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Abstract

Small Mediterranean islands represent a paradigmatic example of remote,
off-grid systems facing a large number of sustainability issues, mainly due
to their distance from the mainland, the lack of accessible water sources,

and the high seasonal variability of both water and electricity demand. En-
ergy security is generally reliant on carbon intensive diesel generators, which
are usually oversized to meet peak summer electricity demand driven by high
touristic fluxes. Potable water is often produced by energy intensive desali-
nation technologies, which strongly impact on the electricity system, increas-
ing air pollution and greenhouse gas emissions. In order to improve the eco-
nomic and environmental sustainability of small islands, the design of hybrid
energy systems, combining traditional power generation with renewable en-
ergy sources and storage technologies, represents a viable and promising solu-
tion. However, traditional methods for designing such systems usually neglect
important aspects and challenges. Major challenges include (i) the optimal con-
trol of the electricity system as well as its interconnection with other energy
vectors (e.g., gas, heat) and domains (e.g., water system) for fully exploiting re-
newable power, (ii) the interdependency between system planning and its oper-
ation, (iii) the presence of multiple, potentially conflicting, objectives reflecting
economic, environmental and other sustainability aspects, (iv) deep uncertainty
in climate, technological and socio-economic conditions thatmay affect the sys-
tem performance over a medium-to-long term horizon.
Driven by these challenges, this thesis contributes novelmethodologies for sup-
porting energy systems transition towards decarbonization, helping decision
makers to identify viable solutions at different temporal scales in light of plau-
sible future conditions thatmight unfold. In particular, we develop a set ofmod-
elling and optimization tools for optimizing both the design and the operations
of off-gridwater-energy systems, also considering the uncertainty related to fu-
ture changes in the main external drivers. The proposed methodologies allow
us to (i) investigate the benefits of explicitly considering the interdependency
between system design and operation with respect to multiple economical, en-
vironmental and efficiency objectives, (ii) assess the vulnerability of hybrid en-
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ergy systems to the future uncertainty in the main external drivers, and (iii)
design solutions that are robust with respect to this uncertainty.
The first deliverable of this research is a novel multi-objective, dynamic ap-
proach for conjunctively optimizing design and operation of water-energy sys-
tems by focusing on the interconnection between electricity generation andwa-
ter supply through the optimal control of desalination plant. Secondly, we pro-
pose a methodological framework to assess the vulnerability of hybrid energy
systemswith respect to changes in themain climate drivers (i.e., solar radiation,
wind speed, temperature). More precisely, we evaluate how historical variabil-
ity and future uncertainty in these climate variables affect the performance of
highly renewable hybrid energy systems, designedunder average historical con-
ditions, in terms of different sustainability indicators. Finally, we focus on the
challenge of directly including deep uncertainty in future climate driverswithin
the system design phase. Since the performance of hybrid energy systems in
small Mediterranean islands strictly depends on multiple, deeply uncertain co-
varying drivers, a very large number of future scenarios should be considered
and, consequently, included within the optimization process for generating ro-
bust solutions, leading to very high, or even intractable, computational time for
solving the problem. To address this issue, we develop ROSS (Robust Optimal
Scenario Selection), a novel algorithm that uses active learning for adaptively
selecting the smallest scenario subset to be included into a robust optimization
process.
We test our novel approaches on the real case study of the Italian Ustica island,
which represents a paradigmatic example of off-grid Mediterranean island.
Main thesis outcomes show that considering the interdependency between sys-
tem design and operation by dynamically modelling the nexus between water
production and electricity generation allows to significantly improve system
performance by reducing the structural interventions, the investment costs and
the environmental impacts. In addition, results suggest that wind speed rep-
resents the climate variable that mainly influences the performance of hybrid
energy systems, which will likely degrade on a medium-to-long term horizon.
Finally, our novel ROSS algorithm allows to obtain robust hybrid energy system
designs reducing computational requirements between 23% and 84% compared
with traditional robust optimization methods, depending on the complexity of
the robustness metrics considered. Moreover, it is able to identify very small
regions of the scenario space containing the most informative scenarios high-
lighting the main system vulnerabilities.
Part of this research has appeared (or has to appear) in the following journal
publications:

• Giudici, F., Castelletti, A., Garofalo, E., Giuliani, M., Maier, H. R., 2019a.
Dynamic, multi-objective optimal design and operation of water-energy
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systems for small, off-grid islands. Applied Energy 250, 605–616;

• Giudici, F., Castelletti, A.,Giuliani,M.,Maier,H.R., 2019c. An active learn-
ing approach for identifying the smallest subset of informative scenarios
for robust planning under deep uncertainty. Environmental Modelling &
Software (Under Review);

• Giudici, F., Castelletti, A., Garofalo, E., Maier, H. R., 2019b. Exploring the
effects of climate change and technological innovation on the robust de-
sign of off-grid hybrid energy systems. Nature Energy (in preparation).
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Sommario

Le piccole isole delMediterraneo rappresentanoun esempio paradigmatico
di sistemi remoti fuori rete che affrontano un gran numero di problemi
di sostenibilità, principalmente a causa della loro distanza dalla terra-

ferma, della mancanza di sorgenti d’acqua accessibili e dell’elevata variabilità
stagionale della domanda di acqua ed elettricità. La sicurezza energetica dipen-
de generalmente da generatori diesel, che di solito sono sovradimensionati per
soddisfare il picco della domanda di elettricità estiva dovuta agli elevati flussi
turistici. L’acqua potabile è spesso prodotta da tecnologie di dissalazione alta-
mente energivore, che incidono fortemente sul sistema elettrico, aumentando
l’inquinamento atmosferico e le emissioni di gas serra. Al fine di migliorare
la sostenibilità economica e ambientale delle piccole isole, la progettazione di
sistemi energetici ibridi, che combinano generazione elettrica da fonti tradi-
zionali con fonti di energia rinnovabili e tecnologie di stoccaggio, rappresenta
una soluzione praticabile e promettente. Tuttavia, i metodi tradizionali per la
progettazione di tali sistemi di solito trascurano aspetti importanti. I principali
aspetti includono (i) il controllo ottimale del sistema elettrico e la sua intercon-
nessione con altri vettori energetici (ad es. gas, calore) e sistemi (ad es. sistema
idrico) per sfruttare pienamente la risorsa rinnovabile, (ii) l’interdipendenza tra
la pianificazionedel sistema e la sua gestione, (iii) la presenza dimolteplici obiet-
tivi, potenzialmente conflittuali, che riflettono aspetti economici, ambientali e
di sostenibilità, (iv) la profonda incertezza in condizioni climatiche, tecnologi-
che e socio-economiche che possono influire sulle prestazioni del sistema in un
orizzonte di medio-lungo termine.
Spinto da queste sfide, questa tesi propone nuove metodologie per supportare
la transizione dei sistemi energetici verso la decarbonizzazione, aiutando i de-
cisori a identificare soluzioni praticabili su diverse scale temporali, alla luce di
possibili condizioni future che potrebbero verificarsi. In particolare, sviluppia-
mo una serie di strumenti di modellizzazione e ottimizzazione per ottimizzare
sia la progettazione che le operazioni dei sistemi acqua-energia fuori rete, anche
considerando l’incertezza relativa ai futuri cambiamenti nelle principali forzan-
ti esterne. Le metodologie proposte ci consentono di (i) studiare i vantaggi di
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considerare esplicitamente l’interdipendenza tra la progettazione del sistema e
il suo funzionamento rispetto a molteplici obiettivi economici, ambientali e di
efficienza, (ii) valutare la vulnerabilità dei sistemi energetici ibridi rispetto al-
l’incertezza futura nelle principali forzanti esterne, e (iii) identificare soluzioni
che siano robuste rispetto a questa incertezza.
Il primo risultato di questa ricerca è unnuovo approccio dinamico,multi-obiettivo
per ottimizzare congiuntamente la progettazione e il funzionamento dei sistemi
energetici ibridi, concentrandosi sull’interconnessione tra produzione di elet-
tricità e fornitura di acqua attraverso il controllo ottimale dell’impianto di dis-
salazione. In secondo luogo, proponiamo un quadrometodologico per valutare
la vulnerabilità dei sistemi energetici ibridi rispetto ai cambiamenti nei princi-
pali fattori climatici (ovvero radiazione solare, velocità del vento, temperatura).
Più precisamente, valutiamo in che modo la variabilità storica e l’incertezza fu-
tura nelle variabili climatiche influenzano le prestazioni dei sistemi energetici
ibridi progettati in condizioni storiche medie, in termini di diversi indicatori
di sostenibilità. Infine, ci concentriamo sull’inclusione della profonda incer-
tezza nelle forzanti climatiche nella fase di pianificazione del sistema. Siccome
le prestazioni dei sistemi energetici ibridi nelle piccole isole del Mediterraneo
dipendono fortemente da molteplici forzanti incerte e co-varianti, un nume-
ro molto alto di scenari dovrebbe essere considerato e, di conseguenza, incluso
nel processo di ottimizzazione per generare soluzioni robuste, portando a tem-
pi computazionali molto alti o addirittura intrattabili. Per affrontare questo
problema, sviluppiamo ROSS (Robust Optimal Scenario Selection), un nuovo
algoritmo che utilizza l’apprendimento attivo per selezionare in modo adattivo
il sottoinsieme di scenari più piccolo da includere in un processo di ottimizza-
zione robusta.
Testiamo i nostri nuovi approcci sul caso di studio reale dell’isola italiana di
Ustica, che rappresenta un esempio paradigmatico di isola del Mediterraneo
fuori rete.
I principali risultati della tesi mostrano che considerare l’interdipendenza tra
la progettazione e il funzionamento del sistema modellando dinamicamente il
nesso tra produzione di acqua e generazione di elettricità consente dimigliorare
significativamente le prestazioni del sistema, riducendo gli interventi struttu-
rali, i costi di investimento e gli impatti ambientali. Inoltre, i risultati suggeri-
scono che la velocità del vento rappresenta la variabile climatica che influenza
maggiormente le prestazioni dei sistemi energetici ibridi, le quali molto proba-
bilmente degraderanno in un orizzonte amedio-lungo termine. Infine, il nostro
nuovo algoritmoROSS consente di ottenere soluzioni di pianificazione robuste
riducendo i requisiti computazionali tra il 23% e l’84% rispetto ai metodi tra-
dizionali, a seconda della complessità delle metriche di robustezza considerate.
Inoltre, ROSS è in grado di identificare regioni molto piccole dello spazio degli

VI



scenari contenenti gli scenari che evidenziano le principali vulnerabilità del si-
stema.
Parte della ricerca presentata in questa tesi appare (o apparirà prossimamente)
nelle seguenti pubblicazioni scientifiche:

• Giudici, F., Castelletti, A., Garofalo, E., Giuliani, M., Maier, H. R., 2019a.
Dynamic, multi-objective optimal design and operation of water-energy
systems for small, off-grid islands. Applied Energy 250, 605–616;

• Giudici, F., Castelletti, A., Giuliani, M., Maier, H. R., 2019c. An active lear-
ning approach for identifying the smallest subset of informative scenarios
for robust planning under deep uncertainty. Environmental Modelling &
Software (Under Review);

• Giudici, F., Castelletti, A., Garofalo, E., Maier, H. R., 2019b. Exploring the
effects of climate change and technological innovation on the robust de-
sign of off-grid hybrid energy systems. Nature Energy (in preparation).
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1
Introduction

1.1 The water and energy nexus

Tackling climate change by mitigating its impacts on nature, society and na-
tional economies is one of the major challenges of this century. The scientific
community widely recognises that climate is changing due to a significant in-
crease in greenhouse gas emissions resulting from human activities. In partic-
ular, the energy sector accounts for about 72% of global manmade emissions
(WRI, 2017), of which 82% is carbon dioxide (EPA, 2017) mainly produced by
fossil fuel combustion for electricity generation. In recent years, several decar-
bonization policies have been thus implemented to improve the sustainability
and the efficiency of the energy systems both globally and locally.
At the global scale, the United Nations recognise within the 17 Sustainability
Development Goals for shaping a more sustainable future the need to ensure
access to affordable, reliable and clean energy by defining specific targets to be
reached by 2030. These prescribe to substantially increase the renewable en-
ergy share in the global energy mix, double the global rate of improvement in
energy efficiency, and ensure clean energy in developing countries by enhanc-
ing international cooperation and expanding infrastructures (UN, 2019).
At the European scale, the "2020 Climate and Energy Package" established in
2009 by the European Union (EU) identifies three key targets to be reached by
2020, namely 20% of greenhouse gas emissions reduction with respect to 1990
levels, 20% of EU energy production from renewables and 20% of improvement
in energy efficiency (EC, 2009). The "Roadmap to 2050" of the European Com-
mission provides instead a practical guide to achieve a low carbon economy, in
linewith the sustainability goals of the EU, aiming at reducing between 80% and
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1. Introduction

90% the greenhouse gas emissions by 2050 (EC, 2011).

As highlighted, the energy sector will have a central role for succeeding in de-
velopment and sustainability goals, and thus tackling and mitigating climate
change (EC, 2016). In particular, electricity generation represents a key aspect
of climate change mitigation policies, as the transition from fossil fuel to re-
newable energy sources (RES) is crucial to reduce manmade greenhouse gas
emissions, air pollution, and global warming (Lechón et al., 2018).
However, future changes in the electricity generation mix could have signif-
icantly impacts on other important resources, such as water. Water and en-
ergy systems are in fact intrinsically coupled (Olsson, 2015) as large amounts of
electricity is needed for extraction, treatment, conveyance, and distribution of
water and wastewater (Pate et al., 2007), and significant volumes of water are
withdrawn and consumed for electricity generation processes such as fuel pro-
duction, thermoelectric cooling, and hydropower generation (Macknick et al.,
2012). This nexus between water and energy (Lubega and Farid, 2014) implies
that decisions made in one domain might affect positively or negatively the
other, and vice-versa, over different spatio-temporal scales (Scott et al., 2011)
and multiple dimensions (e.g., environmental, economic, technological, social)
(Hamiche et al., 2016). These implications become amplifiedwhenglobal trends,
such as growth in total and per capita demand of bothwater and energy, climate
change, and the increasing pressure of droughts, strengthen the interactions be-
tween water and energy systems, negatively impacting their reliability and sus-
tainability (Scott et al., 2015). In this context, considering the energy system
along with its interconnection with other domains (e.g., water, land) becomes
essential to foster more effective policies and strategies that lead to a more sus-
tainable future.

1.2 Remote, o�-grid energy systems

When dealing with energy security issues and electricity system decarboniza-
tion, off-grid renewable power systems play a crucial role in both developing
and developed countries (IRENA, 2015). With more than one billion people
living without electricity connection, local power systems constitute a reliable
solution to provide sustainable electricity access to about 17% of the world’s
population living in developing countries (Sovacool, 2012). Conversely, renew-
able off-grid energy systems in developed countries are a promising alterna-
tive to replace carbon intensive diesel generators for producing clean energy
at lower costs and, at the same time, improving power quality and reliability,
avoiding power blackouts due to extreme events.
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1.3. Small Mediterranean islands

In this developed context, remote communities in rural areas or small islands
rely on fossil fuels for producing electricity and face specific challenges typical
of closed and disconnected systems (Beal et al., 2016) such as geographic iso-
lation, high cost for electricity supply due to the transport of fuel, and highly
variable electricity demand that causes difficulties in balancing electricity sup-
ply and demand (Kaygusuz, 2011;Mohtar and Lawford, 2016). However, recent
decreasing costs of photovoltaic (PV), wind turbines and storage technologies
as well as their increasing efficiency are making renewable systems particu-
larly competitive and attractive for these communities (IRENA, 2013), which
are starting their energy transition towards more sustainable power systems.
In this thesis, we focus on small Mediterranean islands as a paradigmatic ex-
ample of remote, off-grid communities, where the above mentioned issues are
further intensified by a strict interconnection between electricity generation
and water supply. In particular, we concentrate on the Italian Ustica island, for
which we provide a detailed description in Chapter 2.

1.3 Small Mediterranean islands

Small Mediterranean islands represent a paradigmatic example of remote off-
grid systems facing a large number of sustainability issues, mainly due to their
distance from the mainland, the lack of accessible water sources, and the high
seasonal variability of both water and electricity demand.
Energy security is generally reliant on carbon intensive diesel generators (Duić
and Da Graça Carvalho, 2004; Patlitzianas et al., 2007), which are usually over-
sized to meet peak summer electricity demand driven by high touristic fluxes
(Kristoferson et al., 1985), and thus turn out to be oversized for the rest of
the year. The high dependence upon remote supply of fuel and the need for a
backup storage to cover possible refuelling delays (e.g., due to bad weather con-
ditions)make the operation of these systems very costly and inefficient (Kakazu,
1994; Weisser, 2004; Palone et al., 2017). In addition, balancing energy supply
and demand is challenged by the structural lack of flexibility of off-grid systems
in modulating the offer and the high seasonal variability of the energy demand
(Larsen et al., 2014).
Due to the lack of accessible water sources, potable water, which is typically
transported with tank vessels from the mainland, is nowadays produced by de-
salination technologies, which are in some cases able to meet the entire water
demand, though usually consuming large amount of electricity, strongly im-
pacting on the energy system. With an electrical consumption that ranges be-
tween 7-14 and 2-6 kWh/m3 for thermal and membrane based technologies,
respectively (Ghalavand et al., 2015), the entire desalination process might ac-
count for up to 30% of the total electrical load of a small island. Moreover, high
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1. Introduction

electrical consumption, combined with a costly and inefficient electricity sys-
tem, increase water production cost, which varies from 7 to 10€/m3, about ten
times that on the mainland.

Even if smallMediterranean islands are characterized by a significantRESpower
potential (i.e., high wind and solar radiation) due to their geographic location,
in many cases the development of renewable energy systems has been so far
hampered by technical and economical issues. Technical aspects concern the
limited size of the electricity grid and, above all, the high load variability be-
tween summer and winter that determine difficulties in balancing the electric-
ity services, forcing local electrical companies to reduce the hosting capacity
of the grid. Economical issues regard the strong subsidises that local electri-
cal operators unconditionally receive from the national authorities to cover the
extra-costs for electricity production. Placed that the lack of scale economies
in such small systems inevitably generates much higher costs, it is indisputable
that this mechanism does not foster initiatives for improving energy efficiency
and the adoption of less-costly renewable sources.
However, these issues have been recently partially overcome: modern renew-
able technologies are able to provide services to ensure the grid stability and a
higher power quality, and national authorities are starting to define strategies
for reducing the extra-costs for power generation with the ultimate goal of im-
proving the efficiency and the sustainability of the energy systems.

In this context, EU and single states are promoting specific innovation actions
aimed at completely decarbonising small off-grid islands through the introduc-
tion of RESs and storage systems, the development of synergies between elec-
tricity, heating, cooling water and transport networks, and the increase of the
efficiency of the energy system. For example, the political declaration on clean
energy for EU Islands of May 2017 aims at accelerating the clean energy tran-
sition on more than 2700 islands in Europe, by reducing their dependency on
energy imports and embracing more modern and innovative energy systems
(EC, 2017).
At the national scale, in February 2017 the ItalianMinistry issued a decree pro-
viding special incentives for new RES plants in order to reach a 10% of RES
share within 2020 and reduce around 5% of electricity consumption for hot
water production in the small Italian islands not connected to the national elec-
tricity grid. The decree provides also the financing of 2-3 innovative projects,
which demonstrate a high reduction of the conventional electricity production
(up to 50%).
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1.4. Designing hybrid energy systems: state of the art

1.4 Designing hybrid energy systems: state of the art

As already mentioned, a viable and promising solution for achieving sustain-
ability goals is exploiting the high renewable potential of the islands through
hybrid energy systems, which combine renewable electricity generation (e.g.,
PV, wind) with conventional power sources (e.g., diesel generators) and stor-
age technologies. Several studies have recently investigated how to optimally
design such hybrid energy systems in order to attain the best system perfor-
mance (Ekren and Ekren, 2009; Ibrahim et al., 2010; Erdinc and Uzunoglu,
2012). In particular, a widely adopted design method consists in determining
type and size of each technology in order to identify a system configuration
that is able to meet load requirements by minimizing the present value of costs
over a medium-to-long term horizon. The associated optimal design problem
consists of a single-objective optimization problem, which can be solved using
different methods, ranging from commercial software packages (Rehman et al.,
2007; Shaahid and Elhadidy, 2007) to more complex optimization techniques
(Koutroulis et al., 2006; Dong et al., 2016; Mohamed and Eltamaly, 2018). Im-
provement of these methods directly addresses the interconnection between
energy and water system by optimally designing both hybrid energy systems
and desalination units, evaluating the effects of different system configurations
onwater production costs (Spyrou andAnagnostopoulos, 2010; Bourouni et al.,
2011; Mentis et al., 2016).

