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Abstract

At the beginning of interplanetary missions, launcher upper stages may be left orbit-
ing the Sun on trajectories that may bring them close to other planets, with the risk of
impacting and contaminating them. For this reason, all interplanetary missions must
comply to planetary protection requirements. These guidelines have the goal of limit-
ing the probability of unwanted collisions between mission-related objects and celestial
bodies that may host extra-terrestrial life forms or conditions favourable to their devel-
opment.

The aim of the research presented in this thesis is to develop new techniques and
numerical tools to improve the means currently employed in planetary protection anal-
ysis. The proposed approach focuses on different methods for numerical propagation,
uncertainty sampling and uncertainty propagation to make the verification of compli-
ance to planetary protection requirements more precise and affordable. In this work,
particular attention is given to the main aspects affecting the reliability and affordability
of planetary protection analysis.

In particular, the orbital propagation in the n-body dynamics which causes issues on
a numerical level due to the occurrence of close approaches with celestial bodies is ad-
dressed by selecting methods for the integration of the trajectories and comparing them
in various test cases. The effect of numerical integration errors on the overall plane-
tary protection analysis is assessed, and a novel approach to deal with close encounters
with planets is proposed. This method establishes a criterion based on the eigenvalues
of the Jacobian of the equations of motion to detect when a fly-by occurs during the
propagation: this provides a definition that avoids neglecting some of these events in
the analysis, as a way to identify all possible conditions that affect the simulation and
to contain their effects at the numerical level.

On the side of the estimation of impact probability, a novel application of the Line
Sampling method is proposed as an alternative to the standard approach based on Monte
Carlo simulation. During the research, the method was implemented and validated for
planetary protection analysis and made more effective by developing new algorithms to
increase its accuracy and efficiency: these novel techniques allow to extend the appli-
cability of the method to more complex cases, where multiple impact events and very
low probability levels are expected.
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Finally, uncertainty propagation methods were also applied to planetary protection,
to overcome the limitations of sampling methods. The use of Gaussian Mixture Models
and of adaptive splitting of the distribution is proposed to accurately propagate the
initial uncertainty characterising the state of a mission-related object into interplanetary
orbits, and to estimate efficiently the probability of impacts.
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Sommario

All’inizio delle missioni interplanetarie, gli stadi superiori dei lanciatori possono essere
lasciati in orbita attorno al Sole su traiettorie che potrebbero avvicinarli ad altri pianeti,
con il rischio di collidere con essi e contaminarli. Per questo motivo, tutte le missioni
interplanetarie devono essere conformi ai requisiti di protezione planetaria. Queste
linee guida hanno lo scopo di limitare la probabilità di collisioni indesiderate tra oggetti
legati alla missione e corpi celesti che possono ospitare forme di vita extraterrestri o
condizioni favorevoli al loro sviluppo.

Lo scopo della ricerca presentata in questa tesi è quello di sviluppare nuove tec-
niche e strumenti numerici per migliorare i mezzi attualmente impiegati nell’analisi di
protezione planetaria. L’approccio proposto si concentra su diversi metodi per la propa-
gazione numerica, il campionamento dell’incertezza e la sua propagazione per rendere
più precisa ed efficiente la verifica della conformità ai requisiti di protezione planeta-
ria. In questo lavoro, particolare attenzione è data ai principali aspetti che influenzano
l’affidabilità e l’efficienza dell’analisi di protezione planetaria.

In particolare, la propagazione orbitale nella dinamica degli n-corpi, che causa pro-
blemi a livello numerico dovuti al verificarsi di incontri ravvicinati con corpi celesti,
viene affrontata selezionando metodi per l’integrazione di traiettorie e confrontandoli
in vari casi test. L’effetto degli errori di integrazione numerica sull’analisi di protezione
planetaria viene valutato, e viene proposto un nuovo approccio per affrontare gli incon-
tri ravvicinati con i pianeti. Questo metodo stabilisce un criterio basato sugli autovalori
della matrice jacobiana delle equazioni del moto per rilevare quando si verifica un fly-
by durante la propagazione: ciò fornisce una definizione che evita di trascurare alcuni
di questi eventi nell’analisi, permettendo di identificare tutte le possibili condizioni che
influenzano la simulazione e per contenere i loro effetti a livello numerico.

Sul fronte della stima della probabilità di impatto, viene proposta una nuova appli-
cazione del metodo del Line Sampling come alternativa all’approccio standard basato
sulla simulazione Monte Carlo. Nel corso della ricerca, il metodo è stato implementato
e validato per l’analisi di protezione planetaria e reso più efficace sviluppando nuovi al-
goritmi per aumentarne l’accuratezza e l’efficienza: queste nuove tecniche permettono
di estendere l’applicabilità del metodo a casi più complessi, dove sono previsti eventi
di impatto multipli e livelli di probabilità molto bassi.
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Infine, alla protezione planetaria sono stati applicati anche metodi di propagazione
dell’incertezza, per superare i limiti dei metodi di campionamento. L’uso di Gaussian
Mixture Models e di splitting adattivo della distribuzione viene proposto per propagare
accuratamente l’incertezza iniziale che caratterizza lo stato di un oggetto della missione
in orbite interplanetarie, e per stimare in modo efficiente la probabilità di impatti.
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CHAPTER1
Introduction

Exploration missions to other planets and moons must comply to planetary protection
guidelines in order to reduce the risk of contaminating them with biological material
from Earth. As these missions leave the Earth, the launcher stages used to inject the
spacecraft into the final transfer orbit are also left on trajectories that, in the course of
years or even decades, may return to the Earth or impact other planets. Furthermore, a
spacecraft may become uncontrollable during the course of the mission due to failures
of one of the main on-board systems, or its trajectory may deviate from the nominal
one due to manoeuvring errors.

Planetary protection requirements act on the design of a mission by setting a limit
to the probability of a collision between mission-related objects and protected celestial
bodies, which may be the subjects of biological studies and future targets for explo-
ration missions aiming to search for extra-terrestrial life [2]. To protect these envi-
ronments, planetary protection policy is adopted internationally and put into act by
countries and Space Agencies. Quantifying the risk of unwanted collisions with these
planets and moons becomes a duty of great importance for mission designers.

Verifying the compliance to these requirements is a key aspect of space mission de-
sign, and demands precise and reliable tools. However, great computational burden is
needed to carry out this task, whose challenges are represented by accurate orbital prop-
agation in the chaotic environment of the n-body dynamics and statistical investigation
of events characterised by low probabilities, taking into account uncertainty on the state
of the spacecraft and the possibility of random failures. This thesis develops numerical
methods with the goal of improving current tools for the verification of compliance to
these requirements.

In this chapter the motivations and objectives of this research are presented, along
with an overview of the current state of the art in accurate orbital propagation and

1



i
i

“thesis” — 2020/1/22 — 20:49 — page 2 — #22 i
i

i
i

i
i

Chapter 1. Introduction

uncertainty treatment, focusing on the solutions presented in the available literature. In
particular, from the point of view of orbital propagation, the review concentrates on
numerical integration schemes for simulations of the n-body dynamics, justifying the
attention given to symplectic methods. On the side of uncertainty treatment, instead,
the main subjects of the discussion are advanced Monte Carlo sampling methods and
covariance propagation techniques.

This chapter introduces the state of the art in these fields, focusing on the available
tools used to address the relevant problems, and justifying the choices made in this
research. The following chapters will introduce the problems related to the aspects the
thesis focuses on, explaining in detail the approaches that were followed, the techniques
that were developed and the main results used to validate them.

Finally, a summary of the methodologies developed and implemented in this re-
search is provided.

1.1 Definition of the problem of planetary protection

"The legal basis for planetary protection was established in Article IX of the United Na-
tions Treaty on Principles Governing the Activities of States in the Exploration and Use
of Outer Space, including the Moon and other Celestial Bodies (Outer Space Treaty),
with the basic goals of: preserving planetary conditions for future biological explo-
ration, and protecting Earth and its biosphere (including the Moon) from potential
harmful extraterrestrial sources of contamination. To meet these goals, space flight
missions have to control: forward contamination, contamination of celestial bodies
other than the Earth by terrestrial life forms in the course of space flight missions, and
backward contamination, contamination of the terrestrial biosphere by extraterrestrial
life forms in the course of space flight missions." [2]

Planetary protection policy is maintained, updated and promoted by the Committee
On Space Research (COSPAR) every few years [3], both as an international standard
on procedures to avoid biological contamination in space exploration, and to provide
accepted guidelines and requirements in this area as stated in the Outer Space Treaty.
Planetary protection policy acts on two aspects of the design of a space mission: at
the system engineering level, ensuring the total or partial pre-sterilisation of hardware
components on the spacecraft before launch, imposing bioburden (measure of quantity
of bacterial spores on exposed surfaces) estimation analyses and procedures to reduce
it via cleanroom procedures; at the mission analysis level, accounting for trajectory
uncertainty to reduce the probability of impacts between mission-related objects and
the protected celestial bodies.

Planetary protection policy distinguishes different categories depending on the class
of the missions, reflecting the level of interest and concern that contamination can com-
promise future investigations. The categories and associated requirements depend on
the target body and mission type combinations, with each having a probability and a
confidence level to be verified in a given time frame. For every interplanetary mission,
a probability of impact analysis on a protected Solar system body shall be performed,
taking into account [2, 3]:

• Single/multiple pass analysis;
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• Spacecraft reliability;

• Meteoroid impacts;

• Knowledge of spacecraft state (location, velocity vector);

• Manoeuvre and planet/satellite ephemeris uncertainty;

• Stochastic variability of the atmospheric density with the amplitude of the Solar
cycle estimated for the mission/sun epoch as variable;

• Scientific evidence of sufficient radiation for sterilisation of terrestrial life forms.

Planetary protection requirements are divided into categories which reflect the level
of interest and concern that contamination can compromise future investigations. The
categories and associated requirements depend on the target body and mission type
combinations, based on the COSPAR classification [2, 3]:

I all missions to bodies which are not object of significant biological interest (e.g.
Mercury);

II all missions to bodies which are object of significant biological interest with low
chance of compromising future investigation in case of contamination by a space-
craft (e.g. Venus, most natural satellites of the solar system);

III fly-by and orbital missions to bodies which are object of significant biological
interest with high chance of compromising future investigation in case of contam-
ination by a spacecraft (e.g. Mars, Europa, Enceladus);

IV surface missions to bodies which are object of significant biological interest with
high chance of compromising future investigation in case of contamination by a
spacecraft (e.g. Mars, Europa, Enceladus);

V all Earth-return missions.

All categories require different levels of bioburden control and of analysis of the trajec-
tory (outbound and inbound phases).

Some of the requirements adopted in the planetary protection policy of the Euro-
pean Space Agency (ESA) for any exploration mission leaving the Earth’s sphere of
influence are summarised in Table 1.1. These refer only to the possible contamination
due to unplanned impacts occurring during the outer leg of the missions, which cre-
ate situations where unsterilised particles containing viable terrestrial microorganisms
or bacterial spores are released into a protected biosphere, or during the return leg of
sample return missions to Earth, where potential extraterrestrial spores may be brought
back to our planet in an uncontrolled manner. Similar situations may inadvertently oc-
cur also in other kinds of missions not reported in the table, such as surface landings
with or without human crew (e.g. a mission to Mars). In these cases the planetary
protection requirements focus on the bioburden on the local environment, specifying
limits to the number of particles that could be exposed tot the local biosphere [2]. The
Earth’s Moon does not appear in the Table as it is considered part of the Earth-Moon
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Chapter 1. Introduction

system, thus having the same level of protection from backward contamination as the
Earth to avoid planetary protection requirements for lunar missions [2].

Notice that not all cases include a requirement on the time frame: while generally
missions within the inner solar system ask to verify the possibility of contamination in a
period of at least 50 years, missions to the outer solar system do not impose a limitation
on it. However, in cases where the verification of the requirements is particularly strict
or sensitive to errors, as for orbital propagations in the Jovian system, very extended
time frames (up to 1000 years) are commonly considered.

Table 1.1: Some of the planetary protection requirements adopted by ESA for interplanetary
exploration missions.

Mission Object Biosphere Impact probability Time
Generic Any Any ≤ 1 · 10−3 50 years
Mars

- General
Upper stage Mars ≤ 1 · 10−4 50 years
Spacecraft Mars ≤ (1− 5) · 10−2 20−50 years

- Sample return Spacecraft Earth ≤ 1 · 10−6 -
Outer solar system

- General Any
Subsurface
ocean

≤ 1 · 10−4 -

- Europa
(sample return)

Spacecraft Earth ≤ 1 · 10−6 -

- Small bodies
(sample return)

Spacecraft Earth ≤ 1 · 10−6 -

1.2 Research motivations and objectives

The work presented in this thesis focuses on the second aspect of planetary protec-
tion as introduced in the previous section, that is the verification of the requirements
limiting the probability of collisions of mission-related objects with protected celestial
bodies. The main goal of this research is to improve the accuracy and the efficiency of
the planetary protection analysis for interplanetary space missions, reducing the com-
plexity which derives from the need to quantify the chance of impacts integrating the
trajectories in an n-body dynamics with frequent planetary encounters.

When interplanetary missions leave the Earth’s sphere of influence, the launcher
upper stages used for their launch may also be injected into orbits that will eventually
come back to the Earth or get close to other planets. A notable example of this is the
case of the object WT1190F, which was detected in October 2015 on collision path
with the Earth [4], and later identified as a man-made object possibly produced during
a Moon exploration mission [5].

Moreover, during the missions, random failures of the on-board systems or other
accidents (e.g. collisions from debris or micrometeoroids) may make a spacecraft un-
controllable, and leave it on a trajectory that will eventually impact another celestial
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body. The same can happen at the end of the mission, after the spacecraft runs out of
propellant to control its course or attitude, or after the power systems and batteries fail.
This is the main reason behind the end-of-life strategies adopted for missions such as
Galileo and Cassini-Huygens: in this cases the orbiters were manoeuvred to plunge into
the atmospheres of, respectively, Jupiter (Sep. 2003) and Saturn (Sep. 2017), ensuring
their complete burn-up. This choice effectively nullified the risk of colliding with any
of the moons of the two planets in the long term and contaminate it with material from
Earth [6, 7].

During the design of a mission, the chances of impacts with the Earth or other
planets must be studied to verify the compliance with the planetary protection require-
ments [2], to ensure that the risk of an uncontrolled re-entry in the Earth’s atmosphere
or of a potential collision with an extraterrestrial habitat and its contamination is re-
duced below a critical threshold. This problem is commonly approached by studying
the evolution of the object’s trajectory in the reference time frame, taking into account
the uncertainties associated with its state and design parameters as the area-to-mass
ratio, errors in the execution of manoeuvres, random failures. However, the way the
objects interact with celestial bodies during the long term evolution of its trajectory
is often difficult to predict, due to the chaotic nature of the orbits in the n-body prob-
lem [8, 9]. For this reason, planetary protections analysis requires precise and reliable
tools to propagate trajectories with uncertainty over long times and to predicts impacts
with bodies in the solar system.

As already introduced, the main goal of this research is to make the tools currently
used in planetary protection analysis more accurate and efficient. For this purpose, the
research focused on three primary aspects: numerical orbital propagation, uncertainty
sampling, and uncertainty propagation, tested on several applications.

Orbital propagation is studied on a numerical level, with the objective of under-
standing how errors in a single propagation scale up on a statistical level, that is when
thousand of trajectories are propagated to evaluate the probability of impacts, and what
their effects are on planetary protection verification. A second target is the improve-
ment of the numerical propagation, with particular attention on the treatment of close
approaches with planets, due the their effect of reducing the quality and the accuracy
of the integration: for this reason, a novel approach to identify when close approaches
occur during the integration will be presented.

The uncertainties characterising the state of the spacecraft are studied initially using
a Monte Carlo (MC) approach, where initial conditions are randomly sampled and then
propagated to simulate the evolution of the uncertainty and evaluate the probability of
possible impacts. In this work, the goal is to improve the sampling process in order to
reduce the overall computational effort of the analysis. This is done by introducing an
advanced sampling method called Line Sampling, which samples the initial uncertainty
distribution in a more efficient way compared with standard MC, and by applying it
in multiple calls to estimate the probability of impacts with celestial bodies during
different events distributed over a long time. The desired result is to provide an overall
overview of the interesting regions within the uncertainty distribution in a way useful
for the design of the mission.

Aside from focusing on their sampling, the research also studies the propagation
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of uncertainties, with the goal of improving the estimation of impact probability by
analysing the evolution of the initial distribution as a whole without the limitations
due to the sampling procedure. Since in many cases the uncertainty related to the
initial state of spacecraft or launcher stage is expressed through a covariance matrix, the
approach that was adopted makes use of Gaussian Mixture Models, which approximate
the uncertainty as a weighted sum of Gaussian distributions, and of the Unscented
Transformation to propagate it using a fully non-linear dynamic model. A test case is
provided to show the application of the techniques for estimating impact probabilities,
observing numerical problems related to the selected algorithms. These issues were
commented alongside with the main results, and possible solutions were proposed.

The final goal of this research is to combine the techniques presented here to im-
prove the verification of compliance to planetary protection requirements of interplane-
tary exploration mission. The performance of these techniques will be assessed through
numerical simulations in various test cases: Near-Earth Asteroids (due to their well
known orbits), and interplanetary missions subject to planetary protection analyses.

1.3 State of the art

1.3.1 Accurate orbital propagation

When numerically integrating an initial value problem, the choice of the integration
scheme affects how the error deriving from the numerical integration accumulates time
step after time step, and, thus, the eventual accuracy of the computation [10]. In partic-
ular, the integration error growth sets the limit to the length of any integration, as long
as it is required that the final computed positions are still causally related to the initial
conditions [11]. This is true in particular for strongly non-linear problems, such as the
study of long term n-body orbital dynamics, due to the complexity of the system, the
number of terms involved, and its chaotic behaviour [8, 9].

One of the contributing factors to error growth in long term integration is the fact
that most integration schemes do not consider that the n-body systems have quantities
that are conserved during the motion, such as the total mechanical energy and the to-
tal angular momentum, and have no information about the conservation laws. When
these integration methods are used, a variation of these quantities is observed, which
is a phenomenon that is not coherent with the physical formulation of the problem.
Geometry preserving numerical integration methods attempt to introduce conservation
laws into the system to reduce the error growth rate. Examples of such methods include
symplectic methods and manifold projection methods [12]. While non-symplectic in-
tegrators distort the orbits being propagated, symplectic integrators preserve the sym-
plectic structure of the problem, with no long-term build-up of energy error [12]. For
this reason they are often chosen for studying problems involving planetary or satellite
systems.

Despite improving the qualitative behaviour, symplectic methods do not guarantee
a more precise solution. Since symplectic algorithms have fixed-step formulations,
dealing with close encounters can become difficult due to the faster dynamics which
requires shorter time steps to preserve the accuracy of the integration as it was before
the encounter. However, changing the step-size of a symplectic integrator in order to
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preserve the accuracy of the overall integration introduces an error with each change
[13].

Several symplectic integration schemes and tools based on them have been pro-
posed in the last decades. The methods by Yoshida [14] and the SABA methods by
Laskar and Robutel [15] are high-order symplectic schemes for perturbed Hamiltonian
systems used for the long term study of the Solar System dynamics. For the same ap-
plication, Chambers proposed a symplectic integrator capable of accounting for close
encounters between massive bodies thanks to a hybrid formulation between symplectic
and non-symplectic schemes [16] (the integrator is included in the MERCURY soft-
ware package). Similarly, the SyMBA integrator by Duncan et al. [17] uses a multiple
time step technique to deal with close encounters while maintaining good computa-
tional efficiency. Another package of mixed symplectic and non-symplectic integration
methods was developed Levison and Duncan under the name of SWIFT [18–20]. RE-
BOUND, by Rein and Tamayo [21] also uses symplectic (SABA and Wisdom-Holman
among them) and non-symplectic methods to integrate the motion of particles under
the influence of gravity.

On a different perspective, non-symplectic methods can ensure great accuracy in
approaching the strongly non-linear orbital problem, despite not explicitly having a
conservative formulation.

Runge-Kutta (RK) methods are some of the most used numerical schemes, thanks to
their relatively simple formulation even at high-orders and flexibility to solve difficult
problems [22] even in explicit form. In particular, one of their main advantages is
the possibility to define embedded schemes to adapt the times step and ensure great
accuracy [23–25]. Also, particular schemes exist that can be made symplectic with
a proper choice of the coefficients, a property that will be explained in more detail
and exploited in Chapter 2. One alternative to RK methods are the high-order implicit
schemes based on Gauss collocation methods developed by Everhart, making use of
truncated time series in time and obtaining more accurate and efficient results [26,27].

Other than the choice of the integration scheme, the propagation can be made more
accurate also by acting on the equations to eliminate singularities. The regularisation
of equations is a process that consists in changing the dependent and independent vari-
ables, so that the dynamics are described by a set of equations that are non-singular.
Moreover, time-regularisation yields more uniformly spaced integration steps, intro-
ducing an automated integration step size adaptation mechanism, thus improving accu-
racy and computational cost of the propagation. In particular, the Sundman transforma-
tion replaces the physical time with a fictitious time that is proportional to the eccentric
anomaly of the orbit [28, 29]. Furthermore, the Kustaanheimo-Stiefel (KS) regularisa-
tion converts the equations of motion into a high-dimensional harmonic oscillator [30],
as an extension of the Levi-Civita transformation to the 3D case [31].

More recently, the Group of Space Dynamics of UPM (GSD-UPM) developed the
DROMO regularisation scheme [32], which exhibits a higher accuracy when compared
with other propagation schemes. This method shows itself particularly apt to high
fidelity long term propagation, as in the case of the propagation of Near Earth Objects
(NEO’s) orbits. Further work introduced different time scales to increase the stability
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of the regularisation when dealing with close approaches [33], and studies of the long
term effects of perturbations [34].

1.3.2 Uncertainty sampling and impact probability analysis

Current approaches for robust detection and prediction of planetary encounters mainly
refer to linearised models [35] or full non-linear approaches to orbital sampling [36].
The uncertainty in the determined orbital state, the length of the time window and the
possibility of close approaches with other planets between the observation epoch and
the epoch of the expected impact are the main factors driving the choice of the approach
to the problem. Simplified models are generally preferred when linear approximations
are reliable for both the orbit determination and uncertainty propagation, and while
they can significantly reduce the required computational burden, their range of appli-
cation can be very narrow. The application of linear methods in the impact plane was
introduced by Chodas [37].

When the simplifying assumptions are not valid, fully non-linear techniques are re-
quired in order to obtain results that are reliable and coherent with the true physics of
the problem: among these, MC methods are the most accurate but also the most com-
putationally intensive, since the number of evaluations needed to verify the required
probability level grows when greater accuracy is desired [38]. Given the non-linear and
chaotic behaviour of the orbital propagation problem, MC simulations are preferred to
address this kind of problem thanks to their general and flexible way of approaching
collision and impact probability estimation [39, 40]. This approach is based on the
generation of virtual impactors via observation of random sampling of an initial distri-
bution and the integration over the time interval of investigation using fully non-linear
equations [41, 42].

As said, in cases where long-term propagations are necessary and multiple close ap-
proaches with planets are expected, MC techniques represent the best choice to address
the problem of estimating impact probabilities. These techniques are intensively ap-
plied for the prediction of impacts of NEOs with the Earth [43]. Since these objects are
continuously detected, often while they are already approaching the Earth, it becomes
necessary to estimate accurately and in a short time whether a collision will occur,
and the likelihood of it. However, despite their higher fidelity to non-linear models,
standard MC simulations may not be suitable for fast NEO impact probability estima-
tion, since they generally need numerous evaluations to achieve high accuracy. An
elegant and effective compromise was introduced with the concept of the Line Of Vari-
ations (LOV) [44]: in this case, Milani et al. applied the multiple solutions approach
to sample the central line of variations (1-dimensional) of the non-linear 6-dimensional
confidence region at the initial epoch and then numerically integrate over the time span
of interest in a similar way, and integrated it in the CLOMON2 1 monitoring system op-
erated by the Universities of Pisa (Italy) and SpaceDyS. With respect to standard MC,
the LOV method guarantees compute times 3-4 orders of magnitude lower than those
required in MC simulations, though the LOV analysis may grow quite complex after it
has been stretched and folded by multiple close planetary encounters [45]. However,

1https://newton.spacedys.com/neodys/, see the Risk Page. [last accessed 15 Nov 2019]
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various efforts are still being made to refine the work on the LOV: for example, Tommei
extends the LOV to the 2-dimensional case when the observational arc of the asteroids
are short [46], while Valsecchi et al. focus on studying analytically the effects of close
approaches on the LOV [47].

In a similar way, these methods are applied to planetary protection analysis, which
requires high accuracy to verify that the design of an interplanetary mission is compliant
to the international guidelines [5, 48–50]. In particular, Colombo et al. and Jehn et al.
exploit the expression of the confidence interval by Wilson [51] to estimate in advance
the number of MC runs necessary to grant a desired confidence level (as requested by
planetary protection policy).

In all the cited applications, more efficient sampling methods may increase the pre-
cision of the probability estimate, or reduce the amount of simulations, and thus the
computational cost. Aside from the LOV method, in recent times new advanced MC
techniques, such as the Importance Sampling (IS) [52], Line Sampling (LS) and Subsets
Simulation (SS) methods were developed [53], aiming at reducing the computational
burden by either restricting the sampling phase space or identifying optimal sampling
paths within it: these approaches are also based on alternative ways to sample the un-
certainty space, and offer competitive results in both fields, providing a significant im-
provement with respect to standard MC performance while maintaining a sufficiently
high level of accuracy. Alternative solutions approach the problem from other per-
spectives, such as exploiting the variation of the Minimum Orbit Intersection Distance
(MOID) to predict encounters [54], mapping on the b-plane [41, 55–57], or the use of
Differential Algebra [53, 58, 59] to represent the propagated uncertainty in more man-
ageable ways.

1.3.3 Uncertainty propagation techniques

The main issue in assessing the risk of impacts between small objects and celestial
bodies (whether for planetary protection analysis or asteroid impact monitoring) is the
large amount of uncertainty that is intrinsic in the problem. When quantifying the
initial state of an object, uncertainty in its trajectory arises from measurement errors or
approximations of the physical model, due to lack of knowledge or simplifications.

In the context of space mission analysis, uncertainty propagation usually refers
to the orbital uncertainty propagation, that is to determine the satellite’s probability
density function (pdf) or state moments. Generally, it is assumed that the probabil-
ity distribution of the deviation from the mean state can be initially represented by a
Gaussian distribution, with a mean and a covariance matrix, as typical of navigation
uncertainties in orbital uncertainty propagation problems. However, the Gaussian er-
ror hyper-ellipsoid gradually becomes non-Gaussian during the propagation, due to the
non-linear nature of dynamics. For this reason, estimating its evolution at a future time
is not straightforward.

The time evolution of a pdf is described by the Fokker–Planck equation (FPE) [60].
Since solving the FPE for high dimensional dynamic system is very difficult, orbital
uncertainty propagations are usually addressed by linear models or non-linear MC sim-
ulations [61]. However, linear problems do not ensure high efficiency over long-term
propagations, and MC methods, while providing high precision, become computation-
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Chapter 1. Introduction

ally expensive as the required accuracy increases. For these reasons, different analyt-
ical, semi-analytical, or numerical non-linear methods have been developed in recent
years.

The Unscented Transformation (UT), originally proposed by Julier et al. [62, 63],
approximates the mean and covariance of a Gaussian distribution by considering a set
of deterministically chosen weighted sigma-points which are selected such that the dis-
tribution is exactly captured by the sigma-points. The sigma-points are then evolved
thorough the non-linear transformation to obtain the mean and covariance describing
the new state. Instead of random samples, the UT method uses no more than 2n + 1
sigma-points for efficient and accurate uncertainty propagation, where n is the dimen-
sionality of the system.

On a similar note act Gaussian Mixture Models (GMM), which were introduced by
Garmier et al. and by Terejanu et al. in 2008 [64, 65] for uncertainty propagation and
then developed further by Giza et al. [66, 67], De Mars et al. [68], and Vittaldev and
Russel [69] with specific application to space debris. Frey et al. [70] also applied GMM
to the study of space debris using the continuity equation to model the fragment density
as a continuum and propagate it forward in time. The idea at the base of GMM is to
represent the distribution of the quantity of interest with a weighted sum of Gaussian
distributions: the mean value and covariance of the distribution are sufficient to describe
its evolution, and can be updated via application of the Unscented Transformation or
Unscented Kalman Filter. Further work was then carried out to optimise the weights of
the GMM components and adapt them during the propagations.

Polynomial chaos expansions (PCE) methods work differently from UT and GMM,
as they provide knowledge of the state pdf and its moments at orders higher than mean
and covariance. Wiener first proposed a method where series approximations using
standard random variables represent both input uncertainty and the output uncertainty
of the system under consideration [71]. The series expansion consists of polynomials of
the corresponding multi-dimensional random variable defined on a basis of orthogonal
functions, and its coefficients are recovered by first propagating a few points and then
interpolating them with a least square approach or exploiting the orthogonality of the
basis functions. The PCE method does not require any simplifications of the dynamic
model, meaning it can be easily applied to fully non-linear orbit uncertainty propagation
problems, as first presented by Jones et al. [72].

A common disadvantage of the GMM and PCE methods is that they both suffer
from the curse of dimensionality: as they are both sample-based methods, both the
number of Gaussian mixtures to be propagated and the number of terms of PC polyno-
mials grow as the dimensions of the problem grow, thus increasing the computational
load to reach adequate accuracy.

Other methods, instead, exploit analytical or semi-analytical approximations for
uncertainty propagation.

Taylor series can be used to expand the solution as function of the nominal initial
conditions of a trajectory and approximate the non-linear dynamics through automatic
differentiation or analytical derivatives [73]. The Taylor expansions are used to approx-
imate the non-linear motion locally and to map the initial uncertainties to the new values
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analytically. Methods using State Transition Matrix (STM) developed starting from the
1st order of the expansion have high simplicity and computational efficiency, but fail
to provide sufficient accuracy in case of highly non-linear systems, long-duration un-
certainty propagation, or large initial uncertainty. A method obtained from the higher
order terms of the Taylor expansion (State Transition Tensors, STT) was proposed by
Park and Scheeres [73], but complexity arises from the partial derivatives of high orders
and differentiation is not possible when singularities and discontinuities are present.

