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Abstract

Computer-based numerical simulations of the heart, also known as in silico cardiac
models, are increasingly assuming a recognized role in the context of computational
medicine and cardiology. They are based on rigorous and accurate mathematical
models describing the physical phenomena determining the cardiac function. However,
the intrinsic multiscale nature of the cardiac activity, for which energy is consumed at
the microscale by subcellular mechanisms to produce work at the macroscale for the
whole organ, risks to harm the exploitation of computational medicine for the heart,
as it raises a challenging trade-off between accuracy of the models and computational
efficiency of numerical simulations.

In this thesis we develop a mathematical and numerical multiscale model of cardiac
electromechanics, wherein the mechanisms of active force generation are described
by means of new biophysically motivated models. In these subcellular models, we
explicitly represent only the most relevant interactions among the proteins involved in
the force generation process, while we neglect secondary interactions, but still leading
to accurate results – that we validate against experimental data – obtained with a
drastic reduction of computational cost with respect to the models currently available
in literature.

As it is crucial to multiscale electromechanical modeling, we establish the link be-
tween the variables describing force generation at the microscale and those describing
the strain and the stress of the tissue at the macroscale. This allows to couple, in a
mathematically sound manner, the subcellular models proposed in this thesis – char-
acterized by a stochastic behavior – with models for cardiac electrophysiology and
for passive and active mechanics – based on a deterministic formalism – written as
systems of Ordinary Differential Equations (ODEs) and Partial Differential Equations
(PDEs).

In this thesis we also combine the proposed subcellular models with a newly de-
veloped Machine Learning algorithm, in order to speedup their numerical resolution
in the multiscale electromechanical model. Specifically, a reduced model based on Ar-
tificial Neural Networks (ANNs) is trained from a collection of simulations generated
by means of biophysically detailed force generation models. In this manner, the com-
putationally demanding training phase can be performed offline, with the advantage
of a huge speedup when the trained ANN-based model is exploited in replacement
of the high-fidelity model used to generate the training data. Overall, our multiscale
model for cardiac electromechanics achieves an excellent balance between accuracy of
the models, their rigorousness and computational efficiency in large-scale simulations.

Keywords: cardiac modeling, cardiac electromechanics, numerical simulations, mul-
tiscale models, Machine Learning, Artificial Neural Networks, data-driven modeling,
model order reduction.
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Sommario

I modelli cardiaci in silico, basati su simulazioni numeriche della funzione del cuore,
stanno assumendo un ruolo sempre più riconosciuto nel contesto della medicina com-
putazionale e della cardiologia. Tali simulazioni sono basate su rigorosi ed accurati
modelli matematici che descrivono i fenomeni fisici alla base della funzione cardiaca.
Tuttavia, a causa dell’intrinseca natura multiscala dell’attività cardiaca, in virtù del-
la quale l’energia consumata da meccanismi subcellulari produce lavoro per l’intero
organo, è attualmente difficile trovare un soddisfacente compromesso fra accuratezza
dei modelli e efficienza computazionale delle simulazioni numeriche. Ciò rappresen-
ta un importante limite per la concreta applicabilità degli strumenti della medicina
computazionale in ambito cardiaco.

In questa tesi sviluppiamo modelli matematici e numerici, di tipo multiscala, per
l’elettromeccanica cardiaca, nei quali i meccanismi di generazione di forza attiva sono
descritti attraverso dei nuovi modelli, accurati dal punto di vista biofisico. In tali
modelli subcellulari sono rappresentate in modo esplicito solamente le più rilevanti fra
le interazioni che intercorrono fra le proteine coinvolte nel meccanismo di generazione
di forza, mentre sono trascurate le interazioni di natura secondaria. Otteniamo cos̀ı
un’elevata accuratezza dei risultati, validati rispetto a dati sperimentali, a fronte di
una drastica riduzione, rispetto ai modelli attualmente disponibili in letteratura, del
costo computazionale.

Stabiliamo poi i legami intercorrenti fra le variabili che descrivono la generazione
di forza a livello della microscala spaziale e quelle che descrivono le deformazioni e
gli sforzi del tessuto a livello della macroscala, aspetto cruciale per la modellistica
multiscala dell’elettromeccanica. Ciò permette di accoppiare, in modo matematica-
mente rigoroso, i modelli subcellulari proposti in questa tesi – caratterizzati da un
comportamento stocastico – con modelli di elettrofisiologia cardiaca e di meccanica
passiva e attiva – basati invece su un formalismo deterministico – scritti come sistemi
di equazioni differenziali ordinarie e equazioni alle derivate parziali.

In questa tesi, inoltre, proponiamo un nuovo algoritmo di apprendimento auto-
matico (Machine Learning), volto ad accelerare la risoluzione numerica dei modelli
di forza attiva nel contesto multiscala dell’elettromeccanica cardiaca. Nello specifico,
un modello ridotto basato su reti neurali artificiali (ANN) è addestrato a partire da
una collezione di simulazioni ottenute attraverso modelli di generazione di forza attiva
biofisicamente dettagliati (i cosiddetti modelli ad alta fedeltà). In questo modo la fase
di addestramento, impegnativa sul piano computazionale, può essere effettuata offline
(ossia una volta per tutte), con il vantaggio di una notevole accelerazione quando il
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modello basato su ANN, ormai addestrato, è utilizzato in sostituzione del modello ad
alta fedeltà. Nel complesso, il nostro modello multiscala di elettromeccanica cardia-
ca realizza un eccellente bilanciamento fra l’accuratezza dei modelli, il loro rigore e
l’efficienza computazionale in simulazioni su large scala.

Parole chiave: modellistica cardiaca, elettromeccanica cardiaca, simulazioni numeri-
che, modelli multiscala, apprendimento automatico, reti neurali artificiali, modellistica
basata sui dati, riduzione d’ordine di modello.
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Introduction

The human heart is a sophisticated machine, finely tuned by millions of years of
evolution, whose functional role is pumping the blood throughout to body cells, so that
organs are supplied with oxygen and nutrients, while the metabolic waste is removed.
In the context of cardiovascular research and computational medicine, mathematical
and numerical modeling are increasingly recognized as valuable tools, with a twofold
role. On the one hand, realistic and detailed in silico models of the heart can deepen
the understanding of its function, help the interpretation of experimental observations
and explain the subtle links between the organ-level emergent phenomena and the
underlying biophysical mechanisms. On the other hand, patient-specific numerical
simulations, which are increasingly becoming available, can provide clinicians with
valuable quantitative information for improving patient care and with precious tools
to support decision-making [Smi+04; Cra+04; Fin+11; Cha+16; Qua+17].

The implementation of in silico models for cardiac applications requires the devel-
opment of mathematical models describing the complex physical phenomena involved
in the heart function. Specifically, every heartbeat is driven by the propagation of an
electrical signal throughout the tissue, that breaks the delicate balance of electrical
and chemical gradients across the cell membrane, thus triggering a fast succession of
events, known as action potential. The resulting increase of calcium ions concentra-
tion inside the cardiomyocytes (the cardiac muscle cells) is the signal triggering the
activity of sarcomeres, the contractile units of muscle cells, that transform into me-
chanical work the chemical energy stored in ATP. The macroscopic consequence of
such phenomenon is the muscle contraction, that leads to a rapid increase of the inter-
nal pressure of the heart chambers, determining the opening of the heart valves and
the blood injection and ejection through the ventricles and the atria [TD08; JKT07;
Kat10; Ber01]. In this thesis, we focus on cardiac electromechanics (EM), including
the electrophysiology, the mechanical activation and the passive and active mechanics
of the myocardium.

To describe the different physical phenomena involved in the cardiac EM function,
several mathematical models have been proposed in literature. The propagation of the
electrical signal through the cell membrane is typically modeled by systems of Partial
Differential Equations (PDEs), such as the monodomain and the bidomain equations
[CFPS06; CFPS14], coupled with a system of Ordinary Differential Equations (ODEs)
describing the dynamics of the ionic fluxes across the cell membrane [HH52a; O’H+11;
TT+04; TTP06a; TTP06b; Fit61; NAY62; AP96; BOCF08]. The generation of active
force at the subcellular level can be described by systems of ODEs [Zah81; BCS01;

1



Introduction

Cardiac
Electromechanics

Electrical
activity

Mechanics
Mechanical
activation

Ionic
activity

active stress

tissue deformation

strains calcium

potential

Ionic currents

Blood 
Fluid Dynamics

Purkinje network
electrical stimulus

stress (pressure),
deformations

Figure 1: The building blocks of the EM activity in a ventricle and the corresponding
coupling quantities. The ventricle contraction is triggered by the propagation of an
electrical signal coming from the Purkinje system (a network of specialized conducting
fibers) [TD08; JKT07] and it involves the synergic interaction between the electrical
activity, ionic exchanges at the level of the cell membrane, the generation of an active
force at the subcellular scale and the mechanical activity of the cardiac tissue.

Cha+12; HMTK98; NHS06; Lan+12; Lan+17; Was+12; Ros+14; RB+14; Car+14],
systems of PDEs [Hux57b; CMC19; Kim+19; Kim19] or by continuous-time Markov
Chains (CTMCs) [Ric+03; HTR06; Sug+12; Was+13; Was+15]. At the level of
the tissue, the deformation of the cardiac muscle is modeled with the formalism of
continuous mechanics [Ant95; Ogd97], by adopting a suitable hyperelastic [GMW91;
GCM95; ULM02; HO09] or visco-elastic [GSH16; Zha+19] constitutive law. Such
models should account for the strongly anisotropic features of the passive response
of the cardiac tissue, due to the presence of oriented fibers, spanning the whole my-
ocardium [TD08; JKT07]. As a matter of fact, these four core models are tightly
coupled together to establish the so called integrated EM model, as shown in Fig. 1.

To approximate the solution of the single core models of cardiac EM, different
numerical methods, based on the Finite Element method, the Finite Volume method,
Isogeometric analysis or the Finite Difference method, have been devised [QSS10;
Smi+04; Cra+04; Fin+11; Cha+16; Qua+17; QMV17; Pat+17; PDQ19]. Due to the
interactions among the different physics involved in cardiac EM, such core models need
to be coupled together to build an integrated computational model of the complete
cardiac EM function. With this aim, specialized computational methods that are sta-
ble, reliable and efficient are required [Smi+04; Fin+11; Cha+16; Qua+17; GDQ18a;
GDQ18b; Ger18].

The construction of an integrated mathematical and numerical model of cardiac
EM is however a remarkably arduous task. This is mainly due to the multiphysics
(due to biochemistry, electricity, solid mechanics, fluid dynamics interacting phenom-
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ena) and multiscale nature of the heart system: characteristic spatial scales range
from nanometers to centimeters and the temporal ones from microseconds to seconds.
This makes it difficult to combine a suitable richness and detail of the mathematical
models (and thus their reliability) with the computational efficiency of their numerical
approximation [Cha+16; Qua+17; QMV17].

The delicate trade-off between the need for model accuracy and for computational
efficiency of numerical simulations is mainly due to the multiscale nature of the heart,
for which the mechanical work responsible of the macroscopic motion of the organ
is fueled by the energy consumed at the microscale by subcellular mechanisms. The
phenomenon of generation of active force takes place inside sarcomeres and involves
a complex chain of chemical and mechanical reactions. This mechanism is divided
into two steps (Fig. 2). First, a ionic signal (specifically, an increase of calcium ions
concentration) triggers the so-called regulatory units (protein complexes consisting
of troponin and tropomyosin) that act as on-off switches for the muscle contraction.
Then, when the regulatory units are activated, the actin and myosin proteins are free
to interact and to form the so-called crossbridges, molecular motors that generate an
active force by consuming the chemical energy stored in ATP [Ber01; Kat10].

The machinery of microscopic force generation features many regulatory mecha-
nisms, forming the subcellular basis of organ-level phenomena, such as the Frank-
Starling law [Kat10]. Hence, if a microscale mathematical model of force generation
is used in a multiscale setting to build an integrated organ-level EM model, then it
should be able to reproduce the above-mentioned mechanisms. In particular, the fol-
lowing experimentally observed behaviors are crucial to characterize the functioning
of sarcomeres.

• The apparent calcium sensitivity of the regulatory proteins features a significant
increase around the half-activating calcium concentration. This translates into
a quick increase of macroscopic force when the calcium signaling reaches a given
threshold [Ken+86; DKT02; TK+08].

• The shortening of sarcomeres, following the tissue contraction, has a feedback
effect on the force generation mechanisms. Indeed, an increase of sarcomere

3



Introduction

length has the twofold effect of increasing both the maximum tension that can
be reached and the apparent calcium sensitivity [Ken+86; TKHK00; DKT02;
TK+08]. This phenomenon is the subcellular basis of self-regulation mechanisms
of the heart [NS09; Kat10].

• The functioning of sarcomeres is a multiscale phenomenon in itself. In fact, at
least three different time scales can be distinguished in their response to external
inputs [KS09; MT10a; MT10b; CT18; Car+16]. As the heart contraction is a
dynamical phenomenon, it is crucial to accurately capture the different time
scales involved in the response of sarcomeres to the external stimuli.

In the past decades, the scientific community has devoted several efforts to the con-
struction of mathematical models describing the complex dynamics of the phenomena
taking place inside sarcomeres [Hux57b; HS71; RWH99; Ric+03; NHS06; HTR06;
MT10b; Car11; Cha+12; Lan+12; Was+13; Was+15; Lan+17; CT18; CMC19]. How-
ever, because of the intrinsic complexity of the phenomenon of force generation, the
huge computational cost associated with the numerical approximation of such models
limits their application when they are used for multiscale EM simulations. Despite sev-
eral attempts to capture the fundamental mechanisms underlying the force generation
phenomenon into a tractable number of equations [RWH99; SGS03; RBC99; Ric+03;
Cam+10; Was+12; LN15], the existing organ-level cardiac mathematical models rely
on two alternative strategies to describe the microscopic force generation phenomenon.

• Phenomenological models (see e.g. [HMTK98; NHS06; Ric+08; Lan+12;
Lan+17]) are built by fitting the measured data with simple curves, chosen
by the modeler. The models belonging to this class, however, lack of a deep
understanding of the mechanisms to be modeled. As such, they do not allow
for investigating the effects of the subcellular scale elements on the organ-scale
behavior. Indeed, the parameters characterizing phenomenological models often
lack of a clear physical interpretation. Moreover, the noisy nature and deficiency
of data coming from the subcellular contractile units and the intrinsic difficulties
in measuring sarcomeres under the conditions occurring during an heartbeat
hamper the predictive power of such models [Fin+11].

• The alternative to phenomenological models is represented by biophysically
detailed models, whose numerical solution, because of their complexity, is
obtained by means of a Monte Carlo approximation (see e.g. [Was+13;
Was+15; HTR06]). The Monte Carlo method is however inaccurate and ineffi-
cient, featuring a huge computational cost, both in terms of time and memory
storage. Indeed, to accurately approximate the solution of a single heartbeat for
a single myofilament, up to tens of hours of computational time can be required
[RDQ18].

Goals and objectives

The final goal of this thesis is building a multiscale mathematical and numerical model
of cardiac EM that combines biophysical models that are rigorous, detailed and ac-
curate with computationally efficient numerical methods oriented to the large-scale
simulations. Due to the intrinsic complexity of the subcellular phenomena by which
sarcomeres generate active force, such goal requires the development of a detailed and,
at the same time, efficient computational model for the microscopic mechanisms of
force generation.
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With this aim, in this thesis we analyze the different phenomena pertaining the
force generation mechanisms and, for each of them, we aim at developing a mathe-
matical description able of capturing the fundamental machinery underlying the phe-
nomenon itself. The resulting model should be able to reproduce all the experimental
characterizations of the force generation dynamics that are relevant for the organ-level
behavior, with a contained computational cost.

Besides the development, calibration and validation of microscopic model of force
generation models, in this thesis we aim at further reducing the computational cost
associated to their numerical approximation by means of suitable model order re-
duction (MOR) techniques. Since most of the MOR techniques applicable to time-
dependent problems are designed for linear models or for models whose dynamics
can be well approximated by linear manifolds of reduced dimension [ASG00; BMS05;
QR14; QMN15], we need techniques suitable to treat the highly nonlinear nature of
the dynamics of the proteins involved in the mechanism of force generation.

Finally, the development of a multiscale model of cardiac EM requires coupling
the microscale force generation models with models describing the electrophysiologi-
cal and mechanical activity of the heart at the macroscopic scale. With this aim, a
link between the subcellular scale and the organ scale needs to be drawn, by suitably
upscaling the developed microscopic models. In this regard, we notice that the phe-
nomena pertaining the microscale have a stochastic nature, unlike those taking place
at the macroscopic level. Hence, when the two scales are coupled together, the effects
on the macroscale of the stochastic fluctuations characterizing the microscale must be
taken into account.

Original contributions

The original contributions of this thesis are the following.

• Concerning the mathematical modeling of force generation in cardiac cells,
we develop several models, describing the different phenomena involved in the
subcellular mechanism of cardiomyocytes contraction.

◦ First, we address the calcium-driven activation of the tissue and we pro-
pose a mathematical model, that we call activation-MH model. The model
is derived from the pre-existing model of [Was+12], under the assumption
of conditional independence of specific sets of events. This physically mo-
tivated assumption allows to drastically reduce the number of degrees of
freedom, thus resulting in a significantly large computational saving. In-
deed, the original Markov Chain model involves a huge number of degrees
of freedom (order of 1021) and it is solved by means of the Monte Carlo
method, which notoriously reaches statistical convergence slowly. With our
reduced model, instead, numerical simulations can be carried out by solving
a system of ODEs, reducing the computational time by more than 10000
times.

◦ Then, we consider the whole sarcomere dynamics and we propose six dif-
ferent models describing both the calcium-driven activation and the cross-
bridge cycling. All the models are based on a biophysically detailed de-
scription of the interactions among the sarcomere proteins and are derived
under physically motivated assumptions. Such assumptions are aimed at
neglecting second-order interactions among the proteins, so that the vari-
ables describing the stochastic processes associated with the states of the
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proteins can be partially decoupled. This results in a drastic reduction in
the size of models. Among the proposed models, based on different assump-
tions and modeling choices, we focus on the two that feature the best bal-
ance between model complexity, computational efficiency and availability
of data to constrain the model parameters. Such models, named spatially-
explicit ODE model (SE-ODE) and mean-field ODE model (MF-ODE), are
written in the form of ODEs, and allow for the simulation of 1 s of physical
time in just a few seconds of computational time.

◦ We develop a strategy to perform the calibration of the two models SE-ODE
and MF-ODE starting from the experimental measurements collected in the
commonly available experiments on muscle fibers. In this manner, we cal-
ibrate the two models SE-ODE and MF-ODE for rat cardiomyocytes at
room-temperature and human cardiomyocytes at body-temperature. We
validate both qualitatively and quantitatively the obtained models and we
show that they are capable of reproducing the main experimentally ob-
served features of the force generation phenomenon.

◦ We propose a possible explanation for the so–called phenomenon of length-
dependent activation (consisting in an increase of apparent calcium sensitiv-
ity when the sarcomere length increases), that is still not fully understood
from a physiological perspective, and most of the explanations proposed in
the past have been later rejected [TK16; AM+16]. Noticeably, the SE-ODE
model correctly predicts this phenomenon, without any phenomenological
length-dependent tuning of the parameters, as done in most of the exist-
ing models [NHS06; Was+12; Was+13; Was+15]. Hence, we highlight the
fundamental ingredients contained in the SE-ODE by which it is able of
producing the observed length-dependent activation, thus formulating a
possible explanation for such phenomenon.

• In order to build an accurate but computationally efficient cardiac electrome-
chanical model, we address the topic of model order reduction (MOR).
Indeed, when a model of force generation is used in a multiscale setting (such
as to perform organ-scale numerical simulations), the microscale model must be
solved multiple times. For instance, when a Finite Element discretization is em-
ployed, it must be solved at least in any nodal point of the computational mesh.
Since capturing the complexity of realistic heart models requires as many as
105 − 106 mesh elements [Ger18; Qua+17], the computational cost of force gen-
eration models may dramatically become an issue, both because of computing
time and memory storage. Therefore, despite the models proposed in this the-
sis feature a significantly lower computational complexity compared with other
existing models, a further reduction is desirable.

◦ Motivated by the above considerations, we propose a novel data-driven
MOR technique, based on Machine Learning, whose applicability overlooks
the specific application for which it has been developed (i.e. the reduction
of force generation models). Indeed, our method can be applied, in general,
to dynamical systems arising from time-dependent ODEs or PDEs. Our
approach, unlike model-based methods, is non-intrusive, as it just requires a
collection of input-output pairs generated by the high-fidelity (HF) model,
from which an Artificial Neural Network (ANN) learns the dynamics of
the model. The proposed method, moreover, thanks to its non-intrusive

6



Introduction

nature, can also be applied to the case when the input-output pairs come
directly from measurements rather than from a mathematical model (in
other terms, it can be employed, besides for model reduction purposes, for
model learning purposes).

◦ The above mentioned fully black-box MOR method can be easily extended
by feeding the learning process with information coming from the HF
model, moving thus towards a gray-box (or semiphysical) approach. We
apply such gray-box Machine Learning MOR technique to reduce our pro-
posed activation-MH, SE-ODE and MF-ODE models. In this manner, we
derive three reduced models, able of reproducing the results of the corre-
sponding HF models with an error of the order of 1% with just two or
three internal variables, thus dramatically reducing the computational cost
associated with their numerical approximation.

• As the ultimate goal of this thesis consists in the construction of an integrated
electromechanical model, we propose a multiscale formulation linking the
microscopic force generation models with the macroscopic description of the
tissue. We focus on the left ventricle, undoubtedly the most studied of the four
cardiac chambers, because it is responsible for the systemic circulation and it
features the largest stresses and strains. In this respect, we achieve the following
objectives.

◦ In order to couple the mechanical activation models originally proposed
in this thesis with existing models of cardiac mechanics and electrophys-
iology, we derive relationships linking variables pertaining the microscale
force generation phenomenon with the macroscopic strains and stresses of
the cardiac tissue. We also show that, in the range of lengths featured
by sarcomeres during the cardiac activity, the stochastic variables describ-
ing the force generated at the microscale can be replaced, when upscaling
from the microscopic to the macroscopic level, by their expected value.
This drastically simplifies the multiscale mathematical formulation of the
electromechanical system.

◦ We show that the active part of the Piola stress tensor obtained by up-
scaling our models is physically meaningful. Specifically, we show that it is
compliant with the principle of frame-indifference and, during the normal
activity of the heart, satisfies the order-preserving property between strain
and stress [Ant95; Ogd97].

◦ We derive an integrated EM model, where mechanical activation is de-
scribed by the microscale models proposed in this thesis. In this regard,
we propose a novel formulation for the boundary condition to be applied
on the ventricle base for the mechanical subproblem, by accounting for
the effect of the portion of the organ that is not explicitly included in the
computational domain.

◦ Concerning the numerical approximation of the coupled electromechanical
model, we propose a novel scheme to couple the model of microscopic ac-
tivation with the model of tissue mechanics, in order to avoid numerical
instabilities related to the velocity-dependent feedback on the force gener-
ation phenomenon.
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Figure 3: Conceptual map of the three parts of this thesis. Part I deals with the
development of biophysically detailed mathematical models of sarcomere dynamics,
that are considered, in Part II, as HF models to be reduced. With this aim, ANNs
are trained from a collection of simulations, generated by means of the HF models,
and by exploiting some a priori knowledge on the HF models themselves. After that
the ANN-based model have been validated with respect to the HF models, in Part III
we build a multiscale Finite Element model wherein the previously trained ANNs are
placed at each nodal point of the computational mesh, so that they reproduce in an
efficient but reliable way the results of the HF models.

◦ Finally, we propose a electromechanical model, based on Machine Learning,
wherein the force generation at the microscale is accounted for by means
of previously trained ANNs (thanks to the above mentioned method). We
show that, thanks to offline training of the ANN-based reduced model (that
replaces the intrinsically complex activation subproblem) we achieve a very
favorable trade-off between reliability and computational efficiency, relying
on the same time on a biophysically detailed description of the microscopic
force generation phenomenon.

Thesis organization

This thesis is organized along the following chapters, divided in three parts. A con-
ceptual map illustrating the links between the three parts is shown in Fig. 3.

• Part I deals with the mathematical modeling of the subcellular phenomenon
of force generation in the cardiac tissue. The chapters covering the different
aspects of the force generation mechanism are schematically displayed in Fig. 2.

◦ In Chapter 1 we provide an overview of basic muscle anatomy and phys-
iology. In particular, we list the main experimental characterizations of
the behavior of cardiomyocytes, that serve as a basis for the understanding
of the underlying mechanisms and for the development of mathematical
models for their description.
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◦ In Chapter 2 we focus on the first stage of the force generation machin-
ery, namely on the calcium-driven activation of regulatory units. After a
literature review, we present our activation-MH model and we validate its
results.

◦ In Chapter 3 we focus on the second stage of force generation, that is
crossbridge cycling. We analyze the different models available in literature,
and we select the class of models that best reflect the level of detail required
to capture the phenomena of interest in the context of cardiac electrome-
chanics, by analyzing the time scales involved in the different phenomena.

◦ In Chapter 4 we address the mathematical modeling of the whole sarcom-
ere function (that is, considering both of the above mentioned stages). We
derive and compare six models, we propose a strategy for the calibration of
the SE-ODE and the MF-ODE models and, in this manner, we obtain two
models for room-temperature rat and body-temperature human cardiomy-
ocytes. Finally, we validate, both qualitatively and quantitatively, all the
above mentioned models.

• Part II is devoted to MOR and to Machine Learning.

◦ In Chapter 5 we propose our data-driven MOR technique, based on Ma-
chine Learning. We provide a theoretical justification for its application, by
showing that any differential model with Lipschitz continuous right-hand
side can be approximated, within any level of accuracy, by a ANN-based
model as the one built by our method. We give details on the numer-
ical methods used to train the ANNs and we show the results obtained
in different test cases, comprising large-scale ODE systems, parabolic and
hyperbolic PDEs.

◦ In Chapter 6 we introduce the gray-box approach that extends the fully
black-box approach presented in Chap. 5 and we apply it to the reduction
of the activation-MH model (proposed in Chap. 2) and the SE-ODE and
MF-ODE models (proposed in Chap. 4).

• Part III deals with multiscale cardiac electromechanics and its numerical ap-
proximation.

◦ In Chapter 7 we derive the links between the microscale variables of the
force generation models proposed in Part I and the macroscopic quantities
describing the organ-level strain and stresses. Then, we show that the
active part of the Piola stress tensor is compliant with the basic theoretical
requirements for its physical meaningfulness. Finally, we provide theoretical
justifications of the fact that the stochastic microscopical models can be
coupled with the macroscopic deterministic description of the organ-level
mechanics.

◦ In Chapter 8 we present the multiscale electromechanical model and its
numerical approximation. Then, we show some numerical results obtained
with the cardiac contraction models proposed in this thesis and with their
ANN-based reduced versions.

Finally, in Conclusions, we discuss some concluding remarks and perspectives for
future research.
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The results presented in this thesis have been partially published or submitted
for publication (see [RDQ18; RDQ19b; RDQ19c; RDQ19a]) and have been obtained
using the software Matlab [Mat], Python [Pyt] and FEniCS [Aln+15]. Part of the
software developed along with this thesis is publicly available online (see [Reg19]).
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Chapter 1
Anatomy and physiology of the
cardiac muscle tissue

In this chapter, we provide an overview on the anatomy and the physiology of the
cardiac muscle tissue. Afterwards, we illustrate the experimental characterizations re-
vealing the fundamental features of the force generation machinery, a deeper overview
and insight that will serve as starting point for the construction of a mathematical
model. For further information about cardiac anatomy and physiology we refer the
reader to [TD08; JKT07; Kat10; Ber01].
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Chapter 1. Anatomy and physiology of the cardiac muscle tissue

384 Chapter 15 The Cardiovascular System: Heart

5. In correct sequence, which heart chambers, heart valves, and
blood vessels would a drop of blood encounter from the time
it flows out of the right atrium until it reaches the aorta?

BLOOD FLOW AND BLOOD 
SUPPLY OF THE HEART
OBJECTIVES • Explain how blood flows through the
heart.

• Describe the clinical importance of the blood supply
of the heart.

Blood Flow Through the Heart

Blood flows through the heart from areas of higher blood pres-
sure to areas of lower blood pressure. As the walls of the atria
contract, the pressure of the blood within them increases. This
increased blood pressure forces the AV valves open, allowing
atrial blood to flow through the AV valves into the ventricles.

After the atria are finished contracting, the walls of 
the ventricles contract, increasing ventricular blood pressure
and pushing blood through the semilunar valves into the
pulmonary trunk and aorta. At the same time, the shape of
the AV valve cusps causes them to be pushed shut, prevent-
ing backflow of ventricular blood into the atria. Figure 15.5
summarizes the flow of blood through the heart.
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Figure 15.5 Blood flow through the heart.
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(b) Diagram of blood flow.

Figure 1.1: The blood flow through the heart and the body. Image taken from [TD08].

1.1 The cardiac function

The heart of mammalians can be seen as a pair of mechanical pumps (the left and
right heart), synchronously operating in series. It is subdivided into four chambers:
the left atrium (LA) and left ventricle (LV), pumping the oxygenated blood from
the pulmonary veins into the systemic circulation, and the right atrium (RA) and the
right ventricle, pumping the deoxygenated from the systemic veins into the pulmonary
circulation (see Fig. 1.1). Each ventricle is endowed with a pair of valves, preventing
respectively the incoming and outcoming blood from flowing backward. In particular,
the LV is separated from the LA by the mitral valve and from the aorta (the large
artery constituting the first tract of the systemic circulation) by the aortic valve,
while the tricuspid and the pulmonary valves separate the RV from the RA and the
pulmonary artery, respectively.

1.1.1 The heart contraction

Each heartbeat is triggered by an electrical signal, originating at the sinoatrial node,
the heart natural pacemaker consisting of a cluster of self-exitable cells and located at
the upper part of the RA. The electrical signal propagates from cell to cell through the
two atria and it reaches to atrioventricular node, located between the atria and the
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1.1. The cardiac function

ventricles. The purpose of the atrioventricular note is acting as a filter between the
atria and the ventricles in order to ensure the correct delay between the contraction of
the former and the latter. This is crucial to guarantee that the ventricle contraction
starts only when the blood has been pumped by the atria into the ventricle them-
selves. The electrical signal travels from the atrioventricular node through a system
of specialized conducting fibers, the so-called Purkinje network, and it reaches the
ventricles wall. Then, similarly to what happens in the atria, it travels from cell to
cell through the so-called gap junctions.

Cardiomyocytes, the cardiac muscle cells, are excitable cells: when they are suf-
ficiently stimulated by the application of an electrical stimulus, the chemo-electric
equilibrium of the cell membrane is broken, thus originating a succession of events
that make the electric potential of the cell raise and then fall. Such phenomenon,
known as action potential, is based on the opening and closing of voltage-gated ion
channels, so that the cell membrane is permeable to different ion species according
to transmembrane potential, the voltage difference between the inner and outer part
of the cell. The resulting fluxes of ions across the cell membrane make the trans-
membrane potential vary and the ionic fluxes have a feedback effect on the voltage
difference itself.

Among the ionic species involved in the action potential dynamics, an important
role is played by calcium ions. Calcium serves as intercellular messenger and con-
stitutes the trigger of the muscle contraction: calcium ions induce a complex chain
of reactions with the final outcome of the generation of active force inside the car-
diomyocytes. Finally, the contractile force generated at the microscale causes the
macroscopic contraction of the heart chambers. We will provide an extensive charac-
terization of cardiomyocytes in Secs. 1.2 and 1.3.

1.1.2 The cardiac cycle

The heart beats about 105 times every day, which adds up to 2.5 billions times in an
average lifetime. Each heartbeat is the result of the synchronized interplay between the
four chambers, that pumps about 5 L per minute throughout the body. The cardiac
cycle can be divided into the following three phases (see Fig. 1.2).

1. Atrial systole. At this stage, the ventricles are partially filled and the mitral
and the tricuspid valves are opened, while the aortic and pulmonary valves are
closed. The sinoatrial node triggers an action potential, with the effect of making
the two atria contract. This forces the last 25% of blood into the ventricles.

2. Ventricular systole. The action potential reaches the atrioventricular node
and, after a brief delay, it propagates through the ventricles, causing their
contraction and the closing of the two atrio-ventricular valves. In a first and
quick isochoric phase of contraction, the ventricular pressures raises, without
any change of volume, as all the valves are closed. When the pressures of the
LV and the RV overpass, respectively, the pressures of the aorta and of the pul-
monary trunk, the aortic and pulmonary valves open and the blood is ejected
from the ventricles. Ejection continues until the ventricles start to relax.

3. Relaxation. At this stage, the aortic and pulmonary valves close and a second
isochoric phase begins, with a quick fall of the ventricular pressure. When the
pressure of ventricles reaches that of atria, the mitral and the tricuspid valves
open, and a slow filling phase begins. During this phase, the four chambers are
in diastole (i.e. in their relaxation stage).
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Figure 1.2: The cardiac cycle. Image adapted from [JKT07].
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(a) Skeletal (400x) (b) Cardiac (600x) (c) Smooth (350x)

Figure 1.3: Longitudinal sections of the three different muscle tissue types. Image
taken from [JKT07].

1.2 The cardiac muscle tissue

Muscles (from latin mus (mouse) + -culus (diminutive suffix), literally “little mouse”,
semantic loan from ancient greek μῦς) are soft tissues serving multiple purposes, in-
cluding producing movement, maintaining posture and displacing substances in the
organism. The main distinguishing feature of muscles is contractility, that is the abil-
ity of producing force in absence of an externally induced stretch, which makes them
active materials. In other terms, unlike in passive elastic materials, in the muscle
tissue stress is not uniquely determined by strain.

There exist three types of muscular tissues – skeletal, cardiac and smooth – which
differ in location, microscopical anatomy and regulatory mechanism (see Fig. 1.3).

Skeletal muscles are attached to bones through tendons. Skeletal muscle tissue is
striated (i.e. alternate dark and light striations can be observed under a microscope).
This is a consequence of the microscopical arrangement of the contractile fibres in
sarcomeres. Cells consists in long cylindrical unbranched fibres, with many nuclei
located in the periphery, which give the tissue a clear directionality. Such fibres are
100 µm to 30cm long per 10 µm to 100 µm wide. The contraction of skeletal muscle is
initiated by the central nervous system, in a voluntary manner.

Cardiac muscles are located in the heart and are organized in sarcomeres, as the
other striated type of muscle tissue (the skeletal one). The fibres, unlike in skeletal
muscles, are branched and have usually a single nucleus, located in the centre. Neigh-
bouring fibres are joined by intercalated disks. Fibres are 50 µm to 100 µm long per
10 µm to 20 µm wide. Cardiac tissue is strongly anisotropic as well, thanks to the high
level of organization of fibres. Cardiac muscles contraction is involuntary.

Smooth muscles can be found in hollow viscera, airways, blood vessels walls or
ciliary body of the eye. Their name is due to the absence of striation. Smooth muscle
cells are elongated ellipsoids, 30 µm to 200 µm long and 3 µm to 8 µm wide, with an
almost random arrangement of contractile fibres, which endow the tissue with a nearly
isotropic contractile tension. They are also subject to an involuntary nervous control.
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(OR-i-kul; auri- 5 ear), so named because of its resemblance to
a dog’s ear. Each auricle slightly increases the capacity of an
atrium so that it can hold a greater volume of blood.

The thickness of the myocardium of the chambers varies
according to the amount of work each chamber has to per-
form. The walls of the atria are thin compared to those of the
ventricles because the atria need only enough cardiac muscle
tissue to deliver blood into the ventricles (Figure 15.3c). The
right ventricle pumps blood only to the lungs (pulmonary
circulation); the left ventricle pumps blood to all other parts
of the body (systemic circulation). The left ventricle must
work harder than the right ventricle to maintain the same
rate of blood flow, so the muscular wall of the left ventricle is
considerably thicker than the wall of the right ventricle to
overcome the greater pressure.

Chambers of the Heart
The heart contains four chambers (Figure 15.3). The two up-
per chambers are the atria ( 5 entry halls or chambers), and
the two lower chambers are the ventricles ( 5 little bellies). Be-
tween the right atrium and left atrium is a thin partition called
the interatrial septum (inter- 5 between; septum 5 a dividing
wall or partition); a prominent feature of this septum is an oval
depression called the fossa ovalis. It is the remnant of the fora-
men ovale, an opening in the fetal heart that directs blood from
the right to left atrium in order to bypass the nonfunctioning
fetal lungs. The foramen ovale normally closes soon after birth.
An interventricular septum separates the right ventricle from
the left ventricle (Figure 15.3c). On the anterior surface of each
atrium is a wrinkled pouchlike structure called an auricle
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1.2.1 Histology of the cardiac walls

The wall of the heart chambers, which is surrounded and protected by a membrane
called pericardium, is composed of three layers (see Fig. 1.4). The epicardium, the
thin and transparent outer layer, is composed of mesothelium and connective tissue.
The myocardium, the middle layer, constitutes the bulk of the heart (95% in volume)
and is responsible for its pumping function. It is composed of both myocytes (the
muscle tissue cells) and connective tissue: vascular smooth muscle, endothelial cells
and fibroblasts, which contribute to the heart’s tensile stiffness. Finally, the endo-
cardium, the inner thin layer, provides a smooth lining for the inner surface of the
heart chambers and covers the heart valves. It is made up of a mesh of collagen and
elastic fibers.

1.2.2 Hierarchical organization of the cardiac muscle tissue

The cardiac muscle tissue comprises several levels of organization, spanning different
spatial scales.

The tissue level. Cardiac muscle fibres form two separate networks – the atrial
and the ventricular ones. The fibres diagonally swirl around the heart in interlacing
bundles.

The fibre level. Cardiac fibres, formerly believed to be a syncytium (i.e. a multin-
ucleated cell, like skeletal fibres), are actually made of separate cells, the myocytes (or
cardiomyocytes, to distinguish from the skeletal myocytes), interconnected by trans-
verse band, orthogonal to the axis of the fibres, called intercalated disks (see Fig. 1.4).
Such disks, consisting in thickenings of the sarcolemma (plasma membrane), provide
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Chapter 1. Anatomy and physiology of the cardiac muscle tissue

strong mechanical linkage within cells through desmosomes and, thanks to gap junc-
tions, they allow the action potential to freely conduct from one cell to the other.
Cardiac tissue behaves thus as a syncytium, despite being made of separate cells.

The cell level. Cardiac muscle cells, the cardiomyocytes, are primarily made of
fibres called myofibrils, responsible of muscle contraction (see Fig. 1.5). Myofibrils are
surrounded by an intracellular membrane system, the sarcoplasmic reticulum, consist-
ing of the sarcotubular network and the subsarcolemmal cisternae, storing the calcium
ions required for muscle contraction. The cytoplasm, called sarcoplasm, contains many
mitochondria in charge of the production of ATP required to fuel the microscopical
generation of force. Transverse tubules – called T tubules – connect the surface with
the inner part of the cell.

The myofibril level. Myofibrils are long cylindrical structures extending for the full
length of muscle cells. When observed under a microscope, they reveal a characteristic
regular striation pattern, whence the name of striated muscle, reflecting the inner high
organization of units. Dark (A-bands) and light (I-bands) stripes are observable with
a regular spacing of nearly 2 µm and inside each light band a narrow dark band,
called Z-line, can be observed. Such Z-lines delimit the sarcomeres, the fundamental
contractile units of the striated muscle tissue. Each myofibril is thus a series array of
sarcomeres connected by the Z-lines.

The sarcomere level. Sarcomeres are cylindrical units, of nearly 2 µm length. Sar-
comeres are composed by a parallel arrangement of smaller structures, called myofil-
aments, aligned in a crystalline fashion.

The myofilament level. Two kinds of myofilaments exist: thin filaments (made
of actin, troponin and tropomyosin) and thick filaments (made of myosin). Myosin
heads, structures protruding from thick filaments, can bind with actin sites and pull
the thin filaments towards the centre of the sarcomere. This causes the sliding between
the two families of filaments and the consequent contraction of the muscle tissue.

1.2.3 Sarcomere structure

Sarcomeres (from ancient greek σάρξ (flesh) + μέρος (component), thus the basic
component of flash) are the fundamental unit of striated (i.e. skeletal and cardiac)
muscle tissue. Their shape is cylindrical, with a diameter of approximately 2µm and
a length ranging between 1.7 and 2.3µm under physiological conditions.

The long-standing hypothesis that muscle contraction was led by folding of elon-
gated protein filaments was challenged by the discovery that the filaments length is
kept constant during contraction and that it is instead the mutual sliding between
two families of filaments (thin and thick filaments) what makes the muscle contract
[Ber01]. The latter theory, known as sliding filaments theory, was discovered indepen-
dently by two research teams: on one hand, the British biologist Hugh Huxley and
biophysicist Jean Hanson, working at MIT; on the other, the British physiologist An-
drew Fielding Huxley (Nobel prize winner in 1963 for his work on the action potential)
and the German physician Rolf Niedergerke, working at the University of Cambridge.
The two teams decided to publish their work in two consecutive articles in the same
issue of Nature [HN54; HH54].
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1.2. The cardiac muscle tissue

(a) Lateral section. (b) Cross section.

Figure 1.6: Electron microphotograph of cardiomyocytes. (a) Lateral section of two
human left ventricular myocytes (above and below). Besides the characteristic stria-
tion and Z-lines (Z), also mitochondria (M), intercalated disc (D) and lipid droplets
(L) are visible. (b) Cross section of a cat right ventricular papillary muscle. Myofila-
ments are cut at different levels: at the level of the A-band (A), I-band (I) or M-band
(M). Mitochondria (Mito) are also visible. Image taken from [Kat10].
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Figure 1.7: Schematic structure of a sarcomere, with the different bands observable
under microscopy. Image taken from [TD08].

Observed under electron microscopy from a lateral view, sarcomeres reveal alter-
nating bands (see Figs. 1.6a and 1.7), after which the name of striated muscle tissue:

• The dark zigzagging lines separating two neighboring sarcomeres are called Z-
discs (from the German Zwischenscheibe, discs in between). Z-discs, made of a
number of cytoskeletal proteins, have the function to link adjacent sarcomeres
to each other and the extracellular matrix and are the anchoring points for
thin filaments. Z-discs are also connected to thick filaments through a huge
cytoskeletal protein named titin.

• Surrounding the Z-discs a light zone can be observed, where only thin filaments
are present. This zone is called I-band, after its properties under a polarizing
microscope of being little birefringent, that is highly isotropic.

• The darker zone following I-bands is called A-band (after its anisotropic manner
of rotating polarized light). The dark color is due to the presence of thick
filaments.

• In between an A-band, a brighter zone called H-zone (from the German heller,
lighter) reveal the region where thick filaments do not overlap thin filaments.

• Located at the centre of H-zones, and thus at the centre of the sarcomere, M-
lines (from the German Mittelscheibe, in the middle) are formed of radial cross-
links connecting adjacent thick filaments, formed by cytoskeletal proteins, in-
cluding myosin-binding protein C.

When observed in cross sections (see Fig. 1.6b), thick filaments are arranged in
a quasi crystalline hexagonal packing, each filament being surrounded by six thin
filaments (see Fig.1.8).

In accordance with the sliding filaments theory, when the muscle tissue contracts
the degree of overlap between the two families of filaments changes. As a conse-
quence, the width of I-bands decreases, as well as that of H-zones. Such mechanism
is illustrated in Fig. 1.9.
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1.2. The cardiac muscle tissue

(a) A-band (b) I-band (c) M-line

Figure 1.8: Schematic cross section of a sarcomere at three different levels of sarcomere
length. In A bands (a), thick filaments are arranged in hexagonally packed arrays and
thin filaments are located at the trigonal points. In I bands (b), where thick filaments
are not present, thin filaments are less ordered. In correspondence of the M line
(c), adjacent thick filaments are connected by myosin binding protein C thin radial
filaments. Image elaborated from [Kat10].
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Figure 1.9: The effect of the sliding filaments on the size of the different bands. Image
taken from [TD08].
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Figure 1.10: Schematic structure of thick and thin filaments. Image taken from
[TD08].

Figure 1.11: Arrangement of myosin heads in a portion of thick filament. Image taken
from [Rec06].

Muscle proteins

Sarcomeres are made of three kinds of proteins:

• Structural proteins (titin, nebulin, α-actinin, myomesin and dystrophin), which
keep the thin and thick filaments in the proper alignment, endow the tissue
with elasticity and extensibility, and link sarcomeres among each other, to the
sarcolemma. The largest structural protein is the gigantic titin (50 times bigger
than an average-sized protein), which spans an half sarcomere, connecting a Z-
disc with an M-line and helping to stabilize the position of the thick filaments.
The part of titin in contact with Z-discs is highly elastic and accounts for much
of the extensibility and elasticity of myofibrils.

• Regulatory proteins (troponin and tropomyosin), which switch the contraction
process on-off in response to a calcium signal.

• Contractile proteins (actin and myosin), responsible of the force-generating pro-
cesses.

Thin filaments

Thin filaments are about 1µm long and 8nm thick (see Fig. 1.10b). The main con-
stituent of thin filaments is the protein actin. Monomeric actin is called G-actin
(globular actin) and has diameter of nearly 5.5nm. Two strands of G-actin monomers,
twisted into two coiled helices, form the so–called F-actin (fibrous actin), which forms
the backbone of thin filaments. The internodal distance is approximatively 37.5nm.

Located in the groove of the two strands and spanning 7 actin monomers, the
protein tropomyosin (Tm) is a rigid coiled-coil structure, with the function of reg-
ulating the contraction process by inhibiting the interactions between myosin heads
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1.2. The cardiac muscle tissue

and actin. In the relaxed configuration, Tm covers the myosin binding sites located
on actin, preventing the formation of the acto-myosin complex by steric hindrance.
During contraction, Tm moves deeper into the groove of actin strands, thus exposing
binding sites.

The troponin (Tn) complexes, distributed with a period of 7 actin monomers along
the thin filaments, comprise three proteins, with the function of translating the calcium
signal into an on-off switch of the contraction process (see Fig. 1.12):

• Troponin C (TnC) is a dumbbell-shaped molecule, containing two calcium-
specific-sites (I and II) and two calcium-magnesium-sites (III and IV). However,
as the concentration of magnesium ions is much higher than calcium in muscle
cells, calcium-magnesium-sites cannot mediate signals linked to small increases
in cytosolic calcium concentration. Moreover, in the cardiac TnC isoform, site
I loses its ability to bind to calcium with high affinity. Therefore, in cardiac
muscles, site II serves as the unique physiological calcium receptor.

• Troponin I (TnI) has the function of inhibiting the acto-myosin interaction.
When the muscle is relaxed, TnI is tightly bound to actin in a conformation
which makes Tm block the myosin binding sites located on actin. During con-
traction, when calcium binds to TnC, this induces an allosteric change in the
thin filament that loosens the bound between TnI and actin.

• Troponin T (TnT) has the function of binding the Tn complex to Tm.

Thick filaments

Thick filaments, about 1.6µm long and 16nm thick, are made of the protein myosin
(see Fig. 1.10a). Myosin is a “golf club-shaped” molecule made of a coiled-coil tail,
providing rigidity to the filament, and two paired heads (S1), capable of binding to
actin thus forming the so–called crossbridges (XBs). Myosin tails are twisted together,
forming the shaft of the thick filaments (a filament is made of nearly 300 myosin II
molecules). Myosin heads protrude from the centre of the thick filaments towards the
surrounding thin filaments as crowns of three heads with a regular spacing of 14.3nm
(see Fig. 1.11). The three heads of the crown are separated by 120◦ and adjacent
crowns are rotated by 40◦ each time, so that in each plane the heads are spaced
43nm. The result is a three stranded helix, with period 43nm [Rec06].

1.2.4 Cardiac tissue contraction dynamics

Calcium ions (Ca2+) have the function of intracellular messengers in muscle contrac-
tion. The signal represented by a raise of intracellular calcium concentration represents
the final stage of the process by which cell depolarization triggers muscle contraction,
known as excitation-contraction coupling. The next step is represented by the calcium-
driven activation of the thin filament, whose outcome is that of switching on the XB
cycle, by which force is generated.

Excitation-contraction coupling

When the muscle is relaxed, the concentration of calcium ions inside the cells is low
(around 0.1µmol). During activation, the action potential propagates inside the sar-
colemma through the T tubules, causing the opening of calcium release channels.
The increase of calcium concentration triggers the so-called calcium-induced calcium
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release, by which the huge amount of calcium ions stored inside the sarcoplasmic retic-
ulum flows inside the cytosol, inducing a tenfold increase of calcium concentration.

The sarcoplasmic reticulum membrane also contains calcium transport pumps,
which consume ATP to move calcium from the sarcoplasm into the sarcoplasmic retic-
ulum. Active pumps constantly work, but during the propagation of the action po-
tential, calcium flows through the calcium release channels towards the sarcoplasm is
much higher than the opposite flux generated by the pumps. In turn, when the action
potential terminates its effect and calcium channels close, the active pumps rapidly
(fraction of second) make the calcium concentration return to its rest level. Moreover,
calsequestrin, a calcium-binding protein located in the sarcoplasmic reticulum, enable
even more calcium ions to be sequestered and stored in the sarcoplasmic reticulum,
where the concentration of calcium ions is four orders of magnitude larger than in the
sarcoplasm of a relaxed tissue.

Calcium-driven thin filament regulation

At low cytosolic calcium concentrations, the calcium-specific-site of TnC is unoccu-
pied. In this configuration, the interaction between TnC and TnI is weak, so that
the bound between TnI and actin is stronger and, consequently, the peripheral po-
sition of the Tn-Tm complex is favoured (see Fig. 1.12, left). Such non-permissive
conformation sterically hinders the binding between myosin heads and actin.

When calcium ions concentration increases in the region surrounding the myofil-
aments, calcium binds to site II of TnC. This strengthen the TnC-TnI interaction,
destabilizing in turn the TnI-actin interaction. The configuration of the Tn-Tm com-
plex deeper into the actin groove is thus favoured, and the steric hindrance to the
actin-myosin interaction is removed (see Fig. 1.12, right). When Tm is in such per-
missive configuration, contraction is switched on.

In this way a series of 7 actin molecules are activated by a single Tn-Tm complex.
Moreover, the head to tail overlap of Tm molecules allows for the movement of the
Tn-Tm complex to take place in a cooperative manner, by spreading the signal to
neighbouring Tn-Tm units.

Crossbridge cycle

Myosin is a molecular motor, which translates the chemical energy stored inside ATP
into mechanical energy. This is allowed by XBs, bounds between myosin heads and
actin and the so–called power-stroke, that is a rotation of the attached myosin heads
which pulls the actin filament towards the centre of the sarcomere. After power-stroke,
the myosin head detaches and binds to actin in a different position and the cycle is
repeated. The joint work of several thousands of pulling myosin heads makes the
sarcomere contract.

Such attachment-detachment process takes place along a cyclical path, described
by the so–called Lymn-Taylor cycle [LT71]. The Lymn-Taylor cycle comprises four
steps (Fig. 1.13):

1. ATP hydrolisis. Myosin, in the stage of the cycle that is traditionally con-
sidered as the starting point, is bound to ATP and detached from actin. The
catalytic site of myosin hydrolyses ATP into ADP and a phosphate group (which
remains attached to myosin), transferring to myosin the energy stored in ATP.
The myosin head is still detached from actin, but reoriented and in a higher
energetic state.
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contracted (right) configuration. Adapted from [Kat10].
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2. XB attachment. The energized myosin head binds to actin and the phosphate
group is released.

3. Power stroke. The myosin head rotates towards the centre of the sarcomere
(less energetic state), thus pulling the actin filament in the same direction. ADP
is released from myosin. The force developed by a single power stroke is nearly
0.5–1.0pN, and the head rotation is nearly 5–10nm.