Even if the above mentioned methods represent useful tools for supporting the
energy transitions of small islands towards more sustainable systems, they usu-
ally neglect key aspects and challenges that should be addressedwhen designing
highly renewable hybrid energy systems.

First, the optimal control of the electricity system as well as its interconnec-
tion with other energy vectors (e.g., gas, heat) and domains (e.g., water system)
allows to attain significant benefits at a very small time scale (e.g., hourly, daily)
by fully exploiting the RES power potential and, consequently, increasing RES
penetration and reducing operational costs. In this direction, a promising so-
lution focuses on identifying demand side management strategies through the
optimal control of flexible loads, such as the one associated to the desalination
process. Desalination plant operations are traditionally modelled statically us-
ing a fixed electrical load as a surrogate of the actual water demand supplied by
the desalination plant through the water distribution network (Kaldellis et al.,
2006; Santhosh et al., 2014). This allows to take into account the effects on the
electricity system of changes in the water demand at weekly or monthly time
scale, but prevents to dynamically manage the desalination plant and the reser-
voirs composing thewater distribution network at an hourly time scale in order
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1. Introduction

to release water according to the actual demand and, at the same time, allocate
water production when it is more convenient (e.g., high renewable power).

Secondly, considering the interdependency between system planning and its
operation when designing hybrid energy systems is crucial for identifying so-
lutions that reduce investment costs and allow to obtain better performance
over medium-to-long term horizons. As already mentioned, current state-of-
the art methods design hybrid energy systems considering pre-defined, static
operating rules (Elbaset, 2011; Luna-Rubio et al., 2012) usually bringing to over-
dimensioned system configurations. In the context of small Mediterranean is-
landswhere small dimensions and tight environmental constraints significantly
limit the RES installable capacity, designing optimal solutions that reduce the
structural interventions is essential for both decreasing investment costs and
reducing the environmental impacts.

As for the third challenge, traditional designmethods performa single-objective
optimization for identifying the least cost configuration (i.e., the one that mini-
mizes the present value of costs over a given horizon) (Ter-Gazarian and Kagan,
1992; Mizani and Yazdani, 2009; Anglani and Muliere, 2010). Present value of
costs is a widely adopted pure economic metric that consider in an aggregated
value all the costs occurring along the project horizon as well as the monetiza-
tion of environmental and sustainability aspects, such as carbon emissions and
energy/water deficits. However, the use of this metric in a single-objective op-
timization process does not allow to discover the effects of different solutions
on different aspects separately, thus preventing to explore trade-offs between
potentially conflicting objectives.

Finally, climate change and rapid technological innovation is likely to pose sig-
nificant challenges to the identification of optimal planning solutions able to
guarantee high levels of sustainability over a medium-to-long term horizon. In
particular, the performance of hybrid energy systems traditionally designed un-
der average historical conditions (Bhandari et al., 2015) will be strongly affected
by the future uncertainty in multiple, co-varying climatic variables (e.g., solar
radiation, wind speed, temperature) that represent the main drivers determin-
ing RES power potential. Thus, considering this uncertainty in the identifica-
tion of the optimal hybrid system design is essential to identify solutions that
are robust with respect to a wide range of plausible future conditions.
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1.5 Thesis motivation and objectives

Driven by the above-mentioned challenges andmotivations for the optimal de-
sign of off-grid hybrid energy systems, the overall aim of the work done in this
thesis is to develop novel methodologies for supporting energy systems tran-
sition towards decarbonization, helping decision makers to identify viable so-
lutions at different temporal scales in light of plausible future conditions that
might unfold.
In particular, we develop a set of modelling and planning/control optimization
tools for optimizing both the design and the operations of off-grid hybrid en-
ergy systems, also considering the uncertainty related to future changes in the
main external drivers. On one hand, control optimization tools are needed to
identify optimal operation strategies, which allow system operators to take op-
timal decisions at a very small time scale (e.g., hourly) attaining significant ben-
efits through the dynamic operation of water-energy system by fully exploiting
the renewable power potential. On the other hand, planning optimization tools
are required to optimally design hybrid energy systems, identifying which type
and size of technologies to be installed for achieving sustainability goals on a
medium-to-long term horizon.

The integration of these tools will allow us to as achieve the following specific
research objectives:

• Investigating the benefits of explicitly considering the interdependency
between system design and operation with respect to multiple economic,
environmental and efficiency objectives.

• Assessing the vulnerability of the hybrid energy systems to the future un-
certainty in the main external drivers.

• Identifying solutions that are robust with respect to the deep uncertainty
in the main external drivers (i.e., solutions that perform well over a wide
range of plausible future conditions).

The innovative aspects of this research are two-fold. First, innovation is present
in themethodologies developed for conjunctively optimizing the system design
and operationwith respect tomultiple sustainability objectives, considering the
integration of the energy systemwith thewater system in order tomaximize the
benefits deriving from RES introduction. Secondly, another innovative aspect
concerns the identification of the external conditions generating the key vul-
nerabilities of the system and the use of these conditions for generating robust
system designs in an adaptive manner.
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1. Introduction

1.6 Research method

Figure 1.1 presents the main research stages, performed to achieve the thesis
objectives presented in Section 1.5, classified according to the methodological
contribution they address. Our methodological contributions, which propose
novel advances in the optimal design of hybridwater-energy systems in off-grid
contexts, include:

• Joint optimization of water-energy system design and operation with re-
spect to multiple sustainability objectives.

• A novel framework to assess the performance of hybrid energy systems
under changes in the main climate drivers.

• A novel active learning algorithm to include future uncertainty in the ex-
ternal drivers within the optimization process for generating robust sys-
tem designs.

In particular, the first one (i.e., Optimal design and operation of water-energy
system) focuses on evaluating the advantages of optimally controlling thewater-
energy system, exploring the interdependency between system design and op-
eration within the optimization process and considering multiple potentially
conflicting objectives to explore trade-offs between different sustainability as-
pects.

The second one (i.e., Energy system sensitivity to climate change) concentrates
on assessing the vulnerability of hybrid energy systems with respect to changes
in the main climate drivers (i.e., solar radiation, wind speed, temperature) by
proposing a methodological framework for evaluating how historical variabil-
ity and future uncertainty in these climate variables affect the performance of
highly renewable hybrid energy systems, designedunder average historical con-
ditions, in terms of different sustainability indicators.

Finally, the third contribution (i.e., Robust system design via active learning)
focuses on the challenge of directly including deep uncertainty in future cli-
mate drivers within the system design phase for generating robust solutions.
This challenge is particularly relevant for our case study as the performance of
hybrid energy systems in small Mediterranean islands strictly depends on mul-
tiple, deeply uncertain co-varying drivers. This generates a very large number
of future scenarios to be included within the optimization process for gener-
ating robust solutions, leading to very high, or even intractable, computational
costs for solving the robust optimization problem. To address this issue, we de-
velop ROSS (Robust Optimal Scenario Selection), a novel algorithm that uses
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Figure 1.1: Outline of the research developed in this thesis.
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1. Introduction

active learning for adaptively selecting the smallest scenario subset to be in-
cluded into a robust optimization precess. ROSS allows to considerably reduce
the computational requirements for the generation of robust solutions with re-
spect to traditional optimization methods and couples scenario discovery with
robust optimization for the identification of the most informative regions of
the scenario space highlighting the main system vulnerabilities.

Each contribution includes different research stages that are presented more in
detail in the following chapters and in the corresponding peer-reviewed pub-
lications. Next section summarizes the thesis outline and the content of each
chapter.

1.7 Thesis outline

Chapter 2. In Chapter 2, we present the case study used in this thesis to test
the effectiveness of the developed methodological frameworks and modelling
tools. First, we describe the study site of an off-grid island, namely the Ustica
island, which represents a paradigmatic example of off-grid island, where the
electricity is generated through carbon intensive diesel generators and water is
produced by an energy intensive desalination plant. Due to the very high avail-
ability of natural resources (e.g., wind speed, solar radiation), Ustica represents
the ideal site for introducing a hybrid energy system and it is thus a very in-
teresting case study for testing our approaches. Then, we present the model
of Ustica water-energy system, on which all the performed experiments of this
thesis are based.

Chapter 3. In Chapter 3, we address the thesis objective of investigating
the benefits of explicitly considering the interdependency between system de-
sign and operation with respect to multiple economic, environmental and effi-
ciency objectives by proposing a novel dynamic, multi-objective optimization
approach for improving the sustainability of small islands through the intro-
duction of renewable energy sources and the identification of optimal strategies
for the desalination plant operations. The main contributions of our approach
include: (i) dynamic modelling of desalination plant operations, (ii) joint opti-
mization of system design and operations, (iii) multi-objective optimization to
explore trade-offs between potentially conflicting objectives. We test our ap-
proach by comparing it with a traditional non-dynamic, least cost optimization
approach. Results show the effectiveness of our approach in identifying optimal
system configurations, which outperform the traditional design with respect to
different sustainability indicators, limiting the structural interventions, the in-
vestment costs and the environmental impacts.
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1.7. Thesis outline

The content of this chapter is adapted from Giudici et al. (2019a).

Chapter 4. In Chapter 4, we address the thesis objective of assessing the vul-
nerability of the hybrid energy systems to the future uncertainty in the main
external drivers by proposing amethodological framework to evaluate how the
historical variability and the future uncertainty in the climate variables (i.e., so-
lar radiation, wind speed, temperature) affect the performance of highly renew-
able hybrid energy systems, designed under average historical conditions, in
terms of different sustainability indicators. Results show that the performance
variability associated to the future scenarios is almost double with respect to
the historical one for all the indicators considered. Moreover, the performance
of the solutions characterized by high RES and storage capacity is less sensible
to changes in the climate drivers with wind speed representing the driver that
mainly affects the system performance.
The content of this chapter is adapted from Giudici et al. (2019b), in prepara-
tion.

Chapter 5. In Chapter 5, we address the thesis objective of identifying sys-
tem designs that are robust with respect to the deep uncertainty in the main
external drivers by introducing ROSS (Robust Optimal Scenario Selection), a
novel algorithm that uses active learning for adaptively selecting the smallest
scenario subset to be included into a robust optimization process. ROSS con-
tributes a twofold novelty in the field of robust optimization under deep uncer-
tainty. First, it allows to considerably reduce the computational requirements
for the generation of robust solutions with respect to traditional optimization
methods. Second, it couples scenario discoverywith robust optimization for the
identification of themost informative regions of the scenario space highlighting
the main system vulnerabilities. We test ROSS on the real case study of robust
planning of a hybrid, off-grid energy system, combining diesel generation with
renewable energy sources and storage technologies. Results show that ROSS
allows to considerably reduce the computational requirements with respect to
a traditional robust optimization method, and, in few iterations, identifies very
small regions of the scenario space containing the most informative scenarios
for generating a robust solution.
The content of this chapter is adapted fromGiudici et al. (2019c), under review.

Chapter 6. In Chapter 6, we summarize the achievements of this PhD thesis,
providing general conclusions, ideas and opportunities for further research.
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2
Study site: Ustica island

Ustica is a small Italian island with an area of 8 km2 and is located about 50 km
north of Sicily in the Mediterranean Sea (Figure 2.1a). It has a resident popu-
lation of 1,559 inhabitants, which nearly doubles during the summer touristic
months.
Electricity is produced entirely by 5 diesel generators with a total installed ca-
pacity of 4.6 MW. Household consumption accounts for nearly 70% of the an-
nual electricity demand, with the remaining 30% covered by the desalination
plant (Figure 2.1c), built in 2016 to satisfy the entire water demand. The plant
is composed of twomodules of 35m3/h each and is able to produce about 1,600
m3/d of potable water, which is stored in 5 reservoirs with a total capacity of
11,000 m3, and released through the water distribution network (Figure 2.1a-
b). Due to the high touristic fluxes, electricity and water demand have a high
seasonal variability (Figure 2.1c). As a consequence, both the desalination plant
and the diesel generators are over-sized to cater to the summer peaking demand
and avoid supply deficits.
Even ifwater and energy supply security is guaranteed, thewater-energy system
of the island is on the whole highly inefficient and, as a consequence, scarcely
sustainable from both environmental and economic points of view. In addi-
tion to the high greenhouse gas emissions due to carbon intensive generation
technology, the isolation from the mainland impacts considerably on the cost
of electricity generation, which is on the order of around 4-5 times the tariff
at the national level. Also, the cost of water production is 3 to 4 times higher
than that for the nearby Sicily island due to the high cost and the high electricity
consumption of the desalination process.
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Figure 2.1: (a) Location and map of Ustica island with the desalination plant, the wa-
ter reservoirs and the water pipelines highlighted. (b) Schematization of the existing
and planned water-electricity system of Ustica. (c) Daily electricity (top panel) and
water (bottom panel) demand over a reference year. (d) Daily solar radiation (top
panel) and wind speed (bottom panel) over a reference year.
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2.1. System model

In order to improve the sustainability of this costly and inefficient system, the
design of a hybrid energy system, combining diesel generation with RES and
storage (i.e., batteries) technologies, is considered (Figure 2.1b) as a solution to
produce clean energy at lower cost. Ustica has, in fact, significant solar andwind
power potential (Figure 2.1d): the highest solar radiation is registered during
the summer months (top panel), while the wind speed peak is in winter (bot-
tom panel). Despite the high RES potential, both environmental constraints
(the whole island is under landscape heritage protection according to the Sicily
regional law 29/2015) and the small size of the island strictly limit the max-
imum installable RES capacity, allowing only roof integrated PV installations
and micro wind turbines.

2.1 System model

Water production and distribution, as well as electricity generation, are repre-
sented bymeans of an integratedmodel (Figure 2.2), which simulates thewater-
electricity system dynamics using an hourly time step over a 1-year time hori-
zon. At each time step t, the electricity is generated by the planned RES tech-
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Figure 2.2: Model schematization of the Ustica water (blue) - electricity (orange) in-
tegrated system.
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2. Study site: Ustica island

nologies (i.e., PV and wind) and the 5 existing diesel generators to meet a to-
tal load ltot(t) composed of the non-water electrical load lnw(t) and the load
of the desalination plant ldes(t). The electrical load of the desalination plant
ldes(t) is estimated as being linearly proportional (i.e., 6 kWh/m3) to the water
productionwdes(t). Due to the non-programmable nature of RES, sometimes
the potential electricity outputEpot(t) exceeds the electrical load ltot(t): when
this happens, if batteries are installed, they are charged according to their maxi-
mum charge and capacity constraints. Then, if a non storable electricity surplus
Esur(t) is generated, a RES power curtailment is applied. Conversely, when the
electrical load ltot(t) exceeds the potential electricity output, the batteries are
discharged according to theirmaximumdischarge and capacity constraints. Af-
ter having discharged the batteries, if the total load is not met, diesel units are
forced to produce electricity in order to ensure the load to be always completely
covered. If no batteries are installed, diesel units are forced to entirely cover the
difference between ltot(t) and Epot(t).
It is worth noting that this operating strategy (also called "merit order" strategy)
is defined a priori and not optimally identified within an optimization process.

2.1.1 PV generation

The PV potential electricity output EPV(t) (kWh) is defined by the following
equation:

EPV(t) = CPVρ
GT (t)

GT,stc
(1 +αT (Tc(t) − Tc,stc)) (2.1)

where:

• CPV [kW]: PV rated capacity, namely the PV electricity output under stan-
dard test conditions.1 This will be considered as a design parameter in the
optimization experiments presented in the next chapters.

• ρ = 0.9 [-]: derating factor. This is a coefficient that quantifies the effi-
ciency of the PV array.

• GT (t) [kW/m2]: incident solar radiation at time t.

• GT,stc [kW/m2]: incident solar radiation under standard test conditions.

• αT = −0.4 [%◦C−1]: temperature coefficient. The higher the PV array
temperature is, the lower the electricity output is.

• Tc(t) [◦C]: PV array operating temperature at time t.

• Tc,stc [◦C]: PV array temperature under standard test condition.
1Standard test conditions consider an incident solar radiation of 1 kW/m2 and a PV array temperature of 25 ◦C.
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2.1. System model

2.1.2 Wind generation

Due to the presence of tight environmental constraints, which limit the wind
turbines to few small units, in this model we consider only wind turbines with a
rated capacity of 60 kW and a hub height of 36meters. The wind farm potential
electricity output Ewind(t) (kWh) is thus calculated as follow:

Ewind(t) = nwP60(t) (2.2)

where P60(t) is the electricity output of a single wind turbine and nw is the
number of wind turbines installed (design parameter in the optimization exper-
iments). P60(t) is computed using a power curve, typical of the wind turbine,
which defines the electricity output as a function of the wind speed at the hub
height vh(t) (m/s):

P60(t) =


0 if vh(t) = 0 ∨ vh(t) > 26
0.1072 · vh(t)3.064 + 0.2167 if 0 > vh(t) < 8
60 if 8 6 vh(t) < 26

(2.3)

The wind speed at the hub height vh(t) is calculated from the wind speed mea-
sured at the anemometer va(t) (m/s) using the following empirical formula:

vh(t) = va(t)(
zh
za

)β (2.4)

where zh = 36mand za = 10mare the height of the hub and the anemometer,
respectively, and β is an empirical coefficient equal to 0.21 for our case study
(Giudici et al., 2019a).

2.1.3 Batteries

In this model, we consider a storage system composed of lithium ion batteries.
Each battery has a storage capacity of 100 kWh and it is characterized by the
following parameters:

• vb = 600 [V]: nominal voltage.

• currmax = 83 [A]: maximum charge/discharge current.

• ηb = 0.9 [-]: charge and discharge efficiency.

• smin = 0.1 [-]: minimum state of charge.

The capacityCb of the storage system is calculated by multiplying the capacity
of a single battery by the number of batteries to be installed nb (design param-
eter in the optimization experiments). At each time step, the maximum charge

17



2. Study site: Ustica island

cmax(t) and discharge dmax(t) capacity of the storage system is computed as
follow:

cmax(t) = min(nbvb
currmax

1000
√
ηb
,
Cb − sb(t)√

ηb
) (2.5)

dmax(t) = min(nbvb
currmax

√
ηb

1000
, (sb(t) −Cbsb(t))

√
ηb) (2.6)

where sb(t) is the state of charge of the storage system. If the potential electric-
ity output Epot(t) is higher than the total load ltot(t), the discharge is equal to
zero and the electricity Ebatt(t) entering the batteries is computed as follow:

Ebatt(t) = min(cmax, ηc min(Cconv, Epot(t) − ltot(t))) (2.7)

where Cconv [kW] and ηc = 0.95 are the capacity and the efficiency of the
converter, respectively. Vice-versa, if electricity is needed to cover the load,
the charge is equal to zero and the electricity outgoing from the batteries is
computed as follow:

Ebatt(t) = min(dmax,
1
ηc

min(Cconv, ltot(t) − Epot(t))) (2.8)

The capacity Cconv of the converter is set to 25% of the capacity of the storage
systemCb.
Once computed Ebatt(t), the state of charge of the batteries is updated accord-
ing to the following equation:

sb(t+ 1) =

{
sb(t) + Ebatt(t)

√
ηb, if (Epot(t) − ltot(t)) > 0

sb(t) −
Ebatt(t)√

ηb
, if (Epot(t) − ltot(t)) < 0

(2.9)

2.1.4 Diesel generation

In this model we assume that the 5 diesel generators are managed to cover the
difference between the total electrical load ltot(t) and the sum of the discharge
from the batteriesEbatt(t) and the renewable power potentialERES(t) = EPV(t)+
Ewind(t). However, to ensure the stability and reliability of the grid and to effi-
ciently operate the generators, the following constraints, provided by theUstica
power company, are considered:

• Minimum operating power. When a generator is switched on, its electricity
output has to be at least 20% of its nominal capacity.

• Minimum functioning time. Each generator, when switched on, has towork
for at least 2 hours.

• Schedule. This constraint defines the periods when each generator has to
be switched on.
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• Operating capacity. At each time step, the diesel generators, together with
the storage system, have to ensure an operating capacity defined as a func-
tion of the total electrical load ltot(t), the PV electricity output EPV(t),
and the wind electricity output Ewind(t):

OC(t) = ltot(t) + klltot(t) + kPVEPV(t) + kwEwind(t) (2.10)

where kl = 0.05, kPV = 0.25 and kw = 0.5.

The total diesel electricity output Ed(t) is thus the sum of the electricity output
of each diesel generator, which is computed according to the above mentioned
strategy and constraints. The fuel requirements to generateEd(t) are computed
based on efficiency curves specific to each diesel generator, provided by the
Ustica power company.