Different from the STTs methods, Taylor Algebra replaces real algebra with op-
erations among Taylor polynomials. From this, Berz developed Differential Algebra
(DA) [74] which can expand any function into its Taylor polynomials up to an arbitrary
order, providing easy evaluation and differentiation, allowing to automatically expand
the flow of the dynamics up to an arbitrary order and to non-linearly map the uncer-
tainty with respect to the initial conditions. Armellin and Di Lizia [75] developed an
accurate non-linear uncertainty propagator and applied it to asteroid encounters, Wittig
et al. applied it to the propagation of large uncertainty sets through automatic domain
splitting [76], Morselli et al. employed it for orbital conjunctions analysis [53]. How-
ever, also the DA technique requires the dynamics to be continuous and differentiable.

1.3.4 SNAPPshot tool suite

Past work at the University of Southampton has developed SNAPPshot (Suite for the
Numerical Analysis of Planetary Protection) under a contract for the European Space
Agency [5,56,57]. The purpose of SNAPPshot is to verify whether a mission is compli-
ant with the planetary protection requirements for a given confidence level, considering
the launcher dispersion and the distribution of additional parameters such as the area-
to-mass ratio. MC analysis is exploited to study the evolution of the trajectory and its
uncertainty in the considered time frame, and to estimate the probability of impacts
with major celestial bodies.

Figure 1.1: SNAPPshot building blocks.

Fig. 1.1 shows a block diagram of SNAPPshot in the original version that was
delivered to ESA, written in Modern Fortran. The user specifies the maximum allowed
probability of impact with a specific body and the desired confidence level, together
with providing the initial uncertainty distribution (which can represent a failure in the
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Chapter 1. Introduction

propulsion system, a distribution in are-to-mass ratio of the satellite, or the covariance
matrix representative of the launcher injection error). The tool computes the required
number of MC runs to ensure the desired confidence level by applying the expression
of the confidence interval by Wilson [51] as in Jehn [48] and Wallace [49]. It then
samples the distribution to obtain the initial conditions, which are propagated for a
given amount of time (usually 100 years) using high-order Runge-Kutta methods with
different possible ways to adapt the time-step. Each trajectory is then analysed with the
representation on the b-plane of the relevant bodies, and the number of detected impacts
is used to compute the probability of impact with the target planets with a given level of
confidence: if the number is not compatible with the planetary protection requirements,
the number of MC runs is increased until the requirements are fulfilled or the maximum
number of runs is reached [5].

The work on SNAPPshot has been continued at Politecnico di Milano as part of this
research with funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme as part of project COM-
PASS (Grant agreement No 679086), and from the European Space Agency (ESA)
though a Networking/Partnering Initiative (NPI) agreement. The novel techniques pre-
sented in this thesis (along with several other modifications aimed at making the anal-
ysis more flexible) have been implemented in it and tested, applying the software to in-
terplanetary mission cases during three stays at the European Space Operations Centre
(ESOC) under the supervision of Dr. José Manuel Sánchez Pérez as technical advisor.
These techniques will be introduced and explained in detail in the following chapters,
providing also test cases and numerical results use for their validation.

The final version of the tool will be tested by the Mission Analysis team of ESA on
several space missions such as Mars Sample Return and JUICE.

1.4 Methodologies developed and implemented

As already introduced, the research focuses on three aspects of planetary protection
analysis (numerical orbital propagation, uncertainty sampling, and uncertainty propa-
gation) with the goal of improving its accuracy and efficiency. This was done by de-
veloping various numerical methods, implementing them in the SNAPPshot tool, and
by validating their effectiveness in the application to different interplanetary mission
cases.

In particular, the numerical propagation was studied by selecting a number of in-
tegration schemes, implementing them and comparing their performance in terms of
accuracy and efficiency in different test cases ranging from the propagation of NEOs
orbits to actual interplanetary missions. The study mostly focused on high-order RK
and symplectic schemes: the first ones were chosen due to their simplicity [22], taking
advantage of the methods already implemented in SNAPPshot, the latter due to their
formulation preserving the physical aspects of the dynamics, such as total mechanical
energy of the system [14, 77, 78]. In relation with symplectic scheme, the projection
method was also implemented: this numerical technique, which forces the conservation
of the integrals of the motion even in schemes that are not symplectic [12], was chosen
as an alternative to symplectic methods to allow the conservation of the total energy.
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Moreover, a novel technique for the identification of close approaches with massive
bodies was devised. The main motivation behind it was the need to reduce the impact
fly-bys on the numerical integration of a trajectory, due to the faster and more chaotic
dynamics governing the motion during such occurrences, as will be shown in Chapter 2.
The method exploits the knowledge of the dynamics to estimate during the propagation
when a close approach is occurring, that is when it will have the highest impact on the
numerical accuracy. This is done by considering the eigenvalues of the Jacobian matrix
derived from the equations of motion, which were easily recovered since they were
already utilised in SNAPPshot for the adaptation of the time step during the integration,
following the method proposed by Debatin et al. [79]. Results will show that this
approach gives a wider definition of close approach with respect to the used of a fixed
distance to define it (e.g. the radius of the sphere of influence of the approached planet).

Regarding uncertainty sampling, the work presented here focused on finding ways
to improve the performance of the statistical analysis needed to verify planetary pro-
tection requirements. After different comparisons with standard MC and Subset Simu-
lation, the Line Sampling method was chosen as alternative to standard MC simulation
due to its higher accuracy in evaluating small probabilities, as often required in this
kind of problem [80, 81]. The LS algorithm was implemented in SNAPPshot and ap-
plied to impact probability analysis for asteroids and exploration missions to validate
its efficiency in the case of single impact events (other application to single events al-
ready exist in the available literature for in-orbit conjunction analysis [53]). Later, other
algorithms were devised and added to the tool, with the goal of improving the results
obtained in the previous analyses: on one side, a way to obtain a choice of the main
sampling direction closer to the ideal case was introduced, which improved the accu-
racy of the probability estimation with respect to previous results; on the other side, an
algorithm to identify, via a preliminary MC sampling, which time intervals were poten-
tial candidates to find an impact region to probe using LS. These additional algorithms
were used to improve the impact probability analysis and make it applicable to cases
where multiple impacts events can be found in long time intervals.

Finally, the research focused on uncertainty propagation techniques for the prop-
agation of the covariance representing the initial state dispersion of the object being
propagated. An approach based on Gaussian Mixture Models was selected to approx-
imate the covariance as a weighted sum of Gaussian distributions during the propa-
gation. The propagation itself was carried out using the Unscented Transformation,
which does not relies on approximations of the dynamics, but exploits the fully non-
linear n-body model. Moreover, splitting techniques were used during the propagations
to contain the effects of the non-linear dynamics and be able to maintain a Gaussian
description of the propagated elements. However, the numerical simulations showed
the presence of problems related to the splitting algorithm for the absence of control
techniques to maintain the accuracy of the overall uncertainty approximation. Possi-
ble solutions to this issue and improvements of the selected algorithm are discussed in
Chapter 4.
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1.5 Thesis organisation

This thesis is divided into six chapters, which introduce different aspects of the research
on orbit propagation and uncertainty modelling for planetary protection compliance
verification. The first part of each chapter explains the theoretical development and
the method adopted, subsequently some results are presented as the application of the
theory. The thesis is organised as follows.

Chapter 2 presents the integration methods that have been analysed, implemented,
and applied to orbital propagation. The construction and the properties of the integra-
tion schemes are shown, explaining the reasons for their choice, and are later applied
in Section 2.4 to compare them in various applications. The chapter also introduces a
new dynamics-based algorithm to detect close approaches during the propagation, with
the aim of identifying the conditions increasing the numerical error of the trajectory
integration.

Chapter 3 focuses on the Line Sampling method, which is introduced as an alterna-
tive to standard MC simulation to estimate impact probabilities with higher accuracy
and efficiency. The first part of the chapter is devoted to the explanation of the base
algorithm and its theoretical formulation, which is later extended to better characterise
the accuracy of the method in various situations. In the second part, instead, new algo-
rithms exploiting LS are presented and then applied in planetary protection analysis of
interplanetary missions in Section 3.3.

Chapter 4 focuses on techniques for the direct propagation of an uncertainty distri-
bution, particularly on the propagation of covariances making use of the Gaussian Mix-
ture Model approach with adaptive splitting. The methods that were chosen and then
implemented are presented from the theoretical point of view, and then their perfor-
mance on the numerical level is studied when applied to planetary protection analysis
in Section 4.4.

Chapter 5 presents a breakdown of the work done on the SNAPPshot tool, intro-
ducing the original functionalities of the software and presenting the algorithms that
were introduced as part of the PhD research, along with an outline of the modifications
implemented in the code.

Finally Chapter 6 summarises the finding of this research and gives an insight into
possible further developments of this study that will be subject of future work.

1.6 Contributions and publications

Some of the contents of this dissertation have been presented during various interna-
tional conferences, and have been submitted for review to scientific journals or are
about to be submitted.

Journal publications

• Romano M., Losacco M., Colombo C., Di Lizia P., “Impact probability computa-
tion of Near-Earth Objects using Monte Carlo Line Sampling and Subset Simu-
lation", unpublished manuscript, submitted for 2nd review Jan. 2020 to Celestial
Mechanics and Dynamical Astronomy, currently under second review
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• Romano M., Colombo C., Sánchez Pérez J. M., "Assessment of integration meth-
ods for application to planetary protection analysis", unpublished manuscript,
submitted for review to Acta Astronautica in Jan. 2020

• Romano M., Colombo C., Sánchez Pérez J. M., "Line Sampling procedure for
extensive planetary protection analysis", unpublished manuscript, submitted for
review to Journal of Guidance, Control, and Dynamics in Jan. 2020

Conference proceedings

• Romano M., Colombo C., Sánchez Pérez J. M., "Verification of planetary pro-
tection requirements with symplectic methods and Monte Carlo Line Sampling",
Proceedings of the 68th International Astronautical Congress (IAC), Sep. 25th-
29th 2017, Adelaide, Australia, IAC-17-C1.9.5

• Romano M., Colombo C., Sánchez Pérez J. M., "Efficient planetary protection
analysis for interplanetary missions," Proceedings of the 69th International Astro-
nautical Congress (IAC), Oct. 1st-5th 2018, Bremen, Germany, IAC-18-A3.5.10

• Losacco M., Romano M., Di Lizia P., Colombo C., Morselli A., Armellin R.,
Sánchez Pérez J. M., "Advanced Monte Carlo Sampling Techniques for Orbital
Conjunctions Analysis and NEO Impact Probability Computation", Proceedings
of the 1st NEO and Debris Detection Conference, Jan. 22nd-24th 2019, ESA/E-
SOC, Darmstadt, Germany

• Masat A., Romano M., Colombo C., "Orbital resonance analysis in Monte Carlo
simulations for planetary protection and defence", Proceedings of the XXV AIDAA
International Congress, Sep. 9th-12th 2019, Rome, Italy

Presentations (not included in conference proceedings)

• Romano M., Losacco M. Colombo C., Di Lizia P., "Estimation of impact prob-
ability of asteroids and space debris through Monte Carlo Line Sampling and
Subset Simulation", 3rd international workshop on Key Topics in Orbit Propa-
gation applied to Space Situational Awareness (KePASSA), Jul. 25th-27th 2017,
ESA/ESTEC, Noordwijk, The Netherlands

• Romano M., Colombo C., "Planetary protection analysis for interplanetary mis-
sions", Satellite Dynamics and Space Missions Summer School, Aug. 28th - Sep.
2nd, 2017, San Martino al Cimino, Italy

• Romano M., Colombo C., Sánchez Pérez J. M., "Line sampling procedure for ex-
tensive planetary protection analysis", 4th international workshop on Key Topics
in Orbit Propagation applied to Space Situational Awareness (KePASSA), Apr.
24th-26th 2019, Universidad de la Rioja, Logrono, Spain
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CHAPTER2
Numerical integration methods for n-body

propagation

2.1 Introduction

Planetary protection requirements are set to limit the chance of impacts between un-
controllable mission-related objects (launcher upper stages or damaged spacecraft) and
other celestial bodies for any interplanetary mission, with with the possibility of addi-
tional constraints over the considered time frame [2]. The verification of the require-
ments leads to the need of propagating the initial state of these objects over periods of
50 years at least. This is, however, a non-trivial task: the non-linearity of the dynamics,
the modelling of non-gravitational perturbations (and other small effects), the uncer-
tainty in the ephemerides of the solar system bodies, and the eventual close approaches
with them affects the long-term evolution of the trajectories. As a consequence, pre-
dicting the actual position of the launcher stage or debris over periods up to 100 years,
and whether an impact with a sensitive target will occur or not, becomes difficult [5,48].
This is even more complex when propagating the dynamics in environment such as the
Jovian system, which presents challenges from the numerical point of view due to the
fast dynamics, which emphasises the chaotic aspect of the problem.

As no analytical solution for the gravitational n-body problem exists without intro-
ducing simplifying hypotheses, the orbital propagations have to be carried out numer-
ically, in a dynamics with frequent close approaches of massive bodies; this heavily
affects the numerical integrations of the trajectory, whose uncertainty increases over
time. Moreover, the representation of the spacecraft state may in some cases become
unreliable due to accumulating numerical errors during long integrations, which affect
not only the accurate estimation of the state, but also introduce variations in the con-
served quantities of the motions which are not coherent with the physical laws in the
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Chapter 2. Numerical integration methods for n-body propagation

form of fictitious dissipation of the total energy of the system [12]. The quality of the
numerical integration is commonly improved by using high order integration methods,
but alternative schemes may be necessary to ensure a better long term accuracy with
respect to the existing methods without compromising the computational efficiency.

This chapter analyses the process of numerical integration, to understand how the
errors in a single propagation affect the overall verification of the planetary protection
requirements, and to improve the accuracy of the numerical propagation in an n-body
environment.

The first issue is addressed from two points of view. First, single propagations
of known cases are studied by integrating the trajectories with different schemes and
comparing the results among them and with the reference data, to reveal how the se-
lected methods deal with the chaoticity of the n-body dynamics. Then, Monte Carlo
(MC) analyses are performed, to quantify how the errors in the propagation of a sin-
gle orbit weight on a statistical level when thousands of trajectories are integrated with
the goal of estimating the probability of impact with a celestial body. The integration
methods under examination include symplectic methods and other energy-preserving
techniques: the formulation of these methods includes the conservation of total energy
(or other constants of the motion) when a Hamiltonian description of the dynamics is
given, thus granting, on long integration times, a numerical solution that is closer to the
true physical behaviour of the system, and eventually a higher accuracy.

Alongside these analyses, this work also presents a novel method to identify the
occurrence of close approaches during the integration, based solely on the dynamics of
the problem, in order to address the numerical issues caused by fly-bys in a more effec-
tive way. This is done by considering the Jacobian of the equations of motion and the
evolution of its eigenvalues in time to identify when a close approach is occurring, and
thus when it starts affecting the numerical integration, without relying on a definition
based on a fixed distance (e.g. radius of the sphere of influence).

In the chapter, the theory behind the different integration techniques is first ex-
plained, then applied to various test cases in numerical simulations. These tests are
used to compare the performance of the selected integration methods in terms of ac-
curacy and computational cost, and to show how their choice affects the results of a
planetary protection analysis. The test cases include:

• the propagation of known orbits of Near-Earth Asteroids (99942 Apophis, 2010
RF12, and 2007 UD6), which are used as reference to validate the implemented
integration methods and to quantify the effects of close approaches on the energy
conservation and on the numerical error during the integration;

• the planetary protection analysis for the launcher upper stages of the Bepi Colombo
mission and of the Solar Orbiter mission, to study the effect of the choice of the
integration methods on the results of a statistical analysis (that is the value of the
impact probability).

Note that the planetary protection analyses are carried out using a MC approach,
as already introduced in section 1.3.1 of Chapter 1: the initial conditions are generated
by randomly sampling a covariance matrix representing the uncertainty distribution
over the initial state of the considered object, and then propagated using the proposed
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integration methods. Finally, the impact probability is estimated as the fraction of the
total number of propagated trajectories leading to a collision with a celestial body.

Finally, the trajectory of the launcher stage of Solar Orbiter and the trajectory of the
JUICE spacecraft will be used to validate the Jacobian-based method for the identifica-
tion of close approaches during the propagation.

2.2 Equations and constants of the motion

Before starting the overview of the selected numerical methods, the definitions of the
equations of motion is given. Two sets of equations are used: the restricted n-body
problem (RNBP), describing the motion of a particle subjected to the gravitational
forces of n celestial bodies; the complete n-body problem (NBP), which instead de-
scribes the motion of n massive bodies subjected to each other’s gravitational forces.
Along with the equations, this section also provides the definitions and the expressions
of the the Hamiltonian functions associated with each formulation of the gravitational
n-body problem since it represents one of the conserved quantities of the motion. All
the equations and constants presented here are defined in Cartesian coordinates with
respect to an inertial reference frame centred in the Solar System barycentre.

Restricted n-body problem

In this model, only the gravitational forces of the n celestial bodies acting on the object
whose trajectory is being propagated are considered, not the effects on the bodies on
each other. This corresponds to the simplification that the n-body dynamics is restricted,
i.e., the n − 1 bodies act on the dynamics of the body to be integrated but its mass do
not influence the motion of the other masses. Therefore, the dynamics of the other
n − 1 masses can be integrated off-line and included in the propagation through the
ephemerides as a function of time.

The equations of motion are reported in Eq. 2.1 in an inertial barycentric reference
frame [82, pp. 29–32]: {

ṙ = v

v̇ = −
∑n

j=1 µj
r−rj(t)
‖r−rj(t)‖3

(2.1)

with r and v being, respectively, the position and velocity vectors of the propagated
body, rj the position of the j-th planet and µj its gravitational parameter.

The Hamiltonian function H, which represents a measure of the total mechani-
cal energy of the system, is explicitly dependent on time, as planetary ephemerides
rj(t), j = 1, ..., n are imposed as a function of time:{

H(r,v, t) = 1
2
‖v‖2 −

∑n
j=1

µj
‖r−rj(t)‖

dH
dt = ∂H

∂t
= f(rj(t)) 6= 0

(2.2)

where ∂[·]/∂t represents the partial derivative with respect to the time t, while d[·]/dt
represents the total derivative.

The Hamiltonian function can be made a constant of the motion by extending the
phase space: the problem is reformulated in such a way the Hamiltonian does not

19



i
i

“thesis” — 2020/1/22 — 20:49 — page 20 — #40 i
i

i
i

i
i

Chapter 2. Numerical integration methods for n-body propagation

explicitly depend on time any more, as a new system evolution parameter s is intro-
duced [83]; this makes it possible to rewrite the time t as an additional coordinate τ(s)
with its own conjugate momentum u(s) [84, pg.20-21]. The new Hamiltonian is thus
written as

K(r(s), τ(s),v(s), u(s)) = H(r,v, τ) + u

=
1

2
‖v‖2 −

n∑
j=1

µj
‖r− rj(s)‖

+ u
(2.3)

Analytically, the new defined Hamiltonian K does not explicitly depend on time [84,
pg.20-21]. Also, the equations describing the variation of the orbital state (position r
and velocity v) maintain the same form as in Eq. 2.1, while two new equations are
added to the system: 

dr
ds = ∂K

∂v
= v

dv
ds = −∂K

∂r
= −

∑n
j=1 µj

r−rj(s)
‖r−rj(s)‖3

dτ
ds = ∂K

∂u
= 1

du
ds = −∂K

∂τ
=
∑n

j=1 µj
(r−rj(s))·vj(s)

‖r−rj(s)‖3

(2.4)

The third equation has the trivial solution τ = s = t (except for a constant), so that
the equations of motion for r and v given by K are identical to those given by the
HamiltonianH. Substituting this solution in the fourth equation, one obtains:

du
ds

= −∂K
∂τ

= −∂H
∂τ

= −∂H
∂t

(2.5)

which, when integrated, shows that u is equal to the negative value −H(t) of the sys-
tem’s HamiltonianH(r(t),v(t), t) [83]:

u = −K(τ) = −H(t) (2.6)

This operation has two main advantages: first, a true constant of motion is defined,
being K(r, τ,v, u) = H(r,v, t) + u = H(r,v, t) − H(t) = 0; second, the canonical
form of the Hamiltonian is recovered, with the possibility to apply other canonical
transformations (meaning a transformation that preserves the Hamiltonian form of the
equations of motion [84, pg.22]) or symplectic integration schemes.

Complete n-body problem

In this model, all the gravitational forces of the objects being propagated (celestial
bodies and particles) acting on each other are considered.

The equations of motion expressed in an inertial barycentric reference frame are:{
ṙi = vi

v̇i = −
∑n

j=1,j 6=i µj
ri−rj
‖ri−rj‖3 i = 1, ..., n

(2.7)

In Eq. 2.7 all the gravitational forces acting on the ith body due to the other n − 1
masses with gravitational parameters µj, j = 1, ..., n− 1 are considered and added up.
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The Hamiltonian of the system is not dependent on time, and is equal to the total
energy of the system:{

H(r1, ..., rn,v1, ...,vn) = 1
2

∑n
i=1mi‖vi‖2 − µi

∑n
i=1

∑i−1
j=1

mimj

‖ri−rj‖3 = E0

dH
dt = ∂H

∂t
= 0

(2.8)
In this case, the motion of all the celestial bodies and other objects is represented by a
set of equations with the same form as Eq. 2.1, repeated for each propagated object.

2.3 Selection of integration methods and energy preservation techniques

This section shows a selection of integration methods that were chosen and then im-
plemented for this work and provides explanations of how the numerical schemes are
defined.

First, a general introduction of the properties that were considered will be made,
in order to introduce the terminology and the most important aspects of the numerical
methods. Considering a generic initial value problem

x′(t) = f(x, t), x(t0) = x0

a single-step numerical integration method computes the value of the generic dependent
variable x at time tn+1 = tn + h, where h represents the step size, according to the
scheme Φh as xn+1 = Φh(xn). The properties of the scheme can be defined using the
notation here introduced [22]:

• the order of the integration method (the numerical method has order p if for any
sufficiently smooth solution of the initial value problem, the local truncation error
is O(hp+1));

• the number of stages, that is equal to the number of evaluations of the function f
required to advance one step;

• whether it is explicit (meaning that the evaluation of the integration formula is suf-
ficient for each integration step, or formally xn+1 = Φh(xn)) or implicit (meaning
that it is necessary to solve an implicit equation or system or equations, or for-
mally xn+1 = Φh(xn+1, xn));

• whether the step size h is fixed (in case the step size is constant during the inte-
gration) or variable (in case the step size is controlled);

• whether it is symplectic (meaning that the advancement of a time step is defined
as transformation that preserves the Hamiltonian form of the equations of motion
[84, pg.22]) or not.

All the methods shown ahead are single step, meaning that for the calculation of xn+1

depends only on xn ∀n ≥ 0.

Table 2.1 shows the numerical integration methods that were chosen and then im-
plemented for this work, highlighting their properties as defined above. The methods
include:

21



i
i

“thesis” — 2020/1/22 — 20:49 — page 22 — #42 i
i

i
i

i
i

Chapter 2. Numerical integration methods for n-body propagation

• standard Runge-Kutta methods (RK) [22],

• Runge-Kutta methods based on Gauss-Legendre quadrature (GLRK) [77],

• Runge-Kutta-Nystrom methods (RKN) [24, 78],

• the symplectic Yoshida method (SY) [14].

Different versions of each scheme were implemented to obtain methods of different
order. Moreover, for all the implemented methods, there is the possibility to use step
regularisation (explained in section 2.3.1) and the projection method (explained in sec-
tion 2.3.1).

All the coefficients used to define and implements the methods are reported in Ap-
pendix A.

Table 2.1: Implemented integration methods and their properties.

Method (Order, Stages) Type Time step Property Other
RK4 (4,4) Explicit Fixed step + projection method

RK45 (5/4,7) Explicit Variable step
+ projection method

+ regularised step

RK8 (8,13) Explicit Fixed step
+ projection method

+ regularised step

RK78 (8/7,13) Explicit Variable step
+ projection method

+ regularised step
GLRK4 (4,2)

Implicit Fixed step Symplectic
+ projection method

GLRK6 (6,3) + regularised step
GLRK8 (8,4)

RKN8 (8,26) Explicit Fixed step Symplectic
+ projection method

+ regularised step

RKN64 (6/4,6) Explicit Variable step Symplectic
+ projection method

+ regularised step
SY4 (4,4)

Explicit Fixed step
Symplectic + projection method

SY6 (6,8) Canonical + regularised step
SY8 (8,16)

Generic explicit Runge-Kutta methods

A single step of integration from tn to tn+1 = tn + h following an explicit RK scheme
is expressed as [22]:

xn+1 = xn + hF (tn, xn, h; f), n ≥ 0 (2.9)

F (tn, xn, h; f) =
s∑
i=1

biKi (2.10)

Ki = f(tn + cih, xn + h

s∑
j=1

aijKj), i = 1, 2, . . . , s (2.11)
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2.3. Selection of integration methods and energy preservation techniques

where xn is the solution at the current step, tn the value of the independent variable at
the current step, h the step size, f the function to integrate, F is the increment function,
s is the number of stages of the method, and aij, bi, ci are the coefficients that define
a specific Runge-Kutta method. They are usually indicated as the Runge-Kutta matrix
(aij), the vector of weights (bi), and the vector of nodes (ci); they are collected in the
Butcher tableau (a,b, c)

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

that completely define a Runge-Kutta method. The method is valid if the following
relation is true [22]:

i−1∑
j=1

aij = ci, i = 2, ..., s

If the ai,j coefficients are equal to zero for j ≥ i, i = 1, ..., s, each Ki can be com-
puted explicitly as a function only of the i − 1 coefficients K1, Ki−1 and the method
is said to be explicit. If this is not the case, it is said to be implicit and requires the
resolution of a non-linear system with s unknowns. More requirements are found if
one requires the method to have a certain order p, meaning that the local truncation
error is O(hp+1), which can be derived from the definition of the truncation error itself.
Moreover, explicit methods with s stages cannot have order higher than s itself [22].

Embedded methods can be used for step adaptation (thus increasing the efficiency
of the scheme). The truncation error at each time step can be estimated by using two
integrators at the same time, which is possible and convenient as they share most of the
function evaluations [25, 85].

One-step RK schemes with s stages can become symplectic when applied to a dy-
namics in a Hamiltonian formulation if the coefficients of the Butcher’s tableau (a,b, c)
satisfy the symmetric relation given in [86]:

biaij + bjaji − bibj = 0, ∀i, j = 1, ..., s (2.12)

In this way, the value of the Hamiltonian function will remain bounded during the
integration, instead of presenting fictitious energy dissipation. However, this relation
implies that explicit schemes cannot be symplectic without having all b coefficients
equal to zero [86], thus making all symplectic RK methods implicit.

Gauss-Legendre Runge-Kutta

A class of symplectic implicit RK methods is represented by collocation methods. In
particular, those derived from Gauss-Legendre quadrature coefficients (indicated as
GLRK in Table 2.1) were selected for this work.

These schemes follow the general RK construction, and are particularly efficient
for orbital propagation, since they are A-stable at all orders, thus allowing larger time
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Chapter 2. Numerical integration methods for n-body propagation

steps with lower error [77] (a numerical method is said to be A-stable if the solution
y(t) = ekt to the test equation y′ = ky subject to the initial condition y(0) = 1 with
k ∈ C approaches zero as t → ∞ when Re(k) < 0. [87]). GLRK methods using s
stages yield a solution of order p = 2s [77].

However, implicit methods require the resolution at every step of a system of non-
linear implicit equations, which can be done with the use of Newton’s or fixed-point
iterations [77], with the consequence that the accuracy of this iterative process will
affect also the accuracy of the propagation. The second option was chosen in the im-
plementation of the method for the present work

With reference to Eq. 2.11, the algorithm for fixed-point iterations is described as
follows [77]:

Knew
i = f(tn + cih, xn + h

s∑
j=1

aijKj), i = 1, 2, . . . , s (2.13)

The iterations are stopped either when a maximum number of iterations is reached, or
when the difference between the values of Ki of the current iteration and the previous
one fall below a given tolerance δ: max|Knew

i −Ki|/xn < δ.

Runge-Kutta-Nyström methods

RKN schemes are partitioned RK methods, which are formulated to be applied to prob-
lems presenting a separable Hamiltonian function in the form [78]

H(r,v) = T (v) + V(r), T (v) =
1

2
vTv (2.14)

where the potential contribution V is function of the coordinate variables r (Cartesian
position vector) only and the kinetic contribution T is a quadratic function of the asso-
ciated momenta v (Cartesian velocity vector) only, with the equations of motion taking
the form {

ṙ = v

v̇ = −∂V
∂r

= f(r)
(2.15)

This kind of methods use two different sets of coefficients to integrate the coordi-
nates and the momenta separately. For the integration step of length h which brings
(rn(tn),vn(tn)) onto (rn+1(tn+1),vn+1(tn+1)) the algorithm follows:

rn+1 = rn + hvn + h2
∑s

i=1 bif(tn + cih,Ki)

vn+1 = vn + h
∑s

i=1 dif(tn + cih,Ki)

Ki = rn + cihvn + h2
∑s

j=1 aijf(tn + cjh,Kj), i = 1, ..., s

(2.16)

with a Butcher’s tableau (a,b, c,d), where b are the coefficients used for the coordi-
nates, and d the coefficients for the momenta:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs
d1 . . . ds
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2.3. Selection of integration methods and energy preservation techniques

In the case of RKN methods, also explicit schemes can be symplectic, and embed-
ded adaptive schemes are possible [24]. To be symplectic, an s-stage explicit scheme
with Butcher’s tableau (A,b, c,d) must satisfy the relations [78]:{

bi = di(1− ci), i = 1, ..., s

di(bj − aij) = dj(bi − aij), i, j = 1, ..., s
(2.17)

Canonical methods

Some numerical integration methods can be obtained directly from the Hamiltonian
formulation of the problem, through subsequent canonical transformations. The meth-
ods so derived are symplectic, meaning that the truncation error in the total energy has
no secular component, thus conserving the total energy exactly up to a certain order of
accuracy [88].