4. XB detachment. At the end of the power stroke, myosin is tightly bound to
actin in a rigor configuration, until an ATP molecule binds to myosin, making
it detach from actin.

The Lymn-Taylor cycle is repeated, with a pace of nearly 5 times per second, as long
as two conditions are satisfied: enough ATP to fuel the process is available; calcium
ions level is high enough to keep Tm in the permissive configuration. When ATP is
depleted, the cycle stops in the phase between step 3 and step 4, where all XBs are
firmly attached (leading, for skeletal muscle, to the rigor state observed in cadavers).
When calcium concentration returns to its rest concentration, instead, the cycle is
stopped in the phase between step 1 and step 2.

1.3 Experimental characterizations and modeling
issues

The fundamental properties of the muscular force generation machinery have been
assessed by the scientific community by a series of experiments. The different exper-
imental setups (including steady-state conditions, isometric and isotonic responses,
constant shortening regimes, etc.) allow to isolate the phenomena pertaining different
regimes of behavior and different time scales. To build a mathematical model for the
microscopic force generation in the muscle tissue, it is mandatory to address first such
experimental characterizations and to understand the mechanisms at their basis.

In this section we review the main experimental characterizations of the muscle tis-
sue, by providing, when available, the interpretation commonly given to the observed
results. Such experiments will be also used, in the following chapters, to validate,
both at the qualitative and the quantitative level, mathematical models describing
the mechanisms by which the muscle tissue is activated by a calcium signal and it
produces an active force.

1.3.1 Passive muscle properties

Besides their distinguishing active properties, muscle fibers have also a passive behav-
ior, mainly due to titin, but also to other components of the cytoskeleton. The resting
length of sarcomeres (also called slack length) is around 1.9 µm and it is not signifi-
cantly affected by variables such as temperature and species [TK+80; JH95; Pir+07;
TK16; Lan+17]. The passive response around the slack length is approximately sym-
metric, until SL reaches a value of nearly 2.3 µm, where the muscle features a strong
passive response, preventing the sarcomere to elongate further [Ken+86; Ber01; Kat10;
TK16]. This prevents the muscle to enter a regime of behavior where the force-length
relationship is inverted with respect to the range of length where the sarcomere is
designed to work, as we will see in Sec. 1.3.2.
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Figure 1.14: Effect of different frequencies of stimulation in skeletal muscle. Image
taken from [JKT07].

When experimental measurements of tension are taken from muscle fibers, the
passive force should be previously evaluated and then removed from the measured
force, to get the active force (see e.g. [Ken+86]).

1.3.2 Steady-state conditions

A sarcomere is said to be in steady-state conditions when its geometry (i.e. its length
SL) and its chemical environment (i.e. intracellular ions concentration, in particular
[Ca2+]i) are stationary and the force generation process reaches an equilibrium state.
We notice that such state is in fact a dynamic equilibrium, inasmuch as XBs keep
cycling and calcium binding-unbinding takes place: the microscopic state is not in
equilibrium, but macroscopic observable quantities are in a steady-state. Steady-state
tension (measured as force per unit area), denoted by T iso

a , is thus a function of SL
and [Ca2+]i, but also of temperature (see e.g. [HB89; JSM02]), pH (see e.g. [Ber01])
and other factors.

The main characterization of the state-state condition lies in the steady-state force-
calcium and force-length relationships, obtained by varying [Ca2+]i and SL respec-
tively, while keeping constant all the other factors. The effect of SL on the force-
calcium relationship and, vice versa, of [Ca2+]i on the force-length relationship are
of primary importance since those are the factors periodically changing during the
heart beat and they are linked, as we will se, to the regulation of the heart pumping
strength.

While in skeletal muscle the steady-state represents a physiological condition,
known as tetanus, and it can be easily reproduced in experiments, in the cardiac
muscle tissue tetanic contractions cannot occur. This represents a serious limitation
for the experimental characterization of steady-state condition; however, as we will see
in the next section, this limitation has been overcome by advances in the experimental
setups.
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Tetanic contractions

When striated muscles are stimulated by an action potential (i.e. the electrical activity
of excitable cells), a twitch (i.e. an isolated contraction) occurs (see Fig. 1.14). In the
first moments of the twitch, called latent (or refractory) period, the action potential
is still taking place; this means that another stimulus would not be able to achieve
any effect. In skeletal muscle, however, the latent period is much shorter than the
twitch duration and, if a second stimulus is applied before the end of the twitch, the
recorder force is larger than that of a single twitch. This phenomenon is known as
wave summation, and it is linked to higher calcium levels reached inside the cells. If
the muscle is stimulated with a frequency of nearly 20Hz, a sustained contraction,
known as unfused tetanus, occurs, where the single twitches are still distinguishable.
If skeletal muscle is stimulated with a frequency of order of 100Hz, the muscle does
not relax at all, and a sustained state of contraction is observed (see Fig. 1.14).

In the cardiac tissue, instead, cells contraction is more than 10 times longer than
in skeletal muscles and the rarefactory period lasts longer as well. This means that
another contraction cannot occur before the muscle is fully relaxed. For this reason,
tetanus (i.e. maintained contraction) cannot take place in the cardiac muscle, unlike in
skeletal muscle. Therefore, to characterize the force-calcium relationship, early studies
considered peak force in twitches versus [Ca2+]o, i.e. calcium concentration outside
the cell membrane [Ken+86]. However, it has been shown that the two relationships
are significantly different since calcium waves dynamics is faster than the activation
of the thin filament, which does not reach a steady-state at the time of calcium peak
[Bac+95].

A muscle preparation widely used to experimentally study the cardiac tissue,
named skinning, consists in permeabilizing (by saponin) or removing (by superfus-
ing the muscle in a relaxing solution, typically 1% of Triton X-100 or Lubrol WZ) the
sarcolemma. This allows to precisely control the level of activator [Ca2+] by EGTA
buffers [Ken+86; Bac+95]. Because of the deactivation of the sarcoplasmic reticulum,
which uptakes calcium, tetanic contractions are possible for skinned preparations and
the steady-state can be reached. However, skinning has been reported to alter the
properties of sarcomeres, in particular its calcium sensitivity, as we will see later.

Despite the significant biases introduced by skinning, this preparation has been em-
ployed for the vast majority of experimental data available in the literature [Ken+86;
DKT02; AW94]. More recently, steady-state measurements in intact (i.e. non skinned)
muscles have been obtained thanks to the action of cyclopiazonic acid, which in-
hibits the sarcoplasmic reticulum calcium uptake, without affecting calcium sensitiv-
ity [TKHK00; TK+08]. In this way summation can occur, by stimulating the muscle
with a frequency of 12Hz (first reference) or 4-6Hz (second reference), and tetanus
is elicited. Intracellular calcium concentration [Ca2+]i and sarcomere length SL are
measured through flura-2 fluorescence and laser diffraction respectively.

Force-calcium relationship

The force-calcium relationship in striated muscle is well approximated by the Hill
equation [Ken+86; DKT02; TK+08], originally formulated by A. V. Hill to describe
binding of oxygen to haemoglobin [Hil10]. The Hill equation models the binding of a
ligand to a macromolecule under the hypothesis that the binding affinity changes when
other ligands are already bound to the same macromolecule (cooperative binding). In
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our context, the Hill equation reads as:

T iso
a =

Tmax
a

1 +
(

EC50

[Ca2+]i

)nH , (1.1)

where Tmax
a is the maximum tension (tension at saturating calcium levels), EC50 is

the half maximal effective concentration (i.e. the calcium concentration producing
half maximal force) and nH is the Hill coefficient, a measure of cooperativity (see
Fig. 1.15). An Hill coefficient larger than one means positive cooperativity (i.e. already
bound ligands increase affinity for other ligands); lower than one means negative
cooperativity; equal to one means no cooperativity.

The sigmoidal curve predicted by the Hill equation has been observed in the force-
calcium relationship (see Figs. 1.17, 1.16 and 1.18) either by considering peak force
during a twitch versus [Ca2+]o or by considering steady-state force versus [Ca2+]i and
[Ca2+]o (either in skinned or in intact preparations). In intact preparations, the level of
calcium producing half-maximal tension is of the order of 0.5−1 µmol for intracellular
concentration [Ca2+]i, of the order of 1 mmol for intercellular concentration [Ca2+]o;
in skinned preparations, it is of order 5− 10 µmol [Bac+95; DKT02; TK+08].

In all the cases a Hill coefficient significantly greater than one (range 3-8) has
been recorded, revealing a positive apparent cooperativity. This is of fundamental
importance, since it means that a small increment in calcium concentration leads to
a significant increment of force. Without cooperativity, an increase of force from 10%
to 90% of maximal force would require an 81-fold increase of [Ca2+]i; with an Hill
coefficient of nH = 5, to obtain the same force increment, just a factor 2.4 in calcium
concentration is enough.
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Manipulations of the above relationship reveal a linear relationship in the plane
log(T iso

a /(Tmax
a − T iso

a )) versus logarithmic calcium concentration (known as Hill plot,
see second row of Fig. 1.15), where the slope coincides with the Hill coefficient:

log

(
T iso

a

Tmax
a − T iso

a

)
= nH

(
log [Ca2+]i − log EC50

)
. (1.2)

However, experimental data reveal two distinct segments in the force-calcium relation-
ship, with a larger nH for lower [Ca2+]i (Fig. 1.17). This is referred in the literature
as asymmetry in the force-calcium relationship, which reveals higher apparent coop-
erativity al lower calcium levels [DKT02]. The crossing point of the two segments lies
slightly above the EC50 level and the associated relative force is nearly independent
of SL, corresponding approximately to 60% of maximum force [DKT02].

The force-calcium relationship depends on the stretch of the muscle (i.e. on SL).
This is of primary importance, since it is on this dependence that one of the au-
tonomous regulatory mechanisms of the heart, known af Frank-Startling law, is based
(we will return on this later in this section). In the physiological range of SL (i.e.
1.7–2.3µm), the effect of sarcomere length are summarized below.

• Influence on plateau force (Tmax
a ). The plateau force Tmax

a increases with
SL, as observed in the force-length relationship for saturating calcium concen-
tration (see below). The reason for this phenomenon is discussed later in this
section, together with the force-length relationship.

• Influence on calcium sensitivity (EC50). Stretch enhances calcium sensi-
tivity, that is an increase of SL induces a decrease of EC50, which translates in a
leftward shift of the force-calcium curves [Ken+86; TKHK00; DKT02; TK+08].
In skinned preparations the relationship is approximatively linear, as shown in
Fig. 1.17 [DKT02]. The hypotheses explaining such phenomenon, known as
length-dependent activation (LDA) [RT04; TK+80; FM98; Far+10; Pea+07],
are treated in detail later in this section.

• Influence on apparent cooperativity (nH). It has been debated for long
whether SL has an impact on the apparent cooperativity or not. We remark
an intrinsic difficulty in the estimation of the Hill coefficient when few data are
available (the estimation of nH is much more sensitive to noise than the one of
Tmax

a and EC50). Moreover, experimental curves does not follow exactly the Hill
law (1.1), thus making the estimation of nH strongly dependent on the regres-
sion technique. In [Ken+86] an increase of nH has been reported; however such
study has been carried out at a concentration of Mg2+ much higher than the
physiological one [JG91; DKT02]. Experiments at physiological Mg2+ concen-
trations on skinned rat trabeculae shown that there is not statistical evidence
for a dependence of nH on SL (p-value 0.2, see[DKT02]). Experiments on intact
cells also reported just little dependence of nH on SL [TKHK00; TK+08].

Force-length relationship

As anticipated, the tension developed by muscles depends on their length. The force-
length relationship has been fully characterized and interpreted for skeletal muscle in
[GHJ66] (see Fig. 1.19). Force is generated in an interval of SL, comprised between
nearly 1.25µm and 3.65µm. Inside this range, three main stages (ascending limb,
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(a) Intact: peak force
versus SL for different
[Ca2+]o.

(b) Skinned: steady-
state force versus SL for
different [Ca2+].

(c) Skinned: steady-state force versus
[Ca2+] for different SL.

Figure 1.16: Force-length relationship averaged over six rat trabeculae before and after
skinning. Data are fitted with a polynomial law (Ta = a(SL− SL0)c). The obtained
curves for skinned are replotted for different values of SL in the last image and then
fitted with the Hill equation. Image taken from [Ken+86].

(a) T iso
a versus logarithmic [Ca2+] (b) EC50 versus SL (c) Hill plots showing

asymmetry

Figure 1.17: Steady-state force-calcium relationship at different SL in skinned rat
trabeculae (image from [DKT02]). We remark that in (c) the triangle and circle
bullets are incorrectly indicated and should be switched.
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Chapter 1. Anatomy and physiology of the cardiac muscle tissue

(a) T iso
a versus logarithmic [Ca2+]i (b) T iso

a versus logarithmic [Ca2+]o

Figure 1.18: Steady-state force-calcium relationship at different SL (open symbols:
SL = 1.85 µm; filled symbols: SL = 2.15 µm) in intact rat trabeculae. Left: T iso

a

versus [Ca2+]i; Right: T iso
a versus [Ca2+]o. Image taken from [TKHK00].

plateau, descending limb) can be identified. A classical interpretation – well accepted
for the plateau and the descending limb, less satisfactory for the ascending limb – of
the three regimes is purely geometric and it is based on the mutual overlap between
filaments.

• Plateau (2.0-2.25µm). In this range, the region of thick filaments containing
force generating myosin that overlaps the corresponding thin filament is maxi-
mal (optimal overlapping). The generated tension is constant and equal to its
maximal value.

• Descending limb (2.25-3.65µm). By increasing SL, the overlap between thick
and thin filaments decreases in the centre of the sarcomere, until it reaches a
condition of zero overlap. In this range, force decreases linearly. The very good
agreement of the experimentally measured extrema of this interval with the
length values where overlap starts to decrease and reaches zero (respectively),
strongly suggests that a fixed amount of force is generated for each XB that can
be formed in the overlap region, in agreement with the sliding filaments theory.

• Ascending limb (1.25-2.0µm). In this range, force increase monotonically, with
a steeper slope in the range 1.25-1.65µm. The interpretation of this regime is
less clear, and still today a full understanding has not been reached (see e.g.
[Ric+08]). Force starts first to decrease nearly 2.0µm, that is close to the SL
value for which thin filaments meets in the centre of the sarcomere. A common
interpretation of force decrease is linked to double overlap, that is the condition
when the thick filament faces two thin filaments. At nearly 1.65µm, that is when
thick filaments end meet Z-discs, tension reports a quick drop and it reaches
zero nearly at 1.25µm. This is reasonable, because this could cause resistance
to shortening and crumpling of thick filaments is likely to reduce the number of
recruitable XBs.

The force-length relationship has been first measured for cardiac muscles in [AJM74],
by recording peak forces in isometric twitches of right ventricle papillary muscles of
kittens. The most striking difference between skeletal and cardiac muscles reported by
the authors is a steeper ascending limb, reaching zero nearly at 1.6µm (see [Ber01]).
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Figure 1.19: Scheme of steady-state force-length relationship for skeletal muscle (top).
The arrows along the top denotes the SL values corresponding to stages of overlap
represented below (bottom). The notation for sarcomere geometry is also represented
(middle). Adapted from [GHJ66].

35



Chapter 1. Anatomy and physiology of the cardiac muscle tissue

By repeating the experiment for decreasing values of [Ca2+]o, the ascending limb
showed a more and more convex shape and an increase in the intercept.

The change of convexity in the force-length curves at different calcium concen-
trations has been characterized in [Ken+86] (see Figs. 1.16a and 1.16b), where rat
trabeculae were studied before and after skinning. In both the cases, the force-length
curves were convex at low calcium concentrations, they became concave at higher con-
centration, to get linear (in intact preparations), at maximal activating calcium, like
in skeletal. However, unlike skeletal muscle, where the plateau starts approximately
at 2.0µm, in this set of measurements the ascending limb extends up to 2.3µm. Like
in the measurements of [AJM74], the intercept for intact muscles is at nearly 1.5µm
(see Fig.1.16a).

The above mentioned experiments and the observed steeper ascending limb may
lead to the misleading conclusion that the mechanism by which SL affects the gener-
ated force is significantly different in skeletal and cardiac muscles [Ber01; KTKA88;
KN12]. However, force-length curves should be compared at maximal activating cal-
cium concentrations. At lower calcium concentrations, indeed, LDA (that is the lower
calcium sensitivity at lower SL) enhances the decrease of force, making the slope
steeper (see 1.16b). This also explains the convexity of force-length curves. As a
matter of fact, the values of [Ca2+]o employed in [Ken+86] were far from saturating
levels, as later highlighted in [TKHK00] thanks to the use of cyclopiazonic acid (see
Fig. 1.18b). On the other hand, in skinned preparations, where the maximum level
of calcium is sufficiently high, the linear relationship observed in skeletal muscles is
recovered, with a similar slope (the intercept is nearly at 1.2-1.3µm).

The force-length experiments were repeated in [TKHK00] and [TK+08] for intact
cells (tetanized thanks to calcium uptake inhibition by cyclopiazonic acid), confirming
the conclusion that there is no significant difference in the mechanisms dictating max-
imal force at saturating [Ca2+] for skeletal and cardiac muscles (see also [RT04] and
[Ric+08]). For completeness, we report the resulting curves in Fig. 1.20, even if there
is a quantitative mismatch between the text of the article and the figure, probably
due to a mistake in the labels on the horizontal axis (the article text reports a plateau
located between 2.25-2.45µm, a change of slope located at 1.65µm and an intercept
located at 1.25µm).

As mentioned before, the transition between the ascending limb and the plateau
in cardiac muscle appears at larger SL than in skeletal muscle (nearly 2.3µm instead
of 2.0µm). This is probably due to slightly different sizes of myofilaments in cardiac
with respect to skeletal muscles [RT04]. We also notice that a larger variability in
thin filament sizes has been observed in cardiac muscle [RW77].

Thanks to very stiff parallel passive elasticity, cardiac muscle is never stretched over
2.3µm (see e.g. [Ber01; Kat10]). The physiological working range of cardiac tissue
is approximately 1.7-2.3µm, which lays in the ascending limb. This is considered,
together with LDA, as the microscopical source of the Frank-Starling law, by which
increased end diastolic volume (that is sarcomere stretching) leads to increased systolic
contraction (that is microscopically developed force), see e.g. [Kat10]. Preventing
the tissue from reaching the descending limbs is undoubtedly advantageous since a
progressive decrease of force would lead to heart failure [Ber01]. We notice that in
cardiac muscle, force-length relationship is of greater importance than for skeletal,
which tends to work in the optimal overlap region.
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Figure 1.20: Steady-state force-length relationship at different [Ca2+]i in intact rat
trabeculae. Image taken from [TK+08].

Sources of cooperativity

A prominent feature of the cardiac tissue is the anomalously high (with respect to
the skeletal muscle) sensitivity of the developed force to calcium concentration. The
steeply nonlinear response to activator calcium ions can be explained by the cooper-
ative interactions inside sarcomeres, even if the exact cooperativity mechanism has
been debated for long (see e.g. [RWH99; RT04; Dup+16]).

The theories proposed in the literature can be collected into three groups. The
first hypothesis (RU-RU) is that the transition of a Tm unit to the permissive state
facilitates the same transition for neighboring RUs by means of end-to-end interactions
[Bra+87; GRH01]. In such a manner, when the number of permissive RUs reaches
a critical threshold, the activation spreads along the filament and a little increase
of calcium leads to a steep increase of activation. The theories belonging to the
second group (XB-XB) state that attached XBs increase the rate of formation of
nearby XBs [FPM01]. An hypothesis is that formed XBs hold the RUs in a permissive
configuration, thus facilitating the formation of nearby XBs. This could be either
a secondary effect of RU-RU cooperative interactions, or caused by more that one
XB forming under the same RU [CL01]. Finally, the XB-RU hypothesis is that the
attachment of a XB increases the affinity of TnC to calcium ions [SM92].

More recent studies showed that XB-induced thin filament activation occurs just
in rigor conditions (the motivation by which this phenomenon had been previously
observed), but it does not occur in physiological conditions. Hence, the phenomenon
of regulation of calcium sensitivity must be intrinsic to the thin filament [SLI09].
Moreover, in [Far+10], skinned rat trabeculae treated with blebbistatin to inhibit XB
attachment showed virtually no effect on EC50 and Hill coefficient. In conclusion, the
source of cooperativity should be found in RU-RU interactions, in particular in the
end-to-end interaction of Tm [SV17]. Indeed, the removal of the overlap of Tm among
adjacent RUs reduced the apparent cooperativity of activation [HSLV89; PGL89].

Length-dependent activation (LDA)

LDA is the phenomenon by which, when SL increases, the apparent calcium sensi-
tivity of thin filaments increases as well. As mentioned before, this is of fundamental
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importance, due to its link with the Frank-Starling mechanism. Several explanations
for the LDA have been proposed in the past, but most of them have been later rejected
and a definitive explanation is still lacking [TK16; NCC19].

The hypothesis that the increase of sensitivity to [Ca2+]o was linked to a higher
[Ca2+]i at higher SL [Ken+86], was rejected by the finding that stretch does not affect
peak [Ca2+]i [AK82]. Increases in the amount of the released calcium can be observed
only after several minutes of stretching, while the observed LDA instantaneously takes
place when SL varies [MH06]. Thus, the thin filament must feature a higher sensitivity
to [Ca2+]i at larger SL.

The remaining putative reasons are a feedback from either SL or force [Ken+86].
Earlier studies were in favour of the presence of force-feedback on calcium sensitivity
[SM92; TKHK00; TK+08], mainly because of experimental evidence of the so-called
XB-RU cooperativity hypothesis (i.e. increase of TnC affinity to [Ca2+] in presence
of attached XBs) [Bra+87; FM98]. However, as we mentioned above, more recent
studies denied the hypothesis of a feedback from XBs to the RUs, proving that the
LDA originates upstream of XB attachment [SLI09; SLI09; SV17].

A further hypothesis is that SL might modulate interfilament spacing, thus re-
ducing the distance between actin and myosin and increasing the binding probability
[TK+08; Pea+07]. Indeed, X-ray diffraction reveals an inverse relationship between
interfilament lattice spacing and SL in both skeletal and cardiac muscles [Irv+00].
However, in a multitude of experimental models, a consistent correlation between
lattice spacing and EC50 sensitivity seems to be absent [AM+16].

At the best of our knowledge, the most recent results suggest that the LDA is linked
to “stretch-induced structural rearrangements in both the thin and thick filaments that
is likely directly mediated by titin strain” [AM+16].

1.3.3 Activation and relaxation kinetics

The heart is an organ finely tuned to work at the right rhythm, which is adapted
according to the needs of the body. The main driving factor of the microscale muscle
contraction, calcium, periodically raises and falls at each heartbeat, and the generated
active tension follows such periodic signal. Thus, besides the steady-state relationships
considered in Sec. 1.3.2, also the kinetics of activation and relaxation (that is to say,
how fast the muscle is activated and relaxes) are crucial to characterize the muscle
functionality.

Indeed, the activation and relaxation transients are not rate-limited by the calcium
release and by the calcium uptake, respectively, as it is evident from the experimen-
tally obtained curves in the calcium-force plane (see Fig. 1.21). If the force generation
machinery was much faster than the calcium dynamics, then the curves would follow,
in a quasi-static manner, the steady-state force-calcium curve. Conversely, the exper-
imental curves lie below the curve in the activation phase, then cross the steady-state
curve with horizontal tangent in proximity of the force peak and stay above the curve
during the relaxation phase. In [Bac+95], the authors showed that if the calcium
uptake is slowed down by adding Ca-ATPase inhibitor cyclopiazonic acid (CPA), then
the relaxation phase follows the steady-state curve, while in control conditions the
relaxation kinetics is slower than the calcium one.

The typical experimental setups to quantitatively evaluate the kinetics of force
generation are the following ones.

• Activation after step-wise increase of [Ca2+]i. Thanks to the light-induced re-
lease of caged [Ca2+] compounds such as nitrophenyl-EGTA and DM-nitrophen,
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Figure 1.21: Phase plot of three different twitches (for three different levels of [Ca2+]o)
from rat intact trabeculae at temperature of 20− 22 ◦C. Image taken from [Bac+95].

the intracellular calcium concentration is suddenly increased. This allows to
study the kinetics of activation and force generation, without any artifact linked
to the kinetics of calcium release that takes place during the physiological be-
havior of the muscle. In this manner, the inverse time constant kact associated
with activation can be estimated [FPM98; Sae+01; Sae+04; PTS05; Pir+07].

• Relaxation after step-wise reduction of [Ca2+]i. Similarly to the above experi-
mental setup, a light-activated caged calcium chelator (such as chelator diazo-2)
almost instantaneously reduces [Ca2+]i to the pre-systolic value and the fiber
consequently relaxes, with rate krel [FPM98; Sae+01; Sae+04; PTS05; Pir+07].

• Tension regeneration after a step in SL. In this experimental setup, a muscle
fiber is kept in isometric conditions until it reaches the tetanic force T iso

a . Then, a
sudden step-change in SL is applied, which is thought to detach all XBs, so that
the force abruptly falls to zero and then recovers the pre-existing level with an
exponential-like recovery. The inverse time constant associated with the tension
redevelopment ktr, unlike kact, is thought to be related only to the XB cycling
phenomenon, and not to the thin filament activation [FHS77; WMM95; TS97;
AW94; PTS05; TS07; Pir+07].

The possible determinants of the activation and relaxation kinetics are (1) the calcium
raise and uptake, (2) the thin filament regulation and (3) the XB formation mech-
anism. While the calcium kinetics has for sure an influence on the force transients,
as we mentioned before, it cannot be its major determinant. However, there is not
common agreement on whether activation and relaxation are rate-limited by the RUs
or the XBs kinetics [NHS06; PTS05]. The hypothesis that the activation kinetics is
determined by XB cycling is supported by the fact that the measurements of kact and
ktr are very similar under the same experimental conditions and by Tn replacements
studies that leave the kinetics unaffected [PTS05]. In [Pir+07] the addition of bepibril
(a drug increasing affinity of TnC to calcium) does not induce any significant change
in the relaxation kinetics, supporting the hypothesis that relaxation is not rate-limited
by calcium binding to TnC. Conversely, in [NHS06] the authors notice that the re-
laxation rate is very similar accross species featuring different myosin isoforms, which
makes unlikely the hypothesis that relaxation is determined by XB kinetics; since the
relaxation rate is slower than the measured calcium binding rate to TnC, the authors
conclude that the main determinant should be the kinetics of Tm.
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(a) Absolute tension (b) Normalized tension

Figure 1.22: Isometric twitches at different SL from intact rat trabeculae at tem-
perature T = 23 − 24 ◦C and with [Ca2+]o = 2.0 mM. Left: absolute traces; Right:
normalized traces. Image taken from [JH95].

The measurements of the activation rates kact and ktr show a positive correlation
between the rapidity of force generation and the amount of active force T iso

a [WMM95;
PTS05; Pir+07]. A similar trend for relaxation is shown in [PTS05].

An experimental characterization of activation and relaxation kinetics closer to
the dynamics that takes place during each heartbeat consists in the force transients
during isometric twitches [Bac+95; JH95; JT97]. A muscle fiber is kept in isometric
conditions and stimulated while the generated active force is measured. The experi-
ment is repeated for different values of [Ca2+]o and SL, with different effects on the
force transient. The same effects can be recorded either with fixed SL and increasing
[Ca2+]o, or by keeping [Ca2+]o constant and increasing SL (see Fig. 1.22 and [JH95;
DBY95]).

• The peak force increases.

• The relaxation time increases.

• The activation time is virtually not affected. This means that the velocity of
force increase is approximately proportional to peak force.

The last two effects become mostly evident from the normalized transient curves (see
Fig. 1.22b)

1.3.4 Force-velocity relationship

One of the earliest experimental characterizations of muscle functionality is the force-
velocity relationship, dating back to Archibald V. Hill, Nobel Prize winner for his work
on the heat production and mechanical work in muscles [Hil38]. In the Hill’s experi-
mental setup, a muscle fiber is stimulated under isometric conditions until it reaches
the tetanic force T iso

a . Then, a negative (or positive) force step is applied. After a
transient phase (which is discussed in Sec. 1.3.5), the fiber reaches a steady-state with
a constant shortening (or lengthening) velocity. The measured force-velocity relation-
ship is a convex curve for positive shortening velocities (see Fig. 1.23), connecting
the so-called stall force, namely the force in isometric conditions, with the maximum
shortening velocity, in correspondence of which the generated tension is zero.
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Figure 3. Isometric contraction (a) and isotonic shortening (b) experiments. (a) Isometric force T0 as function of the sarcomere length linked
to the amount of filament overlap. (b) Force-velocity relation obtained during isotonic shortening. Data in (b) are taken from Ref. [61].

An important feature of the LT cycle, which appears to
be loading independent, is the association of vastly different
timescales to individual biochemical steps, see Fig. 2. For
instance, the power stroke, taking place at ∼1ms time scale, is
the fastest step. It is believed to be independent of ATP activity
which takes place at the orders of magnitude slower time scale,
30-100 ms [67; 73]. The rate limiting step of the whole cycle
is the release of ADP with a characteristic time of ∼100ms,
which matches the rate of tension rise in an isometric tetanus.

1.2. Mechanical response

1.2.1. Isometric force and isotonic shortening velocity.
Typical experimental setup for measuring the mechanical
response of a muscle fibers involves a motor and a force
transducer between which the muscle fiber is mounted. The
fiber is maintained in an appropriate physiological solution
and is electro stimulated. When the distance between the
extremities of the fibers is kept constant (length clamp or hard
device loading), the fully activated (tetanized) fiber generates
an active force called the isometric tension T0 which depends
on the sarcomere length L [77; 78].

The measured “tension-elongation” curve T0(L) , shown
in Fig. 3(a), reflects the degree of filament overlap in each
half sarcomere. At small sarcomere lengths ( L ∼ 1.8 µm),
the isometric tension level increases linearly as the detrimental
overlap (frustration) diminishes. Around L = 2.1 µm, the
tension reaches a plateauTmax, the physiological regime, where
all available myosin cross-bridges have a possibility to bind
actin filament. The descending limb corresponds to regimes
where the optimal filament overlap progressively reduces (see
more about this regime in Section 5).

One of the main experiments addressing the mechanical
behavior of skeletal muscles under applied forces (load clamp
or soft loading device) was conducted by A.V. Hill [79],
who introduced the notion of “force-velocity” relation. First
the muscle fiber was stimulated under isometric conditions
producing a force T0. Then the control device was switched
to the load clamp mode and a load step was applied to the fiber
which shortened (or elongated) in response to the new force
level. After a transient [80] the system reached a steady state
where the shortening velocity could be measured. A different
protocol producing essentially the same result was used in

Ref. [81] where a ramp shortening (or stretch) was applied to
a fiber in length clamp mode and the tension measured at a
particular stage of the time response. Note that in contrast to
the case of passive friction, the active force-velocity relation
for tetanized muscle enters the quadrant where the dissipation
is negative, see Fig. 3(b).

1.2.2. Fast isometric and isotonic transients. The mechani-
cal responses characterized by the tension-elongation relation
and the force-velocity relation are associated with timescales
of the order of 100 µs. To shed light on the processes at the
millisecond time scale, fast load clamp experiments were per-
formed in Refs. [82–84]. Length clamp experiments were first
conducted in Ref. [74], where a single fiber was mounted be-
tween a force transducer and a loudspeaker motor able to de-
liver length steps completed in 100 µs. More specifically, af-
ter the isometric tension was reached, a length step δL (mea-
sured in nanometer per half sarcomere, nm hs−1) was applied to
the fiber, with a feedback from a striation follower device that
allowed to control the step size per sarcomere, see Fig. 4(a).
Such experimental protocols have since become standard in the
field [76; 85–88].

The observed response could be decomposed into 4 phases:
(0 → 1) from 0 to about 100 µs (phase 1). The tension

(respectively sarcomere length) is altered simultaneously with
the length step (respectively force step) and reaches a level
T1 (respectively L1 ) at the end of the step. The values T1
and L1 depend linearly on the loading (see Fig.5, circles), and
characterize the instant elastic response of the fiber. Various T1
and L1 measurements in different conditions allow one to link
the instantaneous elasticity with different structural elements
of the sarcomere, in particular to isolate the elasticity of the
cross bridges from the elasticity of passive structures such as
the myofilaments [89–91].

(1 → 2) from about 100 µs to about 3ms (phase 2). In
length clamp experiments, the tension is quickly recovered up
to a plateau level T2 close but below the original level T0; see
Fig. 4(a) and open squares in Fig. 5. Such quick recovery is
too fast to engage the attachment-detachment processes and
can be explained by the synchronized power stroke involving
the attached heads [74]. For small step amplitudes δL, the
tension T2 is practically equal to the original tension T0, see
the plateau on the T2 vs. elongation relation in Fig. 5. In load
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Figure 4. Fast transients in mechanical experiments on single muscle fibers in length clamp [hard device, (a) and (b)]; and in force clamp [soft
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Figure 5. Tension-elongation relation reflecting the state of the
system at the end of phase 1 (circles) and phase 2 (squares) in both
length clamp (open symbols) and force clamp (filled symbols). Data
are taken from Refs. [80; 85; 87; 93–95].

clamp experiment, the fiber shortens or elongates towards the
level L2, see filled squares in Fig. 5. Note that on Fig. 5, the
measured L2 points overlap with the T2 points except that the
plateau appears to be missing. In load clamp the value of L2

at loads close to T0 has been difficult to measure because of
the presence of oscillations [92]. At larger steps, the tension T2
start to depend linearly on the length step because the power
stroke capacity of the attached heads has been saturated.

(2 → 3 → 4) In force clamp transients after ∼ 3ms the
tension rises slowly from the plateau to its original value T0,
see Fig. 4(a). This phase corresponds to the cyclic attachment
and detachment of the heads see Fig. 2, which starts with
the detachment of the heads that where initially attached in
isometric conditions (phase 3). In load clamp transients phase
4 is clearly identified by a shortening at a constant velocity, see
Fig. 4(c), which, being plotted against the force, reproduces the
Hill’s force-velocity relation, see Fig. 3(b).

First attempts to rationalize the fast stages of these
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Figure 6. Drastically different kinetics in phase 2 of the fast
load recovery in length clamp (circles) and force clamp (squares)
experiments. Data are from Refs. [74; 80; 85–87; 93].

experiments [74] have led to the insight that we deal here
with mechanical snap-springs performing a transition between
two configurations. The role of the external loading reduces
to biasing mechanically one of the two states. The idea of
bistability in the structure of myosin heads has been later fully
supported by crystallographic studies [96–98].

Based on the experimental results shown in Fig. 5 one may
come to a conclusion that the transient responses of muscle
fibers to fast loading in hard (length clamp) and soft (load
clamp) devices are identical. However, a careful analysis
of Fig. 5 shows that the data for the load clamp protocol
are missing in the area adjacent to the state of isometric
contractions (around T0). Moreover, the two protocols are
clearly characterized by different kinetics.

Recall that the rate of fast force recovery can be interpreted
as the inverse of the time scale separating the end of phase
1 and the end of phase 2. The experimental results obtained
in soft and hard device can be compared if we present the
recovery rate as a function of the final elongation of the system.

5

(b)

Figure 1.23: Force-velocity (a) and tension-elongation (b) relationships in the skeletal
muscle. The images are reproduced from [CT18] and collect data coming from different
sources (see [CT18] and references therein.)

(a) Absolute force (b) Normalized force

Figure 1.24: Force-velocity relationship in intact rat trabeculae at 27 ◦C. Different
symbols refer to the following isometric conditions: [Ca2+]o = 1.0 mM and SL =
1.9 µm (filled circles); [Ca2+]o = 1.0 mM and SL = 2.2 µm (open circles and open
squares); [Ca2+]o = 2.5 mM and SL = 2.2 µm (filled squares). Image taken from
[Car+16].
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In Fig. 1.24, we report the force-velocity relationship in intact cardiac cells ob-
tained starting from different values of [Ca2+]o and SL. When the tension is nor-
malized with respect to the isometric values, the curves virtually superimpose. The
maximum shortening velocity for half-sarcomere is independent on the [Ca2+]i and SL
and it is about vmax

hs = 8 µm s−1 (significantly larger than for skeletal muscle). This
observation suggests that the mechanism underlying the force-velocity relationship is
largely independent of the calcium-driven regulation and, therefore, it is linked to the
cycling of XBs [KS09; CT18; Car+16].

1.3.5 Fast isometric and isotonic transients

Fast isometric and isotonic experiments help shedding light on the fastest time scales
involved in the dynamics of force generation in the muscle tissue. The two experimen-
tal setups are briefly described in the following.

• Force clamp (soft device or isotonic transient). It consists in the same setup
employed to obtain the force-velocity relationship. After the isometric force is
reached, a step in tension is applied. After a fast transient, the fiber reaches a
constant velocity.

• Length clamp (hard device or isometric transient). In this case, after that the
steady-state is reached while keeping constant the length of the fibers (typically
in the plateau region of the force-length curve, see Sec. 1.3.2), a step in length
is applied (without exiting the plateau region). The measured force undergoes
a fast transient, before going back to the original level.

In both the cases, the observed transient can be split into 4 different phases (in the
cardiac muscle we have only 3 phases, as the third is absent), associated with different
time scales [KS09; MT10a; MT10b; CT18; Car+16].

• Phase 1 (∼ 200 µs). In a first phase the tension T (respectively, the length
of the fiber L) changes simultaneously with the step in L (respectively, in T ),
until it reaches a level called T1 (respectively, L1). Interestingly, by plotting the
values of T1 and L1 in the T -L plane, the curves obtained with the soft and
hard devices superimpose (Fig. 1.23b) and show a linear relationship between
tension and elongation. This first phase of the transient is indeed linked to
the instantaneous elastic response of XBs. Measurements of the stiffness of this
relationship under rigor conditions (when the number of attached XBs can be
estimated) allow to estimate the stiffness of a single XB [Pia+07].

• Phase 2 (∼ 2− 3 ms). After the instantaneous response, tension (respectively,
length) quickly reaches a second level, denoted by T2 (respectively, L2). Also
in this case, the curves of T2-L2 obtained with the soft and hard devices super-
impose (Fig. 1.23b). For length close to the rest length, the T2 tension is very
similar to the isometric tension T iso

a , but for larger length steps it is approxi-
mately linear in L, with a lower stiffness than the elastic stiffness (related to T1).
The time scale associated with this phase coincides with the time scale of the
power stroke: in this phase, MHs rearrange from the non-equilibrium condition
due to the fast step in length until a new equilibrium is reached. Indeed, for
small length steps, the power stroke is sufficient for the fibers to almost recover
the initial tension level T iso

a .
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1.3. Experimental characterizations and modeling issues

Figure 1.25: T1-L1 and T2-L2 tension-elongation curves from intact rat trabeculae at
temperature 27 ◦C. Image taken from [Car+16].

• Phase 3 and 4 (∼ 500 ms). After the rapid second phase, in length clamp
experiments tension slowly recovers its original level T iso

a (if the step in length
is such that the sarcomeres are still in the plateau region of the force-length
relationship). In force clamp experiments, as described in Sec. 1.3.4, the filament
reaches a steady-state with a constant shortening (or lengthening) velocity. Such
velocity, plotted against the isotonic tension, gives the force-velocity curve. This
final phase is associated with the XBs attachment and detachment, the slower
step of the Lymn-Taylor cycle (see Sec. 1.2.4).

Fast transient experiments have been carried out in [Car+16] for intact cardiac cells
(only with the force clamp setup). The obtained T1-L1 and T2-L2 tension-elongation
curves are reported in Fig. 1.25.

In Fig. 1.24, we report the force-velocity relationship in intact cardiac cells obtained
starting from different values of [Ca2+]o and SL. When the tension is normalized with
respect to the isometric values, the curves virtually superimpose. As for the force-
velocity curve (see Sec. 1.3.4), this fact supports the hypothesis that the phenomena
associated with the fast time scales observed through this experimental setup are
linked to the XB dynamics, and not to the RU dynamics.

1.3.6 The influence of temperature and cellular preparation

As we mentioned before (Sec. 1.3.2), the main variables that drive the muscle func-
tion are the calcium concentration and the tissue elongation (together with its time
derivative), but other variables can affect the force generation mechanism, such as tem-
perature, pH and the concentration of chemical species other than calcium. However,
such variables do not change significantly during the heartbeat and thus are not in-
volved in the regulation machinery of force generation. Nonetheless, the experimental
measurements in laboratories may be carried out under different conditions than the
physiological ones and, thus, an understanding of the effects of such secondary factors
is mandatory in order to interpret the results. In the following we recap the effects of
two of the main variables varying among the experiments, namely temperature and
the cellular treatment.
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Chapter 1. Anatomy and physiology of the cardiac muscle tissue

The effect of temperature

Temperature has a significant impact on muscle tension generation, both in steady-
state and in dynamical conditions. Nonetheless, the vast majority of muscle experi-
ments are carried out, for evident practical reasons, at room temperature.

As far as steady-state relationships are concerned, in [HB89] has been reported, by
increasing the temperature from room (22◦C) to body (36◦C) levels, a 18% increase
of Tmax

a and a 35% decrease of EC50 in skinned rabbit ventricular muscle.
In [JSM02], twitches have been measured at different temperatures in intact rat

cardiac trabeculae. Peak force is just slightly affected between 22.5◦C and 30◦C,
but reports a 66% decrease between 30◦C and 37.5◦C. This is linked to a decrease in
[Ca2+]i peak associated with the temperature raise. In the same range of temperature,
the time of relaxation decreases by 80%.

The effect of skinning

Aiming to support the reader in interpreting experimental data of the literature, we
summarize here the features of skinned preparation compared to intact ones.

• Nearly five-fold decrease of [Ca2+] sensitivity with respect to intact preparations
(more precisely with respect to the sensitivity to [Ca2+]i) [Bac+95; TK+08].

• In [Gao+94] a reduce in Hill coefficient with skinning has been reported. How-
ever, the experiment was performed without a proper control of SL. As a matter
of fact, an uncontrolled shortening of sarcomeres in the inner part of the sam-
ple, due to the compliace of the damaged ends, leads to an underestimation of
the Hill coefficient [DKT02]. A more detailed analysis revealed that the level of
cooperativity in skinned myocardium is comparable to intact one [DKT02].

• Swelling of the myofilament lattice in skinned preparations [RT04].

• Increase of passive compliance [Ken+86].

• Saturating force is not affected [Bac+95; Gao+94; Ken+86].
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Chapter 2
Modeling the thin filament regulation

Muscle contraction is driven by a chemical signal, consisting in the intracellular con-
centration of calcium ions. The mechanism by which such intracellular messenger
triggers the contraction of the muscle is known as thin filament regulation, or calcium-
driven activation, and it is achieved by conformational changes of the proteins Tn
and Tm, forming the so-called RUs. Each RU acts as an on-off switch for the cycling
of XBs (the microscopical motors of muscles) that are located in the portion of the
myofilament regulated by the RU itself. In this chapter, we review the mathematical
models that have been developed to describe the calcium-driven activation of RUs.
One of the main modeling issues concerning this topic is related to the steep response
of force near the half-activating calcium concentration, that is thought to be linked to
a cooperative activation of RUs (see Sec. 1.3.2).

The need of explicitly representing the physical arrangement of the RUs along the
thin filament (in order to capture such cooperative behavior) makes it hard to derive a
computationally affordable mathematical model that is able of predicting the observed
steep response to calcium. The number of variables required to explicitly represent the
interactions among RUs is indeed exponential in the number of units. In this chapter,
after a presentation of the main classes of models available in literature and of the
different attempts to capture the cooperative phenomena with models featuring a low
number of variables, we propose a model that is capable of accurately reproducing
cooperative activation of RUs, with a number of variables that is linear in the number
of units, thus significantly reducing the computational cost.

Our model, that we denote as activation-MH model (since it is centered on MHs)
is derived from the model proposed in [Was+12] (W12 model) under suitable assump-
tions. In the final part of this chapter, we propose two alternative models (that we
denote as activation-RUa and activation-RUb models), aimed at overcoming a criti-
cality in the definition of the W12 model. Part of the results presented in this chapter
have been published in [RDQ18].
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Figure 2.1: Markov chains describing the dynamics of a RUs in (a) the first of the the
4 models presented in [RWH99] and (b) the R03 model [Ric+03].

2.1 Mathematical models of regulatory units dy-
namics

The first mathematical models of muscle force generations incorporated only the de-
scription of XB dynamics, without including the calcium-driven regulation of the thin
filaments [HS71; KS09; NCC19]. This is a consequence of the fact that the role of
Tn and Tm in the force generation mechanisms has been discovered later than that
of acto-myosin interactions. In this thesis, however, we revert this order to consider
first the calcium-driven regulation and later (in Chapter 3) the XB dynamics, as the
latter is driven by the former.

2.1.1 CTMC description of RUs

The earliest attempts to model the calcium-driven regulation of the muscular contrac-
tile system date back to the 1990s-2000s [LS94; ZPJ94; DBY95; RBC99; RWH99;
SGS03]. Those models rely on the formalism of continuous-time Markov Chains
(CTMC), also known as Markov Jump processes (see e.g. [Nor98]), to model the
transitions between the different configurations assumed by the proteins involved in
the force regulation process.

To illustrate the features of such models, we present here the first of the four models
considered in [RWH99], which is a slightly simplified version of the model proposed in
[LS94]. The model considers a single RU, whose state is determined by two conditions:
first, it can be either in non-permissive (N ) or permissive (P) configuration (the latter
situation is verified when a calcium ion binds to the regulatory unit, as the transition
of Tm is assumed to be instantaneous); additionally, the actin site regulated by the
RU can undergo the formation of a XB. We consider therefore four states: N0 (non-
permissive state with no XB), P0 (permissive state with no XB), N1 (non-permissive
state with a formed XB) and P1 (permissive state with a formed XB).

We consider a stochastic process Rt ∈ S := {N0,P0,N1,P1}, for t > 0, and we
associate a rate to every possible transition within the states. The transition rate
from the state α ∈ S to the state β ∈ S is denoted by kαβ and is defined through the
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Chapter 2. Modeling the thin filament regulation

following relationship:

P
[
Rt+∆t = β|Rt = α

]
= kαβ ∆t+ o (∆t) ,

where P [Z|W ] = P [Z ∩W ]/P [W ] denotes the conditional probability of the event Z
given W (we set by convention P [Z|W ] = 0 is P [W ] = 0) and where o (∆t) denotes
a higher order term in ∆t. The transition rates for the first model of [RWH99] are
represented in Fig. 2.1a. The transition rate from theN to the P state is assumed to be
proportional to the calcium concentration [Ca2+]i. To model the effect of the calcium-
driven regulation on the formation of XBs, the XBs attachment and detachment rates
depend on the state of the RU: in the configuration N , the detachment rate g′ is much
larger than g (associated in turn to the P state), whereas the attachment rate is set
to zero.

In order to derive an equation for the evolution of the probabilities associated with
the possible configurations of the considered RU, we write:

P
[
Rt+∆t = β

]
=
∑
α∈S

P
[
Rt+∆t = β,Rt = α

]
=
∑
α∈S

P
[
Rt+∆t = β|Rt = α

]
P
[
Rt = α

]
=

∑
α∈S,α6=β

P
[
Rt+∆t = β|Rt = α

]
P
[
Rt = α

]

+

1−
∑

α∈S,α6=β

P
[
Rt+∆t = α|Rt = β

]P
[
Rt = β

]
.

By the definition of transition rate, it follows:

P
[
Rt+∆t = β

]
=

∑
α∈S,α 6=β

kαβP
[
Rt = α

]
∆t+

1−
∑

α∈S,α6=β

kβα

P
[
Rt = β

]
∆t+ o (∆t) .

The time derivative of P [Rt = β] is then given by:

d

dt
P
[
Rt = β

]
= lim

∆t→0

P
[
Rt+∆t = β

]
− P [Rt = β]

∆t

=
∑

α∈S,α6=β

kαβP
[
Rt = α

]
−

∑
α∈S,α6=β

kβαP
[
Rt = β

]
.

(2.1)

Equation (2.1), valid for any β ∈ S, can be written as the following system of linear
ODEs:

d

dt
p(t) = A(t) p(t) t ≥ 0, (2.2)

where the state vector is defined as

p(t) = (P
[
Rt = N0

]
,P
[
Rt = P0

]
,P
[
Rt = N1

]
,P
[
Rt = P1

]
)T ,

and the transition matrix A collects the transition rates. Specifically, the transition
matrix of the first model of [RWH99] reads as follows (see Fig. 2.1a):

A(t) =


−kon[Ca2+]i(t) koff g′ 0
kon[Ca2+]i(t) −koff − f 0 g

0 0 −k′on[Ca2+]i(t)− g′ k′off

0 f k′on[Ca2+]i(t) −k′off − g

 ,

48



2.1. Mathematical models of regulatory units dynamics

where the transition matrix depends on time as it depends on the current calcium
concentration [Ca2+]i(t). The transition matrix has by construction zero-sum columns,
which ensures the conservation of probability. Indeed, if the probabilities vector p has
sum one at time t = 0, the property is preserved as time goes by since we have

d

dt
1Tp(t) = 1TA(t)p(t) = 0, ∀ t ≥ 0,

where 1 is the vector containing 1 in each of its entries.
Equation (2.2) is known as the forward Kolmogorov equation (FKE), or master

equation, associated with the CTMC. It is a linear system of ODEs, ruling the time
evolution of the probability associated with each of the elementary state of the Markov
Chain.

The force predicted by the model is given by:

Ta(t) = Tmax
a χso(SL(t))

(
P
[
Rt = N1

]
+ P

[
Rt = P1

])
,

which is proportional to the fraction of RUs in the force generating states (N1 and
P1), to the single-overlap ratio χso(SL), that measures the fraction of RUs recruitable
for tension generation, and a constant Tmax

a , that quantifies the maximal force.

2.1.2 Accounting for cooperative interactions: the mean-field
hypothesis

The model presented in the previous section provides a simple and easy way to de-
scribe the calcium-driven regulation of the muscle tissue. However, the results are
far from being satisfactory when compared with experimental measurements, as the
predicted steady-state force-calcium relationship does not show the observed steep
response near the half-activating calcium concentration, resulting in an Hill coefficient
nH significantly grater than one [RWH99]. The reason is that in this model RUs act
independently of each other. Whereas this hypothesis allows to model a single RU, it
does not account for cooperative interactions within the sarcomere, that are crucial
for its functioning (see Sec. 1.3.2).

In order to account for cooperative mechanisms, different strategies have been pro-
posed [LS94; RWH99; SGS03; Sac04; RBC99]. For instance, the model proposed in
[LS94] considers a description similar to the first model of [RWH99], but the transi-
tion rate koff is defined as a decreasing function of the fraction of units in the force-
generating states (P [Rt = N1] + P [Rt = P1]). This model belongs to the family of
mean-field models, as it considers a single representative unit with the assumption
that the interactions with the remaining units can be well approximated by quantities
that are averaged over the whole population.

In the previously cited models [LS94; RWH99; SGS03; Sac04; RBC99], different
strategies to incorporate the postulated cooperative mechanisms within a mean-field
framework have been proposed. However, despite the many efforts, no model managed
to accurately reproduce the experimentally measured steady-state force-calcium curves
[RT04]. The model of [LS94], for instance, predicts a low apparent cooperativity at
low and high activating calcium concentration and very high cooperativity near EC50.
In the seminal paper [RT04], the authors made the following key observation:

Because the multitude of models have been developed assuming different
cooperative mechanisms and/or parameters, one can postulate that some
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Chapter 2. Modeling the thin filament regulation

fundamental “ingredient” must be missing or alternatively some funda-
mental assumption is wrong. We will argue that the missing ingredient
is explicit spatial consideration of nearest-neighbor cooperativity and the
fundamental wrong assumption is that the spatial cooperativity can be well
represented using a mean-field approach.

