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“La mente non è un vaso da riempire, ma un fuoco da accendere.”

— Plutarco
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Sommario

IN questa tesi si affronta il problema relativo alla selezione della struttura del model-
lo (MSS, dall’inglese Model Structure Selection) di un sistema dinamico, quando
l’apprendimento del modello basato sui dati è perseguito con metodi parametrici.

Come noto, il tentativo di dare soluzione a tale problema risulta particolarmente ar-
duo a causa della natura combinatoria dello stesso che, in linea di principio, richiede
di esplorare in modo esaustivo lo spazio delle possibili strutture di modello, al fine di
selezionare la migliore. Tale spazio cresce però rapidamente all’aumentare del numero
dei termini di modello considerati, rendendo l’approccio esaustivo applicabile solo su
problemi a ridotta scala. Sono state pertanto proposte svariate strategie con l’obiettivo
di esplorare in modo intelligente lo spazio delle strutture di modello: euristiche basa-
te su una costruzione incrementale della struttura, algoritmi ispirati al principio della
selezione naturale ed evoluzione biologica, tecniche basate su regolarizzazione, non-
ché approcci probabilistici. Seguendo tale ultima impostazione, questa tesi estende un
recente approccio probabilistico originariamente proposto per la risoluzione del pro-
blema MSS nel caso di sistemi non lineari, al caso di dati distribuiti, sistemi non lineari
commutati e anche alla stima della matrice di covarianza di processo in applicazioni
basate sul filtro di Kalman.

Nel caso in cui i dati siano distribuiti tra più agenti e non possano essere raccolti
in un’unità centrale - come generalmente si assume nei problemi di apprendimento del
modello basato sui dati - il problema MSS e la stima dei parametri devono essere risol-
ti in modo cooperativo. Considerando modelli parametrici appartenenti alla famiglia
NARX, in questa tesi si affrontano, dunque, queste due problematiche ricorrendo a uno
schema risolutivo di tipo distribuito che mira a raggiungere congiuntamente un valore
comune tra gli agenti sia per la struttura del modello che per le stime dei parametri,
sfruttando la riformulazione probabilistica del problema MSS.

I sistemi (non lineari) a commutazione sono caratterizzati da dinamiche continue che
rappresentano il comportamento del sistema in diverse condizioni operative (modalità),
indicizzate da un segnale di commutazione discreto. In questo caso, il problema MSS
comprende la selezione di una struttura di modello per ciascuna modalità e anche la
ricostruzione del segnale di commutazione. Sfortunatamente, poiché le commutazioni
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di modalità possono avvenire in modo arbitrario nel tempo, lo spazio delle strutture di
modello cresce rapidamente con il numero di dati, aggravando così in modo significa-
tivo il problema MSS. Questa tesi propone, al riguardo, un metodo di identificazione
iterativo che allevia la crescente complessità combinatoria adottando un approccio a
due fasi, che possono essere così sintetizzate: nella prima fase, la ricostruzione del
segnale di commutazione, la selezione delle strutture NARX e la stima dei parametri
sono risolte congiuntamente mediante una strategia di campionamento-e-valutazione,
fissando a priori i possibili istanti di commutazione; nella seconda fase, il posiziona-
mento degli istanti di commutazione viene perfezionato sulla base delle prestazioni del
modello ottenuto nella fase precedente.

L’apprendimento di modelli basato sui dati svolge un ruolo importante anche nel
contesto del filtraggio, in quanto le statistiche sul rumore di output e di processo, neces-
sarie per la formulazione del filtro di Kalman, sono generalmente sconosciute e devono
essere pertanto stimate dai dati. Un problema particolarmente impegnativo è la stima
delle statistiche del rumore di processo che tiene conto delle dinamiche di sistema non
modellate e su cui in genere non è disponibile alcuna conoscenza a priori. Questa tesi
affronta il problema di selezionare una parametrizzazione adatta per la matrice di cova-
rianza del rumore di processo, considerando questo problema come un caso particolare
del problema MSS.
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Abstract

THIS thesis addresses the problem of choosing suitable model structures for dy-
namical systems when the data-driven model learning is pursued with para-
metric methods. The model structure selection (MSS) problem is known to be

challenging due to its combinatorial nature which requires in principle to exhaustively
search for the model terms to be included into the model within a space that might be
large. Accordingly, many strategies have been proposed with the aim of exploring in a
smart way the model structure space, ranging from greedy incremental policies, regu-
larization based techniques, evolutionary methods, and probabilistic approaches. This
thesis extends a recent randomized approach based on a probabilistic reformulation of
the MSS problem for nonlinear systems, to the case of distributed data, switched non-
linear systems, and also to the estimation of the process covariance matrix in Kalman
filter applications.

When data are distributed among multiple agents and cannot be made centrally
available, the MSS and the parameter estimation tasks have to be solved cooperatively.
Within the NARX modeling framework, we address this issue by resorting to a dis-
tributed scheme which aims at reaching a common value for both the model structure
and the parameter estimates in an integrated fashion, taking advantage from the proba-
bilistic reformulation of the MSS problem.

Switched (nonlinear) systems are characterized by the interaction between contin-
uous and discrete dynamics, the former representing the system behavior in different
operational conditions (modes), indexed by a discrete switching signal. In this case,
the MSS problem encompasses the selection of a model structure for each mode, and
also the reconstruction of the switching signal. Unfortunately, since switchings can
occur arbitrarily in time, the model structure space grows rapidly with the number of
data, thus aggravating significantly the MSS problem. This thesis proposes an itera-
tive identification method which alleviates the combinatorial complexity by adopting
a two-stage approach. More precisely, in the first stage, candidate mode switching in-
stants are fixed and adopted to jointly reconstruct the switching signal and solve the
NARX structure and parameter identification via a sample-and-evaluate strategy; in the
second stage, the positioning of the switching instants is refined.

III
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Data-driven model learning plays an important role also in the Kalman filtering con-
text, where the output and process noise statistics are generally unknown and must to
be estimated from data. A particularly challenging problem is the estimation of the
process noise statistics that account for the unmodeled dynamics on which typically no
prior knowledge is available. This thesis addresses the problem of choosing a suitable
parameterization for the process noise covariance matrix, viewing it as a specialization
of a classical MSS problem.

The solutions we proposed in this thesis to the three mentioned problems are sup-
ported by the results obtained in several simulation studies.

IV
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CHAPTER1
Introduction

THE art of inferring models from observed data goes back to the work of Gauss and
Legendre in the late 18th and early 19th century. It developed rapidly, achiev-
ing success in many disciplines, and particularly in the engineering field, where

one is generally interested in a quantitative assessment of the behavior of a dynamical
system through a mathematical description of it. This data-driven estimation approach
allowed to extend model-based formal tools of analysis and synthesis to broader fields
of application, for which first principles modeling is not suitable to obtain reliable mod-
els. Indeed, there are two ways of constructing mathematical models:

• Mathematical modeling. Analytic approach which employs prior knowledge and
physical insight about the system to describe its dynamic behavior.

• System identification. Experimental approach, whereby a model is learnt from
data collected by means of suitable experiments on the system.

In this thesis, the identification from experimental data of dynamical systems is con-
sidered with focus on parametric methods, [74]. These techniques rely on the a-priori
assumption that the true model belongs to a desired model class M, in contrast with
non-parametric methods which try to estimate directly the impulse or frequency re-
sponse of the system. In the parametric case, when the model structure is known, the
identification problem consists essentially in estimating a finite number of unknown
parameters. The parameter estimation task involves the minimization of a suitable cost
function with respect to the parameter vector. For example, in the prediction error
minimization (PEM) framework the one-step ahead prediction error is minimized. In
that context, parameter estimates are guaranteed to be unbiased if the model structure
exactly matches that of the underlying system. Moreover, for specific model classes

1
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Chapter 1. Introduction

(e.g., ARX models), algorithms of the Least Squares (LS) family can be employed
for parameter estimation, which greatly simplifies the estimation task. If, on the other
hand, the model structure is unknown, one has also to carry out the task of model struc-
ture selection (MSS). The aim of MSS is to find the form of the dependence between
the data, within a family of functions which is usually parameterized by means of a
finite-dimensional parameter vector. This is a combinatorial problem which consists in
selecting, among all the model terms that could be included into the model, only those
providing good accuracy in approximating the system behavior, but at the same time
preserving model parsimony. Ultimately, MSS is one of the most difficult tasks in the
identification problem in view of its combinatorial nature, and hence it has roused great
interest in the scientific community. Most of the proposed model selection algorithms
consist of a policy to explore the model structure space and compare different model
structures in terms of their performance. The naive exhaustive approach of generating
all possible structures and comparing their performance (which is, in fact, what one
typically does with linear models) is hardly applicable in practice for complex systems,
such as nonlinear and hybrid systems, due to the explosion of the search space - a prob-
lem often referred to as curse of dimensionality [2,98]. Also, statistical indices such as
the Akaike information criterion (AIC), the final prediction error (FPE), the minimum
description length (MDL), the Bayesian information criterion (BIC), etc., which are
used in the linear case to estimate the correct model structure balancing model accu-
racy and complexity, are unsuitable in these cases since there is no a simple relation
between model accuracy and model size [92]. Finally, regularization approaches, such
as the LASSO (Least Absolute Shrinkage Selection Operator), can help reducing the
set of candidate model terms, but are not suitable for exact model selection [22, 53].
Therefore, not surprisingly, most efforts in the literature have been devoted to the de-
velopment of heuristic search methods aimed at identifying a parsimonious model at
an affordable cost. Several approaches have been proposed, ranging from greedy incre-
mental strategies to evolutionary algorithms. This thesis investigates instead the use of
randomized techniques based on a probabilistic reformulation of the selection problem.
This approach operates by introducing (independent) Bernoulli or Categorical variables
to represent the probability that model terms are present in the true model structure. The
distributions of such stochastic variables are tuned based on the information gathered
from a population of extracted models, according to a randomized approach. This gen-
eral scheme is considered in this thesis, where the problem of MSS is investigated with
respect to the identification of nonlinear systems via distributed computation, the iden-
tification of hybrid (nonlinear) systems, and also to the estimation of the process noise
covariance matrix in state estimation problems in the Kalman filter setting. In the fol-
lowing, these three problems are briefly introduced, highlighting the relative challenges.

Distributed Nonlinear Model Identification - Several model classes have been pro-
posed in the literature to represent nonlinear systems [21,49,53,107]. In this thesis, we
focus on the Nonlinear AutoRegressive with eXogenous input (NARX) class [70, 71],
which naturally extends that of linear ARX models. Within this model class, the non-
linear mapping between data is often represented by means of a functional expansion
involving lagged inputs and outputs. A popular choice for the form of the functional ex-
pansion is the polynomial one, which yields a linear-in-the-parameters model structure

2
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that is particularly convenient for parameter estimation purposes. On the downside, the
model complexity of the NARX class grows rapidly with the model order and nonlin-
earity degree, and this motivates the interest in the problem of MSS for such model
class. The problem of identifying a model of a nonlinear system from input/output
observations is typically formulated as an optimization problem over all available data
that are collected by a central unit, in the same operating conditions. However, the
massive diffusion of networked systems is changing this paradigm: data are collected
separately by multiple agents and cannot be made available to some central unit due,
e.g., to band limitations or privacy constraints. Therefore, we address this novel set-up
and consider the case in which multiple agents are cooperatively aiming at identifying
a model for a system, by local computations based on private data sets. This problem
is particularly challenging because the combinatorial nature of the MSS problem ham-
pers the application of classical distributed schemes. Here, we propose a method that
overcomes this limit by adopting a probabilistic reformulation of the model structure
selection problem and seeking the consensus among agents on both the model structure
and the parameter estimates at the same time.

Identification of Hybrid Nonlinear Systems - There are many physical processes
whose behavior is characterized by different continuous dynamics (modes) among
which the system can switch according to some discrete dynamics. For example, in
electrical circuits, continuous phenomena, such as the charging of capacitors, are in-
terrupted by switches or diodes. In a thermal control process a thermostat is used to
control the temperature by switching on or off heating or cooling devices. In tech-
nological systems, such as a robotic system or a component mounter, the continuous
dynamics, representing the behavior of the physical and mechanical part, interact with
the discrete dynamics, that account for the software and logical behavior. More in gen-
eral, complex systems exhibit different continuous dynamics as individual components
are switched on or off. In such cases, a single dynamical model, even if nonlinear,
is often not sufficient to capture the real dynamics of the system. Hybrid dynamical
systems (HSs) [45, 76, 114], whose behavior can be described by the interaction of
time- and event-driven dynamics, provide a unified framework for the representation
of such cases. Most research regarding the identification of hybrid systems (HSI) has
focused on switched affine (SA) and piecewise affine (PWA) models due to their uni-
versal approximation properties and their simple interpretation. Indeed, they provide
the simplest extensions of continuous systems that can handle hybrid phenomena. In
SA systems, the discrete state is an exogenous finite-valued input which determines
the switching between different continuous affine dynamics, whereas in PWA systems
the switching mechanism is determined by a polyhedral partition of the (continuous)
state-input domain. The optimization problem induced by the identification task is of
a mixed-integer type, since it involves the identification of discrete variables (repre-
senting the mapping of the samples to the modes and the model structure associated to
each mode), as well as continuous ones (the parameters of the models describing the
continuous dynamics associated to the various system conditions). Many approaches
have been proposed over the last two decades for the case of affine dynamics, [44, 94].
Surprisingly fewer works have tackled the case of nonlinear continuous dynamics as-
sociated to the modes, in spite of its importance in modeling complex applications.

3
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Chapter 1. Introduction

Indeed, if no a priori information on the number of modes is available, one can in prin-
ciple identify an arbitrarily high number of local linear models (and switchings among
them) in order to achieve a good model accuracy. However, this prevents the identifica-
tion of the real dynamics of the hybrid system and hinders its physical interpretation. It
also greatly aggravates the combinatorial complexity of the optimization problem, due
to the increasing number of switchings. In this thesis, we consider the identification
of switched nonlinear systems in input-output form, namely Switched Nonlinear ARX
(SNARX), in the case of unknown model structures. We propose a black-box iterative
identification method, where each iteration is characterized by two stages. In the first
stage the identification problem is addressed assuming that mode switchings can occur
only at predefined time instants, while in the second one the candidate mode switch-
ing locations are refined. This strategy allows to significantly reduce the combinatorial
complexity of the problem, thus allowing an efficient solution of the optimization prob-
lem using a randomized method.

Structure Selection of the Process Noise Covariance Matrix in Kalman Filter Appli-
cations - A third problem in which MSS is crucial is the estimation of the process noise
covariance matrix in state estimation problems in the Kalman filter setting, [33,46,59].
Kalman filtering for linear systems is known to provide the minimum variance esti-
mation error, under the assumption that the model dynamics is known, [60]. While
many system identification tools are available for computing the system matrices from
experimental data, estimating the statistics of the output and process noises is still an
open problem which significantly impacts the filter performance. In fact, although some
methods based on maximum likelihood and correlation approaches have been proposed
in the literature, it turns out that the existing techniques are either too computationally
expensive or not accurate enough. Above all, in many papers the process and output
covariance matrices are provided as a prior knowledge or their estimation is “declassi-
fied” into an empirical tuning problem in which diagonal parameterizations are often
assumed, for simplicity. Our study indicates that this assumption does not always pro-
vide the best compromise between computational complexity and tracking accuracy.
This evidence encouraged us to further investigate this problem leading to an algorithm
for the selection of the structure of the process noise covariance matrix, which actually
is an adaptation of the same optimization algorithm originally employed for MSS in
nonlinear identification applications.

1.1 Thesis outline

The thesis is structured as follows. Chapter 2 gives an introduction to system identifi-
cation, formalizes the identification problem for nonlinear systems and hybrid systems
with emphasis on the problem of choosing a suitable model structure. It also presents
the Kalman filtering problem for linear systems. Finally, it contains an overview of
different approaches to the MSS problem. Chapter 3 describes the randomized model
structure selection method which will be used to address the three problems investigated
in this thesis. The latter are discussed in the next three Chapters: namely, Chapter 4
deals with the distributed nonlinear model identification, Chapter 5 with the identifica-
tion of hybrid nonlinear systems, and Chapter 6 with the structure selection of the pro-

4
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1.2. Contributions

cess noise covariance matrix in Kalman filter applications, respectively. Lastly, some
conclusions are drawn in Chapter 7, and guidelines for future research are suggested.

Note that part of the content of Chapters 3 and 5 has been published in:

F. Bianchi, M. Prandini, and L. Piroddi. A randomized approach to switched non-
linear systems identification. 18th IFAC Symposium on System Identification, SYSID
2018, 2018

F. Bianchi, M. Prandini, and L. Piroddi. A randomized two-stage iterative method
for switched nonlinear systems identification. Nonlinear Analysis: Hybrid Systems,
35:100818, 2020

The contribution in Chapter 4 appears in:

F. Bianchi, A. Falsone, M. Prandini, and L. Piroddi. Nonlinear system identification
with model structure selection via distributed computation. 58th IEEE Conference on
Decision and Control, 2019

Finally, the content of Chapter 6 can be found in:

F. Bianchi, S. Formentin, and L. Piroddi. Process noise covariance estimation via
stochastic approximation. International Journal of Adaptive Control and Signal Pro-
cessing, 2019

F. Bianchi, S. Formentin, and L. Piroddi. Structure selection of noise covariance
matrices for linear kalman filter design. Accepted for publication in the proceedings of
the 2020 European Control Conference, 2020

1.2 Contributions

The main contributions of this thesis are:

• A procedure for the identification of nonlinear systems via distributed computa-
tion which jointly addresses the MSS problem and the parameter estimation. In
particular, the cooperative solution of a MSS problem seems to be innovative w.r.t.
the state of the art since only a few attempts to deal with this problem are docu-
mented in the literature.

• An iterative two-stage procedure for the identification of switched nonlinear sys-
tems. In general, only a few works have tackled the case of nonlinear continu-
ous dynamics associated to the system modes. Furthermore, most of them are
nonparametric, while in this thesis the identification has been addressed from a
parametric point of view, including a MSS process in the identification procedure.

• An heuristic method for the structure selection of noise covariance matrices in
Kalman filter applications, which contrasts with the common approach of choos-
ing diagonal parameterizations. To our knowledge, this is the first time that the
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covariance matrix structure selection problem is posed (and a solution is proposed
for it).
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CHAPTER2
Preliminaries and problem formulation

THIS chapter introduces system identification with focus on the problem of model
structure selection (MSS). The model classes of interest for this thesis are briefly
reviewed. Emphasis is given in particular to the identification from experimental

data of nonlinear systems and hybrid (nonlinear) systems. A section is also dedicated
to the estimation of the process noise covariance matrix in the context of linear Kalman
filtering. As will be discussed, these three problems all entail a MSS, which motivates
the interest of this thesis for this specific task.

2.1 System identification

Inferring models from observed data is a fundamental task in science, [43,54], and has
been addressed in different application areas, [31, 75]. Particularly, in the systems and
control area, the techniques answering to this problem are known under the collective
term system identification [74,108], in that they involve the estimation problem of a dy-
namical system based on data which have been observed from the system itself. Starting
from the model it is then possible to develop formal tools of analysis and synthesis for
the system, to perform complex tasks such as prediction, fault detection, control de-
sign. System identification is an experimental approach, in contrast with mathematical
modeling, where prior knowledge and physical insight about the system are used to de-
scribe the dynamic behavior of a system. Specifically, system identification requires the
knowledge of observed inputs u(t) and outputs y(t) taken from experiments performed
on a dynamical system S

input data: {u(1), u(2), . . . , u(N)} (2.1)
output data: {y(1), y(2), . . . , y(N)} (2.2)

7
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Chapter 2. Preliminaries and problem formulation

and the objective is to look for a modelM(ϑ), whereϑ is a finite-dimensional vector of
unknown parameters, that can explain the relationship between input and output. When
ϑ spans a set of feasible values Θ, we obtain a parameterized set of models or a model
structure M, each different ϑ ∈ Θ corresponding to a different model. Generally
speaking, the model structure is a parameterized mapping which projects past inputs
and outputs Dt−1 to the space of the model outputs:

ŷ(t|ϑ) = g
(
Dt−1;ϑ

)
, (2.3)

where
Dt−1 = {u(1), y(1), . . . , u(t− 1), y(t− 1)}. (2.4)

Amongst all the possible parameterizations, we are looking for the one that provides
the best approximation of y(t) in terms of an identification criterion. The parameter
estimation task deals with this approximation problem, minimizing with respect to ϑ a
loss function, defined as:

L(y, ŷ) : R2 → R, (2.5)

such that L(y, y) = 0. For example, in the prediction error minimization (PEM) frame-
work, L is constructed as a function of the one-step ahead prediction error (for dy-
namical systems) which is the difference between the system output y and the model
prediction (2.3). Usually, L(y, ŷ) is evaluated on an independent set of data, not em-
ployed for training purposes, to establish the robustness and generalization properties of
the model. When a testing data set is not available, cross-validation techniques can be
used, [62]. Also, statistical indices such as the final prediction error (FPE), the Akaike
information criterion (AIC), and the Bayesian information criterion (BIC) can be used
to adjust the computed training error according to the model complexity and the size of
D, providing a way to assess how the model would perform on unseen data.

As formulated before, the identification problem consists essentially in solving a
continuous optimization problem to find the parameterization that minimizes the loss
function L(y, ŷ), i.e., the Parameter Estimation (PE) task. More in general, however,
one has to choose a suitable model structure within a class of model structures. This
leads to solving also a discrete optimization problem to select the most appropriate
model structure within the chosen set of candidate ones, which makes the problem
a mixed-integer one. We refer to this second problem as Model Structure Selection
(MSS), to distinguish it from PE. There are several factors that can drive the MSS
problem, such as:

• Flexibility. The chosen model structure should allow to describe most of the sys-
tem dynamics. This factor is influenced by both the number of free model terms
and how they enter into the model.

• Parsimony. The model should include the smallest number of free model terms
needed to adequately represent the true system.

While the MSS problem is trivially solved in linear problems by exhaustively calcu-
lating all alternatives and comparing them to find the best one, e.g., using the previously
mentioned indices FPE, AIC, and BIC, the same approach does not apply to complex
model identification problems, due to the combinatorial explosion.

8



i
i

“thesis” — 2020/1/17 — 11:10 — page 9 — #23 i
i

i
i

i
i
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2.1.1 Identification of nonlinear systems

Several classes of model structure have been proposed in the literature to cover the
many types of existing nonlinear systems [21]. In this thesis, we focus on the Nonlin-
ear AutoRegressive with eXogenous input (NARX) class [70, 71].

The NARX model is defined as

ŷ(t|ϑ) = g(x(t);ϑ), (2.6)

where x(t) is a finite-dimensional vector

[y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)] ∈ Rny+nu , (2.7)

with ny and nu being suitable maximum lags. The nonlinear mapping g is then often
represented by means of a nonlinear functional expansion:

g(x(t);ϑ) = ϕ(t)ϑ =
n∑
j=1

ϑjϕj(t), (2.8)

where ϕ(t) = ϕ(x(t)) is a mapping that projects the observations onto a finite-
dimensional space (the basis functions space), i.e., ϕ(t) : X ⊆ Rny+nu → F ⊆ Rn.
This mapping is particularly convenient in that it results in a linear-in-the-parameters
model and it configures a linear regression problem (all nonlinearities are confined in
ϕ(t)):

y(t) = ϕ(t)ϑ+ e(t), (2.9)

where the additive term e(t) is a zero-mean stochastic process independent of u(t)
and y(t), that accounts for the unpredictable part of the system. As a consequence,
the current output y(t) is not an exact function of past data. This naturally leads to
interpreting the available observations as being a finite length realization of a stochastic
process. This stochastic nature is explicitly represented by e(t). Within this framework,
the parameter estimation problem can be solved by employing algorithms of the Least
Squares (LS) family. Indeed, using a squared loss function:

L(y, ŷ) =
1

N

N∑
t=1

(y(t)−ϕ(t)ϑ)2 , (2.10)

the estimation problem can be formulated as the following optimization problem:

min
ϑ
L(y, ŷ), (2.11)

which yields the closed form solution:

ϑ̂ =
(
ΦTΦ

)−1
ΦTy ∈ Rn, (2.12)

where Φ = [ϕ(1)T , . . . ,ϕ(N)T ]T ∈ RN×n and y = [y(1), . . . , y(N)]T ∈ RN , pro-
vided that the matrix ΦTΦ is positive definite

9
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Chapter 2. Preliminaries and problem formulation

Remark 1. The matrix ΦTΦ is by construction always symmetric semi-definite pos-
itive. When the data matrix Φ is not full rank, ΦTΦ turns out to be singular, and
therefore there does not exist a unique solution to the equation(

ΦTΦ
)
ϑ = ΦTy. (2.13)

Note however, that if the identification experiment is well designed, e.g., using a persis-
tently exciting input signal, then Φ will have full rank, [108].

To analyze the statistical properties of the estimate (2.12), additional assumptions
on the data are needed. Assume that data have been generated according to the model
(2.9) and to the unknown parameter ϑ◦, and that e(t) is a white noise process of zero
mean and variance σ2. It follows that

var
(
ϑ̂
)

=
(
ΦTΦ

)−1
σ2 (2.14)

and
ϑ̂ ∼ N

(
ϑ◦,
(
ΦTΦ

)−1
σ2
)
. (2.15)

Typically the variance σ2 is unknown and one has to estimate it by

σ̂2 =
1

N − n

N∑
t=1

(y(t)− ŷ(t))2 . (2.16)

It follows that
(N − n) σ̂2 ∼ σ2χ2

N−n, (2.17)

where χ2
N−n is a chi-squared distribution with N − n degrees of freedom, and that ϑ̂

and σ̂2 are statistically independent. These distributional properties of ϑ̂ can be used
to form a hypothesis test to evaluate the confidence intervals for the parameters ϑ◦j .
For example, one can test the null hypothesis that ϑ◦j = 0, by analyzing the Z-score
associated to ϑ̂j:

zj =
ϑ̂j

σ̂
√
vj
, (2.18)

where vj denotes the jth diagonal element of ΦTΦ, which follows a t distribution with
N − n degrees of freedom. A large absolute value of zj will lead to reject the null
hypothesis. On the contrary, if |zj| is less than tα/2,N−n, which is the critical value of
a t distribution with N − n degrees of freedom and confidence level α, there is no
sufficient evidence in the data to reject the null hypothesis and hence the corresponding
parameter ϑ◦j can be removed from the model.

There are several families of basis functions that can be used in (2.8) to approximate
any continuous function on a compact domain to a given precision level, provided that
the expansion is endowed with sufficient degrees of freedom (i.e., n is large enough).
Polynomials, splines, multi-layer perceptron neural networks (NN), radial basis func-
tion (RBF), wavelets are examples of such universal approximating functions. As ar-
gued in [21], a popular choice in nonlinear identification is the polynomial functional
expansion which is a linear combination of all monomials of x(t) up to a given order

10
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nd, i.e., the regressors ϕj(t) are of the form xk11 x
k2
2 · · ·x

kl
l , where l = |x| = ny + nu,

with
∑l

i=1 ki ≤ nd and ki ≥ 0. This functional expansion extends gracefully from lin-
ear models and typically allows an easier model interpretation. Indeed, the terms in the
model are often associated to physical aspects of the system and so the parameters can
be interpreted as importance factors for the relative physical phenomena. Furthermore,
nonlinear combinations of physical variables reveal the existence of specific nonlinear
dependencies. Other functional expansions do not share this feature. For example, ar-
tificial NNs are very powerful function approximators, but do not provide transparent
models.

Unfortunately, polynomial expansions suffer from the well known curse of dimen-
sionality, in that the number of terms grows rapidly with the number of elementary
arguments (nu + ny) and the degree of the polynomial nd. However, it is common
experience that polynomial models with few terms can provide highly accurate and
robust models. It is therefore crucial to identify and select the essential terms of a
model, i.e., select the model structure, which motivates the interest in MSS algorithms.

Let the structure of a NARX model be coded in a vector s ∈ {0, 1}n, where sj = 1 if
the j-th regressor belongs to the model structure (and sj = 0 otherwise). The nonlinear
system identification within the polynomial NARX class can be stated as follows.

Problem 1. Given a data set DN = {(y(t), u(t))}Nt=1 and the model orders ny and nu,
and the degree of nonlinearity nd, estimate the model structure s (chosen among the
non-redundant structures 1) and the parameter vector ϑ, so as to

minimize
1

N

N∑
t=1

(y(t)−ϕ(t)ϑ)2, (2.19)

subject to ϑj = 0 if sj = 0, j = 1, . . . , n,

where n = (nd+ny+nu)!

nd!(ny+nu)!
.

Problem 2.19 typically involves all data at once, assuming that data have been col-
lected by a single entity. However, when data are collected separately by multiple
entities and cannot be made available to a central unit, due to e.g., privacy or communi-
cation constraints, the problem of identifying the same model based on separately avail-
able data sets arises. If the entities collecting data have computing and communication
capabilities, one can formulate the problem in a distributed computation framework,
where a network of agents are cooperatively solving the identification problem by lo-
cal optimization. However, the problem of identifying the structure and parameters of
the system has a mixed discrete and continuous nature, which hampers the application
of classical distributed schemes, such as those based on the subgradient, [87], and on
proximal minimization, [79]. In Chapter 4, we address this issue by resorting to a dis-
tributed scheme which aims at reaching a common value for both the model structure
and the parameter estimates within the NARX modeling framework, where each agent
i has its own data set and its own cost function Li : Rn → R to assess the quality of
the model in terms of its parameterization ϑ ∈ Rn (which also encompasses the model

1Regressor redundancy can be tackled e.g. by introducing a regularization term, or by applying an a posteriori t-test on the
estimated parameter vector to detect terms that are statistically indistinguishable from 0

11
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Chapter 2. Preliminaries and problem formulation

structure, in that only the terms included in the model have nonzero parameters). TheK
agents aim at reaching consensus on a common value for ϑ that optimizes

∑K
i=1 Li(ϑ),

but without sharing their local data sets and costs.

