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Abstract

IN the design process of a deep-space exploration mission, two phases can be distin-
guished: an interplanetary cruise and a final phase in planetary moon-system. In
both cases the flyby manoeuvres have a positive impact on the overall mission cost

and the scientific return.
This doctoral dissertation focuses on methods, techniques, and tools for modeling

the trajectory in presence of flybys. Depending on the gravitational model used and
the mission scenario foreseen, various part of the search space can be analysed and
different insights derived about the nature of the third-body interaction. The ability of
one method to reveal insights on the dynamics depends on the choice of the perfor-
mance parameters and control variables used to study the trajectory evolution under the
effect of the dynamics. Optimisation is a necessary step to confirm/disprove the solu-
tion proposed in the preliminary design, derived in simpler dynamics, by evaluating its
applicability in the full-body one. While, generally, the inference process is deductive
and moves from the model to the data, under specific conditions, the inductive stream
can be followed. The improved understanding of the dynamics might positively af-
fect the design process. Petal rotations are a clear example of a technique derived in
patched conics, confirmed by the optimisation and later identified into periodic orbits.
Crank-Over-Top sequence the one of a not proper modelling.

This work deals with grid-search approaches for the identification of feasible flyby.
The main theme encompassing the dissertation regards the reduction of the computa-
tional effort associated to the scanning of the search space. We present a three-steps
solution: recombining the search spaces associated to the pre- and post-encounter tra-
jectories, switching from an epoch-based parametrisation of the search space to an
orbital elements formulation and implementing pruning techniques, based on bounding
regions defined by delta-v levels and orbital elements variations derived for limiting
cases of the flyby. Following this logic, the 3D Flyby map is developed to study flyby
in the three-body dynamics, to compare difference in the patched conics modelling of
the flyby effect, and to design the sequence of resonant flybys for Europa Clipper tour.
The different effect of direct and retrograde flybys on the post-encounter trajectory and
the higher efficiency of the former represent the most significant observations.
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Sommario

NELLA fase di progettazione di una missione di esplorazione dello spazio pro-
fondo, si possono distinguere due fasi: un trasferimento interplanetario e un
fase finale nel sistema di lune orbitanti il pianeta considerato. In entrambi i

casi, la fionda gravitazionale incide positivamente sul costo complessivo e sulla ricerca
scientifica condotta della missione.

Questa tesi di dottorato si concentra su metodi, tecniche e strumenti per modellare
la traiettoria in presenza di flyby. A seconda del modello gravitazionale utilizzato e
dello scenario di missione previsto, è possibile analizzare varie parti del search-space
e ricavare diverse intuizioni sulla natura dell’interazione col terzo corpo. La capacità
di un metodo di rivelare intuizioni sulla dinamica dipende dalla scelta dei parametri di
performance e delle variabili di controllo utilizzate per studiare l’evoluzione della trai-
ettoria sotto l’effetto della dinamica. L’ottimizzazione è un passo necessario per con-
fermare/confutare un disegno preliminare d’orbita, ricavato in una dinamica approssi-
mata, valutando la sua bontà in uno ad alta fedeltà. Mentre, in generale, il processo di
inferenza è deduttivo e passa dal modello ai dati, in condizioni specifiche, il flusso in-
duttivo può essere seguito. La migliorata comprensione della dinamica può influenzare
positivamente il processo di disegno dell’orbita. Le petal rotations sono un esempio
lampante di modello derivato in una dinamica approssimata (patched conics), confer-
mato poi dall’ottimizzazione e solo successivamente identificato come orbita periodica.
La sequenza Crank-Over-Top, al contrario, è l’esempio di un modello non adatto.

Questo lavoro si occupa di metodi di ricerca a griglia per l’identificazione di flyby
attuabili. Il filo conduttore della disertazione riguarda la riduzione dello sforzo di cal-
colo associato alla scansione del search-space. Presentiamo una soluzione a tre fasi:
la ricombinazione dei search-spaces associati alle traiettorie di precedenti e successive
al passaggio ravvicinato, il passaggio da una parametrizzazione temporale del search-
space ad una formulazione in elementi orbitali e l’implementazione di tecniche di prun-
ing, basate su regioni di delimitazione definite dal delta-v e dalla variazione di elementi
orbitali derivata per caso limite del flyby. Seguendo questa logica, la 3D Flyby map è
stata sviluppata per studiare il flyby nella dinamica dei tre corpi, per confrontare le dif-
ferenze rispetto alla modellazione patched conics dell’effetto del flyby e per progettare
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sequenze di flyby risonanti per il tour Europa Clipper. Il diverso effetto di flybys diretti
e retrogradi sulla traiettoria successiva al passaggio ravvicinato e la maggiore efficienza
dei primi rispetto ai secondi rappresentano le riflessioni più significative.
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CHAPTER1
Introduction

1.1 Background

Since the beginning of space exploration, analysts have widely exploited gravity assist
in the trajectory design of deep-space mission to reduce the propellant consumption
and contain the overall mission cost. The idea behind the flyby consists in leverag-
ing the interaction with the gravitational field emitted by a secondary body in order to
modify the trajectory of the S/C(Spacecraft) with the respect to the primary body in a
predictable manner. Historically, we have seen a constant increase in the complexity of
the trajectory of deep-space probes driven either by a reduction of the budget allocated
to the mission, or by an increase in the mission objectives and tasks. When the tech-
nological progress, alone, does not allow to accommodate the increasingly complex
mission scenarios, innovative trajectories are implemented and exploit the multi-body
dynamics with planetary flybys.

Although gravitational perturbations had been known and observed altering the tra-
jectory of comets since the eighteenth-century, the first theorisation of the flyby tech-
nique is attributed to Kondratyuk [39] and described the possibility of escape/capture
via an exchange in momentum between the S/C and the body at which the close en-
counter is performed. However, a systematic implementation of the flyby in the tra-
jectory design did not take hold until the development of the patched conics theory by
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Chapter 1. Introduction

Minovitch [51]. In his work, the alteration in orbital velocity of the S/C is a conse-
quence of the change in the system of reference due to the passage from the influence
of a body to another. Nevertheless, it is through Battin’s work [6] and the successful
execution of flybys at Venus and Jupiter by Mariner 10 and Pioneer 11, respectively,
that the flyby technique was consecrated in astrodynamics literature, and played a key
role in reducing the fuel consumption for several deep-space missions.

Depending on the phase of the mission, the flyby is exploited in different ways.
During the interplanetary journey, its effect is mainly used to accelerate/decelerate the
S/C in order to target another encounter opportunity, modifying significantly the orbital
shape in semi-major axis and eccentricity, and to ultimately escape/get captured as the-
orised by Kondratyuk [39]. Several successful missions executed interplanetary flyby to
reach and study the gas giants [25,47,53] and go beyond [32,38], to target NEA (Near-
Earth-Asteroids) [49, 60, 67] and the inner rocky planets [30]. However, the advent of
the exploration of planetary moon system tour has created new scenarios for the in-
clusion of flybys in the trajectory design. Galileo’s moon-tour of the Galilean moons
represents the first application of the flyby driven by science objectives [8, 28, 33]. The
improvement in the understanding of the flyby dynamics and the exploitation of its ef-
fect in the trajectory design is evident with Cassini’s tour [73]. Its trajectory achieved
capabilities never seen before, effectively reducing the propellant consumption, ob-
taining impressive results targeting low-altitudes passages at small bodies with limited
bending power and performing valuable observations. These achievements allowed
the NASA (National Aeronautics and Space Administration) to extend its mission for
seven more years [15]. Europa Clipper, in the end, represents the culmination of the
flyby employment as a result of the maturity in flyby knowledge and understanding.
The trajectory design, indeed, is stressed by an extremely complex mission scenario
in which the use of flybys in the trajectory design is tailored to satisfy specific scien-
tific, mission and safety requirements, otherwise not met, while delta-v is drastically
decreased [12–14].

The complexity of the mission scenario of Multiple-Gravity Assisted (MGA) tra-
jectories makes difficult to perform a comprehensive search of feasible transfers in a
multi-dimensional solution space that is further constrained by all the trajectory re-
quirements [22]. Several methods were proposed to solve MGA (Multi Gravity Assist)
trajectories. Ahead of analysing them in detail, it is important to provide a first catego-
rization of such approaches.

A first demarcation line, about the different approaches described in the literature,
can be drawn by distinguishing search methods from global optimisation approaches.
While the former aim to outline the solution space and identify the feasible trajectories,
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1.1. Background

scanning through its possibilities point-by-point, the latter instead, navigate through the
search space seeking for the point solution that minimises a predefined performance
index. If the search space is properly mapped, search solutions are always globally
optimal [46], yet less accurate when compared to global optimisation solutions. Never-
theless, accuracy can be restored by local optimisation in the post-processing, making
the two methods interchangeable.

Another difference concerns the type of MGA problem that is approached to be
resolved. In particular, planning represents the mission scenario and is opposed to
scheduling, which identifies the optimal configuration of the trajectory in time and
satisfies the mission scenario [46]. In the first case, the designer attempts to identify
the number and sequence of flybys enambling a given mission scenario, while in the
latter case, he exploits the sequence of planet identified in the planning step to resolve
the phasing for a specific time frame. The identification of the optimal trajectory, that
satisfies the requirements while minimising the cost function, is the result of an iterative
process between planning and scheduling, making them the two sides of the same coin.

Lastly, a further distinction can be made on the dynamics, which describe the laws
of motion of the S/C as a result of the interaction of its propulsion system with the
gravitational model adopted. The two effects on the S/C trajectories are considered
as decoupled, in order to better guide the reader through this overview of the methods
relevant to the work presented in this disseration. A different design approach is consid-
ered depending whether the S/C is powered with an impulsive or low-thrust propulsion
system and whether a patched conics or three-/n-body problem dynamics is taken into
account.

Graphical methods represent a special class of search technique, which appear par-
ticularly appealing for the possibility to provide insights on the flyby dynamics. In
particular, contour plots offer an immediate visualisation of the optimal trajectories by
displaying the trend of the performance index, e.g the delta-v, against two variables
that fully define the trajectory, for instance the epoch of departure and arrival. The
most simple example of graphical methods applied to trajectory design is the porkchop
plot [72].

Conic approximation represents the baseline for MGA trajectories design. Branch
and bound techniques are applied to construct the transfer orbit as a sequence of Ke-
plerian arcs connecting two minor bodies but remaining bounded to the dynamics of
primary, larger body. Flybys resolves the velocity discontinuities at each conjunction
with the secondary, smaller body. The patched conics model applied to flyby trajec-
tories relies on the simple hypothesis of the Sphere of Influence (SOI), which is used
to split the space in different domains within which only one body governs the laws
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Chapter 1. Introduction

of motion. The transfer orbit far from the secondary body can be considered as beam
of an infinite number of trajectories associated to all the possible arrival conditions at
the secondary body that generate a tube of infinitesimal radius. This concept explains
that far from secondary body all the entry conditions at the secondary coexist and that
the desired one can be targeted with no or significant small correction. Switching from
one arrival condition to another is inexpensive far from the secondary. Different ap-
proaches used a variety of orbital parameters derived from the Keplerian elements to
study the effect of the flyby on the overall trajectory: the asymptotic distance ∆ and
the radius of periapsis rp, the b-plane coordinates, η and ξ, pump and crank angles,
α and κ respectively. Depending on the parameter used, different graphical methods
were developed. The period-periapsis map (P − rp) [34, 55] and the Tisserand graph
(T −rp) [65] address the planning of the MGA trajectories by displaying the trajectory
variation induced by several close encounters and grouping flybys in different families
according to the disposition of their orbits in the plot. The difference between the three
methods consists in whether they can handle elliptic [34,55,65], parabolic [34,65] and
hyperbolic orbits. The v-infinity sphere [64] and the leveraging graph [19] display the
effect of the flyby on the post-encounter orbit for arbitrary phasing [42] against the
asymptotic velocity coordinates. The b-plane in the end allows to identify hazardous
close passages that could eventually lead to a collision [69].

The simplicity of the patched conics method presents a great advantage, as it allows
to describe the S/C motion by invariant quantities, but several drawbacks.Indeed, it
offers a limited understanding on the chaotic nature of the interaction between two or
more gravitational fields and constrains the design of flyby to high energy ones.

Differently from the two-body dynamics, in the three-body dynamics the total en-
ergy is the unique invariant of motion. Such condition prevents to describe the tra-
jectory analytically and requires to numerically propagate the S/C trajectory from an
initial state to study its evolution in the three-body dynamics. Studying the complete
search space of the state vector can be computationally intensive, therefore, depending
on the application, different methods have been developed to scan the solution space
and grasp insights on the dynamics of the close encounter in the three-body dynamics.

SMD (Space Manifolds Dynamics) studies the natural transportation of the system
at very low energy via invariant manifolds and exploits homoclinic and heteroclinic
connections to link trajectories from different domains [40, 41]. An alternative to the
SMD methods that stick to three-body dynamics for the trajectory design, consists in
approximating the dynamics by mapping the effect of the third body perturbation on
an osculating orbit, parametrised by the Keplerian elements. Depending on how the
gravitational interaction is modelled, it is possible to distinguish between two classes

4



i
i

“output” — 2020/1/23 — 8:24 — page 5 — #25 i
i

i
i

i
i

1.1. Background

of methods: semi-analytical or fully numerical methods, accordingly. On one side
the Keplerian [2, 59] and on the other the Flyby map [21]. The Tisserand-Poincaré
graph [20] represents, instead, an upgraded version of the Tisserand graph derived for
the three-body dynamics.

All the methods listed so far belong to the search category. Tackling the scheduling
problem with a search approach could appear a good strategy, since exhaustive insights
can be derived about the dynamics and a global optimal solution can be identified.
However, most of the methods appear extremely sensitive to the grid discretisation,
making the search of feasible flyby computationally prohibitive when a finer resolu-
tion is desiderable [23, 24]. Nevertheless, other methods were proposed to effectively
constraint the search space by limiting the time-of-flight (∆T ) [7], the relative velocity
at the flyby (v∞) [35], the total delta-v (∆v) directly [3], the semi-major axis or some
other orbital quantity [22, 70].

Table 1.1 gathers the contributions, that were introduced in this paragraph and are
relevant for this dissertation, and frames them in the five categories previously iden-
tified. In particular, the publications are distinguished depending whether the authors
adopted a grid search or global optimisation method, to schedule (φ) or plan (E) the tra-
jectory design of S/C powered by impulsive (High) or low-thrust in patched conics (2B)
or three-body (3B) dynamics and whether specific visualisation tools are employed to
represent the feasible flyby solution determined by the method adopted.

Table 1.1: Relevant methods for flyby trajectory design.

Method Problem Dynamics

gr
ap

hi
ca

l
m

et
ho

ds

Gravity Propulsion
grid opt φ E 2B 3B High Low

VILM [63] x x x x
P − rp(E < 0) [55] x x x x x
P − rp(E ≤ 0) [34] x x x x x
T − rp(∀E) [65] x x x x x

b-plane [69] x x x x x
∆T pruning [7] x x x x

esin shape-based [54] x x x x
v∞ pruning [35] x x x x

Keplerian map [59] x x x x x
v∞ sphere [64] x x x x x
∆v pruning [3] x x

Leveraging graph [19] x x x x x
T-P graph [20] x x x x x x
Keplerian map
refinement [45] x x x x x

Flyby map [21] x x x x x
Kick map [2] x x x x
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Chapter 1. Introduction

1.2 Research questions

The objective of this doctoral research consist in exploiting graphical methods applied
to the design of interplanetary trajectories, on one side, to improve the understanding
of the dynamics and, on the other, to revisit the design process.

Considering the objectives set, this dissertation reviews the mechanisms employed
by the trajectory design in presence of flyby. To do that, the process generating optimal
flyby solutions is analysed from the simplest and most basic tasks, e.g in patched con-
ics the Keplerian arc associated to the two-point boundary value problem (2PBVP). In
this context, it can be observed that the main search approach applied to the Lambert’s
problem for different departure/arrival condition identifies a significan number of so-
lutions with high delta-v. Therefore, the present work aims to address the possibility
to identify a priori a region of the solution space with low delta-v and to improve an
epochs-based search of feasible trajectories.

The next step focuses on the flyby examining whether the resolution in cascade
of the pre- and post-encounter trajectories from the epochs triplets (departure, flyby,
arrival) could not be performed differently and whether the possibility exists to evaluate
the flyby of the transfer orbits itself, bypassing the close encounter distance and turning
angle concepts.

In the end, the accuracy of the patched conics in modelling the effect of the flyby is
questioned.

1.3 Research contribution and thesis organisation

The dissertation opens Chapter 2 with an analysis of the porkchop plot computed con-
sidering circular coplanar dynamics. In particular, the contribution of this thesis con-
sists in the analytical determination of the location of the minimum delta-v and the
characterisation of the shape associated to constant delta-v contour based on the solu-
tions associated to tangential manoeuvre at the departure and arrival. Chapter 2 closes
with the extension of the location and shape analysis from zero to multi-revolution
transfers. The multi-revolution porkchop plot is generated.

Chapter 3 deals with the problem of the flyby: a recombination of the solutions
associated to incoming and outgoing transfer legs, resolved in parallel, is performed at
the common time of flyby. A modelling of the trajectory as an inverse Lambert problem
is presented and legitimated by the fact epochs-based search is inefficient. A method
to evaluate the effect of a flyby in terms of Keplerian elements is provided and Gauss’
planetary equations derived for the flyby acceleration concludes the chapter.

A pruning technique based on the creation of a delta-v bounding region from the
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tangential solutions is offered in Chapter 4 and it is based on the observation that
epochs-based search identifies a solution space characterised by high delta-v while low
delta-v trajectories are confined into the neighbourhood of the minimum location. A
root-finding method is then applied for the refinement of the delta-v bounding region
in circular coplanar dynamics, but also for the real ephemerids model. In this way, the
pruning of direct trajectories is extended to transfer with flybys, modifying the gener-
ation of the delta-v bounding region and improving it with limits derived by Gauss’
Variational equation.

In Chapter 5, the effect of the flyby is studied with CR3BP (Circular Restricted
Three-BodyProblem) dynamics. An extended version of the Flyby map is offered to
account for the out-of-plane dynamics. Chapter 5 concludes with the comparison be-
tween the flyby effect numerically integrated and the one modeled by patched conics.

Chapter 6 accounts for different techniques for the refinement or optimisation of the
trajectory that were developed during the research: two different strategy for the flyby
optimisation, a root-finding approach for the extraction of the resonant flyby from the
flyby map and a continuation method based on psuedo-arclength parametrisation for the
identification of families of flyby at prescribed close approach distance. An application
of the Flyby map to Europa Clipper tour design is shown in Chapter 7. Chapter 8
provides final remarks and conclusions on the most relevant findings of the work.

1.4 Bibliography disclaimer

During the years of my Philosophiae Doctor (PhD), I presented updates of my work in
many conferences. Major part of this work have been extended and is currently have
been submitted for review to scientific journals or are about to be submitted. The most
significant publications are listed below.
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• D. Menzio and C. Colombo, "New insights on the porkchop plot andits possible
applications." Celestial Mechanics and Dynamical Astronomy, To be submitted

• D. Menzio, S. Campagnola, and C. Colombo, "Flybys in the spatialcircular re-
stricted three body problem." Journal of Guidance, Control and Dynamics, To be
submitted

• D. Menzio and C. Colombo, "Pruning techniques to reduce the porkchop plot
search space." Celestial Mechanics and Dynamical Astronomy, To be submitted

• D. Menzio, S. Campagnola, and C. Colombo, "An application ofthe flyby map to
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tional Astronautical Congress, Adeilade (AU).

