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Abstract

To be safer than their human counterparts, automatic pilots must be
able to control the car up to its limits of handling. Therefore, this
PhD thesis focuses on the analysis and design of autonomous vehi-

cles path tracking controllers, able of exploiting all the grip made available
by tyre-ground interaction. In particular, two subtopics have been investi-
gated. Firstly, attention has been devoted to path tracking controllers able to
manage the so-called drifting technique, which consists of taking a turn in
the presence of large values of vehicle sideslip angle and counter-steering.
Such an aggressive and complex manoeuvre is typically used by expert
rally drivers to go as fast as possible on low-grip terrains, but it has also
been recognized as a driving technique expanding vehicle mobility, and it
can be potentially adopted for autonomous emergency obstacle avoidance
manoeuvres. In light of this, an autonomous drifting stabilization controller
has been designed and experimentally tested. Then, the proposed approach
has been extended to let the vehicle autonomously follow a circular trajec-
tory while keeping in a sustained drifting dynamic equilibrium. Secondly,
the analysis of a control oriented model, originally conceived by a Stanford
research group, to simplify the design of a path tracking controller which
is able of exploiting all the grip made available by tyre-ground interaction,
has been carried out. This model is a variant of the well-known single-track
model, featured by front tyre lateral force as the control input, in place
of front tyre steering angle. This allows to easily (say linearly) express
the hard saturation constraint on the lateral force developed by front tyre,
which is dictated by tyre-ground friction coefficient. However, undamped
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yaw rate oscillations, the so-called fish tail phenomenon, occurs when op-
erating the vehicle at high speed. Therefore, a control-oriented analysis
of this affine in the control input model, which explains and analytically
demonstrates the reason behind the fish tailing phenomenon, has been con-
ducted. After that, a possible solution to the previously described problem
has been proposed and assessed, by means of simulations performed on a
realistic multibody Dymola vehicle. Last but not least, to effectively test the
proposed control strategies, a dedicated experimental platform, which con-
sists in a 1:10 scale radio controlled car, made autonomous by the addition
of a set of sensors (inertial measurement unit, odometer, marker for an op-
tical motion tracking system) and processing units (Arduino, Odroid XU4),
has been designed and assembled. A nonlinear single-track model has been
used to describe the vehicle dynamics: its parameters have been measured
or identified and its accuracy has been assessed. The dynamic similarity
between the scaled car and a real vehicle, which has been verified, allows
to use this setup as a realistic experimental setup for the evaluation of the
proposed control strategies.
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CHAPTER1
Introduction

Many car makers, among all Ford, BMW, Mercedes, Toyota and FCA [52],
with the novel addition of AI giants like Google and Apple, are investing a
lot of resources to develop fully autonomous cars, with the promise of a dra-
matic decrease in accidents and of a revolution in the road mobility sector:
people will not own cars anymore, but will temporarily rent autonomous
ones just to be brought to their destination. This enormous breakthrough in
the automotive sector looked like to be coming soon, i.e., by 2020, but in a
recent interview released at the 2017 Las Vegas CES event [1], Gill Pratt,
the CEO of the Toyota Research Institute, revealed that car makers are still
far from reaching the top level of the SAE scale of on-road vehicle driving
automation [55]. Many ethic, legal and technical problems have still to be
solved to really bring the expected improvements in car safety.

The generic architecture of an autonomous car is usually made of three
layers:

1. perception layer, accounts for the perception of the surrounding envi-
ronment (obstacles detection) and for the measurement and estimation
of vehicle states and parameters;

1
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Chapter 1. Introduction

2. path planning layer, takes as input the data coming from the percep-
tion layer and outputs a reference trajectory which should in princi-
ple allow the vehicle to safely traverse the environment and reach the
destination. More specifically, we can distinguish between the global
path planner, which substantially accounts for the navigation of the
vehicle, and the local path planner, which accounts for the generation
of a local trajectory which satisfies kynodynamic constraints posed by
vehicle non-holonomic dynamics, by actuator saturation limits and by
obstacles. Moreover, the generated trajectory should satisfy passenger
comfort constraints, which usually translates into limited longitudinal
and lateral acceleration;

3. control layer computes control input to follow the reference trajec-
tory generated by the path planner, while rejecting disturbances act-
ing on the vehicle, while being robust to parameter uncertainties, and
while taking into account kinematic, dynamic and passenger comfort
constraints.

Today, most of the technical challenges currently dwell into perception and
planning layers, which means autonomous perception of obstacles and pre-
diction of the behaviour of other cars, pedestrians and even cyclists, as de-
scribed, for example, in [23]. Nevertheless, unsolved problems can also be
found in the control layer, and the present work aims at addressing some of
them. In particular, this PhD thesis aims at overcoming some of the limiting
assumptions under which most of the path tracking controllers which can
be found in the literature, along with ADAS1 [53], have been developed. In
particular, we are mainly referring to the following two assumptions:

• small vehicle sideslip angle2. This assumption is not satisfied when
the car drifts due to, for example, a sudden decrease of rear wheel
friction coefficient, which may be the result of a wet or icy road patch.

• linear relation between tyre lateral force and slip angle3. This hypoth-
esis is only valid for small values of the tyre slip angle. Therefore, au-
tomatic drivers leveraging on it cannot take advantage of all grip made
available by tyre-ground interaction. This fact is restrictive when the
car is traveling on a low grip terrain, as for instance a wet road, and
when a suddenly appeared obstacle has to be avoided to prevent a col-
lision.

1Advanced Driver Assistance System
2For the definition of vehicle sideslip angle, the interested reader can refer to Chapter 2.
3For the definition of tyre slip angle, the interested reader can refer to Chapter 2.

2
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These two assumptions hold only in a normal driving condition, i.e., far
from the limits of vehicle handling. However, we strongly believe that an
automatic driver, to be really safer than his human counterpart, has to over-
come these assumptions, being able to exploit all the grip made available
by tyre-ground interaction and to hold car control even in the presence of a
large sideslip angle.

To study the problem of autonomous driving in the presence of large
vehicle sideslip angles, this work focuses on drifting manoeuvres. Drifting
is an aggressive manoeuvre, which brings the car close to its limits of han-
dling, and which is characterized by a large vehicle sideslip angle, counter-
steer and throttle action, for the control of vehicle lateral dynamics. The
interest for this manoeuvre is justified by the fact that it is not only used by
rally drivers on slippery terrains, but sometimes it is the only viable option
to avoid an obstacle in an emergency condition [32]. In addition, drifting
expands vehicle mobility capabilities at low speeds [62], giving the oppor-
tunity to navigate through tight spaces.

The autonomous execution of a drifting manoeuvre represents a com-
plex control problem, due the multiple number of inputs and outputs, the
saturation constraints on the control inputs, and the nonlinearities of the
underlying dynamics. This work leverages on Linear Quadratic (LQ) con-
trol strategy to design a drifting stabilization controller. Though several
works have already used this control approach for drifting stabilization, the
following novel aspects characterize this thesis:

• differently from the other works which are present in literature, we
used the same control input available to a human driver, namely front
tyre steering angle and longitudinal force developed by rear tyres. The
latter of these is related to torque delivered by motor, which, in turn,
is linked to throttle command;

• for the first time, to the best of authors’ knowledge, LQ approach has
been extended to perform, simultaneously, drifting stabilization and
tracking of a circular path;

• last but not least, LQ controllers have been tested by means of exten-
sive experimental campaigns, aimed at assessing their performance,
robustness and shortcomings. These experiments have highlighted the
robustness of the LQ control approach in stabilizing drifting and in
tracking a circular reference path.

3
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Chapter 1. Introduction

To perform experimental tests, a dedicated setup was built for the purpose
of this PhD research project. It consists of a Radio Controlled (RC) 1:10
scaled car, which has been made autonomous by the addition of sensors
and computational units. To be able to design model based controllers, a
model of steering actuator dynamics and of vehicle lateral and longitudinal
dynamics were identified, and their parameters were estimated. Validation
experiments highlighted that single-track vehicle dynamic model, which is
typically used for the design of ADAS and real car path tracking controllers,
is able to reproduce vehicle lateral dynamics, up to the limits of handling.
To further confirm that a scaled vehicle, in place of a real car, can be used
to assess performances, robustness and shortcomings of path tracking con-
trollers, while avoiding the danger and the cost of accidental collisions, the
dynamic similitude between the experimental platform and a real vehicle
has been verified.

Apart from drifting, a control-oriented model, suitable to the develop-
ment of path tracking controllers able to take advantage of all the grip made
available by tyre-ground interaction, has been studied. This model, which
is called Affine in the Force Input (AFI) model, takes front tyre lateral force
as control variable, in place of front tyre steering angle. This implies that:

• nonlinearities of front tyre lateral force and front tyre slip angle rela-
tionship are extracted out from vehicle lateral dynamic model, yield-
ing a linear dynamical system;

• constraints on maximum and minimum front tyre lateral force, which
are dictated by tyre-ground friction coefficient and tyre normal load,
are easily expressed as lower and upper bounds on the control input.

Therefore, AFI model is suited to the design of linear path tracking con-
trollers, which are able to take advantage of the maximum lateral force
which can be developed by tyres. In particular, AFI naturally calls for the
adoption of a linear Model Predictive Control (MPC) approach, for the de-
sign of path tracking controllers.
AFI benefits come at the expense of yaw rate oscillations, which arise when
vehicle is traveling at high speed and front tyre lateral force is the control
variable. These oscillations severely hamper passenger comfort by giv-
ing to him the impression of an impending spinning and, hence, must be
avoided. A novel aspect of this work lies in the analysis and explanation of
the cause of these yaw rate fluctuations, which have never been addressed
so far. It has been discovered that, by controlling front tyre lateral force,
a hidden pole placement control law, which decreases yaw rate damping
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at high speed, is applied. Then, it has been shown, by means of simula-
tions, that undamped yaw rate dynamics not only affects system open loop
response, but also the performance which can be achieved with a MPC
path tracking controller. Therefore, a solution increasing the damping of
yaw rate poles at high speed was proposed. In particular, a pole placement
control law was designed and added to MPC path tracking controller. Sim-
ulations showed that these nested loops control architecture is able to track
a reference path, while using all the grip made available by tyre-ground
interaction, without yaw rate oscillations when vehicle is traveling at high
speed.

This PhD thesis is organized as follows:

• Chapter 2 presents vehicle analytical dynamic models, which are
used to design model based vehicle path tracking controllers. Fur-
thermore, this chapter also describes the multi-body vehicle models
which have been used to test control algorithms which are presented
in the next chapters.

• Chapter 3 illustrates the experimental platform which has been built
for the purpose of this PhD research project, along with the estimation
of its parameters and the identification of steering actuator and vehicle
lateral dynamic model.

• Chapter 4 describes a drifting stabilization and circular path track-
ing controller, that is able of holding car control in sustained drifting
condition. An extensive experimental campaign, aimed at assessing
controller performance, robustness and shortcomings have been per-
formed.

• Chapter 5 analyses a dynamic model which allows to easily design
a linear path tracking controller, that is capable of exploiting all the
grip made available by tyre-ground interaction. As it is shown, this
model suffers from poor damping of yaw rate dynamics when vehicle
is traveling at high speed. An in-depth analysis of the cause of this
phenomenon and a possible solution to it is presented and discussed.

• Chapter 6 draws conclusions and illustrates future developments of
this work.

5
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CHAPTER2
Vehicle dynamic models

Designing a control system under the model based control framework, which
has been adopted throughout this work, a model of the controlled system
is required. When available, as in the case of vehicle dynamics, an analyti-
cal dynamic model derived from first principles is the most straightforward
choice. Therefore, such a kind of model has been extensively used in this
work.

In the literature, the following vehicle dynamic models can be found:

• kinematic models have two great advantages: they are dependent
only upon car geometric parameters, that can be easily measured, and
they are not singular at zero velocity. On the other hand, they effec-
tively reproduce vehicle dynamics when forces generated by tyre are
small [27]. As a consequence, they correctly model vehicle dynamics
only at low speed, and in the absence of aggressive manoeuvres, as, for
example, in the presence of parking manoeuvres and none-emergency
manoeuvres [15, 34]

• dynamic models can represent vehicle complex dynamics which arise
during the execution of aggressive and high speed manoeuvres. On
the other hand, they depend upon a model of tyre forces, whose pa-

7
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Chapter 2. Vehicle dynamic models

rameters are difficult to be identified, and which vary with type and
condition (dry, wet, etc) of the surface onto which the car is traveling.
Most used vehicle dynamic models are the following:

– point-mass model, as the one used in [25] and in [2], neglects
vehicle yaw dynamics at the advantage of simplicity, but at the
expense of model accuracy;

– linear single-track model, also referred to as “bicycle”model [33],
models car lateral dynamic under the simplifying assumptions of
constant or slowly varying longitudinal speed, linear tyre model,
small sideslip and steering angle, and neglectable lateral load
transfer. It is a widely used model for the design of automatic
lane-keeping controllers [17] and ADAS [53];

– nonlinear single-track model relaxes the hypothesis made for lin-
ear single-track model, with the exception of the neglection of the
lateral load transfer, an assumption intrinsic to the single-track
paradigm. This model has been used for the design of several
nonlinear path tracking controllers, for the execution of emer-
gency manoeuvres, as in [39, 40];

– nonlinear full-track model considers four wheels and therefore
takes into account lateral load transfer. It is the most accurate an-
alytical dynamic model which has been used so far for the design
of path tracking controllers. However, its accuracy comes at the
expense of simplicity, being a nonlinear model. Examples of the
adoption of this model can be found in [14, 24].

As this work is focused on the autonomous execution of aggressive ma-
noeuvres, which bring the car up to its limits of handling, only vehicle
dynamic models have been considered.

2.0.1 Full-track vehicle dynamic model

In the following, the derivation of an analytical model of the in-plane mo-
tion of a car-like (non-holonomic) vehicle is presented. We firstly define all
the quantities involved and the sign conventions. Fig. 2.1 illustrates a full-
track vehicle model, with all kinematic and dynamic quantities sketched
with positive sign. Two reference systems are shown, namely:

• a global, or earth fixed, inertial [28] reference system {X, Y };

• a local, relative and non-inertial reference system {x, y}, fixed at ve-
hicle Center Of Gravity (COG), and whose x axis is aligned to vehi-

8
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Figure 2.1: Full-track vehicle model

cle roll axis. The so-called European sign convention [27] has been
adopted, which prescribes a positive y axis towards the left of the ve-
hicle, in contrast to the SAE convention which assumes a positive y
axis towards the right of the vehicle [54].

Coherently with the European sign convention, rotations are positive when
counterclockwise for both these reference systems.
The following kinematic quantities are defined:

• the angle between X and x axis, called vehicle attitude or orientation
angle and denoted as ψ;

• vehicle absolute speed V , whose components along the x and y axis
are Vx and Vy, respectively. The angle between vehicle roll (x) axis
and V is the so-called vehicle sideslip angle β, while the angle be-
tween X and V is the so-called course angle [64], which is given by

θ = ψ + β; (2.1)

• yaw rate r, i.e., the angular speed of the vehicle along the vertical z;

• the angle between x axis and the roll axis of the tyre, the so-called
front-wheel steering angle1 δ.

1Rear-wheel steering vehicles will not be considered in this work, as the vast majority of cars are not equipped
with this technology, despite the considerable improvements of vehicle lateral stability and low-speed maneuver-
ability [2].

9
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Chapter 2. Vehicle dynamic models

Geometrical parameters are:

• a and b, the distance of the front and rear axle from the COG, respec-
tively. Their sum, which yields vehicle wheelbase, is denoted as l;

• vehicle track t, which is approximated as constant along the whole
vehicle length.

Inertial parameters are:

• vehicle mass m;

• vehicle yaw moment of inertia Jz.

Last but not least, dynamic quantities are:

• F i,j
y is the lateral force developed by each tyre, where i = {f, r} with
f and rmeaning front and rear axle, respectively, and where j = {l, r}
with lf and rg meaning left and right wheel, respectively;

• F i,j
x is the longitudinal force developed by each tyre;

• F d
x and F d

y , additional external, longitudinal and lateral forces act-
ing at vehicle COG which account for aerodynamic drag force, and
the components of vehicle weight which act on the vehicle when it is
traveling on a slope or banked road. These forces have been consid-
ered as disturbances acting on the vehicle, that have to be rejected by
the control systems of the longitudinal and lateral dynamics.

