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Abstract

Even if space robotics is considered one of the most promising technologies
for on-orbit servicing missions, the use of spacecraft equipped with manip-
ulators is still very limited. The reason lies in the complexity involved in
this kind of missions, which require advanced algorithms to go through very
different and demanding phases. First, the space robot has to rendezvous
with a target object, which could be uncooperative and thus require the ac-
quisition of information about the motion and physical properties. Then,
an effective coordinated control of the spacecraft-manipulator ensemble is
necessary, including trajectory generation and robust control schemes for
both systems. A stable interaction between the robot and the target must be
guaranteed during physical contact due to grasping and manipulation tasks.
Moreover, unexpected collisions may occur since the robot is required to
operate very close to other objects, and thus a reaction strategy should be
implemented to avoid severe damages and the failure of the mission. These
are only some of the challenges involved in an on-orbit autonomous robotic
missions with manipulators. In this thesis, the attention is focused on the
relative pose estimation problem and the physical contact handling. In par-
ticular, an high-order numerical extended Kalman filter and an unscented
Kalman filter are developed in the differential algebra framework to address
the relative state estimation. The improvement in the robustness provided
by including nonlinear terms in the estimation process and the reduction
of the computational burden thanks to the differential algebra are demon-
strated through a comparison among differential-algebra-based filters and
the standard counterparts. As regards the physical contact handling, an
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observer initially developed for humanoids is first reviewed and analyzed
considering space-related issues. Then, a new observer is proposed based
on a centroid-joints formulation of the space robot’s dynamics. In both
schemes, three momentum-based residuals are defined which can be used
to reconstruct the external contact wrench. The angular and joint momen-
tum residuals of the new observer show an interesting decoupling from the
linear velocity of the spacecraft, which results in improved performance
when realistic measurements are considered. Indeed, the linear velocity is
not easy to acquire accurately and at high frequency in orbit. The valida-
tion of both observers have been carried out on real hardware, that is an
important step towards their use in a real space scenario. Along with the
contact detection and force estimation, the residuals are used to identify the
location of the collision, namely to isolate the collision. Afterwards, an-
other technique for the detection and isolation is also presented, which is
based on monitoring the components of the robot’s total momentum. The
performance is evaluated numerically and a discussion of the pros and cons
is reported. Finally, a reaction control strategy to unexpected collisions is
proposed which exploits the information from the observer. Thanks to the
controller, the robot, after recognizing the impact, moves away from the
obstacle reaching a safe position and configuration. It is demonstrated that
the controlled system is input-to-state stable, i.e. the error on the states is
bounded even during the contact. The performance is assessed through a
simulation example, considering a 7 degrees-of-freedom robotic arm on a
6 degrees-of-freedom moving spacecraft, equipped with thrusters and vari-
able speed control moment gyros.
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Sommario

L’utilizzo in orbita di manipolatori robotici è ancora molto limitato, nono-
stante siano considerati una delle tecnologie più promettenti per numerose
operazioni, quali l’ispezione di satelliti, l’assemblaggio di grandi strutture,
il rifornimento, la manutenzione, etc. Questo è dovuto alla complessità di
questo genere di missioni, che richiedono lo sviluppo di algoritmi avanza-
ti per fronteggiare numerose fasi. Un robot spaziale può essere chiamato
ad eseguire un rendezvous con un oggetto target, che potrebbe essere non
cooperativo e quindi richiedere la stima del moto e delle proprietà fisiche.
Inoltre, un adeguato controllo del sistema accoppiato satellite-manipolatore
deve essere sviluppato, insieme ad un efficace algoritmo di generazione di
traiettorie per entrambi i sistemi. È necessario garantire una stabile intera-
zione fisica tra il robot e il target nel caso si debba svolgere manipolazione
o afferrare il target. Inoltre, data la vicinanza tra i due oggetti in orbita,
situazioni di collisioni inaspettate potrebbero insorgere, mettendo a rischio
l’intera missione se non trattate in maniera opportuna. Queste sono solo
alcune delle sfide tecnologiche che bisogna affrontare nella progettazione
di una missione di servicing con robots autonomi. In questa tesi, vengono
proposti alcuni algoritmi e strategie per affrontare il problema della stima
della posizione ed assetto relativi e la gestione di contatti inaspettati. Un
filtro di Kalman esteso di alto ordine e un filtro di Kalman uscented sono
stati sviluppati utilizzando l’algebra differenziale per eseguire la stima de-
gli stati relativi. Attraverso un confronto tra i filtri proposti e le rispettive
versioni standard, viene mostrato come l’introduzione di termini non lineari
nel processo di stima migliori la robustezza e come l’algebra differenzia-
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le aiuti a ridurre il peso computazionale. Per quanto riguarda la gestione
di contatti inaspettati, un’osservatore sviluppato inizialmente per umanoidi
è stato applicato al sistema satellite-manipolatore, considerando le proble-
matiche relative ad uno scenario in orbita. In seguito, si è sviluppata una
nuova formulazione dell’osservatore, che si basa su una dinamica centroi-
dale del robot spaziale. In entrambi gli osservatori, il momento totale del
sistema viene utilizzato per definire tre residui che possono essere sfruttati
per ricostruire forza e coppia agenti sul robot a causa del contatto. Nello
schema proposto, i residui calcolati a partire dai momenti angolari e dei
giunti risultano essere disaccoppiati dalla misura della velocità del satelli-
te, garantendo delle prestazioni migliori quando misure realistiche vengono
considerate. Infatti, la velocità del satellite è una grandezza difficilmente
misurabile accuratamente ed ad alta frequenza durante operazioni in orbita.
Questi residui possono essere inoltre utilizzati per identificare il punto dove
è avvenuto il contatto. Entrambi gli osservatori sono stati validati utilizzan-
do la On-Orbit Servicing Simulator facility del DLR. I tests sperimentali
rappresentano un passo importante verso l’utilizzo di queste tecniche in
uno scenario spaziale reale. In seguito, un’altra tecnica viene proposta per
riconoscere ed isolare il contatto, che si basa sul monitoraggio diretto delle
componenti del momento totale del sistema. Le prestazioni vengono va-
lutate attraverso simulazioni numeriche e viene fatto un confronto con gli
osservatori analizzando i pro e i contro di ciascuna tecnica. Infine, è presen-
tata una strategia di controllo per reagire al contatto indesiderato. Grazie
alle informazioni derivanti dall’osservatore, il controllore comanda al ro-
bot il movimento da seguire per allontanarsi dall’ostacolo, raggiungendo
una posizione e una configurazione sicure ed evitando possibili situazioni
di instabilità. Viene dimostrato analiticamente che il sistema cosı̀ control-
lato risulta essere stabile anche durante l’azione del disturbo esterno do-
vuto al contatto. Le prestazioni del controllore sono valutate attraverso un
esempio in simulazione in cui viene modellato un sistema composto da un
manipolatore a sette gradi di libertà montato su un satellite. Per controllare
il moto di quest’ultimo vengono utilizzati propulsori e giroscopi a velocità
variabile per il controllo della coppia.
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CHAPTER1
Introduction

Space robotics is considered one of the most promising technologies for
future successful missions [1]. In particular, satellites equipped with ma-
nipulators can be used for on-orbit servicing (OOS) operations, like active
debris removal, maintenance of space systems, repair, assembly, inspec-
tion, refueling, etc [2]. A number of studies [3] [4] [5] have demonstrated
that these robotic operations would result in savings in term of cost ef-
fectiveness and in a higher safety. Consequently, on-orbit servicing mis-
sions have been a long-term goal since their first conceptual designs in
the early 1980s, with the ARAMIS project [6]. However, after almost
40 years, the use of orbital robots is still very limited. The major expe-
riences are the ones related to the space shuttle and the International Space
Station (ISS), i.e., the Shuttle Remote Manipulator System (SRMS) [7],
the Space Station Remote Manipulator System (SSRMS) [8], the Japanese
Experiment Module Remote Manipulator System (JEMRMS) [9] and the
European Robotic Arm (ERA) [10]. In addition to these, some test mis-
sions have been carried out to develop robotic technologies, such as the
Robot Technology Experiment (ROTEX) [11] and the Robotics Compo-
nent Verification on the ISS (ROKVISS) [12] by the German Aerospace
Center (DLR). In the former one, robotic technologies were experimen-
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Chapter 1. Introduction

tally demonstrated aboard the Space Shuttle, verifying a variety of tele-
operation modes characterized by several seconds of delay. In the latter
test mission, some robotic components were tested in orbit. The first OOS
demonstration mission can be dated 1997: the Experimental Test Satellite
VII (ETS-VII) [13] of the JAXA. A 6-degrees-of-freedom (DoF) manipula-
tor was mounted on an unmanned vehicle and autonomous rendezvous and
docking, teleoperation and servicing tasks were verified. Another demon-
stration mission was the Orbital Express [14] in 2007 by the Defense Ad-
vanced Research Project Agency (DARPA), in which different technolo-
gies for autonomous servicing, such as docking, refueling, ORU replace-
ment, were tested. Along with this mission, DARPA started a number of
other OOS programs, like the Spacecraft for Universal Modification of Or-
bits (SUMO) [15], later renamed Front-end Robotics Enabling Near-term
Demonstration (FREND) [16], and PHOENIX [17]. In these programs, the
developed technologies were tested only in laboratory. The Canadian Space
Agency (CSA), the Russian Space Agency (RSA) and the DLR worked on
an OOS mission called Technology Satellites for Demonstration and Veri-
fication of Space Systems (TECSAS) [18], which consisted in a spacecraft
equipped with a manipulator and a target satellite to be captured and ser-
viced in orbit. This project was then stopped and only the DLR has con-
tinued in the same direction with the subsequent project DEOS (Deutsche
Orbitale Servicing Mission) [19].
Despite of the potential of robotic technologies for OOS missions, from
the Orbital Express experience, no other space robotic arms for servicing
have been launched. The reason lies in the high complexity involved in this
kind of missions, especially if the system is wanted to be autonomous. In
order to carry out successful and reliable robotic operations in orbit, many
challenges have to be faced and a further development of the robotic tech-
nologies must be pursued. Indeed, an OOS mission is made up of several
interconnected building blocks, which should work efficiently and guaran-
tee safety and robustness. The principal ones are listed below.

• Relative pose estimation: the final approaching phase includes to
acquire the 6DoF motion of a target satellite, that means to estimate
the position, attitude, linear and angular velocity.

• Target’s parameters estimation and structural integrity assess-
ment: the acquisition of the physical properties, such as the inertia
parameters, is essential to stabilize the composite servicer-target sys-
tem after the capture, in case of a noncooperative, unknown target
satellite, and to assess the structural integrity, which is a serious issue
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in a real servicing scenario.

• Proximity rendezvous: the motion trajectory and the strategy for the
final approaching are determined in this phase.

• End-effector’s path planning: once the target’s information are ac-
quired, the end-effector motion is planned to reach the grasp point, in
case of a capture task, or a point of interest, if an inspection task is
considered, for instance.

• Space robot control: the manipulator is deployed and the whole en-
semble spacecraft-manipulator has to be controlled to perform the de-
sired tasks, either manipulation or contact-free motion.

• Physical contact handling: this is considered one of the main chal-
lenges to be solved for a safe and reliable OOS mission. A safe physi-
cal interaction between the space robot and the target must be guaran-
teed if capture is requested. In addition to that, since the robot oper-
ates in the proximity of another object or even other objects, erroneous
movements or unforeseen situations may lead to unexpected collisions
that must be dealt with by the space robot properly, avoiding critical
consequences.

• Stabilization in the post-capture phase: the composite servicer-target
system must be stabilized, considering the new inertia properties and
flexible elements.

In this thesis, only some of the listed issues are addressed. Especially, some
algorithms and strategies are proposed for the relative pose estimation prob-
lem and the physical contact handling during unexpected collisions, which
must be properly addressed for the development of an effective autonomous
system.

1.1 Relative pose estimation

As previously explained, in the context of an OOS mission, the space robot,
called also chaser or servicer, may demand the proximity or rendezvous
with a target satellite. The target may be either cooperative, with some type
of beacon or target and a docking fixture, if that is required, or uncoop-
erative, i.e., a spacecraft that has no active or passive equipment, targets,
or procedures to help in the process. As regards the relative pose esti-
mation, this latter scenario is the most demanding one, since there are no
available sensors on the target. A typical example is the case of a chaser
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approaching the target during an active debris removal mission [20]. Even
before attempting the capture, one of the main challenges of these missions
is approaching the target, estimating the relative position with respect to
the chaser, and studying and predicting the attitude of the target, which,
in the general case, tends to show a tumbling motion. This is crucial for
safe proximity operations and demands accurate, real-time measurements
and estimations of relative range and attitude [21] [22]. Generally, attitude
and range estimation in rendezvous problems with cooperative and unco-
operative targets can be classified into model-based and non-model-based
techniques. Non-model-based techniques match corresponding features in
the two views of a stereo camera for pose estimation, not depending on
prior knowledge of the object. Many such algorithms may have difficulty
in image-to-model feature correlation and foreground-background segmen-
tation. On the contrary, model-based techniques take advantage of prior
knowledge of the object whose pose and motion are to be estimated. In
both cases, due to the presence of noise and errors, the estimation method
shall include filtering. Thus, the problem of relative position estimation and
attitude prediction shall go through the following steps:

1. time update of state and covariance of 6 degrees-of-freedom motion;

2. measurement update and state vector estimation.

In all of the above steps, the state vector must include the translational and
rotational motion. More specifically, in the time update of the state and
covariance, it is important to consider the nonlinear 6DoF dynamics, in-
cluding possible couplings between the translational and rotational motion.
Therefore, this can be classified as a problem of nonlinear filtering.
At present time, one of the most exploited estimation algorithm is the ex-
tended Kalman filter (EKF) [23]. The EKF is based on the main idea of
linearizing the equations of motion and the measurement equations via first-
order Taylor expansions around the current mean and covariance (the uncer-
tainties are assumed to be Gaussian distributed). In some cases, however,
the linear assumption may fail due to the nature of the dynamics or the num-
ber of available measurements, leading to inaccurate realization of the local
motion. Therefore, alternative methods capable of accounting for system
nonlinearity must be used. A different approach is the Unscented Kalman
Filter (UKF) [24] [25]. This technique is based on the unscented transfor-
mation, which does not contain any linearization. Carefully-chosen sample
points are propagated through the true nonlinear system in order to prop-
agate the expected value and covariance. Thanks to its nonlinear nature,
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UKF provides superior performance with respect to the EKF in highly non-
linear situations. In 2007, Park and Scheeres [26] [27] developed the high
order numerical Kalman filter (HNEKF) by implementing a semi-analytic
orbit uncertainty propagation technique, that is by solving for the higher-
order Taylor series terms describing the localized nonlinear motion, and by
analytically mapping the initial uncertainties. These higher-order filters are
more accurate than the EKF, as the prediction step relies on a fully nonlin-
ear mapping of the means and covariances. However, the HNEKF needs
to derive the so-called higher-order tensors, which makes it in many cases
difficult to use due to computational complexity.
The complexity of integrating multiple points, for UKF, and of deriving the
high-order tensor, for the HNEKF, to map the mean and covariance can be
easily solved using Differential Algebra (DA) techniques. By substituting
the classical implementation of real algebra with the implementation of a
new algebra of Taylor polynomials, any function f of n variables can be
easily expanded into its Taylor polynomial up to an arbitrarily order m in
the DA framework [28] [29]. This has a strong impact when the numeri-
cal integration of an ordinary differential equation (ODE) is performed by
means of an arbitrary integration scheme. Any integration scheme is based
on algebraic operations, involving the evaluation of the ODE right hand
side at several integration points. Therefore, starting from the DA repre-
sentation of the initial conditions and carrying out all the evaluations in the
DA framework, the flow of an ODE is obtained at each step as its Tay-
lor expansion in the initial conditions. Consequently, by propagating the
mean trajectory and evaluating the measurement function in the DA frame-
work, not only their pointwise values are obtained, but also the higher-order
partials. This eliminates the need to calculate the higher-order tensors at
each time step by solving a complex system of augmented ODE, for the
HNEKF [30] [31] [32]. Moreover, it reduces the multiple integration of the
UKF to an easier evaluation of the Taylor expansion of the flow in different
sample points.
In this thesis, the HNEKF and UKF are implemented in the DA framework
and applied to the problem of the relative pose estimation of a target. Espe-
cially, the European Space Agency (ESA) e.Deorbit mission, involving the
Envisat satellite, is taken as reference scenario. The performance of the two
nonlinear filters is assessed and compared not only in terms of accuracy, but
also in terms of computational weight. Indeed, current space processors
have limited computational power which restricts the implementable esti-
mation processes. Therefore, a key point for the success of these missions
is the development of efficient algorithms capable of limiting the compu-
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tational burden without losing out the necessary performance. To this aim,
the DA-based HNEKF, which was developed inside the Ariadna study ”As-
sessment of Onboad DA State Estimation for Spacecraft Relative Naviga-
tion” [33] in collaboration with ESA, has been also implemented on a Bea-
gleBone Black1 platform, which is deemed to be representative of the low
computational capability in orbit.

1.2 Physical contact handling

On-orbit servicing will require the robot to operate in close proximity to
a target object, or another robot, or an astronaut, potentially [1]. In these
conditions, contact situations could arise and they may be intentional, e.g.
a grasping operation, or accidental, e.g. an unforeseen collision. The space
robot should be endowed with algorithms to master all these circumstances
properly.
Since the pioneering works, the dynamics of the contact phase has been
extensively studied, considering in particular free-floating robots [34] [35]
[36] [37]. Moreover, many authors have addressed the problem of guaran-
teeing a safe interaction when the robot’s end-effector comes into contact
with the target to perform grasping tasks [38] [39] [40] [41] [42]. Some
methods [41] explicitly require an external force feedback to tackle the
problem, while others [38] [43] might benefit from its knowledge. For
this reason, the space robot can be equipped with a force-torque sensor
duly placed at the wrist. However, this sensor can not be redundant, and
thus a failure could prevent the achievement of the planned task. Further-
more, there may be situations in which the contact does not occur exactly
at the foreseen location, and the sensor may provide inaccurate measure-
ments [44].
These motivations have pushed some researchers to propose a different ap-
proach, in which the contact force is estimated without using a dedicated
sensor. In [44] the use of the disturbance observer is proposed, while in [38]
the force is reconstructed through the target’s equations of motion. These
methods require quantities that are not measured directly, as the joint accel-
erations and the linear velocity of robot base for the former, and the target
accelerations for the latter. These quantities could be obtained through nu-
merical differentiation, but they would introduce nonnegligible noise in the
estimation process. Moreover, in these works the contact is assumed to be
at the end-effector, and thus the location is known.
In this thesis, the more general situation of an unexpected collision in an

1https://elinux.org/Beagleboard:BeagleBoneBlack.
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unknown point along the space robot is considered. Note that the contact
at the end-effector is just a subcase in which the location is known. The
generic collision handling problem has been already studied for fixed-base
manipulators [45] [46], humanoids [47] [48] and flying robots [49] [50],
while it is still to be analyzed for orbital robots. The capability of identify-
ing a collision is deemed to be of paramount importance for an autonomous
robotic system. For instance, imagine a space robot moving nearby an un-
known target to inspect it and perform some tasks. If some appendages
are not reconstructed or recognized properly, they can be impacted by the
manipulator during the operations. Alternatively, a situation of unplanned
contacts may be caused by a wrong identification of the grasping point or
an incorrect estimation of position and velocity. Indeed, this could lead to
a wrong end-effector path planning and thus to collide with another part of
the target. Algorithms to master these situations would increase the level of
autonomy and safety since the robot would be able to realize that a danger-
ous occurrence is happening and react accordingly, preventing a complete
failure of the mission.
Along the same line of [45], contact handling can be divided into different
phases:

• Contact detection: the goal of this phase is to detect whether a con-
tact occurred or not. A signal, whose modulus is expected to lie below
a certain threshold, is monitored and, whenever an unexpected change
happens, an alarm is risen. In this phase, it is important to reduce
false positive and, at the same time, achieve high sensitivity in order
to have a fast detection. Therefore, it is essential to understand the
influence of noise and uncertainties on the selected monitoring signal.
Indeed, the lower the level of noise and uncertainties, the higher the
sensitivity.

• Contact isolation: this phase aims at locating the exact point of the
contact along the robot, or at least the part involved. In case of planned
contact, this information can be used to check that the contact occurred
at the end-effector. On the other hand, in case of an unexpected col-
lision, the knowledge of the contact position can be exploited either
to implement effective reaction strategy or for health monitoring pur-
poses.

• Contact identification: the knowledge of the contact force is a valu-
able information that may be exploited to implement control strategies
to guarantee safe physical interaction, in both intentional or uninten-
tional case. In the latter situation, this information can also be used to
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quantify the seriousness of the collision. Therefore, in this phase the
external disturbance, in terms of force, moment and joint torques, is
estimated.

• Contact reaction: in this last phase the robot is controlled to react
properly to the external disturbance caused by the contact. Depend-
ing on the situation, whether the contact is desired or not, different
control strategies can be implemented. In the former case, the robot
should keep the contact with target, while, in the latter one, it should
move away. In both situations, a certain compliant behavior should
be ensured by the controller. It is important to stress that in the latter
situation the lack of a proper reaction would cause multiple impacts
and possible instabilities. Indeed, the robot would try to pursue the
original goal pushing against the obstacle.

To address the first three phases jointly, the residual-based observer, pro-
posed in [47] for humanoids, is first reviewed and analyzed considering the
features of a space robot, such as the base actuation system and the im-
possibility to measure some states accurately. This observer computes the
linear, angular and joint momentum residuals which turn out to be the es-
timates of the external generalized forces acting on the floating base and
the disturbance joint torques due to the contact. Then, the residuals can be
used to estimate the external wrench acting on the robot. The main draw-
back of the method is the need of a fast and accurate reconstruction of the
base linear velocity, which is difficult to obtain in real space applications.
Afterwards, a new observer is derived, which is based on a centroid-joints
dynamics. The most important feature of this observer is the complete de-
coupling of the angular and joint momentum residuals from the base linear
velocity. These residuals can be used to reconstruct the external wrench
leading to a more practical and better-performing solution. Indeed, the pro-
posed method requires only the knowledge of the base angular velocity and
control moments, and the joint positions, velocities and torques, which can
be acquired at high frequency and feature relatively low noise. Moreover,
the angular and joint momentum residuals can be used to isolate the contact
rapidly and accurately. Both observers have been validated on the On-Orbit
Servicing Simulator (OOS-Sim) hardware-in-the-loop facility [51] at the
DLR. The performed tests represent an important step towards the demon-
stration of the observers’ applicability in a real space scenario. Note that
the observer in [47] has never been tested on real hardware before.
Also another method is developed for the detection and isolation phases,
which is based on monitoring the components of the total momentum of
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the space robot. This strategy is very straightforward in case of free-floating
robots, since the total momentum is expected to be constant until a collision
occurs. In addition, knowing the momentum variations, the second cardi-
nal equation of dynamics can be used to determine the contact point along
the manipulator. Then, the method can be extended to actuated-base robots
too, as it is shown in Chapter 5.
As regards the reaction phase, a compliant controller is proposed to face
unexpected collisions. The controller uses the information from the de-
veloped observer to move away from the obstacle reaching a safe position
and configuration, while keeping a desired attitude. Thanks to this strategy,
multiple impacts and the increase of the force, which can lead to damages
and instability, are avoided. The controller is proven to be input-to-state sta-
ble, namely the error on the states is bounded during the contact and goes to
zero when the contact ends. The performance is assessed through numer-
ical simulations considering thrusters and momentum exchange devices as
actuators for the spacecraft.

1.3 Thesis structure

The thesis is structured as follows.

• Chapter 2: this chapter contains the background knowledge and con-
cepts used in the development of the proposed techniques and, along
with that, the main notations used.

• Chapter 3: this chapter and the following one are dedicated to the
relative pose estimation problem. Especially, the high order numerical
Kalman filter is introduced and the DA-based version is developed and
the performance assessed.

• Chapter 4: the unscented Kalman filter is explained and derived in
the DA framework. The perfomance are analyzed through simulations
and a comparison with the DA-based HNEKF is reported.

• Chapter 5: contact detection, isolation and identification problems
are addressed introducing two contact wrench observers and the mo-
mentum monitoring technique. A discussion of the pros and cons of
the different strategies is reported.

• Chapter 6: the compliant controller proposed to face the reaction
phase is presented and the input-to-state stability is demonstrated.
Moreover, a modification of the observer based on a centroid-joints
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dynamics is introduced to include the contribution of momentum ex-
change devices.

• Chapter 7: the main conclusions of the work are drawn and future
developments are discussed. In particular, how to integrate all the
techniques developed with the other building blocks necessary for an
OOS mission is analyzed.
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CHAPTER2
Background

This chapter is inteded to provide the background knowledge necessary for
an easier comprehension of the techniques presented in the thesis.

2.1 Differential algebra

Differential Algebra techniques allow solving analytical problems through
an algebraic approach [29]. Similar to the computer representation of real
numbers as Floating Point (FP) numbers, DA allows the representation and
manipulation of functions on a computer. Each sufficiently often differen-
tiable function f is represented by its Taylor expansion around an expansion
point truncated at an arbitrary finite order. Without loss of generality, 0 is

x
+ 1   

x+1
1 /  1

x+1

x
1 /  

1-x+x2-x3

C 
r(0)

DA
+ 1  

x+1

= ≈=

Figure 2.1: Evaluation of the expression 1/(1 + x) in Cr(0) and DA arithmetic.
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chosen as the expansion point. Algebraic operations on the space of trun-
cated Taylor polynomials are defined such that they approximate the oper-
ations on the function space Cr(0) of r times differentiable functions at 0.
More specifically, each operation is defined to result in the truncated Taylor
expansion of the correct result computed on the function space Cr(0). This
yields the so-called Truncated Power Series Algebra (TPSA) [28].
To illustrate the process, consider Fig. 2.1. The expression 1/(x+1) is eval-
uated once in Cr(0) and then in the DA framework with truncation order 3.
Starting with the identity function x, one is summed to arrive at the function
x + 1, the representation of which is fully accurate in DA as it is a poly-
nomial of order 1. Continuing the evaluation the multiplicative inversion is
performed, resulting in the function 1/(1 + x) in Cr(0). As this function is
not a polynomial any more, it is automatically approximated in DA arith-
metic by its truncated Taylor expansion around 0, given by 1−x+x2−x3.
Note that, by definition of the DA operations, the diagram for each single
operation commutes. That is to say the same result is reached by first Tay-
lor expanding a Cr(0) function (moving from the top to the bottom of the
diagram) and then performing the DA operation (moving from left to right),
or by first performing the Cr(0) operation and then Taylor expanding the
result.
In addition to algebraic operations, the DA framework can be endowed with
natural differentiation and integration operators, completing the structure of
a differential algebra. Intrinsic functions, such as trigonometric and expo-
nential functions, are built from elementary algebraic operations [29]. This
way, Taylor expansions of arbitrary sufficiently smooth functions given by
some closed-form expression can be computed fully algebraically in a com-
puter environment. An implementation of such DA computer routines is
available in the software DACE 2.0 [52], which is used to implement some
of the algorithms presented in this thesis.
An important application of DA in engineering applications is the expan-
sion of the flow ϕ(t;x0) of an Ordinary Differential Equation (ODE) to ar-
bitrary order with respect to initial conditions, integration times and system
parameters. The following is a short summary of the underlying concept.
For a more complete introduction to DA, as well as a fully worked out il-
lustrative example of a DA based ODE integrator using a simple Euler step,
see [30].
Consider the initial value problem{

ẋ = f(x, t)

x(t0) = x0,
(2.1)
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and its associated flow ϕ(t;x0). By means of classical numerical integra-
tion schemes, such as Runge-Kutta or multi-step methods, it is possible to
compute the trajectory of a single initial condition x0 using floating point
arithmetic on a computer.
Starting instead from the DA representation of an initial condition x0, and
performing all operations in the numerical integration scheme in DA arith-
metic, DA allows propagating the Taylor expansion of the flow around x0

forward in time, up to the desired final time tf , yielding a polynomial ex-
pansion of ϕ(tf ;x0 + δx0) up to arbitrary order.
The conversion of standard explicit integration schemes to their DA coun-
terparts is rather straightforward. One simply replaces all operations per-
formed during the execution of the scheme by the corresponding DA op-
erations. Step size control and error estimates are performed only on the
constant part of the polynomial, i.e. the reference trajectory of the expan-
sion point. The result is an automatic Taylor expansion of the result of the
numerical method (i.e. the numerical approximation to the flow) with re-
spect to any quantity that was initially set to a DA value.
The main advantage of the DA-based approach is that there is no need to de-
rive, implement and integrate variational equations in order to obtain high-
order expansions of the flow. As this is achieved by merely replacing alge-
braic operations on floating-point numbers by DA operations, the method is
inherently ODE independent. Furthermore, an efficient implementation of
DA such as the DACE 2.0 package, allows to obtain high-order expansions
with limited computational time.