• D. Menzio and C. Colombo, "An analysis of the pork-chop plot for direct, multi-
revolution and fly-by missions." In Advance in the Astronautical Sciences, pages
1739 1753, 2018. Presented at the 4th IAA Conference on Dynamics and Control
of Space Systems in Changsha (CN).

• D. Menzio and C. Colombo, "Adapted syzygy functions for the preliminary de-
signof multi gravity assists trajectories." In IAC proceedings, 2018. Presented at
the International Astronautical Congress in Bremen (DE).

• D. Menzio and C. Colombo, "Flybys in the spatial circular restricted three body
problem. In AAS/AIAA proceedings, 2018. Presented at the Astrodynamics Spe-
cialist Conference in Portland (USA).

8



i
i

“output” — 2020/1/23 — 8:24 — page 9 — #29 i
i

i
i

i
i

Part I

Interplanetary cruise

9



i
i

“output” — 2020/1/23 — 8:24 — page 10 — #30 i
i

i
i

i
i



i
i

“output” — 2020/1/23 — 8:24 — page 11 — #31 i
i

i
i

i
i

CHAPTER2
Insights on the targerting problem

The porkchop plot is a useful visualisation tool that allows to analyse transfer orbit with
respect to different performance parameters, such as the characteristic energy at the
departure and at the arrival, the total delta-v, transfer duration, the maximum distance
to Sun, etc. [27]. In its most common application, the porkchop plot is used to represent
the characteristic energy, C3, associated to different departure and arrival conditions for
a specific targeting problem. It is due to its distinctive shape, resembling indeed to a
steak of meat, which earned the chart such a peculiar name [72].

An extensive literature about this subject is not available per se, but it is associated
to studies on the geometrical interpretation of the Lambert’s problem. Literature is
available about its formulation [4, 5, 50], its extension to handle different trajectory
scenarios (e.g. multi-revolutions trajectories [10,62] and low-thrust coast arc [58]), and
its application to real missions (to Mars, [1, 48, 74], Near Earth Asteroids [29, 66, 75],
Jupiter [26] and beyond [63, 72]).

The first use of the porkchop plot dates back to the Voyager missions [72], when it
was developed with the specific purpose of intercepting Saturn within 1981, but avoid-
ing close encounters on some particular dates, such as Thanksgiving and Christmas.

Despite more than four decades of use, the porkchop plot is not currently exploited
at its full potential. Indeed, the majority of algorithms available in the literature for
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Chapter 2. Insights on the targerting problem

resolving the targeting problem presents a large portion of the solution space affected
by a large delta-v. Understanding the effect of the dynamics on the delta-v distribution
could be exploited to limit the search space and to improve the search algorithm. The
possibility to know the location of the delta-v minima a-priori and to have an indication
of the contour regions occupied by specific delta-v level would be extremely advanta-
geous and could prevent to resolve the Lambert’s problem for all the grid points of the
search space. In this way, it would be possible to avoid unnecessary computations for
solutions that are known in advance to be not optimal. Moreover, additional minima
could be included if multi-revolution transfer are considered.

Therefore, the following sections offer an analysis of the porkchop plot that aims
to investigate the location of the minimum delta-v solutions. The shape of constant
delta-v contour lines are evaluated with respect to the solutions associated to tangential
manoeuvres. Moreover, multi-revolution transfers are considered where the time of
flight, and in turn the delta-v, grows to such an extent as to invalidate the use zero-
revolutions trajectories. Indeed, the porkchop plot can be filled with additional minima
obtained stacking the multi-revolution solutions on top of the zero-revolution ones.

2.1 Analysis of the classical porkchop plot

The general definition of a porkchop plot is a chart displaying the contour lines at
constant total delta-v against different combinations of departure/arrival dates. Each
pair defines univocally a transfer orbit. The porkchop plot can be considered as the
first graphical methods employed in mission analysis to obtain an immediate and clear
identification of the regions of the solution space satisfying a specific requirement, e.g.
low delta-v. In fact, the porkchop plot represents against a grid of different departure
and arrival dates the numerical solution of several targeting problems, most commonly
known as Lambert’s problems. Their solution was derived by Lagrange manipulating
the Kepler’s equation for the transfer time, see Eq.2.1:

√
µ
a3

∆t = α− β − (sinα− sin β)

sinα =
√

s
2a

sin β =
√

s−c
2a

(2.1)

The semi-major axis, a, is found from the non-linear Kepler equation, as a function
of the time of flight, ∆t, the gravitational parameter, µ, and the values of the eccen-
tric anomalies on the rectilinear ellipse, α and β. These angles are geometrical terms
functions exclusively of the semi-perimeter, s, and the chord, c, of the so called space
triangle which depend only on the departure and arrival positions [57].

Although the porkchop plot is generally the final result of a grid-search algorithm
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2.1. Analysis of the classical porkchop plot

applied to several Lambert’s problems, the trend of the delta-v solutions can give in-
sights on the dynamics of the problem. This information can be used to reduce the
dimensionality curse by which brute-force techniques are generally affected.

To have a clear understanding of the solutions represented by the porkchop plot,
some simplifications must be introduced. Hence, circular and coplanar trajectories are
considered here in order to restrict the trend of the delta-v solutions to the smallest num-
bers of variables. Comparing the results obtained from real and simplified ephemerides,
one can observe from Fig. 2.1 how the real eccentricity and inclination of the departure
and arrival planet’s orbits spoil the smoothness of constant delta-v contour lines asso-
ciated to the circular coplanar case. The assumed simplified shape does not capture
the topology of the contour obtained for the real ephemerides. In fact, the inclination
difference between the departure and arrival orbits results in the vanishing of global
minimum and the appearance of two local minima separated by a ridge, as it can be
seen from Fig. 2.1. Nonetheless, considering the aim of this research focused on con-
straining the search space to a region of prescribed delta-v, one can observe that delta-v
contour levels obtained from circular coplanar orbits approximate well the region occu-
pied by similar/lower delta-v associated to real ephemeris. Therefore, the idea behind
this work consists in locating the delta-v minima and characterising the area around it
in terms of the shape of the contour lines with constant delta-v derived for the circular
coplanar case.

Figure 2.1: The porkchop plot for a Earth-Mars transfer opportunity, obtained considering real (left)
and simplified (right) ephemerids.

The focus of the research moves from the search and characterisation of the delta-v
minima to the identification of an approximate region derived for a simplified model
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Chapter 2. Insights on the targerting problem

but containing the minima of the real case scenario, legitimating the analysis presented
in this work.

2.2 An analytical solution for the locus of minimum delta-v

For circular coplanar orbits of the departure and arrival planets, orbital mechanics pre-
dicts that the Hohmann transfer is the solution with minimum delta-v [56], and is lo-
cated at the intersection of the red dashed lines in Fig. 2.2.

Figure 2.2: The repetitiveness of the porkchop plot every synodic period, represented by evenly spaced
red dash-dotted lines associated to the departure and arrival dates of different delta-v minima.

Fig. 2.2 shows that the minimum delta-v solution repeats with the frequency of conjuc-
tion, fsyn. This quantity is associated to the synodic period of the system constituted by
the departure and arrival planets and defined in Eq. 2.2:

fsyn =
1

2π

(√
µ

a3
d

−
√
µ

a3
a

)
(2.2)

as the difference of mean motions of the departure and arrival planets, specified in the
equations with the subscripts d and a, respectively. The angular speed of each planet
is expressed as the square root of the gravitational parameter, µ, of the central body,
divided by the semi-major axis a.

The characteristics of the HTO(Hohmann Transfer Orbit) can be summarised in
two conditions: tangential thrust at the terminal points and minimum semi-major axis.
Condition that for circular coplanar orbits is verified when the semi/major axis is equal
to the average of the orbital radii of the departure and arrival planets. For the targeting
problem, such conditions can be translated into purely geometrical relations, allowing
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2.2. An analytical solution for the locus of minimum delta-v

to derive an analytical expression for the minimum delta-v solution as a function of the
departure and arrival epochs, td and ta, and orbital radii, rd and ra: ta = td + π

√
(rd+ra)3

8µ√
µ
r3a
ta = (

√
µ
r3d

)td − (ϕa(t0)− ϕd(t0)− π)
(2.3)

In Eq. 2.3, ϕ represents the angular phasing measured from the vernal equinox, �, at
the initial time t0 from which the time of departure td is computed. The two conditions,
which will be called from now on with the symbolic expression ∆tHTO and ∆ϕπ,
impose that the transfer time equals half a Hohmann period and that the phasing angle
between the position vectors of the departure and arrival planets correspond exactly to
180 degrees.
Eq. 2.3 can be rewritten in non-dimensional units with respect to the arrival planet
normalising the two equations with its mean motion: ta = td + π√

8

(
rd
ra

+ 1
)1.5

ta =
(
ra
rd

)1.5

td −∆ϕ
(2.4)

Figure 2.3: The identification of the delta-v minimum at the intersection of ∆tHTO (on the left and on
the right) and ∆ϕπ (on the center and on the right) lines, determining the locus of the points with
transfer time equal to half Hohmann period and with phasing angle difference equals to 180 degrees,
represented with a continuous and broken line.

The two geometric relations in Eq. 2.3 appears in the porkchop plot as two lines
with different slopes, represented with a continuous and dashed line in Fig. 2.3. Their
intersection determines the exact point at which the HTO takes place. Eq. 2.4 shows
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Chapter 2. Insights on the targerting problem

that the location of the minimum delta-v solution in the case of circular coplanar orbits
depends on only two parameters: the ratio between the orbital radii of the departure
and arrival planets and the initial phasing angle difference.

It is interesting to note that the two parameters have a different effect on the ∆tHTO

and ∆ϕπ lines: the orbital radii ratio affects the y-intercept of the former and the slope
of the latter while the initial phase angle difference influence only the y-intercept of the
latter. The net effect of selecting a different departure/arrival planet is a translation in
the arrival epoch, ta, direction driven by the orbital radii ratio, ra

rd
, for the ∆tHTO line

and a coupled roto-translation induced by the orbital radii ratio, ra
rd

, and the orbital phas-
ing difference, ∆ϕ, for the ∆ϕπ line. Although, the arrival time adaptation preserves
the repetitiveness of the delta-v minima with the synodic period, see Fig. 2.4, neverthe-
less, a modification of the shape of the constant delta-v contour lines is expected and
will be addressed in the following paragraphs.

Figure 2.4: The identification of two consecutive delta-v minimum based on purely geometrical relations.

In conclusion, the main remark of this paragraph is that the location of minimum
delta-v solutions is predictable with no need of solving any non-linear equations, but
exploiting purely geometrical relations.

2.3 The analysis of the contour lines at constant delta-v

In the previous section, it was shown how it is possible to assess the position of the min-
imum delta-v solutions from the planets phasing and the time of flight. This paragraph
focuses on how the contour lines assume such a characteristic triangle-like shape, in or-
der to verify if it is possible to constraint the search space into a control region around
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2.3. The analysis of the contour lines at constant delta-v

the delta-v minimum.

(a) (b) (c)

Figure 2.5: The generation of a constant delta-v contour line (c) as the sum of the relative velocities at
departure (a) and arrival (b) planets respectively.

Given the definition of the characteristic energy C3 = v2

2
− µ

r
= v2∞

2
as the square

of excess velocity, v, needed to escape from the gravitational attraction of a massive
body on an orbit of radius r, Fig. 2.5 displays how each contribution of the relative
velocities at the departure and at the arrival sum up to generate a delta-v contour line.
Indeed, Fig. 2.5 shows that each delta-v contour line originates at the intersection of
complementary levels in total delta-v for the departure and arrival relative velocities,
which are deemed as those escape and capture manoeuvres whose combination equals
exactly the total delta-v generating the the contour line of interest.

Fig. 2.6 represents pairs of complementary departure/arrival relative velocities with
the same color and shows how a constant delta-v contour line is generated at the inter-
section of manoeuvres different in magnitude but whose sum is constant. Although, the
relative velocities at departure and arrival explain the generation process of the single
contour line, however, the motivation behind the contour shape remains hidden in the
data. In fact, from the contour line of the relative velocities at departure and arrival
it is impossible to address the effect of orientation of the manoeuvre on the delta-v.
Indeed, the fundamental difference between tangential and secant manoeuvres lies in
the need to correct either the shape or the orientation the transfer with respect to the
departure/arrival orbit and is believed to play a central role in explaining the constant
delta-v contour shape.
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Chapter 2. Insights on the targerting problem

Figure 2.6: The generation of a 10 km/s delta-v contour line from the complementary relative velocities
at departure from Earth and arrival at Mars. In particular green, magenta, cyan and orange lines are
associated to the pairs of manouevres with 3.84-6.16, 5.00-5.00, 6.00-4.00, 6.62-3.38 km/s delta-v
respectively, identifying at their intersection the delta-v contour level represented with the white line.

The indication of the manoeuvre direction can be obtained by representing the dates
associated to a tangential manoeuvre at departure or arrival, displayed with the blue and
green scaled lines in Fig. 2.7.

Figure 2.7: The trend of constant delta-v contour lines over the solutions associated to tangential ma-
noeuvres at departure or at arrival represented with in blue and green lines, respectively. The colour
scaling is associated to the eccentricity of the transfer orbit and the yellow and red dashed lines
show the ∆tHTO and 2∆tHTO -lines, with the latter identifying an upper limit for zero-revolution
transfers above which one-revolution solutions present a lower delta-v.
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2.3. The analysis of the contour lines at constant delta-v

By scaling the colour of the tangential solutions on the eccentricity, it is possible
to note that, as expected, the intersection of the two curves occurs at the smallest ec-
centricity, condition that coincides with the delta-v minimum. Moving away from the
intersection point, the eccentricity tends to increase. Tangential solutions provide in-
teresting insights on the nature of the delta-v contour shape, in fact Fig. 2.7 shows that
two of the three lobes of the delta-v contour line appear directed along one of the two
extremities of each of the two lines, while the third looks to be encloses by the other
two sides. Moreover, the greater elongation of the upper lobe with respect to the others
can be explained by the fact that it is obtained where the manoeuvre is more effective,
i.e. closer to the primary which in this case coincides with the departure.

Some intuitions on the lower-right vertex of the triangle-like shape can be derived
by looking at the trend of the semi-major axis of the transfer orbit, represented on the
background of Fig. 2.8 through its inverse normalised on the value associated to the
Hohmann transfer in a grey scale contour fashion. In fact, it can be noted that the
orientation of the third lobe is directed along the solutions presenting the semi-major
axis of a HTO. However, for low time of flight, the transfer orbit exhibits an increase
in eccentricity, as shown by the solutions for tangential manoeuvres ending in the areas
associated to parabolic semi-major axes. Such regions shapes the sides of the third lobe
of the constant delta-v contour line, giving it a sharp look.

Figure 2.8: The trend of the constant semi-major axis contour lines, represented through its inverse value
scaled on the Hohmann transfer one, over the delta-v contour lines and the solutions associated to
tangential manoeuvres at departure or at arrival represented with blue and green lines, respectively.
The colour scaling is associated to the eccentricity of the transfer orbit and the yellow and red
dashed lines show the ∆tHTO and 2∆tHTO -lines, with the latter identifying an upper limit for
zero-revolution transfers above which one-revolution solutions present a lower delta-v.
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Chapter 2. Insights on the targerting problem

In the end, it is interesting to note that, among the solutions lying on the constant
delta-v contour line, those displaying tangential firing at the departure, which is ex-
pected to be more efficient, allow to perform a steeper secant manoeuvre at the arrival,
see Fig. 2.9. At the same time, tangential manoeuvres at the arrival leave lower delta-v
to switch from the initial orbit to transfer one and exhibit a milder angular difference
between transfer and initial orbits. The “mixed” scenario implementing two secant ma-
noeuvres can be considered as the transition phase between the departure and arrival
tangential cases, just described.

tangential departure mixedtangential arrival

Figure 2.9: The representation of the trajectories associated to a 10 km/s delta-v contour line. In blue,
green and white the transfer orbits implementing a tangential manoeuvre at the departure or arrival
or a secant manoeuvre, respectively.

2.4 From the classical to the multi-revolution porkchop plot

When the time of flight is high enough, the Lagrange equation for the Lambert’s prob-
lem, see Eq. 2.1, can be modified as following:√

µ

a3
∆t = 2Nπ + α− β − (sinα− sin β) (2.5)

where N takes into account the number of revolutions that the S/C is required to per-
form prior arrival to the target.

Fig. 2.10 provides an intuitive reason why considering multi-revolution solutions
for an increased search space would be beneficial from a delta-v perspective. It dis-
plays the trend of semi-major axis and eccentricity against the time of flights for zero,
one and two revolutions cases, represented with a continuous, dashed and dash-dotted
lines respectively. It can be noted that, below a certain time of flight no solution is
available for multi-revolution transfers. But as soon as the time grows enough, such
trajectories present a lower semi-major axis and a lower eccentricity when compared
with the solutions at fewer revolutions.

Multi-revolution trajectories, if exist, are more efficient in delta-v with respect to
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2.4. From the classical to the multi-revolution porkchop plot
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Figure 2.10: The evolution of the semi-major axis (left) and eccentricity (right) with respect to the time
of flight for an Earth-Mars transfer in 120 deg phasing configuration . The continuous, dashed and
dash-dotted curves are associated to 0, 1 and 2 revolutions transfer trajectories, respectively.

zero-revolutions solutions. As it can be seen from Fig. 2.10, for similar time of flights,
zero-revolutions orbits require higher semi-major axis and eccentricities which in turn
affect badly the delta-v [61, 62]. In the case study presented, a reduction of few tens of
(between 10 and 50) km/s is obtained switching from a zero-revolution trajectories to
another with one-revolution.

Differently from the zero-revolutions transfer that presents a monotonous trend of
the semi-major axis and eccentricity with respect to the time of flight, i.e. any line par-
allel to x-axis identifies either one or zero intersection with the curve, multi-revolution
trajectories present a short and long solutions depending on whether the S/C travels
along the shortest or the longest path for a given orbit. In particular, when ∆θ < π,
the upper/lower branch of the semi-major axis/eccentricity plot corresponds to the long
transfers, while the lower/upper branch corresponds to the short ones, and vice versa
for ∆θ > π [62].

The identification of the minimum delta-v

Similarly to Eq. 2.5, the ∆tHTO term for the explicit solution of the minimum delta-v,
see Eq. 2.4, can be modified to identify the locus of the points that present a time of
flight equal to an odd multiple of half Hohmann period, as indicated in Eq. 2.6:

ta = td + π 2N+1√
8

(
rd
ra

+ 1
)1.5

ta =

((
ra
rd

)1.5
)
td −∆ϕ

(2.6)

Representing the smallest delta-v solutions obtained for a multi-revolution transfer on
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Chapter 2. Insights on the targerting problem

Figure 2.11: On the right, the triangle-like and butterfly-like constant delta-v contour lines to the zero
and one revolution transfers, respectively. On the left, the identification of the delta-v minima at the
intersection of n∆tHTO and ∆ϕπ lines, represented with a continuous and broken lines, respectively.

the porkchop plot it is interesting to observe that the associated minimum is still cen-
tered at the intersection between ∆ϕπ-lines and n∆tHTO-lines, where n is an odd num-
ber, i.e. n = 2N + 1, see Fig.2.11.