In this work, the method proposed by Yoshida [14] in the separable Hamiltonian
form was considered (SY in Table 2.1). Given the initial state x0 = (r0,v0)

T at time t0,
the nth order solution at time t0 +h is given as a composition of elementary symplectic
mappings of lower order, which is equal to the product of the operators:

x(h) =

[
k∑
i=1

exp(cihDT ) exp(dihDV )

]
x0 (2.18)

where DT and DV are differential operators associated with the kinetic and potential
terms of the separable Hamiltonian defined in Eq. 2.14, and exp(·) represents the ex-
ponential function. The map above gives a succession of k explicit mappings:

ri+1 = ri + cih
∂T
∂v

(vi)

vi+1 = vi − dih∂V∂r (ri+1)

i = 1, ..., k

(2.19)

with xk = (rk,vk) being the solution at time step t0 + h.

2.3.1 Additional numerical techniques

Time step regularisation

Following the procedure that was already implemented in SNAPPshot [5], the regular-
isation of the time step is obtained using the approach by [79] from the Jacobian J of
the equations of motion.

Given the equations of motion ẋ = f(x, t), let x = (r,v)T be the state vector,
containing position and velocity, and f(x, t) be equal to (v, v̇)T . Then the Jacobian
matrix is given by

J =
df

dx
=

[
0 I

G 0

]
(2.20)

where x = (r,v)T is the state vector, containing position and velocity vectors, I is the
identity matrix and G results from the derivation of the gravitational terms defined in
Eq. 2.1.
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Chapter 2. Numerical integration methods for n-body propagation

Indicating with λ the eigenvalues of the matrix in 2.20 and with Λ the maximum
eigenvalue, the condition for the stability of the integration scheme is written as

CΛh < 1,

where h is the step size and the value of C is actually set by choosing an initial step-size
that results in a sufficient number of integration steps per orbit. In this way, the user can
set an accuracy level and the initial step h0 is automatically computed by the integrator.

The integration step is rescaled as

hn+1 = hn
Λ(tn)

Λ(tn+1)
. (2.21)

Debatin et al. [79] propose a simplified expression for Λ:

Λ =

[
N∑
j=0

2µj
|x− xj(t)|3

] 1
2

(2.22)

where µj is the gravitational constant of the j th considered body.

Projection methods

Projection methods are numerical techniques that correct the solution obtained with
other integrators to minimise the integration error on a given first integral of the dynam-
ics (e.g. the total energy of the system). In this way, a solution closer to the physical
behaviour of the system is obtained [12].

Given an arbitrary one-step method Φh applied to the dynamical system ẋ = f(x)
such that xn+1 = Φh(xn), where x represents the state vector, and given a quantity
I(x) that conserves during the propagation, generally the numerical solution given by
the method does not satisfy the relation I(xn+1) = I(xn) due to numerical errors. A
new solution x̃n+1 such that I(x̃n+1) = I(x0) can be obtained by solving a constrained
minimisation problem considering the Lagrange function

L(x̃n+1, λ) =
1

2
‖x̃n+1 − xn+1‖ − g(x̃n+1)

Tλ (2.23)

with g(x) = I(x) − I(x0) being the constraint vector function, and λ a vector of
Lagrange multipliers. This leads to a simplified expression{

x̃n+1 = xn+1 + g′(xn+1)
Tλ

g(x̃n+1) = 0
(2.24)

where g′(x) represents the gradient of the function g with respect to the vector x.
The second relation is a non-linear system of algebraic equations with λ unknown,

that can be easily solved via Newton iterations:∆λi = −
(
g′(xn+1)g

′(xn+1)
T
)−1

g
(
xn+1 + g′(xn+1)

Tλi
)

λi+1 = λi + ∆λi
(2.25)
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2.4 Application

Basing on previous works [89], the numeric chapter focuses on the analysis of the 8th

order methods, as they had showed the most interesting results after extensive analyses
of their numerical properties.

2.4.1 Selection of test cases

The methods and models presented in this chapter are evaluated by comparing them in
different applications, on the level of single propagations and on a statistical level when
thousands of initial conditions are propagated in MC analyses, as in planetary protec-
tion studies. Various test cases were chosen in order to show if the differences observed
in the propagation of single trajectories due to the choice of integration method and
ephemeris model are important or not on a statistical level, and to quantify their effect
on the overall analysis.

Two main groups of objects were considered, asteroids (whose reference data was
taken from the Jet Propulsion Laboratory (JPL) Horizons ephemeris system1 via the
SPICE toolkit2), and mission cases that had already been studied for the presentation
of SNAPPshot [5, 56, 57]:

• Asteroids

– 99942 Apophis
– 2010 RF12

– 2007 UD6

• Interplanetary missions

– Launcher upper stage of Solo
– Launcher upper stage of Bepi Colombo

The asteroid cases were studied in terms of single propagations using the adaptive
RK78 (already available in SNAPPshot [5]), the implicit GLRK8, the Runge-Kutta-
Nyström RKN8, and the canonical SY8 methods (newly implemented in SNAPPshot
as part of this work as seen in Table 2.1). In these cases, two ephemerides models
were also compared, as introduced in the following section. Asteroid Apophis was
selected since it is a well-known case used to study numerical propagation and impact
probability, while asteroid 2010 RF12 was chosen as test case due to the multiple fly-bys
with Earth, one when it was observed in 2010 and one that is expected in 2095 (which
also presents one of the highest levels of impact probabilities in the Near-Earth Object
(NEO) Risk List3 from the European Space Agency (ESA)).

The MC analysis were performed for the asteroids Apophis and 2010 RF12, and
for the mission cases as well, by comparing the performance of RK78 and GLRK8,
which were chosen due to the considerations made following the analysis of the single
propagations. In the case of the asteroids, a number of runs for the MC analyses was

1https://ssd.jpl.nasa.gov/horizons.cgi
2https://naif.jpl.nasa.gov/naif/
3http://neo.ssa.esa.int/risk-page
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chosen according to previous studies. On the contrary, for the planetary protection
analysis, the number of runs was pre-estimated thanks to the SNAPPshot tools [5, 48],
by applying the expression of the confidence interval by Wilson [51].

In all test cases, the initial conditions were defined with respect to the EME2000
inertial reference frame (Earth’s Mean Equator and Equinox at 12:00 Terrestrial Time
on 1 January 2000): the x-axis is aligned with the mean equinox, the z-axis is aligned
with the Earth’s celestial North Pole, and the y-axis is rotated by 90◦ East about the
celestial equator [82].

2.4.2 Ephemeris models

The comparisons presented here also include planetary ephemerides coming from di-
verse sources, to show how the differences in the physical models affect the results of
the propagations. In each model, the state of the planets and celestial bodies are ob-
tained by integrating a set of n-body equations simulating the dynamics of the whole
Solar System: these equations include gravitational and additional forces that are dif-
ferent for each model, with the possibility of affecting the propagation of a single tra-
jectory.

The following models with the following characteristics were considered:

• the NASA JPL Horizons ephemeris system via the SPICE toolkit, which obtains
the ephemeris data by integrating the n-body dynamics considering the gravita-
tional and relativity effects of major planets, the Sun, the Moon, Vesta, and Ceres,
and by using Chebyshev interpolation to obtain the states of all the included ce-
lestial bodies as function of time (for more details see https://ssd.jpl.
nasa.gov/?horizons_doc#longterm and https://ssd.jpl.nasa.
gov/?horizons_doc#limitations);

• the ESA routines interfacing with the JPL de422 ephemerides;

• a third model, named "recomputed" here, which obtains the ephemeris data by
integrating the complete n-body dynamics presented in Section 2.2 considering
the gravitational and relativity effects of the major planets, the Sun, and the Moon,
and by using cubic spline interpolation to obtain the states of all the included
celestial bodies as function of time;

The third model is the one used for the propagations produced in this work, using
the set of equations of the restricted n-body problem already presented in Section 2.2.
Together with the gravitational terms, the accelerations related to the relativistic effects
of the motion of the celestial bodies were also considered, obtaining the full equations
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of motion in the Solar System in the form described by Armellin et al. in [75]:

r̈ =
∑
i

µi(ri − r)

r3i

{
1− 2(β + γ)

c2

∑
j

µj
rj
− 2β − 1

c2

∑
j 6=i

µj
rij

+
γ|ṙ|2

c2

+
(1 + γ)|ṙi|2

c2
− 2(1 + γ)

c2
ṙ · ṙi −

3

2c2

[
(r− ri) · ṙi

ri

]2
+

1

2c2
(r− ri) · r̈i

}

+
∑
i

µi
c2ri

{
3 + 4γ

2
r̈i +

{[r− ri] · [(2 + 2γ)ṙ− (1 + 2γ)ṙi]}(r− ri)

r2i

}
(2.26)

where r is the point of interest, µi and ri are the gravitational parameter and the Solar
System barycentric position of body or planetary system i, ri = |ri − r|, c is the
speed of light in vacuum, and β and γ are the parametrized post-Newtonian parameters
measuring the non-linearity in superposition of gravity and space curvature produced
by unit rest mass [90]. In Eq. 2.26 it is assumed that the object being propagated is
affected by the gravitational attraction of n bodies, but has no gravitational effect on
them; i.e., the restricted (n+1)-body problem approximation is adopted.

The relativistic effects can be switched on or off according to the parameters of the
simulation, and it was not used when comparing symplectic and non-symplectic inte-
gration methods. This choice was made since the adopted model described in Armellin
et al. is not consistent with the Horizons model. This issue was addressed by Masat et
al. [91] with a representation of the relativity model requiring the resolution of a lin-
ear system (thus increasing the computational complexity of the propagator) to include
correctly the gravitational acceleration terms r̈i, i = 1, ..., n of all celestial bodies.

This model was used in two ways: to produce reference data for the asteroids used
in the test cases (Section 2.4.4), and also to produce the planetary ephemerides. When
using this model, the states of the planets obtained by the integration of the complete n-
body model of the solar system are interpolated and then imposed as the time-dependant
terms in the equations of the restricted problem. This choice was done to make the
physical model coherent, by using planetary ephemerides that are consistent with the
dynamics described by the equations that are integrated.

For the work presented in this chapter, the n-body equations were integrated using
the variable step RK78 integrator with relative and absolute tolerances equal to 10−12.

2.4.3 Single propagations

A series of tests were carried out to show how the considered symplectic and non-
symplectic 8th order methods (RK78, GLRK8, RKN8, and SY8) perform for the inte-
gration of the n-body equations of motion expressed in Eq. 2.1. The case in exam is
the propagation of asteroid Apophis between 1989 and 2039, with the ephemerides for
every planet obtained from the JPL SPICE model.

The integrations of the equations of motion are carried out using Cartesian coor-
dinates in an inertial reference frame centred in the solar system barycentre. Non-
dimensional variables are used, following the approach of Colombo et al. [5], obtained
by dividing, respectively, distance and time by

L̄ = AU, t̄ = 2π
√
AU3/µSun
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where AU is the Astronomical Unit and µSun is the gravitational constant of the Sun.
The trajectory is propagated under the effect of gravitational forces of the Sun and
all the planetary systems considered with their barycentre, except for the Earth and
the Moon, considered as separate bodies. No additional perturbations such as solar
radiation pressure and relativistic effects were included. All propagators with adaptive
time step use relative and absolute tolerances both equal to 10−12. Following the option
already available in SNAPPshot [5], the initial step size was determined for all the
fixed-step and regularised step methods via a single-step run of RK78 using relative
and absolute tolerances both equal to 10−12: in this way, an accuracy level was set and
the initial step size was automatically computed by the integrators.

The value of the Hamiltonian function shown in Fig. 2.1 to Fig. 2.3 is the one
introduced in Eq. 2.3 the expected value is thus analytically zero during the whole
propagation, with variations only due to numerical errors; on the right, the error over
the state (position ∆r and velocity ∆v)is shown. The errors are defined as follows:

• ∆r = |r(t)− rref | is the deviation of the integrated position from the JPL SPICE
ephemerides used as reference, and measures the position error;

• ∆v = |v(t)−vref | is the deviation of the integrated velocity from the JPL SPICE
ephemerides used as reference, and measures the velocity error.

Fig. 2.1 shows the value of the Hamiltonian (a) for the propagation of Apophis
from 1989 to 2029 (before the predicted fly-by with the Earth in 2029) using a fixed
step size. We can observe that, when the dynamics is regular, the symplectic methods
(GLRK, RKN and SY, respectively the red, yellow and purple lines) preserve the value
of the Hamiltonian as expected, with bounded oscillations but no secular drift, while
the non-symplectic RK method (blue line) shows a small linear variation; the implicit
RK method shows a comparable level of error over the state (position ∆r in (b) and
velocity ∆v in (c)) of Apophis as given by the non-symplectic RK method.

Figure 2.1: Comparison among the different fixed-step integration methods for the propagation
of asteroid Apophis from 1989 to 2029; (a) Value of the Hamiltonian function in time, (b)
position and (c) velocity errors in time with respect to the reference ephemerides.
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The same time interval was considered in the propagation shown in Fig. 2.2, with
the use in this case of step regularisation for all the integration schemes. Here also
the non-symplectic adaptive method RK78 was used as a reference to compare the
performance of the proposed methods with the tools already available in SNAPPshot.
In this case, as expected, the value of the Hamiltonian in (a) shows a secular drift also
for symplectic methods due to the variation of the time step. The method by Yoshida
(SY), however, shows a better behaviour in terms of error over the state.

Figure 2.2: Comparison among the different regularised-step integration methods for the prop-
agation of asteroid Apophis from 1989 to 2029; (a) Value of the Hamiltonian function in
time, (b) position and (c) velocity errors in time with respect to the reference ephemerides.

The long-term behaviour seen in Fig. 2.1 and Fig. 2.2, however, changes when a
flyby occurs during the propagation. Fig. 2.3 also shows the propagation of Apophis, in
this case in the window 1989-2039 in order to include also the 2029 fly-by with Earth.
The increase of non-linearity of the dynamics during the fly-by can be visualised in the
jump of several orders of magnitude that the total energy in (a) and the state error in (b)
and (c) undergo at the epoch of the flyby, affecting in similar ways all the integration
schemes and hiding the approximation errors of the integrations. Similar jumps can
also be observed in Fig. 2.1 and Fig. 2.2, again due to close approaches with Earth. In
these cases, however, the variation in the total energy is much more contained than in
the case of a deep fly-by, due to the larger distance from the planet.

Fig. 2.4 shows the performance of the integration methods both in terms of accuracy
and in terms of efficiency: the maximum errors (energy in (a) and (d), position in (b)
and (e), and velocity in (c) and (f)) are related to the average computational time4 to
perform one integration step. The errors are defined as follows:

• ∆Hmax = max|H(t)−H0| = max|H(t)| is the maximum deviation of the value
of the Hamiltonian function obtained via integration from the value at the initial
time, and measures the energy error;

• ∆rmax = max|r(t) − rref | is the maximum deviation of the integrated position
from the JPL SPICE ephemerides used as reference, and measures the position

4The simulations were run on a machine with a processor Intel(R) Xeon(R) CPU E5-4620 v4 @ 2.10 GHz.
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Chapter 2. Numerical integration methods for n-body propagation

Figure 2.3: Comparison among the different regularised-step integration methods for the prop-
agation of asteroid Apophis from 1989 to 2039; (a) Value of the Hamiltonian function in
time, (b) position and (c) velocity errors in time with respect to the reference ephemerides.

error;

• ∆vmax = max|v(t) − vref | is the maximum deviation of the integrated velocity
from the JPL SPICE ephemerides used as reference, and measures the velocity
error.

From the results presented here it can be observed that the symplectic implicit
Runge-Kutta (GLRK) and the method by Yoshida (SY) are the most accurate in terms
of position error in time among the ones taken into exam, respectively with a fixed-step
and a regularised step. However, while the SY method performs generally better when
the distance from the celestial bodies is large enough, the GLRK in both cases shows
a better conservation of energy in time also when close approaches are present. The
higher computational time with respect to the other integration methods is due to the
fixed-point iterations to solve the implicit problem at every step. For this reason, a
focus on methods to solve implicit systems of non-linear equations could improve the
efficiency of the integrator.

After studying the energy conservation performance of the various methods, this
analysis focuses now on the propagations of selected asteroid trajectories to evaluate
errors over position and velocity following close approaches with planets. The results
are compared when the different ephemeris models presented in 2.4.2 are used. All the
integration methods analysed before were chosen to be applied to these test cases but
RKN8, since it has been observed as the least accurate in most cases as inferred from
Fig. 2.4. Tables 2.2, 2.3, and 2.4 report the timespan and the parameters used to set
the propagations of Apophis, 2010 RF12, and 2007 UD6, respectively, while the various
figures visualise the results according to different parameters, to show the evolution of
the orbit computed according to the various methods, and to compare their accuracy on
a numerical level.

The results of the 50 years long propagation of asteroid Apophis are shown in Fig-
ures 2.5 and 2.6: in the first, they are represented in terms of the distance of Apophis
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Figure 2.4: Plots showing the efficiency and the accuracy of the methods in terms of average
computational time per step (x axis) and maximum error (y axis): (a) maximum energy er-
ror, (b) maximum position error, (c) maximum velocity error for fixed-step propagations; (d)
maximum energy error, (e) maximum position error, (f) maximum velocity error for propa-
gations with step regularisation.

Table 2.2: Parameters for the propagation of the asteroid 99942 Apophis.

Propagation start epoch 1989/01
Propagation end epoch 2039/01
Expected fly-bys with the Earth 2029/01
Integration tolerance (absolute) 10−12

Integration tolerance (relative) 10−12

Integrators RK78, GLRK8, SY8
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Chapter 2. Numerical integration methods for n-body propagation

from Earth using the Horizons ephemerides in (a) and the recomputed ephemerides in
(b); in the second, they are shown in terms of errors on the position (a) and velocity (b)
during the propagation with respect to the Horizons ephemerides, and errors on the po-
sition (c) and velocity (d) during the propagation with respect to the recomputed model.
It is clearly visible in all the plots that the greatest differences among the propagations
arise after the fly-by of Apophis with Earth in 2029: while the propagations are all in
agreement with each other up to that epoch, the very close approach with the Earth, as
expected, increases the error differently for all the propagators, magnifying the small
differences initially present before the event.

Figure 2.5: Distance of Apophis from the Earth during the propagation according to different
integration methods, using Horizons ephemerides (a), using the recomputed ephemerides
(b).

In Figures 2.7 and 2.8, instead, it is possible to observe the results of the propa-
gations of asteroid 2010 RF12 for 100 years: similarly to what was observed in the
previous case, the early fly-by of 2010 increases the error over the state, which prop-
agates in time until it diverges from the expected trajectory in correspondence with
the second fly-by in similar ways for all the included integration methods. An analo-
gous solution is found with the propagation of asteroid 2007 UD6 also for 100 years,
which shows in Figures 2.9 and 2.10 an agreement among all the integration methods
until the 2048 fly-by with Earth occurs. However, it is clearly visible that, while the
Runge-Kutta schemes RK78 and GLRK8 (blue and red lines in all plots, respectively)
are usually in good agreement with each other and the reference data (black lines), the
canonical symplectic integrator SY8 (yellow lines) performs generally worse, probably
due to the different way it is defined. For this reason, this numerical scheme was not
considered for the statistical analyses in Sections 2.4.4 and 2.4.5.

It is worth noticing the differences that all test cases show in the propagations using
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Figure 2.6: Errors in Apophis position (a) and velocity (b) during the propagation with respect
to the Horizons ephemerides, and errors in Apophis position (c) and velocity (d) during the
propagation with respect to the recomputed model.

Table 2.3: Parameters for the propagation of the asteroid 2010 RF12.

Propagation start epoch 2001/01
Propagation end epoch 2100/01
Expected fly-bys with Earth 2010/09, 2095/09
Integration tolerance (absolute) 10−12

Integration tolerance (relative) 10−12

Integrators RK78, GLRK8, SY8

35



i
i

“thesis” — 2020/1/22 — 20:49 — page 36 — #56 i
i

i
i

i
i

Chapter 2. Numerical integration methods for n-body propagation

Figure 2.7: Distance of asteroid 2010 RF12 from the Earth during the propagation using differ-
ent integration methods, using Horizons ephemerides (a), using the recomputed ephemerides
(b).

Table 2.4: Parameters for the propagation of the asteroid 2007 UD6.

Propagation start epoch 2001/01
Propagation end epoch 2100/01
Expected fly-bys with Earth 2007/10, 2048/01
Integration tolerance (absolute) 10−12

Integration tolerance (relative) 10−12

Integrators RK78, GLRK8, SY8
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Figure 2.8: Errors in asteroid 2010 RF12 position (a) and velocity (b) during the propagation
with respect to the Horizons ephemerides, and errors in position (c) and velocity (d) during
the propagation with respect to the recomputed model.
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Chapter 2. Numerical integration methods for n-body propagation

Figure 2.9: Distance of asteroid 2007 UD6 from the Earth during the propagation using differ-
ent integration methods, using Horizons ephemerides (a), using the recomputed ephemerides
(b).

the recomputed n-body ephemerides with respect to the ones obtained via the Horizons
system. These differences are visible as higher error values between the trajectories
of the asteroids after the propagation in the restricted n-body problem using the re-
computed planetary ephemerides, and the reference trajectories of the same asteroids
obtained via the integration of the complete n-body problem, and are related to the
different integration methods and tolerances that were used to obtain them and the in-
terpolation methods.

2.4.4 Statistical analyses

This section is dedicated to analysing the performance of the selected integration meth-
ods on a statistical level, to show how the differences found in their applications to
propagate single trajectories are reduced when considering thousands of them in MC
simulations. In this section and in the next, the analysis focuses on two of the three
integrators considered so far, that is RK78 and GLRK8, as previous tests showed they
outperformed the SY8 method in terms of accuracy with both Horizons and recomputed
ephemeris models.

The statistical analysis employs the same MC approach already available in SNAPP-
shot, by singularly propagating several initial conditions, using the parameters reported
in Tables 2.7 and 2.8 for the propagations. The cases of the asteroids Apophis and 2010
RF12 were analysed to compare the performance of the RK78 and GLRK8 methods. In
both cases initial conditions were expressed in equinoctial parameters [92], with initial
uncertainties in the form of diagonal covariance matrices, and then transformed into
Cartesian coordinates for the propagation. These data were obtained by accessing the
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Figure 2.10: Errors in asteroid 2007 UD6 position (a) and velocity (b) during the propagation
with respect to the Horizons ephemerides, and errors in position (c) and velocity (d) during
the propagation with respect to the recomputed model.
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Chapter 2. Numerical integration methods for n-body propagation

Near-Earth Object Dynamic Site (NEODyS5) in July 2018.

Table 2.5: Parameters of the statistical analysis for the asteroid 99942 Apophis.

Dispersion of initial conditions Yes (covariance matrix)
Dispersion of Area-to-Mass ratio No (fixed value 0.0 m2/kg)
Number of MC runs 106

Propagation length 33.3 years
Integrators RK78, GLRK8
Ephemerids JPL Horizons (SPICE toolkit)

Table 2.6: Parameters of the statistical analysis for the asteroid 2010 RF12.

Dispersion of initial conditions Yes (covariance matrix)
Dispersion of Area-to-Mass ratio No (fixed value 0.0 m2/kg)
Number of MC runs 104

Propagation length 80.7 years
Integrators RK78, GLRK8
Ephemerids JPL Horizons (SPICE toolkit)

Figures 2.11 and 2.12 show the results of the MC analyses of Apophis and 2010
RF12 in terms of initial uncertainty dispersion over the semimajor axis a and the equinoc-
tial longitude l. In each plot, the grey dots represent the random initial conditions not
leading to an impact, while the coloured dots represent impacts: in the case of aster-
oid Apophis, the impacting solutions refer to three different events, in 2035, 2036, and
2037 (blue, purple, and red, respectively), while for asteroid 2010 RF12 only the impact
event in 2095 is considered.

Both figures show that the two integration methods give results that do not differ
relevantly between each other in both test cases, identifying the same impact regions
within the initial uncertainty distributions. The numerical results are reported in Tables
2.7 and 2.8 in terms of number of impacts, impact probability and associated standard
deviation, together with the total computational time6 as measure of the efficiency of
the numerical schemes. From both tables one can see that extremely similar values of
the impact probability can be obtained with the two methods, despite showing diverse
behaviours on the propagation of a single trajectory, which thus become not relevant
on statistical levels. One can also see that the implicit GLRK8 method needs a longer
computational time with respect to the explicit method, due to the iterations that have
to be performed in order to solve the implicit system of equation that characterises the
method. In the implementation used for this work, the implicit problem was solved
using a fixed-point solver with a stopping condition based on the relative error between
two iterations, and a tolerance equal to 10−15, with the intention to focus mainly on the

5https://newton.spacedys.com/neodys/
6The simulations were run on a machine with a processor Intel(R) Xeon(R) CPU E5-4620 v4 @ 2.10 GHz.
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Figure 2.11: Visualisation of the initial dispersion in the uncertainty space (δa, δl) for the
statistical analysis of asteroid Apophis with RK78 (a) and GLRK8 (b), with grey dots cor-
responding to the random initial conditions that do not lead to an impact and colored dots
leading to impacts with Earth during the resonant close approaches in 2035 (blue), 2036
(purple), 2037 (red).

Figure 2.12: Visualisation of the initial dispersion in the uncertainty space (δa, δl) for the
statistical analysis of asteroid 2010 RF12 with RK78 (a) and GLRK8 (b), with grey dots
corresponding to the random initial conditions that do not lead to an impact and red dots
leading to impacts with Earth during the close approaches in 2095.
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Chapter 2. Numerical integration methods for n-body propagation

accuracy of the integration method than on the computational efficiency.

Table 2.7: Results and performance of the statistical analysis of the asteroid Apophis.

RK78 GLRK8
Number of impacts 100 (Earth) 99 (Earth)
Impact probability P (I) 1.00 · 10−4 9.90 · 10−5

Standard deviation σ 9.99 · 10−6 9.95 · 10−6

Computational time 92.8 h 280.5 h

Table 2.8: Results and performance of the statistical analysis of the asteroid 2010 RF12.

RK78 GLRK8
Number of impacts 687 (Earth) 688 (Earth)
Impact probability P (I) 6.87 · 10−2 6.88 · 10−2

Standard deviation σ 2.50 · 10−3 2.50 · 10−3

Computational time 0.85 h 2.42 h

2.4.5 Planetary protection analyses

In this Section another statistical analysis is performed, this time with the goal of
analysing planetary protection requirements for two interplanetary missions. The launcher
upper stages of the Solar Orbiter and the Bepi Colombo missions were chosen as test
cases to compare the results of the planetary protection analysis with the ones already
presented for the characterisation of SNAPPshot [5,56,57]. The analyses were done in
both cases using the functionalities of SNAPPshot: preliminary estimation of required
MC runs according to an expected impact probability level and a required confidence
level (as already introduced earlier in the chapter), and post-processing with the b-plane
analysis to identify orbital resonances and other situations of interest [5, 56, 57]. The
comparisons between the integration methods includes again RK78 (already available
in SNAPPshot [5]) and GLRK8 (newly implemented in this work).

As a reference, the definition of the b-plane is presented. It is based on an analytical
theory that attempts to set up a first model for orbital resonances, initially developed
based on Opik’s variables [93].

When a CA is detected (as a crossing of the SOI or using other criteria, such as the
one that will be introduced in Section 2.5), the b-plane is defined as the plane perpen-
dicular to the object incoming planetocentric velocity. A reference system [η̂, ξ̂, ζ̂] is
defined [93] such that: η̂ is parallel to the planetocentric velocity of the object, ζ̂ is par-
allel to the projection of the body velocity on the b-plane, but with opposite direction;
ξ̂ completes a right-handed reference system.

The definition of these coordinates allows to obtain an insight on the characteristics
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of the close approach, and to easily represent conditions of orbital resonance as circle
represented on the b-plane [94, 95].

Tables 2.14 and 2.13 report the parameters that were used for the analyses of the
Solar Orbiter and the Bepi Colombo launcher upper stages, respectively, similarly to
what was done in the case of the asteroids. In both cases, the initial epoch, states and
the covariance matrices representing the dispersion of initial conditions were also taken
from [5, 56, 57], and are reported in Tables 3.1 and 2.12.

Table 2.9: Parameters of the planetary protection analysis for the launcher upper stage of the
Solar Orbiter mission.

Dispersion of initial conditions Yes (covariance matrix)
Dispersion of Area-to-Mass ratio No (fixed value 0.0 m2/kg)
Probability and confidence levels 10−4, 0.99
Number of MC runs 54114
Propagation length 100 years
Integrators RK78, GLRK8
Ephemerids ESA routines with de422

Table 2.10: Parameters of the planetary protection analysis for the launcher upper stage of the
Bepi Colombo mission.

Dispersion of initial conditions Yes (covariance matrix)
Dispersion of Area-to-Mass ratio No (fixed value 0.0 m2/kg)
Probability and confidence levels 10−4, 0.99
Number of MC runs 54114
Propagation length 100 years
Integrators RK78, GLRK8
Ephemerids ESA routines with de422

For these two cases, similar considerations to the ones already made for the asteroids
Apophis and 2010 RF12 can be made, both in terms of numerical results and compu-
tational performances7. Figures 2.13 and 2.14 show the results of the MC analysis in
terms of initial velocity dispersion in both cases, highlighting how the two selected in-
tegration methods can identify correctly and with no relevant differences between each
other the regions of initial conditions leading to a simple close approach with either
Venus or the Earth (dark grey dots), a resonant orbit with such planets (yellow dots),
or an impact (red dots). Tables 2.14 and 2.13 report the number of impacts and impact
probabilities for each case, which, again, are not significantly different between the two
methods.

7The simulations were run on a machine with a processor Intel(R) Xeon(R) CPU E5-4620 v4 @ 2.10 GHz.
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Table 2.11: Initial conditions for the simulations of the state inaccuracy of the launcher upper
stage of Solar Orbiter: epoch, position, velocity, and the associated covariance matrix are
reported, defined in the inertial EME2000 reference frame centres in the Sun.

Epoch, MJD2000 r, km, v, km/s (EME2000 centred in the Sun)

6868.6194
132048839.01817, 63140185.879734, 27571915.378760
-12.199001757542, 20.240166264928, 9.767449779832

Covariance matrix (EME2000)
x, km y, km z, km vx, km/s vy, km/s vz , km/s

5.351·104 5.409·104 -2.562·104 2.482·10−1 2.744·10−1 -1.205·10−1

5.409·104 1.355·105 4.508·103 2.337·10−1 7.100·10−1 3.427·10−2

-2.562·104 4.508·103 1.728·105 -1.370·10−1 5.015·10−2 8.333·10−1

2.482·10−1 2.337·10−1 -1.370·10−1 1.156·10−6 1.179·10−6 -6.485·10−7

2.744·10−1 7.100·10−1 5.015·10−2 1.179·10−6 3.724·10−6 3.078·10−7

-1.205·10−1 3.427·10−2 8.333·10−1 -6.485·10−7 3.078·10−7 4.019·10−6

Table 2.12: Initial conditions for the simulations of the state inaccuracy of the launcher upper
stage of Bepi Colombo: epoch, position, velocity, and the associated covariance matrix are
reported, defined in the inertial EME2000 reference frame centres in the Sun.