Vehicle dynamic equations expressed in the local reference frame, which
are typically used for designing model-based path tracking and lateral sta-
bility automotive controllers [53] as they are free of trigonometric functions
and hence can be easily linearized [27], can be obtained by projecting the
dynamic equations in the global reference frame onto the local reference
frame. The advantage of this procedure lies in the fact that the global ref-
erence frame, as already stated before and in contrast to the local relative
reference frame, is an inertial reference frame, hence Newton and Euler
equations can be easily obtained:

mẌ = FX (2.2)
mŸ = FY (2.3)
Jzψ̈ = Mz (2.4)

where FX and FY summarize the total force in the X and Y directions,
respectively, and Mz is the total yaw moment. Yaw moment equilibrium

10
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equation (2.4) keeps the same in the relative reference frame, therefore we
focus only on translational motion equations (2.2), (2.3). Rotation matrix
[R (ψ)]

[R (ψ)] =

[
cosψ − sinψ

sinψ cosψ

]
(2.5)

can be exploited to project the velocities components in the local reference
frame into the global reference frame, as follows:[

Ẋ

Ẏ

]
= [R (ψ)]

[
Vx

Vy

]
(2.6)

Then, by deriving with respect to time eq. (2.6), one obtains

Ẍ = −ψ̇Vx sinψ + V̇x cosψ − ψ̇Vy cosψ − V̇y sinψ

Ÿ = ψ̇Vx cosψ + V̇x sinψ − ψ̇Vy sinψ + V̇y cosψ,

which can be recasted as[
Ẍ

Ÿ

]
= [R (ψ)]

[
V̇x − ψ̇Vy
V̇y + ψ̇Vx

]
. (2.7)

Now, let’s project tyre forces from the local into the global reference frame:

[
FX

FY

]
= [R (ψ)]

[
Fx

Fy

]
. (2.8)

By simplifying the common term in equations (2.7) and (2.8), i.e., the rota-
tion matrix, and by substituting ψ̇ with = r, the dynamic motion equations
in the local reference frame are finally obtained:

m
(
V̇x − rVy

)
= Fx

m
(
V̇y + rVx

)
= Fy

Jz ṙ = Mz

(2.9)

11
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Chapter 2. Vehicle dynamic models

In eq. (2.9), Fx, Fy are the total forces acting on the x and y axis, respec-
tively, which can be computed, along with Mz, as follows:

Fx =
[
F r,l
x + F r,r

x

]
+
[(
F f,l
x + F f,r

x

)
cos δ −

(
F f,l
y + F f,r

y

)
sin δ

]
+

+F d
x

Fy =
[
F r,l
y + F r,r

y

]
+
[(
F f,l
y + F f,r

y

)
cos δ +

(
F f,l
x + F f,r

x

)
sin δ

]
+

+F d
y

Mz =
[(
F f,l
y + F f,r

y

)
cos δa−

(
F r,l
y + F r,r

y

)
b
]

+

+
[(
F f,l
x + F f,r

x

)
sin δa

]
+

[(
F f,r
x − F f,l

x

)
cos δ

t

2

]
+

+

[(
F r,r
x − F r,l

x

) t
2

]
+
[(
F f,l
y − F f,r

y

)
sin δ

]
+Md

z

(2.10)
where Md

z is a term which includes all the yaw moments which may act as
disturbances on the vehicle, as for example the momentum impressed by
lateral wind, considering that typically the center of pressure is not coin-
cident with the COG, or an asymmetric brake force distribution due to a
different friction coefficient among the two wheels of each axle, as it hap-
pens in the ISO µ-split dynamic test [36].
Eq. (2.9) along with eq. (2.10) define the so-called full-track vehicle dy-
namic model, since they take into account all vehicle wheels. Moreover,
eq. (2.9) can also be expressed as follows, by recalling the second law of
dynamics:

V̇x = ax + rVy

V̇y = ay − rVx

ṙ =
Mz

Jz

(2.11)

2.0.2 Tyre force models

Tyre force model is the most important source of uncertainty, due to its
nonlinearity and to the difficulties faced when identifying its parameters,
which continuously change with road conditions.

Tyre longitudinal force models

Tyre longitudinal force is a nonlinear function of longitudinal slip σ, which
is defined as

σ =
ww − w0

w

w0
w

(2.12)
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where ww is the measured wheel angular speed and w0
w is the theoretical

wheel angular speed, calculated as the ratio between Vx and Rw, with Rw

as wheel radius. It follows that, to use any longitudinal tyre model, the state
equation of wheel rotational dynamics has to be included into the dynamic
model of the vehicle. In particular, for each wheel a state equation can be
formulated as:

Jwẇw = T − FxRw (2.13)

in which Jw is the moment of inertia of the wheel, T is the torque applied to
the wheel by either the motor or the brake. In this work, in order to neglect
the four wheel dynamic state equations, the longitudinal force developed
by the traction tyre has been considered as the control input to the vehicle
longitudinal dynamics. This can be done only if the torque delivered by the
brakes and by the motor is controllable, which is the case for a combustion
engine and, for an electric drive, when the current of the motor is the elec-
trical quantity being controlled by the throttle. Moreover, it is supposed
that the response time of this inner control loop is small enough, compared
to vehicle longitudinal and lateral dynamics, to be neglected. In addition
to this, the assumption of controlling Fx leaves room for low-level traction
and anti-lock braking systems, which act at higher frequency with respect
to a path tracking controller and which consequently works with σ.

Tyre lateral force models

Tyre lateral force models express F i,j
y as a nonlinear function of tyre slip

angle αi,j , which is defined as the angle between tyre roll axis and tyre
speed vector, as exemplified by Fig. 2.2, and which is computed as follows:

αi,j = βi,jw − δi,j = tan−1

(
V i,j
y

V i,j
x

)
− δi,j, (2.14)

in which βi,jw is tyre sideslip angle and δi,j is tyre steering angle. Eq. (2.14)

13
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Chapter 2. Vehicle dynamic models

Figure 2.2: Front tyre slip angle

becomes, for each wheel:

αf,l = tan−1

 Vy + ra

Vx − r
t

2

− δ

αf,l = tan−1

 Vy + ra

Vx + r
t

2

− δ

αr,l = tan−1

 Vy − rb

Vx − r
t

2


αr,r = tan−1

 Vy − rb

Vx + r
t

2

 .

(2.15)
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When a single-track model is adopted, front and rear axle slip angles are
computed as:

αf = tan−1

(
Vy + ra

Vx

)
− δ

αr = tan−1

(
Vy − rb
Vx

)
.

(2.16)

The following simplifying assumptions allow to obtain linear slip angle
equations:

• front tyre steering angle is assumed to be small, so that cos δ ' 1;

• vehicle sideslip angle is assumed to be small, namely cos β ' 1. Con-

sequently β ' Vy
Vx

.

Thus, eq. (2.16) becomes

αf '
(
Vy + ra

Vx

)
− δ

αr '
(
Vy − rb
Vx

)
,

(2.17)

or, equivalently

αf '
(
β +

ra

Vx

)
− δ

αr '
(
β − rb

Vx

)
.

(2.18)

The simplest lateral force model is the linear one:

Fy = −Cαα, (2.19)

in which Cα is the slope of the tangent into the origin of the α − Fy curve,
the so-called cornering stiffness. This model is generally adopted when the
car is not traveling at its limits of handling, as the linear model loses its
validity when lateral force approaches its saturation limit, which is dictated
by the product between tyre normal load and tyre-ground friction coeffi-
cient. Cornering stiffness is a function of several physical parameters, as
for example tyre inflate pressure [27]. In particular, cornering stiffness is
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Chapter 2. Vehicle dynamic models

said to be linearly dependent upon tyre normal load [27] and tyre-ground
friction coefficient [49].
Apart from the linear model, several lateral force models are present in the
literature. They can be divided into analytical models, which are derived
from first principles, and empirical models, which are directly fitted from
experimental data.
A well-known analytical model is the brush model, which is derived start-
ing from the assumption of a parabolic pressure distribution along tyre-
ground contact patch [53]. Fiala model is a variant of brush model [38]:

Fy =

−Cαz + ηCα|z|z −
1

3
η2Cαz

3, |z| < tan (αsl)

−µFzsgn (α) , |z| ≥ tan (αsl)
(2.20)

where

αsl = tan−1

(
1

η

)
z = tan(α) η =

Cα
3µFz

The main advantage of this lateral force model lies in being dependent only
upon a little bunch of physical parameters, namely cornering stiffness, tyre
normal load and tyre-ground friction coefficient µ. This makes the Fiala
model a perfect candidate for control oriented models. In addition to this,
in [63] an extension of (2.20) was presented, which takes into account the
difference between the peak and sliding friction coefficients.
Among empirical tyre force models, Pacejka model, also referred to as
magic formula model, is the most famous one. The interested reader can
refer to [27, 53] for a brief introduction and to [48] for a comprehensive
description of this model, which is typically used in simulation, rather than
for control purposes, due to its accuracy, which comes at the expense of
simplicity.

Tyre combined force models

The maximum friction force which can be developed by each tyre is limited
by the friction circle constraint:

F 2
x + F 2

y ≤ (µFz)
2 (2.21)

Hence, eq. (2.21) must be taken into account when considering a combined
force model, i.e. a force model which accounts for the interaction between
longitudinal and lateral tyre forces, which are not negligible when traveling
at the limits of handling.
In [35], an extended version of Fiala model (2.20) has been presented to
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consider the friction circle constraint, by means of the so-called derating
factor ξ:

Fy =

−Cαz + ηCα|z|z −
1

3
η2Cαz

3, |z| < tan (αsl)

−ξµFzsgn (α) , |z| ≥ tan (αsl)
(2.22)

where

αsl = tan−1

(
1

η

)
z = tan(α) η =

Cα
3ξµFz

ξ =

√
(µFz)

2 − F 2
x

µFz

It can be observed that longitudinal tyre force enters directly into eq. (2.22).
Combined Pacejka model, which is a function of σ. which is defined by
eq. (2.12), in place of Fx, reproduces with a higher accuracy the interac-
tion between tyre forces, at the expense of simplicity. Therefore, as for
lateral force models, Pacejka combined force models are generally adopted
for simulation purposes, rather than for control purposes. A simplified ver-
sion of the magic formula model was proposed and used for control design
in [31]. However, such a model, despite being simpler, is still relying on
a set of parameters which do not have a physical meaning, so in our opin-
ion it does not bring significant benefits with respect to the combined Fiala
model (2.22).

2.0.3 Nonlinear single-track vehicle dynamic model

In the field of automotive automatic drivers and lateral stability controllers,
a common assumption is to neglect the effect of lateral load transfer, so
that a simplified single-track dynamic model is obtained [53]. The single-
track model, also referred to as bicycle model [33], takes its name from the
fact that the wheels of each axle are shrunk into a fictitious wheel, as il-
lustrated by Fig. 2.3. Lateral load transfer effect is negligible when vehicle
lateral acceleration is low, which may not be true in emergency maneuvers.
However, by taking into account any load transfer model, as the ones de-
scribed in section 2.0.5, a nonlinear vehicle dynamic model is unavoidably
obtained, even if a linear tyre model is used, and therefore more complex
nonlinear control techniques are needed.
In accordance with the bicycle assumption, eq. (2.10) is simplified as fol-
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Chapter 2. Vehicle dynamic models

Figure 2.3: Single-track model scheme

lows:
Fx = F r

x + F f
x cos δ − F f

y sin δ + F d
x

Fy = F r
y + F f

y cos δ + F f
x sin δ + F d

y

Mz = aF f
y cos δ − bF r

y +Md
z

(2.23)

Therefore, nonlinear single-track model is obtained adding eq. (2.9) to
eq. (2.23).

2.0.4 Linear single-track vehicle dynamic model

A very commonly adopted model for the design of path tracking controllers
and lateral stability controllers is the linear single-track model [53]. The
linearity of this model can also be exploited to perform stability analysis of
closed loop systems.
The linear single-track dynamic model is obtained by starting from the non-
linear single-track model derived in section 2.0.3, and by making the fol-
lowing simplifying assumptions:

• longitudinal speed is assumed to be constant (or slowly varying), so
that it can be considered as a parameter (or a slowly varying parameter,
so that a linear time-varying system is obtained). This assumption
allows to neglect longitudinal load transfer and, obviously, the state
equation of longitudinal speed in eq (2.9);
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• sideslip and steering angles are assumed to be small, namely

cos β ' 1

cos δ ' 1;

and consequently

β ' Vy
Vx

β̇ ' V̇y
Vx

;

• linear lateral tyre force model, given by eq. (2.19) is used.

Consequently, the state equations of the linear single-track vehicle lateral
dynamic model are:

V̇y = −
(
Cf
α + Cr

α

mVx

)
Vy +

(
−Cf

αa+ Cr
αb

mVx
− Vx

)
r +

(
Cf
α

m

)
δ +

F d
y

m

ṙ =

(
−Cf

αa+ Cr
αb

JzVx

)
Vy −

(
Cf
αa

2 + Cr
αb

2

JzVx

)
r +

(
Cf
αa

Jz

)
δ +

Md
z

Jz
(2.24)

when assuming Vy and r as state variables, and

β̇ = −
(
Cf
α + Cr

α

mV 2
x

)
β +

(
−Cf

αa+ Cr
αb

mV 2
x

− 1

)
r +

(
Cf
α

mVx

)
δ +

F d
y

m

ṙ =

(
−Cf

αa+ Cr
αb

Jz

)
β −

(
Cf
αa

2 + Cr
αb

2

JzVx

)
r +

(
Cf
αa

Jz

)
δ +

Md
z

Jz
(2.25)

when considering β and r as state variables.

2.0.5 Load transfer models

Longitudinal and lateral accelerations trigger load transfer and suspension
motion, which govern roll and pitch dynamics. Load transfer models are
useful for computing the current normal force which is acting on each
wheel, which dictates, along with tyre-ground fritction coefficient, the max-
imum friction force that can be developed by a tyre. It is important to stress
that, by considering any load transfer model, vehicle dynamic equations
will unavoidably be nonlinear. This is the reason why load transfer is usu-
ally neglected in the design of a vehicle control-oriented model.
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Chapter 2. Vehicle dynamic models

Two types of load transfer model can be developed.
A quasi-steady state load transfer model, which considers only the effects
of the accelerations while leaving out the effects of suspension motion. In
such a model, wheel normal loads are computed as follows [62]:

F f,lf
z = F f,static

z −∆F y,f
z −∆F x

z

F f,rg
z = F f,static

z + ∆F y,f
z −∆F x

z

F r,lf
z = F r,static

z −∆F y,r
z + ∆F x

z

F r,rg
z = F r,static

z + ∆F y,r
z + ∆F x

z ,

(2.26)

where the static load (acting on each wheel) is given by

F f,static
z =

1

2

mgb

l

F r,static
z =

1

2

mga

l
,

(2.27)

the lateral load transfer is computed as

∆F y,f
z =

mhCOGb

lt
ay

∆F y,r
z =

mhCOGa

lt
ay,

(2.28)

with hCOG as the height of the COG, and finally the longitudinal load trans-
fer is given by

∆F x
z =

mhCOG
2l

ax. (2.29)

The effect of a lateral or longitudinal known slope can be included into
this quasi-steady state load transfer model, by adding the projection of the
gravity acceleration in the lateral and longitudinal direction to ay and ax,
respectively. Moreover, ax and ay can be expressed as a function of vehicle
dynamic states and control inputs:

ax =
Fx
m

ay =
Fy
m

;

(2.30)

A more detailed load transfer model, which takes into account suspen-
sion motion and hence roll and pitch dynamics. This model has not been
considered in this work, since roll and pitch dynamics are usually neglected

20



i
i

“thesis” — 2020/1/19 — 1:13 — page 21 — #29 i
i

i
i

i
i

in the design of path tracking and lateral stability controllers [53]. The in-
terested reader can refer to [30] for an analytical model of these out of plane
dynamics.

2.0.6 Path tracking state equations

Path tracking state equations model vehicle dynamics with respect to a ref-
erence path, which is either the lane center line or the output of a local
planner, as illustrated by Fig. 2.4. In particular, state equations are usu-

Figure 2.4: Single-track vehicle model along with path tracking kinematic quantities

ally formulated in Frenet reference frame [16], which is basically a relative
right-handed reference system, fixed to the reference path and whose nor-
mal axis n is normal to the reference path and pointing towards the inside
of the turn. Along with Frenet coordinate system, other quantities are rep-
resented in Fig. 2.4, namely:

• Γ is the reference path;

• e is the path tracking error, i.e., the distance between vehicle COG and
P , a point lying on Γ and which can be thought of as the reference
vehicle position;

• s is Γ curvilinear abscissa, i.e., the position of P along Γ;
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Chapter 2. Vehicle dynamic models

• ρ(s) is Γ curvature radius at P , which is assumed to be known. More
in details, control engineers generally models it as a known, or mea-
sured external disturbance. Often, curvature κ(s) = 1/ρ(s) is adopted;

• ∆ψ is the attitude angle error, i.e., the angle between vehicle attitude
angle ψ and Γ attitude angle ψref , which is defined by Frenet tangent
vector t;

• ∆θ is the course angle error, i.e., the angle between V and θref , which
is equal to ψref .