2.1.5 Water system

The model of the water system is composed of a desalination plant with a max-
imum operating capacity of 70 m3/h, which feeds an equivalent reservoir of
11,000m3. The equivalent reservoir (see Figure 2.2) has a storage capacity equal
to the sum of the capacities of the existing reservoirs and a maximum release
equal to the sum of their maximum releases. The reservoir storage dynamics
are modelled with the following mass balance equation:

s(t+ 1) = s(t) +wdes(t) − rw(t) (2.11)

where s is the storage of the reservoir,wdes(t) is the water produced by the de-
salination plant and rw(t) is the release from the reservoir, which is computed
as follows:

rw(t) = min(s(t), dw(t))) (2.12)
wheredw(t) is thewater demand. Thismeans that thewater demanddw(t) can
be entirely satisfied whenever enough water is stored in the equivalent reser-
voir. In all the other cases, the entire water volume stored in the reservoir is
released and a water supply deficit occurs.

All the analysis and the experiments performed in this thesis are based on the
systemmodel presented in this section, which has been implemented consider-
ing the technical parameters reported in Table 2.1, and the following simulation
parameters, set according to the EU reference scenario 2016 (EC, 2016):

• H [years] = 25: project horizon;

• γ ′ [%] = 2.5: annual nominal discount rate;

• ϕ [%] = 1: annual inflation rate;
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• Cf [€/l] = 0.54: base fuel cost;

• ∆Cf [%] = 4: annual fuel cost increment.

Table 2.1: Budget and technical simulation parameters.

Electricity system
Component Lifetime Capital cost Replacement cost Operational cost
Photovoltaic (PV) 25 y 1150 €/kW 1150 €/kW 50 €/kW/y
Wind turbines 25 y 3500 €/kW 3500 €/kW 5000 €/unit/y
Batteries 3000 kWh/y 500 €/kWh 500 €/kWh 500 €/kWh/y
Converter 25 y 300 €/kW 300 €/kW -
Diesel generators 60000 h 400 €/kW 400 €/kW 50 €/kW/h
Electricity grid - - - 950000 €/y

Water system
Component Capacity Max production Max release Initial state
Desalination plant - 70 m3/h - -
Equivalent reservoir 11000 m3 - 300 m3/h 2000 m3

The electricity system parameters are directly provided by the Ustica power
company and the Italian energy authority (AEEGSI, 2014), while the water sys-
tem parameters are provided by the Ustica municipality. The lifetime of each
technology is expressed in years, except for the batteries. In this case, the life-
time is expressed in terms of throughput, namely the amount of energy that
cycles through the storage bank in one year.
It is worth noting that for reducing the computational costs of the performed
experiments, the system is explicitly simulated over a 1-year hourly horizon
considering a reference year of the main external drivers and assuming that
system operation does not change from one year to the next over the project
horizon. Details on how the reference year is defined for the natural drivers
(i.e., solar radiation, wind speed and temperature) are provided in each of the
following chapters. Non-water electrical load and the load of the desalination
plant comes from an average year computed from data provided by the Ustica
power company for the period 2016-2017. Water demand has been instead re-
constructed starting from the load of the desalination plant and the water dis-
tribution rules provided by the Ustica municipality.
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3
A dynamic, multi-objective

approach for identifying optimal
system designs and operations

Abstract1

Small Mediterranean islands are remote, off-grid communities characterized
by carbon intensive electricity systems coupled with high energy consuming
desalination technologies to produce potable water. In this chapter, we pro-
pose a novel dynamic, multi-objective optimization approach for improving the
sustainability of small islands through the introduction of renewable energy
sources and the identification of optimal strategies for the desalination plant
operations. The main contributions of our approach include: (i) dynamic mod-
elling of desalination plant operations, (ii) joint optimization of system design
and operations, (iii) multi-objective optimization to explore trade-offs between
potentially conflicting objectives. We test our approach by comparing it with a
traditional non-dynamic, least cost optimization approach. Numerical results
show the effectiveness of our approach in identifying optimal system configura-
tions, which outperform the traditional designwith respect to different sustain-
ability indicators, limiting the structural interventions, the investment costs and
the environmental impacts. In particular, the optimal dynamic solutions able to
satisfy the whole water demand allow high levels of penetration of renewable

1Giudici, F., Castelletti, A., Garofalo, E., Giuliani, M., Maier, H. R., 2019a. Dynamic, multi-objective optimal design
and operation of water-energy systems for small, off-grid islands. Applied Energy 250, 605–616
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energy sources (up to more than 40%) to be reached, reducing the present value
of costs by about 2-3 M€ and the CO2 emissions by more than 200 tons/y.

3.1 Introduction

Water supply and energy generation are two essential services that any com-
munity has to securely provide to succeed in development and sustainability
goals (Chester, 2010; Bogardi et al., 2012). Even if traditionally considered as
separate and disconnected (Santhosh et al., 2014), water and energy systems are
intrinsically coupled (Olsson, 2015). Large amounts of energy are needed for
extraction, treatment, conveyance, and distribution of water and wastewater
(Pate et al., 2007). Conversely, significant volumes of water are withdrawn and
consumed for energy generation processes such as fuel production, thermoelec-
tric cooling, and hydropower generation (Macknick et al., 2012).
This nexus between water and energy (Lubega and Farid, 2014) implies that de-
cisions made in one domain might affect positively or negatively the other, and
vice-versa, over different spatio-temporal scales (Scott et al., 2011) and multi-
ple dimensions (e.g., environmental, economic, technological, social) (Hamiche
et al., 2016). These implications become amplified when global trends, such as
growth in total and per capita demandof bothwater and energy, climate change,
and the increasing pressure of droughts, strengthen the interactions between
water and energy systems, negatively impacting their reliability and sustain-
ability (Scott et al., 2015).

In remote, off-grid communities, these issues are further intensified by the unique
and specific challenges typical of closed and disconnected systems (Beal et al.,
2016) such as geographic isolation, high cost of supply, and highly variable wa-
ter and energy demand (Kaygusuz, 2011; Mohtar and Lawford, 2016).
As already mentioned in Chapter 1, small islands, such as those found in the
Mediterranean Sea, represent a paradigmatic example of remote, off-grid com-
munities, where water supply and electricity generation are strictly intercon-
nected (Singal et al., 2007; Patlitzianas and Christos, 2012), and the distance
from the mainland, the lack of potable water sources and the high variability
of both water and electricity demand generate a large number of pressing is-
sues (Douglas, 2006; Karagiannis and Soldatos, 2007; Ciriminna et al., 2016).
The electricity system relies on stand alone, carbon intensive diesel generators
(Duić and Da Graça Carvalho, 2004; Patlitzianas et al., 2007), which are usually
sized to meet the peaking summer electricity demand driven by high touristic
fluxes (Kristoferson et al., 1985), and thus turn out to be oversized for the rest
of the year. The high dependence upon remote supply of fuel and the need for
backup storage to cover possible refuelling delays (e.g., due to bad weather con-
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ditions)make the operation of these systems very costly and inefficient (Kakazu,
1994; Weisser, 2004; Palone et al., 2017). In addition, balancing electricity sup-
ply and demand is challenged by the structural lack of flexibility of off-grid sys-
tems in modulating the high seasonal variability of electricity demand (Larsen
et al., 2014). The pressure on this unsustainable electricity system is further
increased by water supply system operations Voivontas et al. (2003); Kaldel-
lis et al. (2012). The lack of accessible and safe water sources has resulted in
the adoption of desalination technologies to produce potable water in many is-
lands (Kaldellis et al., 2004), which in the past was usually transportedwith tank
vessels from the mainland. These technologies are in some cases able to meet
the entire water demand, though usually consuming large amounts of electric-
ity (Kalogirou, 2005). With an electrical consumption that ranges between 7-14
and 2-6 kWh/m3 for thermal and membrane based technologies, respectively
(Ghalavand et al., 2015), the entire desalination process might account for up to
30% of the total electrical load of a small island. Moreover, high electrical con-
sumption, combined with a costly and inefficient electricity system, increase
water production cost, which varies from 7 to 10€/m3, about ten times that on
the mainland.

In recent years, several studies have provided guidelines and suggestions to im-
prove the sustainability and efficiency of the water and energy supplies of these
remote, off-grid communities. A common approach, widely adopted in the lit-
erature, is to optimally design a hybrid energy system, which combines renew-
able electricity generation (e.g., wind, solar) with conventional power sources
(e.g., diesel generators) and storage technologies (Ekren andEkren, 2009; Ibrahim
et al., 2010; Erdinc and Uzunoglu, 2012). Among these latter, several studies
explore pumped-storage as a solution to maximize RES penetration and con-
sequently improve the overall sustainability of the water-energy system (Car-
alis and Zervos, 2007; Papaefthymiou et al., 2010; Chalakatevaki et al., 2017).
This well established technology allows the exploitation of RES electricity sur-
plus by pumping water to be stored in an upstream reservoir and released for
hydropower when electricity is needed (Koutsoyiannis et al., 2009). Different
system configurations are comparatively evaluated in order to identify the one
that is able to meet load requirements by minimizing the present value of costs
over a given project horizon (Ter-Gazarian and Kagan, 1992; Mizani and Yaz-
dani, 2009; Anglani andMuliere, 2010). The optimal design problem thus con-
sists of a least cost single-objective optimization problem, which can be solved
using different methods, ranging from commercial software packages such as
HOMER (Rehman et al., 2007; Shaahid and Elhadidy, 2007) to more complex
optimization techniques, such as genetic algorithms (Koutroulis et al., 2006;
Yang et al., 2009), ant colony (Dong et al., 2016) and particle swarm optimiza-
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tion (Hakimi et al., 2007; Mohamed and Eltamaly, 2018).

Other applications directly address the water-energy nexus by optimally de-
signing both desalination and renewable energy units, exploring different sim-
ple and hybrid configurations (Spyrou and Anagnostopoulos, 2010; Bourouni
et al., 2011) and evaluating their effects onwater production costs (Mentis et al.,
2016). Although a wide range of studies focuses on the optimal sizing of the
electricity and water system components, only few works deal with the opti-
mization of system operations (Santhosh et al., 2014; Clarke et al., 2015). Each
electricity systemcomponent is in fact usuallymanagedusing static, pre-defined
operating strategies, which define priority rules for power allocation (Elbaset,
2011; Luna-Rubio et al., 2012). The desalination plant operation is modelled
statically using a fixed electrical load as a surrogate of the actual water demand
supplied by the desalinationplant through thewater distributionnetwork (Kaldel-
lis et al., 2006). Since real water distribution networks are usually composed of
reservoirs, which can store and delay the movement of water, the above men-
tioned electrical load can generally provide a good representation of the actual
water demand on amonthly or annual time scale, but it is not suitable to capture
daily or hourly dynamics. In some cases, the storage capacity of the water dis-
tribution network is implicitly modelled considering a deferrable desalination
load in order to exploit the renewable electricity surplus generated (Setiawan
et al., 2009; Bognar et al., 2012; Segurado et al., 2016).

Themain limitations of current state-of-the-art optimal design approaches thus
include the lack of an explicit representation of the water system (i.e., the reser-
voir dynamics are not modelled explicitly), the use of non-dynamic modelling
of the desalination plant operation (i.e., fixed operating rule) and the adoption
of a single pure economic objective (i.e., present value of costs) to solve the opti-
mization problem, which prevent the consideration of additional sustainability
aspects (e.g., RES penetration, CO2 emissions, reliability of the water supply
system).

In order to overcome these limitations, in this chapter we propose a novel dy-
namic, multi-objective (MO) approach to optimally identify more efficient sys-
tem configurations. The main contributions of our approach include: (i) dy-
namic modelling of desalination plant operations to explore the impacts that
RES introduction coupled with different demand side management strategies
may have on both electricity and water systems, (ii) joint optimization of sys-
tem design and its operations that allows the interdependency between plan-
ning andmanagement to be addressed directly by automatically identifying the
most efficient operating policies associated with each optimal system configu-

24



3.2. Methods and Tools

ration, (iii) multi-objective optimization to explore trade-offs between poten-
tially conflicting objectives, which include, apart from present value of costs,
additional aspects related to RES penetration and water supply efficiency. We
assess the potential of our approach by means of a comparative analysis with
the traditional non-dynamic, single-objective (SO) approach. In particular, we
first focus on quantifying the advantages of dynamically modelling the desali-
nation plant operation given a fixed system configuration (i.e., fixed RES capac-
ity). Then, we concentrate on the identification of the optimal system design,
showing the benefits of jointly considering the interdependency between sys-
tem design and operation within the optimization process. In both cases, we
also discuss the advantages of considering multiple potentially conflicting ob-
jectives rather than focusing on a single pure economic one.

3.2 Methods and Tools

We compare our dynamic MO approach (Figure 4.1b) with a traditional non-
dynamic SO optimization (Figure 4.1a) to identify the optimal installable RES
capacity onUstica island. Bothmethods adopt a simulation-based optimization
scheme, where the integrated model presented in Chapter 2 is repeatedly run
for different values of the decision variables until the optimal solution, or the
set of Pareto optimal solutions, is found.
The traditional SO approach is characterized by a single planning decision vari-
able, namely the PV capacity CPV , which is defined within the following feasi-
bility set: CPV ∈ [0, CPV,max], where CPV,max = 4000 kW is the maximum
PV installable capacity. For our specific case study, this value is large enough to
allow all the feasible planning solutions to be explored within the optimization
phase.
Our MO approach adds an additional control variablewdes(t), which defines
the desalination plant water production at each time step as a function (called
control policy) of different inputs (see section 3.2.2 for further details). This
control variable can varywithin the following feasibility set:wdes(t) ∈ [0, Cdes],
whereCdes = 70 m3/h is the maximum capacity of the desalination plant. It is
worth noting that, due to the strong limitations associated with the maximum
installable RES capacity discussed in Chapter 2, in this work we do not con-
sider the number of wind turbines nw as a planning decision variable but we
fixednw = 4 for both the approaches analyzed. This allows the wind potential
of the island to be exploited respecting the environmental constraints. In addi-
tion, in order to better assess the benefits of operating the desalination plant as
a non-conventional storage technology, we do not consider the introduction of
batteries in our analysis.
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Figure 3.1: Schematization of the non-dynamic, single-objective (a) and the dynamic,
multi-objective (b) optimization approaches. Grey boxes within the system model
box represent the system components active in the optimization process.

3.2.1 Non-dynamic, single-objective optimization approach

The non-dynamic, single-objective optimization approach optimizes the elec-
tricity system configuration (i.e., PV capacity) with respect to the present value
of costs only, considering a pre-defined static operating strategy for the desali-
nation plant (i.e., a fixed observed electrical load ldes(t)). This strategy reflects
the historical management of the desalination plant, which has been operated
for the only purpose of satisfying water demand. The optimization problem
is thus characterized by the following objective function (to be minimized), in
which all costs occurring at each hour t throughout the simulation horizon are
aggregated on a yearly basis y:

JC = Ccap +

H∑
y=1

δ(y)(Cgrid +Coper(y) +Crep(y) +Csal(y)) (3.1)

where H is the number of years of the simulation horizon, Ccap are the cap-
ital costs, Cgrid are the costs for the management of the electricity grid, and
Coper(y),Crep(y),Csal(y) are the operational, replacement and salvage costs
at year y, respectively. All costs, except the capital ones, are discounted using
the following time varying coefficient:

δ(y) =
1

(1 + γ)y
(3.2)

where γ is the real discount rate, calculated as a function of the nominal dis-
count rateγ ′ and the inflation rateϕ. The capital costs occur at the beginning of
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the simulation horizon and represent the investment to install the power tech-
nologies, the replacement costs occur when a technology has to be substituted,
and the salvage costs are negative costs which are incurred at the end of the
simulation horizon, when one or more technologies have not reached the end
of their lifetime. It is worth noting that the lifetime of the RES technologies is
completely independent from their actual electricity production, since we sup-
pose their wear does not depend on the hours of operation. This dependence
is instead considered for diesel generators, the management of which strongly
affects costs. Finally, the operational costs take into account both the cost to
produce 1 kWh of electricity and the cost of maintenance of each power tech-
nology. Moreover, diesel generator costs also include the cost of fuel.
The single-objective optimization problem is formulated as follow:

C∗PV = argmin
CPV

JC (3.3)

whereCPV (kW) is the PV capacity and JC is defined by 5.2.
We solve problem 3.3 using an exhaustive search within the feasibility set of the
CPV decision variable, which has been sampled with a 100 kW discretization
step. It is worth noting that, for our specific case study, this discretization step
is sufficiently fine to allow significant changes in the objective function to be
captured.

3.2.2 Dynamic, multi-objective optimization approach

The dynamic, multi-objective optimization approach conjunctively optimizes
both the planning (i.e., PV capacity) and themanagement (i.e., desalination plant
operation) of the integrated water-electricity system. The desalination plant is
controlled using a closed-loop control policy p, which determines the control
decision variablewdes(t) as follows:wdes(t) = p(I(t)), where I(t) is an input
vector, which has to include at least the state of the system s(t) (i.e., the stor-
age of the equivalent reservoir in our case). It is worth noting that optimizing
a closed-loop control policy instead of performing an open loop optimization
of the sequence of controls over the simulation horizon allows to both reduce
the number of parameters to be optimized and ensure adaptability with respect
to the uncertainty in the external drivers (e.g., wind speed, solar radiation, wa-
ter and electricity demand). The dependence upon the state of the system pro-
vided by the closed-loop control policy allows the control variable to be modu-
lated based on changes in the state of the system due to changes in the external
drivers. Further details on the generation of the closed-loop optimal policy are
provided at the end of this section.
This dynamic, multi-objective approach considers multiple, potentially con-
flicting objectives beyond the total cost:
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1. Present value of costs (JC) (to be minimized). This is the same as that
adopted in the SO optimization, even if here it is influenced by both the
planning variable CPV and the control variable wdes(t), as changes in
water production significantly affect the total electrical load and conse-
quently power generation.

2. Electricity surplus (JE) (to be minimized), defined as the mean annual
difference between the total potential electricity output Epot(t) (MWh)
and the total electrical load ltot(t) (MWh) as defined by the following
equation:

JE =
1
H

T∑
t=1

(Epot(t) − ltot(t)) (3.4)

whereH and T are the number of years and hours of the simulation hori-
zon, respectively.
Since the electrical load has to be always covered according to the model
constraints, the difference between the potential electricity output and the
total load represents a RES surplus that is higher than or equal to zero at
each time step. Minimizing this surplus through the control of the elec-
trical load corresponds to maximizing the RES penetration exploiting the
RES power potential.

3. Waterdeficit (JW), defined as themean annual squaredwater deficit ((m3/s)2/year),
i.e.:

JW =
1
H

T∑
t=1

(dw(t) − rw(t))
2 (3.5)

where rw(t) (m3/s) is the release from the equivalent reservoir and dw(t)
(m3/s) is the water demand. Since the release is always set equal to the wa-
ter demand, a deficit can occur only when the demand is higher than wa-
ter availability (i.e., reservoir storage). The squared power penalizes high
deficits occurring in a single time step and allows high-impact shortage
water events to be avoided (Hashimoto et al., 1982). To minimize this ob-
jective, the desalination plant has to be managed in order to ensure that
enough water is available to satisfy the demand.

The MO optimization problem is thus formulated as follow:

C∗PV , p
∗ = arg min

CPV ,p
|JCJEJW | (3.6)

Within the optimization process, the operating policy p provides the control
wdes(t), which determines the amount of water the desalination plant has to
produce at each time step t. Given wdes(t), the simulation model computes
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the electrical load of the desalination plant ldes(t) using a linear function with
angular coefficient equal to 6 kWh/m3, as defined in Chapter 2.
We solve the optimization problem given in 3.6 using an evolutionary multi-
objective direct policy search approach (EMODPS) (Giuliani et al., 2016). This
approach transforms the optimal control problem into a planning one by pa-
rameterizing the control policy pθ with θ ∈ Θ within a pre-defined class of
functions and exploring the parameter space through multi-objective evolu-
tionary algorithms (Coello Coello et al., 2007; Deb, 2011; Maier et al., 2019), in
order to identify a set of Pareto approximate policies (Quinn et al., 2017; Salazar
et al., 2017). Using this approach, the planning and management optimization
problem given in 3.6 can be solved by jointly evolving solutions in a complex
search space formed by the parameters θ of the control policy and the planning
decision variableCPV within a single optimization process.
In this work, we adopt the multi-objective evolutionary algorithm BorgMOEA
(Hadka and Reed, 2013) and we parameterize the operating policy by means of
a universal approximating network, namely the Gaussian radial basis functions
(Busoniu et al., 2011), in order to ensure high flexibility of the control policy
structure. We provide further details about the optimization setup in the next
section.