2.1.2 The bias-variance dilemma

The Gauss-Markov theorem states that the LS estimator ϑ̂ in (2.12) has minimum vari-
ance, among all the unbiased estimators, assuming that the model (2.9) is correct. How-
ever, when the model structure is unknown, one is confronted with the so called bias-
variance dilemma.

Suppose we create several models starting each time from a new set of collected
data. Due to the randomness in the underlying data sets, the resulting models will have
different prediction performance. The bias measures how differ in general the model
predictions from the correct value, while the variance describes how much the predic-
tions vary between different realizations of the model. Essentially, dealing with bias
and variance is really about dealing with over- and under-fitting. High bias can cause a
model to miss the relevant relations between the inputs and the target outputs (under-
fitting). High variance can cause over-fitting, i.e., the model is so accurate that it fits
the data including the noise effects, rather than capturing the real system dynamics.
Hence, there is a trade-off between bias and variance, since in general the bias is re-
duced and the variance is increased as the model complexity is increased. Within the
polynomial NARX model class, assuming a priori information about the model orders
and the degree of nonlinearity, this trade-off deals with the problem of choosing which
model terms to include in the model.

In principle, one could include all the available regression terms ϕj into the model
and estimate the parameter vector ϑ in a classical LS approach. It can be proved that in
this case the variance of ŷ for a given vector ϕ, is:

var
(
ϕϑ̂
)

= σ2
(
ϕR−1

) (
ϕR−1

)T
, (2.20)

where R ∈ Rn×n is the upper-triangular matrix coming from the Cholesky decompo-
sition of the matrix ΦTΦ ∈ Rn×n, i.e., ΦTΦ = RTR.

Property 1. According to (2.20), the variance of the predicted value ŷ is the sum of
squares of the elements of the n-dimensional vector ϕR−1.

Now let us consider the case in which one wants to predict y using only the first
k < n terms ϕi. Let us write

Φ = (ΦA,ΦB) , (2.21)
where ΦA consists of the first k columns of Φ, and ΦB contains the remaining (n− k)
columns. It turns out that:

var
(
ϕϑ̂
)
≥ var

(
ϕAϑ̂A

)
, (2.22)

where
var
(
ϕAϑ̂A

)
= σ2

(
ϕAR

−1
A

) (
ϕAR

−1
A

)T
, (2.23)

with ϕA denoting the first k elements of vector ϕ, ϑ̂A being the corresponding LS
estimate, and RA being composed by the first k rows and columns of matrix R. The
result in (2.22) is due to Property 1.
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Assuming that the true model is in the form (2.9), then

E
[
ϑ̂A

]
=
(
ΦT
AΦA

)−1
ΦT
AΦϑ

=
(
ΦT
AΦA

)−1
ΦT
A (ΦA,ΦB)ϑ

=
(
ΦT
AΦA

)−1 (
ΦT
AΦA,Φ

T
AΦB

)
ϑ

= ϑA +
(
ΦT
AΦA

)−1 (
ΦT
AΦB

)
ϑB

(2.24)

where ϑA and ϑB are respectively the first k and the last (n− k) elements of ϑ. The
second term in the R.H.S. of (2.24) represents the bias introduced in the first k least-
squares coefficients due to the omission of the remaining (n− k) coefficients. The bias
in estimating y given ϕ and ϑA is hence:

ϕϑ− E
[
ϕAϑ̂A

]
=
[
ϕB −ϕA

(
ΦT
AΦA

)−1 (
ΦT
AΦB

)]
ϑB (2.25)

In general, as more terms are added to a model, the bias is reduced, at the cost of an
increasing variance. However, if a term has no predictive value, then adding that term
merely increases the variance. Conversely, there are situations in which one can accept
an increase in bias if it helps in reducing significantly the estimator variance, as will be
discussed in Section 2.3.

2.1.3 Identification of hybrid systems

Hybrid systems (HS) are dynamical systems whose behavior can be described by the in-
teraction of several time-driven continuous dynamics indexed by event-driven discrete
dynamics (discrete state), [45, 76, 114]. HSs provide a unified framework for the rep-
resentation of technological systems whose physical and mechanical part is described
by continuous models such as differential or difference equations describe the, while
the software and logical behavior is well modeled by finite-state machines or Petri nets.
Also many real physical processes exhibiting both fast and slow changing behaviors can
be described by HS models. Finally, a nonlinar dynamical system can be approximated
by switching among various linear models.

Most research regarding the identification of hybrid systems (HSI) has focused on
switched affine (SA) and piecewise affine (PWA) models due to their universal approx-
imation properties and their simple interpretation. Indeed, they provide the simplest
extensions of continuous systems that can handle hybrid phenomena. The difference
between them relies on how the switching mechanism is implemented. In SA sys-
tems, the switching between different continuous affine dynamics is governed by a
finite-valued input which represents the discrete state, whereas in PWA systems the
switching mechanism is determined by a polyhedral partition of the (continuous) state-
input domain. The input-output counterparts of these system classes are Switched ARX
(SARX) and PieceWise affine ARX (PWARX), respectively. The optimization prob-
lem induced by the identification task is of the mixed-integer type, since it involves
the identification of discrete variables (representing the mapping of the samples to the
modes and the model structure associated to each mode), as well as continuous ones
(the parameters of the models describing the continuous dynamics associated to the
various system conditions).
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In Chapter 5, we investigate the identification of Switched Nonlinear ARX
(SNARX) models, defined as a collection of NARX systems (2.9) indexed by a finite-
valued switching signal σ. Given a regression vector ϕ of size n, common to all the
continuous modes, the output predictor of a SNARX model is defined as

ŷ(t|ϑ) = ϕ(t)ϑ(σ(t)), (2.26)

where σ(t) ∈ {1, . . . , NM} is the value taken by the switching signal at time t, that
defines which mode is active at that time instant, NM is the number of modes, and
ϑ(i) is the parameter vector defining the dynamics of the i-th NARX mode. According
to the coding of the NARX model structure introduced in Section 2.1.1, the overall
SNARX model structure can be encoded in a n × NM matrix S = [s(1), . . . , s(NM )] ∈
S = {0, 1}n×NM , which is the collection of the structures of the NARX models that are
associated with its NM modes.

Given a data set of time-ordered and consecutive input-output samples of a SNARX,
a finite-valued switching signal assigns each sample to a specific mode. For the purpose
of the SNARX model identification, the SNARX model structure needs to be extended
to include the mode switching signal σ = [σ(1), . . . , σ(N)] ∈ Σ = {1, . . . , NM}N ,
such that σ(t) = i if sample t is attributed to mode i. Notice that the identification of
σ(t) amounts to segmenting the data in consecutive portions, attributing each subperiod
to the appropriate mode. A SNARX model structure is thus expressed by a pair λ =
(σ, S) taking values in Λ = Σ×S. The quality of a SNARX model with structure λ is
given by the value of the loss function corresponding to its optimal parameterization:

L(λ) = min
{ϑ(i)}NMi=1

1

N

N∑
t=1

NM∑
i=1

β
(i)
t ·

(
y(t)−ϕ(t)ϑ(i)

)2

, (2.27)

subject to ϑ(i)
j = 0 if s(i)

j = 0, j = 1, . . . , n, i = 1, . . . , NM ,

where β(i)
t is a binary variable encoding the sample-mode mapping provided by σ:

σ(t) = i⇐⇒ β
(i)
t = 1. (2.28)

Consistently with most of the literature on switched system identification, we here
address the case where Assumption 1 holds.

Assumption 1. The number of modes NM is known.

Under Assumption 1, the SNARX identification problem can be stated as follows.

Problem 2. Given a data set of time-ordered and consecutive input-output samples
D = {(y(t), u(t))}Nt=1, estimate the model structures s(i) (chosen among the non-
redundant structures 2) and parameterizations ϑ(i), i = 1, . . . , NM , of the mode dy-
namics, as well as the switching signal σ, so as to minimize the fit criterion (2.27).

If there exists only one λ minimizing (2.27), this can be written as

λ? = (σ?, S?) = arg min
λ∈Λ
L(λ). (2.29)

2See Note 1 on redundancy of the parameterization.
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The optimization problem (2.29) is a mixed integer program, which is typically
computationally intractable due to its combinatorial complexity. Indeed, the SNARX
structure λ involves N ×NM binary variables for σ, plus n×NM for S. Typically, N
is the factor most affecting the combinatorial complexity of the problem, since N �
n,NM . As a consequence, the sample-mode mapping is the most critical aspect of the
problem, since switchings can occur at arbitrary times. However, denoting by T ◦s ⊆
{1, . . . , N} the set of switching time instants in the observed data, it is typically true
that |T ◦s | � N .

2.2 Kalman filtering

Model structure selection is crucial also in the estimation of the process noise covari-
ance matrix in state estimation problems in the Kalman filter setting, [33,46,59], as will
be discussed in the following. Kalman filtering is probably the most widespread tool
for designing virtual sensors and state estimators in dynamical systems [59, 60, 99].
Within the linear framework, it can be shown that the Kalman filter provides the
minimum variance state estimator when all noise acting on the system are Gaussian,
under the assumption that the employed model accurately describes the real system
dynamics. The model is characterized as a stochastic dynamical system in the
state-space form, that includes both a model of the process relating the inputs to the
outputs and a noise model accounting for both noise effects and unmodeled dynamics.
Such noise model is a crucial complement to the process model, which is typically
the result of some approximations. This is even more true in practical applications
where the physics underlying the systems is unknown or too complex to model from
first principles. System identification plays a key role in such conditions and has been
extensively applied to compute the system matrices from data, resulting in several
well-established techniques. On the other hand, a relatively smaller effort has been
devoted to characterize the noise model, which is a key factor affecting the quality
of the state estimator. In many papers the process noise covariance matrix Q and
the measurement noise covariance matrix R are provided as prior knowledge or their
estimation is “declassified” into an empirical tuning problem [41]. Recently, the joint
estimation of the state and the covariance matrices (CMs) from data has been more
thoroughly investigated and several algorithms have been proposed. Some of these
techniques are formulated within an adaptive control framework, where a feedback
mechanism is used to update the CMs based on the quality of state estimation. A
common feature of all the existing algorithms is that the CMs are assumed to be
retrievable from data, i.e., that the data are informative enough to estimate them and
that the matrices are correctly parameterized. However, as observed in [83], tuning the
CMs may require more degrees of freedom than tuning the optimal gain of a Kalman
filter, which poses an identifiability issue on the noise CMs. Indeed, these matrices
cannot be estimated univocally in such conditions. This problem can be dealt with
in two ways. A first strategy consists in estimating directly the optimal gain through
an iterative process, bypassing completely the estimation of Q and R. However, this
approach is suitable if only the state estimation is of interest. A second strategy is that
of simplifying the structure ofQ andR to match the degrees of freedom of the Kalman
gain matrix. For example, a diagonal structure is often adopted for these matrices
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Chapter 2. Preliminaries and problem formulation

(thereby assuming incorrelation of the individual noise components), which greatly
reduces the number of free elements. While this often works out satisfactorily, it is not
always the most appropriate choice, leading to an unnecessary loss of filtering accuracy.

In Chapter 6, we analyze in more detail the introduced structural simplification ap-
proach, showing that the diagonal parameterization of the CMs does not always provide
the best compromise between computational complexity and tracking accuracy, and ac-
cordingly we propose an algorithm to suitably select the structure of Q (the R can be
directly deduced from the sensors characteristics).

2.3 Model structure selection

The identification problems defined so far all entail a MSS, i.e., the problem of find-
ing the optimal subset of model terms among a given set of candidates, according to
some performance criterion. The latter is in general related to the accuracy of the
model [84]. As suggested by the bias-variance analysis carried out in Section 2.1.2,
MSS is particularly challenging since there is not an analytical way to find the optimal
model complexity. Instead, we must use a measure of the prediction error, and explore
differing levels of model complexity and then choose the most appropriate complexity
level. In doing so, one has to consider that a prediction error based measure, e.g., the
squared loss function in (2.10), is computed using the training data that were used to fit
the model, and so it will decrease as model complexity increases, but the same measure
computed on unseen data may not. This motivates the usage of a test data set, not used
for training purposes, to validate the estimated model, or the use of cross-validation
techniques when test data are not available. These techniques allow to estimate the pre-
diction error on unseen data. Alternatively, the loss function can be modified to include
a regularization term penalizing the model complexity.

In the following, the main approaches for solving MSS problems are briefly intro-
duced, highlighting their pros and cons, and the possible relations between them.

2.3.1 Best subset selection methods

The most intuitive approach for solving the MSS, is certainly that of considering ex-
haustively all possible model structures, estimate the relative model parameterizations,
and compare them in terms of the criterion of choice. That is the case of the Best
Subset Selection (BSS) approach. Specifically, with reference to problem 2.19, an LS
regression model is fitted on the training data for each possible combination of the n
regressors, and one then looks at all of the resulting 2n − 1 models, with the aim of
finding the best one. In practice, for each 0 < k ≤ n, one estimates all the models with
exactly (n− k) non-zero LS coefficients ϑj , and one picks the best among all these(
n
k

)
models. Then, among all the resulting n best models, a single model is selected

by evaluating them on a testing data set Dtest or according to some criterion, e.g., AIC,
BIC. Note that a price is paid in terms of variance for selecting the best subset of each
size, thus resulting in possible over-fitting.

Let us introduce a mathematical formulation of the BSS scheme which will be used
to compare this approach with other approaches. Specifically, at each step k, the fol-
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2.3. Model structure selection

lowing optimization problem has to be solved:

min
ϑ

N∑
t=1

(
y(t)−

n∑
j=1

ϑjϕj(t)

)2

(2.30)

subject to
n∑
j=1

1 (ϑj 6= 0) ≤ k

where the indicator function

1 (ϑj 6= 0) =

{
1, if ϑj 6= 0

0, otherwise
. (2.31)

The optimal structure s?, can be retrieved directly from the estimated optimal parame-
terization ϑ? solving problem (2.30) as:

s?j =

{
0, if and only if ϑ?j = 0,

1, otherwise.
(2.32)

While this approach is conceptually very simple, it is computationally infeasible for
large values of n, since it is an NP-hard problem, [85]. Also, note that the resulting
optimization problem (2.30) is not convex due to the presence of the indicator function.
This motivates the interest in computational tractable alternatives.

2.3.2 Stepwise methods

The methods belonging to this class, try to mitigate the computational issue of the
BSS approach, by reducing the number of candidate models to evaluate and compare.
Specifically, in the forward stepwise method, the model is built incrementally, starting
from an empty model and adding one model term at a time. At each step the term
that gives the greatest additional improvement to the fit is added to the model, thus
involving the fitting of (n− k) models at the kth iteration. Note that in practice, the
full model is never computed, but one stops when an a-priori defined maximum model
size is reached, or a minimum performance requirement for the model is met. The
backward stepwise method adopts instead a decremental approach starting from a full
initial model.

Unlike the BSS approach, in this case only n(n+1)
2

models have to be fitted at most,
but there is no guarantee to find the true best model. Note that stepwise methods
implement a more constrained search than the BSS approach, and will have lower
variance (but perhaps more bias), thus mitigating also the over-fitting issue.

The forward-regression orthogonal estimator (FROE) [20] represents a milestone in
the research on model structure selection algorithms, and several variants of this method
have been proposed in the literature [48, 72, 78, 98, 116]. The FROE adopts an incre-
mental greedy scheme where the regressors are rated by means of the error reduction
ratio (ERR) criterion. The FROE also uses a smart scheme based on orthogonal least
squares (OLS) to decouple the estimation of the parameters associated to additional
terms from that of the parameters related to terms already included in the model. The
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Chapter 2. Preliminaries and problem formulation

drawbacks of the FROE have been extensively reviewed in the literature (see, e.g., the
discussion in [98]). Most of these are related with the fact that the ERR provides a local
estimation of the importance of a specific regressor, which appears to vary significantly
depending on the considered model structure.

2.3.3 Shrinkage methods

The idea behind these methods is to estimate a full model by exploiting all the available
n model terms, but constraining the model coefficients. In particular, they are based on
a convex penalized relaxation of problem (2.30).

Ridge regression

The following problem is addressed:

min
ϑ

N∑
t=1

(
y(t)−

n∑
j=1

ϑjϕj(t)

)2

(2.33)

subject to
n∑
j=1

ϑ2
j ≤ k

or equivalently

min
ϑ

N∑
t=1

(
y(t)−

n∑
j=1

ϑjϕj(t)

)2

+ λ
n∑
j=1

ϑ2
j , (2.34)

where λ > 0 is a parameter governing the trade-off between model accuracy and model
complexity. A bias-variance perspective suggests that as λ increases, the estimator
variance will decrease while the bias will increase. Recalling that the LS estimator
(which corresponds to the case λ = 0) is unbiased, we are accepting to introduce a bias
in the estimate, if this helps in significantly decreasing the variance, [52].

Given a value of λ, this method requires the estimation of a single model which will
be computed in closed form as

ϑ̂
ridge

=
(
ΦTΦ + λIn

)−1
ΦTy, (2.35)

where Φ = [ϕ(1)T , . . . ,ϕ(N)T ]T ∈ RN×n and In denotes the identity matrix of order
n. However, unfortunately, this will always lead to a full model, i.e., no coefficients will
be exactly zero. For a better understanding of this approach, especially in comparison
with the classical LS estimate, consider the singular value decomposition (SVD) of the
regression matrix Φ:

Φ = UDV T , (2.36)

whereU ∈ RN×n and V ∈ Rn×n are orthogonal matrices, andD ∈ Rn×n is a diagonal
matrix whose diagonal elements are the singular values of Φ. It results that:

Φϑ̂
LS

= Φ
(
ΦTΦ

)−1
ΦTy = UUTy (2.37)

=
n∑
j=1

uju
T
j y,
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2.3. Model structure selection

and

Φϑ̂
ridge

= Φ
(
ΦTΦ + λIn

)−1
ΦTy (2.38)

= UD
(
D2 + λIn

)−1
DUTy

=
n∑
j=1

uj
d2
j

d2
j + λ

uTj y.

Therefore, unlike LS regression, the ridge regression rescales the coordinates of y with
respect to the orthonormal basis U of Φ, by a factor which is proportional to the sin-
gular values, i.e., the smaller d2

j , the bigger the shrinking.

LASSO

Another convex penalized relaxation of the BSS (2.30) is represented by the LASSO
estimate [29, 113], defined by:

min
ϑ

N∑
t=1

(
y(t)−

n∑
j=1

ϑjϕj(t)

)2

(2.39)

subject to
n∑
j=1

|ϑj| ≤ k

or equivalently

min
ϑ

N∑
t=1

(
y(t)−

n∑
j=1

ϑjϕj(t)

)2

+ λ
n∑
j=1

|ϑj|. (2.40)

Unlike ridge regression, LASSO has not a closed form solution, and computing the
LASSO solution amounts to solving a quadratic programming problem (except if the
matrix Φ is orthonormal), which requires the use of efficient solvers. Also, because of
the different nature of the constraint, LASSO translates each coefficient by a constant
factor λ and some of them are truncated at zero. Under various conditions on the
regression matrix Φ and N , n, ϑ it can be shown that LASSO leads to a sparse model
with good predictive performance, [43,105], thus actually solving the MSS problem in
a continuous domain. On the contrary, a critical aspect is the selection of the optimal
λ value, which is usually done by cross-validation, [22]. Also, by the nature of the `1

norm, LASSO may lead to biased estimates of the regression coefficients, [13].

2.3.4 Dimension reduction methods

All the methods discussed so far, aim to reduce the estimator variance selecting a suit-
able subset of all the model terms ϕj , considering them in their original form. Instead,
the dimension reduction methods operate with p < n linear combinations of the ϕj’s.
They first transform the model terms and then fit a LS model using the transformed
terms.

Let z1, z2, . . . , zp being the p < n linear combinations of the ϕj’s computed as:

zi =
n∑
j=1

φjiϕj, (2.41)
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Chapter 2. Preliminaries and problem formulation

where φ1i, φ2i, . . . , φni, i = 1, 2, . . . , p, are some constants. It can be shown that:
p∑
i=1

βizi =
n∑
j=1

ϑjϕj, (2.42)

where

ϑj =

p∑
i=1

βiφji. (2.43)

As in ridge regression and the LASSO, the dimension reduction serves to constrain the
estimated ϑj coefficients, since now they must take the form (2.43).

The Principal Component Regression (PCR) [55, 56] belongs to this family. It
exploits the Principal Component Analysis (PCA), taking the first p directions along
which the ϕj’s vary the most as zi’s, under the assumption that y also varies most in
these directions. Apparently, the PCR does not perform a real MSS since all the orig-
inal model terms are used in computing the zi terms, and hence it works similarly to
ridge regression. Nevertheless, being p < n, the computational complexity is reduced.

2.3.5 Evolutionary methods

Evolutionary algorithms (EAs) are search and optimisation methods, inspired by the
principles of natural selection and population genetics. They allow a flexible represen-
tation of the decision variables, thus allowing their application to decision problems
characterized by a large search space, leading to their diffusion also in the systems and
control community, [39]. The term EAs denotes a broad family of methods, such as
genetic algorithms (GAs) and genetic programming (GP), and particle swarm based
optimization methods (PSO). The main idea behind these algorithms is to encode each
solution of the problem, which can then be easily manipulated by means of operators,
some of which are based on a designed cost function. They are population-based iter-
ative algorithms, in which an initial set of candidate solutions is manipulated in order
to effectively explore the entire solution space, with the aim of reaching the optimal
solution.

Apparently, EAs can deal with the MSS problem, where the presence or absence of
a model term is easily encoded as a binary decision variable, as reported in [40,78,103,
115, 119, 120]. Consider, e.g., the case of a GA applied to the MSS problem.

A typical GA requires a genetic representation of the solution domain and a fitness
function to evaluate the solution domain. A standard representation of each candidate
solution is a binary string. Assuming for example to have a candidate regressor set
composed by 10 terms, i.e., ϕ = [ϕ1, ϕ2, . . . , ϕ10]. The model structure relative to
the model y(t) = ϑ1ϕ1(t) + ϑ3ϕ3(t) + ϑ7ϕ7(t) + ϑ10ϕ10(t) can be represented by the
following binary string

1010001001 (2.44)

New candidate model structures are obtained by means of genetic operators:

• Crossover: two strings are randomly selected from a previously defined pool using
a given criterion (tournament selection, roulette wheel selection and others). The
bit position from which the two strings will be splitted is randomly selected and
the obtained substrings finally combined. For example, consider the following
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2.3. Model structure selection

strings: i)1010001001 and ii) 1110101011. Assuming to split from the fifth bit,
the two resulting strings will be: i)1010001001 and ii)1110101001.

• Mutation: randomly flip a bit.

The fitness function assumes a key role in the selection phase: individual solutions are
selected through a fitness-based process, where solutions with high fit value are typi-
cally more likely to be selected. In other words, the idea is to combine good solutions
hoping to find a better one. In this way, the population will move toward better solu-
tions. GAs are simple to implement, but there are some complexity issues. In particular,
how model portions that have evolved to represent good solutions can be protected from
further destructive mutation or crossover operations. So, there is a trade-off between
exploration of the search space and exploitation of the current good results.

2.3.6 Bayesian methods

The methods belonging to this class address the MSS problem from a statistical per-
spective, starting from the specification of a probability model for the random variable
Y :

Y ∼ p (y|ϑ) , (2.45)

where ϑ is the parameter vector, and p is a probability density function. p (y|ϑ)
is the likelihood of the value y for variable Y as a function of the parameters ϑj ,
j = 1, 2, . . . , n. Accordingly, the model identification problem can be stated as that of
finding the ϑ value which maximizes the likelihood (or functions based on it), given
the observed y value. If one specifies the prior probability p(ϑ), the joint probability
of y and ϑ is:

p(y,ϑ) = p(y|ϑ)p(ϑ), (2.46)

and according to the Bayes’ rule, one obtains the posterior probability for the parame-
ters given the data as:

p(ϑ|y) =
p(y,ϑ)

p(y)
(2.47)

=
p(y|ϑ)p(ϑ)

p(y)
,

where p(y) =
∫
p(y|ϑ)p(ϑ)dϑ. Therefore, p(ϑ|y) ∝ p(y|ϑ)p(ϑ), but the normal-

ization factor p(y) cannot be easily evaluated due to the integral. To fill this gap,
several sampling methods have been proposed to numerically compute posterior distri-
butions, [112].

Markov chain Monte Carlo methods

One popular sampling method family is the Markov chain Monte Carlo (MCMC). The
idea behind these methods is to set up a Markov chain whose stationary distribution is
p(ϑ|y). Then, one can simulate a random sequence of states from that Markov chain
that is long enough to (almost) reach the steady state and then keep some generated
states as samples drawn from p(ϑ|y). The Metropolis-Hasting (MH) [32] algorithm
allows to construct a Markov chain such that its stationary distribution is exactly the
desired distribution p(ϑ|y).
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The MH provides the basis for the reversible jump Markov chain Monte Carlo
(RJMCMC) method, [7], that has been applied to the identification of NARX mod-
els. One of the advantages of this approach, is that it naturally provides a framework
for quantifying model uncertainty (in both parameters and structure). The basic idea of
this method is to move between the states of a Markov chain, which represent models
of k terms. Three basic operations have been defined to move between states:

• Birth move: sampling of unselected terms to include in the current model, i.e.,
k′ = k + 1.

• Death move: sampling of previously selected terms to remove from the current
model, i.e., k′ = k − 1.

• Update: updating the parameters of the existing terms, along with the variance,
i.e., k′ = k.

At each iteration one of this operations is randomly attempted according to some prob-
abilities and its result is accepted or rejected according to an acceptance ratio. The
probabilities of performing such operations are updated according to the likelihood
that the size of the real model is larger or smaller than the current model. This method
solves jointly both the model structure selection and the parameter estimation prob-
lems, performing a global search of the term space and naturally including a pruning
method to remove incorrect terms. However appealing it may be, the joint solution
of the two problems appears to be an extremely difficult task, essentially because the
value of the same parameter can vary greatly depending on the structure of the model in
which the corresponding regressor appears, so that the distribution of the parameter val-
ues over models is typically very complex. Thus, everytime a birth or death move takes
place, a discontinuous variation of the optimal parameters generally occurs, affecting
the parameter update process.

Although MCMC methods tend to be accurate asymptotically, they are also com-
putationally intensive and can be prohibitively slow, because they tend to rely on large
numbers of samples, and may exhibit slow convergence to a stationary distribution.
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2.3.7 An illustrative example

Consider the following nonlinear dynamical system [7]:

y(t) = 0.7y(t−1)u(t−1)−0.5y(t−2)−0.7y(t−2)u(t−2)2+0.6u(t−2)2+e(t), (2.48)

where the input signal u(t) is uniformly distributed in the range (−1, 1) and the noise
e(t) is a white Gaussian noise with variance 0.004. Let the candidate regressor set be
composed by all the monomials of degree less or equal to 3 obtained from x(t) =
[y(t− 1), · · · , y(t− 4), u(t− 1), · · · , u(t− 4)]. This amounts to n = 165 possible
candidate model terms among which to search for the optimal subset. A data set of
N = 500 samples was generated. The MSS approaches presented previously have been
applied on this example, except the BSS approach which is computationally infeasible
for the considered regressor set.

Forward stepwise methods - the FROE

Table 2.1 reports the terms selected by the FROE method, listed in the same order as
they have been selected according to their importance in the model. The terms reported
represent the final model structure, as selected according to the following BIC-based
rule:

sk such that BIC(sk+1) ≥ BIC(sk),

where sk is the structure at iteration k.
As can be noticed, the constant term, selected at the second step, is incorrect. This

is presumably due to the local estimation of the importance of a specific term, which
depends on the model structure selected so far.

Table 2.1: Illustrative example: Model structure selection results with the FROE method.

Sel. order Model term ERR Parameter Estimate Correct term?

1 y(t− 2) 0.4127 -0.5078 Yes

2 1 0.2863 0.0014 No

3 u(t− 2)2 0.1696 0.5901 Yes

4 y(t− 1)u(t− 1) 0.1132 0.6868 Yes

5 y(t− 2)u(t− 2)2 0.0104 -0.6660 Yes

Shrinkage methods - Ridge regression

Figure 2.1 shows the ridge coefficients, as the tuning parameter λ varies. The optimal
λ value has been chosen by 5-fold cross-validation and it is represented by the vertical
red dashed line. As expected, a full model has been obtained, with several coefficients
close to 0.
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Figure 2.1: Illustrative example: Profiles of ridge coefficients, as the tuning parameter λ is varied. The
red dashed line indicates the optimal λ value chosen by cross-validation.

Shrinkage methods - the LASSO

Figure 2.2 shows the LASSO coefficients, as the tuning parameter λ varies. Again,
the optimal λ value has been chosen by 5-fold cross-validation. The LASSO solves
the MSS problem returning a sparse model. However, as can be noticed in Table 2.2,
several spurious terms have been added to the final best model.

Figure 2.2: Illustrative example: Profiles of the LASSO coefficients, as the tuning parameter λ is varied.
The red dashed line indicates the optimal λ value chosen by cross-validation.
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Table 2.2: Illustrative example: Model structure selection results with the LASSO method.

Model term Parameter Estimate Correct term?

1 0.0090 No

y(t− 2) -0.5002 Yes

y(t− 1)u(t− 1) 0.6302 Yes

u(t− 2)2 0.5524 Yes

y(t− 2)u(t− 1)2 -0.0035 No

y(t− 2)u(t− 2)2 -0.5765 Yes

y(t− 4)u(t− 1)2 0.0133 No

y(t− 4)u(t− 2)2 0.0115 No

u(t− 1)3 0.0101 No

u(t− 1)u(t− 3)2 0.0019 No

Dimension reduction methods - the PCR

The number of retained components has been chosen by imposing a minimum value
of 2% on the total variance explained by each principal component. Accordingly, only
p = 12 components have been considered, see Figure 2.3. Like ridge regression, also
the PCR results in a full model, but this time several spurious terms have non-negligible
coefficients, Figure 2.4. This issue is partially mitigated if a larger data set is employed.