Analysis of constant delta-v contour lines

A similar evaluation of the shape of the constant delta-v contour lines to those per-
formed for the zero revolutions transfer can be made analysing the solutions in depar-
ture and arrival times associated to tangential manoeuvre at departure or at arrival, rep-
resented in Fig.2.12 with the blue and green lines respectively, whose colour is scaled
with respect to the eccentricity.

As expected and as before, the Hohmann transfer is identified at the intersection
of the two curves associated to tangential manoeuvres. Instead, differently from the
triangle-like shape generated from zero-revolutions trajectories, the orientations of all
lobes are captured by each extremity of the splines associated to tangential firing. It
is interesting to note that for the same delta-v level, the number of epochs associ-
ated to long transfer solutions is significantly higher compared to the one assigned
to short transfers. However this effect is the result of the fact that the search space is
parametrised as a function of the time. Moving far from the minimum delta-v solution,
with the increase of the eccentricity, the difference between short and long transfer time
of flight grows which means that for a linear scaling of the axis it’s natural to observe
the area associate to solution space associated to long transfer bigger than the short one.
Nevertheless substituting the departure and arrival date with the true anomaly would re-
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2.4. From the classical to the multi-revolution porkchop plot

Figure 2.12: The trend of the constant delta-v contour lines for the one revolution transfer over the
solutions associated to tangential manoeuvres at departure or at arrival represented with in blue and
green lines, respectively. The colour scaling is associated to the eccentricity of the transfer orbit.
From below upwards, the red, yellow and red dashed lines display the solution associated to 2, 3 and
4∆tHPO. The area within the red lines represents the region of the search space in which the one-
revolution transfer is expected to present lower delta-v compared to the zero- and two-revolutions
one.

solve the issue and make the two regions appears of the same size. A similar situation
can be observed comparing the area subtended by zero and one-revolution contour lines
obtained for the same delta-v. Despite the different shape, the difference in area is ob-
servable and can be explained by the fact the significant difference in time of flight.
Indeed, for the same semi-major axis, zero and one-revolution transfers present the
same delta-v nevertheless one-revolution solutions on a constant delta-v contour line
display on average a time of flight 1.5 longer than zero-revolution one. If the contour
lines were identical in shape, the one derived for one-revolution should occupy 1.5 more
pixels than the zero-revolutions one, however given the different shape an estimate of
the ratio of the two areas is pointless since the explanation of their different appearance
is addressed.

Nevertheless the predominant elongation of the upper lobes of the domain with re-
spect to the lower ones can be still associated to the fact that manoeuvres closer to the
primary, and in that case at the departure, are more efficient and therefore requires less
delta-v.

All these insights can be further investigated by representing the trajectories asso-
ciated to a specific contour line, see Fig. 2.13. Two types of orbits can be identified:
those found at the intersections between the lines associated to tangential manoeuvres
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Chapter 2. Insights on the targerting problem

tangential departure mixedtangential arrival

Figure 2.13: The representation of one revolution trajectories associated to the 10 km/s delta-v contour
line. In particular, cyan and purple are associated to long and short transfer with a tangential
manoeuvre at the departure. Green and yellow for one at the departure while white orbits implement
all secant tangential manoeuvres.

and the reference constant delta-v contour line, and those obtained performing all se-
cant firing. It can be observed that performing a tangential manoeuvre at the departure,
which appears to be more efficient, leaves more delta-v to be spent at the arrival and
therefore results in a steeper crossing between the transfer and the arrival orbit. On the
other end, tangential firing at the arrival, less efficient with respect to the departure one,
prevents from performing steep manoeuvre at departure, requiring a shallower angular
difference between the departure orbit and the transfer.

In the end, all secant manoeuvres, captured in the ”mixed” scenario, represent a tran-
sition phase between the two cases, similarly to zero revolutions transfer case, see Fig.
2.9. The relative small delta-v level prevents from appreciating significant differences
between long and short transfer, which have been represented in Fig. 2.13 with cyan
and purple colours for the departure case and with a green and yellow for the arrival
one.

Figure 2.14: On the right, the zero and multi-revolutions minimum delta-v contour line, up to the 4th

revolutions, represented in the porkchop plot. On the left, the identification of the delta-v minima
at the intersection of n∆tHTO and ∆ϕπ lines, represented with a continuous and broken dashes
respectively.
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2.4. From the classical to the multi-revolution porkchop plot

Such considerations enables to open new scenarios with respect to those identified
for the zero revolutions case and to populate the porkchop plot of new minima, see
Fig.2.14 whose center can be located with no need to resolve the associated Lambert’s
problem but exploiting the geometric relations.
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CHAPTER3
Search space reduction for flyby trajectories

In the design of MGA trajectories, the ”branch and bound” algorithm represents one
of the most used methods to identify optimal transfers [22]. The underlying idea of
the approach consists into breaking the trajectory of the S/C in several legs connecting
each pair of planets for a predetermined sequence of flybys. The different targeting
problems are resolved in cascade for distinct combination of departure and arrival dates.
The optimal solution is finally identified as the one which permits to minimize the cost
function while satisfying the constraints.

Such method requires a massive computational cost since the computational com-
plexity grows exponentially. To reduce the dimensionality growth of the search space,
in the first part of the chapter, a method based on the combinatorial evaluation of con-
secutive targeting problems is proposed. In particular, the arrival and departure relative
velocities associated to consecutive legs are recombined at the common node for each
date of flyby. The recombination allows to restore a quadratic growth for computa-
tional effort, similar to the case of direct transfers. In the second part of this chapter,
a method inspired by shape-based algorithms, derived for low-thrust trajectories, is ap-
plied for the impulsive thrust case to reverse the Lambert problem by solving Kepler
equation for the time-of-flight instead of the semi-major axis. This is possible since
the search space is parametrised not anymore in epoch but in orbital elements which
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Chapter 3. Search space reduction for flyby trajectories

appears to be a more compact set compared to its temporal counterpart. Moreover,
the inverse Lambert problem allows an explicit resolution for the time of flight of the
transfer without passing through any non-linear equation. Flybys connecting consec-
utive transfer legs are evaluated by approximated functions expressed in terms of the
Keplerian elements.

3.1 Grid-search recombination for triplets

Switching from direct transfer solution of the simple targeting problem to flyby trajec-
tories can be beneficial from the point of view of fuel/cost mission saving, new launch
windows opportunities and a significant increase in scientific return.

The idea behind the flyby exploitation consists in leveraging the interaction with the
gravitational pull of a secondary attractor in order to modify in a desired manner the
trajectory of the S/C with respect to the primary body.

The conventional approach consists in treating each transfer leg independently by
resolving separately the associated Lambert’s problems and analysing the boundary
conditions at the flyby planet. Patched conics models the effect of the close encounter
with an instantaneous change in magnitude and direction of the heliocentric velocity
[31, 51].

Therefore, each flyby can be evaluated depending on how the Lambert’s solutions for
two consecutive legs recombine at the flyby planet in terms of the difference in mag-
nitude and orientation relative velocities compared to the one attainable by the close
approach.

The relative velocities at the flyby planet, v±∞, which are computed as the difference
of the heliocentric ones, v±, solutions of the targeting problems for the pre- and post-
encounter trajectories, and the planetary heliocentric velocity, vpl:

v−∞ = v− − vpl

v+
∞ = v+ − vpl

(3.1)

identify two hyperbolic trajectories in the SOI of the flyby planet. Their patching can be
ensured by applying a correction manoeuvre at infinite [31] that covers the difference
of the in-/out-coming relative velocities at the boundaries of the flyby planet:

∆v∞ =
∣∣v−∞ − v+

∞
∣∣ (3.2)

An additional cost must be paid when the flyby does not provide the necessary contri-
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3.1. Grid-search recombination for triplets

bution in terms of desired turning angle:

∆v∞ =

√
v+
∞

2 + v−∞
2 − 2v+

∞v
−
∞cos(δ − δmax) (3.3)

where δ is the desired turning angle computed as the angular distance measured be-
tween in-/outgoing infinite velocities and δmax represents the maximum turning angle
that the flyby can offer when the closest approach is performed at the minimum allowed
periaspidal distance, rpmin

[6, 27, 57]:

δmax = maxv±∞

2 sin−1 1

1 +
rpminv

2
∞

µ

 (3.4)

From a design perspective, considering a flyby along the trajectory implies resolving
one additional targeting problem per each flyby. A convectional grid-search algorithm
for the design of flyby trajectories would perform the resolution of each Lambert leg
in cascade, situation inducing the growth of the computational effort by an exponential
factor. In fact, if the direct transfer case demands the evaluation of Eq. 3.4 for n epochs
of departure over m epochs of arrival, the computational effort in the case of one flyby
grows from quadratic, n×m, to cubic ,n×m× l, where n, m and l are associated to
the number of departure, flyby and arrival dates. This brute-force approach requires to
re-evaluate multiple times the same targeting problem. A more elegant implementation
would resolve the two Lambert’s problem separately and recombine the solutions at
the common node that share the same date of flyby. From now on two new terms are
introduced namely doublets and triplets, that refer to a set of epochs for the simple and
flyby targeting problem. In particular, doublets represent a set of departure and arrival
dates, while triplets a set of departure, flyby and arrival dates.

(a) C3 at departure from Earth (b) v−∞ at arrival at Venus

Figure 3.1: The porkchop plot in C3 and v∞ for the Earth-Venus leg.
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Chapter 3. Search space reduction for flyby trajectories

(a) v+∞ at departure from Venus (b) C3 at arrival at Mars

Figure 3.2: The porkchop plot in C3 and v∞ for the Venus-Mars leg.

Fig 3.1 and Fig. 3.2 represents the relative velocity at departure and at arrival in a
porkchop plot flavour for the an Earth-Venus and Venus-Mars transfers:

The recombination of the search space for two consecutive doublets at the same date
of flyby enables to construct a slice of solution space of the triplets in the departure
and arrival dates hyperplane on which it is possible to observe the total delta-v at the
terminal points, see Fig. 3.3, the relative velocity difference at the flyby and the desired
turning angle, see Fig. 3.4.
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Figure 3.3: The total delta-v at terminal points for an Earth-Mars trajectory with a flyby at Venus on the
1st January 2022.

Repeating the recombination for all the date of flyby allows to scan the complete search
space of the triplets. The proposed grid-search algorithm allows to reduce the number
of computation to n × m + m × l = m × (n+ l) targeting problems restoring the
quadratic growth for the computational effort from the cubic one observed in the clas-
sical cascade approach, .
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3.2. Inverse Lambert problem
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(a) v∞ difference
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(b) turning angle, δ

Figure 3.4: The infinite velocity difference and the turning angle for an Earth-Mars trajectory with flyby
at Venus on the 1st January 2022.

3.2 Inverse Lambert problem

In the previous section a method to reduce the computational effort of the grid-search
of triplets was presented. The presented approach for the design of flyby trajectories
rejects the classical cascade approach employed for sequence of targeting problems,
forcing a repetitive scanning of the same terminal conditions, and proposes, instead,
a separate analysis of each Lambert leg on its specific time grid and a subsequent re-
combination of solutions for common dates of flyby. Despite the improvement, the
approach remains bounded to an epoch-based search. Thus, the exploration of the full
solutions space results impractical [46], a fortiori, considering that patched conics so-
lutions might vanish or experience unpredictable increase in delta-v when optimised
in the full model. Therefore, in order to further reduce the search space, the epoch
parametrisation is substituted with another one based on the Keplerian elements of the
transfer orbit. Such approach is more efficient from different points of view:

• the orbital elements are slower varying parameters compared to Cartesian state
vectors, meaning that fewer number of points need to be evaluated to obtain the
same sampling on dates;

• the Keplerian formulation of the targeting problem enables an explicit resolution
of the inverse Lambert problem.

Hence, instead of resolving the non-linear targeting problems associated to a given
set of triplets and evaluate the solutions in terms of the total delta-v (sum of the com-
ponents at the terminal points and at the flyby), the orbital parameters, associated to the
pre- and post-encounter transfer orbits, are separately scanned and evaluated together
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Chapter 3. Search space reduction for flyby trajectories

in terms of an approximated quality of the flyby trajectory expressed in the form of an
equality constraint. The feasible solutions are converted back to triplets resolving for
the time of flights, similarly to shape-based methods for low-thrust trajectories [52,54],
and matching the date of flyby.

The degenerate flyby solution

An extreme case which offers an insight into the parametrisation of the triplets problem
in Keplerian elements is the degenerate flyby, a transfer orbit obtained for the limiting
case of the zero-effect flyby which could be considered as the one obtained for a flyby
to a massless body, µ → 0, or for a close approach at an infinite flyby altitude, rp →
∞. The problem is formulated in the literature [6] as an orbit determination problem
based on three observations performed at different times. In this particular case, the
observations coincide with the ephemerides of three arbitrary planets whose evolution
in the simple case of circular coplanar orbits is given as follows:

Li =

√
µ

ri3
ti + ϕi (t0) with ti =

i−1∑
j=1

tj for i = 1, 2, 3 (3.5)

where Li represents at the same time the true anomaly of ith planet and the true longi-
tude of the degenerate transfer orbit at the ti instant. Considering the introduction of
the true longitude by Eq. 3.5 to characterise the position along the transfer orbit, it is
convenient to switch from an orbital parameters treatment of trajectory into an equinoc-
tial ones, that for circular coplanar orbits are reduced to the semilatus rectum, p, and
the components of the eccentricity vector, k and h defined as:

p = a(1− e2) k = e cos$ h = e sin$ with $ = ��Ω + ω

where $ constitutes the longitude of the periapsis that in the coplanar case equals
the argument of the periapsis. Then the condition of belonging to the same orbit can be
stated as a system of three equations in three variables that imposes that the linearised
orbit equation [6] is satisfied for each observation, as follows:

p

ri
− k cosLi − h sinLi = 1 (3.6)

By applying the Cramer’s rule and classical trigonometry identities [6], it can be shown
that the equinoctial elements can be derived as a function of the orbital radii of the
planets, r1, r2 and r3, and true longitudes, L1, L2 and L3, of the three observations
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3.2. Inverse Lambert problem

performed at the departure, flyby and arrival times, t1, t2 and t3 respectively:
p = r1r2r3(sinL2−L1+sinL1−L3+sinL3−L2)

r1r2 sinL2−L1+r1r3 sinL1−L3+r2r3 sinL3−L2

k = r1(r2−r3) sinL1+r2(r3−r1) sinL2+r3(r1−r2) sinL3

r1r2 sinL2−L1+r1r3 sinL1−L3+r2r3 sinL3−L2

h = r1(r3−r2) cosL1+r2(r1−r3) cosL2+r3(r2−r1) cosL3

r1r2 sinL2−L1+r1r3 sinL1−L3+r2r3 sinL3−L2

(3.7)

The space triangles associated to the pre- and post-encounter trajectories, which in the
case of the degenerate flyby are the same orbit, are fully defined by the differences in
true longitudes, ∆L, and the semi-major axis, a. Therefore, the time of flights, ∆t12

and ∆t23, can be explicitly derived from Eq. 2.1 since the eccentric anomalies, α and
β, are unambiguously defined as a function of the equinoctial elements and the true
longitude pairs, {L1, L2} and {L2, L3}, [4].

The departure, flyby and arrival epochs can be extracted by the solution space where
the FTC derived for the short transfer arc is verified:

FTC :

{
cos (n2∆t12 + ϕ12 (t1))− cos (L2 (t2)− L1 (t1))

cos (n3∆t23 + ϕ23 (t2))− cos (L3 (t3)− L2 (t2))
→ 0

subject to
sin (n2∆t12 + ϕ12 (t1)) > 0

sin (n3∆t23 + ϕ23 (t2)) > 0

(3.8)

Long transfer solutions can be evaluated solving the FTC with respect to the long time
of flight, obtained as difference between the orbital period and the short time of flight,
and changing the sign to the inequality constraints in Eq. 3.8.

Eccentricity parametrisation of sub-optimal triplets search space

A feasible flyby (with a non-zero effect) requires to evaluate two separate orbits to
describe the pre- and post-encounter transfers. Their difference in Keplerian elements
can be related to a finite close encounter, differently from the degenerate flyby that can
be considered as a case limit for an altitude of the close approach tending to infinity.

In order to reduce the number of variables under study without sacrificing the opti-
mality of the solution space, the hypothesis of tangential thrust at the terminal points,
departure and arrival, is introduced.
In the degenerate flyby, the orbital elements of the transfer were obtained directly as
a function of the planets true anomalies. The epochs of conjunction, coinciding with
departure, flyby and arrival dates, were derived where the equation of times of flight.
In this case, conversely, it is necessary to choose an orbital element to parametrise each
leg. The tangentiality constraint for the delta-v at the terminal points identifies explic-
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Chapter 3. Search space reduction for flyby trajectories

itly the true anomalies of conjuction and enables to derive the departure and arrival
dates that solve the FTC for the time of flight. A similar approach was used in the lit-
erature for shape-based algorithm applied to low-thrust trajectories [52, 54] and before
for the case of the degenerate flyby. The eccentricity represents the best choice for the
shaping parameter, since, unlike the semi-major axis, it is bounded. The eccentrici-
ties and the initial/final dates for each leg determine unambiguosly the two trajectories.
In fact, the semi-major axes of the transfers can be easily derived as a function of
eccentricity and orbital radii of departure and arrival planets, r1 and r3. Instead, the
arguments of the periapsis for the pre-/post-encounter transfers are directly connected
to the departure/arrival dates, t1 and t3, by the true anomalies, f1 and f3:

1: a1 (e1) = r1
1−e1 ω1 (t1) = f1 (t1)

2: a2 (e2) = r3
1+e2

ω2 (t3) = f3 (t3)− π
(3.9)

In Eq. 3.9, the absence/presence of π in the definition of the arguments of the periap-
sis defines whether the departure and arrival conditions are periapses or apoapses. In
the end, the departure/arrival can be derived from the FTC resolving for the time of
flight, by replacing the semi-major axis and the true anomalies difference for each leg,
accounting for the aperture of the space triangle, with the eccentricity relations derived
in Eq. 3.9 and Eq. 3.10 in the case of the short transfers:

FTC:

 cos (n2∆t12 + ∆ϕ12 (t1))− cos (∆f12)

cos
(
n3∆t23 + ϕ23

(
t+2
))
− cos (∆f23)

→ 0

s.t.

cos (∆f12 (e1)) = + cos f−2 = 1
e1

(
r1
r2

(1 + e1)− 1
)

sin (n2∆t12 + ∆ϕ12 (t1)) > 0

cos (∆f23 (e2)) = − cos f+
2 = 1

e2

(
1− r3

r2
(1− e2)

)
sin
(
n3∆t23 + ∆ϕ23

(
t+2
))
> 0

where
t−2 = t1 + ∆t12

t−3 = t+2 + ∆t23

(3.10)

Eq. 3.10 identifies the initial dates, ti, for the pre- and post-encounter transfers, t1
and t+2 respectively, that satisfy the FTC while imposing that the aperture of the space
triangle, ∆f , equals the difference in initial phasing of the planets for each targeting
problem. ∆ϕ(ti), considers the angular distance covered by the final planet rotating at
speed nf for the time of flight of the transfers. Similarly to the degenerate flyby case,
long transfers can be considered by changing the sign of the inequality in Eq. 3.10 and

34



i
i

“output” — 2020/1/23 — 8:24 — page 35 — #55 i
i

i
i

i
i

3.2. Inverse Lambert problem

substituting the time of flight with its complementary for the short transfer with respect
to the orbital period. It can be noted that in Eq. 3.10 the condition of existence of the
cosine for the aperture of the space triangle, or for the true anomaly difference, imposes
that the right term is bounded to±1 which in turn limit the eccentricity to the minimum
and maximum values admissible for a transfer leg between the initial and final planet.
For the pre-encounter orbit, the eccentricity ranges are derived by Eq. 3.11:

1

e1

(
r1

r2

(1 + e1)− 1

){ ≤ 1 −→ emin = r2−r1
r2+r1

≥ −1 −→ emax = 1
(3.11)

where the minimum eccentricity equals exactly to the Hohmann transfer between the
initial and arrival planets with orbital radii, r1 and r2 respectively. A similar expression
can be obtained for post-encounter orbit.
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Figure 3.5: The dependency of the semi-major axis and the associated time of flight on the eccentricity
for the Venus-Earth (a) and Earth-Jupiter (b) legs tangential at the terminal points of the overall
trajectory, i.e. the departure and arrival conditions from Venus and at Jupiter respectively. In a blue
solid and red broken lines, the solution for the short and long transfers, limited in time of flight to
one Hohmann period.

