non-trivial, realistic and
automated testing, which is also covered in this work.

As the use case, we have targeted the exploration of mountains by implementing
PeakLens, a real-world outdoor Augmented Reality mobile app that identifies
mountain peaks and augments the view with their corresponding information. It
is available for Android and has over 500k installs. This application can be used
to crowdsource the collection of mountain images for environmental purposes,
such as the analysis of snow coverage for water availability prediction [32] and the
monitoring of plant diseases [150].

1.2 Research questions

In this section, we formulate the research questions that motivate the work of this
thesis; we list the questions following the logical order in which they should be
answered in order to successfully address the target problem.

Research Question 1. Can the recent progress in Computer Vision be exploited
for the improvement of Augmented Reality user experience?

2

1.3. Contributions

DL-enhanced Computer Vision (CV) has recently achieved outstanding results
and can potentially benefit Augmented Reality applications due to its capacity to
exploit the visual context captured from the camera. However, it is not obvious
how to integrate a CV component into a mobile outdoor AR application, which
requires the DL module to work in real-time, with limited resources, and in a
cooperative manner with other device sensors. This research question is central
and transversal to the whole thesis, and is thus treated along all the chapters.

Research Question 2. How to efficiently deploy Deep Learning models on mobile
and embedded systems with limited hardware resources and heterogeneous archi-
tectures?

Ad-hoc optimised solutions for specific hardware architectures or specific silicon
vendors can reach maximum performance. Nonetheless, such approaches may cre-
ate scalability and maintenance issues when targeting a high number of extremely
heterogeneous architectures and devices, as in the case of Android market nowa-
days. This research question is treated in Chapter [5] and Chapter [6]

Research Question 3. How to support testing to cope with noisy multi-sensor
mobile applications in lab conditions?

Testing an outdoor AR app requires a realistic simulation of outdoor conditions,
which depend on multiple integrated sensor streams, hard to reproduce in lab
conditions. Besides, such simulation should be automated and provide both er-
rors discovery and performance assessment. This research question is tackled in

Chapter [7]

1.3 Contributions

The contributions of this thesis can be summarized as follows:

e We recall the image-to-terrain problem for geolocalization and camera orien-
tation estimation purposes in natural environments, as defined in the relevant
literature (e.g. [12] [13]). We illustrate a mountain skyline extraction pipeline
that exploits a Convolutional Neural Network for evaluating the probability
that pixels belong to the skyline, and a post-processing step for extracting
the actual skyline from pixel probabilities. Differently from previous work,
we tackle the presence of interruptions in the natural skyline to isolate the
fragments that correspond to the terrain and optimize the model for on-board
low-power mobile deployment.

e We describe a framework for the development of visual context aware Out-
door Mobile Augmented Reality applications created for addressing chal-
lenges such as achieving high accuracy, stability, real-time performance and
functioning in spite of possible unreliable network connectivity. Moreover,
we characterize the dimensions of the data used to augment the camera view
of applications of this nature and discuss the problems posed by their man-
agement.

Chapter 1. Introduction

e We tackle the problem of Deep Learning model optimization and inference ac-
celeration for devices with limited resources [124] |127] and discuss the design
requirements of solutions capable of supporting a wide spectrum of device ar-
chitectures. We present and release a public implementation of a framework
(PolimiDL) for Deep Learning inference acceleration that improves perfor-
mance on mobile devices and embedded systems without accuracy loss.

e We introduce the architecture of a framework for testing multi-sensor mobile
applications and discuss the essential design decisions and rationale. Unlike
prior work, which focused on the fidelity of replaying composite sensor se-
quences in emulated environments [179], on scalability of testing [134], or on
the simulation of usage context at different levels [218], we concentrate on the
specific scenario of assessing soft errors in multi-sensor mobile applications,
exploiting context traces captured in the field.

e We illustrate the application of the proposed frameworks to the case study
of real-time mountain peak identification and report the experience and eval-
uation results achieved by such real-world Augmented Reality multi-sensor
mobile application (PeakLens). This required the collection and annotation
of data for both training and testing purposes, definition of quality metrics,
execution of the corresponding experiments under controlled conditions and
assessment of users’ feedback.

1.4 Structure of the thesis

The structure of the thesis follows the same logical flow presented in Section 1.2:
Chapter 2| discusses the background of the work contained in this thesis, focusing
on concepts common to the remaining chapters, i.e. image-based geolocalization,
Mobile Augmented Reality, Artificial Intelligence, efficient mobile Deep Learning
and citizen science. This chapter also presents the main use case treated and used
as validation along the thesis, which is a real-world mobile AR application for
mountain exploration.

Chapter [3|introduces a novel approach for image-based geolocalization and cam-
era orientation estimation on natural mountain environments, which is based on
a robust Deep Learning mountain skyline detection and its subsequent alignment
w.r.t. the terrain.

Chapter [4| presents a framework for Outdoor Mobile Augmented Reality ap-
plications featuring Computer Vision modules for the exploitation of the visual
context captured by the camera. It also defines a characterization for the dimen-
sions of heterogeneous meta-data used in this kind of applications and discusses
their underlying management challenges. Finally, this chapter illustrates how the
framework can be adapted to the use case application of mountain exploration.
Chapter 5| reports on the experimentation with state-of-the-art building blocks
to optimize the model architecture definition presented in Chapter |3| to further
enhance its suitability for mobile deployment.

Chapter [6] presents PolimiDL, a framework for the accelerated Deep Learning in-
ference on low-power heterogeneous mobile systems and evaluates its performance
by confronting it w.r.t. the state-of-the-art.

4

1.4. Structure of the thesis

Chapter [7| presents a framework for multi-sensor mobile application testing and
reports the evaluation in a case study by addressing soft errors in the real-world
AR multi-sensor app use case.
Finally, Chapter [8| concludes the thesis and proposes the future direction of the
research in this area.

This thesis includes the material from the following publications, co-authored
by the candidate:

e Roman Fedorov, Darian Frajberg, and Piero Fraternali. "A framework for
outdoor mobile augmented reality and its application to mountain peak de-
tection" [60].

e Darian Frajberg, Piero Fraternali, and Rocio Nahime Torres. "Convolutional
neural network for pixel-wise skyline detection" [65].

e Darian Frajberg, Piero Fraternali, and Rocio Nahime Torres. "Heterogeneous
information integration for mountain augmented reality mobile apps" [66].

e Rocio Nahime Torres, Darian Frajberg, Piero Fraternali, and Sergio Luis
Herrera Gonzales. "Crowdsourcing Landforms for Open GIS Enrichment"
[215].

e Darian Frajberg, Piero Fraternali, Rocio Nahime Torres, Carlo Bernaschina,
and Roman Fedorov. "A Testing Framework for Multi-Sensor Mobile Appli-
cations" [67].

e Darian Frajberg, Carlo Bernaschina, Christian Marone, and Piero Fraternali.
"Accelerating Deep Learning inference on mobile systems" |64].

CHAPTER

Background

This work pursues the integration of Artificial Intelligence, Computer Vision and
Augmented Reality fields for the creation and support of entertainment applica-
tions on low-power portable devices. In this chapter, we provide an overview of
the scientific literature that addresses related topics and we introduce the main
use case adopted as validation along the thesis.

The chapter is structured as follows: Section surveys image-based geo-
localization techniques and recalls the specific problem of mountain skyline ex-
traction suited for outdoor natural environments; Section [2.2] overviews previous
work in the areas of outdoor Augmented Reality applications with a particular
focus on Mobile AR solutions; Section [2.3] covers the use of Artificial Intelligence
on mobile devices and embedded systems; Section surveys the related work on
mobile application testing, context simulation, and mobile multi-sensor applica-
tion testing; Section provides an overview of Citizen Science, focusing on data
collection and processing applications for environmental monitoring purposes. Fi-
nally, Section describes the use case of a real-world mobile AR application for
mountain exploration.

This chapter includes material from the following publications, co-authored by
the candidate: [60] [65] [66] [215] [67] [64].

2.1 Image-based geolocalozation

Image registration [234] is a classical Computer Vision problem that aims at align-
ing multiple images (the reference and sensed images) of the same scene, which can
be taken from diverse sensors and spatio-temporal points, i.e. different cameras,
view-points, scales, imaging conditions and capture moments. It is commonly

7

Chapter 2. Background

applied in fields such as medicine [90] and remote sensing [17] to align or fuse
information.

Several research studies [26] |164] have proposed the use of image-based reg-
istration techniques for large scale visual geolocalization purposes, which can be
categorized into global (geolocalization at planet-scale) [223|, urban (geolocaliza-
tion at city-scale) [16] and natural (geolocalization in natural environments) |12].
Crandall et al. |[46] studied the geo-spatial distribution of a huge geo-tagged collec-
tion of Flickr images, automatically identified frequently photographed landmarks,
and used such extracted knowledge to predict the location of images exploiting
their visual, textual and temporal features. Weyand et al. |223] applied Deep
Learning by training a CNN with Google Street View and Flickr data for the
geolocalization of images in the map, based solely on their visual content. This
study was able to surpass human accuracy, but still offers room for improvement
due to the extreme complexity of the task and the presence of scenarios that may
resemble different places located all around the world. geolocalization based on
only image content requires huge amounts of distributed, pre-registered images,
collected in different conditions (e.g. illumination, weather, season, traffic, etc),
which makes scalable solutions difficult to achieve. Instead, Armagan et al. [§]
presented a method to exploit camera frames to automatically refine the original
estimated geolocalization and pose captured by GPS and orientation sensors in
urban environments. They exploited Deep Learning for the segmentation of build-
ings in the input images, as well as for the subsequent alignment with respect to
the 2.5D map of the surroundings; this technique is specific for urban scenarios
but reduces the number of reference images needed for training.

2.1.1 Image-to-terrain registration

Image-to-terrain alignment techniques arise as suitable solutions for geolocaliza-
tion, when dealing with images taken in natural mountain environments. Early
work, such as [12] and [13], tackled the problem by computing the overlay between
the skylines extracted from Digital Elevation Model (DEM) data and mountain
images. Skyline extraction is a sub-problem of image-to-terrain alignment.

Heuristic methods based on edge detection work well on images taken in good
conditions, but present difficulties with bad weather or occluded scenarios. All
the documented methods perform skyline extraction off-line and at the server-side.
Furthermore, all methods extract a continuous skyline spanning the whole image
from side to side, even if some parts may not be visible and thus could worsen the
quality of the image-to-terrain alignment.

2.1.2 Skyline extraction

The extraction of natural skylines in mountain environments can be used to ad-
dress both geolocalization and camera orientation estimation problems. Baboud et
al. [13] proposed an automatic approach exploiting edge-based heuristics, whereas
Baatz et al. |[12] applied sky segmentation techniques based on dynamic program-
ming, which required manual support for challenging pictures. The latter also
released the CH1 data set [193], which contains 203 images with their correspond-
ing segmentation ground truth information (an example is shown in Figure .

8

2.1. Image-based geolocalozation

Feature-based heuristic methods (e.g. based on edge detection) perform well on
images taken in good conditions, but do not address bad weather and skyline
occlusions adequately. In these cases, a cloud, a high voltage cable, or a roof im-
pact negatively on the heuristic edge filter, e.g. a cloud edge would be treated as
skyline and the mountain slope below it would be erroneously regarded as noise.

Figure 2.1: Sample image from CHI data set (193] with sky/terrain segmentation.

The skyline extraction problem can also be addressed with Machine Learn-
ing techniques. Hung et al. [100] proposed the application of a Support Vector
Machine (SVM) to predict the skyline pixels based on diverse color and edges
information features, followed by a dynamic programming strategy to link the
disconnected skyline fragments. Ahmad et al. [2] also applied Machine Learning
to compute skyline heat maps, followed by dynamic programming, thus not con-
sidering the presence of interruptions. The authors compared the use of a SVM
and a CNN trained on a very small data set (9 images taken in the same location)
and as a result concluded that the SVM was able to generalize better than the
CNN for the test data sets under evaluation. Porzi et al. [169] used the CH1 [193]
data set to extract the skyline with a Deconvolutional Neural Network for image
segmentation; their approach treats an input image as a foreground-background
segmentation problem and does not single out obstacles. Alternative approaches
for horizon detection were compared and tested in [3] by using the Geopose3k
data set |25]. However, the Geopose3k data set annotation was produced in a
semi-automatic manner and is not completely consistent, provided that the ren-
der obtained from the DEM is considered as ground truth even if its silhouette does
not perfectly match the corresponding image or if part of the natural skyline is
interrupted by obstacles, as shown in Figure[2.2] Differently from previous works,
we annotated the skyline in images manually, taking into account the occluded
fragments, as presented in Figure 2.3

Object detection and image semantic segmentation for applications such as
autonomous driving [44] [97], biomedical images analysis [43] [184] and edges ex-
traction [102] [221] |228] require solutions to achieve high precision at the pixel
level. Pixel-level CNN methods have been experimented with success in biomed-
ical images analysis. Ciregan et al. |[43| proposed a binary pixel-based CNN for
the detection of mitosis in breast cancer histology images. The network is trained
with patches extracted from the images, classified as mitosis or non-mitosis based
on the probability of the center pixel of being close to the centroid of a mitosis.

9

Chapter 2. Background

Figure 2.2: Sample image from GeoPose3k data set with original image (left) and render
generated from DEM for the corresponding location (right).

¢ RE | L , _ j:';:r ‘_r N
El'lll[('.!(.-..\{
Figure 2.3: Sample image from our manually annotated data set used for skyline detection
considering obstacles.

Pixel-wise CNNs are also used for edges extraction problems. In the author
took image patches as input and predicted whether their central pixels belonged
to an edge. Furthermore, the same approach has also been applied in , where
small patches of 16x16 were extracted to predict whether they contained part of
the skyline or not.

Our skyline detection approach works at pixel-level. Similar to [2], we con-
sider an image as a map of patches and analyze the local context around each
center pixel to predict whether it belongs to the skyline or not. Differently
from and we specialize the CNN for mountain skyline detection; differ-
ently from [2], and [221], we use a Fully Convolutional Network (FCN) [140],
which permits us to feed as input and process entire images fast, instead of ex-
tracting, processing and building a classification map for the individual patches;
differently from [2], [3] and [169], we tackle the presence of occlusions interrupting
the skyline, we train the network on a large data set of images (= 9,000) taken
in uncontrolled conditions including samples with many different types of obsta-
cles, and we evaluate the obtained precision quantitatively taking into account
such occlusions. We have also trained another CNN that works at column-level
and is able to complement our pixel-level CNN boosting the accurate detection of
obstacles and is suitable to apply as a second step to all the previous works not
considering obstacles. Unlike all the previously mentioned works, we target the

10

2.2. Augmented Reality

fast execution of the CNN on both server and low power devices, in real-time and
at the client.

Finally, it is worth mentioning that FCNs, as the ones used for this work,
have recently evolved into models that rely not only on local features based on
patches, but also on global features by training on entire images end-to-end [37]
[232]. Such models are usually intended for problems such as semantic or instance
segmentation, which require high quality annotations particularly hard to collect
[44] [97] and tend to demand more computational resources. This work relies on
annotations in the form displayed in Figure [2.3] which have been preferred in
order to minimize the annotation effort, while maximizing the potential model
accuracy and efficiency w.r.t. the different solutions explored and discussed in
this Section.

2.2 Augmented Reality

Augmented Reality (AR) [10] is a well-established research area within the Human-
Computer Interaction field [181], in which the users are offered an interface that
enriches their view of the real-world with computer-generated information. The
survey in [21] recaps the history of research and development in AR, introduces
the essential definitions at the base of the discipline, and positions it among other
related technologies. The authors also propose design guidelines and examples of
successful AR applications, and highlight directions of future research.

AR systems are normally implemented on portable devices and have recently
gained momentum due to the introduction by major hardware vendors of consumer-
grade AR wearable devices (e.g. Microsoft HoloLens, Magic Leap One and Google
glasses). Furthermore, a recent trend shows mobile devices being used as low cost
AR platforms without requiring ad-hoc hardware [110|. Example applications are
found in diverse areas, such as tourism [120], manufacturing [147], retail [47], con-
struction [108], medicine [30], education [14], cultural heritage [211], games |161],
ete.

2.2.1 Mobile Augmented Reality

Mobile Augmented Reality (MAR) [110] relies on the introduction of AR within
mobile devices, which are highly portable, lightweight and already part of most
people’s daily lives due to their worldwide massive and increasing adoption [162].
It benefited from the improved standardization, increased computational power
capabilities, and availability and integration of heterogeneous sensors.

An important branch of the discipline is the development of outdoor MAR
apps to navigate [214], identify [48] and track [180] points of interest in urban or
rural scenarios [120] [176]. Outdoor Augmented Reality applications exploit the
position and orientation sensors of mobile devices to estimate the location of the
user and her field of view, so as to overlay such view with information pertinent to
the user’s inferred interest. These solutions are finding promising applications in
diverse sectors, where they replace traditional map-based interfaces with a more
sophisticated user experience, whereby the user automatically receives information
based on what they are looking at, without the need of manual search. Examples

11

Chapter 2. Background

of such AR apps include, e.g, Metro AR and Lonely Planet’s Compass Guided!]
The main challenge of such applications is to provide an accurate estimation of
the user’s current interest and activity, adapted in real-time to the changing view.

Commercial AR Software Development Kits (SDKs) power the rapid construc-
tion of AR applications on multiple platforms (e.g. smartphones, wearable devices,
computers and web-based visualizers) by providing general-purpose components
for recognition, tracking and rendering of augmented content. Such content can
be visualized in either 2D or 3D, and even include animations. The work in [6]
presents a complete comparison between multiple AR SDKSs, such as VuforiaEL
Wikitudd’ and ARmedia'} However, traditional SDKs generally rely on marker-
based detection, GPS and orientation sensors or on the specific a priori known
appearance of certain objects, without actually considering the sensor readings’
noise, the non-stationary nature of outdoor environments, and the value and com-
plexity of the visual content captured by the camera of the device. These limita-
tions prevent the possibility for the AR application to precisely overlay augmented
content onto the view, provide high quality outdoor experience, and index visual
content for supporting search, retrieval and extraction of semantic information
of the annotated visual objects. Examples are sky maps, which show the names
of constellations, planets and stars based on the GPS position and compass sig-
nal. An obvious constraint of this approach is that they may provide information
that does not match what the user is seeing well, due to errors in the position
and orientation estimation or to the presence of objects partially occluding the
view. We present a novel framework customized for the development and fusion
of marker-less location, orientation and visual information on MAR systems to
refine the compass-based AR performance without knowing the appearance of the
objects a priori and exploiting DL on-board to achieve such aim.

Recently, Apple released ARkitE] for the development of AR apps for iOS de-
vices (with A9 chip and above) and Google has followed the same direction with
ARCoreﬂ for Android (supported for a set of devicesﬂ). Both SDKs have been
evolving to introduce more features to understand the user’s surrounding environ-
ment (e.g. depth, objects size and light estimation). Moreover, several commercial
applications have achieved significant popularity in the last few years by means of
successful immersive AR solutions to attract users’ attention [197] and such mar-
ket is projected to become huge within the next few years [138]. Pokemon Gdf]is
a first class of outdoor AR mobile application developed by Niantic, which revo-
lutionized the gaming scene by beating all-time records impressively fast in terms
of downloads, active users and gross revenue. Besides, the use of advanced Com-
puter Vision techniques has also contributed towards the development of better
AR products and entertaining user-experience. Face detection and pose estima-
tion |174] for the identification of keypoints have been exploited with high success

Lhttp: //www.lonelyplanet.com /guides

2https:/ /developer.vuforia.com

Shttps://www.wikitude.com
4https://dev.inglobetechnologies.com
Shttps://developer.apple.com/augmented-reality /arkit
Shttps://developers.google.com/ar/
"https://developers.google.com/ar/discover /supported-devices
8https://www.pokemongo.com

12

2.2. Augmented Reality

by Snapchat for the application of face filters and animations, and was subse-
quently followed by Facebook, Instagram, Apple, etc. The retail and marketing
sector has conceived multiple MAR innovative solutions, which work in real-time
and include: ModiFaceﬂ for the virtual application of beauty makeup on the user’s
face, Wanna Kicks{r_U] to try-on sneakers with AR, Snapchat and Facebook AR an-
imations to advertise brands (e.g. try-on Michael Kors’ sunglasses with AR), and
Ikea Placd'] to allow users to virtually place furniture in their homes.

2.2.2 Mountain exploration applications

A prominent class of outdoor MAR applications, particularly meaningful for this
thesis, has been published for mountain tourism [115] |137]. Nowadays, numerous
mobile applications have the goal of identifying and visualizing relevant informa-
tion regarding mountain peaks (e.g. name, distance and altitude) and meta-data
for other related items (e.g. shelters, trekking paths, etc) on top of the camera
screen, thus attracting millions of people devoted to mountain activities around
the world. The augmented view can be used on-line to enable learning and ex-
ploration, and also off-line, e.g. by saving annotated images in personal albums
shareable within one’s community. A data collection task could be easily embed-
ded within the interface of a MAR application, e.g. by engaging users to take
augmented photos during their outdoor activities and saving such enriched pic-
tures and accompanying meta-data in a central repository, where they can be
exploited in the study of mountain-related processes [32|. Considering the fact
that these applications are meant to be used in mountain areas where Internet
data access is not always granted, an off-line maps download management is an
essential feature.

Some of the best-known publicly available apps are PeakFindeI{T_?], PeakARE,
ViewRangei'Y, PeakVisoil"| and PeakLend'] PeakFinder uses the GPS position
to compute from the DEM and visualize a virtual panorama with the mountain
peaks positioned on the screen. It also exploits the compass and the user’s orien-
tation, but does not analyze the real images and has recently added the overlay of
information on the camera view. Regarding the management of off-line maps, it
automatically downloads the required area when the application is started based
on the current position (e.g. the entire Alps). PeakAR uses the camera of the
device, as well as other sensors, for the projection of the peaks on the screen.
However, its implementation does not perform any geometrical projection of the
terrain before positioning the peaks on the screen, which means that even peaks
that are masked by the terrain configuration, and thus are invisible, are still
shown. The problem is somehow alleviated by a simple filter that disables the
display of peaks that are beyond a distance threshold. PeakAR manages off-line
areas by default, because it requires downloading all the peaks around the world

9http://modiface.com
10https://wanna.by
Hhttps://www.ikea.com/gb/en/customer-service/mobile-apps
Zhttp:/ /www.peakfinder.org/mobile
Bhttps: //www.salzburgresearch.at /projekt/peakar
Mhttp:/ /www.viewranger.com /skyline
Shttp://peakvisor.com
16http:/ /peaklens.com

13

Chapter 2. Background

beforehand. This is possible because only the 3D coordinates of the peaks are
downloaded, and not the surrounding DEM points. Several other apps, similar to
the above mentioned ones, use only the position and orientation sensors, which
are imprecise and may induce substantial peak positioning errors. Some clear
examples are ViewRanger and PeakVisor. ViewRanger targets trekkers and offers
route guides and GPS navigation; recently it incorporated an AR function, which
overlays points of interest such as peaks, towns, lakes, cliffs and glaciers, over the
camera view. Positioning uses only the GPS and orientation sensors. PeakVi-
sor allows the user to correct compass errors manually, by registering the virtual
panorama with the real image captured by camera, using the sun position as a
hint. Again, sensor errors may intervene: e.g. the DEM resolution is such that
the virtual panorama generated from it does not always match the camera image
well, which makes manual adjustment hard. Porzi et al. [168| proposed an app for
mountain peak detection, but said work is not publicly available, does not focus
on the time efficient peak identification and does not address mobile AR require-
ments, such as real-time response, asynchronous dynamics of the algorithms and
uncertain internet connection.

As a use case and part of this work, we have developed PeakLens app, which
is reviewed in Section [2.6.4] In contrast with all the previously mentioned apps,
it aims at providing high precision peak identification and information overlay by
using Artificial Intelligence to analyze the frames captured by the device camera
and accurately position the points of interest. Its core is the comparison of what
the user sees with the 3D model of the terrain and the automatic alignment of
the virtual and real mountain skylines, whereby the app can correct significant
sensor errors. Moreover, PeakLens can also handle occlusions, in order to avoid
displaying peaks when they are masked by an object in front of them (e.g. a bell
tower, a person, or a tree).

2.3 Artificial Intelligence on the edge

Artificial Intelligence (AI) [188] is a vast field that studies the creation of computer
systems capable of mimicking the human cognitive functions in order to solve non
trivial problems. It comprises several related concepts, and a visual hierarchical
overview is provided in Figure [2.4]

Machine Learning (ML) [22] is a subfield of Al that develops solutions that
do not rely on explicitly programmed instructions to perform a certain task, but
exploit a data-driven approach in which patterns are learned from training data.

Artificial Neural Networks (ANN) [23] [83] are ML computing systems com-
posed of interconnected group of processing elements (also called artificial neu-
rons) arranged in a series of layers, which are inspired by the biological visual
cortex structure. Based on the number of hidden layers, i.e. the layers between
the input and output layers, they can be categorized into two groups: shallow,
when they contain only one hidden layer, and deep, when they contain multiple
hidden layers.

Deep Learning (DL) [129] is a class of ML algorithm that relies on Deep Artifi-
cial Neural Networks to learn complex data representations through mathematical

14

2.3. Artificial Intelligence on the edge

i

Machine Learning (ML)

- .

_ Artificial Neural ™.
Networks (ANN)

Figure 2.4: Querview of Al-related concepts hierarchy.

processes, such as backpropagation [186]. DL has recently experienced great suc-
cess, thanks to algorithmic improvements [68] [107] [156] [195] [205] and the vast
amount of training data and the increasing computational power available nowa-
days [39]. In particular, DL models based on feed-forward Deep Convolutional
Neural Networks (CNN) [121] have proved capable of achieving high quality re-
sults in a wide range of Computer Vision tasks, such as image classification,
detection, localization and segmentation [73]. CNNs can solve a target problem
by extracting complex non-linear feature hierarchies from the input space of the
training data.

Typical implementations of DL models focus on the maximization of accuracy
for a given task, and architectures to achieve such an objective have become
significantly deeper and more complex over time [86] [98] [202] [209]. Powerful
workstations with Graphics Processing Units (GPUs) were fundamental for the
success of DL, making its computationally expensive training possible. On the
other hand, even though resources of embedded systems, such as smartphones,
tablets, wearable devices, drones and Field Programmable Gate Arrays (FPGAs),
are rapidly improving, they are still not completely suitable for the deployment of
big and complex models [123] [143|. Furthermore, the use of remote cloud services
for the execution of models has its own drawbacks related to the use of the network,
such as cost, coverage, availability, latency, security and privacy issues [55]. All
the above-mentioned limitations promote the interest in alternatives expressly
conceived for efficient deployment on the edge [124] [127] [219], which are covered
in this Section.

15

Chapter 2. Background

2.3.1 Compression techniques

Compression techniques [40| target large scale, redundant or computationally de-
manding architectures and aim at reducing the model size, number of parameters
and floating point operations (FLOPs), possibly tolerating small accuracy drops
in favor of execution acceleration and optimization of computational resources,
storage, memory occupation and energy consumption.

Quantization [71] [99] [227] [233] reduces numerical precision to represent CNN
associated weights (e.g. from 32 bits to 8 or 16 bits), so as to accelerate run-time
performance and reduce storage and memory overhead, with minor or at least not
massive accuracy loss. Wu et al. [227] proposed CNNs quantization techniques for
mobile devices and applied such approach over state-of-the-art models achieving 4
~ 6x speed-up and 15 &~ 20x compression with merely 1% loss of accuracy. Addi-
tional techniques applicable during the model training rely on low-precision fixed-
point operations [74] [103] and more intensive approaches even consider weight
representations binarization [45] [175]. Furthermore, post-training quantization
can be further improved as demonstrated by Finkelstein et al. [63].

Pruning [80] [88] [133] removes redundant connections, thus reducing the num-
ber of weights, and proved to efficiently compress state-of-the-art models by one
order of magnitude. Early approaches were also applied with the objective of
reducing over-fitting [82] [131]. Han et al. [79] presented a three stage pipeline,
also based on pruning, to which quantization and Huffman coding were added
for further reducing disk storage without compromising accuracy. Nonetheless,
conventional compression techniques may be sub-optimal, time consuming, and
require relevant domain expertise that limits their application. He et al. |87]
proposed the use of AutoML [236] for Model Compression (AMC), an approach
to handle the model compression and acceleration on mobile devices by means
of reinforcement learning, thus achieving more optimal results in an automated
manner.

Alternative techniques include knowledge-distillation [11] [28] [92] to compress
and transfer knowledge from complex models to simpler ones, matrix sparcification
[19] and tensor decomposition methods [118] followed by low-rank approximation
[53] [109], for the reduction and compression of weights.

The effectiveness of compression depends on the size and redundancy of the
original model and most compression techniques are applicable either after or at
training-time. In general, post-training compression is easy to apply, but may
induce a sensible accuracy loss, especially when no fine-tuning is performed on
the models afterwards. On the other hand, training-aware compression tends to
achieve better results, but requires more time and it is more complex to perform.

2.3.2 Optimized model architectures

Lightweight architectures with compact layers pursue the design of an optimized
network topology, yielding small, fast and accurate models, suitable for resource-
constrained devices.

SqueezeNet |105] is a first-generation optimized CNN architecture based on

16

2.3. Artificial Intelligence on the edge

fire modules with small Convolutional kernels; such modules are composed of
squeeze layers (Pointwise Convolutions, , i.e. 1x1 convolutional filters applied to
the total number of channels of the activation map), that reduce the number of
input channels, thus parameters and computation, and expand layers (concat of
1x1 and 3x3 Convolutional filters), that restore the input depth; downsampling is
delayed within the network so as to achieve higher accuracy by exploiting larger
activation maps and fully connected layers are replaced by global average pooling;
it achieved the same accuracy as AlexNet [121] with 50 times less parameters and
can be effectively compressed on disk |79] up to 510x w.r.t. AlexNet.