2.2 Relative dynamics

The goal of the filters presented in Chapters 3-4 is to estimate the space-
craft relative state for proximity operations of a target. In particular, the
ESA e.Deorbit mission [53] is considered as reference and Envisat is se-
lected as uncooperative target satellite.
In the following, the relative translational and rotational dynamics imple-
mented in the filters are reported.

2.2.1 Relative translational dynamics

The relative translational dynamic equations are developed in the local ver-
tical local horizontal (LVLH) frame fixed on the chaser (see Fig. 2.2). In
this frame the target relative position rr ∈ R3 and velocity vr ∈ R3 can be
defined as:
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Figure 2.2: Chaser local vertical local horizontal frame.

rr = xr̂ + yθ̂ + zĥ, (2.2)

vr = ẋr̂ + ẏθ̂ + żĥ, (2.3)

where x, y, z ∈ R are the three components of rr in the chaser LVLH
frame and r̂, θ̂, ĥ ∈ R3 are the versors of the considered triad. The relative
translational dynamics are governed by the following equations [54]:

ẍ− 2ν̇ẏ − ν̈y − ν̇2x = −µ(r̄ + x)/[(r̄ + x)2 + y2 + z2]3/2 + µ/r̄2, (2.4)

ÿ + 2ν̇ẋ+ ν̈x− ν̇2y = −µy/[(r̄ + x)2 + y2 + z2]3/2, (2.5)

z̈ = −µz/[(r̄ + x)2 + y2 + z2]3/2, (2.6)

where µ ∈ R is the gravitational parameter, r̄ ∈ R is the distance from
the Earth center to the chaser and ν ∈ R is the true anomaly. Finally, the
motion of the chaser is described by the following equations:

¨̄r = r̄ν̇2 − µ/r̄2, (2.7)

ν̈ = −2 ˙̄rν̇/r̄. (2.8)
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2.2.2 Relative rotational dynamics

As for the rotational dynamics, the relative orientation of the body-fixed ref-
erence frame on the target with respect to the body-fixed reference frame
on the chaser can be described through a rotation matrix Γ ∈ R3×3. Con-
sequently, the relative angular velocity and acceleration of the target can be
expressed as follows [55]:

ωr = ωt − Γωc, (2.9)

ω̇r = ω̇t − Γω̇c + ω̇app, (2.10)

ω̇app = ωr × Γωc, (2.11)

where ωc, ωt ∈ R3 are the angular velocity of the chaser and the target
expressed in their body-fixed reference frame, respectively, ωr ∈ R3 is the
relative angular velocity expressed in the target body-fixed reference frame,
and ω̇app is an apparent angular acceleration.
The relative attitude of the target can be described parameterizing the rota-
tion matrix Γ. To this aim, the Modified Rodrigues Parameters (MRP) are
adopted in this study [56]. The MRP are related to quaternions and to the
rotation matrix by the following relations:

ζ =
εt

1 + ηt
, (2.12)

Γ(ζ) = E − αA1 [ζ]× + αA2 [ζ]×2, (2.13)

{
αA1 = 4 1−ζT ζ

(1+ζT ζ)2

αA2 = 8 1
(1+ζT ζ)2 ,

(2.14)

where ζ ∈ R3 are the MRP, εt ∈ R3 and ηt ∈ R are the vector and scalar
part of the quaternions, respectively, and E is the identity matrix. The
operator [ · ]× stands for the skew-symmetric matrix of the argument.
The time evolution of the MRP is governed by

ζ̇ =
1

4
Σ(ζ)ωr, (2.15)

Σ(ζ) = (1− ζTζ)E + 2ζζT + 2[ζ]×. (2.16)
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As for the dynamics, the chaser motion is described by the torque-free Euler
equations, while the relative attitude dynamics can be obtained substituting
kinematics relationship in the Euler absolute equations of the target space-
craft. The resulting dynamic system is:

Itω̇r + ωr × Itωr = Mapp −Mg −Mci, (2.17)

Mapp = Itωr × Γωc, (2.18)

Mci = ItΓω̇c, (2.19)

Mg = Mgc +Mgcoup, (2.20)

Mgc = Γωc × ItΓωc, (2.21)

Mgcoup = (ωr × ItΓωc + Γωc × Itωr), (2.22)

where It ∈ R3×3 is the matrix of inertia of the target, Mapp ∈ R3 is the
apparent torque, Mci ∈ R3 is the chaser-inertial torque and Mg ∈ R3 is
the gyroscopic torque.

2.3 Space robot dynamics

In the dynamics for the filters, the robotic arm is considered folded. Once
it is deployed, the space robot, made up of spacecraft and manipulator, is
modeled as a multibody system composed of n+ 1 rigid bodies connected
with n revolute joints (see Fig. 2.3). No disturbances caused by the en-
vironment (e.g., gravity gradient, air drag and magnetic forces) are taken
into account, because they are expected to be considerably smaller than
the actuation forces. Note that this is a commonly accepted assumption in
space robotics. In the dynamics formulation, a contact on a generic point
along the robot is considered. This situation is very general, including both
planned contact at the end-effector and unexpected collision.
Four main reference frames are defined. One, denoted by B, is the body
frame located on the center-of-mass (CM) of the spacecraft. The second
one, denoted by C, is a frame with rotating axes, parallel to B, placed on
the CM of the space robot. The third one, denoted by E , is a frame located
on the end-effector. The last one is the inertial frame, denoted by T .
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Figure 2.3: Floating space robot.

In order to transform forces and velocities between reference frames, the
Adjoint transformation [57] is introduced:

Axy =

[
Rxy [pxy]

×Rxy

0 Rxy

]
∈ R6×6, (2.23)

where pxy ∈ R3 and Rxy ∈ SO(3) indicate the generic position vector,
expressed in X , and the rotation matrix from frame X to frame Y , respec-
tively. Finally, the identity matrix and zero matrix are denoted by E and 0
of suitable dimensions, respectively.
The dynamics of the space robot can be expressed as follows:

 Mt Mtr Mtm

MT
tr Mr Mrm

MT
tm MT

rm Mm


︸ ︷︷ ︸

M(q)

 v̇b
ω̇b
q̈

+

+

 Ct Ctr Ctm

Crt Cr Crm

Cmt Cmr Cm


︸ ︷︷ ︸

C(q,q̇,vb,ωb)

 vb
ωb
q̇

 =

 fb
mb

τ

+

 fext,b
mext,b

τext

 ,
(2.24)

where
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 fext,b
mext,b

τext

 =

[
AT
pb

JTp

]
F ext, (2.25)

and where F ext = [fText m
T
ext]

T ∈ R6 is the contact wrench at a generic
point p along the robot; Jp = [JTvp J

T
ωp]

T ∈ R6×n is the fixed-base robot’s
Jacobian for the generic contact point p, with Jvp ∈ R3×n, Jωp ∈ R3×n be-
ing the Jacobians mapping q̇ into the linear and angular velocity of a frame
located on the point p, respectively; vb,ωb ∈ R3 are the linear and angular
velocity of the base expressed in B; q, q̇ ∈ Rn are the joint angles and ve-
locities; fb,mb ∈ R3 are the commanded base force and moment around B,
expressed in B; τ ∈ Rn are the commanded joint torques; the submatrices
Mt,Mtr,Mr ∈ R3×3 compose the inertia matrix of the system regarded as
a composite rigid body; the submatrices Mtm,Mrm ∈ R3×n are the cou-
pling inertia matrices;Mm ∈ Rn×n is the inertia matrix of the manipulator;
C(q, q̇,vb,ωb) ∈ R(6+n)×(6+n) is the Coriolis/centrifugal matrix. The ana-
lytical expressions of the inertia matrix can be found in [43].
The total generalized momentum around B and expressed in B, denoted by
hb ∈ R6, can be written as

hb =

[
htb
hrb

]
=

[
Mt Mtr

MT
tr Mr

] [
vb
ωb

]
+

[
Mtm

Mrm

]
q̇, (2.26)

with htb,h
r
b ∈ R3 being the translational and rotational momentum, respec-

tively.

2.4 Passivity and input-to-state stability

In this section, the definitions and theorems used in Chapter 6 to prove the
input-to-state stability are reported.
Considering the following general dynamic system:

ẋ = f(x,u)

y = h(x,u)
(2.27)

where x ∈ Rn, u ∈ Rm, and y ∈ Rg are the state vector, input vector and
output vector, respectively.
Definition 1 [58] The system (2.27) is passive if there exists a continuously
differentiable positive semidefinite function V (x) such that
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uTy ≥ V̇ =
dV

dx
f(x,u), ∀(x,u) (2.28)

Definition 2 [58] The system (2.27) is Input-to-State Stable (ISS) if there
exist functions 1 β ∈ KL and γ ∈ K such that

|x(t,x0,u)| ≤ β(|x0|, t) + γ (sup(|u|)) (2.29)

for all t ≥ 0, all x0 ∈ Rn, and all u .
Definition 3 [59] The system (2.27) admits an Input-Output-to-State-Stable
Lyapunov function (IOSS-Lyapunov) if there exist a differentiable V: Rn →
R such that α1(|x|) ≤ V (x) ≤ α2(|x|) for some α1, α2 ∈ K∞, and for all
x,u:

V̇ ≤ −γ(|x|) + σ(|u|) + λ(|y|) (2.30)

where σ, λ ∈ K and γ ∈ K∞.
Definition 4 [59] The system (2.27) admits a quasi ISS Lyapunov func-
tion (qISS-Lyapunov) if there exist a differentiable V: Rn → R such that
α1(|x|) ≤ V (x) ≤ α2(|x|) for some α1, α2 ∈ K∞, and for all x,u:

V̇ ≤ −γ̄(|y|) + σ(|u|) (2.31)

where σ, γ̄ ∈ K∞.
Theorem 1 [59] The system (2.27) is Input-to-State Stable provided that:

• it admits a qISS-Lyapunov function: V̇1 ≤ −γ̄(|y|) + σ1(|u|)

• it admits a IOSS-Lyapunov function: V̇2 ≤ −γ(|x|)+σ2(|u|)+λ(|y|)

• lim supr→∞ λ(r)/γ̄(r) < +∞

1A scalar continuous function α(r), defined for r ∈ [0, a), belongs to class K if it is strictly increasing and
α(0) = 0; it belongs to class K∞ is it is defined for all r ≥ 0 and α(r) → ∞ as r → ∞. A scalar function
β(r, s), defined for r ∈ [0, a) and s ∈ [0,∞), belongs to class β ∈ KL if, for each fixed s, the mapping
β(r, s) belongs to K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect to s
and β(r, s)→ 0 as s→∞.
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CHAPTER3
Relative pose estimation through

DA-based HNEKF

This chapter is devoted to introducing the algorithm of the DA-based nu-
merical extended Kalman filter and to assess its performance considering
the relative pose estimation problem, which is crucial in many in-orbit
space robotic operations. The analysis of the effects of high-order expan-
sion is also reported taking as study example an Earth-orbiting spacecraft.
Finally, having in mind the on-board application, the DA-based HNEKF
is implemented on a BeagleBone Black, a platform representative of the
limited computational capability of typical processors used on satellites.

3.1 High order extended Kalman filter

Consider the equations of motion and measurement equations describing a
generic dynamical system:

xk+1 = Φ(tk+1;xk, tk) +wk,

zk+1 = h(xk+1, tk+1) + vk+1,
(3.1)

where xk ∈ Rm is the vector of state, wk ∈ Rm is the process noise per-
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Chapter 3. Relative pose estimation through DA-based HNEKF

turbing the state, zk ∈ Rn is the vector of actual measurements, h ∈ Rn is
the measurement function, and vk+1 ∈ Rn is the measurement noise char-
acterizing the observation error. The process noise and the measurement
noise are assumed to be uncorrelated, that is, E{vi wT

j } = 0, with the au-
tocorrelations E{wi w

T
j } = Qiδij and E{vi vTj } = Riδij for all discrete

time indexes i and j. E{} denotes the expectation operator and δij the Kro-
necker delta.
For both EKF and HNEKF, the filtering process on the system model equa-
tions (3.1) can be summarized as follows:

1. Prediction step: at time tk+1, the mean and covariance of the state
vector,m−k+1 ∈ Rm and P−k+1 ∈ Rm×m, and the mean of the measure-
ments, n−k+1 ∈ Rn, are estimated as:

m−k+1,i = E{Φi(tk+1;xk, tk) + wk,i},

P−k+1,ij = E{[Φi(tk+1;xk, tk)−m−k+1,i + wk,i][Φj(tk+1;xk, tk)+

−m−k+1,j + wk,j ]},

n−k+1,p = E{hp(xk+1, tk+1) + vk+1,p},

(3.2)

where i, j = 1, ...,m, p = 1, ..., n, and m−k+1,i, P
−
k+1,ij and n−k+1,l are

the components ofm−k+1, P−k+1, and n−k+1 respectively;

2. Update step: the new measurements acquired at time tk+1, zk+1, are
incorporated into the updated estimate of the state vector and covari-
ance matrix as follows:

P zzk+1,pq = E{[hp(xk+1, tk+1)− n−k+1,p + vk+1,p][hp(xk+1, tk+1)+

−n−k+1,q + vk+1,p]},

P xzk+1,ip = E{[Φi(tk+1;xk, tk)−m−k+1,i + wk,i][hp(xk+1, tk+1)+

−n−k+1,p + vk+1,p]},

Kk+1 = P xz
k+1(P zz

k+1)−1,

m+
k+1 = m−k+1 +Kk+1(zk+1 −n−k+1),

P+
k+1 = P−k+1 −Kk+1P

zz
k+1K

T
k+1,

(3.3)

where q = 1, ..., n,Kk+1 ∈ Rm×n is the Kalman gain matrix, P xz
k+1 ∈

Rm×n is the cross-covariance matrix of the state and the measurement,
and P zz

k+1 ∈ Rn×n is the covariance matrix of the measurements.

In the classical EKF scheme, at each time tk, the equations of motion and
the measurement equation (3.1) are linearized about the current estimate of
the mean and take the form:
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3.1. High order extended Kalman filter

xk+1 = m−k+1 +Akδxk +wk,

zk+1 = h(m−k+1, tk+1) +Ckδxk + vk+1,
(3.4)

where Ak = ∂Φ(tk+1;xk,tk)

∂xk
∈ Rm×m, Ck = ∂h(xk+1,tk+1)

∂xk
∈ Rn×m, and

δxk ∈ Rm is the deviation of the estimated mean from the true trajectory at
time tk, i.e., δxk = x(tk)−m+

k , andm−k+1 is computed as

m−k+1 = Φ(tk+1;m+
k , tk). (3.5)

Thus, the expectation operator in Eqs. (3.2) and (3.3) can take advantage of
the linearity of Eq. (3.4) with respect to the state.
Conversely, the HNEKF sequentially estimates the spacecraft state and the
associated uncertainty by incorporating system’s nonlinearity in terms of
higher-order Taylor expansions. The arbitrary order expansion of the equa-
tions of motion and measurement equations can be written, and component-
wise reads:

xk+1,i = Φi(tk+1;m+
k , tk) +

∑v
r=1

1

r!
Φi,γ1...γr

(tk+1,tk)
δxγ1
k,1 . . . δx

γr
k,m + wk,i,

zk+1,p = hp(Φ(tk+1;m+
k , tk), tk+1) +

∑v
r=1

1

r!
hp,γ1...γr

(tk+1,tk)
δxγ1
k,1 . . . δx

γr
k,m+

+vk+1,p,

(3.6)

where v is the order of the expansion, γi ∈ {1, ...,m}, Φi,γ1...γr
(tk+1,tk) includes

the higher-order partials of the solution flow, which map the deviations at
time k to time k + 1, and hp,γ1...γr

(tk+1,tk) includes the higher-order partials of the
measurement function.
The Taylor polynomials of Eq. (3.6) can be inserted into Eqs. (3.2) and (3.3)
to obtain the steps of the high-order extended Kalman filter:

1. Prediction step: at time tk+1, the mean and covariance of the state
vector,m−k+1 and P−k+1, and the mean of the measurements, n−k+1, are
estimated as:

m−k+1,i = Φi(tk+1;m+
k , tk) +

∑v
r=1

1

r!
Φi,γ1...γr

(tk+1,tk)
E{δxγ1

k,1 . . . δx
γr
k,m},

P−k+1,ij =
∑v
r=1

∑v
s=1

1

r!s!
Φi,γ1...γr

(tk+1,tk)
Φj,ξ1...ξs

(tk+1,tk)
E{δxγ1

k,1 . . . δx
γr
k,mδx

ξ1
k,1 . . . δx

ξs
k,m}+

−δmi
k+1δm

j
k+1 +Qijk ,

n−k+1,p = hp(Φ(tk+1;m+
k , tk), tk+1) +

∑v
r=1

1

r!
hp,γ1...γr

(tk+1,tk)
E{δxγ1

k,1 . . . δx
γr
k,m},

(3.7)

where ξi ∈ {1, ...,m} and δmi
k+1 = Φi(tk+1;m+

k , tk)−m
−
k+1,i;
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2. Update step: the new measurements acquired at time tk+1, zk+1, are
incorporated into the updated estimate of the state vector and covari-
ance matrix as follows:

P zzk+1,pq =
∑v
r=1

∑v
s=1

1

r!s!
hp,γ1...γr

(tk+1,tk)
hq,ξ1...ξs

(tk+1,tk)
E{δxγ1

k,1 . . . δx
γr
k,mδx

ξ1
k,1 . . . δx

ξs
k,m}+

−δnpk+1δn
q
k+1 +Rpqk+1,

P xzk+1,ip =
∑v
r=1

∑v
s=1

1

r!s!
Φi,γ1...γr

(tk+1,tk)
hp,ξ1...ξs

(tk+1,tk)
E{δxγ1

k,1 . . . δx
γr
k δx

ξ1
k,m . . . δx

ξs
k }+

−δmi
k+1δn

p
k+1,

Kk+1 = P xz
k+1(P zz

k+1)−1,

m+
k+1 = m−k+1 +Kk+1(zk+1 −n−k+1),

P+
k+1 = P−k+1 −Kk+1P

zz
k+1K

T
k+1,

(3.8)

where δnpk+1 = hp(Φ(tk+1;m+
k , tk), tk+1)− n−k+1,p.

3.2 The DA-based HNEKF

The DA implementation of the HNEKF relies on the fact that DA can eas-
ily provide the arbitrary order Taylor expansion of both Φ and h in Eq.
(3.1). Indeed,Φi,γ1...γr

(tk+1,tk) and hp,γ1...γr
(tk+1,tk) in Eq. (3.7) are obtained by integrat-

ing the equations of motion and evaluating the measurement equations in
the DA framework. Note that, in order to apply standard HNEFK, each
high-order partial is computed by integrating for each time interval a ded-
icated differential equation that must be derived analytically (see Park and
Scheeres [26]). Conversely, in the DA framework, this operation is com-
pletely avoided thanks to the fact that the high-order partials are automati-
cally obtained from the DA-based integration of the dynamic system [30].
If the case of variables with Gaussian random distributions is considered,
the higher-order moments E{δxγ1

k . . . δx
γp
k } in Eqs. (3.7)-(3.8) can be com-

pletely described, at first, by the first two moments (i.e., mean and covari-
ance), and can be easily computed in terms of the covariance matrix using
Isserlis’ formula on the monomials of the Taylor polynomial [60]. This
is an approximation of the actual propagated probability density function
since, due to the nonlinear dynamics, the system loses its Gaussian assump-
tion.
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3.2. The DA-based HNEKF

3.2.1 Order comparison

Before showing the results of the DA-based HNEKF applied to the relative
pose estimation problem, the effects of considering high-order expansion
of the dynamic flow in the extended Kalman filter is discussed.
Consider the illustrative example of an Earth-orbiting spacecraft. The second-
order differential equation governing the motion is

dṙ

dt
= − µ

r3
r, (3.9)

where r ∈ R3 is the position vector of the spacecraft and µ is the Earth
gravitational parameter. It is assumed that there is no external disturbing
force for the system except the gravitational force between the Earth and
the spacecraft. The initial true position and velocity assumed for this test
are

x0 =

[
r0

v0

]
=



−0.68787

−0.39713

+0.28448

−0.51331

+0.98266

+0.37611


, (3.10)

where the length units are scaled by the orbit semi-major axis (a=8788 km)
and the time by

√
a3

µ
. The initial estimates for the state are 10% off from

the true initial state values shown in Eq. 3.10. The adopted initial error
covariance is a diagonal matrix with variance 0.01 for the position vector
components and 10−4 for the velocity vector components. The measure-
ments used in the simulation are the radial position of the spacecraft with
respect to the Earth and the line of sight directions to the planet:

z1 = r + v1,

z2 = arctan
(y
x

)
+ v2,

z3 = arcsin
(z
r

)
+ v3,

(3.11)

where vi ∈ R, represents the measurement noise. The standard deviation
of the measurement error for the radial position is assumed to be 10−3 km.
The angle error is assumed to be 1.745 10−6 rad following the conventional
measurement accuracy for the directional measurement. No process noise
is included.
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Figure 3.1: Orbit determination on Keplerian dynamics, 12 measurements per orbit: po-
sition error profiles of the DA-based HNEKF at different orders.

The position and velocity error profiles obtained with the DA-based HNEKF
using first, second, and third order expansions are compared in Figs. 3.1 and
3.2. The position and velocity errors, εr and εv respectively, are defined as
the Euclidean norm of the difference vector between the estimated position
and velocity, and the corresponding true vectors. In one orbit a total number
of 12 measurements separated by equal time intervals is considered. Note
that the results obtained with first order expansions are representative of the
performance of a classical EKF scheme. The simulation results show that
the estimation accuracy significantly improves when we move from a first
order to a second order filter. This confirms that the higher order filters can
extract more information from the available nonlinear measurements com-
pared to the first order filter. On the other hand, Figs. 3.1 and 3.2 show that
there is no accuracy gain when we use the third order filter, as the errors
profiles corresponding to the second and third order basically overlap.
Figures 3.3 and 3.4 show the standard deviation profiles for the spacecraft
position and velocity. More specifically, the figures report the quantities

σr =
√
σ2
xx + σ2

yy + σ2
zz,

σv =
√
σ2
vx + σ2

vy + σ2
vz,

(3.12)

where σ2
xx, σ

2
yy, σ

2
zz, σ

2
vx, σ

2
vy, σ

2
vz ∈ R are the diagonal terms of the esti-

mated covariance matrix. The filter shows the same behavior in terms of
accuracy gain when different observation frequencies are adopted. Figures
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3.2. The DA-based HNEKF

3.5 and 3.6 show the position error profiles obtained when a total number of
6 and 24 measurements separated by equal time intervals is considered. As
can be seen, the results confirm that the estimation accuracy significantly
improves when we move from a first to a second order filter and that no
further gain is obtained with the third order filter.
The lack of a significant improvement in terms of accuracy between the
second and third order filters lies in the basic assumption of Kalman filters,
i.e. in the hypothesis that all random distributions are Gaussian and, then,
completely described by their mean and covariance.
To get a deeper insight, consider a spacecraft at the pericenter of an ellip-
tical orbit of eccentricity e = 0.5, moving in Keplerian dynamics (see Fig.
3.7 for a schematic representation of the example). Assume the lengths are
scaled by the orbit pericenter rp and the time by

√
r3
p/µ. Thus, the nominal

initial state is:
x0 = 1,

y0 = 0,

z0 = 0,

vx0 = 0,

vy0 =
√

1 + e,

vz0 = 0.

(3.13)

The initial position of the spacecraft is assumed to be uncertain with stan-
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Figure 3.2: Orbit determination on Keplerian dynamics, 12 measurements per orbit: ve-
locity error profiles of the DA-based HNEKF at different orders.
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Figure 3.3: Orbit determination on Keplerian dynamics, 12 measurements per orbit: σr
profiles of the DA-based HNEKF at different orders.

dard deviations 3σx = 0.008 and 3σy = 0.08 on the x and y components
of the position vector, with no correlation between the different compo-
nents. The uncertain initial state is propagated forward to the final epoch
tf = 0.95T , where T = 2π is the nominal period of the orbit. First of
all, a Monte Carlo simulation is carried out to propagate 105 initial condi-
tions to tf and to compute the resulting mean and covariance, which are
used as reference for the following analysis. As can be seen from Fig. 3.8,
the samples of the Monte Carlo simulation at tf exhibit an evident nonlin-
ear distribution. Using the techniques introduced in Sect. 2.1, DA is then
used to compute arbitrary order Taylor expansions of the spacecraft state at
tf with respect to x0 and y0. The resulting polynomials are used to com-
pute the propagated mean and covariance using the formulas of Eq. (3.7).
Figure 3.8 reports the results obtained for different expansion orders. As
shown in the figure, the first order expansion fails to accurately estimate
the exact mean and covariance, which are represented by the result of the
Monte Carlo simulation. The second order expansion already introduces
sufficient information for an accurate representation of both moments. The
third order expansion provides only a slight further improvement in terms
of accuracy. Thus, being based on a Gaussian representation of the propa-
gated uncertainties, the accuracy of the extended Kalman filter significantly
benefits of a second order expansion of the flow of the dynamics. However,
no relevant improvement is obtained with higher orders.
The importance of higher order partials emerges in the computation of
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Figure 3.4: Orbit determination on Keplerian dynamics, 12 measurements per orbit: σv
profiles of the DA-based HNEKF at different orders.
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Figure 3.5: Orbit determination on Keplerian dynamics, 6 measurements per orbit: posi-
tion error profiles of the DA-based HNEKF at different orders.
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Figure 3.6: Orbit determination on Keplerian dynamics, 24 measurements per orbit: po-
sition error profiles of the DA-based HNEKF at different orders.

0.95T t0

tf

x

y

Figure 3.7: Schematic representation of the illustrative example on the Keplerian dynam-
ics.

higher order moments. The DA-based estimates of the mean, covariance,
skewness, and kurtosis are compared with their values obtained with the
Monte Carlo simulation in Table 3.1. More specifically, the following mo-
ments are computed [61]:

1. Mean: µ = E{x(tf )}

2. Variance: σ2 = E{[x(tf )− µ]2}

3. Skewness: γ = E{[x(tf )− µ]3}/σ3

4. Kurtosis: κ = E{[x(tf )− µ]4}/σ4 − 3.
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Figure 3.8: Propagated mean and covariance for the illustrative example on Keplerian
dynamics: comparison between a Monte Carlo simulation and the DA-based estima-
tion at different orders. Grey dots represent the propagated samples of the Monte Carlo
simulation.

Table 3.1: DA-based estimates of the moments for the illustrative example on Keplerian
dynamics.