Fig. 3.5 displays the trend of the semi-major axes for the short and long transfer
solutions, in blue and red respectively, as a function of eccentricity.

A Venus-Jupiter trajectory with a flyby at Earth is considered as test case. The sub-
optimality condition imposes the pre- and post-encounter transfers to be tangent at the
departure and arrival orbits, condition that locates the pre-encounter periapsis and the
post-encounter apoapsis on the orbit of Venus and Jupiter, respectively. It can be ob-
served that the tangentiality constraint at the terminal points have two different effects
on the time of flight: in the Venus-Earth leg the time of flight of the long transfer grows
unbounded and it is limited at the value of the one Homann period, condition that allows
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Figure 3.6: The solution of the FTC in terms of the initial date of departure for the Venus (a) and of
escape from Earth (b) correlated to eccentricity of the pre- and post-encounter legs tangential at the
terminal points of the overall trajectory. In a blue solid and red broken lines, the solution for the
short and long transfers, limited in time of flight to one Hohmann period.

not to consider one-revolution transfers, on the other hand the Earth-Jupiter leg appears
automatically bounded by the eccentricity ranges and the tangentiality condition at the
arrival, see Fig. 3.5:

The FTC, see Eq. 3.10, allows to pass from a phase-free trajectory [42] to a solution
coherent with the temporal evolution of the initial and arrival planets. Fig. 3.6 shows
the solution of the FTC for the initial time, t1 and t+2 associated to the dates of departure
at Venus and escape from Earth, correlating the shaping parameters, e1 and e2, for the
pre- and post-encounter transfers:

The final dates, t−2 and t3, associated to the arrival at Venus and Jupiter for the pre- and
post-encounter transfers, respectively, can be computed from the initial dates adding
the the time of flight, see Eq. 3.10. Fig. 3.7 displays in a porkchop plot the tangen-
tial solutions at the departure from Venus and arrival at Jupiter for the short and long
transfer, in blue and red respectively:

Although, the two legs are fully defined, they are still not connected, task that is
addressed by two equality constraints ensuring that the solutions reconnect at the flyby
in terms of encounter date and effect of the close passage, which is evaluated by an
approximating function in orbital parameters. A first possibility to link the pre- and
post-encounter trajectories is represented by the Tisserand parameter, T , which ap-
proximates the orbital energy of a trajectory, see Eq. 3.12. Under the assumption of
being evaluated outside the SOI of the secondary, the Tisserand parameter remains rea-
sonably constant during a close approach as a result of its close connection with the
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3.3. Gauss’ variational equation for flybys
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Figure 3.7: The pork-chop plot representation for the Venus-Earth (a) and Earth-Jupiter (b) legs tan-
gential at the terminal points of the overall trajectory, i.e. the departure and arrival conditions from
Venus and at Jupiter respectively. In a blue solid and red broken lines, the solution for the short and
long transfers, limited in time of flight to one Hohmann period.

energy which constitutes the unique invariance of the three-body dynamics. Such char-
acteristic make the Tisserand parameter suitable to evaluate the quality of the flyby. A
relation in the orbital parameters can be expressed in the variational formalism 3.12:

T = 1
a

+ 2
√
a (1− e2) → ∆T = ∆ 1

a
+ 2∆

√
p = 0 (3.12)

where a and p are the non-dimensional semi-major axis and semlatus rectum. Eq.
3.12 imposes the ballistic condition which is verified when the pre- and post-encounter
transfers are at the same orbital energy or in a patched conics perspective when the
inbound and outgoing infinite velocities are equal, which translates into enforcing Eq.
3.2 to be exactly zero. This condition, however, represents only one side of the coin,
in fact although the ballistic condition is satisfied the turning angle is completely over-
looked and no conditions ensures that the desired value does not exceed the maximum
admissible.

3.3 Gauss’ variational equation for flybys

A different way to evaluate the quality of the flyby from ballistic condition expressed
as the Tisserand parameter variation, just presented, can be formulated translating the
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Chapter 3. Search space reduction for flyby trajectories

minimum close approach distance condition into orbital elements. This approach can
be performed applying Gauss’ variational equations [6] to the flyby problem. The fol-
lowing equation

da
dt

= 2a2

h

(
e sin far + p

r
aθ
)

de
dt

= r
h

{
p
r

sin far +
[(

1 + p
r

)
cos f + e

]
aθ
}

dω
dt

= r
he

[
−p
r

cos far +
(
1 + p

r

)
cos faθ

) (3.13)

describes the orbital elements variation, here limited to the coplanar case, under the
effect of the disturbing acceleration of the close approach, expressed in radial and
ortho-normal components, ar and aθ, induced by the incoming transfer orbit defined
with respect to the primary where h represents the angular momentum and f the true
anomaly at which the transfer orbit crosses the circular orbit of radius r of the flyby
planet.

Considering that the time of flight of a flyby occurs in an infinitesimal fraction of
the S/C trajectory, then the acceleration can be exchanged with the velocity difference.
Similarly, the time derivative of the orbital elements can be regarded as the finite vari-
ation at the infinitesimale time dt. Under this assumption, the heliocentric velocity
variation measured at the boundaries of the SOI can be chosen to model the disturbing
acceleration inducing the orbital element variations. The strategy ensures the applica-
bility of the perturbation approach, described by Eq. 3.13, to the specific problem of
the flyby.

In the hodograph representation [6], the relative velocity at the close encounter can
be rewritten from the heliocentric one

hv

µ
= e sin f ir + (1 + e cos f) iθ (3.14)

in radial and ortho-normal components as a function of the orbital parameters:

v∞ =
µ

h

(
e sin f ir +

(
1 + e cos f −

√
p

r

)
iθ

)
(3.15)

Eq.3.15 allows to write the pre- and post-encounter heliocentric velocity as a function
of the components of the relative velocity, v−r and v−θ , the entry angle at infinite, α−

and the turning angle at the flyby, δ, see Eq.3.16:

v− = v∞ (sinα−ir + cosα−iθ) + vpliθ

v+ = v∞ (sin (α− ± δ) ir + cos (α− ± δ) iθ) + vpliθ
(3.16)

where α is the incoming/outgoing flight path angle, or pump angle which is deemed
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3.3. Gauss’ variational equation for flybys

as the entry/exit angle described by the relative velocity at the entry condition with the
SOI, vpl, and δ is the turning angle with the sign, ∓, accounting whether the flyby is
prograde or retrograde, indicated respectively with type I and type II.

Substituting the variations in radial and ortho-normal components:

δvr = v∞ (sinα+ − sinα−)

δvθ = v∞ (cosα+ − cosα−)
(3.17)

and differentiating with respect to the outgoing pump angle, α+, the value related to
the maximum variation induced on the orbital elements by the flyby can be identified
by setting to zero the associated derivative. It is interesting to note that the maximum
variation appears to be function of the eccentricity, e, and the true anomaly, f alone, as
reported below:

α+
∆amax

= arctan
(

e sin f
1+e cos f

)
α+

∆emax
= arctan

(
(1+e cos f) sin f

(2+e cos f) cos f+e

)
α+

∆ωmax
= arctan

(
− (1+e cos f) cos f

(2+e cos f) sin f

) (3.18)

Their counterparts, i.e. the minimum variation of each Keplerian element, can be in-
tuitively obtained at π radiants difference from the pump angle associated to the maxi-
mum variation:

α−∆amin
= α+

∆amax
+ π (3.19)

and similarly for the eccentricity, e, and the argument of the periapsis, ω.

Feasible values of the outgoing pump angle, α+, are those that satisfy the limits
identified by the maximum and minimum turning angles, as defined followingly:

{α+
I/II| δmin < ∓∆α ≤ δmax} (3.20)

obtained for an encounter at the SOI, associated to δmin ≈ 0, and at the minimum
periapsis, assigned to δmax, see Eq. 3.21:

δmin =

(
1 +

v2∞apl

µ
4/5
pl µ1/5

)−1

≈ 0

δmax =
(

1 +
v2∞rpl
µpl

)−1
(3.21)

Re-substituting the filtered values in Gauss Planetary Equations, see Eq.3.20, allows
to obtain the maximum and minimum range for the semi-major axis, eccentricity and
argument of the periapsis of the post-encounter orbit, see Eq. 3.22:
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Chapter 3. Search space reduction for flyby trajectories

a1 + ∆amin ≤ a2 ≥ a1 + ∆amax

e1 + ∆emin ≤ e2 ≥ e1 + ∆emax

ω1 + ∆ωmin ≤ ω2 ≥ ω1 + ∆ωmax

(3.22)
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CHAPTER4
Search space pruning for flyby trajectories

The design of MGA trajectories is a complex problem that is generally solved in cas-
cade at the risk of an explosion of the dimensionality caused by the pursuit of high
resolutions that induces a fine discretisation of the grid.

In Ch. 3, we presented two methods to reduce the computational complexity of
the solution space of flyby trajectories based on one side on the recombination of the
search spaces associated to the doublets sharing the same node, and on the other on a
reformulation of the targeting problem that permits to parametrise its search space on
the orbital elements, more compact compared the epoch-based one.

A different way to achieve fast preliminary design of flyby trajectories can be ob-
tained by reducing the dimensionality growth through the removal of those solutions
that violates certain parameters, such as the time of flight [7], delta-v [35], the infinite
velocity [3], the semi-major axis or other orbit-related quantities [22]. These methods
are generally called pruning [9] and consist on a coarse sampling of the search space to
evaluate the behaviour of the subset with respect to certain performance indices whose
bounding allows to reduce the original search space into a domain of interest [22]. The
conventional treatment of MGA trajectories as sequence of different targeting prob-
lems popularised a fragmented vision of the solution space into as many subsets as
doublets. Incremental pruning aims to the consecutive pruning of each subset in order
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Chapter 4. Search space pruning for flyby trajectories

to reduce the overall search space.
In the literature, pruning and in particular thrust constraints have been applied mainly

to evolutionary algorithms, such as differential evolution [7,35], particle swarm optimi-
sation [35], ant colony [22] and differential algebra [3], given their ability to reproduce
in the population a representation of the complete solution space. However, incremental
pruning represents an interesting option to be explored for standard grid-search algo-
rithm. However, performing sampling even only on the doublets subsets of the search
space can be twofold problematic: on one side it is not trivial identifying the proper
mesh, not too loose and not too fine, for the specific targeting problem, and on the
other a mesh that works for one doublets might not work for another and requires some
tuning.

The idea proposed in this work follows from the insights derived from the analysis
of the porkchop plot and the grid reduction. In fact from the shape analysis of constant
delta-v contours, a closed region can be derived and used to effectively bound the grid
search to initial conditions within a predefined delta-v. A simple root-finding approach
is implemented to refine the bounding region on the actual contour line. This step
is necessary not only to shrink the constraints, but also to pass from an initial guess
obtained in the circular coplanar dynamics to the delta-v contour computed in the real
ephemerides model. Finally, for the flyby a different approach is presented which relies
on combining the shape pruning to the variational gravitational equations developed for
the flyby in Ch. 3 to further reduce the search space of the post-encounter leg.

4.1 Pruning approach for targeting problem

In Ch. 2, it has been shown how tangential manoeuvres can be used to characterise the
shape of constant delta-v contours as they give an indication for the orientation of the
lobes of the porkchop plot. In Ch. 3, instead, tangential delta-v at the terminal points of
the trajectory allows reducing the targeting problem into an explicit expression for the
time of flight as a function of the eccentricity only. The epochs associated to the event
are identified by the FTC, in Eq. 3.10, where the phasing between departure and arrival
planets is related to the time of flight.

In this work the knowledge acquired so far will be applied to prune the search space
for direct trajectories.

4.1.1 Generation of a bounding region from tangential solutions

To derive the delta-v associated to arcs with a tangential manoeuvre at departure/arrival,
the value of the true anomaly for the secant manoeuvre at arrival/departure, fa/d, can be
computed from Eq. 3.10, recalling that cos ∆f = ± cos fa/d which results in Eq. 4.1:
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4.1. Pruning approach for targeting problem

fa/d = tan−1
(

sign
(

sin
(
na∆t+ ϕ(td)

))√
(1− cos2(∆f)),± cos(∆f)

)
(4.1)

The delta-v for transfer leg with a tangential manoeuvre at departure/arrival can be
computed as the sum of the norm of the relative velocities at the terminal points derived
on the hodograph plane, see Eq. 3.15 as in Eq. 4.2:

∆v =

∣∣∣∣∣∣
√
µ

1± e
rd/a

−
√

µ

rd/a

∣∣∣∣∣∣+

√√√√ 3µ

ra/d
− µ1∓ e

rd/a
− 2µ

√
1± e
ra/d3

rd/a (4.2)

The first and last term of Eq. 4.2 are associated respectively to the tangential and
secant contributions. Eq. 4.2 evaluated at the minimum eccentricity of the transfer
returns as expected the delta-v of the HTO, as in Eq. 4.3:

∆v =

√ra
rd

2µ

ra + rd
−
√
µ

rd

+

√ µ

ra
−
√
rd
ra

2µ

ra + rd

 (4.3)

It is worth mentioning that, despite the true anomaly of the secant crossing takes into
account the different types of transfer, short or long, through the sign in Eq. 4.1, the
delta-v does not. This behaviour derives from the symmetry of the orbit with respect to
the apse line. As shown by Eq. 3.14 and Eq. 3.15, complementary solutions in time of
flight with respect to orbital period, or similarly in true anomaly, present opposite and
equal trend for the radial and ortho-normal components of the velocity, respectively.
From the point of view of the delta-v, instead, the two manoeuvres are equivalent since
the change of sign is not lost during the normalisation.

Such behaviour explains also the different sizes of the constant delta-v contours for
multi-revolution trajectories, see Fig. 2.12, with the area associated to long transfers
much bigger than the short ones. The different dimensions in fact can be directly related
to the times of flight.

Given the analytical expression of the delta-v for the solutions with a tangential
manoeuvre, see Eq. 4.2, it is possible to identify the intersection points for the tan-
gential solutions with a given constant delta-v contour line, without having to compute
the targeting problems for the search space of the doublets from which the contour is
interpolated. Instead, a bounding region can be derived from the tangential solutions,
constituting the vertices of a box ordered to create a compact boundary,as shown in Fig.
4.1 with the red dashed line.

Although the bounding region based on tangential solutions does not capture in de-
tail the topology of the constant delta-v contour, it offers a first guess of the region
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Chapter 4. Search space pruning for flyby trajectories

around the minima exhibiting lower delta-v compared to the reference one. Neverthe-
less, the advantages behind the capability to predict this area a-priori can be significant
as it allows to:

• discard directly initial conditions for departure and arrival epochs that would re-
quire higher delta-v avoiding to compute them;

• specify a fine grid size within the region of interest, without incurring into the
dimensionality curse.

(a) (b)

Figure 4.1: The generation of the bounding region (b) from the 12 km/s delta-v solutions associated to
tangential manoeuvres either at departure or at the arrival (a).

The pruning method based on tangential solutions can raise concerns regarding the
different space occupancy of the bounding region compared to actual constant delta-v
contour line which is the result of the different shapes. This situation can only worsen
considering the application of the bounding region to real ephemerides for which the
constant delta-v contour line can differ significantly from the generating one derived
for circular coplanar dynamics.

A justification on the last point can be found in the fact that although circular copla-
nar orbits for the departure and arrival planets represent the best case scenario from a
delta-v point of view. In a pruning perspective the control region derived is larger com-
pared to one derived for the real ephemerides case. This should prevent the approach
from missing large portions of the region of interest associated to feasible trajectories
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4.1. Pruning approach for targeting problem

within the prescribed delta-v requirement. A straightforward solution for the space oc-
cupancy could be obtained by increasing the reference delta-v in order to expand the
associated contour line and in turn the bounding region. Nevertheless, the delta-v in-
crement is based on pure heuristics and should be established on an trade-off logic.
The objective, in fact, remains that to identify the optimal occupancy configuration
that entails the minimum loss of feasible initial conditions with the lowest inclusion of
unfeasible ones.

4.1.2 Refinement of the bounding region

In the previous paragraphs, a method for pruning the search space was presented. It
consists on the generation of a bounding region at the intersection of the solutions asso-
ciated to tangential manoeuvres with a reference unknown, since not already computed,
constant delta-v contour. The technique is innovative as it allows to achieve a-priori
characterisation of the region with a delta-v less than the chosen reference value and to
subsequently grid it according to the user needs. However, it requires some practical
criterion to overcome the region occupancy difference between the bounding region
and the actual contour. Achieving this capability, however, is not a trivial matter.

Instead, as shown in Algorithm 1, a root finding subroutine allows to modify the
shape of the bounding region and adapt it to the one of the constant delta-v contour. Its
logic consists in optimising the position, in departure and arrival dates, of the midpoints
generated by consecutive pairs of vertices of the original bounding region, {td, ta}, in
order to make them shift on the contour line identified by the reference delta-v, ∆vref,
maintaining an equal distance from the associated vertices. The process continues until
the difference in area between the old and new bounding regions, A0 and A, does not
satisfy the selected relative tolerance.

Algorithm 1 Midpoints generation for constant delta-v refinement.

Require: td, ta, ∆vref , RelTol, A0 = 0, A
while |A0/A− 1| ≥ RelTol do

Initialise td/a
0 to the vectorised td/a

Initialise td/a to a matrix of consecutive pairs td/a0(i), ∀i = {1, 2}, . . . , {N, 1}
for j = 1, 2, . . . , N do

find td/a(k)

td/a
(0) ← td/a(i(j)), midpoint of the j pair

s.t.
the delta-v of the targeting problem t(k), ∆v

(
t(k)
)
→ ∆vref

the distance difference from the j pair, ∆
∥∥t(k) − t(i(j))

∥∥→ 0

td/a(j, 2)← td/a
(k)

end for
A0 ← A
A ←

∑
i ta(i)∆td(i), ∀i = {1, 2}, . . . , {2N, 1}

end while
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Chapter 4. Search space pruning for flyby trajectories

Figure 4.2: Three iterations of the refinement process of a bounding region generated from a 12 km/s
constant delta-v contour.