Figure 2.3: Illustrative example: Percentage of the total variance explained by each principal compo-
nent. The red dashed line indicates the optimal number of considered principal components.
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Figure 2.4: Illustrative example: PCR coefficients. Green vertical bars correspond to the true model
terms.

Evolutionary methods - Genetic Algorithm

A GA as described in Section 2.3.5 has been implemented. Specifically, the BIC crite-
rion has been used as fitness function, the tournament selection criterion and the single
point crossover technique (which creates a random binary vector and selects the genes
where the vector is a 1 from the first parent, and the genes where the vector is a 0 from
the second parent, and combines the genes to form the child) have been chosen, the pop-
ulation size has been set to 200, and the mutation rate has been set to 0.1. To partially
preserve good solutions from further destructive mutation and crossover operations, the
elitism technique has been employed, which involves carrying a small proportion of the
fittest candidates, unchanged, over to the next generation.

Table 2.3 reports the model structures selected by the GA, running the algorithm 10
times on the same data realization. Apparently, even if the correct terms always appear
in the selected structures, only 3 times the final model is correct. In the remaining 7
cases, an extra term has been selected.

Bayesian methods - the RJMCMC

Table 2.4 presents directly the results reported in [7], in which the RJMCMC has been
employed in the identification of NARMAX models. Specifically, the RJMCMC ap-
proach retrieved the correct model structure 7 times out of 10 runs. It is worth noting
that the algorithm was run with 30000 iterations and a burn in period of 5000 iterations,
confirming the fact that in general the MCMC based approaches are computationally
very expensive.
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Table 2.3: Illustrative example: Model structure selection results obtained from 10 runs of the genetic
algorithm on the same data realization. Wrong selected terms are highlighted.

Model index Term 1 Term 2 Term 3 Term 4 Term 5 Correct model?

1 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 u(t− 1)3 No

2 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 u(t− 1)3 No

3 y(t− 2) u(t− 1) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 No

4 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 - Yes

5 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 - Yes

6 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 u(t− 1)3 No

7 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 u(t− 1)3 No

8 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 - Yes

9 y(t− 2) u(t− 1) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 No

10 y(t− 2) y(t− 1)u(t− 1) u(t− 2)2 y(t− 2)u(t− 2)2 u(t− 1)3 No

Table 2.4: Illustrative example: Model structure selection results obtained from 10 runs of the RJMCMC
method on the same data realization. These results are reported in [7]. Wrong selected term are
highlighted.

Model index Term 1 Term 2 Term 3 Term 4 Term 5 Correct model?

1 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

2 y(t− 1)u(t− 1) y(t− 2)3 y(t− 4)u(t− 2)2 u(t− 2)2 y(t− 3)u(t− 3) No

3 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

4 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

5 y(t− 1)u(t− 1) y(t− 4) y(t− 2)u(t− 2)2 u(t− 2)2 u(t− 4)2 No

6 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

7 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

8 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

9 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 - Yes

10 y(t− 3)u(t− 1) y(t− 2)u(t− 4)2 y(t− 2)u(t− 2)2 u(t− 2)2 u(t− 1)u(t− 3)2 No
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CHAPTER3
A randomized model structure selection method

THIS chapter considers the Randomized Model Structure Selection (RaMSS)
method, [14, 36]. The RaMSS method is a randomized model structure
selection approach for NARX model identification, based on a probabilistic

representation of the model structure, whereby a probability distribution representing
the likelihood of each model structure to be the true one is iteratively refined by
a sample-and-evaluate procedure until convergence to a limit distribution that can
be associated to a specific NARX model structure. Specifically, a collection of
independent Bernoullian distributions is employed in the RaMSS to account for the
presence (or absence) of each regressor in the model.

In the following, we directly present this method in a more generic form than that
used in the seminal paper [36], which will allow us to extend it in order to cope with
the problems we investigate in this thesis. Then, the presented randomized approach
is applied to the illustrative example discussed in Section 2.3.7, with reference to the
identification of NARX models, as originally done in [36].

3.1 A probabilistic framework for combinatorial optimization problems

Let x = (x1, x2, . . . , xn) be a collection of n discrete variables variables with xj ∈
Xj = {1, . . . ,mj}, j = 1, . . . , n. Consider a combinatorial optimization problem
where the goal is to find a value of x that maximizes a given performance index J :
X → R+, with X = X1 × . . .×Xn. If such a value is unique, we can define it as:

x? = (x?1, . . . , x
?
n) = arg max

x∈X
J (x). (3.1)
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Chapter 3. A randomized model structure selection method

Let us introduce a random variable γj ∼ Categorical(πj)
1 for each term xj ,

where πj = (π
(1)
j , . . . , π

(mj)
j ) and π(i)

j represents the probability that xj takes the i-th
value (

∑mj
i=1 π

(i)
j = 1). If we assume that the γj variables are independent2, then the

probability that the collection of random variables γ = (γ1, . . . , γn) takes the value
x = (x1, . . . , xn) ∈ X is uniquely defined by π = (π1, . . . ,πn). More precisely, we
have that

Pγ(x) =
n∏
j=1

mj∏
i=1

(
π

(i)
j

)β(i)
j

, (3.2)

where β(i)
j = 1 if xj = i, and 0 otherwise.

The expected performance of γ can then be computed as follows:

EPγ [J (γ)] =
∑
x∈X

J (x)Pγ(x). (3.3)

The value of EPγ [J (γ)] is a function of Pγ , and its maximum is obtained if the
distribution Pγ is such that all the probability mass is concentrated on x?, which can be
obtained for an appropriate choice of the parameters in π. In view of this, the value x?

that maximizes J (x) can be also obtained as:

x? = arg max
x∈X

P?γ(x), (3.4)

where
P?γ = arg max

Pγ
EPγ [J (γ)]

is called the target limit distribution. Now, let

δ
(i)
j = EPγ [J (γ)|γj = i]− EPγ [J (γ)|γj 6= i] (3.5)

for i = 1, . . . ,mj , j = 1, . . . , n, where the conditional expectations are set equal to 0

if the conditional event has 0 probability to happen. Index δ(i)
j , compares the average

performance of those solutions having xj taking the i-th value, with all the remaining
ones.

Theorem 1. Let Pγ be the probability distribution over X defined according to (3.2).
Then, there exists % ∈ (0, 1) such that if Pγ(x?) ≥ % > maxx∈X\{x?}

J (x)
J (x?)

it holds

that δ(i)
j > 0 if x?j = i and δ(i)

j < 0 otherwise, i = 1, . . . ,mj , j = 1, . . . , n.

Proof. The proof goes along the lines of that reported in Appendix A.1 in [36], extend-
ing that result to Categorical distributions with more than two outcomes. The proof is
here reported for the sake of clarity within the notation introduced in this thesis.

Consider first the case x?j = i. Then, the index δ(i)
j (3.5) can be bounded from below

as follows:
δ

(i)
j ≥ J (x?)Pγ(x?)− J̄ (i)

j , (3.6)
1A categorical random variable can take one ofn possible values (or categories), with the probability of each category separately

specified. The outcomes are often numbered for convenience, e.g. from 1 to n. The parameters specifying the probabilities of each
possible outcome must be in the range [0, 1], and must sum to 1. The categorical distribution is the generalization of the Bernoulli
distribution for n > 2.

2The introduced probability distribution quantifies our belief regarding the fact that x?j takes a specific value. By assuming the
independence of the γj variables, we are not letting our belief regarding one specific variable affect the belief for the remaining
ones.
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3.1. A probabilistic framework for combinatorial optimization problems

where J̄ (i)
j = maxx∈X :xj 6=i J (x). Indeed, for the first term in the RHS of (3.5),

EPγ [J (γ)|γj = i] =
∑

x∈X :xj=i

J (x)Pγ(x) ≥ J (x?)Pγ(x?), (3.7)

where the inequality follows upon observing that x? ∈ {x ∈ X : xj = i} and that
J (x) ≥ 0.
On the other hand, the second term in the RHS of (3.5),

EPγ [J (γ)|γj 6= i] ≤ J̄ (i)
j , (3.8)

by definition. Therefore, applying the bounds 3.7 and 3.8 in (3.5), one obtains (3.6).

A similar reasoning applies for the case x?j 6= i, leading to the following bound:

δ
(i)
j ≤ J̃

(i)
j − J (x?)Pγ(x?), (3.9)

where J̃ (i)
j = maxx∈X :xj=i J (x). Indeed, for the first term in the RHS of (3.5),

EPγ [J (γ)|γj = i] ≤ J̃ (i)
j , (3.10)

by definition.
The second term can be bounded as

EPγ [J (γ)|γj 6= i] =
∑

x∈X :xj 6=i

J (x)Pγ(x) ≥ J (x?)Pγ(x?). (3.11)

Therefore, applying the bounds 3.10 and 3.11 in (3.5), one obtains (3.9).

Now, under the assumption that x? is unique, if one sets

% > max
x∈X\{x?}

J (x)

J (x?)

and Pγ(x?) ≥ %, one obtains that δ(i)
j > 0 if x?j = i, from bound 3.6. On the other

hand, δ(i)
j < 0 if x?j 6= i, from bound 3.9.

Theorem 1 suggests that, when Pγ is sufficiently close to Pγ(x?), then the sign
of δ(i)

j provides a reliable information for tuning the π(i)
j parameters towards those in

Pγ(x?). This information can then be used to iteratively refine π(i)
j (k) (where k is the

iteration index) according to the following update rule:

π
(i)
j (k + 1) = π

(i)
j (k) + χδ

(i)
j , (3.12)

where χ > 0. In order for the Categorical distribution to be well defined, a normaliza-
tion step is required after the application of (3.12), so that 0 ≤ π

(i)
j (k + 1) ≤ 1 and∑mj

i=1 π
(i)
j (k + 1) = 1.

Theorem 2. Let Pγ be the probability distribution over X defined according to (3.2),
and assume that π is such that Pγ(x?) ≥ %, % being a value for which Theorem 1
holds. Then, the local convergence to the target limit distribution P?γ is guaranteed by
the iterative application of (3.12) starting from π.
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Chapter 3. A randomized model structure selection method

Proof. Let P(k)
γ be the probability distribution associated with the probability matrix π

at iteration k. Assuming that P(k)
γ (x?) ≥ %, where %makes the condition of Theorem (1)

valid. Then one obtains that: {
δ

(i)
j > 0 ∀j : x?j = i

δ
(i)
j < 0 ∀j : x?j 6= i

and therefore, according to (3.12) and recalling that χ > 0:{
π

(i)
j (k + 1) = π

(i)
j (k) + χδ

(i)
j > π

(i)
j (k) ∀j : x?j = i

π
(i)
j (k + 1) = π

(i)
j (k) + χδ

(i)
j < π

(i)
j (k) ∀j : x?j 6= i

Recalling that:

P(k)
γ (x) =

n∏
j=1

m∏
i=1

(
π

(i)
j (k)

)β(i)
j

it follows that
P(k+1)
γ (x?) > P(k)

γ (x?) > %.

We then have a sequence of strictly monotonically increasing scalars that are
bounded from above by 1, which entails that limk→∞ P(k)

γ (x?) = 1.

3.2 Implementation issues

In practice only an approximate sampled version of δ(i)
j in (3.5) can be computed, since

the exact computation of the conditional expectations would require to exhaustively
explore the entire solution spaceX . Therefore, at each iteration,Np candidate solutions
x are sampled from Pγ and evaluated according to the performance index J (x). The
probabilities π(i)

j are hence updated according to (3.12), where sample estimates are
used in place of the expected values, and the algorithm proceeds to the next iteration.
The algorithm ends when a stopping criterion is met. This can either be associated with
a maximum number of iterations, or a practical convergence of the π(i)

j parameters,
which is achieved when the relative difference between the π(i)

j calculated at subsequent
iterations is lower than a given threshold.

The convergence speed is affected by the choice of the step size χ in (3.12). In-
deed, too small values would slow down the algorithm, while too large values might
cause instability. Therefore, in [35, 36], the authors proposed to update χ at each iter-
ation according to the performance dispersion in the extracted population of solutions.
Specifically,

χ =
1

10
(
Jbest − J

)
+ 0.1

(3.13)

where Jbest and J are, respectively, the best value and the mean value for J evaluated
on the extracted samples for γ. The rationale behind this adaptive rule is to allow the
algorithm to freely explore the solution space in the early stages, in order to gather
as much information as possible. In this exploration phase, however, the correction
terms δ(i)

j may vary erratically, and thus their influence in the update equations has to
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3.3. Identification of NARX models

be limited. Later on, when the suggested corrections become more stable, the step size
should be incremented to accelerate convergence.

Regarding the initialization of π(i)
j (0), in absence of any a priori information about

the optimal solution x?, it is reasonable to assume that all possible outcomes of xj are
equally probable, i.e., π(i)

j = 1/mj , i = 1, . . . ,mj .
The proposed approach has some features in common with GAs, and others EAs,

in that it exploits randomness in choosing the values for the discrete variables and in
that it processes populations of candidate solutions. However, these two methodologies
differ significantly on how the population evolves in time. In our framework, the fitness
of each possible value for xj is evaluated from an aggregated analysis of the whole
population. Specifically, all individuals of the population contribute to this evaluation,
either reinforcing or discouraging the assignment of the i-th value to xj . Then,- the
new population is generated from scratch, based on the aggregate information derived
from the current population. Instead, in GAs, only the fittest individuals in the current
population are selected and manipulated in order to generate the new population.

3.3 Identification of NARX models

The identification of NARX models can be easily dealt within the presented proba-
bilistic approach, as originally proposed in [36]. In particular, note that the RaMSS
method in [36] is a specialization of (3.1)–(3.12) when xj is a binary variable, and
γj ∼ Bernoullian(πj), whose success probability πj represents the belief that xj
takes value 1, i.e. that the regressor ϕj is present in the model. This probability has
been named Regressor Inclusion Probability, or RIP, and in absence of any a priori
information about the correct model structure, it is common to initially set all the RIPs
to an equal small value, thus encouraging the extraction of sparse models in the early
stages of the algorithm, whose iteration is now detailed.

To avoid ambiguity with the NARX notation, let s ∈ Σ = {0, 1}n encode a candi-
date solution i.e., a model structure, while x(t) denotes the finite-dimensional vector of
lagged input and output, as usual. Under the assumption that γ1, . . . , γn are indepen-
dent3 from each other, at each iteration Np candidate model structures s are sampled
from

Pγ(γ = s) =
∏
j:sj=1

πj
∏
j:sj=0

(1− πj) , (3.14)

and their parameters are estimated by means of an LS procedure. Then, for each model
all statistically non-significant regressors are removed via a t-test (see Section 2.1.1),
and the parameters re-estimated after the removal. The resulting models are evaluated
according to the performance index:

J (s) = e−KL(y,ŷ), (3.15)

with L (y, ŷ) defined in (2.10), where the one-step-ahead predictor ŷ is computed ac-
cording to the extracted model structure s, and K is a scaling parameter (K = 1 in the
following). Exponential indices can facilitate the discrimination between models with
similar performance by amplifying their difference [110], thus improving the structure

3see note 2.

33



i
i

“thesis” — 2020/1/17 — 11:10 — page 34 — #48 i
i

i
i

i
i

Chapter 3. A randomized model structure selection method

selection process. Finally, the RIPs are updated according to (3.12), which is actu-
ally similar to a gradient-based update rule. Indeed, note that for all the Bernoullian
variables γj , j = 1, . . . , n, the following equation holds:

EPγ [J (γ)] = πjEPγ [J (γ)|γj = 1] + (1− πj)EPγ [J (γ)|γj = 0]. (3.16)

Now, deriving (3.16) w.r.t. πj , one obtains :

∂EPγ [J (γ)]

∂πj

∣∣∣∣ = EPγ [J (γ)|γj = 1]− EPγ [J (γ)|γj = 0], (3.17)

which is the definition of δj in (3.5). However, an important technicality is missing: δj
is computed on the set of non-redundant models (due to the t-test), which is a subset of
the entire model structure space on which Pγ is actually defined. Therefore, δj is not
directly interpretable as the gradient of EPγ [J (γ)] w.r.t. πj . Nevertheless, the local
convergence to P?γ is still guaranteed by Theorem 2.

Algorithm 2 reports the whole randomized identification procedure.

Algorithm 1 NARX model generation with Randomized MSS

Require: {(ϕ(t),y(t)), t = 1, · · · , N}, n,π
Ensure: s, ϑ̂

1: Ψ(t)← [ ];
2: s← [ ];
3: m← 0
4: for j = 1 to n do
5: Extract rj from Bernoullian(πj); . Generate terms
6: s← [s, rj ]
7: if rj = 1 then
8: Ψ(t)← [Ψ(t), ϕj(t)];
9: m← m+ 1;

10: end if
11: end for
12: ϑ̂←

(∑N
t=1 Ψ(t)

T
Ψ(t)

)−1∑N
t=1 Ψ(t)

T
y(t); . LS estimate

13: V ←
(∑N

t=1 Ψ(t)
T
Ψ(t)

)−1
;

14: σ̂2 ← 1
N−m

∑N
t=1

(
y(t)−Ψ(t)ϑ̂

)2
;

15: for i = 1 to m do . Remove redundant regressors
16: zi ← ϑ̂i

σ̂
√
V ii

; . t-test
17: if |zi| < tα/2,N−m then
18: Remove regressor Ψi(t) from Ψ(t);
19: si ← 0;
20: end if
21: end for
22: ϑ̂←

(∑N
t=1 Ψ(t)

T
Ψ(t)

)−1∑N
t=1 Ψ(t)

T
(t)y(t); . LS estimate

3.3.1 Continuation of illustrative example

Figure 3.1 illustrates a typical run of the RaMSS algorithm when it is applied to the
illustrative example (2.48). Specifically, the evolution over iterations of the RIPs and
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3.3. Identification of NARX models

Algorithm 2 NARX identification procedure with Randomized MSS

Require: {(ϕ(t),y(t)), t = 1, · · · , N}, n,Np,π, πmin, πmax,K, α, ε
Ensure: π

1: π ← 1
n · 1n×1;

2: repeat
3: for p = 1 to Np do
4: {s(p), ϑ̂} ← Algorithm 1; . Generate NARX model
5: J (p) ← e−KL(y,ŷ); . Model evaluation
6: end for
7: for j = 1 to n do . Update πj
8: J⊕ ← 0; n⊕ ← 0; J	 ← 0; n	 ← 0;
9: for p = 1 to Np do

10: if s(p)j = 1 then
11: J⊕ ← J⊕ + J (p); n⊕ ← n⊕ + 1;
12: else
13: J	 ← J	 + J (p); n	 ← n	 + 1;
14: end if
15: end for
16: χ← 1

10(Jbest−J )+0.1
;

17: πj ← πj + χ
(

J⊕

max(n⊕,1) −
J	

max(n	,1)

)
;

18: πj ← max (min (πj , πmax) , πmin); . Saturation
19: end for
20: until Stopping criterion

of the average model size (AMS) are reported. Apparently, the RIPs associated to the
correct model terms are steadily increasing until they reach 1, while all other RIPs are
squashed toward 0 after a transient. Worth noticing, some spurious parameters initially
exhibit non-negligible RIPs, but as the algorithm proceeds, it is able to reject them
based only on the information gathered from partially correct models. Indeed, as can be
noticed by the evolution of the AMS computed on the extracted model structures at each
iteration, small and incomplete models are typically analyzed. Also, the final AMS is
essentially monotonically increasing to the correct value, emphasizing the incremental
nature of the selection procedure which starts from very small models (mainly due to
the initial choice made for the RIPs) and progressively increases the size of the explored
models.

Table 3.1: Illustrative example: Model structure selection results obtained from 10 runs of the RaMSS
on the same data realization.

RaMSS - Np = 200

Correct selection 100%

# of Iterations 31

Elapsed Time [sec] 6.56

Maximum AMS 3.99

Final AMS 3.98

Explored Models 731.3
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Table 3.1 reports the aggregated results obtained from 10 runs of the RaMSS over
the same data set of N = 500 input/output pairs. The following statistics have been
studied:

correctness: percentage of exact final model selections,

number of iterations: number of performed algorithm iterations,

elapsed time: time required to obtain the final model,

maximum AMS: maximum model size amongst all the mean sizes computed at each
iteration,

final AMS: average model size of the last iteration,

explored models: number of distinct models explored by the algorithm.

As can be noticed, the algorithm retrieved the correct model structure in all runs by
exploring a very tiny fraction of the entire solution space. Indeed, on average, only
731.3 distinct models have been tested among the 2165 possible ones. Furthermore,
the obtained maximum and final AMS values confirm the capability of the RaMSS to
extract useful information from small and partially correct models.

Figure 3.1: Illustrative example: RaMSS, a typical run. RIPs (top) and AMS (bottom) evolution over 31
iterations.
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CHAPTER4
Identification of nonlinear systems via distributed

computation

THIS chapter deals with the identification of NARX systems when data are
collected separately by multiple entities and cannot be made available to a
central unit. Consider for example the case in which a system is monitored by

several agents, each one collecting its own data set which cannot be make centrally
available due to e.g., privacy or communication constraints. Or else, several data sets
are available, each of them coming from a specific independent experiment performed
on the system. In this case, joining the data could not make sense at all, since e.g., the
chronological order of the data points would be lost, thus impairing the application
of several identification approaches. Or simply, one wants to split the whole data
set in smaller chunks and spread the computation over a network of calculators to
distribute the load and speed up the task. In this chapter, we address this novel set-up
and consider the case in which multiple agents are cooperatively aiming at identifying
a model for a nonlinear system, by local computations based on private data sets. The
problem of identifying the structure and parameters of the system has a mixed discrete
and continuous nature, which hampers the application of classical distributed schemes.
Based on the randomized MSS approach described in Chapter 3, we reformulate the
MSS problem in terms of the optimization of a common probability distribution over
the space of all possible model structures, thus transforming the purely combinatorial
MSS task into a continuous optimization problem. Based on this reformulation, we de-
velop a distributed computation method to address both MSS and parameter estimation.

In this chapter, after reviewing the state of the art, we introduce the novel NARX
model identification algorithm with distributed computation. The algorithm perfor-
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Chapter 4. Identification of nonlinear systems via distributed computation

mance is illustrated through the analysis of some numerical examples and a real ap-
plication involving weather data, e.g., humidity and temperature. Some conclusive
remarks end the chapter.

4.1 State of the art

In the literature, there are various examples of linear-in-the-parameters regression
problems solved according to distributed approaches, as documented e.g. in [47, 81,
111].

In [47], a distributed message passing algorithm for performing regression within
a sensor network has been proposed based on a distributed application of Gaussian
elimination to solve linear systems. In particular, the authors addressed the problem of
extracting complete information about the shape and structure of sensor data, while still
using as less as possible the communication capability of the network. To do that, they
exploited the redundancy in readings from a sensor over time and also the redundancy
between measurements performed by different nodes. Specifically, they describe the
sensor data through a kernel-based linear regression model (depending on both time
and spatial location of the nodes), whose parameters are estimated by applying the LS
method with a root mean squared error as the optimization metric. In [81], the authors
proposed three algorithms to estimate the regression coefficients via a consensus-based
reformulation of the LASSO, in order to cope with distributed training data. In par-
ticular, the optimization problem with the LASSO criterion is first reformulated into
a separable form, which is then iteratively minimized using the alternating-direction
method of multipliers (ADMM) [24] so as to gain the desired degree of paralleliza-
tion. The novel algorithms differ on how this iterative minimization is performed, i.e.,
with a distributed quadratic programming or a distributed coordinate descent approach.
In [111], the distributed sum optimization (DSO) problem [101] is addressed. In this
problem, each agent has a unique and local objective function and the network goal is
to minimize the sum of these functions over a constrained set. The authors proposed a
distributed gradient-based update in combination with a consensus-based tracking step
inspired by [90]. This general framework has been applied to the problem of vertically
and horizontally distributed regression in large peer to peer systems.

However, none of the mentioned methods deals explicitly with MSS, which intro-
duces discrete decision variables in the optimization problem, thus making it hard to
solve. In this respect, there are only a few attempts to solve the MSS problem in a
distributed fashion. Recently, in [73, 117] the authors have proposed an extension of
OFR-type algorithms to select a common-structure sparse model from multiple data
sets, within the NARX modeling framework. The rationale behind this technique is to
evaluate independently the importance of each term in each data set, and then selecting
that term which maximizes the (weighted) average importance. The selected term is
hence removed from the candidate set, and the procedure is repeated. Once the com-
mon structure has been selected, the final parameter estimate is the (weighted) average
of the LS estimates obtained from all the data sets, which is however not guaranteed to
be optimal according to any global criterion.

Finally, it should be mentioned that a distributed MSS method for NARX models
has also been proposed in [4], although from a different perspective. Indeed, here the
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distribution applies to the set of candidate model terms, that are split among the agents,
as opposed to the data. Specifically, each agent performs the MSS on its assigned subset
of model terms over the whole set of data. Then, the agents exchange information
regarding the most promising terms each of them has found. These are used to augment
each private subset of model terms and a new MSS round is executed by each agent.
This iterative process is repeated until convergence to a common model structure.

4.2 Problem statement

We assume that K data sets Di = {
(
y(i)(t), u(i)(t)

)
}Nit=1 with length Ni, i = 1, . . . , K,

have been collected from system (2.9) separately by K agents, possibly in different
experimental set-ups. Let σ2

1, . . . , σ
2
K be the corresponding output process variances.

We can then formulate the identification of ϑ as the following multi-agent optimization
problem:

min
ϑ
L(ϑ) = min

ϑ

K∑
i=1

Li(ϑ), (4.1)

with the function Li : Rn → R defined as

Li(ϑ) =
1

σ2
i

Ni∑
t=1

(
y(i)(t)−ϕ(i)(t)ϑ

)2
+ C‖ϑ‖0Ni, (4.2)

where the first term accounts for the accuracy of the identified NARX model ϑ on the
data set Di, and the second for the model complexity (as measured by the zero norm of
ϑ, ‖ϑ‖0 = card{ϑj : ϑj 6= 0}, i.e., the number of non-zero entries of that vector, which
corresponds to the actual model size). The latter is a regularization term introduced to
prevent redundant terms from entering the model structure. In (4.2), parameter C > 0
tunes the accuracy-complexity trade-off. We shall denote with ϑ? the optimal solution
of (4.1) and by L? the corresponding optimal cost

∑K
i=1 Li(ϑ

?). Problem (4.1) can be
handled within the probabilistic framework presented in Chapter 3.

Specifically, let s ∈ Σ = {0, 1}n encode a model structure. Then its performance
can be measured as the cost associated to the best parametrization compatible with this
structure, i.e.,

J (s) = min
ϑ∈Θs

L(ϑ) (4.3)

where Θs = {ϑ : ϑj = 0,∀j : sj = 0}. Let us further denote as

s? = arg min
s∈Σ
J (s) and J ? = min

s∈Σ
J (s)

the best model structure and the corresponding (optimal) performance. Now, associate
a Bernoulli random variable γj to each sj , j = 1, . . . , n, whose success probability
πj ∈ [0, 1] represents the belief that sj takes value 1, i.e. that the regressor ϕj is present
in the model. The overall discrete random variable γ = [γ1, . . . , γn] takes values in Σ
according to

Pγ(γ = s) =
∏
j:sj=1

πj
∏
j:sj=0

(1− πj) , (4.4)
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By definition of expectation, the average performance of γ is given by

EPγ [J (γ)] =
∑
s∈Σ

J (s)Pγ(γ = s), (4.5)

and, if we let Pγ vary over all possible distributions over Σ, we notice that the minimum
value of (4.5) as a function of Pγ is obtained by making all probability mass concentrate
on the true model. Formally, denoting as

P?γ = arg min
Pγ

EPγ [J (γ)], (4.6)

it holds that P?γ(γ = s?) = 1 and P?γ(γ = s) = 0 for all s ∈ Σ \ {s?}. For Bernoullian
γ variables, the update rule (3.12) can be further detailed 1:

π(k + 1) = π(k)− α(k) ∇πEPγ [J (γ)]
∣∣
π(k)

(4.7)

where∇π =
[

∂
∂π1
, . . . , ∂

∂πn

]T
,

∂EPγ [J (γ)]

∂πj

∣∣∣∣
π(k)

= EPkγ [J (γ)|γj = 1]− EPkγ [J (γ)|γj = 0], (4.8)

and Pkγ is given by (4.4) when π = π(k).

4.3 An intuitive extension based on distributed computation

Given that (4.7) represents a gradient descent algorithm and considering the separable
structure of L(ϑ) in (4.1), one might be tempted to derive a distributed version of (4.7)
as follows:

π̄(k) =
1

K

K∑
i=1

π(i)(k)

π(i)(k + 1) = π̄(k)− α(k) ∇πEPγ [Ji(γ)]
∣∣
π̄(k)

(4.9)

where π(i) represents agent i’s local estimate of the common π vector and

∂EPγ [Ji(γ)]

∂πj

∣∣∣∣
π̄(k)

= EP̄kγ [Ji(γ)|γj = 1]− EP̄kγ [Ji(γ)|γj = 0], (4.10)

with Ji(s) defined as in (4.3) with Li(ϑ) in place of L(ϑ) and P̄kγ given by (4.4)
when π = π̄(k). Notice that the method allows each agent to locally compute
∇πEPγ [Ji(γ)]

∣∣
π̄(k)

based on its own dataset only. Briefly, at each step the local es-
timates π(i)(k) are averaged and each agent performs an iteration of rule (4.7) starting
from the common average π̄(k).