Moment Monte Carlo Order 1 Order 2 Order 3
µ 0.6143 0.6574 0.6142 0.6142
σ 0.0366 0.0353 0.0373 0.0363
γ -0.5638 0 -0.5548 -0.5662
κ 0.2545 0 0.4247 0.2214

Note that, in the DA-based computation of the moments, x(tf ) is replaced
by the corresponding Taylor expansion. Thus, similarly to Eq. (3.7), the
computation of the above expectations reduces to the computation of the
expectation of the resulting monomials, which can be addressed using Is-
serlis’ formula [62]. As can be seen from Table 3.1, the second order expan-
sion is sufficient to obtain an accurate estimate of the variance. However,
a third order expansion is needed to adequately approximate the skewness
and the kurtosis. Based on these results, the assessment of the performance
of the DA-based HNEKF, applied to the relative pose estimation problem,
will be limited to the use of first and second order expansions in the follow-
ing analyses.
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3.3 Relative Pose Estimation

The DA-based HNEKF is proposed to face the challenging problem of
estimating the spacecraft relative state for proximity operations during a
rendezvous with an uncooperative target. In particular, the ESA e.Deorbit
mission [53] is considered as reference and Envisat is selected as target
satellite.
In the following analysis, the relative dynamics and kinematics reported in
Sect. 2.2 are used and the following assumptions are made. Firstly, an a
priori knowledge of both chaser and target is assumed, i.e. the inertia prop-
erties are perfectly known. Secondly, the chaser motion is supposed to be
deterministic and, thus, the related data are not affected by noise and un-
certainties. Finally, neither flexible dynamics nor external disturbances are
considered. It should be noticed that neglecting external disturbances and
flexibility entails the decoupling of the relative translational and rotational
dynamics. Decoupling the dynamics is beneficial for the onboard imple-
mentation of the DA-based HNEKF, as the number of coefficients needed
to represent DA quantities increases almost exponentially with the num-
ber of variables. Therefore, decoupling the dynamics grants a significant
reduction of the memory requirements.

3.3.1 Measurement model

In real applications, relative position and relative attitude measurements
can be obtained by processing images from a camera. In this study, they
are generated numerically exploiting a suitable error model.
While the relative position is already part of the state vector, and thus it is
linearly related to it, the attitude is provided in terms of roll, pitch and yaw
angles. Consequently, it is necessary to derive the rotation matrix Γ from
the MRP (see Eq. (2.13)) and afterwards compute the roll, pitch and yaw
angles from the associated parameterization:

φ = arctan(Γ(3, 2)/Γ(3, 3)), (3.14)

θ = arctan(Γ(2, 1)/Γ(1, 1)), (3.15)

ψ = arcsin(−Γ(3, 1)), (3.16)

where φ, θ, ψ ∈ R are the roll, pitch and yaw angles, respectively, whereas
Γ(i, j) is the component of the rotation matrix Γ in the position (i, j). It
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can be easily observed that the relations binding the MRP and the measured
attitude introduce other nonlinearities in the problem.
For the measurements generation, the true states of the target spacecraft are
computed during the integration of the dynamic equations (see Sects. 2.2.1-
2.2.2). Then, the measured quantities are derived as previously explained
and noise is introduced by adopting the exponentially correlated random
variable model [63]

ẽ(tk+1) = Kẽ(tk) +
√

1−K2 · N (0, σ), (3.17)

K = e−1/(faτ), (3.18)

where ẽ ∈ R is the error w.r.t. the true state, N (0, σ) ∈ R is a random
number generated with a normal distribution of zero mean and standard
deviation σ ∈ R, fa ∈ R is the measurement acquisition frequency and
τ ∈ R is the autocorrelation time. In this model the error at time k +
1 is exponentially correlated to the error at the previous instant and this
correlation decays with a time scale defined by τ . Considering a camera,
this seems to be a more reasonable model with respect to the Gaussian one
in which error values at different time instant are completely uncorrelated.

3.3.2 Software architecture

Fig. 3.9 reports the software architecture, which is made up of three main
blocks. The first one is the ”dynamics simulator+noise generator” that re-
ceives as inputs the initial states, then propagates the dynamics through a
variable-step integrator (Runge-Kutta78) and generates the measurements
adding noise computed with the exponentially correlated random model
(Eqs. (3.17)-(3.18)). These computations are performed in advance and the
outputs are loaded in memory before running the filter.
For the filtering, the decoupling of the dynamics is exploited to split the
problem into two parts: the estimation of the relative translational states
(rr and vr) and the estimation of the relative rotational states (ζ and ωr).
In this way, six DA variables have to be initialized for each filter instead
of twelve, lightening the computational burden. In both filters the required
measurements and chaser absolute state are loaded at the beginning and an
initial estimate of the relative states, in terms of mean and covariance, has
to be provided. For the relative dynamics propagation inside the filter, a
4th-order Runge-Kutta integrator is exploited since it is a better solution for
embedded systems in terms of computational effort.
Finally, the estimated relative state is compared with the true state propa-
gated by the dynamics simulator to assess the performance of the filters.
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Figure 3.9: Software architecture.

3.4 Results

In the numerical analysis, the chaser and the target are assumed to lie on
the same orbit at a distance that is compatible with the camera performance.
The mass properties of the two spacecraft are listed in Table 3.2. The initial
conditions of the relative states are reported in Table 3.3. The attitude is
initialized randomly, while the angular velocity is selected in order to have
an absolute value of about 2.5 deg/s.
In the following sections, first, the accuracy and robustness of the first and
second order filter are assessed, and then an analysis on the required com-
putational time is performed in order to verify the real-time feasibility.

Table 3.2: Mass properties.

Chaser Target
M (kg) 1435 7828.867
Ixx (kgm2) 2040 17023.3
Iyy (kgm2) 1670 124825.7
Izz (kgm2) 2570 129112.2
Ixy (kgm2) 130 397.1
Ixz (kgm2) 25 -2171.4
Iyz (kgm2) -55 344.2
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Table 3.3: Initial conditions.

Tr. Dyn. Rot. Dyn.
x (m) -0.002 φ (rad) 1.66
y (m) -31.17 θ (rad) 2.27
z (m) 0 ψ (rad) -0.38
ẋ (m/s) -3.5e-6 ωr,x (rad/s) 0.02
ẏ (m/s) -2.0e-6 ωr,y (rad/s) 0.02
ż (m/s) 0 ωr,z (rad/s) 0.04

3.4.1 Accuracy and robustness analysis

Before illustrating the results, some comments are provided to guide the
reader through the following analyses. First, the target velocity can be as-
sumed to be the most uncertain variable since neither a priori knowledge
nor direct measurements are available. Then, low measurement acquisi-
tion frequencies could be required (or are at least beneficial) for limited-
resource systems. Therefore, a Monte-Carlo-based sensitivity analysis is
carried out to assess the robustness of the first and second order filter with
various acquisition frequencies and initial uncertainty in the relative veloc-
ity. In addition, the effects of different initial angular position uncertain-
ties, initial angular rate and level of measurement noise are investigated.
The examined cases are reported in Table 3.4 for the translational filter and
in Tables 3.5-3.6 for the rotational filter, with σi,0 and σsi being the initial
standard deviation and the sensor standard deviation, respectively, of the
variable i. The factors K and G reported in the tables are used to generate
the different levels of uncertainty starting from the nominal one.
Particular attention is paid on the performance of the rotational filter since
it has to deal with more complex dynamics. Indeed, the translational dy-
namics is very slow and almost linear and, thus, less significant results are
expected, as it will be shown further.
For each case, 1000 samples are generated around the true initial condi-

Table 3.4: Translational dynamics: sensitivity to initial velocity uncertainty and acquisi-
tion frequency.

Dynamics Sensors Frequency
σrr,0 (m) 1 σsx,y (m) 0.02 0.1 Hz to 3 Hz
σvr,0 (m/s) K · 0.1 σsz (m) 0.03

K = [0.1, 0.5, 1, 5, 10]
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Table 3.5: Rotational dynamics: sensitivity to angular velocity uncertainty and acquisi-
tion frequency

Dynamics Sensors Initial Conditions Frequency
σζ,0 () 0.002 σsφ,θ (rad) 0.003 ωr,x (rad/s) 0.1 0.1 Hz
σωr,0 (rad/s) K · 0.01 σsψ (rad) 0.006 ωr,y (rad/s) 0.2 to 3 Hz

ωr,z (rad/s) 0.2

K = [0.1, 0.5, 1, 5, 10]

Table 3.6: Rotational dynamics: sensitivity to level of measurement noise.

Dynamics Sensors Frequency
case 1 σζ,0 () G · 0.002 σsφ,θ (rad) G · 0.003 3 Hz

σωr,0 (rad/s) 0.01 σsψ (rad) G · 0.006

case 2 σζ,0 () G · 0.002 σsφ,θ (rad) G · 0.003 0.4 Hz
σωr,0 (rad/s) 0.01 σsψ (rad) G · 0.006

G = [1, 2, 4]

tions, according to the statistics, and then the furthest 100 are selected and
used as initial estimates of the relative states in the filter. This choice is
motivated by the will to study the worst circumstances, in which the non-
linearities are expected to play a prominent role.
Afterwards, the performance is quantified by means of some statistical in-
dices, reported in Eqs. 3.19-3.20.

nµ̄ =

∑100
i=1 RMSEi

100
, (3.19)

nσµ̄ =

√∑100
i=1(µ̄−RMSEi)2

100
. (3.20)

RMSEi ∈ R is the root mean square error of the estimated variables com-
puted at steady state for the ith simulation, nµ̄ ∈ R and nσµ̄ ∈ R are the
mean and the standard deviation of RMSE, respectively, considering the
filter of order n. Figure 3.10 provides a graphical reference for the differ-
ent indices. µ̄ gives the mean accuracy of the filter, while σµ̄ quantifies
the dispersion around the mean. If the standard deviation is high, the final
accuracy strongly depends on the estimate of the initial condition and thus
large initial errors may result in bad performance or even failure.
In the following, the main outcomes of the simulations are discussed. All
the detailed results of the numerical test campaign are reported in [33].
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Figure 3.10: Graphical representation of the statistical indices.

Translational dynamics filter

As already pointed out, the translational dynamics is slow and almost linear
since the two spacecraft are very close on the same orbit, which is nearly
circular. Therefore, high-order filters do not provide better performance
w.r.t. a linear one, which is already capable of following the dynamic evo-
lution. Indeed, both first and second order filters succeed in all the con-
sidered conditions of acquisition frequency and initial velocity uncertainty
with the same estimation error at steady state, which is in the order of 10−2

m for the position and 10−5 m/s for the velocity. As example, in Fig. 3.11
the absolute position and velocity errors considering a frequency of 3 Hz
and σvr,0 = 0.01 m/s are reported.

(a) (b)

Figure 3.11: Position (a) and velocity (b) absolute error with a frequency of 3 Hz and
σvr,0 = 0.01 m/s.
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Rotational dynamics filter

Regarding the rotational dynamics filter, the nonlinearities affect the esti-
mation problem more significantly, especially in case of high uncertainties
and low observability of the system. Focusing initially on the case with
the nominal target’s initial angular velocity and the uncertainties reported
in Table 3.5, the performance of the first order filter, in terms of 1µ̄ and
1σµ̄, are shown in Tables 3.7-3.8. Analogously, Tables 3.9-3.10 refer to the
second order filter. These results are obtained taking into account only the
converging solutions. For σωr,0 = 0.1 rad/s and a frequency of 0.1 Hz, nei-
ther of the two filters converge.
However, in order to compare the two filters and have a deeper insight into
their performance, the ratios 2µ̄

1µ̄
and 2σµ̄

1σµ̄
are computed and reported in Tab.

3.11-3.12. The superscript reports the success percentage of the second or-
der filter, while the subscript the success percentage of the first order filter.
On one hand, it can be observed that first and second order filters show the
same performance for low uncertainties and high frequencies. However,
moving to high uncertainties and low frequencies, the second order filter
starts outperforming the first order one. Indeed, even though 1µ̄ is very
similar to 2µ̄, 1σµ̄ is significantly larger than 2σµ̄, namely the first order
filter features a higher dispersion of the steady-state estimation error (see
Fig. 3.12). This means that, in case of large deviations from the true initial
conditions, the first order filter performance deteriorates, leading to final
estimates that are up to 1 order of magnitude worse than the ones of the
second order filter (see Fig. 3.13).
Finally, the second order filter turns out to be also more robust in terms of
failures. Indeed, in some cases, the first order filter is not able to deal with
the nonlinearity and diverges, while the second order filter converges.

Figure 3.12: MRP (a) and angular velocity (b) absolute error with a frequency of 0.1 Hz
and σωr,0 = 0.01 rad/s.
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Table 3.7: 1µ̄ in the sensitivity analysis to initial angular velocity uncertainty and acqui-
sition frequency with nominal initial angular rate of the target.

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 7.55e-04 7.59e-04 8.92e-04 3.79e-03 -

0.4 1.16e-03 1.16e-03 1.16e-03 1.29e-03 1.47e-03

1 1.22e-03 1.22e-03 1.22e-03 1.22e-03 1.23e-03

3 5.35e-04 5.35e-04 5.35e-04 5.35e-04 5.35e-04

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 1.13e-05 1.13e-05 1.20e-05 3.86e-05 -

0.4 3.91e-06 3.91e-06 3.91e-06 4.45e-06 4.81e-06

1 3.16e-06 3.16e-06 3.16e-06 3.16e-06 3.17e-06

3 3.06e-06 3.07e-06 3.06e-06 3.07e-06 3.07e-06

(b) Relative Angular Velocity (rad/s)

Table 3.8: 1σµ̄ in the sensitivity analysis to initial angular velocity uncertainty and acqui-
sition frequency with nominal initial angular rate of the target.

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 7.89e-06 1.28e-05 3.24e-04 1.59e-03 -

0.4 5.26e-06 3.40e-06 3.92e-06 3.79e-04 3.38e-04

1 2.56e-06 1.54e-06 1.54e-06 4.70e-06 2.21e-05

3 1.13e-07 7.03e-08 7.19e-08 7.25e-08 1.05e-07

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 7.98e-08 6.94e-08 4.24e-06 2.78e-05 -

0.4 2.95e-08 1.61e-08 1.89e-08 1.82e-06 1.95e-06

1 1.92e-09 1.18e-09 1.15e-09 3.54e-09 2.11e-08

3 4.40e-09 2.56e-09 2.34e-09 2.67e-09 3.30e-09

(b) Relative Angular Velocity (rad/s)

39



Chapter 3. Relative pose estimation through DA-based HNEKF

Table 3.9: 2µ̄ in the sensitivity analysis to initial angular velocity uncertainty and acqui-
sition frequency with nominal initial angular rate of the target.

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 7.51e-04 7.51e-04 7.59e-04 9.70e-04 -

0.4 1.16e-03 1.16e-03 1.16e-03 1.16e-03 1.18e-03

1 1.22e-03 1.22e-03 1.22e-03 1.22e-03 1.22e-03

3 5.35e-04 5.35e-04 5.35e-04 5.35e-04 5.35e-04

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 1.09e-05 1.09e-05 1.09e-05 1.09e-05 -

0.4 4.61e-06 4.61e-06 4.61e-06 4.61e-06 4.61e-06

1 2.62e-06 2.62e-06 2.62e-06 2.62e-06 2.62e-06

3 1.48e-06 1.48e-06 1.48e-06 1.48e-06 1.48e-06

(b) Relative Angular Velocity (rad/s)

Table 3.10: 2σµ̄ in the sensitivity analysis to initial angular velocity uncertainty and ac-
quisition frequency with nominal initial angular rate of the target.

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 7.22e-06 6.95e-06 6.89e-06 4.86e-04 -

0.4 5.24e-06 3.38e-06 3.78e-06 3.25e-06 3.93e-05

1 2.56e-06 1.54e-06 1.54e-06 3.01e-06 1.92e-06

3 1.14e-07 7.08e-08 7.23e-08 7.25e-08 9.68e-08

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 7.06e-08 5.51e-08 9.31e-08 4.28e-06 -

0.4 2.93e-08 1.60e-08 1.85e-08 2.32e-08 1.52e-07

1 1.90e-09 1.16e-09 1.14e-09 2.26e-09 1.34e-09

3 4.41e-09 2.56e-09 2.35e-09 2.66e-09 3.15e-09

(b) Relative Angular Velocity (rad/s)
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Table 3.11: 2µ̄

1µ̄
in the sensitivity analysis to initial angular velocity uncertainty and ac-

quisition frequency with nominal initial angular rate of the target.

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.994100

100 0.993100
100 0.850100

93 0.25550
11 −0

0

0.4 0.996100
100 0.997100

100 0.997100
100 0.902100

88 0.80099
96

1 0.988100
100 0.989100

100 0.989100
100 0.991100

100 0.996100
100

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.998100

100 0.998100
100 0.941100

93 0.33450
11 −0

0

0.4 0.999100
100 0.999100

100 0.999100
100 0.881100

88 0.81599
96

1 0.999100
100 0.999100

100 0.999100
100 0.999100

100 0.997100
100

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(b) Relative Angular Velocity (rad/s)

Table 3.12: 2σµ̄
1σµ̄

in the sensitivity analysis to initial angular velocity uncertainty and ac-
quisition frequency with nominal initial angular rate of the target.

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.914100

100 0.543100
100 0.021100

93 0.30550
11 −0

0

0.4 0.998100
100 0.995100

100 0.965100
100 0.008100

88 0.11699
96

1 0.999100
100 0.999100

100 0.997100
100 0.641100

100 0.086100
100

3 1.000100
100 1.000100

100 1.000100
100 0.999100

100 0.919100
100

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.884100

100 0.794100
100 0.022100

93 0.15750
11 −0

0

0.4 0.994100
100 0.994100

100 0.998100
100 0.012100

88 0.07899
96

1 0.989100
100 0.986100

100 0.989100
100 0.638100

100 0.633100
100

3 1.000100
100 1.000100

100 1.000100
100 0.998100

100 0.955100
100

(b) Relative Angular Velocity (rad/s)
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Figure 3.13: Maximum values of MRP (a) and angular velocity (b) absolute error with a
frequency of 0.1 Hz and σωr,0 = 0.01 rad/s.

The analyses of the other examined cases provide similar results and stress
the superiority of the second order filter for high uncertainties and low ac-
quisition frequencies. The same result is obtained for the different levels of
measurement noise as reported in Tables 3.13 and 3.14. In fact, higher un-
certainties, either in dynamics knowledge or in the measurements (Tables
3.5-3.6, respectively), cause an increase of the final error dispersion of the
linear filter and thus a worse performance deterioration with respect to the
nonlinear one, leading to errors up to two orders of magnitude larger. When
the initial angular rate is increased, the area in which the second order filter
is more robust becomes larger, for equal uncertainty and frequency domain,
see Tables 3.15-3.16. This case is similar to reducing the acquisition fre-
quency and thus the observability of the system, increasing nonlinearity
effects.

Table 3.13: 2µ̄

1µ̄
in the sensitivity analysis to the levels of measurement noise from Table

3.6.

Freq. G
(Hz) 1 2 4
0.4 0.997100

100 0.96099
91 0.99498

75

3 1.000100
100 1.000100

100 0.99999
99

(a) Modified Rodrigues Parameters

Freq. G
(Hz) 1 2 4
0.4 0.999100

100 0.97399
91 1.00498

75

3 1.000100
100 1.001100

100 1.00099
99

(b) Relative Angular Velocity (rad/s)
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Table 3.14: 2σµ̄
1σµ̄

in the sensitivity analysis to the levels of measurement noise from Table
3.6.

Freq. G
(Hz) 1 2 4
0.4 0.965100

100 0.04299
91 0.03798

75

3 1.000100
100 1.020100

100 0.88799
99

(a) Modified Rodrigues Parameters

Freq. G
(Hz) 1 2 4
0.4 0.998100

100 0.03399
91 0.08898

75

3 1.000100
100 1.002100

100 1.02399
99

(b) Relative Angular Velocity (rad/s)

Table 3.15: 2µ̄

1µ̄
in the sensitivity analysis to initial angular velocity uncertainty and ac-

quisition frequency with increased initial angular rate of the target (see Table 3.5).

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.97586

83 0.92395
95 0.62094

40 −0
0 −0

0

0.4 0.996100
100 0.99695

95 0.99696
96 0.93998

88 0.80391
75

1 0.996100
100 0.99698

98 0.99696
96 0.99698

98 0.99197
95

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.90686

83 0.95795
95 0.45894

40 −0
0 −0

0

0.4 1.001100
100 1.00195

95 1.00196
96 0.53398

88 0.39691
75

1 0.999100
100 0.99998

98 0.99996
96 0.99998

98 0.99597
95

3 0.998100
100 0.998100

100 0.998100
100 0.998100

100 0.998100
100

(b) Relative Angular Velocity (rad/s)
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Table 3.16: 2σµ̄
1σµ̄

in the sensitivity analysis to initial angular velocity uncertainty and ac-
quisition frequency with increased initial angular rate of the target (see Table 3.5).

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.82686

83 0.12495
95 0.03794

40 −0
0 −0

0

0.4 0.979100
100 0.97495

95 0.92196
96 0.00998

88 0.36491
75

1 0.995100
100 0.99498

98 0.99296
96 0.59898

98 0.02797
95

3 1.005100
100 1.000100

100 1.004100
100 1.007100

100 0.960100
100

(a) Modified Rodrigues Parameters

Freq. σωr,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.83286

83 0.16995
95 0.08094

40 −0
0 −0

0

0.4 1.013100
100 0.99695

95 0.96496
96 0.00598

88 0.15491
75

1 1.016100
100 1.07498

98 1.06496
96 0.69698

98 0.36297
95

3 1.008100
100 1.008100

100 1.001100
100 1.008100

100 0.972100
100

(b) Relative Angular Velocity (rad/s)

3.4.2 Computational time on the BeagleBone Black

This section addresses the assessment of the required computational ef-
fort of the DA-based HNEKF on the BeagleBone Black (BBB) Single
Board Computer, based on an ARMv7 processor (Cortex A8) @ 1GHz with
512Mb of RAM. The BBB is deemed to be representative of the limited
computational capability available on onboard space processors. The filter
is entirely compiled out of C11 code directly on the target ARM platform,
which is running a tailored Linux 4.9 kernel and proper GCC compiler.
In order to asses the feasibility of the developed filter on the embedded
hardware, a Real-Time Operative System (RTOS) should have been em-
ployed, allowing the real time scheduling of the filter task at the desired
frequency. However, the filter does not really acquire measurements since
those are generated in advance by the dynamics simulator. Therefore, an
accurate real time scheduling is not strictly required. Indeed, the computa-
tional time required by each step of the filter can be measured and compared
to the time step at the desired frequency, checking that it is smaller.
To this aim, the duty cycle concept is introduced. The duty cycle represent
the fraction of the available sampling time which is used by the filter task.
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Therefore, given the execution time texec and defining the sampling time as

ta =
1

fa
, (3.21)

the duty cycle is:

DC =
texec
ta

. (3.22)

The analysis is carried out considering different sampling frequencies and
processor clock frequencies on the BBB. More specifically, the sampling
frequencies are fa = [0.1, 0.4, 1, 3] Hz while the clock frequencies are
clk =

[
1001, 275, 720, 1000

]
MHz. First and second order filters are ex-

ecuted considering both the translational and rotational dynamics. The re-
sults of the execution time and duty cycle are reported in Table 3.17.

Table 3.17: Filter execution on BBB.

Execution Time [s] - Order 1
fa\clk 100 275 720 1000

0.1 0.381 0.303 0.110 0.006
0.4 0.115 0.091 0.035 0.004
1 0.062 0.049 0.018 0.002
3 0.026 0.021 0.008 0.001

Duty Cycle [%] - Order 1
fa\clk 100 275 720 1000

0.1 3.8% 1.2% 0.1% 0.0%
0.4 4.6% 0.4% 0.0% 0.0%
1 6.2% 0.3% 0.0% 0.0%
3 7.8% 0.2% 0.0% 0.0%

Execution Time [s] - Order 2
fa\clk 100 275 720 1000

0.1 1.342 1.072 0.413 0.043
0.4 0.426 0.339 0.129 0.014
1 0.25 0.199 0.077 0.011
3 0.124 0.099 0.039 0.007

Duty Cycle [%] - Order 2
fa\clk 100 275 720 1000

0.1 13.4% 14.4% 5.9% 0.3%
0.4 17.0% 5.8% 0.7% 0.0%
1 25.0% 5.0% 0.4% 0.0%
3 37.2% 3.7% 0.1% 0.0%

It is clear that both first and second order filters are always feasible, as
the duty cycle remains always well below the 50%, thus allowing for the
filtering and also other necessary tasks. Not surprisingly, the duty cy-
cle increases when reducing the clock frequency as the processor is ca-
pable of executing less operation per seconds. Moreover, at constant clock
frequency, the duty cycle reduces when reducing the sampling frequency,
demonstrating that the longer propagation time span, needed for computing
the expectations, is not highly influencing the overall computational time.
Concentrating on the lower clock frequency, it is possible to see how the
second order filter is more feasible at lower sampling frequencies, that are
the cases in which this filter outperforms the first order version.

1Interpolated
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CHAPTER4
Relative pose estimation through

DA-based UKF

After introducing the DA-based HNEKF, another Kalman filter is imple-
mented in the DA framework: the unscented Kalman filter. It is shown that
the DA-based UKF is computationally lighter than the standard version.
The performance for the relative pose estimation problem is assessed and
a comparison with the DA-based HNEKF is performed, considering both
accuracy and computational time.

4.1 Unscented Kalman filter

Differently from the HNEKF, in the unscented Kalman filter the prediction
step relies on the unscented transformation (UT). Such transformation is
based on the intuition that it is easier to approximate a Gaussian (proba-
bility) distribution than to approximate an arbitrary nonlinear function or
transformation (see [64] [65] [66]). Following this statement, the aim of the
unscented transformation is to find a parametrization which accurately de-
scribes the mean and the covariance information of the initial variable and,
at the same time, permits the direct propagation of the information through
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the set of nonlinear equations (e.g. functions, transformations,..). In or-
der to approximate the mean m and covariance P of the m-dimensional
state vector x, a set of 2m+ 1 sigma points, collected in a structure X , are
exploited and computed as follows:

X {1} = m, (4.1)

X {i} = m+ (
√

(m+ λ)P )i−1, i = 2, ...,m+ 1 (4.2)

X {i} = m− (
√

(m+ λ)P )i−m−1, i = m+ 2, ..., 2m+ 1 (4.3)

where λ ∈ R is a scaling parameter, while (
√

(m+ λ)P )i is the ith row or
column of the matrix square root of (m + λ)P . Defining S ∈ Rm×m such
that P = SS, the matrix square root is computed through diagonalization:

P = V DV −1

= V

d11 . . . 0

0
. . . 0

0 . . . dmm

V −1

= V


√
d11 . . . 0

0
. . . 0

0 . . .
√
dmm



√
d11 . . . 0

0
. . . 0

0 . . .
√
dmm

V −1.