Fig. 4.2 shows the number of points for which the bounding region is identified and
the associated space occupancy which is computed as the ratio between the area of the
bounding region and the one of the exact constant delta-v contour. In just three steps
the bounding region can be refined to less than 1% difference from the actual delta-v
contour. The refinement process is inexpensive from a computational point of view as
it reaches convergence on average in less than three iterations.

In the end, the refinement is the solution to achieve the capability of pruning the
search space of transfer orbits targeting real ephemerides. An additional root-finding
algorithm is considered to bring the initial guesses derived on the circular coplanar
dynamics to real ephemerides, see Algorithm 2

Algorithm 2 Tangential solution refinement on real ephemerides.

Require: td, ta, ∆vref
for j = 1, 2, . . . , N with N = 4 do

find td/a(k)

td/a
(0) ← td/a(j)

s.t.
the delta-v of the targeting problem t(k), ∆v

(
t(k)
)
→ ∆vref

the tangential condition holds at d or a, r(td/a
(k)) · v(td/a

(k))→ 0

td/a(j)← td/a
(k)

end for

4.2 Pruning approach for flyby trajectories

In Ch.3, the flyby was treated in a combinatorial manner. In this regard, each transfer
orbit is solved independently for the set of departure and arrival dates, and the search
space of the doublets are recombined at the common date of flyby.

In fact, each porkchop plot can not be evaluated anymore individually. Instead, the
feasibility of the combinatory flyby must be examined based on the delta-v at terminal
points, in-/outbound relative velocities difference and the value of the turning angle
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4.2. Pruning approach for flyby trajectories

compared with the maximum allowed. In this case, the shape pruning must be adjusted.
The concepts addressed in this paragraph demands to couple the knowledge matured
in the Ch. 3 with the Gauss variational equation for the flyby, to further improve the
pruning. The next paragraph is organised as follows. First, the adaptation of the shape
pruning is tuned for the flyby problem, and second the pruning of the post-encounter
arc is carried out.

4.2.1 Bounding region adaptation to triplets

Passing from direct to flyby trajectories requires attention for the generation of the
bounding region. In the previous section, the solution for the pruning relied on the
identification of the box vertices at the intersection between the solutions associated to
tangential manoeuvre with a reference delta-v computed as the sum of relative veloci-
ties at the departure/arrival planets, see Eq. 4.2. Pruning the search space of the triplets
on the delta-v of the doublets might result in over-pruning the search space of trajectory.
In fact, for the pre-encounter transfer arc, imposing boundaries on the condition at the
arrival translates into limiting the infinite velocity at the flyby, and the same happens
for the departure condition of the post-encounter leg. Conversely, the bounding region
approach can be applied to the incoming and outgoing transfer orbits constraining the
tangential solutions on the relevant contribution of the delta-v for the terminal points:
the departure condition for the former and the arrival one for the latter, respectively.

Therefore, Eq. 4.2 is now modified accordingly, using Eq. 4.4 and Eq. 4.5:

∆v1 =


√
µ1+e

r1
−
√

µ
r1

if r1 · v1 = 0√
3µ
r1
− µ1+e

r2
− 2µ

√
1−e
r13
r2 if r2 · v2 = 0

(4.4)

∆v3 =


√

3µ
r3
− µ1−e

r2
− 2µ

√
1+e
r33
r2 if r2 · v2 = 0√

µ
r3
−
√
µ1−e

r3
if r3 · v3 = 0

(4.5)

Eqs 4.4 and 4.5 provide the expression for the delta-v at the significant terminal points
for the pre- and post-encounter orbit tangential to the circular coplanar orbit of the
departure/flyby and flyby/arrival planet, respectively.

Conversely, from the pruning for the direct transfer, the bounding region obtained
at the intersection of tangential solutions with the terminal delta-vs appears elongated
towards a predominant direction, i.e. along tangential manoeuvres. Moreover, bound-
ing regions can be refined to increase space occupancy for circular coplanar and real
ephemerides using the methods described above.
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Chapter 4. Search space pruning for flyby trajectories

4.2.2 Incremental pruning for post-encounter legs

MGA missions foresee multiple flyby along their cruise. Such condition limits the
applicability of shape pruning to the first and final targeting problem, with no possibility
to interact with the search spaces associated to the targeting problem connecting each
flyby. Indeed, following the aforementioned reasoning, bounding the infinite velocity
of a close encounter might result in discarding trajectories that were feasible.

A standard approach to evaluate the flyby requires a precise knowledge of the pre-
and post-encounter conditions at the flyby to extract from the set of triplets those orbits
that satisfy the infinite velocity difference and the turning angle, see Eq. 4.6:

v+
∞ − v−∞ = 0

cos−1
(
v+
∞ · v−∞

)
≤ δmax

(4.6)

Indeed, the evaluation of the equality and inequality constraints described in Eq. 4.6
requires the resolution of the two Lambert’s problems for their specific departure and
arrival dates.

Nevertheless, terminal bounding regions can be connected and pruning of the search
space of inner transfers can be performed considering the effect of the close encounters
induced by the incoming transfer orbit. Starting from one of the terminal transfers and
reconstructing the trajectory sequentially, the method requires to resolve the Lambert’s
problem associated to the pre-encounter condition to constrain the search space of the
post-encounter leg a-priori based on the pre-existing knowledge the user might have
about it.

Moreover, Gauss planetary equations derived for the disturbing acceleration of a close
encounter offers upper and lower bounds for the relevant orbital parameters, i.e. the
semi-major axis, the eccentricity and the argument of the periapsis for coplanar trans-
fers, see Eq. 3.22.

For a predefined flyby sequence, physical limits of the post-encounter transfer can
be derived, e.g the maximum semi-major axis and the minimum eccentricity, quantities
that depends purely on the orbital geometry of the the ith and ith+1 planets, as can be
seen in Eq. 4.7:

amax = ri + ri+1 emin = |ri−ri+1|
ri+ri+1

(4.7)

Comparing these values with the limits derived by Gauss planetary equations for the
incoming conditions at the flyby permits to exclude all the solutions whose minimum
post-encounter semi-major axis is larger than the maximum and vice versa, i.e. whose
maximum post-encounter eccentricity is lower than the minimum one, see Eq. 4.8:
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4.2. Pruning approach for flyby trajectories

ai−1,i + ∆amin > amax ei−1,i + ∆emax < emin (4.8)

For a Earth-Mars trajectory with a Venus flyby, the flyby pruning combined with
the shape-based one derived from the arrival delta-v allows to considerably reduce the
search space for the Venus-Mars leg, as it can be seen comparing Fig. 4.3a with Fig
4.3b:

(a)
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(b)

Figure 4.3: On the left and on the right, the complete and reduced through shape-based and flyby
pruning search space associated to the Venus-Mars leg for an Earth-Mars trajectory with a flyby at
Venus.

It is worth mentioning that the flyby pruning allows to automatically discard region
of the search space that the shape-based one would have maintained, for instance the
area around the second and forth delta-v minima at the arrival with Mars.
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Part II

Final phase in planetary moon system
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CHAPTER5
Fly-by-map in the three-body problem

Planetary moon systems, such as the one of Jupiter and Uranus, present a significant
different dynamics compared to the one observed in the solar system. In fact, despite a
similar ratio in mass parameters (at least for the heaviest bodies), a difference of three
order in magnitude for the orbital radii makes the system more compressed and, there-
fore, sensitive to the interaction of the gravitational attraction of the heaviest moons.
Indeed, flybys at moons experience stronger perturbations compared to the planetary
ones. In this situation, patched conics trajectories can undergo to significant deviations
when optimised in the full body dynamics. A treatment in the three-body dynamics
should be favoured.

In three-body dynamics, the trajectory can not be described analytically and has to
be numerically propagated from an initial state. Studying the complete search space
of the state vector, to analyse the interaction between the two gravitational fields, can
be computationally intensive. An alternative to the state, is represented by osculating
orbital elements, employed in mapping approaches. They approximate the dynamics
by mapping the effect of the third body perturbation on an osculating orbit. Depend-
ing on how the gravitational interaction is modelled, semi-analytical or fully numerical
methods are distinguished. Among the former the Keplerian map [2, 59] assesses the
orbital variation via integration through Picard’s iteration of a kick function approx-
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Chapter 5. Fly-by-map in the three-body problem

imating the effect of third body at the close encounter. Instead, the flyby map [21]
restores the numerical propagation after having observed that the kick approximation
of the dynamics is affected by not negligible differences in modelling the third body
interaction for energies that are still outside the limits of fully ballistic trajectories [45].

In planetary moon system the different ratio between the out-of-plane and in-plane
components makes three-dimensional trajectories interesting and relevant to be stud-
ied. In particular, in the frame of the Europa Clipper mission, polar or high inclined
close encounters are targeted to provide wide and high resolution coverage of the moon
surface [12]) while containing the radiation dose [18].

The chapter deals with the extension of the applicability of the flyby map to the
spatial dynamics proposing a new parametrisation required to handle the augmented
degrees of freedom.

Figure 5.1: The representation of Poincaré sections, ΣA and ΣB , along the orbit identifying the bound-
ary conditions of propagation.

5.1 The planar Flyby map

Whereas in the patched conics the effect of a close encounter can be immediately re-
vealed by a discontinuity in the orbital elements, in the three-body dynamics the occur-
rence of a flyby is difficult to be evaluated from a variation in the state. Indeed, although
the effect of a close approach is automatically considered in the equations of motion,
the passage of the S/C within the SOI of the secondary is commonly used as revealing
condition. The Flyby map captures the effect of the close approach on a osculating orbit
evaluated at a Poincaré section in the phase space parametrised by (a, T, λ, f) coordi-
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5.1. The planar Flyby map

nates: the semi-major axis, a, the Tisserand parameter, T , the longitude of the periapsis
λ in the rotating frame and the true anomaly, f , of the apsis which defines the position
of the surface of section along the orbit at which the Cartesian state is converted into
Flyby map parameters. Depending whether the semi-major axis is greater or smaller
than the orbit of the secondary, the value of the flyby parameters is computed either at
the apo- or the periapsis, in particular:

f =

{
−π if a > 1

0 if a < 1
(5.1)

The Flyby map represents a numerical non-linear mapping:

F : (aB, TB, λB)
F−→ (aA, TA, λA) (5.2)

in the phase space, which is convenient to study the flyby in the CR3BP . In the planar
case, the Flyby parameters, ρ, can be expressed by three independent variables related
to the osculating orbit (a, T, λ). The osculating periapsis, λA, modifies the condition
of the close approach and can be considered as the control variable. The Tisserand
parameter is related to the infinite velocity of the osculating orbit undertaking the close
approach and approximates the total energy with an expression of the semi-major axis
and eccentricity:

T =
1

a
+ 2
√
a (1− e2) (5.3)

Since the Tisserand Parameter is conserved during the flyby, its effect is observed in
the variation of the semi-major axis, a, measured at he Poincaré sections, ΣA and ΣB,
displayed in Fig. ??, which identify the pre- and post-encounter conditions

Sequentially, three steps are required to compute the flyby map:

1. the initial conditions in flyby map parameters at the Poincaré section, ΣA defined
as:

ΣA ≡
{

(a, T, λ)A |aA 6= 1, rS
(
aA, TA, λA, f

−
A

)
> 5RHill

}
(5.4)

where f−A = f − ε, are converted in synodical coordinates through the transfor-
mation ϕ:

(x, y, ẋ, ẏ)A = ϕ−1
(
aA, TA, λA, f

−
A

)
(5.5)

2. the initial state is propagated numerically in the three-body dynamics until the
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Chapter 5. Fly-by-map in the three-body problem

crossing with the following surface of section. The equation of motion for the
CR3BP can be expressed in non-dimensional variables by Eq. 5.6:

ẍ− 2ẏ = x− (1−µ)(x+µ)

((x+µ)2+y2)1.5
− µ(x+µ−1)

((x+µ−1)2+y2)1.5

ÿ + 2ẋ = y − (1−µ)y

((x+µ)2+y2)1.5
− (µy)

((x+µ−1)2+y2)1.5

(5.6)

3. at the Poincaré section, ΣB:

ΣB ≡
{

(a, T, λ)B |aB 6= 1, rS
(
aB, TB, λB, f

+
B

)
> 5RHill

}
(5.7)

located at least at a distance of 5 Hill radii from the secondary, the final state is
transformed back in flyby map parameters, see Eq. 5.8:(

a, T, λ, f+
)
B

= ϕ (xB, yB, ẋB, ẏB) (5.8)

where fB+ = f + 2π + ε and rS represents the distance of the S/C from the
secondary and ε constitutes an infinitesimal quantity.

The Flyby map was successfully used to design low-energy trajectories to Ganimede,
Titan and Triton [16]. Nevertheless, its application remains bounded to the planar dy-
namics, preventing from studying the 3D dynamics whose effect is fundamental to de-
sign multi-moon trajectories in the planetary moon systems, for instance the sequence
of resonant flybys, Crank-Over-Top sequence (COTs), employed in the tour of Europa
Clipper [12, 17].

5.2 The 3D Flyby map

The 3D Flyby map improves the planar one, considering the spatial dynamics of the
CR3BP . Despite a similar logic in the workflow, the increased number of degrees of
freedom requires additional parameters to describe the dynamics of the flyby. There-
fore, the following paragraphs concern the choice of variables to parametrise the phase
space, their relation to patched conics, their domain and the properties of the Flyby
map.

5.2.1 Parametrisation

The key concept of the Flyby map revolves around the possibility to reduce the analysis
of the flyby effect in the CR3BP from the whole state to fewer parameters. In patched
conics, close encounters can be studied with a set of three variables, e.g v-infinity, pump
and crank angles in the v-infinity globe [64] or the components of impact parameter
b [68]. Small variation of these parameters allows to scan all the possible condition
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5.2. The 3D Flyby map

of flyby and study its effect on the post-encounter orbit. This knowledge enables an
inexpensive targeting of the close approach from a condition at infinite, far from the
secondary.

Similarly to the Keplerian map, the Flyby map maintains the idea of studying the
variation of the orbital elements induced by the flyby on an osculating trajectory. Al-
though, it substitutes the semi-analytical integration, handled in the phase space of the
orbital elements, with the direct propagation of the state vector in the dynamics of the
CR3BP, described by Eq. 5.6. The conversion from the Cartesian state to the Flyby
map parameters is performed by the coordinate transformation ϕ at the positions along
the orbit identified by the Poincaré sections. Their use enables reducing the set of co-
ordinates associated to a continuous dynamics into a lower-dimensional discrete set of
parameters and allows to take the true anomaly out of the equation. The choice of the
Tisserand parameter as Flyby map variable is legitimated by the fact that this quantity
is expected not vary as the total energy is conserved in the three-body dynamics.

In the planar case, this reasoning allowed to consider only two parameters to ac-
count for the flyby effect. The semi-major axis, a, and the osculating argument of the
periapsis, λ, were chosen as output variable and control parameter, respectively. The
choice is not equivocal. Indeed, within a narrow interval, the control variable spans all
the possible configuration of close approach for the specific energy level considered.
At the same time, the semi-major axis is sensitive to the flyby effect induced by the
osculating argument of the peri-apsis: in fact, in patched conics, the value assumed by
the control variable at the Poincaré section ΣA directly identifies the exit condition of
the v-infinity. The flyby effect in the planar case is a function of one unique variable.

In the 3D dynamics, considering the out-of-planet component requires to handle
six coordinates to describe the dynamics. Repeating the reasoning performed for the
planar flyby map, if the Tisserand parameter, T , is maintained and the true anomaly, f ,
is removed by the introduction of the Poincaré section, then the increase of degrees of
freedom leaves three free variables in play. A convenient choice of coordinates could
be the set of (a, T, i,$, ω, f) parameters, where $ is the osculating longitude of the
periapsis, computed as the sum of Ωrot, the right ascension of the ascending node in the
rotating frame, and ω, the argument of the periapsis. Fig. 5.2 displays these quantities
on a schematic of the orbit of Europa Clipper in the Jupiter-Europa system.

Such formulation is particularly interesting for several reasons. The inclination ac-
counts together with the semi-major axis for the flyby effect, induced by the different
combination of the osculating longitude and argument of the periapsis, spanning all the
various locations of the close approach. Therefore, semi-major axis and inclination can
be considered as output parameters, while the osculating longitude and the argument of
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Chapter 5. Fly-by-map in the three-body problem

Figure 5.2: The representation of right ascension of the ascending node, Ωrot, measured from the line
connecting the primaries in the inertial frame.

the periapsis as control variables for the Flyby map. Small variation in the values of the
free-variables can results in significant change of the output parameters. At the same,
performing a correction of the targeting of a specific close approach from an infinite
condition affects the propellant consumption by relatively small delta-vs (few m/s). In
the end, the choice of the osculating longitude and the argument of the periapsis as
control variables ensures that the transformation, ϕ, from Cartesian to Flyby map coor-
dinates is invertible and that the attainable set of interesting flyby remains bounded to
a neighbourhood of 0, as we will in the next section.

5.2.2 The control variable in patched conics

Identifying a set of initial conditions for the spatial Flyby map that lead to the close
encounter is not trivial. A broad search in the domain of the control variables is com-
putationally intensive, however, if the orbital energies under study are high enough,
a relation between the orbital elements and the v-infinity parametrised by pump and
crank angles [65] can be derived in patched conics. and used as initial guess for the
control variables.

Here, the absolute velocity of the S/C with respect to the primary, v, is the sum of
the relative velocity with respect to the secondary, v∞, and its velocity in the inertial
reference of the primary, vpl, as shown by Eq. 3.1. The velocity triangle, represented in
Fig. 5.3, display this equivalence:

in which γ constitutes the flight path angle and x, y and z are the unit vectors of the
synodical frame, co-rotating with the secondary and centred in its barycentre. In this
system, the pump angle, α, is defined between the velocity of the secondary and the
infinite velocity, while the crank angle, κ, is measured between the line connecting
the primaries and the projection of the asymptotic velocity on the plane normal to the
ecliptic, see Eq. 5.9
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5.2. The 3D Flyby map

Figure 5.3: Schematic of the velocity triangle and the pump and crank angles, α and κ, on the left and
the right respectively.

cosα = 1−v2∞−a−1

2v∞
tanκ = tan γsc

sin i
(5.9)

where i is the inclination measured between the north axis and the angular momentum.

In particular, for a given semi-major axis and a given Tisserand parameter, it is
possible to derive an expression of the infinite velocity depending only on the crank
angle from which it is possible to derive the Flyby map parameters from Eq. 5.10:

(a, T, i, $̄, ω̄, f) = ϕ (v∞(κ))

v∞ = v∞

[
sin (α(a)) cosκ cos (α(a)) sin (α(a)) sinκ

]T (5.10)

where the bar accent refers to the unperturbed quantities.

Their solution corresponds to the two-body orbit intercepting the secondary. There-
fore, all the attainable flyby effects can be studied perturbing the control variables
around the osculating initial guess and studying the evolution of the associated state
under the three-body dynamics.