Indeed, in the mean-field framework, the state of all units affects the transition rates
of all units (a spatially-detailed description is missing).

2.1.3 Spatially-explicit models

In [Ric+03], the authors proposed a spatially-explicit model (in the following, we will
call it R03 model), consisting in a filament of NA = 26 RUs, each one described by a
4-states CTMC. To account for end-to-end interactions, the transition rates between
the permissive and the non-permissive states were assumed to depend on the state of
nearest-neighbouring RUs. The results of the numerical simulations performed with
this model showed a great improvement, with respect to mean-field models, in the
agreement with experimental observed behaviors, both under steady and dynamic
conditions.

In the R03 model, the 4-states CTMC describing each RU is similar to that of the
first model of [RWH99]. In this case, however, the XB binding state is not tracked,
but instead the state of TnC (bound or unbound to calcium) is explicitly represented.
We have thus the following states: UN (Tn unbound, Tm non-permissive), BN (Tn
bound, Tm non-permissive), UP (Tn unbound, Tm permissive) and BP (Tn bound,
Tm permissive). As in the models of [RWH99], the transition rates within the states
depend on [Ca2+]i. The prominent feature of this model, compared to mean-fields
models, is that the transition rates associated with each unit depend on the nearest-
neighbouring RUs.

More precisely, the model assumes that the end-to-end interactions between adja-
cent units are such that two consecutive units in the same permissivity state (either
N -N or P-P) are energetically more favorable than the case of different state (either
N -P or P-N ). If we denote by ∆E the difference in internal energy between the
former and the latter case, by kB the Boltzmann constant and by T the absolute
temperature, basic thermodynamics entails that the rate of the N → P transition is
exp(2 ∆E

kB T
) larger if the two neighboring units are in P state (this transition would

lead to a gain of 2∆E in energetic terms) than the case when one neighboring unit
is in state N and the other one is in P (this transition would leave unaffected the
number of consecutive units in the same state) and exp(4 ∆E

RT ) times larger than the
case when both neighboring units are in state N (which would lead to a loss of 2∆E).

Therefore, by denoting by Rti ∈ S := {UN ,BN ,UP,BP} the stochastic process
associated with the i-th RU (where i = 1, . . . , NA), we define:

kβ,η|α,δ = lim
∆t→0

1

∆t
P
[
Rt+∆t
i = η | (Ri−1, Ri, Ri+1)t = (α, β, δ)

]
;

then, we set the transition rates between the nonpermissive to the permissive states
as follows:

kUN ,UP|α,δ = γn(α,δ)knp0, kUP,UN|α,δ = γ−n(α,δ)kpn0,

kBN ,BP|α,δ = γn(α,δ)knp1, kBP,BN|α,δ = γ−n(α,δ)kpn1,
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2.1. Mathematical models of regulatory units dynamics

where we define γ := exp(2 ∆E
kB T

) and we denote by n(α, δ) the number of permissive
states among α and δ (we have n = 0, 1, 2). In this manner, the cooperative interac-
tions by which a RU in P state facilitates the adjacent units to switch to the same
state are included in the model. The CTMC representing each RU is represented in
Fig. 2.1b.

As anticipated, thanks to the explicit description of nearest-neighbor interactions
within RUs, this models showed a great improvement in the ability of capturing the
experimental steady-state curves with respect to mean-field models. Moreover, the
spatial description of the filament allows to model the SL-dependence in a more rigor-
ous way than in mean-field models since the overlap of MFs and AFs can be explicitly
incorporated, as done in the model proposed in [Was+12] (that we denote by W12
model), a modification of the R03 model.

The drawback of spatially-explicit models is their overwhelming computational
complexity. Because of the explicit description of the interactions within the units,
when writing the FKE associated with this class of models, the state of all the units
needs to be simultaneously taken into account. Since a model comprising NA units,
each one modeled by a Markov Chain with s states, has sNA total possible states, it
follows that the FKE associated, e.g., to the W12 model is a system of nearly 5 · 1021

ODEs. Hence, if the variables are represented with 8-bytes precision, more than 37
millions of petabytes would be required just to store the state vector in the computer
memory, corresponding to more than 100000 times the storage capacity of the largest
supercomputer in the world (June 2019) [Top]. This clearly hinders the possibility of
numerically solving the FKE associated with such models.

For this reason, numerical simulations of spatially-explicit models are typically
carried out by means of a Monte Carlo (MC) approximation [RT04; HTR06; Was+13;
Was+15]. The MC method consists in generating a number of realizations nMC of
the stochastic process and to approximate its expected value by means of the sam-

ple average. However, the order of convergence of the MC method is n
−1/2
MC , thus

requiring a very large number of samples to reach statistical convergence, with a huge
computational cost, both in terms of time and memory storage.

2.1.4 Phenomenological modeling of cooperative interactions

To avoid an explicit representation of end-to-end interactions, [Ric+08] proposed a
mean-field model whose transition rates were phenomenologically modified to repro-
duce the steeply nonlinear response of the tissue to calcium concentration. This ap-
proach is similar to the one employed in [HMTK98] and in [NHS06], where the rate
of activation is set as a nonlinear function of calcium concentration, such that the
steady state solution coincides with the Hill’s function (see Eq. (1.1)). A similar phe-
nomenological model, based on measurements on human cardiomyocytes, is proposed
in [Lan+17].

2.1.5 Capturing nearest-neighbor interactions by means of sys-
tems of ODEs

To overcome the large computational cost induced by the MC method without re-
nouncing to represent the spatial activity within the sarcomeres (unlike in phenomeno-
logical models), several attempts to capture nearest-neighbor interactions by means
of numerically tractable ODE systems have been done in literature in the past two
decades.
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In [Ric+03], periodic boundary conditions are considered, so that the model for-
mally reduces to a two-spins Ising model, whose analytical solution is known [Cip87].
However, this approach is restricted only to the steady-state.

In [Cam+10], the authors assume periodic boundary conditions for the filament,
so that a large number of states can be identified, being defined but for a translation
of the filament. This reduces by an order of magnitude the number of states; how-
ever, this approach can still be applied to a limited number of units, due to its large
computational cost.

In [Was+12], the authors developed a novel method to derive an approximate ODE
model starting from a modification of the R03 model, comprising NA = 36 CTMCs
with 4 states each. They considered the FKE associated with each one of the NA
units, amounting to a total of 4NA ODEs. Since the units are mutually coupled, at
right-hand side they came across the joint probabilities of consecutive units, which
have to be modelled for model closure. The joint probabilities were approximated by
a function of the probabilities of single units assumed in the past times, ending up with
an integro-differential system with memory. This model requires the determination of a
number of coefficients, which were estimated with a least-squares fitting on the results
of a collection of MC simulations, obtained with different calcium transients. In spite
of the remarkable reduction of complexity, this approach features some drawbacks.
It requires a long off-line phase for the estimation of coefficients, to be repeated any
time the parameters of the underlying MC model are modified. Moreover, since the
coefficients are fitted for very specific calcium transients, they are not guaranteed to
be meaningful under different conditions.

In [LN15], a spatially detailed model incorporating both thin filaments kinetics and
XB dynamics is proposed. The model includes n = 26 RUs, with allowed “unblocked”
and “blocked” states, and m = 69 XBs, with allowed “unbound” and “bound” states.
To reduce the complexity of the model, the authors identified the state of the model
by the number of unblocked RUs and of bound XBs, lowering the number of states
down to (n + 1)(m + 1) in place of the original 2n+m. To compute the free energy
associated with a given state they had to sum over all possible configurations belonging
to that state, for which they combined two reduction techniques. First, they grouped
the 2n thin filament states into 3 010 classes, according to the number and length of
adjacent stretches of unblocked RUs, and they considered a single representative state
for each class. Then, they computed the sum over all XBs configurations by using a
MC approximation by random sampling.

2.2 Proposed model (activation-MH model)

In [RDQ18], we proposed a new model for the calcium-driven regulation of the cardiac
muscle tissue, based on the spatially-explicit W12 model. Under physically motivated
assumptions, the nearest-neighbor interactions within the units are described in our
model by a tractable number (less than 2200) of ODEs. We notice that similar re-
duced models can be derived from other spatially-explicit models. Before showing the
derivation of our model (in Sec. 2.2.2), we present, in Sec. 2.2.1, the W12 model, on
which our model is based.

2.2.1 Description of the full order model: the W12 model

In this section we illustrate the model of sarcomere dynamics that was firstly proposed
in [Ric+03] (R03 model) and later modified in [Was+12] (W12 model) to account for
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the dependence of the dynamics on the elongation of the sarcomere. In order to
avoid possible confusion, we recall that in [Was+12] two different models are actually
proposed. The first one (that we denote as W12 model) is a CTMC model that requires
the MC method for its numerical approximation. The second one is the reduced ODE
model mentioned in Sec. 2.1.5. The model considered in this section is the first of the
two.

We point out that in the W12 model of the calcium-driven regulatory mechanism is
associated with the thick filament, rather than with the thin filament, the latter being
actually responsible for such mechanism [Ber01]. In the original paper [Was+12] this
association is motivated by the fact that the spacing between two consecutive MHs is
similar to the one between two consecutive RUs (about 43 nm and 38 nm respectively,
see e.g. [Ber01; KS09]). Moreover, the model does not encode the description of the
states of both filaments, but just of a single one; therefore, there is no need to track
which unit on the one filament faces which unit on the other. The unique effect of
filaments sliding which directly affects the model is the modification of the overlap
region. Nevertheless, when the filaments mutually slide, the length of the overlap
region is the same either if viewed from one filament or from the other.

The above considerations suggest that the modeling choice made in [Was+12]
should yield just a small modeling error. Nevertheless, this modeling choice is not
formally correct, thus a careful validation of the experimental results is needed. How-
ever, an extensive validation of the original model, because of the large computational
cost of the MC method (more than three days to simulate a single heart beat on a
single core Intel i7-65000U laptop), would be unaffordable. Therefore, by exploiting
the large reduction of computational cost of our reduced model, which allows to re-
duce the computational time by more than 10 000 times, we compare experimental
data with the results of our model by repeating the tests made in [Was+12] and by
exploring additional experimental settings (see Sec.2.3).

In Section 2.4 we propose a modification of the W12 model to better account for
more realistic hypotheses according to which the calcium-driven regulatory mechanism
is associated with the thin filament, instead of the thick one. We will show that,
coherently with the above observations, the results of the model are not significantly
affected by this modification. Therefore, in the following we will keep using the original
W12 model, so that a direct comparison of the results obtained by means of the reduced
model with those reported in the original paper can be carried out.

The sarcomere representation is depicted in Fig. 2.2. The model considers a single
thick filament (MF) and two thin filaments (AFs). Thanks to the symmetry of the
model, we consider just half sarcomere. The current sarcomere length (SL), which
is an input parameter of our model, determines the mutual superimposition between
the AFs and the MF. Along the MF, at each side of the H-zone, NM MHs are placed
at regular intervals. Depending on SL, each MH can face either no AFs, or a single
AF (which is the most favourable condition for XBs to formate), or two AFs. As
anticipated, following [Was+12] we here make a RU coincide with each MH.

As in the R03 model, the state of each RU is determined by the calcium binding
state (U stands for unbound, while B for bound) and XB permissivity (N stands for
non-permissive, P for permissive). The transition rates between the 4 possible states,
whose set will be denoted by S = {UN ,BN ,UP,BP}, are summarized in Fig. 2.3 and
depend on the free calcium concentration (high concentrations favour the transition
U → B), the number of opposite AFs (through the RU index i and the variable SL),
and n ∈ {0, 1, 2}, namely the number of adjacent heads in permissive state. The last
dependence is responsible for the cooperative mechanism: a large value of n favours
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Figure 2.2: Sketch of the sarcomere model described in Sec. 2.2.1. The thick filament
(MF) is represented in red and two thin filaments (AF) are represented in blue (mid).
A reference system is placed with the origin at the right-hand side of the H-zone (HZ).
The functions χLA and χRA, indicating respectively the region at the right of the left
AF, and the region covered by the right AF, are represented (top). The length of the
H-zone (LH), of the thick filament (LM ), of a thin filament (LA), and of the sarcomere
(SL) are also depicted (bottom).

the transition N → P and hinders the opposite transition. The RUs located at the end
of the filament, that have only one neighboring unit, behave as the missing neighbor
is in state N .

Henceforth, we will denote by n(ξ, η) the number of permissive states among ξ ∈ S
and η ∈ S. The transition rate of the i-th RU from a generic state β ∈ S to the state
α ∈ S \ {β}, knowing that the two adjacent heads are in the states ξ ∈ S and η ∈ S
respectively, is denoted by:

k
βα|ξη
i ([Ca2+]i, SL). (2.3)

To avoid possible confusion to the reader, we recall that, while the subscript i of
ki refers to the unit index, the subscript i of [Ca2+]i stands for “intracellular”. By
identifying the states UN , BN , BP, UP with the indexes 1,2,3 and 4, respectively,
the transition rates, illustrated in Fig. 2.3, are given by:

k
βα|ξη
i ([Ca2+]i, SL) = Aαβ([Ca2+]i, SL, i, n(ξ, η)),

for 1 ≤ α, β ≤ 4 and α 6= β, where the matrix A is defined as:

A
(
[Ca2+]i, SL, i, n

)
=


0 koff 0 γ−nkpn0

kon(SL, i)[Ca2+]i 0 γ−nkpn1 0

0 γnknp1(SL, i) 0 k
′
on(SL, i)[Ca2+]i

γnknp0(SL, i) 0 k′off 0

 .
In the following, we provide formulae for the involved quantities. The values of the
constants are reported in Table 2.1.
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Figure 2.3: The cooperative four states CTMC of the W12 model. The terms depend-
ing on the intracellular calcium concentration [Ca2+]i are highlighted in red; terms
depending on the state of neighbouring RUs (i.e. depending on n) are highlighted in
blue; terms depending on the position of the RU and the current sarcomere elongation
are highlighted in green.

knp0(SL, i) = χLA(SL, i)χRA(SL, i)knp0,

kon(SL, i) = χRA(SL, i)kon,

knp1(SL, i) = χLA(SL, i)χRA(SL, i)knp1,

k
′
on(SL, i) = χRA(SL, i)k′on;

(2.4)

xAZ = (SL− LH)/2, xLA = LA − xAZ − LH ,

xRA = xAZ − LA, xi =
(LM − LH)

2NM
i;

χRA(SL, i) =


exp

(
− (xRA−xi)2

ε2SL

)
xi ≤ xRA

1 xRA < xi < xAZ

exp
(
− (xi−xAZ)2

ε2SL

)
xi ≥ xAZ ,

χLA(SL, i) =

{
exp

(
− (xLA−xi)2

ε2SL

)
xi ≤ xLA

1 xi > xLA,

Q(SL) =

{
Q0 SL ≥ SLQ
Q0 − αQ(SLQ − SL) SL < SLQ;

knp0 = Qkbasic/µ, knp1 = Qkbasic,

kpn0 = kbasicγ
2, kpn1 = kbasicγ

2,

k′on = kon, k′off = koff/µ .
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Parameter Value Units Parameter Value Units

Sarcomere geometry Transition rates permissivity
LA (length of AF) 1.2 µm Q0 3 −
LM (length of MF) 1.65 µm SLQ 2.2 µm
LH (length of H-zone) 0.1 µm αQ 1.4 µm−1

NM (number of MHs) 36 − kbasic 10 s−1

Transition rates Ca binding µ 10 −
kon 80 µM−1 s−1 γ 40 −
koff 80 s−1 SL dependence
k′on 80 µM−1 s−1 εSL 0.1 µm
k′off 8 s−1

Table 2.1: Model parameters; values taken from [Was+12].

Following [Ric+03] we assume that, when the fraction of RUs in permissive state
is equal to one, all XBs can cycle, leading to the maximum amount of generated force
(the normalized force equals one). On the other hand, when none of the RUs is in a
permissive state (i.e. all RUs are in state N ), the active force cannot be generated,
since XBs cannot cycle. For the intermediate levels of permissivity the amount of
generated force is assumed to be proportional to the fraction of permissive heads,
since each cycling XB is assumed to produce a fixed amount of force. Therefore,
denoting by P (t) the permissivity (i.e. fraction of RUs in permissive state) at time t
and by Ta(t) the active force, we have a law of the following type:

Ta(t) = Tmax
a P (t), (2.5)

where Tmax
a is the maximal exerted force.

2.2.2 A reduced ODE model for sarcomere dynamics

The FKE provides a way to compute the exact evolution of the probability of each
of the 4NM states of this model. However, the practical resolution of this equation
is infeasible because of the huge number of degrees of freedom: for NM = 36 units
we have 4NM ' 5 · 1021 degrees of freedom. However, we are not interested in the
joint probability of the states of the NM units, but rather in the expected value of the
number of RUs in permissive states (see Eq. (2.5)). Therefore, instead of studying the
evolution of the probabilities of each elementary event in the state space, we look for
a smaller set of events, still able of providing an expression for the permissivity P (t).
Then, we look for an equation for the evolution of the probabilities associated with
such events.

We consider a collection of stochastic processes Rti ∈ S and we define the following
notation to denote events at a given time in a compact way:

(α,
i

β, δ)t := {Rti−1 = α,Rti = β,Rti+1 = δ} ,

(α,
i

β)t := {Rti−1 = α,Rti = β} ,

(α, β,
i

δ, η)t := {Rti−2 = α,Rti−1 = β,Rti = δ,Rti+1 = η}.
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Since the transition rates of the i-th unit are fully determined by the states of the
triplet centred in i, it is reasonable to assume that the set of all the joint probabilities
of triplets of consecutive RUs provides an effective portrait of the state of the whole
system. Therefore, we consider events of the kind:

(α,
i

β, δ)t with i = 2, . . . , NM − 1 and α, β, δ ∈ S. (2.6)

We notice that this set of events allows to compute the permissivity (i.e. the fraction
of RUs in permissive state) as follows:

P (t) =
1

NM

NM∑
i=1

P
(
Rti ∈ {UP,BP}

)
=

1

NM

∑
α,δ∈S

β∈{UP,BP}

[
P((β,

2
α, δ)t) +

NM−1∑
i=2

P((α,
i

β, δ)t) + P((α,
NM−1

δ , β)t)

]
.

(2.7)

The time evolution of the probability of such events is given, thanks to the Bayes
formula [Nor98], by the following relation, holding for all i = 2, . . . , NM − 1:

P((α,
i

β, δ)t+∆t) = P((α,
i

β, δ)t+∆t|(α,
i

β, δ)t)P((α,
i

β, δ)t)

+
∑

η∈S\{α}

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)P((η,
i

β, δ)t)

+
∑

η∈S\{β}

P((α,
i

β, δ)t+∆t|(α, iη, δ)t)P((α,
i
η, δ)t)

+
∑

η∈S\{δ}

P((α,
i

β, δ)t+∆t|(α,
i

β, η)t)P((α,
i

β, η)t) + o (∆t) .

(2.8)

In the following, we show how the conditional probabilities in Eq. (2.8) can be eval-
uated. The probability of transition of the central RU of the triplet is given, by
definition of transition rate, by the following formula, where i = 2, . . . , NM − 1 and
η 6= β:

P((α,
i

β, δ)t+∆t|(α, iη, δ)t) = k
ηβ|αδ
i ∆t+ o (∆t) .

On the other hand, the probability of transition of the outer RUs of the triplet cannot
be computed as a function of probabilities of events in the form of (2.6). However,
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this can be approximated as follows (i = 3, . . . , NM − 1 and η 6= α):

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)

=
P((α,

i

β, δ)t+∆t ∩ (η,
i

β, δ)t)

P((η,
i

β, δ)t)

=

∑
ξ∈S P((ξ, α,

i

β, δ)t+∆t ∩ (ξ, η,
i

β, δ)t)

P((η,
i

β, δ)t)

+ o (∆t)

=

∑
ξ∈S P((ξ, α,

i

β, δ)t+∆t|(ξ, η,
i

β, δ)t)P((ξ, η,
i

β, δ)t)

P((η,
i

β, δ)t)

+ o (∆t)

=
∑
ξ∈S

P((ξ, α,
i

β)t+∆t|(ξ, η,
i

β)t)P((
i+1

δ )t|(ξ, η,
i

β)t)
P((ξ, η,

i

β)t)

P((η,
i

β, δ)t)

+ o (∆t) .

At this stage, we make the following assumption:

P((
i

δ)t|(ξ, η,
i−1

β )t) ' P((
i

δ)t|(η,
i−1

β )t) . (2.9)

This is equivalent to assume that the knowledge of the (i− 3)-th RU does not provide
any additional information about the probability distribution of the i-th head beyond
the knowledge of the state of the (i − 1)-th and the (i − 2)-th head. We will return
again to this concept later in Sec. 2.2.5.

Using assumption (2.9), the calculation leads to the following result:

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t)

'
∑
ξ∈S

P((ξ, α,
i

β)t+∆t|(ξ, η,
i

β)t)P((
i+1

δ )t|(η,
i

β)t)
P((ξ, η,

i

β)t)

P((η,
i

β, δ)t)

+ o (∆t)

=

∑
ξ∈S P((ξ, α,

i

β)t+∆t|(ξ, η,
i

β)t)P((ξ, η,
i

β)t)

P((η,
i

β)t)

+ o (∆t)

=

∑
ξ∈S k

ηα|ξβ
i−1 P((ξ,

i−1
η , β)t)∑

ξ∈S P((ξ,
i−1
η , β)t)

∆t+ o (∆t) .
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Remark 2.1. The same result can be equivalently obtained by proceeding as follows:

P((α,
i

β, δ)t+∆t|(η,
i

β, δ)t) = P((α,
i

β)t+∆t|(η,
i

β, δ)t) + o (∆t)

' P((α,
i

β)t+∆t|(η,
i

β)t) + o (∆t)

=
P((α,

i

β)t+∆t ∩ (η,
i

β)t)

P((η,
i

β)t)

+ o (∆t)

=

∑
ξ∈S P((ξ, α,

i

β)t+∆t ∩ (ξ, η,
i

β)t)∑
ξ∈S P((ξ, η,

i

β)t)

+ o (∆t)

=

∑
ξ∈S P((ξ,

i−1
α , β)t+∆t|(ξ, i−1

η , β)t)P((ξ,
i−1
η , β)t)∑

ξ∈S P((ξ,
i−1
η , β)t)

+ o (∆t) .

Here we made the approximation that the transition rate of the (i− 1)-th head does
not depend on the state of the (i+ 1)-th one. Nonetheless, we are neglecting the fact
that the knowledge of the (i+ 1)-th head may provide information about the state of
the (i − 2)-th head, and in turn on the transition rate of the (i − 1)-th head. This
approximation is coherent with assumption (2.9).

With similar arguments, the following formula for the transition probability of the
right RU of the triplet is recovered for i = 2, . . . , NM − 2 and η 6= δ:

P((α,
i

β, δ)t+∆t|(α,
i

β, η)t) '
∑
ξ∈S k

ηδ|βξ
i+1 P((β,

i+1
η , ξ)t)∑

ξ∈S P((β,
i+1
η , ξ)t)

∆t+ o (∆t) .

The probabilities of transition of the outer RUs of the first and last triplets, on the
other hand, are exactly determined as:

P((
1
α, β, δ)t+∆t|(1

η, β, δ)t) = ∆t k
ηα|(UN )β
1 + o (∆t) ,

P((α, β,
NM
δ )t+∆t|(α, β,NMη )t) = ∆t k

ηδ|β(UN )
NM

+ o (∆t) .

Finally, we calculate the probability that a triplet does not change state in the time
interval (t, t+ ∆t). We have for i = 2, . . . , NM − 1:

P((α,
i

β, δ)t+∆t|(α,
i

β, δ)t) = 1−
∑

η∈S\{α}

P((η,
i

β, δ)t+∆t|(α,
i

β, δ)t)

−
∑

η∈S\{β}

P((α,
i
η, δ)t+∆t|(α,

i

β, δ)t)

−
∑

η∈S\{δ}

P((α,
i

β, η)t+∆t|(α,
i

β, δ)t) + o (∆t) ,

where each term have been previously calculated.
To sum up, by dividing Eq. (2.8) by ∆t and taking the limit ∆t → 0, we obtain

the following nonlinear system of ODEs, for i = 2, . . . , NM − 1 (notice that i = 1 and
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i = NM are not comprised since no triplet is centred in the outer RUs):

d

dt
P((α,

i

β, δ)t) =
∑

η∈S\{α}

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
+

∑
η∈S\{β}

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
+

∑
η∈S\{δ}

[
ΦiR(α, β, η; δ; t)− ΦiR(α, β, δ; η; t)

]
,

(2.10)

endowed with initial conditions, where we defined the following probability fluxes, for
i = 2, . . . , NM − 1:

ΦiC(α, β, δ; η; t) = k
βη|αδ
i P((α,

i

β, δ)t) ;

ΦiL(α, β, δ; η; t) =


∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i

β, δ)t)∑
ξ∈S P((ξ,

i−1
α , β)t)

for i = 3, . . . , NM − 1,

k
αη|(UN )β
1 P((α,

i

β, δ)t) for i = 2;

ΦiR(α, β, δ; η; t) =


∑
ξ∈S k

δη|βξ
i+1 P((β,

i+1

δ , ξ)t)P((α,
i

β, δ)t)∑
ξ∈S P((β,

i+1

δ , ξ)t)

for i = 2, . . . , NM − 2,

k
δη|β(UN )
NM

P((α,
i

β, δ)t) for i = NM − 1.

(2.11)

When the rates in the definitions of ΦL and ΦR turn out to be 0
0 , these are set by

convention equal to 0, coherently with the definition of conditional probability. We
notice that Eq. (2.10), henceforth referred to as reduced ODE model (or activation-
MH model, to distinguish it from the alternative formulations that we will present in
Sec. 2.4), is a system of nonlinear ODEs, while the FKE is a system of linear ODEs.
The pay-off is that the size of the system is dramatically reduced, as we switch from
the 4NM ' 5 · 1021 dofs of the full FKE to the N = (NM − 2) · 43 = 2176 dofs of the
reduced model (2.10).

We notice that, thanks to the fact that, for any i = 2, . . . , NM and for any α, β ∈ S
we have: ∑

ξ∈S

P((ξ,
i−1
α , β)t) =

∑
ξ∈S

P((α,
i

β, ξ)t), (2.12)

Eq. (2.10) can be equivalently rewritten as:

d

dt
P((α,

i

β, δ)t) =
∑

η∈S\{α}

[
Φ̃iL(η, β, δ;α; t)− Φ̃iL(α, β, δ; η; t)

]
+

∑
η∈S\{β}

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
+

∑
η∈S\{δ}

[
Φ̃iR(α, β, η; δ; t)− Φ̃iR(α, β, δ; η; t)

]
,

(2.13)
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where

Φ̃iL(α, β, δ; η; t) =


∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i

β, δ)t)∑
ξ∈S P((α,

i

β, ξ)t)

for i = 3, . . . , NM − 1,

k
αη|(UN )β
1 P((α,

i

β, δ)t) for i = 2;

Φ̃iR(α, β, δ; η; t) =


∑
ξ∈S k

δη|βξ
i+1 P((β,

i+1

δ , ξ)t)P((α,
i

β, δ)t)∑
ξ∈S P((ξ,

i

β, δ)t)

for i = 2, . . . , NM − 2,

k
δη|β(UN )
NM

P((α,
i

β, δ)t) for i = NM − 1.

(2.14)

2.2.3 Analysis of the continuous model

Both Eqs. (2.10) and (2.13) can be written in the following form:
dz(t)

dt
= Φ(z(t), t) t ∈ [0, T ],

z(0) = z0,
(2.15)

where the state vector z(t) ∈ RN is defined as:

z(t) =

{
P((α,

i

β, δ)t) : i = 2, . . . , NM − 1, α, β, δ ∈ S
}
. (2.16)

We notice that the right-hand side of Eq. (2.15) depends on time since the transition
rates are function of the two time-dependent inputs [Ca2+]i(t) and SL(t).

The elements of the state vector z(t) represent probabilities and, thus, they are
physically meaningful only if z(t) ∈ [0, 1]N . Moreover, the events associated to the
different elements of the vector z(t) are mutually related. Therefore, in order for z(t)
to be consistent, the two conditions defined in the following (Defs. 2.1 and 2.2) should
hold.

Definition 2.1. We say that the collection of probabilities z(t), defined in Eq. (2.16),
satisfies the conservation of probability if, for all = 2, . . . , NM − 1 it holds true:∑

α,β,δ∈S

P((α,
i

β, δ)t) = 1. (2.17)

Thanks to the linearity of Eq. (2.17), we introduce a matrix U and a vector b such
that z satifies the conservation of probabilities if and only if:

Uz = b. (2.18)

Definition 2.2. We say that the collection of probabilities z(t), defined in Eq. (2.16),
is self-consistent if it fulfils the following conditions:

(a)
∑
β,δ∈S

P((α,
i

β, δ)t) =
∑
ξ,β∈S

P((ξ,
i−1
α , β)t) for all i = 3, . . . , NM − 1, α ∈ S
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(b)
∑
α,β∈S

P((α,
i

β, δ)t) =
∑
β,ξ∈S

P((β,
i+1

δ , ξ)t) for all i = 2, . . . , NM − 2, δ ∈ S

(c)
∑
δ∈S

P((α,
i

β, δ)t) =
∑
ξ∈S

P((ξ,
i−1
α , β)t) for all i = 3, . . . , NM − 1, α, β ∈ S

Thanks to the linearity of the conditions (a)–(c), we introduce a matrix W such that
z is self consistent if and only if:

z ∈ Ker(W). (2.19)

Conditions (a)–(b) state that the marginal probabilities of single MHs, when com-
puted in different ways by means of the joint probabilities of triplets, should lead to
the same result. On the other hand, condition (c) states the same property about
the joint probability of pairs of consecutive MHs. Therefore, we expect that, provided
that the conservation of probability and self-consistency are satisfied at the initial
time, those properties are maintained by the solution as time goes by.

In order to prove such property, we provide the following results (Props. 2.1 and
2.1), whose proof is reported in App. A.

Proposition 2.1. The right-hand side Φ : RN ×R→ RN defined in Eq. (2.10) satis-
fies, for any t ≥ 0:

Φ(z, t) ∈ Ker(U) ∀ z ∈ RN ,
Φ(z, t) ∈ Ker(W) ∀ z ∈ Ker(W).

Proposition 2.2. The right-hand side Φ : RN ×R→ RN defined in Eq. (2.13) satis-
fies, for any t ≥ 0:

Φ(z, t) ∈ Ker(U) ∀ z ∈ RN ,
Φ(z, t) ∈ Ker(W) ∀ z ∈ RN .

Moreover, the right-hand sides of both Eqs. (2.10) and (2.13) satisfy the following
regularity property, on a set where the state z(t) is physically meaningful (we report
its proof in App. A).

Proposition 2.3. In the inputs [Ca2+]i(t) and SL(t) are uniformly bounded in [0, T ],
then the right-hand sides Φ : RN × R → RN defined in Eqs. (2.10) and (2.13) are
Lipschitz continuous is their first argument, uniformly in t, on the set z ∈ Ker(W) ∩
[0,+∞)N . That is, there exists a constant L > 0 such that:

|Φ(z1, t)−Φ(z2, t)| ≤ L |z1 − z2| ∀ z1, z1 ∈ Ker(W) ∩ [0,+∞)N , ∀ t ∈ [0, T ].

Finally, thanks to Props. 2.1, 2.2 and 2.3, it is possible to prove the following result,
whose proof is provided in App. A.

Proposition 2.4. Let us consider two functions [Ca2+]i(t) and SL(t), bounded in
[0, T ], and an initial state z0 ∈ Ker(W) ∩ [0, 1]N , satisfying Uz0 = b. Then, there
exists a unique solution to Eqs. (2.10) and (2.13) such that z(t) ∈ Ker(W) ∩ [0, 1]N

for any t ∈ [0, T ]. Moreover, the solutions of Eqs. (2.10) and (2.13) coincide and they
satisfy the conservation of probability (i.e. Uz(t) = b for any t ∈ [0, T ]).
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2.2. Proposed model (activation-MH model)

Therefore, we conclude that if the initial state z0 is physically meaningful (i.e. with
probabilities contained in the interval [0, T ] and satisfying the conservation of prob-
ability and self-consistent), then there exists a unique physically meaningful solution
of the model proposed in Sec. 2.2.2. Moreover, the solutions of Eqs. (2.10) and (2.13)
coincide. Hence, in the following, we will indifferently refer to the two formulations of
Eqs. (2.10) and (2.13).

2.2.4 Numerical approximation

To derive a numerical approximation of the model defined in Eqs. (2.10) and (2.13),
we consider a uniform subdivision 0 = t0 < t1 < · · · < tM = T of the time interval
[0, T ] with time step size ∆t. We denote by z(k) ≈ z(tk) an approximation of the
solution at the k-th time step. Let us consider a generic multistep scheme [QSS10]:

z(k) = zk for k = 0, . . . , p− 1,

z(k) =

p∑
s=1

αsz
(k−s) + ∆t

p∑
s=0

βsΦ(z(k−s), tk−s) for k ≥ pm.
(2.20)

The method is explicit if β0 = 0, implicit otherwise. Clearly, if the method is consistent
(in the sense of [QSS10]), then

∑p
s=1 αs = 1. We notice that the family of numerical

schemes of Eq. (2.20) contains the explicit Euler method (p = 1, β0 = 0, α1 =
β1 = 1), the implicit Euler method (p = 1, β1 = 0, α1 = β0 = 1), BDF (backward
differentiation formulas) schemes and Adams-Bashforth methods [QSS10].

The numerical approximation of the model proposed in Sec. 2.2.2 should satisfy
the following properties, in order to provide physically meaningful solutions.

Definition 2.3. We say that a numerical scheme conserves probability if, in case the
initial states satify the conservation of probabilities (i.e. Uzk = b for k = 0, . . . , p−1),
then:

Uz(k) = b for k ≥ p.
Furthermore, we say that a numerical scheme preserves self-consistency if, in case the
initial states are self-consistent (i.e. zk ∈ Ker(W) for k = 0, . . . , p− 1), then:

z(k) ∈ Ker(W) for k ≥ p.

Even if the two formulations of Eqs. (2.10) and (2.13) are equivalent in the contin-
uous setting (see Prop. 2.4), they could possibly lead to different results when their
numerical approximations are considered. Nonetheless, we notice that, if a method
preserves self-consistency, then the formulations (2.10) and (2.20) are equivalent, as
the right-hand sides defined in the two cases coincide on the set Ker W.

Concerning the conservation of probability, the following result holds.

Proposition 2.5. For both Eqs. (2.10) and (2.13), any consistent method of the family
of Eq. (2.20) (implicit or explicit) conserves probability.

Proof. Let us suppose that, for some r ≥ 0, we have Uz(r+k) = b for any k =
0, . . . , p− 1. Then, by left-multiplying both sides of Eq. (2.20) by U, we get:

Uz(r+p) =

p∑
s=1

αsUz(r+p−s) + ∆t

p∑
s=0

βsUΦ(z(r+p−s), tr+p−s)

=

p∑
s=1

αsb = b.
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Chapter 2. Modeling the thin filament regulation

where we have used the fact that, by Props. 2.1 and 2.2, Φ(z, t) ∈ Ker(U) for any
z ∈ RN and the fact that, since the method is consistent,

∑p
s=1 αs = 1. Then, by

induction, we have that Uz(k) = b for any k ≥ p.

On the other hand, the conservation of self-consistency, for the methods of the
family of Eq. (2.20), depend on the specific choice of the formulation (either Eq. (2.10)
or Eq. (2.13)). Indeed, while the latter preserves self-consistency with both explicit
and implicit methods, the former preserves self-consistency only with explicit schemes,
as stated in the following result.

Proposition 2.6. For Eq. (2.10), any explicit method of the family of Eq. (2.20)
preserves self-consistency. For Eq. (2.13), any method of the family of Eq. (2.20)
(implicit or explicit) preserves self-consistency.

Proof. Let us suppose that, for some r ≥ 0, we have z(r+k) ∈ Ker(W) for any k =
0, . . . , p− 1. Then, by left-multiplying both sides of Eq. (2.20) by W, we have:

Wz(r+p) =

p∑
s=1

αsWz(r+p−s) + ∆t

p∑
s=0

βsWΦ(z(r+p−s), tr+p−s)

= ∆t

p∑
s=0

βsWΦ(z(r+p−s), tr+p−s).

Hence, in the case of Eq. (2.10), if the method is explicit (i.e. β0 = 0), by Prop. 2.1 we
get Wz(r+p) = 0. Similarly, in the case of Eq. (2.13), by Prop. 2.2 we get Wz(r+p) = 0
(both for explicit and for implicit schemes). Therefore, by induction, we have that
z(k) ∈ Ker(W) for any k ≥ p.

An advantage of implicit methods lies in their better stability properties, compared
to explicit methods, for which severe restrictions on the time step size may occur
[QSS10]. However, the implicit schemes of the family of Eq. (2.20) require to solve
a system of N nonlinear equations at each time iteration. Our tests showed that
for this model, due to the high computational cost associated to the solution of such
nonlinear systems, explicit schemes accomplish a better balance between accuracy and
computationally efficiency than implicit schemes.

2.2.5 Model accuracy

In the derivation of Eq. (2.10), the following assumptions were made:

P((
i

δ)t|(α, β, i−1
γ )t) ' P((

i

δ)t|(β, i−1
γ )t),

P((
i
α)t|(

i+1

β , γ, δ)t) ' P((
i
α)t|(

i+1

β , γ)t).

(2.21)

As we already mentioned (Sec. 2.2.2), hypotheses (2.21) can be interpreted as follows:
if one is interested in the probability distribution of a single RU, the knowledge of the
state of a RU at distance of three heads does not provide any information beyond that
provided by the knowledge of the two intermediate RUs. A compact way to express
this notion is to say that, at each time instant t, the states of RUs at distance of three
heads are conditionally independent given the states of the two intermediate RUs,
which reads in symbols (see [Daw79]):

Xi
t ⊥⊥ Xi+3

t |(Xi+1
t , Xi+2

t ), ∀ t > 0, for i = 1, . . . , NM − 3. (2.22)
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2.2. Proposed model (activation-MH model)

Variable Value Units Variable Value Units

Dynamics of [Ca2+]i Dynamics of SL
c0 0.1 µM SL0 2.2 µm
cmax 1.1 µM γmaxf −0.07 −
tc0 0.1 s tSL0 0.15 s
τ c1 0.02 s tSL1 0.55 s
τ c2 0.11 s τSL0 0.05 s

τSL1 0.02 s

Table 2.2: Constants associated with the dynamics of [Ca2+]i and SL; values of the
constants for [Ca2+]i taken from [Was+12]; values for SL set to reproduce a realistic
SL transient.

We notice that the assumption of conditional independence is different than that of
pure independence: RUs at distance of three heads are not independent in fact; on the
contrary these are strongly correlated (by observing MC simulations it is evident that
the typical correlation length is much larger than 3). The assumption we are making
is that the i-th head is correlated to the i+3-th head because these are correlated with
the (i+ 1)-th and to the (i+ 2)-th respectively, which are correlated to each other. In
other words, we are supposing that the correlation of distant RUs is mediated by the
states of the RUs located in-between. This is coherent with the physics of the model,
as we are assuming that the transition rates of RUs are affected only by adjacent units.

In order to assess the accuracy of this approximation, we consider a short filament
(with NM = 6 heads instead of 36), so that the solution of the full FKE can be
numerically approximated. We impose the following [Ca2+]i and SL transients (the
former taken from [Was+12]):

[Ca2+]i(t) =

c0 t < tc0,

c0 + cmax−c0
β

[
e
−
t−tc

0
τc
1 − e−

t−tc
0

τc
2

]
t ≥ tc0 ,

(2.23)

where

β =

(
τ c1
τ c2

)−( τc1
τc
2
−1

)−1

−
(
τ c1
τ c2

)−(1−
τc
2
τc
1

)−1

and

SL(t) = SL0

[
1 + γmaxf

(
max

(
0, 1− e

−
t−tSL

0
τSL
0

)
−max

(
0, 1− e

−
t−tSL

1
τSL
1

))]
.

(2.24)
Physiological values for the constants involved in the dynamics of [Ca2+]i and SL
are reported in Table 2.2. Here we employ such values for the constants, with the
modification cmax = 5.1 µM, otherwise such shortened filament would lead to negligible
levels of activation.

The numerical solutions of the full FKE and the reduced ODE system (2.10)
are obtained by means of the Forward Euler method, and we run a very large set
of MC simulations (104 for each value of ∆t), according to the algorithm presented
in [Was+12]. As suggested in the same reference, the transition rates (2.3) are updated
at 0.25 ms intervals.

65



Chapter 2. Modeling the thin filament regulation

p
e

rm
is

s
iv

it
y

[-
]

Figure 2.4: Comparison of the solutions for NM = 6 of the full FKE, the reduced ODE
model (2.10) and MC simulations with different values of ∆t (expressed in s). For the
MC simulations the mean (solid line) and the 95% confidence intervals for the mean
(dotted line) are shown. Bottom: full time interval. Top: zoom of the activation-peak.

Figure 2.4 reports a comparison of the results. For our reduced ODE model a
time step of ∆t = 2.5 · 10−5 s is employed, since with larger time steps the numerical
scheme may become unstable, while smaller time steps do not provide any appreciable
improvement in accuracy. On the other hand, MC simulations require a much smaller
time step, since the numerical solution changes significantly reducing the value of ∆t.

Figure 2.5 compares the relative error obtained with the two methods, defined
as follows. We consider a collection of time instants {t1, . . . , tNT }, common to any
time discretization of the simulations under comparison (here we consider an uniform
partition of the interval [0, 1 s] with time step 2.5 ms). We denote by Pn∗ (where ∗
stands either for ODE or MC) the numerical approximation of the exact permissivity
P (tn) (which we assume to be equal to that obtained with the full FKE with ∆t =
1 · 10−6 s). The relative error in euclidean norm is defined as:

εr =

√∑NT
n=1 (Pn∗ − P (tn))

2√∑NT
n=1 P (tn)2

.

For the MC simulations, we consider nMC random realizations of the Markov Chain,
and we denote by PnMC,j the random variables associated with the j-th realization.
The random variables are independent and identically distributed (i.i.d.), so we can
write their expected values as the sum of the exact solution and an error due to the
time discretization:

E
[
PnMC,j

]
= P (tn) + εn(∆t), Var

[
PnMC,j

]
= σn(∆t)2.

The expected value and the variance of the MC average PnMC = 1
nMC

∑nMC

j=1 P
n
MC,j is

given by:

E [PnMC ] = P (tn) + εn(∆t), Var [PnMC ] =
σn(∆t)2

nMC
.
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Number of MC samples (nMC) [-]

Figure 2.5: Relative errors in euclidean norm with respect to the results obtained
through the full ODE model with NM = 6. Right: zoom on the values of nMC

for which the errors obtained through MC method and the reduced ODE model are
comparable.

Therefore, the expected value of the mean square of the errors is given by:

E

[
NT∑
n=1

(PnMC − P (tn))
2

]
=

NT∑
n=1

εn(∆t)2 +

∑NT
n=1 σ

n(∆t)2

nMC
.

Thus, for relatively small values of nMC, the error εr associated with the MC ap-

proximation is dominated by the second term and scales as εr = O(n
−1/2
MC ), while for

high nMC the error is dominated by the term associated with the time discretization
(εr = O(1) as nMC → +∞).

Since the reduced ODE model (2.10) represents an approximation of the W12
model, we split the error as εr = εmodr +ε∆t

r , where the first term accounts for the error
introduced by the model (the model error) while the second term is the contribution
of the time discretization (the discretization error). For sufficiently small ∆t the first
term dominates over the second.

Numerical simulations were performed in Matlab and on a single core Intel i7-
65000U (2.50 GHz, RAM 12 GB) laptop. We notice that, in order to reach an accuracy
comparable to that of the reduced ODE model, which takes 4.5 seconds for one second
of physical time, at least 104 MC samples with ∆t = 2.5 · 10−7 s are required, which
takes more than 11 hours to simulate the same range of physical time. We notice that
with the physiological value of RUs (i.e. NM = 36) the gap is even more pronounced,
as we switch from 15.9 seconds required by our reduced ODE model to more than 72
hours for the MC method.

2.3 Numerical results

In this section, we show some numerical results obtained by the solution of the reduced
ODE model (2.10). For the time discretization, a Forward Euler scheme with a time
step size of 2.5 · 10−5 s is employed. For computational convenience, we update the
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Chapter 2. Modeling the thin filament regulation

transition rates (2.3) at 0.25 ms intervals, since they depend on quantities (SL and
[Ca2+]i) that change slowly in time. At time t = 0 the sarcomere is assumed to be fully
deactivated, namely all MHs are in state UN . Hence the following initial condition is
applied:

P((α,
i

β, δ)0) =

{
1 if α = β = δ = UN ,
0 otherwise.

In some cases, we perform the same numerical tests also with the original W12 model
by means of the MC method, and we compare the results with those of our reduced
model. For all the simulations we show the results obtained with nMC = 104 samples,
since as shown Sec. 2.2.5 this amount of samples is required to keep fluctuations
below a reasonable level. In the time-dependent case, we employ a time step of ∆t =
2.5 · 10−7 s (required to keep the discretization error under control, see Sec. 2.2.5); for
the steady-state simulations instead, since we are interested just in the equilibrium
configuration, we employ a time step of ∆t = 2.5 · 10−5 s.

We validate the numerical results against the experimental data. With this aim,
since we assume that the developed force is proportional to the level of permissivity
(see Eq. (2.5)), we compare the experimentally measured force with the numerical
permissivity, obtained by evaluating Eq. (2.7) on the numerical solution of the reduced
ODE model (2.10). Since we do not have a closure law between force and permissivity,
and these are assumed to be just mutually proportional, we remark that one should
always compare their normalized values.

The goal of the numerical tests is twofold. First, we validate our model against
the original one [Was+12] to assess the validity of the reduction procedure shown
in Sec. 2.2.2. Then, thanks to the large complexity reduction and negligible com-
putational cost allowed by our model, we use it to explore additional experimental
settings. The aim is to verify that the modeling choice made in [Was+12] and dis-
cussed in Sec. 2.2.1 does not affect the validity of the model. Whenever experimental
measurements are available, we compare our numerical results against these ones.

2.3.1 Steady-state conditions

By fixing the calcium level [Ca2+]i and the sarcomere length SL, letting the system
reach the steady-state and considering the level of activation at the equilibrium, one
gets the steady-state relationships between calcium and force and between length
and force. The capability of reproducing the physiological steady-state curves is a
distinguishing feature of activation models (see Sec. 1.3.2).

In this section, we consider the steady-state curves obtained by solving the reduced
ODE model (2.10) and the full W12 model and we compare them with the experi-
mental measurements of [Ken+86] and [DKT02]. Both data sets refer to skinned rat
cardiac trabeculae.

Force-calcium relationship

Figure 2.6 shows the steady-state force-calcium relationship for different values of SL
obtained with the proposed model. The comparison with the experimental curves (see
Figs. 1.17a, 1.16c and 1.18) highlights the following points:

• We obtain the experimentally observed sigmoidal curves, well fitted by the Hill
equation (1.1).
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increasing SL

[Ca2+]i [μM]

Figure 2.6: Steady-state force-calcium relationship for different SL: comparison of the
results of the reduced ODE model (solid lines) with the results of the full W12 model
(dashed lines).

• The maximal force Tmax
a increases as SL grows.

• As SL increases, in the physiological range (approximately 1.7 − 2.3 µm), the
sarcomere becomes more sensitive to [Ca2+]i. This translates into a leftward
shift of the curve, or equivalently in a reduction of EC50. In Fig. 2.7b we
compare the dependence of EC50 on SL obtained by solving the reduced ODE
model with experimental data (see also Fig. 1.17b). Since there is evidence that
the skinning procedure (i.e. the removal of the cell membrane), employed in
both sets of measurement, lower the sarcomere sensisivity to calcium [Ken+86;
RWH99; Gao+94], it is not meaningful to compare the absolute values of EC50;
for this reason calcium concentrations are normalized.

• The Hill coefficient nH is significantly larger than 1, revealing a high coopera-
tivity level, and approximately constant for all values of SL.

• The Hill plots of Fig. 2.8 (see Eq. (1.2)) show the experimentally observed asym-
metry in the force-calcium relationship (see Sec. 1.3.2). Specifically the curves
obtained with the model are shown, with the best-fit lines in the least-squares
sense, to be compared with experimental measurements (see Fig. 1.17c). We
notice that the model is capable of reproducing physiological features such as:
(i) force-calcium relationship, which is fitted by two distinct lines, with de-
creasing slope as [Ca2+]i increases, thus showing a higher cooperativity at lower
calcium levels; (ii) the intersection between these lines, which lies above the
level of half activation (i.e. log(T iso

a /(Tmax
a − T iso

a )) = 0, which corresponds to
T iso

a = Tmax
a /2); (iii) the slopes of both lines, which are nearly independent of

SL; (iv) the normalized force corresponding to the intersection between these
lines, which is nearly independent of SL; (v) the calcium level corresponding to
half activation, which decreases as SL increases.

In Figs. 2.6 and 2.8 we compare the results of our reduced model with those obtained by
simulating the full model of [Was+12] by means of the MC method. This comparison
shows a very good qualitative and quantitative agreement between the two, and thus
supports the validity of assumption (2.21).
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(b) Normalized EC50 versus SL

Figure 2.7: Dependence of the Hill coefficient nH (a) and the calcium level corre-
sponding to half activation EC50 (b) on the sarcomere length SL, compared with
experimental data. The Hill coefficients obtained with the proposed model and the
full W12 model are comprised between the two experimental sets, and have a similar
trend to those on [Ken+86]. Also EC50 report a similar trend to experimental mea-
surements. Notice that, since the skinning procedure employed in the experiments
alters significantly the calcium level which triggers activation, the values of EC50 are
normalized to the value assumed at SL = 2.0 µm.

[Ca2+]i [μM]

Figure 2.8: Steady-state force-calcium relationship in the plane log(P/(Pmax − P ))
versus log [Ca2+]i, for different SL: comparison of the results of the reduced ODE
model (◦) with the results of the full W12 mode (+).
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increasing [Ca2+]i [Ca2+]i [μM]

Figure 2.9: Steady-state force-length relationship for different calcium concentrations:
comparison of the results of the reduced ODE model (solid lines) with the results of
the full W12 model (dashed lines). We notice that the curves report the observed
change in convexity (see text for details).

Force-Length relationship

In Fig. 2.9 the force-length curves of the proposed model for different calcium levels are
reported. Because of the overlapping between the AFs near the H-zone, which lowers
the number of interacting actin and myosin units, the force exerted by a shortened
sarcomere is smaller than the force of a relaxed sarcomere (corresponding to SL '
2.2 µm). In the range 2.2 µm ≤ SL ≤ 2.6 µm the whole MF faces a single AF, which is
the most favourable condition for muscle activation, and the permissivity is constant.
For SL > 2.6 µm the central region of the MF faces no AF, and the width of the region
increases as SL increases, making the permissivity reduce (see Sec. 1.3.2).

We notice that the curves of Fig. 2.9 resemble these of the sarcomere overlap
function employed in mean-field models to account for the effect of SL [Sac04; TR11];
however, whereas in those models the force-length dependency is assumed to be invari-
ant with respect to [Ca2+]i, this model is capable of capturing the calcium dependency
of the force-length relationship. Indeed, force-length curves obtained with our model
exhibit the change in curvature observed experimentally (see Sec. 1.3.2): in the phys-
iological range (1.6 µm ≤ SL ≤ 2.2 µm), the curves are convex at low calcium levels,
concave at intermediate calcium levels, while at maximally activating [Ca2+]i the re-
lation is approximately linear (see Fig. 1.16). We notice that also in this case the
reduced ODE model accurately reproduces the results of the full W12 model obtained
by means of the MC method.