(4.4)

Therefore, the matrix square root of the covariance P can be obtained as

S = V


√
d11 . . . 0

0
. . . 0

0 . . .
√
dmm

V −1, (4.5)

so that:
SS = (V D1/2V −1)(V D1/2V −1) = P . (4.6)

In this study the Cholesky Matrix Square Root is adopted. This decompo-
sition, often used in UKF implementation, is efficient and stable, and thus
particularly suitable for real-time estimation [67] [65].
Defined the sigma points, two weights are associated to each of them, com-
puted as

wm,1 =
λ

m+ λ
, (4.7)
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wP,1 = wm,1 + (1− α2 + β), (4.8)

wm,i = wP,i =
1

2(m+ λ)
, i = 2, ..., 2m+ 1 (4.9)

where wm,i ∈ R is a weight referred to the mean, while wP,i ∈ R is referred
to the covariance. Parameters k ≥ 0 and α ∈ (0, 1] define how far from the
mean the sigma points are located. β is typically chosen equal to 2, since
this value is the optimal choice for Gaussian distributions. Finally, λ is a
combination of the other parameters:

λ = α2(m+ k)−m. (4.10)

It can be noted that there is no unique solution for the sigma points vector
and the weights vectors, thus the sigma points can (but do not have to) lie
on the main axes of the covariance matrix. However, the selection must be
such that the following equations are respected:

2m+1∑
i=1

wi = 1, (4.11)

m =
2m+1∑
i=1

wm,iX {i}, (4.12)

P =
2m+1∑
i=1

wP,i(X {i} −m)(X {i} −m)T . (4.13)

The UKF prediction starts with a set of sigma points around the initial con-
ditions, and their relative weights. Afterwards, the set gets transformed by
initializing each sigma point through the process model (consider also here
the generic dynamic system in Eq. (3.1)), giving the transformed set

X {i}k+1 = Φ(tk+1;X {i}k , tk). (4.14)

Finally, the mean and the covariance of the propagated set is evaluated by
weighting each transferred sigma point:

m−k+1 =
2m+1∑
i=1

wm,iX {i}k+1, , (4.15)

P−k+1 =
2m+1∑
i=1

wP,i{X {i}k+1 −m
−
k+1}{X

{i}
k+1 −m

−
k+1}

T . (4.16)
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The same approach is adopted for the measurement vector, where each
sigma point goes through the observation model (Eq. (3.1)), and then the
predicted measurements are calculated:

Z{i}k+1 = h(X {i}k+1, tk+1), (4.17)

n−k+1 =
2m+1∑
i=1

wm,iZ{i}k+1. (4.18)

Since the observation noise is independent and additive, the covariance ma-
trix of the measurement and the cross-covariance matrix of the state and the
measurement are evaluated as:

P zz
k+1 =

2m+1∑
i=1

wP,i{Z{i}k+1 − n
−
k+1}{Z

{i}
k+1 − n

−
k+1}

T +Rk+1, (4.19)

P xz
k+1 =

2m+1∑
i=1

wP,i{X {i}k+1 −m
−
k+1}{Z

{i}
k+1 − n

−
k+1}

T . (4.20)

This completes the UKF prediction process and the filtering can continue
with the update equations of the classical Kalman filter.

4.2 DA-based UKF

The UKF can be developed into the DA framework becoming the DA-based
unscented Kalman filter (UKFDA). This filter provides an improvement by
reducing the computational time of the classical UKF when the equations
of motion are complex. DA is used to Taylor expand the function Φ in
Eq. (3.1): as a result, it builds an analytical map that connects the state
at time k with the state at time k + 1. The resulting polynomials can be
evaluated to map the sigma points through the model equations, replacing
multiple integrations of Φ. Consequently, the DA-based approach tends to
outperform the classical one when the integration of Φ is computationally
demanding. The order at which the Taylor polynomial is computed can be
arbitrarily selected.
More specifically, at each step, the state x is initialized as DA variable
around the current mean and propagated in the DA framework through the
equations of motions and of the measurements. Then the polynomials are
evaluated at the sigma points. The distance of each sigma point is known
and given by the columns (or rows) of the matrix S = ±

√
(m+ λ)P . The

sigma points are propagated by simply evaluating the Taylor expansion at
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each column of S. As a results, the UKFDA turns out to be faster than
the plain UKF. Figure 4.1 gives a visual idea of the different propagation
technique used by the two unscented Kalman filters.

Figure 4.1: The propagation approaches of the sigma points in the UKF, classic, and
UKFDA, through polynomial transition map.

4.3 Relative Pose Estimation

As for the DA-based HNEKF, the ESA’s e.Deorbit mission is taken as ref-
erence. Again the relative dynamics and kinematics introduced in Sect. 2.2
are used and the same assumptions done for the HNEKF are valid hereafter.
In the following, a more realistic measurement model is introduced for the
assessment of the performance of the DA-based UKF.

4.3.1 Measurement model

In real applications, the image processing software is set up to look for
some target points in each image taken: these points are referred to as
markers [68]. Therefore, a measurement model that considers marker po-
sitions instead of directly states is developed. The software processes the
image sent from the camera and analyses it: once the position of the mark-
ers is found, it sends this information to the filter. A common solution
is to select the target corners as markers. Assuming to have information
about Envisat’s mass, dimensions, center of mass (CM) location, moments
of inertia, geometrical center (GC) and volume [69], markers can provide
information about the spacecraft position and attitude, since their location
with respect to the center of mass (%i ∈ R3), in the target body-fixed refer-
ence frame, is known (see Table 4.1).
Envisat main body, without the solar panel, can be described as a simple
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parallelepiped with 8 corners: these corners have been selected as the filter
markers. Each marker is called with an alphabetical letter in order to have
a clear identification: marker A, B, C, D, E, F, G, and H.

Table 4.1: Assumed Envisat markers position vectors with respect to its center of mass.

Marker %i [m]
A +8.9150 +1.3840 +1.5970
B +8.9150 +1.3840 -1.6030
C +8.9150 -1.3660 -1.6030
D +8.9150 -1.3660 +1.5970
E -1.1050 +1.3840 +1.5970
F -1.1050 +1.3840 -1.6030
G -1.1050 -1.3660 -1.6030
H -1.1050 -1.3660 +1.5970

Being rr the position vector of the target center of mass with respect to the
chaser center of mass, the measurements are calculated separately for each
single marker in the following way:

zi = ΓT%i + rr, i = A, . . . , H (4.21)

where zi ∈ R3 is the position of marker i with respect to the chaser center
of mass and the rotation matrix Γ comes from the knowledge of the MRP.
Afterwards, noise is introduced additively as an exponentially correlated
random variable according to the model reported in Eqs. 3.17-3.18.
The camera is not able to locate all the markers position in one single frame
due to the fact that Envisat structure will cover some markers. The visibil-
ity and the correct association of a corner to the correspondent marker is
fundamental since the larger the number of located markers the better the
estimation accuracy. Therefore, the markers visibility must be assessed.
When thinking about visibility of the corners of a parallelepiped, it is better
to understand which face of the parallelepiped is visible and then associate
the respective corners. Basically, there are only three different options: 1, 2
or 3 faces are visible, and thus 4, 6 or 7 markers are visible in each frame.
In order to implement this process, a set of unit vectors η̂i ∈ R3, with
i = α, . . . , ζ indicating the faces, is defined in the target body-fixed ref-
erence frame. In Table 4.2 the faces with the associated markers and unit
vectors are listed.
The requirement for the face visibility is expressed by the following in-
equality:

rr · ΓT η̂i < 0. (4.22)
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Table 4.2: Envisat main body faces and visible markers relations.

Face η̂i Markers Seen

α η̂α =

1

0

0

 A - B - C - D

β η̂β =

0

1

0

 A - B - E - F

γ η̂γ =

0

0

1

 A - D - E - H

δ η̂δ =

−1

0

0

 E - F - G - H

ε η̂ε =

 0

−1

0

 C - D - G - H

ζ η̂ζ =

 0

0

−1

 B - C - F - G

If the scalar product between the relative chaser-target position vector and
the unit vector perpendicular to the face is negative, it means that the face
is looking forward the camera and the markers associated to the face are
visible.
In the following, the performance of the filters will be assessed both ex-
ploiting the whole set of available markers, which means a shape-shifting
measurement vector that adapts to the number of visible markers for each
acquisition, and limiting the set to three markers, namely the minimum
number to derive the target state.
In the latter case, the selection of the markers is based on a simple crite-
rion: the filter has to work with the 3 markers creating the triangle with the
largest area on the plane of sight. The plane of sight, from now on called
π1, is the plane defined by the relative position chaser-target vector and
passing through the target center of mass. This plane gives information on
how the camera sees the target. Therefore, each marker is projected on π1

and its projection represents the vertex of a number of triangles depending
on the number of visible markers. Afterwards, the area of the triangles is
evaluated and the maximum one is selected.
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The marker projection is performed as follows:

bi =
rr
||rr||

· ΓT%i, (4.23)

%̃i = ΓT%i − bi
rr
||rr||

, (4.24)

where %̃i ∈ R3 is the vector projection of the marker i on π1, and bi ∈ R is
the scalar projection of the marker vector %i on direction rr

||rr|| .
In order to identify the markers forming the triangle with the maximum
area, it is convenient to notice that Envisat geometrical model is a slen-
der parallelepiped with one predominant principal inertia axis υ̃, expressed
here in the chaser body-fixed reference frame, and subdivide the markers
into two groups at the ends of this axis: the master group and slave group.
The former group presents more visible markers than the latter one. Then, it
is possible to define a line l through a versor υ̂ ∈ R3 obtained by projecting
the axis υ̃ ∈ R3 on plane π1, as reported below:

υ̂ = υ̃ − (
rr
||rr||

· υ̃)
rr
||rr||

. (4.25)

The markers combination that has the triangle with the largest area can be
directly found by selecting the two furthest marker projections from line l
in the master group and the nearest marker projection in the slave group.
The distance di ∈ R of each marker projection from line l is evaluated in
the following way:

di = ||%̃i × υ̂||. (4.26)

Virtually, 56 combinations of 3 markers can be identified, since the total
number of markers is 8. However, some combinations are physically im-
possible due to Envisat geometry model, i.e. opposite markers can not be
visible at the same time. Hence, there are 4 pairs of markers that will never
be part of the same group: AG, BH, CE and DF, and they lead to a total of
24 impossible combinations. Moreover, 3 markers belonging to the same
side of the parallelepiped can not be chosen, and thus only 24 combination
are actually allowed. Table 4.3 reports and classifies all the combinations
of 3 markers.

4.3.2 Software architecture

Also in this case the software architecture is reported (Fig. 4.2). Similarly
to the DA-based HNEKF, the first block is the ”dynamics simulator+noise
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Table 4.3: Classification of all possible combination of 3 markers.

Groups
ABG ACG ADG AEG AFG AGH ABH BCH

impossible BDH BEH BFH BGH ACE BCE CDE CEF
CEG CEH ADF BDF CDF DEF DFG DFH

forbidden ABC ABD BCD ACD EFG EFH FGH EGH
ABE ABF BCF BCG CDH CDG ADE ADH

allowed ACF ACH BDE BDG AEF BEF BFG CFG
CGH DGH AEH DEH BEG DEG AFH CFH

Figure 4.2: Software architecture.

generator” that receives as inputs the initial states, then propagates the dy-
namics through a variable-step integrator (Runge-Kutta78) and generates
the measurements adding noise computed with the exponentially correlated
random model (Eqs. 3.17-3.18). These computations are performed in ad-
vance and the outputs are loaded in memory before running the filter.
For the filtering, the decoupling of the equations of motion can be exploited
to separate the propagation of the two dynamics, translational and rota-
tional, leading to a faster and more efficient algorithm. Also in this case, a
fixed-step integrator is used, because computationally lighter. On the other
hand, and differently from the situation presented in the previous chapter,
the translational and rotational information has to be used jointly to esti-
mate the measurements, since the measurement equations are coupled.
The filter is initialized providing an initial estimate of the relative states in
terms of mean and covariance. Moreover, before starting the estimation,
the filter uses the information of the previous step to calculate the markers
visibility.
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Finally, the estimated relative state is compared with the true state propa-
gated by the dynamics simulator to assess the performance of the filters.

4.4 Results

The simulation scenario used to assess the performance of the DA-based
UKF is the same presented in Sect. 4.4 for the DA-based HNEKF. The ini-
tial condition are reported in Table 3.3. The attitude is initialized randomly,
while the angular velocity is selected in order to have an absolute value of
about 2.5 deg/s.
In this section, the performance of the DA-based UKF, of the standard UKF
and of the DA-based HNEKF are compared. In the comparison, the marker-
based measurement model presented in Sect. 4.3.1 is used also in the im-
plementation of the DA-based HNEKF, whose Taylor expansion is limited
to the first and second order. Indeed, no relevant improvement is obtained
with higher orders, as shown in the Sect. 3.2.1, since Kalman filters are
based on a Gaussian representation of the propagated uncertainties.

Table 4.4: Sensitivity to acquisition frequency, initial linear and angular velocity uncer-
tainty.

Dynamics Sensors Frequency
σrr,0 (m) K · 1 σsx,y (m) 0.02 0.05 Hz to 3 Hz
σvr,0 (m/s) K · 0.1 σsz (m) 0.03
σζ,0 () K · 0.002 0.05 Hz to 3 Hz
σωr,0 (rad/s) K · 0.01

K = [1, 5, 10]

4.4.1 Accuracy and robustness analysis

A Monte-Carlo-based sensitivity analysis, taking the furthest 100 samples
among the 1000 generated around the true initial conditions, is carried out
to assess the robustness of linear and nonlinear filters with various acquisi-
tion frequencies and initial uncertainty reported in Table 4.4, with σi,0 and
σsi being the initial standard deviation and the sensor standard deviation,
respectively, of the variable i. The factor K is used to generate different
levels of uncertainty starting from the nominal one.
The performance are quantified by means of the statistical indexes intro-
duced in Eq. (3.19) and Eq. (3.20), which are computed considering only
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the simulations that converge reaching a final error at steady state one order
of magnitude lower than the initial error. In the comparison, the name of
the filter is reported in the left subscript.
In the following the case with 3 markers is deeply analyzed because it is the
most significant situation. The results and conclusions considering the case
with the whole set of markers are basically the same, since the extended set
just slightly improves the accuracy of the filters.
In this analysis, the first and second order DA-based HNEKF are referred
to as EKFDA1 and EKFDA2, respectively, while the DA-based UKF is re-
ferred to as UKFDA2 since it exploits a second order Taylor expansion of
the flow.

Translational dynamics

As already observed in the previous chapter, the translational dynamics is
almost static and linear since the two spacecraft are very close on the same
orbit, which is nearly circular. In Sect. 3.4.1, it has been explained that
high-order filters do not provide better performance with respect to the lin-
ear one, which is already capable of following the dynamic evolution. How-
ever, differently from case of the previous chapter, here the measurement
equations are nonlinear and coupled. In particular, the performance of the
translational filter strictly depends on the performance of the rotational one.
Indeed, the rotational states are the most demanding ones to be estimated,
due to the high nonlinearities in the dynamics. At the higher acquisition
frequencies, both first and second order filters provide good performance
with the similar error at steady state, which is in the order of 10−4 m for
the position and 10−7 m/s for the velocity. The estimation of the transla-
tional states deteriorates at lower frequency due to the coupling with the
rotational states. Consequently, the rotational filter is deemed to deserve a
deeper study since the performance limitations derive from it. In fact, as
already stated, the nonlinearities affect the estimation process more signifi-
cantly, especially in case of high uncertainties and low observability of the
system, and for this reason it merits a more detailed analysis.

Rotational dynamics

From Tables 4.5-4.6, it can be noticed that filters do not show significant
difference in the performance for low uncertainties and high acquisition
frequency. However, the situation changes moving to high uncertainties
and low frequency. Especially, it can be observed how the convergence is
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Table 4.5: 3 markers: sensitivity analysis for rotational dynamics.

Modified Rodrigues Parameters Relative Angular Velocity (rad/s)
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10

EKFDA1µ̄
0.05 9.29e-4 2.54e-3 - 0.05 1.78e-5 4.15e-5 -
0.1 4.47e-4 1.05e-3 2.43e-3 0.1 1.17e-5 2.02e-5 2.96e-5
0.5 8.68e-5 1.08e-4 3.07e-4 0.5 1.30e-6 2.20e-6 7.12e-6
1 6.74e-5 7.66e-5 1.27e-4 1 4.36e-7 8.58e-7 2.50e-6
3 8.51e-6 1.40e-5 3.46e-5 3 1.30e-7 3.17e-7 9.88e-7

EKFDA1σµ̄
0.05 1.43e-4 1.02e-3 - 0.05 5.60e-6 1.76e-5 -
0.1 8.46e-5 7.98e-4 1.65e-3 0.1 3.23e-6 2.11e-5 1.71e-5
0.5 3.22e-6 4.12e-5 3.42e-4 0.5 1.52e-7 1.36e-6 7.88e-6
1 3.03e-6 2.29e-5 9.79e-5 1 1.66e-8 5.68e-7 2.94e-6
3 4.48e-7 7.83e-6 3.60e-5 3 1.08e-8 2.63e-7 1.21e-6

EKFDA2µ̄
0.05 9.12e-4 1.76e-3 - 0.05 2.05e-5 2.42e-5 -
0.1 4.55e-4 8.15e-4 1.71e-3 0.1 1.24e-5 1.80e-5 3.14e-5
0.5 8.80e-5 1.07e-4 2.95e-4 0.5 1.37e-6 2.16e-6 6.83e-6
1 6.46e-5 7.34e-5 1.24e-4 1 4.41e-7 8.38e-7 2.45e-6
3 7.76e-6 1.31e-5 3.36e-5 3 1.25e-7 3.04e-7 9.68e-7

EKFDA2σµ̄
0.05 4.42e-5 3.48e-4 - 0.05 2.64e-6 8.49e-6 -
0.1 1.93e-5 5.00e-4 1.58e-3 0.1 9.24e-7 1.27e-5 3.33e-5
0.5 3.44e-6 3.87e-5 3.23e-4 0.5 1.57e-7 1.29e-6 7.48e-6
1 3.07e-6 2.24e-5 9.64e-5 1 2.49e-8 5.34e-7 2.89e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.71e-9 2.54e-7 1.20e-6

UKFDA2µ̄
0.05 9.12e-4 2.19e-3 2.67e-3 0.05 1.89e-5 3.96e-5 4.82e-5
0.1 4.53e-4 1.06e-3 2.42e-3 0.1 1.20e-5 1.94e-5 3.91e-5
0.5 8.79e-5 1.08e-4 3.00e-4 0.5 1.37e-6 2.21e-6 6.98e-6
1 6.47e-5 7.38e-5 1.24e-4 1 4.42e-7 8.39e-7 2.46e-6
3 7.76e-6 1.31e-5 3.38e-5 3 1.25e-7 3.03e-7 9.69e-7

UKFDA2σµ̄
0.05 9.99e-5 1.39e-3 1.32e-4 0.05 2.98e-6 4.46e-5 2.16e-5
0.1 7.22e-5 8.90e-4 1.77e-3 0.1 3.17e-6 1.55e-5 3.70e-5
0.5 3.53e-6 4.04e-5 3.29e-4 0.5 1.59e-7 1.35e-6 7.60e-6
1 3.07e-6 2.24e-5 9.67e-5 1 2.48e-8 5.46e-7 2.90e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.72e-9 2.54e-7 1.20e-6
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Table 4.6: 3 markers: success rate for each combination of frequency and amplitude
factor, for rotational dynamics.

EKFDA1 EKFDA2 UKF UKFDA2
Freq. K K K K
(Hz) 1 5 10 1 5 10 1 5 10 1 5 10
0.05 8 5 0 8 7 0 11 8 2 11 8 2
0.1 58 30 11 63 72 27 57 41 16 57 41 16
0.5 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100

not achieved by the EKFDA (both 1 and 2) in the case with frequency 0.05
Hz and K = 10 and fewer samples reach convergence for similar scenar-
ios. The UT-based filters have higher convergence rate of samples at low
frequency with respect to DA-based HNEKF filters, but the EKFDA2 still
shows slightly better accuracy. On the other hand, the EKFDA1 is the least
accurate filter. These results confirm what was already observed in the anal-
ysis in Sect. 3.4.1. Even if the improvement gained by high order filters
in terms of the mean error accuracy is not so marked, EKFDA1σµ̄ shows
higher values, namely an higher dispersion of the final error. As already
observed, this means that, in case of large deviations from the true initial
conditions, the first order filter performance deteriorate leading to final es-
timates worse than the second order filters. To visualize this result, see Fig.
4.3. Note that in Fig. 4.3 all the simulations that converge are reported to
mark the concept, and not only the ones reaching a final error an order of
magnitude lower than the initial one. Hence, it is clear that filters that work
with the full knowledge of the first two moments perform better with re-
spect to the filter based on linearization. Among them, EKFDA2 seems to
appear the filter with the best accuracy, especially for low frequencies and
high uncertainties, indeed it presents lower standard deviations.
The filters based on the UT, i.e. UKF and UKFDA2, provide the same re-
sults: their difference is not at the accuracy level but on the computational
time required by the filter itself, as it will be shown later. In fact, the intro-
duction of the DA inside the UKF has the purpose of implementing a faster
filter, while the accuracy is not improved.
For completeness, Tables 4.7-4.8 reports the results considering the whole
set of visible markers. As already explained, the conclusions that can be
drawn are analogous to the ones of the 3-markers case.
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Table 4.7: All visible markers: success rate for each combination of frequency and ampli-
tude factor, for rotational dynamics.

EKFDA1 EKFDA2 UKF UKFDA2
Freq. K K K K
(Hz) 1 5 10 1 5 10 1 5 10 1 5 10
0.05 8 6 2 8 17 3 12 11 3 12 11 3
0.1 59 41 18 69 79 36 64 57 24 64 57 24
0.5 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100

Table 4.8: All visible markers: sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10

EKFDA1µ̄
0.05 8.90e-4 1.98e-3 5.13e-3 0.05 1.82e-5 3.48e-5 4.31e-5
0.1 4.43e-4 1.33e-3 2.64e-3 0.1 9.46e-6 2.51e-5 3.24e-5
0.5 9.46e-5 1.06e-4 2.27e-4 0.5 1.93e-6 2.31e-6 5.37e-6
1 5.16e-5 5.39e-5 6.87e-5 1 3.93e-7 5.30e-7 1.11e-6
3 9.44e-6 1.06e-5 1.44e-5 3 1.52e-7 1.95e-7 3.55e-7

EKFDA1σµ̄
0.05 1.49e-4 6.31e-4 3.34e-4 0.05 3.84e-4 1.94e-5 3.79e-5
0.1 6.96e-5 1.17e-4 2.20e-3 0.1 2.75e-6 2.40e-5 2.46e-5
0.5 1.81e-6 3.27e-5 2.13e-4 0.5 8.81e-8 1.01e-6 4.48e-6
1 1.24e-6 8.82e-6 3.27e-5 1 1.21e-8 2.07e-7 9.52e-7
3 1.37e-7 1.44e-6 7.30e-6 3 6.16e-9 6.63e-8 2.79e-7

EKFDA2µ̄
0.05 9.36e-4 1.21e-3 2.82e-3 0.05 2.35e-5 2.51e-5 2.17e-5
0.1 4.49e-4 7.60e-4 1.23e-3 0.1 1.05e-5 1.64e-5 2.24e-5
0.5 9.46e-5 1.04e-4 2.13e-4 0.5 1.96e-6 2.25e-6 5.01e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.10e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

EKFDA2σµ̄
0.05 1.54e-5 4.01e-4 2.21e-3 0.05 6.56e-7 6.79e-6 8.79e-6
0.1 9.47e-6 6.23e-4 1.10e-3 0.1 4.29e-6 1.19e-5 2.38e-5
0.5 1.75e-6 3.05e-5 1.96e-4 0.5 8.47e-8 9.51e-7 4.17e-6
1 1.23e-6 8.67e-6 3.24e-5 1 1.03e-8 2.02e-7 9.41e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7

UKFDA2µ̄
0.05 8.54e-4 1.77e-3 2.79e-3 0.05 1.91e-5 3.05e-5 2.60e-5
0.1 4.50e-4 1.02e-3 2.12e-3 0.1 1.04e-5 2.00e-5 3.22e-5
0.5 9.45e-5 1.06e-4 2.23e-4 0.5 1.95e-6 2.32e-6 5.29e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.11e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

UKFDA2σµ̄
0.05 8.86e-5 1.06e-3 1.75e-3 0.05 3.19e-6 2.63e-5 1.72e-5
0.1 6.31e-5 7.15e-4 1.79e-3 0.1 2.50e-6 1.52e-5 2.45e-5
0.5 1.85e-6 3.32e-5 2.04e-4 0.5 8.86e-8 1.04e-6 4.42e-6
1 1.23e-6 8.70e-6 3.25e-5 1 1.04e-8 2.03e-7 9.45e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7
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4.4. Results

Figure 4.3: EKFDA1 and EKFDA2 accuracy for the whole set of 100 samples in the case
with frequency 0.05 Hz and K = 1 for the relative position and MRP.

4.4.2 Computational time

Table 4.9 shows the software computational time performed on a 3000 sec-
onds simulation. The characteristic time used to describe the performance
of the filters at each frequency is evaluated as a mean among all the sim-
ulations in which the error converges. The computational mean time is
evaluated in the following way:

Ψf =

∑3
j=1

∑κf,j
i=1 τf,j,i
κf,j

3
, (4.27)

where Ψf ∈ R is the computational mean time associated to frequency
f = [0.05, 0.1, 0.5, 1, 3]; j indicates the level of uncertainty used in the
simulation, and thus it is related to the amplification factor K (j = 1 →
K = 1, j = 2 → K = 5, j = 3 → K = 10); κf,j is the number of
simulations in which the convergence is achieved with frequency f and
amplification factor j; and τi,j,k is the computational time of the ith sample
in simulation (f, j). Figure 4.4 is a graphical representation of the com-
putational time behavior of the filters at different frequencies in the case
where all the visible markers are used as measurement. The computational
time is the running-time on an Intel Core i7-6700K processor with a total
of 4 cores @ 4.0 GHz and 16 GB of RAM.
The linear filter EKFDA1, as expected, is the fastest one. The UKFDA2

61



Chapter 4. Relative pose estimation through DA-based UKF

Figure 4.4: All visible markers: mean computational time of the filters at different fre-
quencies.

has nearly the same trend of the UKF but it requires less time. Therefore,
the improvement of including DA in the UT is evident: the two filters have
the same accuracy, but the one based on DA is faster in the whole frequency
range. The EKFDA2 is the filter with the most demanding computational
time at high frequency, while it is faster than standard UKF at low fre-
quency.

Table 4.9: Computational time analysis of the filters.

Freq. EKFDA1 EKFDA2 UKF UKFDA2
(Hz) Ψf (s) Ψf (s) Ψf (s) Ψf (s)

All Markers
0.05 1.47 5.84 8.06 2.41
0.1 1.67 6.70 8.50 2.69
0.5 3.23 13.88 12.47 5.66
1 5.18 22.43 17.23 9.31
3 11.54 50.13 29.16 21.94

3 Markers
0.05 1.40 5.49 7.98 2.23
0.1 1.53 6.00 8.26 2.41
0.5 2.93 10.19 11.15 4.22
1 3.37 15.25 14.29 6.43
3 6.23 30.10 20.43 13.31

Looking at Table 4.9, the overall simulation time has decreased, for each
filter and for all the frequencies, in the 3 markers limitation cases. The
EKFDA1 is always the fastest filter, followed by UKFDA2 with almost
double computational time. The main difference between the all-markers
simulation and the 3-markers one lies in the comparison between EKFDA2
and UKF. The reduced length of the measurement vector implies a faster
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4.4. Results

inversion of the measurement covariance matrix, which is the most time-
demanding passage in the DA-based filter. Therefore, for the 3 marker
simulation, the EKFDA2 reduces its computational time as the frequency
decreases with a stronger slope compared to the UKF. As a result, EKFDA2
and UKF have almost the same computational time at 1 Hz and the UKF
becomes the most demanding filter, in terms of time, at lower frequencies.

4.4.3 Acquisition Failure

Measurement failures can be critical in sequential state estimation applica-
tion; indeed, the lack of proper data management could lead to an unfore-
seen behavior of the filters. Therefore, in this section, the filters are tested
against marker position data failure.
Considering a set of 3 markers, 8 different situations can arise, depending
on the number of markers not recognized. Indeed, using a binary notation
where 1 identifies acquisition failure and 0 identifies the correct acquisition,
the 8 combinations of possible events are 111 - 100 - 010 - 001 - 110 - 101
- 011 - 000. Given a failure probability level, p = 20%, it is possible to
calculate the probability of having a certain amount of failures in the set of
3 markers. Defining with α the number of markers not recognized, then the
probability of having α misrecognition in a set, Pα, is evaluated according
to the following equation:

Pα = [pα(1− p)(N−α)]γ (4.28)

where N , number of elements, is in this case 3 since the set includes 3
markers, and γ is an integer number that indicates how many combinations
of failures having α markers not recognized are possible.

Table 4.10: Probability of failures in a set of 3 markers.