Such formulation results convenient as it allows to correlate the inclination to the
control variables through the crank angle. Since the the crank angle is not defined in the
CR3BP , the inclination can be used as a discrete parameter similarly to the semi-major
axis and the total energy. Moreover, the inclination can be bounded to only those values
that lead to a close encounter with the secondary in patched conics. Fig. 5.4 displays the
trend of the inclination, osculating right ascension of the ascending node and argument
of the periapsis in blue, green and magenta respectively, as a function of the crank
angle, a 4 : 1 resonant orbit approaching Europa with 4 km/s of v-infinity. It can be
observed that the crank angle unambiguously determines an osculating orbit in patched
conics. Although this quantity is bounded to its gravitational model, not representative
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Chapter 5. Fly-by-map in the three-body problem

in three-body problem and not directly measurable far from the secondary, condition
required by the Poincaré section. The inclination, instead, is the perfect candidate given
its importance in the design of the resonant flyby sequence of Europa Clipper. Fig.
5.4 shows that the crank angle allows to identify boundaries for the inclination, within
which a given level, represented with the dashed black line, intercepts on the blue curve
the values of crank angles for which the related osculating longitude and argument of
periapsis are computed. These solutions are associated to symmetric trajectories with
the respect of the line connecting the primaries, as displayed by Fig. 5.4 for the 4 : 1

resonant orbit with 4 km/s of relative velocity with respect to Europa.

Integrating an osculating orbit undertaking a flyby in a more complex dynamics, in
this case the one of the CR3BP , results into collision or large deviations in position
and velocity. Such situation occurs due to the fact that the dynamics switches from
a discrete system with point-less attractors and dimension-less SOI, (either infinite or
nill), to a continuous one. In particular, considering multiple bodies with their finite
dimension causes the emergence of collision corridors and chaos due to the combined
interaction between multiple gravitational fields. The pull of the secondary extends way
beyond the limit of its SOI and slightly modifies the condition at the close approach
inducing the deviations observed.

Figure 5.4: On the left, the domain of attainable inclinations (in blue), right ascensions of the ascending
node (in green) and argument of the periapsis (in magenta) as a function of the crank angle for 4:1
resonant orbit at Europa with 4 km/s of infinite velocity. On the right, the orbits with 3 degrees of
inclination.

5.2.3 The attainable set of the control variables

Considering the objective of the Flyby map, among all the different initial guesses
assumed by the control variable, only those that results in a close approach within the
first period are of interest.
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Figure 5.5: The feasible domain of the argument and osculating longitude of the periapsis for a 4:1
resonant orbit at 3 degrees of inclination and 4 km/s infinite velocity at Europa. In black and red
respectively, the initial conditions having a close approach within the first period.

Exploring the space of the control variables, three different red islands appears as it can
be seen from Fig. 5.5. It is curious to note that these regions can be recombined in two
identical structures 180 degrees apart in argument of the periapsis.
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Figure 5.6: One of the two structure of the feasible domain of the control variables , see Fig. 5.5,
obtained for a 4:1 resonant orbit at 3 degrees of inclination and 4 km/s infinite velocity. In black and
red respectively, the initial conditions having a close approach within the first orbital period, in blue
the unperturbed solutions obtained in patched-conics.

A (F) :
{

(ωA, $A) |rp
(
aA, TA, iA, ωA, $A, f

−
A

)
≤ RHill

}
(5.11)

Eq. 5.11 identifies the attainable set, A (F), of the control variables for the non-zero
flyby effect. This condition is ensured by checking that the close approach distance,
rSmin is within the SOI limit. The attainable set is a proper subset of the domain of the
control variable D (F):

A (F) ⊂ D (F) : {ωA ∈ [0, 2π) , $A ∈ [−π, π)} (5.12)

It is interesting to note that the Flyby map becomes the identity transformation for the
values of the control variables that does not belong to the attainable set:
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Chapter 5. Fly-by-map in the three-body problem

(ωA, $A) /∈ A (F)⇒ F ≡ I⇒ (a, T, i, ω,$)B = (a, T, i, ω,$)A (5.13)

The distribution of the control variables is somehow associated to the patched conics
initial guess derived in Eq. 5.10. From Fig. ??, it is easy to observe that two distinct
distributions seem to grow around the blue markers, associated to patched conics solu-
tions, and merge together resulting in the the final configuration.

Figure 5.7: The distribution of close approaches occurring from perturbing the initial longitude and
argument of the periapsis of a 4:1 resonant orbit at 3 degrees of inclination and with 4 km/s infinite
velocity.

Fig. 5.7 confirms this hypothesis displaying the location of the close approaches
resulting from the feasible initial conditions of the control variables. The distribution
appears in an ordered surface of close approaches, which is less chaotic than expected.
It folds on itself evolving towards the SOI from the same side, recalling the bimodal
behaviour of two distributions, previously mentioned.

In fact, the shape of the interesting part of the domain is directly dependent on the
maximum close approach distance considered. In this case, the SOI of Europa defines
the criterion to label an initial condition and its associated trajectory feasible or not.
Indeed, it can be thought that for a specific maximum altitude of the flyby, there exist
four distinct distributions of ther control variables, one per each osculating solution.
At the same time, extending hypothetically the close approach distance at infinite, the
feasible domain grows and incorporate the domain of the control variables completely.
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5.3. Controlling the Flyby map

5.2.4 Properties of the Flyby map

A given level of inclination, such as the one represented in Fig. 5.4, identifies four
patched conics solutions for the control variables. Their value determines the centres
of the distributions associated to the attainable set, as suggested by Fig. ??. It is
interesting to note that the symmetry of the unperturbed orbits, determined for the set
of semi-major axis and Tisserand parameter considered is maintained in the CR3BP .

Indeed, the Flyby map preserves the symmetries of the CR3BP through the coor-
dinate transformation ϕ, whose effect on the orbit can be visualised in the Cartesian
frame.

This property can explains the existence of the two identical structures, 180 degrees
apart in argument of the periapsis, associated to the atteinable set of the control vari-
ables of the Flyby map. Indeed, the symmetry of the CR3BP with the respect of the
out-of-plane component, z, is converted by the transformation ϕ in the equivalence:

(a, T, i,$, ω) = (a, T, i,$, ω + π) (5.14)

Eq. 5.14 allows to reduce the domain of the argument of periapsis by half, considering
only the range (−pi

2
; pi

2
). Indeed, the flyby effect obtained by the flipped out-of-plane

component, −z, is expected to be equal to the one induced by symmetric orbits with
respect to the orbital plane.

Similarly a combination of two different symmetries allows to derive the inverse
Flyby map F−1 from the direct one by a simple sign change:

F−1 = Θ ◦ F ◦Θ where Θ(a, T, i, ω, ω) = (a, T, i,−ω,−ω) (5.15)

5.3 Controlling the Flyby map

In the previous section, it has been shown how it is possible to switch from a planar to a
spatial formulation, to reduce tthe study of the flyby effect from Cartesian coordinates
into slowly varying parameters and control variables, to perform a grid-search in the
space of the free-variables perturbing an initial guess derived in patched conics, to
extract from their domain an atteainable set of interesting flybys. In this section, the
results are summarised. In particular, the first paragraph presents graphically the flyby
effect derived from the 3D Flyby, while the second part carries out the identification
process of the two families of flyby trajectories.
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Chapter 5. Fly-by-map in the three-body problem

5.3.1 The Flyby map graph

Having a bi-dimensional space for the control variables makes the representation of
the results less intuitive compared to the planar case. In fact, any output parameter,
depending at the same times on both control variables, requires a three-dimensional
representation. Moreover, the intrinsic shape of the attainable set of the free-variables
complicates further its visualisation. The most clear way to display the flyby effect is
via contour plot. In this way, the representation remains 2D moving the output variable
to a separate axis and leaving to colour the task of showing its trend.

With that in mind, the information held by each output variable can be evaluated
in the light of flyby features and cross-compared to understand better how the close
approach modify the orbit. Fig. 5.8 displays the the trend of the output parameters
observed at the post-encounter Poincaré section, ΣB: in particular from the top to the
bottom one can observe the distribution of the resonances and inclinations induced
by the control variables and a zoom-in, identified by the white square, of the areas
experiencing the largest variations in Fig. 5.9.

Eq. 5.16:

(a, T, i,$, ω)
(i)
A

F−→ (a, T, i,$, ω)
(i)
B → (a, T, i,$, ω)

(i+1)
A

(a, T, i,$, ω)
(i+1)
A =

(
a

(i)
A , T

(i)
A , i

(i)
B , $

(i)
B − 2π

√
a3, ω

(i)
B

) (5.16)

Figure 5.8: The characteristic information resulting from perturbing the osculating longitude and the
argument of the periapsis for a 4:1 resonant orbit at 3 degrees of inclination, 4 km/s infinite velocity
and -30 degrees of crank angle. From the top to the bottom, the colour-coded distributions of the
period and the inclination of the post-encounter osculating orbit.

Their trend can be evaluated in light of the distance and orientation distributions
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5.3. Controlling the Flyby map

obtained at the close approach.
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Figure 5.9: A zoom-in on the areas with the largest variations in period/semi-major axis, left, and
inclination, right, displayed with the white box in Fig. 5.8

Fig. ?? collects from the top to the bottom the trend of minimum altitude, hmin, the
longitude, λ, and latitude, φ, of close encounter, respectively. For tidally locked moon,
the synodical moon-centered frame is equivalent to the body fixed one and therefore
the rotating coordinates, upon translation, can be directly used to compute latitude and
longitude of the spacecraft with the respect of the secondary.

Comparing Fig. 5.9 with Fig. 5.10, one can observe that the there is a perfect overlap
between the areas undergoing to the largest variations in semi-major axis and inclina-
tion and those associated to a collision. As expected, the largest deviations occurs for
the lowest altitude flybys.

Two interesting insights can be deduced comparing the distribution of the output
parameters, in Fig. 5.8, with the direction of the close approaches, see Fig. 5.10. In
particular, it can be seen that there exist flybys that preserves the orbital period, not
modifying the post-encounter semi-major axis. This situation occurs when the close
approach lies on the line connecting the primaries, associated to a longitude of 0 or
180 degrees. At the same time, there exist flybys that freeze the inclination, condition
experienced when the minimum altitude passage lies on the ecliptic plane,i.e. for 0
degrees latitude. Moreover, a positive increment in inclination is obtained for close
approaches occurring in the southern hemisphere, while a reduction is obtained for
close approaches occurring in the norther hemisphere.

5.3.2 Families of flybys

The comparison of the period/semi-major axis distribution with the longitude of the
minimum altitude passage suggests an intuition that could not be made from a purely
patched-conic analysis. Considering a 4 : 1 resonant orbit with Europa, flybys can be
distinguished depending whether their longitude is in the neighborhood of 0 or π rad.
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Chapter 5. Fly-by-map in the three-body problem

Figure 5.10: The distribution of the flyby properties resulting from perturbing the osculating longitude
and the argument of the periapsis for a 4:1 resonant orbit at 3 degrees of inclination, 4 km/s infinite
velocity and -30 degrees of crank angle. From the top to the bottom, the colour-coded distributions
of the close approach distance, longitude and latitude.

From Fig. Fig. 5.11, it can be observed that the transition is more evident on the$-axis.
Indeed, the central part of the attainable set is occupied by the green area, associated
to sub-Jovian close approach, while the anti-Jovian flyby represented by the magenta
regions spans at the side.

For the initial conditions considered for the pre-encounter semi-major axis, the two
families of longitude of the close encounter can be related to two families of flybys:
indeed, direct (type I) flybys pass behind the orbit of Europa, have their close approach
in the anti-Jovian hemisphere and coincide with the magenta area, while retrograde
(type II) ones overtake the moon passing from the sub-Jovian hemispheres and are
associate to green part of the distribution.

Observing the contours lines associated to the resonances, displayed on the top of
Fig. 5.8, those associate to retrograde flyby and lying in the green area appear way more
condensed. while the countour lines related to prograde flybys look more outspread..
Such information suggests that there exist two families of flyby, see Fig. 5.11, type I
and type II , or prograde and retrograde, or anti-Jovian and sub-Jovian, and that type II
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5.3. Controlling the Flyby map

Figure 5.11: The identification of two families of flyby, type I and type II represented in magenta and
green, respectively.

is less efficient compared to type I.

Figure 5.12: The identification of two families of flyby, type I and type II represented in magenta and
green, respectively.

A quick test to verify this hypothesis consists in representing the variation of one of
the output parameters while the other one is preserved. Fig. ?? displays the trend of
the inclination variation for a resonant flyby, which preserves the semi-major axis. In
particular, it can be observed that at each passage, prograde flybys, in green, induces
always a larger deviation in inclination compared to retrograde ones, in magenta.
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CHAPTER6
Trajectory refinement

The trajectory design is a task that any mission analyst aims to perform in the dynam-
ical model closer to the operational scenario. However, this situation occurs rarely.
Most of the time, the design is performed in a simpler dynamics, for instance the ones
of the two or three-body problem. The trajectory is split in several legs that exist sepa-
rately and independently from each other and are connected resolving the discontinuity
at the boundary conditions through a delta-v manoeuvre that needs to be minimised.
Nevertheless, integrated in the full-body accounting for n-body perturbations, such as
the solar radiation pressure, the J2 effect at each planet and the gravitational interac-
tion with other bodies, the trajectory might experience large deviations at the patching
points and requires to be refined through optimisation.

Previous chapters dealt with different maps that exploit extensively grid search
methods to scan the search space and representation of the transfer and flyby prob-
lem in convenient set of elements, and obtain an assessment of the change induced
by the dynamics. Specific conditions can be extracted from the data via interpolation,
however, when integrated, large errors are measured in the constraints that were used
to generate them. The main reason can be searched in the flyby, source of a strong
non-linearity that makes the system extremely sensitive to the entry conditions before
the flyby itself. In fact, infinitesimal changes of the state at the close approach can
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Chapter 6. Trajectory refinement

result in significant variations of the trajectory, while far from the secondary, it is dif-
ficult to target the conditions at the close encounter that satisfy the requirements of the
optimisation as even more small corrections can completely alter the entry conditions
at the secondary, inducing a different flyby. Identifying a good strategy to deal with the
flyby is necessary to achieve the feasibility required for the optimiser to converge to the
minimum.

The chapter provides insights on the flyby optimisation and on the approaches im-
plemented in this work to refine initial guesses interpolated on maps generated by grid
search.

6.1 Optimisation of flybys

Refining trajectory with flybys in any dynamics different from the two-body problem
one is not a trivial task. Indeed, patched conics allows to evaluate the conditions at the
close encounter in terms of the turning angle and the difference between the relative in-
coming and outgoing velocities, see Eq. 4.6, that must be increased or decreased with
delta-v when the inequality constraint is not satisfied, see Eq. 3.3. Instead, in other
dynamical models, the trajectory has to be numerically propagated and its modification
induced by the flyby is a direct consequence of the interaction of the S/C velocity with
the inverse-squared gravitational field of the planet, that depends on the relative posi-
tion of the S/C with respect to the planet, see Eq. 5.4. Switching from one to another
dynamics is a task that can be performed through optimisation. In particular, direct
methods alter an initial guess, i.e the Cartesian state, in a gradient descend flavour to
resolve the discontinuities that arise from integrating an orbit in a dynamical model
different from the one used for design and arrive a continuous realistic trajectory. How-
ever, given the orbit sensitivity to the flyby, a reckless optimisation strategy might not
converge to the local minimum solution.

The choice on the approach to use is binary and consists in selecting as initial guess
a condition at the close approach or at infinite.

6.1.1 Infinite conditions targeting from close encounters

The idea behind this approach relies on breaking the sensitivity to the flyby initialising
the optimisation at the point whose variation induces the largest effect on the orbit:
the close approach. The strategy consists in propagating the trajectory backward and
forward in time from the close encounter state xp that minimise the objective function
J(x) and satisfy equality and inequality constraints, g(x) and h(x) vectors. Among
the different equality constraints that the optimisation might be required to resolve, it
is important that the initial state satisfies the close approach condition, see Eq. 6.1:

70



i
i

“output” — 2020/1/23 — 8:24 — page 71 — #91 i
i

i
i

i
i

6.1. Optimisation of flybys

xp = {rp,vp} s.t.
rp · vp = 0

rp ≤ RHill

(6.1)

Eq. 6.1 requires that the initial point from which the trajectory is propagated is the state
at the close approach, identified as the point along the orbit within the SOI of the planet
of flyby whose relative velocity is perpendicular with respect to its relative position
vector, in other words at the hyperbola pericentre

Identified the initial guess, the optimisation can start.
In patched conics, the position vector and the velocity of the close approach can be
also explicitly identified by the incoming and outgoing infinite velocities at the planet
of flyby in terms of the feasible turning angle and the flyby delta-v, see Eq. 6.2:

rp = − µ

v2
∞

(
1

sin δ
2

− 1

)
v+
∞ − v−∞

‖v+
∞ − v−∞‖

vp =

√
v2
∞ +

2µ

rp

(
v−∞ × v+

∞
‖v−∞ × v+

∞‖

)
× rp
rp

where δ =

{
cos−1

(
v+
∞·v−∞
v2∞

)
if δ ≤ δmax

δmax otherwise

(6.2)

where δ is the turning angle and with the maximum turning angle δmax defined in Eq.
3.4. If the incoming and outgoing infinite velocities at the close encounter differ in
magnitude, a powered flyby must be considered and the close approach distance can
be determined iteratively considering the different contribution in turning angles of the
incoming and outgoing velocities, see Algorithm 3:

Algorithm 3 Close approach distance for powered flyby.

Require: v−∞, v+∞, µ, RelTol

Parametrise δ∓ as a function of rp: δ
∓

2 ← sin−1
(

1 +
v±∞

2
rp

µ

)−1
Ensure: δ−

2 + δ+

2 − cos−1
(

v−∞·v
+
∞

v−∞v
+
∞‖

)
≤ RelTol

The associated velocities at the minimum flyby altitude can be determined substitut-
ing in Eq. 6.2 the different value of pre- and post-encounter infinite velocities. Instead,
if the preliminary design is performed in a different dynamical model, the state of the
periapsis can be derived during the trajectory propagation through an event function
that checks when the close approach condition, see Eq. 6.1, is satisfied.

Algorithm 4 shows an application of the close approach optimisation strategy to
refine flyby in the CR3BP dynamics
with the terms identified by the (i) and (0) superscripts associated to the free-variables
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Chapter 6. Trajectory refinement

Algorithm 4 Close approach optimisation for flyby refinement in the CR3BP .

Require: x
(0)
p , t(0)− , t(0)+ , T , xd, xa, µ

Integrate the trajectory backward and forward: x(i)
d/a ←

∫ t(i)∓
0 ΩCR3BP

(
t,x

(i)
p

)
dt

Ensure:
min

(
‖v(i)

d − vd(t
(i)
− )‖+ ‖v(i)

a − va(t
(i)
+ )‖

)

subject to:

g(x) :


r
(i)
p · v(i)

p = 0

r
(i)
d − rd(t

(i)
− ) = 0

r
(i)
a − ra(t

(i)
+ ) = 0

h(x) :


∣∣t(i)+ − t

(i)
− − T

∣∣− ε ≤ 0∥∥∥ 2µ

r
(i)
p

− v(i)p
2
∥∥∥ ≤ 0

and their initial guess respectively. It is interesting to note that, while the equality
constraints, g(x) ensure targeting the position of the planets at departure and arrival,
rd and ra, the inequality constraint guarantee at least a parabolic velocity at the close
approach, avoiding to be captured at the planet of the flyby, and allows a relaxation on
the total time of flight, limited to a neighborhood of its original value T , and prevents to
over-constrain the optimisation problem. The time of flight associated to the pre- and
post-encounter legs are considered with sign with respect to the time origin fixed at the
close approach.