Frenet reference frame is generally preferred over the global reference frame
shown in Fig. 2.4, since, under some simplifying assumptions, path track-
ing error dynamic equations are linear, as it will be shown later.
Three state variables are needed to completely describe the dynamics of the
car with respect to Γ, given that a rigid body has three degrees of freedom
in the 2-D space. The most common choice for path tracking state variables
is the triplet (∆ψ, e, s), which yields the following nonlinear path tracking
state equations:

∆̇ψ = r − rref
ė = Vx sin (∆ψ) + Vy cos (∆ψ)

ṡ =
1

1− κ(s) e
V Γ
‖ ,

(2.31)

where V Γ
‖ is the component of V parallel to Γ at P , which is computed as

V Γ
‖ = Vx cos (∆ψ)− Vy sin (∆ψ) , (2.32)

and where rref is the reference yaw rate, which is computed as

rref = κ(s)ṡ. (2.33)

It is interesting to understand the structure of s dynamics: the term which
multiplies V Γ

‖ has been introduced to take into account the fact that, when
e is different from zero, the car is not traveling onto the reference path but
on a shifted path. The following relation holds:

l

ρ
=
lcar
ρcar

, (2.34)

where l is travelled arch length on Γ, lcar is travelled arc length on current
car trajectory, whose curvature is ρ−1

car. Then, by differentiating with respect
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to time eq. (2.34), one obtains:

l̇

ρ
=
l̇car
ρcar

, (2.35)

which can be rewritten as
ṡ =

ρ

ρcar
ṡcar. (2.36)

By substituting ṡcar with V Γ
‖ , ρwith 1/κ(s) and ρcar = ρ−e into eq. (2.36),

the s dynamics in (2.31) is obtained. Path tracking state equations (2.31)
are linear when the following hypothesis hold:

• ∆ψ is small, so that cos (∆ψ) ' 1 and sin (∆ψ) ' ∆ψ;

• Vx is constant, a common assumption when dealing with the so-called
lane-keeping controllers, which are especially used when driving along
highways [53];

• e is small, so that the term before V Γ
‖ can be neglected.

Consequently, path tracking error dynamics becomes:

∆̇ψ = r − Vxκ(s)

ė = Vx (∆ψ) + Vy

ṡ = Vx.

(2.37)

Another way of deriving a linear path tracking state equation, which has
been adopted in [53] and can be found in the literature of lane following
controllers as in [49], is by differentiating with respect to time the path
tracking error dynamic equation reported in eq. (2.31):

ë = V̇x sin (∆ψ) + Vx cos (∆ψ) ∆̇ψ + V̇y cos (∆ψ)− Vy sin (∆ψ) ∆̇ψ.
(2.38)

By making the assumption of small ∆ψ angle, one obtains the following
expression:

ë ' V̇x∆ψ + Vx∆̇ψ + V̇y − Vy∆ψ∆̇ψ. (2.39)

Then, by neglecting the last term of eq. (2.39), which is an infinitesimal of
greater order, and by assuming a constant longitudinal speed, the following
linear state equation is obtained:

ë = Vx∆̇ψ + V̇y. (2.40)
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Chapter 2. Vehicle dynamic models

Now, by expliciting the expression of ∆̇ψ in eq. (2.40), and by recalling
eq. (2.11), the following result is obtained:

ë = Vx (r − rref ) + V̇y =

= Vxr − Vxrref + (ay − rVx) =

= ay − arefy ,

(2.41)

in which
arefy = Vxrref , (2.42)

and with ay computed according to eq. (2.30). By adopting eq. (2.41) as
the state equation for the path tracking error, path tracking state variables
translate into the triplet (e, ė, s). Finally, path tracking state equations can
also be formulated with respect to the triplet of state variables (∆θ, e, s)
and with reference to vehicle absolute speed vector V as follows:

∆̇θ = θ̇ − θ̇ref
ė = V sin (∆θ)

ṡ =
1

1− κ(s) e
V Γ
‖ ,

(2.43)

where

V Γ
‖ = V cos (∆θ) (2.44)

V =
√
V 2
x + V 2

y (2.45)

θ̇ = r + β̇ (2.46)
θ̇ref = rref . (2.47)

2.1 Vehicle multi-body model

As already pointed out, analytical models are good at providing an expla-
nation of the physics involved in vehicle motion. Moreover, they are the
best choice for the design of a model based controller and, when linear,
are also useful for performing stability analysis. However, to carefully as-
sess the performance of a control system, tests must be performed over a
more accurate model. To this purpose, two Modelica2 multi-body vehi-
cle models, taken from the Vehicle Dynamics Library (VDL) developed by
Modelon3, have been used. In particular, these models reproduce two Rear-
Wheel-Driven (RWD) electric powered car, namely a sedan and a compact

2https://www.modelica.org/
3https://www.modelon.com/library/vehicle-dynamics-library/
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2.1. Vehicle multi-body model

vehicle. Both models includes powertrain, suspension and braking system
dynamics, along with aerodynamic effects and tyre stiffness. A combined
slip magic formula model [48] accounts for tyre-ground interaction, while
ground friction coefficient can be tuned in order to test the vehicle on mul-
tiple surfaces. Finally, payloads can be added to account for passengers
and luggages on rooftop and inside trunk. To perform simulation tests, the
model has been exported out of the Dymola environment and subsequently
imported into the Simulink environment. Model inputs are:

• the steering wheel angle, which is translated into front wheel steering
angle by means of a linear gain, called Ks.w.;

• a normalized throttle command, i.e. a command in the range [−1,+1]
where +1 means that the electric motor is developing its maximum
torque in the forward direction, while for a command equal to −1 in
the backward direction (negative torque);

• brake pedal force.

Model outputs are:

• longitudinal and lateral speed and acceleration at the center of gravity;

• roll, pitch and yaw angular speed;

• roll and pitch angles;

• center of gravity absolute position;

• vehicle attitude or orientation angle;

• sideslip angle at the center of gravity;

• tyre longitudinal, lateral and normal force.

Vehicle single-track model parameters, which are summarized in Table 2.1,
have been estimated by running an identification experiment contained into
the Vehicle Dynamics Library.
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Chapter 2. Vehicle dynamic models

Table 2.1: Multibody vehicle data

Sedan Compact
m [Kg] 1659 1197
Jz
[
Kg m2

]
2817 1510

a [m] 1.22 1.07
b [m] 1.48 1.40
µ 1 1
Cfα

[
N rad−1

]
86781 72660

Crα
[
N rad−1

]
75515 58075

Ks.w. 11.8521 17.9827
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CHAPTER3
The experimental platform

In general, any experimental campaign offers a more realistic environment
compared to any accurate multi-body simulation, allowing to effectively
assess controller performance, robustness, and shortcomings. On the other
hand, the execution of aggressive autonomous maneuvers on a real vehicle
reveals to be dangerous, from the safety point of view, and expensive, due
to accident risk and the need for a dedicated test track. Therefore, as a com-
promise between these two opposite considerations, a scaled autonomous
vehicle has been built from scratch for the purpose of this PhD research
project. The idea of testing autonomous vehicle control algorithms on a
scaled car is not new. In fact, it has already been exploited by several re-
search groups. For example, [11] describes one of the first works using
a scaled car for the purpose of testing vehicle control algorithms. A de-
tailed analysis based on Pi theorem was conducted to assess the dynamic
similitude between a scaled car and a real vehicle. In [43], 1:43 Rear-
Wheel-Driven (RWD) scaled cars have been used by ETH researchers to
test Model Predictive Control (MPC) in order to follow a reference path
while avoiding static and moving obstacles. A camera mounted above the
track provided, with the addition of an extended Kalman filter, the estimate
of vehicle position, velocity and yaw rate at a frequency of 100Hz. The
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Chapter 3. The experimental platform

controller was run on a desktop computer and the computed control inputs
were sent via Bluetooth to the car, onto which only low-level actuators con-
trol loops were running. In [65], Georgia Tech researches took advantage
of a fifth-scale rally vehicle to test a variant of MPC, called path integral
MPC, which allows to solve in real-time the nonlinear path tracking op-
timization problem in presence of nonlinear dynamics, which arise as a
consequence of aggressive maneuvers. More in details, this experimental
platform is characterized by powerful hardware computational units which
allow to perform all the calculations directly onboard, without the aid of
external devices. Vehicle dynamic states are estimated thanks to installed
sensors, i.e., encoder for longitudinal speed measurement, an Inertial Mea-
surement Unit (IMU) for yaw rate, lateral and longitudinal acceleration
measurements, a GPS for the estimation of vehicle position along the track,
and a vision system which, coupled with a dedicated estimation algorithm,
provides information regarding the surrounding environment at a frequency
of 60Hz. In [18] a 1:8 scaled All-Wheel-Driven (AWD) car has been built
to assess the performance of a coordinated lateral and longitudinal vehicle
dynamics control strategy, aimed at helping a human driver in controlling
the vehicle at high speed and at the limits of handling. The vehicle was
equipped with a IMU and a motor Hall effect speed sensor, whose mea-
surements have been fused together to estimate vehicle longitudinal speed.
The control algorithm was run onboard on a dedicated Embedded Control
Unit (ECU), running at 100Hz. In [31, 37, 66] a 1:10 scaled car has been
used to test autonomous drifting controllers. The car was equipped with an
IMU and a camera, which was used to estimate vehicle lateral and longitu-
dinal velocity. Finally, in [5], three scaled cars have been utilized to verify
an intersection collision avoidance system. Feedback of position is pro-
vided by 6 cameras mounted on the top of the test track, while an encoder
measures vehicle speed.

3.1 The scaled car

A 1:10 RWD scaled autonomous car has been built for the purpose of this
PhD research project.
The choice of a RWD experimental platform has been driven by the follow-
ing considerations. Firstly, a Forward-Wheel-Driven (FWD) vehicle cannot
perform sustained drifting, which requires the action of a tractive longi-
tudinal force on rear tyres to keep a constant vehicle longitudinal speed.
Secondly, it is much more difficult to drift a RWD vehicle than an AWD
vehicle. In other words, we wanted to test our drifting controller in the
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3.1. The scaled car

worst condition to highlight controller robustness, performances and short-
comings.
The platform comes from a RC RWD car, namely a Sakura D4 RWD1,
which has been made autonomous by adding sensors and computational
units. Fig. 3.1 illustrates its first configuration, while Fig. 3.2 and 3.3 por-
tray its most recent configuration, which is characterized by a more rational
distribution of hardware components. The car features four independent
suspensions, with fully adjustable geometries and angles. A belt transmis-
sion, along with a rear differential, transferring motor torque to rear wheels.
Two different sets of tyre, which are shown in Fig. 3.4 are available, namely
a set of drifting, low grip tyre, and a set of rubber tyre, which offers higher
grip.

Figure 3.1: Experimental platform first configuration

3.1.1 Electric motor and motor control board

The scaled car is driven by an electric brushless motor, equipped with three
hall sensors, which provide a feedback of rotor position. Motor, along with
hardware devices, are powered by a three cell LiPo battery. A picture of the
motor2 is shown in Fig. 3.5, while motor parameters are listed in Table 3.1.
In particular, motor torque constant Kt has been computed starting from
the parameters generally given by RC motor manufacturers, namely motor
speed constant Kω, which corresponds to the number of motor revolutions
in a minute for a unitary voltage applied. This parameter is nothing but the

1https://www.3racing.it/sakura-d4-rwd/
2taken from http://www.hobbyqueenitalia.com/prodotto-144829/

Turnigy-TrackStar-105T-Sensored-Brushless-Motor-3250KV.aspx
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Chapter 3. The experimental platform

Figure 3.2: Experimental platform most recent configuration: chassis view

Figure 3.3: Experimental platform most recent configuration

(a) Drifting tyre (b) Rubber tyre

Figure 3.4: Scaled car tyre sets
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3.1. The scaled car

Table 3.1: Scaled car brushless motor parameters

m [Kg] 0.158
Vin [V] 7.4-11.1
Imax [A] 26
Pmax [W] 290
kω
[
rpmV−1

]
3250

Kt

[
NmA−1

]
2.93 10−3

inverse of motor electric constant Ke. Therefore, the following formula has
been used:

Kt

[
Nm

A

]
= Ke

[
V

rad s−1

]
=

1

Kω

[
rad

s V

] =
1

Kω

[rpm
V

] 2π

60

Interestingly, Fig. 3.6 shows that motor back electromotive force profile,

Figure 3.5: The brushless motor which equips the experimental platform

which has been obtained by measuring motor phase to phase voltage when
manually turning it, is sinusoidal.
At the time this research project began, RC Electronic Speed Control (ESC)
boards were controlling motor speed with a Pulse-Width-Modultated (PWM)
voltage signal, whose duty cycle was the control variable. It follows that
this speed regulator were, in practice, not controlling neither motor speed
nor its current, but merely the voltage that was applied to motor phases. To
control either motor speed or motor current, VESC motor control board3,
which is shown in Fig. 3.7, has been adopted. In fact, this board, which

3http://vedder.se/2015/01/vesc-open-source-esc/
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Figure 3.6: Brushless motor back electromotive force profile

in the meanwhile has start spreading also across RC world, allow to se-
lect different motor control strategies: duty cycle, speed control and cur-
rent control. We used speed control for the tests that required to keep
an almost constant car speed, while motor current control has been used
for autonomous drifting, as it will be explained in the second chapter of
this work. To improve the performance of the motor control strategy, we
leveraged on motor hall sensors and use the Field Oriented Control (FOC)
strategy, which provides smoother current and speed profiles compared to
a traditional trapezoidal voltage profile.
Motor speed or current is set by means of a standard RC PWM signal,
which is received by VESC and converted to a normalized throttle com-
mand which varies in the interval [−1,+1], where +1 means maximum
speed or current (which are set by the user). More in detail, a standard RC
PWM signal consist of a train of square impulses, whose frequency is fixed
to 60Hz while the high-voltage time varies in the interval [1000, 2000] µs,
with 1500µs as the neutral (zero) point.

3.1.2 Transmission

Motor torque is transmitted to rear wheels through a belt transmission.
More in detail, the transmission features two speed reduction stages, whose
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3.1. The scaled car

Figure 3.7: VESC electronic control board

transmission ratio τ has been determined by the following formulae:

τ1−2 =
ω2

ω1

=
z1

z2

(3.1)

τ3−4 =
ω4

ω3

=
z3

z4

, (3.2)

in which ωi is shaft rotational speed while zi is the number of teeth of the
i-th pulley. Then:

τ = τ1−2 τ3−4.

Finally, motor current I is mapped to the total longitudinal force developed
by rear tyres through the following formula:

F r
x =

I Kt

τ Rw

, (3.3)

in which Rw is wheel radius. Table 3.2 lists the values of the aforemen-
tioned transmission parameters.

3.1.3 Steering actuator

Car steering actuation is provided by a standard RC servo, where the com-
manded steering angle is received as a standard RC PWM signal. Initially, a
slower servo was used (Savox 1225MG). Then, as newer and faster servos
become available on the marked, a faster and more powerful servo, SRT
BH 80154, has been adopted, which is shown in Fig. 3.8. Servo is powered
from car LiPo battery, with a step-down voltage converter splitting the pair.

4http://www.srt-rc.com/index.php?id=43
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Table 3.2: Transmission parameters

z1 22
z2 92
τ1−2 0.239
z3 16
z4 39
τ3−4 0.410
τ 0.09799
Rw [m] 0.0245

Figure 3.8: SRT BH 8015 steering servo
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3.2 Sensors and state estimation

In order to successfully operate a path tracking controller, the following
states has to be measured or estimated:

• vehicle longitudinal velocity Vx;

• vehicle lateral velocity Vy, or sideslip angle β;

• vehicle yaw rate r;

• vehicle absolute position (X, Y ), or vehicle position with respect to
the reference trajectory (e,∆ψ).

Vehicle yaw rate r, along with lateral and longitudinal accelerations, are di-
rectly measured onboard, at a frequency of 100Hz, with an Attitude Head-
ing Reference System (AHRS)5. In particular, compared to an IMU, an
AHRS is equipped with a gyroscope, which provides vehicle roll and pitch
angles, which are used to compute the correct values of yaw rate and accel-
erations.
All the other states are online estimated, starting from the measurements of
a 12-camera OptiTrack motion tracking system6, which gives car position
at a frequency of 100Hz. To this purpose, a reflective marker has been put
on the rooftop of the car, as shown in Fig. 3.3. Then, velocities are esti-
mated by differentiating with respect to time two consecutive car positions.