α γ Pα
3 1 0.80%
2 3 9.60%
1 3 38.40%
0 1 51.20%

In table 4.10, it can be seen that only half of the time steps work without
any failure (with probability threshold p).
Table 4.11 shows that, as expected, failures affect negatively the filters per-
formance. Robustness to acquisition failures has been tested at low fre-
quency, where the lack of measurement becomes more relevant. Only the
results of the EKFDA2 are reported to give a comparison with respect to

63



Chapter 4. Relative pose estimation through DA-based UKF

Table 4.11: Sensitivity analysis for rotational dynamics with failure.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10

EKFDA2µ̄
0.05 9.88e-4 1.82e-3 2.54e-3 0.05 2.09e-5 2.17e-5 1.69e-5
0.1 4.66e-4 1.11e-3 1.42e-3 0.1 1.16e-5 1.99e-5 2.22e-5
0.5 9.97e-5 1.63e-4 5.71e-4 0.5 1.55e-6 3.72e-6 1.19e-5

EKFDA2σµ̄
0.05 1.37e-4 7.87e-4 0 0.05 2.62e-6 3.85e-6 0
0.1 7.29e-5 9.21e-4 1.31e-3 0.1 2.76e-6 1.56e-5 1.98e-5
0.5 1.96e-5 1.46e-5 8.76e-4 0.5 4.93e-7 3.90e-6 1.71e-5

Table 4.12: Success rate for each combination of frequency and amplitude factor, consid-
ering failures, for rotational dynamics.

EKFDA1 EKFDA2 UKF UKFDA2
Freq. K K K K
(Hz) 1 5 10 1 5 10 1 5 10 1 5 10
0.05 3 3 0 6 6 1 9 2 1 10 4 1
0.1 48 24 10 63 51 20 58 31 13 58 31 13
0.5 100 100 89 100 100 94 100 100 93 100 100 93

the case without failures. It can be observed that the accuracy decreases in
terms of both the mean value and standard deviation of the RMSE. How-
ever, the main difference is in the latter one. In fact, the RMSE standard
deviation considerably increases, which means that, due to the stochastic
nature of the failures, the convergence of one single run highly depends on
when and where the failure occurs. Moreover, looking at Table 4.12 it can
be noticed that the success rate of all the filters decreases further at low
frequency.
The performance comparison among the filters presents the same behav-
ior described in the simulations with no failures. However, the difference
between nonlinear filters and the classical EKF is here more marked, espe-
cially in the ability of nonlinear filters to be more robust and consistent.
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CHAPTER5
Contact detection, isolation and

identification for space robots

Along with the relative pose estimation of a target satellite, space robotic
applications require a safe handling of the physical contact. As already
explained, the space robot can be controlled to perform grasping or ma-
nipulation tasks, involving contacts, but at the same time unexpected colli-
sions may occur due to the proximity to other objects. In both situations,
the knowledge of the contact force is a valuable information to carry out
the operations safely. Especially, in case of unintentional contacts, the
robot must be able to detect, isolate and identify the external force in order
to react properly, avoiding critical damages. To this aim, in this chapter,
two observers are introduced capable of reconstructing the external contact
wrench. Their performance is assessed and compared through numerical
simulations. Moreover, the results of the experimental tests performed to
validate the presented algorithms are shown. Finally, another approach to
address the contact detection and isolation problems is discussed and com-
pared with the previous ones. This method is based on the robot’s momen-
tum monitoring.
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Chapter 5. Contact detection, isolation and identification for space robots

5.1 Nonlinear observers based on momentum

The starting point for the development of the contact force observers for or-
bital robots is the residual-based estimator presented in [47] for humanoids.
Here, this estimator is adapted and analyzed considering a space scenario
and an actuated base. The method derives from the momentum-based ob-
server, developed for fixed-base robots [45], in which a residual vector is
defined as the difference between the generalized momentum of the robot
and its estimate. Under ideal condition, this residual vector turns out to be
a filtered estimation of the external disturbance acting on the joints. Here-
after, the same idea is followed using the dynamics model (2.24), namely a
base-joints dynamics, to obtain the estimates of fext,b,mext,b and τext.
Afterwards, the proposed observer, based on a centroid-joints dynamics, is
derived and discussed. Interesting decoupling properties from the base lin-
ear velocity are highlighted, which result in improved performance when
real implementation issues are considered.

5.2 Observer based on a base-joints dynamics

Considering Eq. (2.24), the dynamics of the robot can be split into base lin-
ear and rotational dynamics, i.e., the first and second rows of the equation,
and joints dynamics, i.e., the third row of the equation.
Denoting by f̂ext,b, m̂ext,b ∈ R3 and τ̂ext ∈ Rn the residuals, they are de-
signed as follows:

f̂ext,b = Kf (Mtvb +Mtrωb +Mtmq̇︸ ︷︷ ︸
htb

+

−

∫
t

0

(fb +CT
t vb +CT

rtωb +CT
mtq̇ + f̂ext,b)ds), (5.1a)

m̂ext,b = Km(MT
trvb +Mrωb +Mrmq̇︸ ︷︷ ︸

hrb

+

−

∫
t

0

(mb +CT
trvb +CT

r ωb +CT
mrq̇ + m̂ext,b)ds), (5.1b)

τ̂ext = Kτ (M
T
tmvb +MT

rmωb +Mmq̇︸ ︷︷ ︸
hj

+

−

∫
t

0

(τ +CT
tmvb +CT

rmωb +CT
mq̇ + τ̂ext)ds), (5.1c)
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5.3. Observer based on a centroid-joints dynamics

where Kf ,Km ∈ R3×3 and Kτ ∈ Rn×n are positive-definite diagonal
matrices containing the observer gains; hj ∈ Rn is the joints generalized
momentum.
Differentiating Eqs. (5.1a), (5.1b), and (5.1c), and exploiting the dynamics
(2.24) and the property Ṁ = C +CT , the resulting relations between the
estimates and the true quantities are

˙̂
fext,b = Kf (fext,b − f̂ext,b), (5.2a)

˙̂mext,b = Km(mext,b − m̂ext,b), (5.2b)

˙̂τext = Kτ (τext − τ̂ext). (5.2c)

From Eq. (5.2) it can be noticed that f̂ext,b, m̂ext,b, and τ̂ext are first-order-
filtered estimations of fext,b,mext,b, and τext, respectively.
Increasing the observer gains reduces the time constants of the transient re-
sponse of the estimates, and thus a faster estimation of fext,b,mext,b, and
τext. Ideally, if the observer gains tend to infinity, it would be achieved
f̂ext,b ≈ fext,b, m̂ext,b ≈ mext,b and τ̂ext ≈ τext, respectively. However, in
practice, noise and uncertainties induce an upper bound on the values that
the observer gains can take. Moreover, the computation of all the residu-
als, i.e., f̂ext,b, m̂ext,b, and τ̂ext, requires the knowledge of the base linear
velocity vb. A fast and accurate estimation of the linear velocity is particu-
larly difficult in practical applications and the observer scheme (5.1) would
require very low gains resulting in limited response bandwidth. This limita-
tion motivates the derivation of the proposed observer presented hereafter,
which turns out to be more practical and better-performing.

5.3 Observer based on a centroid-joints dynamics

In this section, the robot dynamics is transformed using a new set of gen-
eralized velocities: the linear velocity of the center of mass (CM) of the
whole system, the angular momentum around C expressed in C and the
joints velocities. Afterwards, the transformed dynamics is used to formu-
late the new observer scheme.
The total momentum around C expressed in C, denoted by hc ∈ R6, can be
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Chapter 5. Contact detection, isolation and identification for space robots

found as hc = A−Tcb hb [43]1, resulting in

hc =

[
htc
hrc

]
=

[
mE −m[pbc]

× mJ̄v
0 Ic IcJ̄ω

] vb
ωb
q̇

 , (5.3)

where htc ∈ R3 is the translational momentum and hrc ∈ R3 is the rotational
momentum around C, both expressed in C, m ∈ R and Ic ∈ R3×3 are the
mass and the rotational inertia around C of the whole body, and J̄v, J̄ω ∈
R3×n are computed as follows

J̄v =
1

m

n∑
i=1

miR
T
ibJvi, (5.4)

J̄ω = I−1
c

n∑
i=1

RT
ibIiJωi +mi[pbi]

×(Jvi − J̄v), (5.5)

with mi ∈ R and Ii ∈ R3×3 being the mass and rotational inertia of body
i, computed around its CM, and Jvi,Jωi ∈ R3×n being the Jacobians map-
ping q̇ in the linear and angular velocity of body i, respectively. The Jaco-
bians J̄v and J̄ω can be also computed based on the inertia model in (2.24)
as:

J̄v =
1

m
Mtm, (5.6)

J̄ω =

(
Mr −

1

m
MT

trMtr

)−1(
Mrm −

1

m
MT

trMtm

)
. (5.7)

Introducing the linear velocity of the CM of the whole system, vc = 1
m
htc ∈

R3, and exploiting Eq. (5.3), a transformation matrix Γ ∈ R(6+n)×(6+n) can
be defined as  vc

hrc
q̇

 =

 E −[pbc]
× J̄v

0 Ic IcJ̄ω
0 0 E


︸ ︷︷ ︸

Γ

 vb
ωb
q̇

 . (5.8)

1The equations used herein are slightly different from the ones presented in [43]: in [43] the frame C is
nonrotating, whereas here C is rotating, parallel to B.
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Consequently, the generalized forces transform as fb
mb

τ

 = ΓT

 fc
ac
τ̄

 , (5.9)

 fext,b
mext,b

τext

 = ΓT

 fext,c
aext,c
τ̄ext

 , (5.10)

where fc ∈ R3, ac ∈ R3, and τ̄ ∈ Rn are new control inputs; fext,c ∈ R3,
aext,c ∈ R3, and τ̄ext ∈ Rn are the projections of the external wrench F ext

into the new variables space.
Then, the dynamics in the new states is derived pre-multiplying (2.24) by
Γ−T and substituting vb, ωb, q̇ and their derivatives isolated from Eq. (5.8)
in (2.24). The resulting system is mE 0 0

0 I−1
c 0

0 0 M ∗
m

 v̇c
ḣrc
q̈

+

+

 Cc Ccr Ccm

−CT
cr C∗r C∗rm

−CT
cm −C∗Trm C∗m

 vc
hrc
q̇

 =

 fc
ac
τ̄

+

 fext,c
aext,c
τ̄ext

 .
(5.11)

where

M ∗
m = Mm −

[
MT

tm M
T
rm

] [ Mt Mtr

MT
tr Mr

]−1 [
Mtm

Mrm

]
∈ Rn×n

(5.12)
is the reduced inertia of the manipulator.
Expressing the dynamics in these new variables enables to obtain a system
of inertially decoupled dynamic equations. Moreover, it can be demon-
strated (see Appendix) that the following relations hold:

Ccvc +Ccrh
r
c +Ccmq̇ = m [ωb]

× vc, (5.13a)

−CT
crvc +C∗rh

r
c +C∗rmq̇ = I−1

c [ωb]
× hrc, (5.13b)

−CT
cmvc −C∗Trmhrc +C∗mq̇ = (Ṁ ∗

m −
1

2
M ∗

m/q)q̇+

+( ˙̄JTω − J̄Tω [ωb]
× +

1

2
I−Tc/q − J̄

T
ω/q)h

r
c, (5.13c)
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where

M ∗
m/q =

 q̇T ∂M
∗
m

∂q1
...

q̇T ∂M
∗
m

∂qn

 ∈ Rn×n, (5.14)

I−Tc/q =


hrTc

∂I−Tc
∂q1

...
hrTc

∂I−Tc
∂qn

 ∈ Rn×3, (5.15)

J̄Tω/q =


q̇T ∂J̄

T
ω

∂q1
...

q̇T ∂J̄
T
ω

∂qn

 ∈ Rn×3. (5.16)

The dynamic equations can be rewritten as

mv̇c +m [ωb]
× vc = fc + fext,c, (5.17a)

ḣrc + [ωb]
× hrc = mc +mext,c, (5.17b)

M ∗
mq̈ + (Ṁ ∗

m −
1

2
M ∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
×+

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c = τ̄ + τ̄ext, (5.17c)

where it is denotedmc = Icac ∈ R3 andmext,c = Icaext,c ∈ R3.
First, note that Eqs. (5.17b) and (5.17c) do not depend on the base linear
velocity anymore. On the other hand, Eq. (5.17a) depends on the base
linear velocity trough vc. Second, note thatM ∗

m, J̄ω,M ∗
m/q, Ic/q, and J̄ω/q

depend only on q, and ˙̄Jω depends on q and q̇.
Starting from (5.17), the residuals f̂ext,c, m̂ext,c ∈ R3 and ˆ̄τ ext ∈ Rn, are
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designed as

f̂ext,c = Kf (mvc︸︷︷︸
htc

−

∫
t

0

(fc −m [ωb]
× vc + f̂ext,c)ds), (5.18a)

m̂ext,c = Km(hrc −

∫
t

0

(mc − [ωb]
× hrc + m̂ext,c)ds), (5.18b)

ˆ̄τ ext = Kτ (

h∗j︷ ︸︸ ︷
M ∗

mq̇−

∫
t

0

(τ̄ +
1

2
M ∗

m/qq̇ − ( ˙̄JTω+

− J̄Tω [ωb]
× +

1

2
I−Tc/q − J̄

T
ω/q)h

r
c + ˆ̄τ ext)ds), (5.18c)

where h∗j ∈ Rn is the new joint generalized momentum in the centroid-
joints dynamics. Differentiating Eqs. (5.18a), (5.18b), and (5.18c), and
using the dynamics (5.17), the resulting relations between the estimates
and the true quantities are

˙̂
fext,c = Kf (fext,c − f̂ext,c), (5.19a)

˙̂mext,c = Km(mext,c − m̂ext,c), (5.19b)

˙̄̂τext = Kτ (τ̄ext − ˆ̄τ ext), (5.19c)

meaning that f̂ext,c, m̂ext,c, and ˆ̄τ ext are first-order-filtered estimations of
fext,c, mext,c, and τ̄ext, respectively. The observations about the gains tun-
ing made in Sect. 5.2 are also valid for the proposed observer.
Note that the residuals m̂ext,c and ˆ̄τ ext in (5.18b) and (5.18c) are computed
without using the linear velocity. Indeed, vb does not appear in (5.18b) and
(5.18c), and the matrices therein are only function of q and q̇, as remarked
previously. This property has an important implication from the practical
point of view. Considering the on-orbit scenarios, the linear velocity is not
directly measured and its accurate estimation or reconstruction is difficult.
Thanks to the decoupled structure of (5.17b) and (5.17c), the residuals
m̂ext,c and ˆ̄τ ext can be computed just relying on gyroscopes, encoders and
torque sensors, which typically feature good acquisition frequency and rel-
atively low noise. Fast and accurate knowledge of the base attitude, position
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and velocity, which is often unpractical, is totally avoided. Then, the resid-
uals m̂ext,c and ˆ̄τ ext can be exploited to isolate the contact point and to
reconstruct the external wrench F ext, as it will be shown in the following.

5.4 Reconstruction of the external wrench

Assuming to know the contact point along the space robot, the relation
between the contact generalized forces fext,b, mext,b, and τext in (2.24)
and the external wrench F ext can be expressed as in Eq. (2.25). Using
the inverse of Eq. (5.10) and recalling that mext,c = Icaext,c, the relation
between fext,c,mext,c, and τ̄ext and F ext is given by: fext,c

mext,c

τ̄ext

 =

[
AT
pc

J∗Tp

]
F ext, (5.20)

where

J∗p =

[
J∗vp
J∗ωp

]
=

[
−RpbJ̄v +Rpb [pcp]

∧ J̄ω + Jvp
−RpbJ̄ω + Jωp

]
∈ R6×n. (5.21)

Then, an estimate F̂ ext of the external wrench at the end-effector can be
computed as

F̂ ext =

([
AT
pc

J∗Tp

])#
 f̂ext,c
m̂ext,c

ˆ̄τ ext

 , (5.22)

where the operator ( · )# stands for the Moore-Penrose pseudo inverse of
the argument.

Considering
[
AT
pc

J∗Tp

]
has maximum rank, one has the freedom to eliminate

redundant rows. In particular, the estimate of the external wrench can be
obtained using only m̂ext,c and ˆ̄τ ext, and thus getting rid of the base linear
velocity. Selecting the last two rows of Eq. (5.20) and taking the pseudo
inverse, the following relation can be written

F̂ ext =
(
J̃∗Tp

)#
[
m̂ext,c

ˆ̄τ ext

]
, (5.23)

with

72



5.5. Contact point isolation

J̃∗p =

[
−Rpb [pcp]

× J∗vp
Rpb J∗ωp

]
∈ R6×(n+3). (5.24)

Clearly, the rank of J̃∗p should be maximum to reconstruct F̂ ext correctly.
Notice that by using Eq. (5.23), it is possible to estimate the external
wrench acting at a generic point along the robot without using any unpracti-
cal measurements, such as the base linear velocity or the joint accelerations.
In the development of the reconstruction strategy, the contact point has been
assumed to be known. In case of a planned contact at the end-effector, this
is true and, through the kinematics, it is straightforward to compute pce and
the Jacobians Jve, Jωe (the generic point p coincides with the end-effector)
required in Eq. (5.22) and in Eq. (5.23). Conversely, when dealing with
an unexpected collision, the contact point is unknown and it is necessary
to isolate it before being able to reconstruct the external wrench. In the
following section, a solution to this problem is proposed.

5.5 Contact point isolation

Solving the isolation problem means to locate where the contact occurred.
In the following, first, a procedure to identify the contact point using all the
residual vectors is presented. This procedure can be applied considering
both the observer (5.1) and (5.18). Then, a different approach is proposed
that relies only on m̂ext,c and ˆ̄τ , avoiding the need of the base linear ve-
locity knowledge. In the development of both strategies, it is assumed that
the point of application of the external disturbance does not change during
the contact and the wrench only consists in a linear force and no torque,
namely F ext = [fText 0T ]T . Note that these are reasonable assumptions for
unexpected collisions.

5.5.1 Isolation using all the residual vectors

Considering all the residual vectors available, the contact point can be iden-
tified easily. Indeed, knowing that

mext,c = [pcp]
×fext,c, (5.25)

it is possible to write
m̂ext,c = [pcp]

×f̂ext,c, (5.26)
which means that the contact point can be found on the line

scp = (−[f̂ext,c]
×)#m̂ext,c + d

f̂ext,c

||f̂ext,c||
∈ R3, (5.27)
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with d being a varying scalar.
At this point, the contact point can be identified as the intersection be-
tween scp and the space robot, whose CAD representation is known or
can be simplified by primitive shapes. In order to discriminate the exact
point among multiple possibilities, the estimation of the external torques
can be exploited. Indeed, the exact point would be the one that minimizes
||J∗Tp F̂ ext − ˆ̄τ ext||. Note that the same procedure can be applied using the
residuals in (5.1).
It can be observed that this method is very straightforward. However, as
already pointed out, it would be more convenient, from practical point of
view, to be able to isolate the contact point without relying on the base lin-
ear velocity knowledge. For this reason in the following section a different
approach is proposed.

5.5.2 Isolation using only m̂ext,c and ˆ̄τext

Assuming that the link i, on which the contact occurred, is known, the
external wrench F ext can be transformed with respect to a frame attached
on a known position to link i using the Adjoint matrix, as

F i =

[
fi
mi

]
= AT

piF ext =

[
E 0

[pip]
× E

] [
fext
0

]
, (5.28)

where pip is constant.
The effect of the contact wrench at frame i can be estimated using the re-
costruction strategy preaviously explained as

F̂ i =

[
f̂i
m̂i

]
=

([
[pci]

×RT
ib RT

ib

J∗Tvi J∗Tωi

])# [
m̂ext,c

ˆ̄τ ext

]
, (5.29)

where J∗vi, J
∗
ωi can be computed substituting in Eq. (5.21) Rpb with Rib,

pcp with pci, and Jvp, Jωp with the Jacobians mapping q̇ into the linear
and angular velocity of frame i. At this point, manipulating Eq. (5.28), the
following relation can be written

m̂i = [pip]
×f̂i, (5.30)

from which the line of action of fext can be computed as

sip = (−[f̂i]
×)#m̂i + di

f̂i

||f̂i||
∈ R3. (5.31)

with di being a varying scalar. Assuming the knowledge of the geometry
of the link i, the contact point can be found as the intersection bewteen the
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link and the line sip.
Unfortunately, the contact link is usually not known in advance. However,
it is possible to overcome this issue. Indeed, the scheme just explained can
be applied to each link, assuming that is the contact link. At the end, two
possible results can be obtained:

• no intersections are found between the line of action and the link;

• a candidate contact point is found.

Among all the candidate points, the real contact point is the one minimizing

δip =

∣∣∣∣∣∣∣∣J̃∗Tp,i [ f̂ext0

]
−
[
m̂ext,c

ˆ̄τ ext

]∣∣∣∣∣∣∣∣ , (5.32)

where J̃∗p,i ∈ R6×(n+3) is the Jacobian at the candidate point on link i. Fig.
5.1 reports the isolation method schematically.
To conclude, the residuals m̂ext,c and ˆ̄τ ext allow not only to detect and esti-
mate a contact force, but also to isolate it without the need of the knowledge
of the base linear velocity.

Select link i

?
Compute F̂ i

?
Compute sip

?
Check the intersection

with link i

? ?

No Yes

Move to link i+ 1 Compute δip

?
Move to link i+ 1

?

δip < δip−1δip > δip−1

Take the intersection
as contact point

?
Move to link i+ 1

Figure 5.1: Scheme of the proposed isolation method.

5.6 Simulation example

In this section, the two observers are compared through numerical simula-
tions including realistic noise models for the measurements and the recon-
struction of the base linear velocity through a kinematics-based Kalman fil-
ter. The superior performance and the advantages of the proposed method
based on the centroid-joints dynamics are shown.
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5.6.1 Simulation scenario

A 7DoF manipulator mounted on a 6DoF floating base is considered. The
kinematics and dynamics parameters are reported in Tab. 5.3.
The base is controlled to keep the initial attitude through a PD controller,
whereas it is free to translate, i.e., fb = 0. The manipulator joints are con-
trolled to follow a reference. Especially, joint 1 and joint 4 are commanded
to follow a trapezoidal velocity profile, while the other joints are com-
manded to keep the initial position, i.e., q0 = [−3 30 0 130 0 −60 0]T deg.
A simple PD controller is implemented for each joint. Note that the perfor-
mance of both observers does not depend on the control strategy adopted.
A constant external wrench is applied at the end-effector between t = 2.5 s
and t = 3.5 s. The wrench consists of only a linear force, with value
fext = [−10 5 8]T N, and no torque.

Table 5.1: Kinematics and dynamics parameters.

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]
Base 1.2 375 280 165 250

Link 1 0.17 5.1 0.03 0.03 0.03
Link 2 1.3 18.8 1.65 1.65 0.64
Link 3 0.17 8.9 0.15 0.15 0.03
Link 4 1.3 12.0 0.25 0.25 0.03
Link 5 0.17 11.7 0.26 0.26 0.03
Link 6 0.1 5.5 0.02 0.02 0.03
Link 7 0 4.7 0.01 0.01 0.02

5.6.2 Measurement model and velocity reconstruction

The angular velocity, the joint angles and the joint torques can be directly
measured using a gyro, encoders and joints torque sensors, respectively.
On the other hand, the linear velocity, required for the wrench reconstruc-
tion only by the observer (5.1), and the joint velocities, required by both
observers, are not directly measured but need to be reconstructed, either
using a discrete derivative or by data fusion. Herein only the problem of
the estimation of the linear velocity is addressed, while a simplified noise
performance model is used for the joint velocities.
In order to compare the observers with similar noise conditions, the mea-
surements of the angular velocity, joint angles and joint velocities are as-
sumed to be affected by a white Gaussian noise with zero mean, while an
uniform noise is considered for the torque sensors. For the angular velocity
a bias is also introduced leading to the following model [70]:
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ωmb = ωb + bω + ηω,

ḃω = ηbω,
(5.33)

where ωmb ∈ R3 is the measured angular velocity of the base; the term
bω ∈ R3 is the bias, considered to be a ”Brownian” motion process; the
terms ηω,ηbω ∈ R3 are white Gaussian noise with zero mean.
The linear velocity is reconstructed through a kinematics-based Kalman
filter using a gyro and an accelerometer in the prediction step, and camera
measurements for the update step. These sensors are placed on the space-
craft. The camera measures the base position with respect to the inertial
frame T (see Fig. 2.3), that can be imagined to be located on a target ob-
ject [71].
The position of the target with respect to the base pbt ∈ R3 and base veloc-
ity vb, expressed in B, compose the state vector, and their time derivatives
are

ṗbt = −[ωb]
×pbt − vb,

v̇b = −[ωb]
×vb + ab,

(5.34)

where ab ∈ R3 is the spacecraft acceleration. Eq. (5.34) is the prediction
step of the filter, whereωb and ab are measured by the inertial measurement
unit (IMU), including the gyro and the accelerometer.
The measurement equation is

p̃bt = pbt, (5.35)

where p̃bt ∈ R3 is the measurement vector. The Kalman filter scheme is
implemented using Eqs. (5.34)-(5.35).
Also for the accelerometer, the noise model (5.33) is used [72]. On the
other hand, for the camera, the noise is introduced by adopting the expo-
nentially correlated random variable model, whose equation is reported in
(3.17)-(3.18).
The standard deviations and biases of the considered noise models are re-
ported in Tab. 5.2. The vision system acquires measurements at 3 Hz, while
the other sensors work at 200 Hz. The filter prediction step is performed at
200 Hz, whereas the update step at 3 Hz. Note that the attitude is controlled
to be fixed. To achieve this goal, attitude measurements are necessary, and
thus it is assumed that the spacecraft is equipped with a star tracker, which
measures the Euler angles Φ ∈ R3. The exponentially correlated random
variable model (Eqs. (3.17)-(3.18)) is used to reproduce the noise of the
sensor, with standard deviation σΦ = 1.04 · 10−4 rad. The star tracker
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Table 5.2: Standard deviations and biases of the considered noise model.

σq [rad] σq̇ [rad/s] στ [Nm] σpbt [m] σbω [ µrad/s3/2]
5 · 10−5 10−4 0.2 0.01 3.162 · 10−4

σω [ µrad/s1/2] σba [m/s5/2] σa [m/s3/2] bω,0 [rad/hr] ba,0 [m/s2]
0.316 6.00 · 10−5 9.81 · 10−5 0.0017 0.003

works at 3 Hz, while the controller works at 200 Hz. Hence, the EKF for
quaternions presented in [73] is implemented 2. Similar to the filter for the
base velocity, the prediction is run at 200 Hz, while the update at 3 Hz.

5.6.3 Observers comparison

In [74] 3 the better performance of the proposed method based on a centroid-
joints dynamics are shown considering a simplified Gaussian noise model
for the linear velocity. In that case, the noise on consecutive measurements
is completely uncorrelated and this feature deteriorates significantly the
performance of the observer (5.1), and consequently the accuracy of the ex-
ternal wrench estimation. In this analysis, a more realistic condition is con-
sidered: the linear velocity is estimated through a Kalman filter, and thus it
turns out to be less noisy. However, after the filter has converged, the esti-
mation is still affected by a certain level of uncertainty. When the prediction
is updated, at a frequency of 3 Hz, the velocity estimate may vary suddenly
of few mm/s. This is due to the fact that the prediction step runs at a higher
frequency and the error in the predicted states is accumulated. These sud-
den variations in the correction phase affect significantly the computation
of the residuals depending on the linear velocity, namely all the ones in
(5.1) and f̂ext,c. Consequently, the accuracy of the contact wrench recon-
struction deteriorates. To mitigate this issue, the observers gains should
be decreased considerably, limiting the bandwidth. Conversely, the issue
is completely overcome if the external wrench is estimated through (5.23),
since m̂ext,c and ˆ̄τ are decoupled from the base linear velocity. Before pro-
ceeding with the comparison, note that, in this simulation, the contact point
is at the end-effector, and thus it is assumed to be known.
Figs. 5.2 and 5.3 show a comparison between the reviewed method [47],
adapted to space robots, and the proposed one. Fig. 5.2 compares the two

2In [73] the filter estimates also the angular velocity and the measurements are assumed to be acquired by a
laser vision system. In this work, only the attitude is estimated and the measurements are provided by the star
tracker, but the implementation of the filter is analogous.