Epoch, MJD2000 r, km, v, km/s (EME2000 centred in the Sun)

6693.7946
-119442379.96300, -84380070.357924, -38117397.479734
16.055193000000, -18.773061902425, -9.4656005258014

Covariance matrix (EME2000)
x, km y, km z, km vx, km/s vy, km/s vz , km/s
4.198 1.395 -5.582·10−2 3.352 4.652 -2.032·10−1

1.395 1.687 1.087·10−1 1.234 3.250 -4.346·10−2

-5.582·10−2 1.087·10−1 3.787 -5.172·10−2 -5.355·10−2 2.051
3.352 1.234 -5.172·10−2 2.759 3.872 -1.647·10−1

4.652 3.250 -5.355·10−2 3.872 7.574 -2.697·10−1

-2.032·10−1 -4.346·10−2 2.051 -1.647·10−1 -2.697·10−1 1.428

Table 2.13: Results and performance of the planetary protection analysis of the launcher upper
stage of the Bepi Colombo mission.

RK78 GLRK8
Number of impacts 2 (Venus), 5 (Earth) 2 (Venus), 4 (Earth)
Impact probability P (I) 1.29 · 10−4 1.11 · 10−4

Standard deviation σ 4.89 · 10−5 4.53 · 10−5

Computational time 5.9 h 35.1 h
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Figure 2.13: Velocity dispersion (in the radial, ∆vr, and transversal, ∆vθ directions) and
trajectory characterisation for the MC analysis on the launcher upper stage of the Solar
Orbiter mission, showing the initial conditions leading to a close approach (dark grey), a
resonance (yellow) or an impact (red) with Venus or the Earth. In (a) RK78 is used, in (b)
GLRK8 is used instead.

Figure 2.14: Velocity dispersion (in the radial, ∆vr, and transversal, ∆vθ directions) and
trajectory characterisation for the MC analysis on the launcher upper stage of the Bepi
Colombo mission, showing the initial conditions leading to a close approach (dark grey), a
resonance (yellow) or an impact (red) with Venus or the Earth. In (a) RK78 is used, in (b)
GLRK8 is used instead.

45



i
i

“thesis” — 2020/1/22 — 20:49 — page 46 — #66 i
i

i
i

i
i

Chapter 2. Numerical integration methods for n-body propagation

Table 2.14: Results and performance of the planetary protection analysis of the launcher upper
stage of the Solar Orbiter mission.

RK78 GLRK8
Number of impacts 2347 (Venus), 1 (Earth) 2348 (Venus), 1 (Earth)
Impact probability P (I) 4.34 · 10−2 4.34 · 10−2

Standard deviation σ 8.76 · 10−4 8.76 · 10−4

Computational time 6.5 h 81.5 h

To draw a conclusion based on the results of the analyses that were performed to
compare the different integration method of 8th order, the implicit GLRK is the one
that showed the best performance in all conditions: the method was able to guarantee
a better conservation of the value of the Hamiltonian function during the propagation,
not only when the distance from the planets was large, but also when close encounters
occurred. This is also shown from the analysis of the position and velocity errors in the
various cases. For this reasons, further work to improve its use and implementation is
recommended.

2.5 Numerical identification of fly-bys

Symplectic methods can achieve conservation of the total energy (as value of the Hamil-
tonian function) over long integration times. This is true in those cases when the dy-
namics is non-chaotic or chaotic with long-range interactions during the propagation.
However, close approaches with planets, especially very close fly-bys, represent condi-
tions when the non-linearity of the dynamics drastically increases the numerical error
on the solution. This is visible as a steep growth of position and velocity errors from the
reference values, and of the total energy from the initial value. This generally affects
any numerical fixed- or variable-step method, whether symplectic or not.

This kind of problem has been addressed before by many authors, who devised
different approaches to overcome or bypass the numerical effects of the fly-bys, by
applying ad-hoc numerical techniques only during a close approach (e.g. switching the
primary body of the propagation from the main body to the approaching planet [96], or
applying the projection technique in order to impose the conservation of energy [89]).

Any devised solution, however, requires a correct identification of the close ap-
proach or fly-by conditions to counteract the increase of numerical errors in an effective
way, following criteria that should be evaluated automatically during the integration.
Again, there exist various possible solutions to accomplish this task (e.g. setting a limit
distance from the approaching planet). In this work, another approach is proposed,
which considers the behaviour of the dynamics as an automatic criterion to define a
close approach during the propagation: here the Jacobian of the equations of motion
is used to monitor the evolution of its eigenvalues before and during the encounter
with a celestial body, using an approximation similar to the one introduced by Debatin
et al. [79]. The advantage of using this approach is the independence from arbitrary
choices such as choosing the planet’s sphere of influence as distance to define the start
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or end of the close approach.
Given the equations of motion ẋ = f(x, t), let x = (r,v)T be the state vector,

containing position and velocity, and f(x, t) be equal to (v, v̇)T . Then the Jacobian
matrix is given by

J =
df

dx
=

[
0 I

G 0

]
(2.27)

where x = (r,v)T is the state vector, containing position and velocity vectors, I is the
identity matrix and G results from the derivation of the gravitational terms defined in
Eq. 2.1:

G =
∂v̇

∂x
=

n∑
j=0

Gj =
n∑
j=0

µj
‖dj‖5

(
‖dj‖2I− 3djd

T
j

)
(2.28)

where dj = r− rj(t) and rj(t) = {xj, yj, zj}T represents the position of the j-th planet
as given by the ephemerides and Gj is its contribution to the matrix G, with the index
j = 0 indicating the body of the system with the largest gravitational influence (e.g. the
Sun in the case of an interplanetary trajectory).

The set of eigenvalues λλλ of the Jacobian matrix defined in Eq. 2.27 is given by the
roots of the characteristic polynomial, written using the properties of the determinant
of a square block matrix [97]:

det(J− λI) = det(λ2I−GI) = det(λ2I−G) = det(λ2I−G) = 0 (2.29)

In this case, as an approximation, only the contributions to the Jacobian given by each
planet alone are considered, using the decomposition of G introduced in Eq. 2.28:

det(λ2jI−Gj) = 0, j = 0, ..., n (2.30)

with λλλj being the set of eigenvalues given by the contribution of j-th planet. Indicating
with Λj the eigenvalue with the maximum absolute value of such set, the simplified
expression proposed by Debatin et al. [79] is used to estimate Λj as

Λj =
2µj

‖r− rj(t)‖3
, j = 0, ..., n (2.31)

With this criterion for the detection of close approaches, not only the single eigen-
values are considered, but also their derivative in time:

Λ̇j =
∂Λj

∂t
=

∣∣∣∣−2µj
3(r− rj(t)) · (v − vj(t))

‖r− rj(t)‖5

∣∣∣∣ (2.32)

The value of the eigenvalue contributions given by the single planets are compared
with the one given by the main body, and the same is done for their derivatives. A fly-
by event is identified when one or both ratios defined in Eq. 2.33 grows beyond given
thresholds ε1 and ε2:

Λj

Λ0

=
µj
µ0

‖r− r0(t)‖3

‖r− rj(t)‖3
≥ ε1

Λ̇j

Λ̇0

=
µj
µ0

∣∣∣∣ (r− rj(t)) · (v − vj(t))

(r− r0(t)) · (v − v0(t))

∣∣∣∣ ‖r− r0(t)‖5

‖r− rj(t)‖5
≥ ε2

(2.33)
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where the j index indicates a celestial body and the index 0 indicates the main body
of the system, which is exerting the largest gravitational influence on the body being
propagated. The two ratios represent two different quantities: the first one compares
the gravitational attractions of the approached body with the one of the central body
of the system, thus considering only their relative distance, similarly to the definition
of the SOI; the second one, on the other hand, compares not only the gravitational
influences of the two bodies, but also their relative velocities with the propagated body,
projected onto the relative directions. This allows to define the close approach taking
into account the actual dynamics of the encounter, instead of simply setting a relative
distance or relative velocity threshold.

For the application of this method, one or both expressions (ratio of the values and
ratio of the derivatives of the eigenvalues) can be used, separately or together.

An example of the application of this method can be seen in Figure 2.15, which
shows the case of two close approaches between the launcher upper stage of the Solar
Orbiter spacecraft and Venus. In both cases the variations of the eigenvalues and of
their derivatives ( are compared with the crossing of the sphere of influence (SOI) and
Hill’s sphere [98] of Venus, to show the differences between the two criteria.

Figure 2.15 shows the variation in time of the eigenvalues relative to Venus and
the Sun and their associated derivative (respectively lower left and right) during the
propagation of the nominal trajectory of the launcher upper stage of Solar Orbiter, with
the distance between the two bodies as a reference (upper plot). In both cases, the
comparison is done on the 100 years propagation (top), with a focus on the 1st close
approach with Venus during the first year of the mission (centre), and on a second close
approach 80 years later (bottom). In both graphs, different information is reported: the
red and green areas represent, respectively, the crossing of the SOI and the Hill sphere
of Venus; the vertical dashed lines indicate the epochs where the ratios defined in Eq.
2.33 are both equal to 1.0 (only one value is used for both ratios for simplicity).

The plots show that both close approaches can be successfully identified using the
definitions defined previously. In particular, a threshold value of 1.0 for the ratios in
2.33 correctly identifies the not only the first CA (where an actual crossing of the SOI
occurs), but also the second one, which happens at a larger distance from Venus, with
no SOI crossing. This is possible due to the information about the relative velocity
between the propagated body and the planet contained in the derivative in Eq. 2.32.

Note also that tolerances equal to 1.0 allow to determine initial and final epochs for
the close approach in a broader sense than the ones defined by the SOI and Hill sphere
crossings, particularly for the derivative ratio, meaning that a lower value can be also
used in the case of interplanetary trajectories. On the other hand, a larger tolerance can
be used to detect close approaches with great advance, or detect conditions which may
affect the quality of the numerical integration even without a close fly-by.

Figure 2.16 shows the the results of the propagation of the trajectory of the Juice
spacecraft around Jupiter in terms of distance from the Galilean moons (a), variation of
eigenvalues (b), and variation of the derivatives for the eigenvalues (c). The propaga-
tion was carried out using the initial conditions and integrator setup reported in Table
2.15. From it is possible to observe that the Juice spacecraft encounters multiple times
the moons Europa, Ganymede, and Callisto, performing several fly-bys and close ap-
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2.5. Numerical identification of fly-bys

Figure 2.15: Upper plot: distance of the Solar Orbiter launcher upper stage from Venus during
the propagation. Lower plots: variation in time of the eigenvalues corresponding to the
single contribution of the Sun and Venus during the propagation of the nominal trajectory
of Solar Orbiter’s launcher upper stage, with values (left) and derivatives (right) of the
eigenvalues, compared with the crossing of SOI (red area) and Hill sphere (green area) of
Venus. The vertical dashed lines refer to the epochs where the ratio between the eigenvalues
of Venus and the Sun is equal to 1.0.
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Chapter 2. Numerical integration methods for n-body propagation

Figure 2.16: (a) Distance of Juice from the Jovian moons Europa (blue), Ganymede (red),
and Callisto (yellow) during the propagation. (b) Variation in time of the eigenvalues corre-
sponding to the single contribution of Jupiter (purple) and the moons during the propagation
of the trajectory of Juice. (c) Variation in time of the eigenvalue derivatives corresponding
to the single contribution of Jupiter (purple) and the moons during the propagation of the
trajectory of Juice.
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2.6. Summary

proaches during the 20 years of the propagation shown in the Figure. In the top plot,
the continuous and the dashed horizontal lines represent the SOI and the Hill sphere
radius for each moon, respectively. By comparing those values with the distances from
the moons, it is possible to notice how in many cases the spacecraft just skims a SOI or
Hill sphere, thus coming close to a moon but without performing a full close fly-by.

Table 2.15: Initial conditions and integrator setup for the propagation of the trajectory of the
JUICE spacecraft.

Initial epoch, MJD2000 11915.28114
Initial position, km 1.10613·106, 1.33233·105 8.75564·104

Initial velocity, km/s levels -2.2709, 10.08696, 5.07097
Reference frame EME2000 centred at Jupiter
Area-to-mass ratio, m2/kg 0.01
Reflection coefficient, adim. 1.0
Propagation length 50 years
Integrator RK78
Absolute and relative tolerances 10−12

Ephemerides JPL Horizons (SPICE toolkit)

Due to the high number of encounters with the moons, no close-up picture of the
single close approaches is reported, but details of two one-year long intervals are shown
in Figures 2.17 and 2.18. From the observation of these plots, it is clear that the eigen-
value criteria are able to identify also those situations where the spacecraft does not
enter the SOI or Hill sphere of a moon. In such cases, both the eigenvalue contributions
(value and associated derivative) given by the encountered moon have values that are
significantly higher or at least comparable to the contributions given by Jupiter.

2.6 Summary

In this chapter a comparison of various numerical integration methods was presented
with the goal of showing how the accumulation of approximation errors during a single
propagation affect the whole planetary protection analysis.

A first selection of high-order methods was proposed based on the different proper-
ties characterising them (e.g. the conservation of integrals of the motion in case of sym-
plectic methods, or the adaptability of the time step in case of embedded schemes), in-
cluding: standard Runge-Kutta methods (RK), Runge-Kutta methods based on Gauss-
Legendre quadrature (GLRK), Runge-Kutta-Nystrom methods (RKN), and the sym-
plectic Yoshida method (SY). This selection was then narrowed down to the most accu-
rate schemes among the proposed ones via the study of their numerical accuracy in the
context of planetary protection analyses of interplanetary missions, as well as of single
propagations of asteroid trajectories: the latter were considered due to their resonant
close passages to the Earth’s orbit and to the availability of the SPICE ephemerides
computed by the JPL to be used as a reference.

The results of the tests pointed out that the use of symplectic integration can be
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Chapter 2. Numerical integration methods for n-body propagation

Figure 2.17: Details of the plots in Figure 2.16 showing how the trajectory is subject to close
approaches according to the proposed definition even if no crossing of the SOI (continuous
lines) and of the Hill spheres (dashed horizontal lines) occur.
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2.6. Summary

Figure 2.18: Details of the plots in Figure 2.16showing how the trajectory is subject to close
approaches according to the proposed definition even if no crossing of the SOI (continuous
lines) and of the Hill spheres (dashed horizontal lines) occur.
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Chapter 2. Numerical integration methods for n-body propagation

beneficial to the propagation, even when this is carried out in a n-body environment:
when the distance between the small body being propagated and any planet is large, the
symplectic formulation can keep the total energy of the system in bounded oscillation
without a secular drift (which is present in case of non-symplectic methods), with a
higher accuracy. The application to statistical analysis, finally, showed that the MC
simulation is not affected by the selection of the integration method, thus allowing the
application methods which were proved more accurate for single propagations method
without suffering a loss of accuracy on a statistical level.

The tests also pointed out that numerical issues arise during close approaches and
fly-bys, with steep rises in the energy and state errors, in a comparable way for sym-
plectic and non-symplectic methods. The application of different techniques during
these events can help in facing the higher non-linearity of the dynamics. For this rea-
son, a criterion for identifying the conditions of fly-by during the propagation was
devised, in order to recognise autonomously the conditions that trigger numerical error.
This criterion uses the eigenvalues of the Jacobian matrix of the equations of motion
to approximate the behaviour of the dynamics, and recognise when its non-linearity
increases due to a close approach with a planet. The tests presented in this chapter
showed that this method is more effective in recognising a close approach even when
there is no clear crossing of the sphere of influence, thanks to a more general definition
taking into account the relative velocity between the propagated object and the celestial
body.
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CHAPTER3
Uncertainty sampling techniques and application

to planetary protection

3.1 Introduction

Planetary protection policies require to verify that the probability of contaminating a
celestial body due to non-scheduled impacts from mission-related objects is below a
given threshold for any interplanetary mission. The maximum acceptable impact prob-
ability and the confidence level associated with it depend on the class of mission under
examination [2], spanning from 10−3 up to 50-100 years after launch for a generic Mars
mission, to 10−6 for sample return missions or missions to the Jovian moons, with a
minimum confidence level of 99%.

Since the probability levels to be verified are generally low, the analysis can require
a large number of orbital propagations with standard Monte Carlo simulations, resulting
in high computational cost and time: the number of simulations required to estimate the
probability, indeed, increases as the expected probability decreases and the confidence
level to be guaranteed increases. For this reason, more efficient sampling methods were
studied to increase the precision of the probability estimate, or reduce the amount of
simulations, and thus the computational cost. The doctoral research focused on the
Line Sampling method, which was chosen as alternative to standard Monte Carlo for
application to planetary protection analysis after various comparisons with this and
other methods, as it will be shown in section 3.4.4.

The Line Sampling (LS) method is a Monte Carlo-based approach for the estima-
tion of small probabilities. It was originally developed for the reliability analysis of
failure in complex structural systems [80, 99], and later applied to risk estimation for
orbital conjunction analysis in combination with DA [53]. In this work, the method
was adapted and applied to the estimation of impact probability of small objects with
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protection

major celestial bodies, mainly for the verification of planetary protection requirements
for exploration missions, but including also Near Earth Asteroids [59, 100].

The main feature of the Line Sampling method is the analytical estimation of the
probability, obtained by reducing the multi-dimensional integration problem across the
uncertainty domain to many one-dimensional integrals along lines following a reference
direction that are used to sample the initial distribution; this direction is determined
so that it points toward an impact region of the domain (that is, a subset of initial
conditions that will lead to an impact with a celestial body), and, if this is properly
chosen, the method can considerably increase the accuracy of the solution or reduce the
number of required system simulations with respect to a standard MC. Other advanced
sampling methods were also considered, such as Subset Simulation (SS) [80,101–103],
which computes the impact probability as the product of larger conditional probability
by progressively identifying intermediate conditional levels moving toward the impact
event, reducing the overall number of samples that need to be evaluated. A comparison
between SS and LS is presented in Section 3.4.4 as part of a work in collaboration
with the Ph.D. Candidate Matteo Losacco, who developed and implemented the SS
algorithm. This comparison serves to justify the choice of LS over SS due to its higher
accuracy in estimating the small probabilities characterising the planetary protection
problem.

Novelties

This chapter presents, in the first part, the LS algorithm and the theory behind it, study-
ing the formulation that is given in the literature. This theoretical formulation was
expanded further in order to better characterise the behaviour of the method according
to the cases under analysis.

Later, a series of algorithms based on LS are introduced with the aim of creating a
numerical procedure capable of analysing complex cases:

• an algorithm used to improve a first guess for the reference sampling direction to
get it closer to an ideal case, thus increasing the accuracy of the analysis;

• an algorithm to identify time windows where impact regions could be found by
analysing the close approaches that are recorded during a preliminary sampling;

• an iterative procedure to explore all possible impact regions and sample them
if possible, with the goal of obtaining a wider overview of the distribution of
impact regions within the initial uncertainty distribution, and estimating impact
probability with higher accuracy and efficiency.

Two test cases regarding planetary protection analysis of interplanetary missions
are provided with their results, as examples to demonstrate the performances of the
presented techniques singularly or in the context of the overall procedure: the launcher
upper stage of the Solar Orbiter mission, and orbiter of the Mars Sample Return mis-
sion. An additional test case represented by asteroid 99942 Apophis is reported to show
the comparison between the LS and SS methods, and their performance with respect to
standard MC.
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3.2 Theory of Line Sampling for uncertainty sampling

3.2.1 The Line Sampling algorithm

The LS method is a Monte Carlo-based approach with the objective of estimating small
probabilities (probabilities of failure that are generally in the range of 10−7 − 10−6

[80, 99]). It consists of four steps: 1) the mapping of random samples from the phys-
ical coordinate space into a normalised standard space; 2) the determination of the
reference direction α; 3) the probing of the impact region along the lines following the
reference direction; 4) the estimation of the impact probability. A summary of each step
is provided hereafter, along with an introduction to the choices made for the numerical
implementation of the LS technique.

Mapping onto the standard normal space

The first step of the LS procedure is the definition of this transformation: all the random
vectors x ∈ Rn of physical coordinates (position and velocity) that are drawn from the
nominal uncertainty distribution in the following phases need to be mapped onto a
normalised coordinate space.

Each x vector is mapped to a new parameter vector θ ∈ Rn whose components
θj, j = 1, ..., n are all associated with a unit Gaussian distribution, each with a proba-
bility density function (pdf) φj defined as:

φj(θj) =
1√
2π

exp

(
−
θ2j
2

)
, j = 1, ..., n (3.1)

The components of the vector θ have the property of being independent and identically
distributed (iid) random variables, meaning that each has the same probability distribu-
tion as the others and all are mutually independent [80]. As a consequence, the joint
pdf φ of these random parameters is equal to the product of all the single pdfs:

φ(θ) =
n∏
j=1

φj(θj) (3.2)

Thanks to this property, this transformation grants efficiency to the method, especially
for problems with high dimensionality: it reduces the problem to a series of one-
dimensional analytical evaluations, thus enabling a simplification of the computation
of the probability later in the procedure.

The direct and the inverse transformations, from the physical domain to the nor-
malised one and vice versa, preserve the joint Cumulative Distribution Function (CDF)
between the two coordinate spaces, and are defined as:

Φ(θ) = F (x) (3.3)

θ = Φ−1[F (x)] (3.4)

x = F−1[Φ(θ)] (3.5)

with Φ and F being the CDF of the unit Gaussian distribution and the input uncertainty
distribution of the problem, respectively.
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Following the definition of the pdf φ, the joint CDF Φ is

Φ(θ) =

∫ θ

−∞
φ(u)du =

n∏
j=1

Φj(θj)

with Φj(θj) =
1

2

[
1 + erf

(
θj√

2

)]
, j = 1, ..., n

(3.6)

where erf(x) = 2√
π

∫ x
0

exp (−u2)du is the error function.
The Rosenblatt transformation [104] is applied in this work, since, for Gaussian-

distributed uncertainty parameters (as in the cases under study), both the direct and
the inverse transformations (respectively Equations 3.4 and 3.5) become linear [80,
104]. The transformation is reported in Appendix B, along with other similar mappings
between physical and standard normal coordinates that were implemented for this work.

Determination of the reference sampling direction

The reference sampling direction α can be determined in different ways. Zio et al.
[80, 81] show interpretations of α as the direction of a "design point" in the standard
normal space, or of a normalized gradient of a performance function in the standard
normal space, or of the normalized "center of mass" of the domain of interest. In this
work, the latter solution is adopted, using the impact region as the domain of interest.

This region is approximated by applying the Metropolis-Hastings algorithm [105,
106] to generate a Markov Chain Monte Carlo (MCMC) lying entirely in the impact
subdomain starting from an initial condition within it. MCMC simulation is a method
for generating samples conditional on a region satisfying a given condition, according
to any given probability distribution described by the pdf p(x).

The starting condition of the MCMC can also be found in different ways (e.g. nu-
merical minimisation of the distance to the planet, or prior knowledge). In this work, the
initial point is determined via a preliminary sampling, as will be described in Section
3.3. It is important to notice that the specific method used to determine the sampling
direction is not a core phase of the LS method, thus representing one of the degrees of
freedom in the implementation of the whole procedure.

After the impact region has been populated withNS samples, the reference direction
α is computed in the standard normal space as

α =
1

NS

NS∑
u=0

θu

||θu||
(3.7)

where θu, u = 1, ..., NS are the points of the MCMC found inside the impact region,
after being converted from the physical space into the standard normal space. The sim-
ulations performed for the Markov chain require additional computational effort with
respect to standard MC methods. Nevertheless, this option provides a good coverage
of the impact region and a resulting better accuracy of the final probability estimate.

Metropolis-Hastings algorithm for MCMC The algorithm to generate a sequence of
NS samples from a given sample x1 is briefly explained [101]:
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1. from the current element xu, ξ is generated by randomly sampling a user-defined
"proposal" pdf p∗(xu);

2. compute the ratio r = p(ξ)/p(xu);

3. set x̃ = ξ with probability min(1, r) and set x̃ = xu with the remaining probabil-
ity 1−min(1, r), where x̃ is the candidate for the next element of the chain;

4. check whether the candidate x̃ lies in the region of interest I or not: if x̃ ∈ I ,
accept it as the next sample xu+1 = x̃; else, reject it and take the current sample
as the next sample xu+1 = xu.

In this work, the "proposal" pdf p ∗ (xu) is determined by scaling the nominal pdf
(which represents the initial uncertainty distribution) with a factor f < 1 to draw values
as close to the impact region as possible. On the other hand, possible criteria for the
choice of the number NS of elements of the chain are discussed in Section 3.3.2.

Line sampling

After determining the reference sampling direction, NT initial conditions xk, k =
1, ..., NT are randomly drawn from the nominal uncertainty distribution and then mapped
to standard normal coordinates as θk using the transformation in Eq. 3.4. For each sam-
ple in the standard normal space, a line starting from θk, k = 1, ..., NT and parallel to
α is defined according to the parameter ck, such that

θk = ckα+ θk⊥ (3.8)

θk⊥ = θk − 〈α,θk〉α (3.9)

where 〈α,θk〉 is the scalar product between α and θk. In this way, the problem is
reduced to a series of one-dimensional evaluations associated with each sample, with
ck normally distributed in the standard space.

The standard domain is then explored along each line with the aim of identifying
the impact region of an uncertainty set. For the problem under study, the occurrence of
the events is expressed by the value of the non-dimensional performance function

gθ (θ(c)) = Y (c)/Rimp − 1 (3.10)

where Y is a function that maps the value of the parameter c (corresponding to an initial
condition x0) to a performance index, and Rimp is the selected critical distance. In this
work, Y is the minimum distance from the celestial body of interest (e.g. the Earth)
in the given time window, while Rimp represents the radius around the planet that is
selected to define an impact (not necessarily equal to the planet radius). According to
this definition, it follows that

gθ(θ(c))


< 0→ Impact

= 0→ Limit condition

> 0→ No impact

(3.11)
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The limit condition gθ(θ(c)) = 0 is given by a trajectory reaching a minimum distance
from the planet equal to the impact radiusRimp (the trajectory can be seen as "brushing"
against the surface of the planet, while it enters its surface in the case of an impact).

The performance function is evaluated iteratively along each line θk = ckα + θk⊥
to identify the values of ck corresponding to its intersections with the impact region,
as displayed in Fig. 3.1. Due to the nature of the problem under analysis (that is, a
single close approach event within a given time interval), the hypothesis if made that
a maximum of two intersections between each line and the impact region are found,
meaning that two values of ck exist for each standard normal random sample θk, k =
1, ..., NT where the performance function is equal to zero: gθ(ck1) = 0 and gθ(ck2) = 0.
These two values represent states leading to the limit condition, while the values of ck

in between represent states leading to impacts: gθ(ck) = 0,∀ ck1 < ck < ck2. The main
hypothesis is valid when the impact region extends across the uncertainty domain and
can be approximated as a flat or slightly curved surface. On the contrary, if the impact
region is limited in size, the line being sampled may not intersect the impact region and
no root ck is found. Finally, if the impact region has a twisted shape or disconnected
shape due to many close approaches, more than two intersections (or none) with each
line may be found.

Figure 3.1: Scheme of the iterative sampling procedure used to sample each line in the stan-
dard normal coordinate space. The impact region is labelled with F, with a single border
highlighted as a red line.

Iterative algorithm An iterative process is used to identify the intersections (ck1, c
k
2),

thus requiring extra propagations for each random sample θk, k = 1, ..., NT with
respect a standard MC simulation. The method adopted here makes use of repeated
interpolations of the performance function gθ(ck) in order to obtain approximations of
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3.2. Theory of Line Sampling for uncertainty sampling

the roots (ck1, c
k
2) that get closer to the actual boundaries of the impact region at each

iteration. In this algorithm, gθ(ck) is supposed to have a parabola-like shape.
The procedure for a single line θk = ckα + θk⊥ is described as follows, and it is

shown in Fig. 3.2:

1. values c1,c2, and c3, corresponding to three points on the line, are selected based
on the information about the impact region gained via the MCMC;

2. the corresponding initial states x1,x2, and x3 are obtained and propagated, eval-
uating the performance function at each point along the line as gθ(c1),gθ(c2), and
gθ(c3);

3. a parabolic interpolation is performed over the three points and the associated
values of gθ(c) as g(ci) = a(ci)

2 + b(ci) + c, i = 1, 2, 3, obtaining a linear system
of three equations to be solved with the coefficient a, b, and c of the parabola as
unknowns;

4. the roots (if any) of the interpolating parabola are searched:

• if ∆ = b2 − 4ac ≥ 0, the two new roots exist, and they are computed as the
solutions c4 and c5 of the quadratic equation with coefficients a, b, and c;

• else, the minimum of the interpolating parabola is computed as c4 = −b/2a
(this choice is made to obtain a new point useful for the next interpolation
even in case no roots are found);

5. the performance function is evaluated at the new point(s) obtaining gθ(c4) (and
gθ(c5));

6. out of the current four (or five) points, the three ones with the lowest value of the
performance function are selected to repeat the interpolation;

7. the procedure is repeated from point 1 until a stopping condition is met.

The iterative process is stopped when one of three conditions is reached:

• a given maximum number of iterations is reached;

• a given maximum number of propagations is reached;

• the relative difference between the new guess of the roots (if any) and the previous
one falls below a given tolerance (meaning that the guesses stop changing so much
at each iterations):

max(|cnew4 − c4/|c4|, |cnew5 − c5|/|c5|) ≥ ε

• the value of the performance function evaluated at the new guess of the roots is
below a given tolerance (meaning that the guesses are close enough to the zeros):

max(|gθ(cnew4 )|, |gθ(cnew5 )|) ≥ δ
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At the end of the process, the last valid guess of (c4, c5) is selected as estimates of
(ck1, c

k
2) to represent the intersections between the sampling line and the boundaries of

the impact region. When no solution is found (whether because there are no zeros or
because the algorithm was stopped before finding a guess), it is considered that the line
does not intersect the impact region, and its contribution to the total impact probability
will be counted as null.