6.1.2 Close approach targeting from the SOI

Despite performing a manoeuvre at the minimum flyby altitude results optimal in a
delta-v perspective, as the largest effect on the trajectory occurs at the maximum ve-
locity, it does not represent a real operational scenario of the mission. Several reasons
contribute to prefer anticipating the manoeuvre execution and performing it far from
the close approach in spite of its additional cost:

• the variability of the flyby effect on the post-encounter trajectory induced by small
changes in the state at close approach;

• the difficulty in detecting the minimum passage condition autonomously (on board
the S/C), independently (e.g without observations) and accurately;

• the relative short time of the flyby and high likelihood to miss the tight execution
window associated to the manoeuvre;

• the impossibility of retrieving the S/C due to execution errors.

Moreover, the operational execution of a flyby foresees in general the implementa-
tion of two correction manoeuvres to reduce the uncertainty associated to the flyby
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6.1. Optimisation of flybys

knowledge error estimated a couple of days prior and post-encounter via orbit determi-
nation, [11].

Therefore, the optimisation of the flyby by correcting the entry and exit conditions
at the SOI represents a strategy closer to the actual operational scenario for flyby and a
compromise between the extreme cases associated to initialising the optimisation to the
close approach or at the terminal points. Although the idea behind the two strategies is
similar as it concerns identifying the correction manoeuvres that restore the continuity
of the trajectory in a dynamical system more accurate compared to the preliminary
design one, the optimisation is more prone to converge in the former case than in the
latter. This behaviour is directly connected to the different sensitivity of the initial guess
of the flyby dynamics. However, the result at convergence must be similar since the
objective function remains evaluated at the terminal points and the constraints imposed
achieve essentially the same goal.

Algorithm 5 Flyby refinement in the CR3BP from conditions at the SOI.

Require: x∓SOI
(0)

, t(0)d/a, ∆v∓SOI
(0)

, T , xd/a, µ, ∆vmin

Integrate the trajectory till Eq. 6.1 is satisfied: x∓p (i)←
∫ 0

t∓p
ΩCR3BP

(
t,x∓SOI

(i)
)

dt

Augment the velocity at the SOI of the delta-v component: v∓SOI
(i) ← +∆v∓

(i)

Integrate the trajectory till terminal points: x(i)
d/a ←

∫ t(i)
d/a

t∓p
ΩCR3BP

(
t,x∓SOI

(i)
)

dt
Ensure:

min
(

∆v−SOI
(i)

+ ∆v+SOI
(i)

+
∥∥v(i)

d − vd(t
(i)
d + t−p )

∥∥+
∥∥v(i)

a − va(t+p + t
(i)
a )
∥∥)

subject to:

g(x) :


x−p

(i) − x+
p
(i)

= 0

r
(i)
d − rd(t

(i)
d + t−p ) = 0

r
(i)
a − ra(t+p + t

(i)
a ) = 0

h(x) :


∣∣t(i)a + t+p − t−p − t

(i)
d − T

∣∣− ε ≤ 0

RHill ≥
∥∥r∓SOI

(i) − {1− µ, 0, 0}
∥∥ ≤ 5RHill

∆vmin −
∥∥v(i)

d/a − vd/a(t
(i)
d/a + t∓p )

∥∥ ≤ 0

Nevertheless, the feasibility of the correction manoeuvres is not guaranteed considering
that their executions far from the discontinuity might result in negligible delta-vs which
represents another reason to initialise the optimisation from initial conditions far from
secondary but not so far as the terminal points.

The optimisation strategy consists in performing the backward and forward propa-
gation from each of the control points on the SOI. The velocity difference at terminal
and control points is minimised where the continuity condition at the close approach
and targeting constraints at deperarture and arrival planet are satisfied, see Algorithm
5.
It is interesting to note that, differently from the close approach strategy, the initiali-
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Chapter 6. Trajectory refinement

sation at the SOI allows more room at the optimiser to identify the minimum solution,
since the optimisation presents a higher degree of freedom, computed as the differ-
ence between number of independent free-variables and number of equality constraints.
Moreover, the close approach condition does not appear anymore among the equality
constraints, g(x) vector, as it is automatically satisfied by in the propagation within the
SOI, stopped when Eq. 6.1 is satisfied.
In the CR3BP the absence of the time makes the continuity constraint enough to ensure
patching at the close approach; nevertheless, a time update is required in order to en-
sure a correct targeting with the departure and arrival planets. In the end, the inequality
constraints allow a relaxation of the total time of flight and of the definition of the SOI
radius and ensure that the correction at the terminal point is not negligible. If the latter
constraint results inactive the solution obtained with the SOI initialisation converges to
the close approach optimisation.

6.2 Shooting algorithm for resonant flyby identification

The strength of the grid search algorithm consists in the ability to characterise a region
of the phase space by representing the trend of variables of interest interpolated on the
subset of points on the grid. Depending on whether the value of the output variable is
displayed on the same coordinate system of the grid or on a separate one, whose varia-
tion is parametrised through a colour scale, surface and contour plots are distinguished.
In this work, a piece-wise linear interpolation is performed between each pair of grid
points and allows the map to extrapolate the evolution of the output variable without the
need to compute it, this is based on the assumption that the variable to be represented
is a result of a smooth function. Constant level curves of the output values can be also
represented with an hyper-plane parallel to the grid coordinate system, whose intersec-
tions with the interpolated surface identify constant level contours. As expected, the
contour precision such as the prediction quality on the output variable trend depends
directly on the piece-wise linear interpolation and therefore by the grid size.

The results of the Flyby map in terms of the semi-major axis and inclination vari-
ations were displayed in Ch. 5 through bi-dimensional contour plot in terms of the
argument and osculating longitude of the periapsis, that constitute the grid coordinate
system. Among all the different effect of the close approach on the post-encounter
trajectories, resonant flyby are interesting since, by freezing the semi-major axis, they
enable repetitive encounter with the secondary mass after approximately one synodical
period and offer an inexpensive way to modify eccentricity and inclination with respect
to the primary. Resonant orbits can be determined in the Flyby map F with the contour
associated to the level set, La, described by Eq. 6.3:
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6.2. Shooting algorithm for resonant flyby identification

La (F) = {(ω,$) | (ω,$) ∈ D (F) ∨ aB (ωA, $A) = aA} (6.3)

which identifies the control variables presenting a zero variation of the semi-major axes
measured at the Poincaré sections,

∑
A and

∑
B respectively, and related to the pre-

and post-encounter conditions. Although the piece-wise bi-linear interpolation in the
control variable space manages to extract the resonant condition from the Flyby map
domain, D (F), the sequence of points poorly satisfies Eq. 6.3. Indeed, adopting the
argument and osculating longitude of the peripapsis coordinates associated to the con-
tour as initial guess leads to several hundreds of thousands of km difference between
the pre- and post-encounter semi-major axis. Adopting a finer grid search would not
anyway capture the resonant condition but significantly increase the computational ef-
fort required to generate the map. Instead, even a coarse grid offers good initial guesses
in the Flyby mapF control variables that can be refined through an optimisation pro-
cess. Being the degree of freedom of the optimisation positive, with phase space of
free-variables bi-dimensional and one constraint, the resonant condition, to be satis-
fied, the optimisation might fail in characterising the contour. Another constraint must
be added to set up a root finding algorithm: the bi-modal behaviour displayed by the
close approach distance, represented in Fig. 5.10, make it a good candidate for the
parametrisation of the contour. An exponential distribution identifies all the possible
level sets of the minimum flyby altitude. The advantage of implementing a close ap-
proach parametrisation is double. On one side, it allows to regulate the selection of
the initial guesses, performed at the intersection of the contours associated to resonant
condition and to the level sets, see Fig. 6.1:

Figure 6.1: The identification process of the initial conditions, represented with the white star markers
in the control variable space, from the piece-wise bi-linear interpolated contours associated to the
resonant flyby and the close approach altitude of 50 km, in black and red respectively, for a 4:1
resonant orbit at the maximum inclination and 4 km/s infinite velocity at Europa.
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Chapter 6. Trajectory refinement

while on the other, it determines the additional constraints required to initialise the
root-finder, see Algorithm 6.

Algorithm 6 The refinement of the contour associated to the resonant condition parametrised on an
exponential distribution of the close approach distance through a root-finding algorithm.

Require: ωA,$A, aB , rp
Generate an exponential distribution: Crp ← Exp(m)|Crp ∈ [min rp, RHill]
for crp ∈ Crp do

Determine the countour for the level set: Lrp ←
{

(ω,$) |rp (ωA, $A) = crp
}

Determine the initial guess at the countours intersection: {ω(0)
A , $

(0)
A } ← La ∩ Lrp

Find ω(i)
A , $

(i)
A s.t.

Ensure:
aB (ωA, $A) = aA ∨ rp (ωA, $A) = crp

end for

These initial guesses can be refined to machine accuracy in few iterations, generally
two, solving the system of non-linear equations identified by the contour levels under
study.

6.3 Psuedo-arclength continuation for families of resonant flybys iden-

tification at different inclinations

The ability to scan the phase space of the control variables and study their effect in
identifying different configurations of the close approach that leads to a different post-
encounter trajectories make the Flyby map an interesting tool to evaluate the flyby effect
in the CR3BP . Nevertheless, anytime a parameter different from the argument and the
osculating longitude of the periapsis is modified to study a diverse configuration of the
flyby, a new Flyby map has to be generated. However, if a specific sequence of flybys
wants to be analysed, several Flyby maps, one per each flyby modifying semi-major
axis or eccentricity, might be required to be evaluated to extract from few points from
their domain. It is the case of resonant flyby sequences with a prescribed close approach
distance, whose implementation in the Clipper tour is fundamental to inspect different
quadrants of the surface of Europa. Applying the Flyby map in cascade using the
information obtained at the Poincaré section

∑
B to re-initialise the numerical mapping

with the arrival inclination represents a possible way to tackle the design of resonant
orbits whose variation in inclination is the result of a flyby, however it is not efficient.

Instead of generating several Flyby maps and resolving different root-solving prob-
lems, a psuedo-arclength continuation method can be initialised with the refined reso-
nant contour parametrised by the close approach distance and used to identify family
of resonant orbits with prescribed close approach distance. Psuedo-arclength continu-
ation is a numerical method that belongs to the category of predictor-corrector solvers.
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6.3. Psuedo-arclength continuation for families of resonant flybys identification at
different inclinations

Such approach originated by the observation that the tangent represents a more natural
parametrisation of a curve described by Eq. 6.4 [36, 37]:

G(u) = 0 where G : RN × R→ RN (6.4)

in the u = {u1, u2, . . . , uN} coordinate system that in resonant flyby case can be re-
placed by the tern iA, ωA and $A, associated to the inclination, argument of the periap-
sis and osculating longitude of the periapsis of the pre-encounter trajectory measured
at the Poincaré section ΣA. Then Eq. 6.4 becomes:

G (iA, ωA, $A) =

{
aB (iA, ωA, $A)− aA = 0

rp (iA, ωA, $A)− crp = 0
(6.4)

where crp constitutes a level set of the exponential distribution of close approach dis-
tances, Crp .

Let
(
i
(i)
A , ω

(i)
A , $

(i)
A

)
be a point on the regular curve, then the tangent to the curve at

the point can be determined by
(
i̇
(i)
A , ω̇

(i)
A , $̇

(i)
A

)
Eq. 6.5:

u̇ ∈ kerGu → Gu
(
u(0)
)
· u = 0 (6.5)

that can be rewritten in the Flyby map parameters of interest:


∂aB
∂xB

∂xB
∂xA

∂xA

∂i
(i)
A

∂rp
∂xe

∂xe
∂xA

∂xA

∂i
(i)
A

∂aB
∂xB

∂xB
∂xA

∂xA

∂ω
(i)
A

∂rp
∂xe

∂xe
∂xA

∂xA

∂ω
(i)
A

∂aB
∂xB

∂xB
∂xA

∂xA

∂$
(i)
A

∂rp
∂xe

∂xe
∂xA

∂xA

∂$
(i)
A




i̇A

ω̇A

$̇A

 = 0 ⇒


i̇
(i)
A

ω̇
(i)
A

$̇
(i)
A

 =


1

g13g21−g11g23
g12g23−g13g22
g11g22−g12g21
g12g23−g13g22


(6.5)

It is interesting to note that the Jacobian of the curve defined by Eq. 6.4, accounting for
the partial derivative of the minimum flyby altitude and the post-encounter semi-major
axis can be expressed by the chain rule as the product of the partial derivative of the
initial cartesian state with respect of to the orbital parameters evaluated at the initial
point, the state transistion matrix and the partial derivatives of the curve variables with
respect to the cartesian state of reference, that are identified during the propagation by
the event functions defined by Eq. 6.1 and Eq. 7.2 respectively. Moreover, differently
from what the theory suggests, the tangent u̇ can be normalised with respect to one
variable, in this case the inclination iA that constitutes the out-of-plane component with
respect to the control variables space of the Flyby map. Therefore, the predictor, ũ(i+1),
can be defined through a step, ∆s, made in the tangential direction, u̇(i), from the initial
point u(i). The feasible point that satisfies Eq. 6.4 is searched by the corrector, u(i+1),
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Chapter 6. Trajectory refinement

in the normal direction to the tangent, see Eq. 6.6:

ũ(i+1) = u(i) + u̇(i)∆s

u(i+1) :

{
G
(
u(i+1)

)
= 0(

u(i+1) − ũ(i+1)
)
· u̇ = 0

(6.6)

If the step, ∆s is small enough, the psuedo arclength continuation can easily pass
through fold and bifurcation points differently from the Newton method, based on nat-
ural parameter continuation [37].
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CHAPTER7
Application: the Europa Clipper mission

Europa Clipper is a NASA scientific mission to study Europa and answer the question
about its potential sustainability of existing life. The presence of liquid water, heat
source and different chemical elements place Europa in the top priority list for NASA
planetary exploration program.

The Europa Clipper’s trajectory is a multi-moon orbiter mission accounting over 45
Europa, 5 Ganimede and 9 Callisto flybys answering to several design challenges: high
resolution distributed observations of the surface of Europa under different luminosity
conditions, high datalink and low radiation dose exposure, which constitutes a critical
point considering that Europa resides deep inside Jupiter magnetosphere.

The trajectory exploits the gravitational interaction of the Galilean moons with Jupiter’s
gravity field, yet its design is still based on a patched conics modelling of such ef-
fects [12, 13, 43, 44]. Nevertheless, planetary moon systems, such as the Jupiter one,
exhibits strong perturbations that induce large errors in position and velocity on the
two-body trajectory. Such discrepancies result in large delta-v and therefore in poor
convergence when the orbit is refined in the full-model, which considers the dynamics
of the six-body problem represented by Jupiter and the Galilean moon system together
with the perturbation induced by the Sun and Jupiter J2 effect. Patched conics legs
might disappear or require delta-v so high to invalidate the whole sequence. It is clear
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Chapter 7. Application: the Europa Clipper mission

that developing a methodology that could provide good initial guesses is needed. There-
fore, the goal of this chapter is to show the applicability of the Flyby map to construct
the Clipper’s tour taking advantage of a renewed understanding about the chaotic dy-
namics, induced already by the circular restricted three-body problem. A trajectory
with two consecutive resonant flybys at 50 km altitude, similar to those implemented
in the Clipper Crank-Over-Top (COT) sequence [12, 13, 43, 44], is investigated and is
explained in the following chapter.

7.1 Crank-Over-Top sequence design with the flyby map

The COTs(Crank-over-the-top sequences) are a series of resonant flybys whose pur-
pose consists in distributing observations of Europa’s surface at different latitudes. The
name derives from the patched conics design, in which the change of inclination in-
duced by the flyby can be modeled by the crank angle, see Fig. 5.4. Starting from an
equatorial orbit, several close encounters with Europa allows to cover 180 degrees in
crank angle. From the trajectory perspective, the S/C hops through different resonant
orbits, that are assumed to share the same semi-major axis, and therefore the pump an-
gle, see Eq. 5.9, and experience an initial increment in the inclination followed by a
subsequent reduction of this inclination [13,17]. In a patched conics perspective, mov-
ing in one direction of the crank angle rather than another from a given initial condition
is interchangeable since targeting a prograde or retrograde flyby is equivalent far from
the secondary body. Moreover it is always possible to return to the initial point per-
forming a flyby in the opposite crank direction with respect to the incoming one at the
arrival. However, several tours [12, 43, 44] display a predominant direction with a pos-
itive change in crank angle for the resonant flyby sequence. Considering the different
effect displayed by prograde and retrograde in the CR3BP , captured by the Flyby map
in chapter 4, it is interesting to observe whether the flyby effect in the CR3BP leads
to conclusions similar to those extrapolated by the tours analysis. The dynamics of
the CR3BP prevents from analysing the out-of-plane effect of equatorial flyby, indeed
a state that lies on the orbital plane of Europa will remain bounded to it. Therefore,
instead studying the COTs from its departure condition, the analysis starts from a res-
onant orbit at the maximum admissible inclination derived by patched conics [18] and
aims to use the Flyby map to identify the natural continuation in crank angle.

7.1.1 Identification of naturally connected resonant orbits

In the previous chapter, a method to derive the exact resonant flyby from the interpo-
lated contour solution was presented and consisted in exploiting the knowledge of the
close approach to identify the initial guess and fine-tune it through a root-finder. In or-
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7.1. Crank-Over-Top sequence design with the flyby map

der to build a COTs with a reference close approach distance, the Flyby map is applied
in cascade re-initialising the numerical mapping at the arrival inclination obtained at
the Poincaré section ΣB, see Fig. 7.1.

Figure 7.1: The characteristic information resulting from perturbing the osculating longitude and the
argument of the periapsis for a 4:1 resonant orbit at the maximum inclination, 6.006 degrees, with
4 km/s infinite velocity. From the top to the bottom, the colour-coded distributions of the period and
the inclination of the post-encounter osculating orbit and the refined solution for a 50 km altitude
resonant flyby represented with the white star marker.

The Tisserand parameter is conserved by the dynamics and the semi-major axis is
preserved by the resonant flyby. At the Poincaré section Σ

(i+1)
B , an additional refine-

ment process is required to identify the solutions presenting 50 km altitude resonant
flyby. Fig. 7.2 displays the trend of the post-encounter semi-major axis and inclination
with respect to the control variables, the argument and the osculanting longitude of the
periaspsis.