1 Differently from [36], we adopt the penalty term C‖ϑ‖0N in (4.2) instead of a statistical test to prune redundant regressors
from the model, which allows us to interpret the RIPs update rule in (3.12) as an exact gradient-based update rule (see Section 3.3
for further details).
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4.4. A distributed scheme

Unfortunately, this intuitively simple strategy presents some drawbacks. Indeed, if
we compute the average of π(1)(k + 1), . . . ,π(K)(k + 1), we obtain

π̄(k + 1) =
1

K

K∑
i=1

π(i)(k + 1)

=
1

K

K∑
i=1

π̄(k)− α(k)
1

K

K∑
i=1

∇πEPγ [Ji(γ)]
∣∣
π̄(k)

= π̄(k)− α(k)

K
∇π

[
K∑
i=1

EPγ [Ji(γ)]

]∣∣∣∣∣
π̄(k)

= π̄(k)− α(k)

K
∇πEPγ

[
K∑
i=1

Ji(γ)

]∣∣∣∣∣
π̄(k)

,

which means that algorithm (4.9) is minimizing the cost function EPγ

[∑K
i=1 Ji(γ)

]
,

rather than EPγ [J (γ)] as in (4.5). The two cost functions can actually be different,
considering that for all s ∈ Σ the following holds:

K∑
i=1

Ji(s) =
K∑
i=1

min
ϑ(i)∈Θs

Li(ϑ(i)) ≤ min
ϑ∈Θs

K∑
i=1

Li(ϑ) = J (s), (4.11)

where we used ϑ(i) with superscript i in the left hand side of (4.11) to emphasize the
fact that the optimal parameterizations might be different from one agent to another.

Albeit showing that minimizing EPγ

[∑K
i=1 Ji(γ)

]
does not necessarily go into the

direction of minimizing EPγ [J (γ)], (4.11) provides us with a precious intuition on
how to modify algorithm (4.9) to correctly distribute (4.7). Indeed, if we could force
all agents to agree on a common ϑ while evaluating Ji(s) for any s, then we could turn
(4.11) into an equality and correct the method to make it minimize EPγ [J (γ)].

4.4 A distributed scheme

Inspired by the proximal algorithm in [79], we propose to correct (4.9) modifying how
the agents assess the performance of a generic model structure s, and specifically re-
placing Ji(s) in (4.9) with

Ji,k(s) = min
ϑ(i)∈Θs

Li(ϑ(i)) +
ρ(k)

2
‖ϑ(i) − ϑ̄(k)‖2

2, (4.12)

where the additional proximal term ‖ϑ(i) − ϑ̄(k)‖2
2 [95] penalizes the distance of the

parameter estimate ϑ(i) computed by agent i from the average parameter vector ϑ̄(k)

and ρ(k) > 0 tunes the trade-off between the agent’s local cost Li(ϑ(i)) and the dis-
agreement among the agents.

The calculation of quantity ϑ̄(k) requires some further explanation. This quantity
represents a “common” parameter vector among the agents, obtained, e.g., by averag-
ing the current best parameterizations of the agents. However, there is not an obvi-
ous characterization of such best local parametrization, since each agent is endowed
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Chapter 4. Identification of nonlinear systems via distributed computation

with a probability distribution over the model collection Σ, as opposed to a specific
model structure. To calculate ϑ̄(k) we therefore associate first to each agent the single
model structure ŝ(i)(k) that currently has the highest probability of being the optimal
one, according to the local probability distribution. Then, we find for each agent the
parametrization ϑ̂

(i)
(k) minimizing (4.12) with s = ŝ(i)(k). Finally, we average the

minimizers ϑ̂
(i)

(k), i = 1, . . . , K to get ϑ̄(k).
Accordingly, the overall proposed method is as follows:

ϑ̄(k) =
1

K

K∑
i=1

ϑ̂
(i)

(k)

π̄(k) =
1

K

K∑
i=1

πi(k)

π(i)(k + 1) = π̄(k)− α(k) ∇πEPγ [Ji(γ)]
∣∣
π̄(k)

ŝ(i)(k + 1) = arg max
s∈Σ

P(i)
γ (k + 1)

ϑ̂
(i)

(k + 1) = arg min
ϑ(i)∈Θ

ŝ(i)(k+1)

Li(ϑ(i)) +
ρ(k)

2
‖ϑ(i) − ϑ̄(k)‖2

2,

(4.13)

where a saturation is applied to ensure π(i)
j (k + 1) ∈ [0, 1], j = 1, . . . , n.

Intuitively, if we increase ρ(k) at a proper rate, we can push the agents towards the
(common) ϑ̄(k) while they keep optimizing their own local objective functions. Once
the ϑ̂

i
(k) are sufficiently close to each other, then it holds that

K∑
i=1

Ji(s) ≈ J (s),

which implies that the method is actually minimizing EPγ [J (γ)].
Algorithm 4 reports the whole identification procedure.

4.5 Numerical examples

In the following we considered two different scenarios, where either all the agents have
access to homogenously obtained data (i.e., data resulting from experiments in similar
conditions, with equal input and noise signal characterizations), or one of them has data
from a different type of experiment on the unknown system.

Model selection was carried out over a candidate regressor set including all mono-
mials with lags not larger than ny = nu = 3 and maximum degree nd = 3, amounting
to n = 84 terms overall. The initial π(i)

j , ∀j, i, were set to π(i)
j (0) = 1/n. The stepsize

α in (4.13) is a decreasing function of time according to the following rule [26]:

α(k) = β/
√
k, β > 0. (4.14)

The C (see (4.2)) and β values have been suitably selected for each studied NARX
system by performing a small sensitivity analysis for several pairs (C, β) w.r.t. the
correctness of the MSS and the number of iterations required to reach consensus.
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Algorithm 3 Local computation - i-th agent

Require: n,Np, πmin, πmax, C, ρ, α, π̄, ϑ̄
Ensure: π(i), ϑ̂

(i)

Data: Di = {(ϕ(i)(t),y(i)(t)), t = 1, · · · , Ni}

1: σ2
i ←

∑Ni
t=1(y

(i)(t))
2

Ni
;

2: for p = 1 to Np do
3: Ψ(t)← [ ];
4: s(p) ← [ ];
5: ϑ̄

(p) ← [ ];
6: m← 0;
7: for j = 1 to n do
8: Extract rj from Bernoullian(π̄j); . Generate terms according to π̄
9: s← [s, rj ]

10: if rj = 1 then
11: Ψ(t)← [Ψ(t), ϕ

(i)
j (t)];

12: ϑ̄
(p) ← [ϑ̄

(p)
, ϑ̄j ];

13: m← m+ 1;
14: end if
15: end for
16: ϑ(i) ←

(∑Ni
t=1 Ψ(t)

T
Ψ(t) + ρ1m×m

)−1 (∑Ni
t=1 Ψ(t)

T
y(i)(t) + ρϑ̄

(p)
)

;
17: . LS estimate with ϑ consensus
18: J (p)

i ← 1
σ2
i

∑Ni
t=1

(
y(i)(t)−Ψ(t)ϑ(i)

)2
+ C‖ϑ(i)‖0Ni ; . Model evaluation

19: end for
20: for j = 1 to n do . Update πj
21: J⊕ ←∞; n⊕ ← 0; J	 ←∞; n	 ← 0;
22: for p = 1 to Np do
23: if s(p)j = 1 then
24: J⊕ ← J⊕ + J (p)

i ; n⊕ ← n⊕ + 1;
25: else
26: J	 ← J	 + J (p)

i ; n	 ← n	 + 1;
27: end if
28: end for
29: π

(i)
j ← π̄j − α

(
J⊕

max(n⊕,1) −
J	

max(n	,1)

)
;

30: π
(i)
j ← max

(
min

(
π
(i)
j , πmax

)
, πmin

)
; . Saturation

31: end for
32: ŝ(i) ← bπ(i)e; . Compute the most probable s according to π(i)

33: ϑ̄
(i) ← [ ];

34: m← 0;
35: for j = 1 to n do
36: if ŝ(i)j = 1 then
37: Ψ(t)← [Ψ(t), ϕ

(i)
j (t)];

38: ϑ̄
(i) ← [ϑ̄

(i)
, ϑ̄j ];

39: m← m+ 1;
40: end if
41: end for
42: ϑ̂

(i)
←
(∑Ni

t=1 Ψ(t)
T
Ψ(t) + ρ1m×m

)−1 (∑Ni
t=1 Ψ(t)

T
y(i)(t) + ρϑ̄

(i)
)

;

43



i
i

“thesis” — 2020/1/17 — 11:10 — page 44 — #58 i
i

i
i

i
i

Chapter 4. Identification of nonlinear systems via distributed computation

Algorithm 4 NARX identification - distributed scheme

Require: n,K,Np, πmin, πmax, C, ρ, α
Ensure: π̄, ϑ̄

1: π(i) ← 1
n · 1n×1;

2: ϑ̂
(i)
← 0n×1;

3: repeat
4: ϑ̄ = 1

K

∑K
i=1 ϑ̂

(i)
;

5: π̄ ← 1
K

∑K
i=1 π

(i);
6: parfor i = 1 to K do . Gather information from agents

7: {π(i), ϑ̂
(i)
} ← run Algorithm 3;

8: end parfor
9: until Stopping criterion

A Monte Carlo approach has been employed to approximate the expected values
appearing in the proposed algorithm (4.13), with their sampled counterparts. More pre-
cisely, at each iteration each agent draws Np = 1000 sample model structures from Pγ ,
evaluates them in terms of the Ji,k(s), and calculates the appropriate sampled averages.

To account for the randomization inherent in the algorithm, a Monte Carlo analysis
has been carried out in all the experiments, by running the algorithm 100 times on the
same data sets.

All the tests have been performed in MATLAB 2017a environment, on an HP Pro-
Book 650 G1 CORE i7-4702MQ CPU @2.20 GHz with 8GB of RAM.

4.5.1 Experiment 1

We considered the following benchmark systems taken from the literature [1,7,22,116]:

S1: y(t) = −1.7y(t− 1)− 0.8y(t− 2) + u(t− 1)
+0.8u(t− 2) + e(t),

with u(t) ∼ WUN(−2, 2), e(t) ∼ WGN(0, 0.01)

S2: y(t) = 0.7y(t− 1)u(t− 1)− 0.5y(t− 2)
−0.7y(t− 2)u(t− 2)2 + 0.6u(t− 2)2 + e(t),

with u(t) ∼ WUN(−1, 1), e(t) ∼ WGN(0, 0.04)

S3: y(t) = 0.8y(t− 1) + 0.4u(t− 1)
+0.4u(t− 1)2 + 0.4u(t− 1)3 + e(t),

with u(t) ∼ WGN(0, 0.333), e(t) ∼ WGN(0, 0.1)

S4: y(t) = 0.25u(t− 1) + 0.75y(t− 2)
−0.2y(t− 2)u(t− 1) + e(t),

with u(t) ∼ WGN(0, 0.25), e(t) ∼ WGN(0, 0.02)

where WGN(η, σ2) is a White Gaussian Noise with mean η and variance σ2, while
WUN(a, b) denotes a White Uniform Noise defined in the interval [a, b]. The employed
C values are: CS1 = CS2 = CS3 = 0.01, CS4 = 0.001. βS1 = βS2 = βS3 = 0.01, βS4 =
0.1, in (4.14), see Table 4.1. We adopted an increasing factor ρ(k) = 2k in (4.13), with
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k being the iteration index. Four data sets of length 2000 have been generated, one for
each agent.

The proposed algorithm (4.13) has been applied to this case, and the aggregated
results are reported in Table 4.2, where each cell reports the average value of the cor-
responding parameter. Specifically, the following statistics have been considered: the
correctness of the structure selection, the elapsed time and number of iterations required
to reach consensus, and the mean square error (MSE) of the parameter estimates. Ta-
ble 4.3 displays the average parameter estimates.

The proposed algorithm performed well in all cases both regarding the model struc-
ture selection and the estimation of the parameters.

Table 4.1: Experiment 1: sensitivity analysis for parameters C and β. For each pair (C, β), with
C ∈ [0.001, 0.01, 0.1, 1, 10] and β ∈ [0.01, 0.1, 1, 10], an MC analysis has been carried out in all
the experiments, by running the algorithm 20 times on the same data sets of 2000 samples. Each cell
reports the average value and the standard deviation (over the MC runs) of 1

K

∑K
i=1MSEi, where

MSEi is the mean square prediction error computed on data set Di by employing the identified
model ϑ̄. The average number of iterations required to reach consensus is also reported.

Mean squared error ± standard deviation (# of iterations)

β1 β2 β3 β4

C1 0.0098 ± 4.6E-4 (839.8) 0.0098 ± 4.6E-4 (49.9) 0.0110 ± 4.8E-4 (17.9) 0.0110 ± 4.8E-4 (18.2)

C2 0.0098 ± 4.6E-4 (42.6) 0.0179 ± 8.0E-4 (17.4) 0.0354 ± 1.5E-3 (19.2) 0.0432 ± 1.7E-3 (20.8)

C3 0.3180 ± 7.6E-3 (16.7) 0.2754 ± 7.1E-3 (17.5) 0.2523 ± 6.9E-3 (18.1) 0.3173 ± 7.7E-3 (19.9)

C4 1.7291 ± 4.7E-2 (112.8) 2.0507 ± 4.7E-2 (173.1) 2.1634 ± 5.4E-2 (206.4) 1.8788 ± 5.5E-2 (157.9)

S1

C5 3.0149 ± 5.6E-2 (870.4) 2.9045 ± 6.6E-2 (568.5) 3.3639 ± 8.5E-2 (503.9) 3.0400 ± 7.5E-2 (578.3)

C1 0.0039 ± 1.8E-4 (816) 0.0039 ± 1.8E-4 (45.9) 0.0053 ± 2.1E-4 (15.8) 0.0053 ± 2.1E-4 (17.2)

C2 0.0039 ± 1.8E-4 (34.7) 0.0046 ± 2.2E-4 (14.5) 0.0078 ± 2.2E-4 (14.8) 0.0081 ± 2.1E-4 (19.1)

C3 0.0126 ± 1.6E-3 (13.1) 0.0126 ± 1.6E-3 (13.9) 0.0126 ± 1.6E-3 (13.9) 0.0144 ± 1.9E-3 (14.1)

C4 0.1204 ± 2.2E-2 (795.7) 0.1184 ± 2.02E-2 (480.7) 0.1166 ± 2.1E-2 (387.5) 0.1229 ± 2.2E-2 (561.5)

S2

C5 0.1334 ± 2.4E-2 (928) 0.1342 ± 2.4E-2 (833) 0.1259 ± 2.1E-2 (769.8) 0.1270 ± 2.2E-2 (443.1)

C1 0.0982 ± 5.1E-3 (878) 0.0982 ± 5.1E-3 (48.8) 0.1120 ± 5.7E-3 (17.3) 0.1120 ± 5.6E-3 (20.4)

C2 0.0982 ± 5.1E-3 (42.3) 0.1115 ± 6.3E-3 (17.1) 0.1320 ± 6.1E-3 (17.4) 0.1320 ± 6.7E-3 (17.9)

C3 0.1652 ± 1.2E-2 (14) 0.1815 ± 1.6E-2 (17.4) 0.1768 ± 1.6E-2 (18) 0.1681 ± 1.3E-2 (17.5)

C4 0.4079 ± 4.6E-2 (101.9) 0.5619 ± 8.0E-2 (201.1) 0.4912 ± 6.0E-2 (117.4) 0.4988 ± 6.4E-2 (64.6)

S3

C5 1.2759 ± 2.1E-1 (922.3) 1.0511 ± 1.6E-1 (669.9) 1.1390 ± 1.8E-1 (915.9) 1.0743 ± 2.3E-1 (630.6)

C1 0.0196 ± 1.0E-3 (922.4) 0.0196 ± 1.0E-3 (46.6) 0.0201 ± 1.2E-3 (17.8) 0.0201 ± 1.2E-3 (21.3)

C2 0.0203 ± 1.2E-3 (42.6) 0.0203 ± 1.2E-3 (16) 0.0203 ± 1.2E-3 (17) 0.0203 ± 1.2E-3 (17.2)

C3 0.0203 ± 1.2E-3 (12.5) 0.0216 ± 1.4E-3 (13.8) 0.0210 ± 1.3E-3 (16.5) 0.0216 ± 1.4E-3 (15.2)

C4 0.0483 ± 3.0E-3 (212.1) 0.0571 ± 3.5E-3 (455.4) 0.0648 ± 4.1E-3 (522.8) 0.0598 ± 3.7E-3 (395.3)

S4

C5 0.0734 ± 4.5E-3 (810.5) 0.0727 ± 4.5E-3 (663.6) 0.0766 ± 4.9E-3 (681.1) 0.0814 ± 5.0E-3 (682)

4.5.2 Experiment 2

In this experiment, we considered the following system:

S5: y(t) = 0.5y(t− 1) + 0.8u(t− 2) + 0.1u(t− 1)2 + e(t), e(t) ∼ WGN(0, 0.01).
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Table 4.2: Experiment 1: average statistics.

S1 S2 S3 S4

Correct selection 100% 100% 100% 100%

# of Iterations 45.9 33.6 42.3 45.8

Elapsed Time [sec] 27.8 12.3 24.7 24.9

MSE on parameter estimate 3.9E-7 1.3E-5 2.2E-5 2.3E-4

Table 4.3: Experiment 1: average parameter estimates.

S1

True -1.7 -0.8 1 0.8

Estimated -1.6993 -0.8002 0.9999 0.7990

S2

True 0.7 -0.5 -0.7 0.6

Estimated 0.6987 -0.4977 -0.7066 0.6007

S3

True 0.8 0.4 0.4 0.4

Estimated 0.7975 0.4069 0.4057 0.3983

S4

True 0.25 0.75 -0.2

Estimated 0.2528 0.7414 -0.1751

Again, 4 data sets Di, i = 1, . . . , 4 were collected, of length 5000 each, but this time
the data are originated from different experimental set-ups. Specifically, in the first 3
experiments, u(t) ∼ WGN(0, 0.01), while in the last, u(t) ∼ WGN(0, 1).

The peculiarity of this example lies in the impossibility to identify the full model
structure based on the data setsD1,D2, orD3, since the input amplitude is insufficient to
excite the nonlinear dynamics in the model. On the other hand, the nonlinear dynamics
is fully excited when u(t) ∼ WGN(0, 1) is employed (data set D4). To see this, check
Table 4.4, which reports the first eight terms selected by the OFR method, applied
separately to each data set. The model terms are listed in the same order as they have
been selected, which reflects their importance in the model. The terms in bold represent
the final model structure, as selected according to the BIC criterion. Apparently, while
the correct model structure is identified for D4 (albeit with a redundant term), only the
linear sub-model is correctly selected in the other three cases, and the nonlinear missing
term is not even among those suggested by the OFR immediately after the two correct
regressors.

The explained difficulty of this example causes the failure of approaches such as that
explained in [73] (denoted as PRESS-based OFR), as documented in Table 4.5, where
the final model structure has been selected according to the Average-BIC criterion de-
fined in [73]. Again, only the linear sub-part of the model has been correctly identified,
while the nonlinear term has been masked by the prevailing linear data, and has been
selected only as fourth term, to be rejected by the Average-BIC criterion.

Table 4.6 displays the aggregated results obtained by running our algorithm. The
design parameters were set to λ = 0.005 and β = 0.01. Apparently, the algorithm
proposed in the paper fruitfully combines the information gathered from all the data
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Table 4.4: Experiment 2: Model structure selection results with the OFR method on different data sets.

Sel. order D1 only D2 only D3 only D4 only

1 u(t− 2) u(t− 2) u(t− 2) u(t− 2)

2 y(t− 1) y(t− 1) y(t− 1) y(t− 1)

3 y(t− 2)y(t− 3) y(t− 3) y(t− 2)u(t− 2)u(t− 3) u(t− 1)2

4 y(t− 3)u(t− 3) u(t− 2)u(t− 3) u(t− 2)2u(t− 3) y(t− 3)u(t− 2)u(t− 3)

5 u(t− 3) y(t− 3)u(t− 2)u(t− 3) y(t− 2)u(t− 1)2 y(t− 1)u(t− 2)2

6 y(t− 1)y(t− 3) u(t− 1)2u(t− 2) u(t− 1)2u(t− 2) u(t− 1)2u(t− 2)

7 y(t− 1)u(t− 1)u(t− 3) y(t− 1)u(t− 1) y(t− 3)u(t− 1)u(t− 2) y(t− 3)u(t− 1)

8 u(t− 1)2 u(t− 1)u(t− 3) u(t− 2)u(t− 3) u(t− 1)2u(t− 3)

Table 4.5: Experiment 2: Model identification results with the PRESS-based OFR.

Sel. order Model Term Par. estimate

1 u(t− 2) 0.794143

2 y(t− 1) 0.508702

3 y(t− 2)u(t− 2)u(t− 3) –

4 u(t− 1)2 –

sets, ultimately leading to the identification of the correct model structure and accurate
parameter estimates.

Table 4.6: Experiment 2: average statistics of the proposed approach.

Correct selection 100%

# of Iterations 222.6

Elapsed Time [sec] 85.5

Selected model terms y(t− 1), u(t− 2), u(t− 1)2

Parameter estimates 0.5050, 0.7983, 0.0977

MSE on parameter estimates 1.1E-5

Figure 4.1 shows the evolution for all agents of the parameter associated to the
nonlinear term (denoted ϑiu(t−1)2), during a single execution of the algorithm, using
ρ(k) = 2k in (4.13). As expected, the 4-th agent immediately recognizes the impor-
tance of the nonlinear term and provides a very accurate estimate of the corresponding
parameter, while the others are slower, given that their data does not clearly emphasize
the nonlinearity. However, they are still able to reach a consensus on the presence of
that term and its parameter value, which is very close to the true one.

Figure 4.2 shows the squared prediction error (SPE) values obtained by employing
the models identified by the PRESS-based OFR (see Table 4.5) and by the proposed
method (see Table 4.6) to perform the one-step-ahead prediction for the validation data
sets {D̃i}4

i=1, which have been collected in the same experimental set-ups described
before. As expected, both models provide similar prediction accuracy on {D̃i}3

i=1,
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Chapter 4. Identification of nonlinear systems via distributed computation

Figure 4.1: Experiment 2: Nonlinear parameter estimation results with ρ(k) = 2k for the proposed
approach. The dashed curve is associated to agent 4.

while there are significant discrepancies between the predictions obtained for the fourth
data set. Specifically, the mean SPE obtained for D̃4 with the PRESS-based OFR model
is 0.0506 w.r.t. 0.0102 obtained by employing the model resulting from the application
of the proposed approach. This difference is even more significant in case of open-
loop output simulation of the identified models (see Figure 4.3). Indeed, in this case
the PRESS-based OFR model results in a mean squared simulation error (SSE) on D̃4

equal to 0.1033 w.r.t. 0.0139.

4.6 A case study

The proposed identification procedure was applied to the data collected from the exper-
imental setup presented in [47]. Data have been collected from 54 Mica2Dot sensors
with weather boards deployed in the Intel Berkeley Research lab between February 28-
th and April 5-th, 2004. The sensors collected, among all, humidity and temperature
values once every 31 seconds, along with timestamped topology information about the
sensor network. Data was collected using the TinyDB in-network query processing
system, built on the TinyOS platform. The sensors were arranged in the lab according
to the diagram shown in Figure 4.4. The data measured in the lab are quite complex:
different areas of the lab are exposed to the sun at different times of the day, and the
measurements exhibit spatial correlation, but they also include local variations due to
the proximity to windows and air conditioning vents. Inspired by [47], we identified
5 regions, in each of which the readings are assumed to be highly correlated (see Ta-
ble 4.7, noting that some sensors are not considered).

It is reasonable to think of sensors in the same region as devices (agents) which are
monitoring the same physical system, and hence trying to model in a distributed way
the temperature as a function of the available measurements of the temperature itself
and humidity. Accordingly, we ran our distributed scheme on each region separately,
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4.6. A case study

Figure 4.2: Experiment 2: squared prediction error (SPE) values obtained by employing the models
identified by the PRESS-based OFR (see Table 4.5) and by the proposed method (see Table 4.6) to
perform the one-step-ahead prediction for the validation data sets {D̃i}4i=1 (solid line: proposed
approach, dashed: PRESS-based OFR). From top to bottom, left to right: data sets {D̃i}4i=1

.

Table 4.7: A case study: mapping between sensors and identified regions. Note that some sensors are
not considered here.

Region Sensor identifier

1 {44, 45, 46, 47, 48, 49, 50}

2 {33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}

3 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

4 {26, 27, 28, 29, 30, 31, 32}

5 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

considering each sensor as an agent with its own private data set. Table 4.8 indicates
for each region those sensors that have been used for model learning and those for
model validation.

We considered data sets of an entire day, the 8-th of March, and we tried to identify
a NARX model with nd = 2, and ny = nu = 2, where ny and nu denote, respectively,
the maximum lag for the autoregressive component, i.e., the temperature, and for the
exogenous input, i.e., humidity. Figure 4.5 reports temperature data obtained from the
sensors in Region 1 over a one day period. This proves the presence of significant local
variations also in the measurements coming from the same region, especially in the
period ranging from 6 AM to 6 PM, and also that the temperature exhibits different
behaviors in different times of the day. Accordingly, we applied the identification pro-
cedure considering 4 time periods, from midnight to 6 AM, from 6 AM to noon, from
noon to 6 PM, and from 6 PM to midnight. Figure 4.6 illustrates the evolution in time
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Figure 4.3: Experiment 2: squared simulation error (SSE) values obtained by employing the models
identified by the PRESS-based OFR (see Table 4.5) and by the proposed method (see Table 4.6) to
open-loop output simulation for the validation data sets {D̃i}4i=1 (solid line: proposed approach,
dashed: PRESS-based OFR). From top to bottom, left to right: data sets {D̃i}4i=1

.

Figure 4.4: A case study: sensors location at the Intel Berkeley Research lab.

of temperature data in the remaining regions. Apparently, during the night, i.e., from 6
PM to midnight, and in the early morning, i.e., from midnight to 6 AM, the temperature
curves are similar in different regions, while during the working hours there are signifi-
cant differences between them. This happens also for the humidity, whose evolution in
time is shown in Figure 4.7. Each data set was subsampled to a data set with 1/8-th of
the original data before running the identification procedure.

The design parameters were set as follows: C = 0.001, β = 1, ρ(k) = 2k, and
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Table 4.8: A case study: sensors that have been used for model learning and those for model validation.
Note that some sensors are not used due to errors in the collected data.

Region Sensor identifier (model learning) Sensor identifier (model validation)

1 {45, 47, 48, 49} {44, 50}

2 {34, 35, 36, 38, 39, 42} {33, 43}

3 {3, 5, 7, 9} {1, 10}

4 {27, 28, 29, 30, 31} {26, 32}

5 {18, 19, 20, 21, 22, 23, 24} {17, 25}

Figure 4.5: A case study: temperature data obtained from sensors in Region 1 over one day period.

Np = 1000. Data y(t) and u(t) have been standardized to have zero mean and a
variance of one. Table 4.9 reports, for each region, the models identified in different
time periods and the corresponding averaged (among agents) mean squared error. As
expected, models identified from data belonging to the first and fourth time period are
similar among regions. Conversely, the models corresponding to the second and third
time period, differ significantly among regions. In particular, while simple ARX models
are in general enough to adequately approximate the system behavior in the first and
fourth time period, more complex models, which include also nonlinear model terms,
are needed to model the local temperature variations in the period ranging from 6 AM
to 6 PM.

The identified models have been compared with the trivial predictor ŷ(t) = y(t− 1)
which often represents a valid competitor when the system dynamic changes slowly
in time as e.g., in case of the temperature, and the obtained results are reported in
Table 4.10. Apparently, one can always take advantage in employing the identified
models w.r.t. the trivial predictor, as can be easily noted by the reported MSE reduction
values in the last column of Table 4.10. This evidence confirms that the considered
subsampled (1/8-th subsampling factor) data set is a valid benchmark for studying the
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Figure 4.6: A case study: temperature data obtained from sensors over one day period. From top-left to
bottom-right, Region 2, Region 3, Region 4, Region 5.

MSS problem.

Figure 4.7: A case study: humidity data obtained from sensors over one day period. On the x-axis is
reported the time of day, while in the y-axis is reported the percentage of humidity. From top-left to
bottom-right, Region 1, Region 2, Region 3, Region 4, Region 5.

The identified models have been validated on data collected from those sensors that
have been excluded from the identification process, as reported in Table 4.8. The ob-
tained results are presented in Table 4.11, and it easy to note that in general the identi-
fied models generalize well on unseen data, leading to mean squared errors comparable
with those resulting from the training phase. However, this is not always the case, such
as for sensor 10 in the second and third time period. Nevertheless, this is not surpris-
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Table 4.9: A case study: identified model in each time period, from data collected by sensors in each
region. Data have been standardized to have zero mean and a variance of one.