Figure 3.2: Scheme representing two consecutive iterations of the algorithm designed to search
for the roots of the performance function gθ(ck) along a single sampling line. The blue curve
represents the actual trend of gθ(ck), the green dots represent the points used to compute the
interpolating parabola (represented as a black dotted line), while the cyan dots represent
the guesses used to skip to the next step, either the minimum of the parabola (as in the first
step on the left) or two zeroes (as in the second step on the right).

The choice of this approach over other root-finding algorithms is due to the hypoth-
esis that more than one intersection can be found along each line: this implies that the
performance function is not monotone along the sampling line, thus showing points
where the derivative is null, and has multiple roots. This condition doesn’t allow the
use of numerical methods such as Newton’s and fixed-point. Moreover, the derivative
of gθ(ck) for Newton’s method would either be approximated numerically, using two
propagations (e.g. in a forward scheme), or obtained via the integration of the varia-
tional equations (which requires the propagation of the state transition matrix), with an
excessive increase in complexity and computational cost. Finally, the need to compute
both roots at the same time with numerical efficiency, since each function evaluation
requires an orbital propagation.

Estimation of the impact probability

Once the values (ck1, c
k
2), k = 1, ..., NT are known for all the sampling lines, the unit

Gaussian CDF provides each random initial condition θk, k = 1, ..., NT with the con-
ditional impact probability P̂ k(I). Thanks to the properties of the normalised coor-
dinate space, each P̂ k(I) can be computed as a one-dimensional integrals along the
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3.2. Theory of Line Sampling for uncertainty sampling

corresponding line:

P̂ k(I) = P̂ [ck1 < N(0, 1) < ck2]

=

∫ ck2

ck1

φ(u)du = Φ(ck2)− Φ(ck1), k = 1, ..., NT

(3.12)

If no intersections between a sampling line and the impact region were found, the value
of the probability integral is equal to 0, and the associated conditional impact probabil-
ity has a null contribution to the total probability.

The total probability of the event P̂ (I) (which is identified with a planetary collision
in the approach presented in this work) and the associated variance σ̂2(P̂ (I)) are then
approximated as follows:

P̂ (I) =
1

NT

NT∑
j=1

P̂ k(I) (3.13)

σ̂2(P̂ (I)) =
1

NT (NT − 1)

NT∑
j=1

(P̂ k(I)− P̂ (I))2 (3.14)

The total probability is estimated as the average of the conditional probabilities com-
puted along each line (including those not intersecting the impact region as having a
null partial probability). The variance is computed as the variance of all the conditional
probabilities.

The number NT of sampling lines should be chosen to guarantee a desired level of
accuracy, according to the equations given above. Possible criteria to guide this choice
are discussed in Section 3.3.2.

Equations 3.13 and 3.28 are presented here for a single impact region, but they can
be easily generalised to the multi-impact case, which will be covered in Section 3.3. In
such a case, the overall probability is computed as the average of the probabilities of
each impact event weighted on the corresponding number of sampling lines.

As an example, consider a case where two non-overlapping impact regions I1 and
I2 are found in the initial uncertainty domain. They are sampled separately using N1

and N2 lines obtaining the probability estimates P̂ (I1) and P̂ (I2), respectively:

P̂ (I1) =
1

N1

N1∑
k=1

P̂ k(I1)

N1P̂ (I1) =

N1∑
k=1

P̂ k(I1)

P̂ (I2) =
1

N2

N2∑
k=1

P̂ k(I2)

N2P̂ (I2) =

N2∑
k=1

P̂ k(I2)

Given the properties of the standard normal coordinate space introduced in Section
3.2.1, the conditional impact probabilities P̂ k(I1) and P̂ k(I2) obtained by evaluating
the integrals in Eq. 3.12 can be summed together:

N1+N2∑
k=1

P̂ k(I1 ∪ I2) =

N1∑
k=1

P̂ k(I1) +

N2∑
k=1

P̂ k(I2)

= N1P̂ (I1) +N2P̂ (I2)
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This allows to compute the total impact probability of the two events P̂ (I1 ∪ I2) as the
average of all the conditional impact probabilities, similarly to the single impact case:

P̂ (I1 ∪ I2) =
N1P̂ (I1) +N2P̂ (I2)

N1 +N2

(3.15)

The expression of the variance σ̂2(P̂ (I1 ∪ I2)) is obtained in a similar way.
This can be easily generalised for any number of impact regions.

3.2.2 Theoretical formulation of the LS method

The aim of this section is to give an introduction of the theoretical formulation of the
LS method. In particular, it provides the analytical demonstration that LS has higher
accuracy than standard MC. This treatise follows the explanation and the notation pre-
sented by Zio in [81], but is necessary in order to introduce the work presented in the
next section.

In section 3.2.3, the theory presented here will be expanded, in order to characterise
further the performance of LS with respect to standard MC. In particular, an approx-
imated formula will be developed, showing how the accuracy of LS is related to the
choice of the reference sampling direction and to the shape of the impact region being
sampled.

As a short premise, the definitions of some relevant quantities will be given in order
to exploit them to introduce the theoretical development of the LS method.

Let X ∈ Rd be a random variable whose distribution is described by the multidi-
mensional probability density function (pdf) qX(x), and let F be the subdomain of the
variables x leading to an event of interest (which can be seen as the failure of a system
or, in this case, an impact with a celestial body). A performance function gX(x) is
defined such that gX(x) ≤ 0 if x ∈ F and gX(x) > 0 otherwise. Similarly, an indicator
functionIF (x) is defined such that IF (x) = 1 if x ∈ F and IF (x) = 0 otherwise.

The probability of the event F can be expressed as a multidimensional integral in
the form

P (F ) = P (x ∈ F ) =

∫
F

IF (x) qX(x) dx = E[IF (x)] (3.16)

where x = (x1, ..., xd)
T ∈ Rd is the vector of the uncertain variables of the system,

and E[·] is defined as the expected value operator. Eq. 3.16 shows that IF (x) is also a
random variable [81] and that P (F ) can be interpreted as the expected value of IF (x).

The variance σ2 of IF (x) is then defined as

σ2[IF (x)] =

∫
F

[IF (x)− P (F )]2 qX(x) dx

= E[I2F (x)]− E[IF (x)]2

= E[I2F (x)]− P (F )2

(3.17)

Since I2F (x) = IF (x) ∀x ∈ Rd due to IF (x) being defined as a binary function, it
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follows that

σ2[IF (x)] = E[I2F (x)]− E[IF (x)]2

= E[IF (x)]− E[IF (x)]2

= P (F )− P (F )2 = P (F ) (1− P (F ))

(3.18)

For the standard MC, an estimator P̂ (F ) of the probability P (F ) as expressed in
Eq. 3.16 is obtained by dividing the number of times that IF (xk) = 1, k = 1, ..., N by
the total number of samples drawn N :

P̂ (F ) =
1

N

N∑
k=1

IF (xk) (3.19)

If standard MC is interpreted as a Point Sampling method, in comparison with the LS,
IF (x) becomes the random variable that is sampled in order to estimate the probability
of event F .

In the application of LS, a coordinate transformation from the physical space to
the standard normal space TXθ : x → θ brings as advantages the normalisation of
the physical variables through the covariance matrix, and the possibility to express the
multidimensional pdf as a product of d unit Gaussian standard distributions φj(θj):

Φ(θ) =
d∏
j=1

φj(θj) (3.20)

With reference to Fig. 3.1, in the d-dimensional standard normal space, the subdomain
F is the subspace for which the samples θ = (θ1, ..., θd)

T satisfy a given property (e.g.
an impact with a planet or a system failure). With the assumption that θ1 points in the
direction of the sampling vector α (this can always be assured by a suitable rotation of
the coordinate axes), the subdomain F can be also expressed as

F = {θ ∈ Rd : θ1 ∈ F1(θ1, ..., θd)} (3.21)

with F1 ∈ Rd−1, in this way the region F corresponds to the values of θ such that the
performance function gθ(θ) satisfies the relation gθ(θ) = gθ,−1(θ−1) − θ1 ≥ 0, where
θ−1 = (θ2, ..., θd)

T .
Considering this change of variables and the definition in Eq. 3.21, the integral in

Eq. 3.16 can be rewritten as

P (F ) =

∫
d

IF (θ)
d∏
j=1

φj(θj) dθ = E[IF (θ)] (3.22)
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and manipulated as follows:

P (F ) =

∫
d

IF (θ)
d∏
j=1

φj(θj) dθ

=

∫
d−1

...

∫ (∫
IF (θ−1) φ1(θ1) dθ1

) d∏
j=2

φj(θj) dθ−1

=

∫
d−1

...

∫
Φ(F1(θ−1))

d∏
j=2

φj(θj) dθ−1

= Eθ−1 [Φ(F1(θ−1))]

(3.23)

where Φ(A) =
∫
IA(x)φ(x)dx is the definition of the Gaussian measure of A, where

A is the subset of the random variables x which lead to a given result (e.g. an impact).
In case of the standard MC, Φ(F1(θ−1)) is a discrete random variable equal to

IF (θ); as a consequence:

Phi2(F1(θ−1)) = Φ(F1(θ−1)) ∀θ−1 ∈ Rd−1

On the contrary, for the LS method Φ(F1(θ−1)) is a continuous random variable where
F1(θ

k
−1) = −ck. This is clear from Fig. 3.1, where the sampling procedure is rep-

resented highlighting the boundary of the region corresponding to the event F . As a
consequence:

0 ≤ Φ(F1(θ−1)) ≤ 1 ∀θ−1 ∈ Rd−1

0 ≤ Φ2(F1(θ−1)) ≤ Φ(F1(θ−1)) ∀θ−1 ∈ Rd−1

The consequence of these properties is visible when considering the definition of
variance of an estimator for the two methods. An estimator P̂ (F ) of the probability
P (F ) as expressed in Eq. 3.23 can be computed as

P̂ (F ) =
1

NT

NT∑
k=1

Φ(F1(θ
k
−1)) (3.24)

where θk = 1, ..., NT are independent and identically distributed samples in the stan-
dard normal coordinate space. Given the generic definition of variance for P (F ) fol-
lowing Eq. 3.23 as

σ2(P (F ))

=

∫
[Φ(F1(θ−1))− P (F )]2 φ(θ−1) dθ−1

= Eθ−1 [Φ
2(F1(θ−1))]− E2

θ−1
[Φ(F1(θ−1))]

= Eθ−1 [Φ
2(F1(θ−1))]− P (F )2

(3.25)

the variance of the estimator P̂ (F ) is defined as

σ2(P̂ (F )) = σ2(P (F ))/NT = σ2[Φ(F1(θ−1))]/NT (3.26)
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meaning that the variance of the estimator directly depends on the variance of the ran-
dom variable Φ(F1(θ−1)):

σ2[Φ(F1(θ−1))]

= Eθ−1 [Φ
2(F1(θ−1))]− E2

θ−1
[Φ(F1(θ−1))]

(3.27)

Consequently, since 0 ≤ Φ(F1(θ−1)) ≤ 1 and 0 ≤ Φ2(F1(θ−1)) ≤ Φ(F1(θ−1)) are
always true ∀θ−1 ∈ Rd−1, the previous relation can be extended as follows:

σ2[Φ(F1(θ−1))]

= Eθ−1 [Φ
2(F1(θ−1))]− E2

θ−1
[Φ(F1(θ−1))]

≤ Eθ−1 [Φ(F1(θ−1))]− E2
θ−1

[Φ(F1(θ−1))]

= P (F ) (1− P (F )) = σ2[IF (θ)]

(3.28)

Since P (F ) (1− P (F )) is the definition of the variance of the standard MC as given in
Eq. 3.18, one can conclude from Eq. 3.28 that the variance obtained by the LS method
is always smaller than the one given by standard MC, or at least equal to it.

A coefficient of variation (c.o.v.) δ =

√
σ2(P̂ (F ))/P (F ) can be defined as a mea-

sure of the efficiency of the sampling method, with lower values of δ meaning a higher
efficiency of the method in converging to the exact value of the probability. Eq. 3.28
demonstrates that the c.o.v. of estimator in Eq. 3.26 as given by the LS method is
always smaller than the one given by the standard MC, implying that the convergence
rate of the LS is always faster than, or as fast as, that of the standard MC.

3.2.3 Extension of the theoretical formulation

As introduced in the previous section, here the theory behind the LS method is taken
further, to obtain more insight about it and about which parameters affect the the accu-
racy the method provides. The analytical formulas showing that the accuracy of the LS
is always equal or higher to the accuracy given by standard MC were manipulated as
part of the research work on LS. From this work, a formula based on approximations
was obtained, showing how the accuracy of LS depends from important parameters
such as the shape of the impact region and the determination of the sampling direction.
This formula will be demonstrated and discussed.

The analytical development presented here follows the notation used in the previous
section and taken from [81].

While in the case of the standard MC Eq. 3.28 is easy to treat, sinceEθ−1 [Φ
2(F1(θ−1))] =

Eθ−1 [Φ(F1(θ−1))], in the LS case Eθ−1 [Φ
2(F1(θ−1))] is a continuous variable, defined

through the integral

Eθ−1 [Φ
2(F1(θ−1))] =

∫
d−1

...

∫
Φ2(F1(θ−1))

d∏
j=2

φj(θj) dθ−1 (3.29)

which cannot be easily manipulated analytically due to the presence of Φ2(F1(θ−1)).
For this reason, it is chosen to express this term with an approximation.
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Figure 3.3: Scheme representing the approximations used to express the variance of the LS
method as a function of the probability estimate.

The definition of Φ(F1(θ−1)) given in Eq. 3.23 can be further expanded as

Φ(F1(θ−1)) =

∫ +∞

−∞
IF (θ−1) φ1(θ1) dθ1

=

∫ +∞

c(θ−1)

φ1(θ1) dθ1 = 1− Φ(c(θ−1)) = Φ(−c(θ−1))
(3.30)

with c(θ−1) defined as the border of the region F displayed in Fig. 3.1 and Fig. 3.3 as
a red line. c(θ−1) is then expanded as c(θ−1) = ĉ+ δc(θ−1), with the first term defined
as an "average" value of c(θ−1) (represented as a dashed blue line in Fig. 3.3) such that
P (F ) = Eθ−1 [Φ(F1(θ−1))] = Φ(F1(θ−1)) = Φ(ĉ), and the second term as a variation
with respect to this average value.

The hypothesis is made that δc(θ−1) represents a small variation with respect to the
average value ĉ, as in the case of a quasi rectilinear border of the region F orthogonal
to the sampling direction α. Under this hypothesis, the integral in Eq. 3.30 can be
rewritten as

Φ(F1(θ−1))

=

∫ +∞

c(θ−1)

φ1(θ1) dθ1 =

∫ +∞

ĉ+δc(θ−1)

φ1(θ1) dθ1

=

∫ +∞

ĉ

φ1(θ1) dθ1 −
∫ ĉ+δc(θ−1)

ĉ

φ1(θ1) dθ1

≈ Φ(ĉ)− φ(ĉ) δc(θ−1)

(3.31)
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resulting in

Eθ−1 [Φ
2(F1(θ−1))]

≈ Eθ−1 [(Φ(ĉ)− φ(ĉ) δc(θ−1))
2]

= Eθ−1 [Φ
2(ĉ)− 2Φ(ĉ) φ(ĉ) δc(θ−1) + φ2(ĉ) δc2(θ−1)]

= Eθ−1 [Φ
2(ĉ)]− Eθ−1 [2Φ(ĉ) φ(ĉ) δc(θ−1)] + Eθ−1 [φ

2(ĉ) δc2(θ−1)]

= P (F )2 − P (F ) · 2φ(ĉ) · Eθ−1 [δc(θ−1)] + φ2(ĉ) · Eθ−1 [δc
2(θ−1)]

(3.32)

Taking expression 3.32 into account, and defining in a compact way ∆c(θ−1) =
Eθ−1 [δc(θ−1)], the variance given by the LS in Equations 3.25 and 3.23 becomes

σ2(P (F )) = σ2[Φ(F1(θ−1))]

= Eθ−1 [Φ
2(F1(θ−1))]− P (F )2

≈ −P (F ) · 2φ(ĉ) ·∆c(θ−1) + φ2(ĉ) · Eθ−1 [δc
2(θ−1)]

≈ −P (F ) · 2φ(ĉ) ·∆c(θ−1)
≤ P (F ) (1− P (F )) = σ2[IF (θ)]

(3.33)

Highlighting the new terms in Eq. 3.33

σ2(Φ(F1(θ−1))) ≈ −P (F ) · 2φ(ĉ) ·∆c(θ−1)
≤ P (F ) (1− P (F )) = σ2[IF (θ)]

(3.34)

this means that a new estimation for the worst covariance given by the LS method (nom-
inally, from Eq. 3.28, equal to the one given by the standard MC) was obtained, which
takes into account the probability level through the term φ(ĉ), and the shape of the
region F and the direction of sampling through the term ∆c(θ−1). When the approxi-
mation of small δc(θ−1) is valid, meaning that the region F has a regular shape and is
distributed across the initial uncertainty and the sampling direction is chosen properly
so that it points toward it, and the probability level is low, the term φ2(ĉ)·Eθ−1 [δc

2(θ−1)]
is also small, and we can say that the variance given by the LS is below a value
f(P (F ),∆c(θ−1)) such that σ2(P (F ))LS ≤ f(P (F ),∆c(θ−1)) ≤ σ2(P (F ))MC , thus
increasing the convergence rate of LS with respect to standard MC. On the contrary,
when the approximation does not hold (that is in cases with high probability levels,
non-optimal sampling direction, or badly shaped impact regions), f(P (F ),∆c(θ−1))
grows toward the covariance level of the MC.

3.3 Extension to multi-event analysis

As will be presented in Section 3.4, LS can be more efficient (to reach the same ac-
curacy) than the standard MC in estimating the impact probability for a single event,
meaning for a close encounter with a specific body in a specific narrow time interval.
However, analysing multiple close approaches over an extended period using the same
sampling direction and the same number of samples can lead to less accurate results:
as the sampling direction is computed according to one impact region, it would be "less
optimal" for the other regions than any direction computed specifically for those cases.
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This, in turn, increases the variance of the probability estimates corresponding to those
impact regions, and thus reduce the accuracy of the final result.

For this reason, an algorithm to correct a first guess for the sampling direction based
on a preliminary analysis. This algorithm will be used in the multi event analysis to
ensure that each impact region is sampled according to an optimal direction.

3.3.1 Correction of the sampling direction

As pointed out in the development presented in section 3.2.3, the sampling direction is
one of the key parameters determining the accuracy and efficiency of the Line Sampling
method, where the ideal case is represented by the sampling direction being (almost)
orthogonal to the boundary of the impact region.

While it is generally impossible to determine an optimal sampling direction a pri-
ori, Zio et al. [81] suggest a strategy to identify it as the one minimising the variance
σ2(P̂ (F )NT

) of the probability estimator P̂ (F )NT
. This strategy consists in an opti-

misation search having the variance σ2(P̂ (F )NT
) as the objective function to be min-

imised, requiring the iterative evaluation of hundreds or thousands of possible solutions
αguess and 2NT or 3NT system model evaluations to be carried out to calculate the ob-
jective function σ2(P̂ (F )NT

) for each proposed solution. Therefore, the computational
effort associated to this technique could be prohibitive with a system model code re-
quiring hours or even minutes to run a single simulation.

The method that was implemented in SNAPPshot, instead, goes through a short pre-
processing phase used to correct an initial guess for the sampling directionαguess. This
guess solution is obtained from the initial Markov Chain already described in Section
3.2.1, and is then used in a short line sampling analysis over a low number of samples
to gain information about the general position and shape of the impact region; the
solutions given by this preliminary sampling are used to approximate the impact region
as a hyperplane according to a multilinear regression (assuming this approximation
is valid), thus using the norm vector orthogonal to the hyperplane as new sampling
direction.

The full algorithm represented in Fig. 3.4 follows the steps listed below:

1. The initial Markov Chain is performed and a guess for the sampling direction
αguess is found

2. A short Line Sampling is performed using a few initial samples (drawn from the
Markov Chain itself), obtaining the corresponding ck values at the boundary of
the impact region

3. The reference frame is rotated to an orthonormal base aligned with αguess (this in
order to define the hyperplane during the regression more easily)

4. The ck values are used to approximate the impact boundary of the impact region as
a hyperplane, according to a multilinear regression scheme as ck = b1 + b2θ

k,⊥
2 +

b3θ
k,⊥
3 + b4θ

k,⊥
4 + ... =

[
1 θk,⊥

]
· B, where B ∈ Rd is the vector collecting the

coefficients defining the d-dimensional hyperplane

5. The vector B orthogonal to the hyperplane is set as the new sampling direction
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6. The main line sampling procedure is performed following the "corrected" direc-
tion.

Figure 3.4: Scheme representing the algorithm for the correction of the sampling direction
using multilinear regression.

The efficiency of this scheme relies on two main hypotheses: first, as already stated,
that the impact region or its boundary can be approximated as a hyperplane; second,
that the "corrected" sampling direction is "more optimal" than the initial one due to it
being orthogonal to the boundary of the impact region, thus closer to the ideal case for
the Line Sampling.

The application of this technique and its comparison with the line sampling using
the standard procedure are shown in Section 3.4.

Definition of the orthonormal base

The orthonormal base used in the multilinear regression is generated according to the
Gram-Schmidt orthogonalisation process [107] starting from the guess sampling direc-
tion, in order to obtain a base that is aligned with αguess.

This algorithm constructs an orthonormal basis starting from a set of d linearly
independent vectors vi ∈ Rd, i = 1, ..., d as V = [v1 ... vd]. Since an initial set is
needed, it is set v1 = αguess in order to construct it starting from αguess only; the other
vectors v1, ...,vd of the initial set are generated as vi = (αi, ..., αd, α1, ..., αi−1), i =
1, ..., d in order to avoid singularities.

The orthogonalisation algorithm proceeds as follows:

1. u1 = v1 = αguess
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2. ui = vi −
∑

j≤i−1
〈uj ,vi〉
〈uj ,uj〉uj, i = 2, ..., d

3. yi = ui

‖ui‖ , i = 1, ..., d

The operation 〈u,v〉 denotes the inner or scalar product between two vectors u,v ∈ Rd,
with 〈u,v〉

〈u,u〉u being the projection of v onto u. In this way, Y = [y1...yd] is defined
as an orthonormal base, with y1 parallel to αguess, making it possible to express the
regression hyperplane in a more convenient way.

Algorithm for multilinear regression

Given a set of n dependent values yi, i = 1, ..., n and a set of n independent variables
xi = (xi1, ..., xid)

T ∈ Rd, i = 1, ..., n, the linear regression model assumes that there
exists a relationship f(xi) = yi∀i = 1, ..., n which can be modelled linearly as

yi = (b0 + b1xi1 + b2xi2 + ...+ bdxid + ε)i = [1 xTi ] ·B + ε, i = 1, ..., n (3.35)

with ε ∈ Rd being an error variable representing the random noise due to the approxi-
mation.

Defining the following quantities

y =

y1...
yn

 X =

1 xT1
...

...
1 xTn

 B =

b0...
bd

 ε =

ε1...
εn


the coefficients B are found by imposing the minimisation of the quadratic quantity∑

i

ε2i = εTε = (y −XB)T (y −XB) (3.36)

which gives as solution
B = (XTX)−1XTy (3.37)

The vector of coefficients B also contains the components of the defining vector orthog-
onal to the hyperplane. Thus, in the correction procedure described in Section 3.3.1,
the new sampling direction α is set parallel to the vector defined as (b1, ..., bd,−1)T in
order to point toward the hyperplane approximating the boundary of the impact region.

3.3.2 Multi-event analysis

In order to maintain a high level of accuracy throughout the analysis, a repetitive pro-
cess is presented, as schematised in Fig. 3.5. The proposed solution makes use of
repeated Line Sampling procedures based on different sampling directions: these di-
rections are identified according to close approach windows, that is the time intervals
where close approaches with planets occur, which can be visualised in the example
in Fig. 3.6, where each dot represents a fly-by (crossing of the sphere of influence)
plotted according to the epoch and the distance, while the thin rectangles represent the
time intervals used to look for impact regions; the colour identifies the order of sam-
pling, starting from the intervals with the lowest distance. For each of these windows,
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Figure 3.5: Block scheme representing the algorithm implemented in SNAPPshot to perform
the multi-event analysis with Line Sampling: the preliminary MC survey and identification
of the CA windows, the Markov chain generation, the determination and correction of the
sampling direction, and the estimation of the impact probability with line sampling.

a Markov Chain is started, so that a sampling direction can be determined in case an
impact region is present.

Particular attention should be given to the identification of the CA windows and
their sampling in search of the impact regions. The correct determination of all possi-
ble CA windows is essential for the application of LS, as it allows to eventually identify
all possible impact regions and explore them to provide an estimate of the impact prob-
ability as close to the real value as possible.

The full procedure, as it is described in the scheme in Fig. 3.5, follows the following
steps:

1. A preliminary MC is performed, using a low number of initial samples, and
every close approach occurring during the propagations (detected via the post-
processing tools available in SNAPPshot) is stored in memory: this initial phase
allows to obtain a first estimate of how many and where the impact regions might
be;

2. The data about the fly-bys is analysed and the close approach (CA) window are
identified and sorted according to the minimum distance (with priority given to
the the window leading to the closest CA): this allows to focus on the impact
regions corresponding to the most relevant impact events (if any);

3. A Markov Chain is started to search for an impact region inside the first close ap-
proach window: this allows to populate the impact region (if any) and determine
a first guess for the sampling direction;

4. At the end of the Markov Chain

(a) In case impacts were detected, A preliminary LS is performed using a first
guess for the sampling direction, which is then corrected using the algorithm
introduced in Section 3.3.1; this allows to obtain a new sampling direction
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Figure 3.6: Close approach window given by the preliminary MC analysis in the case of the
post-Earth return trajectory of the Mars Sample Return mission. Each fly-by (crossing of
the sphere of influence) is reported as a dot according to the epoch and the distance, and
different close approach windows are reported as thin rectangles; the colour identifies the
order of sampling, starting from the intervals with the lowest distance.

that is ideally closer to the optimal case for LS, which in turns allows to
improve its accuracy;

(b) A new set of random initial conditions is drawn from the distribution and a
complete LS is performed as described in the previous sections to identify
the impact region and compute the corresponding impact probability;

(c) In case no impacts were detected, the next CA window in the priority order
is selected, and the procedure goes back to point 4 to start a new Markov
chain;

5. After all CA windows have been analysed, the impact probability is given by the
weighted sum of all the partial impact probabilities, as it was shown in Eq. 3.15
in Section 3.2.1.

Despite being computationally more complex and less memory efficient (due to
the larger number of parameters involved and to the larger output size) than a single
LS analysis, this method can ideally offer a complete overview of the impact regions
inside the initial uncertainty distribution, providing additional information with respect
to a normal planetary protection analysis, thus being able to be used directly in mission
design.

Many parameters can affect the efficiency of this method in terms of number of
propagations (compared with the standard MC) and its reliability in identifying cor-
rectly the impact regions (if any). In particular, the number of samples of preliminary
Monte Carlo (determined by confidence level), the length of the Markov Chains, the
number of sampling lines, the tolerances used in the iterative process to determine the
intersections between each sampling line and the impact region were identified as key
parameters in these regards. For each of them, a trade off is required: while higher
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values would increase the accuracy of the determination of the impact regions and,
consequently, of the probability estimate, the impact on the computational load may
make the LS process less efficient than the standard MC; on the contrary, lower values
would reduce substantially the number of orbital propagations needed to identify and
sample the CA windows, but would not ensure the correct recognition of the impact
regions. They are briefly discussed in the following paragraphs.

The number of samples in the preliminary MC phase affects both the correct identi-
fication of the CA windows (and, in turn, of the impact regions) and the computational
load (since it requires extra propagations). In the test cases presented in Section 3.4, it
is determined using the functionalities of SNAPPshot [5], which exploit the expression
of the confidence interval by Wilson [51] to estimate in advance the number of MC
samples needed to obtain a given value of probability with a given confidence level.
Here this number is not directly used to compute a probability, but rather to obtain a
coverage of the uncertainty domain aiming at identifying the as many CA windows as
possible. Thus, the chosen values should depend on the value of the probability set by
the planetary protection requirement: a scaling of a few orders of magnitude is adopted
in this work, as a trade off between reliability and efficiency.

The length of the Markov chains used to explore each CA window is also a rele-
vant parameter for both the accuracy and the efficiency of the method, as it allows to
determine whether a CA window contains an impact region or not. While for large
impact regions shorter chains may be enough to identify impacts inside a CA window,
small impact regions may require longer chains, especially considering that more than
one Markov chain sampling is performed. Also in this case the value should take as a
reference the expected level of probability, or better the number of standard MC runs
that would be required to verify that value of probability: as a trade off, 102−103 chain
elements should be chosen depending on the case.

The number of sampling lines defines the accuracy of the probability estimate for
each impact region, and represents the largest contribution to the computational load,
having multiple orbital propagations for each sampling line. Also in this case, the initial
number is scaled of a few orders of magnitude with respect to the number of standard
MC runs that would be needed to satisfy the same planetary protection requirement.
The number so determined is then reduced or increased in case the desired accuracy is
reached with fewer sampling lines during the analysis, or more of them are required.

Lastly, the choice of the the tolerances used to stop the iterations along each sam-
pling line determines how accurately the boundaries of the impact region are identified,
which in turn affects how accurately the conditional impact probabilities are estimated
via the integrals in Eq. 3.12. This aspect is investigated in more detail in [100], where
the effect of the accuracy of the iterative process on the probability estimate is quanti-
fied in a sensitivity analysis. In the algorithm described in Section 3.2.1 the iterations
are stopped either by the residual value of the performance function or by the relative
error between consecutive iterations: in both cases the tolerance is set to 10−3, and a
cap of 10 propagations per line is set as a trade off.

Algorithm for merging close approach intervals

Given n intervals I i = [ti1, t
i
2] with ti1 < ti2 (corresponding, respectively, to the SOI

entry and exit epochs of each close approach in the preliminary analysis), algorithm to
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merge the close approach intervals proceeds as follow:

1. All intervals are sorted from earliest to latest starting epoch ti1 (SOI entry) and put
into a main stack

2. The interval on top of the main stack I1 = [t11, t
1
2] is compared with the following

one I2 = [t21, t
2
2]

(a) If t11 ≤ t22 AND t21 ≤ t12, the two intervals I1 and I2 overlap, and thus are
merged into a new I = [t11, t

2
2] which becomes the interval on top of the stack

I1

(b) Else, I1 is moved to an output stack and the comparison starts again from
the interval on top of the main stack

3. The comparisons are carried out until the main stack is empty

The maximum complexity of this algorithm is of order O(N logN) (e.g., as used
for sorting the minimum and maximum range values), with N being the number of
recorded CAs. However, since the procedure is applied only once, it does not increase
the computational load of the whole analysis in a relevant way.