2.3.2 Isometric versus shortening twitches

We showed in Sec. 2.2.5 that our reduced model, with NM = 6 MHs, reproduces
with a good qualitative and quantitative correspondence the results of the full W12
model. In this section we investigate whether this is still valid when we consider the
physiological number of MHs (i.e. NM = 36). Since the numerical solution of the full
FKE cannot be achieved because of the gigantic number of dofs (4NM ' 5 · 1021), we
compare the results of our reduced model with those obtained by means of the MC
method.
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Figure 2.10: Time transients of calcium concentration [Ca2+]i (top) and sarcomere
length SL (middle) taken from [Was+12]; normalized force (bottom) obtained with
the reduced ODE model (solid lines), with the full W12 model (dashed lines) and
experimentally observed (circles, taken from [Was+12]).
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2.4. Alternative formulations

With this aim, we perform the following test, also reported in [Was+12]. The
calcium concentration and the sarcomere length time transients taken from [JT97]
are applied, and the resulting force obtained with the reduced ODE model and with
the full W12 model are compared with the experimental measurements, both under
isometric conditions and during a shortening twitch (see Fig. 2.10).

As mentioned before, since the generated force is taken proportional to permissiv-
ity (see Sec. 2.2.1), we compare the experimentally observed force, normalized with
respect to its peak during isometric contraction, with the permissivity P normalized
with respect to its peak under the same conditions.

Figure 2.10 shows a very good qualitative and quantitative agreement between the
results of the reduced ODE model and those obtained with the MC method, thus
supporting the validity of our reduced model with respect to the full one.

2.3.3 Isometric twitch contractions

In Sec. 2.3.1 we have considered the stationary solutions of the proposed model. In
order to test the capability of the reduced ODE model of reproducing the dynamics of
the sarcomere, we simulate twitches by imposing the calcium transient of Eq. (2.23),
while keeping the value of SL constant. We run several simulations by changing
the sarcomere length SL and the calcium concentration peak cmax. In Fig. 2.11 the
obtained results are compared with the experimental observations on rat trabeculae
reported in [JH95].

The numerical simulations of the reduced ODE model reproduce the main fea-
tures of the force transients of isometric twitches when either SL or cmax increases,
namely: (1) peak force increases; (2) activation time is not affected; (3) relaxation
time increases (see Sec. 1.3.3).

It has been experimentally observed that the third effect, namely the slowing down
of the relaxation phase, is more influenced by changes in SL than by changes in cmax

[JH95; Ric+08]. This feature too can be observed in the results of the proposed
model. Indeed, in Fig. 2.12, two force transients associated with two different couples
(SL, cmax), but exhibiting a similar peak force, are compared: the relaxation time is
slower in the curve associated with the larger SL.

In Fig. 2.13 isometric twitches are plotted as phase loops and compared with
experimental measurements on intact rat cardiac trabeculae [Bac+95]. The figure
highlights the delayed response of force with respect to calcium: in the early stages of
the twitches, loops are placed below the steady-state curve (dashed line), meaning that
calcium has peaked while force is still low; then the trajectories cross the steady-state
curve with nearly null derivative (this corresponds to the force peak), and eventually
they return to their initial configuration staying above the steady-state curve (see
Sec. 1.3.3).

2.4 Alternative formulations

As discussed in Sec. 2.2.1, in the original W12 model a modeling choice not consistent
with the experimental evidence is made, namely the association of the calcium-driven
regulatory mechanism to the MHs instead of to the RUs. In this section, we show how
the W12 model can be modified to better reflect the physical arrangement of proteins
inside the sarcomere.

First, instead of tracking the states of the NM = 36 MHs of half thick filament,
we focus on the state of the NA = 32 RUs on a thin filament (also in this case the
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Figure 2.11: Force transients in isometric twitch contractions, without (first column)
and with (second column) normalization. First row: reduced ODE model results for
cmax = 1.45 µM and different values of SL. Second row: reduced ODE model results
for SL = 2.2 µm and different values of cmax. Third row: experimental measurements
with fixed maximum calcium level and different SL (data from [JH95]). In the first
two rows, solid lines refer to permissivity (axis on the left), while dashed lines refer to
calcium concentration (axis on the right). In both experimental and numerical cases
activation starts at 0.05 s.
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Figure 2.12: Comparison of force transients of twitches with similar peak force and
different SL and cmax: simulations results (a) and experimental measurements (b). In
both cases, the larger SL the longer the relaxation phase.
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Figure 2.13: Loops in phase diagram of twitch responses (solid lines) and steady-
state force-calcium relationship (dashed line): comparison of the reduced ODE model
results (a) with experimental data (b). Experimental data, taken from [Bac+95] refer
to intact rat cardiac trabeculae at SL in the range 2.1− 2.3 µm.
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Figure 2.14: Sketch of the sarcomere models described in Sec. 2.4 (to be compared
with Fig. 2.2). The thick filament (MF) is represented in red and two thin filaments
(AF) are represented in blue (top). The origin of the frame of reference is the left side
of the reference AF. The functions χSF and χM are also represented (bottom).

other one can be recovered by symmetry). Thus, we change the frame of reference by
placing the origin at the left side of the reference thin filament (see Fig. 2.14), and we
denote the mid-point of the i-th RU by yi. Moreover, we introduce the geometrical
factors χSF and χM , which indicate the single-filament (or non-overlap) region and
the region faced by the myosin filament, respectively:

yLM = (2LA − SL+ LH)/2, ySF = 2LA − SL,

yRM = (2LA − SL+ LM )/2, yi =
LA
NA

(i− 0.5);

χM (SL, i) =


exp

(
− (yLM−yi)2

ε2SL

)
yi ≤ yLM ,

1 yLM < yi < yRM ,

exp
(
− (yi−yRM )2

ε2SL

)
yi ≥ yRM ;

χSF (SL, i) =

{
exp

(
− (ySF−yi)2

ε2SL

)
yi ≤ ySF ,

1 yi > ySF .

Then, we model each RU with the CTMC of Fig. 2.3 and we adapt the dependence of
the transition rates on the location w.r.t. the filament according to the new physical
arrangement of units. In the next sections we propose two different ways of taking into
account the position of the RU along the filament, that we we denote by activation-RUa
model and activation-RUa model, in contrast to the activation-MH model, considered
in the rest of the chapter.

We remark that, in the activation-RUa and activation-RUb models, the permissiv-
ity computed with Eq. (2.7) measures the fraction of RUs in permissive state, instead
of the fraction of MHs which can undergo XB formation, like in the activation-MH
model. Therefore, we denote by PRU (t) the permissivity computed in the activation-
RUa and activation-RUb models. Since P (t) = 1 corresponds to the condition of
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2.4. Alternative formulations

maximum exerted force, which occurs when the half MF faces a fully permissive non-
overlapped region of AF, P (t) and PRU (t) are linked by the relation

P (t) =
NA
Nmax
A

PRU (t),

where

Nmax
A = max

SL

NA∑
i=1

χM (SL, i)χSF (SL, i).

We also remark that in this way we get a model with the same mathematical structure
of the W12 model since the only differences are: (a) the number of units switches
from NM = 36 to NA = 32; (b) the transition rates (2.4) are adapted to the new
configuration. Thus, the reduced ODE system (2.10) is valid also in the activation-
RUa and activation-RUb models.

2.4.1 Accounting for SL dependence: activation-RUa model

In this setting, we consider similar assumptions to these made for the activation-MH
model: the transition N → P is allowed just in the region where the MF faces a single
AF, while the transition U → B is forbidden where the thin and the thick filaments
do not face each other. Thus, the transition rates (2.4) are replaced by:

knp0(SL, i) = χSF (SL, i)χM (SL, i)knp0,

kon(SL, i) = χM (SL, i)kon,

knp1(SL, i) = χSF (SL, i)χM (SL, i)knp1,

k
′
on(SL, i) = χM (SL, i)k′on.

(2.25)

Since in the original paper the value of the RU affinity to calcium kon was set to fit
experimental data [Was+12], in this setting we have to re-calibrate its value from 80
to 100 µM−1 s−1 so that we get a comparable permissivity for a given calcium level.

2.4.2 Accounting for SL dependence: activation-RUb model

With this model, we propose a different way to account for length-dependent effects.
First, since the influence of XBs on calcium binding to troponin is already modelled
through the factor µ which reduces the transition rate of B → U in the permissive case,
we do not make the transition rates U → B further depend on the mutual position of
the filaments (see cooperativity mechanism (RU-XB), Sec. 1.3.2). On the other hand,
we modify the transition rates N → P, in such a way that this transition becomes
more favourable when a XB is present on the opposite filament (see again Sec. 1.3.2).
However, unlike in the activation-RUb model, in which the transition is forbidden
where XB cannot form, here we just reduce the transition rate by a factor γ2 = 1/2:

knp0(SL, i) = γ
1−χSF (SL,i)χM (SL,i)
2 knp0,

kon(SL, i) = kon,

knp1(SL, i) = γ
1−χSF (SL,i)χM (SL,i)
2 knp1,

k
′
on(SL, i) = k′on.

(2.26)
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Chapter 2. Modeling the thin filament regulation

We notice that, in this setting, a RU may be in permissive state also in the thin
filaments overlap region and even in absence of a MH in front. Therefore, we have to
adapt the definition of permissivity, so that it measures the fraction of RUs which can
actually form a XB. Thus, we replace Eq. (2.7) by

PRU (t) =
1

NA

NA∑
i=1

P
(
Xi
t ∈ {UP,BP}

)
χSF (SL, i)χM (SL, i). (2.27)

In this setting the re-calibration of the parameter kon is not needed.

2.4.3 Comparison of the results

In Figs. 2.15 and 2.16 we show the steady-state force-calcium and force-length relation-
ships and the simulations of isometric twitches, for different values of SL and maximum
[Ca2+]i, obtained with the activation-RUa and activation-RUb models. The compar-
ison of the results with those obtained with the activation-MH model (see Sec. 2.3)
shows that all the experimentally observed features mentioned in Sec. 2.3 are not af-
fected by the performed modifications. This validates the fact that the modeling choice
made in [Was+12], despite it does not fully reflect the physical arrangement of units
in the sarcomere, does not harm the ability of the model to capture the fundamental
behaviors of the calcium-driven regulation of active force.

2.5 Final remarks

We have developed a mathematical model (activation-MH model) based on an ODE
system suitable to approximate the FKE (forward Kolmogorov equation) associated
with the CTCM (continuous-time Markov Chain) model for sarcomere contraction
presented in [Was+12] (W12 model). Our proposed model reduces the 5 · 1021 vari-
ables of the original system to less than 2200 variables. Moreover, the proposed model
produces very accurate results with a much lower computational effort than the orig-
inal model, whose complexity dictates the use of the MC method: the simulation of
one second of physical time takes about 15.9 seconds with our reduced ODE model,
against more than 72 hours required on the same computer platform by the original
model.

Our numerical tests highlight that the model is able to reproduce physiological
behaviors observed under various experimental settings, including the steady-state
relationships between calcium, length and force and isometric and shortening twitches.
This supports the hypotheses on which also the original W12 model is based, as
discussed in Sec. 2.2.1.

Compared with previously proposed reduction strategies, the concept proposed in
this chapter presents significant advantages. First, it does not require the so-called
“ring” approximation employed both in [Ric+03] and in [Cam+10], making the model
able to capture the effects related to the spatial distribution of filaments. Moreover,
as highlighted in Section 2.1.5, the strategy proposed in [Ric+03] is limited to steady
conditions, while the complexity of the reduced model of [Cam+10] is still too high
to allow that more than 9 RUs are simulated. The approach proposed in [Was+12]
produces a larger complexity reduction, compared to the present chapter, since it ends
up with a system of 144 ODEs, but it still requires a time consuming off-line phase to
tune the model by fitting the registered data. Moreover, the error introduced by the
approximation is larger than in the present chapter and the validity of the parameters
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[Ca2+]i [μM]

[Ca2+]i [μM]

(a) Activation-RUa model.

[Ca2+]i [μM]

[Ca2+]i [μM]

(b) Activation-RUb model.

Figure 2.15: Steady-state force-calcium (first column) and force-length (second col-
umn) relationships in the physiological range of SL obtained with the activation-RUa
(a) and activation-RUb (a) models. The results should be compared with Fig. 2.6 and
Fig. 2.9.
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Figure 2.16: Force transients in isometric twitch contractions with fixed cmax =
1.45 µM (first column) and fixed SL = 2.2 µm (second column) obtained with the
activation-RUa and activation-RUb models (first and second row respectively). The
results should be compared with Fig. 2.11.

is not guaranteed beyond the settings used to tune them. The technique proposed
in [LN15] yields a system of 750 ODEs, but still requiring a long off-line phase to
compute transition rates. Finally, having characterized each state by the number
of unblocked RUs and bound XBs, the explicit spatial description is lost during the
reduction procedure. Therefore, length-dependent effects on tension are neglected and
their inclusion would require modifications to the employed strategy.

We remark that our approach to complexity reduction is not limited to the current
model, but it can be applied to any spatially explicit Markov Chain model with end-
to-end cooperative interactions. In general, given a model comprising N units, each
described by a CTMC with S states, assumption (2.21) yields to an ODE system
whose size depends linearly in the number of units ((N − 2) · S3 variables), in place
of the exponential dependence on N of the original model (SN variables).

As previously mentioned, unlike most previously proposed techniques [Was+12;
LN15], our approach does not require an off-line phase to calibrate model parameters,
given sub-cellular properties. The advantage is that this property speeds up the inves-
tigation of the influence of those microscopic properties, such as changes in individual
channels or proteins, on the tissue contractile properties. Moreover, it opens to the
possibility of investigating dynamic changes of sub-cellular properties.
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Chapter 3
Modeling the crossbridge dynamics

In Chap. 2 we dealt with the mathematical modeling of the dynamics of the RUs.
When a RU is in permissive state, the associated Tm exposes the actin BSs, so that
MHs can bind and form the so called XBs. In this chapter we deal with the mathemat-
ical modeling of the XB dynamics. As we have seen in Chap. 1, the dynamics of XBs
is responsible for the observed decrease of tension when a muscle fiber shortens at a
constant velocity (force-velocity relationship) and for the tension transients following
an isometric or isotonic step in either tension or length. The two above mentioned
experimental setups will be used in this chapter to assess the capability of different
mathematical models to reproduce, both qualitatively and quantitatively, the related
experimentally observed characterization.

In this chapter we do not propose a new model, but rather we review the mathe-
matical models available in literature and we highlight their strengths and limitations,
in light of their application in the context of cardiac EM. In particular, we try to as-
sess the level of biophysical detail that is best suited when the considered temporal
scales are those characterizing cardiac EM. Part of this chapter can be found in the
submitted paper [RDQ19a].

Contents
3.1 Mathematical models of crossbridges cycling . . . . . . . 82

3.1.1 Hill ’38 model . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.2 Huxley ’57 model . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.3 Power-stroke models . . . . . . . . . . . . . . . . . . . . . . 86

3.2 A generalized Huxley ’57 model . . . . . . . . . . . . . . 90

3.2.1 Distribution-moments equation . . . . . . . . . . . . . . . . 92

3.2.2 Steady-state solution . . . . . . . . . . . . . . . . . . . . . . 92

3.2.3 Fast transients solution . . . . . . . . . . . . . . . . . . . . 93

3.2.4 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 98

81



Chapter 3. Modeling the crossbridge dynamics

Force-
velocity

Figure 3.1: Scheme of the phenomenological model of [Hil38]. A contractile element,
following the law (3.2), is coupled in series with an elastic element, to which a quadratic
energy ue(x) = 1

2k x
2 is associated.

3.1 Mathematical models of crossbridges cycling

In this section, we review the main contributions available in literature to the definition
of mathematical models describing the dynamics of XBs. The historical development
of such models reflects the progresses in the understanding by the physiologists com-
munity of the mechanisms underlying the microscopic force generation.

3.1.1 Hill ’38 model

One of the earliest mathematical descriptions of muscles dates back to [Hil38]. By
studying the release of heat when a muscle contracts against a constant load (isotonic
contraction), A. V. Hill discovered that the relationship between the tension Ta and
the shortening velocity vfiber is well described by the hyperbolic law:

(Ta + a) vfiber = bfiber (T iso
a − Ta), (3.1)

where T iso
a is the isometric tension (i.e. the tension for vfiber = 0), a and bfiber are

positive constants. In the following, it will be helpful to write relationships that are
independent of the length of the muscle fiber used to perform the experiment. With
this aim, by dividing Eq. (3.1) by the length of the fiber Lfiber, we get the following
relationship:

(Ta + a) v = b (T iso
a − Ta). (3.2)

where we call v = vfiber/Lfiber the normalized velocity (dimensionally, v is the inverse
of time units). The maximum shortening velocity, that is the maximum speed at which
the muscle is able to shorten (see Sec. 1.3.4), can be computed as vmax = b T iso

a /a. In
the original paper [Hil38], Hill obtained a

T iso
a

= 0.22, bfiber = 1.03 cm s−1 for a fiber of

length Lfiber = 38 mm, thus b = 0.27 s−1 and vmax = 1.23 s−1.
On the basis of the relationship (3.2), Hill proposed a phenomenological model

where an elastic element is in series with a contractile element governed by the law (3.2)
itself. This model, however, does not provide any insight into the muscle functioning,
as it is not based on a microscopical description of the tissue (this is not surprising
since the muscle anatomy was not known at that time).

3.1.2 Huxley ’57 model

In 1957, A. F. Huxley proposed a model (H57 model) to link the force-velocity rela-
tionship observed by A. V. Hill with the subcellular attachment-detachment process
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3.1. Mathematical models of crossbridges cycling

of MHs [Hux57b]. This model considers two states (bound and unbound) and assumes
that the transition rates depend on the distance between the myosin arm rest position
and the BS, denoted by x. We have x > 0 when the attachment leads to a positive
tension, x ≤ 0 otherwise (see Fig. 3.2).

Let us consider a population of MHs and BSs, and assume that the probability
density of finding a couple with a given displacement x is constant in a an interval
sufficiently close to x = 0 (more precisely, the number of couples with displacement
x ∈ (a, b) for each half filament is ρAM|b − a|, if a and b are sufficiently close to 0).
This is well motivated, assuming the effect of the units located at the border of the
filaments negligible.

Let n(x, t) ∈ [0, 1] denote the probability that a couple MH-BS with elongation x
is attached. Then, the expected value of the number of attached XBs with elongation
between a and b at time t is given by:

ρAM

∫ b

a

n(x, t)dx.

Let us consider a small time interval ∆t. The variation of the population of attached
MHs from t to t+∆t with displacement in the interval (a, b) is given (at the first order
in ∆t) by:∫ b

a

n(x, t+ ∆t)dx '
∫ b

a

n(x, t)dx+ n(b, t)vhs(t)∆t− n(a, t)vhs(t)∆t

+

∫ b

a

(1− n(x, t))f(x)∆t dx−
∫ b

a

n(x, t)g(x)∆t dx,

(3.3)

where vhs(t) = −dSL(t)/2
dt , the shortening velocity of half sarcomere (that is the relative

velocity between the MF and the AF), convects the MH distribution and f(x) and
g(x) are the attachment and detachment rates, respectively. By dividing the above
equation by ∆t (b− a) and letting both intervals go to zero, we get the H57 model:

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (1− n(x, t))f(x)− n(x, t)g(x), x ∈ R, t ≥ 0, (3.4)

with suitable initial conditions. Finally, assuming that each attached XB acts as a
linear spring with stiffness kXB, the total force exerted by the pair of interacting half
thick filament and thin filament is equal to:

Fhf(t) = ρAM kXB

∫ +∞

−∞
xn(x, t)dx. (3.5)

In [Hux57b], the transition rates are phenomenologically set as:

f(x) = f1
x

h
1[0,h](x), g(x) = g21x≤0 + g1

x

h
1x>0, (3.6)

where f1, g1 and g2 are positive constants. Attachment can occur only in the interval
x ∈ [0, h], that is for positive displacement: such symmetry-breaking feature is what
makes the muscle contract. For x < 0 the detachment rate is very high, in order to
prevent the XBs to generate force in the opposite direction.

The H57 model provides a microscopical explanation of the force-velocity relation-
ship. When the shortening velocity is high, the attached XBs are convected towards
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AF

MF

Figure 3.2: Scheme of the H57 model. The attachment-detachment rates of MHs
(denoted respectively by f and g) depend on the XB distortion x. The myosin arm is
modeled as a linear elastic element with stiffness kXB.

lower values of x, thus leading to a reduction of force. This mechanism is often com-
pared to a “tug-of-war” game. If the rod is quickly pulled, the players need to detach
their hands and reattach them further on the rod, otherwise they are not able to pull
any more. Thus, when the rod is sliding towards to players, their action is less efficient
than in the steady regime, when they can firmly hold the rod. It is all about how
fast the rod slides and how are the players fast in detaching and reattaching their
hands. We will see later a quantitative description of the competition between the
two phenomena.

With the choice (3.6), Huxley derived a steady-state solution (with a constant
shortening velocity) for (3.4):

n(x) =


F1

(
1− e−ϕ/vhs

)
e
x
2hG2

ϕ
vhs x < 0,

F1

(
1− e

(
x2

h2
−1
)
ϕ
vhs

)
0 ≤ x < h,

0 x ≥ h,

(3.7)

where ϕ = (f1 + g1)h/2, F2 = f1
f1+g1

, G2 = g2
f1+g1

. This gives the following force-
velocity relationship:

Fhf = ρAMkXBF1
h2

2

(
1− vhs

ϕ

(
1− e−ϕ/vhs

)(
1 +

1

2G2
2

vhs

ϕ

))
. (3.8)

Huxley, proceeding by trial and error, obtained a good fit of experimental data with
F1 = 13/16 and G2 = 3.919. For this parameters, by setting Fhf = 0 we have
vmax

hs ' 4ϕ. For instance, in [Bro76], with the choice f1 = 65 s−1, g1 = 15 s−1,
g1 = 313.5 s−1, h = 10 nm, one gets vmax

hs ' 1600 nm s−1, which gives vmax =
vmax

hs /(SL0/2) ' 1.45 s−1. All the above mentioned constants are calibrated for the
skeletal muscle.

The distribution-moment equations

To avoid the solution of a PDE, in [Zah81] an approximation of the model (3.4) by
means of ODEs was proposed. By applying a general strategy of statistical physics,
the author computed the equations for the evolution of the distribution-moments of
n(x, t), defined as:

µp(t) :=

∫ +∞

−∞
xpn(x, t)dx.

Indeed, thanks to the linear spring hypothesis for the myosin arm, the full distribution
n(x, t) is not needed to compute the force, but rather its first moment is enough, as
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we have, from Eq. (3.5):
Fhf(t) = ρAM kXB µ

1(t). (3.9)

By multiplying Eq. (3.4) by xp and integrating over (−∞,+∞) one gets, for p =
0, 1, . . . :

d

dt
µp(t)− p vhs(t)µ

p−1(t) = µpf −
∫ +∞

−∞
xp(f(x) + g(x))n(x, t)dx, (3.10)

where we have integrated by parts the term∫ +∞

−∞
xp
∂n(x, t)

∂x
dx = [xp n(x, t)]

+∞
−∞ − p

∫ +∞

−∞
xp−1n(x, t)dx = −p µp−1(t),

and we have used the fact that, for x → ±∞, n is definitely equal to zero. The last
term of (3.10) needs to be modeled for model closure. In [Zah81] the authors proposed
to assume a specific distribution (a gaussian distribution) for n(·, t), so that that term
can be computed. Specifically, by assuming that:

n(x, t) =
µ0(t)√
2πσ(t)

exp

(
− (x− x̄(t))2

2σ2(t)

)
,

where

x̄(t) =
µ1(t)

µ0(t)
, σ2(t) =

µ2(t)

µ0(t)
−
(
µ1(t)

µ0(t)

)2

,

the distribution n(·, t) is fully characterized by its first three moments, and thus the
first three equations of (3.10) are completely equivalent to the PDE model (3.4).
However, we have here to pay the price of a strong assumption of gaussianity for
n(·, t). Still, the analytical solution of Eq. (3.7) shows that even in the steady-state
case the distribution may be very skewed and thus significantly differ from a gaussian
one.

When the transition rates f(x) and g(x) take special forms, the distribution-
moments strategy can be used to derive exact equivalents of the PDE model (3.4)
[BCS01; Cha+12]. In fact, if the total transition rate is independent of the displace-
ment (i.e. f(x) + g(x) = r), the last term in (3.10) can be computed as:∫ +∞

−∞
xp(f(x) + g(x))n(x, t)dx = rµp(t),

and the hierarchy of equations (3.10) can be truncated by considering only the first
two moments: 

d

dt
µ0(t) = µ0

f − r µ0(t) t ≥ 0,

d

dt
µ1(t) = µ1

f − r µ1(t) + vhs(t)µ
0(t) t ≥ 0.

(3.11)

Extensions of the H57 model

To account for the fact that not all XBs can be recruitable for attachment (e.g. because
they do not lie in the overlap region, see 1.3.2), in [Cha+12] the authors modified the
source term (1 − n(x, t))f(x) of (3.4) into (n0(t) − n(x, t))f(x), where the reduction
factor 0 ≤ n0(t) ≤ 1 denotes the fraction of recruitable XBs.
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In [BCS01; Cha+12] the authors introduced a chemical input, affecting the tran-
sition rates f(x) and g(x) (that are in this case functions of time), to model the effect
of the calcium-driven regulation. Moreover, by assuming that high relative velocities
between the two filaments can lead to destruction of XBs, they introduced a further
sink term, linearly proportional to |v(t)|. Specifically, the following transition rates
were chosen:

f(x, t) = kATP1x∈[0,1]1[Ca2+]i(t)>C ,

g(x, t) = kATP1x/∈[0,1]1[Ca2+]i(t)>C + kRS1[Ca2+]i(t)≤C + α|v(t)|,

where kATP is the ATP turnover rate, C is the activation threshold for [Ca2+]i and α
is a positive constant. Despite the introduction of the dependence on [Ca2+]i(t) and
v(t), the sum f(x, t) + g(x, t) is still independent of x. Hence, distribution-moment
equations analogous to (3.11) can be derived for this model.

In [Kim+19; Kim19] the authors proposed a model, based on the H57 formalism,
where the population of MHs is split into two pools: the first one contains the MHs
located in the single-overlap zone, while the other one (for which f = 0) contains
the remaining MHs. Each pool is characterized by its own density function n(x, t),
whose evolution is described by an equation similar to Eq. (3.4), supplemented with a
source and a sink term accounting for fluxes across the two pools. Moreover, a variable
representing the fraction of permissive BSs multiplies to attachment rate term.

Limitations of the H57 model

The models belonging to the family of the H57 model, however, are not able to ex-
plain some of the experimentally observed phenomena. In particular, they fail to
reproduce the phenomena related to time scales that are faster than the time scale of
the power-stroke (∼ 1 ms). The reason is that this class of models does not incorporate
a description of the power-stroke, but rather assumes that MHs attach in a stretched
configuration. This cannot explain the fast force recovery following a sudden change
in the sarcomere length (see Sec. 1.3.5) since, in the H57 model, force is recovered
with a time scale that is compatible with the ATP turnover (order of 100ms). These
limitations were recognized by A. F. Huxley himself, who proposed, in 1971, a model
incorporating an explicit description of the power-stroke.

3.1.3 Power-stroke models

In [HS71] the authors proposed a new model (HS71 model), by interpreting the pre-
power-stroke and the post-power-stroke configurations as discrete states. Thus, they
introduced a degree of freedom, y, that can be interpreted as the angular position
of the rotating MH. The variable y is associated with a discrete energy potential,
with two minima in 0 and a (where a is the power-stroke length), separated by an
energy barrier. This newly introduced degree of freedom supplements the linear elastic
element of the H57, with potential energy ue(x) = kXB/2 (x+ y)2.

This hard-spin model provided a first quantitative description of the power-stroke,
with the assumption that the fast force recovery (see Sec. 1.3.5) is a passive mech-
anisms, interpretable as a mechanical conformational change. This is coherent with
the observation that the fast force recovery is not rate limited by the chemical stages,
supporting the hypothesis that the power-stroke is a mechanical phenomenon.

The main drawback of the hard-spin HS71 model is that the transition between the
two configurations requires the linear spring to be stretched by the effect of thermal
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fluctuation in order to overcome the energy barrier. As a consequence, this model
predicts a slower time-constant for the power-stroke than what is measured in exper-
iments [Car11; CT18]. This led researchers to assume the existence of intermediate
configurations, by the introduction of a number of additional states [HS71; Smi+08].

Soft-spin models

In contrast, in [MT10b; MT10a] the authors proposed to replace the rigid bistable
device (or multi-stable) of hard-spin models by a bistable element, parametrized by a
continuous variable. The transition from hard-spin to soft-spin removed the contra-
dictions concerning the time scale of the power-stroke [CT18].

This model was extended with the inclusion of the attachment-detachement ATP-
driven mechanism by adding a coloured noise (mimicking the out-of-equilibrium ATP
reactions) to the Langevin dynamics within the energy landscape [MT10b].

In [CMC19] the authors proposed a mechano-chemical model (that we denote by
CMC19 model), with a soft-spin model for MHs coupled with a chemical state describ-
ing the ATP-driven attachment-detachment process, obtaining a unified framework
capable of matching both the phenomena related to the power-stroke (such as the fast
velocity recovery) and those related to the attachment-detachment of XBs (such as
the force-velocity curve). Moreover, the authors showed that the H57 model can be
derived from the CMC19 model under simplifying assumptions, thus giving an inter-
pretation to the H57 model in terms of Langevin dynamics. Remarkably, the authors
also showed that a lumped version of the CMC19 model in which the power-stroke
variable is assumed to be in equilibrium formally reduces to a H57-like model, thus
allowing to interpret the transition rates of the H57 model as effective rates, in light
of the CMC19 model. We illustrate in what follows the construction of the CMC19
model.

Caruel-Moireau-Chapelle 2019 model

Model setup. We consider a single MH, described by a discrete degree of freedom,
namely ωt (ωt = 1 when the MH is attached, ωt = 0 when it is detached), and two
continuous degrees of freedom, namely Zt (measuring the distance of the MH tip from
the rest-position of the myosin harm) and Y t (associated with the angular orientation
of the MH), as it is shown in Fig. 3.3. In the pre-power-stroke configuration, we
typically have Y t = 0, and thus the elongation of the myosin arm coincides with
Zt. When power-stroke occurs, Y t becomes positive, making the total myosin arm
elogation increase. The myosin arm elogation is thus given by Xt + Y t (see Fig. 3.3).
When the MH is attached (ωt = 1) the tip of the MH is attached to the BS. Therefore,
we have by definition Zt ≡ x (where we denote by x, as in the previous sections, the
distance between to myosin arm rest position and the BS).

The elastic element is associated with a quadratic energy ue, while the inter-
nal degree of freedom Y t is associated with a bistable energy uω, that takes differ-
ent expression when the XB is attached and when instead is not. Specifically, in
the attached (respectively, detached) configuration, the minimum corresponding to
the post-power-stroke configuration (Y t > 0) is endowed with a lower (respectively,
higher) energy than the pre-power-stroke configuration (Y t = 0). The resulting en-
ergy landscape for the mechanical variables (Zt, Y t) is thus associated with the energy
wω(z, y) = uω(y) + ue(z + y).
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AF

MF

Figure 3.3: Scheme of the CMC19 model. The MH is described by two degrees of
freedom (z and y). When the MH is attached, the degree of freedom z coincides with
the variable x. The attachment-detachment rates of MHs (f and g) depend on the
XB distortion x. The myosin arm is modeled as a linear elastic element with stiffness
kXB, while the degree of freedom y is associated with a bistable energy, which depends
on the XB attachment state.

The Langevin dynamics [KS98] associated with the energy wω(z, y) gives the fol-
lowing stochastic differential equation:

η dZt =

(
−ωtη vhs − (1− ωt)∂wω

∂z
(Zt, Y t)

)
dt

+ ηδts(t)
(
x− Zt

)
dt+ (1− ωt)

√
2ηkBTdB

t
z t ≥ 0,

η dY t = −∂wω
∂y

(Zt, Y t)dt+
√

2ηkBTdB
t
y t ≥ 0,

(3.12)

where dBtz and dBty are the increments of a two-dimensional Brownian motion, η is
the viscous damping coefficient associated with the surrounding fluid, kB denotes the
Boltzmann constant, T the absolute temperature, and ts denotes the time of any
switch from ωt = 0 to ωt = 1. We notice that, far from t = ts, when the XB is
detached (i.e. ωt = 0), the first equation reduces to:

ηdZt = −∂wω
∂z

(Zt, Y t)dt+
√

2ηkBTdB
t
z,

while when the XB is attached (i.e. ωt = 1), it reduces to:

dZt = −vhs dt,

coherently with the fact that Zt ≡ x (remember that vhs denotes the shortening
velocity, thus ẋ = −vhs). Finally, at time t = ts the Dirac delta term makes the
variable Zt instantaneously jump to Zt = x.

The kinetics of the chemical degree of freedom ωt is determined by the following
transition rates:

P
[
ωt+∆t = 1|ωt = 0

]
= k+(Zt, Y t, x, t)∆t+ o (∆t) ,

P
[
ωt+∆t = 0|ωt = 1

]
= k−(Y t, x, t)∆t+ o (∆t) ,

(3.13)

where the detachment transition rate is independent of Zt since when the MH is
attached we have Zt = x.
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Fokker-Plank equation. To write the Fokker-Plank equation (i.e. the equiva-
lent of the FKE for continuous variables) associated with Eq. (3.12), we denote by
p(z, y, ω;x, t) the probability density for a MH (at time t and located at distance x) of
being in state (z, y, ω) (we notice that x and t are regarded as deterministic variables).
Since for attached heads we have Zt = x, the probability density for ω = 1 can be
written as:

p(z, y, 1;x, t) = δx(z)p̄(y;x, t).

With this notation, the Fokker-Plank equation reads:

∂

∂t
p(z, y, 0;x, t) = vhs

∂

∂x
p(z, y, 0;x, t)

+ η−1 ∂

∂z

(
∂

∂z
w0(z, y) p(z, y, 0;x, t)

)
+ η−1 ∂

∂y

(
∂

∂y
w0(z, y) p(z, y, 0;x, t)

)
+
kBT

η

(
∂2

∂z2
p(z, y, 0;x, t) +

∂2

∂y2
p(z, y, 0;x, t)

)
+ k−(y, x)δx(z)p̄(y;x, t)

− k+(z, y, x)p(z, y, 0;x, t) x, y, z ∈ R, t ≥ 0,

∂

∂t
p̄(y;x, t) = vhs

∂

∂x
p̄(y;x, t)

+ η−1 ∂

∂y

(
∂

∂y
w1(x, y) p̄(y;x, t)

)
+
kBT

η

∂2

∂y2
p̄(y;x, t)

+

∫ +∞

−∞
k+(z, y, x)p(z, y, 0;x, t)dz

− k−(y, x)p̄(y;x, t) x, y ∈ R, t ≥ 0.
(3.14)

To link this model with the H57 formalism, we notice that the fraction of attached
MHs with displacement x at time t is given by:

n(x, t) =

∫ ∫
p(z, y, 1;x, t) dz dy =

∫
p̄(y;x, t) dy.

By integrating the equations of (3.14) with respct to z and y, we obtain the following
H57 like equation:

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (1− n(x, t))f(x, t)− n(x, t)g(x, t),

where the transition rates are given by:

f(x, t) =

∫ ∫
k+(z, y, x)

p(z, y, 0;x, t)

1− n(x, t)
dz dy,

g(x, t) =

∫
k−(y, x)

p̄(y;x, t)

n(x, t)
dy.

(3.15)

We notice that this H57 version of Eq. (3.14) is not written in closed form, as f(x, t)
and g(x, t) depend on the specific distribution of the degrees of freedom z and y and
not only on the averaged quantity n(x, t).

89



Chapter 3. Modeling the crossbridge dynamics

Recovering the H57 model. This analogy with the H57 model allows for a more
direct comparison when hypotheses closer to those of the H57 model are assumed.
Indeed, by canceling the degree of freedom associated with the power-stroke (i.e.
Y t ≡ 0), we have:

p(z, y, 0;x, t) = p̂(z;x, t)δ(y),

p̄(y;x, t) = n(x, t)δ(y),

which gives, thanks to (3.15), g(x, t) = k−(0, x) = ĝ(x). Moreover, coherently with
H57, let us assume that the binding rate is independent of Zt, that is k+(z, 0, x) =

f̂(x), which gives, thanks to (3.15), f(x, t) = f̂(x). In this way, we recover the original
H57 model.

Thermal equilibrium model. More interestingly, the authors recovered an anal-
ogy with the H57 model under the hypothesis that the time scale of the macroscopic
behavior is large enough for the internal degrees of freedom to be at thermal equilib-
rium. The equilibrium distributions can be multiplicatively decomposed as:

p(z, y, 0;x, t) = pth0 (z, y)(1− n(x, t)),

p̄(y;x, t) = pth1 (y;x)n(x, t),

where

pth0 (z, y) =
exp

(
−w0(z,y)

kBT

)
∫ ∫

exp
(
−w0(z,y)

kBT

)
dz dy

,

pth1 (y;x) =
exp

(
−w1(x,y)

kBT

)
∫

exp
(
−w1(x,y)

kBT

)
dy
.

When the probability distribution takes this form, Eq. (3.15) reduces to:

f(x, t) = f th(x) =

∫ ∫
k+(z, y, x)pth0 (z, y)dz dy,

g(x, t) = gth(x) =

∫
k−(y, x)pth1 (y;x)dy,

(3.16)

which gives a model, equivalent to the H57 one, in closed form. This conclusion is more
than a mere analogy and it allows to shed a new light on the H57 model. The H57
model, which does not explicitly represent the power-stroke, can indeed be interpreted
as a model where the variable describing the degree of freedom associated with the
power-stroke is considered at equilibrium. Unlike in the H57 original formulation,
where the power-stroke is simply neglected, here it is accounted for in the definition
of the transition rates given by (3.16). This allows to relate a microscopic description
of the contractile mechanism with macroscopic effective quantities.

3.2 A generalized Huxley ’57 model

In light of the interpretation of the H57 model given in [CMC19], in this section we
consider a (generalized) version of the H57 model, to investigate to which extent this
model can explain the experimentally observed behaviors linked to the XB dynamics.

First, we make some comments on the hypotheses underlying the H57 model.
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• When writing the source term (1−n(x, t))f(x), we are assuming that, for all x in
the support of f , the number of recruitable MH-BS pairs is 1−n(x, t). However,
we are not considering the possibility that a MH-BS pair with such displacement
is not recruitable for XB formation, since either the MH is attached with a BS
with displacement x + kDA or the BS is attached to a MH with displacement
x+kDM , with k ∈ Z\{0} (where DA and DM denote, respectively, the distance
between two consecutive MHs and BSs). This cannot be excluded a priori, in
particular when the muscle is stretched or elongated in a very fast manner, unless
g is chosen in such a way to exclude this possibility (e.g. by assuming an infinite
detachment rate for x out of a given interval). We will return to this issue in
Sec. 4.2.2.

• Up to now we have considered the condition of full activation. To take into
account, in a simple way, the fact that not all binding sites may be in permissive
state, we consider two options. The first one is to multiply, in the computation of
force, the number of XBs by the fraction of permissive BSs, P . The second is to
replace in (3.4) the term (1−n(x, t)) by (P−n(x, t)), similarly to what proposed,
to account for the filaments overlapping, in [Cha+12]. Notice that, thanks to
the linearity of the equation, both approaches lead to the same result. Even if
this approach is approximate, as it does not take into account the possible time
dependence of P (t), for the moment we restrict ourselves to the condition of
constant activation.

• As the support of f is clearly compact and close to x = 0 and g is positive
elsewhere, solutions of the H57 model are such that n is zero (or very small) far
from x = 0. Therefore, to compute average quantities for the XB population
one can integrate n over the whole real line (even if the assumption that ρAM

represents the density of MH-BS couples is valid only close to x = 0).

On the basis of the above considerations and being aware of the limitations of the H57
model, we consider the following modified H57 model, where we allow (as in [BCS01;
Cha+12]) for a dependency of the transition rate on the shortening velocity vhs(t),
and we introduce the dependence on the permissivity P :

∂n(x, t)

∂t
− vhs(t)

∂n(x, t)

∂x
= (P − n(x, t))f(x, v(t))− n(x, t)g(x, v(t)), x ∈ R, t ≥ 0,

(3.17)
where we prefer to express the transition rates in function of the normalized shortening
velocity v(t) = vhs(t)/(SL0/2). In (3.17), the quantities to be modeled are f(x, v) and
g(x, v).

The force generated by half filament, by assuming that a XB attached with dis-
placement x exerts a force of FXB(x), is given by:

Fhf(t) = ρAM

∫ +∞

−∞
FXB(x)n(x, t)dx. (3.18)

In particular, with a linear spring XB model (i.e. FXB(x) = kXB x), we have:

Fhf(t) = ρAMkXB

∫ +∞

−∞
xn(x, t)dx. (3.19)

The macroscopic tension, in turn, is proportional to the force generated by half fila-
ment.
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3.2.1 Distribution-moments equation

Under the hypothesis that the total transition rate is independent of x (i.e. there exists
a function r(v) = f(x, v) + g(x, v)), it is possible to write the distribution-moments
equations (see Sec. 3.1.2). With this aim, we introduce the moments for p = 0, 1, . . .
(we notice that, differently from the notation used in Sec. 3.1.2, µp are dimensionless,
while µpf are inverse of time units):

µp(t) :=

∫ +∞

−∞

(
x

SL0/2

)p
n(x, t)

dx

DM
,

µpf (v) :=

∫ +∞

−∞

(
x

SL0/2

)p
f(x, v)

dx

DM
.

(3.20)

Thanks to this definition, µ0(t) can be interpreted as the fraction of BSs involved in
a XB. Moreover, µ1(t)/µ0(t) corresponds to the average distortion of attached XBs,
normalized with respect to SL0/2. We notice that, under the linear spring hypothesis,
thanks to Eq. (3.19), the total active force is proportional to µ1(t). Therefore, we can
write Ta(t) = aXBµ

1(t), where aXB has the dimension of a pressure. In Chap. 7 we
will extensively deal with the issue of upscaling from the miscoscopic level to the
macroscopic one and we will give an explicit expression for the factor aXB. Moreover,
we will show that the active stiffness at the tissue level is given by Ka(t) = aXBµ

0(t).
By multiplying by (x/(SL0/2))p, integrating over x ∈ (−∞,+∞) and using the

fact that n(−∞, t) = n(+∞, t) = 0, we get the following distribution-moments equa-
tions: 

d

dt
µ0(t) = −r(v(t))µ0(t) + P µ0

f (v(t)) t ≥ 0,

d

dt
µ1(t) = −r(v(t))µ1(t) + P µ1

f (v(t))− µ0(t)v(t) t ≥ 0.

(3.21)

By assuming that f + g is independent of x, the freedom in the choice of the
functions describing the model has been reduced, as we have to model µ0

f (v), µ1
f (v)

and r(v), that are only functions of v.

3.2.2 Steady-state solution

By assuming a constant shortening v(t) ≡ v̄, and solving (3.20) for d
dt = 0, we get the

following steady-state solution:

µ̄0 = P
µ0
f (v̄)

r(v̄)
,

µ̄1 = P
µ1
f (v̄)− µ0(t)v̄

r(v̄)
= P

(
µ1
f (v̄)

r(v̄)
−
µ0
f (v̄)

r(v̄)2
v̄

)
.

(3.22)

Since the force is proportional to µ1, the last equation gives the force-velocity rela-
tionship. Moreover, the steady-state solution allows to compute some quantities of in-

terest. The force in isometric conditions is given by T iso
a = aXB(µ̄1)v̄=0 = aXBP

µ1
f (0)

r(0) .

The fraction of attached XBs, in turn, is given by (µ̄0)v̄=0 = P
µ0
f (0)

r(0) . Finally, the

maximum shortening velocity vmax can be computed as the positive solution of the
equation µ1

f (vmax)r(vmax) = µ0
f (vmax)vmax.
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We now show how the above mentioned quantities can be expressed under more
restrictive hypotheses for f and g. For instance, it is reasonable to assume that the
sliding velocity only affects the detachment rate, so that f(x, v) = f̄(x). In this
case, assuming again that the sum f + g is independent of x, we can write g(x, v) =
r0− f̄(x) + q(v), for some q(v) such that q(0) = 0 and where r0 = r(0). The term q(v)
models the rate of XB destruction due to rapid length changes. Under this additional
hypothesis, the objects to be modeled are just µ0

f̄
, µ1

f̄
, r0 and q(v) (three scalar values

and a function). If we set, as in [Cha+12], q(v) = α|v| (which reduces the quantities
to be modeled to 4 scalars), the maximum shortening velocity takes the form:

vmax = r0

(
µ0
f̄

µ1
f̄

− α

)−1

.

Let us consider now the particular case of constant attachment rate within the interval
x ∈ [s0, s0 + h] (as in [BCS01]):

f(x, v) = kATP1[s0,s0+h](x), g(x, v) = kATP(1− 1[s0,s0+h](x)) + q(v). (3.23)

This choice falls within the above mentioned case. The quantities to be modeled, in
this case, are kATP, h, s0, q(v), which are linked to the previous ones by:

µ0
f̄ = kATP

h

DM
, µ1

f̄ = kATP
h(h+ 2 s0)

SL0DM
, r0 = kATP, (3.24)

and, conversely:

h =
kATP

µ0
f̄
DM

, s0 =
1

2

(
SL0DMµ

1
f̄

kATPh
− h

)
, kATP = r0, (3.25)

which allows to give a microscopical interpretation to the constants. In this case, the
steady-state solution reads:

µ̄0 = P
h

DM

(
1 +

q(v̄)

kATP

)−1

,

µ̄1 = P
h

2DM

(
1 +

q(v̄)

kATP

)−2(
h+ 2s0

SL0/2

(
1 +

q(v̄)

kATP

)
− 2

v̄

kATP

)
.

(3.26)

Moreover, the isometric tension is given by T iso
a = aXBP

h(h+2 s0)
SL0DM

and the fraction of

attached XBs in isometric conditions is (µ̄0)v̄=0 = P h
DM

. With the choice q(v) = α|v|,
the maximum shortening velocity, if α < SL0

h+2s0
, is given by:

vmax = kATP

(
SL0

h+ 2s0
− α

)−1

.

Conversely, if α ≥ SL0

h+2s0
, vmax is not defined, as the force-velocity relationship never

intercepts the Ta = 0 axis.

3.2.3 Fast transients solution

Because of the lack of explicit representation of the power-stroke, the generalized H57
model (3.20) fails to reproduce the three phases after a fast step, either in length or in
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tension (see Sec. 1.3.5). Indeed, in place of the two fast steps (the elastic response and
the fast force recovery, due to the power-stroke), we have only one fast step, followed
by the slow force recovery (or by the constant shortening, in the case of the soft device
experiment). In this section, we study the predictions of the model concerning such
fast phase.

In order to study the behavior predicted by the model when a fast transient
experiment is performed (here we focus on steps in length), we suppose that at
t = 0 the muscle is in steady-state isometric conditions (i.e. µ0(0) = Pµ0

f (0)/r(0),

µ1(0) = Pµ1
f (0)/r(0)). We then consider a sudden change in length ∆L (the relative

shortening w.r.t. half sarcomere, thus a dimensionless quantity), accomplished in a
small amount of time δ (i.e. v(t) = ∆L

δ 1[0,δ](t)). We study the solution at t = δ, for
δ → 0+.

The solution of (3.21) when v(t) = v̄ is constant is given by:

µ0(t) = µ0(0) +

(
P
µ0
f (v̄)

r(v̄)
− µ0(0)

)(
1− e−r(v̄)t

)
t ≥ 0,

µ1(t) = µ1(0) +

(
P

(
µ1
f (v̄)

r(v̄)
−
µ0
f (v̄)

r(v̄)2
v̄

)
− µ1(0)

)(
1− e−r(v̄)t

)
+

(
P
µ0
f (v̄)

r(v̄)
− µ0(0)

)
v̄ t e−r(v̄)t t ≥ 0.

(3.27)

By setting v̄ = ∆L
δ , the tension at the end of the length step reads:

Ta(δ) = aXBµ
1(δ) = aXBP

[
µ1
f

r(0)
+

(
µ1
f

(
1

r(v̄)
− 1

r(0)

)
−

µ0
f

r(v̄)2

∆L

δ

)(
1− e−r(v̄)δ

)
+µ0

f

(
1

r(v̄)
− 1

r(0)

)
∆Le−r(v̄)δ

]
.

(3.28)

For time t > δ, the solution is given by (3.27), shifted by δ, with v̄ = 0 and with
initial state given by (3.28). However, to characterize the fast phase, we are here only
interested in studying the asymptotic behavior of (3.28) for δ → 0+. The solution
depends on the behavior of r(v) for v → +∞. We distinguish between four possible
cases: bounded or with sublinear, linear or superlinear growth.

• Saturating behavior. Suppose that for v → +∞, r(v) → rmax. Then, we
have:

Ta(δ) ∼ aXBP

[
µ1
f

r(0)
+

µ0
f

rmax
∆L− µ0

f

(
1

rmax
− 1

r(0)

)
∆L

]

=
aXBPµ

1
f

r(0)
−
aXBPµ

0
f

r(0)
∆L,

(3.29)

which is a linear response, with slope
aXBPµ

0
f

r(0) . In this case, therefore, the fast

response is that of a linear elastic spring (like the T1/L1 curve), with stiffness

given by
aXBPµ

0
f

r(0) .
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• Sublinear growth. Suppose that r(v)→ +∞, but r(v)/v → 0. Then we have
r(v̄)δ = r(∆L

δ )δ → 0, and thus:

Ta(δ) ∼
aXBPµ

1
f

r(0)
−
aXBPµ

0
f

r(0)
∆L, (3.30)

which is the same behavior as the previous case. For this reason, from now on,
we will include both cases in the sublinear growth one.

• Linear growth. Suppose now that r(v) ∼ αv. In this case, we have r(v̄)δ =
r(∆L

δ )δ ∼ α∆L and thus:

Ta(δ) ∼
aXBPµ

1
f

r(0)
e−α∆L −

aXBPµ
0
f

r(0)
e−α∆L∆L. (3.31)

Hence, in this case the response is different from a linearly elastic element. In
order to compare the stiffness for small step lengths with the stiffness predicted
in the sublinear growth case, we linearize around ∆L = 0, getting:

Ta(δ) ∼
aXBPµ

1
f

r(0)
− aXBP

µ0
f + αµ1

f

r(0)
∆L. (3.32)

In conclusion, the stiffness associated with small steps is increased by a term
αaXB P µ

1
f/r(0).

• Superlinear growth. Suppose that r(v)→ +∞ and r(v)/v → +∞. Then we
have r(v̄)δ = r(∆L

δ )δ → +∞, which gives:

Ta(δ)→ 0. (3.33)

This means that if the destruction rate grows more than linearly in the velocity,
then, in the limit of an instantaneous length step, the velocity is such that all
the XB are destructed.

3.2.4 Model calibration

As noticed in Sec. 3.2, the calibration of the generalized H57 model (3.20) requires the
definition of the functions f(x, v) and g(x, v). However, such functions, without a de-
tailed microscopical model, are difficult to be constrained solely based on experimental
results. By assuming that the sum f + g is independent of x and that v only affects
detachment, instead, the objects to be constrained reduce to the four scalars µ0

f̄
, µ1

f̄
,

r0, aXB and the function q(v). In addition, as shown in Sec. 3.2.3, the response to
fast transients is only affected by the asymptotic behavior of q(v) for |v| → +∞, while
the force-velocity relationship is only affected by the values of q(v) for 0 ≤ v ≤ vmax.
Therefore, in the following, we will restrict ourselves to the following two cases:

• Sublinear growth: we consider q(v) such that q(v) = α|v| for small velocities,
while for |v| → +∞ we have q(v)/|v| → 0.