3.3 Experiment settings

Within the dynamic MO approach, the operating policy pθ of the desalination
plant is parameterized by means of a weighted sum of non-linear Gaussian ra-
dial basis functions, which determine the controlwdes(t) at each time step as
follows:

wdes(t) = β+

N∑
i=1

wiϕi(I(t)) (3.7)

whereN is the number of basis function ϕ(·), β is the linear parameter asso-
ciated with the control variablewdes(t), andwi is the non-negative weight of
the i-th basis function (wi > 0,∀i). Each single basis function is defined as
follows:

ϕi(I(t)) = exp

− M∑
j=1

[(I(t))j − cj,i]
2

b2
j,i

 (3.8)

whereM is the number of policy inputs I(t), ci and bi are theM-dimensional
center and radius vectors of the i-th basis function. In particular, the centers
must lie within the input bounded space and the radii must be strictly positive.
The parameters vector used to parameterized the control policy is defined as
θ = [cj,i, bj,i, wi, β] ∈ Rnθ where i = 1, . . . , N, j = 1, . . . ,M. In this
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work, we condition the control policy upon the following four input variables:
hour of the day, day of the week, week of the year, and time-varying storage
of the equivalent reservoir. In this way, we can capture all the dynamics affect-
ing the system at different temporal scales, namely water, electricity demand
and RES power variability. Considering N = 9 and M = 4, the total number of
parameters to be optimized is equal to 101 (i.e., 100 parameters of the control
policy and 1 planning parameter representing the PV capacityCPV ). It is worth
noting that this approach allows the number of variables to be optimized to be
reduced significantly compared with optimizing the sequence of control vari-
ables step-by-step within an open loop optimization process, as the parameters
of the control policy are completely independent from the length of the simu-
lation horizon considered.
The reference year of the external drivers used to perform the optimizations
comes from an averge year computed from historical data. In particular, inci-
dent solar radiation comes from experimental measurements conducted by the
Italian company RSE S.p.A for the period 2011-2015 in Catania (Sicily). Wind
speed at the anemometer and temperature are provided by measurements reg-
istered at a meteorological station located in Ustica for the period 2011-2015.

The results of the comparison between the traditional and our approach are
visualized in terms of optimization objectives (i.e., present value of costs, elec-
tricity surplus and water deficit) and system trajectories (e.g., RES power, wa-
ter production, reservoir storage). Moreover, in order to evaluate the solutions
with respect to other sustainability aspects not directly included in the opti-
mization process, we also compute these additional indicators:

1. RESpenetration (%). This indicator represents the percentage of the total
electrical load covered by RES power over the entire project horizon.

2. Fuel consumption (liters/y). This indicator is calculated through specific
efficiency curves, which define the fuel consumed by each diesel generator
as a function of its electricity output.

3. CO2 emissions (tons/y). This indicator is computed by multiplying the
total fuel consumption for an empirical coefficient, which defines theCO2
emissions per liter of fuel consumed.

3.4 Numerical results

The main goal of this work is to numerically quantify the advantages of using a
dynamicMO approach (see section 3.2.2) to optimize the RES planned capacity
of remote, off-grid islands with respect to adopting a traditional non-dynamic
SO approach (see section 3.2.1). More precisely, we want to assess the benefits
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of (i) dynamically modelling the desalination plant operation through an ex-
plicit representation of the whole water supply system, (ii) jointly considering
the interdependency between system design and its operation within the op-
timization process, (iii) considering multiple, potentially conflicting, optimiza-
tion objectives. In doing so, we first focus on a pre-defined system design in
order to assess the advantages of dynamically modelling the desalination plant
operation (section 3.4.1), and then we concentrate on the identification of the
optimal RES planned capacity, exploring the benefits of considering the inter-
dependency between planning andmanagement within the optimization phase
(section 3.4.2).

3.4.1 Dynamic vs non-dynamic water-energy system operations

To quantitatively assess the advantages of dynamically modelling the desalina-
tion plant operation, we compare our dynamic MO approach with the non-
dynamic SO one for a pre-defined system design (i.e., 1200 kW of PV). In this
case, we generate the dynamic solutions by solving the problem given in 3.6 for
CPV = 1200 kW, and the non-dynamic solution by simulating the system, for
the same PV capacity, using a fixed observed electrical load to represent the de-
salination plant operation.

Figure 3.2 shows the Pareto optimal dynamic solutions (circles) and the non-
dynamic one (diamond) in the space of the objectives. The x-axis represents
the objective JC, the y-axis shows the objective JE, and the color corresponds
to the value of the objective JW . The arrows identify the direction of prefer-
ence of each objective. The ideal solution would be a blue point in the bottom
left corner of the figure. The non-dynamic solution is able to satisfy the entire
water demand but is dominated by almost all dynamic solutions with respect
to the other objectives. More precisely, all dynamic solutions have a lower cost
and about 90% of them are also characterized by lower electricity surplus. The
non-dynamic solution reflects, in fact, the historical management of the sys-
tem. In particular, since the electricity system was entirely composed of diesel
generators and, consequently, the electricity cost was constant in time, the de-
salination plant has been operated only for the purpose of satisfying the water
demand.
The dynamic solutions explore the whole range of variability of the objectives
as a consequence of changes in the desalination plant operation. The optimal
policies outline a clear conflict between the objectives as high cost solutions
present low electricity surplus and low water deficit. This trade-off can be ex-
plained by analyzing three different alternative solutions: the extreme solution
that minimizes the cost (best cost solution) and two solutions that minimize the
electricity surplus but present different values of water deficit (best surplus so-
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Figure 3.2: Visualization in the space of the optimization objectives of the non-
dynamic and the dynamic solutions obtained by fixing the PV capacity to 1200
kW. Dark blue points represent solutions with low water deficit. Light green points
represent solutions with high water deficit. Squares are the solutions analysed in
Figure 3.3.

lution and best deficit solution).

Figure 3.3 visualizes these operating policies projecting the control decision
wdes(t) (i.e., water production) as a function of the hours of the day with the
colors illustrating how the control decision changes depending on RES power.
Blue points refer to time periods when electricity is produced by diesel gener-
ators only, whilst yellow points indicate hours of the day when RES power is
equal to or higher than the electricity needed to operate the desalination plant
at its maximum capacity (i.e., 420 kWh). Top and bottom panels refer to winter
(November - April) and summer (May - September) periods, respectively.
Tominimize the present value of costs (best cost solution), the desalination plant
is operated to reduce water production and, consequently, the total electrical
load in both winter and summer. This prevents the system from entirely satis-
fying the water demand, causing the highest water deficit. Moreover, the RES
power cannot be exploited, leading to the highest electricity surplus. It is worth
noting that water production is not always zero, but assumes higher values only
when high RES power allowswater to be producedwithout increasing the costs
(i.e., no diesel generation). The best surplus solution minimizes the electricity
surplus by modulating the desalination plant operation in order to exploit RES
power. The maximum feasible water production is thus observed in the middle
hours of the day (from 9 am to 4 pm), when the high solar potential signifi-
cantly increases the PV electricity output. A higher overall water production
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leads to a lower water deficit with respect to the best cost solution. However,
the consequent higher load results in an increase in present value of costs due to
the operating capacity constraint, which forces the diesel generators to be acti-
vated proportionally to the total electrical load and the RES power output (see
Chapter 2 for details). All alternatives that represent a lower water deficit than
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Figure 3.3: Policy visualization of the three dynamic solutions highlighted in Figure
3.2. The control decision (i.e., water production) is projected as a function of the
hours of the day with the color illustrating how the control decision changes de-
pending on the RES power. Blue points refer to hours when electricity is produced
by diesel generators only, whilst yellow points indicate hours when RES power is
equal to or higher than the electricity needed to operate the desalination plant at its
maximum capacity.

the best surplus solution are characterized by the same electricity surplus and
an increasing present value of costs: the desalination plant already operates at
its maximum capacity in the middle hours of the day preventing the high RES
power to be fully exploited; water is thus produced in other periods, relying
on diesel generators to satisfy the water demand. In particular, when analyzing
the operating policy that minimizes the water deficit (best deficit solution), two
different operating strategies can be observed: in winter (top panel) a lower wa-
ter demand allows production in the middle hours of the day only, relying on
available storage capacity to satisfy the demand at every time step; in summer
(bottom panel), the higher water demand forces the system to increase water
production also when RES power is not available, with a consequent increase
in operating costs.
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In order to better understand the advantages of dynamically controlling desali-
nation, the best deficit solution is directly compared to the non-dynamic solu-
tion in terms of water system trajectories, as both are able to satisfy the entire
water demand. Figure 3.4a-c shows the temporal dynamics of water produc-
tion (a), storage of the equivalent reservoir (b), and release from the equivalent
reservoir (c) on daily time scale over a reference year. It is worth noting that the

(a)

(b)

(c)

(d)
!24

Figure 3.4: Daily trajectories of water production (a), storage of the equivalent reser-
voir (b), release from the equivalent reservoir (c), non-water electrical load lnw and
RES power (d) over a reference year.

best deficit solution modulates water production in order to fill up the reser-
voir at the beginning of the summer season (April/May), exploiting the storage
to satisfy the high water demand during the summer months (Figure 3.4a-b).
This operating strategy almost completely satisfies the water demand (Figure
3.4d) in each period of the year by reducing both the electricity surplus and
present value of costs with respect to the non-dynamic solution (Figure 3.2).
The lower base electrical load observed in winter (Figure 3.4d) allows the RES
power to be exploited, operating the desalination plant as a non-conventional
storage technology in order to both satisfy the water demand and fill the reser-
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voir. In particular, the storage significantly increases fromMarch to May (Fig-
ure 3.4b), when the RES power peak is registered. The water stored in these
months contributes to partially cover the summer water demand, which can be
thus satisfied by reducing water production from the desalination plant in the
monthswhen the non-water electrical load lnw entirely exploits the RES power
(from June to September) (Figure 3.4d).
The non-dynamic solution highlights a completely different operating strategy.
In this case, the water demand is the only driver of desalination plant operation.
The storage peak is observed at the end of the summer season (Figure 3.4b) and
a significant increase in water production is recorded during the months with
higher water demand (July and August) (Figure 3.4a).

A quantitative comparisonbetween the best deficit solution and thenon-dynamic
solution is finally performed in terms of different sustainability indicators (Ta-
ble 3.1). The first two indicators represent the optimization objectives adopted

Table 3.1: Sustainability indicators computed for the non-dynamic solution and the
best deficit solution.

Non-dynamic Solution Best Deficit Solution
Present value of costs (M€) 44.4 43.2
Electricity surplus (MWh/y) 368.8 111.9
Fuel consumption (l∗106/y) 1.1 1.0
CO2 emissions (tons/y) 2909 2739
RES penetration (%) 33.7 37.6

to identify the dynamic solutions. The best deficit solution outperforms the
non-dynamic solution reducing the present value of costs of 1.2 M€ and the
electricity surplus of about 257 MWh/year (more than 80% of the electricity
surplus obtained by the non-dynamic solution). Focusing on the other sustain-
ability indicators defined in section 5.3, the best deficit solution is able to reduce
the fuel consumed of 100,000 liters per year and the CO2 emissions of 170 ton-
s/year. Finally, exploiting the RES power significantly increases the RES pene-
tration from 33.7% to 37.6%.

3.4.2 Interdependency between water-energy system design and
operations

In this section, our dynamicMO approach is compared to the non-dynamic SO
one in order to assess the advantages of exploring the interdependency between
system design and its operations to identify the optimal installable PV capacity.
We generate the dynamic solutions by solving the problem given in 3.6, and the
non-dynamic solution by solving the problem given in 3.3.
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Figure 3.5 shows the dynamic (circles) and the non-dynamic (diamond) optimal
solutions in the space of the optimization objectives. Arrows identify the direc-
tion of preference of each objective and the marker size represents the value of
the planning decision (i.e., PV capacity). The traditional approach optimizes the

36 37 38 39 40 41 42 43 44 45 46 47 48
JCost

0

200

400

600

800

1000

1200

1400

JEs
ur

 [M
W

h/
ye

ar
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

JW
de

fic
it  [(

m
3 /s

)2 /y
ea

r]

2000 kW

PV capacity [kW]
1900400

BDS1

BDS2

BDS3

BDS4

Non-dynamic solution
Dynamic solutions

JE
[M

W
h/

ye
ar

]

JW
[(m

3 /
s)2

/y
ea

r]

JC [M€]

Figure 3.5: Visualization in the space of the optimization objectives of the dy-
namic solutions (circles) and the non-dynamic solution (diamond). The marker
size illustrates the value of the planning decision (i.e., PV capacity) and the cir-
cles highlighted in red represent 4 dynamic solutions we directly compare to the
non-dynamic solution. Dark blue points represent solutions with low water deficit.
Light green points represent solutions with high water deficit.

PV capacity by minimizing the present value of costs (JC) over the project hori-
zon. As discussed in the previous section, this approach simulates the system
using the historical desalination plant operation, which always satisfies the en-
tire water demand (i.e., zero deficit) regardless of the PV capacity installed. This
non-dynamic system operation leads to an oversized optimal design, which un-
derperforms comparedwith the dynamic solutionswith respect to both present
value of costs and electricity surplus. In particular, all dynamic solutions obtain
lower electricity surplus and more than 90% of them also show lower present
value of costs.
Our approach is in fact able to capture the interdependency between planning
and management, automatically generating alternative closed-loop operating
policies for each Pareto optimal PV capacity, which explore the trade-off be-
tween the optimization objectives, by modulating the desalination plant opera-
tion (see section 3.4.1).
The dynamic solutions show that present value of costs (JC) decreases with an
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increase in installed PV capacity. This can be explained by the fact that present
value of costs considers, in addition to the capital costs, also the operational
costs of the system: a significant reduction in operational costs due to higher
RES power production (and consequently lower diesel generation) is able to
compensate for an increase in capital costs associated with installing higher PV
capacity. However, the lower the present value of costs, the higher the electricity
surplus (JE). The increasing electricity surplus associatedwith higher PV capac-
ity demonstrates, in fact, that the RES contribution towards the total electrical
load decreases with an increase in PV capacity. Over 1900 kW, almost all the
increasing RES power would be surplus and the small operational cost reduc-
tion would not be able to compensate for the capital cost increase, generating
dominated solutions (not shown). It is worth noting that the dynamic solution
characterized by themaximumPV capacity (1900 kW) is lower than the optimal
non-dynamic PV capacity (2000 kW). Moreover, focusing on the dynamic so-
lutions that minimize the water deficit (blue circles), a strong reduction of both
present value of costs and electricity surplus is observed by installing a signifi-
cantly lower PV capacity.

Table 3.2 directly compares thenon-dynamic solutionwith 4dynamic best deficit
solutions (BDS1-4), characterized by different PV optimal capacities, in terms
of sustainability indicators. It is worth noting that all the dynamic solutions re-
duce the present value of costs and the electricity surplus and almost all of these
solutions also show lower fuel consumption and CO2 emissions. In particular,
the dynamic solution characterized by1800kWofPV significantly outperforms
the non-dynamic solution reducing the present value of costs by 2 M€ and the
CO2 emissions by about 220 tons/y. Moreover, it attains a slightly higher RES
penetration with a lower PV capacity.

Table 3.2: Comparison between the non-dynamic solution and 4 dynamic solutions
that minimize the water deficit (BDS) in terms of sustainability indicators.

Non-dynamic Solution BDS1 BDS2 BDS3 BDS4
PV capacity (kW) 2000 1800 1600 1400 1200

Present value of costs (M€) 44.0 42.0 42.2 42.5 43.0
Electricity surplus (MWh/y) 1207 584.9 394.7 244.0 117.9
Fuel consumption (l∗106/y) 0.96 0.88 0.92 0.95 1.00
CO2 emissions (tons/y) 2606 2389 2487 2583 2717
RES penetration (%) 41.0 41.2 40.0 37.9 35.5

The ability of the dynamic MO approach to automatically identify the best op-
erating policies associated with each system design leads to optimal solutions
that allow structural interventions to be limited, consequently reducing invest-
ment costs and environmental impacts.
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As already mentioned in Chapter 2, all the solutions presented in this work are
obtained simulating the system according to specific technical and economical
parameters. However, even if the parameters characterizing each technological
component (e.g., investment costs, RES efficiency) can be considered strongly
reliable for our specific case study, some economical parameters are highly un-
certain.
In order to assess the effects of this uncertainty on the system performance, we
perform a sensitivity analysis focusing on the optimal solution that minimizes
the present value of cost covering the entire water demand (BDS1 in Figure
3.5). More precisely, we estimate how the present value of cost of BDS1 solution
changes according to different values of the real discount rateγ and the fuel cost
Cf. In particular, we consider perturbations of these parameters within feasible
ranges provided by Kaldellis (2010) and Steinbach and Staniaszek (2015).
Results show that increasing the real discount rate from 1.5% (benchmark) to
3% and 6% leads to a decrease of the present value of cost from 42M€ (bench-
mark) to 35.3 M€ (-16% with respect to the benchmark) and 26.2 M€ (-38%
with respect to the benchmark), respectively.
Focusing on the fuel cost, a decrease/increase of its value from 0.54€/l (bench-
mark) to 0.3/0.7€/l brings to a reduction/increase of the present value of cost
from 42M€ (benchmark) to 35/46.8M€ (-17/+11%with respect to the bench-
mark).
These results suggest that the performance of the solutions is strongly sensi-
tive to changes in the main economical parameters. Thus, considering the un-
certainty associated to these parameters within the decision making process is
crucial to identify more robust solutions.

3.5 Conclusions

In this chapter, we propose a novel dynamic, multi-objective approach to con-
junctively optimize the capacity of renewable energy sources and desalination
plant operation for the integrated water-electricity system of small off-grid is-
lands. The advantages of using this novel approach are evaluated by means
of a comparative analysis with a traditional non-dynamic, single-objective ap-
proach, which determines the least cost optimal design (i.e., renewable sources
capacity) of the hybrid electricity system investigated using a fixed observed
load to model desalination plant operation. The comparative analysis is per-
formed for the real case study of the Italian Ustica island.

Results obtained for a pre-defined planning configuration (i.e., 1200 kW of PV)
show that the optimal dynamic solutions outperform the non-dynamic solu-
tion obtained by simulating the system using a fixed observed desalination load
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with respect to almost all sustainability indicators considered. In particular, the
dynamic solution that minimizes the water deficit entirely satisfies the water
demand reducing the present value of costs by 1.2 M€ and the electricity sur-
plus by about 257MWh/year (more than 80% of the electricity surplus obtained
by the traditional approach), and significantly increasing RES penetration.

Results of the joint optimization of system design and operation show that all
planning and management dynamic alternatives outperform the optimal least
cost non-dynamic solution in terms of electricity surplus andmore than 90% of
them also show lower present value of costs. For example, the dynamic solution
characterized by 1800 kW of photovoltaic reduces the present value of costs by
2 M€ and the CO2 emissions by about 220 tons/y. At the same time, this so-
lution also slightly increases RES penetration, while installing a lower photo-
voltaic capacity. These results demonstrate that optimal system management
leads to more acceptable planning solutions, which achieve higher system per-
formance by reducing the structural interventions (lower renewable sources ca-
pacity), the investment costs and the environmental impacts. However, it should
be noted that the performance of the obtained solutions is significantly affected
by the uncertainty associated to the main economical parameters (i.e., real dis-
count rate, fuel cost).

Further research efforts will focus on testing our dynamic, multi-objective ap-
proach on more complex systems considering additional power sources (e.g.,
wind turbines) and energy storage technologies (e.g., batteries) within the op-
timization process. In addition, a more detailed and comprehensive sensitiv-
ity analysis might be performed in order to consider the uncertainty in all the
techno-economical simulation parameters. Moreover, synthetic generators of
the main external drivers might be developed to enlarge the observed dataset
in order to consider the inter-annual variability of the main natural and socio-
economic variables within the optimization process.
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4
Exploring the e�ects of climate
change on the performance of

hybrid energy systems

Abstract1

Designing hybrid energy systems that combine traditional power generation
with renewable energy sources and storage technologies represents a viable and
promising solution for improving the sustainability of remote off-grid systems,
such as the small Mediterranean islands. However, in the future, the perfor-
mance of these system will be strongly affected by uncertainty in climate con-
ditions, posing a big challenge in the identification of the best systemdesign able
to guarantee high levels of sustainability over a medium-to-long term horizon.
In this chapter, we propose a methodological framework to assess the vulner-
ability of hybrid energy systems with respect to changes in the main climate
drivers (i.e., solar radiation, wind speed, temperature). More precisely, we aim
at evaluating how the historical variability and the future uncertainty in the cli-
mate variables affect the performance of highly renewable hybrid energy sys-
tems, designed under average historical conditions, in terms of different sus-
tainability indicators. Numerical results show that the performance variability
associated to future scenarios is almost double with respect to the historical one
for all the indicators considered. Moreover, the performance of the solutions

1Giudici, F., Castelletti, A., Garofalo, E., Maier, H. R., 2019b. Exploring the effects of climate change and technolog-
ical innovation on the robust design of off-grid hybrid energy systems. Nature Energy (in preparation)
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characterized by high RES and storage capacity is less sensitive to changes in
the climate drivers with wind speed representing the driver that mainly affects
the system performance.