MobileNet [94] is a family of efficient models for mobile vision applications,
which perform different trade-offs in terms of accuracy, computation and number
of parameters. Such models, released by Google, are based on the introduction of
Depthwise Separable Convolutions [42] and have outperformed most of the previ-
ous state-of-the-art models (e.g. MobileNet comprises same size, +4% in accuracy,
and 22x less computational time w.r.t. SqueezeNet). Depthwise Separable Con-
volutions emerged as a highly computational efficient yet accurate building block
that factors a standard Convolution into a Depthwise Convolution, i.e. convolu-
tion applied to each single channel at a time, followed by a Pointwise Convolution.
Afterwards, MobileNet v2 [191] further improved MobileNet v1 by incorporating
the inverted residual with linear bottleneck module, which uses identity residual
shortcuts [86] to connect low-dimensional information bottleneck tensors.

Also DenseNet [95] exploits a variation of the residual block by introducing
direct connections, not just between consecutive layers, but between any two layers
with the same feature map size in the network, consequently achieving state-of-
the-art performances while requiring fewer parameters, layers and computation.

Several other efficient approaches have been proposed, including ShuffleNet
[144] [231] with its low-cost Group Convolution and Channel Shuffle operations to
reduce the Mult-Adds; DeepRebirth [132] for slimming consecutive and parallel
non-tensor and tensor layers; adaptive deep learning model selection [212] based
on the input to improve accuracy and reduce inference time for embedded systems;
Fast-SCNN |[171] for fast semantic segmentation with multiple resolution branches
simultaneously capturing and combining high and low level resolution features.

Recently, reinforcement learning and automated approaches have also been
exploited for the discovery of highly accurate efficient building blocks by using
Neural Architecture Search (NAS) [15] [236] to support and alleviate the burden
of manual design and hyperparameters tuning. Tan et al. [210] proposed Mnas-
Net, an automated hardware-aware NAS that exploits a multi-objective reward
to address both accuracy and latency measured in real-world mobile devices. Wu
et al. [226], further improved hardware-aware NAS methods by proposing an ef-
ficient differentiable NAS version with gradient-based optimization, which is able
to achieve high performance in terms of both accuracy and latency for specific
target devices, while also significantly reducing the computational needs for its
execution.

17

Chapter 2. Background

2.3.3 Hardware acceleration

Hardware acceleration (HA) is the use of dedicated hardware to complement
general-purpose CPUs and perform computationally intensive work more effi-
ciently, e.g. by favoring specific operations and data-parallel computation. This
includes the use of heterogeneous processors, such as Digital Signal Processors
(DSPs) for energy optimization [126], GPUs for computation optimization [101]
and, more recently, Neural Processing Units (NPUs), as prominent mobile system
on chip (SoC) vendors have incorporated specialized hardware for accelerated Al
inference, focusing on vector and matrix-based instructions. Nonetheless, such
instructions and the access to them are typically unavailable or depend on the
proprietary primitives and Software Development Kits (SDKs) of each specific
vendor, which are incompatible and impair the porting of acceleration solutions.
Qualcomm Snapdragon Neural Processing Engine (SNPE) [[7] (SNPE) and Arm
NN are clear examples of it. Given the need of standardization, Google has
recently published the Android Neural Networks APIP] (NNAPI), which defines
a layer of abstraction that provides unified access to DL run-time acceleration.
Its support for current devices is still limited due to its availability from Android
8.1 and requires specialized vendor drivers, otherwise computation falls back to
the CPU. Similarly, recent versions of OpenGI[?| and VulkanfY] introduced com-
pute shaders for GPU-based efficient non-graphic computations, shared memory
and intra-group synchronization, but their support is reduced for older devices
and depends on vendors’ implementation. From iOS 8, Apple devices feature the
Metal AP]F_ZI, designed to maximize performance and let developers access HA.
Apple has the advantage of targeting a limited and relatively homogeneous set of
devices, while having full control over the production, which simplifies integration
and support.

Several studies [38] |75] [77] [78] [182] have pursued the further optimization of
specific target models inference by means of designing highly customized ad-hoc
hardware architectures for inherent needs, such as efficient sparse matrix-vector
multiplication in the case of pruned models.

The introduction of efficient DL building blocks has been studied along our
work in order to enhance the suitability and deployment of DL models on devices
with constrained resources.

2.3.4 Heterogeneous computing scheduling

While HA relies on dedicated physical components designed to speed-up specific
operations, heterogeneous computing scheduling comprises the design of strategies
to efficiently coordinate and distribute the workload among processors of different
types [4]. Previous research works [101] [122] have proposed DL scheduling tech-
niques for embedded systems. Results show a good level of optimization, with
accuracy loss up to 5%. However, for maximum efficiency, these methods require

17http:/ /developer.qualcomm.com /software/qualcomm-neural-processing-sdk
18https://www.arm.com/products/silicon-ip-cpu/machine-learning/arm-nn
19https://developer.android.com /ndk/guides/neuralnetworks
2Ohttps://www.opengl.org

2lhttps: / /www.khronos.org/vulkan

22https://developer.apple.com/metal/

18

2.3. Artificial Intelligence on the edge

specific drivers (e.g. to support recent versions of OpenCL) or custom implemen-
tations for different architectures with direct access to hardware primitives.

2.3.5 Mobile DL Frameworks

Frameworks for the execution of DL models on mobile and embedded systems
pursue optimized deployment on devices with limited resources, by managing
memory allocation efficiently, to avoid overloading, and exploiting the available
hardware resources at best for acceleration (e.g. the GPU). We built PolimiDL,
our own optimized framework for DL acceleration on mobile devices and embedded
systems, when no efficient off-the-shelf solutions were available; recently, some new
tools to support the execution of machine learning on mobile devices were released,
e.g. TensorFlow Litd®] Caffe??”] Paddld®”] and Core MIPY Training is performed
off-board, with mainstream tools such as TensorFlow, PyTorch, Caffe or MXNet,
and the resulting models are converted into the format of the mobile framework
for deployment. Open Neural Network Exchange FormatE] (ONNX) proposes the
standardization of models definition, to simplify the porting of models trained
with different tools. Furthermore, CoreML already exploits Metal HA on iOS
devices, while NNAPI support for Android frameworks and devices is still neither
totally stable nor fully integrated.

2.3.6 Benchmarking

Performance benchmarking measures indicators to compare run-time architec-
tures. For mobile DL, relevant metrics include accuracy, execution time, memory
overhead, and energy consumption. Shi et al. [200] assessed the performance of
various open-source DL frameworks, by executing different models over a set of
workstations with heterogeneous CPU and GPU hardware. Pena et al. [163] mea-
sured inference time and power consumption of TensorFlow and Caffe over a set
of embedded systems. The work in [198] defined guidelines to assesss DL models
on Android and iOS devices, and [81] studied the latency-throughput trade-offs
with CNNs for edge Computer Vision. Finally, Ignatov et al. [106] presented a
complete overview regarding the state of Deep Learning in the Android ecosys-
tem and created a publicly available mobile app (AI Benchmark) to benchmark
performance on a set of DL Computer Vision tasks. Scores are calculated by av-
eraging performance results over all the user devices and the corresponding SoCs
evaluated.

We benchmarked our optimized DL framework and obtained highly competitive
results w.r.t. TensorFlow Lite for the execution of small DL models on mobile
devices.

23http://www.tensorflow.org/mobile/tflite
24http://caffe2.ai/docs /mobile-integration.html
25http://www.paddlepaddle.org/docs/develop,/mobile
26http://developer.apple.com /documentation /coreml
2Thttps://onnx.ai

19

Chapter 2. Background

2.4 Multi-sensor applications testing

Developing and testing applications that operate in complex working conditions
has become a prominent research task, fueled by the widespread adoption of mo-
bile applications that employ multiple sensors [111] [153] [206].

In the software engineering literature, the general conditions in which an ap-
plication operates are abstracted into the concept of context [1], [18], defined as
the information that characterizes any entity relevant to the interaction between
the user and an application. Context-aware development has been specifically
studied in the case of mobile applications |36], which provide a particularly rich
notion of context that embraces the user’s state, the device capability, the sensed
environment, and the network connectivity state.

Testing context-aware applications is a special sub-topic of context-aware soft-
ware development, which recasts the classical methods of conventional application
testing to the specific case in which the system under test requires the supply of
context information.

The recent work [179] focuses on the generation of context information for
the purpose of testing mobile applications in an emulated environment. The
authors model the context as a set of modalities, each of which corresponds to a
facet of the contextual information, such as network connectivity, position, motion
sensors, and camera. They illustrate the design of a tool, called ContextMonkey,
which fetches data for each context modality from heterogeneous sources, builds an
integrated context stream and feeds such stream to the emulation environment,
where it is exploited for running a test session. ContextMonkey is evaluated
primarily with respect to its capacity of supplying the context information to an
application inside the emulator with fidelity, i.e., at the same rate as in the real
working conditions. An interesting collateral finding of the assessment is that the
synthetic, model-driven construction of multi-sensor context streams, evaluated in
a mobility use case, could not fully reproduce the semantic complexity of the real
context streams recorded in the field; this observation is one of the motivations
of our capture-based approach. Our work shares with [179] the focus on multi-
sensor application testing; however, differently from ContextMonkey, our focus is
not the fidelity of the replay of context streams during emulation, but the use of
multi-sensors usage traces recorded in the field for the discovery of soft errors.

The VanarSena tool [177] instruments the binary code of the application to
perform testing in a way that achieves both coverage and speed. The tool runs on
a cloud and lets developers upload the application binary code and run multiple
test sessions in parallel to emulate user behavior, network conditions, and sensor
data, returning a failure report.

The dynamic testing of (non multi-sensor) mobile applications via controlled
execution has also been pursued in a number of works. For example, Machiry
et al. |[145] describe a system, called Dynadroid, whereby developers can observe,
select, and execute Graphical User Interface (GUI) and system events in a mobile
device emulator, so as to drive black box analysis of test runs. Other related
studies mostly focused on capture and replay at the level of GUI input-output
events, without considering the specificity of mobile devices [57] [224]. Conversely,

20

2.5. Crowdsourcing and Citizen Science

Gomez et al. [70| present an approach specifically conceived for mobile devices,
in which they record and replay Android apps usage traces by replicating GUI
gestures and sensor readings. However, their tool cannot replay certain services
such as camera preview and GPS location, which are critical signals for sensor- and
location-based applications. Our approach is similarly based on the observation
of application runs, but focuses on capturing and replaying multi-sensor data; it
could be extended with a system and GUI event capture, as in |70] and [145], to
create test sessions that span all categories of input events: sensor, Ul and system.

The use of a capture and replay approach for testing of mobile applications is
reported in |114]; the authors present a tool for the dynamic analysis of executions,
the debugging of deployed applications, and regression testing. A relevant finding
is that the effectiveness of regression testing highly depends on how well the tool
reproduces the way the program is used in the field. The accomplishment of such
an objective in a multi-sensor mobile application requires a non trivial capture
and replay architecture, which is a main contribution of our work.

2.5 Crowdsourcing and Citizen Science

Crowdsourcing [58| is a collaborative model based on the outsourcing of specific
tasks to a group of participants committed towards the solution of a common
cumulative goal, which requires the collection, validation and/or processing of
data, usually via internet-based systems.

Citizen science [149] refers to the direct engagement of not necessarily special-
ized individuals (the citizens) to help address scientific problems by collaborating
through crowdsourcing systems.

The massive diffusion of social media, with its powerful tools for public com-
munication, engagement, and content sharing, has multiplied the ways to engage
volunteers and exploit relevant public User-Generated Content (UGC). In par-
ticular, social media combined with mobile devices favored the collection of geo-
located UGC in applications related to spatial information, so-called Volunteered
Geographical Information Systems (VGIS), in which citizens help enhance, update
or complement existing geo-spatial databases [72]. OpenStreetMap¥ (OSM) [76]
is a clear example of a well-known, large scale collaborative project for the crowd-
sourced collection of geographical information (e.g. roads, landmarks and multiple
points of interest) worldwide. It relies on a VGIS and counts on an active commu-
nity of millions of mapping contributors distributed all around the world. OSM
data is open and represents a rich source of information that can be exploited for
several geolocation-based applications [89] [172] [194]. Furthermore, OSM data
has also been used in our research work.

2.5.1 Platforms
Platforms such as Amazon Mechanical Turk?| (MTurk) [29] and Zooniversd™| [203]

are exploited in diverse scientific projects that require the collection and processing

28https:/ /www.openstreetmap.org
2%https:/ /www.mturk.com
30https://www.zooniverse.org

21

Chapter 2. Background

of data. Moreover, with the progress of Deep Learning techniques, the annota-
tion of vast data collections for training Neural Network models has become an
essential task for many research projects in diverse fields of application. In such
a context, crowdsourcing arises as a suitable sourcing approach to obtain the nec-
essary labeled data [52]. MTurk relies on paid workers and is widely used for the
collection of data for academic, open source, and private commercial purposes.
Conversely, Zooniverse relies on citizen scientists, i.e. domain experts and pas-
sionate volunteers motivated by the sole idea of helping to solve a problem of
common interest. SciStarterf] [93], a research affiliate of Arizona State Univer-
sity, is an online platform that exposes a searchable database for citizen science
projects. Such platform pursues the preservation of participants’ interest over an
extended period of time and focuses on user engagement by providing participants
with tools to track contributions and time devoted to a project, to contribute in
multiple projects across different disciplines, and to have collaborative relation-
ships with project owners and other participants; it also exploits user location to
promote locally relevant projects.

Crowdsourcing solutions represent a great opportunity because of their ability
to collect or generate large and varied volumes of data. However, such data are
not always used to their full potential due to concerns regarding quality [5], trans-
parency of the collection process [167], or because the data sets are not released
publicly [158|. Several works address the problem of crowdsourced data qual-
ity and propose techniques to identify and improve noisy labels [199] [204] [225].
CitSci.or@ [222] is a platform created by the Natural Resources Ecology Lab
(NREL) at Colorado State University, which aims at addressing these problems
by providing project coordinators with tools to document research goals, data
collection protocols and methodologies, data sample selection criteria and the
data quality procedures, to improve data reuse across related research efforts; it
also supports the specification of metadata, both common and specific of differ-
ent types of research programs, to help contextualize the data and improve their
reuse |141]. Finally, CitSci.org encourages the publication and the exchange of
data sets in standardized formats through web services, so as to establish scientific
authority and improve credibility [158].

2.5.2 Environmental monitoring

Environment data collection increasingly exploits the contribution of citizens, who
cooperate with the acquisition and processing of large geo-referenced data sets to
extract usable information from them, so as to exploit such knowledge in the study
of natural and anthropic processes [20] [49] [50] [113] [116] [142] [148] [151] [166].

Several approaches have been applied to disaster management for e.g. earth-
quake mapping [235] and rapid flood damage estimation [170]. Applications mon-
itoring hazards through the collection of user-generated content are also reported:
tweet distribution analysis for monitoring is employed in |189] for earthquakes and
in [196] for floods. Examples exist of continuous monitoring applications in the
environmental field: bird observation network [207|, phenological studies [17§],

3lhttp://scistarter.com
32http://www.citsci.org

22

2.6. Use case

hydrological risk assessment |51], plant leaf status assessment [157] and geological
surveyﬂ. Besides text, also visual content, such as Flickr photographs [220] and
public touristic webcams [155] have been used to monitor environmental phenom-
ena, such as coarse-grained snow cover maps [220], vegetation cover maps [230],
flora distribution [220], pollination conservation [128|, cloud maps [155] and other
meteorological processes [104].

There are two main mechanisms that can be applied for large scale environ-
ment geo-data collection. One is crawling geo-located images from multiple web
data sources at scale, which requires the definition of a processing pipeline to
automatically retain only data of interest. The other option relies on the imple-
mentation of ad-hoc crowdsourcing systems, which are more robust and ensure
the information completeness and user validation.

The diffusion of mobile phones and of mobile applications linked to social net-
works and to content sharing sites boosted a wave of geo-referenced data collection
applications, which exploit the fact that people carry during their outdoor activ-
ity an Internet-connected device equipped with a variety of sensors, including
camera, microphone and GPS. This phenomenon spawned the release of mobile
applications for earth observation and environmental monitoring [62] and also of
frameworks that let non-programmers build mobile data collection tools for citizen
science campaigns [117]. Project Budburst™] [178] gathers information regarding
the flowering of native plants for climate change studies, engaging volunteers to
upload timestamped, geo-tagged plant photographs. Other examples of the use
of mobile phones for crowdsourcing environmental and ecological data include:
avian surveys [216], water level monitoring [142], noise pollution [146|, seismic
early detection [119], mosquito surveillance [154], biodiversity observation [217],
botanic monitoring [69] and meteorology monitoring [116].

2.6 Use case

Environmental data processing through the analysis of low-cost, large scale, geo-
located multimedia data can be exploited for the enhancement of diverse mon-
itoring scenarios. However, one major challenge for the development of envi-
ronment crowdsourcing solutions consists of offering citizens a useful, satisfying
and possibly entertaining experience, so as to motivate them to participate, use
the applications on a frequent basis and spread the word about it to their social
circles [69] [207].

As a use case, this work included the implementation of PeakLens, an outdoor
AR mobile app that identifies mountain peaks and overlays them in real-time on
the view; PeakLens processes camera frames in real-time by using a CV-powered
module for enhanced positioning of augmented markers. The application, besides
providing a nice experience to the user, can be extended and employed to crowd-
source the collection of annotated mountain images for environmental monitor-
ing applications [32]. Previous works on mountain analysis [32| and SnowWatch
project [61] were fundamental precursors of this research and are covered in the
following subsections.

33http://britishgeologicalsurvey.crowdmap.com
34https://budburst.org

23

Chapter 2. Background

2.6.1 Mountain analysis

Image analysis in mountain regions is a well investigated area, with applications
that support environmental studies on climate change and tourism [56]. As re-
viewed in Section [2.1] the identification of natural landscapes and mountains in
public photographs taken in uncontrolled conditions represents a challenge be-
cause vegetation, illumination and seasons affect appearance and visibility [12].
Besides, a prominent application field of mountain image analysis is snow informa-
tion extraction to address the problem of water availability in mountain regions,
where the water supply is mostly conditioned by the snow coverage [160]. Tradi-
tionally, snow is monitored through manual measurement campaigns, permanent
measurement stations, satellite photography, and terrestrial photography. Sev-
eral approaches [185] [190] rely on cameras designed and positioned ad-hoc by
researchers, to segment the portion of the photograph corresponding to a certain
mountain in snow covered areas. Zhang et al. [230] proposed the application of
web media mining by analyzing tags and visual features of geo-tagged Flickr im-
ages, to predict vegetation and snow cover. Finally, Castelletti et al. [32] proved
that user generated mountain pictures and publicly available touristic webcams
can be analyzed to compute snow indexes, usable for improving predictive water
systems operation [32].

2.6.2 SnowWatch

SnowWatch pro jecﬁ [61] tackles the problem of monitoring mountains for the col-
lection of public Alpine images and the extraction of snow indexes usable in water
availability prediction models. To this aim, SnowWatch crawls a large number
of images from content sharing sites and touristic webcams, classifies those im-
ages that portrait mountain peaks and contain the location of shooting, identifies
visible peaks by automatically aligning each image to a synthetic rendition com-
puted from a public DEM, finds the pixels of each peak that represent snow and
calculates useful snow indexes, such as minimum snow altitude and Snow Water
Equivalent (SWE). These indexes are then used to feed existing water prediction
models and compared with other official sources of information.

SWE time series are usually estimated through a hybrid of satellite retrieved
information and ground observations. Ground stations and satellite data, how-
ever, have limits when used to investigate snow processes, which exhibit high
spatio-temporal variability [230]. Ground stations are few and coarsely spaced,
especially in high altitude regions. Satellite snow products have limitations in
alpine contexts [54]: space-board passive microwave radiometers (e.g. AMSR-E)
penetrate clouds and provide accurate snow cover estimation, but have coarse
spatial resolution (25 km); active microwave systems (e.g. RADARSAT) detect
the presence of liquid water content, but require additional ground observations
to make accurate estimates, whereas optical sensors (e.g. MODIS) generate high
spatial and temporal resolution maps, yet cannot penetrate clouds. To comple-
ment satellite and ground stations observations, SnowWatch project tested the
use of public web cam images as a reliable source of snow information. More

35http://snowwatch.polimi.it/?lang=en

24

2.6. Use case

Figure 2.5: Photo to panorama cylindrical and equivalent 2D Cartesian alignment.

than 3,500 candidate web cams in the Alpine area from touristic, meteorological,
and skiing web cam directories were identified and manually checked, to remove
those that were not framing significant mountain slopes. Nearly 2,000 web cams
passed the test and are continuously queried by a web crawler that checks each
web cam at 1’ frequency and processes all new images, acquiring from 10 to 1,500
images per day for each camera, depending on its update frequency and working
hours. A bad weather filter is applied to the crawled images to discard those
not suitable for further processing (a manual screening of 1,000 images from 4
web cams revealed that 33% of the acquired images on average are exploitable
for analysis). The filtered images are then processed by a pipeline of components
that geo-reference the peaks present in the image normalize the daily shots into a
daily median image, and classify the image pixels as snow or no-snow, producing
a snow mask per image. Finally, time series of Virtual Snow Indezes (VSIs) are
computed from the geo-referenced and time-stamped snow masks, which are used
as a proxy of the snow covered area.

2.6.3 Offline Peak Detection for the Web

One of the key algorithms of SnowWatch Web architecture is the offline peak
identification. Peak positions are obtained through the alignment between the
photo and the terrain model. Given a photograph and the meta-data extracted
from its EXIF container (geo-tag, focal length, camera model and manufacturer), a
matching is performed with a 360° panoramic view of the terrain synthesized from
a public, Web-accessible DEM. The rendered panorama contains the mountain
peak positions, so once a correct overlap is found, peak positions are projected
from the panorama to the photo. The alignment can be seen as the search for the
correct overlap between two cylinders (assuming the zero tilt of the photograph):
one containing the 360° panorama and the other one containing the photo, suitably
scaled. As Figure shows, this is equivalent to looking for the offset between
the photo and the unfolded 2D panorama that guarantees the best overlap.

The alignment method proceeds in four steps, described below and illustrated
in Figure [2.6]

Preprocessing: The horizontal Field Of View (FOV) of the photograph is cal-
culated from the focal length and the size of the camera sensor. Then, the pho-
tograph is rescaled considering that the width of the panorama corresponds to a
FOV equal to 360°. After this step, the photo and the panorama have the same
scale in degrees per pixel and thus matching can be performed without the need
of scale invariant methods. Then, an edge extraction algorithm is applied to both

25

Chapter 2. Background

(d) (e)

Figure 2.6: An example of the photo-to-terrain alignment: (a) input photograph (top) and
corresponding panorama (bottom), (b) edge extraction, (c) skyline detection, filtering and
dilation (d) global alignment with refinement (e) local alignment.

the photograph and the panorama to produce an edge map, which assigns to each
pixel the strength of the edge at that point and its direction (Figure [2.6p).

Matching edges of an image with those of a virtual panorama requires address-
ing the fact that there is not a one-to-one mapping between edge pixels extracted
from the two sources. The photo generates many noisy edges that do not corre-
spond to the mountain slopes, but to other objects in the foreground (e.g. rocks,
trees, lakes, houses, etc.) and in the background (e.g. clouds, snow patches, etc.).
Thus, a skyline detection algorithm is employed [135], and all the edge pixels
above the skyline are removed, being considered obstacles or clouds. Then, a
simple weighing mechanism is applied, which assigns decreasing weights to the
edge pixels as the distance from the skyline increases (Figure - top). As for
the panorama, the edges corresponding to the skyline can be simply identified as
the upper envelope of the edge map, by keeping, for each column of pixels, the
topmost edge point. Since the edge filtering of the photograph emphasizes the
edges of the skyline, a morphological dilation is applied to emphasize the edges
corresponding to the skyline of the panorama (Figure - bottom).

Global alignment: The matching between the photograph and the correspond-
ing panorama is performed using a Vector Cross Correlation (VCC) technique [13],
which takes into account both the strength and the direction of the edge points.
The output of the VCC is a correlation map that, for each possible horizontal and
vertical displacement between the photograph and the panorama, indicates the
strength of the matching.

Local alignment: to improve the precision of the position of each mountain
peak, a local optimization is applied. For each peak we consider a local neigh-
borhood centered in the photograph location identified as the peak position by
the global alignment. In this way each peak position is refined by identifying the
best match in its local neighborhood. Overall, this is equivalent to applying a
non-rigid warping of the photograph with respect to the panorama.

26

2.6. Use case

2.6.4 PeakLens app

Mobile outdoor Augmented Reality applications are an emerging category of so-
lutions that hold the promise to help design engaging user experiences suitable for
geo-referenced data collection tasks. These applications are implemented in mo-
bile terminals (mainly mobile phones, but also the forthcoming consumer-grade
smart glasses) and enrich an outdoor experience, such as trekking or star gazing,
by overlaying useful information onto the device camera view. Furthermore, the
acquisition of images with crowdsourcing mobile applications can complement cer-
tain limitations comprised by public webcams. Web cams afford a good temporal
frequency, but fall short in spatial coverage; they are positioned at fixed locations,
often chosen for touristic purposes other than the selection of monitoring points
of environmental interest. On the other hand, in the case of mobile applications,
spatial coverage is larger and more uniform. Another advantage of crowdsourc-
ing mobile applications is their dynamic nature: people can be engaged in data
collection tasks at specific places and times.

PeakLens is a real-world Outdoor Mobile Augmented Reality app that aims
at incorporating Artificial Intelligence to provide a high-quality and entertaining
experience to users, while they can take photographs of mountain landscapes, in
which all the visible peaks are precisely identified and geo-referenced. Peaklens
is available for Android and has currently +500k installs worldwide. Figure
presents its user interface.

Figure 2.7: PeakLens interface: compass orientation (bottom band); photo shooting command
(upper button); peak scrolling (bottom button) and peak page indicator (3 circles).

This AR application recognizes mountain peaks accurately in real-time and
overlays their corresponding information (e.g. name, distance and altitude) on
top of the view by using Artificial Intelligence and exploiting the visual context
captured by the camera. Besides projections based on noisy mobile orientation
sensors, it features a Computer Vision component based on Deep Learning (run-
ning on-board the phones with a proprietary framework) that analyzes the camera
frame and detects the pixels in the image that correspond to the natural mountain
skyline. Figure [2.§ presents an example of the app interface with the correspond-

27

Chapter 2. Background

ing detected skyline highlighted in red color. Such skyline is subsequently aligned
with respect to a virtual terrain panorama based on the GPS location of the user.
As a result, the final mountain peak projections are significantly improved, thus
providing an enhanced user experience.

Figure 2.8: The skyline extracted from the computer vision module from the frame of Figure

73

The peak identification and labeling function exploits a DEM of the Earth
and a repository of peak metadata, and matches the mountain summits of the
DEM to the skyline peaks extracted from the camera frame, to compute the
correct 2D screen coordinates of the visible peaks. The matching procedure is
the core of the application: the user’s location, the device orientation values,
and the camera field of view are exploited to generate a bi-dimensional virtual
panorama from the DEM point cloud. Figure[2.9|shows an example of the virtual
panorama generated from the DEM. Then, the DEM and the peaks metadata
repository are queried to determine the list of visible peaks, given the position
and orientation of the device; hidden peaks masked by the terrain configuration
are excluded; the artificial skyline from the virtual panorama (shown in Figure
2.9) is aligned with the skyline extracted from the frame (shown in Figure
and the visible peaks are projected from the 3D space to the 2D space, obtaining
the screen coordinates. Based on the 2D coordinates, the visible peaks are ranked
by a visual relevance criterion, which is applied in the cases in which more peaks
are visible than could be displayed on the device small screen. Finally, a GUI
component selects the peaks to show based on the ranking and the size of the
screen and overlays the peak positions and metadata, producing the visualization
shown in Figure . The motion sensors are used to trigger the re-computation
of the 2D peak positions when the user moves the device. For offline usage, the
DEM and the peak metadata repository have been segmented and compressed
and can be downloaded and queried in the mobile device, in absence of Internet
connectivity.

36The GUI comprises a More peaks button (bottom in Figure to show the peaks that could not fit in the
screen.

28

2.6. Use case

Figure 2.9: The virtual panorama computed from the DEM, queried with same location and
orientation of the device that produces the screen image of Figure .

29

CHAPTER

Image-based geolocalization in natural environments

Image-based techniques and, in particular, image-to-terrain ones are suitable for
both large scale visual geolocalization and camera orientation estimation when
dealing with images taken in natural mountain environments. Such problem can
be tackled by computing the alignment between the skylines extracted from the
terrain, which is computed from the Digital Elevation Model (DEM) data, and
mountain images. Heuristic methods based on edge detection work well on images
taken in good conditions, but present difficulties with bad weather or occluded
scenarios. In these cases, a cloud, a high voltage cable, a person, or a roof can
impact negatively on the heuristic edge filter, e.g. a cloud edge can be treated as
skyline and the mountain slope below would be erroneously regarded as noise.

This chapter presents the implementation process of a robust pixel-wise moun-
tain skyline detection component, from the collection and preparation of the data
set for training the Fully Convolutional Network [140] to the evaluation of the
trained models; the model is able to detect skyline occlusions, thus improving the
subsequent alignment w.r.t. the virtual terrain and is suitable for deployment on
both server and mobile devices.

This chapter includes material from the following publication, co-authored by
the candidate: [65].

3.1 Requirements

The tackled problem of robust skyline detection for the registration of images
taken in natural mountain environments w.r.t. the terrain virtual panorama is a
non-trivial task, which is subject to the following essential requirements:

e Accurate skyline detection. The skyline detection must be precise and

31

Chapter 3. Image-based geolocalization in natural environments

identify the portion of the topmost boundary edges of the mountain slopes
that intercept the sky. Additionally, it must also cope with changing and
complex visual conditions, such as variations in season, weather, illumination
and vegetation.

e Occlusion identification. The designed solution must work in uncontrolled
conditions, often characterized by the presence of irrelevant objects. Occlu-
sions interrupting the natural horizon must be identified and treated appro-
priately, to prevent false alignments with irrelevant objects (e.g. mistaking
a rooftop, a tree, or a person’s head as part of the mountain skyline).

e Server and mobile support. The complete pipeline is meant to be ex-
ecutable on both server and mobile environments, and must thus overcome
underlying technical constraints, given that mobile application development
imposes numerous restrictions on the supported architectures, frameworks
and libraries.