• Linear growth: we consider for simplicity the case q(v) = α|v|.

We do not consider the case of superlinear growth since in the limit of instantaneous
response it predicts the detachment of all the XBs, which hinders the possibility of
fitting any fast response curve.

95



Chapter 3. Modeling the crossbridge dynamics

The behavior of the model is thus determined by five scalar parameters (µ0
f̄
, µ1

f̄
,

r0, aXB, α) and by the asymptotic of behavior q(v) (linear or sublinear). From the
previous sections, it follows that by acting on the above mentioned parameters, the
generalized H57 model can match the following experimentally measured quantities.

• Under isometric conditions, the solution allows to compute the following
quantities.

◦ The isometric tension:

T iso
a = aXB(µ̄1)v̄=0 = aXBP

µ1
f̄

r0
.

◦ The fraction of attached XBs:

µ0
iso := (µ̄0)v̄=0 = P

µ0
f̄

r0
.

• The force-velocity is invariant after normalization with respect to the isometric
tension (see 1.3.4). The generalized H57 model correctly predicts this fact. If
we suppose, for instance, to vary the calcium concentration and consequently
the value of P , the normalized force-length relationship would be unaffected.
Indeed, the normalized force-length relationship is given by:

Ta/T
iso
a =

1

1 + α |v|r0

−
µ0
f̄
/µ1

f̄(
1 + α |v|r0

)2

v

r0
.

Unlike the original H57 model, that predicts a linear force-velocity relationship
(corresponding to the case α = 0), by allowing for a dependence of the de-
tachment rate on the velocity, the experimentally observed convex shape can be
obtained. Indeed, by properly choosing the parameters of the model, one can
fit the following two quantities, characterizing the relationship for large and for
small velocities, respectively.

◦ The maximum shortening velocity:

vmax = r0

(
µ0
f̄

µ1
f̄

− α

)−1

.

◦ The inverse of the sensitivity of the normalized force w.r.t. velocity changes
in isometric conditions (see Fig. 3.4a):

v0 := −
(
∂T̄a/T

iso
a

∂v

∣∣∣∣
v=0

)−1

= r0

(
µ0
f̄

µ1
f̄

+ α

)−1

.

With the original H57 model, having α = 0, we have vmax = v0 and the behaviors
at small and large velocities cannot be decoupled.

• The fast transients response is characterized by two distinct curves, associated
with different time scales (see Sec. 1.3.5). As previously noticed, models belong-
ing to the H57 class do not incorporate a description of the power-stroke and are
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(a) Force-velocity relatioship (b) Fast transient response

Figure 3.4: The force-velocity relationship (a) is characterized by the maximum short-
ening velocity vmax (the intercept of the curve with the axis Ta = 0) and by the inverse
sensitivity of the force to velocity in isometric conditions v0, which can be interpreted
as the intercept with the axis Ta = 0 of the tangent to the curve in isometric conditions.
On the other hand, the response to fast transients is characterized by the normalized
stiffness k̃2, where the subscript 2 reflects the fact that this value characterizes the
T2-L2 response.

thus only capable of reproducing the instantaneous linear response. However,
if we interpret the H57 model as the limit of a more detailed model where the
power-stroke is considered at equilibrium (see Sec. 3.1.3), the fast response is
only characterized by a single time constant, corresponding to the slowest of
the two time constants observed experimentally. Such time constant, therefore,
corresponds to the second of the phases considered in 1.3.5. For this reason, we
interpret the stiffness associated with fast steps in the generalized H57 model of
Eq. (3.20) as the stiffness associated with the T2 − L2 curve. In particular, the
parameters can be chosen so that to fit the following value.

◦ The tangent normalized stiffness in isometric conditions (see Fig. 3.4b):

k̃2 := − ∂Ta(0+)/T iso
a

∂∆L

∣∣∣∣
∆L=0

=

{
µ0
f̄
/µ1

f̄
sublinear q,

µ0
f̄
/µ1

f̄
+ α linear q.

Moreover, we notice that, if one is interested in macroscopic regimes character-
ized by sufficiently large time scales, only the region of the T2-L2 curve asso-
ciated with small steps is of interest. Indeed, the larger the length step, the
higher shortening velocities are needed to appreciate the distinction between
phase 2 and phases 3-4 of the response (we will quantitatively support this point
in Sec. 4.4.6). In conclusion, since in the region associated with small steps
a linear fit provides a good approximation of the curve, the quantity k̃2 alone
provides a sufficiently complete characterization of the fast step response.

The five parameters characterizing the generalized H57 model (3.20) can be assigned
to match the five measured quantities T iso

a , µ0
iso, vmax, v0 and k̃2. This provides a

practical way of calibrating the model parameters from experimental measurements.
Specifically, in the linear growth case, the parameters of the model can be constrained
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by the following relationships:

r0 = k̃2 v
0,

α =
r0

2
((v0)−1 − (vmax)−1) =

k̃2

2

(
1− v0

vmax

)
,

µ0
f̄ =

µ0
isor0

P
=
µ0

isok̃2v
0

P
,

µ1
f̄ =

(
k̃2 − α

)−1

µ0
f̄ ,

aXB =
T iso

a r0

µ1
f̄
P

=
T iso

a k̃2(1 + v0

vmax )

2µ0
iso

.

(3.34)

Conversely, in the sublinear growth case we have:

r0 =
2 k̃2v

max

1 + vmax/v0
,

α =
vmax − v0

vmax + v0
k̃2,

µ0
f̄ =

µ0
isor0

P
,

µ1
f̄ = µ0

f̄/k̃2,

aXB =
T iso

a r0

µ1
f̄
P
.

(3.35)

In both the cases of linear and sublinear growth, P denotes the permissivity associated
with the condition in which T iso

a and µ0
iso are measured.

Remark 3.1. Among the five quantities used to calibrate the model parameters, only
one (namely µ0

iso) is related to the microscopic scale, while the others are related to
the macroscale. The measurement of µ0

iso may be hard to be accomplished, indeed.
However, if one is interested only in the prediction of the generated tension and not
in the moments µ0 and µ1, the calibration can be accomplished regardless of µ0

iso, by
considering only the macroscopic scale. As a matter of fact, the three parameters aXB,
µ0
f̄

and µ1
f̄

appear always in the two combinations aXBµ
1
f̄

and µ0
f̄
/µ1

f̄
, apart from in

the expression of µ0
iso. Therefore, one could calibrate the two combined terms aXBµ

1
f̄

and µ0
f̄
/µ1

f̄
rather than the three parameters.

In other terms, thanks to the linearity of the equations, the value of µ0
iso used

in the calibration of the model only affects the prediction of the quantities related
to the microscale (i.e. µ0 and µ1), but not the tension Ta (and the active stiffness
Ka). Therefore, as far as the modeling of Ta and Ka is concerned, the model is fully
characterized by the four quantities T iso

a , vmax, v0 and k̃2.

3.3 Final remarks

The dynamics of XBs is characterized by different time scales. In [CMC19], the
authors have shown that if the degrees of freedom associated to the fastest dynamics
are considered in equilibrium, the CMC19 model formally reduces to the H57 model.
Therefore, the H57 model, despite it does not explicitly represent the power-stroke,
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can still be considered as a good description of the muscle behavior under regimes
characterized by time-scales slower than that of the power-stroke.

Motivated by this observation, we have considered a generalized version of the H57
model (where the dependence of the transition rates from the shortening velocity is
allowed and where the amount of recruitable XBs depends on the RUs permissivity P ).
We have shown that the model possesses enough flexibility to match the main features
of the experimental characterizations associated with the XB dynamics, namely the
force-velocity relationship and the response to fast transients. Coherently with the
interpretation of the H57 model (as if the power-stroke is considered at equilibrium),
we here interpret the tension predicted by the model as the tension measured after that
the power-stroke has reached a new equilibrium (i.e. the T2-L2 curve of Sec. 1.3.5).
In fact, to distinguish the T1-L1 curve from the T2-L2 one, the tissue must undergo
a very large shortening/lengthening velocity; however, if we consider only regimes
associated to relatively slow time-scales (or, equivalently, small shortening/lengthening
velocities), this cannot occur and, hence, one can only observe the T2-L2 curve. More
precisely, one can observe only the part of the T2-L2 curve associated with small time
steps, as to decouple the time-scales of the phase 2 from that of the phase 4 of force
recovery (see Sec. 1.3.5) for large length steps a large shortening velocity is needed as
we will quantitatively show in Sec. 4.4.6.

Finally, we have shown that under the hypothesis that the total transition rate
is independent of x and that, as it is reasonable, v only affects the detachment rate,
the distribution-moments equations can be written for the generalized H57. Such
equations depend on 5 parameters (or 4, if one is not interested in predicting the
microscopical quantities µ0 and µ1, but only the generated tension). We have shown
that the parameters can be easily constrained from 5 (respectively, 4) experimentally
measurable quantities. This provides an effective way of calibrating the model param-
eters. This model, therefore, strikes a good balance between number of parameters
and model flexibility.
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Chapter 4
Modeling the full-sarcomere
dynamics

After having considered, in Chap. 2, the RU dynamics and, in Chap. 3, the XB
dynamics, in this chapter we deal with the mathematical modeling of the overall
sarcomere dynamics. Besides the issues already encountered in the modeling of the
RUs and the XB dynamics alone, the coupling of the two makes further complications
arise. A major issue is related to the fact that, when the muscle contracts, the thin
and the thick filaments mutually slide. Therefore, the XBs faced by each RUs change
as time goes by. The consequent necessity of tracking which XB faces which BS is
typically addressed in literature by explicitly representing the physical arrangement
of filaments and by approximating the average behavior of the sarcomere by the MC
method.

After a review of the literature, we present our strategies to deal with the above
mentioned issues. Hence, we derive several microscale force generation models, under
different assumptions. We present our strategy for the calibration of the parameters
of the models and, finally, we show the results obtained under different experimental
conditions.
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4.1. Full-sarcomere mathematical models

4.1 Full-sarcomere mathematical models

In the past two decades, several models describing the generation of active force in
the cardiac tissue, including both the calcium-driven regulation and the XB cycling,
have been proposed. The main challenge faced in the development of such models is
well summarized by J. J. Rice and coauthors in [Ric+08]:

[. . .] [The] difficulty lies in trying to compress the spatial aspects of myofila-
ments at the molecular level into a tractable system of equations. Moreover,
if computational speed is desired, then the system must be fairly simple and
implemented with ordinary differential equations (ODEs) instead of partial
differential equations or Monte Carlo approaches typically required for ex-
plicit consideration of the spatial aspects.

Indeed, the spatial dependence of the cooperativity phenomenon, crucial to reproduce
the calcium dependence of muscle activation (see Sec. 2.1), dramatically increases the
computational complexity of activation models, even more so when such models are
coupled with models described XB cycling. When the interactions between BSs and
MHs is considered, indeed, one must face the further difficulty of tracking which BS
faces which MH when the filaments mutually slide. The attempt of capturing such
spatially dependent phenomena in a compact system of ODEs is the fil rouge of most
of the literature on sarcomere modeling (see e.g. [Zah81; BCS01; Ric+03; Sac04;
Ric+08; Cam+10; Cha+12; Was+12; LN15; RDQ18]).

Computationally efficiency is a major issue when the sarcomere model is employed
in multiscale simulation, such as cardiac electromechanics. For instance, as we will see
in Chap. 8, when a Finite Element discretization is employed at the macroscale, the
microscale model needs to be solved at least at each nodal point of the computational
mesh, that may feature millions of points. Hence, if the sarcomere model is not
enough computationally efficient, it represents the bottleneck of the whole simulation,
making the overall computational cost dramatically increase. Moreover, a multiscale
simulation also requires to store the state of the microscale contraction model in each
nodal point of the computational mesh. Therefore, if the model features a large
number of variables, the resulting total number of variables to be stored can pose
serious memory issues.

4.1.1 Phenomenological models

Most of the available full-sarcomere models, linking the calcium-driven tissue activa-
tion with the generation of force, are based on phenomenological considerations. The
model proposed in [HMTK98] and later modified in [NHS06] consists in system of a
few ODEs, describing the time evolution of the fraction of permissive RUs, the concen-
tration of bound calcium ions and the variables of the so-called fading-memory model,
a phenomenological description of the tension development phenomenon accounting
for the shortening velocity. The cooperativity mechanism is phenomenologically rep-
resented by assuming a steeply nonlinear response, with respect to calcium dynamics,
for the fraction of permissive RUs. A similar model have been proposed in [Lan+12]
and, in [Tøn+15], the two models of [Lan+12] and [NHS06] have been re-calibrated
to fit data from human cardiomyocytes. In [Lan+17] a model with similar features
has been proposed, based on measurements from human cardiomyocytes.

In the model proposed in [Ric+08], cooperativity is captured again by a phe-
nomenological modification of the transition rates of the variables describing the RUs
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permissivity. On the other hand, XB cycling is modeled by a four states CTMC (de-
tached XB with RU in non permissive or permissive state, attached XB in pre and
post power-stroke configuration). The attachment and detachment transition rates of
the CTMC depend on two continuous variables representing the mean distortion of
attached XBs in pre and post power-stroke configuration respectively, adapted from
the stiffness-distortion model of [RBC99]. This model goes along with the approxi-
mation that the distance of attached MHs from the nearest BS is well approximated
by its average value.

In [Ros+14; RB+14] an active strain model is proposed, where the sarcomere
dynamics is modeled by a phenomenological instantaneous relationship linking [Ca2+]i
and SL to the generated tension. The model neglects time-dependent effects of force
generation and assumes a multiplicative decomposition between the dependence on
[Ca2+]i and SL, thus neglecting length-dependent effect on activation (see Sec. 1.3.2).

4.1.2 Monte Carlo models

The alternative to phenomenological models is given by CTMC models based on a de-
tailed description of the sucellular mechanisms, with variables describing the calcium-
driven activation of the thin filament and the XB cycling. However, the huge number
of possible states of the system makes the solution of the FKE associated with the
CTMC unaffordable. This dictates the usage of the unefficient MC method.

The University of Tokio heart simulator (UT-Heart, see [Was+13; Was+15]) em-
ploys a CTMC model describing half MF with NM MHs and an AF with NA RUs.
The CTMCs describing the RUs are coupled together by means of nearest-neighboring
interactions, as in the R03 model, to capture the cooperativity phenomenon. Each
MH, in turn, is modeled by a CTMC where the power-stroke is described within the
HS71 formalism, that is to say as transitions between discrete states. A continuous
variable describing the myosin arm stretch is associated with each MH, so that the
transition rates are made dependent on the XB distortion. Moreover, the state of each
RU affects the transition rate of the facing MH and also a feedback from XBs to RUs
is included into the model. Finally, the SL dependence is accounted for by making
the transition rates dependent on the overlap between the filaments, as in the model
of [Was+12]. Because of the difficulties in capturing the spatial interactions between
units by means of an ODE system, the solution of the CTMC model is approximated
by means of the MC method.

A similar CTMC model, where the cooperative R03 model for RUs is coupled with
a HS71-like model for XBs is proposed in [HTR06]. This model assumes that when a
XB is attached, the transition of the corresponding RU from the non permissive state
to the permissive one is prevented. Also in this case, the model is solved by the MC
method.

The drawback of the MC method is its huge computational complexity, an is-
sue that is made even more important by the very small time steps dictated by the
fast power-stroke dynamics (in [HTR06] a time step of ∆t = 0.1 µs is used, while in
[Was+13] the authors use ∆t = 5 µs). Indeed, the number of MC samples (nMC)
required to reach statistical convergence for a cooperative CTMC belonging to the
class of the R03 model may be very large. In [Sug+12], the authors write that “MC
simulation required more than 1000 repeats to obtain reasonable mean values”. In
our experience (see Sec. 2.2.5), more that nMC = 10000 is needed to obtain an error of
the order of 10−2. Moreover, because of the very slow convergence of the MC method

(O(n
−1/2
MC )), to reduce the error of one order of magnitude, the number of MC samples
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need to be increased by two orders of magnitude.

4.2 Proposed full-sarcomere models

In this chapter we propose different models of the full-sarcomere function, featuring
a description of both the RU and the XB dynamics. All the models are based on a
common formalism to describe the physical arrangement and the interactions among
the regulatory and contractile proteins, that is described in Sec. 4.2.1. In Sec. 4.2.2
we present and discuss different assumptions that we use to derive, in Secs. 4.2.3 and
4.2.6, our models. Finally, in Sec. 4.2.7 we provide an overview on the proposed models
and on the different assumptions they are based on.

In the definition of such models and in their selection we follow the epistemolog-
ical principle of parsimony, known as Occam’s razor principle [GJGGJ03; MMK03]
after William of Occam (1287–1347, English Franciscan friar, scholastic philosopher
and theologian), by which entia non sunt multiplicanda praeter necessitatem (entities
are not to be multiplied beyond necessity). This means that the simplest description
for the phenomenon to be modeled should be preferable and, at the same time, the
irrelevant aspects should be neglected. This principle is the basis of the construction
af mathematical models, that are by definition idealized descriptions of more com-
plicated phenomena (“all models are wrong, but some are useful”, to use the words
of the statistician George Box). The application of the Occam’s razor principle to
the development of mathematical models reduces the number of the parameters to be
fitted from experimental data, thus enhancing the predictive power of models [Kno90;
GJGGJ03; MMK03; RG01].

As in most of RUs models (see Sec. 2.1), we describe Tn and Tm by discrete
states. Moreover, based on the experimental evidence that cooperativity is due to RUs
end-to-end interactions (see Sec. 1.3.2 and, e.g., [SV17]), we include nearest-neighbor
interactions among RUs with the R03 formalism.

Concerning the modeling of XBs, we recall that we are here interested in developing
a model of cardiomyocytes contraction in a beating heart. Moreover, we notice that
the time-scales characterizing cardiac EM are slower than the fast time-scale of the
power-stroke (as we will quantitatively assess later on). This suggests that, coherently
with the Occam’s razor principle, the level of detail that best suits the application
to cardiac EM does not require to explicitly represent the power-stroke. In [CMC19],
indeed, the authors showed that if the considered time-scales are slower than the time-
scale of the power-stroke, a detailed model including the power-stroke reduces to a
H57-like model, where only the attachment-detachment process of XBs is explicitly
represented (see Sec. 3.1.3). Therefore, we model the XB dynamics as a two-states
process, within the H57 formalism, where the attachment-detachment rates depend
on the myosin arm distortion. Moreover, we allow the transition rate to depend also
on the sliding velocity of the myofilaments.

4.2.1 Models setup

We consider half MF, where NM MHs are located, and one AF, regulated by NA RUs.
As we did in Sec. 2.4, we place a reference system at the end of the AF closer to
the center of the sarcomere (see Fig. 2.14) and we consider the following smoothed
geometrical factors (similar to the ones presented in Sec. 2.4, but where the smoothing
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function is centered to the threshold), for i ∈ IA:

χM (SL, i) =
1

2
tanh

(
yi − yLM
εSL

)
+

1

2
tanh

(
−yi − yRM

εSL

)
,

χSF (SL, i) =
1

2

(
1 + tanh

(
yi − ySF
εSL

))
,

where

yLM = (2LA − SL+ LH)/2, ySF = 2LA − SL,

yRM = (2LA − SL+ LM )/2, yi =
LA
NA

(i− 0.5).

We notice that we have χM (SL, i) ' 1 if the i-th RU faces the considered half MF
and χSF (SL, i) ' 1 if the i-th RU is in the single filament region (no overlap with
other AFs occurs). Let dij(t) be the distance between the i-th actin BS and the j-th
MH at time t, defined as:

dij(t) =
LA
NA

i− LM − LH
2NM

j +
SL(t)

2
− (1 + 2NA)LA +NALH

2NA

= DAi−DM j +
SL(t)

2
− d0.

(4.1)

In the model that we propose, each RU is characterized by the state of Tn (bound to
calcium or not) and Tm (permissive or not). Moreover, each RU corresponds to a BS
to which the MHs can bind. Obviously, each MH can bind to a single BS at a time and,
conversely, each BS can have at most a single MH attached. We consider therefore
the following stochastic processes, for i ∈ IA := {1, . . . , NA}, j ∈ IM := {1, . . . , NM}
and t ≥ 0:

Cti =

{
B if the i-th Tn is bound to calcium,

U else;

T ti =

{
P if the i-th Tm is permissive,

N else;

Ati =

{
j if the i-th actin BS is attached to the j-th MH,

0 if the i-th actin BS is not attached to any MH;

M t
j =

{
i if the j-th MH is attached to the i-th actin BS,

0 if the j-th MH is not attached to any actin BS;,

Zti =

{
x if the i-th actin BS is attached to a MH with displacement x,

∅ if the i-th actin BS is not attached to any MH.

(4.2)

We notice that the last three processes are redundant, as we have:

(Ati = j) ⇐⇒ (M t
j = i) ⇐⇒ (Zti = dij(t)).

In the following we will use the notation N = P, P = N , U = B and B = U to denote
opposite states.

We assume, coherently with the hypotheses of the R03 model, that the dynamics
of TnC is affected by the state of the corresponding Tm, and that the dynamics of
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Tm is affected by the TnC belonging to the same RUs and by the state of Tm in the
nearest neighboring RUs, by a cooperativity mechanism. We exclude any feedback
from XBs on the dynamics of the RUs, as recent experimental evidence supports that
this kind of feedback is not present (see [SLI09; Far+10] and Sec. 1.3.2). Conversely,
the attachment-detachment rates of the XBs may depend on the distance between the
MH and the BS, the relative velocity between the filaments and the permissivity state
of the RU. Moreover, transition rates can be affected by the mutual arrangements
between the filaments: we allow thus for a dependence of the transition rates on the
index corresponding to each unit. We consider therefore the following transition rates
for the stochastic processes defined in (4.2), where δ ∈ {B,U}, α, β, η ∈ {P,N}:

k
δδ|β
C,i = lim

∆t→0

1

∆t
P
[
Ct+∆t
i = δ | (Ci, Ti)t = (δ, β)

]
,

k
ββ|α · η,δ
T,i = lim

∆t→0

1

∆t
P
[
T t+∆t
i = β | (Ti−1, Ti, Ti+1, Ci)

t = (α, β, η, δ)
]
,

f iα(x, v(t)) = lim
∆t→0

1

∆t
P
[
Zt+∆t
i = x |Zti = ∅, T ti = α,

∃ j ∈ IM dtij = x+ vhs∆t,M
t
j = 0

]
,

giα(x, v(t)) = lim
∆t→0

1

∆t
P
[
Zt+∆t
i = ∅ |Zti = x, T ti = α

]
,

(4.3)

where v(t) plays the role of independent variable. In the definition of f iα, the events
conditioning the probability ensure that, at time t, the i-th BS is not attached and
that there exists a non-attached MH at distance x+ vhs∆t (so that at time t+ ∆t the
distance is reduced to x).

As mentioned before, the transition rates may be affected by the mutual arrange-
ment of the filaments. Specifically, we assume that binding is possible only in the
single-overlap region and that it may be characterized by different rates inside and
outside the single-overlap region. Hence, we have, for α ∈ {N ,P} and i ∈ IA:

f iα(x, v) = fα(x, v)χM (SL, i)χSF (SL, i),

giα(x, v) = gα(x, v)χM (SL, i)χSF (SL, i) + g̃α(x, v) (1− χM (SL, i)χSF (SL, i)).

(4.4)

Moreover, we assume that XBs can form only when the RU regulating the BS is in
permissive configuration (i.e. fN ≡ 0). For the sake of simplicity, we shorten the
notations as:

f ijP = f iP(dij(t), v(t)), f ijN = f iN (dij(t), v(t)),

gijP = giP(dij(t), v(t)), gijN = giN (dij(t), v(t)).
(4.5)

Finally, the expected value of the force exerted by the considered pair of interacting
half MF and AF is given by:

Fhf(t) =
∑
i∈IA

E
[
FXB(Zti )

]
,

where we set by convention FXB(∅) = 0.

4.2.2 Models assumptions

The stochastic processes (4.2) and the transition rates (4.3) define a CTMC, whose
evolution is driven by the associated FKE. However, as for the models considered in
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Chap.2, the size of the FKE model is huge. Indeed, each RU is characterized by four
possible states and the corresponding actin BS can be either unbound or bound to
one of the NM MHs, leading to a system of ODEs with (4(NM + 1))NA variables.
Therefore, if we set, for instance, NM = 18 and NA = 32, we would have more than
1060 variables!

To derived a compact equation describing the evolution of the system, we introduce
some assumptions by following a similar strategy to the one we used to derive the model
of Sec. 2.2.2. These assumptions allow to neglect second-order interactions among the
stochastic processes, so that the variables can be partially decoupled, thus leading to
drastic reductions in the size of model. Such strategy is illustrated in the following
proposition.

Proposition 4.1. Let (Ω,A,P) be a probability space. Let A,B,C ⊂ Ω and let D be
a finite partition of Ω, such that:

(H1) A ⊥⊥ B |C,D ∀D ∈ D;

(H2) B ⊥⊥ D |C ∀D ∈ D.

Then, we have:

P [A|B,C] =

∑
D∈D P [A|C,D]P [C,D]

P [C]
= P [A|C]. (4.6)

Proof. We have:

P [A|B,C] =
P [A,B,C]

P [B,C]
=

∑
D∈D P [A,B,C,D]

P [B,C]
=

∑
D∈D P [A|B,C,D]P [B,C,D]

P [B,C]

=

∑
D∈D P [A|B,C,D]P [B|C,D]P [C,D]

P [B,C]
.

(4.7)

Tanks to (H1), we have:
P [A|B,C,D] = P [A|C,D]. (4.8)

Moreover, thanks to (H2), we have:

P [B|C,D] = P [B|C] = P [B,C]/P [C]. (4.9)

By substituting into the above equation, the thesis follows.

In the following, we will use several times the result of Prop. 4.1, where (H1) is a
modeling choice on the dynamics of the system and (H2) is a simplifying assumption.
Specifically, A is the target event, whose probability is the aim of the computation. In
many situations, we know the joint probability of C and B, whereas the probability of
A can be obtained by the joint probability of C and a different eventD. Proposition 4.1
allows to pass from B to D, by assuming that the knowledge of B does not provide
any further information when C and D are known.

In the following we will consider the following conditional independence assump-
tions:

(Ii) (Ti+1, Ci)
t ⊥⊥ (Ti−2, Ci−1)t|(Ti−1, Ti)

t for i = 3, . . . , NA − 1,

(Ti−1, Ci)
t ⊥⊥ (Ti+2, Ci+1)t|(Ti+1, Ti)

t for i = 2, . . . , NA − 2.
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(Iii) (Ti+1, Ci+1)t ⊥⊥ T ti−2|(Ti−1, Ti, Ci−1, Ci)
t for i = 3, . . . , NA − 1,

(Ti−1, Ci−1)t ⊥⊥ T ti+2|(Ti+1, Ti, Ci+1, Ci)
t for i = 2, . . . , NA − 2.

(Iiii) Ati ⊥⊥ (Ti−1, Ti+1, Ci)
t|T ti for i = 2, . . . , NA − 1.

(Iiv) Ath ⊥⊥ (Ti, Ai)
t for i, h = 1, . . . , NA s.t. i 6= h.

Assumptions (Ii) and (Iii) are similar to assumption (2.22) and state that far RUs
along the filament are conditionally independent given the states of the intermediate
RUs. As we noticed in Sec. 2.2.5, this is coherent with the modeling assumptions, as
the dynamics of RUs is affected by the state of nearest-neighboring units and long-
range interactions are always mediated by the intermediate units. In the following we
will assume either (Ii) or (Iii).

Assumption (Iiii), on the other hand, entails that the state of a BS is conditionally
independent of the state of surrounding RUs, given the permissivity state of the asso-
ciated RU. This is also coherent with the assumptions underlying the model, as the
only feature of the RUs that directly affects the XBs binding rates is the permissivity
state of Tm.

Finally, assumption (Iiv) states that the attachment state of far units can be
considered as independent. We will see that assumption (Iiv) can be replaced by the
following dual assumptions:

(Ai) f ijP 6= 0 =⇒ Ah 6= j ∀h 6= i;

(Aii) f ijP 6= 0 =⇒ Mk 6= i ∀ k 6= j.

Assumption (Ai) states that, whenever a XB can form, the MH cannot be involved
in a XB with a farther BS. Suppose that the support of f is contained in the interval
[x1, x1 +h]. Then, this is equivalent to say that, if dij ∈ [x1, x1 +h], the XBs between
the couples (i−1, j) and (i+1, j), which feature displacements dij−DA and dij +DA

respectively, cannot exist. This condition is automatically fulfilled if XBs are present
only for displacements in the interval (−DA + x1 + h,DA + x1), which has width
2DA − h. The interval consists in the support of f , with width h, surrounded by two
bands of width DA − h.

On the other hand, assumption (Aii) accounts to say that, whenever a XB can form,
the BS cannot be involved in a XB with a farther MH. By similar considerations,
it turns out that this hypothesis is satisfied if XBs are present only in the range
(−DM + x1 + h,DM + x1). Since DM > DA, assumption (Ai) is stronger than (Aii).

Assumptions (Ai)-(Aii) allow to decouple the dynamics of the different units. Their
validity is justified when the shortening velocity is relatively small, whereas, for large
velocities, the XB displacements may be convected outside the region (−DA + x1 +
h,DA + x1). Figure 4.1 provides a visual representation of assumptions (Ai)-(Aii).
We notice that all the models belonging to the family of the H57 model are based
on these assumptions, without which, as we mentioned in Sec. 3.2, the H57 equation
cannot be derived.

4.2.3 Thin filament regulation

Due to the lack of feedback from XBs to RUs, it is possible to write an equation
describing the evolution of the stochastic processes Cti and T ti independently of the
stochastic processes associated with XBs. Moreover, we notice that by introducing
the stochastic processes Rti := (Cti , T

t
i ) ∈ {U ,B}×{N ,P}, their evolution is driven by
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✗ 🗸 ✗
AF

MF

(a) Assumption (Ai).

✗ 🗸 ✗
AF

MF

(b) Assumption (Aii).

Figure 4.1: Representation of assumptions (Ai)-(Aii). According to assumption (Ai)
(respectively, assumption (Aii)) when a BS-MH pair is within the XB formation range,
then the adjacent BSs (respectively, MHs) cannot be bound to the considered MH
(respectively, BS).

a CTMC formally equivalent to the model considered in Sec. 2.2. Hence, we consider
probabilities written in the form of:

παβδ,ϑηλi (t) := P
[
(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
, (4.10)

where i = 2, . . . , NA − 1, ϑ, η, λ ∈ {U ,B} and α, β, δ ∈ {N ,P}. We notice that this
notation is related to the notation used in Chap. 2 by the following relationship:

παβδ,ϑηλi (t) ≡ (ϑα,
i

ηβ, λδ)t.

In this chapter, however, for the sake of clearness we will follow the newly introduced
notation.

By proceeding as in Sec. 2.2, we consider the time increment ∆t and we compute
the probability παβδ,ϑηλi (t+ ∆t). By adopting assumption (Iii), we approximate the
terms in the following form as:

P
[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
=

∑
ξ,ζ

πξαβ,ζϑηi−1 (t)

−1∑
ξ,ζ

P
[
T t+∆t
i−1 = α|(Ti−2, Ti−1, Ti)

t = (ξ, α, β),

(Ci−2, Ci−1, Ci)
t = (ζ, ϑ, η)

]
πξαβ,ζϑηi−1 (t)

=

∑
ξ,ζ k

αα|ξ · β,ϑ
T,i πξαβ,ζϑηi−1 (t)∑
ξ,ζ π

ξαβ,ζϑη
i−1 (t)

∆t+ o (∆t) ,

where we have applied Prop. 4.1 for A = (T t+∆t
i−1 = α), B = (T ti+1 = δ, Cti+1 = λ),

C = ((Ti−1, Ti)
t = (α, β), (Ci−1, Ci)

t = (ϑ, η)) and D = {(T ti−2 = ξ, Cti−2 = ζ)}ξ,ζ .

By taking the limit ∆t → 0, we get the following system of nonlinear ODEs, for
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t ≥ 0 and for any i = 2, . . . , NA − 1, ϑ, η, λ ∈ {U ,B} and α, β, δ ∈ {N ,P}:

d

dt
παβδ,ϑηλi = k̃

αα|◦ · β,◦ϑη
T,i−1 παβδ,ϑηλi − k̃αα|◦ · β,◦ϑηT,i−1 παβδ,ϑηλi

+ k
ββ|α · δ,η
T,i παβδ,ϑηλi − kββ|α · δ,ηT,i παβδ,ϑηλi

+ k̃
δδ|β · ◦,ηλ◦
T,i+1 παβδ,ϑηλi − k̃δδ|β · ◦,ηλ◦T,i+1 παβδ,ϑηλi

+ k
ϑϑ|α
C,i−1 παβδ,ϑηλi − kϑϑ|αC,i−1 παβδ,ϑηλi

+ k
ηη|β
C,i παβδ,ϑηλi − kηη|βC,i παβδ,ϑηλi

+ k
λλ|δ
C,i+1 παβδ,ϑηλi − kλλ|δC,i+1 παβδ,ϑηλi ,

(4.11)

endowed with suitable initial conditions and where we have defined the transition rates
with missing information as follows (the symbol ◦ denotes the lack of information
regarding the corresponding state):

k̃
αα|◦ · β,◦ϑη
T,i :=


∑
ξ,ζ k

αα|ξ · β,ϑ
T,i πξαβ,ζϑηi∑
ξ,ζ π

ξαβ,ζϑη
i

for i = 2, . . . , NA − 1,

k
αα|N · β,ϑ
T,i for i = 1;

k̃
δδ|β · ◦,ηλ◦
T,i :=


∑
ξ,ζ k

δδ|β · ξ,λ
T,i πβδξ,ηλζi∑
ξ,ζ π

βδξ,ηλζ
i

for i = 2, . . . , NA − 1,

k
δδ|β · N ,λ
T,i for i = NA.

(4.12)

The permissivity of the i-th regulatory unit, defined as Pi(t) = P [T ti = P], can be
obtained as:

Pi(t) =



∑
β,δ∈{N ,P}

∑
ϑ,η,λ∈{U,B}

πPβδ,ϑηλ2 (t) for i = 1,∑
α,δ∈{N ,P}

∑
ϑ,η,λ∈{U,B}

παPδ,ϑηλi (t) for i = 2, . . . , NA − 1,∑
α,β∈{N ,P}

∑
ϑ,η,λ∈{U,B}

παβP,ϑηλNA−1 (t) for i = NA.

4.2.4 Crossbridge dynamics: discrete setting

Equation 4.11 drives the evolution of the probabilities associated with the stochastic
processes describing the state of the RUs. In order to derive an equation for the evo-
lution of the stochastic processes describing the attachment and detachment of XBs,
we proceed in a similar manner. Specifically, we consider the following probabilities,
for i ∈ IA, j ∈ IM :

nij,P(t) = P
[
(Ai, Ti)

t = (j,P)
]
, nij,N (t) = P

[
(Ai, Ti)

t = (j,N )
]
, (4.13)
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and we look for an equation for the evolution of nij,P(t) and nij,N (t) written in closed
form. Thanks to the Bayes formula [KS98] we have:

P
[
(Ai, Ti)

t+∆t = (j,P)
] ∆t→0∼

P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (0,P)
]
P
[
(Ai, Ti)

t = (0,P)
]

+P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (j,N )
]
P
[
(Ai, Ti)

t = (j,N )
]

+P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (j,P)
]
P
[
(Ai, Ti)

t = (j,P)
]
.

Thanks to Prop. 4.1, by taking A = ((Ai, Ti)
t+∆t = (j,P)), B = (Ati = j), C = (T ti =

N ) and D = {(Ti−1, Ti+1, Ci)
t = (α, η, δ)}α,η,δ, assumption (Iiii) leads to

P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (j,N )
] ∆t→0∼ k̃NPT,i ∆t,

where we have defined:

k̃NPT,i :=

∑
α,η,δ k

NP|α · η,δ
T,i P [(Ti−1, Ti, Ti+1, Ci)

t = (α,N , η, δ)]
P [T ti = N ]

,

k̃PNT,i :=

∑
α,η,δ k

PN|α · η,δ
T,i P [(Ti−1, Ti, Ti+1, Ci)

t = (α,P, η, δ)]
P [T ti = P]

.

(4.14)

We notice that the transition rates k̃NPT,i and k̃PNT,i can be obtained from the variables

παβδ,ϑηλi as:

k̃NPT,i :=

∑
α,δ,ϑ,η,λ k

NP|α · δ,η
T,i παNδ,ϑηλi

1− Pi
,

k̃PNT,i :=

∑
α,δ,ϑ,η,λ k

PN|α · δ,η
T,i παPδ,ϑηλi

Pi
.

(4.15)

Moreover, we have:

P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (j,P)
]

∆t→0∼ 1− P
[
At+∆t
i = 0|(Ai, Ti)t = (j,P)

]
− P

[
T t+∆t
i = N|(Ai, Ti)t = (j,P)

]
∆t→0∼ 1−∆t

(
gijP − k̃

PN
T,i

)
.

(4.16)

Concerning the XB formation term, we have:

(F ) := P
[
At+∆t
i = j, T t+∆t

i = P, Ati = 0, T ti = P
]
P
[
Ati = 0, T ti = P

]
= P

[
(Ai, Ti)

t+∆t = (j,P), (Ai, Ti)
t = (0,P)

]
= P

[
(Ai, Ti)

t+∆t = (j,P), (Ai, Ti)
t = (0,P),M t

j = 0
]

+ P
[
(Ai, Ti)

t+∆t = (j,P), (Ai, Ti)
t = (0,P),M t

j 6= 0
]
.

The first term can be obtained as:

P
[
(Ai, Ti)

t+∆t = (j,P), (Ai, Ti)
t = (0,P),M t

j = 0
]

= P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (0,P),M t
j = 0

]
P
[
(Ai,Mj , Ti)

t = (0, 0,P)
]

∆t→0∼ f ijP P
[
(Ai,Mj , Ti)

t = (0, 0,P)
]

∆t,
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while the second one vanishes for ∆t→ 0:

P
[
(Ai, Ti)

t+∆t = (j,P), (Ai, Ti)
t = (0,P),M t

j 6= 0
]

= P
[
(Ai, Ti)

t+∆t = (j,P)|(Ai, Ti)t = (0,P),M t
j 6= 0

]
P
[
(Ai, Ti)

t = (0,P),M t
j 6= 0

]
= o (∆t) .

Therefore, the XB formation term (F ) is given by:

(F )
∆t→0∼ f ijP P

[
(Ai,Mj , Ti)

t = (0, 0,P)
]

∆t. (4.17)

Such term can be obtained in different ways, by undertaking different assumptions.

• If assumption (Iiv) holds, we have:

P
[
(Ai,Mj , Ti)

t = (0, 0,P)
]

= P
[
(Ai, Ti)

t = (0,P),∀h 6= i Ath 6= j
]

' P
[
(Ai, Ti)

t = (0,P)
]∏
h 6=i

P
[
Ath 6= j

]
' P

[
(Ai, Ti)

t = (0,P)
]∏
h 6=i

(1− P
[
(Ah, Th)t = (j,P)

]
− P

[
(Ah, Th)t = (j,N )

]
),

where:

P
[
(Ai, Ti)

t = (0,P)
]

= (P
[
T ti = P

]
−
NM∑
k=1

P
[
(Ai, Ti)

t = (k,P)
]
).

• Otherwise, as alternative to the former, if we assume (Ai), it follows that for the
values i, j such that f ijP 6= 0, the event (Ati = 0) implies (M t

j = 0) and thus:

(F ) ∼ f ijP∆tP
[
(Ai, Ti)

t = (0,P)
]

= f ijP∆t(P
[
T ti = P

]
−
NM∑
k=1

P
[
(Ai, Ti)

t = (k,P)
]
).

Moreover, thanks to (Aii) (which is implied by assuming (Ai)) the unique nonzero
term of the summation is k = j, thus leading to:

(F ) ∼ f ijP∆t(P
[
T ti = P

]
− P

[
(Ai, Ti)

t = (j,P)
]
).

To sum up, with assumptions (Iiii) and (Iiv) we have:

d

dt
nij,P = (Pi −

NM∑
k=1

nik,P)
∏
h6=i

(1− nhj,P − nhj,N )f ijP

− gijPnij,P − k̃
PN
T,i nij,P + k̃NPT,i nij,N t ≥ 0, i ∈ IA, j ∈ IM ,

d

dt
nij,N = ((1− Pi)−

NM∑
k=1

nik,N )
∏
h6=i

(1− nhj,P − nhj,N )f ijN

− gijNnij,N − k̃
NP
T,i nij,N + k̃PNT,i nij,P t ≥ 0, i ∈ IA, j ∈ IM .

(4.18)
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By combining Eq. (4.11) (describing the dynamics of RUs) with Eq. (4.18) (describing
the dynamics of XBs), we obtain a model for the whole sarcomere function. In the
following, we will refer to it as the SE-disc-I model (the first spatially-explicit model
with discrete description on XBs).

On the other hand, with assumptions (Iiii) and (Ai) we have:

d

dt
nij,P = (Pi − nij,P)f ijP − g

ij
Pnij,P

− k̃PNT,i nij,P + k̃NPT,i nij,N t ≥ 0, i ∈ IA, j ∈ IM ,
d

dt
nij,N = ((1− Pi)− nij,N )f ijN − g

ij
Nnij,N

− k̃NPT,i nij,N + k̃PNT,i nij,P t ≥ 0, i ∈ IA, j ∈ IM .

(4.19)

By combining Eq. (4.11) with Eq. (4.19) we obtain an alternative model, that we
denote as the SE-disc-II model.

In both the cases of the SE-disc-I and the SE-disc-II models, the expected value
of the force exerted by the whole half filament can be obtained as:

Fhf(t) =
∑
i,j

FXB(dij(t))(nij,P(t) + nij,N (t)). (4.20)

4.2.5 Crossbridge dynamics: continuous setting

A set of equations describing the XB dynamics presented in Sec. 4.2.1, alternative
to the ones of Sec. 4.2.4, can be derived if we consider that the filaments of differ-
ent sarcomeres may feature heterogeneities in their dimension, so that the value of
d0 itself in Eq. (4.1) should be regarded as a random variable rather than a con-
stant. We assume therefore that, given a BS facing the MF, the probability that
the closest MH is located at distance x is uniform for x ∈ [0, DM ). We denote by
ρM := f

[
∃ j ∈ Z dtij = x

]
= DM

−1 the MH linear density, where the symbol f denotes
the probability density function, that is:

P
[
∃ j ∈ Z dtij = x ∈ (a, b)

]
=

∫ b

a

f
[
∃ j ∈ Z dtij = x

]
dx.

We define the following variables, for i ∈ IA, corresponding to the probability density
that the i-th BS is attached to a MH with displacement x and that the associated RU
is in a given permissivity state:

ni,P(x, t) = f
[
Zti = x, T ti = P

]
,

ni,N (x, t) = f
[
Zti = x, T ti = N

]
.

(4.21)

We notice that we make here the choice of tracking the XBs from the point of view
of the BSs, rather than of the MHs, as it is traditionally done in literature [Hux57a;
HS71; Smi+08; CMC19]. This change of perspective has the significant advantage of
preventing us from the need of tracking which RU faces which MH, from time to time.
Indeed, each BS and each RU, being located on the same filament, rigidly move with
respect of each others and, thus, each BS is always associated with the same RU.

Considering for instance the variable ni,P(x, t) (similar calculations can be carried
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out for ni,N (x, t)), we have:

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)
] ∆t→0∼

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (∅,P)
]
P
[
(Zi, Ti)

t = (∅,P)
]

+f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,N )
]
f
[
(Zi, Ti)

t = (x,N )
]

+f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,P)
]
f
[
(Zi, Ti)

t = (x,P)
]
.

Thanks to assumption (Iiii), we have (by applying Prop. 4.1 as in Sec. 4.2.4):

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,N )
] ∆t→0∼ k̃NPT,i ∆t.

Moreover, we have:

P
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,P)
]

∆t→0∼ 1− P
[
(Zi, Ti)

t+∆t = (∅,P)|(Zi, Ti)t = (x,P)
]

− P
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,N )|(Zi, Ti)t = (x,P)
]

∆t→0∼ 1−∆t
(
giP(x, v(t))− k̃PNT,i

)
,

where we have applied once again assumption (Iiii). Concerning the XB formation
term, we have:

(F ) := f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (∅,P)
]
P
[
(Zi, Ti)

t = (∅,P)
]

= f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P)

]
= f

[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ IM dtij = x,M t

j = 0
]

+ f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ IM dtij = x,M t

j 6= 0
]

+ f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ Z \ IM dtij = x

]
.

The last two terms are of order higher than one in ∆t for ∆t→ 0, while the first term
gives:

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ IM dtij = x,M t

j = 0
]

= P
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (∅,P),∃ j ∈ IM dtij = x,M t
j = 0

]
f
[
(Zi, Ti)

t = (∅,P),∃ j ∈ Z dtij = x,M t
j = 0

]
∆t→0∼ f iP(x, vhs(t)) f

[
(Zi, Ti)

t = (∅,P),∃ j ∈ Z dtij = x,M t
j = 0

]
∆t;

(4.22)

the remaining two terms are null. Thus:

(F ) ∼ f iP(x, v(t)) ∆t f
[
(Zi, Ti)

t = (∅,P),∃ j ∈ IM dtij = x,M t
j = 0

]
. (4.23)

By assumption (Ai), for any i and x such that f iP(x, v(t)) 6= 0, the event (M t
j = 0) for

j s.t. dtij = x implies the event (Zti = ∅), thus:

f
[
(Zi, Ti)

t = (∅,P),∃ j ∈ IM dtij = x,M t
j = 0

]
= f

[
(Zi, Ti)

t = (∅,P),∃ j ∈ IM dtij = x
]

= (f
[
T ti = P,∃ j ∈ IM dtij = x

]
−
∑
k

f
[
(Zi, Ti)

t = (x+ kDM ,P),∃ j ∈ IM dtij = x
]
),
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since the BS can be only attached with displacements that are multiple of DM . More-
over, we recall that the RU dynamics is independent of the interaction with XBs and
thus of d0 (see Sec. 4.2.3) and that for i and x such that f iP(x, v(t)) 6= 0 the events
(∃ j ∈ IM dtij = x) and (∃ j ∈ Z dtij = x) coincide. Therefore, we have (on the support

of f iP):
f
[
T ti = P,∃ j ∈ IM dtij = x

]
= P

[
T ti = P

]
f
[
∃ j ∈ Z dtij = x

]
.

In addition, since (Zi = x + kDM ) implies (∃ j ∈ Z dtij = x), on the support of f iP it
holds true:

f
[
(Zi, Ti)

t = (x+ kDM ,P),∃ j ∈ IM dtij = x
]

= f
[
(Zi, Ti)

t = (x+ kDM ,P)
]
.

Since assumption (Ai) implies (Aii), the unique nonzero term of the sum is k = 0 and
thus:

(F ) ∼= f iP(x, v(t))∆t(P
[
T ti = P

]
f
[
∃ j ∈ Z dtij = x

]
− f

[
(Zi, Ti)

t = (x,P)
]
). (4.24)

Finally, we divide everything by ∆t we let ∆t→ 0 and we observe that:

ni,P(x− vhs(t)∆t, t+ ∆t)− ni,P(x, t)

∆t

=
ni,P(x− vhs(t)∆t, t+ ∆t)− ni,P(x− vhs(t)∆t, t)

∆t

+
ni,P(x− vhs(t)∆t, t)− ni,P(x, t)

∆t vhs(t)
vhs(t)

→ ∂ni,P
∂t

(x, t)− vhs(t)
∂ni,P
∂x

(x, t).

(4.25)

We get in such a way the following PDE model, derived under assumptions (Iiii) and
(Ai):

∂ni,P
∂t

− vhs
∂ni,P
∂x

= (ρMPi − ni,P)f iP − giPni,P

− k̃PNT,i ni,P + k̃NPT,i ni,N x ∈ R, t ≥ 0, i ∈ IA,
∂ni,N
∂t

− vhs
∂ni,N
∂x

= (ρM (1− Pi)− ni,P)f iN − giNni,N

− k̃NPT,i ni,N + k̃PNT,i ni,P x ∈ R, t ≥ 0, i ∈ IA,
(4.26)

endowed with suitable initial conditions. By combining Eq. (4.11) with Eq. (4.26),
respectively describing the dynamics of RUs and XBs, we obtain a model that we
denote as the SE-PDE model (spatially explicit model written in the form of a PDEs
system).

The expected value of the force exerted by the whole half filament can be deter-
mined as follows:

Fhf(t) =
∑
i

∫ +∞

−∞
FXB(x)f

[
Zti = x

]
dx

=
∑
i

∫ +∞

−∞
FXB(x)

(
f
[
Zti = x, T ti = P

]
+ f

[
Zti = x, T ti = N

])
dx

=
∑
i

∫ +∞

−∞
FXB(x) (ni,P(x, t) + ni,N (x, t)) dx.

(4.27)
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We notice that Eq. (4.26), for each i ∈ IA, is formally similar to the H57 model. The
main difference is that the population of BSs is here split into two groups (permissive
ones and non-permissive ones). This is the reason of the appearance of the terms

k̃PNT,i ni,P and k̃NPT,i ni,N , that account for the fluxes of probability from one population
to the other. The terms Pi and (1− Pi) represent the maximum possible proportion
of attached BSs in each group. Finally, the term ρM appears because in this setting
ni,P and ni,N are, from a dimensional point of view, the inverse of length units (they
are probability densities), whereas the variables of the H57 model are dimensionless.

Distribution-moments equations

Like for the H57 model, distribution-moments equations can be derived for the model
of Eq. (4.26), under suitable assumptions. Specifically, let us assume that the total
attachment-detachment rate is independent of the XB distortion (i.e. there exist
functions riP(v) and riN (v), for i ∈ IA, such that riP(v) = f iP(x, v) + giP(x, v) and
riN (v) = f iN (x, v) + giN (x, v) for any x ∈ R). Then, we define, for α ∈ {N ,P}, and for
ψ ∈ {f iP , f iN , giP , giN }:

µpi,α(t) :=

∫ +∞

−∞

(
x

SL0/2

)p
ni,α(x, t)dx,

µpψ(v) :=

∫ +∞

−∞

(
x

SL0/2

)p
ψ(x, v)

dx

DM
.

(4.28)

We notice that µ0
i,N (t) (respectively, µ0

i,P(t)) can be interpreted as the probability that
the i-th BS is attached and associated to a non-permissive (respectively, permissive)
RU. Moreover, µ1

i,N (t)/µ0
i,N (t) (respectively, µ1

i,P(t)/µ0
i,P(t)) corresponds to the ex-

pected value of the distortion (normalized with respect to SL0/2) of the XB attached
to the i-th RU, provided that the corresponding RU is in non-permissive (respectively,
permissive) state.

By proceeding as in Sec. 3.1.2, we get the following distribution-moments equa-
tions:

d

dt
µ0
i,P = −

(
riP + k̃PNT,i

)
µ0
i,P + k̃NPT,i µ

0
i,N + Piµ

0
fiP

t ≥ 0, i ∈ IA,

d

dt
µ0
i,N = −

(
riN + k̃NPT,i

)
µ0
i,N + k̃PNT,i µ

0
i,P + (1− Pi)µ0

fiN
t ≥ 0, i ∈ IA,

d

dt
µ1
i,P + v µ0

i,P = −
(
riP + k̃PNT,i

)
µ1
i,P + k̃NPT,i µ

1
i,N + Piµ

1
fiP

t ≥ 0, i ∈ IA,

d

dt
µ1
i,N + v µ0

i,N = −
(
riN + k̃NPT,i

)
µ1
i,N + k̃PNT,i µ

1
i,P + (1− Pi)µ1

fiN
t ≥ 0, i ∈ IA.