3.3 Hardware and Software configuration

The “brain”of the scaled car consists of an embedded PC Odroid XU47,
that runs a ROS8 control architecture. Low level communication between
Odroid and actuators (steering servo and VESC, which are commanded
through standard RC PWM signals) is managed by means of an Arduino
Uno board, connected via serial link to Odroid and running at 100Hz.
The Arduino board also transmits manual commands sent to the car to the
Odroid. In fact, the car can be either manually controlled with a standard
RC radio system, or can autonomously drive. Fig. 3.9 shows a sketch of
hardware car configuration, along with exchanged ROS topics. In particu-
lar, there is one ROS node in charge of serial communication management,

5https://www.hardkernel.com/shop/myahrs/
6https://optitrack.com/products/motive/
7https://wiki.odroid.com/odroid-xu4/odroid-xu4
8https://www.ros.org/
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one that receives AHRS messages, and another one that receives motion
tracking messages in real time through a wi-fi connection9.

Figure 3.9: Scaled car hardware configuration

3.4 Actuator dynamics identification

Actuator dynamics have to be known in advance in order to properly de-
sign path tracking controllers. In the following, the identification of their
dynamics is presented.

3.4.1 Steering actuator dynamics identification

The kinematic relationship between servo angular position and car steering
angle is nonlinear and unknown. In addition to this, standard RC servos do
not provide a feedback of their angular position, which is regulated to the
reference value set by a standard RC PWM signal by servo internal digital
controller. Therefore, the map between PWM pulse width and car steering
angle δ had to be identified as well. The following experimental procedure
was adopted: the car has been run in circle, with constant speed and steer-
ing angle, and the following kinematic relationship has been exploited to

9More in details, a dedicated ROS node has been developed in the context of this thesis. In particular, such a
node takes advantage of a unicast streaming protocol to receive data coming from OptiTrack in real-time
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3.4. Actuator dynamics identification

estimate car steering angle [27]:

δ =
a+ b

R
, (3.4)

where R is the radius of the traveled path, a and b are the distance from
vehicle COG of front and rear axle, respectively. As eq. (3.4) is valid under
the hypothesis of negligible lateral forces developed by tyres, the car has
been running at the lowest possible speed, setting the VESC in the speed
control mode. Path radius R has been estimated by fitting a circumfer-
ence to the measured position points with the algorithm presented in [51].
Fig. 3.10 illustrates the map obtained with the faster servo. The following
considerations can be made:

• the map is almost linear (R2 = 0.991), as nonlinearities arise only at
large values of commanded steering angle. Based on this considera-
tion, a linear map, which converts the desidered car steering angle δ
into the corresponding PWM pulse width, has been adopted;

• steering angle is non zero at PWM neutral point (1500µs). This is
due to the fact that when assembling the servo one cannot avoid an
angular misalignment with respect to its neutral position. Moreover,
this implies that if the servo is disassembled from the car, the iden-
tification of the PWM - steering angle map has to be done again. A
video10 shows the offset of the misalignment which is automatically
done when the car is turned on;

• maximum achieved steering angle is not equal for left and right direc-
tion. This is due to steering mechanism asymmetry: servo is located
on the right of the car, so it is closer to the right wheel. This generates
different mechanical backlash between the two wheels and, conse-
quently, different maximum steering angles in the two directions;

• steering mechanism mechanical backlash constitutes a great source of
uncertainty over the value of the steering angle, which call for greater
robustness of the developed control algorithms. A video11 shows such
phenomenon.

After that, servo dynamics had to be identified. As standard RC ser-
vos do not provide a feedback of their angular position, motion tracking
system marker had been fixed to front steering wheels, and its angular ro-
tation in response to a step command has been recorded and used to fit a

10Available at https://youtu.be/qHcYwNGMlKc
11Available at https://youtu.be/nKepLd3HZPs
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Figure 3.10: Steering servo PWM - steering angle map (measured data as blue line,
portion of data used for linear model fitting as red line, linear fitted model as black

line)

model of servo dynamics, as shown in a video of the experiment12. Servo
dynamic behavior has been identified when the car was standing still; this
represents a worst-case scenario, as servo response will certainly be faster
when the car is traveling, due to the reduction of the tyre-ground friction
force as a consequence of rolling. Fig. 3.11 shows faster servo normalized
step response, along with the dynamic model As(s) which best fitted ex-
perimental data, namely a second order model, with a couple of complex
conjugate poles (ξ = 0.75, ωn = 87.62 rad s−1):

As(s) = e−τss
1

s2

ω2
n

+
2ξ

ωn
s+ 1

.

Hence, faster servo bandwidth is approximately equal to 14Hz, a quite sat-
isfactory value for the steering actuator of an autonomous car, which typ-
ically has a bandwidth of no more than 10Hz, as for example in [49, 52].
Fig. 3.11 also highlighted that the steering servo is affected by a large de-
lay, in particular 0.065 s in that test performed with the car lying on the
ground and standing still. However, we expected this delay to be lower
when the car is moving. Therefore, a test aimed at correctly identifying
steering servo delay has been performed: the car has been accelerated up

12available at https://youtu.be/MYW9SXZtk0Y. This video illustrates, for clarity purposes, the ex-
periment performed with the car upside down, i.e. with wheels not touching ground
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Figure 3.11: Faster steering servo unitary step response (reference, measured and
simulated angular position as blue, red and green line, respectively)

to a constant speed and then a step on the steering angle has been com-
manded to the servo. The yaw rate response, in place of motion tracking
system measurements (which are affected by wi-fi communication delay),
has been used to assess servo delay, as illustrated in Fig. 3.12, which was
found to be equal to 0.055 s (and, hence, 0.01 s is the delay of motion track-
ing system measurements due to the wi-fi communication). However, it is
important to understand that what has been really estimated is not the delay
of the servo, but the delay of the servo with the addition of the transmission
delay of servo command signal. In fact, when the step reference signal is
generated from the reference generator node in the Odroid, its signal has
to pass through the serial port, which is working at 100Hz, then it has
to be received by the Arduino, which is working at 100Hz and, finally,
it is transmitted to the servo with the standard RC PWM signal, which
works at 60Hz. So, we can assume that transmission delay corresponds to
0.01 + 0.01 + 1/60 s, for a total delay of 0.037 s. Therefore, the delay of
the steering actuator is equal to 0.018 s. This value is close to the delay of
the servos used in [18] and in [12], which represent, to the best of authors’
knowledge, the only examples of work in which RC servo delay has been
estimated.
Servo dynamic model is

As(s) = e−τss
1

s2

ω2
n

+
2ξ

ωn
s+ 1

, (3.5)
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Figure 3.12: Steering servo delay estimation (normalized commanded steering angle as
black line, measured yaw rate, expressed in rad s−1, as red line)

Table 3.3: Faster steering servo dynamic model parameters

Model Order II
ωn
[
rad s−1

]
87.62

ξ 0.75
τs [s] 0.018
Transmission delay [s] 0.037

where parameters take the value listed in Table 3.3. An analogue analysis
has been conducted also for the older and slower servo. Its dynamic transfer
function is the following:

As(s) = e−τss
1

Tss+ 1
, (3.6)

where parameters take the values listed in Table 3.4. In particular, servo
bandwidth was equal to 8Hz and servo delay was significantly larger.

Table 3.4: Slower steering servo dynamic model parameters

Model Order I
Ts [s] 0.125
τs [s] 0.053
Transmission delay [s] 0.037
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3.5. Nonlinear single-track model parameters estimation

3.4.2 Motor dynamics identification

The dynamics of the motor could not be identified, due to the lack of a
motor speed sensor, which could have provided motor angular speed. Lon-
gitudinal speed measurements coming from motion tracking system and
longitudinal acceleration measurements coming from AHRS are too noisy
and not fast enough to capture the faster motor dynamics. Therefore, we as-
sumed that motor dynamics is fast enough to be neglected and the delay as-
sociated to it is simply the transmission delay, which, as already explained
in Section 3.4.1, is equal to 0.037 s. This approximation is more valid when
the current of the motor, hence its torque, is the controlled variable, as speed
transients are longer.

3.5 Nonlinear single-track model parameters estimation

Model based control leverages on a model of the system to be controlled.
Therefore, in order to be able to control the scaled car, a dynamic model
of its lateral dynamics had to be identified. Given its widespread use in the
automotive field, single-track model, which was described in Section 2.0.3,
has been selected. Fiala model, see eq. (2.20), has been used for model-
ing tyre lateral force, given its simplicity and dependency only on physi-
cal parameters, while wheel rotational dynamics have been considered fast
enough to be neglected. Therefore, the following vehicle parameters have
to be estimated:

• mass m;

• center of gravity position, i.e., a and b;

• tyre-ground friction coefficient µ;

• vehicle yaw moment of inertia Jz;

• tyres cornering stiffnesses Cf
α, C

r
α;

3.5.1 Mass and longitudinal position of the center of gravity estima-
tion

Car mass and the position of the center of gravity had been estimated with
a digital balance. In particular, longitudinal position of the center of gravity
has been estimated by measuring the longitudinal weight distribution, i.e.,
by measuring the mass acting on the front (mf ) and rear (mr) axle and by

41



i
i

“thesis” — 2020/1/19 — 1:13 — page 42 — #50 i
i

i
i

i
i

Chapter 3. The experimental platform

Table 3.5: Scaled car: mass and longitudinal position of the center of gravity

m [Kg] 1.90
a [m] 0.1368
b [m] 0.1232

exploiting the following formulae, in which l is car wheelbase, which is
given by a+ b:

mf

m
=
b

l
mr

m
=
a

l
.

Table 3.5 lists the value of these parameters. It follows that the longitudinal
weight distribution of the car is 47 − 53%. Moreover, it can be observed
that the mass of the scaled car is three orders of magnitude smaller than the
typical mass of a real car, in accordance with the fact that the mass scales
with the volume.

3.5.2 Tyre-ground friction coefficient estimation

Static friction coefficient µ has been estimated by measuring vehicle lateral
accelearation ay at the center of gravity during a steady-state turning ma-
noeuvre which brings the car up to its limits of handling. Infact, maximum
lateral acceleration which can be experienced by the car can be approxi-
mated as follows [27]:

amaxy = µg,

in which g is gravity acceleration. It can be observed that this identification
technique does not give the opportunity to estimate also tyre dynamic fric-
tion coefficient. However, Fiala lateral force model, which has been used
throughout this work, does not distinguish between static and kinetic fric-
tion, since it comes from brush model. As a consequence, Fiala model does
not reproduce the negative slope portion of the α−Fy curve, in contrast to,
for example, Pacejka Magic Formula. Therefore, the friction coefficient of
interest for Fiala model is the one which yields the maximum value of tyre
force, i.e., static friction µ.
Static friction coefficient has been estimated on two different surfaces, namely
carpet and wood flooring, and with two different set of tyres, i.e., drifting
tyres (hard compound) and rubber tyres (soft compound). Table 3.6 sums
up the estimated friction coefficient for the two surfaces and the two sets
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Table 3.6: Estimated friction coefficient for the two different test surfaces

Surface Drifting tyres Rubber tyres
Carpet 0.385 0.650
Wood floring 0.255 0.380

of tyres. In particular, drifting tyre set and carpet or wood flooring sur-
face yield a friction coefficient which is close to that of a real car traveling
on a road covered with gravel or snow, respectively. Rubber tyre set and
carpet or wood flooring surface gives a friction coefficient which, in both
these cases, resembles that of a real vehicle traveling on a wet, asphalt road.
Fig. 3.13 depicts, as an illustrative example, the result of the identification
experiment performed over carpet flooring with drifting tyres. Lateral ac-
celeration fluctuations are due to measurement noise and mechanical vibra-
tion of the car while traveling.
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Figure 3.13: Tyre ground friction coefficient estimation on carpet flooring and drifting
tyres: red, solid line represents AHRS measurement while green, dashed line stands

for the mean acceleration, which is equal to −3.78ms−2

3.5.3 Vehicle Yaw moment of inertia, tyre cornering stiffness estima-
tion

Yaw moment of inertia and front and rear tyre cornering stiffness have been
estimated using the methodology described in [22]. Basically, errors be-
tween measured and simulated yaw rate, lateral velocity and lateral accel-
eration have been minimized. It is important to be aware that, from a con-

43



i
i

“thesis” — 2020/1/19 — 1:13 — page 44 — #52 i
i

i
i

i
i

Chapter 3. The experimental platform

ceptual point of view, this parameter estimation procedure does not yield
the real, physical value of the unknown parameters, but their values which,
substituted inside the adopted dynamic model, yield the best simulation re-
sults, which, however, is what was needed: a dynamic model of the system
which correctly reproduces its dynamics, being thus suitable for designing
dynamic controllers.
Formally, the nonlinear optimization problem which has been solved is the
following:

minimize
X

Ny∑
j=1

N∑
i=1

[
wj
sj

(ỹj(i)− ŷj(i))
]2

(3.7)

subject to ξ̇ = fξ (ξ, u,X) (3.8)
ξ(0) = ξ0 (3.9)
ŷ = fy (ξ, u,X) (3.10)
L ≤ X ≤ U. (3.11)

In particular:

• N is the number of samples collected, while Ny is the number of out-
put variables being compared;

• X is the vector of unknown parameters, which have to be determined,
namely X =

[
Cf
α, C

r
α, Jz

]
;

• ỹ is a measured output, while ŷ is a simulated output;

• wj and sj are j-th output weight and normalization coefficient, respec-
tively;

• ξ is system state vector, which is composed of the following state
variables: ξ = [Vy, r];

• fξ are vehicle lateral dynamics state equations. Nonlinear single-track
model presented in Section 2.0.3 has been adopted, where Fiala model
given by eq (2.20) has been used to model tyre lateral force;

• u is the vector of control inputs: u = [δ, Vx]. In particular, Vx has been
considered as an input signal as we carried out only the identification
of the lateral dynamics of the vehicle, and therefore the longitudinal
state equation has not been considered;
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• L and U are X lower and upper bound, respectively. More exten-
sively: C

f,min
α

Cr,min
α

Jminz

 ≤
C

f
α

Cr
α

Jz

 ≤
C

f,max
α

Cr,max
α

Jmaxz

 .
In particular, the lower bound on the value of the yaw moment of inertia
has been taken as the yaw moment of inertia of the car without the hard-
ware components. This value has been estimated by hanging the car to the
tip of an industrial manipulator, as shown in Fig. 3.14, equipped with a
torque sensor, and measuring the reaction torque to a trapezoidal angular
speed profile applied to the vehicle yaw axis, which is shown in Fig. 3.15.
Fig. 3.16 shows the comparison between simulated and measured car yaw
angular speed. The upper bound has been taken as the yaw moment of iner-
tia obtained by concentrating the whole mass of the vehicle at the front,mf ,
and rear, mr, axles: Jmaxz = mfa

2 + mrb
2. On the other hand, cornering

stiffness minimum and maximum values have been selected based on ex-
perience and considering their order of magnitude for a real car. Therefore: 0

0

0.015

 ≤
C

f
α [N rad−1]

Cr
α [N rad−1]

Jz [Kg m2]

 ≤
1000

1000

0.032

 .
To solve the optimization problem defined by eq. (3.7), single-track non-

linear dynamic model has been discretized with forward Euler method and
a sampling time Ts of 0.01 s (which allowed to obtain a stable discrete time
system):

ξ(k + 1) = ξ(k) + Ts fξ (ξ(k), u(k), X) .