3In [74], a preliminary analysis of the observers for space robots is reported. In this thesis, a more complete
discussion is present, including a more realistic measurements model and the reconstruction of the linear velocity.
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Figure 5.2: Comparison between the reviewed observer and the proposed one, including
f̂ext,b and f̂ext,c in the estimation process.

methods when all the three residuals are used to reconstruct fext. In this
case, for the observer based on a base-joints dynamics, i.e., given by (5.1),
a contact force estimate f̂ext is computed by taking the pseudo inverse of
the relation (2.25) and using the residuals f̂ext,b, m̂ext,b, and τ̂ext, whereas
for the observer (5.18) it is given by using the relation (5.22). On the other
hand, Fig. 5.3 compares the two methods when only the angular and joint
momentum residuals are used to reconstruct fext. For the observer (5.1),
the contact force estimate f̂ext is computed removing the first row of (2.25),
i.e., without f̂ext,b, and by taking the pseudo inverse of the resulting rela-
tion, while for the observer (5.18) it is given by using the relation (5.23),
i.e., without f̂ext,c. In both observers, all the gains are set equal to 30 s−1.
Fig. 5.2 shows that the estimation process is significantly affected by the
uncertainty in the linear velocity and both observers provide similar bad
performance. This is caused by the residuals f̂ext,b and f̂ext,c, which are the
ones mostly affected by the explained issue. Only one component of the
force is reported, but similar results are obtained for the other two.
On the other hand, the simulation shown in Fig. 5.3, in which f̂ext,b and
f̂ext,c are not used in the estimation process, highlights the advantage of
using the proposed scheme based on the centroid-joints dynamics. Indeed,
it provides a definitely more accurate estimate of the external force, espe-
cially during the contact. It is worth stressing that the superior performance
of the proposed method derives from the complete decoupling of m̂ext,c and
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ˆ̄τ ext from the linear velocity vb. The estimation through (5.23) turns out to
be more practical and robust since it requires the use of only reliable and
accurate sensors, as gyros, encoders and torque sensors. Moreover, these
sensors can work at higher frequency, up to 1 KHz, providing the capa-
bility of detecting fast contacts. The estimation based on a centroid-joints
dynamics does not depend on the performance of the filter which can even
deteriorates due to occlusions of the camera or adverse light conditions,
here not simulated.
Finally, the residuals m̂ext,c and ˆ̄τ ext turn out to be more adequate monitor-
ing signals for the detection of the contact. Indeed, they are less prone to
false positive than the residuals in (5.1), which show some spikes (visible
in Fig. 5.3 in the force reconstruction) due to the uncertainty in the linear
velocity estimation.

Figure 5.3: Comparison between the reviewed observer and the proposed one, without
using f̂ext,b and f̂ext,c in the estimation process.
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5.6.4 Reconstruction of the contact force on a generic point

In this section, it is shown that the proposed estimation scheme based on
a centroid-joints dynamics can be used to detect and reconstruct a contact
force acting on a generic point along the robot. First, the contact is detected
using the residuals m̂ext,c and ˆ̄τ . Then, in order to estimate the force, the
contact point is isolated through the method explained in Sect. 5.5.2 and
reported schematically in Fig. 5.1, which relies only on the joint and an-
gular momentum residuals. Finally, the external force is estimated using
Eq. (5.23), which requires the knowledge of contact point. The space robot
is commanded to keep the initial attitude and manipulator’s configuration,
i.e., q0 = [0 40 0 110 0 45 0] deg.
Similarly to the previous case, a constant external wrench is applied be-
tween t = 2.5 s and t = 3.5 s and it consists of only a linear force and no
torque. In this case, the external wrench acts on a mid-section on the link
4. In this simulation, the observer’s gains are set equal to 20 s−1.
The contact point is isolated with an error of few centimeters. Then, Eq.
(5.23) is used to estimate the contact force fext. Fig. 5.4 shows that the
proposed method provides good estimation performance even in the case
of a contact on a generic point along the robot.

Figure 5.4: Reconstruction of the external force acting on a generic point along the robot.
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Figure 5.5: Sequence of the experiment with a known mass (from top to bottom, from left
to right).

5.7 Experimental validation

As already explained, servicing missions are extremely complex and re-
quire advanced technologies which must be thoroughly tested before the
launch. To this aim, both observers (5.1) and (5.18) have been validated
on the On-Orbit Servicing Simulator (OOS-Sim) hardware-in-the-loop fa-
cility [51] at the DLR. This is a robotic simulator reproducing the in-orbit
dynamics of a space robot. Thanks to the OOS-Sim, it is possible to test the
algorithms, which will run on the space robot, on ground, before the actual
deployment in orbit. The facility is made up of two parts: a simulator arm
and a test arm. The former one is a position-controlled KUKA KR120 in-
dustrial robot which reproduces the 6DoF spacecraft’s dynamics based on
a real-time model integration. The latter one is a torque-controlled KUKA
KR4+ lightweight robot with seven degrees of freedom, which is mounted
on a satellite mockup moved by the simulator arm. In the test arm, the joint
gravity torques are compensated based on an identified model, replicat-
ing the microgravity conditions. In addition to reproducing the spacecraft-
manipulator dynamic coupling, the facility enables to test the observers
during a true physical interaction, which is difficult to simulate numerically.
Moreover, many nonidealities are taken into account, such as sensor noise,
time delay, discretization, model uncertainties, friction and flexibility in the
joints of the test arm. It is clear that the validation on the OOS-Sim, whose
results are reported in the following, is a very important step to prove the
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observers’ applicability in a real scenario. It is worth recalling that also the
observer (5.1), initially developed for humanoids in [47], has never been
tested on real hardware before.
Before proceeding with the details of the experiments, a last remark is nec-
essary. Differently from the test arm, the dynamics of the spacecraft is
simulated based on a model, and its states are reconstructed from the for-
wards kinematics of the KUKA KR120 industrial robot, featuring very low
level of noise and uncertainties compared to the ones expected in space.
For this reason, the experiments here presented are relevant to validate the
observers on real hardware, but not to compare them. Indeed, as already
shown, the better performance of the proposed method are evident when
more realistic noise conditions for the spacecraft’s states are considered.
In order to verify the accuracy of the observers, first, an experiment in
which a known constant force is applied at the end-effector has been per-
formed. Then, the end-effector has been hit multiple times simulating a
condition in which consecutive contacts occur close in time, and the cor-
rect behavior of the observers is checked. In both experiments, a compliant
controller is implemented to control the end-effector position, the space
robot’s CM and the base attitude. Therefore, the base of the robot is fully
actuated. A complete description of the control method is reported in [75].

5.7.1 Experiments with a known force

In these experiments, the gripper mounted on the test manipulator holds a
container initially empty. A known mass is laid down in the container and
it is removed after a certain period of time (see Fig. 5.5). The resulting
action on the space robot is a step-like constant disturbance force acting at
the end-effector along the gravity direction. In particular, the disturbance
force in the inertial frame is equal to fext,t = [0 0 − 8.373]T N. The
observers are required to reconstruct this force correctly. In both observers,
all the gains are set equal to 30 s−1.
Figs. 5.6 and 5.7 show the reconstruction of the external force, expressed
in E4, by the observers (5.1) and (5.18), respectively, using all the residuals.
Both the observers are able to estimate the external wrench accurately and
no significant differences can be noticed between them. When the mass is
laid down and then removed, a small peak appears along the z direction of
the end-effector frame. This can be explained by the fact that during these
two phases the mass hits the container’s wall along that direction, providing
a small force.

4Note that in the experiment the y direction of the E frame is almost aligned with the -z direction of the
inertial frame (gravity direction).
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Figure 5.6: External force estimate using the residuals of the observer based on a base-
joint dynamics, including f̂ext,b in the estimation process.

Figure 5.7: External force estimate using the residuals of the observer based on a
centroid-joint dynamics, including f̂ext,c in the estimation process.
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Figure 5.8: External force estimate using the residuals of the observer based on a base-
joint dynamics, without including f̂ext,b in the estimation process.

Figure 5.9: External force estimate using the residuals of the observer based on a
centroid-joint dynamics, without including f̂ext,c in the estimation process.
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Figure 5.10: Experiment with consecutive contacts (from top to bottom, from left to right).

In Figs. 5.8 and 5.9, the results using only the joint and angular momentum
residuals in the estimation process are reported, for the schemes (5.1) and
(5.18), respectively. Again, the observed behavior is similar. In both cases
the estimation of the external force is satisfactory. It can be noticed that
the accuracy decreases with respect to the estimation using all the residual
vectors. This is due to the fact that the gravity disturbance, affecting the
test arm, is not compensated exactly because of uncertainties in the model.
Therefore, this introduces an error in the estimates τ̂ext and ˆ̄τ ext which is
propagated to the estimate f̂ext. In the previous case, Figs. 5.6 and 5.7,
this error is mitigated by using the translational momentum residuals in the
estimation process. However, note that, first, the gravity compensation er-
ror is small, and, second, it is not expected in orbit since the disturbance is
induced by the artificial microgravity conditions enforced in the testing fa-
cility, whereas in orbit real microgravity conditions would be encountered.
It is recalled that these experiments are significant to validate the observers
(5.1) and (5.18). However, the better performance of (5.18) can not be
appreciated through them since the spacecraft’s states are reconstructed
through the forward kinematics of the simulator arm, and thus they show
a significant lower level of noise and uncertainty than the ones expected in
space.

5.7.2 Experiments with consecutive contacts

In this experiment, the test arm was hit with a stick multiple times at the
end-effector along different directions (see Fig. 5.10). Short and long con-
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tacts were simulated and the behavior of the observers was checked. Only
the results related to the observer (5.18) are reported here. However, sim-
ilar results were obtained for the observer (5.1). The gains for the compu-
tation of the translational and angular momentum residuals were set equal
to 30 s−1, while they were increased to 100 s−1 for the joint momentum
residuals.
The direction of the impacts can be seen in Fig. 5.11, which shows the re-
constructed contact force at the end-effector, expressed in E . In Figs. 5.12
and 5.13 the residuals f̂ext,c and m̂ext,c are reported. It can be noted that,
when the force is mostly along the z direction of the end-effector frame,
the contact can be easily detected on the x and z components of f̂ext,c and
on the y component of m̂ext,c. On the other hand, between t = 230 s and
t = 330 s, the external force acts along the y-axis of E and the contact can
be detected on the y component of f̂ext,c and on the x and z components
of m̂ext,c. Finally, Fig. 5.14 illustrates the residuals ˆ̄τ ext. The contacts
are detected mostly by the monitoring signals at the first four joints, while
the other three remain around zero. In particular, the contacts along the
z-axis of E are detected by the signals at joint 2 and joint 4. Conversely, the
contacts along the y-axis of E are seen by the signals at joint 1 and joint 3.

Figure 5.11: Contact force at the end-effector of the test arm in the consecutive contacts
experiment.
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Figure 5.12: Translation momentum residuals f̂ext,c in the consecutive contacts experi-
ment.

Figure 5.13: Angular momentum residuals m̂ext,c in the consecutive contacts experiment.
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Figure 5.14: Joint momentum residuals ˆ̄τ ext in the consecutive contacts experiment.
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5.8 On using the momentum conservation to deal with con-
tacts

In the literature, many authors have proposed control strategies in which
the base of the robot is free to translate or is completely free-floating. This
is motivated by the fact that a free-floating solution, or in general a solution
without the use of thrusters, enables to save a significant amount of fuel.
In this last part of the chapter, another approach to address the detection
and isolation problems is presented based on the momentum conservation
in the free-floating motion of the spacecraft. The technique is subsequently
extended to the actuated-base case, and pros and cons are discussed, also
comparing it with the observer.

5.8.1 Contact detection based on momentum monitoring

If the robot operates in free-floating mode, no external forces and moments
act on the system and thus the total momentum is preserved. When the
contact occurs, the total momentum components, computed in an inertial
reference frame, jump from a constant value to another one and therefore
they can be exploited as monitoring signals for the detection phase.
To this aim, consider an additional reference frame, oriented as the inertial
one, but located on the CM of the whole spacecraft-manipulator ensem-
ble, denoted by CT . Under ideal conditions, either the momentum around
T , ht ∈ R6, or the momentum around CT , hct ∈ R6, can be used and
their variation can be detected effortlessly. However, a deeper analysis is
required for practical implementation since nonidealities, especially mea-
surement noise, affect ht and hct differently.
The momenta ht and hct can be computed as:

ht =

[
mRtb −mRtb[pbc]

× mRtbJ̄v
mRtb[ptc]

× ItRtb ItRtbĴω

] vb
ωb
q̇

 , (5.36)

hct =

[
mRtb −mRtb[pbc]

× mRtbJ̄v
0 IcRtb IcRtbJ̃ω

] vb
ωb
q̇

 , (5.37)

where It ∈ R3×3 is the rotational inertia around T of the whole multibody
system, and Ĵω, J̃ω ∈ R3×n are computed as follows

Ĵω = RT
tbI
−1
t Rtb

n∑
i=1

RT
ibIiJωi +miR

T
tb[pti]

×RtbJvi, (5.38)
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J̃ω = RT
tbI
−1
c Rtb

n∑
i=1

RT
ibIiJωi +mi[pbi]

×(Jvi − J̄v), (5.39)

As regards the translational momentum, the first row of Eqs. (5.36) and
(5.37), the translational velocity vb is multiplied by the total mass of the
system in both ht and hct. This means that the noise on vb is amplified,
lowering the detection sensitivity for both the cases and thus affecting the
choice of the detection technique to be used, as explained in the following.
On the other hand, note that the rotational part of hct shows an interesting
decoupling from vb. This is an important property for detection purpose.
Indeed, the translational velocity is expected to be the most noisy and un-
certain variable, as already explained, and thus to affect significantly the
quality of the monitored signals. Consequently, the decoupling from vb of
the angular momentum around CT enables to achieve higher sensitivity in
the detection phase. Moreover, in order to compute ht, measurements of
the base position are required, introducing other noise, while they are not
necessary to computehct. Therefore, hct is expected to provide advantages,
as confirmed later in Fig. 5.15, and it is chosen as monitoring quantity.

Depending on the features of the monitored signal, different detection tech-
niques can be exploited. The easiest and, probably, the promptest approach
to address the detection problem is to define a threshold below which the
modulus of the monitored signal should lie. This approach is suitable for
relatively low-noise signals, and thus in this analysis is applied to detect
variation in the rotational momentum components. However, it is not par-
ticularly robust, in terms of false positives, when dealing with high-noise
signals, like the translational momentum. In this case, a more robust tech-
nique is necessary. Different solutions have been developed in literature.
In this analysis the Intersection of Confidence Intervals Change Detection
Test (ICI-CDT) has been chosen, which was developed to run on embed-
ded systems, i.e., systems with low computational capability. This strategy
is a sequential change detection test that can work with noisy data with-
out prior statistical information about the process, which is acquired in an
initial training phase. It exploits the ICI-rule which is a technique that regu-
larizes Gaussian-distributed data through polynomial regression computed
on adaptive support. Especially, for the change detection test, a 0th polyno-
mial is considered since the signal is expected to be stationary.
Consider non Gaussian data. During the training phase, a training time T0

is chosen and the available data are windowed in disjointed subsequences
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composed ofN instances. For each subsequence s, the sample meanM(s),
which is Gaussian distributed thanks to the central limit theorem, is com-
puted. Note that it is necessary to introduce the sample meanM(s) because
the ICI rules work only on Gaussian-distributed data. If the incoming data
are already Gaussian distributed, the algorithm can use directly them, and
thus N = 1. The mean and standard deviation of M(s), over the training
set composed of S0 = T0/N subsequences, are computed. These estimates
define the confidence interval for the mean feature:

ΥM
S0

=
[
µMS0
− Γcdtσ

M
S0
, µMS0

+ Γcdtσ
M
S0

]
, (5.40)

with Γcdt > 0 controlling the amplitude of the interval. In a real scenario,
the training phase is carried out before the beginning of the desired task.
For instance, a series of simple manipulator’s maneuvers can be designed
to collect momentum information for this phase.
Once the training is completed, the ICI-CDT becomes operational. Every
timeN data are available, a new sequence s is created and feature extracted
to populate ΥM

s .
The ICI-rule is used to verify whether the new feature instance can be in-
tended as a realization of the existing distribution. If not, a drift is detected.
Basically, it computes the intersection of all the confidence intervals up to
the current one and when the result is an empty set a change is detected.
A more comprehensive discussion of these strategies can be found in [76]
and [77].
The versatility, namely the possibility to work with both Gaussian (N = 1)
and non Gaussian noise (usually, N ≥ 20), the capability of working with
high level of noise, with respect to the signal variation, and the low com-
putational power required are the main advantages of the ICI-CDT. This
technique has the main drawbacks of having to wait for N observations, in
case of non Gaussian noise, and, in any case, of an increasing delay as time
passes. However, the latter disadvantage could be mitigated by periodically
resetting the method, each time restarting from the information of the last
training.
In both strategies, i.e., the threshold approach and the ICI-CDT, a confi-
dence parameter is used to modify the sensitivity; especially, a tradeoff be-
tween detection promptness and robustness to false positives must be made.
As last remark, in order to mitigate the occurrence of false positives, a sec-
ond layer that validates the detection could be introduced. In this case, the
fact that translational and rotational momentum are related to each other
could be exploited to this aim. For instance, if a change is detected in some
components of the rotational momentum, a change is also expected in the
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translational momentum and thus this additional information can be used
to validate the first detection with a certain degree of confidence. For this
reason, it could be worth being able to detect changes in both rotational and
translational momentum.

5.8.2 Contact isolation based on momentum monitoring

A strategy similar to the one exploiting all the residuals of the observer (see
Sect. 5.5.2) can be applied to address the isolation problem.
Assuming that the contact phase is short, i.e. the point of application of the
generalized contact force does not change, and that the contact only consists
of a linear force and no torque, the translational and angular momentum can
be exploited to isolate the contact. Indeed, considering hct = [htct

T
hrct

T ]T ,
the second cardinal equation of dynamics can be written as

dhrct
dt

= mext,ct = [pctp]
×fext,ct = [pctp]

×dh
t
ct

dt
, (5.41)

where fext,ct,mext,ct ∈ R3 are the components of the projection in CT of
Fext and pctp ∈ R3 is the position vector from frame CT to the contact
point. Integrating Eq. (5.41), under the assumptions previously stated, the
following relation can be obtained:

∆hrct = [pctp]
×∆htct, (5.42)

Hence, the contact point lies on the line

lp = (−[∆htct]
×)#∆hrct + k

∆htct
||∆htct||

∈ R3, (5.43)

which passes through the contact point. Knowing lp and the configuration
of the space robot at the contact time, it is possible to find the contact point,
and consequently pctp, as the intersection between the line and the robot,
whose representation could be simplified exploiting primitive shapes.

5.8.3 Numerical simulations

A spacecraft equipped with a 3DoF manipulator is considered. The kine-
matics and dynamics parameters are reported in Tab. 5.3.
Three situations are simulated, in which the robot is moving and impacts a
free-floating object at a certain time instant:

• Case I: the system is initially stationary and the initial joints angles
are q0 = [25 −45 81]T deg. At time t = 2 s, the first and third
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Table 5.3: Kinematics and dynamics parameters.

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]
Base - 150 15.0 21.8 18.88

Link 1 0.17 3 0.03 0.03 0.03
Link 2 1.3 9 1.65 1.65 0.64
Link 3 1.3 6 0.25 0.25 0.03

joints are commanded to follow a trapezoidal velocity profile to reach
a maximum velocity of 4.3 deg/s and−0.86 deg/s, respectively, in 1 s.
At time t = 3.887 s, the third link impacts the free-floating object.

• Case II: the system is initially stationary and the initial joints angles
are q0 = [0 45 81]T deg. At time t = 2 s, the third joint is commanded
to follow a trapezoidal velocity profile to reach a maximum velocity
of −0.86 deg/s in 1 s. At time t = 3.202 s, the third link impacts the
free-floating object.

• Case III: the system is initially stationary and the initial joints angles
are q0 = [0 45 81]T deg. At time t = 2 s, the first joint is commanded
to follow a trapezoidal velocity profile to reach a maximum velocity
of −0.86 deg/s in 1 s. At time t = 5.83 s, the first link impacts the
free-floating object.

The contact between the robot and the object is simulated exploiting the
Dymola library presented in [78], in which the normal force to the contact
surface is modeled as follows:

fn = Kδd +Dδdδ̇, (5.44)

where K ∈ R and D ∈ R are the elastic and damping coefficients, δ ∈ R
is the penetration in the normal direction and d ∈ R is a parameter depend-
ing on the shape of the colliding objects. The tangential components of the
contact force are null since friction is neglected. For the three cases, differ-
ent parameters are set and are reported in Tab. 5.4. In case I the generated
contact force is higher and its modulus is about 75 N; in case II the contact
force has a modulus of about 15 N; in case III the contact force is lower
with a modulus less than 5 N.
The measurements are simulated using the noise models presented for the
observers. The same standard deviations are used for the Gaussian noise. In
this simulations, no filters are implemented and the attitude and linear ve-
locity measurements are modelled adding a Gaussian noise with zero mean
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Table 5.4: Contact force parameters.

Case I Case II Case III

K [N/md] 2 · 107 5 · 106 5 · 106

D [Ns/m(d+1)] 9 · 104 5 · 103 5 · 103

d [-] 1.5 1.5 1.5

and standard deviations of 0.026 rad and of 0.001 m/s, respectively. Atti-
tude angles measurements are acquired with a frequency of 3 Hz, while the
other measurements are acquired with a frequency of 100 Hz. For the ICI-
CDT, Γcdt is set equal to 2 andN equal to 20. For each case, 10 simulations
are performed and mean detection time and isolation accuracy and settling
time are evaluated.
Case II is used also to analyze the effects of model uncertainties on the per-
formance. Especially, some uncertainties in the inertia matrix of the base
and in the position of the base CM are introduced. 100 Gaussian-distributed
models are generated, considering 20% uncertainty on the diagonal terms
and 10% uncertainty on the off-diagonal terms of the inertia matrix, and
10% uncertainty on the CM. Then, the mean performance is evaluated. In
this analysis, no measurement noise is taken into account.
In the following, firstly, the results of the simulations considering only mea-
surement noise are discussed. Afterwards, the analysis continues assessing
the performance in presence of model uncertainties, without noise. The
choice of introducing nonidealities one by one is made to understand better
their effects.

Before proceeding with the simulation results, Fig. 5.15 shows the effects
of noise on the component y of the rotational momentum. At the beginning,
an ideal condition is considered, then at time t = 1 s noise is switched on.
As expected, rotational momentum around CT is less affected by noise than
the one around T , thanks to the decoupling from vb. It is worth stressing
that this property guarantees a higher sensitivity to detection. Similar re-
sults can be obtained on the other two components.
Consider the simulations with only measurement noise affecting the sys-
tem. Tab. 5.5 shows the detection delay for each component of hct. The
dash indicates that no variation occurred in the corresponding component.
As explained, the change detection is performed with the ICI-CDT ap-
proach for the linear momentum, while with the threshold approach for the
angular momentum. Both the techniques succeed in recognizing a drift in
the stationarity of momentum. As expected, the threshold approach turns
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Figure 5.15: Effects of noise on the rotational momentum around T and CT .

out to be prompter with a detection delay of few milliseconds, basically
limited only by the acquisition frequency. On the other hand, it is possible
to appreciate the capability of the ICI-CDT of detecting variation compa-
rable to the level of noise, even if with an increased delay. To provide a
visualization of this statement, Fig. 5.16 shows the variation in the compo-
nent x of the total momentum after the collision in one simulation of case
I. Finally, not surprisingly, the higher the intensity of the impact, the faster
the detection of the contact. Indeed, the ratio between the variation in the
component and the level of noise is higher.

Table 5.5: Detection delay in seconds for each component of hc.

Case I Case II Case III

htct,x 0.595 1.399 4.116
htct,y 0.215 - -
htct,z - 0.879 3.532
hrct,x 0.013 - -
hrct,y 0.024 0.018 0.030
hrct,z 0.013 - -

As regards the isolation, the contact point is refined iteratively computing
the mean of consecutive estimates. In this way, a filtering of the noise is
achieved. Tab. 5.6 reports the mean accuracy of the estimated contact point
over 10 simulations with noise. The following performance parameters are
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Figure 5.16: Variation in the component x of hct due to the collision in one simulation of
case I.

used:

• absolute error e;

• percent error e%, considering the maximum extension of the arm as
characteristic length;

• percentage of cases with correct identification of the contact link l%;

• the settling time ts to reach 95% of the steady state value.

In all the simulated cases, the momentum monitoring approach provides
good accuracy performance. The impacted link is always identified in case
I and case II, while a failure occurs in 10% of the simulations in case III.
The contact point is isolated with an accuracy in the order of centimeters.
However, the settling time, to reach a steady state value of the estimation,
tends to increase significantly when the impact force is lower and thus mea-
surement noise is more prominent.

Finally, the performance in presence of model uncertainties is discussed.
Only isolation accuracy results are reported since uncertainties affect more
the isolation problem than the detection one, in which noise is prevalent.
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Table 5.6: Isolation accuracy in case of measurement noise.

Case I Case II Case III

ex [cm] 0.48 5.12 10.73
ey [cm] 0.24 0.003 0.03
ez [cm] 0.88 3.64 11.05
ex,% 0.17 1.84 3.87
ey,% 0.09 0.001 0.009
ez,% 0.32 1.31 3.99
l% 100 100 90
ts [s] 0.11 0.77 3.76

In Tab. 5.7, it can be observed that the error in the estimation of the con-
tact position is in the order of centimeters and the link is always identified
correctly.

Table 5.7: Isolation accuracy in case of model uncertainties.

ex [cm] ey [cm] ez [cm] ex,% ey,% ez,% l%

2.67 2.67 2.62 0.97 0.97 0.96 100

5.8.4 Extension to actuated-base robot

In this section, the problem of extending the proposed strategy to an actuated-
base robot is analyzed. An idea could be to separate the contribution to the
momentum due to the contact force and due to the control inputs. There-
fore, if fb and mb are available, for example from the controller, the mo-
mentum around CT due to the external disturbance, hextct ∈ R6, can be
derived as:

hextct =

[
hext,tct

hext,rct

]
=

[
htct
hrct

]
−
∫ t

0

A−Tctb

[
fb
mb

]
ds, (5.45)

In this way, the problem becomes analogous to the previous one with the
free-floating base and thus the same strategies can be exploited.
In this analysis, the system is initially stationary and the initial joints angles
are q0 = [0 45 81]T deg. At time t = 2 s, the third joint is commanded
to follow a trapezoidal velocity profile to reach a maximum velocity of
−0.86 deg/s in 1 s. At time t = 5 s, a contact force, whose modulus is
about 21 N, is introduced on the third link. The spacecraft is controlled with
a PD to keep the initial position and attitude. Thrusters and reaction wheels
are used as actuators. Especially, the thrusters are used only to control the
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translation and the reaction wheels the rotation. The reaction wheels are
in pyramid configuration and the inertia of each wheel is 0.029 kgm2. A
pulse-width pulse-frequency modulation is used for the thrusters. In order
to simulate the difference between the commanded force and the actual one
provided by the thrusters, a delay of 2 ms and a first order filter with time
constant of 12 ms are introduced in the simulation. The noise model and
the level of uncertainties are the same of the free-floating case. Here, 100
simulations are performed generating different conditions of uncertainties
(the same level of uncertainties used for the free-floating case) and the mean
performance are evaluated. Note that in this simulation both nonidealities
are considered together. The performance of the momentum monitoring
approach in case of actuated-base is reported in Tabs. 5.8 and 5.9.