(4.29)
We notice that, thanks to (4.4), we have:

µpfiα
= µpfα χM (SL, i)χSF (SL, i),

µpgiα
= µpgα χM (SL, i)χSF (SL, i) + µpg̃α (1− χM (SL, i)χSF (SL, i)).

(4.30)

By assuming a linear spring hypothesis, the expected value of the force of half filament
is given by:

Fhf(t) = kXB
SL0

2
NAµ

1(t), (4.31)
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where we have defined:

µp(t) =
1

NA

NA∑
i=1

(
µpi,P + µpi,N

)
. (4.32)

Moreover, the active tension and active stiffness at the tissue level are given by:

Ta(t) = aXB µ
1(t),

Ka(t) = aXB µ
0(t).

(4.33)

In the following, we denote by SE-ODE model the one that is obtained by combining
Eq. (4.11) with Eq. (4.29).

4.2.6 Mean-field approximation

In the previous sections we proposed a model of tension generation in the muscle tis-
sue based on an explicit spatial description of the physical arrangements of proteins
along the myofilaments. The spatial description allows to model the cooperativity
mechanism (linked to the nearest-neighbor interactions within RUs) and the SL re-
lated effects on the force generation machinery (linked to the filament overlapping).
However, the first phenomenon, despite being spatial dependent, is based on inter-
actions of local type; the effect of the second phenomenon, in turn, largely depends
on the size of the single-overlap zone, that is a scalar quantity non dependent on the
spatial variable. Based on the above considerations, in this section, we propose a
mean-field approximation of the spatially dependent CTMC presented in 4.2.1, where
the nearest-neighboring interaction are captured as a local effect, and the effect of SL
is modeled in function of the size of the single-overlap zone.

The mean-field model is based on the assumption that the single-overlap zone can
be considered as infinitely long. Such approximation is reasonable as far as the effect
of the edges can be neglected (the validity of such approximation will be discussed
in Sec. 4.3). A direct consequence of this assumption is the invariance by translation
of the joint distribution of RUs. This means that for any set of indices I1 ⊂ Z and
I2 ⊂ Z and for any collection of states αi ∈ {N ,P} (for i ∈ I1) and βi ∈ {U ,B} (for
i ∈ I2), the joint distribution of the states of the corresponding RUs is not affected if
the RUs are translated by a count of k ∈ Z units:

P

[( ⋂
i∈I1

T ti = αi

)
∩

(⋂
i∈I2

Cti = βi

)]
= P

[( ⋂
i∈I1

T ti+k = αi

)
∩

(⋂
i∈I2

Cti+k = βi

)]
.

It follows that the variables παβδ,ϑηλi (t) defined in (4.10) coincide for each i. In addi-
tion, we further reduce the number of variables by tracking only the state of the TnC
of the central RU of the triplet (this further reduction is made possible by the fact
that we never have to track the behavior at the boundaries of the filaments, as we will
see in what follows). We define thus the following variables, for α, β, δ ∈ {N ,P} and
η ∈ {U ,B}:

παβδ,η(t) := P
[
(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
. (4.34)

We notice that the variables παβδ,η(t) are well-defined thanks to the translational in-

variance of the distribution of RUs. Moreover, the transition rates k
δδ|β
C,i and k

ββ|α · η,δ
T,i

for the units in the single-overlap region do not depend on i. Hence, we will denote

them simply as k
δδ|β
C and k

ββ|α · η,δ
T .

118



4.2. Proposed full-sarcomere models

The time evolution of the variables can be determined, with a similar strategy to
that adopted in Sec. 4.2.3, by proceeding as follows:

παβδ,η(t+ ∆t)
∆t→0∼ P

[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
T t+∆t
i = β|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
T t+∆t
i+1 = δ|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
Ct+∆t
i = η|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
(Ti−1, Ti, Ti+1)t+∆t = (α, β, δ), Ct+∆t

i = η|
(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t),

(4.35)

where, by definition, we have:

P
[
T t+∆t
i = β|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

] ∆t→0∼ k
ββ|α · δ,η
T ∆t,

and
P
[
Ct+∆t
i = η|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

] ∆t→0∼ k
ηη|β
C ∆t.

By adopting assumption (Ii), Prop. 4.1 for A = (T t+∆t
i−1 = η), B = (T ti+1 = δ, Cti = η),

C = ((Ti−1, Ti)
t = (α, β)) and D = {(T ti−2 = ξ, Cti−1 = ζ)}ξ,ζ leads to:

P
[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
=

∑
ξ,ζ P

[
T t+∆t
i−1 = α|(Ti−2, Ti−1, Ti)

t = (ξ, α, β), Cti−1 = ζ)
]
πξαβ,ζi−1 (t)∑

ξ,ζ π
ξαβ,ζ
i−1 (t)

∆t→0∼ k̃
αα|◦ · β,◦
T ∆t,

where we have defined:

k̃
αα|◦ · β,◦
T :=

∑
ξ,ζ k

αα|ξ · β,ζ
T πξαβ,ζ(t)∑
ξ,ζ π

ξαβ,ζ(t)
,

k̃
δδ|β · ◦,◦
T :=

∑
ξ,ζ k

δδ|β · ξ,ζ
T πβδξ,ζ(t)∑
ξ,ζ π

βδξ,ζ(t)
.

In conclusion, we get the following ODE model, valid for t ≥ 0 and for any α, β, δ ∈
{N ,P} and η ∈ {U ,B}:

d

dt
παβδ,η = k̃

αα|◦ · β,◦
T παβδ,η − k̃αα|◦ · β,◦T παβδ,η

+ k
ββ|α · δ,η
T παβδ,η − kββ|α · δ,ηT παβδ,η

+ k̃
δδ|β · ◦,◦
T παβδ,η − k̃δδ|β · ◦,◦T παβδ,η

+ k
ηη|β
C παβδ,η − kηη|βC παβδ,η.

(4.36)

The permissivity of a RU in the single-overlap zone, defined as P (t) = P [T ti = P]
(such that the i-th RU belongs to the single-overlap zone), can be obtained as:

P (t) =
∑

α,δ∈{N ,P}

∑
η∈{U,B}

παPδ,η(t).
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By similar arguments, it follows that also the joint distribution of the stochastic pro-
cesses associated with XB formation enjoy the translational invariance property and,
consequently, the following variables are well defined, as the right-hand sides are in-
dependent of the index i (for i belonging to the single-overlap zone):

nP(x, t) = f
[
Zti = x, T ti = P

]
,

nN (x, t) = f
[
Zti = x, T ti = N

]
.

(4.37)

By proceeding as in Sec. 4.2.5 we get the following model:

∂nP
∂t
− vhs

∂nP
∂x

= (ρMP − nP)fP − gPnP

− k̃PNT nP + k̃NPT nN x ∈ R, t ≥ 0,

∂nN
∂t
− vhs

∂nN
∂x

= (ρM (1− P )− nP)fN − gNnN

− k̃NPT nN + k̃PNT nP x ∈ R, t ≥ 0,

(4.38)

where we have defined:

k̃NPT :=

∑
α,η,δ k

NP|α · η,δ
T P [(Ti−1, Ti, Ti+1, Ci)

t = (α,N , η, δ)]
P [T ti = N ]

,

k̃PNT :=

∑
α,η,δ k

PN|α · η,δ
T P [(Ti−1, Ti, Ti+1, Ci)

t = (α,P, η, δ)]
P [T ti = P]

.

(4.39)

We notice that the transition rates k̃NPT and k̃PNT can be obtained from the variables
παβδ,η as:

k̃NPT (t) :=

∑
α,δ,η k

NP|α · δ,η
T παNδ,η(t)

1− P (t)
,

k̃PNT (t) :=

∑
α,δ,η k

PN|α · δ,η
T παPδ,η(t)

P (t)
.

(4.40)

The expected value of the force exerted by the whole half filament can be obtained as
follows:

Fhf(t) = NA χso(SL(t))

∫ +∞

−∞
FXB(x) (nP(x, t) + nN (x, t)) dx, (4.41)

where the single-overlap ratio χso denotes the fraction of the AF filament in the single-
overlap zone:

χso(SL) :=
Lso(SL(t))

LA
=



0 if SL ≤ LA,
2(SL− LA)

LM − LH
if LA < SL ≤ LM ,

SL+ LM − 2LA
LM − LH

if LM < SL ≤ 2LA − LH ,

1 if 2LA − LH < SL ≤ 2LA + LH ,

LM + 2LA − SL
LM − LH

if 2LA + LH < SL ≤ 2LA + LM ,

0 if SL > 2LA + LM .
(4.42)
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4.2. Proposed full-sarcomere models

We notice that we are here assuming that the relative sliding between the filaments
is such that χso slowly varies, so that we can neglect the effects linked to the state
transitions taking place at the border of the single-overlap zone.

The combination of Eq. (4.36) with Eq. (4.38) gives a model for the full-sarcomere
function, that we denote as the MF-PDE model (mean-field model written in the form
of a PDEs system).

Moreover, under the assumption that the total attachment-detachment rate does
not depend on the XB elongation (i.e. there exist two functions rP(v) and rN (v) such
that rP(v) = fP(x, v) + gP(x, v) and rN (v) = fN (x, v) + gN (x, v) for any x ∈ R), we
can derive the following distribution-moment equation:

d

dt
µ0
P = −

(
rP(v) + k̃PNT

)
µ0
P + k̃NPT µ0

N + P µ0
fP t ≥ 0,

d

dt
µ0
N = −

(
rN (v) + k̃NPT

)
µ0
N + k̃PNT µ0

P + (1− P )µ0
fN t ≥ 0,

d

dt
µ1
P + v µ0

P = −
(
rP(v) + k̃PNT

)
µ1
P + k̃NPT µ1

N + P µ1
fP t ≥ 0,

d

dt
µ1
N + v µ0

N = −
(
rN (v) + k̃NPT

)
µ1
N + k̃PNT µ1

P + (1− P )µ1
fN t ≥ 0,

(4.43)

where we have defined, for α ∈ {N ,P}:

µpα(t) :=

∫ +∞

−∞

(
x

SL0/2

)p
nα(x, t)dx. (4.44)

The force exerted by half thick filament is then given by:

Fhf(t) = kXB
SL0

2
NA µ

1(t), (4.45)

where

µp(t) := χso(SL(t)) [µpP(t) + µpN (t)] , (4.46)

for p = 0, 1 and, hence, the tissue level active tension and stiffness are:

Ta(t) = aXB µ
1(t),

Ka(t) = aXB µ
0(t).

(4.47)

Finally, by combining Eq. (4.36) with Eq. (4.43) we obtain a model that we denote as
MF-ODE model.

4.2.7 Overview of the models

Table 4.1 provides a list of the different models proposed in this chapter, with the
assumptions under which the models are derived. The two models derived by the
distribution-moments (SE-ODE and MF-ODE) also require that the sum of the at-
tachment and detachment rates is independent of x (we write f + g ⊥⊥ x). We notice
that this is not a simplificatory assumption, but rather a specific modeling choice that
allows to write the model with the distribution-moments formalism.
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Chapter 4. Modeling the full-sarcomere dynamics

Model name
(Equations)

Number of ODEs
Number of PDEs

Assumptions Modeling
choices

SE-disc-I
(4.11)-(4.18)

(NA−2)26+2NANM
-

= 2432 (Iii),(Iiii),(Iiv)

SE-disc-II
(4.11)-(4.19)

(NA−2)26+2NANM
-

= 2432 (Iii),(Iiii),(Ai)

SE-PDE
(4.11)-(4.26)

(NA − 2)26

2NA

= 1280
= 64

(Iii),(Iiii),(Ai)

SE-ODE
(4.11)-(4.29)

(NA − 2)26 + 4NA
-

= 1408 (Iii),(Iiii),(Ai) f + g ⊥⊥ x

MF-PDE
(4.36)-(4.38)

24

2
= 16
= 2

(Ii),(Iiii),(Ai), m.f.

MF-ODE
(4.36)-(4.43)

24 + 4
-

= 20 (Ii),(Iiii),(Ai), m.f. f + g ⊥⊥ x

Table 4.1: List of the models proposed in Sec. 4.2. For future reference, we assign a
name to each model (SE stands for spatially-explicit, MF stands for mean-field, disc
stands for discrete). In the second column we report the number of ODEs and PDEs
included in each model as a function of NA and NM and we specify the resulting
values in the case NA = 32, NM = 18. In the “Assumptions” column, m.f. stands for
mean-field assumption.

4.3 Models calibration

In Sec. 4.2.1 we have presented a description of a pair of interacting myofilaments,
where the dynamics of the proteins located on the myofilaments is ruled by a col-
lection of transition rates. Then, in the rest of Sec. 4.2 we have shown that under
some assumptions and, in some cases, for specific choices of the transition rates, the
dynamics of the stochastic processes associated with the proteins located on the my-
ofilaments can be described by different systems of ODEs and/or PDEs. The models
listed in Sec. 4.2.7 are thus valid independently of the specific choice of the transition
rates (with the only exception of the models SE-ODE and MF-ODE that require that
the sum of the detachment and attachment rate is independent of the XB distorsion).
In this section, we present and motivate the specific choice of transition rates that
we will adopt in this thesis and the strategy that we follow for the calibration of the
associated parameters.

Available experimental data that can be used to calibrate the model parameters
differ by various factors, including:

• the tissue type: skeletal or cardiac (see Sec. 1.2);

• the animal species;

• the temperature (see Sec. 1.3.6 for its influence on the sarcomere dynamics);

• the cellular treatment: intact or skinned cells (see Sec. 1.3.2);

• the chemical environment of the experimental setup, which is typically kept as
faithful as possible to the physiological environment, unless it is intentionally
altered to achieve specific conditions.
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4.3. Models calibration

Parameter Value Units
SL0 2.2 µm
LA 1.25 µm
LM 1.65 µm
LH 0.18 µm
εSL 0.05 µm
NM 18 -
NA 32 -

Table 4.2: List of geometrical constants.

To calibrate the model, we will restrict ourselves to experimental measurements from
the literature coming from intact cardiac cells since the skinning procedure alters
in a significant (and not yet fully understood) manner the machinery of activation
and force generation (see Sec. 1.3.2). Moreover, thanks to the technique of flura-2
fluorescence, it is noways possible to measure the intracellular calcium concentration
without depriving the cell of its membrane, and it is also possible to inhibit the
sarcoplasmic reticulum calcium uptake by cyclopiazonic acid, so that the calcium
level can be controlled without the need of skinning the cells.

However, only few data are available from human cells, compared to animal cells,
and most of experiments are performed at room temperature, whereas the most inter-
esting application of a mathematical model is that of replicating in vivo conditions,
thus at body temperature. Since the available data for human cells at body tem-
perature are not sufficient to adequately constrain the parameters of our models, we
proceed as follows. First, we calibrate the model parameters from rat experiments
at room temperature since for this species many experimental data are available, and
than we adjust the parameters that are reasonably affected by the two varying factors
(i.e. inter-species variability and temperature) to fit the available data from human
cells as body temperature. We compensate in this way for the data deficiency. We
notice that we work under the hypothesis that inter-species variability does not affect
the fundamental machinery of tissue activation and force generation, but, since differ-
ent species express different isoforms of the same protein, it can be encompassed by
changing the parameters of the same mathematical model (see [Tøn+15] for a detailed
discussion on this topic).

We report in Table 4.2 the geometrical constants describing the size of the myofil-
ament components that we use in the following.

4.3.1 RUs transition rates

The RU dynamics is determined by the 8 rates ruling the forward and backward
transitions UN −⇀↽− BN , UP −⇀↽− BP, UN −⇀↽− UP and BN −⇀↽− BP. The transition rates

are affected by [Ca2+]i (that enhances in a multiplicative way the transition U → B),
the filament overlap and the state of the nearest-neighboring Tm units (for the latter
interaction we adopt the cooperative interactions proposed in the R03 model). We
start by considering the single-overlap zone, where we adopt the transition rates of
the R03 model. We show below that the transition rates of R03 are, however, rather
general, as they are based on just a couple of assumptions. In any case, we keep the
notation consistent with the R03 model to allow for comparisons.

We call k
BU|N
C := koff and, without loss of generality, we set k

BU|P
C := koff/µ,
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Figure 4.2: The proposed four states Markov model describing each RU. The terms
depending on the intracellular calcium concentration [Ca2+]i are highlighted in red;
terms depending on the state of neighbouring RUs (i.e. depending on n) are high-
lighted in blue; terms depending on the position of the RU and the current sarcomere
elongation are highlighted in green.

where the constant µ allows to differentiate the two rates. Experiments carried out
with protein isoforms from different species highlight that there is no apparent vari-
ation in the transition U → B in different combinations of Tn subunits and Tm. We
assume thus that the transition rates for UN → BN and for UP → BP coincide,

and we set k
UB|N
C = k

UB|P
C := koff/kd[Ca2+]i. Conversely, we allow the reverse tran-

sition rates to depend on the state of the associated Tm. Concerning the transitions
involving Tm, we assume that the calcium binding state of Tn affects the transi-
tion rate of N → P for the associated Tm (see Sec. 1.2.4), but not the reverse rate.

Therefore, we set k
PN|α · δ,U
T = k

PN|α · δ,B
T = kbasicγ

2−n(α,δ), where n(α, δ) denotes
the number of permissive states among α and δ, as in Sec. 2.2.1. Then, without

loss of generality we denote k
NP|α · δ,B
T = Qkbasicγ

n(α,δ), where the constant Q al-
lows to differentiate the forward and backward transition rates. The only transition
rate left is given, to satisfy the detailed-balance consistency with the other rates, by

k
NP|α · δ,U
T = Q/µkbasicγ

n(α,δ).

In conclusion, the transition rates are determined by the five parameters Q, µ, kd,
koff, kbasic (plus the parameter γ that regulates the amount of cooperativity), resulting
from the eight free parameters constrained by the two assumptions (U → B not affected
by Tm, P → N not affected by Tn) and by the detailed-balance consistency.

Concerning the dependence on the filament overlap, we assume that the only tran-
sition affected by filament overlap is N → P, that is prevented in the central zone
of the sarcomere, where the two AFs meet (see Sec. 1.3.2). Specifically, we set, for
η ∈ {U ,B} and for α, δ ∈ {N ,P}:

k
NP|α · δ,η
T,i = χSF (SL, i) k

NP|α · δ,η
T . (4.48)

The resulting 4-states CTMC associated with each RU is represented in Fig. 4.2.
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4.3. Models calibration

4.3.2 Calibration of the XBs rates

Even if the thin-filament activation comes before the XB cycling from a logical view-
point, we start to illustrate the calibration procedure for the latter part. The reason
will be clarified later.

Concerning the transition rates associated with the XB dynamics, in this thesis we
work under the hypothesis that the total attachment-detachment rate is independent
of the XB elongation since this assumption allows to reduce the number of free pa-
rameters without depriving the model of the capability of reproducing a wide range of
experimental characterizations. In this case, the models SE-ODE and MF-ODE can
be used in place of the more computationally expansive counterparts SE-PDE and
MF-PDE, which involve the solution of a PDE system. Moreover, we also make the
reasonable assumption that the sliding velocity only affects the detachment rate (see
Sec. 3.2).

As we mentioned before, XB attachment is only possible when the corresponding
Tm is in the state P (thus fN ≡ 0). Moreover, it is well motivated that out of the
single-overlap zone, the detachment rates are not affected by the state of Tm (i.e.
g̃N ≡ g̃P) and that the detachment rate when Tm is in state N is not affected by the
filament overlap (i.e. g̃N ≡ gN ). In summary, if we assume that the total transition
rate in the single-overlap zone does not depend on the Tm state, we have:

fP(x, v) + gP(x, v) = gN (x, v) = g̃N (x, v) = g̃P(x, v) = r0 + q(v),

for some constant r0 and function q, such that q(0) = 0. Therefore, Eq. (4.29) reduces
to:

d

dt
µ0
i,P = −

(
r0 + q(v) + k̃PNT,i

)
µ0
i,P + k̃NPT,i µ

0
i,N + Pi µ

0
fP t ≥ 0, i ∈ IA,

d

dt
µ0
i,N = −

(
r0 + q(v) + k̃NPT,i

)
µ0
i,N + k̃PNT,i µ

0
i,P t ≥ 0, i ∈ IA,

d

dt
µ1
i,P + v µ0

i,P = −
(
r0 + q(v) + k̃PNT,i

)
µ1
i,P + k̃NPT,i µ

1
i,N + Pi µ

1
fP t ≥ 0, i ∈ IA,

d

dt
µ1
i,N + v µ0

i,N = −
(
r0 + q(v) + k̃NPT,i

)
µ1
i,N + k̃PNT,i µ

1
i,P t ≥ 0, i ∈ IA,

(4.49)
and similarly for Eq. (4.43), where we only drop the index i from Eq. (4.49). Hence,
the objects to calibrate are µ0

fP
, µ1

fP
, r0, q(v) and aXB, to link the microscopic force

with the macroscopic active tension.
We have shown in Sec. 3.2.4 that by acting on the four mentioned parameters plus

the parameter α, that determines the slope of q for small velocities, the generalized H57
model (3.20) can fit experimentally measured data concerning the isometric solution
(T iso

a and µ0
iso), the force-velocity relationship (vmax and v0) and the fast transients

response (k̃2). All the above mentioned experimental setups are such that the thin
filament activation machinery can be considered in steady-state. Indeed, [Ca2+]i is
constant in all the cases and, concerning SL: it is also constant under isometric
conditions; constant shortening experiments are typically performed in the plateau
region of the force-length relationship, and thus the effect of changes in SL is irrelevant;
fast transient experiments are carried out at a time-scale such that the activation
variables can be considered constant, since they are characterized by a much slower
dynamics (see Sec. 1.2). Therefore, in these cases, the values of Pi, k̃

PN
T,i and k̃NPT,i can

be considered as fixed in Eq. (4.29) (and similarly in Eq. (4.29)). This observation is
crucial since it allows to decouple the calibration of the parameters involved in the thin
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Chapter 4. Modeling the full-sarcomere dynamics

Parameter Value Units Reference
T iso

a 120 kPa [TKHK00]
µ0

iso 0.22 - [Bru+14]
vmax 8 s−1 [Car+16]
v0 2 s−1 [Car+16]

k̃2 66 - [Car+16]

Table 4.3: List of the experimental data used for model calibration.

filament activation from the calibration of the parameters involved in XBs cycling. In
fact, the five parameters of the XBs cycling model can be calibrated from the five
above mentioned experimental values.

We notice that, while for the generalized H57 model of Sec. 3.2 the relationship
between the five parameters and the five experimentally measured values can be in-
verted analytically (see Eqs. (3.34)-(3.35)), in this case we find the values of the
parameters with a numerical strategy. Specifically, to find the steady-state solution
we solve Eq. (4.29) by setting to zero the time derivative terms; we find the solution
after the fast transient by solving exactly the linear ODE system (4.29); we approx-
imate the derivative appearing in the definition of v0 and k̃2 by finite differences.
Finally, we solve, for the five parameters, the nonlinear system of equations linking
the five measured values with the parameters themselves. With this aim we employ
the Newton-Raphson method, by approximating the Jacobian matrix by means of
finite differences.

Therefore, once the thin filament activation model (4.11) (or (4.36)) has been
calibrated, we have at our disposal an automatic procedure to calibrate the remaining
model parameters. For this reason, we first setup such calibration procedure for the
model parameters associated with the XBs cycling (i.e. Eq. (4.29) or (4.43)) and,
successively, we calibrate the model parameters associated with the RUs activation
(i.e. Eq. (4.11) or (4.36)), so that we can directly see the effect of changes of such
parameters on the resulting force since the remaining parameters are automatically
adjusted.

The experimental data used to calibrate the model are reported in Table 4.3,
together with a reference to the source in literature. As we mentioned at the beginning
of Sec. 4.3, we consider data coming from intact cardiac rat cell at room temperature.
The unique datum not satisfying these condition is µ0

iso (which is acquired from skeletal
frog muscle). However, as we mentioned in Sec. 3.2.4, the value of such parameter only
affects the value of the microscopic variables (i.e. µpi,α), but not the macroscopic ones

(i.e. Ta and Ka). We notice that the constants vmax, v0 and k̃2 are normalized with
respect to T iso

a and are thus valid for a wide range of activation levels (see Sec. 1.3).
Conversely, the value of T iso

a is associated with a SL in the plateau region and to
saturating calcium concentration. Therefore, when we calibrate the parameters we set
[Ca2+]i = 10 µM and SL = 2.2 µm.

4.3.3 Calibration of the RUs rates

The steady-state solution of the activation models (4.11) and (4.36) only depends on

the ratio between the pairs of opposite transition rates (e.g. k
NP|α · δ,B
T /k

PN|α · δ,B
T =

Qγ2n(α,δ)−2). Therefore, the 6 parameters can be split into two groups: the first group
(Q, µ, kd and γ) determines the steady-state solution, while the second group (koff,
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4.3. Models calibration

kbasic) only affects the kinetics of the model (that is to say how fast the transients are).
This allows to calibrate first the parameters of the first group, and, only successively,
those of the second group.

Calibration at the steady-state

The steady-state characterization of the muscle tissue activation is represented by the
force-calcium and force-length relationships (see Sec. 1.3.2), whose main features are
the behavior for SL in the plateau region (characterized by the tension for saturating
calcium T iso

a , the calcium sensitivity EC50 and the cooperativity degree nH) and the
effect of SL (on the saturating tension T iso

a and on the calcium sensitivity EC50).

The tension for saturating calcium concentrations T iso
a in the plateau region of

SL is automatically fitted, thanks to Sec. 4.3.2. The effect of kd is that of shifting
the force-calcium curves with respect to the log [Ca2+]i axes, since it only appears in
combination with [Ca2+]i in the model equations. Therefore, the value of kd can be
easily calibrated to match the experimental data since it only affects EC50. The effect
of γ, on the other hand, is that of tuning the amount of cooperativity and in fact it
acts on nH . The role of the remaining parameters (Q and µ) is more involved and
cannot be easily decoupled, as they affect the cooperativity, calcium sensitivity, and
the asymmetry of the force-calcium relationship below and above EC50 (see Sec. 1.3.2
and [Ric+03]). Moreover, in the SE-ODE case, they also act on the SL regulation on
calcium sensitivity.

In the following we set µ = 10, coherently with the fact that the experimentally
measured dissociation rate of Tn from calcium varies of about one order of magnitude
in different combinations [NHS06]. For the SE-ODE model, we set γ = 20, Q = 3 and
kd = 1.347, to fit the steady-state force-calcium measurements of [TKHK00] (referred
to the two different values of SL of 1.85 and 2.15 µm) from intact rat cardiac cells at
room temperature. The resulting steady-state curves are reported in Fig. 4.3. We are
able to well fit the main features of the curves, including the characteristic S-shape,
the plateau forces at both SL, the significant cooperativity typical of the cardiac tissue
and the SL-induced change in calcium sensitivity (LDA, see Sec. 1.3.2).

We remark that we are here able to reproduce the LDA without any phenomeno-
logical SL-dependent tuning of the parameter, as done, e.g. in [NHS06; Was+12;
Was+13; Was+15]. Conversely, the LDA emerges from this model in a spontaneous
way. We will examine in Sec. 4.4.3 how this model is capable of reproducing this
phenomenon, providing thus a possible microscopical explanation for the LDA.

Conversely, with the MF-ODE model it is not possible to reproduce the LDA by
simply acting on the model parameters. Indeed, the only effect of SL in the model is to
multiplicatively tune the generated force by the factor χso(SL(t)). Therefore, no SL
induced effect on the calcium sensitivity can be achieved. The mechanism reproducing
LDA in the SE-ODE model is indeed intrinsically linked, as we will see in Sec. 4.4.3,
to the explicit spatial representation of the myofilaments. Therefore, in the mean-field
model MF-ODE, without an explicit spatial representation, we phenomenologically
tune the calcium sensitivity kd in function of SL, by setting

kd(t) = kd + αkd(SL(t)− SLkd), (4.50)

where SLkd = 2.15 µm. In Fig. 4.3, where we have set γ = 12, Q = 2, kd = 0.775 and
αkd = −1.667, we show that, with this modification, we can fit the experimental data
also with the MF-ODE model.
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Figure 4.3: Steady-state force-calcium curves obtained with the SE-ODE (left) and
MF-ODE (right) models with the optimal parameters values reported in Tab. 4.6 for
SL = 1.85 µm and SL = 2.15 µm, compared to experimental data from intact rat
cardiac cells at room temperature, from [TKHK00].

Calibration in dynamic conditions (kinetics)

To complete the calibration of the SE-ODE and MF-ODE models, we only need to
set the parameters kbasic and koff, ruling the rapidity at which the transitions N −⇀↽− P
and U −⇀↽− B take place, respectively. Despite the fact that, at this stage, only two

parameters need to be addressed, their calibration reveals some difficulties, mainly
related to two aspects. First, the interplay between the two parameters is tight and
their roles cannot be easily decoupled (moreover, it is still under debate which is
the rate limiting stage in the activation and relaxation dynamics, see Sec. 1.3.3). This
results is a poor identifiability of the parameters: different combinations of parameters
give similar results in terms of force transients. This issue has been reported also by
[Tøn+15], while calibrating the models of [Lan+12] and [NHS06]. Additionally, the
force transients predicted by the model are very sensitive to the calcium transient given
in input (this is a typical feature of activation models, see e.g. [Tøn+15]). Therefore,
since the experimentally measured calcium transients are much affected by noise (see
e.g. [Bac+95; JT97; Tøn+15], a calibration based on the best fit of the model response
to experimentally measure calcium transients should be performed with care.

Based on the former remarks, we calibrate the parameters kbasic and koff by the
following procedure. We consider the isometric twitches of intact rat cardiac muscle
fibers reported in [JH95] for different values of SL, and with [Ca2+]o = 1.0 mM.
Since the corresponding calcium transients are not reported, we consider the calcium
transient reported by the same author in [JT97], for the same muscle preparation. As
the reported trace is much affected by noise, we fit it with the idealized transient of
Eq. (2.23), obtaining cmax = 1.35 µM, tc0 = 0.05 s, τ c1 = 0.02 s, τ c2 = 0.19 s.

Then we sample the candidate parameters space, that we set to (kbasic, koff) ∈
[0, 80 s−1]× [0, 300 s−1], by a MC strategy, for each parameters value we compute the
tension transients corresponding to SL = 1.90, 2.05 and 2.20 µm and we compare
them with the experimental measurements from [JH95]. We consider the following
discrepancy metrics, where T i,mod

a (t) denotes the tension predicted by the model for
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Figure 4.4: Discrepancy metric Etot in the parameters space (kbasic, koff) for intact
room-temperature rat cells, obtained with the SE-ODE model (a) and with the MF-
ODE model (b).

the i-th value of SL and T i,exp
a (t) denotes the measured one:

EL2 :=

√√√√ 3∑
i=1

∫ T

0

∣∣∣T i,mod
a (t)− T i,exp

a (t)
∣∣∣2 dt,

Epeak :=

√√√√ 3∑
i=1

∣∣∣∣∣ sup
t∈[0,T ]

T i,mod
a (t)− sup

t∈[0,T ]

T i,exp
a (t)

∣∣∣∣∣
2

.

The first metric coincides with the L2 error over time, while the second one evaluates
the error of the predicted force peak. We notice indeed that the parameters kbasic and
koff also determine the force peak attained during a sarcomere twitch: the most rapid
the tissue activation is, the more the force-calcium curve stays close to the steady-
state curve (see Sec. 1.3.3) and thus reaches higher force values before the relaxation
begins. As criterion to select the best parameters values, we consider as overall metric
a weighted combination between the two, given by Etot = (E2

L2 + w2
peakE

2
peak)1/2,

where we set wpeak = 5.
The obtained values of the discrepancy metric Etot in the parameters space for both

the SE-ODE and the MF-ODE models are reported in Fig. 4.4. We notice that the
level curves do not clearly identify an optimal pair (kbasic, koff), but, conversely, these
exhibit a wide region in the parameters space producing very similar results. Given
the uncertainty in the measurements of both force and, mostly, calcium, it makes
few sense to select the best parameters by blindly selecting the pair that realizes the
smaller discrepancy from experimental results. Therefore, we supplement the results
of Fig. 4.4 with direct measurements of calcium binding rates to TnC, showing that
kon = koff/kd lies between 50 and 200 µM−1 s−1 [NHS06]. On this basis, we restrict
the region of candidate values and we select the parameters reported in Tab. 4.6.

The predicted isometric twitches obtained with the selected values of the param-
eters are compared with the experimental data in Fig. 4.5. We notice here that the
MF-ODE model accomplishes a better fit of experimental data than the SE-ODE
model. This is an effect of the phenomenological tuning of kd of Eq. (4.50), that
allows for a significant increase of calcium sensitivity and, consequently, of twitch du-
ration, for higher values of SL. Nonetheless, also the SE-ODE model predicts, even if
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Figure 4.5: Force transients (top line) and phase-loops (bottom line) in isometric
twitches, for different values of SL, predicted by the SE-ODE model (left column) and
MF-ODE model (right column), in comparison with the experimental measurements
from intact rat cardiac cells taken from [JH95].

to a fewer extent, the experimentally observed prolongation of twitches at higher SL,
without any phenomenological tuning of the calcium sensitivity.

We notice that there is room for improvement in the calibration of the kinetic
parameters kbasic and koff, which could be better constrained in presence of more
abundant and more reliable experimental data and when a deeper understanding on
the determinants of the kinetics of activation and relaxation will be available. Never-
theless, a bad calibration of kbasic and koff for the rat model does not affect the quality
of the human model, since those two parameters are the only ones to be completely
re-calibrated for the human model.

The full list of the parameters, including those associated with the XB cycling,
calibrated by the procedure presented in Sec. 4.3.2, is provided in Tab. 4.6.

4.3.4 Human model at body temperature

Due to the lack of a sufficiently large set of measurements from human cells at body
temperature [Lan+17] to constrain all the model parameters, as we anticipated at
the beginning of Sec. 4.3, to calibrate the SE-ODE and MF-ODE models for body-
temperature human cardiomyocytes we start from the corresponding sets of parame-
ters for room-temperature rat cells and we adapt those parameters that are reasonably
affected by the change in species and temperature. Specifically, different species mainly
differ in their calcium-sensitivity (i.e. kd) and in the kinetics (different species feature
highly different heart rates), while temperature mainly affects the kinetics.

By exploiting the decoupling of the parameters of the RUs model ruling the steady-
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Species Temperature Preparation SL(µm) EC50(µM) Reference
Rat Room Skinned 2.15 3.51 [DKT02]
Rat Room Intact 2.15 0.68 [TKHK00]
Human Body Skinned 2.00 1.72 [Lan+17]
Human Body Skinned 2.20 1.56 [Lan+17]

Table 4.4: List of the experimental values used to calibrate the calcium sensitivity for
the human models at body temperature.

Parameter Lower bound Upper bound Units
T peak

a 40 45 kPa
TTP 147 172 s
RT50 109 125 s
RT95 291 377 s

Table 4.5: Output metrics used to calibrate the kinetics of the body-temperature
human models. Data are taken from [Tøn+15]. The range of values of T peak

a has been
reduced with the aim of more strongly forcing the models to match the desired output.

state relationships from those ruling the kinetics (see Sec. 4.3.3), we first focus on the
steady-state, and we adjust kd to reflect the higher calcium sensitivity of human cells
compared to rat [NHS06; Tøn+15; Lan+17]. For this purpose, we employ the data
reported in [Lan+17], which, however, refer to skinned cells. In order to estimate
the effect of skinning on kd, we compare the calcium sensitivity measured for room-
temperature rat cardiac cells in skinned [DKT02] and intact preparations [TKHK00]
at SL = 2.15 µm and we assume that the same relationship holds for skinned versus
intact body-temperature human cells. Finally, we rescale the values of kd to reflect
the estimated change in calcium sensitivity between intact body-temperature human
cells and intact room-temperature rat cells, obtaining the values reported in Tab. 4.6.
The experimental data used in such procedure are listed in Tab. 4.4.

Since the RUs kinetics may depend on both the species and the temperature, we
re-calibrate the parameters koff and kbasic on the base of the output metrics reported
in Tab. 4.5 (taken from [Tøn+15]), referred to body-temperature human cells. The
output metric comprise the peak tension T peak

a , the time-to-peak TTP (defined as
the time separating the beginning of the stimulus and the tension peak) and the
relaxation times RT50 and RT95 (defined as the time needed to accomplish 50% and
95% of relaxation, respectively). Since, at the best of our knowledge, detailed calcium
transients measurements for intact human cells at body temperature are not available,
we employ the synthetic calcium transient predicted by the ten Tusscher-Panfilov
2006 ionic model [TTP06a], that we denote as the TTP06 model. In Fig. 4.6 we
show the landscape, in the parameters space (kbasic, koff) of the overall distance of the
output metrics from the ranges reported in Tab. 4.5. Similarly as for the rat models,
large parameters regions feature similar values. Therefore, we proceed as for the
calibration of rat cells, by reducing the parameters space based on direct experimental
measurements (see Sec. 4.3.3). In this case, we manage to select a unique couple of
values suitable for both the SE-ODE and the MF-ODE model (see Tab. 4.6).

Finally, for the calibration of the parameters ruling the XBs cycling, we use the
same values of Tab. 4.3. Therefore, since the calibration depends on the parameters
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Figure 4.6: Overall distance, in the parameters space, of the output metrics from the
target values ranges indicated in Tab. 4.5 for intact body-temperature human cells,
obtained with the SE-ODE model (left) and with the MF-ODE model (right).

previously set for the RUs activation, the resulting values of the parameters are slightly
different. We provide in Tab. 4.6 the full list of parameters for both species (room-
temperature rat and body-temperature human) and for both models (SE-ODE and
MF-ODE).

4.4 Numerical results

In this section, we show the results of numerical simulations obtained with the models
presented in Sec. 4.2.7. First, in Sec. 4.4.1 we present the numerical schemes used to
approximate the solution of such models. Then, in Sec. 4.4.2 we make a comparison
between the results obtained with the models based on a discrete representation of BSs
(i.e. the SE-disc-I and the SE-disc-II models) and the remaining models, based on a
continuous description of BSs. Finally, we consider different experimental settings and
we test the capabilities of the proposed models to reproduce the main experimental
characterization that we have listed in Sec. 1.3.

4.4.1 Numerical approximation

Since the equations describing the evolution of the RUs are independent of the vari-
ables describing the XB states, their solution can be approximated by adopting the
same numerical schemes considered in Sec. 2.2.4. Specifically, we adopt a Forward
Euler scheme with a time step size of 2.5 · 10−5 s.

Concerning the equations describing the XB dynamics, we notice that Eqs. (4.19),
(4.29) and (4.43) can be written in the following form:{

ẋ(t) = A(t)x(t) + r(t) t ∈ (0, T ],

x(0) = x0,
(4.51)

where x(t) is the vector of the variables describing the states of XBs, while A(t) and
r(t) are respectively a time-dependent matrix and vector, determined by the input

v(t) and by the RUs states παβδ,ϑηλi (t) (or, for mean-field models, παβδ,η(t)).
In order to approximate the solution of Eq. (4.51), we consider a subdivision 0 =

t0 < t1 < · · · < tM = T of the time interval [0, T ] with time step size ∆t and we
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4.4. Numerical results

SE-ODE MF-ODE

Parameter Units
Rat,

room temp.
Human,

body temp.
Rat,

room temp.
Human,

body temp.
RU steady-state
µ - 10 10 10 10
γ - 20 20 12 12
Q - 3 3 2 2

kd µM 1.347 0.615 0.775 0.35
αkd µM µm−1 0 0 −1.667 −0.542
RU kinetics
koff s−1 110 121 135 121
kbasic s−1 20.7 28.8 22.5 28.8
XB cycling
µ0
fP

s−1 58.421 58.192 33.161 33.082

µ1
fP

s−1 1.390 1.384 0.789 0.788

r0 s−1 133.958 134.075 134.182 134.230
α - 25.113 25.129 25.149 25.160
Micro-macro upscaling
aXB MPa 22.941 22.931 22.919 22.913

Table 4.6: Parameters of the SE-ODE and MF-ODE models calibrated for room-
temperature rat and body-temperature human cells.

denote by x(k) ≈ x(tk) the approximated solution at time tk. Due to the linearity of
Eq. (4.51), we consider the following exponential scheme [HO10]:

x(0) = x0,

x(k)
∞ = −A−1(tk)r(tk) for k ≥ 1,

x(k) = x(k)
∞ + e∆tA(tk)(x(k−1) − x(k)

∞ ) for k ≥ 1.

(4.52)

Due to the implicit nature of the scheme of Eq. (4.52), that entails better stability
properties than the explicit scheme used for the RUs equations [QSS10], we solve it
with a larger time step size than the one used for the RUs model (∆t = 1 · 10−3 s).

4.4.2 Discrete vs. continuous representation of binding sites

While the SE-disc-I and the SE-disc-II models are derived under the assumption that
all the sarcomere are identical, the other models presented in Sec. 4.2 allow for some
variability in the inner alignment of proteins in the sarcomeres, by assuming that the
value of the offset d0 in Eq. (4.1) is a random variable, rather than a constant. To
investigate the implications of the assumption made by the discrete models (SE-disc-I
and SE-disc-II), we perform the following test. We simulate an isometric twitch by
applying the calcium transient of Eq. (2.23), with cmax = 0.9 µM and with SL =
2.2 µm. Then, we repeat the simulation after having incremented by a small amount
Dd the offset d0. The results, shown in Fig. 4.7, where the same twitch is simulated
multiple times with different values of Dd, reveal that the solution of the discrete
models is highly sensitive on the value of the offset d0.

In Fig. 4.7a the tension transients obtained with the SE-disc-II model 8with dif-
ferent values of Dd) are compared with the one predicted by the SE-ODE model. The
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Figure 4.7: Isometric twitches simulated with the SE-disc-II model for different values
of Dd. In (a), the force transients obtained with the SE-disc-II model are compared
with the force transient predicted by the SE-ODE model. In (b), the force transients
are represented in function of time and of Dd. The results are reproduced almost
periodically in Dd, with a period similar to DA. Both models are calibrated for intact
body-temperature human cells.

latter assumes that the value of d0 is a uniformly distributed random variable. Hence,
continuous models can be considered as the average of the discrete models for the
different possible values of d0.

Therefore, in the following, we will only consider the continuous models, as the
discrete ones are not able to account for the heterogeneities featured by the sarcomeres
and produce results that are too sensitive on the value of the sarcomere elongation.
In particular, we focus on the SE-ODE and MF-ODE models, that feature the best
trade-off between model complexity, computational efficiency and availability of ex-
perimental data needed to constraint the model parameters.

4.4.3 Steady-state results

First, we consider steady-state solutions. To numerically obtain the steady-state
curves, we fix a level of [Ca2+]i and SL and we let the model reach the equilibrium
solution.

Force-calcium relationship

We show in Figs. 4.8 and 4.9 the force-calcium curves predicted by the SE-ODE
and MF-ODE models for rat and human cells, respectively. In all the cases, the
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Figure 4.8: Steady-state force-calcium relationship at different SL obtained with the
SE-ODE (left) and the MF-ODE (right) models for intact room-temperature rat car-
diomyocytes.
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Figure 4.9: Steady-state force-calcium relationship at different SL obtained with the
SE-ODE (left) and the MF-ODE (right) models for intact body-temperature human
cardiomyocytes.

curves reproduce the main experimentally observed features reported in Sec. 1.3.2.
Figure 4.10 shows the dependence of the Hill coefficient nH and of the half-activating
calcium concentration EC50 on the sarcomere length SL. We notice that, while the
MF-ODE model produces an Hill coefficient that is independent of SL (the reason is
that the role of SL on activation is just that of shifting and rescaling the curves, thus
leaving nH unaffected), the SE-ODE model predicts a small increase of nH with SL.
Both the results are equally acceptable since there is no common agreement on whether
the Hill coefficient depend on SL or not (see Sec. 1.3.2). Both the models correctly
predict for both the species an increase of EC50 as SL decreases. The relationship is
approximately linear in the typical working range of SL (as experimentally observed,
e.g., in [DKT02]), while, for small values of SL, the SE-ODE model produces a faster
decrease of sensitivity.

Force-length relationship

Figures 4.11 and 4.12 show the ascending limb of the steady-state force-length rela-
tionships. For both the SE-ODE and MF-ODE models we observe a change of slope for
saturating calcium concentration around 1.65 µm, coherently with the experimental
observations (see Sec. 1.3.2). Moreover, both models predict the change of convexity
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Figure 4.11: Steady-state force-length relationship at different [Ca2+]i obtained with
the SE-ODE (left) and the MF-ODE (right) models for intact room-temperature rat
cardiomyocytes.

of the force-length curves at different calcium levels.

A possible explanation for LDA

The phenomenon of LDA, by which the calcium sensitivity increases with SL (at
least in the working regime of sarcomeres), is one of the main regulatory mechanisms
of the cardiac contractile system, being responsible, at the microscopic level, of the
Frank-Starling effect (see Sec. 1.3.2). However, a commonly agreed explanation for
this phenomenon still lacks to be reached by the scientific community (see e.g. [TK16;
NCC19]). Remarkably, the numerical results obtained with the SE-ODE model repro-
duce the phenomenon LDA, without any phenomenological SL-dependent tuning of
the calcium sensitivity, as it is typically done in activation models (see e.g. [NHS06;
Was+12; Was+13; Was+15] or even the MF-ODE model). Therefore, the model setup
presented in Sec. 4.2.1 must contain the fundamental ingredients that form the basis
for the LDA phenomenon, or, at least one of its possible explanations.

The LDA is mirrored in both the steady-state force-calcium curves (as a leftward
shift of the curves when SL increases) and in the steady-state force-length curves (as
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Figure 4.12: Steady-state force-length relationship at different [Ca2+]i obtained with
the SE-ODE (left) and the MF-ODE (right) models for intact body-temperature hu-
man cardiomyocytes.

a convex shape of the curves near EC50). The two effects are two sides of the same
coin. In the following we show the basis by which the SE-ODE model reproduces the
LDA by resorting to its interpretation from the force-length curves.

The mechanism by which the SE-ODE model reproduces the LDA is based on the
edge-effect, due to the fact that RUs located at the borders of the single-overlap zone
are biased towards the non-permissive states by the cooperative nearest-neighboring
interactions. This is due, on one side, by the fact that the RUs located at the borders
of the filaments behave as the missing neighbor is in N state; on the other side, by
the fact that the transition N → P is prevented in the double-overlap region (see
Eq. (4.48)). Hence, by means of the nearest-neighbor interactions, the edge-effect is
propagated towards the center of the single-overlap zone, as we can see by Fig. 4.13a,
that shows the typical profile of the permissivity Pi along the filament. The highest
the calcium concentration, the more the Ci variables are biased towards the B state
and, consequently, the corresponding Ti are biased towards the P state, softening the
influence of the low-permissive borders. Therefore, for large values of [Ca2+]i, the
curve connecting the two ends of the single-overlap zone features large gradients and
thus a large overall permissivity P (given by the average of the permissivities Pi) is
reached and, consequently, a large tension Ta (see Fig. 4.13a).

Interestingly, the curvature of the permissivity profile is determined by [Ca2+]i
(by the competition between nearest-neighbor interactions and the calcium-driven
activation presented above) and it is virtually independent of SL, as we show in
Fig. 4.13b. Indeed, if we translate the permissivity profiles obtained with the same
[Ca2+]i for different SL so that the maximum points coincide (see Fig. 4.13b), the
curves virtually overlay. This observation has two important consequences in the
relationship between SL and P , for fixed [Ca2+]i: first, when SL increases, P (which
is proportional to the area below the permissivity profile) increases as well, since the
two end points of the single-overlap zone can be connected by a longer section of the
curve; moreover, the larger SL is, the faster P increases with SL is (see Fig. 4.14). In
other terms, P is an increasing and convex function of SL and this explains the LDA
phenomenon.

Moreover, also the experimentally observed change of convexity for large calcium
levels (see Sec. 1.3.2) can be explained by similar arguments. Indeed, if [Ca2+]i and
SL are large enough, the central part of the single-overlap zone reaches Pi ' 1, and
thus the permissivity cannot increase further. Therefore, if SL further increases, the
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permissivity profile starts to widen, leading to a linear growth of P (see Fig. 4.13c).
Such change in the mechanism by which P increases also leads to a sudden decrease
of the rate of growth of P , thus leading to a concave curve in correspondence of the
transition (see Fig. 4.15). This explains why the force-length curves are convex for
low [Ca2+]i, concave for intermediate [Ca2+]i and finally linear for saturating [Ca2+]i:
the curves are just different segments of the curve shown in Fig. 4.15. The different
regimes show up at different values of SL according to [Ca2+]i: for low [Ca2+]i, only
the convex regime can be observed, due to the limited extension of SL; for medium
[Ca2+]i, the working range of sarcomeres is located in correspondence of the transition
point, so we observe a concave curve; finally, at saturating [Ca2+]i we only observe
the final and linear part of the curve.

We notice that the above described machinery is made possible by two ingredi-
ents: the first is the nearest-neighboring interactions among RUs, the second is the
hypothesis that the RUs located at the end of the single-overlap zone behave as the
neighboring outer units are in N state. While there is experimental evidence for the
former (see Sec. 1.3.2 and [Bra+87; GRH01; SV17]), to the best of our knowledge
there are no experimental results either in favour or against of the latter. Hence, the
results presented above show that:

• In the case that the latter hypothesis is accepted, it could provide an explanation
for the LDA and for the change of convexity in the force-length curves.

• Conversely, without this hypothesis, the permissivity profile along the single-
overlap region appears to be less significant. Hence, in this case, the dynamics
of activation is well captured by the mean-field model MF-ODE. As a matter
of fact, in absence of a theory about the mechanisms underlying the LDA, the
only possibility is that of incorporating it in a phenomenological way, by making
the calcium sensitivity dependent on SL, as done in the MF-ODE model (see
Eq. (4.50)).

In conclusion, the SE-ODE and MF-ODE models provide different descriptions of the
thin filament dynamics according to which hypothesis on the behavior of the units
located at the end-points of the single-overlap zone is accepted.

4.4.4 Isometric twitches

We show in Fig. 4.16 the tension transients obtained by simulating isometric twitches
giving as input to the rat models the calcium transient of Eq. (2.23). On the other
hand, to obtain the isometric twitch transients for human cells shown in Fig. 4.17, we
employ the synthetic calcium transient of the TTP06 model.

We notice that both models predict the tension-dependent prolongation of the
relaxation time (see Sec. 1.3.3), as it can be seen from the normalized traces reported
in the bottom lines of the figures. Moreover, we report in Figs. 4.18 and 4.19 the
dependence of the time indicators TTP , RT50 and RT95 on SL, for the rat and the
human models, respectively. Coherently with the experimental measurement, the
TTP is nearly independent of SL, while RT95 shows an increasing trend with SL.

4.4.5 Force-velocity relationship

Figures 4.20 and 4.21 show the force-velocity relationship predicted with the rat and
the human models, respectively. In both the cases, and for both the SE-ODE and the
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Figure 4.13: Interpretation of the LDA as consequence of the edge effect, with the
SE-ODE model.

139



Chapter 4. Modeling the full-sarcomere dynamics

Figure 4.14: Scheme of the edge-effect as the underlying mechanism for the LDA. The
figure shows that the same increment of SL leads to a larger increment of P when the
sarcomere is more stretched. Indeed, the increment of P associated with an increment
∆SL can be approximated, at the first order in ∆SL, by a rectangle whose base
corresponds to the single-overlap length (that increases with SL), and whose height
is larger when the sarcomere is more stretched, due to the larger steepness of the
permissivity profile.