3.2 Data set collection

Publicly available data sets, such as [25] [44] [97] [193] are suitable candidates
for training CNN models for sky/terrain segmentation. However, as discussed in
Section [2.1] they were not built to deal with skyline interruptions, due to e.g.
clouds, trees, buildings, people, etc., which can compromise the correct alignment
w.r.t. the terrain model and thus the geolocalization of the image. To the best of
our knowledge, no data set expressly designed for mountain skyline detection in
presence of occlusions exists, and consequently we conducted an internal crowd-
sourcing campaign to create it.

The procedure to build the data set consisted in (1) a semi-automatic selection
of images from web media content [32]; (2) a first crowdsourcing task to filter
inadequate images (e.g. non mountain images identified incorrectly in step 1); (3)
a second crowdsourcing task to annotate the skyline in the images and (4) final
inspection and cleansing of annotated images.

The semi-automated selection of images, as explained in detail in [32], was
performed by searching geo-tagged and user-generated photos in Flickr in a region
of 300 x 160 km in the European Alps and by crawling images from touristic
webcams in the same area. Both sources present common information: location,
date and time of capture, but they differ in the nature of the pictures; while
Flickr photos tend to be nicer, with a clear skyline, good weather conditions and
from diverse points of view, webcam images tend to be more complex. Each
webcam provides a temporal series of pictures, from which we sampled images
with different weather conditions at different times of the day.

The gathered images were used as input for the web-based crowdsourcing plat-
form visualized in Figure Such tool supported the execution of two tasks:

e Mountain image selection. The input for this task is an image and the
output is a Boolean value specifying whether the image contains a mountain
profile or not. An introduction to the problem and the output required were
provided to the participants and criteria to discard images were explained in

32

3.2. Data set collection

| # | %
Occluded images 4,327 48.86%
Non occluded images 4,529 51.14%
Occluded columns 485,920 | 8.80%
Non occluded columns | 5,038,444 | 91.20%

Table 3.1: Dataset class distribution. Half of the images present non-continuous skyline. Less
than 10% of columns are occlusions.

a tutorial published in the home page of the task. Users were requested to
discard images without mountains, with the skyline almost totally occluded,
taken from a high point (e.g. from the airplane), and with applied filter
effects.

e Skyline image annotation. The input of this task is an image and the
output is a line (or a set of segments, if the skyline is interrupted by obstacles)
that identifies the profile of the mountain. Given the image, the user can
draw the skyline line, clear the annotation to erase the current annotation
and restart drawing; and confirm the annotation.

Cless m

(a) Mountain image annotator (b) Skyline image annotator

Figure 3.1: Crowdsourcing mountain skyline platform annotator.

An internal crowdsourcing campaign with 17 workers was conducted using the
described tool for the creation of the dataset. In the Mountain image selection
task 9,001 images were accepted and 2,863 were discarded. In the Skyline image
annotation task all 9,001 selected images were annotated.

After annotation, a data cleaning step was applied to remove wrong annotations
and images with less than 240 pixels of height. After the manual cleaning, 8,856
annotated images were retained in the dataset.

Table [3.1| shows the presence of occlusions in the data set: nearly half (48.86%)
of the images contain occluded skylines and occlusions are mainly small: less
than 10% of the data set columns are part of an occlusion. Figure [3.2] shows
the results of the analysis of the percentage of occlusion columns in the images;
moderate occlusion/skyline ratios prevail: ~ 42% of the images contain up to 10%
of occlusion columns, and ~ 23% up to 20%.

33

Chapter 3. Image-based geolocalization in natural environments

1,0
0,9
08
07
06
0,5
0,4
03
0,2
01
0,0

Images

Skyline Skyline

0% —
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Image Column Percentage of occluded columns

(a) Occlusion distribution (b) Occlusion histogram

Figure 3.2: Dataset Class Distribution. Occlusions form patterns: the distribution over relative
orientations of occluder-skyline is highly peaked around one mode.

For each experiment, we performed a holdout segmentation; the dataset D was
split into the training set Dy;ai,, the validation set Dy, and the test set Dyes;. We
then trained and evaluated our models with an 80-20 setting, where 80% of the
images were used for training and validation (64% and 16% respectively) and the
remaining 20% for testing.

3.3 Pipeline for skyline detection

The goal of this part of the work is to implement a component for extracting the
skyline from input images, portraying mountain landscapes in such a way that any
irrelevant object occluding the skyline is identified and its profile discarded from
the result. This task is accomplished by the two-step pipeline shown in Figure
5.0

The pipeline comprises two modules: a pixel-wise skyline detector extracts the
contour of the mountain; a column-based occlusion detector refines the classifi-
cation by identifying the segments of the contour lines that are due to occluding
objects. Figure shows an example of the impact of occlusion removal.

3.3.1 Pixel-wise skyline detection

The pixel-wise skyline detector adopts the CNN architecture presented in Figure
which is an adaptation of the well known LeNet model [130]. The main
differences are that: 1) odd sized 29x29 RGB input images are used instead of
28x28 gray-scaled ones, and 2) the output consists of only two classes, which
represent whether the center pixel of the input image is part of the skyline (1)
or not (0). As in LeNet, we consider the probability of a pixel to belong to each
class. Moreover, the Fully Connected layers are replaced by Convolutional layers,
to use the model as a Fully Convolutional Network (FCN) [140], which can take
in input images of any size (bigger or equal to the model input size) and output
a probability map with a value for each pixel. Multiple scale resolution objects
are automatically tackled by the fact that the model is trained with images taken

34

3.3. Pipeline for skyline detection

Pixel-wise :i w
> —

CNN

Pixel probability map q | | |

INPUT x X
IMAGE

Final result

Column-wise

> — b LTI T [Ix[J—

CNN

Column probability map

Figure 3.3: Architecture of the skyline detection pipeline combining the pizel-wise and column-
wise CNNs.

Feature Feature Feature Feature Feature Feature

Input ma, ma ma ma
362929 20624x24 20612x12 S068x8 S064x4 Ot e Sutput
‘ - . . = = S % _____ %

‘ ‘

‘ ‘

‘% ‘% P
- =~ 4 Softmax
< a5 i A R s
- . N - aatN. K
- Convolution 2x2 Kernel +

Convolution Pool(max) 5x5 Kernel Convolution
6x6 Kernel 2x2 Kernel 1x1 Kernel

Figure 3.4: Pizel-wise skyline detection CNN architecture

from very variable distances.

The preparation of the data set involved the normalization of the mountain
images and of the corresponding annotations, obtained by scaling down both to
a predefined width (321 pixels) and then dilating the thickness of the annotation
line(s) to a predefined size (9 pixels), to cope with small imperfections in the
manual drawing of the skyline. The choice of the image width size is further
discussed in Section [7.3]

Next, the heuristic extraction of positive and negative patches from the anno-
tated mountain photos is performed. To obtain patches with the most informative
content, we applied a very soft Canny filter to each image so as to compute the
edge map, and selected as candidate patches only the ones with an edge pixel
at their center. Patches were then labeled as positive or negative based on their
central pixel: if it matched an annotated pixel, the patch was considered posi-
tive; otherwise, it was considered negative. Patches were partitioned based on
the image subset they belonged to (training, validation and test), as specified in
Section [3.2] That is to say, patches extracted from images in the training set were
considered for training, and the same applied for validation and testing.

Since non-skyline pixels are much more numerous than skyline pixels, we gen-
erated an imbalanced data set by extracting 100 positive and 200 negative patches

35

Chapter 3. Image-based geolocalization in natural environments

per image. Two extraction strategies were evaluated:

¢ Random sampling. The set of all possible positive and negative patches
was created, randomly sorted, and truncated to a maximum predefined num-
ber (100 positive and 200 negative samples).

e Grid sampling. To make the distribution of patches more uniform, each
image was divided into a 3x4 grid and patches were extracted by iterating
over the cells, picking only candidate patches with a minimum distance (3
pixels) from an already selected one. Then, 100 positive and 200 negative
elements were selected from the candidate patches generated in the above-
mentioned way.

Er=1

Figure 3.5: Random sampling of patches for pizel-wise skyline detection. Green patches corre-
spond to positive class and red patches to negative class.

Figure [3.5] visualizes an example of the random sampling of patches applied to
an image: green boxes correspond to positive patches and red boxes to negative
ones.

Different positive to negative ratios were tested and 1:2 was chosen as the
proportion providing the best outcome, and thus was the one employed in the
evaluation described in Section [7.3l

The model was trained using the Caffe framework and the total number
of learned parameters of the resulting model was 428,732. At execution time, the
FCN was fed with an entire image and returned a spatial map, in which each pixel
was assigned the probability of belonging to the positive class. Such probability
values were rescaled from the [0 ... 1] to the [0...255] range.

36

3.3. Pipeline for skyline detection

The output of the CNN was post-processed to enhance the result. Figure [3.6
shows all the steps for computing the output: the original image (a) was pro-
cessed by the CNN, obtaining the raw output (b). Then, a small erosion and a
threshold were applied, whereby pixels with scores lower than a predefined value
were removed (c). Such predefined threshold value was calculated to maximize
the accuracy of the CNN and is further discussed in Section [7.3] Finally, a mor-
phological skeletonization process was applied and at most 1 pixel per column was
left (d). Diverse post-processing heuristics have been assessed and the described
approach was the one that achieved the best results.

-
.‘:-u*

(a) Original (b) Pixel-wise CNN

(c) Erosion + Threshold (d) Skeletonization

Figure 3.6: Pizel-wise skyline detection pipeline. Original image (a). Raw probability map
output computed by the pizel-wise CNN (b). Probability map after erosion and thresholding
(c). Result after morphological skeletonization and selection of one pizel per column (d).

3.3.2 Column-wise detection

The pixel-wise skyline detection approach performs well and can cope, to a limited
extent, with the presence of some skyline occlusions, e.g. due to clouds. However,
the construction of the training set does not identify occluding objects explicitly
and thus both the random and grid sampling procedures extract only a small
number of negative patches that include common occluding objects. In addition,
29x29 squared patches may not always contain enough context to accurately pre-

37

Chapter 3. Image-based geolocalization in natural environments

— Il:':gture Il:':é]ture Fmegture Fmegture Feature Feature
36240x29 16623625 326228x21 32638x7 84630x5 066151 A erru
e e S e S e Bugan s e Peges D
e g o g Convolution
~ T -7 gﬁgvﬁfrﬁf ioﬁisfemel Convolution

Convalution Convolution 202'("”“") kel + Dropout 151 Kems!

5x5 Kernel 9x5 Kernel X3 Kemsl

+ Relu + Relu

Figure 3.7: Column-wise skyline detection CNN architecture

dict obstacles. To address the presence of occlusions more specifically, we trained
an additional CNN, using column patches instead of squared patches. The idea
is that columns with a height equal to that of the input image provide better
vertical context, which could help detect objects standing in front of the skyline,
such as tree tops, people’s heads, and bell towers. As shown in Figure [3.3] the
column-wise CNN is executed after the pixel-wise CNN to filter out false positive
skyline pixels corresponding to the profile of non-mountain objects.

The use of a column-based CNN is an alternative to sky/terrain semantic seg-
mentation approaches, such as [3] [12] [13] [169], which could also indirectly sup-
port the identification of occlusions. The advantage of the proposed architecture
is that the training of the column-based CNN component exploits the same an-
notations employed to build the training set of the pixel-wise skyline detector,
eliminating the need of yet another (costly) image annotation campaign.

Figure [3.7] shows the architecture of the column-wise occlusion detector, which
consists of a FCN that takes in input an image, resized to the predefined height of
240 pixels, and returns in output a vector of the probability value of each column
to belong to the positive class (i.e., skyline). Note that the model only predicts
whether the columns contains the skyline or not, but cannot determine the row
position at which the skyline pixel appears in the column.

The data set preparation consisted in the extraction of 29x240 column-patches
from the original size mountain images; 87.40% of the data set images have a
height of at least 360 pixels, thus affording enough space to crop column patches
in diverse regions.

The column patches were labeled automatically by reusing the same annota-
tions employed to extract square patches for the pixel level skyline detector. To
compensate the lack of explicit semantic labels for occluding object pixels, the
extracted column patches were heuristically assigned to multiple classes, to make
the CNN learn how to discriminate among negative samples of different nature,
among which are the potential occlusions.

Given an image I and its ground truth annotation GT, we define:

e Skyline column: a column I _,j] for which there exists an ¢ such that the
pixel GT'[i, j| is annotated as skyline.

e Non-skyline column: a column /] |, j] for which the pixel GT[i, j] is annotated

38

3.4. Evaluation

as non-skyline, for all values of 1.

Then, a column patch is defined as a rectangular 29x240 region of the image,
labeled as follows:

e Positive. At least one pixel of the center column of the patch matches a
pixel of the skyline annotation.

e Negative-sky. All the pixels of the center column of the patch lie above the
skyline annotation.

e Negative-terrain. All the pixels of the center column of the patch lie below
the skyline annotation.

e Negative-occlusion. All the pixels of the center column of the patch lie
within a candidate occlusion region of the image; such region is a rectangle of
parametric height defined as follows: : 1) it overlaps at least one non skyline
column of the image; 2) it is delimited on the left either by the image leftmost
column or by a skyline column; 3) it is delimited on the right either by the
image rightmost column or by a skyline column; 4) all the image columns
overlapped by the candidate occlusion region are non skyline columns.

Figure [3.§ visualizes a subset of the column patches of different classes extracted
from a sample image.

Diverse data set configurations and ratios between the patch classes have been
assessed. In the end, the best results, discussed in Section were obtained by
extracting 128 positive column-patches and 384 negative column-patches (% for
each negative subclass). The model was trained with the Caffe framework and
includes 1,001,732 learned weight parameters.

To use the output of the column-wise CNN for eliminating false positives pro-
duced by the pixel-wise CNN, we summarize it into only two classes: positive and
negative, summing up the probabilities of belonging to the negative-sky, negative-
terrain and negative-occlusion classes.

Figure [3.9 shows an example of the complete CNN pipeline: the original image
(a) is first processed with the pixel-wise CNN (b) and subsequently processed with
the column-wise CNN (c). The second CNN discards the false positives created
by the first CNN, which misclassified tree and roof tops.

3.4 Evaluation

The maximum accuracy achieved by the pixel-wise CNN model over the test data
set at patch level is 95.81%, obtained with a threshold value for positive probability
of 124; the maximum accuracy at at column-patch level for the column-wise CNN
is 89.06%, with a threshold value of 143. However, accuracy measured at the patch
level does not represent the quality of the output for the extracted skyline well, be
it continuous or interrupted. Therefore, we defined quality metric functions that
compare column by column, the skyline extracted by the detectors w.r.t. the one
manually annotated in the ground truth.

39

Chapter 3. Image-based geolocalization in natural environments

Figure 3.8: Example of column-patch extraction. Green column-patches correspond to positive
class, blue to negative-sky, yellow to negative-terrain and red to negative-occlusion.

3.4.1 Experimental setup

The evaluation of the skyline detectors was performed by running a series of
evaluation rounds, in which the proposed metrics were computed for the pixel-
wise CNN and the combined CNN over three subsets:

e Complete. It contains the whole set of 1,771 images with both continuous
and interrupted skylines, which account for 100% of the test images.

e Any Occluded. It contains 866 images with at least one interrupted skyline
column, which comprises 49.9% of the test images.

e Occluded(<30%). It contains 674 images with at least 30% of their columns
occluded and comprises 38.06% of the test images and 77.83% of the Any Oc-
cluded set).

Moreover, each of the images in the test set were resized to 240 pixels of
height and their corresponding widths, so as to match the exact column-wise
CNN expected input size.

3.4.2 Metrics

Differently from the approaches in [2], [3] and [169], which do not consider occlu-
sions and postulate that skylines are always complete and span the entire image,
the proposed metrics do not measure the distance between the annotation and

40

3.4. Evaluation

(a) Original

(b) Pixel-wise CNN (¢) Column-wise CNN
Figure 3.9: Pipeline combining pizel-wise and column-wise CNN: original image (a); output
computed by the pizel-wise CNN (b); output computed by the combined pipeline (c).

the estimated skyline, but instead assess whether each skyline pizel is correctly
classified and then average such basic measure over the relevant image columns;
the following metric functions are defined:

e Average Skyline Accuracy (ASA) measures the percentage of image sky-
line columns for which at least one of the estimated positive pixels matches
one of the annotation pixels.

e Average No Skyline Accuracy (ANSA) measures the percentage of non
skyline columns for which the CNN output does not contain positive pixels;
this metric evaluates false positives in images with an interrupted skyline.

e Average Accuracy (AA) measures the percentage of columns in which
the annotation and the estimated skyline agree, considering agreement when
none contain pixels or at least one of the estimated positive pixels matches
one of the annotation pixels.

Let CNN(i,7) be a function that returns 1 if the image pixel at coordinates (i,j)
belongs to the skyline extracted by the CNN (0 otherwise) and let GT'(i,j) be

41

Chapter 3. Image-based geolocalization in natural environments

a function that returns 1 if the pixel (i,j) belongs to the ground truth skyline (0
otherwise). Let cols denote the number of columns the the image(s) under test.

cols cols
ASA =" Ieraenn(i)/ Y Ior(j) (3.1)
j=1 j=1
cols cols
ANSA = ZIGT/\CNN i,7)/(cols — ZIGT (3.2)
j=1
1 cols
AA = — Tagree(J .
s ; aree) (3:3)

where:

Ior(7) :=14if 3i| GT(i,j) = 1; 0 otherwise

Ieraenn () == 14f Fi GT(Z,]) =1A CNN(i,j) =1; 0 otherwise
Iernewn(j) =1 if Vil GT(Z,]) = 0/\ CNN(i,j) = 0; 0 otherwise
Ligree(7) =1 if Iaraenn(j) = 1V Igprenw (i) = 1; 0 otherwise

Figure 3.10: Fvaluation of an image with interrupted skyline and values of the metric functions.
Average Skyline Accuracy: 98%. Average No Skyline Accuracy: 73%. Average Accuracy:
94%.

Figure illustrates an example of the metrics: a mountain image with the
ground truth annotation is shown on the left, for which the quality metrics are
computed on the output produced by the pixel-wise CNN. On the right, pixels in
white represent the ground truth annotation, pixels in green represent correctly
predicted skyline pixels, while pixels in red represent incorrect ones. The metric
values for the image are: 98% of ASA, 73% of ANSA and 94% of AA.

3.4.3 Experimental results

Before evaluating the test data set, we ran an assessment over the validation
data set, to estimate the threshold value that maximizes the AA metrics. AA was
selected as the most relevant quality metric to maximize, because it represents the
agreement between the ground truth and the extracted skyline over both occluded
and non-occluded segments.

Figure [3.11] presents the evaluation curves of the pixel-wise CNN (a) and of the
combined CNN (b) over the complete validation data set. For the combined CNN,
Figure [3.11] (b) shows the accuracy curve used to define the threshold parameter
of the column-wise component, when the best threshold value for the pixel-wise
component is used.

42

3.4. Evaluation

Threshold-Accuracy ROC curve s Threshold-Accuracy ROC curve

|
- _ @178.00,0.90) 1 0.9 [-@{8:00.0.90)
(178.00,0.86) / (8.00,0.85)——
“ -

08 \ 08 T~
TN
o7t /4 o7t 7 S
Fost Fosl N
<05} / 2.l 7 N
<o0s o 0% (8.000.47) \
g g |/

z @(178.000.38) z 047

0 50 100 150 200 250 0 50 100 150 200 250
Threshold Threshold

(a) Pizel-wise CNN threshold parameter (b) Column-wise CNN threshold parame-
analysis. ter analysis, for the combined CNN with
pizel-wise threshold set to 178.

Figure 3.11: AA curves computed on the complete validation data set to identify the best thresh-

old values for the pizel-wise CNN (a) and for the column-wise component of the combined
CNN (b).

The pixel-wise CNN achieved an AA of 86%, ASA of 90% and ANSA of 38% for
a threshold value equal to 178. The combined CNN, with the pixel-wise threshold
set to 178, achieved an AA of 86%, ASA of 90% and ANSA of %47, for a threshold
value of the column-wise component equal to 8. The low threshold value of the
column-wise component means that columns are discarded only when they get
extremely low probability of being positive.

The same analysis was performed for the Any Occluded validation set. The
found optimal threshold values are then applied in the assessment of the Any
Occluded and Occluded(<350%) test set.

Table [3.2] reports the results of evaluation on the three test sets, with the
threshold values determined from the analysis on the validation sets.

Pixel-wise CNN Combined CNN
Set ASA ANSA AA ASA ANSA AA
Complete 89.82% 34.56% 85.42% | 89.34% 43.78% 85.72%

Any Occluded 86.21% 43.27% 79.26% | 84.51% 55.30% 79.78%
Occluded(<30%) | 86.86% 46.96% 83.15% | 86.26% 55.08% 83.33%

Table 3.2: Skyline image-level evaluation metrics for diverse test data subsets computed with
the pizel-wise CNN and combined CNN.

The pixel-wise CNN achieved reasonable results for ASA of more than 86% in
all subsets and consequently behaved well for AA, due to the fact that columns
with skyline are highly predominant and thus ASA highly influences the over-
all performance. On the other hand, the pixel-wise CNN exhibited lower ANSA
values, which could be expected because occlusion patches are underrepresented
in the training set. The combined CNN improves the ANSA values by approx-
imately 10%, which is the contribution of the more significant context provided
by columns, instead of patches, in the training. As a consequence, also the AA

43

Chapter 3. Image-based geolocalization in natural environments

slightly increased in all the test sets, which means that the combined model han-
dles occlusions adequately, without impacting negatively on the detection of the
visible portions of the skyline.

Results are better for the Occluded(<30%) test set than for the Any Occluded
one, which is explained by the fact that no skyline columns are underrepresented
and more difficult to detect.

Finally, we observe that a ~10% improvement of the ANSA metrics impacts
the ability of discarding false positive segments of the mountain profile. This
may have a high impact on the user-perceived quality of the augmented reality
application that uses the extracted skyline to identify the peaks that are in view.

Several examples of the improvement of the combined CNN over the pixel-wise
CNN in images with a variety of different occlusions are presented next. The
left column shows the ground-truth with the skyline annotated in red, the middle
column shows the results obtained using the pixel-wise CNN and, finally, the third
column shows the results obtained using the combined CNN. All skyline pixel
matches are shown in green, the annotation is shown in white and the occlusion
wrong classifications are shown in red.

44

3.4. Evaluation

Chapter 3. Image-based geolocalization in natural environments

-‘

46

CHAPTER

Outdoor Mobile Augmented Reality Framework

Outdoor Mobile Augmented Reality applications project information of interest
onto views of the world in real-time. Their core challenge comprises the recognition
of the meaningful objects present in the current view and the retrieval and overlay
of pertinent information onto such objects. Capturing the user’s attention has
become increasingly difficult due to the enormous number of mobile applications
available on the online markets. Therefore, providing satisfying, engaging and
novel types of user experiences becomes a critical factor in determining the success
and diffusion of a mobile application. Traditional AR applications rely on the
position and orientation sensors of the device to estimate the location of the user
and her field of view, irrespective of the content actually in view. Examples include
sky map applications that show the names of constellations, planets and stars
based on the GPS position and compass signal. An obvious limitation of these
approaches is that they may provide information that does not match what the
user is seeing well, due to errors in the position and/or orientation estimation or to
the presence of objects partially occluding the view. Moreover, the development of
outdoor Mobile Augmented Reality applications poses several technical challenges
related to the acquisition, selection, transmission and display of information.

In this chapter, we report on the development of a framework for Outdoor Mo-
bile Augmented Reality applications that aims at addressing the above-mentioned
challenges. We define the underlying requirements, architecture, components and
workflows, as well as a characterization for the dimensions of heterogeneous data
used to augment the camera view of applications of this nature. Finally, we dis-
cuss the application to the development of the outdoor use case for the overlay of
mountain peak information onto views of mountain landscapes.

This chapter includes material from the following publications, co-authored by

47

Chapter 4. Outdoor Mobile Augmented Reality Framework

the candidate: [60] [66].

4.1 Requirements

To be effective, outdoor Mobile AR applications pose several technical challenges
that make their development a non trivial task: 1. Mobile environment. The target
mobile devices comprise strict energy consumption constraints and lower memory
and computational resources w.r.t. Web multi-tier architectures. 2. Uncertain po-
sitioning. The position and orientation sensor errors make the location estimation
potentially noisy; thus the identification of the relevant objects from these signals
alone cannot be assumed to be fully reliable. 3. Uncontrolled viewing conditions.
The objects to be identified may have no fixed, a priori known appearance, be-
cause the viewing conditions can drastically change due to weather, illumination,
occlusions, etc. 4. Uncertain internet connection. Network connectivity can be
unreliable, especially for rural and mountain regions, where even today internet
coverage is patchy. .

Based on such presented drivers, the target AR systems must cope with the
following requirements:

e Accurate visual recognition. They must understand the current visual
environment surrounding the user by exploiting frames captured by the cam-
era and thus, potentially correct other noisy sensor readings.

e Sensor fusion. They must compute the position of the augmented informa-
tion by estimating and fusing sensor readings coming from multiple heteroge-
neous sources such as GPS, compass, magnetometer, gyroscope and camera.

e Fast response time. They must overlay augmented information in real-
time, and no significant overhead for image processing initialization is ac-
ceptable as users do not tolerate delays in the order of seconds at every start
of the app.

e Pertinent information retrieval. They must find the appropriate infor-
mation pertinent to the user’s current location, activity, interest and view.

¢ Bi-dimensional reduction. Although the objects’ position in the real-
world is estimated in the 3D space, the on-screen rendition requires a pro-
jection onto the 2D surface of the camera view, based on a model of the
camera.

e Proper view augmentation. They must overlay the retrieved information
onto the device screen in a way that is stable and adequate to the user’s
experience. This may also comprise user interaction by filtering elements
based on certain properties, scrolling through pages, visualizing more details
of a specific element or taking pictures with the augmented information.

e Offline support. They should ideally guarantee functioning, in spite of
uncertain Internet availability.

48

4.2. The Development Framework

<<subsystem>> Sensor Manager g

Get Current Frame
:CameraSensor T | @
Get Current Orientation Va - -
@ :OrientationSensor T |
Get GPS Position

<<subsystem>> GUI £ :GpsSensor T | @

Saved Frames

<<subsystem>> Data Manager ﬂ
:CacheManager }—O}—
9 il Get Cache il
Set :DataProvider
Object @ St

:CameraDrawer T | Positions I

Get On-Screen Object Coordinates O

/\ @ Get Patterns :]’
Get \
| <<subsystem>> Position Alignment Manager ij
2D/3D $]
Converter O | Object Position | (:)Ii‘)a}ttetrTc-lBats_?d £]
i ect Identifier
Get Corrected Corrections !
Positions Get

:Position
O_ Updater il
:Similarity-Based

Object Identifier

L

Figure 4.1: The proposed architecture of a mobile outdoor AR application.

4.2 The Development Framework

The framework proposed in this chapter aims at supporting the design of mobile
AR applications for the enrichment of outdoor natural objects. Restricting the
focus to devices that support a bi-dimensional view, a generic architecture must
be realized. Such architecture must receive as first input a representation of the
reality - in which the user is embedded - captured by the device sensors; such
representation typically comprises a sequence of frames, captured by the camera
at a fixed rate, and the position and orientation readings of the device, captured
by the GPS and orientation sensors respectively. The second input to receive
corresponds to the information regarding the possible objects present in a region
of interest. Finally, the architecture outputs the on-screen positions of relevant
objects and the association of relevant meta-data to such objects, computed at
the same frequency of the input capture.

Figure [4.1] presents an UML component diagram that represents the reference
architecture of a mobile outdoor AR application. The key idea is to enable the
real-time augmentation process given a proper partition of functionality and a

49

Chapter 4. Outdoor Mobile Augmented Reality Framework

mix of synchronous and asynchronous communications among the modules. The
architecture consists of four sub-systems: the Sensor Manager, the Data Manager,
the Position Alignment Manager and the Graphical User Interface (GUI).

4.2.1 Sensor Manager

The Sensor Manager coordinates data acquisition from the device sensors. It
typically comprises one module per each signal processed by the application; the
generic configuration comprises the GPS Sensor Manager, the Orientation Sensor
Manager and the Camera Sensor Manager. The modules work asynchronously
and provide input to the Position Alignment Manager and Data Manager, which
subscribe to their interface and are notified when a new signal arrives from a
Sensor.

4.2.2 Data Manager

The Data Manager is responsible for providing the other sub-systems with the ini-
tial positions of the objects in view and the corresponding meta-data for enriching
them. It receives as input the specification of an area of interest (typically inferred
from the user’s location), and interacts with an external repository containing a
virtual representation of the world (e.g, a sky map or a DEM). It produces as
output Object Positions, which specify the (initially approximate) 3D coordinates
of the candidate objects to display. Within the Data Manager, a Data Provider
component queries one or more external geo-referenced data sources, with the cur-
rent user’s location, and extracts the coordinates of the objects that are likely to
lie within the view of the user. For example, in a sky observation app, it queries
the sky map for the celestial coordinates, plus meta-data such as type, name,
distance, etc., of the potentially visible objects. The Cache Manager implements
data pre-fetching and synchronization policies, based on information about cur-
rent cache content, network availability, and cost of data transfer. Since data
about the objects can be large, the Cache Manager realizes a trade-off between
on-demand transfer from external data sources and caching in the local storage of
the device. Furthermore, it enables disconnected usage, as needed in the outdoor
scenario, in which internet connection may not be always granted.

4.2.3 Position Alignment Manager

The Data Manager provides a fast computation of the initial Object Positions, to
enable the immediate update of the GUI. But its output may be noisy, because
the estimated user’s position, the camera orientation and the virtual world repre-
sentation may all contain errors. It is well-known that the GPS and orientation
signal of mobile devices may be inaccurate; on the other hand, also the virtual
world representation, e.g. a Digital Surface Model (DSM), may be affected by
errors, e.g. due to low resolution. Therefore, the Position Alignment Manager
comprises components for updating the positions of the objects, adapting them to
the actual content of the camera view, and projecting them to the device’s view.
It takes in input the initial object positions provided by the Data Manager and
produces in output the corrected on screen object coordinates. To support the

50

4.2. The Development Framework

trade-off between accuracy and speed, the (demanding) computations required
for improving accuracy are delegated to separate modules, which provide asyn-
chronous corrections to the initial candidate positions, by applying content-based
object detection techniques. These modules feed the Object Position Corrections
store with the adjustments computed asynchronously, which the Position Updater
and 3D/2D Converter components exploit to correct the on screen coordinates
used by the GUI. Examples of components for the content-based refinement of
object positions are Pattern-Based and Similarity-Based Object Identifiers.