To assess the quality of the identified model, simulation outputs have been
compared against measured outputs in a validation experiment, i.e., a dataset
different from identification dataset. Normalized Mean Prediction Error
(NMPE, [22]), has been used to assess the quality of the identified model.
To perform the estimation, the scaled car has been driven along a mixed
trajectory, which includes turns characterized by different turning radii and
taken at low and high speed, in order to excite all the involved dynamics.
Fig. 3.17 shows an example of such a trajectory. Finally, since this pa-
rameter estimation method is prone to fall into local minima, optimization
problem (3.7) has been solved starting from 125 combination of initial con-
ditions, obtained by picking 5 equally spaced points from each unknown
parameter’s range. Then, the solution which gives the minimum of the cost
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Chapter 3. The experimental platform

Figure 3.14: Car yaw moment of inertia lower bound estimation experiment
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Figure 3.15: Car yaw moment of inertia lower bound estimation: measured and filtered
torque as blue and black line, respectively
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3.5. Nonlinear single-track model parameters estimation
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Figure 3.16: Car yaw moment of inertia lower bound estimation validation experiment:
comparison between simulated (as a blue line) and measured (as a red line) car yaw

angular speed

function has been selected. Tables 3.7 and 3.8 sums up the results obtained
on carpet and wood flooring surface, respectively. Fig. 3.18, 3.19, 3.20
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Figure 3.17: Single-track parametere estimation: example of travelled trajectory

and 3.21 illustrates the results of the validation experiments on the two dif-
ferent surfaces and with different tyre sets. These figures, along with the
low value of NMPE in Tables 3.7 and 3.8, suggest that nonlinear single-
track model is able to correctly reproduce vehicle lateral dynamics, up to
the limits of vehicle handling.
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Chapter 3. The experimental platform

Table 3.7: Scaled car parameters for carpet surface

Parameter Drifting tyres Rubber tyres

Jz
[
Kg m2

]
0.029 0.0263

Cfα
[
N rad−1

]
50.13 42.58

Crα
[
N rad−1

]
122.05 214.21

NMPE 0.255 0.196

Table 3.8: Scaled car parameters for wood flooring surface

Parameter Drifting tyres Rubber tyres

Jz
[
Kg m2

]
0.032 0.032

Cfα
[
N rad−1

]
244.51 48.77

Crα
[
N rad−1

]
224.41 88.95

NMPE 0.369 0.232
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(b) Sideslip angle
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(c) Lateral acceleration
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(d) Tyre lateral force

Figure 3.18: Single-track parameter estimation on carpet surface, drifting tyres:
comparison between experimental (as red line) and simulated (as blue line) results on
the validation dataset. In Fig. 3.18d black line indicates front tyre lateral force while

magenta line stands for rear tyre lateral force
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(b) Sideslip angle
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(d) Tyre lateral force

Figure 3.19: Single-track parameter estimation on carpet surface, rubber tyres:
comparison between experimental and simulated results on the validation dataset. In
Fig. 3.19d black line indicates front tyre lateral force while magenta line stands for

rear tyre lateral force
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(d) Tyre lateral force

Figure 3.20: Single-track parameter estimation on wood flooring surface, drifting tyres:
comparison between experimental and simulated results on the validation dataset. In
Fig. 3.20d black line indicates front tyre lateral force while magenta line stands for

rear tyre lateral force
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(d) Tyre lateral force

Figure 3.21: Single-track parameter estimation on wood flooring surface, rubber tyres:
comparison between experimental and simulated results on the validation dataset. In
Fig. 3.21d black line indicates front tyre lateral force while magenta line stands for

rear tyre lateral force
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3.6. Dynamic similitude

Table 3.9: Scaled car drag force model coefficients

F 0
d [N] 3.25
F 1
d

[
Nm−1s

]
0

F 2
d

[
Nm−2s2

]
0

Drag force estimation

When controlling motor current, and hence torque, it is necessary to es-
timate the drag force which is acting on the car, due to mechanical fric-
tion, tyre rolling friction and aerodynamic drag force. The same technique
described in Section 3.5.3 has been used, considering only the dynamic
equation relative to longitudinal motion, to determine the parameters of the
following drag model:

Fd = F 0
d + F 1

dVx + F 2
dV

2
x ,

where Fd is the drag force and F i
d are the coefficients of the i − th power

of Vx. Table 3.9 lists the values of those parameters.
According to the results of the identification procedure, a constant friction
model has been adopted.

3.6 Dynamic similitude

As already mentioned, [11] presented an analysis, based on the Pi theorem,
which ensures that a real car and a scaled one are in dynamic similitude,
when the following non-dimensional coefficients take the same value:

Π1 =
a

a+ b

Π2 =
b

a+ b

Π3 =
Cf
α(a+ b)

mV 2
x

Π4 =
Cr
α(a+ b)

mV 2
x

Π5 =
Jz

m (a+ b)2 ,

(3.12)

where Π1 and Π2 refers to longitudinal weight distribution.
In general, once vehicle physical parameters are known and Π1, Π2 and
Π5 coefficients are identical for both vehicles, longitudinal velocity Vx of
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Chapter 3. The experimental platform

Table 3.10: Scaled car dynamic similitude

Parameter Scaled car, rubber tyre Sedan
µ 0.38 (wood flooring) 1 (asphalt)
Vx
[
ms−1

]
7.5 30

Π1 0.53 0.45
Π2 0.47 0.55
Π3 0.12 0.16
Π4 0.21 0.15
Π5 0.25 0.23

the compared vehicles is selected in order to verify the dynamic similitude,
i.e., to match Π3 and Π4. In other words, using the Buckingham-Pi theo-
rem one can show that the solutions of the nonlinear differential equations
modelling a real vehicle are identical, after accounting for the dimensional
scaling of each parameter in the equations, to the solutions of the differen-
tial equations describing the scaled model.
Table 3.10 lists non-dimensional coefficients (3.12) for the scaled car, run-
ning with rubber tyre set on wood flooring surface at a speed of 7.5ms−1 ,
and for the Sedan vehicle, which was presented in 2.1, running on asphalt at
a speed of 30ms−1. Values of non-dimensional coefficients are of the same
order of magnitude. Moreover, they are almost identical. An even closer
match of Π1 and Π2 coefficients could be achieved by modifying scaled car
weight distribution, which differs from Sedan weight distribution mainly
due to the fact that scaled car motor is located behind vehicle COG, while
Sedan motor is mounted in front of car COG, closer to vehicle front axle.
Therefore, Pi theorem, along with the values of non-dimensional coeffi-
cients (3.12) reported in Table 3.10, ensure that it is possible and meaning-
ful to use the scaled car to test vehicle dynamic controllers, as the dynamics
of the scaled car matches that of a real car.
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CHAPTER4
Autonomous drifting with LQR approach

Drifting is the art of driving a car sideways, up to its limits of handling. It is
used by rally drivers to go as fast as possible on slippery surfaces, as shown
in [59–61], it expands vehicle mobility capabilities at low speeds [62], and
sometimes it is the only viable option to avoid an obstacle in an emergency
condition [32]. Moreover, drifting is an exciting experience, as demon-
strated by the recent interest of automotive companies in the development
of drifting-assistants.
From the control perspective, sustained drifting can be formulated as the
problem of stabilizing an unstable equilibrium point [20], which is the re-
sult of a bifurcation [19], and whose distinctive traits are a large sideslip an-
gle, counter-steering, and the use of longitudinal force developed by tyres
as an additional control input for the vehicle lateral dynamics. The com-
plexity of this problem comes from the multiple number of inputs and out-
puts, the saturation constraints on the control inputs, and the nonlinearities
of the underlying dynamics.

LQ control strategy has already been used to stabilize drifting in sev-
eral works. In [63] steering is used to manage drift, and throttle action
is exploited to control vehicle longitudinal speed, while an expert human
driver takes advantage of a coordinated longitudinal and lateral control [62].
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Chapter 4. Autonomous drifting with LQR approach

In [31] a scaled car has been used to test a drifting stabilizing LQR which
relies only on on-board sensors for state estimation, and stabilizes longitu-
dinal and lateral velocities, and yaw rate. Nevertheless, front tyre lateral
force rather than steering angle has been considered as control input, along
with the longitudinal force developed by rear tyres. Moreover, only a few
experimental results were presented and a robustness analysis has not been
performed. Finally, in [62] and [4], a LQR synthesized on a linearised full-
track vehicle model, which includes the model of the rear limited-slip dif-
ferential, has been tested but only in simulation. Wheel rotational dynamics
has been also considered, and a low-level longitudinal slip controller has
been designed.
Besides the LQ control strategy, other control approaches have been adopted
to solve the drifting stabilization problem. In [35], which represents an evo-
lution of [63], yaw rate is assumed as an additional fictitious control input
to the sideslip angle dynamics, and a coordinated lateral and longitudinal
control law is developed. Longitudinal speed is not tracked, but a numer-
ical test showing the asymptotic stability of the longitudinal dynamics is
provided. This approach was further extended in [29], to track a circular
path while drifting at constant speed. In [64] the tracking of a reference
velocity vector absolute angle and the stabilization of the sideslip angle
are decoupled and assigned to steering and throttle, respectively. The pro-
posed controller, which has been derived exploiting feedback linearisation
and sliding mode theory, has been successfully tested on a production car
equipped with a combustion engine. Nevertheless, the decoupling limits
the basin of attraction of the closed-loop system, and does not resemble
what an expert human driver does [29]. Moreover, the controller has been
derived upon the linear approximation of the front lateral force-slip angle
relation, an assumption which is not verified in drifting [63]. The same
assumption has also been used in [47], to obtain a drifting stabilizing con-
troller which takes advantage of control inputs not available to a human
driver, namely the driving forces of the four independently driven wheels.
Finally, a completely different approach, based on learning from demon-
stration, has been adopted in [46] to let a scaled car autonomously execute
drifting maneuvers even in the presence of large variations of the friction
coefficient.

This work aims at providing a detailed analysis based on an extensive ex-
perimental campaign, which offers a more realistic environment compared
to any accurate multi-body simulation, allowing to assess performance, ro-
bustness, and shortcomings of a linear-quadratic-regulator (LQR) applied
to the problem of sustained drifting stabilization and circular path tracking,

56



i
i

“thesis” — 2020/1/19 — 1:13 — page 57 — #65 i
i

i
i

i
i
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using the same controls available to a human driver, namely steering angle
and longitudinal force developed by tyres. Firstly, only the stabilization of
an unstable drifting equilibrium point has been addressed. Then, for the
first time to the best of author’s knowledge, path tracking capability of a
circular path has been added to the aforementioned controller, yielding a
drifting circular path tracking controller. The proposed control approach
is developed for a rear-wheel-driven (RWD) vehicle, although it could be
easily extended to an all-wheel-driven (AWD) car. Part of this work has
been published in [7].

4.1 Autonomous drifting stabilization

In this Section, the LQ control strategy is applied to the problem of drifting
stabilization of a RWD vehicle. The controller uses the same controls avail-
able to a human driver, namely front tyre steering and rear tyre longitudinal
force, to stabilize longitudinal and lateral velocities and yaw rate, and it is
designed on a linearised single-track model of the vehicle, which, differ-
ently from [4, 62], does not include a model of the rear differential and of
wheel rotational dynamics. The performance and robustness of this control
approach are assessed with an extensive experimental campaign performed
on the scaled car presented in Chapter 3.

4.1.1 System model

Drifting, due to a large force involved, calls for the adoption of a dy-
namic model of vehicle motion [27]; therefore, the single-track model [53]
(Fig. 2.3, Section 2.0.3) has been used, as in [35, 63], under the hypothesis
of negligible roll and pitch motion, and lateral load transfer. The latter al-
ways holding at low speed and on low-grip terrains, as it is usually the case
of drifting.
The state variables are the longitudinal and lateral velocities, Vx and Vy,
along with the yaw rate r, while the control inputs are the front wheel steer-
ing angle δ and the longitudinal force developed by the rear tyres F r

x , as the
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considered vehicle is RWD. The state equations are the following:

V̇x =
F r
x − F f

y sin(δ)

m
+ rVy

V̇y =
F f
y cos(δ) + F r

y

m
− rVx

ṙ =
aF f

y cos(δ)− bF r
y

Jz
.

(4.1)

Front and rear lateral tyre forces, F f
y and F r

y , are modelled with the mod-
ified version of the Fiala model introduced in [35] to account for the cou-
pling between the longitudinal and lateral tyre force through the so-called
derating factor ξ, as follows:

Fy =

−Cαz + ηCα|z|z −
1

3
η2Cαz

3, |z| < tan (αsl)

−ξµFzsgn (α) , |z| ≥ tan (αsl)

where

αsl = tan−1

(
1

η

)
z = tan(α) η =

Cα
3ξµFz

in which α is the sideslip angle of the front and rear wheels, given by

αf = tan−1

(
Vy + ar

Vx

)
− δ

αr = tan−1

(
Vy − br
Vx

)
,

Fz is the normal load acting on the axle according to

F f
z = mg

b

a+ b
F r
z = mg

a

a+ b
,

in which Cα is the cornering stiffness, µ is the friction coefficient, a and
b are the distance of vehicle COG from front and rear axle, respectively.
Finally, ξ is the so-called derating factor, which is defined as

ξ =

√
(µFz)

2 − F 2
x

µFz
.

It must be noticed that the lateral velocity has been assumed as the state
variable for the vehicle lateral dynamics instead of the vehicle sideslip angle
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β = tan−1 (Vy/Vx), in order to avoid the coupling between longitudinal
and lateral dynamics that is intrinsic into the analytical expression of the
sideslip angle. In addition, rear differential and wheel rotational dynamics
have not been considered, as it has been assumed that their dynamics are
fast enough to be neglected. Moreover, assuming F r

x is the control variable,
one leaves room, if needed, for the adoption of a lower-level longitudinal
slip controller, though the experimental tests performed on the scaled car
revealed that such a traction controller is not necessary.

4.1.2 LQR control approach

Nonlinear system (4.1) has been linearised around a drifting equilibrium
point, yielding a linear time invariant controllable system. Defining

∆x = [∆Vx,∆Vy,∆r]
T ∆u = [∆δ,∆F r

x ]T

as the difference between state and control input variables and their equi-
librium value, a LQR state feedback control law ∆u = −K∆x has been
adopted, where matrix K has been chosen in order to minimize the cost
function J =

∫∞
0

(
xTQ x + uTR u

)
dt. To ease the controller tuning pro-

cess, the state and control input weight matricesQ andR have been selected
as follows:

Q = diag

(
w∆xi

∆x2
i,max

)
R = diag

(
w∆uj

∆u2
j,max

)
(4.2)

where w∆xi , w∆uj are weights which penalize the i-th state variable and
the j-th control input, respectively, and ∆xi,max, ∆uj,max are normalizing
terms, introduced to take into account state and control input saturation
constraints, respectively. Selecting strictly positive weights for Q and R
matrices, given that the linearised system is controllable, the closed-loop
system is guaranteed to be asymptotically stable [44].

4.1.3 Drifting equilibrium point computation

To compute cornering equilibria of the single-track nonlinear model (4.1),
five unknowns have to be determined: V̄x, V̄y, r̄, δ̄, F̄ r

x . Since there are only
three state equations, the values of the longitudinal speed V̄x and of the
steering angle have been arbitrarily selected. Fig. 4.1 illustrates the com-
puted cornering equilibria for a longitudinal speed of 1m/s, carpet surface,
drifting tyre set, and scaled car newest configuration, shown in Fig. 3.3.
In particular, cornering equilibria points fall inside three classes:
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Chapter 4. Autonomous drifting with LQR approach

Table 4.1: Scaled car selected drifting equilibrium point, on carpet surface and drifting
tyre set

V̄x 1 m s−1

V̄y -0.74 m s−1

β̄ -37 deg
r̄ 2.32 rad s−1

δ̄ -20 deg
F̄ rx 2.53 N

• traditional cornering equilibria, which are not characterized by under-
steering or countersteering;

• understeering cornering equilibria;

• drifting cornering equilibria, whose distinctive traits are large sideslip
angle, counter-steering and saturation of rear tyre friction force, as
highlighted by the friction circle portrayed in Fig. 4.1f. In particular,
counter-steer can be inferred by the steering angle sign, which is equal
to the sign of the sideslip angle and opposite to the sign of the yaw rate.

Stars in Fig. 4.1 highlight the selected drifting equilibrium point, while
Table 4.1 lists the values assumed by state and input variables at that equi-
librium point. Moreover, linearized system state and control input matrices
at the selected equilibrium point are equal to:

A =

 −1.4 −0.99 −1.2

−6.3 −9.1 −2.2

−35.5 −81.1 −11.1

 B =

 2.8 0.5

11.2 −0.6

100.2 4.7


The fact that both the state and the control input matrices are full corrob-
orate the idea that a coordinated lateral and longitudinal control strategy
is needed, since the dynamics are not decoupled. Moreover, the computa-
tion of the eigenvalues of the open loop system confirms that the selected
drifting equilibrium point is unstable [20]. Finally, linearized system is
controllable.

4.1.4 Experimental results

This section presents the experimental results obtained by testing the pro-
posed LQR drifting stabilization controller on the experimental platform
described in detail in Chapter 3. To perform the experiments, the controller
has been coded into a ROS node which runs at 100 Hz. Then, it has been
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(d) Rear tyre lateral force
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(e) Rear tyre longitudinal force
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(f) Rear tyre friction circle

Figure 4.1: Scaled car cornering equilibria on carpet surface and drifting tyre set:
normal cornering equilibria as dashed line, understeering equilibria as dotted line,

drifting equilibria as solid line; star denotes selected drifting equilibrium point
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Table 4.2: LQR drifting stabilization controller parameters, for scaled car old
configuration, carpet surface and drifting tyre set

∆Vx,max 0.5 m s−1 w∆Vx
1

∆Vy,max 0.45 m s−1 w∆Vy
5

∆rmax 0.5 rad s−1 w∆r 0.5

∆δmax 0.45 rad w∆δ 1
∆F rx,max 1.07 N w∆F r

x
0.75

tuned by first testing it in simulation on system (4.1), and then on the real
experimental platform. The car is initially manually driven in circle and
then the controller is activated by manually pressing a button on the radio.
Thanks to factorization (4.2), the tuning process has been very intuitive:
for instance, if the car accelerated too much, a higher weight on the longi-
tudinal velocity error was selected. On the other side, the weights on the
control input allowed to shift the control effort towards the steering or the
rear longitudinal force.