Table 5.8: Detection delay in seconds for each component of hextct .

hext,tct,x hext,tct,y hext,tct,z hext,rct,x hext,rct,y hext,rct,z

5.216 1.991 3.170 0.019 0.019 0.019

Table 5.9: Isolation accuracy in case of measurement noise and base actuation.

ex [cm] ey [cm] ez [cm] ex,% ey,% ez,% l% ts [s]

7.04 3.19 6.37 2.54 1.15 2.30 100 2.35

As in the free-floating case, the contact detection is easier and faster on the
components of the rotational momentum, while the delay in the detection
is significant using the translational momentum. Again, this is due to the
fact that the uncertainties and noise on the linear velocity are amplified in
the computation of this momentum (see Fig. 5.17). Moreover, the discrep-
ancy between the commanded force and the real force due to the thrusters
dynamics affect significantly the translational momentum.
The isolation accuracy seems satisfying. However, note that, in this case,
the settling time to obtain that accuracy is very long, again due to the effects
of nonidealities mainly on the translational momentum.

5.8.5 Momentum monitoring approach vs contact force observer

The momentum monitoring approach is very straightforward, especially in
the free-floating motion. It seems the most natural approach: when a con-
tact occurs, the jump in the momenta is exploited to detect it. Moreover,
translational and rotational momentum can be used to isolate the contact.
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Figure 5.17: Variation in the component x of hct due to the collision in one simulation of
the actuated-base case.

However, it has been shown that nonidealities, such as noise and uncer-
tainties, affect significantly the computation of the total momentum, since
nonidealities are amplified. Hence, the sensitivity in the detection is consid-
erably decreased. Only for the rotational momentum, this fact is mitigated
computing it around the center of mass of the whole system. Consequently,
advanced and complex techniques are required to detect variation in the
translational momentum and the isolation point is identified accurately with
a long delay. In addition, consider the isolation strategy with the momen-
tum monitoring. First, it is based on the assumption that the contact force
is short in time, and thus it does not work properly with continuous contact.
Second, in case of multiple intersections between the force line of action
and the robot, it is not always easy to select the right point. Finally, both
translational and rotational momentum require the knowledge of the atti-
tude angles, whose acquisition is usually at low frequency.
The contact wrench observer, especially the one based on a centroid-joints
dynamics, overcomes many of these issues. Indeed, the residuals m̂ext,c

and ˆ̄τext are computed relying only on accurate sensors with high acquisi-
tion frequency, providing a faster detection with a higher sensitivity. There-
fore, a simple threshold approach can be used as detection technique, reg-
ulating the level of noise through the gains of the observer. Then, note that
even if the line of action of the contact force passes through the center of
mass of the space robot, which means no variations in m̂ext,c and in hr,extct ,
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information related to the force are included in ˆ̄τext (see Eq. (5.20)) and the
contact is still detected. Moreover, they can be used to locate the exact con-
tact point along the robot with a good accuracy and promptness. Finally,
the observer enables to address not only the detection and isolation prob-
lems, but also the identification problem jointly. The main drawback of this
approach is the need of computing the derivative of the inertia matrix (see
Eqs. (5.14)-(5.15)-(5.16)). An efficient online algorithm to this aim was
proposed in [79].
To conclude, the observer based on a centroid-joints dynamics turns out
to be a better-performing and practical solution to address the detection,
isolation and identification problems of a generic contact along the robot.
Actually, the information of the observer and the momentum monitoring
could be used together to increase the robustness of the system. Imagine
an autonomous robot equipped with a contact handling system made up of
two layers. In the first layer, the first and fast detection is performed, along
with the isolation and a safe reaction strategy. The second layer uses all the
information available to validate the detection. For instance, if a contact
causes a variation in the y-component of the residual m̂ext,c, there will be
a variation also in some components of hr,extct and probably also in some
components of ˆ̄τext. Therefore, the second layer looks for other variations
in the monitoring signals and checks if they are compatible with the one
detected. In this way, it is possible to validate the first detection with a cer-
tain degree of confidence, and then decide the following action. This is just
an idea for future work, but it is not developed in this thesis.
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CHAPTER6
Reaction control to unexpected collisions

Once the contact has been detected and identified, two situations can be
considered, requiring different control strategies. If grasping or manipu-
lation tasks were planned and the contact has been detected at the end-
effector, the goal of the controller is to keep it stabilizing the system. On
the other hand, if an unexpected collision occurred, the robot should move
away from the obstacle and reach a safe configuration and position. The for-
mer situation has been studied since the pioneering works on floating space
robots, and different controllers have been proposed. In this work, the latter
situation is considered since it is deemed to be an important building block
for autonomous and safe robotic operations near other objects. Recalling
the examples of the manipulator impacting a non-recognized appendage
of an uncooperative and unknown target or an erroneous end-effector path
planning due to inaccurate estimation of the position and velocity of a
grasping point, all these situations may lead to unplanned contacts that
would jeopardize the system. Consequently, a proper action in response
to these unforeseen occurrences should be designed, otherwise the robot
would continue to pursue its original objective pushing against the obstacle
and risking to worsen the situation. Indeed, multiple contacts and insta-
bility can arise causing irreparable damages. To this aim, a coordinated
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base-joints control strategy is developed to mitigate the consequences of
unintentional collisions between the space robot and another object in the
proximity. Its effectiveness is shown through a simulation example, con-
sidering a 7DoF manipulator mounted on a 6DoF moving base actuated by
thrusters and variable speed control moment gyros (VSCMG). Moreover, it
is demonstrated that the controlled system is input-to-state stable, i.e., the
error is bounded even during the contact, which is of paramount importance
for system safety.

6.1 Reaction control strategy

In the proposed reaction strategy, the translational degrees of freedom and
manipulator’s joints are controlled in order to escape from the bumped ob-
stacle, while the spacecraft attitude is commanded to keep a certain ori-
entation. A prescribed attitude may be necessary either to communicate
information, or to keep a possible target in the field of view of the sensors,
or to rotate in order to see what caused the collision.
Consider the dynamics model (2.24). Introducing the velocity of the center
of mass of the whole system in the inertial frame, denoted by vc,t ∈ R3,
the following transformation, through the matrix Γc ∈ R(6+n)×(6+n), can be
defined:  vc,t

ωb
q̇

 =

 Rtb −Rtb[pbc]
× RtbJ̄v

0 E 0
0 0 E


︸ ︷︷ ︸

Γc

 vb
ωb
q̇

 . (6.1)

Consequently, the generalized forces transform as fb
mb

τ

 = ΓT
c

 fc,t
mc

τ̄ ∗

 , (6.2)

 fext,b
mext,b

τext

 = ΓT
c

 fext,c,t
mext,c

τ̄ ∗ext

 , (6.3)

where fc,t ∈ R3, mc ∈ R3, and τ̄ ∗ ∈ Rn are new control inputs; fext,c,t ∈
R3, mext,c ∈ R3, and τ̄ ∗ext ∈ Rn are the projections of the external wrench
F ext into the new variables space. Note that the new generalized forces
are related to the ones reported in Eqs. (5.9)-(5.10). Indeed, fc,t = Rtcfc,
mc = Icac, and τ̄ ∗ = τ̄ + J̄Tωmc. Similar relations can be written for the
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external generalized forces.
Then, the dynamics in the new generalized velocities is derived pre-multiplying
(2.24) by Γ−Tc and substituting vb, ωb, q̇ and their derivatives isolated from
Eq. (6.1) in (2.24). The resulting system is mE 0 0

0 Ic IcJ̄ω
0 J̄Tω I

T
c M̃m

 v̇c,t
ω̇b
q̈

+

+

 0 C̃cr C̃cm

−C̃T
cr C̃r C̃rm

−C̃T
cm C̃T

mr C̃m

 vc,t
ωb
q̇

 =

 fc,t
mc

τ̄ ∗

+

 fext,c,t
mext,c

τ̄ ∗ext

 .
(6.4)

It can be proven (see Appendix) that C̃crωb + C̃cmq̇ = 0 and

−C̃T
crvc,t + C̃rωb + C̃rmq̇ = (İc + [ωb]

×Ic)︸ ︷︷ ︸
Cbq,r

ωb+

+ (İcJ̄ω + Ic
˙̄Jω + [ωb]

×IcJ̄ω)︸ ︷︷ ︸
Cbq,rm

q̇, (6.5a)

−C̃T
cmvc,t + C̃T

mrωb + C̃mq̇ = ( ˙̃Mm −
1

2
M̃rm/q −

1

2
M̃m/q)︸ ︷︷ ︸

Cbq,m

q̇+

+ ( ˙̄JTωI
T
c + J̄Tω İ

T
c +

1

2
I−Tc/q Ic −

1

2
J̄Tω/qI

T
c )︸ ︷︷ ︸

Cbq,mr

ωb, (6.5b)

where I−Tc/q , and J̄Tω/q are defined in Eqs. (5.14)-(5.15)-(5.16), and

M̃rm/q =


ωTb

∂(IcJ̄ω)
∂q1
...

ωTb
∂(IcJ̄ω)
∂qn

 , M̃m/q =


q̇T ∂M̃

∗
m

∂q1
...

q̇T ∂M̃
∗
m

∂qn

 ∈ Rn×n. (6.6)

It is recalled that I−Tc/q and J̄Tω/q are function of q, and M̃rm/q and M̃m/q as

well, while ˙̄Jω and İc are function of q and q̇.
Therefore, the translational dynamics is completely decoupled from the ro-
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tational and joints dynamics:

mv̇c,t = fc,t + fext,c,t, (6.7a)

Mbq
˙̆ω +Cbqω̆ = m∗ +m∗ext (6.7b)

where ω̆ = [ωTb q̇T ]T ∈ R3+n, m∗ = [mT
c τ̄

∗T ]T ∈ R3+n, m∗ext =
[mT

ext,c τ̄
∗T
ext]

T ∈ R3+n, and

Mbq(q) =

[
Ic IcJ̄ω

J̄Tω I
T
c M̃m

]
∈ R(3+n)×(3+n), (6.8)

Cbq(q, q̇,ωb) =

[
Cbq,r Cbq,rm

Cbq,mr Cbq,m

]
∈ R(3+n)×(3+n), (6.9)

Note that, for the dynamics (6.7b), the property ω̆T (Ṁbq − 2Cbq)ω̆ = 0 is
valid (see the Appendix for the demonstration).

A compliant controller is implemented for the reaction to collision exploit-
ing the new control inputs as follows

fc,t = −Kcx̃c,t −Dcvc,t (6.10)

m∗ = −JT
φ̃
Kbqφ̃−Dbqω̆ (6.11)

where x̃c,t ∈ R3 is the error on the position of the center of mass of the
whole system, φ̃T = [2ε̃T q̃T ]T ∈ R3+n, with ε̃ ∈ R3 being the vector
part of the quaternion error extracted from Rbbd = RT

tbRtbd , and q̃ ∈ Rn

is the error on the joint angles. The rotation matrixRtbd is the desired one.
The matrices Kc,Dc,Kbq,Dbq are diagonal positive definite matrices of
appropriate dimensions. Finally, Jφ̃ is defined as follows:

˙̃
φ = Jφ̃ω̆ (6.12)

where

Jφ̃ =

[
(η̃E − [ε]×) 0

0 E

]
∈ R(3+n)×(3+n). (6.13)

and where η̃ ∈ R is the scalar part of the quaternion error.
As already explained, the spacecraft is commanded to keep a desired at-
titute, while the manipulator is moving and the entire robot is translating
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away from the obstacle. To this aim, the desired position of the center of
mass xc,t,d and of the joints qd are defined as follows:

xc,t,d = xc,t,td + ∆xc

f̂ext,c,t

|f̂ext,c,t|
(6.14)

qd = qtd + ∆q

ˆ̄τ ∗ext
| ˆ̄τ ∗ext|

(6.15)

where xc,t,td, qtd are the positions at the detected contact time, f̂ext,c,t, ˆ̄τ ∗ext
are the estimates of effects of the external contact force on the CM position
and the joints, respectively, and ∆xc ,∆q are some desired ”bounce” coeffi-
cients. Thanks to the second term in both Eqs. (6.14) and (6.15), the robot
is commanded to move along the direction of the external contact force,
projected in the frame CT and in the joints space, and thus following the
motion imposed by the force and moving away from the obstacle.
In order to compute f̂ext,c,t and ˆ̄τ ∗ext, it is possible to exploit the residuals
introduced in the previous chapter in Eq. (5.18) as follows:

f̂ext,c,t = Rtcf̂ext,c, (6.16)

ˆ̄τ
∗
ext = ˆ̄τ ext + J̄Tω m̂ext,c. (6.17)

Actually, it has been already shown that the estimation of fext,c is particu-
larly affected by noise and uncertainties in the system. Therefore, it could
be more convenient to use the force component of the reconstructed wrench
obtained through Eq. (5.23), namely the force reconstructed by the angular
and joints momentum residuals. Alternatively, a new observer, slightly dif-
ferent from (5.18), can be derived based on the dynamics model (6.7). This
alternative scheme is presented in the following section.

6.2 Modified observer including momentum exchange devices

A new observer can be derived defining three residuals based on the dy-
namics (6.7). Moreover, since in this study the spacecraft is assumed to
be actuated by variable speed control moment gyros, the effects of generic
momentum exchange devices (MED) can be included.
Consider a reference frame attached to each MED defined by the following
three versors:

• n̂s is the spin axis, along the rotation axis of the wheel;
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• n̂t is the axis that completes the frame {n̂s, n̂t, n̂g}

• n̂g is the gimbal axis, along the rotation axis of the gimbal.

The equations of motion for a spacecraft with a cluster of k MED have
been developed in [80], and the angular momentum of the spacecraft-MED
ensemble, expressed in B, is

hrb,med = Ib+medωb +AgIcgγ̇ +AsIwsωw, (6.18)

where A? ∈ R3×k is a matrix having as columns the directions of the spin,
transverse and gimbal directional unit vectors expressed in the frame B,
Ic?, Iw? ∈ Rk×k are diagonal matrices having as elements the inertias of
the gimbal-wheel structure (Ic? = Ig? + Iw?, with Ig? being the inertia of
the gimbal) and only-wheel structure, respectively, γ̇ ∈ Rk is the vector of
the gimbal angular velocities, expressed in the MED frame, ωw ∈ Rk is the
vector of the wheel angular velocities, expressed in the MED frame, and
Ib+med ∈ R3×3 is defined as

Ib+med = Ib +AsIcsA
T
s +AtIctA

T
t +AgIcgA

T
g , (6.19)

where Ib ∈ R3×3 is the inertia matrix of the spacecraft including the point
masses of the MED.
Based on (6.7) and (6.18), the residuals f̂ext,c,t, m̂ext,c and ˆ̄τ ∗ext can be de-
fined as the difference between the real momentum and the estimated one:

f̂ext,c,t = Kf (mvc,t −

∫
t

0

(fc,t + f̂ext,c,t)ds), (6.20a)

m̂ext,c = Km(hrc +AgIcgγ̇ +AsIwsωw −

∫
t

0

(−[pbc]
×fb+

− [ωb]
× (hrc +AgIcgγ̇ +AsIwsωw) + m̂ext,c)ds), (6.20b)

ˆ̄τ
∗
ext = Kτ (M̃mq̇ + J̄TwI

T
c ωb −

∫
t

0

(τ̄ ∗ +
1

2
(M̃m/q + M̃rm/q)q̇+

+
1

2
(−I−Tc/q Ic + J̄Tω/qIc)ωb + ˆ̄τ

∗
ext)ds), (6.20c)
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Note that hrc is computed here considering the presence of the momentum
exchange devices.
As already explained in Sects. 5.2-5.3, the residuals f̂ext,c,t,m̂ext,c, and
ˆ̄τ
∗
ext, defined in this way, are the first-order-filtered estimations of fext,c,t,
mext,c, and τ̄ ∗ext, respectively.
Also in this case, it is better, from practical point of view, to estimate the
contact force relying only on the residuals m̂ext,c and ˆ̄τ

∗
ext, for the same

reasons reported in the previous chapter. The wrench reconstruction can be
performed as follows:

F̂ ext =

([
[pcp]

×RT
pb RT

pb

J?Tvp JTωw

])# [
m̂ext,c

ˆ̄τ
∗
ext

]
, (6.21)

where

J?vp = −RpbJ̄v + Jvp ∈ R3×n, (6.22)

To conclude, note that Eq. (6.20b) is valid for any momentum exchange
devices. Indeed, if the reaction wheels are selected, it is sufficient to set
γ̇ = 0; if the control moment gyros are chosen,ωw will be constant; finally,
if the VSCMG are preferred, as in this study, both γ̇ and ωw can vary in
time.

6.3 Discussion on the proposed control strategy

With the proposed controller, the space robot system is like split into an
”external” translational motion of the entire composite body and an ”in-
ternal” rotational motion modifying the configuration. The linear control
actions are used only to move the center of mass of the whole system, but
they are compensated at the attitude and joint level thanks to the triangular
form of the equation (6.2). This can be seen imaging to impose a change in
the position of the CM, keeping the attitude and joints position. The con-
trol actions mc and τ̄ ∗ are zero, while fext,c,t is not. When the computed
control actions are transformed in the real ones provided by the actuators
through Eq. (6.2), all the actuators are activated. In particular, the thrusters
are used to translate the CM of the whole system, while the momentum
exchange devices and the joint motors are used to keep the position com-
pensating the disturbance caused by the thrusters.
This controller has been developed only to address the reaction to an un-
expected collision. However, it could be used to the perform the required
tasks, such as grasping a target. In this case, note that the translational
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control is activated only when an external contact occurs, modifying the
position of the CM, while in the contact-free phase only attitude and joints
position are controlled. This means that the use of the thrusters can be com-
pletely avoided, in case the attitude is controlled only through momentum
exchange devices, or in general can be limited, until a contact occurs, sav-
ing fuel. However, for the nominal operations, it would be better to control
the manipulator in the operational space, instead of the joints space. To this
aim, a controller similar to the one presented in this thesis was proposed
recently in [75], which is based on this transformation:

 vc,t
ωb
ν⊕e

 =

 Rtb −Rtb[pbc]
× RtbJ̄v

0 E 0
0 Gωb J⊕νe

 vb
ωb
q̇

 , (6.23)

where ν⊕e ∈ R6 is called ”end-effector circumcentroidal motion”, i.e., the
motion around the CM,Gωb ∈ R6×3 and J⊕νe ∈ R6×n are matrices mapping
the angular velocity of the spacecraft and the joints in the circumcentroidal
motion. The vector ν⊕e is exactly equal to the vector containing the linear
and angular velocity of the end-effector when the velocity of the CM of
the whole system is zero. More detail about this controller can be found
in [75].
The main difference between the strategy in [75] and the one proposed here
is exactly the control of the manipulator that in [75] is controlled in the
end-effector space. Note that these two controllers can actually work to-
gether since they address two different objectives. The space robot can be
controlled by the strategy in [75] during the nominal operations, which re-
quire end-effector maneuvering. When an unexpected collision occurs, the
robot switches to the control proposed in this thesis, limiting the possible
damages. For the reaction phase, it is better to control the system in the
joints space since the manipulator can be controlled without taking care of
possible singular configurations or degrees of freedom in the end-effector’s
null space (in case of redundant arm). Indeed, the goal of the reaction phase
is to move the robot safely and quickly in a configuration and position away
from the obstacle, and this can be achieved efficiently by the proposed con-
troller. Moreover, the information from the observer is in the joints space
and provides directly a direction to follow in order to escape from the con-
tact.
The integration of these two controllers leads to a control system capable
of operating in both nominal and emergency conditions, such as an unex-
pected collision, and saving fuel in contact-free end-effector maneuvering.
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Finally, note that the switch between the controllers is only at the manipu-
lator level. In the simulation example at the end of the chapter, the perfor-
mance of the proposed controller is assessed imaging a scenario in which a
nominal operation is performed using the controller in [75] and at a certain
time the robot switches the control to face an unplanned collision.

6.4 Input-to-state stability of the controlled system

All the defintions and theorems used to demonstrate the input-to-state sta-
bility (ISS) of the controlled system are reported in Chapter 2.

Consider the dynamics model (6.7b) and the control action (6.11). The
controlled system is

Mbq
˙̆ω + (Cbq +Dbq)ω̆ + JT

φ̃
Kbqφ̃ = m∗ext (6.24)

According to the Theorem 1, in order to prove the input-to-state stability,
it is necessary to show that the dynamic system (6.24) admits a quasi ISS-
Lyapunov (qISS-Lyapunov) function and an Input-Output-to-State-Stable
Lyapunov (IOSS-Lyapunov) function. Note that the setpoints after the con-
tact are considered constant.
Consider the following function as candidate Lyapunov function:

Vr1 =
1

2
ω̆TMbqω̆ +

1

2
φ̃TKbqφ̃ (6.25)

The time derivative of Vr1 is

V̇r1 = ω̆TMbq
˙̆ω + ω̆TJT

φ̃
Kbqφ̃+

1

2
ω̆TṀbqω̆ =

= −ω̆TDbqω̆ + ω̆Tm∗ext +
1

2
ω̆T (Ṁbq − 2Cbq)ω̆ =

= −ω̆TDbqω̆ + ω̆Tm∗ext ≤ −cr1|ω̆|2 + cr2|m∗ext|2 =

= −γ̄r(|ω̆|) + σr1(|m∗ext|)

(6.26)

where cr1, cr2 = const. > 0. In the computation of the derivative, the re-
lations (6.12)-(6.24) and the property ω̆T (Ṁbq − 2Cbq)ω̆ = 0 have been
used. For the inequality, note that for all v, w ∈ R the inequality 2vw ≤
1
k
v2 + kw2 is valid, with k > 0.

From this result, recalling Definition 1 and Definition 4 and considering
y = ω̆, it is possible to say that the system is passive w.r.t. the pair
(ω̆,m∗ext) and admits a qISS-Lyapunov function.
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Another candidate Lyapunov function can be defined slightly modifying
Vr1:

Vr2 =
1

2
ω̆TMbqω̆ +

1

2
φ̃TKbqφ̃+ ε

φ̃TMbqω̆√
1 + φ̃T φ̃

(6.27)

with ε = const. > 0 sufficiently small.
The time derivative of Vr2 is

V̇r2 =ω̆TMbq
˙̆ω + ω̆TJT

φ̃
Kbqφ̃+

1

2
ω̆TṀbqω̆ + ε

ω̆TJT
φ̃
Mbqω̆√

1 + φ̃T φ̃
+

+ ε
φ̃TṀbqω̆√

1 + φ̃T φ̃
+ ε

φ̃TMbq
˙̆ω√

1 + φ̃T φ̃
− ε

(φ̃TJφ̃ω̆)(φ̃TMbqω̆)

(1 + φ̃T φ̃)
3
2

=

=− ω̆TDbqω̆ − ε
φ̃TJT

φ̃
Kbqφ̃√

1 + φ̃T φ̃
+ ε
ω̆TJT

φ̃
Mbqω̆√

1 + φ̃T φ̃
+

+ ε
φ̃T (Ṁbq −Cbq)ω̆√

1 + φ̃T φ̃
− ε φ̃

TDbqω̆√
1 + φ̃T φ̃

+ ε
φ̃Tm∗ext√
1 + φ̃T φ̃

+

− ε
(φ̃TJφ̃ω̆)(φ̃TMbqω̆)

(1 + φ̃T φ̃)
3
2

+ ω̆Tm∗ext

(6.28)

As previously, the equations (6.12)-(6.24) and the property ω̆T (Ṁbq −
2Cbq)ω̆ = 0 have been used in the derivation of (6.28).
Considering one term of (6.28) at the time, the following relations can be
written:

φ̃TJT
φ̃
Kbqφ̃ =

[
2ε̃ q̃

] [ (η̃E + [ε̃]×) 0
0 E

] [
Kε̃ 0
0 Kq̃

] [
2ε̃
q̃

]
=

=
[

2ε̃ q̃
] [ η̃Kε̃ 0

0 Kq̃

] [
2ε̃
q̃

]
= φ̃TK̃bqφ̃, (6.29)

ε
ω̆TJT

φ̃
Mbqω̆√

1 + φ̃T φ̃
≤ε
|JT
φ̃
||Mbq||ω̆|2√
1 + |φ̃|2

≤ ε|JT
φ̃
||Mbq||ω̆|2 ≤ ar1|ω̆|2, (6.30)
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ε
φ̃T (Ṁbq −Cbq)ω̆√

1 + φ̃T φ̃
≤ ε

|φ̃|√
1 + |φ̃|2

(|Ṁbq|+ |Cbq|)|ω̆|

≤ ε(|Ṁbq|+ |Cbq|)|ω̆| ≤ ar2|ω̆|2, (6.31)

−ε φ̃
TDbqω̆√
1 + φ̃T φ̃

≤ ε
λmax(Deq)|φ̃||ω̆|√

1 + |φ̃|2

≤ ελmax(Deq)|ω̆| ≤ ar3|ω̆|, (6.32)

−ε
(φ̃TJφ̃ω̆)(φ̃TMbqω̆)

(1 + φ̃T φ̃)
3
2

≤ ε
|Jφ̃||Mbq||φ̃|2|ω̆|2

(1 + |φ̃|2)
3
2

≤ ε|JT
φ̃
||Mbq||ω̆|2 ≤ ar1|ω̆|2 (6.33)

ω̆Tm∗ext ≤ |ω̆||m∗ext| ≤ cr3|ω̆|2 + cr2|m∗ext|2 (6.34)

ε
φ̃Tm∗ext√
1 + φ̃T φ̃

≤ ε
|φ̃|√

1 + |φ̃|2
|m∗ext| ≤ ε|m∗ext| (6.35)

where ar1, ar2, ar3, cr3 = const. > 0.
The previous inequalities are derived considering that:

• for all v, w ∈ R, 2vw ≤ 1
k
v2 + kw2, with k > 0;

• only revolute joints are considered, and thus Mbq is a periodic func-
tion of q. Therefore, |Mbq| ≤ d1, |Ṁbq| ≤ d2|ω̆|, |Cbq| ≤ d2|ω̆|, with
d1, d2, d3 = const. > 0;

• it is assumed that 0 < η̃ ≤ 1;

• all the functions |φ̃|√
1+|φ̃|2

, 1√
1+|φ̃|2

, |φ̃|
(1+|φ̃|2)

3
2

are positive and bounded

by 1.

Using Eqs. (6.29)-(6.35), it is possible to find an upper bound for the time
derivative of Vr2 as follows:
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V̇r2 ≤− ω̆TDbqω̆ − ε
φ̃TK̃bqφ̃√
1 + φ̃T φ̃

+

+ (cr2|m∗ext|2 + ε|m∗ext|) + (cr4|ω̆|2 + ar3|ω̆|)

≤−min(λmin(Dbq), ελmin(K̃bq))
|ω̆|2 + |φ̃|2√

1 + |ω̆|2 + |φ̃|2
+

+ (cr2|m∗ext|2 + ε|m∗ext|) + (cr4|ω̆|2 + ar3|ω̆|) =

=− γr(|[φ̃T ω̆T ]T |) + σr2(|m∗ext|) + λr(|ω̆|)

(6.36)

Hence, recalling the Definition 3 and considering y = ω̆, Vr2 is an IOSS-
Lyapunov function for the system (6.24). Moreover, lim supr→∞ λr(r)/γ̄r(r)
is a constant, and thus the controlled system (6.24) is ISS stable for the The-
orem 1.