3.4 Test case applications

The aim of this section is to apply the LS method and the algorithms developed to
improve its performance to the selected test cases of planetary protection analysis (the
launcher upper stages of the Solar Orbiter and of the Mars Sample Return missions).
The results obtained from the LS simulations will be compared with the standard MC,
in order to assess the performance of the proposed method in terms of accuracy and
efficiency.

3.4.1 Choice of the performance parameters

The comparison between the standard MC and the proposed approach based on LS is
performed by analysing the following parameters:

• the total number of orbital propagations Nprop;

• for the LS only, the total number of sampling lines Nlines;

• the impact probability estimate P̂ (I);

• the sample standard deviation σ̂ of P̂ (I);

The overall number of propagations NP is selected as a measure of the computational
burden of the methods, while the standard deviation σ̂ is instead used as indicator of
the accuracy of the result, with lower values corresponding to lower variability [53,80].

The total computational time is also reported and discussed among the results, how-
ever is not included the evaluations of the efficiency of the method due to the variability
intrinsic to the choice of the machine and its workload.
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3.4.2 Selection of test cases

Two test cases were selected to show how the proposed procedure works and its per-
formance in identifying impact regions shaped differently with different probability
levels:

1. The launcher upper stage of Solar Orbiter:

• the data refers to an old option for a launch in October 2018, later discarded
during the mission design (initial data in Table 3.1 taken from [5]);

• the analysis focuses on the trajectory of the launcher upper stage following
the injection into the interplanetary transfer orbit (aiming to a fly-by with
Venus) and the separation from the spacecraft;

• the planetary protection requirement applied in this case is the same used
to protect Mars for a generic mission, with a probability level of 10−4, as
reported in Table 1.1 in Chapter 1.

2. The Mars Sample Return mission:

• the analysis focuses on the return trajectory from Mars after performing an
Earth-avoidance manoeuvre;

• the uncertainty distribution is built assuming errors of 1 m on all position
components and 5 m/s on all velocity components within a 3σ confidence
level

• the planetary protection requirement applied in this case is the same used to
protect Earth for all sample return missions, with a probability level of 10−6,
as reported in Table 1.1 in Chapter 1.

For both cases, the initial state uncertainty is expressed as a 6x6 covariance matrix
over the state only, and all initial data (epochs, states and uncertainties) is reported,
and defined with respect to the EME2000 inertial reference frame. The propagations
are carried out in normalised units (with reference length and time equal to 1 AU and
1 solar year, respectively) using the adaptive Dormand-Prince Runge-Kutta scheme of
8th order (RK78), with absolute and relative tolerances both set to 10−12.

For all the cases, the stopping tolerance of the iterative process for the line sampling
is 10−3 with a maximum of 12 propagations per line. The dynamics equations of the
RNBP presented in section 2.2 of Chapter 2 are integrated using the RK78 method with
absolute and relative tolerances equal to 10−12.

3.4.3 Planetary protection analysis

Launcher upper stage of Solar Orbiter

Table 3.1 reports the initial state, associated covariance matrix, and reference epoch for
this mission case, which are the same ones reported in [5].

A preliminary MC simulation was performed to obtain information about the CA
windows for the multi-event analysis. The number of runs was determined using the
probability, confidence level, and maximum number of samples reported in Table 3.2:
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Table 3.1: Initial conditions for the simulations of the state inaccuracy of the launcher upper
stage of Solar Orbiter: epoch, position, velocity, and the associated covariance matrix are
reported, defined in the inertial EME2000 reference frame centred in the Sun.

Epoch, MJD2000 r, km, v, km/s (EME2000 centred in the Sun)

6868.6194
132048839.01817, 63140185.879734, 27571915.378760
-12.199001757542, 20.240166264928, 9.767449779832

Covariance matrix (EME2000)
x, km y, km z, km vx, km/s vy, km/s vz , km/s

5.351·104 5.409·104 -2.562·104 2.482·10−1 2.744·10−1 -1.205·10−1

5.409·104 1.355·105 4.508·103 2.337·10−1 7.100·10−1 3.427·10−2

-2.562·104 4.508·103 1.728·105 -1.370·10−1 5.015·10−2 8.333·10−1

2.482·10−1 2.337·10−1 -1.370·10−1 1.156·10−6 1.179·10−6 -6.485·10−7

2.744·10−1 7.100·10−1 5.015·10−2 1.179·10−6 3.724·10−6 3.078·10−7

-1.205·10−1 3.427·10−2 8.333·10−1 -6.485·10−7 3.078·10−7 4.019·10−6

Table 3.2: Input data and results of the preliminary MC for the multi-event analysis for the
Solar Orbiter mission.

Probability, CL 10−2, 0.99
# samples 1000
# recorded CAs 660
# CA windows 108
# impact regions found 1

that value was obtained by scaling the probability set by the planetary protection re-
quirement by two orders of magnitude. The table also shows the number of close ap-
proaches that were recorded and the number of CA windows that were identified via the
merging algorithm introduced in Section 3.3.2, while Fig. 3.7 shows their distribution
in time.

Fig. 3.7 shows the distribution in time of the CA windows found with the prelim-
inary MC analysis, indicating each encounter with a planet as a dot according to its
epoch and minimum distance from the encountered planet. The color scale indicates
the sampling priority that is given to each CA window, starting from the one with the
closest CAs. In particular, Fig. 3.8 shows a close-up of the CA window that was as-
signed the highest priority, which, in this case, is also the only CA window where an
impact region was found via the sampling with a Markov Chain. This was an expected
result, since, in this launch option, the upper stage injects the spacecraft into a trajectory
aiming for a direct gravity assist with Venus in the first year of the mission [108].

In the case of the launcher upper stage of Solar Orbiter, the LS was applied both
without and with the correction of the sampling direction. The solution without the
correction is shown in Fig. 3.9 and 3.10, while the one where the correction was applied
is shown in Fig. 3.11 and 3.12: in both cases, the figures show the ∆v distribution as
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3.4. Test case applications

Figure 3.7: Distribution in time of the close approach windows recorded during the preliminary
Monte Carlo sampling of the uncertainty for the Solar Orbiter mission: dots represent close
approaches reported with their minimum distance epoch and miss distance, while the thin
rectangles represent the time intervals used to look for impact regions; the colour identifies
the order of sampling, starting from the intervals with the lowest distance.

Figure 3.8: Detail of the CA window identified as the first impact region for the Solar Orbiter
mission.
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Figure 3.9: Results of the application of the LS method to the case of the post-Earth return
trajectory of the Solar Orbiter mission, without the correction of the sampling direction: (a)
the whole initial dispersion (grey dots), impact region found with MC (red) and boundary
found with LS (green); (b) the impact region in more detail.

Table 3.3: Results of the application of standard MC and LS (without correction and with cor-
rection of the sampling direction) for the case of the upper launcher stage of Solar Orbiter:
number of propagations, number of sampling lines used by the LS, probability estimate and
associated variance, and computational time.

Nprop Nlines P̂ (I) σ̂ CPU time (h)
MC 54114 - 4.34·10−2 8.75·10−4 0.80

LS (1st CA) 96164 10564 4.00·10−2 8.75·10−4 1.22
LS (1st CA),

9437 1330 4.02·10−2 8.75·10−4 0.16
α correction

grey dots and the impact region as red (solution of the standard MC simulation) and
green dots (boundary found via LS), and the convergence of the solutions given by
standard MC and LS, in terms of estimated value of the impact probability and its
associated standard deviation. Table 3.3 reports the numerical solutions in both cases,
comparing them with the solution given by the standard MC simulation.

The results reported in Table 3.3 show the benefit given by the application of LS over
standard MC, as the proposed method is able to reach the same variance of the proba-
bility estimate given by the standard MC using a much lower number of propagations
when the sampling direction is chosen properly: not only the number of sampling lines
is reduced by almost 8 times, but the number of necessary propagations is reduced as
well by almost 6 times. In fact, a "less optimal" choice of the sampling direction affects
not only the efficiency of the LS (with a higher number of sampling lines necessary
to obtain the same accuracy), but also the accuracy of the iterative process itself, as in
average 9 propagations per line are needed against the 7 propagations per line in case
the sampling direction is corrected to be "more optimal". In both cases, the number of

80



i
i

“thesis” — 2020/1/22 — 20:49 — page 81 — #101 i
i

i
i

i
i

3.4. Test case applications

Figure 3.10: Convergence of the solution given by LS compared with the convergence of stan-
dard MC in terms of impact probability in (a) and associated variance in (b) in the case of
the Solar Orbiter mission, without the correction of the sampling direction.

Figure 3.11: Results of the application of the LS method to the case of the post-Earth return
trajectory of the Solar Orbiter mission, after the correction of the sampling direction: (a)
the whole initial dispersion (grey dots), impact region found with MC (red) and boundary
found with LS (green); (b) the impact region in more detail.

81



i
i

“thesis” — 2020/1/22 — 20:49 — page 82 — #102 i
i

i
i

i
i

Chapter 3. Uncertainty sampling techniques and application to planetary
protection

Figure 3.12: Convergence of the solution given by LS compared with the convergence of stan-
dard MC in terms of impact probability in (a) and associated variance in (b) in the case of
the Solar Orbiter mission, after the correction of the sampling direction.

Table 3.4: Numerical performance of LS with correction of the sampling direction compared
to standard MC in the case of the launcher upper stage of Solar Orbiter.

# propagations CPU time (h)

LS

Preliminary MC 1000 0.02
Markov Chains 20800 0.35

LS phases 9437 0.16
Total 31237 0.53

MC Total 54114 0.80
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lines is initially determined based on the value of the probability set by the planetary
protection requirement, and it is then increased to reach the same accuracy given by the
standard MC in the non corrected case, or reduced when that accuracy is reached in the
corrected case.

The differences in the values of the estimated impact probability are due both to
the determination of the sampling direction, as already pointed out, and to the accuracy
of the iterative process used to identify the boundary of the impact region. This also
confirms the theoretical considerations made in Sections 3.2.2 and 3.2.3 about the im-
portance of a proper determination of the sampling direction for a good accuracy of the
LS solution.

It must be pointed out that the difference between the probability values estimated
by the two methods is due to LS identifying only the main impact region, as seen in
Fig. 3.9 and 3.11, and ignoring the isolated impacts found by standard MC. These
may belong to extremely thin impact regions, which may be captured by LS with dif-
ferent values of simulation parameters (e.g. number of preliminary MC runs, length
of Markov Chains), or may be outliers, which would require a different approach to be
sampled. However, since the impact probability associated with the main impact region
contributes the most to the overall estimation, the values computed via MC and LS do
not differ substantially.

Table 3.4, instead, shows the computational load given by the whole multi-event
procedure compared with the one given by the standard MC, for the analysis with the
correction of the sampling direction, highlighting the various phases of the LS-based
procedure, which is split into:

• preliminary MC, used to identify the CA windows;

• Markov Chains, one per CA window;

• LS phases, that is those phases where the impact regions found using the Markov
chains (if any) are sampled using lines.

In this case, a maximum limit of 200 samples per Markov chain was set following
the considerations made in Section 3.3.2. It is clear that the Markov Chains are the
most demanding phases with 66% of the total computational load of LS, since each CA
window is sampled to search for an impact region, while, as expected, the preliminary
MC phase does not increase significantly the computational time.

Mars Sample Return mission

Table 3.5 reports the initial state, associated covariance matrix, and reference epoch for
this mission case: the uncertainty was arbitrarily set to 1 m in position and 5 m/s in
velocity, uniformly over all the components.

A preliminary MC simulation was performed to obtain information about the CA
windows for the multi-event analysis. The number of runs was determined using the
probability, confidence level, and maximum number of samples reported in Table 3.6:
that value was obtained by scaling the probability set by the planetary protection re-
quirement by three orders of magnitude. The table also shows the number of close
approaches that were recorded and the number of CA windows that were identified,
while Fig. 3.13 shows their distribution in time.
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Table 3.5: Initial conditions for the simulations of the spacecraft state inaccuracy for the Mars
Sample Return mission: epoch, position, velocity, and the associated covariance matrix are
reported, defined in the inertial EME2000 reference frame centred in the Sun.

Epoch, MJD2000 r, km, v, km/s (EME2000 centred in the Sun)

11601.8193
145474529.75119, 33739755.347356, -532320.51350861
-9.2557070719419, 30.974849145494, -3.5619719210297

Covariance matrix (EME2000)
x, km y, km z, km vx, km/s vy, km/s vz , km/s

1.111·10−7 0.0 0.0 0.0 0.0 0.0
0.0 1.111·10−7 0.0 0.0 0.0 0.0
0.0 0.0 1.111·10−7 0.0 0.0 0.0
0.0 0.0 0.0 2.778·10−6 0.0 0.0
0.0 0.0 0.0 0.0 2.778·10−6 0.0
0.0 0.0 0.0 0.0 0.0 2.778·10−6

Table 3.6: Input data and results of the preliminary MC for the multi-event analysis for the
Mars Sample Return mission.

Probability, CL 10−4, 0.99
# samples 10000
# recorded CAs 8754
# CA windows 59
# impact regions found 1

Figure 3.13: Distribution in time of the close approach windows recorded during the prelim-
inary Monte Carlo sampling of the uncertainty for the Mars Sample Return mission: dots
represent close approaches reported with their minimum distance epoch and miss distance,
while the thin rectangles represent the time intervals used to look for impact regions; the
colour identifies the order of sampling, starting from the intervals with the lowest distance.
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Figure 3.14: Detail of the CA window identified as the first impact region for the Mars Sample
Return mission.

Table 3.7: Results of the application of standard MC and LS (with correction of the sampling
direction) for the case of the Mars Sample Return mission: number of propagations, number
of sampling lines used by the LS, probability estimate and associated variance, and compu-
tational time.

Nprop Nlines P̂ (I) σ̂ CPU time (h)
MC 106 - 4.70·10−5 6.85·10−4 31.22

LS (1st CA),
4879 729 3.98·10−5 8.60·10−9 0.15

α correction

Fig. 3.13 shows the distribution in time of the CA windows found with the prelimi-
nary MC analysis. In particular, Fig. 3.14 shows a close-up of the CA window that was
assigned the highest priority, which, in this case, is also the only CA window where
an impact region was found via the sampling with a Markov Chain, corresponding to
an encounter window with Earth after 23 years from the beginning of the propagation
period.

In the case of the Mars Sample Return mission, the LS was applied only with the
correction of the sampling direction. In Fig. 3.15 the solution is shown in terms of the
∆v distribution as grey dots and the impact region as red (solution of the standard MC
simulation) and green dots (boundary found via LS), while in Fig. 3.16 as the conver-
gence of the solutions given by standard MC and LS. Table 3.7 reports the numerical
solutions by LS comparing it with the solution given by the standard MC simulation.

Also in this case, the benefit of using LS is visible, as both the number of prop-
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Figure 3.15: Results of the application of the LS method to the case of the post-Earth return
trajectory of the Mars Sample Return mission: (a) the whole initial dispersion (grey dots),
impact region found with MC (red) and boundary found with LS (green); (b) the impact
region in more detail.

Figure 3.16: Convergence of the solution given by LS compared with the convergence of stan-
dard MC in terms of impact probability in (a) and associated variance in (b) in the case of
the Mars Sample Return mission.
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Table 3.8: Numerical performance of LS compared to standard MC in the case of the Mars
Sample Return mission.

# propagations CPU time

LS

Preliminary MC 10000 0.31
Markov Chains 59000 1.84

LS phases 4879 0.15
Total 73879 2.31

MC Total 106 31.22

agations and the variance of the probability are reduced by orders of magnitude with
respect to the standard MC in identifying the main impact region. In particular, this test
case is very close to the optimal case of the application of LS: not only the probability
value to be estimated is very low, but also the impact region has a planar shape extended
across the uncertainty distribution, and the sampling direction is almost orthogonal to
it thanks to the application of the correction algorithm (these observations follow the
ones already done in [109]).

Again, it must be pointed out that the difference between the probability values
estimated by the two methods is due to LS identifying only the main impact region,
as seen in Fig. 3.15, and ignoring the the isolated impacts found by standard MC.
These may belong to extremely thin impact regions, which may be captured by LS
with different values of simulation parameters ((e.g. number of preliminary MC runs,
length of Markov Chains), or may be outliers: in the first case, a proper choice of
those parameters (following criteria already discussed in Section 3.3.2) would allow a
correct identification with a limited increase in computational cost; in the second case,
a different approach would be required to sample them. Since the impact probability
associated with the main impact region contributes the most to the overall estimation,
the values computed via MC and LS do not differ substantially. However, in such
cases the LS approach might underestimate the value of the overall probability: thus,
performing more than one analysis would allow to account for the variable effect of the
different parameters involved in the algorithm.

Also in this case, the computational efficiency of the whole multi-event analysis
is compared with the standard MC simulation, through the data reported in Table 3.8,
highlighting the various phases of the LS-based procedure as defined in the previous
test case. In this case, a maximum limit of 1000 samples per Markov chain was set fol-
lowing the considerations made in Section 3.3.2. Again, the Markov Chains sampling
of each CA window is the most demanding phase, with almost 80% of the total com-
putational load of LS. However, both in this case and in the previous one, the complete
LS-based procedure reduces the computational time with respect to the MC analysis.

3.4.4 Comparison with Subset Simulation

The comparison between the LS and SS methods was done in collaboration with the
Ph.D. candidate Matteo Losacco: the dynamical model for the simulations was imple-
mented by the author of this thesis, along with the simulations using the LS, while the
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simulations using SS were run by Matteo Losacco. The results of this joint work are
reported in [59] and [100]. This section summarises the main considerations presented
in those articles.

Both techniques sample the initial uncertainty region in different ways, with the re-
sult of either providing a more accurate estimation of the impact probability or reducing
the number of samples required during the simulation with respect to standard MC tech-
niques. LS probes the impact region of the uncertainty domain by using lines instead
of points and estimates the impact probability as one-dimensional integrals along such
lines: these integrals are evaluated analytically (see Section 3.2.1), resulting in a more
accurate solution). Meanwhile, SS computes the impact probability as the product of
larger conditional probabilities, by progressively identifying intermediate conditional
levels moving towards the impact event: this reduces the overall number of samples
required for the estimation [101–103].

The performance of the two methods were compared against standard MC in differ-
ent test cases regarding single NEO impacts with Earth, one of which is reported here
to provide a brief overview of their efficiency. The case under exam is the fly-by of
asteroid 99942 Apophis with Earth in 2036, according to the initial conditions reported
in [100], with an expected impact probability of 3.00·10−5. Fig. 3.17 shows the initial
distribution in the uncertainty space (δa,δl) in equinoctial parameters (where a is the
semi-major axis of the orbit and l is the mean longitude [92]), highlighting the impact
regions found according to the three methods, while Table 3.9 report the results of the
numerical simulations in terms of number of orbital propagations NP , estimated im-
pact probability P̂ (I), and the associated standard deviation σ̂(P (I)). The results were
obtained in one case using a number of samples granting the same accuracy level of
standard MC (σMC), and in another case by performing the same number of propaga-
tions of the standard MC (NMC

P ).
The performance comparison in Table 3.9 confirms the benefits provided by both

LS and SS over the standard MC, as both outperform the standard method in terms of
both achieved accuracy and computational cost. More in detail, the same accuracy level
of the standard MC simulation can be obtained by both LS and SS with a number of
propagations that is one order of magnitude lower, or, alternatively, LS and SS achieve
a higher accuracy level with the same number of samples adopted for the standard
MC. This is true in particular for this case due to the very low probability value to be
estimated, as both LS and MS are more efficient for low probability levels [80, 81].

In addition, the relative performance of LS against SS can be assessed here: while
SS is very efficient in providing reliable impact probability results for relatively low
number of samples, LS definitely provides the most accurate results as the number of
initial samples (and thus of sampling lines) increases. This is the main reason behind
the focus on LS for the doctoral research, as planetary protection analysis requires the
verification of the impact probability values with generally strict confidence levels, thus
making the greater accuracy of LS more suitable for this kind of problem with respect
to SS.

Finally, further analysis in [100] has shown that the performance of each method can
suffer from particular choices of the parameters characterising their implementation,
either affecting the accuracy of the probability estimate or the computational load.
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3.4. Test case applications

Figure 3.17: Samples dispersion in the initial uncertainty space (δa,δl) for the case of aster-
oid 99942 Apophis: initial conditions leading to impact obtained via standard MC (top),
boundaries of the subdomain identified via LS (middle), samples per conditional level ob-
tained with SS (bottom).
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Chapter 3. Uncertainty sampling techniques and application to planetary
protection

Table 3.9: Performance comparison between standard MC, LS and SS when applied to the case
of asteroid 99942 Apophis.

NP P̂ (I) σ̂(P (I))

MC 106 3.00·10−5 5.48·10−6

LS (σMC) 2511 3.19·10−5 5.48·10−7

LS (NMC
P ) 106 3.10·10−5 2.56·10−8

SS (σMC) 6900 3.27·10−5 5.30·10−6

SS (NMC
P ) 1.01·106 3.25·10−5 4.58·10−7

3.5 Summary

This chapter focused on the improvement of the uncertainty sampling techniques cur-
rently used in planetary protection analysis. Under the premise of high computational
cost for estimating low impact probabilities using standard Monte Carlo simulation
methods, the Line Sampling method was presented as an alternative aimed to reduc-
ing the computational load of the statistical analysis by sampling the initial uncertainty
distribution in a more efficient way.

The performance of LS was analysed in comparison with standard MC both nu-
merically, by applying both methods to different mission cases, and analytically, by
developing an approximated formula which highlights how the accuracy of LS depends
on the geometry of the impact regions found within the initial uncertainty domain. The
results presented in the previous sections showed that LS is able to identify the im-
pact regions and to estimate the impact probability with a higher precision with respect
to the standard MC, reaching a lower variance of the solution for the same number
of orbital propagations, or a higher efficiency, using fewer propagations to reach the
same accuracy. The results also showed cases in which the application of the LS is not
favourable, as confirmed by the theoretical developments, thus providing a direction
for the future improvement of the method.

Moreover, while the early phases of the doctoral research focused on the use of LS
for single events, the method was later improved by extending it to cases where multiple
impacts with planets are possible over long periods of time, as the majority of cases in
planetary protection analysis fall in this category, by developing and implementing in
SNAPPshot a new algorithm making use of a correction of an initial guess for the
sampling direction with the aim of getting closer to the ideal case, and of repeated LS
phases to analyse multiple events.

Various aspects of this approach were discussed from the numerical and implemen-
tation point of view. In particular, several parameters were identified as having a rele-
vant influence on both the accuracy and the computational efficiency of the LS analysis,
involved in the various phases of of the procedure: the preliminary MC analysis used
to gather information about the possible impact regions; the building of the Markov
chains used to identify the possible impact regions; the sampling of the impact regions
using lines, and the estimation of the impact probability. A discussion about their ef-
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3.5. Summary

fects on the performance of LS and possible criteria to choose their values was made,
while some numerical values were shown when presenting the numerical application
of the proposed approach.
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CHAPTER4
Uncertainty propagation methods

4.1 Introduction and novelties

Accurate uncertainty propagation in orbital dynamics can be carried out in different
ways. The simplest method that is commonly adopted is Monte Carlo simulations,
which sample an uncertainty distribution (representative of the errors over the measure-
ment of the state of a spacecraft or debris at a given time) into several initial conditions,
then propagate them to study the evolution of the initial uncertainty or to estimate the
probability of an event via statistical processing [61]. Due to their great adaptability to
complex problems and simplicity to implement in simulation environments, MC-based
methods are particularly suited to be applied to orbital propagation, where the non-
linearity of the n-body dynamics hinder the long-term precision of other techniques
based on linearised or other simplified models. However, one major flaw of MC meth-
ods is the high number of orbital propagations that are required to provide adequate
accuracy.

As already introduced in Section 1.3.3 of Chapter 1, planetary protection analysis is
a phase of the design of a space mission aiming to verify that the probability of impacts
between spacecraft and launcher stages is below a given threshold. Since this kind of
analysis has a direct impact on the design of the mission, studying the evolution of the
initial uncertainty is desirable to obtain more information about the long-term effects it
has on the trajectory of the objects under study. Generally, the initial estimation of the
uncertainty over the state of these objects is obtained through measurements, analysis
of the flight telemetry (in case of a functioning spacecraft), and prior knowledge about
the design parameters (e.g. the area-to-mass ratio), but in can increase when other
factors are considered, such as errors in the execution of manoeuvres.

Given the nature of this problem, planetary protection analysis may have to con-
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Chapter 4. Uncertainty propagation methods

sider large uncertainties, especially in cases where random events occur or when flight
data from the spacecraft is not available. These uncertainties, when representing the
error over the knowledge of the orbital state, are often represented by a covariance
matrix. This makes techniques for covariance propagation, especially GMM, a more
suited choice with respect to other techniques, which may fail to correctly represent its
transformation during the propagation due to the non-linear orbital dynamics. For this
reason, techniques to split the uncertainty distribution in smaller ones to maintain the
accuracy during the propagation exist, and are applicable to GMM methods.

These methods are more commonly used for studying the motion of space debris,
and for conjunction analysis and collision risk assessment for Earth orbiting satellites
[69, 110]. On the contrary, this thesis applies the GMM to study the interplanetary
propagation of an uncertainty distribution described by a covariance matrix, and to
estimate the impact probability with celestial bodies for planetary protection analysis.
For this reason, GMM represents a novel approach to this field, whose challenges derive
from long term propagation in the n-body environment, with the possibility of close
approaches with celestial bodies strongly perturbing the trajectory.

In this chapter, GMM is proposed as a way to study the evolution of the covariance
matrix describing the state uncertainty of a spacecraft or launcher stage. In particular,
the adopted propagation technique makes use of the unscented transformation to prop-
agate each Gaussian component forward in time, and of techniques to split it further
adaptively to preserve the accuracy of the approximation. In the first part of the chapter,
the theory behind GMM and the splitting of Gaussian distributions will be presented,
along with the explanation of the propagation and adaptation techniques. An approach
to estimate the probability of impacts with celestial bodies during the propagation is
also shown. In the second part, the techniques will be applied to an example test case
for planetary protection, presenting the arising problems and the possible solutions.

4.2 Theory

As already introduced in Chapter 1, the evolution in time of an uncertainty distribu-
tion is described by a partial differential equation known as the Fokker-Plank Equation
(FPE) [60]. Given the pdf p(x, t) of a continuous random variable x ∈ Rn, the FPE has
the form

∂p(x, t)

∂t
=−

n∑
i=1

∂

∂xi
[f(x, t)p(x, t)]

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
{[g(x, t)Q(t)gT (x, t)]p(x, t)}

(4.1)

Equation 4.1 is applied to the stochastic dynamical system described as

ẋ = f(x, t) + g(x, t)η(t) (4.2)

where f(x, t) represents the equations of motion with initial conditions x(t0) = x0,
η(t) is a stochastic forcing term representing modelling errors modelled as a Gaus-
sian white noise with the specified correlation function Q(t) ∈ Rn×n, and g(x, t) is a
multiplicative function defining the coupling of the system to η(t).
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4.3. Gaussian Mixture Models

Since in the work presented in this thesis, uncertainties over the dynamical model
are not considered, the second part of the FPE disappear, thus simplifying the descrip-
tion of the time evolution of a pdf. Despite this, solving the FPE remains a difficult
task, due to the high dimensionality of the problem and the highly non-linear behaviour
of the perturbed orbital dynamics equations. For this reason, alternative methods to
solve the problem are adopted. In particular, in the applications presented here, the
uncertainty over the state of a spacecraft or launcher stage is represented through a co-
variance matrix, making the use of techniques based on a Gaussian description of the
problem, such as GMM, more suited to address the problems faced here.

For completeness, this section also presents the definitions of the mean and covari-
ance of a pdf. These quantities, together with the higher order moments (which are
not treated here) describe the shape of the pdf, respectively its average value and how
the distribution is spread around the mean. The two definitions for the pdf p(x, t) of a
continuous random variable x ∈ Rn are [61]

m(t) = E[x(t)] =

∫
xp(x, t)dx

P(t) = E[(x−m)(x−m)T ] =

∫
(x−m)(x−m)Tp(x, t)dx

(4.3)

respectively for the mean m and the covariance P, where E[·] represents the expected
value operator. The time derivatives are also reported:

ṁ(t) = E[ẋ(t)] = E[f(x, t)]

Ṗ(t) = E[ẋxT + xẋT ]− ṁmT + mṁT
(4.4)

4.3 Gaussian Mixture Models

The underlying concept of GMM is the approximation of a generic pdf with a weighted
sum of Gaussian pdfs [68]. Given a Gaussian random variable x ∈ Rn, with mean
m ∈ Rn and covariance matrix P ∈ Rn×n, the pdf is written as

N (x; m,P) =
1

det(2πP)

1/2

exp

{
−1

2
(x−m)TP−1(x−m)

}
(4.5)

where det(·) represents the matrix determinant.
A GMM representation of a generic pdf p(x) is given by

p(x) =
L∑
i=1

αiN (x; mi,Pi) (4.6)

whereL represents the number of Gaussian components, αi, mi, and Pi are the weights,
mean, and covariance associated with each component. The weights are computed to
be a convex combination (that is, a linear combination where all coefficients must be
non-negative and sum to 1) to preserve the properties of a pdf:

αi ≥ 0, i = 1, ..., L and
L∑
i=1

αi = 1 (4.7)
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Chapter 4. Uncertainty propagation methods

The GMM approximation converges to the original pdf as the number of Gaussian
components increases to infinity [111].

4.3.1 Splitting a Gaussian distribution

At the beginning of the propagation and during it, GMM components are split in or-
der to reduce the effects induced by the non-linear dynamics with the consequences
of making the Gaussian description of the uncertainty less accurate. Each component
is replaced by one or several smaller ones, according to a scheme that is subject to
constraints aiming to preserve the accuracy of the approximation and the properties of
the starting pdf. While the propagation of the mean and the covariance of the distri-
bution follows the rules presented in the next section, most algorithms focus on the
determination of the initial weights of the GMM components.