Tests performed using the old scaled car configuration

Initially, LQR drifting stabilization controller has been tested on the old
scaled car configuration, illustrated in Fig. 3.1, which mounted the slower
servo, whose dynamics is described by first-order model (3.6), and char-
acterized by a delay equal to 0.09 s. Table 4.2 lists the selected controller
parameters, which give the best trade-off between performance and robust-
ness.
The designed LQR is able to stabilize the vehicle around the selected drift-

ing equilibrium point, as illustrated in Fig. 4.2, which show a portion of an
experiment performed over the carpet surface with drifting tyre set, prov-
ing that the modeling of wheel and differential dynamics is not necessary.
Fluctuations which characterize yaw rate profile in Fig. 4.2c are, unsurpris-
ingly, due to the large delay of the steering servo. This hypothesis has been
verified by the lack of yaw rate fluctuations when the same LQR controller
has been tested against non-linear single-track model given by eq. (4.1),
without the presence of steering actuator delay.
In addition, the tuning is made complex by the dynamics of the process:

a too large gain on the yaw rate error produces a chattering like behaviour,
with large oscillations of the yaw rate; while a too large gain on the lateral
velocity error yields yaw rate oscillations as well, due to the fact that the
lateral velocity dynamics is slower than the yaw rate dynamics (Fig. 4.3), as
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Figure 4.2: Drifting stabilization on carpet surface, drifting tyre set and scaled car old
configuration. Experimental data as red solid line, equilibrium value as green dashed

line and actuator saturation as black, dash-dotted line
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already observed in [63]. On the other hand, the adopted control approach
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Figure 4.3: Drifting stabilization on carpet surface, drifting tyre set and scaled car old
configuration: comparison between lateral velocity and yaw rate profiles (equilibrium

values as dashed lines).

proved to be very robust. A slight slope of the ground caused a shift in the
followed circular trajectory, as it can be seen in Fig. 4.4, but did not pre-
vent the controller to successfully drift for a long time without loosing car’s
control. Moreover, the LQR tuned on the carpet surface can successfully
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2

Y
 [

m
]

Figure 4.4: Drifting stabilization on carpet surface, drifting tyre set and scaled car old
configuration: the path followed by the car during the experiment.

handle car’s control even in presence of a 34% reduction of the friction
coefficient, obtained running the car on the more slippery wood flooring
surface (Fig. 4.5, Table 3.6). This shows that a low-level longitudinal slip
tracking controller, as developed in [62], is not necessary: only a traction
controller, which prevents wheels from spinning in the unstable region of
the longitudinal slip - longitudinal force curve [27] would be beneficial.
Furthermore, Figs. 4.2 and 4.5 show that the controller is able to bring the
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4.1. Autonomous drifting stabilization

Table 4.3: LQR drifting stabilization controller parameters, for scaled car newest
configuration, carpet surface and drifting tyre set

∆Vx,max 0.5 m s−1 w∆Vx
1

∆Vy,max 0.45 m s−1 w∆Vy
5

∆rmax 0.5 rad s−1 w∆r 0.001

∆δmax 0.45 rad w∆δ 1
∆F rx,max 1.07 N w∆F r

x
0.75

car to the desired equilibrium point when the car is starting both from stand-
ing still and large longitudinal velocity, a fact which highlights the extent
of the basin of attraction.
Finally, a video1 shows some experiments which highlight the robustness
of the LQR, and the difficulties faced when manually driving the car in the
presence of large sideslip angles.

Tests performed using the newest scaled car configuration

LQR drifting stabilization control has also been tested on the newest scaled
car configuration, depicted in Figs. 3.2 and 3.3. In particular, tests have
been performed to verify that a faster steering servo (see eq. (3.5) and Ta-
ble 3.3) reduces yaw rate oscillations, thus yielding better closed-loop per-
formance.
Table 4.3 reports controller tuning parameters, which, compared to tuning
parameters used for the older car configuration (Table 4.2), differ only for
yaw rate error weight w∆r. This confirms the ease with which controller
parameters could be selected to achieve good closed-loop performances.
Fig. 4.6 illustrates the results achieved by testing the controller on carpet
surface, with drifting tyre set. Lower yaw rate oscillations can be observed,
thanks to the faster steering servo. Longitudinal velocity equilibrium value
is not perfectly tracked, with the car traveling at a speed slightly above the
reference. However, this tuning yielded the larger basin of attraction and
the best robustness. In particular, robustness against external disturbance
forces and parameter uncertainties have been assessed2, as illustrated in
Appendix ??.

1The video is available here: https://goo.gl/38H2Ff.
2A video of these experiments is available at https://youtu.be/Q7k9pDSBMFI
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(f) Rear tyre longitudinal force

Figure 4.5: Drifting stabilization on wood flooring surface, drifting tyre set and scaled
car old configuration. Experimental data as red solid line, carpet surface equilibrium

value as green dashed line and actuator saturation as black, dash-dotted line
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(f) Rear tyre longitudinal force

Figure 4.6: Drifting stabilization on carpet surface, drifting tyre set and scaled car new
configuration. Experimental data as red solid line, carpet surface equilibrium value

as green dashed line and actuator saturation as black dashed line
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Chapter 4. Autonomous drifting with LQR approach

4.2 Autonomous drifting stabilization and circular path track-
ing

As already explained at the beginning of this Chapter, only a few works
have considered drifting along with path tracking so far. In [64] a decou-
pled approach has been used: a steering controller tracks a reference course
angle while a sliding mode throttle controller tracks reference sideslip an-
gle. However, to follow a reference course angle does not mean to track a
reference path. In [29] a coordinated throttle-steering control law has been
designed to track a circular path while being in sustained drifting. The
proposed approach was based on the assumption of controlling front tyre
lateral force rather than front steering angle, and it was successfully tested
on a real car. However, no robustness tests were performed. Finally, [65]
presented a path-integral MPC which, although not being designed specif-
ically for drifting, is able of holding car control even in presence of large
sideslip angle and nonlinear dynamics. Even in this case, no robustness
tests have been performed.
This Section presents, for the first time to the best of authors’ knowledge,
an extension of the LQR approach to the problem of drifting circular path
tracking. The proposed control approach has been developed for a RWD
vehicle, but it can be easily adapted to an AWD vehicle. An extensive ex-
perimental validation campaign has been performed, which includes sev-
eral robustness tests.

4.2.1 System model and control approach

Single-track model given by eq. (4.1) has been extended to consider also
path tracking state variables:

∆̇ψ = r − rref
ė = Vx sin (∆ψ) + Vy cos (∆ψ)

İe = e,

(4.3)

in which rref represents the yaw rate at the equilibrium. Integral of path
tracking error Ie has been introduced to get rid of steady state path tracking
errors. For simplicity, ψref has been computed as follows:

ψref = tan−1

(
Y − Yc
X −Xc

)
+
π

2
, (4.4)

where Xc, Yc defines the absolute position of the center of the reference
circular path. Then, the same LQR control approach described in Sec-
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4.2. Autonomous drifting stabilization and circular path tracking

Table 4.4: LQR circular drifting stabilization controller parameters, for scaled new car
configuration, carpet surface and drifting tyre set, without path tracking error

intergral

∆Vx,max 0.5 m s−1 w∆Vx
1

∆Vy,max 0.45 m s−1 w∆Vy 5
∆rmax 0.5 rad s−1 w∆r 0.001
∆ψmax 0.436 rad w∆ψ 0
∆emax 0.25 m w∆e 0.5

∆δmax 0.45 rad w∆δ 1
∆F rx,max 1.07 N w∆F r

x
0.75

tion 4.1.2 has been used. In particular, nonlinear system given by eq. (4.1)
and eq. (4.3) has been linearized around the steady state drifting equilib-
rium point computed in Section 4.1.3, with ∆ψeq = −βeq and, obviously,
eeq = 0. Radius of reference circular path, for the selected drifting equilib-
rium point (see Section 4.1.3, Table 4.1), is equal to 0.539m.

4.2.2 Experimental results

Even in this case, LQR circular drifting controller runs at 100Hz on a
dedicated ROS node. In addition to this, simulations performed on nonlin-
ear single-track model have been used to find a suitable initial controller
tuning, which has been refined with experimental tests. Table 4.4 lists con-
troller selected tuning parameters, in which ∆emax has been taken as equal
to vehicle track. Figs. 4.7 and 4.8, along with a video3, illustrate the results
obtained without the integral on path tracking error. As expected, a steady-
state path tracking error is present. When integral action is inserted (with
controller’s tuning parameters listed in Table 4.5) steady-state path tracking
error converges to zero, as illustrated in Figs. 4.9, 4.10 and 4.11, 4.12 and
a video of the experiment4. Convergence is quite slow due to the complex-
ity of the maneuver and to actuators saturation, which limit the maximum
achievable speed of closed-loop system response. In other words, a more
aggressive controller tuning would results in closed-loop system instabil-
ity. However, compared to the results obtained without the integral action
on path tracking error, convergence speed is faster and basin of attraction
is larger. In addition to this, controller is robust to friction coefficient and
cornering stiffness variations, which occur on wood flooring surface.

3Available at https://youtu.be/HqK_gv_fwCQ
4A video of these experiments is available at https://youtu.be/HqK_gv_fwCQ
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Figure 4.7: Circular drifting stabilization on carpet surface, drifting tyre set and scaled
car new configuration. Experimental data as red solid line, carpet surface

equilibrium value as green dashed line
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Figure 4.8: Circular drifting stabilization on carpet surface, drifting tyre set and scaled
car new configuration. Experimental data as red solid line, carpet surface

equilibrium value as green dashed line and actuator saturation as black dashed line

Table 4.5: LQR circular drifting stabilization controller parameters, for scaled new car
configuration, carpet surface and drifting tyre set, with path tracking error integral

∆Vx,max 0.5 m s−1 w∆Vx
1

∆Vy,max 0.45 m s−1 w∆Vy
5

∆rmax 0.5 rad s−1 w∆r 0.001
∆ψmax 0.436 rad w∆ψ 0
∆emax 0.25 m w∆e 1 10−5

∆Ie,max 1 ms w∆Ie 3

∆δmax 0.45 rad w∆δ 1
∆F rx,max 1.07 N w∆F r

x
1.25
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Figure 4.9: Circular drifting stabilization with path tracking error integral action, carpet
surface, drifting tyre set scaled car new configuration. Experimental data as red solid

line, carpet surface equilibrium value as green dashed line. In this test, car started
inside reference circular path
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Figure 4.10: Circular drifting stabilization with path tracking error integral action,
carpet surface, drifting tyre set and scaled car new configuration. Experimental data
as red solid line, carpet surface equilibrium value as green dashed line and actuator
saturation as black dashed line. In this test, car started inside reference circular path
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(f) Path tracking error

Figure 4.11: Circular drifting stabilization with path tracking error integral action,
carpet surface, drifting tyre set scaled car new configuration. Experimental data as
red solid line, carpet surface equilibrium value as green dashed line. In this test, car

started outside reference circular path
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Figure 4.12: Circular drifting stabilization with path tracking error integral action,
carpet surface, drifting tyre set and scaled car new configuration. Experimental data
as red solid line, carpet surface equilibrium value as green dashed line and actuator

saturation as black dashed line. In this test, car started outside reference circular path
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CHAPTER5
High speed autonomous driving with the

Affine in the Force Input model

To be safer than their human counterpart, an automatic pilot must be ca-
pable of driving a car up to its handling limits, holding its control while
exploiting all the grip made available by tyre-ground interaction, to avoid
obstacles and follow the road, especially in an emergency scenario. How-
ever, the design of such a controller is not an easy task: nonlinearities of
vehicle dynamics, which arise during the execution of aggressive manoeu-
vres, and the presence of multiple inputs and outputs, hamper the design
of an automatic path-tracking controller by limiting considerably the range
of control techniques which can be used, and by posing a challenge on the
real-time feasibility of the control algorithm, when limited computational
resources are available.
An obvious way to avoid the aforementioned issues, is to adopt a linear
model of vehicle dynamics. However, classical [53] linear single-track
models (see Section 2.0.4) cannot correctly reproduce vehicle dynamics up
to the limits of handling [58], due to the linear lateral force model, given by
eq. (2.19). A smart idea to circumvent this problem came from Stanford re-
search group guided by professor Gerdes. In [8] the so-called Affine in the
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Chapter 5. High speed autonomous driving with the Affine in the Force
Input model

Force Input (AFI) model was introduced. This single-track model assumes
front tyre lateral force F f

y as a virtual control input, in place of front tyre
steering angle δ, yielding a linear model for the vehicle lateral dynamics:

β̇ =

(
− Cr

α

mVx

)
β +

(
Cr
αb

mV 2
x

− 1

)
r +

(
1

mVx

)
F f
y

ṙ =

(
bCr

α

Jz

)
β +

(
−b

2Cr
α

JzVx

)
r +

(
a

Jz

)
F f
y .

(5.1)

This model is linear under the following assumptions:

• small front tyre steering angle, so that cos δ ' 1;

• longitudinal speed Vx is constant or slowly varying, and is thus as a
parameter instead of an input;

• linear rear tyre lateral force, i.e. F r
y ' −Cr

αα
r. More in details, to

increase model accuracy, rear tyre lateral force model can be itera-
tively linearized at current rear slip angle, as it has already been done
in several works, which are described later on.

AFI model is suited to the design of linear path tracking controllers, which
are capable of exploiting all the grip made available by tyre-ground interac-
tion, as nonlinear constraint on maximum available lateral force translates
into a linear bound on the maximum available control action, dictated by
friction coefficient µ and front tyre normal load F f

z :

|F f
y | ≤ µF f

z . (5.2)

In other words, with the adoption of AFI model, tyre lateral force model
nonlinearity is extracted out of vehicle lateral dynamic model. Indeed, once
the needed value of F f

y has been computed, front tyre lateral model has to
be inverted to calculate the steering angle δ [8].
AFI model has been used in several works to design linear path tracking
controllers. In [8, 9], which mark the first appearance of AFI model, a lin-
ear controller based on MPC framework has been presented. The controller,
which runs at 100Hz, is based on the assumption of a constant vehicle lon-
gitudinal speed, and assists the driver in driving the vehicle at its limits of
handling. Moreover, rear tyre lateral force has been iteratively linearized
around current rear slip angle operating point, to achieve a better approx-
imation of vehicle lateral dynamics. The controller has been tested on a
real vehicle running at low speed (no more than 50Kmh−1) on a low-grip

78



i
i

“thesis” — 2020/1/19 — 1:13 — page 79 — #87 i
i

i
i

i
i

5.1. Yaw rate oscillations at high speed

terrain, and has been able to exploit all the grip made available by tyre-
ground interaction. In [21], the approach has been extended to consider
obstacle avoidance constraints. In [42], AFI model has been used to com-
pute a feed-forward control action to autonomously follow a reference path
while traveling at high speed. Then, a closed-loop controller based on the
well-known linear single-track dynamic model has been superimposed to
offset modeling errors and external disturbances. The proposed approach
has been successfully tested on a real, high performance car on a dedicated
test track. In [13] an MPC based autonomous path tracking controller has
been designed and experimentally tested. Then, in [26] a prediction hori-
zon with variable length time steps has been included, to cope with differ-
ent time scales associated to vehicle stabilization and collision avoidance,
while [57] describes a low-level control architecture suited to the direct
control of front tyre lateral force.
In addition to these works from Stanford researchers, AFI model has been
also used by other research groups. In [45] a path tracking controller based
on model inversion has been developed and tested in simulation. Finally,
in [50] AFI model has been used for designing a flatness-based path track-
ing controller, which has been tested in simulation.