A Pattern-Based Object Identifier performs a frame-based match. It uses the vir-
tual world representation as a pattern to search within the real-world image. It
takes in input the virtual representation of the world (e.g. the synthetic rendi-
tion of a constellation or of a piece of mountain skyline) and computes a ranked
list of approximate matches between the virtual image and the real one, w.r.t.
some similarity function. This component can also exploit advanced sophisti-
cated Computer Vision techniques, such as classification, segmentation, detection
or computation of embeddings, in order to enhance final matching results. As a
collateral output, the Pattern-Based Object Identifier can also extract from the
real-world image the regions that correspond to the identified objects, according
to the best match. Such artifacts, cached in the Object Appearance Store of Figure
4.1 denote the visual appearance of the objects of interest in the current view
and can be used for accelerating the correction of objects’ positions when the view
changes.

A Similarity-Based Object Identifier performs object-based similarity search; it
takes in input the object appearance artifacts and searches them in the frame,
using computer vision techniques.

Finally, the 2D /3D Converter projects 3D positions onto the bi-dimensional screen
space. It takes in input the device position, orientation and Field Of View (FOV),
applies a prospective projection, determines the on-screen coordinates of the can-
didate objects and discards those out-of-view, e.g, due to micro-movements of
the device. For example, it projects the celestial coordinates of the relevant sky
objects into on-screen coordinates.

The asynchronous communication between the components that compute position
corrections and those that project positions and render the augmented reality view
aim at enabling a best effort, near real-time adjustment of the view. The prospec-
tive projection is a constant-time procedure, so that the total response time of
the Position Updater and of the 8D/2D Converter is linear w.r.t. the number
of candidate objects. Since this number is reasonably bound, the resulting time
complexity is constant, which allows the mobile device to call the Position Up-
dater and the 8D /2D Converter synchronously at every frame arrival and redraw
the view in near real-time based on the best available approximation of the object
positions.

4.2.4 Graphical User Interface

The Graphical User Interface (GUI) receives the on-screen bi-dimensional object
coordinates from the 2D /3D Converter in a constant-basis and draws on top of the
camera view the indicated objects, thus displaying their corresponding meta-data

o1

Chapter 4. Outdoor Mobile Augmented Reality Framework

in the computed coordinates.

4.3 Dimensions of heterogeneous augmentation data

The engagement potential of an AR application depends on its utility for the user,
which in turn depends on the quality, timeliness, relevance and usability of the
information displayed on the screen. The management of the augmentation data
collected by the geo-object acquisition step can be characterized by the following
dimensions.

Object semantics.

This dimension characterizes the purpose of the core objects published for the user.
In a touristic application, the core objects would focus on touristic monuments or
landmarks , which serve an identification and an orientation purpose; secondary
geo-referenced objects can also be relevant (e.g. scenic views, shelters, cultural
heritage spots, touristic info points, and local events) and serve the purpose of
improving the utility of the application. In the design of an AR application
with multiple objects of interest of different kinds, it is important to define a
priority ranking among objects; provided that the screen space is limited and
the interaction of the user during an outdoor activity must be minimized, it is
imperative to show the most relevant objects first.

Object provenance.

Objects may come from a single source or from multiple ones (e.g. a landmark’s
information may be spread in more than one GIS). Multiple sources pose classical
heterogeneous data management challenges, including the reconciliation of object
properties with different values in alternative data sources, such as the use of
alternate names or differences in the geographical coordinates or boundaries for
the same object. Given the tight response time constraints of mobile AR apps,
reconciliation should be performed offline in the geo-object acquisition step. Fur-
thermore, the usage policies of the data sources collected must be verified in order
to ensure that their data are publicly available or exploitable under agreement.

Object storage and availability.

Most modern mobile apps are cloud-enabled and rely on data storage at the back-
end and on Internet connectivity between the client and the server. However,
an online connection cannot be taken for granted, because in outdoor conditions
Internet connectivity may be absent for certain areas. Therefore, policies for
objects storage and availability must be introduced to ensure both online and
offline functioning. Such policies must address the download of the data required
for disconnected usage, which in turn entails the segmentation of the information
to cope with the cases in which the size of the entire data set exceeds the storage
capacity of the phone or the complete download would result in unnecessary data
transmission cost. Alternative solutions are possible: data can be segmented
beforehand into fixed-size modules (e.g. countries, regions, cities and mountain
ranges), or the user may be allowed to define custom areas dynamically. Caching

52

4.3. Dimensions of heterogeneous augmentation data

data locally at the client side poses classical cache management problems [34]:
cache expiration, validation, and replacement rules must be enacted to ensure
that the arrival of new data (e.g. more peaks available in a data source) are
promptly reflected in the cached copy. Semantic cache transparency requires
the user to be informed when the local copy of the data becomes outdated, so
as to allow him to decide whether to tolerate misalignment (e.g. when he is
in the middle of an outdoor activity) or execute a cache update (e.g. if the
notification arrives when at home). As usual in cache management problems, the
most appropriate policy depends on the size of the cached data, on the frequency
and granularity of an update, and on the tolerability of misalignment. The object
semantics clearly influence the latter aspect: landmarks information varies slowly
and mostly in an incremental way, so that the cost of misalignment is low; whereas
local event information may prevent caching at all. Besides the cache maintenance
issues, local data storage also entails code mobility problems [165]: if the data are
subjected to intensive processing before their rendition, a balance must be found
between offline data usage and the performance overhead of processing data at
the client side, which may be unfeasible or incompatible with the real-time usage
requirements of a mobile AR application. E.g. caching DEM data at the client
side may enable the application to work also in disconnected mode, but requires
sufficient computation power on the phone for rendering the 3D point cloud in
real-time. Deciding where to execute the code opportunistically may result in the
best trade-off between conflicting requirements.

Object data compression.

When the data to be cached in the device are sizable, compression may reduce
transmission time and storage occupation. E.g. DEM data consists of numerical
data in massive quantity, which can be effectively compressed before transmission
and caching [33]. The selection of the compression algorithm must evaluate the
trade-off between the compression rate and the decompression overhead, which
must be acceptable in a mobile application where low response times can be
detrimental for the user experience.

Object media type.

The relevant objects may have different formats: label, text, icon, URL, or a mix
thereof. In outdoor applications, text and images should be used sparingly and
preferably not overlaid on the real-time camera view, because they may mask
a too large portion of the real view. On the other hand, fragmenting the user
interfaces in too many screens may also induce usability problems, because the
application is used in conditions where switching among screens may be difficult
(e.g. while walking or with strong light that makes screen reading and command
execution difficult).

Object visualization.

The most appropriate visualization method depends on the semantics and media
type of the object. Objects can be displayed as points (e.g. stars), 2D areas (e.g.

53

Chapter 4. Outdoor Mobile Augmented Reality Framework

cardinal direction) and polylines (e.g. trails), possibly accompanied with icons and
labels to convey some prominent attributes (e.g. an icon to suggest the object’s
semantics and a label to display the name and essential features). Visualization
design must balance information content and visual clutter. When the relevant
objects are too many to fit in the screen, policies must be designed to display
them selectively based on their relevance; technical methods for doing this could be
pagination and scroll mechanisms or filters based on object properties. Also in this
case, interaction design should allow the user to obtain the required information
with minimal gestures. When object selection mechanisms are provided, they
must be accompanied by configuration option, which provide reasonable defaults
that apply without any user’s intervention. A pagination and scrolling mechanism
must be accompanied by a default policy for deciding the objects that appear in
the initial page: e.g. the most salient or closest elements. A filter should be
accompanied by the default value of the filtering properties: e.g. the maximum
distance to the objects to show.

4.4 Outdoor Mobile AR application for mountain exploration

In this section, we discuss how the general framework for Outdoor MAR described
in the preceding section has been applied to the development of a MAR application
for mountain exploration, with a particular focus on the studied use case.

4.4.1 Framework instantiation

The architecture of Figure has been instantiated to the mountain exploration
use case and required the adaptation of certain offline algorithms, defined in
SnowWatch project [61] for their deployment on mobile devices. In the sequel, we
describe the application-specific concepts and component refinements introduced
for the mobile context.

The Objects to be identified are mountain peaks and the Object Positions are
3D global system coordinates situated in a unit sphere centered in the device
location.

An application-specific Cache Manager has been implemented, responsible for
pre-fetching and caching the DEM fragments corresponding to the geographical
region the user is visiting. Pre-fetching is enabled when the Internet connection
of the device is enabled and cache data are used by the DataProvider component
to compute the Object Positions during outdoor usage. When the user moves out
of the region for which data are in the cache, a cache miss triggers the download
of a new fragment, which, in case of cache full, replaces the fragment relative to
the region visited earliest.

The Similarity-Based Object Identifier component is implemented with a state-
of-the-art cross-correlation patch recognition technique |27, which has been ported
to the mobile execution environment.

The component where the most relevant adaptations have been introduced is
the Pattern-Based Object Identifier, described next.

54

4.4. Outdoor Mobile AR application for mountain exploration

- a*1.5
' \
|o ! il
a a*0.5
ﬂ J
1 |
\l"\-\ .--"'ll

Figure 4.2: Tilt orientations evaluated to correct potential o estimation due to device sensor
errors.

Pattern-Based Object Identifier

The Pattern-Based Object Identifier implements the pattern matching between
the skyline extracted from the DEM and the skyline visible in the camera view,
and computes Object Position Corrections based on the outcome of such proce-
dure. As a result, substantial errors in the DEM, GPS position and orientation
sensors are corrected automatically in real-time. This component has been real-
ized starting from the experience for offline peak detection described in Section
2.6.3] introducing significant improvements.

Non-Zero Tilt. The web version of the matching algorithm assumes the
camera tilt as negligible (equal to 0) and reduces the problem to the alignment
between two cylinders, avoiding the (much more costly) spherical match. This as-
sumption proved viable experimentally; mountain ranges are far from the position
of the user and the error induced by a moderate tilt is compensated by the skyline
matching algorithm. On a mobile device the assumption of zero or constant tilt
must be relaxed, to cope with the movements of the mobile device made by the
user during a viewing or shooting session. To avoid switching from 2D cylindrical
to 3D spherical alignment, which would jeopardize the response time, we designed
an approximate approach: the input image is rotated by the tilt provided by the
orientation sensor, standard 2D alignment is performed, and the final peak co-
ordinates are rotated in the inverse direction at the end. Nonetheless, given the
noisy nature of the orientation sensors, such tilt estimation is prone to errors.
In order to deal with such problem, the input image considers four different tilt
orientations, as depicted in Figure [4.2}

e ()°

e

e ax0.5

e x1.5
where « is the tilt orientation estimation output by the device.

Next, the image is rotated into each of the tilt orientations, the alignment is
computed and the final tilt orientation to use is chosen based on the best align-

ment overlap achieved. This method deals with tilting effectively and preserves
the fast response time of the 2D alignment, to obtain corrections to the 3D object

95

Chapter 4. Outdoor Mobile Augmented Reality Framework

positions.

Skyline Detection. The heuristic methods described in Section work
well for offline peak detection, because they are applied to pre-filtered images
(fixed webcams have a view that does not change and can be manually checked
once and for all for suitability; user generated photos go through an offline binary
classification step to retain only samples with obstacle-free skyline view). But
they are not well suited to a mobile AR scenario, where it is more likely that
the camera is used in adverse weather conditions and in the presence of transient
occlusions of the skyline. An erroneous skyline detection can hamper the align-
ment with the DEM and the positioning of peaks, yielding an unacceptable user’s
experience. To increase robustness even to small, transient occlusions and find the
actual landscape skyline, i.e., the set of all points that represent the boundary be-
tween terrain slopes and the sky, we have applied a Fully Convolutional Network,
as already discussed in Section [3] A pixel-wise model has been embedded within
the application to be executed efficiently on-board the devices. More details are
included in Section [Bl and Section [6l

Occlusion Management. The virtual panorama view contains only the peaks
that could be visible by an observer based on the elevation model; in the real im-
age, virtually visible peaks can be occluded by irrelevant objects, such as houses,
people or even clouds or fog. The FCN model used for skyline filtering in the
mobile AR scenario helps deal with occlusions: the network is trained to recog-
nize the landscape skyline, i.e., the portion of the topmost edges that actually
represent the boundary of a mountain slope. This capability supports effective
occlusion detection. Given a correct alignment between the landscape skyline of
the image and the virtual skyline of the panorama, the peaks that are actually
visible in the image will have fragments of the landscape skyline in their vicinity,
while occluded peaks will not. Thus, once the alignment is found, for each peak
a visibility score v is defined as the number of landscape skyline points located
no farther than d pixels from the peak position. A peak is considered visible if
v > v (where v is a fixed threshold). If a peak is considered visible, its appearance
patch is extracted and cached; otherwise no patch is extracted (or its patch is
removed from the cache, if previously stored). In this way, the Similarity-Based
Peak Identifier will not find the patch inside the future frames.

Sensor Orientation. The sensed orientation of the device can be used to im-
prove the performance of the object identification. Since the match between the
virtual panorama and image skyline is approximate, each candidate peak position
receives a score, which is an estimate of the confidence of the match algorithm.
Such score can be manipulated to take into account the agreement between ori-
entation as sensed from the compass and estimated by the Position Alignment
Manager. For example, a kernel function based on the difference between the
sensed and estimated orientation can be used as a scale factor. Furthermore, the
computation of peak alignment can be avoided in the areas of the image in which
the kernel factor is equal to zero, because those regions would provide an unre-

56

4.4. Outdoor Mobile AR application for mountain exploration

liable peak position estimation. Such optimization decreases the computational
time: we assume a maximum 50° orientation sensor error and perform the photo-
to-panorama alignment not in the whole 360° panorama, but in a 100° + FOV
portion of it.

4.4.2 Data management

The realization of an outdoor mobile AR application for mountain identification
relies on a multi-stage and multi-source data processing pipeline, portrayed in

Figure [4.3]
POINTS OF INTEREST SERVER SIDE
DATA SOURCES

GEO OBJECTS
ACQUISITION

POINTS OF
INTEREST -
OBJECTS TO MODEL GPS LOCATION

REGISTRATION IDENTIFICATION. -~
GEO REFERENCED i @

3D OBJECTS

DIGITAL TERRAIN MODEL

SOURCES
MODEL

INTEGRATION

COMPRESSED GEO
REFERENCED
3D OBJECTS

DIGITAL TERRAIN
MODEL

VISIBLE RELEVANT
DATA 3D OBJECTS

DECOMPRESSION AND

= DEPTH MASK

OBJECTS
RENDITION RANKED SCREEN iNDOWING PROJECTION v

N
AUGMENTED 2D VISIBLE RANKED SCREEN RANKED
SCREEN ¢ OBJECTS /\, OBJECTS ml 2D OBJECTS ml 3D OBJECTS / OBJECTS
IMAGE = & = RANKING

o @ SENSORS

Figure 4.3: Data management pipelines of an outdoor mobile AR application

CLIENT SIDE

Such pipeline starts with two main processes performed independently at the
server side.

e Geo objects acquisition addresses the collection and fusion of meta-data about
multiple points of interest, possibly from diverse data sources. This step
outputs geo-referenced objects and the meta-data about them, which are
used to create the augmentation.

e Model integration assembles the digital model of the terrain, exploited to
create a virtual representation of the panorama the user should be looking at.
Also this step may take as input and integrate multiple data sets, e.g. Digital
Elevation Models of different parts of the world, with different resolutions.
The output is the terrain model integrated with geo-referenced objects of
interest, used for recognizing and augmenting the scene viewed by the user.

The Object to model registration step packages the geo-referenced objects and
the terrain model data to prepare them for subsequent elaboration. If the geo-
referenced objects lack altitude information, it also estimates their altitude from
the digital terrain model and generates as output the complete 3D coordinates.

o7

Chapter 4. Outdoor Mobile Augmented Reality Framework

This step is performed by default at the server side. However, for the application
to work also without Internet connectivity, model and object data can be pre-
processed to enable transmission and use at the client side. Such preprocessing
requires data compression and segmentation into meaningful units of manageable
size (e.g. data can be partitioned based on geographical entities, such as countries
or regions).

The Objects identification step exploits the GPS location of the user to compute
the subset of the geo-referenced objects that are visible from it. It generates from
the digital terrain model a 360 degree depth mask of the panorama surrounding the
user’s position and applies a visibility filter to eliminate the objects that are hidden
by the terrain morphology. Figure shows an example of virtual panorama
generated from the position at coordinates (45.882668,9.22923); the depth mask
is represented by the gray scale color of each pixel, which is proportional to the
distance from the viewer, and the visible peaks are shown as labels on top of
the skyline. This step can be performed at the client side, if the compressed
and segmented object and terrain data have been downloaded for offline usage;
otherwise, it requires Internet connection to submit the request to the server side.
The output is the set of visible 3D geo-referenced objects and the depth mask
used to compute them, shown in Figure

Figure 4.4: Virtual panorama with depth mask, shown by the gray scale color of pizels, and
with visible skyline peaks.

The Objects ranking step takes in input the visible objects and sorts them
based on a user-defined criteria (e.g. height, distance, popularity, etc). This
step is performed at the client side to avoid server round-trips when the user
changes the ranking criterion. The ranking helps choosing the objects to enrich
and display, when they are too many to fit the screen.

The Objects projection and Windowing steps: the former takes into account the
current sensor readings (including, e.g. compass, accelerometer and gyroscope),
estimates the orientation and field of view of the user, and converts the 3D co-
ordinates of objects into 2D screen coordinates. The latter identifies the objects
that fall outside the current field of view and should not be displayed. These steps

58

4.4. Outdoor Mobile AR application for mountain exploration

must be taken at the client side to cope with the fact that the user may move
the phone and frame different views from the same position, which requires the
real-time re-computation of the on screen coordinates of the visible objects.

(a) Incorrect sensor-based (b) Correct CV-based

Figure 4.5: (a) presents a sensor-based configuration affected by noise that misplaces the peak
labels. (b) presents a CV-based configuration that displays the peak labels in the correct
positions.

Finally, the Rendering step actually creates the augmented view, by overlaying
the visual representation of the object meta-data (e.g, an icon and/or label) onto
the screen image of the device at the proper 2D coordinates. An example of
rendition is shown in Figure [.5] where to highlight the importance of sensor error
correction we included (a) incorrect sensor-based rendition based only on GPS
and noisy compass sensor readings; and (b) correct CV-based rendering.

Figure 4.6: An example of the image-to-terrain alignment: input frame (top left), skyline
detection (top right), alignment between corresponding panorama and skyline detected (bottom
left), final result (bottom right).

Figure [4.6 shows an example of the sensors error compensation performed by
the Object identification step by means of the image-to-terrain alignment and
peak position adjustment: the input frame image is captured by the camera of

59

Chapter 4. Outdoor Mobile Augmented Reality Framework

the device (top left); the skyline from the frame image is extracted (highlighted
with green color, top right); the alignment between the virtual panorama extracted
from the DEM and the skyline taken from the camera view is executed (bottom
left), so as to correct the position of the visible peaks; and peaks are projected
onto the screen with the corrected 2D coordinates (bottom right).

4.4.3 Dimensions of heterogeneous augmentation data

Table shows a number of examples of data sources potentially relevant for the
integration in a mountain mobile outdoor AR application for citizens and tourists,
and characterizes them using the above mentioned dimensions.

PeakLens manages a subset of the types of objects mentioned in Table
(DEM and peaks data), harvests data from multiple sources with reconciliation
done offline at the server side, has a cloud-enabled architecture with data caching
and compression, displays (at present) only objects that can be rendered as points
with text (names with corresponding heights or distances from the user’s location),
ranks objects by altitude, and provides a pagination and scrolling mechanism to
cope with visual clutter.

4.4.4 Usage evaluation

In this section, we summarize the usage experience reported by the users of Peak-
Lens app.

PeakLens was publicly released for Android devices in the Google Play Stord]
in February 2017. Since then, the application usage continues spontaneously and
steadily growing in the total number of installations, daily active users, and world
distribution of users. So far, the application has been installed by more than 500k
users and has received ratings with an average of 3,9/5. Almost half of the ratings
include reviews, most of which contained positive feedback. Negative reviews and
change requests reflect data quality, management and usage issues and precision
issues.

Data quality feedback mostly focuses on either the absence of peak meta-data
(because the crawled data sources do not contain it) or on wrong meta-data;
the latter case involves either wrong coordinates, which result in the imprecise
projection of the peak onto the 2D screen, or on wrong altitude data. To address
this issue, we are working on a consensus scheme to fuse conflicting data (e.g.
different altitude values) coming from alternate data sources. We are procuring
high quality local data sets to estimate the average error of public global data
sources and will use a reliability score for deciding the most accurate data to use
in the event of conflicts.

Data management feedback mostly refers to data storage: most comments
require an option to store offline data in the SD card of the device, due to the lim-
ited space in the primary storage. This modification has already been included,
enabling the possibility of downloading compressed objects and DEM data seg-
mented at national and regional scale on the SD card of the device.

Thttp:/ /play.google.com /store/apps/details?id=com.peaklens.ar

60

4.4. Outdoor Mobile AR application for mountain exploration

. Storage/
Semantic Provenance Availability Compression | Media type | Visualization
DEM NASA SRTM | Server, client/ Yes Point cloud Virtual
online, offline panorama,
ASTER GDEM | Server client/ Yes Point cloud Virtual
online, offline panorama,
Peaks Peakware SerYer, che.nt/ No Text.,. H1Age, Point
online, offline link
OpenStreetMap Ser\./er, Che.nt/ No Text Point
online, offline
) Server, client/ Text, image, .
PeakBagger online, offline No link Point
. li Text, i
Waterbody | Waterways guide SerYer, ¢ 1e'nt/ Yes ext,. 1mage, 2D area
online, offline link
GeoNames SerYer7 chept/ Yes Text, link 2D area
online, offline
Wikidata Server, client/ No Text, link Point
online, offline
Norwegian . ,
Alpine huts trekking iﬁfﬁi’ (;lflgﬁfé No Text Point
association ’
. Server, client/ .
Mountainhuts . . No Text Point
online, offline
Castles GPS Data Team Ser\./er, che.nt/ No Text Point
online, offline
Wikidata Ser\./er, Che.nt/ No TeXt". 1age, Point
online, offline link
Norwegian .
Trails trekking So(;rl\ilsz Zlflgir:e/ Yes Text Polyline
association ’
Wikiloc SerYer, che.nt/ Yes Text.,. Hage, Polyline
online, offline link
TrailForks Ser\./er, Che.nt/ Yes Text.,. 1mage, Polyline
online, offline link
Towns OpenStreetMap SerYer, Che.nt/ Yes Text 2D area
online, offline
GeoNames Ser\'/er, che'nt/ Yes Text, link Point
online, offline
Events Get Events Server/ online No Teth’irllfage’ 2D area
Facebook Server/ online No Text, link 2D area

Table 4.1: Ezamples of data sources and their classifications

61

Chapter 4. Outdoor Mobile Augmented Reality Framework

A frequent comment on data usage requires more intuitive object visualization,
because several users did not recognize the presence of a scroll button to visualize
multiple subsets of the peaks and, thus believed that some of the peaks in view
were not identified. Although the design principle pursued so far in PeakLens is
to minimize the number of commands, to cope with visualization clutter, we are
studying a simple filtering mechanism whereby the user may define the altitude
or distance range of the displayed peaks; this mechanism will be backed with
proper defaults and used in conjunction with the current pagination mechanism;
a self-configurable parameter will also be introduced, which adapts the maximum
number of peaks visualized by default to the corresponding screen density.

Precision issues concentrated on the most difficult challenge to face for moun-
tain mobile AR apps: aligning the camera view and the virtual panorama in real-
time. This core functionality heavily depends on the reliability of the device’s
sensors. An error in the GPS position or in the compass orientation produces a
virtual panorama that cannot be correctly aligned with the real mountain sky-
line, resulting in the misplacement of peaks shown in Figure (a). However,
this capability is also the one for which PeakLens outperforms other applications,
which solely depend on the sensor data or on the manual adjustment of the com-
pass orientation. The current version of PeakLens extracts the skyline from the
camera view with high precision and speed and can search for an alignment not
only in the field of view, but also in a wider virtual panorama, which permits
the automatic correction of substantial angular errors in the compass orientation.
A forthcoming version of the application will be able to perform the match on
the complete 360 degree panorama and thus will also work without the compass
sensor or with a low precision one.

62

CHAPTER

Deep Learning model optimization for low-power
systems

Convolutional Neural Networks (CNN) have recently exhibited superior perfor-
mance in a wide variety of applications [59] [85] [121] [173], but their training
is a labor intensive task and their execution requires non negligible computa-
tional resources. While the general trend was initially orientated towards the
achievement of high accuracy by means of defining significantly big and complex
architectures that required the computation of billions of floating point operations
(FLOPs) [86] [98] [202] [209], such models were not entirely suitable for deploy-
ment on mobile platforms with real-time requirements and hardware constraints.
This prompted the need to develop more efficient models capable of balancing the
trade-off between resources utilization, latency and accuracy.

In this chapter, we report on the experimentation with architectures based
on state-of-the-art computation-efficient building blocks in order to obtain high
performance, and apply them to optimize the skyline detection models presented
in Section [3] thus reducing resources overhead and enhancing their suitability for
computationally limited devices.

5.1 Requirements

The main challenge of developing optimized models for DL-enhanced Computer
Vision AR modules deployed in low power devices is the need to provide high
performance without compromising accuracy and the resulting user experience.
These competing objectives can be translated into the following requirements:

e Minimum parameters. The model size should be reduced in order to boost
the optimization of storage and memory occupation. An acceptable memory

63

Chapter 5. Deep Learning model optimization for low-power systems

overhead is highly important to fit the model into RAM memory, or ideally
cache, thus reducing latency and energy consumption.

e Optimized computation. The number of operations associated to the
model should be reduced and parallelized as much as possible, so as to ac-
celerate execution, ideally reaching real-time performance. This is directly
correlated with the number of parameters, and the type and number of un-
derlying operations.

e Minimum accuracy loss. The model should preserve high recognition
accuracy in order to provide a satisfying user experience.

5.2 Model optimization

Multi-task learning [84], ensembles [183] and multiple cascaded models [159] are
capable of improving robustness and accuracy results w.r.t. single-based mod-
els. Such is the case of the combined CNN skyline detection model presented in
Section which could be further extended by incorporating a mountain clas-
sifier to determine whether an image contains a mountain and pre-filter it out if
it does not. Nonetheless, said model is meant to be embedded within hardware
constrained devices for a use case with real-time requirements and the trade-off
between performance and accuracy should be taken into account.

The combined CNN achieves an overall enhancement of ~10% for ANSA and
0.3% for AA metrics, but requires double computation for each image. Therefore,
we have decided to focus on the optimization of the single component for pixel-
wise CNN identification, also referred to as PL Original Model henceforth. We
tackled the reduction of both model size and computational operations, pursuing
the acceleration of execution time without being detrimental to the overall accu-
racy. This iterative process consisted in the proposal and evaluation of over 50
architectures that required the tuning of training hyperparameters, identification
of bottlenecks, and modification, addition and removal of entire layers along the
architectures. Next, we present the two most efficient, accurate and distinct CNN
models produced.

5.2.1 Depthwise Separable Convolutional Neural Network

The first optimized Convolutional Neural Network produced, referred to as PL
Optmized Model v1 henceforth, incorporated Depthwise Separable Convolutions
[42] |94] and removed MaxPooling layers by replacing them with Convolutions with
stride greater than 1, as also suggested by Li et al. [132]. The filter size of the
first standard Convolutional layer from the original architecture has been modified
to 3x3, which halves its computational cost and parameters. All Convolutional
layers comprise 3x3 filters and the number of filters doubles at each Depthwise
Separable Convolution with stride 1, producing at most 128 feature maps in the
penultimate layer, previous to the last standard Convolution. This optimized
version comprises more Convolutional layers than the original version, but the
reduction of kernel dimensions and the introduction of Depthwise Separable Con-
volutions produce a significant reduction of both parameters and computational

64

5.2. Model optimization

cost. The architecture is presented in Table [5.1} each Depthwise Separable Con-
volution block consists of a sequence of Depthwise Convolution, Relu activation
function, Pointwise Convolution, and Relu activation function. Figure [5.1] depicts
the composition of the architecture with the content of said module.

Layer Type | Input Shape | Filter Shape | Stride
Conv 29 x29x3 3x3x3x32 1
ReLU 27 x 27 x 32 - 1
Depthwise Separable Conv | 27 x 27 x 32 3x3x32x32 2
Depthwise Separable Conv | 13 x 13 x 32 3x3x32x64 1
Depthwise Separable Conv | 11 x 11 x 64 3x3x64x64 2
Depthwise Separable Conv 5xHx64 3x3x64x128 1
Conv 3x3x128 3x3x128x2 1

Table 5.1: PL Original Model v1 architecture.

Input

@Jthwise Separable Gonvolutm

L >

v
Depthwise Separable
Convolution

v
Depthwise Separable
Convolution

Depthwise Separable
Convolution

Output

Figure 5.1: PL Optmized Model vl architecture overview.

5.2.2 Inverted Residual with Linear Bottleneck Neural Network

The second efficient Convolutional Neural Network produced, referred to as PL
Optmized Model v2 henceforth, is based on the introduction of Inverted Residual
with Linear Bottleneck [191]. The first standard Convolutional layer comprises a

65

Chapter 5. Deep Learning model optimization for low-power systems

reduced number of filters, but equivalent filter size w.r.t. the PL Original Model.
All the remaining layers correspond to Inverted Residual with Linear Bottleneck
modules, except for the last standard Convolutional layer. The expansion factor
for Inverted Residual with Linear Bottleneck blocks has been set to 3 and each of
the modules with stride equal to 2, halves the output height and width w.r.t. its
corresponding input volume. The number of layers is increased, but the number
of parameters and operations is reduced significantly, requiring at most a filter
depth of 32 channels. The architecture is introduced in Table and a visual
overview of it with the corresponding content of Inverted Residual with Linear
Bottleneck modules is presented in Figure

Layer Type \ Input Shape \ Filter Shape \ Expansion Factor \ Stride

Conv 29x29x 3 6x6x3x16 - 1
Bottleneck 24 x 24 x 16 - 3 2
Bottleneck 12x12x 16 - 3 1
Bottleneck 12x12x 16 - 3 2
Bottleneck 6x6x24 - 3 1
Bottleneck 6x6x24 - 3 2

Conv 3x3x32 3x3x32x2 - 1

Table 5.2: PL Optmized Model v2 architecture.