Region Period Identified model Mean Squared Error

1

00 : 00− 06 : 00 ŷ(t) = −0.0630 + 0.6059y(t− 1) + 0.3831y(t− 2) 0.0037

06 : 00− 12 : 00 ŷ(t) = 1.1494y(t− 1)− 0.4428y(t− 2)− 0.2215u(t− 1) 0.0910

12 : 00− 18 : 00 ŷ(t) = 0.0819 + 0.9556y(t− 1)− 0.1945y(t− 2)2 − 0.4376y(t− 2)u(t− 1)− 0.2821u(t− 1)2 0.0345

18 : 00− 00 : 00 ŷ(t) = 1.1773y(t− 1)− 0.1776y(t− 2) 0.0087

2

00 : 00− 06 : 00 ŷ(t) = −0.0636 + 0.7376y(t− 1) + 0.2457y(t− 2) 0.0101

06 : 00− 12 : 00 ŷ(t) = 0.9989y(t− 1) + 0.0816u(t− 2) 0.0746

12 : 00− 18 : 00 ŷ(t) = −0.0662 + 0.8379y(t− 1) + 0.2906y(t− 2) + 0.1220u(t− 2) 0.0257

18 : 00− 00 : 00 ŷ(t) = 0.7753y(t− 1) + 0.1970y(t− 2) + 0.1929u(t− 2) 0.0363

3

00 : 00− 06 : 00 ŷ(t) = −0.0512 + 0.6915y(t− 1) + 0.2915y(t− 2) 0.0117

06 : 00− 12 : 00 ŷ(t) = 1.2297y(t− 1)− 0.3043y(t− 2) 0.0670

12 : 00− 18 : 00 ŷ(t) = 1.2429y(t− 1)− 0.3091u(t− 1) 0.0908

18 : 00− 00 : 00 ŷ(t) = 0.9424y(t− 1) + 0.1547u(t− 2) 0.0251

4

00 : 00− 06 : 00 ŷ(t) = −0.0819 + 0.6006y(t− 1) + 0.3687y(t− 2) 0.0080

06 : 00− 12 : 00 ŷ(t) = 0.7043y(t− 1)− 0.2042y(t− 2)− 0.4343u(t− 1)− 0.2943y(t− 2)2 + 0.3165u(t− 2)2 0.0301

12 : 00− 18 : 00 ŷ(t) = −0.0637 + 0.8011y(t− 1) + 0.4607y(t− 2) + 0.2414u(t− 2) 0.0135

18 : 00− 00 : 00 ŷ(t) = 0.8157y(t− 1) + 0.1304y(t− 2) + 0.1850u(t− 2) 0.0522

5

00 : 00− 06 : 00 ŷ(t) = −0.0436 + 0.6974y(t− 1) + 0.2942y(t− 2) 0.0112

06 : 00− 12 : 00 ŷ(t) = 0.9324y(t− 1)− 0.2481u(t− 1) + 0.2183u(t− 2) 0.0296

12 : 00− 18 : 00 ŷ(t) = 0.9225y(t− 1) + 0.1476y(t− 2) + 0.1105u(t− 2)− 0.0361y(t− 2)2 0.0261

18 : 00− 00 : 00 ŷ(t) = 0.9619y(t− 1) + 0.1304u(t− 2) 0.0284

ingly, since the proposed distributed scheme aims to trading-off between the perfor-
mance of each local model and those of the global model, and it has to facing with
the high variations among sensor data, see Figure 4.8. For the sake of completeness,
Figures 4.9 and 4.10 show the one-step-ahead prediction for the validation (standard-
ized) data collected by sensors 1 and 10, and sensors 44 and 50 in the second and third
period, respectively.

4.7 Conclusions

A novel distributed scheme with model structure selection was proposed for nonlinear
system identification using the NARX model representation. The proposed approach
relies on the standing assumption that there are multiple data sets collected from sev-
eral experiments which cannot be made centrally available, and hence the identification
problem has to be solved by distributing the computation among agents. We address
this issue by resorting to a distributed scheme which aims at reaching a common value
for both the model structure and the parameter estimates in an integrated fashion, af-
ter having reformulated the MSS problem in the probabilistic framework discussed in
Chapter 3. Its performance was evaluated using Monte Carlo simulations over two dif-
ferent scenarios: in the former the data were originated from the same experimental
set-ups, while in the latter different input signals have been considered to generate the
data. In both cases, the algorithm was capable of retrieving the correct structure and pa-
rameterization of the process model, in a computationally efficient way. Furthermore,
it was shown that the presented method outperforms an OFR-based competitor in terms
of reliability of the structure selection. Finally, the proposed identification procedure
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Table 4.10: A case study: comparison between the identified models and the trivial predictor ŷ(t) =
y(t− 1). Data have been standardized to have zero mean and a variance of one.

Region Period Mean Squared Error (identified model) Mean Squared Error (trivial predictor) Evaluation

1

00 : 00− 06 : 00 0.0037 0.0064 −42.19%

06 : 00− 12 : 00 0.0910 0.1330 −31.58%

12 : 00− 18 : 00 0.0345 0.0396 −12.88

18 : 00− 00 : 00 0.0087 0.0100 −13%

2

00 : 00− 06 : 00 0.0101 0.0143 −29.37

06 : 00− 12 : 00 0.0746 0.0813 −8.24%

12 : 00− 18 : 00 0.0257 0.0344 −25.29

18 : 00− 00 : 00 0.0363 0.0502 −27.69%

3

00 : 00− 06 : 00 0.0117 0.0136 −13.97%

06 : 00− 12 : 00 0.0670 0.0831 −19.37%

12 : 00− 18 : 00 0.0908 0.1114 −18.49%

18 : 00− 00 : 00 0.0251 0.0490 −48.78%

4

00 : 00− 06 : 00 0.0080 0.0117 −31.62%

06 : 00− 12 : 00 0.0301 0.0409 −26.41

12 : 00− 18 : 00 0.0135 0.0172 −21.51%

18 : 00− 00 : 00 0.0522 0.0738 −29.27%

5

00 : 00− 06 : 00 0.0112 0.0119 −5.88%

06 : 00− 12 : 00 0.0296 0.0336 −11.90%

12 : 00− 18 : 00 0.0261 0.0301 −13.29

18 : 00− 00 : 00 0.0284 0.0476 −40.34%

Figure 4.8: A case study: temperature data in Region 3, in the second and third time period. On the x-
axis is reported the time of day, while in the y-axis is reported the temperature in degrees of Celsius.
Blue and red solid lines correspond respectively to sensor 1 and 10.
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Table 4.11: A case study: model validation. Data have been standardized to have zero mean and a
variance of one.

Region Period Sensor identifier Mean Squared Error Sensor identifier Mean Squared Error

1

00 : 00− 06 : 00 44 0.0048 50 0.0045

06 : 00− 12 : 00 44 0.0938 50 0.0854

12 : 00− 18 : 00 44 0.0317 50 0.0123

18 : 00− 00 : 00 44 0.0079 50 0.0061

2

00 : 00− 06 : 00 33 0.0067 43 0.0101

06 : 00− 12 : 00 33 0.0399 43 0.0909

12 : 00− 18 : 00 33 0.0367 43 0.0433

18 : 00− 00 : 00 33 0.0372 43 0.0083

3

00 : 00− 06 : 00 1 0.0043 10 0.0069

06 : 00− 12 : 00 1 0.0523 10 0.1138

12 : 00− 18 : 00 1 0.0778 10 0.1185

18 : 00− 00 : 00 1 0.0147 10 0.0209

4

00 : 00− 06 : 00 26 0.0033 32 0.0077

06 : 00− 12 : 00 26 0.0136 32 0.1080

12 : 00− 18 : 00 26 0.0061 32 0.0292

18 : 00− 00 : 00 26 0.0123 32 0.0194

5

00 : 00− 06 : 00 17 0.0050 25 0.0051

06 : 00− 12 : 00 17 0.0415 25 0.0511

12 : 00− 18 : 00 17 0.0172 25 0.0177

18 : 00− 00 : 00 17 0.1003 25 0.0143

was applied to benchmark case study concerning temperature data collected from 54
sensors deployed in the Intel Berkeley Research lab [47]. The obtained results show
the potential of the proposed algorithm also for this real application.
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Figure 4.9: A case study: one-step-ahead prediction for the validation data collected by sensors 1 (top)
and 10 (bottom) in the second (left) and third (right) period. Real data (blue) and prediction (red).
Data have been standardized to have zero mean and a variance of one.

Figure 4.10: A case study: one-step-ahead prediction for the validation data collected by sensors 44
(top) and 50 (bottom) in the second (left) and third (right) period. Real data (blue) and prediction
(red). Data have been standardized to have zero mean and a variance of one.
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CHAPTER5
Identification of nonlinear hybrid systems

THIS chapter addresses the identification of discrete time switched nonlinear
systems, which are collections of discrete time nonlinear continuous systems
(modes) indexed by a finite-valued variable defining the current mode. In

particular, we consider the class of Switched Nonlinear AutoRegressive eXogenous
(Switched NARX, or SNARX) models, where the continuous dynamics are represented
by NARX models. Given a set of input-output data, the identification of a SNARX
model for the underlying system involves the simultaneous identification of the mode
sequence and of the NARX model associated to each mode, configuring a mixed
integer non-convex optimization problem, hardly solvable in practice due to the large
combinatorial complexity. In this chapter, we introduce an iterative randomized
approach for the segmentation of time-ordered data observed from Switched Nonlinear
ARX (SNARX) models. More in detail, the proposed method consists of a two-stage
procedure repeated at each iteration, the first stage addressing the SNARX identifica-
tion problem based on the current set of candidate switching times, and the second
aiming at the refinement of such set. The sequence of the SNARX model identification
and refinement stages is repeated until convergence, ideally, to the SNARX model
that best describes the available data (target model). The described iterative two-stage
method requires that the number of modes is a priori known (a commonly adopted
assumption in the literature), whereas the structure of the NARX models associated
with the modes is not assumed to be known. The proposed method is capable of
operating with noisy data and can deal with medium/large datasets.

The rest of the chapter is organized as follows. Section 5.1 briefly reviews the state
of the art. Section 5.2 provides a general overview of the proposed two-stage proce-
dure, which is then detailed in Sections 5.2.1 and 5.2.2. Some simulation examples are
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presented in Section 5.3. Section 5.4 discusses the application of the proposed proce-
dure to the problem of data-driven model learning of a component placement process
in a pick-and-place machine, which requires to extend the method to PWARX systems.
Finally, some concluding remarks end the chapter.

5.1 State of the art

Many approaches have been proposed over the last two decades for the case of affine
continuous dynamics (see, e.g., [94] and [44] for a comprehensive review). These
methods can be roughly classified into two categories, depending on how the opti-
mization problem is tackled. Some methods adopt a solution strategy which addresses
the full problem, optimizing simultaneously over both continuous and discrete vari-
ables, [10], [104], [77], [86], [5], [96], [91], [89], [80], [28], while other methods
deal separately with the mode and structure classification and the parameter estima-
tion tasks, [37], [58], [97], [51].

In the first category, the bounded-error approach in [10] imposes that the identifica-
tion error is finite bounded and it addresses the identification problem as the partition
into a minimum number of feasible subsystems for a set of linear complementary in-
equalities derived from data. The procedure in [104] solves directly the optimization
problem by using mixed-integer linear or quadratic programming which is guaranteed
to converge to a global minimum. However, this approach is computationally affordable
only for small problems. The algebraic approach [77] proposes a continuous approxi-
mation based on a polynomial constraint which does not depend on the inference of the
hybrid state and the switching mechanism. In [5], the author poses the identification
as a combinatorial `0 optimization problem, then relaxed into a convex `1-norm mini-
mization problem. The underlying idea is to find among all submodels that of achieves,
over the whole dataset, the sparsest vector of fitting errors. An `1-relaxation is used also
in [89], where the general optimization takes the form of a least squares problem with
sum-of-norm regularization. Instead, in [96] the `0-minimization problem is relaxed
into a sequence of convex semidefinite programming problems, whose solutions are
guaranteed to convergence to the optimal solution of the original problem. A swarm-
based approach is used in [80] to handle the non-convex nature of the optimization
problem. The approach in [28] proposes a multi-model least-squares technique to iter-
atively solve the clustering and fitting of affine functions to data. Then, a second stage
is devoted to the computation of a polyhedral partition of the regressor space based
on multi-class discrimination methods. The same authors recently proposed in [9] a
framework for fitting jump models which encompasses also the case of piecewise affine
models. The proposed coordinate descent algorithm alternates between the estimation
of the model parameters, and the data classification.

As for the methods that deal separately with the classification and estimation tasks,
a clustering-based approach is presented in [37], where a K-means like algorithm is
used to partition the feature vectors space which implicitly leads to the accomplish-
ment of data classification. Then, the parameters are estimated from aggregated data
through weighted least squares. The method in [58] exploits the Bayesian inference
to estimate the model parameters. After this phase, each data point is attributed to the
mode that most likely generated it. The Bayesian framework is adopted also in [97]
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where submodels impulse responses are described by stable spline stochastic models
enhanced with further hyperparameters representing the classification variables. Data
classification is thus carried out in a marginal likelihood optimization approach which
is efficiently approximated by using a Markov chain Monte Carlo scheme. A three
steps procedure is presented in [51]. The first two steps estimate the discrete sequence
via sum-of-norm regularized least squares and expectation maximization clustering,
while the last step estimates the models from classified data.

Surprisingly fewer works have tackled the case of nonlinear continuous dynamics
associated to the modes, in spite of its importance in modeling complex applications.
Indeed, if no a priori information on the number of modes is available, one can in prin-
ciple identify an arbitrarily high number of local linear models (and switchings among
them) in order to achieve a good model accuracy. However, this prevents the identifi-
cation of the real dynamics of the hybrid system and hinders its physical interpretation.
It also greatly aggravates the combinatorial complexity of the optimization problem,
due to the increasing number of switchings. An attempt to deal with nonlinear HSs is
documented in [63], where a method based on kernel regression and Support Vector
Machines (SVMs) is discussed. In this setting, the number of variables over which the
optimization is carried out grows rapidly with the number of data N and the number
of modes NM , according to 2NM (N + 1), and hence this method can deal only with
relatively small problems. A reformulation of the optimization problem in a contin-
uous framework is studied in [65] and [66], thus allowing the use of efficient solvers
and enabling the solution of larger problems. The efficiency of this method is fur-
ther improved in [68] by introducing fixed-size kernel submodels. In [64], the authors
proposed an extension of the sum-of-norms approach described in [89] to piecewise
systems with nonlinear dynamics, based again on kernel functional expansions. The
method employs a convex cost function containing an accuracy term (quantifying the
quality of fit of each local model on the assigned data samples), a term penalizing the
local model complexity, and a variational term which controls the overall complexity
as a function of the number of local models. Note that, in case of time-ordered and
consecutive data, the proposed approach is similar to that in [34] which addresses the
segmentation of ordered data obtained from nonlinear dynamical systems. In [6] the
identification problem is first formulated as a sparse optimization problem and then re-
laxed in a convex form by approximating the `0 norm with the `1 norm. A sufficient
condition guaranteeing the optimality of the relaxed convex problem solution was pro-
vided only under a noiseless assumption. The notion of robust sparsity is introduced
in [69] to extend the applicability of the previous method to the noisy case. On the
down side, the method requires the careful setting of several parameters (e.g., the factor
that defines the trade-off between model complexity and accuracy, or the weights used
to improve the sparsity of the solution), which appears to be far from trivial.

It is worth noticing that most of the aforementioned approaches are nonparametric
in that they are based on kernel functional expansions. Instead, here the identification
problem has been addressed from a parametric perspective using nonlinear models of
the NARX/NARMAX class [70, 71], where the nonlinear functions are represented as
finite-dimensional parameterized polynomial expansions. Indeed, this is a very popular
approach in black-box nonlinear model identification [21], provided the identification
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procedure includes a model structure selection (MSS) process to tackle the curse of
dimensionality issue that is inherent to polynomial expansions. Polynomial nonlinear
models of this type have several attractive features (see e.g. [21] for a more detailed
discussion), among which the ability to represent a wide range of nonlinear systems
using a small number of parameters, the easy interpretability, and the amenability to
nonlinear frequency analysis using generalized frequency response functions.

5.2 A randomized two-stage iterative method

To ease the discussion, we report here the SNARX identification problem which has
been detailed in Section 2.1.3:

λ? = (σ?, S?) = arg min
λ∈Λ
L(λ), (5.1)

where λ represents the SNARX model structure. This structure involves N × NM

binary variables for σ (the mode switching signal), plus n × NM for S (the collection
of NARX model structures, i.e., S = [s(1), . . . , s(NM )] ∈ S = {1, 2}n×NM , where
s

(i)
j = 1 if the j-th regressor belongs to the model structure of mode i, and s(i)

j = 2
otherwise). Regarding this optimization problem, we argued that it is a mixed integer
program and also that is typically computationally intractable due to its combinatorial
complexity. In particular, we observed that the most critical aspect of this problem is
the sample-mode mapping, since switchings can occur at arbitrary times. However, it
is typically true that the number of true switching time instants in the observed data is
significantly less than N .

In view of this, we address the SNARX identification problem (5.1) using an iter-
ative two-stage approach, where at each iteration the identification is first carried out
by restricting the possible switching occurrences at a limited (small) number of time
instants, and then, based on the results of this operation, the set of allowed switching
times is refined. The restriction of the candidate switchings is crucial in reducing the
combinatorial complexity of the optimization problem associated to the identification
task performed in the first stage, thus allowing its solvability. More in detail, it induces
a partition of the data into (a small number of) sub-periods, each of which is associated
to a mode, and the NARX model associated to each mode can be identified based on all
the data segments labeled with it.

In the first stage a randomized algorithm is employed for the estimation of the
SNARX model best fitting the available data, given that the switching locations are re-
stricted to be in the set Ts = {tk}Nsk=1, with 1 < t1 < t2 < . . . < tNs ≤ N and Ns � N .
The information resulting from the first stage is used to refine the switchings posi-
tioning defined by Ts before a new execution of the first stage is carried out. This is
done by means of a split-and-merge procedure designed to finitely tune the number and
the location of the candidate switching times. The rationale is to add further possible
switching times in the neighborhood of detected switchings, while at the same time re-
moving candidate switching locations that were not identified as such. By iterating this
two-stage procedure, one can progressively improve the identification of the switching
locations as well as that of the NARX models associated to the modes.

The two stages are described in detail in the next two sections.
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5.2.1 First stage: identification

The first stage of the method is an application to the SNARX model class of the
randomized method presented in Chapter 3, under the assumption that switchings can
occur only at specific time instants.

Let I1 = {t | 1 ≤ t < t1}, Ik = {t | tk−1 ≤ t < tk}, k = 2, . . . , Ns, and
INs+1 = {t | tNs ≤ t ≤ N}, be the Ns + 1 time intervals induced by Ts. Define also
the corresponding set of admissible switching signals:

ΣTs = {σ|σ(t′) = σ(t′′), ∀t′, t′′ ∈ Ik, k = 1, . . . , Ns + 1}.

One can associate a mode κk to each time interval Ik, k = 1, . . . , Ns + 1, and define
vector κ = [κ1, . . . , κNs+1] ∈ {1, . . . , NM}Ns+1. Then, with a slight abuse of notation,
the SNARX model structure λ can be re-parameterized as λ = (κ, S). Accordingly,
our goal is to find the best SNARX model with switching signal in ΣTs:

λ? = (κ?, S?) = arg max
λ∈Λ
J (λ), (5.2)

where we set Λ = {1, . . . , NM}Ns+1 × {1, 2}n×NM , and J (λ) : Λ → [0, 1] is the
following performance index:

J (λ) = e−KλL(λ), (5.3)

with Kλ > 0 being a scaling parameter.
Note that problem (5.2) has the same structure of (3.1) and therefore can be ad-

dressed in the probabilistic framework described in Chapter 3. To this purpose, let
γ = (ξ,ρ), where ξ is a discrete random variable taking values in {1, . . . , NM}Ns+1

according to Pξ that accounts for the mode switchings, and ρ is a discrete variable tak-
ing values in {1, 2}n×NM according to Pρ that accounts for the structures of the NM

modes.
If we assume that the mode switching and the local model structures are indepen-

dent, we can express Pγ as:

Pγ(λ) = Pξ(κ) · Pρ(S), (5.4)

where λ = (κ, S) ∈ Λ.

Parametrization of Pξ

The random variable ξ is a vector of Ns + 1 random variables ξk, k = 1, . . . , Ns + 1,
each one representing the mode associated to the corresponding time interval Ik. We
can then introduce vector ηk = [η

(1)
k , . . . , η

(NM )
k ], where η(i)

k represents the probability
of assigning mode i to sub-period Ik and is denoted as Mode Extraction Probability
(MEP) in the following. Clearly,

∑NM
i=1 η

(i)
k = 1.

If we assume independence between the random variables ξk, k = 1, . . . , Ns + 1,
then, the probability distribution of ξ is given by

Pξ(κ) = Pξ([κ1, . . . , κNs+1]) =
Ns+1∏
k=1

NM∏
i=1

(
η

(i)
k

)b(i)k
, (5.5)
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where b(i)
k = 1 if κk = i, and 0 otherwise. Pξ is uniquely defined by matrix

η =


η1

...

ηNs+1

 ∈ R(Ns+1)×NM . (5.6)

Parametrization of Pρ

We associate each regressor ϕj in each mode i to a Categorical distribution1 ρj,i ∼
Categorical(µj,i), where µj,i = (µ

(1)
j,i , µ

(2)
j,i ). The outcome 1 encodes the case that ϕj

is present in the i-th local model structure (s(i)
j = 1), while the outcome 2 encodes the

case that ϕj is absent (s(i)
j = 2). Clearly, µ(1)

j,i + µ
(2)
j,i = 1. The probabilities µ(1)

j,i are
denoted as Regression Inclusion Probabilities (RIPs).

The collection of all parameters µ(1)
j,i , and µ(2)

j,i , j = 1, . . . , n, i = 1, . . . , NM defines
a matrix

µ =


µ

(1)
1 µ

(2)
1

...
...

µ
(1)
NM

µ
(2)
NM

 ∈ R(NM ·n)×2, (5.7)

where µ(l)
i = [µ

(l)
1,i, . . . , µ

(l)
n,i]

T ∈ Rn, i = 1, . . . , NM , l = 1, 2. If the random variables
ρj,i, j = 1, . . . , n, are independent, then the probability distribution Pρ(i) of ρ(i) =

[ρ1,i, . . . , ρn,i]
T is given by

Pρ(i)(s(i)) = Pρ(i)([s
(i)
1 , . . . , s

(i)
n ]) =

∏
j:ϕj∈s(i)

µ
(1)
j,i

∏
j:ϕj /∈s(i)

µ
(2)
j,i =

n∏
j=1

2∏
l=1

(
µ

(l)
j,i

)ζ(l)j,i
,

where ζ(l)
j,i = 1 if s(i)

j = l, and 0 otherwise.
Under the assumption of independence between mode structures, we then have that
the probability distribution of the random vector ρ associated with the SNARX model
structure is given by

Pρ(S) =

NM∏
i=1

Pρ(i)(s(i)) =

NM∏
i=1

n∏
j=1

2∏
l=1

(
µ

(l)
j,i

)ζ(l)j,i
. (5.8)

Therefore, Pρ is uniquely defined by matrix µ in (5.7).

Tuning of Pγ

The overall probability distribution Pγ in (5.4) is parameterized by η(i)
k and µ(l)

j,i , k =
1, . . . , Ns + 1, j = 1, . . . , n, i = 1, . . . , NM , and l = 1, 2. By setting

π =
(
η1, . . . ,ηNs+1,µ1,1, . . . ,µn,1, . . . ,µ1,NM

, . . . ,µn,NM
)
,

1Notice that a Categorical distribution with only two outcomes is equivalent to a Bernoullian distribution.
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Pγ can be succinctly written in the form of (3.2) as

Pγ(λ) =

Ns+1+NM ·n∏
j=1

mj∏
i=1

(
π

(i)
j

)β(i)
j

, (5.9)

where

mj =

{
NM , j ≤ Ns + 1

2, otherwise
,

and the β(i)
j values are the element of a vector β defined as

β = [b
(1)
1 , . . . , b

(NM )
1 , . . . , b

(1)
Ns+1, . . . , b

(NM )
Ns+1,

ζ
(1)
1,1 , ζ

(2)
1,1 , . . . , ζ

(1)
n,1, ζ

(2)
n,1, . . . , ζ

(1)
1,NM

, ζ
(2)
1,NM

, . . . , ζ
(1)
n,NM

, ζ
(2)
n,NM

].

In this view, the results stemming from Theorems 1 and 2 can be used to develop
suitable tuning rules for Pγ , as follows.

The randomized procedure involves extracting and evaluating samples λ = (κ, S) of
the random variable γ = (ξ,ρ), according to the distribution Pγ , to gather information
for tuning Pγ . To update the MEP η(i)

k we employ a sampled version of the index:

δ
(i)
k = EPγ [J (γ)|ξk = i]− EPγ [J (γ)|ξk 6= i] , (5.10)

which compares the average performance of γ in case mode i is assigned to time period
Ik with the average performance of γ in the opposite case. If δ(i)

k > 0 it pays off to
apply the mentioned mode assignment. Since, in practice, index δ(i)

k > 0 can only be
calculated in an approximate sampled version, we use this information in a conservative
way, defining the following tuning rule:

η
(i)
k ← η

(i)
k + χδ

(i)
k , (5.11)

where the step size χ > 0 is a design parameter.
Similarly, we update µ(l)

j,i based on an aggregate index that weighs the advantages of
picking regressor ϕj for mode i:

`
(l)
j,i = EPγ [J (γ)|ρj,i = l]− EPγ [J (γ)|ρj,i 6= l] . (5.12)

Index `(l)
j,i compares the average performance of γ in case ϕj is included in the model

structure for mode i with the average performance of γ in the opposite case. As with
δ

(i)
k , only an approximate sampled version of `(l)

j,i can be calculated in practice, which
motivates the use of an update law which balances the prior knowledge with the new
estimate of the index:

µ
(l)
j,i ← µ

(l)
j,i + χ`

(l)
j,i . (5.13)

The iterative application of the above update rules guarantee (local) convergence to the
target limit distribution

P?γ = arg max
Pγ

EPγ [J (γ)]

as stated in Theorem 2.
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Guidelines for parameter settings

As discussed in Section 3.2, choosing the correct step size χ in the update of the MEPs
and RIPs is crucial for the convergence speed of the algorithm. Accordingly, we adopt
here the adaptive tuning rule introduced in (3.13).

The convergence speed of the algorithm is also influenced by the choice of Kλ in
(5.3). As an alternative to a classical trial-and-error approach, we here provide a sim-
ple tuning procedure for Kλ, designed to allow a better discrimination between models
with similar performance. Let us denote by OM(x) = blog10(x)c the order of mag-
nitude of a nonnegative number x. Parameter Kλ is tuned at the first iteration of the
algorithm according to the minimum OM(L(λ)), computed based on the extracted
SNARX models. Specifically,

Kλ = 10−(min(OM(L(λ)))+1). (5.14)

Regarding the initialization of the probability distribution, we set the parameters µ(l)
j,i

to equal small values, to encourage the extraction of small models at the early stages of
the algorithm. As for the η(i)

k , in the absence of any a-priori assumption on the switching
signal, we attribute equal probabilities η(i)

k = 1/NM to all modes in each sub-period Ik.
Concerning the choice of Ts, we initially place the candidate switching time instants

uniformly over {1, N}, dividing the time horizon in sub-periods of equal length. In
choosing this placement, one can take advantage from the a priori knowledge on the
minimum dwell time of the system in a mode. Indeed, in practical applications, where
the mode switching is caused by activation/deactivation of devices and system recon-
figuration, switchings cannot generally occur at consecutive time steps and a certain
time must be allowed to pass between switchings. If such information is available,
the maximum sub-period length should be upper bounded by the minimum dwell time,
so that at most one switching can occur inside a given sub-period, thus reducing the
number of mixed sub-periods, as discussed in Section 5.2.2. Notice also that a signifi-
cant reduction of the combinatorial complexity can be leveraged for what concerns the
switching signal (only switching signals that do not violate the minimum dwell time
are acceptable).

An heuristic implementation

Let Ni =
∑N

t=1 β
(i)
t denote the number of samples in the data set that are associated

with mode i. The performance indexL(λ) in (2.27) can be explicitly expressed in terms
of the contribution of each mode as

L(λ) =
1

N

∑
i:Ni 6=0

Ni · L(i)(κ, s(i)),

where L(i)(κ, s(i)) measures the accuracy of the model of the i-th mode. Index
L(i)(κ, s(i)) is well-defined if Ni 6= 0 and is given by:

L(i)(κ, s(i)) = min
ϑ(i)

1

Ni

N∑
t=1

β
(i)
t ·

(
y(t)−ϕ(t)ϑ(i)

)2

(5.15)

subject to ϑ(i)
j = 0 if s(i)

j = 2, j = 1, . . . , n.
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The convergence speed of the algorithm can be improved by updating the probabil-
ity distribution associated to the model structures of the modes (see equation (5.12))
separately for each mode, based on a local performance index of the following type:

J (i)(κ, s(i)) = e−KiL
(i)(κ,s(i)), (5.16)

as opposed to the full J (λ). In expression (5.16) Ki > 0 is a design parameter that can
be tuned similarly to (5.14):

Ki = 10−(min(OM(L(i)(κ,s(i))))+1). (5.17)

As a result, the update term `
(l)
j,i is modified as follows:

˜̀(l)
j,i = EPγ

[
J (i)(κ,ρ(i))|ρj,i = l, ξ = κ

]
− EPγ

[
J (i)(κ,ρ(i))|ρj,i 6= l, ξ = κ

]
,

(5.18)

which, with reference to mode i, compares the average performance of model structures
that include ϕj with that of the remaining structures. Observe that the performance
evaluation depends on the switching signal as well, which defines the segments of the
data-set that are assigned to mode i. The resulting RIP update law is:

µ
(l)
j,i ← µ

(l)
j,i + νi ˜̀

(l)
j,i (5.19)

where νi > 0 is the step size for mode i defined (similarly to (3.13)) as:

νi =
1

10
(
J (i)

best − J
(i)
)

+ 0.1
(5.20)

with J (i)
best and J (i)

being respectively, the best value and the mean value for J (i) eval-
uated on the extracted samples for γ.