Figure 4.15: Scheme of the two regimes in the SL→ P relationship, for fixed [Ca2+]i.
When SL increases, the relationship is first convex, as explained in Fig. 4.14. Then,
when the permissivity hits Pi ' 1 in the center of the single-overlap zone, we have
a transition point and a linear growth regime starts, where P increases only by the
enlargement of the region where Pi ' 1.
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Figure 4.16: Tension transients during isometric twitches at different SL obtained
with the SE-ODE (left) and the MF-ODE (right) models for intact room-temperature
rat cardiomyocytes.
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Figure 4.17: Tension transients during isometric twitches at different SL obtained
with the SE-ODE (left) and the MF-ODE (right) models for intact body-temperature
human cardiomyocytes.
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Figure 4.18: Metrics of activation and relaxation kinetics as function of SL during
isometric twitches obtained with the SE-ODE (left) and the MF-ODE (right) models
for intact room-temperature rat cardiomyocytes.
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Figure 4.19: Metrics of activation and relaxation kinetics as function of SL during
isometric twitches obtained with the SE-ODE (left) and the MF-ODE (right) models
for intact body-temperature human cardiomyocytes.

142



4.4. Numerical results

0 0.2 0.4 0.6 0.8 1

T
a
/T

a
iso  [-]

-2

0

2

4

6

8

10
v
 [

h
s
/s

]
SE-ODE model

Ca = 1.0 M, SL = 1.9 m (exp)

Ca = 1.0 M, SL = 2.2 m (exp)

Ca = 2.5 M, SL = 2.2 m (exp)

Ca = 1.0 M, SL = 1.9 m (model)

Ca = 1.0 M, SL = 2.2 m (model)

Ca = 2.5 M, SL = 2.2 m (model)

0 0.2 0.4 0.6 0.8 1

T
a
/T

a
iso  [-]

-2

0

2

4

6

8

10

v
 [

h
s
/s

]

MF-ODE model

Ca = 1.0 M, SL = 1.9 m (exp)

Ca = 1.0 M, SL = 2.2 m (exp)

Ca = 2.5 M, SL = 2.2 m (exp)

Ca = 1.0 M, SL = 1.9 m (model)

Ca = 1.0 M, SL = 2.2 m (model)

Ca = 2.5 M, SL = 2.2 m (model)

Figure 4.20: Normalized force-velocity relationships for different combinations of
[Ca2+]i and SL obtained with the SE-ODE (left) and the MF-ODE (right) mod-
els for intact room-temperature rat cardiomyocytes in comparison with experimental
measurements from [Car+16].

MF-ODE model, the experimentally observed convex profile is obtained, with the force
reaching zero in correspondence of a finite value of velocity, the so-called maximum
shortening velocity (see Sec. 1.3.4). Moreover, the value of vmax

hs is not significantly
affected by the level of activation (that is to say, by the values of [Ca2+]i and SL),
as well as the curvature of the curve. This is also coherent with the experimental
observations [Car+16]. We have seen that the generalized H57 model considered in
Sec. 3.2 satisfies this property, thanks to the fact that the permissivity P has just a
multiplicative effect on the generated active tension. We have now shown, at least
through numerical tests, that the effect of the terms k̃PNT,i and k̃NPT,i is secondary and
thus the property is largely preserved by the XB models of Eqs. (4.29) and (4.43).

In Fig. 4.20 we also compare the force-velocity curves obtained by the models
with the experimental data used to calibrate the rat models (from [Car+16]), thus
validating that the automatic calibration procedure presented in Sec. 4.3.2 has been
successful.

4.4.6 Fast force transients

Finally, we consider the response to fast steps predicted by the SE-ODE and the MF-
ODE models. With this aim, we set a fixed value for the calcium concentration and
sarcomere length (we set [Ca2+]i = 1.2 µM and SL = 2.2 µm, but the results are not
significantly affected by this choice) and we let the system reach the steady-state.
Then, we apply a length step, by applying a constant shortening velocity in a small
time interval ∆t, and we plot the tension at the end of the step as a function of the step
length ∆L (see Sec. 3.2.3). We repeat this protocol twice: first, by reproducing the
same conditions employed in laboratory, that is by applying the length step in a very
small time interval (∆t = 200 µs, see [Car+16] and Sec. 1.3.5); then, we repeat the
simulation, this time by applying the step with a lower shortening velocity, compatible
with the typical velocity by which the cardiac tissue shortens during an heartbeat (we
set v = 0.5 s−1).

We show in Figs. 4.22 and 4.23 the results obtained for the rat and the human mod-
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Figure 4.21: Normalized force-velocity relationships for different combinations of
[Ca2+]i and SL obtained with the SE-ODE (left) and the MF-ODE (right) models for
intact body-temperature human cardiomyocytes.

els, respectively. The models here considered do not explicitly represent the power-
stroke, which is instead lumped inside the definition of the attachment-detachment
rates (see Sec. 3.2.4). Therefore, we compare the tension after the 200 µs fast-transient
with the experimentally measured T2-L2 data, measured by applying a fast step within
the same time interval (see again Sec. 3.2.4). The good match between the simula-
tion results and the experimental measurements provide a further validation of the
calibration procedure.

The curves obtained by letting the tissue shorten with a velocity similar to that
observed during an heartbeat are close to those obtain with an almost instantaneous
step, for small values of ∆L; conversely, for larger ∆L, the former curves saturate
and a smaller force drop is observed. The reason is that a large length step takes a
longer time to be accomplished, and, consequently, the time interval is large enough
for the attachment-detachment process to partially recover the original tension. In
other terms, when we consider the typical time scales of an heartbeat, the dynamics
of the length changes is not sufficiently fast to appreciate the scale separation between
the different phases following a fast transient (see Sec. 1.3.5). This provides a further
justification for the fact that a lumped description of the power-stroke is an acceptable
approximation if the model is used for organ-level simulations and for the fact that,
in the model calibration, fitting the T2-L2 curve for small values of ∆L is enough (see
Sec. 3.2.4).

4.5 Final remarks

In this chapter we have shown that, thanks to the introduction of suitable assumptions,
the dynamics of a microscopically detailed sarcomere model can be described by a
drastically reduced number of equations than those of the associated FKE equation.
We have thus derived, by following this strategy, several models, corresponding to
different assumptions (see Tab. 4.1).

The main difficulties to be addressed in the derivation of models concern the spatial
correlation of the states of the RUs due to the nearest-neighbor interactions, which
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Figure 4.22: Normalized force after the application of a fast length step ∆L for intact
room-temperature rat cardiomyocytes. The fast steps reported by the blue line (model
result) and the blue circles (T2-L2 experimental data from [Car+16]) are applied within
a time interval of ∆t = 200 µs, while the red line refers to fast steps applied with a
shortening velocity of v = 0.5 s−1.
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Figure 4.23: Normalized force after the application of a fast length step ∆L for intact
body-temperature human cardiomyocytes. The fast steps reported by the blue line
are applied within a time interval of ∆t = 200 µs, while the red line refers to fast steps
applied with a shortening velocity of v = 0.5 s−1.
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hinders a straightforward decoupling of the adjacent RUs, and the mutual filament
sliding, that changes which RU regulates which XB from time to time. As done in
Chap. 2 we address the first problem by introducing a conditional independence as-
sumption for far RUs, given the state of intermediate RUs (this is coherent with the
local nature of nearest-neighboring interactions). As we have shown in Sec. 2.2.5 this
kind of assumption dramatically reduces, with the introduction of just a small approx-
imation, the number of equations needed to describe the evolution of the stochastic
processes. Moreover, thanks to the absence of feedback from the XBs to the RUs, the
dynamics of the latter can be considered independently of the former.

Remarkably, in the derivation of the equations describing the dynamics of XBs,
we never encountered the need of tracking which RU faces which XB at each time.
This is a consequence of the fact that we departed from the traditional MHs-centered
representation of XBs, in favour of a BSs-centered point of view. Thanks to this change
of perspective, we derived a set of equations describing the XB dynamics without the
need to track the mutual position of the RUs and the MHs.

Under the hypothesis that the total attachment-detachment rate is independent of
the myosin arm stretch (as done in [BCS01; Cha+12]), the PDE system describing the
XBs can be replaced by a system of ODEs. We remark that this is not a simplificatory
assumption, like the conditional independence assumptions mentioned before, but
rather a feature of the specific modeling choice for the transition rates describing the
attachment-detachment process.

We have also presented a class of models (MF-PDE and MF-ODE), such that the
myofilaments overlap is not explicitly described, but it is replaced by a mean-field de-
scription of a single representative RUs triplet. We remark that such mean-field mod-
els differ from the mean-field models presented in Sec. 2.1.2 (such as [LS94; RWH99;
SGS03; Sac04; RBC99]). The latter, indeed, considers a single RU, instead of a triplet.
In this manner, the short-range spatial correlation, responsible of cooperativity, can-
not be captured. Conversely, the mean-field triplet framework here proposed, thanks
to the local nature of cooperativity, allows to capture the effect of nearest-neighbor
interactions, as testified by the remarkably good agreement between model predic-
tions as experimental measurements, in particular in the reproduction of the highly
cooperative steady-state force-calcium curves (see Sec. 4.4.3).

We have then calibrated the SE-ODE and the MF-ODE models in the case of room-
temperature rat intact cardiomyocytes and, later, of body-temperature human intact
cardiomyocytes. The results of the numerical simulations showed that the models
are capable of reproducing the main features of the experimental characterizations
of muscle contraction associated with the time scales of interest (that is to say, the
time scales longer that that of the power-stroke), including the steady-state force-
calcium and force-length relationships, the kinetics of activation of relaxation, the
force-dependent twitches prolongation, and the force-velocity relationship.

The SE-ODE model predicts the so-called LDA (the increment of calcium sensi-
tivity when the sarcomere stretches in the physiological range, see Sec. 1.3.2) and the
observed change of convexity of the steady-state force-length curves when the calcium
concentration increases (see Sec. 1.3.2). We remark that there is not a common agree-
ment in the scientific community about the microscopical phenomena producing the
above mentioned effect and most of the hypotheses proposed in the past have been
later rejected (see Sec. 1.3.2). Therefore, we believe that our results are remarkable in
this sense, because the phenomena of LDA and of the change of convexity of the force-
length curves spontaneously emerge without the need of phenomenologically tune the
parameters in dependence of SL. The model here proposed, thus, should contain
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some fundamental ingredients capable of producing such phenomena. We have shown
in Sec. 4.4.3 that this is due to the fact that the RUs located at the end-points of
the single-overlap zone have a low probability of being in the P state and, because
of the nearest-neighbor interactions, such bias towards the N state spreads along the
filament. When the muscle shortens and, consequently, the single-overlap zone re-
duces its extension, this effect is enhanced, thus reducing the overall permissivity in
a nonlinear manner.

Therefore, if the hypothesis that the RUs located at the end-point of the single-
overlap zone behave as if the outer neighboring units are in state N is accepted, then
the SE-ODE model provides an explanation for LDA and for the change of convexity
of force-length curves. Conversely, if this hypothesis in not accepted, the best that
one can do is to model the length-dependent regulation of calcium sensitivity in a
phenomenological way. In this case, the MF-ODE model provides a reliable description
of the thin filament dynamics since the role of the permissivity profile along the single-
overlap is not significant any more to capture the LDA.

In conclusion, according to the hypothesis made on the behavior of the RUs near
the end-points of the single-overlap zone, the SE-ODE and the MF-ODE models repre-
sent two alternative descriptions of the sarcomere dynamics based on a microscopically
detailed representation of the regulatory and contractile proteins, where phenomeno-
logical modeling choices are only introduced for phenomena whose underlying mech-
anisms is not clear to the physiologists scientific community.
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Part II

Model order reduction and
Machine Learning
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Chapter 5
Machine Learning for fast and
reliable solution of time-dependent
models

In Part I we proposed several mathematical models to describe the microscopic cardiac
mechanical activation. These models have a dimension that is significantly reduced
with respect to that of the FKE associated to the CTMC describing the dynamics
of the contractile proteins from which they are derived (Sec. 2.2.2). Moreover, the
computational cost associated with the numerical approximation of such models is
much lower than that of MC models. Still, some of the proposed models feature
order of 103 variables and the numerical simulation of 1 s of physical time requires
few seconds of computational time. Therefore, when such activation models are used
for three-dimensional numerical simulations at the tissue scale (such as cardiac EM),
they need to be solved simultaneously in many points of the computational domain,
thus likely becoming the bottleneck of the simulation so that the overall consumption
of computational resources dramatically increases, both in terms of memory storage
and computational time. A further significant reduction of the dimensionality of the
proposed force generation models is thus desirable, if not necessary, in view of cardiac
EM simulations. This is precisely our goal in Part II of this thesis.

With this aim, we consider the topic of model order reduction (MOR) of time-
dependent models. In this chapter, we deal with such topic in general terms, due to
the generality of the results here presented. Then, in Chap. 6, we we will apply the
method proposed in this chapter to the mechanical activation models presented in
Part I.

Specifically, in this chapter, we propose a data-driven MOR techniques based on
Machine Learning. The proposed method is non-intrusive, as it only needs a collection
of input-output pairs generated through the model to be reduced. Most of the results
presented in this chapter have been published in [RDQ19b].
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5.1. Model order reduction for time-dependent models

5.1 Model order reduction for time-dependent mod-
els

The numerical simulation of time-dependent mathematical models is often needed in
applied sciences. The increasing demand of more complex and reliable mathematical
models may lead to an unbearable demand for computational resources, either in terms
of computational power or memory storage. Very often, in several applications, numer-
ical simulations of a given model need to be performed multiple times (many-query)
and for many different inputs, either for sensitivity-analysis, optimization, control
or uncertainty-quantification purposes, or to deal with multiscale problems, such as
cardiac EM, as we will see in Part III. In computational medicine and meteorology
e.g., complex mathematical models, although precise and reliable, may be useless for
predictive purposes if these cannot be solved nearly in real-time.

This strongly motivates the development of reduced models, that is computationally
tractable, lower dimensional mathematical models that can be solved with a smaller
effort (both in terms of time and computational resources), yet reproducing with
a good approximation the results of the high-fidelity (HF) model [ASG00; BMS05;
QR14; QMN15].

In this chapter, we focus on time-invariant dynamical systems, whose behavior
is determined by a time-dependent input u(t) ∈ RNu and endowed with an output
y(t) ∈ RNy . Let us consider the following general1 form for our HF model:{

Ẋ(t) = F(X(t),u(t)) t ∈ (0, T ],

X(0) = X0,

y(t) = G(X(t)) t ∈ (0, T ],

(5.1)

with F : RN × RNu → RN , G : RN → RNy , where X(t) represents the HF state of
the system and can be either finite-dimensional, for ODE models (i.e. X(t) ∈ RN ),
or infinite-dimensional, e.g. for PDE models. We notice that (5.1) is not the most
general form that we can face: indeed the equation can be stated in implicit form.
However we stick to form (5.1) just to illustrate the concept.

Moreover, we notice that the cardiac mechanical models presented in Part I can
be written in form (5.1), where the input u(t) is given by the calcium concentration,
the sarcomere length and, possibly, the tissue shortening velocity and the output is
given by the permissivity or the generated active tension.

Most of MOR methods for time-dependent problems provide a reduced order model
(ROM) in the following form:{

ẋ(t) = f(x(t),u(t)) t ∈ (0, T ],

x(0) = x0,

ỹ(t) = g(x(t)) t ∈ (0, T ],

(5.2)

where the reduced-order state x(t) belongs to a lower dimensional space Rn (typically
with n� N) and the functions f : Rn×RNu → Rn and g : Rn → RNy can be evaluated
with a smaller computational effort than F and G in Eq. (5.1). Notice that, in several

1 The non time-invariant case (i.e. Ẋ(t) = F(X(t),u(t), t)) can be written in the form (5.1) by
introducing a further dependent variable XN+1, representing time, with equation ẊN+1(t) = 1 and
XN+1(0) = 0. Moreover, Eq. (5.1) also includes parametric differential equations, that is the case
when u(t) is constant in time and is regarded as a parameter.
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cases, the knowledge of the evolution of the full-order state X(t) is not essential since
the user may be interested in just one or a few output quantities, represented by y(t).
Should the ROM (5.2) be able to reliably reproduce the input-output map u 7→ y,
it could replace the HF model (5.1), hopefully with a considerable gain in terms of
computational resources and simulation time. We here denote by ỹ(t) the output of
the ROM, which generally differs from that of the HF model y(t).

MOR methods can be categorized as model-based or data-driven [BGW15; Ant05;
PW15a; PW15b; PGW17]. In model-based MOR, Eq. (5.1) is the starting point
to derive its reduced version (5.2). With data-driven approaches instead, the ROM
is built upon a collection of input-output pairs, through which the dynamics of the
system is inferred. The advantages of model-based approaches are that, often, the
ROM inherits structural properties (e.g. stability) from the HF model; moreover,
the underlying HF system structure provides the base for deriving error estimates,
hence error certification. Unfortunately, an equation in the form of (5.1) is not always
available to express the dynamics of the HF model, which may be accessible only
through input-output data. This is the case, for instance, when the system dynamics
is available only through experimental measurements, either in the time domain or in
the frequency domain (i.e. through samples of the transfer function, in the case of a
linear system), or when the HF system is accessible through the simulations of a black-
box software library. On the other hand, even when the HF model is available, the
implementation of model-based MOR into existing codes may not be straightforward.
Data-driven MOR, instead, thanks to its black-box approach, is intrinsically non-
intrusive and can thus be applied even when the HF model is not directly accessible.

5.1.1 Model-based MOR

The most popular approach to model-based MOR for dynamical systems consists in
projection-based methods [BGW15; BMS05; ASG00; Ant05]. In this framework, the
full-order state space RN is approximated by a lower-dimensional subspace span(V),
where V ∈ RN×n is the matrix whose columns are the basis of the subspace. The full-
order state is approximated as X(t) ' Vx(t) and the HF model equation is projected
in the Galerkin (or Petrov-Galerkin) sense, by left multiplying it by VT (or by another
matrix WT , respectively):{

ẋ(t) = WTF(Vx(t),u(t)) t ∈ (0, T ]

x(0) = WTX0,

ỹ(t) = G(Vx(t)) t ∈ (0, T ],

(5.3)

This is equivalent to imposing orthogonality of the HF residual to span(V) (or, re-
spectively, to span(W)). Various projection-based methods differ on the selection
procedure of the bases for V and W.

When the HF model (5.1) is linear in the state X, the Moment-Matching approach
(or Padé approximation) consists in building V and W in such a way that the as-
sociated transfer function interpolates, up to a desired order, the first few moments
of the full-order transfer function for a given frequency [Bai02; Bau+11; Fre03]. The
Balanced-Truncation approach applies in the linear case too: it neglects the states
corresponding to the smallest Hankel singular values, which measure the relevance of
each state in terms of both reachability and observability [Moo81; Ant05]. Proper
Orthogonal Decomposition (POD), originally dating back to [Pea01] and developed
by Sirovich in 1987 (see [Sir87]), is tightly related to Principal Component Analysis
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(PCA, see [Hot33]) and to Karhunen-Loève expansion, also known as Hotelling trans-
form in stochastic process theory [Loe78]. The POD approach consists in collecting a
set of snapshots of the full-order state X (i.e. solutions computed at different times for
different input values) and in building a basis by selecting the left singular vectors of
the snapshot matrix corresponding to the largest singular values, computed through
Singular Value Decomposition (SVD) of this snapshot matrix. Such basis is optimal as
it minimizes the least-squares error of snapshot reconstruction [Ant05]. POD gained a
huge popularity in the PDE framework: the POD Galerkin projection-based approach
represents one of the two classical forms of the Reduced Basis (RB) method, the other
one being based on the greedy algorithm to generate the snapshots (see e.g. [FR83;
Pet89; QMN15; Pru+02; HRS16]).

The effectiveness of projection-based MOR relies on the offline/online decompo-
sition. Such decoupling is straightforward in the case of linear models with affine
dependence of F on the input u since the algebraic structures (matrices and vectors)
of the ROM can be precomputed offline (i.e. during the construction of the ROM) by
projection of the full-order algebraic structures [QMN15; BMS05]; the latter do not
need to be accessible in the online phase (i.e. during the numerical simulation of the
ROM). In the nonlinear case and/or with non-affine input dependence the offline and
online phases cannot be decoupled in principle, and the full-order right-hand side F
should be evaluated at each time step of the online phase, thus preventing the reduc-
tion of the HF model complexity. To overcome this issue, the nonlinear dependence on
the state and the input is replaced by affine approximations by employing techniques
such as the empirical interpolation method, EIM [Bar+04; Mad+07], the discrete
empirical interpolation method, DEIM [CS10; DHO12], its matrix version MDEIM
[NMA15] or the gappy POD reconstruction [ES95]. In [LC18] the authors proposed
a projection-based MOR technique, where the system is projected into a nonlinear
manifold, determined by convolutional autoencoders from deep learning.

Another class of model-based MOR techniques is that of hierarchical surrogates,
that is to say models derived from the HF one under simplified physical assumptions,
simplified geometries or coarser computational grids. While this approach is ubiq-
uitous, we limit to mention a few applications, e.g. [Ale+01; QV03; Hac79]. Most
methods in this category are dependent on the class of differential problems describing
the phenomenon or are tailored to a specific model.

5.1.2 Data-driven MOR

In the Loewner framework [Löw34] a linear reduced model is derived from transfer
function measurements at a collection of interpolation points, either in left or right
tangential directions (i.e. by left or right multiplying the transfer function matrix by
the vector corresponding to the tangential direction). The ROM matrices and arrays
are computed in such a way that the ROM transfer function interpolates the full-order
one at the interpolation points and in the tangential directions (see [MA07; LA10]).
In [PGW17] the Loewner framework has been extended to derive ROMs from time-
domain data, instead of frequency-domain data. Although the Loewner framework
only applies to linear models, it has recently been extended to bilinear (i.e. linear
independently in the state and the input) models [AGI16], quadratic-bilinear models
[GA15] and to analytic nonlinear models with affine input dependence, by rewriting
models with analytic state nonlinearities as quadratic-bilinear models (however in-
creasing the size of the original model, see [Gu11]). The orthonormal vector fitting
(OVF) method, suitable for linear systems, is another frequency-domain approach.
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Starting from transfer function data samples, OVF approximates the transfer func-
tion through orthonormal rational functions [DD05; DHD07].

Kriging, originally developed in geosciences [Kri51] and also known as Gaussian
Process (GP) regression, is widely used to perform MOR for nonlinear models in
the steady-state case [Ras04; MSDR13]. It is a regression method that employs, as
prior for the outcome of a function, a GP whose covariance function depends on so–
called hyperparameters, tuned according to a maximum likelihood principle. This
technique has been extended to the dynamical case in [HG08] under the name of
dynamic mapping kriging (DMK); here, by considering the discrete time version of
the evolution equation (5.2) (i.e. xk+1 = f(xk,uk)), DMK performs kriging on the
function f starting from sample data for several (x,u) pairs. In [BPK16] the authors
propose, under the name of Sparse Identification of Nonlinear Dynamics (SINDy),
a technique to infer a model for a dynamical system starting from measurements of
(x(t),u(t), ẋ(t)) tuples. This technique, under the assumption that f depends on few
combinations of the inputs (such as linear combinations, products, and trigonometric
functions), seeks a sparse solution for the coefficients of a predetermined collection
of linear and nonlinear terms. Despite DMK and SINDy can be applied to nonlinear
systems, both these techniques require access to the full-order state of the model and
do not perform any reduction in the state dimension.

The method proposed in [GH19] stands at the interplay between model-based and
data-driven MOR, by combining the RB method with GP regression. In particular
the authors build a reduced basis by POD of a collection of snapshots collected by
the HF solution of time-dependent parametric differential equations; then, by GP
regression, they approximate the map from the parameters and the time instant to
the reduced basis coefficients of the solution. This method, however, is restricted to
parametric differential equations (i.e. when u(t) is constant in time) and cannot be
easily extended to the case of models with time-dependent inputs.

5.1.3 Learning models from data

Data-driven MOR, due to its black-box nature, can also be applied when the HF model
for the state X is not accessible, or may not fit in known families of mathematical
models: that is, when one is unable or may not be interested in explicitly building a
model. This is the case when a physical system is accessible through measurements
and one tries to identify the underlying law generating the input-output pairs. This
task is commonly known in the field of control theory as System Identification, SI (see
e.g. [Lju98; Kee11]). Models in the form (5.2) are known in the SI field as internal-
dynamics or state-space models, whereas the most commonly treated form in the SI
field is that of external-dynamics models (see NARX/NARMAX models, [Nel13]), i.e.
discrete time models in the form

ŷk+1 = η(yk,yk−1, . . . ,yk−p,uk,uk−1, . . . ,uk−q),

where the prediction for the next output ŷk+1 depend on the value of the previous p+1
output measurements {ŷj}kj=k−p and the previous q + 1 inputs {ûj}kj=k−q. However,
models in this family are designed for online identification and, most of all, for online
predictions: the model must be fed with the output measured at previous steps, so that
the true output should be available not only at the identification (or training/offline)
stage, but also at the prediction (online) stage. Instead, we are looking here for a
model that can be used in a stand-alone way in the online phase, once an offline
training phase has been carried out. The use of ANNs in the context of nonlinear SI
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is quite popular [NP90; NP92; Nel13], even if their application is limited, up to our
knowledge, to online identification and prediction of discrete time systems.

In some recent works the authors have developed learning machines, either based
on GP [RPK17a; RK18] or ANNs [RPK17b; RPK17c; RPK19], for data-driven solu-
tion and data-driven discovery of PDEs. However, the learning machine must have
knowledge of the form of the equations that generated the observed data. This tech-
nique can be applied to linear or nonlinear parametric PDEs, where the parameters
of the PDE (e.g. diffusion, reaction coefficients, etc.) are unknown.

In [RPK18] the authors make use of ANNs to perform data-driven discovery of
nonlinear dynamical systems. In particular, they train the ANN to minimize the
residuals of a given multi-step time-stepping scheme (such as Adams-Bashforth or
BDF schemes) on a collection of available snapshots of the full-order state {X(tk)}Mk=1.
However, this approach, like DMK and SINDy techniques, requires X to be accessible
and, moreover, does not perform any dimensionality reduction of the state space.

In [SM18] the authors use ANNs in combination with projection-based MOR for
time-dependent models, to approximate the effect of the discarded modes on the re-
tained ones. In [TCD17; FC18] the authors use machine-learning techniques to model
the error of projection-based ROM of parametrized nonlinear dynamical systems.

5.1.4 Original contributions

In this chapter, we address the problem of data-driven MOR for nonlinear dynamical
systems (which can be interpreted as a nonlinear SI problem), where we suppose to
have no direct access either to the HF model (that is F and G in Eq. (5.1)), nor to full-
order state observations X(t), but only to input-output pairs (u(t),y(t)). This task is
remarkably hard since we aim at the same time at (i) reconstructing the internal state
of the system through its reduced description x(t) without the possibility of observing
the true internal state of the system X(t) and (ii) finding a model for the dynamics
of x(t) itself. We notice that the reconstruction of the system state through x(t) is
not the final goal, but it is just instrumental to reconstruction the input-output map
u 7→ y.

In [RDQ19b] we have proposed a data-driven MOR technique (that we present
in this chapter), based on Artificial Neural Networks (ANNs), applicable to dynami-
cal systems arising from Ordinary Differential Equations (ODEs) or time-dependent
Partial Differential Equations (PDEs). Unlike model-based approaches, the proposed
approach is non-intrusive since it just requires a collection of input-output pairs gen-
erated through the high-fidelity (HF) ODE or PDE model. We proceed by setting
the problem in an abstract form, where we look for the best-approximation of the HF
model into a class of simpler models (i.e. the class of ROMs with a prescribed level
of complexity). This is an optimization problem, where the unknown is the model
itself. Noticeably, we need to carefully select the class of candidate models and to
find a suitable representation for the models to define an optimization algorithm for
solving the best-approximation problem. Because of their ability to approximate any
continuous function with a desired level of accuracy (see [Cyb89; SX19; He+18]) and
to learn from data, we represent the right-hand side f in (5.2) through an ANN, that
we train to learn the underlying physics from input-output pairs. We prove that ANN
models are able to approximate every time-dependent model described by ODEs with
any desired level of accuracy. We test the proposed technique on different problems,
including the model reduction of two large-scale models. Two of the HF systems of
ODEs here considered stem from the spatial discretization of a parabolic and an hy-

157



Chapter 5. Machine Learning for fast and reliable solution of time-dependent models

Model Order Reduction (MOR)
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Figure 5.1: Model-based and data-driven MOR. The HF model can have three unde-
sired features: 1© it may be computationally demanding, 2© it can have a high state
dimension, 3© it may not be accessible. A ROM can be derived either directly from
the HF model (model-based MOR), or from input-output pairs generated by the HF
model (data-driven MOR). The latter approach allows to learn a model, in the case
when the HF model is not accessible (see 3©). In both the cases, the ROM represents
a surrogate of the HF model allowing for fast evaluations, lowering the computational
burden in multi-query applications (see 1©), and features a low dimensional state (see
2©).
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perbolic PDE respectively, which sheds light on a promising field of application of the
proposed technique.

In this chapter we introduce a general framework which serves multiple purposes
(see Fig. 5.1):

• Building surrogates of time-dependent differential models, which allow for fast
evaluations and are suitable for multi-query problems.

• Reducing the dimensionality of the state variables of time-dependent differen-
tial models (e.g. when a mathematical model needs to be solved virtually in
each point of a computational domain and the overall memory storage must be
contained).

• Learning mathematical models from available input-output pairs.

This chapter is structured as follows. In Sec. 5.2 we present our strategy, by
rephrasing the model reduction problem in terms of an optimization problem, for
which we define the objective functional. Then, in Sec. 5.3, we present the strategy
employed to numerically find a solution of the optimization problem. In particular,
we show: (i) how the unknowns of the problem are discretized; (ii) how the time
discretization is performed; (iii) the optimization algorithm employed. Finally, in
Sec. 5.4, we show the obtained results and we analyse and critically discuss them.

5.2 Model order reduction strategy

We start by giving a definition of model (in the way this is meant in this chapter): an
object which maps time-dependent inputs into time-dependent outputs.

5.2.1 The dynamical model

A model for us is a general framework including either a physical model (like a natural
phenomenon or an engineering process) or a mathematical or numerical model, which
associates a time-dependent output to a time-dependent input. We consider a limited
time interval [0, T ] and we denote by U ⊂ RNu and by Y ⊂ RNy the sets where
the input u : [0, T ] → U and the output y : [0, T ] → Y take values, respectively.
We name as experiment the action of inputing u(t) to the model and recording the
corresponding output y(t) and by sample we refer to the couple (u,y). For the sake
of abstraction, we make the following minimal assumptions on the model:

(A1) Time invariance: by denoting with y(t) the output obtained by starting at
time t0 an experiment with input u(t), the output of another experiment started
at time t1 ≥ t0 with input u(t−(t1−t0)) is y(t−(t1−t0)). Hence in the following
we will consider, without loss of generality, each experiment starting from the
initial time t = t0 = 0.

(A2) Existence of an initial state: at time t = 0, for each experiment, the model
is in the same initial state, that is it always responds in the same way to a
prescribed input. Otherwise, the map u 7→ y would not be well defined.

(A3) Causality principle: The input-output relationship must be consistent with
the arrow of time, that is the output of the model is allowed to depend only
on previous values of the input and not on future values: given two inputs u1
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and u2, such that, for some t∗, u1(t) = u2(t) for t ∈ [0, t∗], the corresponding
outputs y1 and y2 must satisfy y1(t) = y2(t) for t ∈ [0, t∗].

(A4) No input-output direct dependence: the output at time t depends just on
the state of the system at the same time, but not (directly) on the input at time
t. As a consequence, thanks to (A2), the output at time t = 0 will be the same
for each experiment. Notice that this assumption could be removed, by allowing
g in (5.2) to depend also on u(t). However, for the sake of simplicity, we will
not consider the latter case in this thesis.

For simplicity, we consider the case when both the input and output are continuous
functions in time. Therefore, the model can be seen as a map ϕ : U → Y from the
space of input signals U = C0([0, T ];U) to the space of output signals Y = C0([0, T ];Y ).
Thanks to assumptions (A1) and (A2) the map ϕ is well defined. Moreover, assump-
tion (A3) can be written as

∀u1,u2 ∈ U ∀ t∗ ∈ [0, T ] u1|[0,t∗] = u2|[0,t∗] =⇒ (ϕu1)|[0,t∗] = (ϕu2)|[0,t∗],
(5.4)

where ϕu1 denotes the output y1 ∈ Y of the model when the input is u1 ∈ U (thus
both u1 and ϕu1 are functions of time) and (ϕu1)|[0,s] denotes the restriction of the
output y1 to the time interval [0, s]. On the other hand, assumption (A4) entails

∃y0 ∈ Y s.t. ∀u ∈ U (ϕu)(0) = y0, (5.5)

where (ϕu)(0) denotes the output y ∈ Y of the model – corresponding to the time-
dependent input u ∈ U – evaluated at time t = 0 (i.e. y(0)). Thus, we define the set
of all the models associated with the input and output sets U and Y as

Φ = {ϕ : U → Y s.t. (5.4) and (5.5) hold} ,

endowed with the norm of the supremum:

|ϕ |Φ = sup
u∈U
|ϕu |Y = sup

u∈U
sup
t∈[0,T ]

|(ϕu)(t) |Y .

5.2.2 Building a reduced model

We perform Ns experiments with the HF model and we collect a set of Ns input-output
pairs:

{(ûj , ŷj)}j=1,...,Ns
⊂ U × Y. (5.6)

Then we select a subset of candidate models, which we denote by Φ̂ ⊆ Φ, and we
consider the problem of finding the best-approximation of the HF model, in the least-
squares sense, in the subset Φ̂:

ϕ∗ = argmin
ϕ∈Φ̂

J(ϕ), (5.7)

where the objective functional is given by

J(ϕ) =
1

2

Ns∑
j=1

∫ T

0

|ŷj(t)− (ϕûj) (t)|2dt. (5.8)
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When the measurements of the output ŷj are affected by Gaussian noise, the least-
squares best-approximation corresponds to the maximum-likelihood estimation (see
e.g. [CB02]).

The next step is the choice of the subset of candidate models Φ̂ ⊆ Φ. A possible
approach is that of directly approximating the input-output map u 7→ y in the time
domain (i.e. from U to Y), e.g. by means of an ANN which takes as an input a
set {u(t0),u(t1), . . . ,u(tM )} of values associated to a collection of time instants and
returns the corresponding output values {y(t0),y(t1), . . . ,y(tM )}. However, working
on input and outputs as signals (i.e. in the spaces U and Y) would clearly lead to a
remarkably large-size problem, potentially making the learning process unaffordable
because of its computational complexity. Thus, we pursue a different approach: by
exploiting the structure of the elements in Φ, which is based on assumptions (A1)–
(A4), we restrict the investigation to input-output maps described by systems of ODEs.
This dramatically reduces the size of the problem, as we show in the following.

5.2.3 Models described by systems of ODEs

We refer now to the specific class of models, in the framework of Sec 5.2.1, which are
governed by a system of ODEs in the form of (5.2). Such class represents a subset of
Φ, as we will show. First, we notice that, given two functions f ∈ Fn := {f ∈ C0(Rn×
U ;Rn), which are Lipschitz continuous in x uniformly in u} and g ∈ Gn := C0(Rn;Y )
and a vector x0 ∈ Xn ≡ Rn (where the subscript n stands for the number of internal
reduced states), the system (5.2) identifies a unique map from U to Y. We denote by
ϕf ,g,x0

such map.

Proposition 5.1. For each f ∈ Fn, g ∈ Gn and x0 ∈ Xn, we have ϕf ,g,x0
∈ Φ, that

is the input-output map represented by (5.2) is a model according to the definition of
Sec. 5.2.1.

Proof. Thanks to the Picard-Lindelöf theorem, Eq. (5.2) has a unique solution. Thus,
the map ϕf ,g,x0

is well defined. Moreover, it is continuous from U to Y, thus the
norm in Φ is finite. Property (5.4) is easy to be checked, while (5.5) holds by setting
y0 = g(x0).

Moreover, given the triplet F̂ ⊆ Fn, Ĝ ⊆ Gn and X̂ ⊆ Xn, we define the following
subset of models:

ΦF̂,Ĝ,X̂ =
{
ϕf ,g,x0

∈ Φ s.t. f ∈ F̂ ,g ∈ Ĝ,x0 ∈ X̂
}
⊂ Φ. (5.9)

We have the following result, which states that the expressive power of the class of
models with n state variables grows as n increases.

Proposition 5.2. The classes of models with n internal states are nested, that is:

ΦFn,Gn,Xn ⊆ ΦFm,Gm,Xm ∀n ≤ m.

Proof. Given a model in the form Eq. (5.2) with n state variables, by adding m − n
further variables which affect neither the dynamics of the other variables, nor the
output, we obtain a model with m state variables, still representing the same input-
output map of the previous model.

Moreover, we have the following result.
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Proposition 5.3. Let U be compact. Suppose that the subsets F̂ ⊆ Fn and Ĝ ⊆ Gn
are such that the restrictions of their functions to compact sets are dense in the full
spaces, that is for each compact set E ⊂ Rn we have:

∀ ε > 0 ∀ f ∈ Fn ∃ f̂ ∈ F̂ ∀x ∈ E,u ∈ U
∣∣∣f(x,u)− f̂(x,u)

∣∣∣ ≤ ε, (5.10)

∀ ε > 0 ∀g ∈ Gn ∃ ĝ ∈ Ĝ ∀x ∈ E |g(x)− ĝ(x)| ≤ ε. (5.11)

Then, the subset of models ΦF̂,Ĝ,Xn is dense in the model space ΦFn,Gn,Xn , that is:

∀ ε > 0 ∀ϕ ∈ ΦFn,Gn,Xn ∃ ϕ̂ ∈ ΦF̂,Ĝ,Xn s.t. |ϕ− ϕ̂ |Φ ≤ ε. (5.12)

Proof. By definition, there exists f ∈ Fn, g ∈ Gn and x0 ∈ Xn such that ϕ = ϕf ,g,x0
.

First, we show that the state x of the HF model ϕ is bounded. We have:

d

dt

(
1

2
|x(t)|2

)
= ẋ(t) · x(t) = f(x(t),u(t)) · x(t) ≤ |f(x(t),u(t))| |x(t)|

≤ (|f(x(t),u(t))− f(x0,u(t))|+ |f(x0,u(t))|) |x(t)| .

By denoting by Lf the Lipschitz constant of f , we have |f(x(t),u(t))− f(x0,u(t))| ≤
Lf |x(t)− x0| ≤ Lf (|x(t)|+ |x0|). Moreover, as U is compact, we have |f(x0,u(t))| ≤
M for some finite M ∈ R. Therefore, we have:

d

dt

(
1

2
|x(t)|2

)
≤ Lf |x(t)|2 + (Lf |x0|+M) |x(t)|

≤
(
Lf +

1

2

)
|x(t)|2 +

1

2
(Lf |x0|+M)

2
.

Using the Gronwall lemma [QSS10] we get:

|x(t)| ≤
√(
|x0|2 + (Lf |x0|+M)

2
T
)
e(2Lf+1)T =: R ∀t ∈ [0, T ].

Thanks to (5.11), there exists ĝ ∈ Ĝ such that |g(x)− ĝ(x)| ≤ 1
2ε for x ∈ B2R, the

closed ball of radius 2R.

Moreover, being g continuous, by the Heine-Cantor theorem, it is also uniformly
continuous on the compact ball B2R, thus there exists some ε′ such that for any
x1,x2 ∈ B2R, if |x1 − x2| ≤ ε′; this implies that |g(x1)− g(x2)| ≤ 1

2ε.

We define the positive number:

ε′′ = min

{
ε′,

1

2
R

}(
Te(2Lf+1)T

)−1/2

.

Thanks to (5.10), there exists f̂ ∈ F̂ such that
∣∣∣f(x,u)− f̂(x,u)

∣∣∣ ≤ ε′′ for x ∈ B2R,u ∈
U .

Consider the model ϕ̂ = ϕf̂ ,ĝ,x0
, whose state is denoted by x̂(t). Let u ∈ U be a

generic input signal. Now, we show that the trajectory of the state x̂(t) is contained in
B2R. Suppose by contradiction that x̂(s) = 2R for some s ∈ [0, T ], x̂(t) < 2R for t < s.
Then, in the interval [0, s) the discrepancy between the two states z(t) := x(t)− x̂(t)
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satisfies:

d

dt

(
1

2
|z(t)|2

)
= ż(t) · z(t) =

[
f(x(t),u(t))− f̂(x̂(t),u(t))

]
· z(t)

= |f(x(t),u(t))− f(x̂(t),u(t))| |z(t)|

+
∣∣∣f(x̂(t),u(t))− f̂(x̂(t),u(t))

∣∣∣ |z(t)|

≤ Lf |z(t)|2 + ε′′ |z(t)| ≤
(
Lf +

1

2

)
|z(t)|2 +

1

2
(ε′′)2.

(5.13)

By Gronwall inequality we get

|x(t)− x̂(t)| ≤ ε′′
√
Te(2Lf+1)T ≤ 1

2
R,

where the second inequality follows from the definition of ε′′. The, we have |x̂(t)| ≤
|x(t) − x̂(t)| + |x(t)| ≤ 3

2R for t ∈ [0, s). Since |x̂(s)| = 2R, we reach a contradiction
and we have proved that the trajectory of x̂(t) is contained into B2R. Therefore,
inequality (5.13) holds on the whole time interval [0, T ] and we conclude:

|x(t)− x̂(t)| ≤ ε′′
√
Te(2Lf+1)T ≤ ε′ t ∈ [0, T ],

which entails |g(x(t))− g(x̂(t))| ≤ 1
2ε for t ∈ [0, T ]. Finally, we have

|(ϕu)(t)− (ϕ̂u)(t)| = |g(x(t))− ĝ(x̂(t))|

≤ |g(x(t))− g(x̂(t))|+ |g(x̂(t))− ĝ(x̂(t))| ≤ ε

2
+
ε

2
= ε.

Proposition 5.3 states that if the subsets F̂ and Ĝ approximate in a suitable sense
(see Eqs. (5.10)–(5.11)) the spaces Fn and Gn respectively, the class of candidate

models ΦF̂,Ĝ,Xn approximate the space of models ΦFn,Gn,Xn with arbitrary accuracy.

We notice that by setting Φ̂ = ΦF̂,Ĝ,X̂ , the abstract problem (5.7) reads:
min

f∈F̂,g∈Ĝ,x0∈X̂

1
2

∑Ns
j=1

∫ T
0
|ŷj(t)− g(xj(t))|2dt

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, T ], j = 1, . . . , Ns,

xj(0) = x0, j = 1, . . . , Ns,

(5.14)

We are thus addressing a least-squares minimization problem where the design vari-
ables are the two functions f ∈ F̂ and g ∈ Ĝ and the vector x0 ∈ X̂ .

5.2.4 Non-uniqueness of the representation

Remark 5.1. Given a model ϕf ,g,x0
∈ ΦFn,Gn,Xn , its representation in terms of the

triplet (f ,g,x0) may not be unique. Indeed, by taking any invertible and sufficiently
regular map h : Rn → Rn, let us consider the change of variables x̃ = h(x) and define

f̃(x̃,u) = (∇h ◦ h−1)(x̃) f(h−1(x̃),u), g̃(x̃) = g(h−1(x̃)), x̃0 = h(x0). (5.15)

We have ϕf ,g,x0
= ϕf̃ ,g̃,x̃0

(i.e. the input-output map represented by the two models

is equivalent). As a particular case, for any α ∈ R \ {0}, we have that, with the

transformation f̃(x̃,u) = α f(x̃/α,u), g̃(x̃) = g(x̃/α), x̃0 = αx0, the triplets (f ,g,x0)

and (f̃ , g̃, x̃0) identify the same model.
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Because of Remark 5.1, the best-approximation problem (5.7) might be ill-posed.

Indeed, if the spaces F̂ , Ĝ and X̂ are wide enough to contain both (f ,g,x0) and –

according to (5.15) – their equivalent counterparts (f̃ , g̃, x̃0), the solution of problem
(5.7) may lose uniqueness in terms of its (f ,g,x0) representation. This is certainly
an issue since non-uniqueness can deteriorate the performance of the optimization
algorithm. Nevertheless, we can reduce the size of the spaces F̂ , Ĝ and X̂ by imposing
specific constraints on the solution to choose a priori a representative solution for a
given class of equivalent solutions. In such a way we can restrict the design space
for the optimization problem without ruling out possible solutions, thus reducing its
complexity. We now show two possible ways of performing this task.

Partial disambiguation by constraining x0

Consider a model ϕf ,g,x0
∈ Φ. Consider then the (invertible) state transformation

x̃ = h1(x) = x − x0. By applying the transformation (5.15), we get an equivalent

model ϕf̃ ,g̃,x̃0
, where f̃(x̃,u) = f(x̃ + x0,u), g̃(x̃) = g(x̃ + x0) and x̃0 = 0. Thanks to

this property, when we look for the solution of the best-approximation problem (5.7) we
suppose, without loss of generality that x0 = 0. This is equivalent to reducing the set
of possible initial states to the singleton X̂ = {0}, or equivalently, to minimize the cost
functional J under the constraint x0 = 0. The statement of the best-approximation
problem improves since the number of design variables decreases (the design variables
are now just f and g) and we have disambiguated among a number of equivalent
solutions, without ruling out possible solutions.

Partial disambiguation by constraining g and x0

Consequence of Remark 5.1 is that the state variables x are just auxiliary variables
to track the time evolution of the internal state of the model, not necessarily inferring
a clear physical interpretation. There is thus large freedom in their choice. Consider
the case when n ≥ Ny: one could possibly decide a priori to force the first Ny state
variables x1, . . . , xNy to coincide with the outputs y1, . . . , yNy . A natural question is
then the following: given a model ϕf ,g,x0

, is it always possible to rewrite it in an
equivalent form such that the first Ny state variables coincide with the output itself?
If the answer is affirmative, then we can restrict ourselves to models such that g(x)
is the function extracting the first Ny component of a vector, which we denote by
πNy (x) = (x1 , x2 , . . . , xNy )T .

To answer this question, consider a model ϕf ,g,x0
∈ Φ and suppose that there

exists a smooth function q : Rn → Rn−Ny – we will address later the existence issue
– such that h2(x) = (gT (x),qT (x))T is invertible (where g(x) ∈ RNy , q(x) ∈ Rn−Ny
and thus h2(x) ∈ Rn). In such a case, by applying the transformation (5.15) with h2,
we get the equivalent model ϕf̃ ,g̃,x̃0

where:

f̃(x̃,u) = (∇h2 ◦ h−1
2 )(x̃) f(h−1

2 (x̃),u),

g̃(x̃) = πNy (x̃),

x̃0 = (gT (x0),qT (x0))T ,

(5.16)

for which the desired property, that the output is given by the first Ny state variables,
holds. We notice that, in the expression of the initial condition x̃0, we can substitute
g(x0) = y0, which is available from the measurements. Moreover, as in the previous
case, we may set, without loss of generality, q(x0) = 0 (this can be obtained by
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applying once again (5.15) with the transformation h3(x) = h2(x)− (0T ,qT (x0))T ).
To summarize, we get a model in the form:{

ẋ(t) = f(x(t),u(t)) t ∈ (0, T ],

x(0) = (yT0 ,0
T )T ,

(5.17)

where the state is written in the form x = (yT , zT )T , where z(t) are the other aux-
iliary variables. We have not ruled out yet all the ambiguity since, being the output
transparent to such auxiliary variables, the latter can be still subject to invertible
transformations which does not affect the input-output map of the model; nonethe-
less, the size of design space has been dramatically reduced since the unique design
variable left is f . We notice that this reduction is afforded by setting Ĝ = {πNy} and

X̂ = {(yT0 ,0T )T }. We have thus shown that all the models admitting the existence
of a function q : Rn → Rn−Ny such that h2(x) = (gT (x),qT (x))T is invertible are in
fact equivalent to a model in the form of (5.17).

Clearly, this hypothesis is not fulfilled by every model ϕf ,g,x0
. If, for instance, the

outputs y1, . . . , yNy are linearly dependent, then h2 cannot be invertible. However, this
case does not have any practical interest since in such case the dimension of the output
can be reduced. Conversely, let us consider a point x∗, and suppose that ∇g(x∗) has

full rank. Then, let {vi}
n−Ny
i=1 be an orthonormal basis of Col(∇g(x∗)T )⊥. By defining

qi(x) := (x− x∗) · vi for i = 1, . . . , n−Ny, the Jacobian of h2(x) = (gT (x),qT (x))T

has full-rank and h2(x) is thus locally invertible. Even if this property holds just
locally, the message is that the constraint g = πNy keeps virtually intact the capacity
of the class of models to approximate a given HF model. In Sec. 5.4.2 we will address
numerically this issue.

5.2.5 The best-approximation problem

We will address both the cases considered in Sec. 5.2.4, namely:

1. X̂ = {0}, which we refer to as output-outside-the-state (the output is a function
of the state, but it is not part of the state);

2. Ĝ = {πNy} and X̂ = {(yT0 ,0T )T }, which we refer to as output-inside-the-state
(the first Ny state variables coincide with the output variables).

We notice that the second approach is available only for n ≥ Ny. In both the cases,
x0 is given and thus it is not counted as a design variable. Therefore, the best-
approximation problem, in the most general case, consists of:

• Collecting the input-output observations (5.6) of the HF model to be approxi-
mated (i.e. to be reduced or to be identified).

• Selecting a suitable state dimension n ≥ 1 for the ROM, the subset F̂ and, in
the output-outside-the-state case, the subset Ĝ.

• Solving the abstract problem (5.7); this reads, in the output-outside-the-state
case:

min
f∈F̂,g∈Ĝ

1
2

∑Ns
j=1

∫ T
0
|ŷj(t)− g(xj(t))|2dt

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, T ], j = 1, . . . , Ns,

xj(0) = x0, j = 1, . . . , Ns,

(5.18)
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where x0 = 0, while in the output-inside-the-state case:
min
f∈F̂

1
2

∑Ns
j=1

∫ T
0
|ŷj(t)− πNy (xj(t))|2dt

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, T ], j = 1, . . . , Ns,

xj(0) = x0, j = 1, . . . , Ns,

(5.19)

where x0 = (yT0 ,0
T )T . We notice that (5.19) can be seen as a particular case

of (5.18) (by setting Ĝ = {πNy}); therefore, in the following we will confine
ourselves, without loss of generality, to (5.18).

5.2.6 On the choice of the sets F̂ and Ĝ
The richness of the spaces F̂ (and, in the output-outside-the-state case, Ĝ) should be
chosen according to the Occam’s razor principle of parsimony [GJGGJ03; MMK03]
(see also Sec. 4.2). Indeed, one should avoid the two opposite situations: when too

poor spaces are considered, the expressive power of the model class ΦF̂,Ĝ,X̂ is too
small to capture the complexity of the HF model, thus resulting in underfitting of the
training data; on the other hand, if F̂ (and Ĝ) are too rich (in the extreme, F̂ = Fn
and Ĝ = Gn), we expect a very good match on the training set (5.6), but this typically
leads to overfitting (see e.g. [RG01]). The compromise stays in the middle, where the

so-called Occam’s hill is located [RG01], i.e. where the richness of the spaces F̂ and

Ĝ is enough to satisfactorily reproduce the observations (5.6), but not beyond.