Input

{ Bottleneck Block }
¥

/ Bottleneck Block \
)
Bottleneck Block }

i
Bottleneck Block

o=]
[

Output

Pointwise Convolution

[

-/

[Pointwise Convolution

\ /

Figure 5.2: PL Optmized Model v2 architecture overview.

66

5.3. Evaluation

5.3 Evaluation

The model optimization process has resulted in the construction and training of
multiple models, out of which two final implementations were reached. This was
possible by iteratively refining such optimized candidate models with the feedback
obtained from the evaluation metrics. In this section, we report on the evaluation
of the final optimized models in order to assess their value by confronting them
w.r.t. the PL Original Model.

5.3.1 Experimental setup

The models were trained by using TensorFlow framework and the evaluation con-
cerning their model characteristics was handled statically and did not require any
particular setup.

Moreover, the evaluation required the experimental setup for the assessment
of skyline extraction quality, which entailed using the complete test set of 1,771
images, as specified in Section [3.4.1]

5.3.2 Metrics

Next, we introduce the model metrics, which are suited to assess the fulfillment
of the requirements defined in this Chapter:

e Parameters. The number and representation type of weight parameters
comprised by a model defines its overall size and can be calculated statically
based on its architecture.

e Computational cost. The number of Mult-Adds involved in Convolutional
operations is one of the most widely used metrics to measure performance of
Deep Learning models. This calculation can also be performed statically, as
discussed in [191].

e Accuracy. The accuracy of a model is assessed by analyzing its patch-
level accuracy, and, most importantly, the overall Average Skyline Accuracy
(ASA), Average No Skyline Accuracy (ANSA) and Average Accuracy (AA)
quality metrics proposed in Section by comparing the skyline detected
by the model w.r.t. the ground truth.

5.3.3 Experimental results

The underlying number of parameters and Mult-Add operations involved in the
models under consideration are reported in Table[5.3] The metrics show that both
optimized models are significantly more efficient than the PL Original Model,
given that they comprise over 20x less parameters and between 6.7x and 10x less
computational cost for 320x240 images. PL Optmized Model v1 contains 20,578
parameters and 198M Mult-Adds, which means one order of magnitude less in
the number of operations w.r.t. the PL Original Model. PL Optmized Model
v2 contains 18,082 parameters and requires 295M Mult-Adds. Therefore, among
the optimized models, the structure of PL Optmized Model v2 is slightly smaller,
but PL Optmized Model v1 is more efficient, as its computational cost represents

67

Chapter 5. Deep Learning model optimization for low-power systems

67.12% of PL Optmized Model v2. Additionally, the large reduction of parameters
provides the possibility to potentially 1. fit the models into Cache for more efficient
execution. 2. increase the input size of images to process in devices with limited
RAM memory, provided that the RAM capacity determines an upper bound and
it was already alleviated by the model size reduction.

Model \ Parameters \ Mult-Adds
PL Original Model 428,732 2G
PL Optmized Model v1 20,578 198M
PL Optmized Model v2 18,082 295M

Table 5.3: Models size and computational cost.

The accuracy quality results are reported in Table and were calculated with
their corresponding optimal thresholds, obtained by assessing maximum accuracy
values over the validation set. In general, the optimization of a model tends
to entail certain trade-off in terms of accuracy and performance. Nonetheless,
the results were very satisfying provided that not only were the model sizes and
computational costs lowered by more efficient implementations, but also the final
accuracies accomplished by both candidate optimized models were significantly
improved. The PL Original Model had already achieved positive overall results,
but was not optimized and had some difficulties to deal with non-skyline objects.
On the other hand, the optimized models were able to achieve improved accu-
racy results for all the metrics, especially demonstrating to be better to discard
false positive elements from the mountain profiles. This can be justified by the
fact that the iterative process of architecture selection with the introduction of
more efficient state-of-the-art building blocks and further hyper parameter tuning
contributed towards the reduction of overfitting.

Model \ Patch Accuracy \ ASA \ ANSA \ AA
PL Original Model 95.81% 89.82% | 34.56% | 85.42%
PL Optmized Model v1 96.38% 92.09% | 48.75% | 88.64%
PL Optmized Model v2 96.48% -% -% -%

Table 5.4: Models accuracy.

In conclusion, we proposed two additional models that successfully optimized
the PL Original Model and demonstrated their effectiveness to improve efficiency
and accuracy. Both models were able to perform better than the PL Original
Model baseline, but PL. Optmized Model v1 is the most suitable solution given its
reduced amount of required computational cost and almost equal accuracy w.r.t.
PL Optmized Model v2.

5.4 Discussion

5.4.1 Limits to generalization

As also discussed in [191], analyzing the computational cost by calculating the
number of Mult-Adds involved in Convolutional operations is an indirect, still

68

5.4. Discussion

useful metric to assess performance of a model. However, there are additional rel-
evant factors to take into consideration, which determine the resulting execution
time, such as the memory access cost, the degree of parallelism of the model and
the target platform characteristics. In particular, the on-board inference evalua-
tion on multiple devices is significant to this work given the widely heterogeneous
hardware comprised by mobile devices in the market. Inference evaluation on
mobile devices with limited hardware is properly assessed in Chapter [6]

69

CHAPTER

Deep Learning inference optimization for low-power
systems

Artificial Intelligence on the edge is a matter of great importance towards a bet-
ter understanding of the world and enhancement of smart devices that rely on
operations with real-time constraints. Despite the rapid growth of computational
power in embedded systems, such as smartphones, wearable devices, drones and
FPGAs, the deployment of highly complex and considerably big models remains
challenging. Optimized execution requires managing memory allocation efficiently
to avoid overloading, and exploiting the available hardware resources for acceler-
ation, which is not trivial given the non standardized access to such resources.

In this chapter, we present PolimiDI[T} an open-source framework for acceler-
ated DL inference on mobile and embedded systems. PolimiDL speeds-up the ex-
ecution time of ready-to-use models, by applying multiple optimization methods,
and increases efficiency of operations without impacting accuracy. Its implemen-
tation is very generic, with neither hardware nor platform specific components,
and supports devices with very heterogeneous architectures. The development of
PolimiDL was started with the goal of deploying DL models on mobile devices
when no other stable solutions were available, and it is currently deployed in
PeakLens app.

This chapter includes material from the following publication, co-authored by
the candidate: [64].

Thttps://github.com/darianfrajberg/polimidl

71

Chapter 6. Deep Learning inference optimization for low-power systems

6.1 Requirements

Before introducing the architecture and use of PolimiDL, we pinpoint the require-
ments for its development. When dealing with specific hardware architectures and
vendors, maximum performance can be reached by developing ad-hoc optimised
solutions. Nonetheless, such approach may comprise scalability and maintenance,
when targeting many heterogeneous architectures and devices, as in the case of
the Android market nowadays. Moreover, as highlighted in Section [2.3] cur-
rent acceleration approaches still have limitations: 1. HA primitives are still not
completely standardized and stable, but are tightly dependent on SoC vendors;
2. cloud-offloading can imply cost, availability, latency and privacy issues; 3. re-
training or modifying the architecture of ready-to-use models can be extremely
time-consuming; 4. post-training compression of already small models can detri-
ment accuracy. Under the above mentioned drivers, the requirements at the base
of PolimiDL can be summarized as follows:

e Focus on execution. It should be possible to train a model using tools al-
ready known to the developer. The framework should focus just on execution
concerns, without the need of re-training.

e Minimum dependencies. It should be possible to execute an optimized
model independently from the Operating System, hardware platform or model
storage format.

e Easy embedding. It should be possible to embed the framework and op-
timized models into existing applications easily, without the need of ad-hoc
integration procedures.

e End-to-end optimization. Optimization should be applied as early as
possible and span the model life-cycle (generation, compilation, initialization,
configuration, execution).

e Offline support. Computation should occur only on-board the embedded
system, without the need of a network connection for work off-loading.

e No accuracy loss. The acceleration for constrained devices should not
reduce accuracy w.r.t. the execution on a high performance infrastructure.

6.2 The PolimiDL Framework

PolimiDL aims at speeding-up the execution time of ready-to-use models by ap-
plying multiple optimizations that increase the efficiency of operations without
modifying the model’s output. Its implementation is highly generic, with neither
hardware nor platform specific components; this enables performance gains on
heterogeneous devices and simplifies maintenance, eliminating the need of target-
ing different platforms by means of different tools. It is written in C++ and can
be compiled for all major platforms, requiring only a very simple interface layer to
interact with the platform-specific code. PolimiDL exploits multi-threaded execu-

72

6.2. The PolimiDL Framework

Workflow
= Generation-time Compile-time
= Optimizations Optimizations
i . . .
x Trained Model Model Weights T Compiled |
S| | Model and Definition il Model
Configuration-time
Optimizations
@ -
o Input Profiling
1 }
=] A
% Y
o Model
L <
i Initialization DR ETE
Run-time Initialization-time
Optimizations Optimizations

Figure 6.1: PolimiDL’s workflow.

tion, based on the STL Concurrency Ex‘censionsﬂ7 and SIMD instructions, based
on the well-known Eigen Libraryf}

Figure |6.1] illustrates the general work-flow of the proposed framework, with
its main stages (in red) and data/artifacts (in green), showing the stage in which
each optimization takes place. The pipeline starts by training a model via some
external DL framework, such as TensorFlow or Caffe2, on a workstation or cloud
accelerated learning infrastructure, such as Google Cloud] The trained model is
converted into a PolimiDL compatible format, while applying generation-time
optimizations. Next, the model is compiled for the target architectures and
compile-time optimizations are applied, enabling SIMD instructions where sup-
ported. Once the model is deployed on the target device, an initialization stage
applies initialization-time optimizations to determine the best memory layout.
The first time a model is deployed, the initialization step can include the pro-
filing of the model, which enables configuration-time optimizations to determine
the best scheduling approach. Finally, the model is ready to process inputs by
applying run-time optimizations, which involve dynamic workload scheduling to
speed-up inference.

6.2.1 Generation-time optimizations
Layers fusion.

Consecutive in-place layers with identical filter size can be fused into one sin-
gle layer, thus reducing the number of iterations over the cells of an input ma-
trix. Such technique has been applied to fuse multiple combinations of layers,

2https:/ /isocpp.org/wiki/faq/cppll-library-concurrency
Shttps:/ /eigen.tuxfamily.org
4https://cloud.google.com/products/ai/

73

Chapter 6. Deep Learning inference optimization for low-power systems

such as Batch Normalization/Rel.u6 and Bias/ReLu. Potentially, Batch Nor-
malization/ReLu6 fusion can be further extended by incorporating a Pointwise
Convolution beforehand, taking into account that such combination of layers is
frequently used for Depthwise Separable Convolutions.

Weights fusion.

Layers applying functions with constant terms comprising multiple weights can
be pre-computed and encoded as unique constant weights, thus reducing the op-
erations at run-time and potentially avoiding temporary memory allocation for
such layers. Weight fusion applies, e.g. to the Batch Normalization (BN) layer,
in which a subset of the vector weights involved in the normalization, scale and
shift steps (,02,¢) can be factored into a constant vector weight (w) as follows:

BN (z;) = 7 % <%> + (6.1)
. i

w= N (6.2)

BN () = w (2, — 1) + 8 (6.3)

where:
e 1; is the input of the layer
® 7, L, 0%, B are constant vector weights

e ¢ is a constant value

Weights rearrangement.

Layers’ weights, which are multidimensional matrices, are generally stored as lin-
ear arrays ordered by a default schema (e.g. output channel, row, column and
input channel). PolimiDL stores the weights in different ways based on the layer
type. Weights associated to predefined Convolutional layer types are stored in
such an order that Eigen’s GEMM matrix operations do not require any mem-
ory reshaping at run-time. These optimizations are executed automatically and
transparently for the developer, who does not need to know their details.

6.2.2 Compile-time optimizations
Fixed network architecture.

The architecture of a model is fixed at compile-time, which enables the compiler
to perform per-layer optimizations. As an example, Convolutional layers can
exploit loop-unrolling [96], because the number of channels and the kernel size
are known at compile-time, potentially generating a different machine code for
each configuration of layer parameters. This approach can be seen as a limiting
factor, because the model architecture cannot be updated at run-time or by simply
changing a configuration file. However, it is important to notice that changing the
model architecture is not expected to occur after the model has been deployed.

74

6.2. The PolimiDL Framework

Besides, in PolimiDL a model can be compiled as a set of Shared Objects (.so)
files for the corresponding target architectures (armeabi-v7a, x86 and arm64-v8a
for Android), enabling model updates by a simple file replacement. Given a fixed
model architecture, PolimiDL supports the update of layer weights at run-time.
When the run-time update of weights is not required, then the weights can be
stored together with the network architecture, by embedding them in the .so files;
this avoids the overhead of loading them from secondary memory, as opposed to
TensorFlow Lite, where architecture and weights are stored as an external file
loaded from disk.

Shared memory allocation & tick-tock piping.

Efficient memory allocation and management is critical in embedded systems,
where the amount of memory is limited and access time is slower than in worksta-
tions. Exploiting spatial locality [7] to reduce cache misses can decrease inference
time and energy consumption significantly. For this purpose, layers in PolimiDL
do not own the memory they read inputs from, write outputs to, or use to store
intermediate results: memory is injected as a dependency from the layer sched-
uler. Given this organization, the memory required by a model can be reduced
to just 3 areas: 1. Layer Input 2. Layer Output 3. Temporary data. These areas
are properly sized at run-time, to contain the largest layer in the model. A dis-
advantage of this approach is the need to copy the output of a layer back into the
input area to feed it to the next layer. PolimiDL alleviates this inconvenience by
inverting the input and output buffers of subsequent layers. With this schema,
data goes back and forth between the two buffers in a tick-tock fashion. Tick-tock
buffer swapping is skipped for in-place layers, i.e., layers that can use the same
buffer area for both input and output: they do not trigger an input/output buffer
flip. ReLu layer is a clear example, because it performs value-wide operations
enabling in-place modifications. Furthermore, given the fixed model architecture,
layer piping can be computed at compile-time via the template meta-programming
capabilities of C++, without incurring in any run-time costs.

6.2.3 Initialization-time optimizations
Memory pre-allocation.

Pre-allocating memory buffers to contain the layers of a complete model without
memory reuse may be feasible for server computation, but is certainly not the best
option for embedded systems with hardware constraints. We have shown how the
proposed framework reduces this memory requirements via shared buffers and the
tick-tock piping. PolimiDL further reduces memory requirements by fusing the
3 buffers (input, output and temporary) into a single one. During initialization,
each layer is queried about its memory requirements: input size, output size and
temporary data, which can differ based on hardware capabilities, e.g. number of
threads, or input size, in the case of Fully Convolutional Networks. A single buffer
is allocated and sized to contain data of the most demanding layer. The upper
and lower end of the buffer are used as input/output areas respectively, following
the tick-tock strategy, while the area in between is used for the temporary data.

75

Chapter 6. Deep Learning inference optimization for low-power systems

This approach further reduces memory requirements as a single memory cell can
store input, output or temporary data in different layers.

Small tasks for low memory consumption.

While some layers require little or no temporary memory to work efficiently, oth-
ers have a space-time trade-off. As an example, Convolutional layers can exploit
SIMD instructions if their 3D input is unrolled into 2D matrices, where each
row is the linearized input to the kernel. While unrolling the entire input and
exploiting Eigen’s SIMD and cache optimization capabilities may reduce the com-
putation time significantly, it also increases the memory requirements of the layer
by increasing the size of the temporary buffer. In these cases, PolimiDL does not
perform a full input unroll, but divides the operation into smaller tasks, which
can be executed independently. In this way, the temporary memory required by
the tasks has a fixed size.

6.2.4 Configuration time optimizations

Scheduling optimization.

PolimiDL features a task scheduler, explained in detail in Section [6.2.5, which
enables layers to divide the workload into tasks executed by different threads.
The optimal size for a scheduled task may vary depending on the specific layer,
the underlying architecture, or even on the input size for Fully Convolutional
Neural Networks. Task sizes can be considered as parameters, which can be:
1. set to a default value, which may not be optimal 2. inferred by executing a
profiling routine during initialization, which may increase the initialization time
3. inferred once for all on the specific device, stored and loaded at subsequent
initialization steps. The profiling for each layer is performed by assessing the
execution time of different task sizes. A full exploration of the task size space is
not possible, given the high time and computation requirements. The sizes used
during the assessment are generated by a power law heuristics. Task sizes may
be bounded to a maximum value, dictated by the available temporary memory.
It is important to notice that the available temporary memory may be more than
the one requested at initialization time. This is because the buffer is initialized to
contain the largest layer and, as a consequence, layers with smaller footprint can
exploit the extra temporary memory.

6.2.5 Run-time optimizations
Dynamic workload scheduling.

Static and even distribution of workload among available cores does not rep-
resent the most suitable solution, due to the unpredictable nature of mobile
resources availability, more evident in asymmetric architectures such as ARM
big. LITTLE [41]. A static scheduling strategy can under-utilize resources, wast-
ing processing power. Conversely, dynamic multi-threaded scheduling of tasks can
adapt well to different contexts and allows cores to be better exploited. Tasks are
forwarded to a fixed size thread-pool (by default the number of workers is set

76

6.3. Evaluation

to max(1, #threads — 1)). In PolimiDL, during the development of a layer, it
is possible to opt-out from dynamic scheduling or to enable it just when profil-
ing shows a significant improvement. Dynamic scheduling should not be applied
blindly, as computational intensive layers, such as Convolutions, perform better
when dynamically scheduled, while others, such as ReLLu, may perform worse due
to memory bottlenecks. Therefore, dynamic scheduling is disallowed by default
for layers that would be harmed by it.

6.2.6 Layers coverage

Table summarizes the layers currently supported by PolimiDL and their fea-
tures’

Layer name In place Temporary Schedulable
memory

Convolution No Yes Yes

Depthwise Convolution No Yes Yes
Pointwise Convolution

(out channels < in channels) Yes Yes Yes
Pointwise Convolution

(out channels > in channels) No No Yes

Max Pooling No Yes No

Average Pooling No Yes Yes

Batch Normalization Yes No Yes

Bias Yes No No

ReLu Yes No No

ReLu6 Yes No No

Softmax Yes No No

Table 6.1: Layers supported by PolimiDL.

Fully Connected layers can be supported by introducing a standard Convolu-
tion in which the corresponding kernel size is equal to the expected layer input
size. Given an expected input size of 1x1xN, such operation can be managed effi-
ciently by using a 1x1xNxM Pointwise Convolution, where N represents the input
channels and M the output classes.

6.3 Evaluation

6.3.1 Experimental setup

The evaluation benchmarks inference execution time of DL models on heteroge-
neous embedded systems, comparing PolimiDL with the state-of-the-art solution
for edge inference: TensorFlow Litd® Measurements are collected by means of
an Android benchmark application, implemented by extending TensorFlow Lite’s
sample application| to support multiple experiments. The use of multiple devices

5Given the open source release of PolimiDL, the supported layers may be subject to modifications and further
extensions.

6The latest stable version at the time of writing is tensorflow-lite:1.13.1

"https://github.com/tensorflow /tensorflow /tree/master /tensorflow/lite /examples/android /app

T

Chapter 6. Deep Learning inference optimization for low-power systems

Model \ Task | Mult-Adds | Params | Input size

PL Original Model Segmentation 2G 429K 320x240x3
PL Optmized Model vl | Segmentation 198M 21K 320x240x3
MobileNet Classification 569M 4.24M 224x224x3

Table 6.2: Models used for evaluation.

and models is critical for performance evaluation, given the non-linear correlation
between hardware features and tasks characteristics [106].
The evaluation process is conducted as follows:

e Initialization and pre-processing times are not considered in the overall pro-
cessing time.

e One warm up inference run is executed before the actual measurements.

e 50 consecutive inference iterations are executed and averaged to reduce vari-
ance.

e Three complete evaluation sessions with all models and devices are averaged,
to further reduce variance.

e Models are run on mobile devices having above 80% of battery charge and
pausing for 5 minutes between executions.

Models. Evaluation exploits hardware with limited resources and models with a
small-size architecture achieving a good trade-off between accuracy and latency.
Three models with diverse characteristics, listed in Table [6.2] are evaluated.

PL Original Model is a Fully Convolutional Neural Network model [140| for the
extraction of mountain skylines, which exhibits a good balance between accuracy,
memory consumption, and computational cost; it is exploited in the implemen-
tation of PeaklLens, a real-world AR application for mountain peak recognition
on mobile phones. The model was trained with image patches for binary clas-
sification, by adapting the LeNet architecture and can be applied to pixel-wise
classification of full images. Its architecture is defined in Section [3.3.1}

PL Optmized Model v1 is a modified version of the PL Original Model replac-
ing standard Convolutions with Depthwise Separable Convolutions, inspired by
MobileNet [94]. The optimized version improves accuracy and performance and
reduces the number of parameters by one order of magnitude. The architecture is
defined in Section and corresponds to the most efficient model for pixel-wise
skyline identification obtained.

MobileNet [94] is a well-known state-of-the-art CNN architecture for efficient
inference on mobile devices, developed by Google for diverse tasks, such as image
classification and object detection. Multiple versions of MobileNet trained on Im-
ageNet are publicly availableﬂ among which the biggest version has been chosen

8https://github.com/tensorflow/models/blob/master /research/slim/nets/mobilenet _v1.md

78

6.3. Evaluation

for evaluation (MobileNet v1 1.0 224).

Devices. Six distinct Android devices with heterogeneous architectures are used,
Table [6.3] lists the devices and their characteristics.

Device %2?;‘;? Chipset CPU f(‘éév)l
Asus
ZenFone 2 5-0 IntZelziftOom ’ C(cé)lriirle.gd(s;)Hz 2
ZE500CL (Z00D)
Google MSM8996 2-cores 2.15 Ghz Kryo +
Pixel 9.0 Qualcomm 2-cores 1.6 Ghz Kryo 4
Snapdragon 821 (4 threads)
LG MSM8976 4-cores 1.8 GHz Cortex-A72 +
G5 SE 7.0 Qualcomm 4-cores 1.2 GHz Cortex-A53 3
Snapdragon 652 (8 threads)
LG MSM8992 4-cores 1.44 GHz Cortex-A53 +
Nexts 5X 8.1 Qualcomm 2-cores 1.82 GHz Cortex-A57 2
Snapdragon 808 (6 threads)
Motorola 70 Qualcomm 4-cores 2.7 GHz Krait 3
Nexus 6 ’ Snapdragon 805 (4 threads)
One Plus SDM845 4x 2.8 GHz Kryo 385 +
6T 9.0 Qualcomm 4x 1.8 GHz Kryo 385 6
Snapdragon 845 (8 threads)

Table 6.3: Devices used for evaluation.

Configurations. Multiple configurations are tested to analyze the impact of
the scheduler thread pool size. #threads is the number of usable threads, which
depends on the device (see Table . The evaluated configurations comprise:

e min(4,#threads): the thread-pool has a maximum of 4 workers, which is
TensorFlow Lite’s default configuration.

e max(1,#threads-1): the thread-pool employs all available threads but one.

e #threads: the thread-pool comprises all threads, for maximum parallelism.

6.3.2 Metrics

The main metric taken into consideration for the evaluation of inference is La-
tency, which determines how fast a frame can be processed by measuring the
time interval required between input reception and response delivery.

6.3.3 Experimental results

We report the experimental results obtained with TensorFlow Lite and Polim-
iDL for each combination of model, device, and configuration. Positive results
for PolimiDL are highlighted in green in the tables and negative results in red.
This Section presents the summarized evaluation results with averaged values and
more detailed information to support the stability of the results can be found in

Appendix [A]

79

Chapter 6. Deep Learning inference optimization for low-power systems

Table reports the results for PL Original Model. PolimiDL outperforms
TensorFlow Lite in almost all cases (highlighted in green), with reductions of
up to 57.32% (Motorola Nexus 6); TensorFlow Lite performs better (highlighted
in red) just in one device (LG Nexus 5X) with a single configuration. Overall,
PolimiDL consistently reduces average execution time by above 30%.

TensorFlow Lite (ms) PolimiDL (ms)

Devi Min Max All Min Max All
eviee (4,Threads) | (1,Threads-1) | Threads | (4,Threads) | (1,Threads-1) | Threads
Asus . 936.00 1138.00 936.67

ZenFone 2 | 139207 1672.67 1353.00 1 _30.80%) (-31.96%) (-30.77%)

Google 145.00 171.00 145.00
Pixel 207.67 255.33 21033 (-30.18%) (-33.03%) (-31.06%)
LG 273.00 209.00 200.33

G5 SE 418.67 29000 20267 | (34.79%) (-27.93%) (-26.53%)
LG) 432.33 342.33 282.33

Nexus 5X | 12367 370.33 336331 (L2.05%) (-7.56%) (-16.06%)
Motorola . 169.00 215.67 168.33
Nexus 6 336.67 505.33 33767 (-49.80%) (-57.32%) (-50.15%)
One Plus 104.00 91.00 89.00
6T 176.00 144.33 145.33 (-40.91%) (-36.95%) (-38.76%)
Average (-30.74%) (-32.46%) (-32.22%)

Table 6.4: FExperimental results of PL Original Model.

Table reports the results for PL Optmized Model vi. This model is smaller,
yet more accurate than the original one. PolimiDL outperforms TensorFlow Lite
and reduces inference time significantly. This is due to the design of memory
management, which exploits spatial locality well and reduces cache misses. The
performance gain is highly consistent: execution times are reduced on average
more than 62% in all the configurations. Improvement is particularly sensible for
low-end devices, such as ZenFone 2, where the reduction is greater than 77%. This
represents a huge enhancement towards the possibility of using low-end devices in
use cases that require near real-time processing.

TensorFlow Lite (ms) PolimiDL (ms)

Devi Min Max All Min Max All
eviee (4,Threads) | (1,Threads-1) | Threads | (4,Threads) | (1,Threads-1) | Threads
Asus 166.00 179.33 167.67

ZenFone 2 | 1067 807.67 333 o7 50%) (-77.80%) (-77.44%)

Google 30.00 35.33 31.00
Pixel 82.00 95.00 82.67 (-63.41%) (-62.81%) (-62.50%)
LG 94.33 68.00 70.67

G5 SE 185.67 138.33 13800\ 49.19%) (-50.84%) (-48.79%)
LG 84.67 80.33 77.00

Nexus 5X 204.33 193.00 181.00 (-58.56%) (-58.38%) (-57.46%)
Motorola . . . 52.33 66.00 49.00
Nexus 6 140.33 225.67 135.67 (-62.71%) (-70.75%) (-63.88%)
One Plus 22.00 22.67 22.33
6T 66.67 08.67 66.33 (-67.00%) (-66.99%) (-66.33%)
Average (-63.08%) (-64.59%) (-62.73%)

Table 6.5: Experimental results of PL Optmized Model v1.

Finally, Table reports the results for MobileNet. Performance of the two

80

6.3. Evaluation

frameworks are quite comparable, but PolimiDL reduces overall execution time.
The most significant gains are achieved on the ZenFone 2 and Nexus 6 devices
with improvements of up to 51.33% and 41.01% respectively. TensorFlow Lite
performs slightly better (not over 5%) on certain settings involving devices with
big.LITTLE architecture (LG G5 SE and LG Nexus 5X). Despite the fact that
PolimiDL features dynamic scheduling, it is the Operating System the ultimate
responsible of the allocation of tasks to workers and low frequency cores seem
to be prioritized for this model and devices. Nonetheless, the average execution
time, when using all threads but one, is reduced by 17.05%.

TensorFlow Lite (ms) PolimiDL (ms)
Device Min Max All Min Max All

v (4,Threads) | (1,Threads-1) | Threads | (4,Threads) | (1,Threads-1) | Threads

Asus . 371.00 377.33 374.33
ZenFone 2 734.00 77533 733.33 (-49.46%) (-51.33%) (-48.95%)

Google . 74.00 82.67 73.67
Pixel .67 82.33 77.00 (-2.20%) (+0.40%) (-4.33%)

LG 276.67 259.00 256.33
G5 SE 263.67 27467 205671 (1.93%) (-5.70%) (-7.01%)

LG 222.33 234.33 226.00
Nexus 5X 217.33 225.00 223331 (L9.30%) (+4.15%) (+1.19%)

Motorola 203.67 176.00 163.33
Nexus 6 224.33 208.33 22767 (-9.21%) (-41.01%) (-28.26%)

One Plus . 49.67 51.67 53.00
6T 96.67 56.67 o767 (-12.35%) (-8.82%) (-8.09%)
Average (-11.00%) (-17.05%) (-15.91%)

Table 6.6: Ezperimental results of MobileNet model.

The activation of NNAPI has been assessed in TensorFlow Lite for the sup-
ported devices, but results are not reported due to unstable performance. NNAPI
reduces execution time on the Google Pixel, but doubles it on the LG Nexus 5X.

The observed results show that the size of the model represents the most im-
portant factor to maximize the performance in favor of PolimiDL. The smaller the
number of parameters of a model, the higher performance improvement is achieved
by PolimiDL w.r.t. TensorFlow Lite. Consequently, PL Optimized Model vl is
the most benefited model, and PL Original Model reaches a higher performance
improvement w.r.t. MobileNet, even though the former comprises a higher number
of Mult-Add operations. This is explained by the fact that multiple underlying
optimizations present along PolimiDL’s workflow, maximize the spatial locality
when managing the memory and small models can potentially fit in cache memory,
thus accelerating the final execution time.

In conclusion, experimental results demonstrate the potential of PolimiDL by
showing competitive results w.r.t. the well-known TensorFlow Lite platform. Re-
sults are particularly improved when dealing with small models and low-power
devices; this finding corroborates the potential of the proposed framework for sup-
porting the implementation of AR applications for mass market mobile phones,
which is the use exemplified by PeakLens app.