In this case, the local convergence of Pγ to the target limit distribution P?γ is not
guaranteed, essentially due to possible sign differences between `(l)

j,i and ˜̀(l)
j,i . To show

this, consider first the relation between J (λ) and J (i)
(
κ, s(i)

)
, i = 1, . . . , NM :

J (λ) = e−KλL(λ) = e−Kλ·[
1
N

∑
i:Ni 6=0Ni·L(i)(κ,s(i))] =

NM∏
i=1

[
J (i)

(
κ, s(i)

)]Ni
N

Kλ
Ki (5.21)

Based on (5.21) and under the assumption of independence between modes, and be-
tween regressors, one can reformulate the first term in the RHS of (5.12) as:

EPγ [J (γ)|ρj,i = l] =

∑
κ

Pξ(κ)

E[(J (i)
(
κ,s

(i)
))Ni

N

Kλ
Ki |ρj,i = l,ξ = κ

]
·
NM∏
n 6=i

E
[(
J (i)

(
κ,s

(i)
))Ni

N

Kλ
Ki |ξ = κ

] .
(5.22)

Similarly,

EPγ [J (γ)|ρj,i 6= l] =

∑
κ

Pξ(κ)

E[(J (i)
(
κ,s

(i)
))Ni

N

Kλ
Ki |ρj,i 6= l,ξ = κ

]
·
NM∏
n 6=i

E
[(
J (i)

(
κ,s

(i)
))Ni

N

Kλ
Ki |ξ = κ

] .
(5.23)
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By substituting (5.22) and (5.23) in (5.12), one obtains:

EPγ [J (γ)|ρj,i = l]− EPγ [J (γ)|ρj,i 6= l] =∑
κ

Pξ(κ)

[
E
[(
J (i)

(
κ, s(i)

))Ni
N

Kλ
Ki |ρj,i = l, ξ = κ

]
− (5.24)

− E
[(
J (i)

(
κ,s

(i)
))Ni

N

Kλ
Ki |ρj,i 6= l,ξ = κ

]]
·
NM∏
n 6=i

E
[(
J (i)

(
κ,s

(i)
))Ni

N

Kλ
Ki |ξ = κ

]
. (5.25)

That is, the sign of each single ˜̀(l)
j,i

(
the inner part of the summation over κ

)
may be

different from that of `(l)
j,i .

However, as discussed in Section 5.2.1, the experimental evidence indicates that this
occurs relatively seldom and scarcely affects the overall identification results (see Table
5.2 and Figure 5.2). This justifies the adoption of this heuristic version of the algorithm
in view of its more favorable computational characteristics.

Algorithm 5 reports the whole identification procedure carried out in the first stage.

Example 1: T ◦s ⊆ Ts

Recalling that T ◦s identifies the set of true switching time instants, it can happen that
T ◦s ⊆ Ts or, more frequently, T ◦s * Ts. We discuss here the former condition, while
the latter one is the subject of the next subsection.

Consider the following SNARX system [63], which switches between a linear mode
1:

y(t) = −0.905y(t− 1) + 0.9u(t− 1) + e(t),

and a nonlinear mode 2:

y(t) = −0.4y(t− 1)2 + 0.5u(t− 1) + e(t),

where e(t) is a zero mean Gaussian noise of variance 0.012 and u(t) is uniformly dis-
tributed in the interval [0, 1]. An observation window of N = 2000 samples has been
collected, which contains 4 switchings, at t = 400 (from mode 1 to mode 2), t = 1500
(from mode 2 to mode 1), t = 1600 (from mode 1 to mode 2), and t = 1700 (from
mode 2 to mode 1), so that T ◦s = {400, 1500, 1600, 1700}. In the absence of any a
priori information regarding the candidate switching times, we uniformly divide the
time horizon in 20 sub-periods of length 100, setting tk = 100k, k = 1, . . . , 19. Notice
that, while this hugely simplifies the combinatorial complexity of the problem, more
than 1 million different possible switching signals are nevertheless compatible with the
defined Ts. In this case study, the set of pre-defined candidate switchings includes the
true ones. The design parameters have been set to ny = nu = nd = 2 (for a total of 15
possible regressors for each NARX model). Furthermore, the initial MEPs are all set to
0.5, and the initial RIPs to 0.0667.

Worth noting, the algorithm extracts useful information on the model from par-
tially correct extracted models. To emphasize this property, consider Figure 5.1 which
shows the probability distribution state, in terms of the scalar parameters η(i)

k and µ(l)
j,i ,

k = 1, . . . , Ns + 1, j = 1, . . . , n, i = 1, . . . , NM , l = 1, 2, obtained by interrupting the
algorithm well before convergence, at the iteration when the correct model is first ex-
tracted. All the information gathered up to this point to tune the probability distribution
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Algorithm 5 First stage: identification algorithm

Require: {(ϕ(t),y(t)), t = 1, · · · , N},
n,NM , T (0)

s = {t1, . . . , tNs}, Np,Kλ,Ki, µmin, µmax, ηmin, ηmax, ε
Ensure: η,µ

1: ηk ← 1
NM
· 1NM×1;

2: µ
(1)
i ← 1

n · 1n×1;
3: Define the time intervals Ik, k = 1, . . . , Ns according to T (0)

s ;
4: repeat
5: for p = 1 to Np do
6: κ(p) ← [ ];
7: for k = 1 to Ns do . Generate switching signal
8: Extract κ(p)k from Categorical(ηk);
9: κ(p) ← [κ(p), κ

(p)
k ];

10: end for
11: for i = 1 to NM do
12: Ĩ ← {Ik|κ(p)k = i}; . Aggregate data
13: D(i) ← {(ϕ(t),y(t))|t ∈ Ĩ};
14: Ni ← |D(i)|;
15: {s(i)p , ϑ̂

(i)
} ← run Algorithm 1 on data D(i) and RIPs µi; . Generate NARX model

16: Compute L(i)
p according to (5.15); . Mode evaluation

17: J (i)
p ← e−KiL

(i)
p ;

18: end for
19: Lp ← 1

N

∑
i:Ni 6=0NiL

(i)
p ; . SNARX model evaluation

20: Jp ← e−KλLp ;
21: end for
22: χ← 1

10(Jbest−J )+0.1
;

23: for k = 1 to Ns do . Update ηk
24: for i = 1 to NM do
25: J⊕ ← 0; n⊕ ← 0; J	 ← 0; n	 ← 0;
26: for p = 1 to Np do
27: if κ(p)

k = i then
28: J⊕ ← J⊕ + Jp; n⊕ ← n⊕ + 1;
29: else
30: J	 ← J	 + Jp; n	 ← n	 + 1;
31: end if
32: end for
33: η

(i)
k ← η

(i)
k + χ

(
J⊕

max(n⊕,1) −
J	

max(n	,1)

)
;

34: η
(i)
k ← max

(
min

(
η
(i)
k , ηmax

)
, ηmin

)
; . Saturation

35: end for
36: η

(i)
k ←

η
(i)
k∑NM

i=1 η
(i)
k

; . Normalization

37: end for
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38: for i = 1 to NM do . Update µi - heuristic implementation
39: νi ← 1

10
(
J (i)

best−J
(i)
)
+0.1

;

40: for j = 1 to n do
41: J⊕ ← 0; n⊕ ← 0; J	 ← 0; n	 ← 0;
42: for p = 1 to Np do
43: if s(p)j = 1 then
44: J⊕ ← J⊕ + J (i)

p ; n⊕ ← n⊕ + 1;
45: else
46: J	 ← J	 + J (p); n	 ← n	 + 1;
47: end if
48: end for
49: µ

(1)
j,i ← µ

(1)
j,i + νi

(
J⊕

max(n⊕,1) −
J	

max(n	,1)

)
;

50: end for
51: µ

(1)
j,i ← max

(
min

(
µ
(1)
j,i , µmax

)
, µmin

)
; . Saturation

52: end for

53: until Stopping criterion

is based on extracted SNARX models none of which has the correct structure. All the
same, this information appears to be sufficient to drive the algorithm toward the true
model structure λ?. Indeed, some of the sub-periods have been already mapped on the
correct mode with high confidence and the algorithm is looking for the model structure
S on a restricted area of the solution space S which actually contains S?. This con-
firms the effectiveness of the chosen parametrization of Pγ and of the proposed tuning
rules. It proves also that the result in Theorem 2 is somewhat conservative, since in this
example the algorithm is converging toward the target limit distribution even if it has
been initialized with Pγ(λ?) ∼= 0.

Table 5.1 reports some aggregate results obtained from 100 runs of the algorithm on
the same data realization. The proposed algorithm performs well in both the sample-
mode assignment and the local NARX model identification, and it does so by exploring
a small fraction of the total number of possible switching signals and models. As for
the nonlinear mode, the algorithm sporadically (2 times out of 100) fails to select the
nonlinear term y(t−1)2 in favor of y(t−1), for a slight performance loss. Indeed, L(2)

takes the value 0.0119 for the wrong local model and the value 0.0118 for the correct
one, causing the algorithm to be trapped in the found local minimum due to the almost
negligible difference between them. It is worth noticing that despite the occasional
failures in identifying mode 2, the algorithm has always been able to capture from the
data the existence of two different modes, and to assign them correctly to the sub-
periods.

A similar MC analysis has been carried out by considering this time the heuristic
implementation introduced in Section 5.2.1. As one can note from Table 5.2, which
reports the aggregated results of this analysis, the heuristic implementation provides
comparable results in terms of accuracy, albeit at a lower computational cost. Figure 5.2
compares the two versions of the proposed algorithm, by enumerating the occurrences
of a sign difference between the two update factors `(l)

j,i and ˜̀(l)
j,i over the MC runs. The

frequency of these events decreases with iterations, so that no significant differences
are expected in the algorithm outcomes at convergence. Based on this evidence, the
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Figure 5.1: Example 1: MEP and RIP values at the iteration when the correct model structure is first
extracted. Top: MEPs of modes 1 (blue) and 2 (yellow). Bottom, from left to right: RIPs of mode 1,
RIPs of mode 2.

heuristic implementation has been employed in the rest of the paper for computational
convenience.

Example 1 (contd.): T ◦s * Ts

Suppose now that the switchings occur at t = 350 (from mode 1 to mode 2), t = 1450
(from mode 2 to mode 1), t = 1600 (from mode 1 to mode 2), and t = 1750 (from
mode 2 to mode 1). Notice that using the previously defined uniform placement of the
switching times, only one of the true switchings is encompassed, while the others occur
exactly in the middle of the 3rd, 15th, and 18th sub-periods.

Table 5.3 reports the results of a single run of the identification method. Apparently,
the presence of sub-periods assigned to mode 1 but containing also samples associated
to mode 2 prevents the algorithm from correctly identifying the local model assigned
to the first mode (a redundant regressor is added to the model, although with a very
small coefficient, indicating its relatively smaller importance). Despite this failure in
estimating the linear local model, the method performs well in assigning the samples
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Table 5.1: Example 1: T ◦s ⊆ Ts. Monte Carlo simulation results.

Average elapsed time [s] 41.25

Percentage of correct selection of κ 100%

Average # of explored switching sequences 12520

Total # of allowed switching sequences 1048576

Percentage of correct selection of s(1) 100%

Average # of explored model structures for mode 1 790.62

Total # of possible model structures for mode 1 32768

Percentage of correct selection of s(2) 98%

Average # of explored model structures for mode 2 1005.9

Total # of possible model structures for mode 2 32768

Table 5.2: Example 1: T ◦s ⊆ Ts. Monte Carlo simulation results - heuristic implementation.

Average elapsed time [s] 30.16

Percentage of correct selection of κ 100%

Average # of explored switching sequences 11156

Total # of allowed switching sequences 1048576

Percentage of correct selection of s(1) 100%

Average # of explored model structures for mode 1 646.27

Total # of possible model structures for mode 1 32768

Percentage of correct selection of s(2) 95%

Average # of explored model structures for mode 2 752.42

Total # of possible model structures for mode 2 32768

to the modes. Indeed, the obtained κ? is correct in 17 out of 20 periods and yields a
50% correct classification of the samples in the remaining three sub-periods. This error
(which involves 150 out of 2000 samples, i.e. 7.5% of the data) is unavoidable given
the placement of the true switchings exactly in the middle of the allowed sub-periods.

Discussion

The presented first stage identification method is effective in both mode assignment and
model estimation, provided that T ◦s ⊆ Ts, while an unavoidable approximation error
is experienced otherwise. In general, no a priori information on the switching times is
available and, in principle, a switching could occur at any time instant in {1, 2, . . . , N}.
In order to encompass this case one could arbitrarily enlarge Ts towards {1, . . . , N}.
However, the complexity of the resulting combinatorial problem rapidly increases with
the cardinality of Ts that is employed, making it computationally intractable to sample
the set {1, 2, . . . , N} too densely. This poses a practical limit on the modeling accuracy
that can be achieved with the method described in this section, since with a sparse Ts
a poor resolution on the switching times is typically obtained, which in turn influences
the quality of the identified models (that are tuned on data not fully belonging to the
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Figure 5.2: Example 1: average number of occurrences of a sign difference between `(l)j,i and ˜̀(l)
j,i in the

MC runs at each iteration. The red marker indicates the average number of iterations required to
solve the identification problem.

Table 5.3: Example 1: T ◦s * Ts. Single run results.

L(λ) 0.0154

L(1)(λ) 0.0198 (N1 = 900)

L(2)(λ) 0.0119 (N2 = 1100)

Detected switching times 400, 1400, 1600, 1700

sub-periods assigned to mode 1 Ik, k = 1, . . . , 4, 15, 16, 18, . . . , 20

sub-periods assigned to mode 2 Ik, k = 5, . . . , 14, 17

Sample classification error 7.5%

Regressors mode 1 y(t− 1), u(t− 1), u(t− 2)

Parameters mode 1 −0.9041, 0.8363, 0.0566

Regressors mode 2 u(t− 1), y(t− 1)2

Parameters mode 2 0.5093, −0.4137

appropriate modes), and motivates the introduction of the second stage.

5.2.2 Second stage: refinement

Rather than extending Ts to improve the accuracy of the model, we here suggest to
refine it based on the outcome of the identification procedure and then iterate the pro-
cess. The refinement stage is aimed at improving the resolution of Ts where required,
at the same time keeping its size under control. This is achieved by adopting a denser
sampling of the time horizon in the vicinity of the detected switchings and a sparser
sampling elsewhere. Notice that, besides improving the resolution of the estimated
switching instants, it is also expected that the improvement in the sample-mode assign-
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ment will also positively impact the accuracy of the identified local models.
The rationale behind the refinement of Ts follows from the observations listed below:

• Let two adjacent sub-periods be assigned to different modes, say κk = 1 and
κk+1 = 2. This suggests that the majority of the samples of the first period can be
ascribed to mode 1 and similarly that most of the samples in the second period in-
deed belong to mode 2. This indicates that there is at least one switching between
modes 1 and 2 in the time interval spanned by the set Ik∪Ik+1, but not necessarily
at the common boundary (tk). Therefore, adding new candidate switching times
in the vicinity of tk may improve the resolution of the algorithm.

• Let two adjacent sub-periods be assigned to the same mode, say κk = κk+1 = 1.
Then, in the same assumptions as before, no switching from mode 1 to another
one can occur in the vicinity of the intermediate point tk. It is therefore possible
to disregard tk altogether as a candidate switching time.

• Occasionally, the identification procedure may fail to converge to a limit distribu-
tion regarding a specific sub-period, so that multiple MEPs have non-zero values.
This typically occurs when the sub-period contains data of different modes. In
these situations, splitting further the sub-period into smaller sub-periods may fa-
cilitate the algorithm in taking its decisions.

Let T (r)
s be the set of allowed switching time instants at the rth iteration of the

overall procedure. Then, after the execution of the identification phase in the first stage,
the refinement phase of the mode switching times consists in defining T (r+1)

s based on
the results of the rth identification. T (r+1)

s is calculated according to the following
steps, starting from an empty set:

1. Detection of switchings. A switching is detected at tk if κk 6= κk+1 (i.e. two
consecutive sub-periods have been assigned to different modes). Accordingly, let
V = {tk ∈ T (r)

s |κk 6= κk+1} be the set of detected switchings.

2. Detection of unresolved sub-periods. Sub-period Ik is marked as unresolved if
the identification algorithm was unable to converge to a limit distribution for ξk,
within the allotted iterations (although the MEP of one mode could still be signif-
icantly larger than the others to allow for a meaningful mode assignment). The
auxiliary set U ⊆ T (r)

s includes the starting times of such unresolved sub-periods.

3. Split phase: part a. For each t ∈ V , three candidate switching locations are added
to T (r+1)

s . More precisely, T (r+1)
s ← T (r+1)

s ∪ {t−, t, t+}, with t− = t − w and
t+ = t+ w, where w is a design parameter.

4. Split phase: part b. For each t ∈ U , let t′ = min{tk∈T (r)
s |tk>t}

tk. Now, if d =

t′ − t ≥ 2, then T (r+1)
s ← T (r+1)

s ∪ {t, t+, t′}, where t+ = t + dd
2
e. Otherwise,

T (r+1)
s ← T (r+1)

s ∪ {t, t′}.

5. Merge phase. The elements of T (r)
s not in V or U are not carried over to T (r+1)

s ,
and are therefore discarded. By doing so, we are implicitly merging consecutive
sub-periods, which are assumed not to include mode switchings, according to the
current model.
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Regarding the split procedure, a possible choice is to use the same w value for each
detected switching, setting w(r+ 1) = αmink |I(r)

k |, where I(r)
k , k = 1, . . . , Ns + 1 are

the sub-periods induced by T (r)
s and 0 < α < 1 (e.g., α = 0.5 to get new sub-periods

half as large as the smallest sub-periods of the previous iteration).
The rationale behind the processing of the unresolved sub-periods is as follows.

Since the absence of convergence is typically due to the simultaneous presence in a sub-
period of an initial portion associated to a mode followed by samples from a different
one, the time interval is split into two equal parts to increase the mode unbalance in
both time intervals and thus facilitate the mode assignment. However, if the original
unresolved sub-period is too short, the time interval is not further divided, trusting
that the progressive improvements in the identification of the local models (thanks to
the refined positioning of the switchings) will allow the full convergence to a limit
distribution in the subsequent iterations.

Guidelines for parameter settings

The results of the previous identification phase can also be used to set the initial MEPs
and RIPs more appropriately before repeating the identification procedure. Indeed, if
a sub-period was previously assigned to a specific mode with high confidence (i.e.,
the corresponding MEP was close to 1 at the previous iteration), then this information
should be preserved in the new execution, by setting the corresponding MEP to a large
value. All the same, we apply a discounting factor to allow the identification algorithm
some flexibility to consider also alternative mode assignments. On the other hand, the
MEPs associated to unresolved sub-periods or to newly generated sub-periods (from t−

to t and from t to t+) are set to be equal for all modes. The following rules formalize
these considerations:

• Detected switchings. For each t ∈ V , η(i)

t− = η
(i)
t = 1/NM , i = 1 . . . NM , while

η
(i)

t+ = p for i = σt+ and η(j)

t+ = 1−p
NM−1

, for all other modes, where p is a design
parameter (e.g., p = 0.7) representing the desired confidence level.

• Unresolved switchings. For each t ∈ U , η(i)
t = 1/NM , i = 1 . . . NM , while

η
(i)
t′ = p for i = σt′ and η(i)

t′ = 1−p
NM−1

, for all other modes. Furthermore, if t+

exists, η(i)

t+ = 1/NM , i = 1 . . . NM .

Regarding the RIPs, they are all set to 1/n at each iteration, where n is the number
of regressors.

Example 1 (contd.): Refinement stage

A typical execution of the refinement stage is illustrated in Figure 5.3, as a contin-
uation of the last example discussed in Section 5.2.1. In the identification stage, as
already discussed, mode switchings were identified at times 400, 1400, 1600, and 1700,
three of which being approximations of the true ones, given the coarse division of the
time horizon in Ts. The refinement stage halves the 4th, 5th, 14th, 15th, 16th, 17th,
and 18th intervals (w = 50), and removes the redundant time points separating equal
mode assignments, yielding T (2)

s = {350, 400, 450, 1350, 1400, 1450, 1550, 1600,
1650, 1700, 1750}. Notice that the total number of switching times has decreased from
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19 to 11, thanks to the merging phase. The smallest time sub-periods generated by
the refinement are initialized with MEPs assigning the same a priori probability to all
modes, while the MEPs of the other ones (where a clear decision was made in the first
run) are only partially discounted to allow some further flexibility to the algorithm. No-
tice that based on T (2)

s a much sharper detection of the true switching times is indeed
possible.

1

1 1 1 1 1 1 1111

1 1 1

1

1

�1) �1) �1)

2 2

2 2 2 2 2 2 2 2 2 2 2

�2)

350 1450 1600 1750 2000

2000

2000

1��

w = 5�

Figure 5.3: Example 1, refinement stage: real switching signal (top), identified switching instants (mid-
dle) and updated set of allowed switchings (bottom). Blue bars indicate actual switchings, black bars
the detected switching instants, and red bars the candidate switchings. The mode corresponding to
each sub-period is reported on the top of each plot: modes indicated in brackets are those whose
MEP will be set to a larger value in that sub-period for the next identification stage.

5.3 Numerical examples

In this section several simulation examples are discussed to show the effectiveness of
the proposed iterative method. First, the presented procedure is applied to the example
introduced in Section 5.2.1 to illustrate the effect of repeatedly iterating stages 1 and
2 (Section 5.3.1). Some robustness and computational load analyses have also been
carried out on the same example. A second system identification problem is discussed
in Section 5.3.3, which is not trivial due to the presence of local models with the same
structure but different parameterizations. A third, more complex case study is also
considered.

All tests have been performed in a MATLAB 2017a environment, on an HP ProBook
650 G1 CORE i7-4702MQ CPU @2.20 GHz with 8GB of RAM.

5.3.1 Example 1 (contd.): Two-stage procedure

Let us apply the iterative two-stage procedure to the illustrative example discussed in
Section 5.2.1. The design parameters of the identification phase, as well as the initial
MEPs, RIPs, and candidate switching locations are set as done previously (20 sub-
periods of 100 samples are initially defined). The design parameters for the refinement
stage have been set to α = 0.5 and p = 0.7.

Table 5.4 presents the aggregated results of 100 Monte Carlo (MC) runs. Notice,
first of all, that both local model structures have been estimated correctly 100% of
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the times. Furthermore, the low accuracy in the selection of the switching sequence
selection (see Table 5.4) is only apparent, the errors in the estimation of the switch-
ing time instants being in fact rather small. This can be a appreciated by inspection
of Figure 5.4 (top), which shows the distribution of the detected switchings over the
MC runs, indicating that the number and position of the switchings are in fact quite
accurately estimated, thanks to the refinement procedure. Figure 5.4 shows also the
aggregated results in terms of classification error rate on the training set (percentage of
misclassified samples), and the normalized accuracy criterion

FIT = 100 (1− ‖ŷ − y‖2/‖y − ȳ1‖2) , (5.26)

where y is the vector containing the target outputs, ȳ being the mean value, and ŷ is
the vector of the outputs predicted using the estimated mode switching signal σ.

With reference to the same example we also ran a comparative analysis with the non-
parametric approach of [69], which extends the method presented in [63] from which
the SNARX system used in this example has been taken. In particular, among the four
methods proposed in [69] to fix the submodel size and limit the number of optimization
variables, we chose the Feature Vector Selection (FVS) method. To describe the two
modes we considered a linear kernel and a RBF kernel, respectively, exploiting (as done
in [63]) the prior knowledge that one submodel is linear and the other is nonlinear.
To produce the results presented in the paper we tested various combinations of the
design parameters σ (the STD of the RBF kernels) and C (which governs the trade-off
between model complexity and model accuracy), obtaining the best results for σ = 0.1
and C = 100. An MC analysis was carried out and the aggregate results are reported
in Figure 5.5. The values of the FIT criterion are roughly in the same range as with
the proposed algorithm, albeit with a much larger variance. However, the more striking
difference is in the sample classification accuracy, which is significantly larger than
with the proposed algorithm. This is a remarkable aspect, considering also that with
the non-parametric approach we have taken advantage of the a priori knowledge about
the linearity of one of the submodels. One reason for this performance difference lies in
the fact that the non-parametric method operates on a sample-by-sample basis, resulting
in a very fragmented mode mapping of the time history (unless some sort of post-
processing is applied). This does not happen with our method, since it exploits the time-
ordering of the collected data to solve the sample-mode mapping process, by applying
a segmentation in a relatively small number of subperiods. In the light of the large
classification error, the occasional high FIT models obtained with the non-parametric
approach might be interpreted as a manifestation of overfitting behavior. Finally, the
considered non-parametric approach on average required 123.9 seconds to solve the
identification task.

5.3.2 Example 1 (contd.): Robustness and computational load analysis

To show the robustness of the proposed method with respect to the initial choice of
the switching instants, a MC simulation was carried out on Example 12, initializing
T (0)
s randomly. Specifically, at each run the candidate switching instants are set to
tk = 100k + vk, k = 1, . . . , 19, where vk is a zero mean white Gaussian noise with

2Where the values of the design parameters are not reported explicitly, those used in Section 5.3.1 are considered.
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Table 5.4: Example 1 (contd.): T ◦s * Ts. MC analysis.

Average elapsed time [s] 284.26

Percentage of correct selection of κ 61.62%

Average # of explored sequences 11791

Total # of allowed switching sequences 1048576

Percentage of correct selection of s(1) 100%

Average # of explored models for mode 1 654

Total # of possible model structures for mode 1 32768

Percentage of correct selection of s(2) 100%

Average # of explored model structures for mode 2 758

Total # of possible model structures for mode 2 32768

Figure 5.4: Example 1 (contd.): T ◦s * Ts, proposed method. Top: distribution of the detected switching
time instants for the proposed method (red markers represent the true switching instants). Bottom:
boxplots showing the distributions of the classification error rate and the FIT criterion on the training
set.

standard deviation 10. As can be noticed from Figure 5.6, the classification error rate
is generally below 1% and in any case lower than 5%, and the obtained distribution of
the detected switching instants shows that the algorithm performs reasonably well in
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Figure 5.5: Example 1 (contd.): T ◦s * Ts, non-parametric approach described in [69]. Top: Sample-
mode mapping (single run). Bottom: boxplots showing the distributions of the classification error
rate and the FIT criterion on the training set.

the data segmentation task, leading to accurate models. Indeed, the overall accuracy as
described by the FIT index is not distant from what found previously.

We also analyzed the robustness of the proposed approach as the noise level in-
creases (using a fixed T (0)

s , with tk = 100k, k = 1, . . . , 19, as done originally). For
each data realization (i.e. different SNR level), 10 runs were carried out, the aggregated
results being summarized in Table 5.5. As expected, the performance of the method
in terms of FIT decreases significantly as the noise variance increases. Interestingly
enough, the classification error rate increases very slowly and remains well below 1%
in all the examined range.

Finally, a computational load analysis for an increasing number of switchings was
carried out, by analyzing data-sets of different length obtained from the system of Ex-
ample 1. Assuming that the system switches between the two modes every 100 instants
(starting from κ◦1 = 1), the number of switching instants tk in T ◦s grows proportionally
toN . As done previously, we initialized T (0)

s randomly. An MC simulation was carried
out by running the algorithm 30 times for each data realization with different random
initializations of T (0)

s , and repeating for different N values. Figure 5.7 shows how the
elapsed time varies with the number of switching time instants. As expected, this is the
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most critical factor which affects the computational burden.

Figure 5.6: Example 1 (contd.): robustness w.r.t. the initial choice of the switching instants. Distribu-
tion of the detected switching time instants (red markers represent the true switching instants), and
boxplots demonstrating the classification error rate on the training set and the FIT criterion.

Table 5.5: Example 1 (contd.): robustness w.r.t. the noise level. MC analysis, mean values and vari-
ances.

Noise σ 0.01 0.0422 0.0744 0.1067 0.1389 0.1711 0.2033

Train Cl. Err. [%] 0 (0) 0 (0) 0 (0) 0.044 (0.018) 0.23 (0.043) 0.34 (0.042) 0.34 (0.043)

FIT [%] 96.44 (1.36) 89.85 (0) 82.98 (0) 76.85 (2.97E-5) 71.59 (6.57E-5) 67.19 (2.84E-4) 63.54 (3.29E-4)

5.3.3 Example 2: a switching system with equal local model structures

The aim of this example is to assess how the method fares in the identification of the
overall process model when the local models have the same structure. Consider thus
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Figure 5.7: Example 1 (contd.): elapsed time as a function of the number of switchings.

the system presented in [51]:

y(t) = ϑ(i)y(t− 1)− 0.7y(t− 2) + u(t− 1)− 0.5u(t− 2) + e(t), (5.27)

which consists of NM = 4 local models, that are almost identical apart from one pa-
rameter that takes the values ϑ(1) = −1.5, ϑ(2) = −1, ϑ(3) = −0.5, and ϑ(4) = 0.5,
respectively. The input signal u(t) is a ±1 Pseudo-Random Binary Sequence (PRBS),
while the noise is an i.i.d. Gaussian process, e(t) ∼ N (0, σ2), with σ = 0.5. A
dataset of 2500 input-output samples is available during which 6 mode switchings oc-
cur, according to T ◦s = {400, 810, 1270, 1500, 1830, 2150} and following the mode
sequence κ◦ = [1, 2, 3, 2, 3, 4, 1].

We compare our method with the SON-EM method described in [51], which turned
out to fare well w.r.t. some of the latest developments in identification for linear
switched systems (for details see [51]). Among others, the SON-EM outperforms (on
the considered examples) the RANdom SAmple Consensus (RANSAC) method [38]
which has been adapted in [51] for hybrid systems. In order to have a fair compari-
son, we here assume that the model structure of the modes is fixed as for the SON-EM
method (the correct regressors y(t− 1), y(t− 2), u(t− 1), and u(t− 2), are employed
and the NARX model structure selection part is skipped). Both methods address the
estimation of all 4 parameters (not just ϑ(i)), for each mode. The initial set of candi-
date switching locations is defined as T (0)

s = {100, 200, . . . , 2400}, inducing a uniform
subdivision of the dataset in 25 sub-periods of 100 samples. The design parameters for
the refinement stage are set to α = 0.5 and p = 0.25.

An MC analysis has been carried out, running the algorithm 100 times on the same
data realization. It turned out that 92% of the detected switching sequences contained
the correct number of time instants. The distribution of the detected switching time
instants for these sequences is reported in Figure 5.8. These results show that the pro-
posed method performs well in detecting the switchings, in fact the best run yields
T ?s = {400, 797, 1250, 1500, 1830, 2146} which proves to be quite close to the real
one T ◦s . Overall, the maximum and the mean sample classification error are respec-
tively 5.96% and 1.54% for the MC runs resulting in a T ◦s with the correct cardinality.
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In the remaining 8% of detected switching sequences, 6 of them missed only the switch-
ing at time t = 400, while the other 2 cases resulted in a completely wrong T ?s .