As regards the translational dynamics, combining Eq. (6.7a) and Eq. (6.10)
the controlled system is

mv̇c,t +Dcvc,t +Kcx̃c,t = fext,c,t. (6.37)

In order to prove the input-to-state stability, the same passages as before are
followed: it is proved that the controlled system admits a qISS Lyapunov
function and an IOSS Lyapunov function. In this case, the demonstration is
more straightforward since there is not the Coriolis/centrifugal term and the
mass matrix is constant. In the following only the main steps are reported
since the demonstration is analogous to the previous one on the attitude-
joints dynamics.
Consider the following candidate Lyapunov function:

Vt1 =
1

2
mvTc,tvc,t +

1

2
x̃Tc,tKcx̃c,t. (6.38)

The time derivative of Vt1 is

V̇t1 =vTc,tmv̇c,t + vTc,tKcxc,t = −vTc,tDcvc,t + vTc,tfext,c,t

≤− ct1|vc,t|2 + ct2|fext,c,t|2 = −γ̄t(|vc,t|) + σt1(|fext,c,t|),
(6.39)

where ct1, ct2 = const. > 0. Therefore, recalling Definition 1 and Defi-
nition 4, the controlled system (6.37) is said to be passive w.r.t. the pair
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(vc,t,fext,c,t) and admits a qISS Lyapunov function.
Define another candidate Lyapunov function as follows

Vt2 =
1

2
mvTc,tvc,t +

1

2
x̃Tc,tKcx̃c,t + ε

x̃Tc,tmvc,t√
1 + x̃Tc,tx̃c,t

, (6.40)

with ε = const. > 0 sufficiently small. The time derivative of Vt2 can be
computed as follows

V̇t2 =vTc,tmv̇c,t + vTc,tKcxc,t + ε
vTc,tmvc,t√
1 + x̃Tc,tx̃c,t

+

+ ε
x̃Tc,tmv̇c,t√
1 + x̃Tc,t,x̃c,t

+ ε
(xTc,tvc,t)(x

T
c,tmvc,t)

(1 + x̃Tc,tx̃c,t)
3
2

=

=− vTc,tDcvc,t + vTc,tfext,c,t + ε
vTc,tmvc,t√
1 + x̃Tc,tx̃c,t

+

− ε x̃c,tDcvc,t√
1 + x̃Tc,tx̃c,t

− ε
x̃Tc,tKcx̃c,t√
1 + x̃Tc,tx̃c,t

+

+ ε
x̃Tc,tfext,c,t√
1 + x̃Tc,tx̃c,t

+ ε
(xTc,tvc,t)(x

T
c,tmvc,t)

(1 + x̃Tc,tx̃c,t)
3
2

≤− vTc,tDcvc,t − ε
x̃Tc,tKcx̃c,t√
1 + x̃Tc,tx̃c,t

+ vTc,tfext,c,t+

+ (2at1|vc,t|2 + at3|vc,t|) + ε|fext,c,t|

≤ −min(λmin(Dc), ελmin(Kc))
|vc,t|2 + |x̃c,t|2√

1 + |vc,t|2 + |x̃c,t|2
+

+ (ct4|vc,t|2 + at3|vc,t|) + (ct2|fext,c,t|2 + ε|fext,c,t|) =

=− γt([x̃Tc,t vTc,t]T ) + σt2(|fext,c,t|) + λt(|vc,t|),

(6.41)

where at1, at3, ct4 = const. > 0.
Recalling Definition 3, the controlled system (6.37) is said to admit an IOSS
Lyapunov function. Since lim supr→∞ λt(r)/γ̄t(r) is a constant, it is pos-
sible to conclude that also the system (6.37) is ISS stable for Theorem 1.
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6.5 Simulation example

6.5.1 Simulation scenario and setup

A spacecraft mounting a 7DoF robotic arm is considered. The kinemat-
ics and dynamics parameters are reported in Tab. 6.1. The spacecraft is
equipped with 4 variable speed control moment gyros in a pyramid config-
uration and 12 thrusters, commanded through a PWM approach. The posi-
tion of the actuators on the spacecraft is reported in Fig. 6.1. The model of
the thrusters includes a delay in the activation, due to the opening/closure of
the valve, a dead-zone and a first-order dynamics with different time con-
stant for the rising and falling phase. Therefore, the controller commands
a certain action, but the system receives a slightly different one. The char-
acteristics of both actuators are reported in Tab. 6.2, where the parameters
fmax is the maximum force provided by a single thruster, Tpwm is the PWM
period, tdelay is the delay of the opening/closure of the valve, Trising and
Tfalling are the time constants of the first-order dynamics. The spacecraft
is endowed with an IMU, measuring accelerations and angular velocities, a
star tracker for the attitude, a vision system for measuring the relative dis-
tance, while the manipulator’s joints position is measured by encoders. The
model for the measurements is the same presented in Sect. 5.6.2, with the
same level of noise, but σpbt = 0.005 m. Also in this case, a kinematics-
based Kalman filter is implemented for the velocity estimation and to have
the attitude at higher frequency (see Sect. 5.6.2). The cameras and the star
tracker work at 3 Hz, while the other sensors and the controller at 200 Hz.
The prediction step in the filters is run at 200 Hz, while the update step at
3 Hz. The position, attitude and velocity of the end-effector are computed
using the knowledge of the spacecraft’s states and the kinematics of the
manipulator.

Table 6.1: Kinematics and dynamics parameters.

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]
Base 1.2 150 15 21.8 18.8

Link 1 0.2 2.71 0.023 0.023 0.005
Link 2 0.2 2.71 0.026 0.026 0.053
Link 3 0.2 2.54 0.014 0.014 0.005
Link 4 0.2 2.50 0.028 0.028 0.005
Link 5 0.19 1.30 0.026 0.026 0.026
Link 6 0.12 1.57 0.003 0.003 0.003
Link 7 0 0.2 0.003 0.003 0.003
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Table 6.2: Actuators parameters.

Parameters

VSCMG Iws = 0.042kgm2 Iwt = 0.024kgm2 Iwg = 0.024kgm2

Igs = 0.093kgm2 Igt = 0.054kgm2 Igg = 0.054kgm2

Thrusters fmax = 4 N Tpwm = 50 ms tdelay = 8 ms
Trising = 1.5 ms Tfalling = 3 ms

Figure 6.1: Position of the thrusters and VSCMG on the spacecraft.

Initially, the controller presented in [75] is active. The space robot is com-
manded to keep the initial attitude and position of the CM. The end-effector
is controlled to follow a trapezoidal velocity profile along the y direction,
while keeping the initial orientation and initial position along x and z.
At a certain time instant, the link 5 of the manipulator collides with an-
other object. To simulate the contact, the Dymola library presented in [78]
is used, in which the normal force is modeled as reported in Eq. (5.44).
The residuals m̂ext,c and ˆ̄τ ∗ext are exploited to detect the collision and trig-
ger the reaction control (6.10)-(6.11). The new setpoints for the joints po-
sition and the CM position are set through Eqs. (6.14)-(6.15), while the
attitude is kept. For the translational and attitude control, the gains are
the same for x, y and z directions: kc = 100 Nm−1 and dc = 250 Ns,
kε̃ = 1500 Nmrad−1 and dωb = 300 Nmsrad−1. For the first four joints,
the gains kq̃ = 70 Nmrad−1 and dq̃ = 10.5 Nmsrad−1 are set, while for
the other joints, kq̃ = 1 Nmrad−1 and dq̃ = 0.2 Nmsrad−1. The parameters
∆xc and ∆q are set equal to 0.60 m and 0.26 rad. Finally, the gains for the
computation of the residuals m̂ext,c and ˆ̄τ ∗ext are set equal to 20 s−1.
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Figure 6.2: Contact force generated by the collision in case the reaction control is active
and in case it is not.

6.5.2 Results

In Fig. 6.2, the force generated in the collision is reported in the case in
which the reaction control is activated and in the case in which it is not. In
the latter situation, the space robot does not recognize the contact and try
to pursue the first goal, namely to move the end-effector along the direction
y. Consequently, multiple contacts and the build-up of the force occur.
This is a dangerous condition since instability can arise and robot can be
affected by serious damages, jeopardizing the mission. On the other hand,
if the proposed reaction control is activated, the contact is detected and the
robot moves away avoiding other collisions and the increase of the force.
In this way, the possible damages are mitigated and the space robot can
reach a safe position, where then the subsequent actions can be planned.
It is important to stress that this is a capability an autonomous space robot
should have in order to carry out the mission safely. Indeed, in the future,
it may be required to operate in an unstructured scenario, involving several
proximity operations close to other objects.
Figs. 6.3-6.4 show the residuals m̂ext,c and ˆ̄τ ∗ext, and the set thresholds
for the detection. The contact is detected both at the angular momentum
level and at the joint level. In particular, the contact is recognized on the
components x and z of m̂ext,c and by the monitoring signals at the joints 1
and 3. In Fig. 6.5, the effects of the discrepancy between the commanded
thrusters’ force and the real one, which includes delay and first-order dy-
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Figure 6.3: Components of the residual m̂ext,c and the set thresholds (red line).

namics, on the residual computation can be noted. Note that this discrep-
ancy, along with other uncertainties and measurements noise, affects the
selection of the threshold, and thus the sensitivity. The amplitude of these
oscillations can be modified acting on the observer gains.
In Fig. 6.6, the position of the CM of the whole system is reported. Until
the contact occurred, the position is constant, then the reaction control is
activated and the entire spacecraft-manipulator system translates away from
the obstacle reaching the new setpoint. Note that the setpoint is computed
using Eq. (6.14), where the external force is estimated through Eq. (6.21),
and the direction of the motion after the contact is along the line of action
of the force (see also Fig. 6.2). For the reconstruction, the knowledge of
the contact point is necessary and it is performed following the scheme
presented in Sect. 5.5.2. Therefore, in the simulation, the complete loop
detection, isolation, identification and reaction is implemented and works
satisfactorily.
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Figure 6.4: Components of the residual ˆ̄τ ∗
ext and the set thresholds (red line).
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Figure 6.5: Effects of the non-modelled dynamics of the thrusters on the residual m̂ext,c.

Figure 6.6: Response of the CM position before and after the contact.
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The error on the absolute angles of the spacecraft is reported in Fig. 6.7.
The error is always small, even during the contact phase, and it further
decreases after the contact. Note that keeping a certain orientation of the
spacecraft can be required either to communicate or to have the target in
the field of view of some sensors, e.g. camera or lidar.
Finally, Fig. 6.8 reports the response of the joints position. Before the
contact, the manipulator moves towards the obstacle, following the desired
trajectory imposed in the end-effector space. Afterwards, the collision oc-
curred and the new desired positions for the joints are computed by Eq.
(6.15). Smooth trajectories are generated and the manipulator escapes from
the obstacle successfully. Note that the directions followed by the joints in
the post-impact phase is the one identified by the residual ˆ̄τ ∗ext (see Fig.
6.4).

Figure 6.7: Error on the Euler angles of the spacecraft.
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Figure 6.8: Response of the position of the joints before and after the contact.
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CHAPTER7
Conclusions

This study aimed at developing techniques to address some of the main
challenges involved in an on-orbit autonomous robotic mission with manip-
ulators. Especially, the relative pose estimation problem and the physical
contact handling have been considered, with particular attention on unex-
pected collisions.
Before performing tasks with the robotic arm, the relative position and at-
titude of a target satellite with respect to the servicer is a key information
for the navigation system. A proper characterization of the motion of the
target is necessary to plan the approaching strategy during close-proximity
operations. To this aim, two nonlinear filters have been proposed based
on the differential algebra: an high-order numerical extended Kalman fil-
ter and an unscented Kalman filter. In the former one system nonlinearity
are incorporated in terms of high-order Taylor expansions. In the original
version, high-order partials have to be derived and integrated each time in-
stant. On the other hand, this computational-demanding and cumbersome
operation is completely avoided exploiting differential algebra. Indeed, the
high-order partials are directly obtained through the integration of the dy-
namics in the DA framework, which provides the Taylor expansion of the
flow up to an arbitrary order. Consequently, an easier and straightforward
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implementation of the HNEKF is achieved. It has been shown that, actu-
ally, orders greater than two do not improve the accuracy of the filter. This
is due to the fact that Kalman filter is based on the Gaussian hypothesis,
namely only the first two moments, mean and covariance, are necessary to
describe all random distributions. Indeed, in the considered cases, second
order expansion already introduces sufficient information for an accurate
estimation of these moments. Another important feature of a filter is the
on-board applicability: the filter should work in real-time with low compu-
tational power available. Therefore, the DA-based HNEKF has been imple-
mented on a BeagleBone Black platform, representative of the limited com-
putational capability of space processors. Differently from the HNEKF, the
unscented Kalman filter relies on the unscented transformation. The mean
and covariance at a time instant k+ 1 are reconstructed by carefully chosen
points, which are propagated through the dynamics. Thanks to the differen-
tial algebra, it is possible to substitute multiple integrations with an easier
polynomial evaluation. As before, the integration of the dynamics in the
DA framework provides the Taylor expansion of the flow, and thus to ob-
tain the propagated sigma points it is sufficient to evaluate the polynomial in
those points. The DA-based UKF turns out to be faster and computational
lighter that the standard counterpart, especially when the dynamics integra-
tion is particularly demanding. The performance of both filters, in terms
of accuracy and computational burden, have been assessed considering the
e.Deorbit mission, considering camera measurements. This scenario is par-
ticularly challenging since it involves a noncooperative target characterized
by tumbling motion. The results showed that the DA-based HNEKF is the
most accurate, while the DA-based UKF is the fastest one.
Once the space robot carried out the rendezvous, the manipulator can be de-
ployed and proximity operations, such as manipulation or inspection, can
be performed. In this phase, physical contact situations may arise and must
be handled properly. They can be planned, as in the case of a grasping task,
or occur unexpectedly due to failures or errors. In both cases the knowl-
edge of the contact force is a valuable information to trigger a reaction and
to implement efficient control algorithms. Two observers have been intro-
duced to estimate the contact force. One is based on a base-joints dynamics
formulation, while the other one on a centroid-joints dynamics. In both
schemes, three momentum-based residuals have been defined, which can
be used to reconstruct the external wrench. It has been shown that the latter
one provides better performance when realistic measurements are consid-
ered, thanks to the decoupling from the spacecraft’s linear velocity of the
angular and joints momentum residuals. The observers have been validated
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on the On-Orbit Servicing Simulator facility of the DLR. Moreover, a strat-
egy to isolate the point at which the contact occurred has been proposed.
Along with the observers, another approach based on monitoring the to-
tal momentum of the space robot has been analyzed to address the contact
detection and isolation problems. It turns out that, even if some interest-
ing results have been obtained with the momentum monitoring technique,
the observer based on a centroid-joints dynamics is a better solution from
practical point of view. Indeed, it enables to deal with different kind of
contacts, impulsive and continuous, and relies only on sensors featuring
relatively low noise and high acquisition frequency, meaning that fast con-
tacts can be promptly detected, accurately isolated and estimated.
Finally, a compliant reaction control strategy to unexpected collisions is
also presented. The goal of the control is to move the space robot away
from the hit obstacle, while keeping the attitude. In particular, the center of
mass of the whole system and the joints position are controlled to follow the
motion caused by the contact force. The direction of the force and its pro-
jection in the joints space are provided by the contact wrench reconstruction
and the joints momentum residuals, respectively. In this way, the robot can
escape from the obstacle reaching a safe configuration and position, while
keeping the desired attitude, which is important for communication or to
retain the target in the field of view of the sensors. The controlled system
is demonstrated to be input-to-state stable, namely the error on the states is
bounded even when the collision is taking place. The performance of the
control is assessed through numerical simulations, considering a realistic
measurement model and actuators. In particular, a general model for mo-
mentum exchange devices is implemented, including reaction wheels, con-
trol moment gyros and variable speed control moment gyros. Moreover,
thrusters are modeled including valve delay, dead zone and a first order dy-
namics. Thanks to the reaction control, multiple hits and the build-up of
the contact force are avoided, preventing instability and severe damages.

7.1 Future works

Different paths can be followed to further develop the work presented in
this thesis. One of them is to integrate the proposed algorithms. After ac-
quiring the motion information of the target satellite and performing the
rendezvous maneuver, the space robot comes closer to the target and the
robotic arm is deployed. At this point, the relative pose information are
still required, but also the end-effector’s states are necessary. Indeed, either
an inspection task or a manipulation task are planned, the motion informa-
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tion of the target are essential to generate an end-effector trajectory and the
end-effector’s states are requested by the controller. The end-effector’s po-
sition and orientation, and velocity as well, can be reconstructed through the
knowledge of the pose of the base and the kinematics. However, noise and
uncertainties would deteriorate significantly the positioning accuracy. A
better solution is to equip the manipulator with cameras measuring the rel-
ative distance and orientation of the end-effector with respect to the target.
Cameras usually work at relatively low frequency, while the manipulator’s
controller requires higher frequency to provide good performance. There-
fore, a filter estimating all the non-measured quantities can be designed,
namely end-effector’s and target’s relative states. This filter can use the in-
formation from the DA-based filters for the initialization. The prediction
step has to run at high frequency, and thus it could be convenient to imple-
ment a kinematics-based filter, similar to the one used in the simulations of
this thesis, to estimate the base velocity and the attitude. Another solution
could be to use two separate filters, one for the relative position of the target
and one for the end-effector and attitude. Indeed, the first one can be used
for the spacecraft position control at lower frequency, while the other one
is used for the manipulator and attitude control at higher frequency. Note
that the manipulator and rotational dynamics are expected to be faster than
the translational one. To this aim, the decoupled dynamics (6.7) can be par-
ticularly useful. In this way, a smaller system has to be propagated inside
the high-frequency filter, probably reducing the computational cost. For the
control, a possible solution has been already presented, which integrates a
compliant controller for the nominal operation (working in the operational
space) with the proposed reaction controller (working in the joints space).
The contact observer information is exploited to recognize the nature of
the contact, desired or unintentional, and to switch between them. More-
over, in case of an unexpected collision, the proposed observer provides
information about the direction to follow in order to move away from the
obstacle and about the location of the contact, which can be used for health
monitoring purpose. Finally, another problem that must be addressed is
the generation of the end-effector trajectory, in which the knowledge of the
servicer and target states is used.
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Appendix

A Derivation of the relations (5.13)

Deriving the relations (5.13a) and (5.13b) is straightforward. Indeed, the
differentiation of the momenta htc and hrc, which are expressed in a frame
rotating with an angular velocity ωb, results in

ḣtc + [ωb]
×htc = fc,tot (A.1)

ḣrc + [ωb]
×hrc = mc,tot (A.2)

where fc,tot ∈ R3, mc,tot ∈ R3 are the total centroidal force and moment
acting on the system. Recalling that htc = mvc and comparing Eq. (A.1)
with the first row of Eq. (5.11), the first relation (5.13a) is obtained. Sim-
ilarly, comparing Eq. (A.2) with the second row of Eq. (5.11), the second
relation (5.13b) is obtained.
For what concerns the third relation (5.13c), a quasi-Lagrangian approach
[81] is used to rederive the joints equation in (5.11). Then, the relation
(5.13c) is obtained by comparison of the quasi-Lagrangian joints formula-
tion with the third row of Eq. (5.11). In the quasi-Lagrangian formulation,
the generalized velocities vc and hrc are called quasi-velocities since they
are not integrable. In order to derive the dynamic equations, some inte-
grable generalized coordinates y ∈ R6+n are defined, whose derivatives
are related to the quasi-velocities as follows:
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 vc
hrc
q̇

 =

 E −[rc]
×J−1

Φ 0
0 IcJ

−1
Φ IcJ̄ω

0 0 E

 ṙc
Φ̇
q̇

 = ΞT ẏ, (A.3)

where rc ∈ R3, ṙc ∈ R3 are the position of the CM of the whole system
expressed in C and its time derivative, respectively; Φ ∈ R3, Φ̇ ∈ R3 are
the Euler angle vector and its time derivative, respectively; JΦ ∈ R3×3 is
the Jacobian mapping ωb in Φ̇. The matrix Ξ is function of the generalized
coordinates y. Note that any rotation parameterization different from the
Euler angles can be used without affecting the following joints dynamics
derivation.
Introducing x = [vTc h

rT
c q̇T ]T ∈ R6+n and assuming that ΞT is invertible,

the following relation can be written:

ẏ = Ωx (A.4)

where Ω = Ξ−T ∈ R(6+n)×(6+n).
Exploiting Eqs. (A.3)-(A.4), the quasi-Lagrangian formulation can be de-
rived from the standard one [81], resulting in

δyT
(

Ξ
d

dt

[
∂T

∂x

]
+ Ξ̇

∂T

∂x
− ∂T

∂y
−H ∂T

∂x
−Q

)
= 0, (A.5)

where

H =

 xTΩT ∂Ξ
∂y1

...
xTΩT ∂Ξ

∂y6+n

 ∈ R(6+n)×(6+n); (A.6)

Q ∈ R6+n is the vector of the generalized forces; T ∈ R is the kinetic en-
ergy of the system expressed in terms of x. The potential energy is assumed
to be zero. T can be computed as follows

T =
1

2

(
mvTc vc + q̇TM ∗

mq̇ + hrTc I
−T
c hrc

)
. (A.7)

The matrices Ξ̇ and ΩT ∂Ξ
∂yi

, appearing in Eqs. (A.5)-(A.6), can be expanded
as

Ξ̇ =

 0 0 0

J̇−TΦ [rc]
× + J−TΦ [ṙc]

× J̇−TΦ ITc + J−TΦ İTc 0

0 ˙̄JTωI
T
c + J̄Tω İ

T
c 0

 (A.8)
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ΩT ∂Ξ

∂yi
=

 0 0 0

I−Tc JTΦ
∂(J−TΦ [rc]×)

∂yi
I−Tc JTΦ

∂(J−TΦ ITc )

∂yi
0

−J̄Tω JTΦ
∂(J−TΦ [rc]×)

∂yi
−J̄Tω JTΦ

∂(J−TΦ ITc )

∂yi
+ ∂(J̄Tω I

T
c )

∂yi
0


(A.9)

Therefore, the matrixH has this form:

H =

 xTΩT ∂Ξ
∂y1

...
xTΩT ∂Ξ

∂y6+n

 =

 Ht Htr 0
Hrt Hr 0
Hmt Hmr 0

 (A.10)

Since the joints dynamics is of interest, only the last n rows of the La-
grangian system can be considered. Hence, only the last n rows of H are
expanded. It can be noted that Hmt = 0 because neither JΦ nor rc depend
on q, whileHmr can be expanded as follows

Hmr =


hrTc I

−T
c

∂ITc
∂q1

+ q̇T ∂J̄
T
ω

∂q1
ITc

...
hrTc I

−T
c

∂ITc
∂qn

+ q̇T ∂J̄
T
ω

∂qn
ITc

 =

=− I−Tc/q I
T
c + J̄Tω/qI

T
c ,

(A.11)

where I−Tc/q , J̄Tω/q are reported in Eqs. (5.15) and (5.16), respectively.
Considering that

∂T

∂x
=

 mvc
I−Tc hrc
M ∗

mq̇

 , (A.12)

∂T

∂y
= 0, (A.13)

after some simplification, the joints dynamic equation turns out to be

J̄Tω I
T
c (I−Tc ḣrc + İ−Tc hrc) +M ∗

mq̈ + Ṁ ∗
mq̇ + ˙̄JTωh

r
c+

−1

2
(M ∗

m/qq̇ − I−Tc/q h
r
c)− J̄Tω/qhrc + J̄Tω İ

T
c I
−T
c hrc =

= τtot − J̄Tv fb,tot

(A.14)

where τtot ∈ Rn are the total torques acting on the joints, i.e., includ-
ing commanded torques and disturbance torques; fb,tot ∈ Rn are the total
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forces acting on the base, i.e., including commanded forces and disturbance
forces.
Substituting ḣrc from Eq. (A.2) and İTc = −ITc İ−Tc ITc , and using relations
(5.9) and (5.10), the dynamics (A.14) can be rewritten as

M ∗
mq̈ + (Ṁ ∗

m −
1

2
M ∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
×+

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c = τ̄tot,

(A.15)

where τ̄tot = τ̄ + τ̄ext ∈ Rn.
Finally, comparing Eq. (A.15) and the third row of Eq. (5.11), the relation
(5.13c) can be obtained.

B Derivation of the relations (6.5)

This derivation is along the lines of the previous one in Sect. A. To derive
the relation C̃crωb + C̃cmq̇ = 0 , it is sufficient to write the time derivative
of the translational momentum in the inertial frame and compare it to the
first row of Eq. (6.4). Indeed,

ḣtct = mv̇c,t = fc,t,tot, (B.16)

where fc,t,tot ∈ R3 is the total centrical force in the inertial frame, thus
including fc,t and fext,c,t. Therefore, comparing Eq. (B.16) and the first
row of Eq. (6.4), the relation C̃crωb + C̃cmq̇ = 0 can be obtained.
Deriving the relation (6.5a) is straightforward. Considering Eq. (A.2) and
that hrc = Icωb + IcJ̄ωq̇, it is possible to write

Icω̇b + IcJ̄ωq̈+ İcωb + İcJ̄ωq̇+ Ic
˙̄Jωq̇+ [ωb]

×(Icωb + IcJ̄ωq̇) = mc,tot.
(B.17)

Again, comparing Eq. (B.17) with the second row of Eq. (6.4), the relation
(6.5a) is derived.
Finally, as regards the relation (6.5b), the idea is the same presented be-
fore in Sect. A, namely the joints equation is derived using the quasi-
Lagrangian formulation and then compared to the third row of Eq. (6.4). In
this case the derivative of the generalized coordinates y are related to the
quasi-velocities in the following way: vc,t

ωb
q̇

 =

 E 0 0
0 J−1

Φ 0
0 0 E

 ṗtc
Φ̇
q̇

 = ΞT ẏ. (B.18)
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It can be noticed that the joints coordinates are not associated with nonholo-
nomic relations. Consequently, for these degrees of freedom, the general
equation (A.5) is simply the standard Lagrange equation [81]. The kinetic
energy can be computed as follows

T =
1

2
(mvTc,tvc,t + ω̆TMbqω̆). (B.19)

Applying the Lagrange formalism to derive the joints dynamics, this equa-
tion is obtained:

M̃mq̈ + J̄Tω I
T
c ω̇b + ( ˙̃Mm −

1

2
M̃rm/q −

1

2
M̃m/q)q̇+

+( ˙̄JTωI
T
c + J̄Tω İ

T
c +

1

2
I−Tc/q Ic −

1

2
J̄Tω/qI

T
c )ωb = τ̄ ∗tot

(B.20)

where M̃m/q and M̃rm/q are defined in Eq. (6.6). In (B.20), the following
relations have been used


ωTb

∂ITc
∂q1
...

ωTb
∂ITc
∂qn

+


q̇T J̄Tω

∂ITc
∂q1

...
q̇T J̄Tω

∂ITc
∂qn

+


q̇T ∂J̄

T
ω

∂q1
ITc

...
q̇T ∂J̄

T
ω

∂qn
ITc

 = J̄Tω/qI
T
c − I−Tc/q I

T
c ,

(B.21)
with I−Tc/q and J̄Tω/q defined in Eqs. (5.15) and (5.16), respectively.
From the comparison between Eq. (B.20) and the third row of Eq. (6.4),
the relation (6.5b) can be derived.

C Proof of the property ω̆T (Ṁbq − 2Cbq)ω̆ = 0

It is well known that for the dynamics (2.24) the property vT (Ṁ−2C)v =
0 is valid, with v = [vTb ω

T
b q̇

T ]T , and it is transferred to the dynamics (6.4)
thanks to the chosen transformation (6.1) [79], and thus

[
vTc,t ωTb q̇T

]( 0 0 0

0 İc İcJ̄ω + Ic
˙̄Jω

0 ˙̄JTωI
T
c + J̄Tω İ

T
c

˙̃Mm

+

−2

 0 C̃cr C̃cm

−C̃T
cr C̃r C̃rm

−C̃T
cm C̃T

mr C̃m

) vc,t
ωb
q̇

 = 0.

(C.22)
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Considering the relations (6.5) demonstrated in Sect. B, it is possible to
write

[
vTc,t ωTb q̇T

]  0 C̃cr C̃cm

−C̃T
cr C̃r C̃rm

−C̃T
cm C̃T

mr C̃m

 vc,t
ωb
q̇

 =

=
[
vTc,t ωTb q̇T

]  0 0 0
0 Cbq,r Cbq,rm

0 Cbq,mr Cbq,m

 vc,t
ωb
q̇

 .
(C.23)

Since the inertia matrix is the same for the dynamics (6.4) and (6.7), ex-
ploiting the relations (C.23) in (C.22), it is possible to conclude that the
property ω̆T (Ṁbq − 2Cbq)ω̆ = 0 is valid for the dynamics (6.7b).
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[49] T. Tomić and S. Haddadin, “Simultaneous estimation of aerodynamic and contact forces in
flying robots: Applications to metric wind estimation and collision detection,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pp. 5290–5296, IEEE, 2015.
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University Electronic Press, 2014.
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