81

Chapter 6. Deep Learning inference optimization for low-power systems

6.4 Discussion

6.4.1 Limits to generalization

The applicability of PolimiDL to a specific model is subject to the support of the
required layers and to the availability of a converter from the source DL frame-
work format. PolimiDL currently supports the layers included in Table and
conversion from the TensorFlow format. Simple missing layers, such as Decon-
volution [140], Dilated Convolution [37|, Leaky ReLU [229] and Global Average
Pooling [136], can be easily incorporated into the framework. Furthermore, the
generic and extensible architecture of the PolimiDL Converterf’| makes it possi-
ble to support the conversion from additional frameworks by simply extending a
few abstract classes and methods, to load models and parse their corresponding
layers definition and weights. On the other hand, PolimiDL targets devices with
limited resources and is currently able to support only simple and small feed-
forward DL architectures. Features such as batch inference, model quantization
and the inclusion of certain additional layers may require adaptations of the ar-
chitecture design; for example, the support of state-of-the-art architectures with
multiple parallel branches [209] or residual skip connections [184] would require
more complex buffers piping, to cope with synchronization and additional mem-
ory management. Shared object libraries with self-contained weights declared as
variables can be used for small models, common in embedded systems; but they
may suffer from compilation constraints when big models, such as VGG-16 [202],
are involved. Finally, PolimiDL currently runs on CPU only and does not sup-
port GPU processing, due to the still limited and non-standard access to it, which
would require multiple implementations.

9https://github.com/darianfrajberg/polimidl _converter

82

CHAPTER

Multi-Sensor Mobile Application Testing Framework

Outdoor mobile applications rely on the input of multiple, possibly noisy sen-
sors, such as the camera, GPS, compass, accelerometer and gyroscope. Testing
such applications requires the reproduction of the real conditions in which the
application works, which are hard to recreate without automated support. This
is particularly challenging when CV is used, due to the necessity of recreating
the relationship between camera frames and other sensor readings that help infer
orientation, motion and view.

This chapter presents a capture & replay framework that automates the testing
of mobile outdoor applications; the framework records in real-time data streams
from multiple sensors acquired in field conditions, stores them, and enables devel-
opers to replay recorded test sequences in lab conditions, also computing quality
metrics that help tracing soft errors.

This chapter includes material from the following publication, co-authored by
the candidate: [67].

7.1 Requirements

Testing an outdoor AR application is a complex task that requires simultane-
ously evaluating the precision of object positioning and the response time, two
competing objectives, in a realistic setting that considers the sensor inputs (not
available in the lab). The assessment criteria must also take into account usage
conditions: if the user keeps the device steady, low error is the prominent goal,
while higher execution time due to re-positioning after micro-movements is less
relevant; conversely, if the device is subject to movement (e.g, during walking),
fast execution can be more important than object positioning precision. There-

83

Chapter 7. Multi-Sensor Mobile Application Testing Framework

fore, testing should be supported by an auxiliary architecture that helps achieve
the following objectives:

e Realistic and controlled orchestration. It should cope with the con-
trolled orchestration of heterogeneous input sensors, while being executed in
lab conditions with equivalent behaviour to the real outdoor usage.

e Performance evaluation. It should use the performance metrics best
suited to a specific application and operating condition.

e Automated heterogeneous assessment. It should be performed in an
automated manner, so as to facilitate the contrast of different designs in
the same operating conditions and assess the same designs under different
operating conditions.

Outdoor mobile applications support the activity of users in field conditions,
where the task at hand requires the processing of inputs from multiple sensors.
The distinctive characteristics of such applications are their dependency on mul-
tiple, heterogeneous, and often noisy sensors, in addition to the need to process
sensor data streams in real-time to deliver a proper user experience.

Testing an outdoor mobile application requires verifying its behavior, in terms
of failures, soft errors, or performance, in working conditions. Such working con-
ditions, also called context in |179], [218] and [134] comprise the input values of all
the sensors in which the application relies on for its functioning. Building a test set
that reproduces working conditions faithfully is challenging because most sensors
are extremely noisy and their accuracy varies greatly [24], not only on different
mobile devices, but also on the same device in different operating conditions (e.g.
GPS positioning can be affected by meteorological conditions, compass orienta-
tion by the proximity of an electrical source). Furthermore, it is also necessary
to take into account the temporal correlation of multiple sensor data streams; for
example, in an application that overlays information on the screen based on what
the user is looking at, the usage context is composed of the sequence of positions
from the GPS sensor, the sequence of orientations of the device from the compass
sensor, the sequence of pitch and roll values of the device from the accelerometer
and the gyroscope, and the sequence of view frames from the camera. Such se-
quences are correlated, because the content of the camera frame at a given time
depends on the position, orientation, pitch and roll data. In particular, the de-
velopment of Mobile Augmented Reality (MAR) applications with sophisticated
Computer Vision modules, such as [152], [192], [60] and |211], exploit many of the
previously mentioned sensors and may benefit from a mechanism to assess their
performance realistically.

The goal of testing can be the identification of the insurgence of hard errors,
which cause the application to fail, the quantification of performance properties,
or the verification of soft errors, i.e., the occurrence of bugs that do not cause
the application to fail, but nonetheless degrade its behavior w.r.t. some desirable
characteristic that affects user’s acceptance. Investigating soft errors requires
defining the property to observe, formalizing quality metrics for its evaluation,
extracting the values of the target property from application runs, and comparing

84

7.2. The Testing Framework

the extracted values with some reference, which acts as a gold standard (i.e., a
representation of what is ideal for the user).

7.2 The Testing Framework

Figure portraits the process of testing for soft errors a mobile application that
relies on multiple sensors. The Acquisition and correlation step collects input
data from multiple data sources and manages their dependencies and temporal
correlation; it outputs a test sequence, which is a temporal series of values, one
per type of input.

The Feeding step prepares the ground for executing a test run of the application
on a test sequence. It encodes the test sequence in the format required by the
execution environment and submits it for processing.

The Ezecution step actually runs the test session by executing the application
with the test sequence as input. In the case of a mobile application, the execution
can be performed on board the device or in a simulator. The Property extraction
step observes an execution run to fetch the values of the property under exami-
nation. This can be normal termination if the testing goal is to uncover failures;
resource usage or execution time if the testing goal is to analyze performance; or
an application dependent property if soft errors are the target.

The Evaluation step concludes the process by reporting the outcome of execu-
tion runs. To assess performance and soft errors, the evaluation must characterize
the (un)desired behavior by metrics. Such metrics can be the deviation of a di-
rectly observable variable from a target value (e.g. the response time exceeding
a threshold) or may require comparing some output of the application with an
example providing a quality bound (e.g. evaluating the error in tracking the user’s
location during motion can be done by comparison with a correct sequence of po-
sitions; evaluating the misplacement of information over objects on the screen can
be done by comparison with a correct sequence of 2D screen object coordinates).

Input stream 1 \ (Metrics Fsld standard

o

| Input stream N /

Figure 7.1: Testing process of a multi-sensor mobile application.

Evaluation
report

Property
Extraction

Feeding

The implementation of the testing process of Figure poses several chal-
lenges. The creation of test sequences in the Acquisition and correlation step
must cope with the heterogeneity and dependencies of input data. Albeit model-
driven data generators and databases of traces exist for several classes of sensors
(e.g. network connectivity |31], position [213], motion [|9]). The construction of

85

Chapter 7. Multi-Sensor Mobile Application Testing Framework

multi-sensor test sequences by means of the temporal sampling of independent
data streams for the different sensors is inadequate for testing applications that
have interdependency of input values and for evaluating properties for which sen-
sors interdependency cannot be ignored; for example, assessing the presence of
soft errors in the screen position of geo-referenced information during the user’s
motion requires considering the interdependency between camera content and
compass position, orientation, pitch and roll. In such a situation, a multi-sensor
data capture approach, enabling the simultaneous recording of sensor values in
field conditions, may be the only viable solution to obtain realistic test sequences
and correctly reproduce the usage context for testing purposes. However, the cost
of building a multi-sensor data capture tool may be nearly equivalent to that of
building the application itself.

The Feed step must be able to supply the Frecution with the test sequence in a
way that faithfully reflects the reading of sensor in field conditions. If execution is
performed on the device, this requires interfacing the component that implements
the Feed step to the sensor management services of the mobile operating system:;
if execution is emulated, the challenge is ensuring that the emulator can be made
to supply values to the application at the same rate that would be experienced in
the real device |179).

The implementation of the Property extraction step distinguishes the case in
which the observed property can be computed without access to the internal struc-
ture of the application and the case in which such access is required. Whereas
failures and performance issues can be detected without access to the source code,
soft errors, being application dependent, may not be observable unless the source
code is instrumented to export the application status from which the target prop-
erty can be observed and the metrics computed.

Finally, the challenge of Ewvaluation is the encoding of the testing goal into
a computable metrics, whose evaluation may require the construction of a gold
standard. The gold standard is a mapping between each element of the test
sequence and the corresponding value of the observed property that represents
a correct or user acceptable output, given that context. The creation of the
gold standard is typically a manual procedure, either because it involves human
judgment (deciding what is acceptable) or because an algorithmic solution would
have the same complexity (and potentially suffer from the same defects) of the
system under test.

7.2.1 Architecture

The proposed architecture relies on a capture and replay framework, which enables
the collection of correlated multi-sensor traces in field conditions and produces test
sequences that can be used for the controlled execution of the system under test
both in the mobile device and in an emulator. Figure[7.2/shows the general system
organization.

The Capture Module executes in the mobile device and orchestrates the
acquisition of multiple sensor data streams. It interfaces to the sensor Application
Programming Interface (API) of the mobile device: the Data Acquisition Manager
sub-module handles the parallel execution of the data acquisition threads, one per

86

7.2. The Testing Framework

sensor, and the buffering of the sensed values. The Synchronization Manager is
responsible for the temporal alignment of the sensor readings. One sensor is
registered as the master, and its callback determines the synchronous reading of
the other ones from the buffers. This approach takes into account the fact that the
camera sensor is normally the bottleneck in sensor data acquisition. If the camera
sensor is registered as the master, the acquisition of each camera frame triggers
the reading of the remaining sensor values from the buffers at the time of the
callback. The Storage Manager formats the multi-sensor readings in the form of a
test sequence, encoded in JavaScript Object Notation (Json) format and archived
on the local storage of the device. It is worth to mention that the Capture module
is executed independently and not in parallel with the Application, as otherwise
the outcome would be a lower performance for both of them.

Mobile device

[Orientation

API l [Motion API l

Capture Module

Synchronization
manager

Storage
Manager

Sequence
store

Replay Module

Sequence
manager

Sequence
streamer

Emulator

Application
Logger

Sensor
emulator

Property
Observer

Mobile device

Data Acquisition
Manager

r—’ﬁ

[Camera API] [Lucation API]

Property
Observer
Replay
—_ Module

Sensor
emulator

Figure 7.2: Architecture of the capture and replay framework.

The Replay Module can be executed in the mobile device and in a worksta-
tion, in conjunction with a mobile emulator. It comprises a Sequence Manager,
which de-serializes an input test sequence into main memory, and a Sequence
Streamer, which feeds the sensor data to the (emulated) sensor API of the execu-
tion environment. The Sequence Streamer runs in a single thread and handles the
feeding of multiple sensor values; it synchronizes on the timestamp of the master
(i.e., the slowest) sensor: it fetches the next master sensor reading, gets the corre-
lated values of the other sensors and submits them to the execution environment.
The submission rate of the Sequence Streamer is dictated by the acquisition times-
tamps recorded in the field by the Capture Module. To reproduce the context as
faithfully as possible, the Sequence Streamer replays the sensor data series as it
is, i.e., without checking the ready status of the application. This mimics the
fact that in slow devices the processing rate of sensor values (typically the rate
at which camera frames can be analyzed) may be lower than the acquisition rate;
this causes the loss of some sensor readings during the live conditions, a situation
that must also be reproduced in the testing session.

87

Chapter 7. Multi-Sensor Mobile Application Testing Framework

As usual in context-based approaches that include the reproduction of sensed
values, the testing environment must support the replacement of the real sensor
APIs with mocked-up interfaces that can serve predetermined data. In the case
of emulated execution, the emulator makes the supply of archived sensor data
transparent to the application. Conversely, execution in the mobile device requires
the installation of a sensor emulation library, which exposes its own interface.
Therefore, the execution within the testing environment requires an alternate
version of the application, in which the native sensor API calls are replaced with
calls to the emulated APIs.

Figure also shows the components for extracting the properties necessary
for the assessment of soft errors from the test sessions (Logger and Property
Observer). These modules are application-specific and are discussed in the next
section.

7.2.2 Implementation

The architecture of Figure[7.2] was implemented in Java and supports the testing of
Android applications (version 4.0 Ice Cream Sandwich and above). The Capture
Module has been interfaced with the following sensor APIs: the Android Camera
AP the Google Location Services | and the Android Sensor APIF| The latter
provides callbacks for different sensors, including gyroscope, accelerometer, and
compass. Such information can be interpolated in order to obtain the resulting
rotation matrix and orientation vector.

The Storage Manager serializes sensor data into test sequences represented in
the Json format illustrated by the following fragment:

{"imageName":"20170430_115643_b52b96d9_1. jpg", "rotation":1,
"sensorAccuracy":3, "orVector":"[-2.373061, -0.20468707,

- 3.1223032]", "rotMatrix":"[0.15508807, 0.71608853, 0.6805881,

—~ 0.0, 0.13268146, -0.6978047, 0.70394254, 0.0, 0.97896814,

- -0.018886, -0.20326078, 0.0, 0.0, 0.0, 0.0, 1.0]",

<~ "timestamp":1493546203647}

The values of the camera sensor (frames) are stored externally as files, so that
the captured frames can be reused more easily for other purposes (e.g. to build
the gold standard data set, see Section .

The Sequence Streamer of the Replay Module can be interfaced with the An-
droid Studio Emulator. For execution in the testing environment, the alternate
version of the application under test must replace the calls to the Android native
APIs with calls to the correspondent emulation library APIs.

The addition of another sensor API requires the following steps: 1) the imple-
mentation of a SensorEventListener class that listens to the changes in the sensor,
computes the values and notifies this event to the application; 2) the registration
of the new SensorEventListener to the Data Acquisition Manager of the Capture

! https://developer.android.com/guide/topics/media/camera.html [accessed 10 April 2019]

2https://developers.google.com/android /reference/com /google/android /gms/location /LocationServices [ac-
cessed 10 April 2019]

3https://developers.android.com/guide/topics/sensors/sensors _overview.html [accessed 10 April 2019]

88

7.3. Evaluation

Module; 3) the addition of the sensor value representation in Json format of the
test sequence; 4) the implementation of a sensor play-out class and its registration
in the Sequence Streamer of the Replay Module.

7.3 Evaluation

7.3.1 Case study

The multi-sensor testing framework has been applied to PeakLens use case. Such
application is a good experimental case study provided that it is designed to
work in outdoor conditions and depends on multiple noisy sensors; it acquires
the user’s location from the GPS, the orientation of the device from the compass
sensor, the motion of the device from the gyroscope and accelerometer, and the
current view from the camera frames. It analyzes the incoming camera frames
with a Computer Vision module, detects the mountain skyline, marks the peaks
visible on the skyline with an icon, and labels each identified peak with relevant
metadata (name, altitude and/or distance from the viewer).

(a) Incorrect (b) Correct

Figure 7.3: (a) presents a soft error that causes peak labels to be misplaced with an horizontal
offset w.r.t. the correct screen coordinates. (b) presents the peak labels correctly displayed.

The essential factor that defines the quality of the users experience is the ac-
curacy of labeling the peaks framed by the camera. As Figure (a) shows, an
error in the computation of the screen coordinates of one or more peaks deeply
compromises the utility of the application, as clearly revealed by the user’s re-
views. In the ideal situation (Figure (b)), the application must be able to
precisely identify the screen coordinates of the mountain summits that appear in
the framed scene and visualize the meta-data in the correct places. Soft errors
in the computation of the coordinates of peaks can be revealed by comparing the
screens produced by the application with a sequence of artificial screens created
by a user who manually labels images, as explained in Section [7.3.2] Such a set
of manually annotated images constitutes a gold standard, which can be used to
compute the value of metrics that quantify the quality of the user’s experience,
as explained in Section [7.3.3]

In the reported case study, the illustrated testing process and framework are
characterized by the following aspects:

e A test sequence for the application consists of a multi-sensor temporal se-
ries, comprising the correlated values of the GPS, compass, accelerometer,
gyroscope (if available) and camera sensors.

89

Chapter 7. Multi-Sensor Mobile Application Testing Framework

e Test sequence acquisition and correlation are performed by a Capture Mod-
ule, implemented in the mobile device, which records test sequences in field
conditions.

e The feeding of the test sequence is implemented by a Replay Module, which
services (replays) the elements of a test sequence reproducing the temporal
layout and data correlation captured in the field.

e Application execution can be performed both on the mobile device and on
an emulator (in the case study, the Android device is used).

e The extracted property for evaluating soft errors is the mountain peak po-
sition; a peak position is defined as the pair of 2D screen coordinates of the
camera frame at which the summit of a mountain appears and is used to
label the peak (as visible in Figure . Such property can be computed in
two ways: by instrumenting the source code or without instrumentation, by
capturing and analyzing the application’s screen.

e Evaluation is performed by means of metrics that compare the peak positions
extracted from the application and the "correct” peak positions. The metrics
employ a gold standard data set created with a crowdsourcing system that
allows crowd workers to manually specify the position of visible peaks in a
series of mountain images.

7.3.2 Experimental setup

The gold standard for assessing the application is defined as a sequence of camera
frames, in which each frame portraits an outdoor scene with a mountain skyline
and is associated with the set of 2D screen coordinates of (some of) the visible
peaks on the skyline.

An effective way to build such a gold standard sequence is to employ the same
Capture Module that is used to record the multi-sensor test sequences; from such
a sequence it is possible to extract the individual camera frames, and manually
annotate them with the 2D coordinates of visible peaks. In the case study, the
Capture Module has been employed by a panel of beta testers to gather sequences
in diverse mountainous areas around the world.

To support the manual annotation of the peak coordinates in the camera
frames, the crowdsourcing Web application (called Peak Annotator) shown in
Figure [7.4) has been created.

This Web interface allows a crowd worker to upload a new sequence of multiple
frames or to annotate an already existing one. When a sequence is opened, its first
frame is displayed, as shown in Figure [7.4] To accelerate the work and allow also
non experts to annotate frames, a suggestion about which peaks should be visible
is computed and displayed. To this end, the DEM is queried with the position
and orientation extracted from the test sequence, a virtual panorama with the
candidate visible peaks is displayed in the background of the current frame, as
illustrated in Figure [7.4 the worker can simply drag and drop the suggested
peak icons to position them in the correct place in the camera frame. Since the
default size of a captured sequence is 500 frames, the manual creation of the gold

90

7.3. Evaluation

sequences with the Peak Annotator may be a labor-intensive task. To speed-up the
process, the Peak Annotator contains a Next button, which shows the successive
frame in the sequence with the peaks already pre-positioned on the skyline. The
pre-positioning of peaks is performed by exploiting the screen coordinates of the
preceding frame and applying a correction based on the projection of the current
sensor orientation. Since the frames in the sequence are recorded at a high rate
(typically close to 30 per second) and device movements during the capture are
slow and continuous, such a simple peak pre-positioning procedure is extremely
effective in placing peaks by default; with this simple technique, the number of
drag and drop interactions needed to annotate a full sequence is dramatically
reduced: down to less than 10% of the peak positions need to be corrected after
annotating the first frame. As a further aid to evaluate the quality of the gold
standard, the Peak Annotator contains a Play button, whereby the user can play
out the annotate sequence.

In the case study, 56 sequences were captured and manually annotated, com-
prising from 100 to 500 frames. They were taken with different devices, under very
diverse conditions and locations around the world, and comprised some extremely
challenging scenarios. The annotation time of a sequence ranges from less than
5 minutes to around 25 minutes, the longest time being necessary for 500 frames
sequences with a lot of fast and irregular device motion during the capture. Af-
terwards, a cross-validation task to verify the correctness of the annotations was
performed, preserving as a result 50 correctly annotated sequences.

Sequence #20170218_095907_454e4020

- 214 | /500 + GoTo Save- Saves(Space) Image opacity:

Figure 7.4: Crowdsourcing user interface for manually annotating the positions of peaks in
a sequence of frames. The user can: 1) drag into the correct position (shown in green)
candidate peaks suggested by the system; 2) mark candidate peaks as non-visible in the frame
(shown in red).

Furthermore, it is worth to mention the fact that in order to apply the presented
testing framework to other use cases, they would require to instantiate their own
customized tool for the construction of the corresponding gold standard. The

91

Chapter 7. Multi-Sensor Mobile Application Testing Framework

gold standard definition highly depends on the underlying problem and can not
be completely abstracted and generalized. Nonetheless, the components of the
interface developed for PeakLens can be taken as baseline and further adapted for
other applications without considerable effort.

7.3.3 Metrics

In complex multi-sensor outdoor applications, the success of the application de-
pends primarily on non-functional features such as the accuracy of the outputs,
while other functions, such as the user interface, storage and network connectiv-
ity management are comparatively simpler to implement and converge to stability
more easily. In the case study, the following metrics have been defined to quantify
the defects in peak positioning that may lower the accuracy of the application.
Most of them are rather generic and their application may be suitable for other
use cases focused on the augmentation of other elements of interest instead of
mountain peaks.

The Accuracy measures the fraction of peaks correctly handled, which takes
into consideration both visible peaks in the gold standard that are projected in
the frame and not visible peaks in the gold standard that are not projected in the
frame. The sequence accuracy is the average of its frames.

The Precision indicator measures the fraction of peaks positioned in a certain
frame of a sequence that are relevant (i.e., appeared also in the same frame of the
gold sequence). The overall sequence precision is the average of the precision of
every frame. It measures the quantity of false peak positions generated by the
application.

The Recall metric measures the fraction of peaks present in the frame of the
gold sequence that also appears in the corresponding frame of the tested sequence.
It evaluates the erroneous omission of peaks from a frame in which they should
appearﬂ The sequence recall is the average of its frames.

The Average Angular Error (AAE) metric quantifies the positioning errors
of all the peaks w.r.t. the position in the gold sequence. Given a frame, for each
visible peak i = 1,...,n let (x;,y;) be the on-screen coordinates computed by
the application under test, while (Z;,7;) be the coordinates stored in the gold
sequence. The angular error in the position of the i-th peak is defined as:

E(E 50) = /o, 32)? + dy (G,)

where

. : I [
d(z,7) = 360 — =z — x|, ~—|z —

(Z,x) = min(w|$ x| w|$ x|)
the angular distance (in degrees) between the tested and gold coordinate along the
azimuth axis, given the circular symmetry, f is the horizontal Field Of View (in
degrees) of the camera and w is the width (in pixels) of the image. The definition
of the angular distance along the roll axis d, (g, y) is similar. The angular error of

a whole sequence is defined as the average error over all its frames.

4The erroneous omission of a peak may result by, e.g, the wrong computation of peaks occluded by the terrain
configuration.

92

7.3. Evaluation

Finally, the Perceived Quality (PQ) metric measures the percentage of the
frames of a sequence that are “good enough”. This indicator can be regarded as
the fraction of the entire sequence time during which the user experience was
satisfactory. The definition of “good” is based on the other metrics: a frame is
good if its average angular error is lower, while peak precision and recall are higher
than given thresholds. In the case study, after several experiments, the thresholds
have been fixed at 3deg, 0.75 and 0.75 for the three indicators, respectively.

In general, Perceived Quality is the most representative metric at first sight be-
cause it summarizes all the other ones. However, low values of the other indicators
may be effective in directing the search for a defect.

Frames that do not contain annotated peaks were not considered for the evalu-
ation. Otherwise, metrics such as the Average Angular Error would be computed
as 0 for them, which would affect the metric computation rendering it not so
realistic.

7.3.4 Experimental results

The testing consists of applying the framework described in Section[7.2]to the gold
sequences built as explained in section to evaluate the application quality.
The detection of low values of the indicators signals the insurgence of defects, and
the worsening of a value after a software update highlights potential regression
errors. Note that regression errors are particularly relevant because the computer
vision module at the base of the peak positioning methods contains various com-
plex heuristics and a machine learning submodule, which can be retrained with
new data to try and achieve better accuracy, and is configured with multiple pa-
rameters, which trade accuracy w.r.t. memory footprint and execution speed.
Often a software update aiming at one objective may detriment a conflicting one.

We comment the evaluation of PeakLens for 50 gold sequences and 3 application
releases, which were executed on a Google Pixel device. Furthermore, taking into
account the fact that a replay is non deterministic and that an intensive usage of a
phone may affect its performance, we opted for executing such replays with small
pauses programmed in between. The complete evaluation results are reported
in Table Due to particularly high sensor noise detected at the beginning of
the sequences, the first 25 frames of each of them were not considered for the
evaluation.

The first application release (SENSOR) represents our baseline, provided that
it does not include any intelligent computer vision module analyzing the frames
captured by the camera, but just projects the peaks based on the orientation
sensor values of the device. The resulting mean and median values of the Average
Angular Error and Perceived Quality are rather low, which would probably imply
a non satisfactory user experience.

The second application release displayed in the tables reports the indicators
for RELEASE A. This version already features the sophisticated Computer Vision
module, which significantly improves the performance of the application, achiev-
ing an increment in all the overall metrics. Nonetheless, there are a few sequences
in which the baseline SENSOR version had a more acceptable performance. By
inspecting such sequences we were able to determine that many of these cases

93

Chapter 7. Multi-Sensor Mobile Application Testing Framework

are due to flat terrains and uncertain alignments between frame skyline and ter-
rain. Such cases could be improved by introducing specific heuristics capable of
detecting them and of proceeding by just using the orientation sensors.

Finally, the last column of the tables refer to RELEASE B, a version that
introduced some modifications regarding the machine learning submodule that
detects the mountain skyline for the frames, followed by a different post-processing
step that is subsequently aligned w.r.t. the terrain. Overall, the testing framework
gave an effective feedback on the new version; the Perceived Quality was not
affected w.r.t. the previous version and therefore the performance of the release
was considered acceptable.

It is worth to mention that the batch replay evaluations can be immediately
aborted to save time in case of detecting the insurgence of obvious defects in
the first iterations. In the past, we have experienced such situation when deal-
ing with bugs due to scale factor issues, incorrect vertical offset projections and
the manifestation of diverse problems with the computer vision module. PQ de-
creased strongly in such cases, with sensible angular error increase and loss of
both precision and recall. Sequence replay permitted us to locate the wrongly
positioned peaks and to remove the defect. The overall results obtained by the
testing framework are significantly informative, but so can be the visual inspection
of the simulations in order to identify and correct specific bugs that may appear
under specific scenarios or conditions.

7.4 Discussion

In this section, we discuss the limits to generalization of the proposed framework
by covering the most challenging issues to tackle and we also assess the fidelity of
the multi-sensor context simulation by experimenting with a set of mobile devices.

7.4.1 Limits to generalization

The testing framework has been implemented with both the general aim of sup-
porting multi-sensor application testing and with the specific objective of putting
it to work in the development and maintenance of a specific application. Retro-
spectively, the resulting architecture exhibits dependencies on the mobile operat-
ing system, on the emulation environment and on the application under test.

The Capture Module of Figure is the most general component, depending
only on the native sensor APIs of the Operating System. It can be extended to
new types of sensors (e.g. temperature) simply by following the steps presented in
section [7.2.2] The temporal correlation of the multiple sensor streams is achieved
by synchronizing on a master sensor. This policy is normally applied to synchro-
nize on the slowest sensor; however, it is also possible to elect any sensor as the
master and synchronize the other streams on its callbacks; for example, one may
define the GPS position sensor a the master and read from the other sensors only
when an update of the location occurs.