Figure 5.8: Example 2: Distribution of the detected switching time instants (red markers represent the
true switching instants).

Figure 5.9 compares the estimates of ϑ(i) on a single run obtained with the proposed
method and the SON-EM method [51]. It is noteworthy that both methods captured
well all the switching time instants and provided good parameter estimates, thus show-
ing that the proposed method equals in terms of performance one of the most recent
and promising methods. For the considered run, Table 5.6 reports the performance
of the identified hybrid model at each iteration, the detected switchings, the sample-
mode classification for each sub-period and the corresponding classification error on
the training set. From a computational complexity viewpoint, we compared the two
methods in terms of the time required to solve the identification task. It turned out that
our method is more demanding w.r.t. the SON-EM, i.e., on average our method lasted
238.56 seconds against 20.6063.

Finally, we compared the two methods also in terms of accuracy in one-step-ahead
prediction and open-loop output simulation on the training data. Regarding the open-
loop output simulation, the FIT values have been computed by considering the sim-
ulated response as ŷ in (5.26). It resulted that the two methods have similar capa-
bilities, both in prediction and simulation, thus further proving the effectiveness of
the proposed approach. Specifically, the obtained values for the SON-EM method are
FIT pred − train = 74, 1933 and FIT sim − train = 46.0552, whereas the proposed
approach yields FIT pred − train = 72.9288 and FIT sim − train = 45.2753.
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Table 5.6: Example 2: Performance of a single run over iterations.

r L(1) L(2) L(3) L(4) L t1 t2 t3 t4 t5 t6 t7 κ Error

1 0.2467 0.9951 0.2838 0.4848 0.4569 400 800 1300 1500 1800 2100 2200 [1,2,3,2,3,4,2,1] 6.8%

2 0.2469 0.2603 0.3217 0.2459 0.2742 400 800 1250 1500 1850 2150 – [1,2,3,2,3,4,1] 1.4%

3 0.2469 0.2275 0.2615 0.2934 0.2527 400 800 1275 1500 1825 2150 – [1,2,3,2,3,4,1] 0.8%

4 0.2469 0.2275 0.2615 0.2934 0.2527 400 800 1275 1500 1825 2150 – [1,2,3,2,3,4,1] 0.8%

5 0.2469 0.2315 0.2542 0.2934 0.2513 400 813 1269 1500 1825 2150 – [1,2,3,2,3,4,1] 0.36%

6 0.2529 0.2315 0.2542 0.2951 0.2533 400 813 1269 1500 1826 2147 – [1,2,3,2,3,4,1] 0.48%

7 0.2829 0.2317 0.2570 0.2735 0.2514 400 810 1269 1500 1827 2147 – [1,2,3,2,3,4,1] 0.28%

SON-EM
Real parameter
Randomized Two-Stage

Figure 5.9: Example 2: Identification of parameter ϑ(i) with the proposed method and the SON-EM
method.

5.3.4 Example 3: A 3-mode SNARX case, with nonlinear modes

In this study, the following system has been considered:

mode 1 :y(t) = 0.5y(t− 1) + 0.8u(t− 2)

+ u(t− 1)2 − 0.3y(t− 2)2 + e(t)

mode 2 :y(t) = 0.2y(t− 1)3 − 0.5y(t− 2)

− 0.7y(t− 2)u(t− 2)2 + 0.6u(t− 2)2 + e(t)

mode 3 :y(t) = 0.4y(t− 1)3 + 0.5y(t− 2)

− 0.7y(t− 2)u(t− 2)2 + 0.6u(t− 2)2 + e(t)

where e(t) is a zero mean Gaussian noise of variance 0.01 and u(t) is uniformly dis-
tributed in the interval [−1, 1]. Notice that two of the three nonlinear local models
have the same model structure (but one different parameter). An observation window
of N = 3400 samples has been collected, which contains 5 switchings, at locations
T ◦s = {500, 1030, 2115, 2740, 3000}, and corresponding to the mode switching se-
quence κ◦ = [1, 2, 1, 3, 2, 3].

An MC analysis has been carried out considering an initial set of candidate switch-
ings defined as T (0)

s = {200, 400, . . . , 3200}, which induces 17 sub-periods of 200
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Chapter 5. Identification of nonlinear hybrid systems

samples. Furthermore, the initial MEPs are all set to 0.33, and the initial RIPs to
1/n = 0.0061. Regarding the NARX model structure selection, the candidate regressor
set is defined by nd = 3, ny = nu = 4, which makes it abundantly oversized (the
model orders are overestimated), amounting to n = 165 regressors. Finally, α = 0.5
and p = 0.7, for the refinement stage.

Table 5.7 reports the aggregated results of 50 MC runs. Apparently, the model struc-
tures of all the modes have been detected with a quite high accuracy (over 94%), despite
the large combinatorial complexity of the involved model selection problems. Further-
more, Figure 5.10 illustrates the robustness of the algorithm in estimating the switching
locations. Indeed, in the best case, a T ?s = {499, 1029, 2112, 2739, 2998} was ob-
tained, whereas an error of only 1.6% was obtained regarding the sample classification
in the worst run of the MC study.

Table 5.8 reports the results of a single run, indicating specifically the performance
of the identified hybrid model at each iteration, the detected switchings, the sample-
mode classification (for each sub-period) and the corresponding percentage error. Fur-
thermore, Table 5.9 reports for each mode the percentage of misclassified samples. As
can be noticed, the first identification stage results in an inaccurate model mainly be-
cause of the initial coarse uniform placement of the switching candidate time instants,
which leads to a large sample classification error mainly for the first and third mode
(see r = 1 in Table 5.9). The algorithm adapts the structure selection by extracting
the correct terms plus some extra ones in order to take into account for the misclas-
sified samples (see r = 1 in Table 5.10). Notwithstanding this, the first identified
switching signal σ is already close to the real discrete dynamics. The subsequent re-
finement stages (and the identification phases) progressively improve both the local and
the global performance leading to a very accurate final hybrid model (both in terms of
the continuous and the discrete dynamics). It is apparent that as the switching signal is
more accurately estimated, the accuracy of the local models also improves, since they
are estimated on more appropriate data sets. Indeed, from the fourth iteration on the
sample classification errors are lower than 1% for all modes (see Table 5.9) and the
extracted structures are correct (see Table 5.10).

Figure 5.10: Example 3: Distribution of the detected switching time instants (red markers represent the
true switching instants).
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5.3. Numerical examples

Table 5.7: Example 3: MC analysis.

Average elapsed time [s] 1247

Percentage of κ of correct length 100%

Average # of explored sequences 5042

Total # of allowed switching sequences 131072

Percentage of correct selection of s(1) 94%

Average # of explored models for mode 1 6634.3

Total # of possible model structures for mode 1 4.6768·1049

Percentage of correct selection of s(2) 96%

Average # of explored model structures for mode 2 6377.2

Total # of possible model structures for mode 2 4.6768·1049

Percentage of correct selection of s(3) 94%

Average # of explored model structures for mode 3 6144.4

Total # of possible model structures for mode 3 4.6768·1049

Table 5.8: Example 3: Performance over iterations on a single run.

r L(1) L(2) L(3) L t1 t2 t3 t4 t5 κ Error

1 0.0395 0.0097 0.0117 0.0257 600 1000 2200 2800 3000 [1,2,1,3,2,3] 7.86%

2 0.0274 0.0097 0.0106 0.0190 550 1000 2150 2750 3000 [1,2,1,3,2,3] 3.57%

3 0.0179 0.0097 0.0107 0.0138 525 1025 2125 2750 3000 [1,2,1,3,2,3] 2.86%

4 0.0135 0.0104 0.0097 0.0116 512 1025 2112 2737 3000 [1,2,1,3,2,3] 0.66%

5 0.0121 0.0105 0.0097 0.0110 505 1032 2112 2737 3000 [1,2,1,3,2,3] 0.37%

6 0.0110 0.0104 0.0097 0.0104 501 1028 2112 2737 3000 [1,2,1,3,2,3] 0.26%

7 0.0098 0.0106 0.0096 0.0098 499 1030 2114 2739 3000 [1,2,1,3,2,3] 0.09%

Table 5.9: Example 3: Sample classification error over iterations on a single run.

r Mode 1 Mode 2 Mode 3

1 11.94% 0% 5.45%

2 8.85% 0% 0.91%

3 2.42% 0% 0.89%

4 1.06% 0% 0.89%

5 0.32% 0.63% 0.27%

6 0.19% 0.38% 0.27%

7 0% 0.25% 0.09%
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Table 5.10: Example 3: Model structure selection over iterations (true regressors in bold face).

r Regressors of mode 1 Regressors of mode 2 Regressors of mode 3

1

y(t− 1), u(t− 2), y(t− 1)u(t− 2), y(t− 2)2,

y(t− 3)u(t− 2), u(t− 1)2, u(t− 2)2, u(t− 2)u(t− 3),

u(t− 2)u(t− 4), y(t− 2)u(t− 2)u(t− 4), y(t− 2)u(t− 4)2,

y(t− 3)2u(t− 2), y(t− 4)2u(t− 2), u(t− 2)3, u(t− 2)u(t− 3)2

y(t− 2), u(t− 2)2,

y(t− 1)3, y(t− 2)u(t− 2)2

y(t− 2), y(t− 2)y(t− 4), u(t− 2)2,

y(t− 1)3, y(t− 2)y(t− 4)2,

y(t− 2)u(t− 2)2, u(t− 4)2

2

y(t− 1), u(t− 2), y(t− 1)u(t− 2), y(t− 2)2,

y(t− 3)u(t− 2), u(t− 1)2, u(t− 2)u(t− 3),

u(t− 2)u(t− 4), y(t− 2)u(t− 4)2, y(t− 3)2u(t− 2),

y(t− 4)2u(t− 2), u(t− 2)3, u(t− 2)u(t− 3)2

y(t− 2), u(t− 2)2,

y(t− 1)3, y(t− 2)u(t− 2)2
y(t− 2), u(t− 2)2,

y(t− 1)3, y(t− 2)u(t− 2)2

3 · · · 7 y(t− 1), u(t− 2), y(t− 2)2, u(t− 1)2
y(t− 2), u(t− 2)2,

y(t− 1)3, y(t− 2)u(t− 2)2
y(t− 2), u(t− 2)2,

y(t− 1)3, y(t− 2)u(t− 2)2

5.4 A case study

The proposed identification procedure was applied to the data collected from the exper-
imental setup introduced in [57] to simulate a component placement process operated
by a pick-and-place machine. This machine is used to automatically place electronic
components on printed circuit boards (PCBs). Specifically, assuming that the mount-
ing head which carries the component is positioned correctly above the PCB, it moves
downwards until the component impacts with the PCB, then releases the component
and returns to the upper retracted position. The PCB exhibits certain elasticity proper-
ties, depending on the material. This process is characterized by switchings between
different modes of operation. This motivates the interest in searching for the model
in the form of a hybrid system as discussed in [10, 57, 58]. In particular, in [57], the
dynamics of the experimental setup show four different operational modes:

upper saturation: the mounting head is in the upper retracted position, i.e., it cannot
move upward;

free mode: the mounting head is neither in contact with the PCB, nor in the upper
retracted position;

impact mode: the mounting head is in contact with the PCB, but it is not in the lower
extended position;

lower saturation: the mounting head is in the lower extended position, i.e., it cannot
move downward.

Note that the switch between the impact and free modes does not occur always at the
same head position, because of the movement of the PCB. A physical model of the
experimental setup is reported in Figure 5.11. The mounting head is represented by
the mass M . The springs c1 and c2 simulate elasticity. The linear and dry frictions
are represented respectively by (d1, d2), and (f1, f2). The system input is the voltage
applied to the motor that drives the mounting head, represented by the force F . The
input signal can be chosen in a way that only the operational modes of interest are
sufficiently excited. The output of the system is the position of the mounting head.

5.4.1 Piecewise ARX (PWARX) identification

The presented system is better represented by a piece-wise (nonlinear) autoregressive
exogenous (PW[N]ARX) model, than a S[N]ARX, due to the switching mechanism.
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Figure 5.11: Case study: pick-and-place machine, physical model.

Indeed, the system switches between modes according to the current continuous state,
rather than according to a time-dependent finite-valued signal. Accordingly, one must
perform a partition of the state-input domain (or, in our case, of the regressors domain)
into regions, in order to complete the identification. More in general, the region
estimation is required also in case of a switched system whenever one wants to validate
the identified model on an unseen data set.

Recall that in the NARX modeling framework, the nonlinear mapping g is often
represented as:

g(x(t);ϑ) = ϕ(t)ϑ =
n∑
j=1

ϑjϕj(t),

where ϕ(t) : X ⊆ Rny+nu → F ⊆ Rn, with ny and nu being suitable maximum lags
for the output and input signals, respectively. In particular, for nonlinear polynomial
expansions, for a given maximum degree nd of the polynomial, the regressor set F has
dimensionality n = (nd+ny+nu)!

nd!(ny+nu)!
.

The identified finite-valued switching signal σ implicitly induces the classification
of the N data points (y(t),ϕ(t)) into NM clusters C(i) = {(y(t),ϕ(t)) : σ(t) = i},
i = 1, . . . , NM and t = 1, . . . , N . Accordingly, the corresponding sets of regression
vectors are defined as:

R(i) = {ϕ(t) : (y(t),ϕ(t)) ∈ C(i)}, i = 1, . . . , NM , t = 1, . . . , N (5.28)

The region estimation problem consists in finding a complete polyhedral partition
{F (i)}NMi=1 of the regressor set F such that R(i) ⊆ F (i) for all i = 1, . . . , NM . Each
polyhedral region F (i) is defined by means of a set of linear inequalities, as follows:

F (i) = {ϕ ∈ Rn : H(i)ϕ � 0}, (5.29)
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Chapter 5. Identification of nonlinear hybrid systems

where H(i) ∈ Rqi×n, with qi being the number of linear equalities defining the i-th
region, and � denotes component-wise inequality. Therefore, the region estimation
problem involves finding a set of hyperplanesH:

H = {ϕ ∈ Rn : H
(i)
j ϕ = 0}, i = 1, . . . , NM , j = 1, . . . , qi. (5.30)

A linear classifier (hyperplane) separating without errors the samples in R(i) from
those inR(j), with i 6= j, does not always exist if the two sets have intersecting convex
hulls, e.g., due to possible clustering errors. Therefore, the goal is to find a separating
hyperplane which minimizes the number of misclassified samples or a suitable cost
function associated with the errors.

In general, the linear separation of the NM sets R(1), . . . ,R(NM ) can be accom-
plished with two different approaches:

1. Constructing a linear classifier for each pair
(
R(i),R(j)

)
, with i 6= j. This

amounts to solving NM (NM−1)
2

two-class classification problems with classical e.g.,
support vector machines (SVM) [30] or robust linear programming (RLP) [11],
and then eliminating a posteriori possible redundant hyperplanes. This approach
is computationally attractive since each classification problem involves only the
data corresponding to the considered pair

(
R(i),R(j)

)
. However, the resulting

regions are not guaranteed to form a complete polyhedral partition of F .

2. Constructing a piecewise linear classifier which discriminates among NM classes.
A possible way to tackle this problem is to solveNM two-class classification prob-
lems, each of which is aimed at separating the samples inR(i) from those in all the
remaining sets, i.e., according to a one-vs-rest strategy [102]. In this case, the NM

two-class classification sub-problems can be tackled by RLP or SVM, as before.
Another option is to search directly for the piecewise linear function by solving
a single optimization problem. This can be accomplished by e.g., multicategory
SVM (M-SVM) [27] or multicategory RLP (M-RLP) [12]. The multiclass linear
separation approach 2 is more computationally expensive than approach 1 since it
involves all data at once, but it results in a complete partition of F .

For a more comprehensive review of two-class and multiclass classification tech-
niques, see [93, 118].

5.4.2 Identification with free and impact modes

A data record of 15 s is available, in which only the impact and free modes have been
excited. The waveforms in the experimental setup were sampled at 4 kHz. The data
used for identification purposes are obtained by re-sampling the original signals at 50
Hz. The resulting data set consists of 750 points, divided in two overlapping sets of 500
points: the former [0, . . . , 500] is used for identification, while the latter [250, . . . , 750]
is used for validation of the identified models (see Figure 5.12). In all the analysis
which follows, the design parameters for the identification and refinement stages have
been set to Np = 100, initially tk = 5k with k = 1, . . . , 99, the initial MEPs are all set
to 1/NM , the initial RIPs to 1/n, α = 0.5, and p = 0.7. Once the whole identification
phase ended, the region estimation task has been carried out by tackling the problem
with SVMs and a one-vs-rest strategy, and the identified model has been tested on the
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validation data.

Figure 5.12: Case study: data set used for identification (top) and validation (bottom). The solid and
dashed lines represent the system output (position of the mounting head) and the scaled input (voltage
applied to the motor), respectively.

Switched models with two modes have been identified by considering different set-
tings for the model orders. Table 5.11 reports the identified models and the FIT cri-
terion (5.26) evaluated on both the training and validation data. For the first model m1

the parameters nd = 1, ny = 2, and nu = 1 have been used. The one-step-ahead pre-
diction performance on the validation data set is shown in Figure 5.13. The difference
between the system response and the model prediction is small and visible only in some
time periods, e.g., from 200 to 300, as experienced also in [57]. In this period, the sys-
tem response seems to be unaffected by the variations of the input, particularly around
t = 250, mainly due to the presence of the friction. Conversely, the predicted response
exhibits small steps. As for the reconstructed active modes, they apparently capture
well the physical operational modes. Indeed, mode 1 and mode 2 can be respectively
mapped on the impact and free modes.

A second model m2 has been identified with nd = 1, ny = nu = 2. Note from
Table 5.11 that the term u(t − 2) has not been included in any submodel, and that
the identified model is close to m1. This reflects on the obtained predicted response
and reconstructed switching signal, that do not exhibit significant differences from that
corresponding to model m1, see Figure 5.14. As for m1, mode 1 and mode 2 can be
respectively mapped on the impact and free modes.

An analysis has been carried out by considering also a switched modelm3 with three
linear modes, and ny = 2, nu = 1, with the hope of improving the identification by
modeling also the transition between the impact and free modes. However, by looking
at the FIT − test value reported in Table 5.11, the further mode does not bring any
significant improvements w.r.t. the previous models with two modes. Rather, it hampers
the physical interpretation of the reconstructed switching signal, indeed now the impact
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Chapter 5. Identification of nonlinear hybrid systems

Figure 5.13: Case study: validation of model m1. (Top) One-step-ahead prediction for the validation
data (solid: system response, dashed: model prediction, dotted: input). (Bottom) Active mode at
each time instant.

mode seems to be mapped indifferently on modes 2 and 3 (e.g., see the time interval
(200, 300) in Figure 5.15). This proves that there is no evidence in the data supporting
the need of a switched model with more than two modes.

To compare our results with those reported in [57], model m1 has been identified
a second time fixing the ARX model structures so as to include all the n = 4 model
terms, see Table 5.12.

The results of the open-loop output simulation of the identified models are shown in
Figure 5.17. For all models, the response is still similar to the one of the real system,
but now differences are more evident. In particular, at the time interval (200, 300), the
discrepancy between the system response and the simulated one is even more significant
than in the prediction case discussed before with reference to the model m1. This
further confirms the difficulties of the identified models, as already experienced in [57],
in suitably reproducing the system behavior in this interval. The FIT − test values,
computed by considering the simulated response as ŷ in (5.26), are 76, 61%, 77, 83%,
and 79, 36%, respectively for the identified models m1, m2, and m3.

Table 5.11: Case study: identified models.

Model Parameters Identified model FIT − train [%] FIT − test [%]

m1 NM = 2, nd = 1, ny = 2, nu = 1
ŷ(1)(t) = 0.594 + 1.324y(t− 1)− 0.613u(t− 1)− 41.763u(t− 2)

94.71 93.86
ŷ(2)(t) = 1.514y(t− 1)− 0.728y(t− 2)− 34.579u(t− 1)

m2 NM = 2, nd = 1, ny = nu = 2
ŷ(1)(t) = 0.625 + 1.344y(t− 1)− 0.626y(t− 2)− 39.614u(t− 1)

94.66 94.12
ŷ(2)(t) = 1.509y(t− 1)− 0.735y(t− 2)− 37.65u(t− 1)

m3 NM = 3, nd = 1, ny = 2, nu = 1

ŷ(1)(t) = −0.226 + 1.579y(t− 1)− 0.784y(t− 2)− 37.222u(t− 1)

95.64 94.13ŷ(2)(t) = 1.29y(t− 1)− 0.604y(t− 2)− 51.61u(t− 1)

ŷ(3)(t) = 0.796 + 1.39y(t− 1)− 0.643y(t− 2)− 32.622u(t− 1)
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Figure 5.14: Case study: validation of model m2. (Top) One-step-ahead prediction for the validation
data (solid: system response, dashed: model prediction, dotted: input). (Bottom) Active mode at
each time instant.

Figure 5.15: Case study: validation of model m3. (Top) One-step-ahead prediction for the validation
data (solid: system response, dashed: model prediction, dotted: input). (Bottom) Active mode at
each time instant.

Table 5.12: Case study: identified models with fixed NARX structures: m1 : {1, y(t − 1), y(t −
2), u(t− 1)}. Comparison with [57].

Model Parameters Identified model Identified model [57]

m1 NM = 2, nd = 1, ny = 2, nu = 1
ϑ(1): [0.606, 1.356, −0.633, −39.133] ϑ(1): [0.303, 1.4, −0.63, −34.412]

ϑ(2): [−0.226, 1.498, −0.727, −41.456] ϑ(2): [−0.718, 1.587, −0.768, −44.864]
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Figure 5.16: Case study: validation of model m1 identified by fixing the two NARX model structures.
(Top) One-step-ahead prediction for the validation data (solid: system response, dashed: model
prediction, dotted: input). (Bottom) Active mode at each time instant.

Figure 5.17: Case study: open-loop output simulation of all PWARX models. (Top) simulated output for
model m1. (Center) simulated output for model m2. (Bottom) simulated output for model m3. Solid
line: system response, dashed: simulated output, dotted: input.

5.5 Conclusions

We considered the identification of switched nonlinear autoregressive exogenous
(SNARX) models, and proposed an iterative method that addresses the challenge of the
simultaneous identification of the mode switching sequence and of the NARX model
associated to each mode. The proposed method alleviates the combinatorial complex-
ity related to the identification of the switching signal by adopting a two-stage ap-
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proach. More precisely, in the first stage, candidate mode switching instants are fixed
and adopted to segment the input/output data and jointly solve the mode assignment and
the NARX structure and parameter identification tasks; in the second stage, the candi-
date mode switching instants are refined. The combinatorial optimization problem in
the first stage is addressed using a computationally attractive randomized method where
the mode assignment and the SNARX model structure are modeled through discrete
probability distributions that are progressively tuned via a sample-and-evaluate strat-
egy, until convergence to a limit distribution concentrated on the best SNARX model
of the system generating the observed data. Numerical examples show the effective-
ness of the proposed method. Moreover, the proposed identification procedure has been
validated also on the problem of data-driven model learning of a component placement
process in a pick-and-place machine. This problem is better handled in the PWARX
modeling framework, and hence we added a further step that addresses the partition of
the regressor space into regions based on the data classification induced by the recon-
structed switching signal, in order to validate the identified models on unseen data.

91



i
i

“thesis” — 2020/1/17 — 11:10 — page 92 — #106 i
i

i
i

i
i



i
i

“thesis” — 2020/1/17 — 11:10 — page 93 — #107 i
i

i
i

i
i

CHAPTER6
Process noise covariance estimation in Kalman

filtering

IN modern engineering applications involving dynamical systems, model-based
methods like Kalman filtering are usually employed to estimate the current state
values from the corresponding outputs [46]. However, even in the linear time-

invariant framework, the Kalman estimation of the state is proven to be optimal (i.e.,
it minimizes the variance of the estimation error) only if the model coincides with the
mathematical description of the system [60]. Then, in practical applications where no
prior knowledge on the physics of the system is available and a state space model needs
to be identified from data, modeling errors can jeopardize the filtering performance. In
this view, many techniques have been proposed for the identification of the determin-
istic components of the state-space model. Conversely, less attention has been devoted
to the estimation of the noise model which is expressed in terms of the noise Covari-
ance Matrices (CMs) Q and R, acting respectively on the state and output equations.
This is quite surprisingly, since, while the variance of the output noise can be roughly
estimated by looking at the output spectrum, the process noise statistics are generally
unknown, given that the process noise model accounts for the unmodeled dynamics on
which typically no prior knowledge is available.

This chapter treats the estimation of the process noise covariance matrix for linear
Kalman filter design with an unusual emphasis on the problem of structure selection.
Indeed, the approaches proposed for the identification of the noise statistics typically
assume that the CMs are correctly parameterized and hence retrievable from data.
However, as observed in [83], when one addresses the joint estimation of the state and
the CMs from data, an identifiability issue may arise that prevents the estimation of
all the elements of Q. In such conditions, the state estimation is usually carried out
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Chapter 6. Process noise covariance estimation in Kalman filtering

by directly estimating the Kalman gain without knowing Q and R, or by assuming
simplified structures for the CMs. In the latter case, the CMs are often assumed ot be
diagonal. While this often seems satisfactory and coherent with physical evidences on
the system there are cases in which a diagonal structure is ill suited. Consider, e.g.,
distributed systems with various interconnected devices, whereby only state variables
associated to a device or to neighboring devices are correlated. Here, the resulting Q
is sparse, but typically not diagonal. To adequately address this issue, we propose an
algorithm to suitably select the structure of the Q matrix to be employed in the filter
design procedure. We want to stress here that this approach goes beyond the state
estimation problem, trying to answer to the more general problem of quantifying the
uncertainty affecting the identified process model.

The rest of the chapter is organized as follows. Section 6.1 introduces the problem
statement which Section 6.2 refers to in order to briefly reviews the state of the art con-
cerning the estimation of Q. Section 6.3 highlights the mentioned identifiability issue
by means of some simple but significant numerical examples. The case of diagonal
parametrization of the Q is discussed in Section 6.4, while the algorithm for structure
selection is provided in Section 6.5. Finally, some simulation examples are presented
in Section 6.6, followed by some concluding remarks.

6.1 Problem statement

We consider linear time-invariant discrete-time dynamic stochastic systems with addi-
tive white Gaussian noise (shortly WGN ) in the following state-space representation:

x(k + 1) = Fx(k) + v(k) (6.1)
y(k) = Hx(k) +w(k)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rp is the output vector, v ∼ WGN(0,Q)
is the process noise withQ = QT ∈ Rn×n andQ � 0 andw ∼ WGN(0,R) indicates
the measurement noise with R = RT � 0 and R ∈ Rp×p. F and H are the dynamic
and output matrices, respectively. We assume that v and w are uncorrelated. To ease
the discussion, no deterministic exogenous inputs are here considered, without loss of
generality. Let x̂(k|k) be the optimal filter, that is the estimate of x(k) given the outputs
y up to the current discrete time instant k. This estimation is carried out in two phases:
the predictive phase and the update phase. In the predictive phase, the measurements
up to the previous time instant (k − 1) are used to predict the value of the states (and
the outputs) at the current instant k, as well as P (k), which is the covariance matrix of
the state estimation error:

x̂(k|k − 1) = F x̂(k − 1|k − 1) (6.2)
ŷ(k|k − 1) = Hx̂(k|k − 1) (6.3)

P (k|k − 1) = FP (k − 1|k − 1)F T +Q (6.4)

The update phase starts as soon as the measurement relative to the current time instant
(that is being estimated) is available. Both the estimates of x(k) and P (k) are adjusted
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taking into account this new information:

x̂(k|k) = x̂(k|k − 1) +K(k) [y(k)−Hx̂(k|k − 1)] (6.5)
P (k|k) = [I −K(k)H ]P (k|k − 1) (6.6)

where the Kalman gainK(k) is defined as:

K(k) = P (k|k − 1)HT
[
HP (k|k − 1)HT +R

]−1
(6.7)

Notice that the a priori estimate of x(k) calculated in the predictive phase is adjusted
by a correction term which equals the estimation error e(k) = y(k) −Hx̂(k|k − 1),
also called innovation, weighted byK(k). When both phases are concluded, index k is
incremented and the procedure iterated. An initialization for x̂(0| − 1) and P (0| − 1)
is required.

Property 2. Let ε(k) = x(k)− x̂(k|k) and consider the quadratic loss function:

L(ε(k)) = ε(k)Tε(k). (6.8)

The filter x̂(k|k) defined in Eq. (6.5) is the minimum error variance filter, i.e., it mini-
mizes the average loss or risk:

R(x̂(k|k)) ≡ E [L(ε(k))] , (6.9)

provided that the two CMs are known.

Proof. By Theorem 1 in [59], the minimum error variance filter x̂(k|k) is the condi-
tional expectation

x̂(k|k) = E [x(k)|y(0), . . . ,y(k)] ,

which, under the constraint that the filter be linear, takes the form of Eq. (6.5) (see
Theorem 2 in [59]).

Furthermore, it can be easily proved (see Section 3.1 in [3]) that the minimum error
variance filter has the following property:

R(x̂(k|k)) = trace{P (k|k)}, (6.10)

which motivates the choice of the trace of the state estimation covariance matrix as an
optimality criterion in the sequel.

In the following, we denote asR(x̂(k|k),Q) the risk value associated with the filter
x̂(k|k) computed employing the given matrixQ in the design procedure.