Different algorithms are already available in the literature to determine the initial
values of the weights used to split a distribution into a sum of weighted Gaussian com-
ponents. Vishwajeet and Singla proposed a method to obtain the weights, means, and
covariances of the splitting components based on the conservation of weight, mean,
and covariance, and by distributing them according to the sigma-points of the original
Gaussian distribution [112]. Horwood et al. proposed a splitting method by solving a
constrained L2 optimisation problem [113] to obtain the coefficients.

The method adopted here is the one presented by DeMars et al. [68] also based on
a constrained L2 optimisation problem. In this case, the GMM is constrained to be
homoscedastic, meaning that all the components have the same variance, in order to
reduce the complexity of the optimisation problem. The goal of the process is the min-
imisation of the distance between the original distribution p(x) and the approximating
one p̃(x), which is defined as in Eq. 4.6:

p̃(x) =
L∑
i=1

α̃iN (x; m̃i, σ̃
2
i ) (4.8)

where x ∈ R is a univariate random variable. The cost function to be optimised has the
form

J = L2 + λσ̃2,with
L∑
i=1

α̃i = 1 (4.9)

where λ is a weight for the minimisation of σ̃ and L2 is defined as

L2 =
1

2
‖p(x)− p̃(x)‖2 =

∫
S

[p(x)− p̃(x)]2dx (4.10)

The splitting is first applied to a univariate Gaussian distribution, then is extended to
multivariate ones using an eigenvalue decomposition: starting from a GMM component
with weight α, mean m, and covariance matrix P, the spectral factorisation of the
latter is given by P = VΛVT , where Λ = diag{λ1, ..., λn} is the diagonal matrix
of eigenvalues and V is the matrix whose columns are the eigenvectors of P. The
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4.3. Gaussian Mixture Models

Figure 4.1: Example of five-component split for a univariate (a) and a bivariate (b) distribu-
tion. The bivariate case shows the 1-σ ellipses of the original pdf in blue (with the arrows
indicating the principal axes) and of the GMM components in red, while the crosses repre-
sent the sigma-points of the distributions.

multivariate splitting is the defined as

αi = α̃iα

mi = m +
√
λkm̃ivk

Pi = VΛiV
T

(4.11)

where vk is the kth eigenvector of P, used as splitting direction, and

Λi = diag{λ1, ..., σ̃2λk, ..., λn}

is the eigenvalues set of the new ith GMM component. The process is applied iteratively
to split a GMM component along multiple eigenvectors. Choosing the eigenvector
associated with the largest eigenvalue as the splitting direction represents a splitting
along the direction with the highest uncertainty.

An alternative definition uses the square root matrix S of P defined by P = SST :
in this case the sigma points are not aligned with the principal axes of the covariance
matrix.

Several splitting libraries (collections of coefficients for the weight, mean, and co-
variance of each Gaussian component) based on this criterion are already available in
the literature, e.g. the ones provided by Vittaldev and Russel [69] or by DeMars et
al. [68], which were obtained by applying the procedure here described to the unit
Gaussian distribution N (x; 0, 1). Fig. 4.1 show the application of the five-component
splitting library from [68] to the unit Gaussian distribution, for a univariate (a) and a
bivariate (b) distribution, in which the 1-σ ellipses are plotted in blue for the original
pdf (with the arrows indicating the principal axes) and in red for the GMM components,
while the crosses represent the sigma-points of the distributions (as defined in the next
section).
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Chapter 4. Uncertainty propagation methods

4.3.2 Propagation via Unscented Transformation

The Unscented Transformation is an uncertainty propagation method which approx-
imates the evolution of a probability distribution in time by non-linearly integrating
forward a set of weighted samples derived from the sigma points of the distribution.
These points are deterministically chosen to capture the moments of the initial distribu-
tion, meaning that the set has the same mean and covariance of the original distribution.
Several definition of the sigma-point set exist in the available literature, depending on
the choice of the number of points and on the definition of the weights. In this work,
the symmetric set of 2n sigma points is used [62].

With the same notation used in [68], applying the spectral factorisation (or the
square root matrix) of the covariance matrix already defined in the previous section,
each sigma point χi,j of the ith GMM component is given by

χi,j = mi +
√
n
√
λjvj

χi,j+n = mi −
√
n
√
λjvj j = 1, ..., n

(4.12)

The corresponding weight associated with each sigma points is, in the case of the sym-
metric set, wi = 1/2n. As the sigma points are defined in order to have the same mean
and covariance of the initial distribution, it can be verified that

mi =
2n∑
j=1

wiχi,j

Pi =
2n∑
j=1

wi(χi,j −mi)(χi,j −mi)
T

(4.13)

At this point, the propagation of the GMM is carried out by numerically integrating
the dynamics forward in time each sigma point set for all Gaussian components. Start-
ing from time ts−1 with initial conditions χi,j(ts−1) = χi,j,s−1 and αi(ts−1) = αi,s, the
equations are written in the form

α̇i(t) = 0

χ̇i,j(t) = f(χi,j(y), t), j = 1, ..., 2n
(4.14)

The weights associated with each GMM component are held constant throughout
the integration, since they are not updated according to a differential equation, but by
stopping the propagation when growing non-linear effects are detected and then split.
The adaptive procedure is explained in the following section.

The UT method integrates the sigma points according to the actual dynamics of
the problem, thus accounting for all non-linear effects: this allows a more accurate de-
scription of the evolution of uncertainty distribution during the propagation, but still
under the hypothesis that the Gaussian description is valid. On the contrary, linearised
methods, such as those based on the Extended Kalman filter (EKF) cannot capture
the evolution of the uncertainty as accurately when long propagation times or strongly
non-linear dynamics (due to fast perturbations or close approaches with planets) are
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4.3. Gaussian Mixture Models

Figure 4.2: Example of the UT for mean and covariance propagation. a) actual, b) first-order
linearisation (EKF), c) UT. Image taken from [1].

involved. Being conceptually simpler, however, they have a lower computational bur-
den on the simulation with respect to non-linear models. This is well summarised in
Fig. 4.2, which shows schematically the working principles of the fully non-linear UT
and of a linearised model, comparing them with a MC sampling representing the actual
transformation of the initial distribution.

In the EKF-based technique, the dynamical system is approximated via a local lin-
earisation for each GMM component. In this way, the linearised equations describing
the evolution of the weights, the mean, and the covariance of each components can be
defined, by doing the derivative of the ones reported in Eq. 4.4:

α̇i(t) = 0

ṁi(t) = f(mi(t), t)

Ṗi(t) = F(mi(t), t)Pi(t) + Pi(t)F
T (mi(t), t), j = 1, ..., 2n

(4.15)

where F(m, t) represents the Jacobian of the equations of motion, defined as

F(m, t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=m(t)

4.3.3 Adaptive splitting

As already mentioned in the previous section, the adaptation of the weights during
the propagation is not done continuously by integrating a differential equation, but by
splitting the GMM component being propagated when non-linear effects distort the
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Chapter 4. Uncertainty propagation methods

distribution to the point that is cannot be considered Gaussian any more. The criterion
to decide when a GMM component should be split evaluates at each time step of the
propagation an estimator parameter, which measures the non-linear effects acting on the
component and affecting the accuracy of its approximation as a Gaussian distribution.

Different approaches are proposed in the literature. Vishwajeet and Singla make use
of the Kolmogorov equation error feedback to select the component to be split [112],
considering the contributions of each GMM component to the error until one of them
grows over a certain threshold. A different approach considers the variation of the
differential entropy of each Gaussian component over the course of the propagation
[68]. This latter approach was adopted in this work ans is summarised in this section.

Differential entropy is a measure of the average amount of information content as-
sociated with a randomly distributed variable [114,115]. For a given pdf p(x) is defined
as

H(x) = −
∫
S

p(x) log p(x)dx = E[− log p(x)] (4.16)

For a Gaussian distribution with covariance matrix P, the differential entropy takes the
form

H(x) =
1

2
log det(2πeP) (4.17)

where det(·) represents the matrix determinant.
From these definitions, the time derivative of the differential entropy for a Gaussian

distribution can be expressed as

Ḣ(x) =
1

2
trace{P−1Ṗ} = trace{F(m, t)} (4.18)

considering the expression for the time derivative of P in Eq. 4.15 where the Jacobian
matrix F(m, t) of the dynamics is highlighted. In particular, if a dynamical system has
the property that trace{F(m, t)} = 0, then the differential entropy is constant, being
Ḣ(x) = 0.

The criterion proposed by DeMars et al. integrates Eq. 4.18 alongside the equa-
tions of motion, using H as an additional state variable. This equation is decoupled
from the rest, allowing a simple evaluation of Ḣ(x) at each time step of the propa-
gation. The criterion monitors the difference between two values: the value of the
linearised differential entropy, obtained by numerically integrating Eq. 4.18, and the
value of the non-linear estimation give by integrating Eq. 4.17. This difference is se-
lected as an indicator of how accurately a GMM component can be described using
a Gaussian definition: this difference grows during the propagation, meaning that the
GMM component gradually becomes non-Gaussian. Whenever its value grows beyond
a given control threshold for a GMM component, the propagation is stopped and a split
is performed to mitigate the non-linear effects impacting the component. This control
threshold is defined as a fraction of the value of the differential entropy for the initial
distribution:

|H lin(x)−Hnonlin(x)| ≥ ε|H0| (4.19)

with ε < 1 being set as the tolerance used to determine when a split is necessary during
the propagation.
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4.4 Application

This section presents a numerical example of the application of GMM to the propa-
gation of an uncertainty distribution over an initial state for the estimation of impact
probability with a planet. The selected test case is the launcher upper stage of the Solar
Orbiter mission. The initial conditions are the same reported in Table 3.1 of Chapter 3.

In this test case, the analysis focuses exclusively on propagating the initial state
uncertainty of the launcher stage until the first close encounter with Venus, six months
after the initial epoch, and on giving an estimation of the probability of impact with
the planet. This choice was done due to problems arisen during the propagation of the
GMM: the number of Gaussian components exploded early in the integration, even for
relatively large values of the control tolerance used to determine when a component
should be split. This anomalous performance makes the GMM approach less efficient
than a standard MC simulation.

In the simulation, the probability of impact was estimated by stopping the propaga-
tion of a GMM component at the moment of the closest approach with Venus, by then
sampling a number of states from each component, and then evaluating the distance of
each particle from the surface of the planet. This approach does not require any addi-
tional propagation, since the states are generated at the moment of the close approach,
but only scalar evaluations.

Table 4.1: Results of the application of GMM for the case of the upper launcher stage of Solar
Orbiter: number of propagations, probability estimate, and computational time. The GMM
simulation was performed for different values of the splitting tolerance ε.

Nprop P̂ (I) CPU time (h)
MC 54114 3.40·10−2 0.004

GMM (ε = 10−1) 36 3.18·10−2 0.025
GMM (ε = 10−2) >103 n/a n/a

Table 4.1 shows the issue using preliminary numerical results (number of propa-
gations, probability estimate, and computational time) for two values of the splitting
tolerance ε to show the sensitivity of the splitting process, and comparing them with
the ones obtained for the MC analysis already presented in Table 3.3 from Chapter 3,
but considering only the impacts occurring during the first close encounter with Venus.
In particular, the number of propagations represents, in the case of MC, the number of
initial conditions propagated forward in time, and, in the case of GMM, the total num-
ber of Gaussian components that were obtained by splitting during the propagation.
Fig. 4.3 shows the state uncertainty distribution at the epoch of the closest approach
projected onto the reference planes in the equatorial reference frame centres in the solar
system barycentre, highlighting the means of the GMM components (red dots) and the
constant-value curves of the resulting pdf.

These partial results show that even a relatively large value splitting tolerance ε,
equal to 10−1 in this case, is enough to obtain an estimate for the impact probability
that is in line with the results validated via MC simulation. However, a stricter tolerance
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Chapter 4. Uncertainty propagation methods

Figure 4.3: Plot of the pdf representing the uncertainty of the launcher upper stage of the Solar
Orbiter mission on the epoch of the impact with Venus, on the x-y plane (a), the y-z plane
(b), and the x-z plane (c), obtained using a splitting tolerance of 10−1. The red dots indicate
the means of the GMM components, while the contour lines represent the level curves of the
approximated pdf.
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4.5. Summary

equal to 10−2, only one order of magnitude lower, causes the GMM set to split out of
control even before reaching the close encounter with Venus, with no possibility to
obtain any results regarding the impact probability.

The most likely explanation to this phenomenon may reside in the lack of an up-
dating step aimed at maintaining the overall accuracy of the approximated uncertainty
distribution. Instead of focusing simply on the single components separately and on
how accurately each of them can be described as Gaussian, the analysis should also
focus on how well the properties of the overall pdf are maintained during the propa-
gation: whenever the number of components is changed, the weights of the GMM set
should be recomputed to account for the new elements. This would allow the GMM
approximation to preserve the properties of the global pdf more accurately.

The author of this thesis points out that they are aware that the tolerance value
reported in Table 4.1 is large. However, this value was chosen only to show how the
adaptive GMM propagation works and how it was used to estimate the probability of
an impact without relying on the splitting process to carry out the propagation. The
adaptive splitting of the GMM components is of course necessary to maintain a high
level of accuracy for a planetary protection analysis, but this topic will be addressed in
future work.

Possible solutions to this issue are proposed in the next section.

4.5 Summary

This chapter focused on the application of GMM techniques for uncertainty propaga-
tion to planetary protection analysis, with the aim of improving the estimation of impact
probability required to verify the compliance of a space mission to the requirements.
Initially, this would be achieved by analysing the evolution of the initial uncertainty
distribution without the limitations of sampling techniques, such as the need to propa-
gate large number of random initial conditions to provide high accuracy to the solution,
with high computational cost.

In the first part, the theoretical background and the main numerical algorithms
adopted here were introduced, focusing on the reasons behind the choice of GMM
to propagate the initial state uncertainty of the subjects of planetary protection anal-
ysis. In particular, a propagation method based on the Unscented Transformation is
adopted, to allow the propagation of the GMM set without resorting to linearised meth-
ods. Together with the UT, a method to adapt the number of GMM components based
on differential entropy was applied to reduce the effects of the non-linear dynamics on
the approximated representation of the pdf during the propagation.

In the second part of the chapter, an example was presented, both to show how the
probability of impact can be estimated with the use of GMM, and to address numerical
problems related to the splitting algorithm generating an excessive number of compo-
nents during the propagation, due to missing control routines to maintain the accuracy
of the overall uncertainty approximation. Possible solutions to this issue and improve-
ments of the selected algorithm are discussed in the next section.
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Chapter 4. Uncertainty propagation methods

Possible solutions and improvements

As already hinted at in the previous section, the main cause of the uncontrolled splitting
during the propagation may be the lack of a step to check the accuracy of the whole
approximated uncertainty distribution. While monitoring the differential entropy for
a single Gaussian component (or any other estimator of the non-linear effects acting
on it) ensures that its representation of the uncertainty remains faithful to the Gaussian
description during the propagation, the accuracy of the probability distribution repre-
sented by the GMM set is not guaranteed to remain accurate when considered in its
entirety.

Two solutions can be adopted in order to reduce the growing inaccuracy of the
GMM approximation, that are an update of the weights associated with each Gaus-
sian component, and a check to determine whether and when two or more components
should be merged into a single one, or pruned to reduce the computational complexity.
The first solution has already been addressed by Terenjanu et al. [65] and Vishwa-
jeet et al. [112], who proposed algorithms to update the weights of the GMM every
time the number of components is changed, by minimising the error related to the
Fokker-Plank equation over the entire distribution. The second solution has also been
explored by Vishwajeet et al., who measure the distance between two components via
the Kullback-Leibler divergence [116] two determine whether they should be merged,
and by DeMars et al. [117], who use instead the L2 distance.

On a different note, the estimation of the impact probability itself can be improved:
one possible approach, still based on sampling each Gaussian components, would be
using of Line Sampling instead of a standard MC in order to increase the accuracy of the
results; another approach, instead, would rely on the numerical evaluation of integrals
defined over the intersection volume between the Gaussian components and the planet,
in a way similar to the ones proposed by Vittaldev and Russel [69] and DeMars et
al. [110] for conjunction analysis between Earth-orbiting satellites and space debris.
Some of these improvements will be addressed in future work.
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CHAPTER5
SNAPPshot

5.1 Introduction

As introduced in section 1.3.4 of Chapter 1, SNAPPshot is a software tool suite orig-
inally developed in 2016 at the University of Southampton under a contract for the
European Space Agency in order to support Mission Analysis activities at ESOC re-
lated to planetary protection [5, 56, 57].

The work on SNAPPshot has been continued at Politecnico di Milano as part of
this research and several modifications have been introduced into the software during
the PhD research, following two main needs: on the one hand, implementing all the
numerical algorithms developed during the doctoral research into a software which
already provided functionalities such as propagators, ephemeris models, routines for
Monte Carlo analysis, routines for the study of the b-plane and resonance, and others
that will be explained later in this chapter; on the other hand, sustaining the effort of the
Mission Analysis team at ESOC of establishing SNAPPshot as the single tool capable
of dealing with all analyses related to planetary protection, as part of the NPI activities
and the COMPASS project. For this last reason, a final version of the software will be
delivered to ESA at the end of the PhD research.

In this chapter, a general introduction on the architecture of the software will be
given, followed by a breakdown of the functionalities that were present at the start of
the project, and in the current version, including all the modifications to the code made
by the author of this thesis as part of the PhD research.
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Chapter 5. SNAPPshot

5.2 General architecture of the code

The software, written in Modern Fortran, is organised in drivers and modules: the
drivers, when compiled, provide the executables that are called by the user; the modules
collect all the subroutines and functions used in the code. Different drivers are available
depending on the execution mode that is chosen by the user.

When calling the drivers, the user also provides a fixed-format input file, which sets
the main parameters and data for the simulation to be run: execution mode, settings for
the propagator, initial conditions and other trajectory-related data, paths to secondary
files providing additional data, paths to save the output files.

A configuration file is also present, containing some parameters related to memory
allocation (e.g. maximum size of arrays) and general settings for the simulation, which
are expected to be kept constant among different cases.

The results of the simulations are then saved into different output files to be later
analysed in post-processing by the user.

5.3 Functionalities available at the start of the PhD research

Execution modes

The tool provides three separate execution modes:

• verification of the compliance with planetary protection requirements in the case
when the uncertainty of the initial state is described by a covariance matrix, as in
the case of the study of the dispersion of the trajectory of a launcher;

• verification of the compliance with planetary protection requirements in the case
when the uncertainty of the initial state is described by a distribution of ∆v vec-
tors, reproducing the case where the execution of a manoeuvre is affected by
errors;

• verification of the compliance with planetary protection requirements in the case
of a failure of the propulsion system of the spacecraft;

• verification of the compliance with planetary protection requirements in the case
when an uncertainty in the initial epoch is present;

• verification of the compliance with planetary protection requirements in the case
when the trajectory of the object and its dispersion evolution are given in separate
files;

• propagation of a single initial condition.

Initial conditions and uncertainty

The initial conditions are specified by the user in the input file:

• epoch,

• position and velocity vectors,
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5.3. Functionalities available at the start of the PhD research

• reference system where the initial conditions are provided (centred in the Sun
or in the solar system barycentre, and oriented as the ecliptic plane or as the
equatorial plane);

The initial uncertainty is also set in the input file or files as:

• a 6×6 covariance matrix defined in the J2000 reference frame, or

• a distribution of ∆v vectors expressed in magnitude and direction, or

• a time window when the failure of the propulsion system can happen, and the
points along the trajectory where the failure can occur, indicating a secondary
fixed-format file containing the trajectory data, or

• a distribution of initial epochs, or

• a series of covariance matrices defined at different epochs on a reference trajec-
tory.

Dynamics model

The propagator considers three perturbations

• the gravitational perturbation of an external celestial body (the user can select
only 11 bodies, the planets from Mercury to Neptune, Pluto, the Sun, and the
Earth’s moon, in a fixed-ID format),

• the Earth oblateness perturbation (J2 effect),

• the solar radiation pressure effect according to a cannonball model (the user spec-
ifies the type of area-to-mass ratio distribution, the parameters describing it, and
the reflectivity coefficient).

The ephemeris model is chosen by the user among:

• a built-in analytical model, or

• a routine by ESA, or

• SPICE (in which case a metakernel file has to be provided).

All physical constants are either hardcoded or defined via the ephemeris files.

Propagator setup

The user selects the integration scheme:

• classical Runge-Kutta (with regularised step control),

• Dormand-Prince RK4(3) (adaptive step) [118],

• Runge-Kutta-Fehlberg (with regularised step control) [119],

• Dormand-Prince R5(4) (adaptive step) [23],

• Runge-Kutta of 8th order (with regularised step control) [120],

• Dormand-Prince R8(7) (adaptive step) [25].
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Chapter 5. SNAPPshot

Simulation and post-processing

How the tool works was already described in Fig. 1.1 in Chapter 1.
The initial data provided by the user is used to sample the uncertainty distributions

provided by the user and generate the random initial conditions to be propagated in the
MC analysis. During the integration of each trajectory, the tool verifies the occurrence
of impacts, halting the simulation if any is detected.

In post-processing, the trajectories are re-analysed using the b-plane representation
to:

• verify the presence of possible impacts that were not detected during the integra-
tion,

• verify the presence of orbital resonances with any of the selected bodies.

The output files contain information about all close approaches detected during the
MC simulation, as well as for the nominal trajectory:

• body of the close approach,

• epoch of SOI entry,

• b-plane coordinates at SOI entry,

• epoch of closest approach,

• b-plane coordinates at closest approach,

• whether an impacts with the body occurs,

• whether resonances with any of the bodies included in the simulation are present
after the fly-by,

• the state (position and velocity vectors) of the propagated object at each time step
of the propagation (only for the nominal trajectory).

A parallel execution mode is available, the number of threads to be used must be
specified by the user.

5.4 Modifications made during the PhD research

5.4.1 General changes

The changes to the general structure of the code include major modifications to the
ephemeris model and to the propagation setup, especially the equations of motion and
the detection of events. Some of the changes that were implemented during this period
required significant alterations of the code structure.

The management of the ephemerides was changed to be able to identify any body
in the solar system without a fixed-ID input format. The Sun, planets, moons, as-
teroids, comets and spacecraft are now identified via their NAIF IDs using the JPL
Horizons ephemeris system (https://ssd.jpl.nasa.gov/horizons.cgi)
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5.4. Modifications made during the PhD research

via the SPICE toolkit (https://naif.jpl.nasa.gov/naif/)), on the condi-
tion that the necessary ephemeris data is also provided. This is done in the ephemerides
reading process, in the propagation of the selected body (asteroid or spacecraft) and in
the detection process (e.g. impacts or close approaches detection).

The user is now able to overwrite the physical constants defined by the tool (using
hardcoded values or according to the selected ephemeris model) using an additional
input file.

Also, the user is now able to select a reference system centred in any of the bodies
included in the simulation using a second input file, while the previous setup allowed
to integrate with respect to the solar system barycentre only.

The equations of motion were changed to allow the user to switch on/off all pertur-
bations, which include the 3rd body perturbation when the selected integration centre
the solar system barycentre, and Jupiter’s oblateness perturbation.

The propagator is also capable of detecting the escape of the propagated object from
a sphere of influence and of stopping the integration.

5.4.2 Modifications related to the PhD research

Together with the modifications that were agreed upon with the Mission Analysis team
of ESA, all the algorithms used to carry on this PhD research that were described in
the previous chapters were also implemented. In this case, the new functionalities were
added to SNAPPshot by defining ad hoc drivers and separate modules which maintain
the same structure of the main code in the matters of executables and of input and
output files.

Line Sampling analysis

The LS-based algorithm that is represented in section 3.3 from Chapter 3 was also
implemented in SNAPPshot, modifying the structure of the tool from the way described
in in Fig. 1.1 in Chapter 1 to what is schematised in Fig. 5.1.

In this kind of analysis, the user provides an additional input file to define the main
parameters used to run the LS analysis and the associated algorithms:

• the maximum number of LS runs,

• the number of samples used in the Markov Chains, and the scaling factor for the
proposal distribution,

• the maximum number of iterations used to sample the lines during the numerical
LS analysis, and the interpolation tolerance to stop the iterative process,

• whether to use the algorithm to correct the main sampling direction or not,

• whether to perform a multi event analysis or not, indicating also the maximum
number of runs for the preliminary MC and its probability and confidence levels.

The analysis is performed as described in Fig. 3.5 from Chapter 3:

1. the tool reads the input files;
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Chapter 5. SNAPPshot

Figure 5.1: SNAPPshot building blocks including the LS procedure.

2. the preliminary MC is run according to the parameters specified by the user;

3. the data about the close approaches is post-processed to identify the close ap-
proach windows and assign a priority to each of them;

4. for each window, a Markov Chain is started until the maximum length is reached
or impacts with any body included in the propagation are detected;

5. if no impacts are detected, the analysis moves to the next close approach window
with the highest priority;

6. if impacts are detected, an initial guess for the sampling direction is estimated,
and then corrected using the algorithm presented in section 3.3.1 of Chapter 3;

7. the main LS analysis is run, estimating the impact probability for each impact
region and the associated standard deviation.

The output files include all data computed during the various phases of the analysis
and the final results:

• the initial states used for the preliminay MC run, and the data related to recorded
close approaches (if any),

• the initial states generated by the Markov Chain sampling phases;

• the points along the sampling lines corresponding to the borders of the identified
impact regions, in terms of the c parameter (as defined in section 3.2.1 of Chapter
3), and the relative sampling direction;

• the probability and standard deviation associated with each impact region;
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5.4. Modifications made during the PhD research

• performance data, such as number of propagations and computational time.

Each of the steps of the analysis required the implementation of different algo-
rithms, which were described in detail in Chapter 3:

• the algorithm for merging the time intervals of each fly-by found via the prelimi-
nary MC and define the CA windows (Section 3.3.2);

• the Metropolis-Hastings algorithm for generating the Markov Chains used to ex-
plore the CA windows (Section 3.2.1);

• the algorithm for correcting the initial guess of the sampling direction (Section
3.2.1), with:

– the definition of the orthonormal base,
– the multi-linear regression;

• the LS algorithm 3.2.1, with:

– the transformation to the normalised coordinate space (Section 3.2.1 and
Appendix B),

– the iterative algorithm to sample the impact region along each line and iden-
tify its boundary (Section 3.2.1).

GMM propagation

Similarly to what was done for the LS implementation, the algorithms that are presented
in Chapter 4 were also implemented in SNAPPshot.

Also in this kind of analysis, the user provides an additional input file to set up the
simulation and the algorithms used for the GMM propagation:

• the number of elements to split the GMM components;

• the tolerance used to stop the propagation and split a component when necessary;

• the maximum number of GMM components being propagated at a time, and the
maximum number of times a component is allowed to be split;

• whether to pre-split the initial covariance before the analysis;

• the number of random samples generated when computing the impact probability
during a fly-by, with the desired confidence level.

The analysis is performed as described Chapter 4:

1. the tool reads the input files;

2. the propagation is set up by computing the differential entropy of the nominal
distribution, and by splitting it if requested by the user;

3. a GMM component is selected, the sigma points are computed, and the propaga-
tion is started, monitoring the differential entropy error at any time step;
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Chapter 5. SNAPPshot

4. when the error grows beyond the given tolerance, the propagation is stopped and
the component currently being propagated is split (if possible);

5. the propagation is resumed, starting from the next element in line;

6. if a close approach with a celestial body occurs, the propagation is stopped at the
closest point and the probability of impact for the single GMM is estimated;

7. the propagation is continued until a split occurs or the final time is reached;

8. the simulation stops when all the GMM components have reached either the max-
imum number of splits or the final time of the propagation.

The output files include all data related to the GMM components at the end of the
propagation:

• the weight, mean, and covariance matrix of each Gaussian component, together
with the reference epoch;

• the associated partial impact probability;

• final results and performance data, such as the total impact probability, the num-
ber of propagations and the computational time.

Each of the steps of the analysis required the implementation of different algo-
rithms, which were described in detail in Chapter 4:

• the algorithm for splitting a Gaussian distribution (section 4.3.1);

• the algorithm for computing the sigma points of a Gaussian distribution (Section
4.3.3);

• the algorithm for propagating the set of sigma points and adaptively split the
corresponding Gaussian distribution (Section 4.3.2).

5.5 Work in progress

Work is being currently done to expand further the functionalities of the SNAPPshot
tool. This expansion follows the work done for this PhD research, as well the work
done by Alessandro Masat from Politecnico di Milano for his M.Sc. Thesis "B-plane
orbital resonance analysis and applications, Perturbed semi-analytical model for plan-
etary protection and defence applied to ballistic resonant flyby design" [91] which is
co-supervised by Prof. Colombo and the author of this thesis:

• inclusion of additional integration methods in the available pool of the tool;

• improvement of the current implementations of the LS and GMM methods;

• new model to account for relativistic effects during the propagation (by A. Masat);

• new analytical b-plane representation and definition of orbital resonances, extend-
ing the theory of Valsecchi et al. [95] (by A. Masat).
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CHAPTER6
Conclusions

Exploration missions to other celestial bodies increase the risk of unintentionally con-
taminating them with biological material from Earth, due to collisions between uncon-
trolled spacecraft or launcher stages and planets and moons that may present extrater-
restrial life. For this reason, all interplanetary mission must comply to internationally
agreed-upon guidelines aimed at reduce the chance of these kind of events. However,
chaotic n-body dynamics and uncertainties in the initial state determination of space-
craft or other mission-related objects make tackling this problem difficult when high
precision is require.

This thesis presented a variety of numerical techniques aimed at improving the cur-
rent approach to planetary protection analysis. Some of these techniques were adapted
and applied in a context different from the one originally intended, others were devel-
oped for this specific purpose.

This chapter provides an overview of the work done in this research, summarising
and commenting the main results. Some remarks for future work will be given starting
from the considerations previously made.

6.1 Summary and contributions of the thesis

As introduced already in Chapter 1, the main goal of the research presented in this
thesis is to improve the accuracy and the efficiency of planetary protection analysis for
interplanetary space missions, reducing the cost of the verification that said missions
are compliant with the planetary protection requirements. The complexity of this task
arises from different aspects of the problem under study, some related to the available
tools to solve it and other related to the problem itself.