The Replay Module has a dependency on the wirtual sensor APIs, both in
the emulated and on-device execution environment. The Sequence Streamer is
coupled to the sensor emulation libraries

94

7.4. Discussion

SENSOR RELEASE A RELEASE B

Accuracy Precision Recall AAE PQ | Accuracy Precision Recall AAE PQ | Accuracy Precision Recall AAE PQ

(%) (%) %) () (%) (%) (%) %) () (%) (%) (%) %) () ()
1 96,50 100,00 87,16 15,12 0,00 99,62 99,68 99,02 2,06 77,05 96,67 99,26 88,77 6,50 32,00
2 86,09 80,62 73,30 14,60 0,00 97,53 95,56 98,58 2,13 81,18 96,93 94,31 97,42 2,18 81,18
3 89,46 88,14 74,89 15,39 0,00 97,52 98,11 93,95 1,09 99,79 98,87 98,67 97,79 1,42 96,63
4 88,62 84,26 73,00 9,28 10,65 85,79 80,99 72,52 10,07 12,11 80,87 74,09 59,81 8,76 18,64
5 91,68 92,70 87,56 8,68 0,00 97,87 98,45 96,60 1,34 98,52 97,45 97,33 96,66 1,47 95,57
6 96,33 91,95 97,05 3,70 56,84 96,44 90,91 98,02 245 78,32 96,67 93,07 96,02 2,60 81,68
7 94,89 87,99 97,82 4,08 27,22 97,11 91,88 99,76 1,20 87,50 97,64 93,92 99,76 1,14 89,44
8 97,80 95,93 96,24 2,81 53,47 99,33 98,34 99,19 1,25 96,21 99,27 98,19 99,20 1,31 97,05
9 94,98 88,93 92,00 7,85 15,58 97,65 92,58 99,32 1,04 100,00 99,53 98,96 99,39 1,18 96,84
10 98,56 97,25 94,86 4,94 0,68 99,22 97,71 98,19 2,09 82,25 99,57 99,01 98,84 1,60 98,63
11 100,00 100,00 100,00 1,92 100,00 93,75 100,00 50,00 0,51 0,00 94,19 100,00 53,51 0,71 7,02
12 46,29 6,39 6,65 59,09 0,00 46,93 10,25 12,34 58,38 0,00 56,69 24,68 25,00 39,94 0,00
13 66,78 31,53 29,71 42,82 0,00 62,04 19,48 19,68 47,33 0,00 64,47 26,44 26,16 45,13 0,00
14 94,54 68,22 96,88 6,09 28,97 93,95 66,24 92,60 6,33 25,70 94,22 67,33 92,99 6,87 25,70
15 70,69 67,30 68,26 20,64 0,00 90,73 90,36 90,35 6,38 67,94 95,87 92,58 99,16 1,72 86,12
16 94,51 86,66 100,00 2,14 93,97 93,46 84,31 100,00 2,04 96,12 93,46 84,74 99,25 1,59 99,14
17 96,62 100,00 91,54 6,62 0,00 94,75 100,00 85,31 9,25 0,00 97,36 100,00 93,40 7,16 742
18 98,13 100,00 94,76 3,02 55,86 99,06 98,07 99,31 1,91 96,55 99,26 98,07 99,86 1,68 97,93
19 92,90 81,02 94,83 582 0,42 95,92 86,19 99,74 1,34 82,95 95,56 85,45 99,38 1,39 80,63
20 89,32 70,20 94,25 5,69 0,31 95,13 81,73 99,03 1,56 70,22 93,77 79,20 97,60 3,12 52,98
21 97,91 95,30 97,64 345 36,42 98,79 97,16 98,96 1,43 98,95 98,72 97,14 98,79 1,58 97,89
22 94,20 92,74 88,33 7,66 0,00 97,49 93,55 98,58 1,73 73,63 97,57 94,27 98,10 1,92 69,62
23 99,52 96,89 100,00 1,60 84,86 99,63 99,59 97,97 421 42,70 98,73 98,78 92,97 5,54 39,73
24 96,77 88,73 99,92 248 89,95 99,11 96,87 99,92 2,39 80,90 96,63 91,98 94,29 2,08 9347
25 97,25 81,16 98,37 2,94 46,29 97,21 80,69 100,00 5,41 29,97 97,61 82,49 99,70 5,57 35,31
26 97,27 96,52 88,90 6,14 0,00 97,56 96,10 90,22 8,28 18,39 91,17 90,99 4832 433 5,04
27 94,41 86,50 93,19 3,08 37,37 92,96 89,69 87,15 9,82 18,79 81,07 85,30 4797 8,32 0,00
28 99,65 99,95 98,92 2,11 100,00 98,27 97,76 95,99 1,25 100,00 99,15 98,55 98,49 1,13 100,00
29 76,34 57,30 56,42 22,09 0,00 77,91 60,38 58,46 20,55 0,00 94,25 83,82 98,53 1,50 98,04
30 93,61 70,42 96,51 545 9,42 94,47 69,55 97,03 1,93 23,04 93,61 68,85 94,42 445 262
31 95,46 92,82 9576 448 29,18 97,64 95,79 98,64 151 82,56 96,53 9520 96,56 1,50 76,16
32 91,37 77,24 94,74 532 24,63 90,48 74,82 93,22 521 37,68 90,48 75,20 93,73 5,59 34,11
33 93,04 100,00 76,03 3,88 45,88 95,15 100,00 83,53 2,17 76,47 93,87 94,85 86,52 297 75,88
34 93,75 66,67 100,00 5,97 0,00 93,75 66,67 100,00 9,35 0,00 99,68 98,31 100,00 11,77 0,00
35 94,07 72,08 100,00 6,40 0,00 94,52 76,06 97,59 0,79 23,10 95,23 77,50 100,00 1,48 28,93
36 92,87 100,00 78,60 23,82 0,00 100,00 100,00 100,00 1,66 99,56 100,00 100,00 100,00 1,14 100,00
37 94,07 82,14 99,83 2,44 66,84 92,69 80,70 94,64 1,52 64,29 93,28 81,63 95,58 1,45 64,80
38 86,54 50,48 100,96 2,20 0,00 86,95 51,44 100,96 6,03 0,00 86,54 50,48 100,96 5,39 0,00
39 96,36 94,36 95,08 4,21 6,37 98,32 97,73 97,46 2,48 85,14 96,83 97,26 93,06 1,63 93,84
40 96,36 89,68 96,09 4,94 2,95 99,43 98,77 99,00 1,33 97,26 99,19 98,21 98,74 1,36 96,63
41 85,50 63,54 88,60 11,39 0,00 90,24 69,33 99,58 1,42 2147 91,21 73,58 99,72 1,83 26,11
42 85,99 100,00 60,53 17,95 0,00 92,60 99,58 82,07 8,02 50,74 99,61 9909 99,72 1,54 96,21
43 93,09 89,89 83,47 11.48 0,00 98,32 98,00 96,95 2,66 79,58 99,19 98,95 98,63 1,34 93,89
44 98,35 96,12 96,42 6,03 0,00 99,38 98,02 99,25 1,84 95,58 98,76 94,30 99,49 1,55 88,21
45 92,06 89,40 77,16 19,98 0,00 94,48 89,65 88,53 16,93 0,00 93,05 90,14 80,74 19,83 0,00
46 75,58 52,08 74,39 17,05 0,00 92,91 79,07 100,00 3,70 66,74 93,16 80,41 99,37 2,62 68,63
47 57,05 2,24 2,24 59,49 0,00 59,29 12,18 12,18 42,21 0,00 69,55 31,41 31,41 16,79 23,72
48 76,42 60,14 69,65 18,92 1,68 82,18 71,05 76,81 17,85 17,89 83,75 72,46 79,09 15,80 17,26
49 98,46 100,00 97,06 6,66 0,00 98,91 99,57 98,08 294 72,12 98,91 99,79 98,40 1,99 81,09
50 98,37 100,00 98,16 2,34 69,05 94,95 99,86 93,51 2,04 73,68 98,21 99,74 97,96 2,41 69,47
Mean 90,53 81,27 85,07 10,65 21,90 92,79 8441 88,80 6,97 5565 93,48 86,12 88,82 548 5843
Median 94,14 88.83 94,75 6,00 0,55 95,54 9306 97,78 215 71,17 96,65 94,09 97,88 1,95 72,75

Table 7.1: Complete evaluation testing results.

95

Chapter 7. Multi-Sensor Mobile Application Testing Framework

7.4.2 Limits to fidelity

As in the work of Rege et al. [179], we have evaluated the limits in the reconstruc-
tion of realistic working conditions during the testing process. Also, the most
significant challenge in our case study is the faithful reproduction of the function-
ing of the camera sensor, which is the most difficult to simulate. Since the camera
sensor is the slowest one, on which the readings of the remaining sensors depend,
a prominent goal of the testing process is to achieve a frame replay rate in the
testing framework as close as possible to the one observed during the execution
of the application in field conditions. This entails that the Capture and Replay
modules should be able to acquire frames and replay them at the same rate as the
real application.

Table reports the camera frame acquisition rates observed in a set of mobile
devices, chosen to have a representative range going from medium-end models (LG
Gb5) to high-end (Google Pixel) models. The results may vary depending on the
adopted frame size; the size considered in the case study is 640x480 pixels, which
is the one normally used in the case of study for the image analysis in mobile
devices. In general, the Capture module achieves a slightly higher frame rate than
the camera preview in the normal execution of the application. This is due to the
fact that the application execution requires more system resources for running
the computer vision algorithms. Conversely, the Replay module achieves a lower
frame rate. The reason is that camera frames are read from secondary storage,
which is slower than the access to the frames from the camera sensor. Despite
these differences, the Replay module executed in the mobile device still represents
a sufficiently good approximation of the real functioning of the application.

Phone model \ App (fps) \ Capture (fps) \ Replay (fps)

Google Pixel 30 30 27
Motorola Nexus 6 28 29 22
LG Nexus 5x 27 28 20
LG G5 SE 24 30 17

Table 7.2: Comparison of the frame processing rates in the application, in the Capture module
and in the Replay module executed in the mobile device.

The execution in the Android Emulator with the default configuration pa-
rameters yielded an extremely low frame rate for the camera preview (6fps at
maximum). The Android Emulator can be configured to exploit hardware accel-
eration using the Graphics Processing Unit (GPU) of the host workstation, thus
achieving a frame rate close to the one observed in field conditions. However,
in a data-intensive application as the one presented in the case study, such ac-
celeration alters the computation power of the emulated device, and thus results
in a far less realistic simulation. To the best of our knowledge, Android Emu-
lators are still unable to realistically replicate the performance of both camera
sensors and processors of real devices, which makes them not yet ideal for testing
multi-sensor mobile applications with real-time data processing requirements over
camera frame data. For this reason, we did not proceed with the implementation
of the Replay module on top of the Emulator environment.

96

CHAPTER

Conclusions and Future Work

In this thesis we explored the feasibility of exploiting the recent progress in the
Artificial Intelligence, Computer Vision and Augmented Reality fields in order
to provide enhanced outdoor Augmented Reality entertainment/informative so-
lutions. We concluded that such integration can lead to the construction of high
quality, successful and engaging applications, suitable for limited portable devices
by means of better understanding the surrounding visual context captured by
the camera with a marker-less approach executed on-board the devices. We ad-
dressed the arising difficulties and validated the proposed solutions through the
use case of a real-world outdoor Mobile Augmented Reality application for moun-
tain exploration, which has so far reached +500k installs and can be conveniently
used for both improving the awareness about the mountain environment and for
crowdsourcing environmental tasks, such as data collection.

We introduced the use of DL models for mountain skyline extraction to deal
with accurate image-to-terrain geolocalization and camera orientation estimation
in natural mountain environments. Such models were trained with a large set of
annotated images taken in uncontrolled conditions, and are capable of identifying
obstacles interrupting the skyline with a patch-based approach. Obstacles iden-
tification represents an essential element to take into account for a correct align-
ment w.r.t. the terrain. Therefore, we have defined specific evaluation metrics
to measure it. In the future, we will further experiment with efficient alternative
approaches to cope with more global-aware context information to complement
the local features used in the trained DL models.

We presented a framework for the development of outdoor MAR applications
to cope with several difficulties, such as unreliable connection, uncertain position-
ing, occlusions and real-time requirements; and defined a characterization for the

97

Chapter 8. Conclusions and Future Work

dimensions of heterogeneous meta-data to augment the view. We also discussed
its use for mountain image enrichment based on DEM and GIS data, which had
the primary goal of attracting the interest of tourists and enhancing their outdoor
experience. In the future, we plan to exploit collected data and incorporate DL
techniques to improve the knowledge extraction phase and aggregate such derived
information into environmental prediction and decision models.

We tackled the problem of efficiently supporting the optimization and deploy-
ment of DL models on-board devices with limited resources and heterogeneous
architectures. We have also presented PolimiDL, an open source publicly avail-
able framework for the acceleration of DL inference on mobile and embedded
systems, which has proved competitive w.r.t. TensorFlow Lite, achieving better
performance on a set of small models. Future work will concentrate on adding
support for more layers, model quantization, and conversion of ONNX format, to
simplify the porting from more DL frameworks. Moreover, experimentation will
be extended by evaluating additional models, configurations, metrics (e.g. energy
consumption and memory accesses) and devices (e.g. Raspberries and drones).

We presented a capture and replay framework for the automated testing of
mobile applications that depend on noisy multiple correlated sensor streams, thus
becoming suitable to support the development and maintenance of MAR applica-
tions under controlled lab conditions. We have applied and reported the results
of using such framework to support the mountain exploration use case, where the
input stream is heterogeneous and contains noisy sensor data, and the output is
the sequence of 2D coordinates of relevant objects in the camera frames. Future
work will concentrate on further generalizing the framework by instantiating it for
other use cases, incorporating the capture and replay of GUI events as well, so as
to achieve the automated testing of application usage sequences including user’s
gestures. It will also focus on the integration of the framework with cloud-enabled
mobile execution services, such as Amazon AWS Mobile Farn[, on the experimen-
tation with mobile emulation platforms to achieve a more realistic reproduction of
field conditions, and on the construction of a web version of the testing framework
whereby developers could execute the entire testing process completely online.

Finally, we plan to continue with this research track, and further optimize
DL for its deployment on mobile and embedded systems, in order to provide
enhanced experiences and support its incorporation to benefit more real-world
applications, motivated by the capabilities and challenges of the Internet of Things
(IoT). Experimentation with training and adaptation of models directly on-board
device is also of particular interest.

Thttps://aws.amazon.com/device-farm/ [accessed 21 August 2019]

98

Bibliography

1

[2

3

[4

[5]

[6]
7]
18]

(9]

[10]
[11]
[12]

[13]

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete Steggles.
Towards a better understanding of context and context-awareness. In Hans-Werner Gellersen,
editor, Handheld and Ubiquitous Computing, First International Symposium, HUC’99, Karlsruhe,
Germany, September 27-29, 1999, Proceedings, volume 1707 of Lecture Notes in Computer Science,
pages 304-307. Springer, 1999.

Tougeer Ahmad, George Bebis, Monica Nicolescu, Ara Nefian, and Terry Fong. An edge-less
approach to horizon line detection. In Machine Learning and Applications (ICMLA), 2015 IEEE
14th International Conference on, pages 1095-1102. IEEE, 2015.

Tougeer Ahmad, Pavel Campr, Martin Cadik, and George Bebis. Comparison of semantic segmen-
tation approaches for horizon/sky line detection. In Neural Networks (IJCNN), 2017 International
Joint Conference on, pages 4436-4443. IEEE, 2017.

Shaikhah AlEbrahim and Imtiaz Ahmad. Task scheduling for heterogeneous computing systems.
The Journal of Supercomputing, 73(6):2313-2338, 2017.

Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza Motahari-
Nezhad, Elisa Bertino, and Schahram Dustdar. Quality control in crowdsourcing systems: Issues
and directions. IEEE Internet Computing, 17(2):76-81, 2013.

Dhiraj Amin and Sharvari Govilkar. Comparative study of augmented reality sdks. International
Journal on Computational Science & Applications, 5(1):11-26, 2015.

Andrew Anderson, Aravind Vasudevan, Cormac Keane, and David Gregg. Low-memory gemm-
based convolution algorithms for deep neural networks. arXiv preprint arXiv:1709.03395, 2017.

Anil Armagan, Martin Hirzer, Peter M Roth, and Vincent Lepetit. Learning to align semantic
segmentation and 2.5 d maps for geolocalization. In Conference on Computer Vision and Pattern
Recognition, 2017.

Nils Aschenbruck, Raphael Ernst, Elmar Gerhards-Padilla, and Matthias Schwamborn. Bonnmo-
tion: A mobility scenario generation and analysis tool. In Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques, SIMUTools ’10, pages 51:1-51:10, ICST,
Brussels, Belgium, Belgium, 2010. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

Ronald T Azuma. A survey of augmented reality. Presence: Teleoperators & Virtual Environ-
ments, 6(4):355-385, 1997.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural
information processing systems, pages 2654-2662, 2014.

Georges Baatz, Olivier Saurer, Kevin Késer, and Marc Pollefeys. Large scale visual geo-localization
of images in mountainous terrain. In Computer Vision-ECCV 2012. 2012.

Lionel Baboud, Martin Cadik, Elmar Eisemann, and Hans-Peter Seidel. Automatic photo-to-

terrain alignment for the annotation of mountain pictures. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 41-48. IEEE, 2011.

99

Bibliography

[14]

[15]
[16]

[17]

(18]

[19]

[20]

(21]

22]
23]

24]

[25]
[26]

[27]

28]

[29]

(30]

[31]

32]

Jorge Bacca, Silvia Baldiris, Ramon Fabregat, Sabine Graf, et al. Augmented reality trends in
education: a systematic review of research and applications. Journal of Educational Technology
& Society, 17(4):133, 2014.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Mayank Bansal and Kostas Daniilidis. Geometric urban geo-localization. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2014.

Youcef Bentoutou, Nasreddine Taleb, Kidiyo Kpalma, and Joseph Ronsin. An automatic image
registration for applications in remote sensing. IEEE Trans. Geoscience and Remote Sensing,
43(9):2127-2137, 2005.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela Nicklas, Anand
Ranganathan, and Daniele Riboni. A survey of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 6(2):161-180, 2010.

Sourav Bhattacharya and Nicholas D Lane. Sparsification and separation of deep learning layers
for constrained resource inference on wearables. In Proceedings of the 14th ACM Conference on
Embedded Network Sensor Systems, SenSys 2016, Stanford, CA, USA, November 14-16, 2016,
pages 176-189, 2016.

Mark Bilandzic, Michael Banholzer, Deyan Peev, Vesko Georgiev, Florence Balagtas-Fernandez,
and Alexander De Luca. Laermometer: a mobile noise mapping application. In Proceedings of the
5th Nordic Conference on Human-computer interaction: building bridges, pages 415-418. ACM,
2008.

Mark Billinghurst, Adrian J. Clark, and Gun A. Lee. A survey of augmented reality. Foundations
and Trends in Human-Computer Interaction, 8(2-3):73-272, 2015.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university press,
1995.

Jeffrey R Blum, Daniel G Greencorn, and Jeremy R Cooperstock. Smartphone sensor reliability for
augmented reality applications. In International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services, pages 127-138. Springer, 2012.

Jan Brejcha and Martin Cadik. Geoposedk: Mountain landscape dataset for camera pose estima-
tion in outdoor environments. Image and Vision Computing, 66:1-14, 2017.

Jan Brejcha and Martin Cadik. State-of-the-art in visual geo-localization. Pattern Analysis and
Applications, 20(3):613-637, 2017.

Kai Briechle and Uwe D Hanebeck. Template matching using fast normalized cross correlation.
In Aerospace/Defense Sensing, Simulation, and Controls, pages 95-102. International Society for
Optics and Photonics, 2001.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 535-541. ACM, 2006.

Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s mechanical turk: A new
source of inexpensive, yet high-quality, data? Perspectives on psychological science, 6(1):3-5,
2011.

Ivan Cabrilo, Philippe Bijlenga, and Karl Schaller. Augmented reality in the surgery of cerebral
arteriovenous malformations: technique assessment and considerations. Acta neurochirurgica,
156(9):1769-1774, 2014.

Roberta Calegari, Mirco Musolesi, Franco Raimondi, and Cecilia Mascolo. Ctg: A connectivity
trace generator for testing the performance of opportunistic mobile systems. In Proceedings of the
the 6th joint meeting of the Furopean software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 415-424. ACM, 2007.

Andrea Castelletti, Roman Fedorov, Piero Fraternali, and Matteo Giuliani. Multimedia on the
mountaintop: Using public snow images to improve water systems operation. In Proceedings of
the 2016 ACM on Multimedia Conference, pages 948-957. ACM, 2016.

100

Bibliography

[33]

[34]

[35]

[36]

37]

[38]

[39]
[40]
ja1]
j42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

Claudio Cavallaro, Roman Fedorov, Carlo Bernaschina, and Piero Fraternali. Compressing web
geodata for real-time environmental applications. In International Workshop on the Internet for
Financial Collective Awareness and Intelligence, pages 119-128. Springer International Publishing,
2016.

Boris Y Chan, Antonio Si, and Hong Va Leong. Cache management for mobile databases: Design
and evaluation. In Data Engineering, 1998. Proceedings., 14th International Conference on, pages
54-63. IEEE, 1998.

Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affordance
for direct perception in autonomous driving. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2722-2730, 2015.

Guanling Chen and David Kotz. A survey of context-aware mobile computing research. Technical
report, Hanover, NH, USA, 2000.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834—
848, 2018.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning.
In ACM Sigplan Notices, volume 49, pages 269-284. ACM, 2014.

Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and perspectives. [EEE
access, 2:514-525, 2014.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Hyun-Duk Cho, Ph D Principal Engineer, Kisuk Chung, and Tachoon Kim. Benefits of the big.
little architecture. EETimes, Feb, 2012.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1251-1258, 2017.

Dan C Ciregan, Alessandro Giusti, Luca M Gambardella, and Jiirgen Schmidhuber. Mitosis
detection in breast cancer histology images with deep neural networks. In Int. Conf. on Medical
Image Computing and Computer-assisted Intervention, pages 411-418. Springer, 2013.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXw preprint arXiv:1602.02830, 2016.

David J Crandall, Lars Backstrom, Daniel Huttenlocher, and Jon Kleinberg. Mapping the world’s
photos. In Proceedings of the 18th international conference on World wide web, pages 761-770.
ACM, 2009.

Scott G Dacko. Enabling smart retail settings via mobile augmented reality shopping apps.
Technological Forecasting and Social Change, 124:243-256, 2017.

Patrick Déhne and John N Karigiannis. Archeoguide: System architecture of a mobile outdoor
augmented reality system. In null, page 263. IEEE, 2002.

Stefan Daume and Victor Galaz. “anyone know what species this is?’—twitter conversations as
embryonic citizen science communities. PloS one, 11(3):e0151387, 2016.

Ranieri de Brito Moreira, Livia Castro Degrossi, and Joao Porto de Albuquerque. An experimental
evaluation of a crowdsourcing-based approach for flood risk management. In Paper presented at the
Conference: 12th Workshop on Exzperimental Software Engineering (ESELAW), at Lima, Peru,
2015.

Livia Castro Degrossi, JP Albuquerque, Maria Clara Fava, and Eduardo Mario Mendiondo. Flood
citizen observatory: a crowdsourcing-based approach for flood risk management in brazil. In 26th
Int. Conf. on Software Engineering and Knowledge Engineering, 2014.

101

Bibliography

[52]

53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248-255. IEEE, 2009.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural information
processing systems, pages 1269-1277, 2014.

Andreas Juergen Dietz, Claudia Kuenzer, Ursula Gessner, and Stefan Dech. Remote sensing of
snow-a review of available methods. International Journal of Remote Sensing, 33(13):4094-4134,
2012.

Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud comput-
ing: architecture, applications, and approaches. Wireless communications and mobile computing,

13(18):1587-1611, 2013.

Céline Dizerens, Fabia Hiisler, and Stefan Wunderle. Webcam imagery rectification and classifi-
cation: Potential for complementing satellite-derived snow maps over switzerland.

Omar El Ariss, Dianxiang Xu, Santosh Dandey, Brad Vender, Phil McClean, and Brian Slator.
A systematic capture and replay strategy for testing complex gui based java applications. In
Information Technology: New Generations (ITNG), 2010 Seventh International Conference on,
pages 1038-1043. IEEE, 2010.

Enrique Estellés-Arolas and Fernando Gonzalez-Ladron-De-Guevara. Towards an integrated
crowdsourcing definition. Journal of Information science, 38(2):189-200, 2012.

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau,
and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115-118, 2017.

Roman Fedorov, Darian Frajberg, and Piero Fraternali. A framework for outdoor mobile aug-
mented reality and its application to mountain peak detection. In International Conference on
Augmented Reality, Virtual Reality and Computer Graphics, pages 281-301. Springer, 2016.

Roman Fedorov, Piero Fraternali, and Chiara Pasini. Snowwatch: a multi-modal citizen science
application. In Web Engineering. 2016.

Colin J Ferster and Nicholas C Coops. A review of earth observation using mobile personal
communication devices. Computers € Geosciences, 51:339-349, 2013.

Alexander Finkelstein, Uri Almog, and Mark Grobman. Fighting quantization bias with bias.
arXw preprint arXiw:1906.03193, 2019.

Darian Frajberg, Carlo Bernaschina, Christian Marone, and Piero Fraternali. Accelerating deep
learning inference on mobile systems. To be published in International Conference on Al & Mobile
Services, 2019.

Darian Frajberg, Piero Fraternali, and Rocio Nahime Torres. Convolutional neural network for
pixel-wise skyline detection. In International Conference on Artificial Neural Networks, pages
12-20. Springer, 2017.

Darian Frajberg, Piero Fraternali, and Rocio Nahime Torres. Heterogeneous information inte-
gration for mountain augmented reality mobile apps. In 2017 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), pages 313-322. IEEE, 2017.

Darian Frajberg, Piero Fraternali, Rocio Nahime Torres, Carlo Bernaschina, and Roman Fedorov.
A testing framework for multi-sensor mobile applications. To be published in Journal of Mobile
Multimedia, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 249-256, 2010.

Hervé Goéau, Pierre Bonnet, Alexis Joly, Vera Baki¢, Julien Barbe, Itheri Yahiaoui, Souheil Selmi,
Jennifer Carré, Daniel Barthélémy, Nozha Boujemaa, et al. Pl@ntnet mobile app. In Proceedings
of the 21st International Conference on Multimedia. ACM, 2013.

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran: Timing-and touch-
sensitive record and replay for android. In 2013 35th International Conference on Software Engi-
neering (ICSE), pages 72-81. IEEE, 2013.

102

Bibliography

[71]
72|
73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]
[84]

[85]

[36]

[87]

[88]

[89]

[90]

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Michael F Goodchild. Citizens as sensors: the world of volunteered geography. GeoJournal,
69(4):211-221, 2007.

Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S Lew. Deep
learning for visual understanding: A review. Neurocomputing, 187:27-48, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International Conference on Machine Learning, pages 1737—
1746, 2015.

Philipp Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks.
arXw preprint arXiw:1605.06402, 2016.

Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEFE Per-
vasive Computing, 7(4):12-18, 2008.

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo,
Song Yao, Yu Wang, et al. Ese: Efficient speech recognition engine with sparse lstm on fpga.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 75-84. ACM, 2017.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep neural network. In 2016 ACM/IEEE
48rd Annual International Symposium on Computer Architecture (ISCA), pages 243-254. IEEE,
2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pages 1135—-1143,
2015.

Jussi Hanhirova, Teemu K&mérainen, Sipi Seppéald, Matti Siekkinen, Vesa Hirvisalo, and Antti
Yla-Jaaski. Latency and throughput characterization of convolutional neural networks for mobile
computer vision. In Proceedings of the 9th ACM Multimedia Systems Conference, pages 204-215.
ACM, 2018.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEFE international conference on neural networks, pages 293—299. IEEE, 1993.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961-2969, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 784-800, 2018.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 1389—
1397, 2017.

Matthias Hentschel and Bernardo Wagner. Autonomous robot navigation based on openstreetmap
geodata. In 13th International IEEE Conference on Intelligent Transportation Systems, pages
1645-1650. IEEE, 2010.

Derek L G Hill, Philipp G Batchelor, Mark Holden, and David J Hawkes. Medical image regis-
tration. Physics in Medicine and Biology, 46(3):R1-R45, feb 2001.

103

Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural networks
for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29, 2012.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Catherine Hoffman, Caren B Cooper, Eric B Kennedy, Mahmud Farooque, and Darlene Cavalier.
Scistarter 2.0: A digital platform to foster and study sustained engagement in citizen science. In
Analyzing the Role of Citizen Science in Modern Research, pages 50-61. IGI Global, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700-4708, 2017.

Jung-Chang Huang and Tau Leng. Generalized loop-unrolling: a method for program speedup. In
Symposium on Application-Specific Systems and Software Engineering and Technology. ASSET’99
(Cat. No. PR00122), pages 244-248. IEEE, 1999.

Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang, Yuan-
ging Lin, and Ruigang Yang. The apolloscape dataset for autonomous driving. arXiv preprint
arXiw:1803.06184, 2018.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, and
Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism. arXiv
preprint arXiw:1811.06965, 2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Journal
of Machine Learning Research, 18(1):6869-6898, 2017.

Yao-Ling Hung, Chih-Wen Su, Yuan-Hsiang Chang, Jyh-Chian Chang, and Hsiao-Rong Tyan.
Skyline localization for mountain images. In Multimedia and Ezpo (ICME), 2013 IEEFE Interna-
tional Conference on, pages 1-6. IEEE, 2013.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications. In 15th Annual International Conference on Mobile
Systems, Applications, and Services, pages 82-95. ACM, 2017.

Jyh-Jing Hwang and Tyng-Luh Liu. Pixel-wise deep learning for contour detection. arXiv preprint
arXiv:1504.01989, 2015.

Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design using
weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pages 1-6.
IEEE, 2014.

Otto Hyvérinen and Elena Saltikoff. Social media as a source of meteorological observations.
Monthly Weather Review, 138(8):3175-3184, 2010.

Forrest N Tandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXww preprint arXiw:1602.07360, 2016.

Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc
Van Gool. Ai benchmark: Running deep neural networks on android smartphones. In FEuro-
pean Conference on Computer Vision, pages 288-314. Springer, 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

José Luis Izkara, Juan Pérez, Xabier Basogain, and Diego Borro. Mobile augmented reality, an
advanced tool for the construction sector. In Proceedings of the 24th W78 conference, Maribor,
Slovenia, pages 190-202. Citeseer, 2007.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

104

Bibliography

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Overlay: Practical mobile augmented
reality. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applica-
tions, and Services, pages 331-344. ACM, 2015.

Ana Javornik. Augmented reality: Research agenda for studying the impact of its media charac-
teristics on consumer behaviour. Journal of Retailing and Consumer Services, 30:252-261, 2016.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093, 2014.

Alexis Joly, Hervé Goéau, Julien Champ, Samuel Dufour-Kowalski, Henning Miiller, and Pierre
Bonnet. Crowdsourcing biodiversity monitoring: how sharing your photo stream can sustain our
planet. In Proceedings of the 24th ACM international conference on Multimedia, pages 958-967.
ACM, 2016.

Shrinivas Joshi and Alessandro Orso. SCARPE: A technique and tool for selective capture and
replay of program executions. In 23rd IEEFE International Conference on Software Maintenance
(ICSM 2007), October 2-5, 2007, Paris, France, pages 234-243. IEEE, 2007.

Stephan Karpischek, Claudio Marforio, Mike Godenzi, Stephan Heuel, and Florian Michahelles.
Swisspeaks—mobile augmented reality to identify mountains. In Workshop at the International
Symposium on Mized and Augmented Reality 2009 (ISMAR 2009). Citeseer, 2009.

Felix Keis and Kevin Wiesner. Participatory sensing utilized by an advanced meteorological
nowcasting system. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
2014 IEEE Ninth International Conference on, pages 1-6. IEEE, 2014.

Sunyoung Kim, Jennifer Mankoff, and Eric Paulos. Sensr: evaluating a flexible framework for
authoring mobile data-collection tools for citizen science. In Proceedings of the 2013 conference
on Computer supported cooperative work, pages 1453-1462. ACM, 2013.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiw:1511.06530, 2015.

Qingkai Kong, Richard M Allen, Louis Schreier, and Young-Woo Kwon. Myshake: A smartphone
seismic network for earthquake early warning and beyond. Science advances, 2(2):e1501055, 2016.