6.2 State of the art

The available approaches proposed for the joint estimation of the state and the CMs,
can be classified into two main categories. Feedback methods estimate simultaneously
the unknown CMs and the state by extending the system with further states which
represent the parameters of the unknown CMs. In feedback-free methods a sub-optimal
filter is employed to estimate the states, and then the prediction error of the latter is
used to calculate the CMs. The main drawback of feedback methods is the fact that

95



i
i

“thesis” — 2020/1/17 — 11:10 — page 96 — #110 i
i

i
i

i
i

Chapter 6. Process noise covariance estimation in Kalman filtering

the extended system is nonlinear. Feedback-free methods are then often preferred, in
view of their usually lower computational burden. Accordingly, in this section, we will
briefly review only the main feedback-free methods. For further details on feedback
methods, see [33].

The class of methods mainly employed are the so-called correlation-based meth-
ods. Such techniques are based on the analysis of the innovation sequence {e(k)}Nk=1,
generated by a steady-state Kalman filter starting from an arbitrary initial condition
x̂(0| − 1) and a gain K selected such that the matrix F̄ = F − FKH is stable.
The pioneer of these methods is the work presented in [83] (denoted here as Indirect
Correlation Method, ICM), in which the noise CMs are estimated using a three-step
procedure with a classical least squares (LS) approach. The method is based on a sys-
tem of NE (user-defined) linear matrix equations stemming from the auto-covariance
function (ACF):

Cj = cov[e(k), e(k − j)] =

{
HPHT +R, j = 0 (6.11a)

HF̄
j−1
F (PHT −KC0), j > 0 (6.11b)

where steady-state P is given by the solution to the Lyapunov equation

P = F̄P F̄
T

+ FKRKTF T +Q. (6.12)

Specifically, given the estimate of the ACF computed from the innovation sequence as

Ĉj =
1

N − j

N∑
k=j

e(k)Te(k − j), j = 0, . . . , NE − 1, (6.13)

whereN denotes the number of collected data, the following three steps are performed:

1. Compute the LS estimate P̂ Ĥ
T

of PHT from Ĉj , j = 1, . . . , NE − 1, with
C0 = Ĉ0, according to (6.11b).

2. Based on P̂ Ĥ
T

and C0 = Ĉ0, compute the estimate R̂ ofR, from (6.11a).

3. Compute the LS estimate Q̂ of Q from (6.12), substituting P̂ Ĥ
T

for PHT and
multiplying both sides of (6.12) byH andHT , respectively.

Remark 2. Notice that the estimation of R is decoupled from that of Q, since the
sampled version of Cj , namely Ĉj in (6.13), is employed to compute the system of NE

equations according to (6.11).

A second method, denoted here Weighted Correlation Method (WCM), is intro-
duced in [8]. This approach is still based on the processing of the ACF, similarly to [83],
but employs a suitable parameterization of the noise CMs and the ACF. More precisely,
the unknown CMs are expressed as linear combinations of known (user-defined) basis
matricesQ(i) andR(i), i = 1, . . . ,M :

Q =
M∑
i=1

θ(i)Q(i), R =
M∑
i=1

θ(i)R(i),
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where θ(i), i = 1, . . . ,M , are unknown weights to be estimated. In a similar fashion,
the ACF is now defined as a linear function of the unknown weights θ(i):

Cj = cov[e(k), e(k − j)] =
M∑
i=1

Fi(t, j)θ(i),

where Fi(t, j) is appropriately defined (see Equation (16) in [8]).

Remark 3. Assuming for example n = p = 2, the basis matrices Q(i) and R(i), i =
1, . . . ,M can be selected as follows:

Q(1) =

 1 0

0 0

 ,Q(2) =

 0 1

1 0

 ,Q(3) =

 0 0

0 1

 ,
R(4) =

 1 0

0 0

 ,R(5) =

 0 1

1 0

 ,R(6) =

 0 0

0 1

 ,

Q(4) = Q(5) = Q(6) =

 0 0

0 0


R(1) = R(2) = R(3) =

 0 0

0 0

 ,

This justifies the use of a single vector of weights θ ∈ RM for both the Q(i)s and the
R(i)s.

Finally, the method presented in [88] (denoted here as Direct Correlation Method,
DCM), and extended in [100], estimates the CMs in a single step, by reformulating the
relations of [83] in such a form that the three intermediate steps can be replaced by the
resolution of a single LS problem.

The three mentioned methods appear to be very computational efficient, since they
only need a single-point estimation following a classical LS approach. On the other
hand, these methods have some limitations in the estimation ofQ (they can estimate up
to n ·p elements 1), and they require the full knowledge of its structure (i.e., the number
and position of the nonzero elements). Furthermore, they are based on the assumption
that the sampled ACF Ĉj approaches its true value. However, this is not generally true
for finite data sets, especially due to the dependence of the innovation sequence on the
a priori defined gainK.

The maximum-likelihood (ML) methods are based on the maximization of a likeli-
hood function over the collected data. The method in [61] (denoted Input-Output Cor-
relation Method, IOCM) is based on the minimization of the innovation related to an

1With reference to the ICM method, only the estimate of PHT instead of P can be obtained by the ACF. Thus, only n · p
linear matrix equations in the unknown components ofQ are available.
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input-output ARMAX model of order O. Assuming that O = 1, n = p, and H = In,
the ARMAX model can be reformulated as in (6.1). A ML step is first required to
compute the covariance and the cross-covariances of the innovation, that are needed to
estimate the noise CMs.

A classical ML approach is instead adopted in [106] (here denoted MLM), where a
negative log-likelihood function is directly maximized w.r.t. the unknown CMs:

L(Q,R) = ln(|Q|) + ln(|R|) +
N∑
k=1

(x(k)− Fx(k − 1))T Q−1 (x(k)− Fx(k − 1))

+
N∑
k=0

(y(k)−Hx(k))T R−1 (y(k)−Hx(k)) .

Therefore, compared to the previous method, no intermediate steps are needed to re-
cover the optimal CMs. However, the a priori setting of the unknown CMs is crucial
for the convergence of the method and the accuracy of the final estimate.

In general, although they generally provide more accurate solutions than correlation-
based methods and they do not have limitations on the number of free parameters that
can be estimated, ML methods involve a much more significant computational load,
mainly due to the computation of the gradient descent direction from data over the
parameter space.

6.3 Estimation of Q

The general idea behind all methods devoted to the joint estimation of the state and
the CMs, is to exploit the existing relation between the CMs, the state vector x(k) and
P (k|k). From Property 2 and relation (6.10), a possible way to solve theQ estimation
problem is to address it as an optimization problem:

minimize
Q

R(x̂(k|k),Q), (6.14)

with R(x̂(k|k),Q) defined as in (6.9). Indeed, assuming that the observed data D =
{(x(k),y(k)}Nk=1

2 have been generated using v ∼ WGN(0,Q◦), it follows that

R(x̂(k|k),Q◦) ≤ R(x̂(k|k),Q),∀ Q 6= Q◦.

However, it is not always possible to retrieve Q◦ from D due to structural issues. In-
deed, as discussed in [83], for a system of order n with p outputs, Property 3 holds.

Property 3. Given a system in the form (6.1) with n states and p outputs, if

p < d(n+ 1)

2
e, (6.15)

then there exist infinite optimal solutions for problem (6.14).

Proof. The lower bound in (6.15) follows by imposing that the DOFs associated to Q
be at most equal the number ofK(k) components, i.e., n(n+1)

2
≤ np.

2We assume that the available dataset includes also the state measurement. However, this is not a strong assumption in many
practical applications, see, e.g., the Kalman-filter based roll angle estimation of [23] and [42].
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Property 3 implies that the qij , i, j = 1, . . . , n are not exactly retrievable from
data when the estimation of the state and the CMs is jointly addressed, if over-
parameterization occurs. We now exemplify this identifiability issue by means of some
simple numerical examples.

Consider e.g. the following scalar system:

S1 :

{
x(k + 1) = 0.5x(k) + v(k)

y(k) = 1.5x(k) + w(k)
(6.16)

with Q◦ = 0.1, R = var[y(k)]/10, x(0) = 0.
A Monte Carlo (MC) study has been carried out analyzing 1000 different noise

realizations of length N = 10000. On each run, the optimization problem (6.14) has
been solved on an unbounded domain using the fminsearch Matlab routine [82].
Figure 6.1 shows the distribution of the obtained optimal Q values w.r.t. the noise
realization. In general, there is an error in the estimation of Q◦ induced by the specific
noise realization. However, the resulting distribution is centered on the correct value,
indicated by the black triangular marker.

Figure 6.1: S1: Distribution of the optimalQ values over 1000 MC runs with different noise realizations.
The black triangular marker indicates the true value, i.e., Q◦ = 0.1.

Consider now e.g. the following second order system:

S2 :


x(k + 1) =

[
0.9 −0.4

0.2 0.9

]
x(k) + v(k)

y(k) =
[

0.5 0
]
x(k) +w(k)

(6.17)

withQ◦ =

 0.0125 0.15

0.15 10

, R = var[y(k)]
10

, x(0) =

 0

0

.
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Chapter 6. Process noise covariance estimation in Kalman filtering

Figure 6.2: S2: Distribution of the optimal values for q11, q12, and q22 over 1000 MC runs with different
noise realizations. The black triangular markers indicate the true values.

An MC study has been carried out as before. Figure 6.2 shows the distribution of
the optimal values of the coefficients of Q w.r.t. the noise realization. As previously,
the identification accuracy depends on the noise realization, but in this case, the re-
sulting distributions are not centered on the “true” values. This experimental evidence
demonstrates that it is not always possible to deduce directly from D the Q◦, not even
asymptotically, when the estimation of the state and the CMs is jointly addressed, if
over-parameterization occurs. Indeed, for the considered system S2, the Kalman gain
K◦(k) is a 2 × 1 vector, whereas the Q matrix has 3 degrees of freedom (DOFs).
Therefore, the sameK◦(k) is obtained for infinite values ofQ (which are all optimal).

Note that, despite the result stated in Property 3, a full analysis of the conditions
under which the noise CMs elements can be estimated is still missing in the literature.
This motivates the interest in estimating directly the optimal gain of a Kalman filter
independently of the knowledge of Q, as proposed in [83], or in the usage of Qs with
simplified structures. Indeed, notice that condition (6.15) is automatically satisfied
if e.g., a diagonal structure is chosen for Q, since in that case Q has only n DOFs
which is at most equal to the number np of elements of the Kalman gain. Figure 6.3
exemplifies this concept, where the experiment on S2 is repeated with a diagonal Q,
i.e. with only 2 DOFs.

We next focus on the problem of choosing a suitable structure for Q when it is
unknown. This motivates the selection of the numerical optimization in (6.14), w.r.t
correlation methods which provide an analytical solution to the Q estimation problem
but that do not handle structural constraints.

6.4 Which structure for Q?

A common practice adopted by several methods is to simplify the structure of matrixQ
to be diagonal, with obvious computational advantages. While this often works out sat-
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Figure 6.3: S2: Distribution of the optimal values for q11 and q22 over 1000 MC runs with different
noise realizations. In this case, over-parameterization does not occur since a diagonal structure is
adopted forQ.

isfactorily because it reduces the degrees of freedom ofQ to n, it is not always the most
appropriate choice, and may lead to an unnecessary loss of filtering accuracy. To inves-
tigate this issue in more detail, we here address the following constrained optimization
problem:

minimize
Q

R(x̂(k|k),Q)

subject to Q ∈ Qκ,

where Qκ is the set of all positive semidefinite matrices Q ∈ Rn×n with κ ≤ n(n+1)
2

free parameters. To ensure that Q = QT � 0, Q is parameterized using a Cholesky
decomposition:

Q = ZZT , (6.18)

where Z is a lower triangular matrix, and the optimization process is carried out over
the parameters zij . As a result, the structural constraints on Q translate to conditions
on the parameters zij of the Cholesky factors. For example, for n = 3 one has that:

Q = ZZT =


z2

11 z11z21 z11z31

z21z11 z2
21 + z2

22 z21z31 + z22z32

z31z11 z31z21 + z32z22 z2
31 + z2

32 + z2
33

 . (6.19)

Therefore, the constraint z21z31 + z22z32 = 0 must be applied in the optimization
problem to ensure that q23 = q32 = 0, and so on. More simply, a diagonal Q is
obtained by setting Z to be diagonal (z21 = z31 = z32 = 0).
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Let us consider the third order system described below:

S3 :


x(k + 1) =

 0.0218 0.9243 −0.2750

0.4645 −0.2466 −0.8076

0.8451 0.1167 0.4530

x(k) + v(k)

y(k) =
[

0.9936 0 0.6539
]
x(t) +w(k)

(6.20)

with

Q◦ =


6.3557 6.2921 −0.7910

6.2921 6.5128 −0.0420

−0.7910 −0.0420 6.7963

 ,
R = var[y(k)]/10, x(0) = [0 0 0]T . As done previously, an observation window of
N = 10000 samples has been considered. By a simple visual inspection ofQ, it should
be clear that a diagonal structure will miss the contribution of q12 which is comparable
with that of qii, i = 1, 2, 3.

An exhaustive analysis over all possible matrix structures has been carried out and
the aggregated results are reported in Figure 6.4. In particular, for each structure, 100
MC runs have been carried out on the same data realization for different random initial-
izations of the optimization solver, and the identified optimal Qs have been validated
over a test set. In this plot, the black marker refers to the best diagonal solution, while
the red marker refers toR(x̂(k|k),Q◦). Observing the parameterizations with 3 DOFs,
one can note that the full diagonal case does not represent the best solution and more
efficient non-diagonal structures can be pursued with the same number of parameters.
Indeed, the minimumR(x̂(k|k),Q) associated to the diagonal case (d), computed on a
test set, is 42.6770 w.r.t. 40.3954 (i.e., a relative error of 5.6482%), which corresponds
to the best non-diagonal (nd) structure with 3 DOFs. The two corresponding identified
matrices are listed below:

Qd =


2.3232 0 0

0 0 0

0 0 11.7474

 , Qnd =


6.2337 8.2759 0

8.2759 10.9879 0

0 0 0

 .

It is worth noting that both these matrices make the pair
(
F ,
√
Q
)

uncontrollable,
which results in the Kalman filter neglecting the effect of new measurements on the
state corresponding to the row of zeros. Unusual as it may seem, this is perfectly
legitimate and does not limit per se the applicability of the Kalman filter (see Section
3.1 in [109]).

As for S2, an identifiability issue arises also for S3 due to over-parameterization,
when the optimization is carried out on a Q matrix with more than 3 DOFs. This
prevents one from obtaining theQ◦ in the unconstrained case (i.e. with 6 DOFs).
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Figure 6.4: S3: estimation error corresponding to different parameterizations. The black marker repre-
sents the diagonal case, while the red one the case R(x̂(k|k),Q◦). The reported values have been
computed on a test data-set.

6.5 Matrix structure selection method

The analysis carried out in the previous sections shows that while the Q matrix should
be endowed with a limited number of degrees of freedom, the diagonal structure does
not necessarily always provide the best possible approximation of the realQ. Building
on this observation, we next propose an approach to address the matrix structure
selection of Q, which ultimately results in a MSS problem. Accordingly, we tackle
this problem within the probabilistic framework described in Chapter 3.

Let ϑ = [z11 z21 z22 ...]
T be a vector containing all the NT = n(n+1)

2
parameters zij ,

i ≥ j, in lexicographical order. Let also s be a binary vector taking values in the set
Σ = {0, 1}NT , where the k-th element sk encodes the presence (or absence) of ϑk in
the model structure. For example, a third orderQ matrix with the following structure:

Q =


q11 0 0

0 q22 q23

0 q23 q33


can be obtained by selecting ϑ1 = z11, ϑ3 = z22, ϑ5 = z32 (see (6.19)), i.e. by
employing a Z factor with the structure s = [1 0 1 0 1 0]. Notice that the same
structure forQ could have also been achieved using a larger structure s = [1 0 1 0 1 1],
encompassing also the term z33, but the inclusion of this additional parameter does not
lead to any improvements in terms of accuracy.

We aim to find the matrix Q with the smallest number of non-zero parameters that
provides an “acceptable” performance. Accordingly, we can formulate the structure
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selection problem as follows:

minimize
s

R(x̂(k|k),Q(s)) + λP(s), (6.21)

where R(x̂(k|k),Q(s)) is defined in (6.9), Q(s) being a symmetric semidefinite pos-
itive matrix with structure induced by s, P(s) : Σ → R+ is a penalization term, and
parameter λ determines the relative importance of the two sub-objectives. Since s is
a binary vector, the most intuitive choice for the penalization term is the zero-norm
‖s‖0 = card{si : si 6= 0}, which actually coincides in this specific case with the `1

norm ‖s‖1 =
∑NT

i=1 |si|. In view of the convexity of the `1 norm, this is preferred to the
`0 norm [25].

In order to be compliant with the problem formulation in (3.1), we will reformulate
problem (6.21) as follows

maximize
s

J (s) = e−β·[R(x̂(k|k),Q(s))+λP(s)], (6.22)

where β > 0 is a design parameter. The exponential form of the cost function provides a
natural normalization in the interval (0, 1], and allows a sharper discrimination between
structures with similar performance [110]. In the following, we will denote as s? the
optimal solution of problem (6.22). We will further assume that J (s) < J (s?), ∀s ∈
Σ \ {s?}. An exhaustive solution of the optimization problem (6.22) for all possible
values of s is not convenient for high order systems, due to the complexity of the
combinatorial part of the problem. Indeed, there are 2NT different values for vector s,
and, in turn, NT grows as the square of the system order n. For this purpose we adopt
the probabilistic reformulation presented in Section 3.1, by assigning a probability to
each possible value of the structure vector to be the target solution s?. To this end, let
γ be a discrete variable taking values in Σ according to the probability distribution Pγ :

Pγ =
∏
i:si=1

πi
∏
i:si=0

(1− πi), (6.23)

where πi is the success probability of the Bernoulli random variable γi ∼
Bernoullian(πi) associate to the term ϑi. Accordingly, ϑi is present in the extracted
Cholesky factorZ (i.e. si = 1) if γi = 1 and is absent if γi = 0. Parameter µi represents
the confidence level that ϑi belongs to the target structure s?. Starting from an initial
tentative distribution (e.g., such that all possible structures have equal probability), we
then employ a sample-and-evaluate approach to progressively update the probability
distribution, enhancing the probability that high-performance structures are extracted.

More precisely, at each iteration, several sample structures are extracted from Pγ
(each structure is obtained by extracting one sample for each Bernoulli distribution)
and evaluated. The latter operation amounts to solving problem 6.14 with the proper
constraints on the structure of Q, and yields the parameters of the matrix Q with the
assigned structure that maximizes the filter performance on the collected data set of N
state-measurement pairsD. Then, the retrievedQ is used to evaluate the corresponding
structure s through J (s). Finally, one updates πi, for each term ϑi, according to the
sign of the difference between the average performance of the structures that contain
it, weighted with the respective probabilities as given by Pγ , and the corresponding
average performance of the remaining models weighted in probability. Specifically, let

δi = EPγ [J (γ)|γi = 1]− EPγ [J (γ)|γi = 0], (6.24)
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one updates πi according to the sign of the sampled version of δi:

πi(r + 1) = πi(r) + χδi, (6.25)

where χ is a step size and r denotes the current iteration. The overall algorithm is
reported in Algorithm 6.

Remark 4. The update of πi at line 22 is based on the computation of the average
performance of those structures containing the term ϑi, through the variables J ⊕ and
n⊕ defined in Algorithm 6, and the average performance of the remaining models,
through J 	 and n	.

Algorithm 6 Matrix structure selection algorithm

Require: {(x(k),y(k)), k = 1, · · · , N}, NT , Np, β, λ, γ, πmin, πmax
Ensure: π

1: π ← 1
NT
· 1NT×1;

2: repeat
3: for p = 1 to Np do . Generate structures
4: s(p) = [ ];
5: for i = 1 to NT do
6: Extract ti from Bernoullian(πi); . Generate terms
7: s(p) ← [s(p), ti];
8: end for
9: DefineQ(p) according to structure s(p);

10: {Q(p), R(x̂(k|k),Q(p))} CM estimation;
11: J (p) ← e−β·[R(x̂(k|k),Q(p))+λP(s(p))]; . Structure evaluation
12: end for
13: for i = 1 to NT do . Update πi
14: J⊕ ← 0; n⊕ ← 0; J	 ← 0; n	 ← 0;
15: for p = 1 to Np do
16: if s(p)i = 1 then
17: J⊕ ← J⊕ + J (p); n⊕ ← n⊕ + 1;
18: else
19: J	 ← J	 + J (p); n	 ← n	 + 1;
20: end if
21: end for
22: πi ← πi + γ

(
J⊕

max(n⊕,1) −
J	

max(n	,1)

)
;

23: πi ← max (min (πi, πmax) , πmin); . Saturation
24: end for
25: until Stopping criterion
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6.6 Numerical examples

In this example we consider a system S4 in the form of (6.1) with 5 states and outputs,
described by the following matrices:

F =



0.0964 0.1577 0.2783 −0.0983 0.1116

0.1354 0.0687 0.1230 −0.1257 −0.2379

0.2974 0.0913 −0.1032 −0.0937 0.0525

−0.1010 −0.1266 −0.0891 0.4644 −0.0420

0.0863 −0.2380 0.0884 −0.0410 −0.0409


,

H =



0.2380 −0.5470 2.0726 0 1.4756

−0.0458 0 −0.7593 0.9201 −1.5044

0.0523 1.7044 −1.1369 −0.0254 0.8159

0 −0.1391 0 −1.4746 −0.3703

0.1182 0.0666 0.3504 2.1646 0.1038


.

The data were generated using a sparseQ matrix:

Q =



0.3854 0.1160 0 −0.4516 0

0.1160 0.3225 0 −0.0832 −0.0643

0 0 0.1000 0 0

−0.4516 −0.0832 0 0.6249 −0.0165

0 −0.0643 0 −0.0165 0.0251


,

and
R = diag (0.1055, 0.1402, 0.0978, 0.1916, 0.3802) .

A sparse Q can be representative, e.g., of distributed systems with various intercon-
nected devices, whereby only state variables associated to a device or to neighboring
devices are correlated.

To account for the randomization inherent in the MSS algorithm 6, an MC study
has been carried out by running the algorithm 100 times on the same data realization.
The algorithm has been set up with Np = 40, β = 1, µmin = 0.001, and µmax =
0.999. A common issue in solving optimization problems which include regularization
terms is the selection of the optimal regularization weight λ. A popular method for the
selection of this parameter is the L-curve criterion [67] [50]. It is based on the study
of the L-curve which is a log-log plot of the norm of a regularized solution versus the
norm of the corresponding residual. It is a convenient graphical tool for displaying
the trade-off between the size of a regularized solution and its fit to the given data, as
the regularization parameter varies. According to the performed L-curve analysis (see
Figure 6.5), a λ value equal to 0.02 is used. Finally, as suggested in [36], we adopt a
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6.6. Numerical examples

Figure 6.5: MSS - L-curve. The values have been computed on the training data-set.

time varying step size χ with the following law:

χ =
1

10
(
Jbest − J

)
+ 0.1

(6.26)

where Jbest = max
(
J (p)

)
and J = mean

(
J (p)

)
.

The aggregated results are reported in Table 6.1. One can note that the most fre-
quently selected structure corresponds toQ matrices with 5 DOFs in the form:

Q =



q11 0 0 q14 0

0 q22 0 0 0

0 0 q33 0 0

q14 0 0 q44 0

0 0 0 0 0


.

In the remaining 3% of cases, the algorithm selected the following structures (defined
in terms of the zij terms):

(z11, z41, z22, z42, z43) ,

(z11, z41, z22, z42, z33) ,

(z11, z21, z22, z42, z43) .

It is worth mentioning that the algorithm converges to the mentioned solution by
exploring a tiny fraction of the Σ space, i.e., 611.29 explored solutions (on average)
w.r.t. 32768 possible structures.

Figure 6.6 shows a comparison between a portion of the real x1 trajectory and those
estimated by employing in the filter design the true Q (denoted Qtrue), the CM esti-
mated based on the structure suggested by the MSS algorithm (Qopt), as well as the
optimal diagonal one (Qdiag). The curves displayed in Figure 6.6 have been com-
puted on a test data-set. Apparently, the lack of information about q14 in the diago-
nal structure, prevents the filter from estimating accurately the x1 trajectory. On the
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Chapter 6. Process noise covariance estimation in Kalman filtering

other hand, the filter based on the structure-optimized Qopt yields state estimates very
close to those obtained with Qtrue. This also reflects on the corresponding values of
R(x̂(k|k),Q), respectively R(x̂(k|k), Qtrue) = 0.2280, R(x̂(k|k), Qopt) = 0.2557,
andR(x̂(k|k), Qdiag) = 0.5123.

Table 6.1: MSS - Monte Carlo study results.

Average elapsed time [s] 381.34

Average number of iterations 50.19

Average # of explored matrix structures 611.29

Total # of possible matrix structures 215 = 32768

Selected structure (zij terms) (z11, z41, z22, z33)

Extraction of the selected structure [%] 97

Figure 6.6: MSS - State estimation: real and estimated trajectories for state variable x1. The state
estimates are obtained by employing Qtrue, Qopt, and Qdiag. All the trajectories are computed on a
test data-set.

6.7 Conclusions

We investigated three main aspects regarding the identification of the noise process CM
in Kalman filtering problems. First, we discussed the identifiability issues associated to
the estimation of Q from data, related to the over-parametrization in the multidimen-
sional case. Indeed, as already observed in [83], the tuning of the CMs is based on the
estimation of the Kalman gain, which usually provides less degrees of freedom than
those associated with the CM. Even if this is a well known problem, the literature lacks
a full analysis of the conditions under which the noise CMs elements can be estimated.
A possible motivation to this deficiency may be the capability of directly estimating the
Kalman gain independently of the knowledge of the CMs [83], if one is addressing a
state estimation problem. Or even, the possibility in several applications to employ sat-
isfactorily CMs with diagonal structures, thus overcoming the mentioned identifiability
issue. However, the noise model is itself is a crucial complement of the process model,
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6.7. Conclusions

which typically results from some approximations, and hence one may be interested in
assessing the confidence in the identified model per se. This key observation opened a
window onto the problem of choosing a suitable parametrization for Q. Accordingly,
as a second point of discussion, we questioned the common practice of assuming a di-
agonal structure forQ, showing that this is not always the best choice. Finally, building
upon the last observation, we developed a method for solving explicitly the structure
selection problem, by decoupling it from the estimation problem. The proposed method
relies on the fact that the matrix structure selection problem is a specialization of a clas-
sical MSS problem, and hence we tackled it with a randomized method which allows
to handle its combinatorial complexity.
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CHAPTER7
Concluding remarks

7.1 Conclusions

IN this thesis, the problem of model structure selection (MSS) for dynamical systems
has been investigated with reference to the identification of nonlinear systems when
data are distributed among agents and that of switched nonlinear systems, and the

estimation of the process noise statistics in Kalman filtering. Each scenario has its
own peculiarities that impact on the MSS problem, which is a complex combinatorial
problem per se. The proposed solutions are all based on a probabilistic reformulation
of the selection problem whereby a probability distribution is defined over the model
structure space. Accordingly, we proposed adequate sample-and-evaluate procedures
that allow to finitely tune the parameters of the introduced probability distribution in
order to concentrate its probability mass on a target structure.

With reference to the cooperative identification of a NARX model from data that are
distributed across multiple agents, we proposed a distributed scheme to address jointly
the MSS and the parameter estimation. Specifically, the conceived scheme exploits the
probabilistic reformulation to transform the purely combinatorial MSS task into a con-
tinuous optimization problem which is tackled in a way akin to distributed algorithms
based on sub-gradient and proximal minimization. While the algorithm convergence
in the case of centrally available data has been proved, the method, in its current form,
lacks a formal theoretical proof. Nonetheless, the obtained results both on numerical
examples and on a real application show the potential of the proposed algorithm.

The MSS problem for switched systems encompasses the selection of a model struc-
ture for each mode and also the reconstruction of the switching signal. This latter task
has a detrimental impact on the combinatorial complexity, if no a priori knowledge
on the discrete nature of the system is available. The rationale behind the proposed
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two-stage procedure is that of keeping under control the problem complexity by alter-
nating between an identification phase with a limited number of fixed switching times
and a switching locations refinement step. This is done by means of a Monte Carlo
sampling approach, where the probability to extract a model is expressed separately in
terms of extraction of switching sequences and submodel structures. The local conver-
gence of this approach has been proved. The proposed approach has been validated on
benchmark examples regarding the identification of both linear and nonlinear switched
systems, and it fared well also with respect to existing approaches based on e.g., kernel
regression and Support Vector Machines, or Sum of Norm regularization. Numerical
evidence showed that the method can be extended fruitfully to piecewise systems if a
region estimation step is carried out once the identification procedure ends.

In state reconstruction problems, an incorrect description of the model stochastic
properties significantly affects the final filtering performance. A typical practical as-
sumption is that the process and noise covariances can be parameterized as diagonal
matrices. However, we showed that this is not always the best compromise between
computational complexity and tracking accuracy, and hence a matrix structure selec-
tion problem arises. We considered this selection problem as a specialization of a clas-
sical MSS problem, and we treated it within the presented probabilistic framework.
The effectiveness of the proposed approach is illustrated by means of some numerical
examples.

7.2 Future works

The work in this thesis can be improved and extended in the following directions:

• The core of the proposed methods is an heuristic approach to combinatorial prob-
lems arising in system identification, based on a continuous relaxation of the in-
teger variables via discrete probability distributions. It would be interesting to
investigate if this idea applies also to other problems characterized by having a
mixed-integer nature.

• Regarding the identification of NARX models via distributed computation, a the-
oretical proof of the algorithm convergence is still missing.

• An on-line version of the proposed identification procedure for switched nonlinear
systems would deserve attention.

• One could study the structure selection for the covariance matrices in Kalman
filter applications when the underlying system in nonlinear.
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“The important thing is not to stop questioning.
Curiosity has its own reason for existing.”

— Albert Einstein
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