4.1 Introduction

Small Mediterranean islands represent a paradigmatic example of remote off-
grid systems facing a large number of sustainability issues, mainly due to their
distance from the mainland, the lack of accessible water sources, and the high
seasonal variability of both water and electricity demand. Energy security is
generally reliant on carbon intensive diesel generators, which are usually over-
sized to meet peak summer electricity demand driven by high touristic fluxes.
Potable water is often produced by energy intensive desalination technologies,
which strongly impact on the electricity system, increasing air pollution and
greenhouse gas emissions. In addition, the high dependence upon the remote
supply of fuel and the need for backup storage to cover possible refuelling de-
lays contribute to increasing operational costs and the overall inefficiency of
these systems.

In order to improve the economic and environmental sustainability of small
islands, hybrid energy systems, combining traditional power generation (e.g.,
diesel) with RES (e.g., PV, wind) and storage technologies (e.g., batteries), pro-
vide a potentially viable solution for reducing costs and carbon emissions (Ekren
and Ekren, 2009; Ibrahim et al., 2011; Erdinc and Uzunoglu, 2012). In particu-
lar, as reported by Sawle et al. (2018), coupling PV andwind generation through
PV-wind based hybrid systems represents a good option to maximize RES pro-
duction and thus reducing costs and emissions. These technologies rely in fact
on complementary natural resources: wind peaks are usually observed during
the night and in winter, whilst solar radiation is higher during the day and in
spring and summer months. In addition, the introduction of batteries coupled
to PV technologies is considered a well-establish solution to fully exploit the
RES power potential by storing electricity surpluses during the day for using
them during the night hours (Shaahid and El-Amin, 2009; Merei et al., 2013).
Even if storage systems are usually characterized by very high costs of installa-
tion, they allow to significantly reduce the operational costs on a medium-to-
long term horizon, increasing RES penetration and reducing the carbon emis-
sions.

Traditionally, the optimal configuration of the hybrid energy system is obtained
by identifying the size of each technologies that minimizes the present value
of costs over a given horizon under average historical conditions of the main
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climate drivers (i.e., wind speed, solar radiation, temperature) (Bhandari et al.,
2015). However, the well recognised uncertainty associated to these external
driversmight strongly affect the performance of the optimal configuration, pos-
ing significant challenges to the identification of hybrid energy systems able to
guarantee high levels of sustainability over a medium-to-long term horizon. In
particular, the optimal solution designed under average historical conditions
may be not robust when re-evaluated under future changing scenarios. In re-
cent years, several studies have been focused on assessing the future variability
of climate drivers and analysing how future changes in these drivers may affect
the RES power potential over different spatial scales (Pašičko et al., 2012; Stan-
ton et al., 2016). In particular, the impacts of climate change onwindproduction
have been assessed for the European countries either by directly estimating fu-
ture projection of wind resource, or by assessing the impact of future changing
conditions on the operation and maintenance of wind farms as well as on the
design of wind turbines (Pryor and Barthelmie, 2010; Nolan et al., 2012; Car-
valho et al., 2017). Climate change effects on PV and solar power generation are
instead evaluated by analysing future projections of solar radiation and devel-
oping simulation models for better estimating changing in PV efficiency due to
extreme weather events or changes in temperature and cloud cover transmis-
sivity (Jerez et al., 2015; Fant et al., 2016). Even if several works focus on un-
derstanding the impacts of climate change on future RES power potential, only
few studies concentrate on assessing the effects of such changes on the system
performance (i.e., sustainability indicators) through a comprehensive analysis
aiming at exploring and identifying the main system vulnerabilities (Schaeffer
et al., 2012; van Vliet et al., 2012).

In order to address this aspect, in this chapter we propose a methodological
framework to assess the vulnerability of hybrid energy systems with respect to
changes in the main climate drivers (i.e., solar radiation, wind speed, tempera-
ture). More precisely, we aim at evaluating how the historical variability and the
future uncertainty in the climate variables affect the performance of highly re-
newable hybrid energy systems, designed under average historical conditions,
in terms of different sustainability indicators. Moreover, we also concentrate
on exploring the key variables that have amore significant impact on the system
performance in order to identify the more interesting drivers to include in the
system design phase in order to generate robust planning solutions.

4.2 Methods and Tools

In this chapter, we propose amethodological framework (Figure 4.1) to evaluate
the effects that historical variability and future uncertainty in the main climate
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drivers (i.e., solar radiation, wind speed, temperature) may have on the perfor-
mance of highly renewable hybrid energy systems, which combine conventional
power generation (e.g., diesel)withRES (e.g., PV,wind) and storage technologies
(e.g., batteries). First, we optimally design a hybrid energy system considering
average historical conditions (Section 4.2.1). Secondly, starting from historical
data, we generate stationary scenarios of the main climate drivers through the
implementation of different synthetic generators in order to enlarge the his-
torical dataset and fully capture the historical drivers variability (Section 4.2.2).
Then, we generate future climate scenarios starting from the climate projec-
tions provided by EURO-CORDEX2 in order to analyse how the main climate
drivers change in future (Section 4.2.3). Finally, we re-evaluate the optimal sys-
tem designs under historical and future scenarios for assessing how changes in
the climate drivers affect the system performance in terms of different sustain-
ability indicators (Section 4.2.5).

Optimal system design
Identification of optimal hybrid system designs 

considering average historical conditions.

Future scenarios
Future scenarios are generated 
through statistical downscaling.

Historical scenarios
Historical scenarios are generated 

through synthetic generation.

Re-evaluation
Optimal hybrid system designs are re-

evaluated under historical and future scenarios 
considering different performance indicators.

Historical data 
(Solar radiation, wind speed, temperature)

Climate projections
(Solar radiation, wind speed, temperature)

Future climate 
scenarios

Historical climate 
scenarios

Selected 
solutions

Historical 
Future

Figure 4.1: Methodological framework for assessing the effects of historical and fu-
ture climate variability on the performance of hybrid energy systems designed un-
der average historical conditions. Grey boxes represent the tools for generating the
optimal system designs and the scenarios used to re-evaluate the system.

4.2.1 Optimal system design

We identify optimal system designs by solving a multi-objective optimization
problem with respect to two objectives considering average historical condi-
tions of the climate drivers. The first objective, to be minimized, is the present
value of costs, defined as in Chapter 3. The second objective, to be maximized,
is the RES penetration, defined as the percentage of electrical load covered by

2www.euro-cordex.net
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renewable power over the project horizon. The decision variables are PV ca-
pacity, number of wind turbines and number of batteries to be installed. In
this work, we do not optimize the desalination plant operations but we con-
sider the historical ones. Like for the experiments performed in Chapter 3, we
solve the optimization problem by means of a simulation-based optimization
approach using the evolutionarymulti-objective algorithmBorgMOEA (Hadka
and Reed, 2013).

4.2.2 Historical scenario generation

For each of the three climate variables considered (i.e., solar radiation, wind
speed and temperature), a different synthetic generator has been implemented
in order to fully capture the historical variability of the external drivers. Syn-
thetic generators are tools that aim to obtain an amount of data, starting from
a limited set of historical data. They are particularly useful when dealing with
climate drivers, as long and continuous series that capture the full variability
of the processes are often not available. Synthetic data can have, hourly, daily,
or monthly scale and preserve the statistics of the starting series. In the fol-
lowing, the synthetic generators adopted for the different climate variables are
presented.

Solar radiation Hourly radiationdata canbe synthetically generated through
stochastic techniques, such as autoregressivemodels (Aguiar andCollares-Pereira,
1992) orMarkov chains approaches (Bright et al., 2015). Markov chains are usu-
ally preferred as they generally reproduce better some of the basic characteris-
tics of the occurrence probability of solar radiation data. Since solar radiation
is a complex process, which depends upon many external factors (e.g., cloud
dynamics, atmospheric losses and transport of airborne pollutants), synthetic
generators work with the clearness index kt, defined as the ratio between the
radiation at surface and the radiation at TOA (Top Of Atmosphere). In fact, this
dimensionless variable can be generalized for different areas and can be easily
de-trended (Poggi et al., 2000). A Markovian process is a mathematical repre-
sentation of a stochastic process, whereby transitions from one state to the next
are directed by discrete probabilities taken from the statistics of real world pro-
cesses and under the assumption that the future state depends only on the lastn
states. Considering a higher number of states (i.e., higher Markov chain order)
improves the accuracy of the generated data, but also increases the computa-
tional cost.
In this analysis, a first orderMarkov chain is considered and the historical series
is discretized in k states (or classes). Given the process in state i at time t− 1,
the probability that it will be in state j at time t is determined by the transition
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probability pij:
pij =

nij∑
j=1 nij

(4.1)

where nij represents the number of transitions from state i to state j observed
in the historical discretized series. These frequencies are converted into prob-
abilities by dividing them by the total number times in which state i has transi-
tioned towards any of the k states. The probability transition matrix P of size
k ∗ k is thus created as follows:.

P =


p1,1 p1,2 . . . p1,k
p2,1 p2,2 . . . p2,k
... ... ... ...
pk,1 pk,2 . . . pk,k


Its values range between 0 and 1. Higher values occur on the diagonal of the
matrix and, in general, all the transition probabilities are around the diagonal
(i.e., transitions from one state to another are rare when the states are far each
other). Once the matrix P has been computed, the generation phase starts: the
first state is randomly chosen from the classes of the discretized series and the
subsequent states are determined according to the probability transition ma-
trix, until the desired length of the generated series is reached. The result is
a dimensionless series of classes. In order to obtain a series of real data, this
series is multiplied by the class step, generating the discretized series SGd, in
which each element corresponds to the upper boundary of the interval of the
corresponding class. From this series a random quantity multiplied by the step
length (sl) is substracted for generating the synthetic series SG:

SG = SGd − rand(0, 1) ∗ sl (4.2)

In this work, hourly clearness index is synthetically generated considering day-
light hours only, while darkness hours are attained at the end of the generation
phase depending on the considered month. Hourly kt is finally multiplied by
radiation at TOA for generating the solar radiation series.

Wind speed Since wind is a continuous process in real world, wind speed
data at any time is strongly correlated to previous data (Shamshad et al., 2005).
Methods based onMarkov chains are extremely suitable for modeling this kind
of processes and are thus the most commonly adopted for generating synthetic
series of wind speed (Aksoy et al., 2004). The synthetic generator here imple-
mented follows the samemethod developed for generating solar radiation data.
However, in this case, we consider each month of the year independently, by
determining 12 different probability transition matrices in order to accurately
reproduce the seasonal pattern.
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Temperature The most commonly adopted approaches for generating syn-
thetic series of air temperature are based on Fourier series, Auto Regressive
MovingAverage (ARMA)models (Magnano et al., 2008) or non-parametricmeth-
ods (Sharif et al., 2007). In thiswork,we adopt a non-parametricmethod, namely
the K-Nearest Neighbour (K-NN) resampling approach. Non-parametric gen-
erators employ the nearest neighbor bootstrap resampling technique (Lall and
Sharma, 1996) to reproduce the autocorrelation in generated time series with-
out assuming a parametric generating process. Since K-NN approach works
with daily time series, first we transform our historical hourly time series in a
daily one. Secondly, we divide the historical series into overlapping blocks of
d data and the most recent block is compared to all historical blocks to find
the first k nearest neighbors according to a distance measures, namely the Eu-
clidean distance. The k nearest neighbors are then sorted according to the dis-
tancemeasure and associated to a probabilityP(j) that is inversely proportional
to the rank j:

P(j) =

1
j∑k
j=1

1
j

(4.3)

Finally, the generated value is the one that succeeds the sampled nearest neigh-
bor according to P(j). The blocks are then recomputed accounting for the
generated value and the process restarts and continues until the desired series
length is reached. Since temperature is a strong autocorrelated process, a block
length d=6 is chosen, while k is calculated as the square root of the length n of
the historical record (Lall and Sharma, 1996). At the end, the generated daily
time series is disaggregated in an hourly time series by means of a disaggrega-
tion method (see Section 4.2.4 for details).

4.2.3 Future scenario generation

Future climate scenarios of solar radiation, wind speed and temperature are
provided by the EURO-CORDEX project3. The aim of this project is to gen-
erate realistic climate change projections by simulating the physical processes
of atmosphere, oceans and land surface through a modeling chain composed of
Global Circulation Models (GCMs) and Regional Circulation Models (RCMs).
These models are fed by Radiative Concentration Pathways (RCPs), which de-
scribe how Greenhouse Gas (GHG) concentrations will evolve in the future ac-
cording to different emission scenarios. In particular, RCPs define how the ra-
diative forcing values change with respect to pre-industrial age by considering
different assumptions about patterns of economic and demographic growth,
technology development and future energy consumption (Moss et al., 2010).
In particular, the Intergovernmental Panel on Climate Change (IPCC) (IPCC,

3www.euro-cordex.net
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2014) identify 4 RCPs namely RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5 (Hijioka
et al., 2008), which correspond to different increase in the radiative forcing es-
timated at the end of the century with respect to the pre-industrial values (i.e.,
+2.6, +4.5, +6 and +8.5 W/m2). RCPs feed GCMs, which simulate the physical
processes at the global scale defining the boundary conditions for RCMs. These
latterwork on an higher resolution providing amore detailed description of the
orography, the land use and the local circulation phenomena. Simulation results
are climate projections at different spatial and temporal scales. In particular, de-
pending on the combinations of GCMs and RCMs, the time resolution ranges
between one hour to six months, while the spatial resolution from 0.11 degrees
(EUR-11, about 12.5 km) to 0.44 degrees (EUR-44, about 50 km). The simula-
tion horizon includes two periods: the control period (1971-2005), where the
models are fed with observed inputs and the simulation period (2006-2100),
where climate models are fed by RCPs. In this work, we consider 5 combina-
tions of GCMs and RCMs, fed by 3 different RCPs, namely RCP 2.6, RCP 4.5,
RCP 8.5, with a spatial resolution of 0.11 degrees (Table 4.1). Since some com-

Table 4.1: Climate scenarios from EURO-CORDEX project. Scenarios are generated
using different combinations of GCMs and RCMs forced with different RCPs.

GCM RCM RCP Spatial resolution
ICHEC CCLM4 2.6; 4.5; 8.5 0.11 deg
ICHEC RCA4 2.6; 4.5; 8.5 0.11 deg
MPI RCA4 2.6; 4.5; 8.5 0.11 deg

MOHC RCA4 2.6; 4.5; 8.5 0.11 deg
MOHC RACMO22E 2.6; 4.5; 8.5 0.11 deg

binations do not provide projections until 2100 for all the variables of interest,
we consider the simulation period 2006-2095 as the longer common period be-
tweenmodel combinations. For each combination of RCP, GCM and RCM, we
thus obtain daily time series of solar radiation, wind speed and temperature for
the period 1971-2095.

Statistical downscaling To resolve the mismatch between the resolution of
the climate projections and the resolution of the observed variables at the local
scale (i.e., Ustica island), a statistical downscaling technique (i.e., QuantileMap-
ping) (Boé et al., 2007) is applied for each of the three climate variables consid-
ered. Quantile Mapping technique is based on the identification of a transfer
function f which maps the cumulative density function of a predictor onto the
cumulative density function of a predictand. In our case, the predictor is the cli-
mate model output over the control period, and the predictand is the observed
time series. The method consists in two distinct phases:
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• Calibration phase: the transfer function f between the climate model
output over the control period C and the observed time series O is cali-
brated:

O = f(C) (4.4)

• Projectionphase: the calibrated function f is applied to the climatemodel
output over the simulation period, called forecast (F), removing the bias. A
linear interpolation is applied between two percentiles. The result of the
operation is the downscaled time series (F ′):

F ′ = f(F) (4.5)

The calibration phase can be done yearly, seasonally or monthly, as the model
error might differ during the year. In this work, a time-dependent correction
function calibrated for each day of the year is applied on a seasonal basis.
The results of the downscaling phase are local scale daily time series of the
three climate variable considered over the period 1971-2095. In order to obtain
hourly time series, we apply the disaggregation methods presented in Section
4.2.4.

4.2.4 Temporal disaggregation

In this work, different disaggregation methods are implemented to generate
hourly time series from daily ones. The methods adopted for the three climate
variable considered are reported in the following.

Solar radiation Disaggregation methods for solar radiation can be mathe-
matical, linear, polynomial, heuristic or Artificial Neural Networks (Khatib and
Elmenreich, 2015). A mathematical method based on the cosine function and
the average daily radiation is developed. It works on a monthly basis and im-
poses zero values during the hours of darkness. During daylight hours the solar
radiationG(h) at hour h is calculated as follows:

G(h) = k ∗ rand(a, b) cos(
π

12
(h− c)) + e ∗G(d) (4.6)

where G(d) is the average daily radiation [W/m2], a, b, c, e are parameters
that depend upon the considered month and the considered daylight hour, k is
a constant depending upon the day of the month that determines the increas-
ing/decreasing speedof solar radiationwithin themonth. InTable 4.2 the values
of the hourly dependent parameters are reported for the month of January, as
an example.
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8 am 9 am 10 am 11 am 12 am 1 pm 2 pm 3 pm 4 pm
a 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
b 1 1 1 1 1 1 1 1 1
c 12 12 12 12 12 12 12 12 12
e 0.2 0.45 0.7 1 1 1 1 0.7 0.5

Table 4.2: Hourly dependent disaggregation parameters for the month of January.

Wind speed Disaggregationmethods for wind speed are based on equations
that consider cosine function or random uniform distributions, given the daily
average wind speed (Debele et al., 2007). The method adopted in this work cal-
culates the wind speedWS(h) at hour h using the following equation:

WS(h) =

{
rand(a, b) ∗ (1 − (

|h−c|
15 )) ∗WS(d) cos( π12 (h− c)) + k ∗WS(d) 8 6 h 6 20

rand(a, b) ∗WS(d) cos( π12 (h− c)) + k ∗WS(d) else

(4.7)
whereWS(d) is the daily average wind speed and a=0, b=0.3, c=15, k=1 are
constant parameters.

Temperature We adapt the method proposed by Debele et al. (2007) to es-
timate hourly temperature from daily mean temperature. Hourly temperature
T(h) is thus generated using the following equation:

T(h) = k ∗ rand(a, b) cos(
π

12
(h− c)) + T(d) (4.8)

where h ∈ (1 − 24), T(d) is the average daily temperature, a, b, c, k are con-
stants that depend upon the month considered (Table 4.3).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
a 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 1 1 1 1 1 1 1 1 1 1
c 15 15 15 15 15 15 15 15 15 15 15 15
k 0.6 0.6 0.7 0.85 1 1.1 1.25 1.2 1 0.85 0.6 0.45

Table 4.3: Temperature disaggregation parameters.

4.2.5 System re-evaluation

Solutions obtained from the planning optimization presented in Section 4.2.1
are re-evaluated, first, under the historical synthetic scenarios (see Section 4.2.2)
to assess the system vulnerability with respect to the historical variability in
the main climate drivers and, then, under future scenarios (see Section 4.2.3) to
evaluate the robustness of the system with respect to the future uncertainty in
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the climate variables. During this phase the systemmodel presented in Chapter
2 is repeatedly run considering different scenarios. Results are then analysed
considering the following sustinability indicators:

• Present value of costs [M€]. This indicator is one of the objectives used
in the planning optimization phase;

• RES penetration [%]. This indicator is one of the objectives used in the
planning optimization phase;

• Fuel consumption [liters/year]. This indicator is computed as a function
of the electricity output of each diesel generator;

• CO2 emissions [tons/year]. This indicator is computed by multiplying
the total fuel consumption for an empirical coefficient.

4.3 Experiment settings

Optimal system designs (Section 4.2.1) are generated considering average his-
torical conditions of the climate variables, computed from hourly time series
provided by the re-analysis dataset MERIDA (MEteorological Reanalysis Ital-
ian DAtaset) (Lacavalla et al., 2017) over the period 2001-2017 (17 years). These
data are also used as input to the synthetic generators (Section 4.2.2) for produc-
ing hourly time series of 100 years, and are adopted as historical observations
for performing the statistical downscaling of the climate projections (Section
4.2.3). Since the system model presented in Chapter 2 requires the incident
solar radiation as input, the global solar radiation provided by the MERIDA
dataset and the future projections are transformed in incident solar radiation
following themethod proposed by Duffie and Beckman (2013) and considering
a slope for the PV panels equal to 30◦ with respect to the horizontal.