Panos Kourouthanassis, Costas Boletsis, Cleopatra Bardaki, and Dimitra Chasanidou. Tourists
responses to mobile augmented reality travel guides: The role of emotions on adoption behavior.
Pervasive and Mobile Computing, 18:71-87, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097-1105,
2012.

Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qen-
dro, and Fahim Kawsar. Deepx: A software accelerator for low-power deep learning inference on
mobile devices. In Proceedings of the 15th International Conference on Information Processing in
Sensor Networks, page 23. IEEE Press, 2016.

Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and Fahim Kawsar.
An early resource characterization of deep learning on wearables, smartphones and internet-of-
things devices. In Proceedings of the 2015 international workshop on internet of things towards
applications, pages 7-12. ACM, 2015.

Nicholas D Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Claudio Forlivesi, and
Fahim Kawsar. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive
Computing, 16(3):82-88, 2017.

Nicholas D Lane and Petko Georgiev. Can deep learning revolutionize mobile sensing? In
Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications,
pages 117-122. ACM, 2015.

Nicholas D Lane, Petko Georgiev, and Lorena Qendro. Deepear: robust smartphone audio sensing
in unconstrained acoustic environments using deep learning. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, pages 283-294. ACM,
2015.

105

Bibliography

[127]
[128]

[129]
[130]

[131]
[132]
[133]

[134]

[135]

[136]

[137]

[138]
[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Nicholas D Lane and Pete Warden. The deep (learning) transformation of mobile and embedded
computing. Computer, 51(5):12-16, 2018.

G LeBuhn and R Schmucki. Identifying pollination service hotspots and coldspots using citizen
science data from the great sunflower project. In AGU Fall Meeting Abstracts, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598-605, 1990.

Dawei Li, Xiaolong Wang, and Deguang Kong. Deeprebirth: Accelerating deep neural network
execution on mobile devices. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Chieh-Jan Mike Liang, Nicholas D. Lane, Niels Brouwers, Li Zhang, Borje Karlsson, Hao Liu, Yan
Liu, Jun Tang, Xiang Shan, Ranveer Chandra, and Feng Zhao. Caiipa: automated large-scale
mobile app testing through contextual fuzzing. In Sung-Ju Lee, Ashutosh Sabharwal, and Prasun
Sinha, editors, The 20th Annual International Conference on Mobile Computing and Networking,
MobiCom’14, Maui, HI, USA, September 7-11, 2014, pages 519-530. ACM, 2014.

Wen-Nung Lie, Tom C.-I. Lin, Ting-Chih Lin, and Keng-Shen Hung. A robust dynamic program-
ming algorithm to extract skyline in images for navigation. Pattern Recognition Letters, 26(2):221
— 230, 2005.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1812.4400,
2013.

Maria Teresa Linaza, Aitor Gutierrez, and Ander Garcia. Pervasive augmented reality games to
experience tourism destinations. In Information and Communication Technologies in Tourism
2014, pages 497-509. Springer, 2013.

Haibin Ling. Augmented reality in reality. IEEE MultiMedia, 24(3):10-15, 2017.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I
Sénchez. A survey on deep learning in medical image analysis. Medical image analysis, 42:60—88,
2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431-3440, 2015.

Scott R Loss, Sara S Loss, Tom Will, and Peter P Marra. Linking place-based citizen science
with large-scale conservation research: a case study of bird-building collisions and the role of
professional scientists. Biological Conservation, 184:439-445, 2015.

Christopher S Lowry and Michael N Fienen. Crowdhydrology: crowdsourcing hydrologic data and
engaging citizen scientists. Ground Water, 51(1):151-156, 2013.

Zongqging Lu, Swati Rallapalli, Kevin Chan, and Thomas La Porta. Modeling the resource re-
quirements of convolutional neural networks on mobile devices. arXiv preprint arXiv:1709.09503,
2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the Furopean Conference on Computer
Vision (ECCYV), pages 116-131, 2018.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 224-234, New York, NY, USA, 2013. ACM.

Nicolas Maisonneuve, Matthias Stevens, Maria E Niessen, and Luc Steels. Noisetube: Measuring
and mapping noise pollution with mobile phones. In Information technologies in environmental
engineering, pages 215-228. Springer, 2009.

106

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]
[158]

[159]

[160]

[161]

[162]

[163]

[164]

Sotiris Makris, Panagiotis Karagiannis, Spyridon Koukas, and Aleksandros-Stereos Matthaiakis.
Augmented reality system for operator support in human-robot collaborative assembly. CIRP
Annals, 65(1):61-64, 2016.

Irene Garcia Marti, Luis E Rodriguez, Mauricia Benedito, Sergi Trilles, Arturo Beltran, Laura
Diaz, and Joaquin Huerta. Mobile application for noise pollution monitoring through gamification
techniques. In International Conference on Entertainment Computing, pages 562-571. Springer,
2012.

Nargess Memarsadeghi. Citizen science [guest editors’ introduction]. Computing in Science En-
gineering, 17(4):8-10, July 2015.

Julien Minet, Yannick Curnel, Anne Gobin, Jean-Pierre Goffart, Francois Melard, Bernard Ty-
chon, Joost Wellens, and Pierre Defourny. Crowdsourcing for agricultural applications: A review
of uses and opportunities for a farmsourcing approach. Computers and Electronics in Agriculture,
142:126-138, 2017.

Anastasia Moumtzidou, Symeon Papadopoulos, Stefanos Vrochidis, Ioannis Kompatsiaris, Kon-
stantinos Kourtidis, George Hloupis, Ilias Stavrakas, Konstantina Papachristopoulou, and
Christodoulos Keratidis. Towards air quality estimation using collected multimodal environmen-
tal data. In International Workshop on Internet and Social Media for Environmental Monitoring.
Springer, 2016.

Gustavo Maglhaes Moura and Rodrigo Luis De Souza Da Silva. Analysis and evaluation of
feature detection and tracking techniques using open cv with focus on markerless augmented
reality applications. J. Mobile Multimedia, 12(3&4):291-302, 2017.

Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software testing of mobile applica-
tions: Challenges and future research directions. In Proceedings of the 7th International Workshop
on Automation of Software Test, pages 29-35. IEEE Press, 2012.

Haripriya Mukundarajan, Felix Jan Hein Hol, Erica Araceli Castillo, Cooper Newby, and Manu
Prakash. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance.
Elife, 6:€27854, 2017.

Calvin Murdock, Nathan Jacobs, and Robert Pless. Webcam2satellite: Estimating cloud maps
from webcam imagery. In Applications of Computer Vision (WACV), 2013 IEEE Workshop on,
pages 214-221. IEEE, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807—
814, 2010.

February NatureServe. Natureserve explorer: an online encyclopedia of life, 2012.

Greg Newman, Jim Graham, Alycia Crall, and Melinda Laituri. The art and science of multi-scale
citizen science support. Ecological Informatics, 6(3-4):217-227, 2011.

Hung Nguyen, Sarah J Maclagan, Tu Dinh Nguyen, Thin Nguyen, Paul Flemons, Kylie Andrews,
Euan G Ritchie, and Dinh Phung. Animal recognition and identification with deep convolutional
neural networks for automated wildlife monitoring. In 2017 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), pages 40-49. IEEE, 2017.

Heidi Liljeblad @degard, Jo Eidsvik, and Stein-Erik Fleten. Value of information analysis of snow
measurements for the scheduling of hydropower production. Energy Systems, 10(1):1-19, 2019.

Janne Paavilainen, Hannu Korhonen, Kati Alha, Jaakko Stenros, Elina Koskinen, and Frans
Mayra. The pokémon go experience: A location-based augmented reality mobile game goes
mainstream. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
pages 2493-2498. ACM, 2017.

Yangil Park and Jengchung V Chen. Acceptance and adoption of the innovative use of smartphone.
Industrial Management & Data Systems, 107(9):1349-1365, 2007.

Dexmont Pena, Andrew Forembski, Xiaofan Xu, and David Moloney. Benchmarking of cnns
for low-cost, low-power robotics applications. In RSS 2017 Workshop: New Frontier for Deep
Learning in Robotics, 2017.

Nathan Piasco, Désiré Sidibé, Cédric Demonceaux, and Valérie Gouet-Brunet. A survey on visual-
based localization: On the benefit of heterogeneous data. Pattern Recognition, 74:90-109, 2018.

107

Bibliography

[165]

[166]

[167]

[168]

[169]
[170]
[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Gian Pietro Picco, Christine Julien, Amy L. Murphy, Mirco Musolesi, and Gruia-Catalin Roman.
Software engineering for mobility: reflecting on the past, peering into the future. In James D.
Herbsleb and Matthew B. Dwyer, editors, Proceedings of the on Future of Software Engineering,
FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, pages 13—28. ACM, 2014.

Lara Piccolo, Miriam Fernandez, Harith Alani, Arno Scharl, Michael Fols, and David Herring.
Climate change engagement: Results of a multi-task game with a purpose. In Proceedings of the
1st international workshop on Social Web for Environmental and Ecological Monitoring. AAAT
Publications, 2016.

Matthew Pittman and Kim Sheehan. Amazonis mechanical turk a digital sweatshop? trans-
parency and accountability in crowdsourced online research. Journal of media ethics, 31(4):260—
262, 2016.

Lorenzo Porzi, Samuel Rota Bulo, Paolo Valigi, Oswald Lanz, and Elisa Ricci. Learning con-
tours for automatic annotations of mountains pictures on a smartphone. In Proceedings of the
International Conference on Distributed Smart Cameras, page 13. ACM, 2014.

Lorenzo Porzi, Samuel Rota Bulo, and Elisa Ricci. A deeply-supervised deconvolutional network
for horizon line detection. In Proc. ACM Multimedia Conf., pages 137-141. ACM, 2016.

Kathrin Poser and Doris Dransch. Volunteered geographic information for disaster management
with application to rapid flood damage estimation. Geomatica, 2010.

Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla. Fast-scnn: fast semantic segmentation
network. arXiv preprint arXiv:1902.04502, 2019.

Khandaker Mustakimur Rahman, Tauhidul Alam, and Mahfuzulhoq Chowdhury. Location based
early disaster warning and evacuation system on mobile phones using openstreetmap. In 2012
IEEFE Conference on Open Systems, pages 1-6. IEEE, 2012.

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy
Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al. Chexnet: Radiologist-level pneumo-
nia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225, 2017.

Deva Ramanan and Xiangxin Zhu. Face detection, pose estimation, and landmark localization in
the wild. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2879-2886. Citeseer, 2012.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pages 525-542. Springer, 2016.

Philipp A Rauschnabel, Alexander Rossmann, and M Claudia tom Dieck. An adoption framework
for mobile augmented reality games: The case of pokémon go. Computers in Human Behavior,
2017.

Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrishnan. Automatic and
scalable fault detection for mobile applications. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 14, pages 190-203, New
York, NY, USA, 2014. ACM.

Sasank Reddy, Katie Shilton, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava.
Evaluating participation and performance in participatory sensing. UrbanSense08, page 1, 2008.

Manoj R Rege, Vlado Handziski, and Adam Wolisz. Realistic context generation for mobile app
testing and performance evaluation. In Pervasive Computing and Communications (PerCom),
2017 IEEFE International Conference on, pages 297-308. IEEE, 2017.

Gerhard Reitmayr and Tom Drummond. Going out: robust model-based tracking for outdoor
augmented reality. In Proceedings of the 5th IEEE and ACM International Symposium on Mized
and Augmented Reality, 2006.

Jun Rekimoto and Katashi Nagao. The world through the computer: Computer augmented inter-
action with real world environments. In Proceedings of User Interface Software and Technologyd95,
1999.

LiKamWa Robert, Hou Yunhui, Gao Yuan, Polansky Mia, and Zhong Lin. Redeye: Analog convnet
image sensor architecture for continuous mobile vision. In 43rd ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22, 2016, pages
255266, 2016.

108

Bibliography

[183]
[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]
[197]
[198]

[199]

[200]

[201]

[202]

Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1-39, 2010.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 234—241. Springer, 2015.

Dominic Riifenacht, Matthew Brown, Jan Beutel, and Sabine Siisstrunk. Temporally consistent
snow cover estimation from noisy, irregularly sampled measurements. In Proc. 9th International
Conference on Computer Vision Theory and Applications, 2014.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited,, 2016.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings of the 19th international conference on World
wide web, pages 851-860. ACM, 2010.

Rosamaria Salvatori, Paolo Plini, Marco Giusto, and et al. Snow cover monitoring with images
from digital camera systems. [talian Journal of Remote Sensing, 43:137-145, 2011.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4510-4520, 2018.

Carlos GR Santos, Tiago Aratjo, Paulo R Chagas, Nelson Neto, and Bianchi S Meiguins. Rec-
ognizing and exploring azulejos on historic buildings’ facades by combining computer vision and
geolocation in mobile augmented reality applications. Journal of Mobile Multimedia, 13(1-2):57—
74, 2017.

Olivier Saurer, Georges Baatz, Kevin Koser, Marc Pollefeys, et al. Image based geo-localization
in the alps. International Journal of Computer Vision, 116(3):213-225, 2016.

Svend-Jonas Schelhorn, Benjamin Herfort, Richard Leiner, Alexander Zipf, and Jodo Porto De Al-
buquerque. Identifying elements at risk from openstreetmap: The case of flooding. In ISCRAM,
2014.

Dominik Scherer, Andreas Miiller, and Sven Behnke. Evaluation of pooling operations in con-
volutional architectures for object recognition. In International conference on artificial neural
networks, pages 92-101. Springer, 2010.

E Schnebele, G Cervone, and N Waters. Road assessment after flood events using non-
authoritative data. Natural Hazards and Earth System Science, 2014.

Joachim Scholz and Andrew N Smith. Augmented reality: Designing immersive experiences that
maximize consumer engagement. Business Horizons, 59(2):149-161, 2016.

Abhishek Sehgal and Nasser Kehtarnavaz. Guidelines and benchmarks for deployment of deep
learning models on smartphones as real-time apps. arXiv preprint arXiv:1901.02144, 2019.

Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label? improving data
quality and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 614-622. ACM, 2008.

Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmarking state-of-the-art deep
learning software tools. In 7th International Conference on Cloud Computing and Big Data
(CCBD), pages 99-104. IEEE, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489,
2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

109

Bibliography

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

Robert Simpson, Kevin R Page, and David De Roure. Zooniverse: observing the world’s largest
citizen science platform. In Proceedings of the 23rd international conference on world wide web,
pages 1049-1054. ACM, 2014.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng. Cheap and fast—but is
it good?: evaluating non-expert annotations for natural language tasks. In Proceedings of the
conference on empirical methods in natural language processing, pages 254-263. Association for
Computational Linguistics, 2008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Xing Su, Hanghang Tong, and Ping Ji. Activity recognition with smartphone sensors. Tsinghua
Science and Technology, 19(3):235-249, 2014.

Brian L Sullivan, Christopher L. Wood, Marshall J Iliff, Rick E Bonney, Daniel Fink, and Steve
Kelling. ebird: A citizen-based bird observation network in the biological sciences. Biological
Conservation, 142(10):2282-2292, 2009.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104-3112, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1-9,
2015.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

Giovanni Taverriti, Stefano Lombini, Lorenzo Seidenari, Marco Bertini, and Alberto Del Bimbo.
Real-time wearable computer vision system for improved museum experience. In Proceedings of
the 2016 ACM on Multimedia Conference, pages 703-704. ACM, 2016.

Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. Adaptive
deep learning model selection on embedded systems. In Proceedings of the 19th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded
Systems, pages 31-43. ACM, 2018.

Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden, Hari Balakrishnan,
Sivan Toledo, and Jakob Eriksson. Vtrack: accurate, energy-aware road traffic delay estimation
using mobile phones. In Proceedings of the 7th ACM conference on embedded networked sensor
systems, pages 85—-98. ACM, 2009.

Yoshitaka Tokusho and Steven Feiner. Prototyping an outdoor mobile augmented reality street
view application. In Proceedings of ISMAR Workshop on Outdoor Mized and Augmented Reality,
volume 2. Citeseer, 2009.

Rocio Nahime Torres, Darian Frajberg, Piero Fraternali, and Sergio Luis Herrera Gonzales.
Crowdsourcing landforms for open gis enrichment. In 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA), pages 604-611. IEEE, 2018.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 595-604, 2015.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8769-8778,
2018.

Vaninha Vieira, Konstantin Holl, and Michael Hassel. A context simulator as testing support for
mobile apps. In Roger L. Wainwright, Juan Manuel Corchado, Alessio Bechini, and Jiman Hong,
editors, Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 18-17, 2015, pages 535-541. ACM, 2015.

Ji Wang, Bokai Cao, Philip Yu, Lichao Sun, Weidong Bao, and Xiaomin Zhu. Deep learning to-
wards mobile applications. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pages 1385-1393. IEEE, 2018.

110

Bibliography

[220]

[221]
[222]
[223]
[224]

[225]

[226]

[227]

[228]
[229]

[230]

[231]

[232]

[233]
[234]

[235]

[236]

Jingya Wang, Mohammed Korayem, and David J Crandall. Observing the natural world with
flickr. In Computer Vision Workshops (ICCVW), 2013 IEEE International Conference on, pages
452-459. IEEE, 2013.

Ruohui Wang. Edge detection using convolutional neural network. In Int. Symposium on Neural
Networks, pages 12—20. Springer, 2016.

Yiwei Wang, Nicole Kaplan, Greg Newman, and Russell Scarpino. Citsci. org: A new model for
managing, documenting, and sharing citizen science data. PLoS biology, 13(10):€1002280, 2015.

Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with convolutional
neural networks. In European Conference on Computer Vision, pages 37-55. Springer, 2016.

Lee J White. Regression testing of gui event interactions. In Software Maintenance 1996, Pro-
ceedings., International Conference on, pages 350-358. IEEE, 1996.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L. Ruvolo. Whose
vote should count more: Optimal integration of labels from labelers of unknown expertise. In
Advances in neural information processing systems, pages 2035-2043, 2009.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4820-4828, 2016.

Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In Proceedings of the IEEE
international conference on computer vision, pages 1395-1403, 2015.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Haipeng Zhang, Mohammed Korayem, David J Crandall, and Gretchen LeBuhn. Mining photo-
sharing websites to study ecological phenomena. In Proceedings of the 21st international conference
on World Wide Web, pages 749-758. ACM, 2012.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient con-
volutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6848-6856, 2018.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages
2881-2890, 2017.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quanti-
zation: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image and Vision Com-
puting, 21(11):977 — 1000, 2003.

Matthew Zook, Mark Graham, Taylor Shelton, and Sean Gorman. Volunteered geographic infor-
mation and crowdsourcing disaster relief: a case study of the haitian earthquake. Awailable at
SSRN 2216649, 2010.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiw:1611.01578, 2016.

111

APPENDIX

Comprehensive inference time experimental results

This appendix presents comprehensive tables with more detailed information about the experiment
discussed in Section [6.3.3] to analyze the performance of TensorFlow Lite and PolimiDL inference exe-
cution frameworks. The following tables include the values for each of the three evaluation iterations
(1-2-3) executed on each combination of model, device, and configuration; their average (AVG); and
the percentage difference (DIFF) of PolimiDL w.r.t. TensorFlow Lite. Moreover, the Sample Standard
Deviation (S) is included to provide an indication on the stability of the experimental results. Positive
results for PolimiDL are highlighted in green and negative results in red.

Table [A7T] reports the experimental results for PL Original Model and extends Table [6.4f Table
reports the experimental results for PL Optmized Model vl and extends Table [6.5} and Table
reports the experimental results for MobileNet and extends Table [6.6]

113

ime experimental results

Appendix A. Comprehensive inference t

TensorFlow Lite (ms)

PolimiDL (ms)

Min(4, Threads) Max(1, Threads-1) All Threads Min(4, Threads) Max(1, Threads-1) All Threads

Device 1|2 (3| S|AVG| 1|2 |3 | S |AVG|1 |2 |3 |S |AVG|1|2|3| S |AVG DIFF(%)| 1|2 | 3| S |AVG DIFF(%)|1|2|3| S |AVG |DIFF(%)
Asus Zenfone 2 [1354(1352|1352(1.15|1352.67|1674|1672|1672| 1.15 |1672.67|1355|1353|1351|2.00 [1353.00{938|937 933|2.65 | 936.00 | -30.80 (1140/1137|1137|1.73|1138.00| -31.96 |935 943|932/5.69|936.67 | -30.77
Google Pixel {210 | 206 | 207 |2.08|207.67 | 260 | 254 | 252 | 4.16 | 255.33 | 214 | 209 | 208 |3.21| 210.33 {144(145 146/1.00| 145.00 | -30.18 |168|174|171|3.00|171.00 | -33.03 |146 144/145/1.00|145.00| -31.06
LG G5 SE 417 | 416 | 423 |3.79| 418.67 | 282 | 300 | 288 | 9.17 | 290.00 | 270 | 277 | 271 |3.79| 272.67 276|274 269|3.61| 273.00 | -34.79 |208|210|209 |1.00|209.00 | -27.93 |204 201|196/4.04|200.33 | -26.53
LG Nexus 5X |424 | 424|423 |0.58|423.67 | 371|369 | 371 | 1.15|370.33 | 335 | 340 | 334 | 3.21| 336.33 [434/433 430(2.08 | 432.33 2.05 343 (343 | 341 |1.15| 342.33| -7.56 |287279(281/4.16|282.33| -16.06
Motorola Nexus 6| 335 | 336 | 339 |2.08| 336.67 | 507 | 520 | 489 |15.57| 505.33 | 339 | 334 | 340 |3.21 | 337.67 |169|169 169|0.00| 169.00 | -49.80 (217 |215|215|1.15|215.67 | -57.32 |170167|168|1.53|168.33 | -50.15
One Plus 6T | 176 [175|177 {1.00| 176.00 | 143 | 145 | 145 | 1.15 | 144.33 | 142 | 146 | 148 |3.06 | 145.33 |103|104 105/1.00| 104.00 | -40.91 | 90 | 91 | 92 |1.00| 91.00 | -36.95 |89 89|89 0.00| 89.00 | -38.76
Average - - - |1.78/485.89| - - - 15.39|539.67| - - - [3.08{442.56| - | - - [1.72(343.22| -30.74 - - - |1.51(361.17 46 | - - | - |2.74/303.61| -32.22

Table A.1: Comprehensive experimental results of PL Original Model.

114

‘T 1apopy pazawd() TJ 0 synsal [pjuduiLadrs anisusyasduwio)) g Y Olqel,

€L°29- |19°69(6L°T| - | - | - | 6979~ |8C'GLLE'T| - | - | - | 80°€9- (68°'FL|€6°T| - | - | - |09'FT2|ch'G| - | - | - [oLPeg|STE| - | - | - [19'9gg|e¥G| - | - | - o8eloAy
€€°99- | £6°CC [8¢°0| €3 |GG | 8o | 66799~ | L9°CT [8G°0| GG | € |€C| 00°L9- |00°CE [00°0| GG |GG |GG | ££°99 |8°0| 99 29|99 | L9°89 [8S°0[69|89 | 69| 29°99 |85°0|L9[99(L9| L9 suld ouQ
88°€9- | 0067 |00°€| 97 | 67 |GG | 2704~ | 0099 |00°C| 79 |99 |89 | TL'@9- |€€CS |TGF|8F |GS | LS| L9 GET |9TF|LET|6ET|TET| LY'GTT |0S'S [68E|GET|9TT| €€ 0FT | 666 |SFT|SFT|0ST|9 SNXON BIOI0J0I
97" LG~ |00°LL |SLT|9L|9L|6L| 8€'8G- |€€08|€ST|6L |08 |28 | 998G~ |L9F8|8G°0|F8 | S8 | S8 |00 TST [00'T|I8T|28T|0ST| 00°E6T |00°T [G6T[F6T|E6T| ££F0T | 80 |F0T|S0T|F0T| X& SNXoN DT
6L°8%- | L9°0L [cST|TL |89 |€L| ¥8°0S- |00°89 [00°G|0L|89|99| 6T'6F- |EEFH6|1SG|86 | L6 |88|00°8ET |9&F |€FT|CET|9ET| €6°8ET | 167G [LET|TPT|LET| L9°G8T |GG°1E|805[FST|GIT| dS §D DT
09°29- |00°1€ |00°0| T€ | T€ | T€| T8°29- |€€'GE |€GT|LE | GE |FE| TP'€9- [00°0€|00°0|0€ | 0€|0€ | L9°G8 [80°C| 18|28 |98 | 00°G6 |00°T|F6 |96 |S6| 007G [00°0|38| 38|28 | [OXId o[800D
Voo LA~ [L9°LOT|68°C|99T|TLT|99T| 08°LL- |€€'6LT|8S0|6LT|0ST|6LT| 6G°LL= [00°99T|00°T [99T|GOT|LIT| €€°E€FL | TEG|9PL|GPL|GPL| L9°L08 | 1G°C |SOS[FTS[FOS| L9°0FL | 8G°0 |TFL|0L|TPL| G PuOjueZ susy

(%)AAIA|DAV| S | € |2 | T |(R)IAIADAV| S | € |2 | T |((%)IJIA[DAV| S [€ [T | T |DAV| S |€|2|T|DAV| S |€|C|T|DAV| S |€|c|T @d1A0(]

speaay, IV (T-speoay, ‘T)xeN (speoayy, ‘¥)urin speaay, IV (T-speaay, ‘T)XeIN | (Speday, ‘p)wIN

(sw) T@ruiod

(sur) 9917 moO[JI0SUS]T,

115

ime experimental results

Appendix A. Comprehensive inference t

TensorFlow Lite (ms)

PolimiDL (ms)

Min(4, Threads)

Max(1, Threads-1)

All Threads

Min(4, Threads)

Max(1, Threads-1)

All Threads

Device 1(2|3|S|AVG|1|2|3|S|AVG|1|2(3| S |AVG|1|2|3| S |AVG DIFF(%) 1|2 |3| S |AVG |DIFF(%) 1|2 |3 | S | AVG |DIFF(%)
Asus Zenfone 2 |734|735(733|1.00| 734.00 |775|774|777| 1.53 | 775.33 |732|734734| 1.15| 733.33 |372|371|370| 1.00| 371.00 | -49.46 378|378(376|1.15|377.33 | -51.33 377|372(374| 2.52 | 374.33| -48.95
Google Pixel | 76|76 |75|0.58| 75.67 |84 |82 |81 |1.53| 82.33 | 77| 75|79|2.00| 77.00 | 73|76 |73 [1.73| 74.00 | -2.20 82|83|830.58| 82.67 | 0.40 73 |75|73|1.15| 73.67 | -4.33
LG G5 SE |257|270(264|6.51 | 263.67 [273|279(272| 3.79 | 274.67 [274(277|276| 1.53| 275.67 |274/279|277| 2.52 | 276.67| 4.93 257|257(263(3.46|259.00| -5.70 253(269|247|11.37 256.33| -7.01
LG Nexus 5X [216|218(218|1.15 | 217.33|226(225(224| 1.00| 225.00 [222/224(224|1.15| 223.33 [222(222/223/0.58 222.33 | 2.30 239|236(228/5.69|234.33 | 4.15 226/226226| 0.00 | 226.00| 1.19
Motorola Nexus 6220|220|224|4.51| 224.33|296|300(299| 2.08 | 298.33 |225/227|231| 3.06| 227.67 205207199/ 4.16| 203.67| -9.21 180[171|177|4.58176.00| -41.01 193[132(165/30.53 163.33 | -28.26
One Plus 6T | 58|56 | 56 |1.15| 56.67 | 57 | 57|56 |0.58| 56.67 | 59 | 57 | 57 |1.15| 57.67 | 49|50 |50 [0.58| 49.67 | -12.35 51|52|520.58| 51.67 | -8.82 54 |51|54|1.73| 53.00 | -8.09
Average - |- |- [2.48/261.94| - | - | - [1.75285.39] - | - | - [1.67|265.78| - | - | - [1.76(199.56| -11.00 - | - | - |2.67|196.83| -17.05 - | - | - |7.88(191.11 -15.91

Table A.3: Comprehensive experimental results of MobileNet model.

116

	Introduction
	Problem Statement
	Research questions
	Contributions
	Structure of the thesis

	Background
	Image-based geolocalozation
	Image-to-terrain registration
	Skyline extraction

	Augmented Reality
	Mobile Augmented Reality
	Mountain exploration applications

	Artificial Intelligence on the edge
	Compression techniques
	Optimized model architectures
	Hardware acceleration
	Heterogeneous computing scheduling
	Mobile DL Frameworks
	Benchmarking

	Multi-sensor applications testing
	Crowdsourcing and Citizen Science
	Platforms
	Environmental monitoring

	Use case
	Mountain analysis
	SnowWatch
	Offline Peak Detection for the Web
	PeakLens app

	Image-based geolocalization in natural environments
	Requirements
	Data set collection
	Pipeline for skyline detection
	Pixel-wise skyline detection
	Column-wise detection

	Evaluation
	Experimental setup
	Metrics
	Experimental results

	Outdoor Mobile Augmented Reality Framework
	Requirements
	The Development Framework
	Sensor Manager
	Data Manager
	Position Alignment Manager
	Graphical User Interface

	Dimensions of heterogeneous augmentation data
	Outdoor Mobile AR application for mountain exploration
	Framework instantiation
	Data management
	Dimensions of heterogeneous augmentation data
	Usage evaluation

	Deep Learning model optimization for low-power systems
	Requirements
	Model optimization
	Depthwise Separable Convolutional Neural Network
	Inverted Residual with Linear Bottleneck Neural Network

	Evaluation
	Experimental setup
	Metrics
	Experimental results

	Discussion
	Limits to generalization

	Deep Learning inference optimization for low-power systems
	Requirements
	The PolimiDL Framework
	Generation-time optimizations
	Compile-time optimizations
	Initialization-time optimizations
	Configuration time optimizations
	Run-time optimizations
	Layers coverage

	Evaluation
	Experimental setup
	Metrics
	Experimental results

	Discussion
	Limits to generalization

	Multi-Sensor Mobile Application Testing Framework
	Requirements
	The Testing Framework
	Architecture
	Implementation

	Evaluation
	Case study
	Experimental setup
	Metrics
	Experimental results

	Discussion
	Limits to generalization
	Limits to fidelity

	Conclusions and Future Work
	Bibliography
	Appendix Comprehensive inference time experimental results