Depending on the outcome of the analysis, the design of the mission may have to be
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adjusted, meaning that the verification of the compliance to the requirements demands
efficiency and accuracy. Commonly applied methods, such as Monte Carlo simulations,
while managing to capture the non-linearity of the orbital dynamics, fail to to approach
the problem efficiently when high precision is need. For this purpose, the research
focused on bring improvement in three primary aspects: numerical orbital propagation,
uncertainty sampling, and uncertainty propagation.

The main findings of this research were validated through numerical simulations
with the use of several test cases:

• propagation of Near-Earth Asteroids to validate the integration methods presented
in Chapter 2 due to their known orbits:

– 99942 Apophis,
– 2010 RF12,
– 2007 UD6;

• planetary protection analysis of different interplanetary missions:

– the launcher upper stage of the Bepi Colombo mission, to validate the pro-
posed integration methods on a statistical level;

– the orbiter of the JUICE mission, to validate the proposed technique to detect
close approaches based on the Jacobian of the equations of motion;

– the launcher upper stage of the Solar Orbiter mission, to validate the LS
algorithms and the GMM propagation;

– the orbiter of the Mars Sample Return mission,to validate the LS algorithms.

Numerical orbital propagation

The work done about numerical propagation was aimed at studying how the numerical
errors grow during the integration of single trajectories, and how this affects the over-
all planetary protection analysis when scaled up to statistical levels, with thousands
of trajectories considered. This task was carried out by analysing the performance of
a selection of integration methods (including standard Runge-Kutta methods, Runge-
Kutta methods based on Gauss-Legendre quadrature, Runge-Kutta-Nystrom methods,
and the symplectic Yoshida method) when applied to different problems of orbital prop-
agation, ranging from single trajectories of asteroids to planetary protection analyses
of interplanetary missions. The test cases were chosen taking into account the effects
of the non-linear n-body dynamics over the integration process, studying in particular
the influence of close approaches with planets on the orbital state error and on the con-
servation of the integrals of the motion (the total mechanical energy firstly). For this
reason, some of the selected methods were in the class of symplectic methods, which
are formulated in order to preserve the conserved quantities of the dynamic system.

The results of the various numerical simulations allowed to reach different conclu-
sions on the effectiveness of the selected methods in various situations, and to develop
new approaches to the problem.

In particular, the propagations of asteroids (chosen for their well known orbits and
for their resonant close passages to the Earth’s orbit) showed that, out of the analysed
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methods, the symplectic Yoshida method can provide better energy conservation during
the integration at a similar computational cost with respect to standard methods such
as explicit Runge-Kutta schemes. However, this result was valid only until the distance
between the object being propagated and the other massive celestial bodies is large
enough. During close approaches, in fact, the faster dynamics magnifies the small
numerical errors that had accumulated up to that point, in a manner that is common
to all the selected integration schemes. In this cases, the implicit Gauss-Legendre RK
method showed the best behaviour among the selected methods, despite its performance
being worse with respect to the cases with no close encounters. The same methods were
also applied to impact analysis, using both asteroids and interplanetary missions as test
cases, finally, to prove that the differences in the propagation of single trajectories do
not strongly influence the result of a Monte Carlo simulation.

These tests allowed to select the implicit symplectic Gauss-Legendre RK method to
be implemented in SNAPPshot along with the already available explicit schemes due
to its accurate performance in both kinds of test cases.

Finally, to address the problems observed when propagating planetary close encoun-
ters with any integration method, a novel technique for identifying those conditions was
proposed, in order to recognise autonomously the conditions that increase the numeri-
cal error during the integration.

This method introduces a criterion to detect when a close approach with a massive
body is occurring during the integration of a trajectory without relying on a threshold
based on a fixed distance (e.g. the radius of the sphere of influence or of the Hill sphere)
or a fixed relative velocity. It exploits the Jacobian matrix of the equations of motion
to provide a less strict definition of close approach: this definition is based on the
eigenvalues of the matrix and on their derivatives, separating the various contributions
given by each planet included in the propagation. In this way, a close approach can be
defined when the contributions given by a planet grows larger than the one given by
the central body of the system (the one with the greatest gravitational influence on the
trajectory), meaning that the body whose effect on the dynamics is becoming dominant
is the one being approached.

This criterion results in a definition of close approach based not only on the rela-
tive distance between the body being propagated and the approached body, but also to
the relative speed, comparing these quantities between the approached body and the
central body. This allows to identify close approaches, or to detect those conditions
that affect the quality of the numerical integration, even when there is no clear cross-
ing from one SOI to another. This carries the advantage of not missing those fly-bys
that, despite occurring relatively far from the planet, still have an impact on the numer-
ical propagation. These considerations were proven in different examples comparing
distance-based definitions to the proposed one.

Uncertainty sampling techniques

The work about sampling was aimed at making the statistical analysis performed to
verify the planetary protection requirements more efficient, to reduce its computational
cost. In fact, high accuracy is needed to perform such analysis, as the probability values
to be verified are often very small, with strict confidence levels associated to them.
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For this reason, different sampling techniques were studied and the Line Sampling
method was selected, based on a comparison with standard MC and Subset Simulation,
as an alternative to standard Monte Carlo simulation.

The LS method uses lines following a reference direction instead of points to sample
the uncertainty space, identifying the boundaries of the impact regions inside of it and
computing the impact probability using integrals along these lines where they intersect
the impact regions. The integrals are evaluated analytically, in this way the LS method
can provide an estimation of the impact probability that has a lower variance (thus
can be considered more accurate) than the one given by standard MC when the same
number of samples are used, or reach a similar accuracy using fewer samples.

The higher accuracy of LS is also proven theoretically in the available literature,
which points out two significant aspects of this sampling technique: the LS method
is always more accurate than standard MC, or at least as accurate in the worst case;
the reference direction used to define the sampling lines is one of the parameters the
affect the performance of LS the most. In particular, an ideal case for the technique
is represented by the sampling direction being orthogonal to the border of the impact
region. This finding was confirmed by this work with further analysis of the theoretical
formulation, which also showed the dependency of the numerical performance of LS
from the shape and the extension off the impact region inside of the uncertainty space.

The application of the LS method to planetary protection analysis was divided in
two phases: the first part of the work focused on assessing the capabilities of LS at
estimating the probability of impact with a celestial body when a single event is con-
sidered, while the second part extended its application to cases with multiple events (as
found in most cases) by introducing newly developed algorithms to support it.

The first findings confirmed the higher accuracy of LS in estimating low probability
levels, after being applied to impact analyses of asteroids and interplanetary missions:
when compared to standard MC, the LS method was capable of correctly estimating
the impact probability and identifying the boundaries of the impact region, reaching
the same accuracy after fewer propagations, or, vice-versa, returning more accurate
results when the same number of propagations was preformed.

Moreover, the theoretical formulation of LS already existing in the literature, which
illustrates analytically the higher accuracy of the method with respect to standard MC,
was extended further through analytical manipulation. An approximate formula was
developed to give a more in-depth view on how LS compare to MC, highlighting the
dependency of the overall accuracy from the determination of the main sampling di-
rection and from the shape of the impact region. These aspects were confirmed by the
results of the simulations: sampling an impact region with a flat (or almost flat) and
extended shape gives more accurate results than sampling one with a clumped shape;
a sampling direction that is orthogonal, or quasi orthogonal, to the boundary of the
impact region allows a more accurate estimation of the probability.

In the second part, two novel algorithms were devised to support the application
of LS to cases where multiple close approaches with planes, and thus multiple impact
regions, are expected, as more commonly found in planetary protection analysis, where
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propagation times up to 100 years are considered.
One algorithm uses the information gained from a preliminary MC analysis to iden-

tify the time intervals where most close approaches are clustered in the considered time
frame, by recording the encounters and then merging them to define close approach
windows.

The second algorithm, instead, uses an initial guess for the sampling direction to
perform a short LS analysis and obtain a general idea of the position and phase of an
impact region. This is then approximated as a hyperplane using linear regression: a
new guess for the sampling direction is obtained, in a way that is closer to the ideal
case of a sampling direction orthogonal to the boundary of the impact region, under
the hypothesis that this approximation is valid. This greatly improves the accuracy of
the method without increasing significantly the computational load, since it allows to
sample the impact region in a more optimal way.

These algorithms were used in a numerical procedure based on LS, which first iden-
tifies the close approach windows and the explores them to find actual impact regions:
in case one is found, it is sampled using LS to estimate the impact probability associ-
ated with that event, and the process is repeated for all close approach windows. The
numerical test using interplanetary mission cases confirmed the greater efficiency of
this LS-based procedure with respect to standard MC.

Moreover, in this chapter the main parameters which affect the performance of the
LS method were identified. Their influence on the accuracy of the final result and on
the computational load was discussed: in particular, the sample size for the preliminary
analysis, the length of the Markov chains, and the number of sampling lines greatly
affect the capabilities of the method to identify the impact regions and to sample them
correctly to obtain an accurate estimation of the impact probability. Some criteria use-
ful for quantifying these parameters depending on the expected probability level to be
verified were suggested based on trade offs, and values were suggested based on the
test cases that were presented.

Uncertainty propagation methods

Uncertainty propagation techniques were also studied as an alternative to sampling the
initial uncertainty distribution, for studying the evolution of the initial uncertainty and
estimate the probability of impacts without the limitations of sampling techniques, such
as the need to propagate large number of random initial conditions to provide high
accuracy to the solution, with high computational cost. On the contrary, the direct
propagation of the initial uncertainty distribution allows deeper analysis during and
after the propagation.

The approach that was adopted makes use of Gaussian Mixture Models to approx-
imate the uncertainty as a weighted sum of Gaussian distributions, allowing the ex-
ploitation of their properties. The Unscented transformation was adopted to propagate
the GMM set in a fully non-linear model, without relying on linear or other kind of
approximations, thus capturing the true physics of the problem. Moreover, during the
propagation, the number of GMM components was varied by making use of splitting
techniques to contain the effects of the non-linear dynamics, which distorts the distri-
butions until a Gaussian description is not valid any more.
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Chapter 6. Conclusions

This approach was used to propagate the initial uncertainty of an interplanetary mis-
sion and to estimate the probability of an impact. However, numerical problems related
to the splitting algorithm generating an excessive number of components were observed
and commented. Possible solutions to this issue and improvements of the selected al-
gorithm were discussed, proposing control techniques to maintain the accuracy of the
overall uncertainty approximation based on the analysis of the overall GMM instead of
focusing only on the single components.

6.2 Limitations and remarks for future work

Along with numerous positive findings, the numerical tests performed to apply the
techniques presented in this thesis and assess their performance for planetary protec-
tion analysis also revealed issues and possible improvements that are discussed in this
section.

On the side of numerical propagation, two main aspects which would benefit from
different approaches for improving them were found.

On the one hand, the selection of integration methods itself could be expanded, in
order to include more symplectic methods, such as the SABA methods by Laskar and
Robutel [15], or methods to account for close approaches with planets such as the ones
from Duncan et al. [17] and Chambers [16]. Moreover, non-symplectic methods differ-
ent other than RK could also be studied, for example Adams-Bashforth methods and
other variable-order variable-step schemes. Future work will also focus on improving
the implementation of the methods that were already considered, such as the implicit
symplectic Gauss-Legendre RK.

On the other hand, more effective ways to represent a close approach during the
propagation should be considered or developed. For starters, future work will focus
on the consistent application of the Jacobian-based technique for fly-by detection to
improve the propagation methods currently available, especially for the determination
of close approach windows in the LS analysis: this will ensure that no potential impact
region is missed during the preliminary survey with MC for identifying the close ap-
proach windows. Then, an analysis of the evolution of the b-plane coordinates during
the integration of a close approach will also be addressed.

From the point of view of the LS-based techniques, various topics can be subject of
future studies to improve the effectiveness and precision of the proposed approach.

To improve the efficiency of the LS-based procedure, a study aimed at quantifying
the sensitivity of the proposed approach on the various parameters affecting its per-
formance shall be done: the number of runs in the preliminary MC, the length of the
Markov chains, the iterative method to sample the lines are some of the most important
factors on which the LS techniques work. Several numerical simulations are required
to assess the effect of their variability on the algorithm and to identify optimal values
to obtain a good trade off between accuracy and efficiency. Moreover, the application
of other advanced sampling methods, such as Subset Simulation, together with the LS
could improve the overall efficiency of the planetary protection analysis: in particular,
SS could be employed to improve the preliminary MC analysis for the identification of
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6.2. Limitations and remarks for future work

potential impact regions.
Another relevant aspect that will be addressed in future work is the determination

of the exact number of runs that are required to reach a given confidence level using
LS, as already available in SNAPPshot for the standard MC. This will require to further
expand the theoretical definition of the methods as presented in Section 3.2.3 of Chapter
3: in particular, an expression of the confidence level obtained via LS that correlates
the number of sampling lines and the estimated probability level shall be determined.

Finally, improvements in the general time and memory management of the LS pro-
cedure would also be desirable, along with the generalisation of the algorithms to make
them applicable also to problems that are not related to planetary protection analysis.

Finally, regarding the use of uncertainty propagation techniques, different aspects
could be improved, on top of the issues that were already observed and discussed in
Chapter 4.

Alternative criteria and methods to split the distributions will be studied in future
work, with the aim of increasing the accuracy and the efficiency of the GMM propaga-
tion. To fulfil this particular goal, merging techniques in particular will be considered
in an effort to reduce the computational cost of the simulation, along with the pruning
of those Gaussian components with weights so low that their contributions to impact
probability would be negligible.

As already introduced as a final remark in Chapter 4, different ways of estimating
the impact probability will be analysed, to exploit the higher precision of Line Sampling
or integral evaluation.
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APPENDIXA
Implemented integration methods

This appendix reports the coefficients used to construct the integration methods intro-
duced in Section 2.3 of Chapter 2 and then used to perform orbital propagations in
Section 2.4.

Runge-Kutta integration methods

For the RK and GLRK methods, the coefficients are reported using their Butcher’s
tableau. This is defined again here, as it was defined in Section 2.3 from Chapter 2.

A single step of integration from tn to tn+1 = tn + h following an explicit RK
scheme is expressed as [22]:

xn+1 = xn + hF (tn, xn, h; f), n ≥ 0 (A.1)

F (tn, xn, h; f) =
s∑
i=1

biKi (A.2)

Ki = f(tn + cih, xn + h
s∑
j=1

aijKj), i = 1, 2, . . . , s (A.3)

where xn is the solution at the current step, tn the value of the independent variable at
the current step, h the step size, f the function to integrate, F is the increment function,
s is the number of stages of the method, and aij, bi, ci are the coefficients that define
a specific Runge-Kutta method. They are usually indicated as the Runge-Kutta matrix
(aij), the vector of weights (bi), and the vector of nodes (ci); they are collected in the
Butcher tableau (a,b, c)
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Appendix A. Implemented integration methods

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

that completely define a Runge-Kutta method.

Classical Runge-Kutta method RK4 Four stages, fourth order, explicit, fixed step:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Dormand-Prince RK5(4) Seven stages, fifth order, explicit, variable step, from Dor-
mand and Prince (1980) [23]:

0
1/5 1/5
3/10 3/40 9/40
4/5 44/45 -56/15 32/9
8/9 19372/6561 -25360/2187 64448/6561 -212/729
1 9017/3168 -355/33 64732/5247 49/176 -5103/18656
1 35/384 0 500/1113 125/192 -2187/6784 11/84

5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40
35/384 0 500/1113 125/192 -2187/6784 11/84 0

Gauss-Legendre Runge-Kutta GLRK4 Two stages, fourth order, fixed step, from Butcher
(1964) [121]:

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

Gauss-Legendre Runge-Kutta GLRK6 Three stages, sixth order, fixed step, from Butcher
(1964) [121]:

1/2−
√

15/10 5/36 2/9−
√

15/15 5/36−
√

15/30

1/2 5/36 +
√

15/24 2/9 5/36−
√

15/24

1/2 +
√

15/10 5/36 +
√

15/30 2/9 +
√

15/15 5/36

1/2 1/2

Gauss-Legendre Runge-Kutta GLRK8 Four stages, eighth order, fixed step, from Butcher
(1964) [121]:
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∑4
j=1 a1j w1 w11 − w3 + w44 w11 − w3 − w44 w1 − w5∑4
j=1 a2j w1 − w33 + w4 w11 w11 − w55 w1 − w33 − w4∑4
j=1 a3j w1 + w33 + w4 w11 + w55 w11 w1 + w33 − w4∑4
j=1 a4j w1 + w5 w11 + w3 + w44 w11 + w3 − w44 w1

2w1 2w11 2w11 2w1

with w1 = 1/8 −
√

30/144, w11 = 1/8 +
√

30/144, w2 =
√

(15 + 2
√

30)/35/2,

w22 =
√

(15− 2
√

3)/35/2, w3 = w2(1/6 +
√

30/24), w33 = w22(1/6 −
√

30/24),

w4 = w2(1/21 + 5
√

30/168), w44 = w22(1/21− 5
√

30/168), w5 = w2 − 2w3, w55 =
w22 − 2w33.

Runge-Kutta-Nyström methods

The RKN methods use two different sets of coefficients to integrate the coordinates and
the momenta separately. For the integration step of length hwhich brings (rn(tn),vn(tn))
onto (rn+1(tn+1),vn+1(tn+1)) the algorithm follows:

rn+1 = rn + hvn + h2
∑s

i=1 bif(tn + cih,Ki)

vn+1 = vn + h
∑s

i=1 dif(tn + cih,Ki)

Ki = rn + cihvn + h2
∑s

j=1 aijf(tn + cjh,Kj), i = 1, ..., s

(A.4)

with a Butcher’s tableau (a,b, c,d), where b are the coefficients used for the coordi-
nates, and d the coefficients for the momenta:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs
d1 . . . ds

Runge-Kutta-Nyström RKN8 Thirteen stages, eighth order, fixed step, from Calvo and
Sanz-Serna (1993) [78]:

• c1 = 0, c2 = 0.60715821186110352503, c3 = 0.96907291059136392378,
c4 = −0.10958316365513620399, c5 = 0.05604981994113413605,
c6 = 1.30886529918631234010, c7 = −0.11642101198009154794,
c8 = −0.29931245499473964831, c9 = −0.16586962790248628655,
c10 = 1.22007054181677755238, c11 = 0.20549254689579093228,
c12 = 0.86890893813102759275, c13 = 1,

• b1 = c2/2, bi = (ci+1 − ci−1)/2, 2 ≤ i ≤ s− 1, bs = (1− cs−1)/2,

• di = bi(1− ci), i = 1, ..., s,

• aij = bj(ci − cj), i = 2, ..., s, j = 1, ..., i− 1.
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Appendix A. Implemented integration methods

Yoshida method

The Yoshida methods are not defined using a Butcher’s tableau. Given the initial state
x0 = (r0,v0)

T at time t0, the nth order solution at time t0 +h is given as a composition
of elementary symplectic mappings of lower order, which is equal to the product of the
operators:

x(h) =

[
k∑
i=1

exp(cihDT ) exp(dihDV )

]
x0 (A.5)

where DT and DV are differential operators associated with the kinetic and potential
terms of the separable Hamiltonian defined in Eq. 2.14, and exp(·) represents the ex-
ponential function. The map above gives a succession of k explicit mappings:

ri+1 = ri + cih
∂T
∂v

(vi)

vi+1 = vi − dih∂V∂r (ri+1)

i = 1, ..., k

(A.6)

with xk = (rk,vk) being the solution at time step t0 + h.

Canonical Yoshida method SY4 Four stages, fourth order, fixed step, from Yoshida
(1990) [14]:

• c1 = 1/(4− 2b), c2 = (1− b)/(4− 2b), c3 = c2, c4 = c1,

• d1 = 1/(2− b), d2 = −b/(2− b), d3 = d1, d4 = 0,

with b = 21/3.

Canonical Yoshida method SY6 Eight stages, sixth order, fixed step, from Yoshida
(1990) [14]:

• c = {w3/2, (w3+w2)/2, (w2+w1)/2, (w1+w0)/2, (w0+w1)/2, (w1+w2)/2, (w2+
w3)/2, w3/2},

• d = {w3, w2, w1, w0, w1, w2, w3, 0},
withw1 = −1.17767998417887,w2 = 0.235573213359375,w3 = 0.784513610477560,
w0 = 1− 2

∑
w.

Canonical Yoshida method SY8 Sixteen stages, eighth order, fixed step, from Yoshida
(1990) [14]:

• c = {w7/2, (w7 + w6)/2, ..., (w1 + w0)/2, (w0 + w1)/2, ..., (w6 + w7)/2, w7/2},

• d = {w7, ..., w1, w0, w1, ..., w7, 0},
withw1 = 0.102799849391985,w2 = −1.960610232975491,w3 = 1.93813913762276,
w4 = −0.158240635368243, w5 = −1.44485223686048, w6 = 0.253693336566229,
w7 = 0.91484424622974, w0 = 1− 2

∑
w.

Dormand-Prince RK8(7) Thirteen stages, eighth order, explicit, variable step, from
Prince and Dormand (1981) [25]:

124



i
i

“thesis” — 2020/1/22 — 20:49 — page 125 — #145 i
i

i
i

i
i

0
0

1/
18

1/
18

1/
12

1/
48

1/
16

1/
8

1/
32

0
3/

32
5/

16
5/

16
0

-7
5/

64
75

/6
4

3/
8

3/
80

0
0

3/
16

3/
20

59
/4

00
29

44
38

41
/6

14
56

39
06

0
0

77
73

65
38

/6
92

53
83

47
-2

86
93

88
3/

11
25

00
00

00
23

12
42

83
/1

80
00

00
00

0
93

/2
00

16
01

61
41

/9
46

69
29

11
0

0
61

56
41

80
/1

58
73

26
37

22
78

97
13

/6
33

44
57

77
54

58
15

73
6/

27
71

05
72

29
-1

80
19

36
67

/1
04

33
07

55
5

54
90

02
32

48
/9

71
91

69
82

1
39

63
27

08
/5

73
59

10
83

0
0

-4
33

63
63

66
/6

83
70

16
15

-4
21

73
99

75
/2

61
62

92
30

1
10

03
02

83
1/

72
34

23
05

9
79

02
04

16
4/

83
98

13
08

7
80

06
35

31
0/

37
83

07
12

87
13

/2
0

24
61

21
99

3/
13

40
84

77
87

0
0

-3
76

95
04

27
95

/1
52

68
76

62
46

-3
09

12
17

44
/1

06
12

27
80

3
-1

29
92

08
3/

49
07

66
93

5
60

05
94

34
93

/2
10

89
47

86
9

39
30

06
21

7/
13

96
67

34
57

12
38

72
33

1/
10

01
02

97
89

12
01

14
68

11
/1

29
90

19
79

8
-1

02
84

68
18

9/
84

61
80

01
4

0
0

84
78

23
57

83
/5

08
51

28
52

13
11

72
94

95
/1

43
24

22
82

3
-1

03
04

12
99

95
/1

70
13

04
38

2
-4

87
77

92
50

59
/3

04
79

39
56

0
15

33
67

26
24

8/
10

32
82

46
49

-4
54

42
86

81
81

/3
39

84
67

69
6

30
65

99
34

73
/5

97
17

26
53

1
18

58
92

17
7/

71
81

16
04

3
0

0
-3

18
50

94
51

7/
66

71
07

34
1

-4
77

75
54

14
/1

09
80

53
51

7
-7

03
63

53
78

/2
30

73
92

11
57

31
56

67
87

/1
02

75
45

52
7

52
32

86
66

02
/8

50
06

65
63

-4
09

36
64

53
5/

80
86

88
25

7
39

62
13

72
47

/1
80

59
57

41
8

65
68

63
58

/4
87

91
00

83
1

40
38

63
85

4/
49

10
63

10
9

0
0

-5
06

84
92

39
3/

43
47

40
06

7
-4

11
42

19
97

/5
43

04
38

05
65

27
83

62
7/

91
42

96
60

4
11

17
39

62
82

5/
92

53
20

55
6

-1
31

58
99

08
41

/6
18

47
27

03
4

39
36

64
76

29
/1

97
80

49
68

0
-1

60
52

80
59

/6
85

17
85

25
24

86
38

10
3/

14
13

53
10

60
0

13
45

19
32

/4
55

17
66

23
0

0
0

0
-8

08
71

98
46

/9
76

00
01

45
17

57
00

44
68

/5
64

51
59

32
1

65
60

45
33

9/
26

58
91

18
6

-3
86

75
74

72
1/

15
18

51
72

06
46

58
85

86
8/

32
27

36
53

5
53

01
12

38
/6

67
51

67
19

2/
45

0
14

00
54

51
/3

35
48

00
64

0
0

0
0

-5
92

38
49

3/
10

68
27

78
25

18
16

06
76

7/
75

88
67

73
1

56
12

92
98

5/
79

78
45

73
2

-1
04

18
91

43
0/

13
71

34
35

29
76

04
17

23
9/

11
51

16
52

99
11

88
20

64
3/

75
11

38
08

7
-5

28
74

77
49

/2
22

06
07

17
0

1/
4

125



i
i

“thesis” — 2020/1/22 — 20:49 — page 126 — #146 i
i

i
i

i
i



i
i

“thesis” — 2020/1/22 — 20:49 — page 127 — #147 i
i

i
i

i
i

APPENDIXB
Transformations between probability distributions

This appendix presents the transformations used to map the physical coordinates to the
standard normal coordinates and viceversa, as described in Section 3.2.1 of Chapter
3. Treated here are the univariate normal, uniform, and triangular distributions (which
are used in SNAPPshot to define the uncertainties on parameters such as the spacecraft
area-to-mass ratio and the ∆v vector representing a manoeuvre), and the multivariate
normal distribution (which is used to define the initial state uncertainty via an input
covariance matrix).

All the transformations described here are based on the mapping shown in Equa-
tion 3.3, which preserves the CDF between the starting uncertainty and the standard
normal distribution that characterises the normalised coordinate space used in the LS
algorithm. The latter is represented by the pdf and CDF already expressed in Equations
3.2, 3.1, and 3.6. The direct and inverse transformations follow Equations 3.4 and 3.5,
respectively.

Mapping based on multivariate normal distribution (Rosenblatt’s transformation)

The explanation presented here follows the one given in [104], using a different nota-
tion.

Given the starting distribution of the random vector X = (x1, ..., xk)
T ∈ Rk de-

scribed by the pdf

f(x) = N (x; M,Λ) =
1√
|2πΛ|

exp

(
−1

2
(x−M)TΛ−1(x−M)

)
with average M ∈ Rk and covariance matrix Λ ∈ Rd × Rd, the CDF (defined as
F (x) = P(X ≤ x), where X ∼ N (x; M,Λ)) cannot be obtained in closed form, but
only estimated numerically, due to the multidimensionality of the problem.
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Appendix B. Transformations between probability distributions

For this reason, the transformation is treated making use of conditional probabilities,
as

P(X1 ≤ x1) = F (x1)

P(X2 ≤ x2|X1 = x1) = F (x2|x1)
...

P(Xk ≤ xk|Xk−1 = xk−1, ..., X1 = x1) = F (xk|xk−1, ..., x1)
In this way, the mapping in Equation 3.3 conserving the CDF of the distribution can be
rewritten in a more simple way:

F (x1) = Φ

(
x1 −m1√

λ11

)
= Φ(θ1)

F (x2|x1) = Φ

x2 −m2 + (Λ
(2)
21 /Λ

(2)
22 )(x1 −m1)√

Λ(2)/Λ
(2)
22

 = Φ(θ2)

...

F (xk|xk−1, ..., x1) = Φ

xk −mk +
∑k−1

j=1 (Λ
(k)
kj /Λ

(k)
kk )(xj −mj)√

Λ(k)/Λ
(k)
kk

 = Φ(θk)

where Λ(r) is the determinant of the minor of Λ defined as [λij], i, j = 1, ..., r ≤ k,
and Λ

(r)
ij is the cofactor of the element (ij) of the minor Λ(r).

This way, the direct and the inverse transformations become linear and assume the
forms, respectively:

θi =
xi −mi +

∑i−1
j=1 (Λ

(i)
ij /Λ

(i)
ii )(xj −mj)√

Λ(i)/Λ
(i)
ii

, i = 1, ..., k

xi = mi + θi

√
Λ(i)/Λ

(i)
ii −

i−1∑
j=1

(Λ
(i)
ij /Λ

(i)
ii )(xj −mj), i = 1, ..., k

Mapping based on univariate normal distribution

This mapping can be treated as a particular case of Rosenblatt’s transformation for
one-dimensional random variables, but is reported here for completeness.

Given the starting distribution with average µ and covariance σ2, the pdf f(x) and
CDF F (x) have the expressions:

f(x) = N (x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
F (x) =

1

2

[
1 + erf

(
x− µ
σ
√

2

)]
The direct and the inverse transformation have linear expressions, as in the previous

case:
θ =

x− µ
σ

x = µ+ σθ
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Mapping based on uniform distribution

Given the pdf f(x) and CDF F (x) of the starting distribution defined over the interval
[a, b] ∈ R:

f(x) =

{
1
b−a if a < x < b

0 elsewhere
F (x) =


0 if x ≤ a

x−a
b−a if a < x < b

1 ifx ≥ b

The direct and the inverse transformations have the expressions

θ =


−∞ if x = a
√

2 erf−1
[
2x−a
b−a − 1

]
if a < x < b

+∞ if x = b

x =


a if −∞← θ

1
2

[
1 + erf

(
θ√
2

)]
(b− a) + a if a < x < b

b if θ → +∞

Mapping based on triangular distribution

Given the pdf f(x) and CDF F (x) of the starting distribution defined over the interval
[a, b] ∈ R with a < c < b

f(x) =


2(x−a)

(b−a)(c−a) if a < x ≤ c
2(b−x)

(b−a)(b−c) if c < x < b

0 elsewhere

F (x) =


0 if x ≤ a

(x−a)2
(b−a)(c−a) if a < x ≤ c

1− (b−x)2
(b−a)(b−c) if c < x < b

1 if x ≥ b

The direct and the inverse transformations have the expressions

θ =



−∞ if x = a
√

2 erf−1
[

2(x−a)2
(b−a)(c−a) − 1

]
if a < x ≤ c

√
2 erf−1

[
1− 2(b−x)2

(b−a)(b−c)

]
if c < x < b

+∞ if x = b

x =


a if −∞← θ√

(b− a)(c− a)Φ(θ) + a if Φ(θ) ≤ c−a
b−a

b−
√

(1− Φ(θ))(b− a)(b− c) if Φ(θ) > c−a
b−a

b if θ → +∞
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