4.4 Numerical results

4.4.1 Identi�cation of the optimal system design

Figure 4.2 shows the Pareto optimal solutions in the space of the optimization
objectives. The x-axis represents the present value of costs, the y-axis the RES
penetration and the color shows the PV capacity (Figure 4.2a), the number of
wind turbines (Figure 4.2b) and the number of batteries (Figure 4.2c). We can
observe a clear trade-off between the two objectives: the lower the present value
of costs the lower the RES penetration. This is due to the need of increasing the
installed RES capacity in order to achieve higher RES penetrations. In this way,
an higher RES power allows to reduce diesel generation for covering the load,
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thus increasing the RES penetration and reducing operational costs. However,
the operational cost reduction does not compensate the higher investment costs
leading to higher present value of costs. The highest increase in RES penetra-
tion (from 60% to 80%) is obtained for a very small increase in the present value
of costs (from 42 M€ to 44 M€) and is associated to a rapid increase of the
PV capacity (from 1500 kW to 2500 kW) and the number of batteries (from 2
to 50). The number of wind turbines remains instead fixed to about 20 units.
These results suggest that coupling PV to storage technologies is the most effi-
cient way for exploiting RES potential and reducing operational costs. The very
high renewable power produced during the day can be in fact stored in the bat-
teries and used during the night for covering the load and thus reducing diesel
generation.
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Figure 4.2: Pareto-optimal system designs in the space of the optimization objectives.
Red squares highlight the solutions considered in the re-evaluation analysis. The
color of each point represents the PV capacity (a), the number of wind turbines (b)
and the number of batteries (c) to be installed.

In order to further increase RES penetration, also the number of wind tur-
bines has to be necessarily increased. However this causes a significant increase
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in the present value of costs. In particular, for a small increase in the RES pene-
tration of 10% (from 80% to about 90%), the present value of costs increases of
about 15 M€ (from 44 M€ to 59 M€).
In order to assess the performance of the solutions under the uncertainty in
the climate variables, we select two different designs (red squares in Figure 4.2)
as the more representative of the trade-off between present value of costs and
RES penetration. More precisely, we focus on the solution that minimizes the
present value of costs (42.2M€), called Least Cost solution, which installs 1550
kW of PV, 21 wind turbines and 2 batteries, and a compromise solution that
presents a very high RES penetration (80%) and a slightly higher present value
of costs (44.1M€), calledGreen solution, which installs 2200 kWof PV, 19wind
turbines and 40 batteries.

4.4.2 Analysis of historical and future climate scenarios

Figures 4.3-4.5 show the mean annual values of solar radiation (Figure 4.3),
wind speed (Figure 4.4) and temperature (Figure 4.5) over the period 1971-
2095 estimated by the CORDEX scenarios in Table 4.1 for three different RCPs,
namely RCP 2.6, RCP 4.5 and RCP 8.5.
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Figure 4.3: Mean annual values of solar radiation over the control period (1971-
2005) and the simulation period (2006-2095) provided by 5 EURO-CORDEX
models for 3 different RCPs.
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For all the variables considered, we can clearly observe howdifferent combi-
nations ofGCMs andRCMs produce different results. In particular, the scenar-
ios characterized by the RCM RCA4 present higher solar radiation and lower
wind speed and temperature.
This discrepancy between the estimated values of differentmodel combinations
clearly suggests the need of adopting a downscaling technique in order to re-
move these biases and generate reliable local scale projections.
Focusing on the temporal variability, we can observe that all the scenarios con-
sidered highlight a clear trend of temperature increase from the beginning of
the control period (1971) to the end of the century (Figure 4.5). Temperature
increases form 14 to 23 ◦C with higher values associated to the RCP 8.5. Con-
versely, solar radiation and wind speed do not present any clear trend (Figure
4.3,4.4). However, these variables show a very high inter-annual variability, in-
dependently from the period and RCP considered, with values that can strongly
differ from one year to another reflecting the unpredictable behaviour typical
of these variables. In particular, solar radiation is characterized by values that
range from 160 to 230W/m2 (Figure 4.3) andwind speed presents mean annual
values that vary from 5 m/s to 10 m/s (Figure 4.4).
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Figure 4.4: Mean annual values of wind speed over the control period (1971-2005)
and the simulation period (2006-2095) provided by 5 EURO-CORDEXmodels for
3 different RCPs.
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Figure 4.5: Mean annual values of air temperature over the control period (1971-
2005) and the simulation period (2006-2095) provided by 5 EURO-CORDEX
models for 3 different RCPs.

The downscaled future scenarios are shown in Figure 4.6 compared to the
historical synthetically generated scenarios. The x-axis represents the wind
speed, the y-axis the incident solar radiation and the color shows the temper-
ature: blue points refer to low temperature values instead red points represent
high temperature values. Each circle represents a specific year over the period
2006-2095 estimated by a specific model combination for a given RCP, instead
each diamond refers to one of the 100 synthetically generated years preserving
the statistics of the historical observations. We can observe that historical sce-
narios show very low temperature, high solar radiation and average wind speed
with a very low variability associated to all the variables considered. In partic-
ular, temperature does not exceed 20 ◦C, solar radiation ranges from 263.9 to
266.2W/m2 andwind speed varies from 4.8 to 5.7m/s. Future scenarios are in-
stead characterized by a very high variability, with temperature that varies from
18 to 25 ◦C, solar radiation from259 to 268W/m2 andwind speed from4.2 to 6
m/s. By analysing the future scenarios, we can observe that the values assumed
by one of the variables are not conditioned by the values assumed by the oth-
ers. This means that no correlation exits between the variables considered and
all the possible combinations of solar radiation, wind speed and temperature
within their range of variability constitute plausible future conditions.
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Figure 4.6: Historical (diamonds) and future (circles) scenarios. Each point represents
the mean annual value of wind speed, solar radiation and temperature for a specific
scenario. Blue points refer to low temperatures, whilst red points represent high
temperatures.

4.4.3 Re-evaluation of the system performance under historical and
future climate variability

In this section, we assess how historical and future climate variability analysed
in Section 4.4.2 affects the performance of the Least Cost and the Green solu-
tions identified in Section 4.4.1.
Figure 4.7 shows the box plots of the performance of the Least Cost and the
Green solutions when re-evaluated under historical (grey) and future (blue) cli-
mate scenarios. In particular, Figure 4.7a refers to the present value of costs,
Figure 4.7b shows the RES penetration, Figure 4.7c and Figure 4.7d represent
the fuel consumption and theCO2 emissions, respectively. Not surprisingly, the
re-evaluation under both historical and future climate variability confirms that
the Green solution shows a slightly higher present value of costs but a signifi-
cantly higher RES penetration associated to lower fuel consumption and lower
CO2 emissions with respect to the Least Cost solution. However, the perfor-
mance of both the Least Cost and the Green solutions is strongly affected by the
variability in the climate drivers. In particular, it is worth noting that the vari-
ability associated to the future scenarios is almost double with respect to the
historical one for all the performance indicators considered. More precisely,
even if the performance associated to the best possible scenario remains almost
the same when considering historical and future conditions, the average per-
formance and the one associated to the worst possible scenario significantly
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Figure 4.7: Box-plots representing the performance in terms of present value of costs
(a), RES penetration (b), fuel consumption (c), CO2 emissions (d) of the Least Cost
and the Green solutions re-evaluated under historical (grey) and future (light blue)
climate scenarios.

degrades in the future. In other words, future climate conditions will likely
negatively affect the performance achieved by the optimal solutions when re-
evaluated under historical climate variability, posing great challenges for the
identification of the best solutions over a medium-to-long term horizon. An-
other interesting aspect concerns the different effects that climate variability
causes on the Least Cost and the Green solution. This latter shows, in fact, less
variable performance indicators compared to theLeastCost solutionwhen con-
sidering both historical and future climate variability.
This result suggests that the solutions characterized by higher RES and stor-
age capacity are less sensitive to changes in the climate drivers. On one hand,
high RES capacity often allows to produce more power than the one needed to
cover the load. In these cases, changes in the natural resource affect the system
performance only when the resulted RES power potential becomes lower than
the load, causing the diesel generators to be activated. On the other hand, high
storage capacity filters the uncertainty in the climate drivers, and consequently
in the RES power potential, by storing and redistributing energy in time.
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Figure 4.8: Performance of the Green solution over the future scenarios in terms of
present value of costs and RES penetration with the color representing wind speed
(a), solar radiation (b) and temperature (c).
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4.5. Conclusions

In order to identify the climate drivers that mainly affect the system perfor-
mance, we focus on the Green solution showing in the space of the optimiza-
tion objectives, namely the present value of costs and the RES penetration, the
re-evaluation over the future scenarios with the color representing the values
assumed by the climate variables (Figure 4.8). In particular, Figure 4.8a shows
the wind speed, Figure 4.8b the solar radiation and Figure 4.8c the temperature.
It is worth noting that wind speed is the climate variable that mainly drives the
system performance. In particular, the higher the wind speed, the higher the
RES penetration and the lower the present value of costs. This is not surprising
as a higherwind speed allows to increase theRESpower to cover the load reduc-
ing the use of diesel generators and, consequently, decreasing the costs. System
performance is instead completely insensitive to changes in solar radiation as
its variability (about +/-2% of the average value) is negligible with respect to the
very high variability ofwind speed (about +/-15%of the average value), and only
slightly sensitive to the temperature. In particular, the higher the performance
(i.e., low present value of costs and high RES penetration) observed, the lower
the temperature, as the efficiency of PV panels decreases for high temperature
values (see Chapter 2 for further details). Finally, we can observe that changes
in the climate variables and, more precisely, in the wind speed, cause different
effects on the RES penetration for fixed present value of costs (see Appendix A
for further details).

4.5 Conclusions

In this chapter, we propose a methodological framework to evaluate the effects
that historical variability and future uncertainty in the main climate drivers
(i.e., solar radiation, wind speed, temperature) may have on the performance of
highly renewable hybrid energy systems, combining conventional power gen-
eration (e.g., diesel) with RES (e.g., PV, wind) and storage technologies (e.g., bat-
teries). First, we optimally design a hybrid energy system considering average
historical conditions and we select the system configuration that minimizes the
present value of costs, called Least Cost solution, and a compromise solution
that presents a very high RES penetration and a slightly higher present value of
costs, called Green solution. Then, we re-evaluate the selected optimal system
designs under historical and future scenarios of the main climate variables.

Results show that the system performance variability associated to the future
scenarios is almost double with respect to the historical one for all the indi-
cators considered. In particular, these latter significantly degrade when com-
puted over the future conditions, especially if focusing on the average and the
worst case scenario. Moreover, the performance of the solution characterized
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by higher RES and storage capacity (i.e., Green solution) is less sensitive to
changes in the climate drivers, as a lower performance variabilitywith respect to
the Least Cost solution is observed. Finally, numerical results show that wind
speed is the climate variable that mainly drives the system performance: the
higher thewind speed, the higher theRES penetration and the lower the present
value of costs. In conclusions, the performed analysis shows that the perfor-
mance of the optimal hybrid energy systems designed under average historical
conditions is very sensitive to the future climate conditions and will likely de-
grade on a medium-to-long term horizon. These results suggest the need of
directly considering future climate conditions within the design phase in order
to generate solutions that are robust with respect to the deep uncertainty in the
climate drivers. This aspect will be extensively discussed in Chapter 5.

Further research efforts will focus on exploring, in addition to climate change,
future technological (e.g., cost and efficiency of different technologies) and socio-
economic (e.g., energy demand, electricity prices) scenarios in order to assess
the vulnerability of the hybrid energy systems with respect to a large set of co-
varying plausible future conditions. Moreover, a complete robustness analysis
might be performed for assessing how the robust solutions change when con-
sidering different robustness metrics, which reflect different levels of risk aver-
sion of the decision maker.
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5
An active learning approach for
identifying the smallest subset

of informative scenarios for
robust planning

Abstract1

Deep uncertainty in future climate, socio-economic and technological condi-
tions poses a great challenge to medium-long term decision making. Recently,
several approaches have beenproposed to identify solutions that are robustwith
respect to a large ensemble of deeply uncertain future scenarios or states of the
world. In this chapter, we introduce ROSS (Robust Optimal Scenario Selec-
tion), a novel algorithm that uses an active learning algorithm for adaptively
selecting the smallest scenario subset to be included into a robust optimization
process. ROSS contributes a twofold novelty in the field of robust optimiza-
tion under deep uncertainty. First, it allows the computational requirements
for the generation of robust solutions to be considerably reduced with respect
to traditional optimizationmethods. Second, it couples scenario discoverywith
robust optimization for the identification of themost informative regions of the
scenario space, highlighting the primary system vulnerabilities. We test ROSS
on the real case study of robust planning of an off-grid hybrid energy system,

1Giudici, F., Castelletti, A., Giuliani,M.,Maier, H. R., 2019c. An active learning approach for identifying the smallest
subset of informative scenarios for robust planning under deep uncertainty. Environmental Modelling & Software
(Under Review)
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combining diesel generation with renewable energy sources and storage tech-
nologies. Results show that ROSS enables computational requirements to be
reduced between 23% to 84% compared with traditional robust optimization
methods, depending on the complexity of the robustness metrics considered. It
is also able to identify very small regions of the scenario space containing the
most informative scenarios for generating a robust solution.

5.1 Introduction

Changes in future climatic and socio-economic conditions, aswell as rapid tech-
nological innovation, represent sources of uncertainty that significantly influ-
ence medium-long term decision making in different fields (e.g., water man-
agement, infrastructure planning, energy systems design) (Harrison et al., 2015;
Maier et al., 2016). Identifying planning solutions ormanagement strategies for
complex environmental systems can thus be extremely challenging, as the con-
sequences of a decision, in terms of system performance, strongly depend on
the external uncertain conditions that will actually unfold in the future (Uusi-
talo et al., 2015; McPhail et al., 2018). When information on the probability of
occurrence of future uncertain conditions is available, and the uncertainty can
be described using a stochastic model, the problem is defined as decision mak-
ing under risk (French, 1986). When, instead, such probability of occurrence is
unknown and a set-membership description of the uncertain future conditions
is the only available information, the problem is classified as decision making
under deep uncertainty (Lempert and Schlesinger, 2000; Lempert, 2002; Dessai
et al., 2009).

Several approaches have been proposed to support decisionmaking under deep
uncertainty (see Herman et al. (2015) and Maier et al. (2016) for a review). The
mostwidely adopted approaches includeRobustDecisionMaking (RDM) (Lem-
pert, 2002; Lempert et al., 2003; Bryant and Lempert, 2010; Hall et al., 2012),
DecisionScaling (Brownet al., 2012;Moody andBrown, 2013;Ghile et al., 2014;
Poff et al., 2015) andMany-ObjectiveRobustDecisionMaking (MORDM) (Kasprzyk
et al., 2013; Herman et al., 2014; Paton et al., 2014). All these approaches aim
at evaluating the robustness of different planning or management alternatives
over an ensemble of plausible future scenarios, called states of the world, fo-
cusing on understanding and retrieving the future conditions for which a given
alternative fails or not.
Following the taxonomy proposed by Herman et al. (2015), these approaches
can be classified based on the methods adopted for (i) identifying alternatives
(e.g., pre-specified (Tingstad et al., 2014) or optimally generated (Quinn et al.,
2018)), (ii) sampling states of the world (e.g., top-down (Mahmoud et al., 2009)
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or bottom-up (Nazemi and Wheater, 2014) methods), (iii) quantifying robust-
ness measures (e.g., regret or satisficing measures (Lempert and Collins, 2007)),
and (iv) identifying key uncertainties through sensitivity analysis (e.g., scenario
discovery (Bryant and Lempert, 2010; Singh et al., 2014)). Irrespective of which
of the above approaches is used, the following sequential steps have to be per-
formed: (i) generation of alternative solutions or policies, (ii) sampling of plau-
sible future states of the world, and (iii) robustness analysis. Since the above
robustness analysis is conducted on pre-defined solutions, there is no guaran-
tee the most robust solutions are identified.

Robust optimization (RO)methods overcome this issue by identifying solutions
that maximize robustness over a range of plausible future states of the world.
This is achieved by combining robustness calculations and formal optimization
processes, identifying solutions that perform satisfactorily over a wide range of
deeply uncertain states of the world. However, this requires the performance
of each alternative to be simulated at each of these states, making the optimiza-
tion process computationally demanding or even intractable, especially when
the number of scenarios increases from tens to several thousand (Roach et al.,
2016). This is the reason whymost studies that combine robustness assessment
and the use of formal optimization for alternative generation perform the ro-
bustness assessment after the completion of the optimization process (Kasprzyk
et al., 2013; Paton et al., 2014; Beh et al., 2015), with only few studies includ-
ing robustness as an explicit objective in the optimization problem (Basupi and
Kapelan, 2015;Giuliani andCastelletti, 2016; Zeff et al., 2016). To overcome the
computational issues of RO methods, some studies use computationally effi-
cient metamodels (Castelletti et al., 2012b) as surrogates of the hi-fidelity, com-
putationally expensive simulation models that are generally used in the calcu-
lation of robustness values within the optimization process (Yan and Minsker,
2011; Broad et al., 2015; Beh et al., 2017). These metamodels are usually black-
box models that map future uncertain conditions and decision variables onto
robustness values. While their use can increase the computational efficiency
of the optimization process significantly, their black-box nature means that the
underlying systemdynamics are not able to be represented explicitly (Castelletti
et al., 2011, 2012a), making it difficult to obtain insight into the plausible future
conditions that are likely to result in system failure. An alternative approach to
increasing the computational efficiency of robust optimization methods is to
adopt sampling techniques to extract a smaller scenario subset to be included
in the robustness calculation. While consideration of a smaller number of sce-
narios reduces computational requirements, it also introduces the possibility
that the robustness of the solution identified in the optimization process is sig-
nificantly different from the one resulting from the consideration of the entire
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scenario space.

In order to overcome the shortcomings of previous studies incorporating ro-
bustness as an optimization objective outlined above, we introduce ROSS (Ro-
bust Optimal Scenarios Selection), a novel algorithm that uses an active learn-
ing algorithm (Cohn et al., 1996) to identify the smallest scenario subset for
which the robustness of the optimized solution is similar (or even equal) to that
obtained by re-evaluating that solution over the entire scenario space, thereby
increasing computational efficiency by reducing the number of scenarios over
which solution performance has to be evaluated. Active learning is a particular
case of machine learning as part of which the learning algorithm is directly re-
sponsible for acquiring its training data-set through (i) experiments on the real
systems or (ii) running simulations of generative models to obtain the desired
outputs for new, unknown inputs. In our case, the active learning principles are
applied for filtering an existing data-set (i.e., scenario space) in order to select a
concise sub-set of sufficiently informative scenarios for generating robust so-
lutions.
ROSS contributes a twofold novelty in the field of robust optimization under
deep uncertainty. First, it allows to considerably reduce the computational re-
quirements for the generation of robust solutions with respect to traditional
optimization methods. Second, it couples scenario discovery with robust opti-
mization for the identification of the most informative regions of the scenario
space, highlighting the main system vulnerabilities for solutions that maximize
system robustness.

In order to demonstrate the utility of ROSS, we apply it to the robust planning
of a hybrid energy system for the Ustica island, Italy (see Chapter 2 for further
details on the case study). This case study is ideally suited to demonstrate the
capabilities of ROSS, as it is focused on the optimal design of a hybrid energy
system, including different types of renewable energy, which is subject to deep
uncertainties associated with future changes in a number of climatic variables
(e.g., solar radiation, wind speed, temperature). In addition, due to the very high
number of future scenarios, the consideration of robustness as an optimization
objective is computationally demanding.
We first assess the ability of ROSS of iteratively identifying the regions of the
scenario space that contain the most informative scenarios for generating a ro-
bust solution. Then, we evaluate the computational advantages of ROSS with
respect to a traditional robust optimization method, which considers the en-
tire scenario space within the optimization process. As highlighted by different
studies (Giuliani andCastelletti, 2016;Kwakkel et al., 2016;McPhail et al., 2018),
defining the robustness of a solution constitutes itself a meta-problem (i.e., de-
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ciding how to decide (Schneller and Sphicas, 1983)) as it strictly depends on the
attitude of the decision makers in facing and reacting to future uncertain con-
ditions. To address this aspect, we repeat our analysis for multiple robustness
metrics, and explore how the most informative regions of the scenario space
and the resulting robust solution change according to the robustness metrics
selected, highlighting the relative influence of different uncertain drivers on the
robustness of the solution.

5.2 Methods and tools

ROSS (Robust Optimal Scenarios Selection) is an active learning algorithm de-
signed to identify the smallest scenario subset for generating robust solutions
(Figure 5.1).
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ROSS algorithm
ROSS uses active learning to adaptively identify 

the regions of the scenario space containing 
the most informative scenarios for generating a 

robust solution.

OU
TP

UT
S

Scenarios
A set of future plausible 

scenarios of external drivers 
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Robustness metric
An appropriate robustness metric 
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The cardinality of the scenario 

subset used to identify the 
robust solution is set.

ℱ ( #$

Robust planning solution
The robust planning solution is 

determined.

Most informative regions
The regions containing the most 

informative scenarios are identified.

Figure 5.1:Methodological framework. External inputs to ROSS algorithm are high-
lighted in grey.