The refined solutions for the second flyby, represented with the white star markers
in Fig. 7.2, must be compared at the patching point with the one generated by the first
flyby, see Fig. 7.1. The deviations at the patching point, expressed in terms of miss-
distance and delta-v difference, which are collected in Tab. 7.1, show that the natural
continuation of the first resonant flyby is the fourth solution, identified by the white
starred circle in Fig. 7.2, characterised by an error of more than 16 thousand km in
position and of more than 30 m/s in velocity.
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Chapter 7. Application: the Europa Clipper mission

Table 7.1: The identification of the "natural" resonant orbit obtaining comparing the results at the
patching.

x at Σ
(0)
B at Σ

(1)
A

rx [106 km] -2.7118 -2.7125 -2.7140 -2.7141 -2.7126
ry [106 km] -0.1383 0.1239 0.0947 -0.0913 -0.1221
rz [106 km] -0.0486 0.0487 0.0283 -0.0285 -0.0486
vx [km/s] -2.6120 2.3360 1.7863 -1.7214 -2.3017
vy [km/s] 51.2541 51.2674 51.2959 51.2980 51.2690
vz [km/s] -0.3135 -0.3134 -0.3196 -0.3195 -0.3134

x ∆x
rx [106 km] -0.0007 -0.0022 -0.0023 -0.0001
ry [106 km] 0.2622 0.2.3303 0.0471 0.0163
rz [106 km] 0.0973 0.0769 0.0201 0.0000
vx [km/s] 4.9480 4.3984 0.8907 0.3104
vy [km/s] 0.0133 0.0418 0.0439 0.0149
vz [km/s] 0.0001 -0.0061 -0.0060 0.0001

Figure 7.2: The characteristic information resulting from perturbing the osculating longitude and the
argument of the periapsis for a 4:1 resonant orbit at 4.316 degrees of inclination with 4 km/s infinite
velocity. From the top to the bottom, the colour-coded distributions of the period and the inclination
of the post-encounter osculating orbit and the refined solution for a 50 km altitude resonant flyby
represented with the white star markers.

Such discrepancies in miss-distance and delta-v arise by the approximation of study-
ing at the Poincaré section an orbit subjected to the three-body dynamics with quantities
belonging to a different dynamical model, such as the semi-major axis and the inclina-
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tion for instance.

7.2 Crank-Over-Top sequence optimisation

In the previous section, the selection of the natural resonant orbit from the initial one
was performed. Nevertheless, even if such trajectory presents the smallest errors in
position and velocity at the patching points, such discrepancies are too large. Consider,
for instance, that for the whole tour Clippers has a total delta-v on the order of 100-200
m/s for a number of flybys ranging from between 50-60, accounting for no more than
5 m/s of delta-v per flyby [12, 43]. An optimisation process is required to reduce the
deviations within acceptable margins, minimising the velocity difference at the patch-
ing point while preserving the overall features of the orbit, expressed in initial and final
semi-major axes and inclinations.

Figure 7.3: The representation of Poincare sections, ΣA and ΣB , along the orbit identifying the bound-
ary conditions of propagation.

7.2.1 Problem statement

A refined version of the close approach optimisation described in chapter 6 is exploited.
Initialised the optimisation with the state at the close approaches, the trajectory is prop-
agated backward and forward in time until crossing with the Poincaré sections, ΣA

and ΣB at which the constraints and the objective function are evaluated, following the
schematic presented in Fig. 7.3.

Let χ be the free-variable vector expressed as:

χ =
(
xCA

1 , t+1 ,x
CA
2 , t−2

)
(7.1)
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Chapter 7. Application: the Europa Clipper mission

where xCA denotes the state at the close approaches, t the time of flight till the patching
point and the apex +/− indicates whether the propagation occurs forward or backward
respectively. Then, the optimisation problem can be stated as a minimisation of the
delta-v at the gap:

J minv−2 − v+
1

subject to the following equality constraints:

C1 a
(0)
A = aref and a(1)

B = aref

preserve the resonance condition at Σ
(0)
A and Σ

(1)
B ;

C2 i
(0)
A = i

(0)
ref and i(1)

B = i
(1)
ref

maintain inclination variation along the orbit checking the initial and final incli-
nation at Σ

(0)
A and Σ

(1)
B ;

C3 r−2 = r+
1

reduces the miss-match within (1m) tolerance;

C4 rp −REu = 50km and Eq. 6.1
ensuring that the propagation starts from a close approach at 50 km of altitude.

As it is, the optimisation might get stuck generating unfeasible initial conditions,
therefore, the problem is reformulated by incorporating C4 in the free-variables, con-
verting the Cartesian state at the close approach xp into spherical coordinates. The
result of embedding the constraints reduce the state vector at the close approach xp to
s = (λ, φ, v, β) expressed in terms of the longitude, λ, and the latitude, φ, of the peri-
centre and the magnitude, v and the orientation β of the velocity, measured from the
north direction in the plane normal to the position vector.
Such form is particularly convenient as it prevents the optimisation from generating
states that lead to a collision and trajectories that are captured at the secondary body,
condition that can be obtained by bounding to the velocity v

Finally, in order to further improve the optimisation performances, the Jacobian of
the objective function J and the constraints, C1, C2 and C3, are computed applying the
chain rule, as:
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7.2. Crank-Over-Top sequence optimisation

∂J

∂χ
=

[
∂∆v

∂s

∂∆v

∂t

]
=

[
∂∆v

∂xf

∂xf
∂xi

∂xi
∂s

∂∆v

∂xf

∂xf
∂t

]

∂C

∂χ
=


∂C1

∂s

∂C1

∂t
∂C2

∂s

∂C2

∂t
∂C3

∂s

∂C3

∂t

 =


∂a

∂xΣ

∂xΣ

∂xi

∂xi
∂s

0

∂i

∂xΣ

∂xΣ

∂xi

∂xi
∂s

0

I3
∂xf
∂xi

∂xi
∂s

I3
∂xf
∂t


(7.2)

where xΣ, xf and xi are associated to the Cartesian state at the Poincaré section, at
the final and initial point respectively. Note that Eq. 7.2 does not represent the actual
Jacobian which is computed for the full free-variable vector χ shown in Eq. 7.1 and
for the complete set of the C1 and C2 constraints, but want to be representative of the
reasoning that was applied. As a final remark, providing the Jacobian allows to pre-
vent the optimisation from approximating inaccurately the partial deviates computed,
otherwise, by the optimiser with finite difference. Such condition is more prone to
occur above all the points that are extrapolated during the propagation through event
functions, for instance at the crossing of the Poincaré section.

Resonant flyby optimisation

In the previous section, the direct optimisation of two resonant flybys of Europa Clipper
COTs sequence is addressed in terms of initialisation and methodology. In this section,
we evaluate the result of the optimiser.

First of all, it is interesting to evaluate the difference between the initial and optimal
design variables in order to understand how close or far the initial conditions were from
the optimal solution. Tab. 7.2 and Tab. 7.3 gather the values of the initial and optimal
state and their difference, in terms of the optimisation parameters and the associated
state at the close approach. This demonstrates that the difference is of few km (12.749
km and 1.967 km) and few m/s (17.879 and 5.368 m/s) for the position and velocity of
the first and second close approaches respectively, and of few min (around a quarter of
hour) for the time of flight at the patching point. This information tells that the Flyby
map offers initial conditions that are reasonably close to the optimal ones.

At the same time such a small change on the initial conditions has a huge impact on
the delta-v and the miss-distance, that improve from 32.99 to 1.47 m/s and from 1750
km to 2.16 cm, as you can see from Tab. 7.4.
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CHAPTER8
Conclusion

In this report we present an overview of the graphical grid-search methods through
which trajectories with flybys can be designed and the effect of a close passage can
be studied. The main and most general result achieved during this doctoral research
consists in the fact that a map alone is generally not enough to explain the behaviour
of the dynamics for the solution space under consideration. Indeed the trend of the
performance index at stake conceals information that can be enlightened only by addi-
tional parameters. The improved understanding of the dynamics can positively affect
the trajectory design by constraining the solution space to a smaller region of interest.

In Ch. 2, the porkchop plot has been analysed for the zero- and multi-revolutions trans-
fer between circular coplanar orbits. Purely geometrical relations, that can be expressed
by analytical equations, enable the identification of the minimum delta-v solutions and
the analysis of the shape of constant delta-v contours through the solutions associated
to tangential manoeuvres at departure/arrival. The extension to the multi-revolutions
trajectories allows to populate the porkchop plot with new minima and to evaluate dif-
ferent configurations for the mission scenario in terms of number of revolutions and
launch opportunities for departure and arrival dates considered.

The main limitation of this study is represented by the circular coplanar hypothesis
for the planets orbits. Its application is legitimated by the sake of a clear understanding
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about the effect of the the time of flight and the phasing on the delta-v, situation that
requires to favour a smooth constant delta-v contour over the real jagged one. Neverthe-
less, future work will address the effect of eccentricity and inclination on the minimum
delta-v solutions and the shape of constant delta-v contours, try to separate their con-
tributions.

Ch. 3 moves from the targeting problem for the doublets described in Ch. 2 to the
triplets. In particular, we present a method to treat the flyby trajectory as two separate
targeting problems whose solutions can be recombined at the common date of flyby.
The approach prevents the computational effort to grow cubically. Following the re-
duction in dimensionality of the search space for the triplets, the targeting problem
is revisited and tackled as an inverse Lambert’s problem, parametrising the trajectory
on the orbital elements and resolving for the time of flight. Indeed an orbital ele-
ment search space can be effectively reduced with respect to its counterpart defined in
epochs, and offers to the designer a direct feeling of the orbital geometries at stake.
The applicability of the method to the design of flyby trajectories is enabled by dif-
ferent constraints formulated on the orbital elements that address the quality of flyby
trajectory. The feasibility of the close encounter is checked by limits on the maximum
variation of the orbital elements derived by the Gauss’ Planetary Equations applied to
the case of the flyby.

The drawback of the method consists in the tangentiality constraint imposed at the
terminal points that simplifies significantly the parametrisation of planar trajectories as
a function of the eccentricity only. Despite legitimated as suboptimality conditions, the
tangentiality constraint reduce the solution space to points and in future work will be
abandoned in favour of a more general treatment of the triplets in the flavour of inverse
Lambert’s problem.

In Ch. 4 the pruning of the search space of both doublets and triplets is addressed. A
method to construct bounding region for the terminal points, at which the delta-v is
evaluated, is presented and consists in identifying on the porkchop plot the tangential
solutions at departure/arrival with prescribed delta-v. These points constitute the ver-
tices of the box that can be refined to match the actual contour of the constant delta-v
solutions through a simple root-finding. The limits in orbital elements variation derived
in Ch. 3 are used as incremental pruning of the solution space of the post-encounter
transfer leg based on the knowledge of the pre-encounter one.

The main advantage of the method consists in the possibility to define the bounding
region on a different subset of the search space that presents an analytical solution for
the delta-v. The price paid by the refinement is paid back by the capability to refine the
bounding box derived for circular coplanar orbits on the actual constant delta-v contour
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line associated to either simplified or real ephemerides and by the possibility to specify
the grid-size on a reduced solution space. Future work will question the actual gain in
computational time.

In Ch. 5, the spatial Flyby map is derived from the planar one and allows to obtain new
insights on the third-body interaction for the 3D dynamics. In particular, two families
of flyby have been observed: type I and type II, also known as prograde and retrograde.
Differently from the predictions of patched conics their effect is not identical and type
II flyby appears less efficient compared to type I.

Future works foresees the application of the spatial flyby map to low-energy trajec-
tories and to a treatment of the elliptic three-body dynamics to improve the knowledge
of close encounters with Europa.
Ch. 6 offers an overview of the refinement techniques that can be used to improve the
accuracy of grid solutions. The first paragraph deals with the optimisation of the flyby
from initial guess derived at the close approach or at the SOI. Although the first strategy
is legitimated by the interest in improving the convergence of the optimisation breaking
the insensitivity of the flyby from a condition at infinite, the second does not show these
symptoms, converges to the solution of the first strategy when initialised with the same
problem and appears ideal to treat different scenarios in an operational perspective. The
second paragraph offers a root-finding approach to extract resonant flyby by the attain-
able set of the Flyby map and a psuedo-archlength continuation method to continue
in inclination the refined solutions associated to a resonant flyby with prescribed close
approach distance.

In future, the continuation method will be applied to characterise the whole family
of resonant flyby along the inclination.

Ch. 7 concludes the doctoral research with an application of the Flyby map to im-
prove the design of COTs for Europa Clipper. In particular, differently from what
patched conics theorizes, Ch. 7 proves the existence of a natural direction in crank
angle (forward) for the sequence of resonant flyby and the fact that "back-cranking"
does not allow to return to the initial condition of departure. In the end, the Flyby map
demonstrate its capability to generate good initial guesses despite obtained through an
interpolation process.

Future work foresees the optimisation of a complete sequence of resonant flyby to
answer about the existence of a manifold in CR3BP to which the COTs belongs.
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Appendix

8.1 Appendix A: The coordinate chart, ϕ

At the crossing with the Poincaré section, the transformation ϕ allows to switch from a
description of the particle’s motion in the CRTBP to the coordinate system of the Flyby
parameters, and vice versa through ϕT . The first/last step consists into moving from
the CRTBP to the system of reference of the two-body problem.

{t,X, Y, Z, Ẋ, Ẏ , Ż} 3B→2B−−−−→ {X + µ, Y, Z, Ẋ − Y, Ẏ +X + µ, Ż} (8.1)

Eq. 8.1 shows the change of origin from the barycentre of system to the location of
the primary (−µ, 0) and the increase in velocity of its tangential component due to the
switch from a co-rotating frame to an inertial one in which the osculating Flyby map
parameters can be computed. The time of flight of the propagation, which is initialised
at the close approach, must be considered to take into account the movement of the
secondary during the time of flight that the particle spends travelling from the close
encounter to the position of the Poincaré section.

r = R3(t− f)


X + µ

Y

Z

 v = R3(t)


Ẋ − Y

Ẏ +X + µ

Ż

 (8.2)

The possibility to use the time an angle in Eq. 8.2 is ensured by the non-dimensionalisation
of the state and the dynamics in the CR3BP.
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Direct transformation {t,X, Y, Z, Ẋ, Ẏ , Ż} ϕ−→ {a, T, i,$, ω, f}

Starting from the Cartesian state derived for the two-problem from the barycentric co-
rotating solutions of the CR3BP, the direct transformation calculates the osculating
Flyby map parameters. In particular:

1. the semi-major axis, a, is computed directly from the vis-viva equation, see Eq.
8.3:

a =

(
2

r
− v2

)−1

(8.3)

2. the inclination, i, is derived by the angular momentum h, see Eq. 8.4:

h = r× v i = cos−1 h · z (8.4)

3. the eccentricity vector, e, in Eq. 8.5, allows to determine the Tisserand parameter,
T , see Eq. 8.6:

e = (v2 − 1

r
)r− r · vv (8.5)

T =
1

a
+ 2
√

(a(1− e.2)) cos i) (8.6)

4. the line of nodes, mathbfn, enables the derivation of the argument and osculating
longitude of the periapsis, ω and $, see Eq. 8.7:

n = h× z

{
ω = cos−1 n · e

$ = cos−1 n · x + ω − t
(8.7)

5. and the true anomaly is conventionally defined by Eq. 8.8:

f = cos− 1(e · r) (8.8)

The osculating longitude of the periapsis must be reduced of the time of flight compo-
nent since its value must be evaluated from the position of the secondary at the close
approach position and therefore t− f degree in advance.

Inverse transformation {a, T, i,$, ω, f} ϕ−1

−−→ {X, Y, Z, Ẋ, Ẏ , Ż}

The inverse transformation allows to initialise the propagation from the reference apsis
(either the apoapsis or the periapsis depending whether the non-dimensionalised semi-
major axis is greater or smaller than one), by converting the osculating Flyby map
parameters into Cartesian states. In particular:
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1. the velocity magnitude, v, in polar coordinates is computed directly from the semi-
latus rectum, p [6], see Eq. 8.10:

p =

(
T − 1

a

2 cos i

)2

(8.9) ⇒ v =

√
1

p
(8.10)

2. the distance of the positon vector, r, can be determined by the famous orbit equa-
tion, knowing the semi-latus rectum, see Eq. 8.11:

r = p
1+e cos f

with e =
√

1− p
a

(8.11)

3. the position and velocity vector can be derived in the peri-focal frame defined by
the tern {ie, ip, ih} directed along the eccenticity, peri-focal and angular momen-
tum vectors respectively, see Eq. 8.12:

rT = r [cos f, sin f, 0] vT = v [− sin f, cos f + e, 0] (8.12)

4. and rotated into the inertial Cartesian frame centered in primary applying the ro-
tation,R, described by Eq. 8.13:

R = R3 (ω −$ − t)R1 (−i)R3 (−ω) (8.13)

as a 3-1-3 sequence of rotations with respect to argument of the periapsis, ω, the
inclination, i, and the right ascension of the ascending node expressed in terms
of the osculating longitude of the periapsis, $, and the time of flight at the close
approach, ∆t in Eq. 8.14:

E /p = 2 tan−1

(
1− e
1 + e

tan
f /p
2

)
∆M = Ep − E − e (sinEp − sinE)

t =
√
a3∆M

(8.14)

measured with Kepler equation from the reference apsis, f , to the true anomaly of
the encounter, fp. This quantity results from imposing that the orbit associated to
the Flyby map parameter intercepts the secondary in a patched conics perspective.
In the case of high energy flybys, it can be derived from Eq. 8.11 imposing that r
equals the orbital distance of the secondary from the primary. Eq. 8.14 ensures, on
one side, that the fictituos close encounter occurs at the position of the secondary
and at 0 instant. The term fictituos indicates the patched conics assumption that
confuses the location of the close encounter with the position of the secondary
which represents limiting case of the zero flyby distance.
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8.2 Appendix B: The symmetries of the Flyby map

The Flyby map, F , is the result of three sequential operations, ϕ◦f(t)◦ϕ−1 that enable
mapping the Flyby parameters evolution subjected to the CR3BP dynamics, with f(t)

describing the flow from the Poincaré sections SigmaA to SigmaB. It is interesting to
note that the symmetries of the dynamical model, described by Eq. 8.15, Eq. 8.16 and
Eq. 8.17 [71] :

{x, y, z, ẋ, ẏ, ż, t} S1−→ {−x, y, z, ẋ,−ẏ,−ż,−t} (8.15)

{x, y, z, ẋ, ẏ, ż, t} S2−→ {x,−y, z,−ẋ, ẏ,−ż,−t} (8.16)

{x, y, z, ẋ, ẏ, ż, t} S3−→ {x, y,−z, ẋ, ẏ,−ż, t} (8.17)

are preserved by the Flyby map limited to the transformation ϕ, that translates these
relations expressed in the Cartesian state into Flyby map parameters identifying prop-
erties of the mapping that can be exploited to reduce the computational effort required
to scan the solution space. In particular, the symmetry about the orbital plane, in Eq.
8.17, can be translated the inverse transformation into Eq. 8.18:

(a, T, i,$, ω) = ϕ(x, y, z, ẋ, ẏ, ż, t)⇐⇒ ϕ(x, y,−z, ẋ, ẏ,−ż, t) = (a, T, i,$, ω + π)

(8.18)
which allows to reduce the study of the flyby effect to half of the domain of the argu-
ment of the periapsis ω.

The combination of S2 and S3 resulting in the time symmetry S6, in Eq. 8.19:

{x, y, z, ẋ, ẏ, ż, t} S3−→ {x,−y,−z,−ẋ, ẏ, ż,−t} (8.19)

permits to derive the inverse map F−1 from F by changing the sign of the control
variables, $ and ω. Indeed, with F−1 defined as:

(a, T, i,$, ω)A = F−1 (a, T, i,$, ω)B

and existing the equivalence:

(a, T, i,−$,−ω)A = F (a, T, i,−$,−ω)B

then the inverse transformation can be described by Eq. 8.20:

F−1 = Θ ◦ F ◦Θ where Θ(a, T, i,$, ω) = (a, T, i,−$,−ω) (8.20)
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