5.1 Yaw rate oscillations at high speed

As stated before, to adopt AFI model means to assume front tyre lateral
force as input to vehicle lateral dynamics. However, directly controlling
F f
y , yaw rate oscillations arise when the car is traveling at high speed1, as it

has been already observed, for example, in [50] and in [42]. Fig. 5.1 shows
the response to a step of F f

y of the Compact multi-body vehicle model
(which was presented in Section 2.1), traveling at a constant longitudinal
speed of 40ms−1. This simulation confirms the presence of non-negligible
yaw rate and, consequently, sideslip angle oscillations when directly con-
trolling front tyre lateral force at high vehicle speeds. These fluctuations
severely hamper passenger riding comfort, reasonably giving them the feel-
ing of an impending loss of car’s control, and hence must be avoided.
In [38], those yaw rate oscillations have been observed and they have been
ascribed to the complex modeling of tyre lateral force at large velocities. In
particular, [42] blamed a reduction of tyre damping, which occurs at high
speed, as the most likely source of steering (and hence yaw rate) fluctu-
ations. Despite this phenomenon may foster high speed yaw rate oscilla-

1As a general premise, we clarify that with “high speed”we refer to highway speeds, namely velocities be-
tween 100Kmh−1 and 140Kmh−1.
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Figure 5.1: Compact vehicle response to a step of front tyre lateral force. The car is
traveling at a constant speed of 40ms−1

tions, simulations performed on a nonlinear single-track dynamic model
(see Section 2.0.3) based on Fiala tyre lateral force model (that does not
include tyre stiffness and damping), reveal the presence of yaw rate oscil-
lations when directly controlling F f

y . Fig. 5.2 compares Sedan vehicle (see
Section 2.1) response to a step of F f

y and δ, when the car is traveling at dif-
ferent highway speeds. We conclude that an undamped yaw rate dynamics
is the primary source of yaw rate oscillations at high vehicle speeds when
F f
y is the control input. Fig. 5.3 compares damping of the complex conju-

gate poles of yaw rate transfer function when either F f
y or δ is the control

input. As it can be seen, yaw rate undamped dynamics is present only when
F f
y is the control input.

5.2 The reason behind high speed yaw rate undamped dy-
namics

One of the novel aspects of this work is the explanation of the reason why
AFI model exhibits an undamped yaw rate dynamics at high speed. The
reason lies in the way the AFI model works. In fact, the adoption of front
tyre lateral force as control input to car lateral dynamics, implicitly implies
the implementation of the following procedure:

1. driver, or automatic controller, sets the required front tyre lateral force
F f
y ;

2. tyre lateral force model is inverted, to determine required front tyre
slip angle. Under the assumptions of small vehicle sideslip angle and
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Figure 5.2: Sedan yaw rate response to a step of either front tyre lateral force (AFI
model) or front tyre steering angle (linear single-track model). Blue, green, red, cyan,

magenta, yellow and black line refers to a speed of 10, 15, 20, 25, 30, 35 and
40ms−1, respectively
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Figure 5.4: AFI model working principle

front tyre slip angle, linear tyre model can be used, so that

F f
y = −Cf

αα
f = Cf

αα̂
F , (5.3)

in which α̂f is equal to −αf . Consequently,

α̂f = F f
y

1

Cf
α

; (5.4)

3. δ is computed in order to track required front tyre slip angle. In partic-
ular, when linear tyre model is considered, and α̂f has to be tracked,
the following equation holds:

δ = α̂f + βfw =

= α̂f + β +
a

Vx
r.

(5.5)

Eq. (5.5) is nothing but a pole placement control law, in which β and r are
the state variables and δ is the control input. In other words:

δ = α̂f +
[
1

a

Vx

] [β
r

]
= α̂f +

[
Kβ Kr

] [β
r

]
= α̂f +Kx,

(5.6)

with x = [β, r]T as system state vector. Fig. 5.4 illustrates eq. (5.6). There-
fore, AFI model, given by eq. (5.1), is equivalent to a linear single-track
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model, with δ as control input, with the addiction of pole placement control
law given by eq. (5.6). This equivalence, besides being also confirmed by
the fact that these two models share the same zeros, as feedback does not
modify the location of the zeros of a linear system, can also be analytically
demonstrated. State-space matrices of linear single-track model with δ as
control input and β and r as state variables are the following:

Ast =


−Cr

α − Cf

mVx

Cr
αb− Cf

αa

mV 2
x

− 1

Cr
αb− Cf

αa

Jz

−Cr
αb

2 − Cf
αa

2

JzVx

 , Bst =


Cf
α

mVx

aCf
α

Jz

 (5.7)

When pole placement control law given by eq. (5.6) is applied, closed loop
matrix becomes:

Acl = Ast +BstK =

=


−Cr

α − Cf
α

mVx

CR
α b− Cf

αa

mV 2
x

− 1

Cr
αb− Cf

αa

Jz

−Cr
αb

2 − Cf
αa

2

JzVx

+


Cf
α

mVx

aCf
α

Jz

 ·
[
1

a

Vx

]
=

=


−Cr

α

mVx

Cr
αb

mV 2
x

− 1

Cr
αb

Jz

−Cr
αb

2

JzVx


(5.8)

It can be verified that Acl is equal to AFI model state matrix, given by
eq. (5.1). Morever, by dividing Bst by the term Cf

α, which represents the
effect of eq. (5.4), AFI model control input matrix is obtained:

Cf
α

mVx

aCf
α

Jz

 · 1

Cf
α

=


1

mVx

a

Jz

 (5.9)

To summarize, AFI model, given by eq. (5.1), is equivalent to a single-
track model, with δ as control input, with the application of pole placement
control law given by eq. (5.6). In particular, state feedback matrixK has not
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been selected to optimize closed loop poles location, but to obtain a suitable
change of variables. Consequently, AFI model displays poor damping of
yaw rate and sideslip angle dynamics at high speed. In fact, K matrix terms
are a function of vehicle longitudinal speed Vx.

5.3 AFI model stability analysis

To complete a control-oriented analysis of AFI model, which has never
been presented so far to the best of author’s knowledge, its stability has
been analytically assessed. Recalling eq. (5.1), AFI model state matrix is
given by:

A =


−Cr

α

mVx

CR
α b

mV 2
x

− 1

CR
α b

Jz

−Cr
αb

2

JzVx

 (5.10)

To simplify calculations, we rewrite A as follows:

A =

−σ σb

Vx
− 1

ε − εb
Vx

 (5.11)

where σ = Crα
mVx

and ε = CRα b
Jz

. Assuming Vx as a constant, AFI model is a
time invariant dynamical system. A linear time invariant dynamic system
is asymptotically stable if and only if each of its eigenvalues has a negative
real part [10]. Thus, A eigenvalues (λ), given by determinant of (λI − A)
have to be computed. The following characteristic equation is obtained:

det(λI − A) = det

∣∣∣∣∣∣∣∣∣∣
λ+ σ 1− σb

Vx

−ε λ+
εb

Vx

∣∣∣∣∣∣∣∣∣∣
= λ2 + λ

(
εb

Vx
+ σ

)
+ ε (5.12)

As ε > 0, asymptotic stability is guaranteed if:

εb

Vx
+ σ > 0. (5.13)

which corresponds to: (
b2

Jz
+

1

m

)
Cr
α

Vx
> 0 (5.14)

84



i
i

“thesis” — 2020/1/19 — 1:13 — page 85 — #93 i
i

i
i

i
i

5.4. AFI poles analysis

As all the parameters involved in eq. (5.14) are positive, AFI model given
by eq. (5.1) is asymptotically stable at any vehicle speed. Eq. (5.14) also
corresponds to the real part of AFI eigenvalues, which, as it can be ob-
served, is dependent on vehicle speed. In particular, the larger Vx, the
smaller eigenvalues real part becomes.

5.4 AFI poles analysis

In general, a linear dynamic system displays an oscillatory behavior when
its dominant poles are complex conjugate [10]. By analyzing the roots
of characteristic equation given by eq. (5.12), it can be concluded that the
undamped nature of yaw rate (and sideslip angle) dynamics emerges only at
high speeds, as also confirmed by the numerical example shown in Fig. 5.3.
In fact, roots of characteristic equation given by eq. (5.12) are complex
when the following inequality holds:(

εb

Vx
+ σ

)2

− 4ε < 0 (5.15)

This inequality is a function of vehicle speed Vx, as it is the only param-
eter which can vary. Rearranging eq. (5.15), the following expression is
obtained:

Vx >

√
Cr
α

4

(
b3

Jz
+

2b

m
+

Jz
bm2

)
(5.16)

Eq. (5.16) defines a speed threshold, below which AFI poles are real and
hence no oscillatory behaviour is experienced; above this thresholds, poles
are complex conjugate and yaw rate and sideslip angle oscillations arise.

Complex conjugate poles damping ratio can be computed starting from
characteristic equation (5.12) [10], yielding:

ξAFI =

b2Cr
α

JzVx
+

Cr
α

mVx

2

√
Cr
αb

Jz

(5.17)

As highlighted by eq. (5.17), damping is dependent on vehicle longitudinal
speed Vx, as expected. Moreover, being this relationship an inverse propor-
tionality, damping ratio decreases as speed increases.
Damping ratio of linear single-track model with δ as control input is equal
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to:

ξδ =

b2Cr
α + a2Cf

α

JzVx
+
Cr
α + Cf

α

mVx

2

√
(−Cf

αa+ Cr
αb)mV

2
x + Cf

αC
r
α(a+ b)2

mV 2
x Jz

(5.18)

An analytical proof of the fact that ξAFI < ξδ at high speed has not been
found yet, despite evident from numerical examples, as the one illustrated
in Fig. 5.3.
Characteristic equation (5.12) also gives the analytical expression of com-
plex conjugate poles natural frequency ωn:

ωn =
√
ε =

√
CR
α b

Jz
. (5.19)

Eq. (5.19) states that AFI intrinsic pole placement control law (5.25) modi-
fies poles damping, which reduces as vehicle speed increase, while keeping
at a constant value their natural frequency ωn.

5.5 High speed path tracking using AFI model

AFI linear model given by eq. (5.1) is particularly suited to develop path
tracking controllers based on the MPC framework, as the ones which have
been used at low speeds in [9, 21, 26]. In fact, MPC is capable of easily
controlling a linear MIMO system with constraints on both control inputs
and system states. However, undamped AFI model yaw rate dynamics not
only negatively affects system open loop response at high speed, but also
the performance which can be achieved at high speed with a MPC based
path tracking controller. In other words, there is no straightforward way
that allows to find a tuning of the MPC parameters which ensures low yaw
rate oscillations when the car is traveling at high speed. This statement
has been numerically proved by designing a MPC path tracking controller,
based on AFI model, and by testing it in simulation against a nonlinear
single-track model of vehicle dynamics (which has been derived in Sec-
tion 2.0.3). This simple model has been preferred over a more complex
multibody vehicle model, as the ones described in Section 2.1, to get rid
of the nonlinear effects given by load transfer, suspension motion and tyre
stiffness and damping, so as to highlight how the direct control of F f

y is
enough to obtain yaw rate oscillations at high speed.

86



i
i

“thesis” — 2020/1/19 — 1:13 — page 87 — #95 i
i

i
i

i
i

5.5. High speed path tracking using AFI model

The tested MPC path tracking controller solves, at each time step, the fol-
lowing optimization problem:

minimize
u(·)

J(x(k), u(·), k) =
N−1∑
i=0

(
‖x(k + i)‖2

Q + ‖u(k + i)‖2
R

)
(5.20)

subject to x(k + 1) = Ax(k) +Bu(k) (5.21)
|e| ≤ 1 m (5.22)

|F f
y | ≤ µF f

z , (5.23)

where:

• in eq. (5.20), N is the length of prediction horizon, u(k) = F f
y (k), Q

and R are definite positive diagonal matrices which penalizes states
and control inputs moves;

• eq. (5.21) defines system open loop dynamics, which is given by:

β̇ =

(
−Cr

α

mVx

)
β +

(
CR
α b

mV 2
x

− 1

)
r +

1

mVx
F f
y

ṙ =

(
CR
α b

Jz

)
β +

(
−Cr

αb
2

JzVx

)
r +

a

Jz
F f
y

∆ψ̇ = r − rref
ė = Vx(∆ψ + β),

(5.24)

where Vx is assumed to be constant, rref is the reference yaw rate
computed as rref = Vxκ(s), where κ(s) defines the curvature of the
road. In particular, we selected a chicane (s-turn) road profile, with
constant curvature, as illustrated in Fig. 5.5;

• eq. (5.22) defines the constraint on path tracking error e, which is
needed to force the vehicle to stay within road boundaries;

• eq. (5.23) expresses the upper bound on F f
y dictated by friction coef-

ficient µ and tyre normal load F f
z .

Matlab model predictive toolbox2 has been used to implement MPC con-
troller in Simulink environment. Longitudinal vehicle speed has been set
to 30ms−1, with the radius of road turns fixed to 150m. System (5.24)
has been discretized with Zero-Order-Hold (ZOH) method with a sampling
time of 0.04 s (25Hz). MPC prediction horizon N has been set to 25 steps,

2https://it.mathworks.com/products/mpc.html
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Figure 5.5: Road profile for the testing of the MPC path tracking controller based on AFI
model

so that the automatic driver is looking 1 s ahead of the current position.
Fig. 5.6 shows the best results which could be achieved, which are nev-
ertheless characterized by strong yaw rate fluctuations, despite the car is
correctly staying within road boundaries.

5.5.1 Pole placement to enhance yaw rate damping

Simulation results illustrated in the previous section let us conclude that
AFI model cannot be used for developing an MPC path tracking controller
which is capable of driving the car without yaw rate oscillations. An addi-
tional control loop, which increases AFI damping at high speed, is neces-
sary. Therefore, we designed a pole-placement control law which increases
the damping of AFI poles at high speed, in order to get rid of yaw rate os-
cillations. In particular, as Vx strongly affects the damping of AFI model
as suggested by eq. (5.17), pole-placement has been designed on a selected
longitudinal speed Vx. Pole placement control law acts on AFI model state
variables, namely vehicle sideslip angle and yaw rate:

F F,pp
y = −Kpp[β, r]

T (5.25)

Fig. 5.7 illustrates pole placement control law along with AFI model.
As the aim of pole placement is simply to increase system damping at

a given vehicle speed, closed loop poles have been selected to have the
same natural frequency of those of AFI model (in particular,as indicated
by eq. (5.19), ωn keeps constant at any vehicle speed) but with a larger
damping factor, which, for comfort requirements, has been selected to be at
least 0.8. This choice of closed loop poles also minimizes the control effort
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Figure 5.6: Path tracking with MPC approach and AFI model: simulation results
obtained with Sedan vehicle, traveling at a constant speed of 30ms−1. Simulation
data as blue solid line, reference as red dashed line and saturation limits as black

dashed line

Figure 5.7: AFI model and pole placement control law
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of pole-placement control law, as suggested in [6].

5.5.2 MPC path tracking controller with pole-placement internal con-
trol loop

Once AFI poles have been damped by pole-placement control law given by
eq. (5.25), an external MPC controller, which accounts for path tracking,
can be designed. Fig. 5.8 illustrates the overall control architecture which
is needed to exploit AFI model for high speed path tracking control. MPC

Figure 5.8: Path tracking with MPC control approach and AFI model at high vehicle
speed: overall control architecture

solves the following optimization problem, at each time step:

minimize
u(·)

J(x(k), u(·), k) =
N−1∑
i=0

(
‖x(k + i)‖2

Q + ‖u(k + i)‖2
R

)
(5.26)

subject to x(k + 1) = Ax(k) +Bu(k) (5.27)
|e| ≤ 1 m (5.28)

|F F,MPC
y + F F PP

y | ≤ µF f
z , (5.29)

In particular:

• eq. (5.27) refers to the dynamic system which results from the appli-
cation of the pole placement control;

• eq. (5.29) highlights that maximum front tyre lateral force available
to MPC at each time step, depends on the effort requested by the pole
placement to enhance the damping ratio of the AFI model.

Fig. 5.9 illustrates the results achieved on the same simulation scenario
which was used in Section 5.5; pole placement control law has been se-
lected in order to set closed loop poles damping ratio to 0.9, while keeping
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Figure 5.9: Path tracking with MPC approach, pole placement and AFI model:
simulation results obtained with Sedan vehicle, traveling at a constant speed of

30ms−1 and damping of AFI closed loop poles equal to 0.9. Simulation data as blue
solid line, reference as red dashed line and saturation limits as black dashed line

a constant natural frequency, which was equal to 6.3 rad s−1. As it can
be seen, pole placement control law allows to find a tuning of MPC path
tracking controller which ensures no yaw rate oscillations.