The main inputs to the algorithm are a set of future plausible scenarios F, a
robustnessmetricΨ (readers should refer toMcPhail et al. (2018) for anoverview
of themost adopted robustnessmetrics) used to calculate the performance of an
alternative over the scenarios inF, and the cardinalityn0 of the scenario subset
to be included in the optimization process.
As a rule of thumb, n0 is defined, according to the robustness metric selected,
as the minimum number of scenarios needed to mathematically compute the
robustness metric (see Section 5.3.3 for further details). However, for complex
dynamic systems affected by a large set of co-varying uncertain factors, this
number could be too small for identifying a robust solution. In this case n0 has
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to be increased iteratively and the algorithm relaunched until a robust solution
is found. As outputs, ROSS delivers the robust planning solution and the re-
gions of the scenario space containing the most informative scenarios (i.e., the
scenarios that have the largest influence on robustness values).

5.2.1 Robust Optimal Scenario Selection

ROSS adopts an active learning (AL) algorithm that iterativelymoves aGaussian
distribution function, defined on the scenario spaceF, towards the regions con-
taining the most informative scenarios. These are the scenarios for which the
robustness of the optimized solution is similar (ideally equal) to that obtained
when robustness is calculated over the entire scenario space. The algorithm
(Algorithm 1) starts by initializing ank-variate Gaussian distribution d, where
n = n0 is the cardinality of the scenario subset and k is the dimension of the
scenario space F. Then, n points are extracted according to the distribution d,
which correspond to a single nk-dimensional sample from d. To ensure these
sampled points align with members of the scenario space, we perform a nearest
neighbour search in the scenario space with respect to the Euclidean distance
between the candidate points and the scenarios in F. The n selected scenarios
constitute the scenario subset F̂(n) for which a robust solution a∗ is identified
via a formal robust optimization process using the selected robustness metric
Ψ as an objective. The degree of similarity between the robustness values cal-
culated over the selected scenario subset and over the entire scenario space is
then calculated using the following metric:

R[%] = −
|ropt(a

∗|F̂(n)) − rreval(a
∗|F)|

rreval(a∗|F)
· 100 (5.1)

where ropt(a∗|F̂(n)) is the robustness of the optimal solution a∗ calculated
over the scenario subset F̂(n) and rreval(a∗|F) is the robustness of the optimal
solutiona∗ calculated over the entire scenario spaceF. The score R, to be max-
imized, quantifies the absolute difference in percentage between the robustness
of the optimized solution calculated over the scenario subset extracted from the
Gaussian distributiond and the one computed over the entire scenario spaceF.
The lower this difference, the higher the score. When the score R equals zero,
the two robustness calculations match and the solution optimized over the sce-
nario subset is also robust with respect to the entire scenario space.
In order to assess the ability of the Gaussian distribution d to identify the most
informative scenarios, the above mentioned steps (i.e., scenario sampling, near-
est neighbour search, robust optimization, score computation) are repeated for
Nexp times. We thus obtain a setΦ = (F̂(n), R) ofNexp elements, each com-
posed of n scenarios and the corresponding R score. To identify the scenarios
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Algorithm 1 ROSS (Robust Optimal Scenario Selection)

Inputs
- Robust planning optimization= solution_identification(·),
- Evaluation method= score(·),
- Scenario space F,
- Cardinality n0 of the scenario subset,
- Algorithm parameters (M,Nexp, p, k).
Initialization
- Set n = n0,
- Initialize an nk-variate Gaussian distribution d.
Active Learning (AL) iterations: repeat untilM is reached.
for i = 1 toNexp
- Si: sampling of n points according to d,
- F̂(n)i: nearest neighbour search of n scenarios in F closest to Si,
- a∗i = solution_identification(F̂(n)i),
- Ri = score(a∗i ).
end

Φ = (F̂(n), R) in descending order w.r.t. R
Φ ′ = first pNexp elements ofΦ
d←maximum likelihood distribution overΦ ′

that allow the highest score to be obtained,Φ is ordered descendingly with re-
spect to the evaluation score R and its first pNexp elements are selected and
included inΦ ′. Then, the scenarios composingΦ ′ are used to update the dis-
tribution d. This corresponds to computing the nk-variate average vector and
the nk×nk co-variance matrix for the scenarios inΦ ′.
The AL procedure iterates until a maximum number of iterationsM is reached
or when the 0.1 quantile of theNexp scores reaches zero. In the latter case, we
can claim that ROSS is at convergence, as 90% of the pNexp extraction from
d identifies scenarios that allow the maximum R score value to be obtained,
namely zero.
The purpose of the AL algorithm thus consists of evolving the parameters (i.e.,
mean, variance) of a nk-variate Gaussian distribution d so as to maximize its
capability of extracting scenarios that allow high R score values to be obtained.
If ROSS does not achieve convergence withinM iterations, the number of sce-
narios included in the robust optimization process is too small for identifying
a robust solution. In this case, the subset cardinality n0 has to be increased and
the algorithm relaunched.
It is worth noting that the AL parameters Nexp and p are strictly dependent
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on the dimension nk of the distribution d, as this latter is updated considering
pNexp elements of Φ. In addition, the convergence of the distribution d to-
wards the optimal regions of the scenario space is driven by the ratio p/Nexp.
Oncep is defined, the number of experimentsNexp has to be selected balancing
the convergence speed and the ability to explore the entire scenario space.

5.3 Experiment settings

5.3.1 Formulation of the optimization problem

We focus on identifying the configuration of the hybrid energy system a∗ that
minimizes the objective function J(a) over a given simulation horizon. The
optimization problem is formulated as follows:

a∗ = argmin
a

[J(a)] (1)

where J(a) represents the present value of costs and is calculated as follows:

J(a) = Ccap(a)+

H∑
y=1

δ(y)(Cgrid+Coper(y, a)+Crep(y, a)+Csal(y, a))

(5.2)
where all costs occurring at each hour t throughout the simulation horizon are
aggregated on a yearly basis y. H is the number of years of the simulation hori-
zon,Ccap(a) are the capital costs,Cgrid are the costs for themanagement of the
electricity grid, and Coper(y, a), Crep(y, a), Csal(y, a) are the operational,
replacement and salvage costs at year y, respectively. All costs, except the capi-
tal ones, are discounted using the following time varying coefficient:

δ(y) =
1

(1 + γ)y
(5.3)

where γ is the real discount rate, calculated as a function of the nominal dis-
count rate γ ′ and the inflation rateϕ:

γ =
γ ′ −ϕ

1 +ϕ
(5.4)

The capital costs occur at the beginning of the simulation horizon and repre-
sent the investment to install the power technologies, the replacement costs oc-
cur when a technology has to be substituted, and the salvage costs are negative
costswhich are incurred at the end of the simulation horizon, whenone ormore
technologies have not reached the end of their lifetime. Finally, the operational
costs take into account both the cost to produce 1 kWh of electricity, the cost of
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maintenance of each power technology, and the cost of fuel. It is worth noting
that present value of costs is dependent on both the configuration of the hybrid
energy system a and the climatic conditions (i.e., wind speed, solar radiation,
temperature), which significantly affect the RES power potential and, conse-
quently, the electricity generation costs. In particular, we assume an electricity
generation cost associated to RES equal to zero.
The decision variables a of Problem 1 are the PV capacity CPV and the num-
ber of wind turbinesnw to be installed, defined within the following feasibility
sets: CPV ∈ [100, 2000] and nw ∈ [1, 20]. The upper bound of the feasibility
sets is determined considering the small size of the island and the tight environ-
mental constraints, which strictly limit the maximum installable RES capacity.
In this work, we do not consider the number of batteries as a decision variable
but we fixed the capacity of the storage system equal to the PV capacity. Even
if this simplification prevents to exactly identify the optimal number of batter-
ies to be installed, it constitutes a reasonable and conservative assumption (i.e.,
empty batteries could entirely store the hourly maximum PV power produc-
tion) to ensure the PV electricity surplus generated in the central hours of the
day to be stored in the batteries for covering the required load during the night.
In addition, it allows to significantly reduce the size of the decision space, by
avoiding to explore bad or even unfeasible solutions (i.e., high number of bat-
teries and low PV capacity).
We solve Problem 1 using an exhaustive search within the feasibility set of the
decision variables over 1-year evaluation period, assuming that external drivers
do not change from one year to another during the simulation horizon. To do
this, we sample the feasibility set of CPV with a 100 kW discretization step,
which is sufficiently fine to allow significant changes in the objective function
to be captured (Giudici et al., 2019a). Using this discretization, the cardinality of
the search space is equal to 400. The optimization is performed using the simu-
lationmodel presented in Chapter 2 considering the observed desalination load
ldes to simulate the operation of the desalination plant.

5.3.2 Scenarios

In this work, we generate climate scenarios of wind speed, solar radiation and
temperature using anhybrid approach (Matrosov et al., 2013;Roach et al., 2016),
which combines top-down (Haasnoot et al., 2013; Herman and Giuliani, 2018)
and bottom-up (Culley et al., 2016; Shepherd et al., 2018) methods by first esti-
mating future conditions from climate models and then enlarging the range of
plausible future scenarios in order to stress-test the system of interest.
We first consider climate projections generated by five differentEURO-CORDEX
scenarios (see Chapter 4 for details). Since our model simulates the system over
a reference year, we consider each projected year as a single scenario. Then,
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we enlarge the mean annual variability of wind speed and solar radiation for
stress testing our system under more variable conditions, in order to identify
potential vulnerabilities. In particular, we enlarge the variability of solar radia-
tion by +/-2% and the variability of wind speed by +/-10%. These values have
been arbitrarily selected to capturemore extreme conditions than the ones pre-
dicted by the EURO-CORDEX climate projections, but which are still feasible
and reliable for our specific case study. We focus on these two variables as the
most uncertain and the ones that are most likely to significantly affect planning
decisions, as solar radiation and wind speed are the main drivers determining
PV and wind power potential for a given installed capacity (see Chapter 2 for
further details).
At the end of the scenario generation procedure, we obtain 3125 scenarios of
hourly values of wind speed, solar radiation and temperature, composing the
scenario space F considered in ROSS. Wind speed is clearly the driver with the
largest variability, with mean annual values that range between 3.4 and 7 m/s.
Solar radiation ranges between 253.8 and 272.7 W/m2 and temperature values
vary from 18.2 to 24.5 ◦C.

5.3.3 Robustness metrics

When dealing with robust optimization, the system performance of a candidate
solution is strongly affected by the scenario considered. The objective function
in Equation 5.2 thus depends on both the decision variables a and the climate
scenariow ∈ Ξ. To filter the uncertainty associated to multiple climate scenar-
ios, we consider different robustnessmetricsΨΞ[·], which capture different risk
aversion degrees of the decisionmaker. The robustnessmetrics we consider are
the following:

• maximin. Thismetric identifies the alternativea∗ that attains the best per-
formance in the worst case:

a∗ = argmin
a

(max
Ξ
J(a,w)) (5.5)

This metric, usually associated with a pessimistic point of view, allows to
select the alternative that guarantees to obtain at least a certain minimum
performance level independently from which scenario will realize in the
future (Wald, 1950).

• maximax. This metric identifies the alternative a∗ that attains the best
performance in the best case:

a∗ = argmin
a

(min
Ξ
J(a,w)) (5.6)
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This metric, usually associated with an optimistic point of view, selects
the alternative assuming that the best future conditions will realize (Wald,
1950).

• Hurwicz. This metric, called optimism-pessimism rule, combines the first
two metrics, identifying the alternative a∗ that attains the best weighted
sum of the performance obtained in the worst case and in the best case:

a∗ = argmin
a

(αmax
Ξ
J(a,w) + (1 −α)min

Ξ
J(a,w)) (5.7)

where 0 6 α 6 1 is a weight that specifies the relative importance asso-
ciated to the realization of the worst or best future scenario. Depending
on the choice of the weight α, which is strictly related to the level of risk
aversion of the decision maker, this metric can be associated to a more
or less pessimistic or optimistic point of view. In this work, we consider
α = 0.66 (Hurwicz, 1953).

• Laplace. This metric, called principle of insufficient reason, selects the al-
ternative a∗ that attains the best expected performance over the n future
scenarios:

a∗ = argmin
a

(
1
n

n∑
i=1

J(a,wi)) (5.8)

This metric suggests a risk neutral aversion of the decision maker and as-
sumes that each future scenario could realize with the same probability
(Laplace, 1951).

• mean-variance. This metric tries to balance the expected performance and
its variability over future scenarios, identifying the alternative a∗ such
that:

a∗ = argmin
a

(
1
n

n∑
i=1

J(a,wi) · var
Ξ
(J(a,w))) (5.9)

This metric is based on the assumption that an optimal robust solution
is one whose performance is not very sensitive to the scenario that will
realize in future (Hamarat et al., 2014). However, the main disadvantages
of this metric are that it is not always monotonically increasing (Ray et al.,
2014) andpositive andnegative deviations from themean are treated equally
(Takriti and Ahmed, 2004).

5.3.4 ROSS parameterization

We implement ROSS (see Section 5.2.1) for our case study using the following
parameters: M = 20; Nexp = 100; p = 0.1; k = 3. These parameters
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have been set taking into account the specific characteristics of our case study
and indications reported at the end of Section 5.2.1 by means of a sensitivity
analysis. In contrast, the parameter n0, which identifies the cardinality of the
scenario subset, is set according to the robustness metric selected. It is worth
noting that for the maximin, maximax and Hurwicz metrics the cardinality n0
defines exactly the minimum number of scenarios to search for, following their
intrinsic formulation. In particular, for the maximin and maximax metrics, n0
is equal to 1, as both require system performance to be evaluated for the worst
and the best scenario, respectively. For the Hurwicz metric, n0 is equal to 2,
as it requires system performance to be evaluated for a weighted sum of the
worst and the best scenario. For the Laplace and mean-variance metrics, n0 is
set equal to 2, as this represents the minimum number of scenarios needed to
mathematically compute the metrics. Even though, in theory, this value of n0
could be too small for identifying a robust solution and would therefore have
to be increased iteratively until such a robust solution is found (see Section 5.2),
this is not the case of our specific case study.

5.4 Computational experiments

ROSS is run for each of the five robustness metrics considered using the set-
tings defined in the Section 5.3.
The computational experiments are performed on a personal computer with a
2.5 GHz Intel Core i5-3210M processor with 2 cores and 8 GB system RAM.
First, we assess the ability of ROSS to identify themost informative sub-regions
of the scenario space by analysing the evolution of theR score and the Gaussian
distribution d throughout theM AL iterations (Section 5.5.1). At each AL iter-
ation, ROSS calculatesNexp different R scores corresponding to theNexp sce-
nario subset extractions from the same Gaussian distribution d. Since the best
and the worst scores are strongly affected by outliers, we assume that ROSS is
at convergence as soon as the 0.1 quantile of the scores (i.e., value under which
only 10% of the scores lies) reaches zero (see Section 5.2.1).
Secondly, we assess the advantages of using ROSS in terms of computational
requirements, by comparing it with a traditional robust optimization method
(i.e., benchmark method), which evaluates all candidate solutions over the en-
tire scenario space (Section 5.5.2). Since, for our case study, we determine the
optimal solution using an exhaustive search within the feasibility set of the de-
cision variables, the computational requirements are calculated in terms of sys-
tem simulations multiplying the number of scenarios included in the robust
optimization process (i.e., 3125) by the number of candidate solutions in the
search space, namely 400 (see Section 5.3.1), resulting in a total of 1,250,000
simulations. With ROSS, this number depends on the metric considered and is
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calculated by multiplying the number of AL iterations needed to reach the con-
vergence by the subset cardinality n0 and the number of extraction Nexp. At
each AL iteration, ROSS solvesNexp robust optimization problems consider-
ing n scenarios.
Finally, in order to identify the key drivers that mostly influence system robust-
ness, we explore how themost informative regions of the scenario space and the
resulting robust solution change according to the robustness metric selected by
comparing the different Gaussian distributions at convergence (Section 5.5.3).

5.5 Numerical results

5.5.1 Ability to identify the most informative sub-regions of the sce-
nario space

Numerical results show that best and worst scores, as well as the 0.1 quantile
of theNexp scores, rapidly increase with the number of AL iterations, leading
ROSS to reach convergence in a small number of AL iterations (12 maximum)
for all the robustness metrics considered (Figure 5.2). This means that ROSS ef-
fectivelymoves towards the regions of the scenario spaceF containing themost
informative scenarios for generating a robust solution. In particular, conver-
gence is reached earlier for the maximin and maximax metrics (Figure 5.2a,b),
which are characterized by a subset cardinality of n0 = 1 and, consequently, a
Gaussian distribution withnk = 3 dimensions only. The other metrics (Figure
5.2c-e) are characterized by a subset cardinality of n0 = 2 and, thus, a Gaus-
sian distributionwithnk = 6 dimensions. Due to the higher dimensions of the
Gaussian distribution, convergence is reached later in these cases.
Another interesting aspect related to algorithm convergence concerns the value
the worst score (grey lines in Figure 5.2) assumes in the first AL iterations. As
can be seen, this is strongly dependent on the metric considered and indicates
the degree towhich the robustness of the optimal solution is sensitive to the sce-
nario subset considered. For example, if we consider the Laplacemetric (Figure
5.2d), the worst score at the first AL iteration is about -5%, meaning that, inde-
pendently from the scenarios extracted, the robustness of the optimal solution
computed over that scenarios does not differ too much from the one computed
over the entire scenario space. On the contrary, for the mean-variance metric
(Figure 5.2e), theworst score at the first AL iteration is about -230%. In this case,
the difference between the robustness of the optimal solution calculated for the
scenario subset and the one computed for the entire scenario space is highly
sensitive to the scenarios extracted, making the identification of themost infor-
mative regions of the scenario space more challenging. This different behavior
is related to both the systemdynamics of our specific case study and the intrinsic
formulation of the robustness metric. In particular, the mean-variance metric
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has a more complex formulation compared with the Laplace one, as it evaluates
the robustness of a solution considering a combination of the average perfor-
mance and the performance dispersion over the entire scenario space, making it
difficult to identify a smaller number of scenarios able to generate a robustness
value that is similar to the one obtained considering the entire scenario space.
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Figure 5.2: Evolution of the score R throughout the AL iterations for the five metrics
considered. Black, grey and red lines represent the best, worst and 0.1 quantile
score among theNexp extractions ofn scenarios to be included in the optimization
process for each AL iteration. n is equal to 1 for the maximin and the maximax
metrics (a,b) and to 2 for the Hurwicz, Laplace and mean-variance metrics (c,d,e).
The red dashed line identifies the AL iteration at convergence.

The rapid increase in R score towards convergence is driven by the evolu-
tion of themultivariate Gaussian distributiond, according towhich the scenar-
ios to be included in the optimization process are extracted. Results show that
theGaussian distribution rapidly shrinks in themost informative regions of the
scenario space: the mean identifies the most interesting regions and the vari-
ance tends to decrease throughout the AL iterations (Figure 5.3). In particular,
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Figure 5.3a refers to the maximinmetric and Figure 5.3b to the Hurwicz metric
(see Appendix B for the other metrics). For illustrative purposes, we show the
Gaussian distribution projected in the space of wind speed and solar radiation,
the two drivers thatmostly influence system performance. Each grey point rep-
resents a plausible scenario and each black circle represents two dimensions of
the multivariate Gaussian distribution, corresponding to the two variables (i.e.,
wind speed and solar radiation) characterizing a scenario, with the center rep-
resenting the mean and the radius three times the standard deviation (i.e, 99.7%
of extraction probability is included in the circle). The upper and bottom panels
refer to the first AL iteration and the AL iteration at convergence, respectively.
The middle panels show an intermediate AL iteration.
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Figure 5.3: Evolution of the Gaussian distribution projected in the space of wind
speed and solar radiation for the maximin (a) and Hurwicz (b) metrics. Each grey
point represents a future scenario and the black circles the Gaussian distribution
functions.

It is worth noting that for themaximinmetric, there is only one circle evolv-
ing towards convergence, as the cardinality of the scenario subset is equal to 1
(Figure 5.3a). For the Hurwicz metric, there are two circles, as the cardinality
of the scenario subset is equal to 2. We can observe that at the first AL iteration,
the Gaussian distribution is initialized, covering the entire scenario space, so
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that there is no need to precondition the algorithm to evolve towards partic-
ular regions of the scenario space. For the same reason, the two circles of the
Hurwicz metric completely overlap. It is interesting to note that the variance
of the Gaussian distribution at convergence for the maximin metric is higher
compared with that of the Hurwicz metric. This is mainly due to the fact that,
in this case, the distribution moves outside the scenario space, where no sce-
narios exist. As a consequence, irrespective of which point is extracted from
that distribution, the nearest neighbour search (see Section 5.2.1) always iden-
tifies the same small number of scenarios included in the circle representing the
distribution.

5.5.2 Increases in computational e�ciency

Numerical results show that the computational efficiency gain obtained using
ROSS ranges from 23% to 84%, depending on the complexity of the robustness
metric and the cardinalityn0 of the scenario subset. This result suggests that in
all cases, ROSS succeeds in considerably reducing the computational require-
ments of solving robust optimization problems by selecting the most informa-
tive scenarios to consider within the optimization process.
Table 5.1 shows the computational requirements (see Section 5.4 for details on
the calculations) for each metric considered and the corresponding computa-
tional efficiency gain calculated as the percentage reduction in required system
simulations with respect to the benchmark method.

Table 5.1: Subset cardinality n0, computational requirements in terms of number of
system simulations (SS), and computational efficiency gain as percentage reduction
of SS with respect to the traditional robust optimization method for the robustness
metrics considered.

Robustness metric Subset Computational Computational
cardinality (n0) requirements (SE) efficiency gain (%)

maximin 1 280,000 78
maximax 1 200,000 84
Hurwicz 2 880,000 30
Laplace 2 720,000 55

mean-variance 2 960,000 23

The total computational time of ROSS ranges from 2.77 h for the maxi-
max metric (84% of reduction) to 13.33 h for the mean-variance metric (23%
of reduction), compared with approximately 17 h for the benchmark method.
Such computational efficiency gains become more significant when consider-
ing applications on more complex systems characterized by a higher number
of scenarios and where simulation-based optimization techniques are adopted
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to find the robust solutions, such as the growing number of studies relying on
evolutionary algorithms to solve robust optimization problems (Watson and
Kasprzyk, 2017; Trindade et al., 2017, 2019).

5.5.3 Ability to identify key drivers and robust solutions for di�erent
robustness metrics

In order to explore how the most informative regions of the scenario space
change according to the robustness metric selected, we show the Gaussian dis-
tribution at convergence projected in the space of wind speed and solar radi-
ation for the five metrics considered (Figure 5.4). The Gaussian distribution
circles and the correspondingmost likely extracted points are represented with
different colors according to the robustness metric.
We can observe that the distribution associated with the maximin metric (pur-
ple circle), which aims at selecting the best solution in the worst case, identifies
a region characterized by low wind speed and low solar radiation. In our case,
these conditions represent the worst possible conditions, as they significantly
reduce the renewable power potential and increase the cost for electricity pro-
duction. The robust solution can be thus determined by evaluating the system
performance over one of the scenarios included in the purple circle.
Not surprisingly, the distribution associated with the maximax metric (green
circle), which focuses on determining the best solution in the best case, identi-
fies a region characterized by high wind speed and high solar radiation. These
conditions allow the highest renewable power potential to be attained and, con-
sequently, lower cost for electricity production.
The most informative regions associated with the Laplace metric (yellow cir-
cles) include scenarios with average values of wind speed and solar radiation,
coherent with the metric definition. This result shows that the average system
performance evaluated over the entire scenario space is almost equal to that
evaluated over a small scenario subspace characterized by average future con-
ditions. This behaviour suggests a direct correlation between the values of wind
speed and solar radiation and system performance in terms of net present cost.
If we consider the Hurwicz metric, the solution that performs better over a
weighted combination of worst and best case can be obtained by extracting sce-
narios from two regions (red circles) that present average values of solar radi-
ation and average and low values of wind speed. One of these regions almost
overlaps the one identified by the Laplace metric: the scenarios that are most
likely to be extracted by both Laplace andHurwicmetrics are represented as or-
ange points. The other region is instead located between maximin and Laplace,
as the highest weight (i.e., 0.66) is associated with the worst case (see Section
5.3.3). We can observe that in this case, the two scenarios to be included in the
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optimization process are extracted from the two regions of the scenario space
that present different values of wind speed, but almost the same values of solar
radiation. This suggests that wind speed is the driver that most influences sys-
tem performance for a given RES installed capacity.
Finally, the regions identified for themean-variancemetric (blue circles), which
aims to select the solution that performs better on average and, at the same
time, has a low variance if re-evaluated over the entire scenario space, present
medium-low values of solar radiation and average values of wind speed. In par-
ticular, unlike the Laplace metric, which focuses on average performance only,
in this case the two regions are further apart in order to capture the variability
of wind speed, which is the driver that most affects the system performance of
a given solution.
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Figure 5.4: Gaussian distribution, projected in the space of wind speed and solar
radiation, at convergence with the associated most likely extracted scenarios for
the five metrics considered. Each color represents a different metric. The orange
scenarios are identified by both Laplace and Hurwicz metric.

In conclusion, the robust solutions obtained for the different robustnessmet-
rics are reported in Table 5.2, in terms of PV capacityCPV and number of wind
turbinesnw. As expected, themaximin andmean-variancemetrics result in the
installation of the minimum number (i.e., 1) of wind turbines. The first met-
ric (i.e., maximin) focuses on the worst scenario, which is characterized by very
low values of wind speed. As a consequence, installing a higher number of wind
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turbines would cause an increase in the capital costs without having any ben-
efit associated with higher renewable energy production. The second metric
(i.e., mean-variance) focuses on minimizing the variability of the solution per-
formance when re-evaluated over the entire scenario space. In this case, the
variability in renewable power generation due to the high variability in wind
speed would increase with the number of wind turbines installed, leading to
highly variable solution performance. Conversely, the maximax metric results
in the installation of the maximum number (i.e., 20) of wind turbines, in order
to fully exploit the high values of wind speed associated with the best scenario.
In contrast, the Hurwicz and Laplace metrics result in the selection of an in-
termediate number of wind turbines (10 for Hurwicz and 12 for Laplace). In
particular, the solution associated with the Hurwicz metric is characterized by
a slightly lower number of wind turbines, as it assigns a higher weight to the
worst scenario.
In contrast, the robust solution in terms of PV capacity is selected in a com-
pletely different way: the maximin and mean-variance metrics result in the
installation of the maximum allowable PV capacity (i.e., 2000 kW), whereas
the maximax metric results in the installation of a very low PV capacity (i.e.,
900 kW). Both the Hurwicz and Laplace metrics result in the installation of a
medium-high PV capacity, namely 1700 kW and 1600 kW, respectively. This is
mainly due to the relative low marginal cost of PV with respect to that of the
wind turbines and the very small variability of solar radiation when compared
with that of wind speed. Focusing, for example, on the maximin metric, since
only 1 wind turbine is installed, the capital cost of an increasing PV capacity
can be easily compensated by a higher renewable power, which contributes to
cover the electricity load by significantly reducing the operational costs. On the
contrary, for themaximaxmetric, the high values of wind speed associatedwith
the best scenario are completely exploited through the installation of 20 wind
turbines. In this case, even if a high solar radiation is registered, the capital cost
of an increasing PV capacity is too high with respect to the benefit in terms of
renewable power production. Most of the potential renewable power would be
in fact surplus without contributing to cover the electricity load.

Table 5.2: Robust solution in terms of PV capacity (CPV ) and number of wind turbine
(nw) obtained considering the five different robustness metrics.

Robustness metric Robust solutionCPV [kW] Robust solution nw [-]
maximin 2000 1
maximax 900 20
Hurwicz 1700 10
Laplace 1600 12

mean-variance 2000 1
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5.6 Conclusions

In this chapter, we propose ROSS (Robust Optimal Scenario Selection), a novel
algorithm to identify the smallest scenario subset to be included in the optimal
generation of robust solutions under deep uncertainty. Once the space of deeply
uncertain scenarios, the robustness metric and the cardinality of the scenario
subset have been defined, ROSS uses an active learning algorithm to adaptively
identify the regions of the scenario space that include scenarios for which the
robustness of the optimized solution is similar (or even equal) to that obtained
by re-evaluating that solution over the entire scenario space.
We tested ROSS on the robust planning of a hybrid energy system on the Ustica
island, Italy. The problem consists in the identification of the least cost pho-
tovoltaic (PV) and wind capacity under deep uncertainty in the main climatic
variables affecting the system, namely wind speed, solar radiation and temper-
ature.

Results show that ROSS rapidly reaches convergence (maximum 12 iterations
for the more complex mean-variance metric) by identifying the regions of the
scenario space containing the most informative scenarios for generating a ro-
bust solution. This results in a computational efficiency gain varying from 23%
(man-variance metric) to 84% (maximax metric) compared with a traditional
robust optimization approach, which is achieved by solving multiple optimiza-
tion problems considering small scenario subsets. The regions identified at the
end of the active learning procedure highlight the deeply uncertain future con-
ditions that mostly influence the system robustness. Depending on the robust-
ness metric considered, these regions are characterized by different values of
the uncertain drivers.

By abstracting from this specific case study, ROSS has the ability to signifi-
cantly improve existing state-of-the-art robust optimization methods with re-
spect to two important aspects. First, ROSS allows the high computational re-
quirements associated with the inclusion of robustness within the optimization
process to be reduced significantly, by selecting a small scenario subset as the
most informative for generating robust solutions. Second, ROSS identifies the
key uncertain drivers to which system performance is most sensitive, as well
as the values of the drives over which this occurs, in an adaptive manner using
active learning. In the past, the exploration of system vulnerabilities has been
conducted through a sensitivity analysis in the scenario discovery phase ofmost
of the approaches dealing with deep uncertainty (e.g., RDM, MORDM). How-
ever, this is generally performed a-posteriori for pre-specified solutions.
Our algorithm radically changes this by directly including scenario discovery
within the robust optimization process. Through a single run of the algorithm,
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the regions of the scenario space that highlight system vulnerabilities are iden-
tified and exploited for generating robust solutions. These improvements can
lead to significant advantages, especiallywhen complex dynamic systems,where
decisions are affected by a large ensemble of deeply uncertain co-varying fac-
tors, are involved. In these cases, system non-linearity as well as unpredictable
behaviours pose great challenges in predicting how the system would perform
in response to uncertain changing conditions and, consequently, in identifying
system vulnerabilities and robust solutions.

Further research efforts will focus on testing ROSS for (i) solving robust joint
planning and management optimization problems where the optimal system
design strictly depend on the adopted control strategy, and vice-versa, and (ii)
analysing more complex systems characterized by a large set of climate, socio-
economic and technological uncertain and potentially interdependent drivers.
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6
Conclusions and future research

6.1 Summary

Hybrid energy systems combining renewable electricity generation (e.g., PV,
wind)with conventional power sources (e.g., diesel generators) and storage tech-
nologies constitute a viable and promising solution for improving the sustain-
ability of remote off-grid islands bydriving them towards complete decarboniza-
tion. Traditionally, such hybrid energy systems are designed identifying the
system configuration that is able to meet load requirements by minimizing the
present value of costs over a medium-to-long term horizon.

These state-of-the-art optimal design methods are useful tools for supporting
the energy transitions of small islands towards more sustainable systems, yet
they usually neglect key aspects and challenges that should be addressed when
designing highly renewable hybrid energy systems. These include (i) the opti-
mal control of the electricity system as well as its interconnection with other
energy vectors (e.g., gas, heat) and domains (e.g., water system); (ii) the interde-
pendency between system planning and its operation; (iii) the presence of mul-
tiple, potentially conflicting, objectives reflecting economic, environmental and
other sustainability aspects; (iv) deep uncertainty in climate, technological and
socio-economic conditions that may affect the system performance in the fu-
ture.

Driven by the above-mentioned challenges, the overall aim of the work done
in this thesis is to develop novel methodologies for supporting energy systems
transition towards decarbonization, helping decision makers to identify viable
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solutions at different temporal scales in light of plausible future conditions that
might unfold. In particular, we develop a set of modelling and optimization
tools to achieve the following specific research objectives:

• Investigating the benefits of explicitly considering the interdependency
between system design and operation with respect to multiple economic,
environmental and efficiency objectives.

• Assessing the vulnerability of the hybrid energy systems to the future un-
certainty in the main external drivers.

• Identifying solutions that are robust with respect to the deep uncertainty
in the main external drivers (i.e., solutions that perform well over a wide
range of plausible future conditions).

According to this research objectives, the novel contributions of this thesis are
the following:

• A novel dynamic, multi-objective approach for conjunctively optimizing
the design and the operation of hybrid energy systems by focusing on
the interconnection between electricity generation and water supply. The
main contributions of our approach include: (i) dynamic modelling of de-
salination plant operations to explore the impacts that RES introduction
coupled with different demand side management strategies may have on
both electricity and water systems, (ii) joint optimization of system de-
sign and its operations that allows the interdependency between planning
andmanagement to be addressed directly by automatically identifying the
most efficient operating policies associatedwith each optimal system con-
figuration, (iii)multi-objective optimization to explore trade-offs between
potentially conflicting objectives, which include, apart from present value
of costs, additional aspects related to RES penetration and water supply
efficiency. We test our approach by comparing it with a traditional non-
dynamic, least cost optimization approach.

• A novel methodological framework to assess the vulnerability of hybrid
energy systemswith respect to changes in themain climate drivers (i.e., so-
lar radiation, wind speed, temperature). More precisely, we evaluate how
historical variability and future uncertainty in the climate variables affect
the performance of highly renewable hybrid energy systems, designed un-
der average historical conditions, in terms of different sustainability indi-
cators.

• ROSS (Robust Optimal Scenario Selection), a novel algorithm that uses
active learning for adaptively selecting the smallest scenario subset to be
included into a robust optimization precess. ROSS contributes a twofold
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novelty in the field of robust optimization under deep uncertainty. First,
it allows to considerably reduce the computational requirements for the
generation of robust solutions with respect to traditional optimization
methods. Second, it couples scenario discovery with robust optimization
for the identification of themost informative regions of the scenario space
highlighting the main system vulnerabilities. We test ROSS for the robust
planning of a hybrid energy system by comparing it with a traditional ro-
bust optimization method.

6.2 Take-home messages

Overall, we think that the methods proposed and developed in this research,
as well as its findings, constitute important progress for the efficient design of
highly renewable hybrid energy systems to lead off-grid communities towards
a complete decarbonization, and considerably advance existing state-of-the-art
planning optimization approaches in the field, by proposing a set of modelling
and optimization tools for supporting decision makers in shaping the energy
transition to more sustainable systems.

Besides the specific findings of each methodological contribution of this re-
search, which are extensively discussed at the end of each chapter, we can here
provide a list of general conclusions and take-home messages:

• Optimally controlling the flexible loads through the identification of effi-
cient demand side management strategies is essential for achieving better
system performance. In small islands, dynamically modelling the nexus
between water production and electricity generation allows to identify
efficient operating policies that operate the desalination plant as a non-
conventional storage technology, in order to fully exploit RES power po-
tential and, consequently, increase RES penetration and significantly re-
duce operational costs.

• Considering the interdependency between system design and its opera-
tions within the planning optimization phase leads to more efficient sys-
tem configurations that considerably reduce the structural interventions,
yet obtaining better system performance in terms of different sustainabil-
ity indicators with respect to traditional design methods that consider
pre-defined, static rules for operating the system. Obtaining smaller, less
costly, yet more effective system configurations is extremely important in
small islandswhere small dimensions and tight environmental constraints
usually limit the RES installable capacity.

• Future uncertainty in the main climate drivers could strongly affect the
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system performance of hybrid energy systems by significantly reducing
the RES power potential over a medium-to-long term horizon. Consider-
ing such uncertainty when designing hybrid energy systems is thus a key
point for identifying robust solutions that allow to guarantee high level
of sustainability in the future. In this way, based on the level of risk aver-
sion of the decisionmaker, a system configuration that performswell over
a wide range of uncertain future conditions can be selected and the key
drivers that highlights the main system vulnerabilities can be identified.

6.3 Future research recommendations

Starting from the main findings of this thesis, follow-up research should focus
on the following aspects:

• Adopting the developed tools for evaluating the potential economic and
environmental benefits of introducing novel renewable energy sources
such as off-shore wind turbines and technologies exploiting energy from
waves.

• Developing more sophisticated multi-energy models that, in addition to
the interconnection between the electricity and thewater systems, are able
to accurately represent synergies and interdependencies between differ-
ent energy vectors (e.g., heat, gas, electric vehicles) in order to both esti-
mate the impacts of different economic and environmental policies and
identify optimal planning and management solutions for complex multi-
energy systems.

• Considering uncertainty in technological innovation (i.e., cost and effi-
ciency of the technologies) by assessing the robustness of different hybrid
system designs with respect to a large set of co-varying climate and tech-
nological future conditions, evaluating system performance according to
different robustness metrics, which reflect different levels of risk aversion
of the decision maker.

• Testing the developed methodological approaches on more complex sys-
tems as, for example, groups of interconnected islands for exploring the
benefits of consideringmultiple, off-grid systems as a unique highly intra-
connected system.

• Coupling the developed modelling approaches with higher spatial resolu-
tion tools (e.g., household scale) for assessing the actual feasibility of the
optimal solutions based on system topography, building locations and vol-
umes, as well as microgrid connection issues.
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Appendix A

In the study presented in Chapter 4, we show that changes in the climate vari-
ables and, more precisely, in the wind speed, cause different effects on the RES
penetration for fixed present value of costs. Tounderstand these effectswe anal-
yse how the replacement cost and the fuel consumption change according to the
scenarios considered.
Figure A.1 shows the performance of the Green solution (i.e., optimal solu-
tion that maximizes the RES penetration) over the future scenarios in terms
of present value of costs (x-axis) and RES penetration (y-axis), with the color
representing the cost for substituting the technologies when they reach the end
of their life (Figure A.1a) and the fuel consumed during the project horizon (Fig-
ure A.1b). It is worth noting that for a fixed present value of costs the highest
RES penetration is achieved with low fuel consumption and high replacement
costs. This means that the higher RES potential is fully exploited through the
use of the batteries, which needed to be replaced due to the higher number of
charge/discharge cycles (see Chapter 2 for details). The economical advantages
of reducing diesel generation are thus compensated by an increase in the costs
for replacing the storage technologies. Conversely, the lowest RES penetration
is achieved with high fuel consumption and low replacement costs. In this case,
a lower RES potential is compensated by a higher diesel generation, causing
higher fuel consumption and higher power generation costs. As a consequence,
the use of batteries decreases and a reduction in the number of charge/discharge
cycles leads to a decrease in the costs for replacing the storage technologies.
These results suggest the importance of considering environmental and sus-
tainability aspects, in addition to the economical ones, for better designing hy-
brid energy systems, especially in context of future uncertainty in the main cli-
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mate drivers.
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Figure A.1: Performance of the Green solution over the future scenarios in terms of
present value of costs and RES penetration with the color representing the replace-
ment costs (a) and the fuel consumption (b).
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In the study presented in Chapter 5, we show the evolution of the Gaussian
distribution function throughout the active learning (AL) iteration for the max-
imin and Hurwicz metrics.
Figures B.1-3 show the evolution of the Gaussian distribution functions pro-
jected in the space of wind speed and solar radiation throughout the AL iter-
ations for the maximax (Figure B.1), Laplace (Figure B.2), and mean-variance
(Figure B.3) metrics. Each grey point represents a plausible scenario and each
black circle represents two dimensions of the multivariate Gaussian distribu-
tion, corresponding to the two variables (i.e., wind speed and solar radiation)
characterizing a scenario, with the center representing the mean and the ra-
dius three times the standard deviation (i.e, 99.7% of extraction probability is
included in the circle). The upper and bottom panels refer to the first AL itera-
tion and the AL iteration at convergence, respectively. The middle panels show
an intermediate AL iteration.
As for the metrics presented in Figure 5.3, the Gaussian distribution rapidly
shrinks in the most informative regions of the scenario space: the mean identi-
fies the most interesting regions and the variance tends to decrease throughout
the AL iterations. It is worth noting that for the maximax metric, there is only
one circle evolving towards convergence, as the cardinality of the scenario sub-
set is equal to 1 (Figure B.1). For the Laplace and mean-variance metrics, there
are two circles, as the cardinality of the scenario subset is equal to 2 (Figures B.2
and B.3).
It is interesting to note that, as for themaximinmetric (Figure 5.3a), the variance
of the Gaussian distribution at convergence for the maximax metric is higher
compared with that of the other metrics (Figure B.1). This is mainly due to the
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fact that, also in this case, the distribution moves outside the scenario space,
where no scenarios exist. As a consequence, irrespective of which point is ex-
tracted from that distribution, the nearest neighbour search always identifies
the same small number of scenarios included in the circle representing the dis-
tribution.
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Figure B.1: Evolution of the Gaussian distribution projected in the space of wind
speed and solar radiation for the maximax metric. Each grey point represents a
future scenario and the black circles the Gaussian distribution function.
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Figure B.2: Evolution of the Gaussian distribution projected in the space of wind
speed and solar radiation for the Laplacemetric. Each grey point represents a future
scenario and the black circles the Gaussian distribution function.
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Figure B.3: Evolution of the Gaussian distribution projected in the space of wind
speed and solar radiation for the mean-variance metric. Each grey point represents
a future scenario and the black circles the Gaussian distribution function.
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