5.5.3 Discussion

Although results shown in Section 5.5.2 suggests that it is possible to use
AFI model for high speed path tracking at the limits of handling, two issues
remain:

• constraint (5.29) implies that, with the developed nested-loops control
architecture, MPC controller has to manage the amount of F f

y which
is not being used by pole placement control law to increase AFI damp-
ing and avoid yaw rate oscillations. However, when driving a car, the
most important requirement is to avoid collisions and to stay on the
road. The damping of yaw rate oscillations is a secondary task, which
can be addressed only when the car is traveling in a safe condition,
without the risk of impeding accidents. This reasoning suggests that
the damping of closed loop AFI poles should not be fixed but should
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be dynamically adapted to match current situation: when there is the
risk of a collision, all control effort should be left to MPC path track-
ing controller; when there is not risk of collision or no sharp turns have
to be navigated, damping and hence pole placement control effort can
be increased to improve passengers comfort.
A way of avoiding this issue is to take advantage of a rear-wheel steer-
ing mechanism, as it has been done in [2] and in its subsequent works,
whose results have been collected in [3]. In these researches, path
tracking and yaw damping tasks have been decoupled. More in details,
path tracking task, with F f

y as control variable, has been assigned to
front wheel steering angle δ, while yaw dynamics damping has been
given to rear wheel steering angle;

• the analysis performed in this Chapter, along with all the works in
the literature which have used AFI model, have assumed that steering
actuator dynamics is fast enough to be neglected. Moreover, no steer-
ing actuator delay has ever been considered. However, when a delay
on steering actuation is present, yaw rate oscillations at high speed
are further increased, even in presence of pole placement control law
presented in Section 5.5.1.
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CHAPTER6
Conclusions and future developments

This work investigated control approaches suited to the development of
path tracking controllers able to drive an autonomous car up to its limits
of handling.
Chapter 4 showed that LQR is a simple yet robust and effective control ap-
proach for drifting stabilization and tracking of a circular path. Moreover,
the performed experimental tests has revealed that a low-level longitudinal
slip tracking controller is not necessary. LQR is able to automatically adapt
F r
x to a reduction of tyre-ground friction coefficient, thus avoiding car spin-

ning. This interesting phenomenon is due to the feedback of vehicle lateral
velocity, which prevents the application of a too large throttle action, and
to the fact that the adopted vehicle dynamic model takes into account the
effect of F r

x on vehicle lateral dynamics. In other words, the feedback of
lateral velocity, plus the knowledge of the effect of F r

x on yaw rate and lat-
eral velocity, give to the controller the ability to foresee, and hence avoid,
spinning.
Chapter 5 has analyzed and discussed the adoption of the Affine in the Force
Input (AFI) model for the design of high speed path tracking controllers,
able to exploit all the grip made available by tyre-ground interaction. In
fact, the most useful AFI model feature is the easy, i.e., linear expression
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Chapter 6. Conclusions and future developments

of the constraint on the maximum lateral force which can be developed by
tyre, that dictates vehicle maximum lateral acceleration. However, when
directly controlling front tyre lateral force, yaw rate oscillations arise at
vehicle high speed. These fluctuations are due to undamped yaw rate dy-
namics, which, as illustrated, is due to a hidden control loop, that is closed
in order to control F f

y . Moreover, AFI pole damping decreases as vehi-
cle speed increases, as demonstrated by a simple analytical relation. In the
absence of a rear-wheel steering mechanism, the only viable option for in-
creasing the damping of yaw rate dynamics at high speed is to design a pole
placement control law, which takes F f

y as the control variable. This con-
trol strategy has been tested in simulation along with a MPC path tracking
controller. It was shown that the proposed nested loops control architecture
is able to successfully track a reference path, without dangerous yaw rate
oscillations at high vehicle speed.
Last but not least, a scaled car was built for the purpose of this research
project. Its parameters have been estimated, and the dynamics of its steer-
ing actuator has been identified. The most promising result is the accu-
racy with which nonlinear single-track model, which is the model typically
adopted for the design of real car path tracking controllers and ADAS, re-
produces vehicle lateral dynamics, up to the limits of handling. In addition,
the dynamic similitude between the experimental platform and a Sedan ve-
hicle confirms that a scaled vehicle, in place of a real car, can be used
to assess the performances, the robustness and the shortcomings of path
tracking controllers, while avoiding the danger and the cost of accidental
collisions.

6.1 Future developments

Each chapter of this work has several future developments, which are here
discussed.

6.1.1 Scaled car

The most important improvement of scaled car experimental platform con-
sists in making it fully autonomous, i.e., estimating directly onboard all the
needed states without relying on any external motion tracking system, thus
opening the door to outdoor testing. In particular:

• longitudinal speed Vx could be measured with a wheel encoder. The
tight available space poses the biggest challenge for the design and
building of such an encoder, preventing the installation of a commer-
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6.1. Future developments

cial encoder. Indeed, not only commercial encoders are too big to
be installed in the scaled car, but also the smallest ones available on
the market cannot be mounted because of very tight mounting tol-
erances to be satisfied in order to work properly. Nevertheless, we
successfully tested an hand-made optical encoder, which is shown in
Fig. 6.1, which is made of a chequered paper strip sensed by a photo-
reflective infrared sensor. The voltage signal generated by the sensor
is squared by means of a Schmidt trigger and then sent to the Arduino,
which computes wheel speed. The drawback of this configuration is
the large amount of computational resources wasted by the encoder
routine, which calls for a dedicated board. A possible and better solu-
tion could be the development of an hardware counter, which directly
provide pulses number at the Arduino board at a given frequency;

• lateral velocity Vy, or vehicle sideslip angle β, could be estimated
with a kinematic estimator, as the one presented in [56], which uses
only the measures of Vx, yaw rate r and lateral acceleration ay, while
being also suited for drifting maneuvers. In addition to this, such an
estimator would be analogue to those used in real cars, in contrast to
the optical-flow based sideslip angle estimator used in [31];

• path tracking states e and ∆ψ could be estimated with an onboard
camera, mounted on car rooftop.

Figure 6.1: Scaled car hand-made wheel encoder

Another characteristic of this experimental setup which could be improved
is the transmission delay which plagues the transmission of control com-
mands to steering and motor actuators. The delay could be reduced by:
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Chapter 6. Conclusions and future developments

• increasing the serial port frequency, which calls for a board more pow-
erful than the Arduino Uno;

• increasing the speed of PWM signals. Currently, VESC only accepts
standard RC PWM signals, with a frequency of 60Hz. Therefore, in
order to increase the speed of the connection, either VESC firmware
has to be modified or a faster signal (as, for example, a CAN BUS sig-
nal) has to be used. Regarding the steering servo, nowadays servos are
digital, with an internal working frequency of about 330Hz. There-
fore, in theory, it could be possible to increase PWM signal frequency
up to this value, even if no tests have been conducted so far.

6.1.2 Drifting stabilization and path tracking

The most straightforward development of this Section lies in the assess-
ment of LQR path tracking capabilities in the presence of a non perfectly
circular reference path. For instance, the controller could be tested against
a spiral path (which can be though as a circular trajectory, with a non-
constant radius), or against a circular path, whose center is translating at
constant speed.
Moreover, although the LQR approach is incredibly robust, often control
commands exceed actuator saturation limits (see for example Fig. A.2).
In these cases, asymptotic stability of closed-loop system cannot be guar-
anteed. Moreoever, actuator saturation prevented the adoption of a more
aggressive control law, which would yield a faster closed-loop response.
Therefore, the most straightforward improvement of this research is the
development of an MPC circular drifting controller. Indeed, MPC is well-
suited to the problem of controlling MIMO systems with limited control
actions [44]. MPC main drawback is the need of a large amount of compu-
tational resources. Finally, both LQR and MPC drifting path tracking con-
trollers could be designed on a linearized model which takes into account
longitudinal load transfer, to assess whether better results can be achieved.

6.1.3 High speed driving with AFI model

The first future development of this Section is the experimental validation,
on the scaled car, of the pole placement control law, designed to increase
yaw rate damping at high speed. This test has not been conducted so far
due to the need of running the car at high speed (about 7ms−1), a velocity
which calls for a wider area covered by Motion Tracking system, compared
to the current 4 times 4m available test area. The testing of the complete
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6.1. Future developments

path tracking control architecture, which leverages on AFI model, on the
scaled car is made complex by MPC, which needs a large amount of com-
putational resources to be run in real time at a sufficiently small sampling
time.
In addition to the aspects discussed in Section 5.5.3, another future devel-
opment of this work is the investigation of an analytical proof of AFI model
lower damping of yaw rate dynamics, compared to the damping of yaw rate
dynamics of single-track model with δ as control input.
Finally, as already stated before, pole placement control law introduced in
Section 5.5.1 has been designed assuming a constant vehicle speed. There-
fore, if vehicle velocity changes, pole placement control law has to be de-
signed again. Linear Parameter Varying (LPV) control could be adopted to
address this challenge. Furthermore, being AFI model state vector made of
just two state variable, pole placement gains can be analytically calculated
and hence computed for any vehicle speed. The design of a path tracking
controller in the presence of a non-constant vehicle longitudinal speed Vx
(which is the case, for example, of a sudden obstacle avoidance manoeu-
vre) could be alternatively addressed by means of a feedback linearization
policy [41], which would yield a linear system even in presence the of a
varying Vx. In particular, thanks to the adoption of F f

y as control input, ve-
hicle and path tracking dynamics are modeled by a nonlinear but affine in
the control input system, the class of nonlinear systems for which feedback
linearization can be applied [41].
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APPENDIXA
Autonomous drifting and circular path

tracking with LQR approach: additional
experimental results

A.1 Drifting stabilization with scaled car newest configuration

LQR autonomous drifting stabilizing controller robustness against exter-
nal disturbance forces and parameter uncertainties have been assessed by
means of the following experiments performed on the scaled car, in addition
to the stabilizing test illustrated in Section 4.1.4:

• Fig. A.1 depicts the results achieved by running the car on wood floor-
ing surface. More in details, this experimental test assessed controller
robustness to an error on friction coefficient and on front and rear
cornering stiffness, which vary on different surfaces, as reported in
Table A.1;

• Figs. A.2 and A.3 shows the ability of the LQR drifting stabilization
controller to reject lateral force and yaw moment disturbances, while
the car is traveling on wood flooring surface. In particular, Fig. A.2
illustrates vehicle response to a yaw moment applied to the car at 23 s

101



i
i

“thesis” — 2020/1/19 — 1:13 — page 102 — #110 i
i

i
i

i
i

Appendix A. Autonomous drifting and circular path tracking with LQR
approach: additional experimental results

Table A.1: Comparison between scaled car parameters on carpet and wood flooring
surface, with drifting tyre set

Parameter Carpet Parquet Increment
µ 0.385 0.255 −34 %
Cfα

[
N rad−1

]
50.13 244.51 −388 %

Crα
[
N rad−1

]
122.05 224.41 −84 %

in order to spin it: the controller automatically counter-steers and re-
leases throttle action to avoid spinning, then throttle action is increased
again to increase yaw rate. Fig. A.3 shows vehicle response to a lat-
eral force which simulates the hitting of an obstacle which tends to
force the car to exit from sustained drifting at 50 s. The controller au-
tomatically steers towards the inside of the turn and accelerates more,
to increase yaw rate moment and to go back to sustained drifting;

• Fig. A.6 and A.5 show the results achieved by the controller when an
additional mass is placed at the rear and at the front of the scaled car,
respectively, as depicted in Fig. A.4. These tests allow to evaluate con-
troller robustness against mass, yaw moment of inertia and center of
gravity position uncertainty. In particular, additional mass was equal
to 0.4Kg and it has been placed at 40mm behind car rear axle, in-
ducing the changes of car inertial parameters listed in Table A.2, or at
30mm behind front axle, inducing the changes of car inertial parame-
ters shown in Table A.3. It was observed that, in general, the controller
is more robust against a shift of the center of gravity towards the rear
of the car, because when weight is moved towards the front of the car
the rear has less available force and hence the car more easily spins.

Finally, in view of developing in the future a drifting stabilization Model
Predictive Controller (MPC), which cannot work at a frequency of 100Hz
due to computational load, robustness of LQR controller to a reduction of
controller sampling time has been evaluated. It has been verified that the
controller still produces satisfying performances down to a frequency of
25Hz, as shown in Fig. A.7. Fig. A.8 displays the results achieved when
the controller runs at 20Hz: yaw rate oscillations, due to the additional
controller delay, appears, yielding unsatisfactory results.
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A.1. Drifting stabilization with scaled car newest configuration
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(f) Rear tyre longitudinal force

Figure A.1: Drifting stabilization on wood flooring surface, drifting tyre set and scaled
car new configuration. Experimental data as red solid line, carpet surface

equilibrium value as green dashed line and actuator saturation as black dashed line
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approach: additional experimental results
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(f) Rear tyre longitudinal force

Figure A.2: Drifting stabilization on wood flooring surface, drifting tyre set and scaled
car new configuration, in presence of an external yaw momentum which tends to spin
the car. Experimental data as red solid line, carpet surface equilibrium value as green

dashed line and actuator saturation as black dashed line
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A.1. Drifting stabilization with scaled car newest configuration
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(f) Rear tyre longitudinal force

Figure A.3: Drifting stabilization on wood flooring surface, drifting tyre set and scaled
car new configuration, in presence of an external lateral force which tends to force the
car to exit from sustained drifting. Experimental data as red solid line, carpet surface
equilibrium value as green dashed line and actuator saturation as black dashed line
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Appendix A. Autonomous drifting and circular path tracking with LQR
approach: additional experimental results

Table A.2: Scaled car inertial parameters with an additional mass mounted at the rear of
the car

Parameter Value Increment
m [Kg] 2.231 +17 %
a [m] 0.16 +17 %
b [m] 0.1 −19 %
Jz
[
Kg m2

]
0.0363 +25 %

Table A.3: Scaled car inertial parameters with an additional mass mounted at the front
of the car

Parameter Value Increment
m [Kg] 2.231 +17 %
a [m] 0.1208 −12 %
b [m] 0.1392 +13 %
Jz
[
Kg m2

]
0.0321 +11 %

(a) Rear (b) Front

Figure A.4: Scaled car with additional mass mounted
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A.1. Drifting stabilization with scaled car newest configuration
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(f) Rear tyre longitudinal force

Figure A.5: Drifting stabilization on wood flooring surface, drifting tyre set and scaled
car new configuration, in presence of an additional mass on front car axle. At 40 s an

external yaw moment, which tends to spin the car, is applied. Experimental data as
red solid line, carpet surface equilibrium value as green dashed line and actuator

saturation as black dashed line
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Figure A.6: Drifting stabilization on wood flooring surface, drifting tyre set and scaled
car new configuration, in presence of an additional mass on rear car axle. At 33 s an

external lateral force, which tends to make the car exit from sustained drifting, is
applied. Experimental data as red solid line, carpet surface equilibrium value as

green dashed line and actuator saturation as black dashed line
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(f) Rear tyre longitudinal force

Figure A.7: Drifting stabilization on carpet surface, drifting tyre set and scaled car new
configuration, with LQR controller running at 25Hz. Experimental data as red solid
line, carpet surface equilibrium value as green dashed line and actuator saturation as

black dashed line
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Figure A.8: Drifting stabilization on carpet surface, drifting tyre set and scaled car new
configuration, with LQR controller running at 20Hz. Experimental data as red solid
line, carpet surface equilibrium value as green dashed line and actuator saturation as

black dashed line
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A.2. Circular drifting stabilization with integral action on path tracking error

A.2 Circular drifting stabilization with integral action on path
tracking error

The circular drifting controller with integral action on path tracking error,
which has been presented in Section 4.2, has also been tested on wood floor-
ing surface, assessing controller robustness against uncertainty on friction
coefficient and cornering stiffness. Figs. A.9, A.10 and A.11, A.12, along
with a video1, shows the experimental results obtained.

1A video of these experiments is available at https://youtu.be/ond1xtDYx7g
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Figure A.9: Circular drifting stabilization with path tracking error integral action, wood
flooring surface, drifting tyre set and scaled car new configuration. Experimental

data as red solid line, carpet surface equilibrium value as green dashed line. In this
test, car started inside reference circular path
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A.2. Circular drifting stabilization with integral action on path tracking error
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Figure A.10: Circular drifting stabilization with path tracking error integral action,
wood flooring surface, drifting tyre set and scaled car new configuration.

Experimental data as red solid line, carpet surface equilibrium value as green dashed
line and actuator saturation as black dashed line. In this test, car started inside

reference circular path
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Appendix A. Autonomous drifting and circular path tracking with LQR
approach: additional experimental results
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Figure A.11: Circular drifting stabilization with path tracking error integral action,
wood flooring surface, drifting tyre set and scaled car new configuration.

Experimental data as red solid line, carpet surface equilibrium value as green dashed
line. In this test, car started outside reference circular path
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Figure A.12: Circular drifting stabilization with path tracking error integral action,
wood flooring surface, drifting tyre set and scaled car new configuration.

Experimental data as red solid line, carpet surface equilibrium value as green dashed
line and actuator saturation as black dashed line. In this test, car started outside

reference circular path
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