5.2.7 Solution strategy

The unknowns of problem (5.19) and, more in general, (5.18) are the functions f and,
in the output-outside-the-state case, also g. We are thus performing optimization in
function spaces. One should look at the first-order optimality conditions for this opti-
mization problem, when F̂ = Fn and Ĝ = Gn. With this aim, we write the Lagrangian
functional associated to problem (5.18). Thus, we introduce a family of Lagrange mul-
tipliers wj ∈ C0([0, T ];Rn), for j = 1, . . . , Ns, associated to the constraints given by
the state equations:

L(f ,g, {xj}j , {wj}j) =
1

2

Ns∑
j=1

∫ T

0

|ŷj(t)− g(xj(t))|2dt

−
Ns∑
j=1

∫ T

0

wj(t) · (ẋj(t)− f(xj(t), ûj(t))) dt

−
Ns∑
j=1

wj(0) · (xj(0)− x0).

(5.20)

The adjoint equations are recovered by setting to zero the variation of the Lagrangian
with respect to the state variables, for any j = 1, . . . , Ns:{
−ẇj(t) = ∇xg(xj(t))

T (g(xj(t))− ŷj(t)) +∇xf(xj(t), ûj(t))
T wj(t) t ∈ [0, T ),

wj(T ) = 0.

(5.21)
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The first-order optimality conditions are obtained by setting equal to zero the Gâteaux
derivative of the objective functional J with respect to the two unknowns f ∈ Fn and
g ∈ Gn, for any possible variations δf ∈ Fn and δg ∈ Gn:

〈∂J
∂f
, δf〉 =

k∑
j=1

∫ T

0

δf(xj(t), ûj(t)) ·wj(t)dt = 0 ∀ δf ∈ Fn,

〈∂J
∂g

, δg〉 =

k∑
j=1

∫ T

0

δg(xj(t)) · (g(xj(t))− ŷj(t)) dt = 0 ∀ δg ∈ Gn.

(5.22)

In Eqs. (5.21)–(5.22), which state the conditions that the unknowns f and g must
fulfil to yield a (local) minimum of the cost functional J , f and g are evaluated just
in xj(t) and ûj(t) for j = 1, . . . , Ns and t ∈ [0, T ]. However, the trajectories of xj(t)
and ûj(t) do not fill the whole spaces Rn and U . Therefore, the problem of fullfilling
Eqs. (5.21)–(5.22) is ill–posed, being underdetermined. This has to be compensated
for by proper regularization of the unknown themselves. Hence, the differentials in
(5.22) cannot be written in gradient form and thus gradient descent strategies cannot
be applied for an iterative optimization procedure.

Our strategy is that of parametrizing both the functions f and g by a finite set of
real parameters, which we denote respectively µ ∈ RNf and ν ∈ RNg , and then tack-
ling problem (5.18) by optimizing with respect to µ, ν (to stress the parametrization,
we write f(x,u;µ) and g(x;ν)). In this way the desired regularization is obtained by
controlling the size of Nf and Ng since the complexity of candidate models is con-
trolled by Nf and Ng. Indeed, by writing the variation of the functions as δf = ∇µf δµ
and δg = ∇νg δν, the sensitivity of the objective functional can now be written in
gradient form:

∇µJ =

k∑
j=1

∫ T

0

∇µf(xj(t), ûj(t);µ)T wj(t)dt,

∇νJ =

k∑
j=1

∫ T

0

∇νg(xj(t);ν)T (g(xj(t);ν)− ŷj(t)) dt.

(5.23)

We notice that the same result can be obtained by differentiating the Lagrangian
functional (5.20) with respect to µ and ν. In Sec. 5.3 we will derive the discrete
counterpart of (5.21) and (5.23), employed to numerically solve problem (5.18).

The parametrization of f and g can be obtained in different manners, such as by
polynomials, piecewise polynomials, truncated Fourier series, splines, NURBS, etc.
Here we choose to represent them by means of ANNs, that can be seen as nonlinear
maps parametrized by a finite number of real parameters (see Sec. 5.3.1). Our choice is
driven by the universal approximation properties of ANNs (see [Cyb89; SX19; He+18])
and their recognized properties of learning from data.

5.3 Optimization strategy

We address the solution of the model reduction problem, formulated as the constrained
optimization problem (5.18). We briefly recall ANNs and their universal approxi-
mation properties and, then, we show how ANNs can be employed to approximate
time-dependent models.
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input layer output layerhidden layers

(a) Feed-forward ANN

+

(b) Action of the i-th neuron

Figure 5.2: Scheme of a feed-forward ANN with two hidden layers (a) and of a general
neuron (b).

5.3.1 Artificial Neural Networks

An ANN consists of a number of simple processing units (the neurons), each one
incorporating a linear and a nonlinear application, interconnected to form a complex
network (see e.g. [Yeg09]). We consider feed-forward ANNs (known as multilayer
perceptrons), consisting of nL layers of neurons (the input layer, nL−2 hidden layers,
and the output layer), where each neuron of a given layer has a connection (or synapse)
towards each neuron of the next layer (see Fig. 5.2). A feed-forward ANN represents
a class of functions written as:

f(p;µ) = WnL−1 fact (. . .W2 fact (W1 p− ϑ1)− ϑ2 . . . )− ϑnL−1, (5.24)

where p ∈ RnI is the input vector and µ ∈ RNf is the parameters vector, collecting
the entries of the weights matrices Wi and of the bias vectors ϑi. The action of the
nonlinear activation function fact must be interpreted component-wise. In this thesis,
we use the sigmoidal activation function fact(s) = tanh(s).

The calculation by means of the chain rule of the sensitivity of the ANN output
with respect to the input p or to the parameters µ (which we denote respectively by
∇pf and ∇µf) gives rise to the so-called back-propagation [Yeg09].

In virtue of the universal approximation theorem [Cyb89], ANNs with a single
hidden layer can approximate with arbitrarily small error any continuous function on
a compact set, provided that a sufficient number of hidden neurons are employed.

Normalization

Even if ANNs can work with data values spanning different order of magnitudes, their
performance is optimal when both input and output data are normalized. Therefore,
before training the network, we normalize both the input u and the output y so that
their components take values in the interval [−1, 1]. Moreover, since the output of the
ANN representing f are time derivatives, we also normalize time with respect to the
fastest time scale associated with the HF model (5.1), which can be inferred from the
training set.

Normalizing inputs, outputs and time scales do not ensure that the state variables
(or just the hidden variables in the output-inside-the-state case) lay in the range
[−1, 1], because of their hidden nature (see Sec. 5.2.4). Therefore, at each optimization
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epoch, if the mean square value of a component of the state exceeds a lower or an upper
bound (that we set to 0.1 and 2 respectively), we renormalize it. To perform this
task, we exploit the fact that the parameters of the ANN arising from another ANN
after an invertible and affine change of variables can be derived as follows. Consider
the following affine transformation of both the input and the output of the ANN
q = f(p;µ), i.e. p̃ = Ap + b, q̃ = Cq + d. By simple calculations it turns out that
the weights µ̃ such that q̃ = f(p̃; µ̃) are obtained by substituting the weights and the
biases associated to the first and last layers of synapses as follows:

W̃1 = W1A
−1, ϑ̃1 = ϑ1 −W1A

−1b,

W̃nL−1 = CWnL−1, ϑ̃nL−1 = CϑnL−1 − d.

5.3.2 Representation of the unknowns in terms of ANN

Motivated by the universal approximation property of ANNs, we choose the spaces
of candidate functions F̂ and Ĝ as subsets of the space of functions represented by
ANNs. We denote by FANN

n the space of ANNs with n + Nu input neurons and n
output neurons and by GANN

n the space of ANNs with n and Ny input and output
neurons, respectively. We have the following result:

Proposition 5.4. If U is compact, the space of ANN models ΦF
ANN
n ,GANN

n ,Xn is dense
in the model space ΦFn,Gn,Xn .

Proof. ANNs are by construction Lipschitz continuous, being the composition of Lip-
schitz continuous functions; thus, we have FANN

n ⊂ Fn and GANN
n ⊂ Gn. Properties

(5.10) and (5.11) hold by the universal approximation theorem [Cyb89]. Hence, the
thesis follows from Prop. 5.3.

We conclude that models represented by ANNs are universal approximators of the
class of models described by systems of ODEs.

5.3.3 Discretization of the state equation and of the objective
functional

In order to numerically approximate problem (5.18), we discretize both the state
equation (5.2) and the objective functional J (Eq. (5.8)). We split the time domain
[0, T ] into a collection of time instants 0 = t0 < t1 < · · · < tM = T . For simplicity,
we consider the case of constant time step ∆t (i.e. tk = k∆t for k = 0, . . . ,M) as the
generalization to the varying time step case is straightforward. On the other hand,
it is convenient to consider the case when the experiments have different durations.
Therefore, we suppose that the j-th experiment takes place in the interval [0, Tj ],
where Tj = Mj∆t and we denote ukj = ûj(tk) ∈ U and ykj = ŷj(tk) ∈ Y the input
and the output at discrete times. The discretized version of the objective functional
J thus reads

J =
1

2
∆t

Ns∑
j=1

Mj−1∑
k=0

|ykj − g(xkj ;ν)|2. (5.25)

To simplify as much as possible the computational burden of the numerical solution of
the state equation, which has to be performed many times in the optimization loop,
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we choose to discretize it by means of the forward Euler scheme. Thus, the discrete
counterpart of problem (5.18) reads:

min
(µ,ν)∈RNf+Ng

1
2∆t

∑Ns
j=1

∑Mj−1
k=0 |ykj − g(xkj ;ν)|2

s.t. xk+1
j = xkj + ∆t f(xkj ,u

k
j ;µ), k = 0, . . . ,Mj − 1, j = 1, . . . , Ns,

x0
j = x0, j = 1, . . . , Ns.

(5.26)
We notice that, after time discretization, the ANN model of Eq. (5.26) has a structure
resembling that of a recurrent neural network (RNN), that is an ANN whose internal
state is fed back to the input after each evaluation of the network (see e.g. [Hay09]).
RNNs are widely used for Machine Learning tasks involving sequential inputs, such
as handwriting recognition, speech recognition and natural language processing, and
also for time series prediction [Gra13; Hin+12; CMA94]. However, the approach
presented in the present work is more general since it allows to recast the MOR
problem within the setting of a best-approximation problem of a differential equation.
Moreover, by addressing the problem at the continuous level and thanks to the setting
of (5.14), the ROM that we obtain by solving the best-approximation problem is
independent of the RNN structure used in the training stage. In other words, once
the optimization problem in the discrete setting (5.26) has been solved (i.e. the ANN
has been trained), the ROM is available in the form of Eq. (5.2). This allows more
flexibility in the choice of the time discretization scheme and time step size than with
RNN, wherein the forward Euler scheme is exclusively used with fixed ∆t. A further
advantage is the possibility of coupling the ROM problem with other mathematical
models.

Finally, we notice that the RNN structure resulting by the time discretization is
not restricted to this specific choice of time stepping scheme; therefore, it is preserved
by employing higher-order methods, such as Runge-Kutta schemes.

5.3.4 Training the ANN: optimization algorithm

Problem (5.26) can be written in the form of the following nonlinear least-squares
problem:

min
ξ

1

2
|r(ξ)|2, (5.27)

where ξ = (µT ,νT )T is the vector collecting all the design variables and r is the
vector of residuals, containing all the terms in the following form, for j = 1, . . . , Ns,
k = 0, . . . ,Mj − 1, h = 1, . . . , Ny:

rj,k,h =
√

∆t (g(xkj ;ν)− ykj ) · eh,

where eh denotes the h-th element of the canonical basis of RNy . To numerically
find an approximate solution of this minimization problem we employ the Levenberg-
Marquardt method, which is designed for least-squares problems in the form (5.27)
(see e.g. [NW06]). At each iteration k of the optimization loop, one finds the descent
direction d(k) by solving the following problem:((

∇r(k)
)T
∇r(k) + λ(k)I

)
d(k) = −

(
∇r(k)

)T
r(k),
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where λ(k) ≥ 0 is a weight and r(k) denotes r(ξ(k)). The update of the solution follows

the rule ξ(k+1) = ξ(k)+γ(k)d(k), where the step length γ(k) is selected by means of line-
search in such a way that the Wolfe conditions are fulfilled (see [NW06] for details).
Specifically, in this thesis we employ the line-search Algorithm 3.5 in [NW06].

The Levenberg-Marquardt descent direction can be seen as a combination of the
steepest-descent direction (which is recovered for λ(k) � 1) with the Gauss-Newton
direction (λ(k) = 0), which is an approximation of the Newton direction obtained by
neglecting the quadratic term in the computation of the Hessian. We choose λ(k) =
min

{
|r(0)|2, |(∇r(k))T r(k)|

}
, which ensures superlinear convergence for the method,

provided that the objective functional is twice continuously differentiable (see [GS11]).

We adopt a random initialization of the design variables ξ(0), by taking independent
samples within the standard normal distribution.

5.3.5 Computation of sensitivities

The Levenberg-Marquardt method requires the computation of the sensitivities of the
residuals rj,k,h with respect to the unknown parameters µ and ν. Since the map from
µ to the variables xkj is implicitly given by the state equation in (5.26), we employ the
Lagrange multipliers method to compute the sensitivities. If one aims at computing
the sensitivity of a quantity Q = Q({xkj }j,k) with respect to µ, then, by introducing

a family of Lagrange multipliers wk
j , the Lagrangian associated to the problem reads:

L(µ,ν, {xkj }j,k, {wk
j }j,k) = Q({xkj }j,k)

−
Ns∑
j=1

Mj∑
k=1

wk
j ·
(
xkj − xk−1

j −∆t f(xk−1
j ,uk−1

j ;µ)
)

+ w0
j ·
(
x0
j − x0

) .
By setting the derivative of L with respect to the variables xkj equal to zero, it turns

out that the dual variables wk
j solve the following backward difference equations, for

j = 1, . . . , Ns:
w
Mj

j =
∂Q

∂x
Mj

j

,

wk
j = wk+1

j + ∆t∇xf(xkj ,u
k
j ;µ)T wk+1

j +
∂Q

∂xkj
, for k = 0, . . . ,Mj − 1.

(5.28)
Once the dual variables wk

j are available, the gradient of Q with respect to µ reads:

∇µQ =
∂Q

∂µ
+ ∆t

Ns∑
j=1

Mj∑
k=1

∇µf(xk−1
j ,uk−1

j ;µ)T wk
j .

By setting Q = rj,m,h, we have, for j = 1, . . . , Ns, m = 0, . . . ,Mj − 1:

∇µrj,m,h = ∆t

m∑
k=1

∇µf(xk−1
j ,uk−1

j ;µ)T wk, ∇νrj,m,h =
√

∆t∇νg(xmj ;ν)T eh,

where{
wk = wk+1 + ∆t∇xf(xkj ,u

k
j ;µ)T wk+1, for k = 0, . . . ,m− 1,

wm =
√

∆t∇xg(xkj ;ν)T eh.
(5.29)
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Test case Name Source of HF model N Nu Ny
1 Nonlinear pendulum System of ODEs 2 2 1
2 Nonlinear transmission

line circuit
System of ODEs 1000 1 1

3 Heat equation Parabolic PDE 3721 9 3
4 Wave equation Hyperbolic PDE 202 2 1

Table 5.1: Test cases list.

The line-search algorithm for determining the step length γ(k) also requires the com-
putation of the gradient with respect to µ and ν of the discretized objective functional
J = 1

2rT r. If the residuals r and their gradient ∇r has been already computed, the
gradient of J can be recovered as ∇rT r. However, if it is not the case, it is more
efficient to compute it by applying the above procedure with Q = J , thus getting:

∇µJ = ∆t

Ns∑
j=1

Mj∑
k=1

∇µf(xk−1
j ,uk−1

j ;µ)T wk
j ,

∇νJ = ∆t

Ns∑
j=1

Mj−1∑
k=0

∇xg(xkj ;ν)T (g(xkj ;ν)− ykj ),

where
wk
j = wk+1

j + ∆t∇xf(xkj ,u
k
j ;µ)T wk+1

j

+ ∆t∇xg(xkj ;ν)T (g(xkj ;ν)− ykj ), for k = 0, . . . ,Mj − 1,

w
Mj

j = 0,

(5.30)

which are the discrete counterparts of (5.21) and (5.23).

5.4 Numerical Results

In this section we assess the capability of the proposed approach through four test
cases, summarized in Table 5.1. First, in Sec. 5.4.1, we consider the nonlinear pen-
dulum problem. In virtue of the modest complexity of this test case (N = 2), we
perform a sensitivity analysis on the network architecture, highlighting the Occam’s
hill (Sec. 5.2.6). Moreover, we can directly compare the internal dynamics of the
ROMs with that of the HF model.

Next, to test the proposed reduction approach on large-scale problems, we con-
sider an electric circuit with nonlinear elements, described by a nonlinear system of
1000 ODEs (Sec. 5.4.2). Finally, we consider a parabolic PDE, whose HF model is
given by its Finite Element (FE) approximation, featuring about 4000 state variables
(Sec.5.4.3), and an hyperbolic PDE (Sec.5.4.4).

All the results shown in this chapter are produced with the internally developed
Matlab library model-learning, publicly available in the online repository [Reg19].
In the same repository, also the datasets accompanying this chapter are available.
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Figure 5.3: Nonlinear pendulum problem considered in Sec. 5.4.1

5.4.1 Test case 1 : Nonlinear pendulum

Consider a mass m, subject to its weight P , suspended by a weightless inextensible
string of length L and connected to a fixed support through a hinge subject to viscous
damping with constant σ. The pendulum, starting from its resting condition, is subject
to an external force u(t) = u1(t)e1 + u2(t)e2. By denoting the angle formed with the
vertical direction by ϑ(t), we have that the motion of the pendulum is described by
the following ODE:{

ϑ̈(t) = 1
Lm (u2(t) cosϑ(t) + (u1(t)− P ) sinϑ(t))− σ ϑ̇(t) t ∈ (0, T ],

ϑ(0) = 0, ϑ̇(0) = 0.
(5.31)

We set the constants values to m = L = 1, P = 2, σ = 3. Moreover, we set
the external force u ∈ [−1, 1]2. Suppose that we are interested in predicting the
horizontal displacement of the mass y(t) = L sinϑ(t) (in this case we drop the bold
notation being the output a scalar), given the input u(t). The input-output map given
by (5.31) fall within the concept of model introduced in Sec. 5.2.1, where Nu = 2,
Ny = 1, U = [−1, 1]2, Y = [−1, 1]. Moreover, this model can be written in the form

(5.1), by setting X = (ϑ, ϑ̇)T and thus we have N = 2.
For the discretization of the state equation (see Sec. 5.3.3), we set ∆t = 5 · 10−2.

Moreover, to mitigate the computational cost of the evaluation of the objective func-
tional and its derivatives, we evaluate the error every 10 time steps. For this test, we
consider the output-inside-the-state case.

Training, validation and test sets

The optimization of the ANN described in Sec. 5.3.4 is led by the set of experiments
(5.6) collected from the HF model. The choice of such training set is crucial since
it is expected to be representative of all the possible working regimes of the system.
Moreover, it should be large enough to avoid overfitting of the ROM on the training
set itself.

In this first example, we intentionally consider a poor training set, such that over-
fitting is likely to occur in order to better investigate the sensitivity of the proposed
reduction approach with respect to n (i.e. the number of states) and to the com-
plexity of the network. The training set is represented in Fig. 5.4. It comprises
the step responses associated to different stationary values of the input, in the form
u(t) = ū1[t1,t2](t) (notice that ū span all the set U = [−1, 1]2) and four samples with
oscillating input, obtained by sinusoids with different frequency, amplitude and mean
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Figure 5.4: Test case 1 : Training set.
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Figure 5.5: Test case 1 : Validation set.

value. The frequency range of the signals is chosen in such a way that it covers several
characteristic time scales of the considered HF model.

To monitor the ANN learning process, at each optimization epoch, we evaluate the
performance of the ANN on a further set, that we call validation set. The comparison
between the relative L2 error on the training set (which we denote by Etrain) and the
error on the validation set (which we denote by Eval) allows to perform regularization
by early stopping (see e.g. [Yeg09]): as long as the error on the validation set start
increasing, we stop the optimization loop since this is an indication that overfitting
occurs. In the validation set we place 5 samples, comprising several working regimes
of the system (see Fig. 5.5). Notice that in this set we also switch from a regime to
another inside the same sample, to monitor the capability of the model to cope with
it.

Finally, when the optimization loop is completed, we test the performance of the
ROM on a large-size test set, comprising step responses, oscillatory inputs and ran-
domly generated ones. The test set amounts to 126 samples.

Sensitivity analysis of the network complexity

The objective functional J is non-convex and features several many local minima. As
a consequence, the optimized ANN obtained by means of the strategy of Sec. 5.3.4 may
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Figure 5.6: Test case 1 : examples of evolution of the error on the training (Etrain) and
validation sets (Eval).

depend on the initialization of the ANN itself. Since we adopt a random initialization
for the ANN, by running the proposed strategy several times with the same ANN
architecture, we actually end up with very different results. This is intimately linked to
the non-uniqueness of representation of a given model (see Remark 5.1): very different
ANNs may represent the same model. We will go back to this issue in Sec. 5.4.1.

Fig. 5.6 shows the evolution, through the optimization process, of the error on the
test (Etrain) and validation sets (Eval) for different random initializations of the ANN .
Cases (a)-(c) show “good” outcomes of the optimization process: both errors decrease
until a minimum of the functional is reached; a very good correlation between the two
errors is observed during the optimization process, thus indicating good performances
of the learning process; the final levels of error for the test and validation set are
comparable, thus we are not in the presence of overfitting. The remaining cases, in
turn, show “bad” outcomes:

• In (d) the optimization proceeds well, until Eval starts increasing, which is a
typical sign a overfitting. Notice that the online evaluation of Eval allows to
detect this phenomenon and to perform early stop the optimization process.

• In (e), instead, a more subtle case of overfitting occurs since it originates in the
early stages of the optimization and we do not observe an increase of Eval.

• In (f) finally, even if we are not in presence of significant overfitting, the ANN
is not performing well since the final levels of Etrain and Eval are much higher
than the usual values obtained with the same ANN architecture. In this case
the optimization problem got stuck into a “bad” local minimum. Globalization
strategies, such as Simulated Annealing (see e.g. [Pre+86]), can be selected to
handle with this issue, even if this is beyond the scope of the present work.

In the following we perform a sensitivity analysis of the performance of the pro-
posed reduction approach w.r.t. the complexity of the network, i.e. the number of
hidden neurons, which we denote by Nneurons. For simplicity, we consider only the
case of ANNs with a single hidden layer. Figure 5.7 shows the dependency of the
performance of the proposed reduction approach on the number of hidden neurons, in
the cases n = 1 and n = 2. Each cross is associated to a single test, while the coloured
regions highlight the areas spanned by the test which did not get stuck into a “bad”
local minimum (we tag a local minimum as “bad” if the error Etrain is more than 10
times the best error obtained with the same ANN architecture).

Let us consider first the case n = 1. By switching form Nneurons = 2 to Nneurons =
3, thanks to the enhanced representative capacity of the ANN, the errors associated
with the three sets significantly decrease (see Fig. 5.7a). However, by further increasing
Nneurons, we are in presence of overfitting: even if Etrain keeps decreasing, Etest and Eval
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Figure 5.7: Test case 1 : errors vs number of hidden neurons Nneurons, in the cases (a)
n = 1 and (b) n = 2. For both the cases, the left plot shows the errors Etrain, Eval

and Etest, while the right plot shows the ratio Etest/Etrain. Each cross represents the
final result of a test (including when the tests gets stuck into a “bad” local minimum).
Coloured regions represent the areas spanned by the tests, excluding the tests which
got stuck into a “bad” local minimum.
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Figure 5.8: Test case 1 : comparison of the exact solution (blue line) and the solution
obtained with the ANN model (red line) in four different test cases. First row: one-
variable model; Second column: two-variables model.

start increasing. This phenomenon is also evident from the right figure, showing the
ratio Etest/Etrain increasing with the network complexity. Even if the issue of designing
the training set falls beyond the purposes of the present work, we notice that with
a richer training set the optimal number of neurons would probably increase, thus
allowing to reach a better performance of the ROM.

We then consider the case n = 2 (see Fig. 5.7b). The introduction of a further
state variable in the system, w.r.t. the case n = 1, translates in a significant increment
of the model ability to faithfully reproduce the input-output map given by the HF
model, as expected according to Prop. 5.2. Indeed, even if for Nneurons ≤ 3 the errors
are similar to the case n = 1, by increasing the network complexity the errors drop by
one order of magnitude for Nneurons = 4, before slowly diverging (the training error
Etrain decreases, while the validation Eval and test error Etest slightly increase). We
also notice the occurrence of tests which got stuck in “bad” local minima (highlighted
in Fig. 5.7b by the presence of crosses outside the coloured areas) for Nneurons ≥ 4,
due to the raising of complexity of the landscape of Etrain when the dimensionality of
the design space increases.

To sum up, we select as best networks the ones minimizing the error on the test
set for Nneurons = 3 in the case n = 1 and for Nneurons = 4 in the case n = 2, namely
where the top of the Occam’s hill is located in the two cases. Figure 5.8 shows the
comparison of the results obtained in four test cases with the HF and the two selected
ROMs (the first row refers to the model with n = 1, the second to the model obtained
with n = 2).

What did the ANN actually learn?

The feasibility of the reduction approach proposed in this chapter is strictly related to
the possibility of faithfully representing the state of the HF model (which we denote
by X(t) ∈ RN ) by means of a lower-dimensional state x(t) ∈ Rn. If this is the case,
then the knowledge of x(t) and u(t) provides enough information to compute, with
just a little approximation, both the output y(t) and the evolution of the state of the
system (that is to say the value of d

dtx(t)).

We may thus interpret the learning process as that of implicitly building a map
from the reduced-order state x to the full-order state X, which is not directly observed,
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Figure 5.9: Test case 1 : results of the test case considered in Sec. 5.4.1. Each column
refers to a different model (first column: HF model; other columns: four different
ANN models). First line: time evolution of the two state variables of the system (first
column: ϑ and ϑ̇; other columns: x1 and x2). Second line: trajectories in the phase
space (first column: (ϑ, ϑ̇); other columns: (x1, x2)). Third line: trajectories in the
(ϑ, ϑ̇′′′) phase space (first column) and (x1, x

′′′
2 ) phase space (other columns).

but it is observed only through its effects to the time evolution of y(t). This is some-
how similar to projection-based MOR strategies (see Sec. 5.1.1), with the important
differences that: (i) in this case the map is not explicitly built and thus is not available;
(ii) while in projection-based methods the map is linear, here nonlinear mappings can
be exploited; (iii) since the effects of the internal state X are seen just through y,
only the features which are relevant for the input-output map are exploited, whereas
POD for example may extract features from the snapshots which do not provide a
significant contribution to the input-output map.

As mentioned before, the ROM implicitly defines a map from the HF model state
X(t) to the ROM state x(t). This map is not explicitly built. Moreover, as noticed
in Remark 5.1, a model described by an ODE is invariant with respect to change of
variables for its internal state x̃ = h(x). For these reasons, it is usually troublesome
to give a physical interpretation to the state variables of the ROM.

Let us consider the example addressed in this Section, for n = N = 2. This
case may not be interesting in a MOR perspective, but it helps to shed light on
the machinery behind the proposed reduction approach. Indeed, thanks to the choice
g(x) = πNy , we have, in principle, x1(t) = L sinϑ(t). Consequently, we may speculate
that the knowledge of the first variable of the ROM x1 provides all the information
needed to reconstruct the first variable of the HF model ϑ. Therefore, we expect that
the second variable of the ROM x2 provides the missing information to reconstruct ϑ̇.
This does not necessarily entail that ϑ̇ is a function of x2, but in general we have that
ϑ̇ is a function of both x1 and x2. If this is true, then when a trajectory in the (ϑ, ϑ̇)
plane crosses, then the same should happen for the trajectory in the (x1, x2) plane.
In other words, all the trajectories of the ROMs, corresponding to the a given input
u, should be homotopic to the corresponding trajectory of the HF model (i.e. they
can be obtained by a continuous deformation of the HF trajectory).

To verify these conjectures, we consider the oscillating input also employed in
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Figure 5.10: Test case 2 : scheme of the nonlinear transmission line electric circuit
considered in Sec. 5.4.2.

the first column of Fig. 5.8 (i.e. u1 = sin(t) cos(1.3 t), u2 = cos(1.8 t) sin(t)) and we
compare the trajectories of the HF model (gray background in Fig. 5.9) with those
of four different ROMs (white background in Fig. 5.9), obtained with four different
random initializations of the ANN. In the first line of Fig. 5.9 we show the time
evolution of the two state variables of the systems. By looking at the the figure it is
apparent how different the obtained ANN models can be. However, by observing –
in the second row of Fig. 5.9 – the trajectories in the phase space (x1, x2), one can
see that all the trajectories are approximatively homotopic to the trajectory of the
HF model in its phase space (ϑ, ϑ̇). Finally, in order to better visualize the role of
the second variable, we decouple it from x1 in the following way. First, we collect
the values of the two variables at the discrete times t0, t1, . . . in two vectors, which
we denote by z1 and z2, respectively. Next, we centre the vectors (z′j = zj − z̄j , for
j = 1, 2, where z̄ denotes the mean value of z). Next, we subtract to z′2 the component
parallel to z′1 (that is to say z′′2 = z′2 − (z′2 · z′1)/ |z′1 |2 z′1). Finally, we normalize z′′2
(that is to say z′′′2 = z′′2/ |z′′2 |). The third row of Fig. 5.9 shows the trajectories in the
plane (x1, x

′′′
2 ). For the original model, we show the trajectory in the plane (ϑ, ϑ̇′′′),

where the coordinate ϑ̇′′′ is computed by the same procedure as x′′′2 .

5.4.2 Test case 2 : Nonlinear transmission line circuit

In order to assess the capability of the proposed reduction approach to reduce the
complexity of large-scale nonlinear systems, we consider a popular benchmark in MOR,
namely the nonlinear transmission line circuit represented in Fig. 5.10 (see e.g. [CW00;
RW01]). It is an electrical network comprising a current source, N = 1000 unitary
resistors, N unitary capacitors and N nonlinear diods with law i = e40 v − 1. The
input of the model is the current source u(t), taking values in U = [0, 1], and the
output is the tension at the first node v1(t). By denoting by vi the voltage at the i-th
node, the HF model reads as follows:

v̇1(t) = −2 v1(t) + v2(t) + 2− e40 v1(t) − e40(v1(t)−v2(t)) + u(t)

v̇i(t) = −2 vi(t) + vi−1(t) + vi+1(t) + e40(vi−1(t)−vi(t)) − e40(vi(t)−vi+1(t)),

for i = 2, . . . , N − 1

v̇N (t) = −vN (t) + vN−1(t)− 1 + e40(vN−1(t)−vN (t)),

(5.32)

supported by the initial condition v1(0) = v2(0) = · · · = vN (0) = 0. Notice that the
HF model is written in the form of Eq. (5.1), for X = (v1, . . . , vN )T and F : RN ×
[0, 1]→ RN .

We consider the training set represented in Fig. 5.11, comprising 5 step inputs
and 20 randomly generated input signals, each of 1 s duration. In this test case we
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Figure 5.11: Test case 2 : training set. Blue lines (axis on the left) represent the time
evolution of the input, red lines (axis on the right) represent the time evolution of the
output.

consider both the output-inside-the-state and the output-outside-the-state cases, for
n = 1, 2, 3 and we compare the results. In all the cases we employ ANNs with a single
hidden layer, with respectively 8 and 3 neurons in the ANN for f and g. For the time
discretization, we employ a time step of ∆t = 5 · 10−3.

As mentioned in Sec. 5.2.4, in the case n ≥ Ny, models in the form (5.2) can be
possibly rewritten in the form (5.17). Even if this is not always valid, we may expect
that with the constraint g = πNy the capacity of the class of models to approximate
the HF model is not substantially reduced. Therefore we expect the output-inside-
the-state case to provide similar results to the ones obtained with the output-outside-
the-state approach.

In Fig. 5.12a we show Etest, the relative L2 error on the test set (which comprises 25
step responses and 80 randomly generated inputs), for the different cases considered.
We notice that, as expected, the two approaches provide, for a given value of n, very
similar results. The output-inside-the-state case is thus preferable since it is more
efficient both in the offline phase (since the number of design variables is lower) and
in the online phase (since g does not need to be evaluated at each time step). We
also notice that, coherently with Prop. 5.2, the error Etest decreases as n increases,
reaching, for n = 3, a remarkably good approximation level (nearly 2.5 · 10−3). In
Fig. 5.12b we compare the response of the HF model with that of the three ROMs
obtained with the output-inside-the-state case in the time-domain.

5.4.3 Test case 3 : Heat equation (parabolic PDE)

We consider now the application of the proposed reduction approach to the MOR
of a parabolic PDE problem, which extends the benchmark problem considered in
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Figure 5.14: Test case 3 : four examples of snapshots obtained at different times with
different inputs.
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[MPL16], where its Reduced Basis (RB) reduction has been considered. Consider the
spatial domain Ω = (0, 1.5)2, whose boundary ∂Ω is partitioned into the top border
Γt, in contact with a heat reservoir with zero temperature, the bottom border Γb, with
a constant inward heat flux ϕ = 1, and the wall borders Γw, characterized by no-flux
boundary conditions (see Fig, 5.13). The time evolution of the spatially distributed
temperature ψ(x, t) in the domain Ω is thus described by the heat equation:

∂

∂t
ψ(x, t)−∇ · (k(x,u(t))∇ψ(x, t)) = 0 in Ω, for t > 0,

k(x,u(t))∇ψ(x, t) · n = 0 on Γw, for t > 0,

k(x,u(t))∇ψ(x, t) · n = ϕ on Γb, for t > 0,

ψ(x, t) = 0 on Γt, for t > 0,

ψ(x, 0) = 0 on Ω.

(5.33)

Let us partition the domain Ω into 9 subdomains Ωi of equal size, for i = 1, . . . , 9, as
in Fig. 5.13. Let us consider the piecewise constant thermal conductivity coefficient
k, parametrized by the 9-dimensional input u(t) ∈ [10, 100]9, defined as follows:

k(x,u) =
9∑
i=1

ui 1Ωi(x),

where 1Ωi is the indicator function of Ωi. Consider then three probes, located at
the centre of the subdomains Ω1, Ω5 and Ω9, measuring the time evolution of the
temperature in such points. The output y(t) ∈ R3 is the vector collecting the three
temperature values.

For the HF solution of (5.33), we consider the P2 Finite Element approximation on
a 30 by 30 uniform square elements grid and we employ the backward Euler scheme,
with ∆t = 10−2, for the time discretization, implemented in the Matlab finite element
library feamat [Peg19]. The HF model has dimension N = 3721.

In this test case we compare the results obtained with the proposed reduction
approach with those obtained with a popular MOR method in the field of PDEs,
namely the RB method, which exploits the linearity of Eq. (5.33) and the affine de-
pendence on u [QMN15]. For the ANN-based reduction method we consider n ranging
between 1 and 5, by employing both the output-outside-the-state approach and, for
n ≥ Ny = 3, also the output-inside-the-state approach. In each case we use single
hidden layer ANNs, with 12 to 16 hidden neurons for f and 3 or 4 hidden neurons for
g, by increasing the number of neurons as n increases. Figure 5.15 reports a subset
of the training set, comprising steady-state responses lasting for 0.4 s, obtained by
sampling the input space U = [10, 100]9 by means of Latin Hypercube Sampling (see
[MBC00]), and twice as much random transients of duration 1 s. This choice aims
at covering different working regimes of the HF model, including steady-state and
transient regimes. We increase the number of training samples from 150 to 480 while
increasing n to reflect the increased capacity of the ANN due to the increased number
of neurons. As of the RB method, we build the basis by POD of the snapshot matrix
obtained by sampling every 0.1 s the biggest set used to train the ANNs. In both the
cases we employ the same time step used for the HF model, i.e. ∆t = 10−2.

In Fig. 5.17 we compare the results obtained by the two methods, by evaluating
the error on a test set composed by 20 steady-state inputs, 50 random input signals
of duration 1 s (two examples are reported in Fig. 5.16) and 10 random input signals
of duration 10 s. The purpose of the latter choice is to assess the capability of the
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Figure 5.15: Test case 3 : a subset of the training set. Blue lines (axis on the left)
show the time evolution of the 9 inputs (i.e. the thermal conductivities of the 9
subdomains), red lines (axis on the right) show the time evolution of the three outputs
(i.e. the temperature at the three probes).
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Figure 5.16: Test case 3 : time-domain comparison of the result of the HF model with
those of the different ROMs for two random tests. Top: ANN models vs HF model;
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proposed reduction approach to approximate the evolution of the HF model also for
longer time horizons than the ones used in the training phase. As shown in Fig. 5.17a,
for a given model size n, the ANN based ROM performs better than the RB one: for
n = 3, e.g., the corresponding error is almost one order of magnitude smaller than the
RB error and to reach the same approximation level with the RB method we need at
least n = 8. Moreover, the reduction in terms of online computational time is larger
with the proposed approach too.

In Fig. 5.17a we plot, together with the errors, the quantity εn, defined as

εn =

√√√√∑S
i=n+1 σ

2
i∑S

i=1 σ
2
i

,

where σ1, . . . , σS are the singular values of the snapshots matrix. The quantity εn
represents the fraction of energy of the snapshots that is not captured by the first n
modes and can be used to estimate the “reducibility” of the state space in terms of
an n-dimensional subspace (see [QMN15]).

The major drawback of the proposed reduction approach lies in the offline phase,
which requires the training of one or two ANNs (for f and g), while for the RB
method we just need to compute the SVD decomposition of the snapshot matrix and
to project both the model matrices and right-hand side. Moreover, the computational
complexity of the training rapidly grows with n and, for high n, large training sets are
needed to avoid overfitting, thus preventing the applicability of the proposed approach
to large n. For this reason, we limit ourselves to the cases n ≤ 5. However, from the
presented results it seems that with the proposed approach it is possible to get a good
approximation of complex models (like the PDE model considered in this section) just
with a few variables, so we do not actually need to increase n if the approximation level
is satisfactory for the application. We also notice that in this thesis we employed very
basic tools to train the ANNs, while the offline phase may be considerably speeded
up with the application of more advanced techniques (see Sec. 5.5) which, besides
decreasing the training time also minimize overfitting, thus reducing the number of
samples needed to train the ANN, hence making it possible to train ANN models with
larger values of n.

Finally, we notice that this comparison has been carried out in the most favourable
case for RB, namely linear models with affine input dependence and with linear state-
output dependence, while the proposed ANN-based reduction approach does not ex-
ploit any of those structural characteristic of the HF model. Therefore, in the nonlinear
case or with non affine input dependence, while the RB method requires techniques
such as EIM and DEIM (see Sec. 5.1.1), which reduce the performances of the method,
the proposed reduction approach can be applied without modifications (see e.g. the
Test case 2 ).
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Figure 5.17: Test case 3 : comparison between the proposed reduction approach and
the RB method. (a) Relative L2 error versus number of variables of the ROM n; (b)
Mean computational time required by the ROM, normalized w.r.t. that required by
the HF model to simulate the same amount of physical time, versus n; (c) Relative
L2 error versus normalized computational time. In the legend, “in” refers to output-
inside-the-state, while “out” refers to output-outside-the-state

5.4.4 Test case 4 : Wave equation (hyperbolic PDE)

We now consider an hyperbolic PDE, namely the wave equation in the one-dimensional
domain (0, L), with L = 1:

∂2

∂t2
ψ(x, t)− c2 ∂

2

∂x2
ψ(x, t) = 0 for x ∈ (0, L), t > 0,

ψ(0, t) = u1(t) for t > 0,

ψ(L, t) = u2(t) for t > 0,

ψ(x, 0) = 0 for x ∈ (0, L),

∂

∂t
ψ(x, 0) = 0 for x ∈ (0, L),

(5.34)

where we set c = 2. The 2-dimensional input of the model consists in the Dirichlet
boundary conditions at the two ends of the domain, while the output is defined as
the value of the solution in the mid-point of the domain y(t) = ψ(L/2, t). For the
HF solution we use implicit second order BDF in time and centered second order
finite differences in space, with a space discretization step of h = 10−2 and a time
discretization step of ∆t = 10−2. In Fig. 5.18 we show a solution of the HF model for
a random input at different time-steps.

In order to apply the proposed method, we rewrite Eq. (5.34) as a first order (in
time) system of PDEs. To train the ANN we consider a training set consisting of
200 random inputs and we employ the same time step used to generate data. In
Fig. 5.20 we compare the HF output with the output of the different learned models
for 4 different tests. Figure 5.19 shows the test error of the learned models for different
values of n, by using the output-inside-the-state approach and by using a single hidden
layer with Nneurons = n + 2. Also in this test case, the error decreases with n and,
noticeably, it decreases faster than εn.
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Figure 5.20: Test case 4 : comparison between the HF solution and the solution with
the 4 trained ANN models in 4 different test cases.
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5.5 Final remarks and perspectives

We have proposed a data-driven nonlinear MOR technique, based on ANNs. We for-
mulated the model reduction problem as a best-approximation or maximum-likelihood
problem, where we look for the most suitable representation of the HF (high-fidelity)
dynamical model into a class of simpler models. The latter consists in a class of ODE
models described by means of an ANN (or by two of them, in the output-outside-the-
state case), which is fed by input-output pairs originated from the HF system. Thanks
to this formulation, it is possible to compute the sensitivity of the model error with re-
spect to the parameters of the ANNs, and to exploit standard optimization techniques
to make the ANN learn the underlying physics of the system. The proposed reduction
approach can be applied to a wide class of dynamical models with time dependent
inputs, subject to some minimal requirements (see Sec. 5.2.1).

We have shown that the class of ANN models used in this chapter can approximate
within any desired accuracy any model described by a system of ODEs. Moreover,
the same result holds by replacing the class of ANNs with any class of functions that
can approximate continuous functions on compact sets with arbitrarily small error.

The proposed technique can be flexibly applied for different purposes: (i) building
a surrogate of a computationally expensive model, which allows for fast evaluations
and which can be used for multi-query purposes; (ii) reducing the state dimension
of a time-dependent model; (iii) learning a mathematical model starting from input-
output pairs (see Fig. 5.1).

We have assessed the effectiveness of the proposed approach on a simple case study
(namely the nonlinear pendulum) and by investigating the reduction of two large-scale
problems (a nonlinear system of ODEs and a parabolic PDE), featuring thousands of
degrees of freedom, and an hyperbolic PDE. In all the cases we derived ROMs capable
of approximating the HF models with an error of order 10−2 ÷ 10−3, with just a few
state variables. We have also compared the performance of the proposed reduction
approach with that of the RB method, one of the most popular MOR methods in
the field of PDEs. For a given ROM size, despite a more expensive offline phase, the
proposed reduction approach yielded much more accurate ROMs than the RB method,
also featuring a lower online cost in terms of computational time.

Some crucial aspects, where there is possibility for improvement of the proposed
reduction approach, have not been fully explored in the present study. In particular,
we have not dealt with the issue of the training set design, where it is possible to em-
ploy automatic procedures to select an optimized training set, in a similar manner to
the selection of snapshots in the RB framework (see e.g. [QMN15]). Moreover, global-
ization techniques can be taken into account to deal with the problem of local minima
in the optimization process. Furthermore, different optimization algorithms can be
considered in place of the Levenberg-Marquardt algorithm (whose computational cost
becomes prohibitive when the number of parameters to be trained becomes large), such
as Stochastic Gradient Descent [Bot10], AdaGrad [DHS11] or Adam [KB14], which
are widely used in Machine Learning. The offline phase may be considerably speeded
up also with the application of more advanced learning techniques than the one con-
sidered in this thesis, such as stochastic selection of the training set (or mini-batch
training, see e.g. [Bot10]), dropout [Sri+14], batch normalization [IS15] and progres-
sive layers freezing [Bro+17]. This would allow to speed up the training phase, thus
allowing to further investigate the potential of the proposed method by considering
larger values of n.

In this chapter we have performed hyperparameters tuning by a trial-and-error
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approach. In future developments we will consider ad-hoc algorithms, such as evolu-
tionary optimization, bayesian optimization, grid search and k-means.

Finally, we notice that the formulation of the MOR problem in terms of minimiza-
tion problem potentially allows to easily incorporate into the learning stage some a
priori knowledge on the HF model, by suitably accounting for a penalization term (we
show an example Chap. 6).
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Chapter 6
Reduced order models of sarcomere
dynamics

High fidelity (HF) mathematical models describing the generation of active force in the
cardiac muscle tissue typically feature a large number of state variables to capture the
intrinsically complex underlying subcellular mechanisms (see Part I). In this chapter,
in order to drastically reduce the computational burden associated with the numerical
approximation of these models, we apply the data-driven MOR technique presented
in Chap. 5 to models that we proposed in Part I (specifically, to the activation-MH,
SE-ODE and MF-ODE models). With this aim, we enrich the fully black-box method
of Chap. 5 by feeding the learning process with some a priori information on the
HF model, thus moving towards a gray-box (or semi-physical) approach. Part of the
results presented in this chapter are taken from the submitted paper [RDQ19c].
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Chapter 6. Reduced order models of sarcomere dynamics

6.1 Model reduction strategy

The goal of this chapter is that of deriving reduced order models for the cardiac
mechanical activation models proposed in Part I, by applying the ANN-based MOR
strategy proposed in Chap. 5. Specifically, we will consider the model for calcium-
driven tissue activation presented in Chap. 2 (the activation-MH model) and the SE-
ODE and MF-ODE full-sarcomere models, presented in Chap. 4.

6.1.1 The HF models for sarcomere dynamics

We notice that all the above mentioned models can be written in the form of the HF
model of Eq. (5.1), that we recall here for the reader’s convenience:{

Ẋ(t) = F(X(t),u(t)) t ∈ (0, T ],

X(0) = X0,

y(t) = G(X(t)) t ∈ (0, T ],

(6.1)

where X(t) ∈ RN is the vector collecting all the states of the model. Specifically, the
vector X(t) takes the following forms, for the three models considered in this chapter.

• Activation-MH model. We have N = (NM − 2)43 = 2176 and X(t) is the
vector collecting all the terms in the form:{

P((α,
i

β, δ)t) : i = 2, . . . , NM − 1, α, β, δ ∈ {UN ,BN ,UP,BP}
}
.

• SE-ODE model. We have N = (NA − 2)26 + 4NA = 1408 and X(t) collects
all the terms in the form:{

παβδ,ϑηλi (t) : i = 2, . . . , NA − 1, ϑ, η, λ ∈ {U ,B}, α, β, δ ∈ {N ,P}
}

;

and in the form:{
µpi,α(t) : i = 1, . . . , NA, α ∈ {N ,P}, p ∈ {0, 1}

}
.

• MF-ODE model. We have N = 24 + 4 = 20 and X(t) collects all the terms in
the form: {

παβδ,η(t) : η ∈ {U ,B}, α, β, δ ∈ {N ,P}
}

;

and in the form:
{µpα(t) : α ∈ {N ,P}, p ∈ {0, 1}} .

The vector u(t) represents the input of the model. For the activation-MH model,
the input is given by the intracellular calcium concentration ad the sarcomere length.
Therefore, we set u(t) = ([Ca2+]i(t), SL(t))T . Conversely, the two full-sarcomere
models have as additional input the rate of shortening of sarcomeres. Therefore, we
set u(t) = ([Ca2+]i(t), SL(t), ddtSL(t))T .

Finally, the output vector y(t) collects the quantities of interest that can be com-
puted from the state X. Thus, its definition possibly depends on the application. In
this thesis, the final goal is that of employing such models to perform electromechanical
numerical simulations. Hence, the quantities of interest are the ones needed to couple
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the microscopical force generation model with the other physics. For the activation-
MH model, to compute the generated tension we just need the permissivity. Thus, we
set y(t) = P (t) and the observation function G is given by Eq. (2.7). Concerning the
full-sarcomere models SE-ODE and MF-ODE, we will see in Part III that, besides the
active tension Ta(t), in order to perform electromechanical numerical simulations, we
also need the active stiffness Ka(t). Thus, in those cases we set y(t) = (Ta(t),Ka(t))T

and the observation function G is given by Eq. (4.33) (for the SE-ODE model) or by
Eq. (4.47) (for the MF-ODE model). Since the three models here considered can be
written in the form of Eq. (6.1), in the following we will refer to Eq. (6.1) as the HF
model, and we will give details specific to each model only when necessary.

6.1.2 Black-box model reduction

Within a data-driven framework, we carry out Ns experiments (i.e. numerical simula-
tions) with the HF model and we collect a set of Ns outputs y(t), each one obtained
with a different input u(t). Hence, for j = 1, . . . , Ns, we consider a time interval [0, Tj ]
and an input function ûj : [0, Tj ]→ U and we define ŷj : [0, Tj ]→ Y as the solution of
the HF model (6.1) associated to the input ûj . The j-th training experiment (where
j = 1, . . . , Ns) consists of the pair (ûj , ŷj).

The solution of the HF model (6.1) also depends on the initial condition X0.
Because of the non-intrusive nature of our approach, a unique initial condition must
be used in each experiment, otherwise the input-output map that we aim to learn
would not be well-defined (see Sec. 5.2). Specifically, we set as initial condition for
each training experiment the steady-state of the cell in pre-systolic conditions, that is
when calcium concentration is c0 = 0.1 µM and the sarcomere length is SL0 = 2.2 µm.
The corresponding state can be numerically computed by solving the HF model until
a steady-state is reached with input u(t) ≡ u0, where u0 := (c0, SL0)T , for the
activation-MH model, or u0 := (c0, SL0, 0)T , for the full-sarcomere models.

By following the strategy proposed in Chap. 5, we look for a ROM written in the
following form: {

ẋ(t) = f(x(t),u(t)) t ∈ (0, T ],

x(0) = x0,

y(t) = g(x(t)) t ∈ (0, T ],

(6.2)

where the reduced state x(t) belongs to a low dimensional space Rn, such that n� N .

6.1.3 Feeding the learning process with a priori knowledge

The approach presented in Chap. 5 is fully black-box, that is it does not require any
knowledge about the HF model but for a collection of input-output pairs generated
by the HF model itself. However, as for the application considered in this chapter,
we may actually have some insight into the HF model that we aim to reduce. Such
a priori knowledge can be exploited in the learning process by adding to the cost
functional of problem (5.18) suitable penalization terms.

The cycle condition

As explained in Sec. 5.2.4, with the proposed black-box approach it is not possible
to give a physical meaning to all the entries of the reduced state x(t) (apart, in the
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output-inside-the-sate approach, from the first Ny entries, which coincides with the
output itself). Nonetheless, the reduced state x is a compact representation of the
full-order state X: we may suppose that there exists a map between the full-order and
the reduced state. Hence, the initial state X0 is mapped, by construction, into the
reduced initial state x0.

This implies that, whenever for some input ûj(t) the HF model returns, at the
final time Tj , to the initial state (that is X(Tj) = X0), also the ROM should satisfy
x(Tj) = x0. To enforce this condition, which we call cycle condition, we insert in the
training set some experiments, labelled by the indexes j ∈ Jc, such that at final time
Tj the full-order state coincides with the initial state X0. Then, we add to the cost
functional of problem (5.18) the following term:

E2
c = a−1

c

∑
j∈Jc

∑
i∈Ic

(xj(Tj) · ei)2

1
Tj

∫ Tj
0

(xj(t) · ei)2
dt
, (6.3)

where ac = |Jc||Ic| is a normalization factor, whose role will be discussed later. The
set Ic is defined as Ic = {1, . . . , n} in the output-outside-the-state case, or as Ic =
{Ny + 1, . . . , n}, in the output-inside-the-state case. The reason is that, in the latter
case, the first Ny entries of the state are already accounted for in the cost functional
of problem (5.18). We also notice that in (6.3) we normalize with respect to the L2

norm of the history of x(t), otherwise the introduction of the penalization term (6.3)
would be useless. Indeed, if we perform a change of variable for the internal state
(by multiplying its entries, but for the first one, by a small constant α � 1), the

quantity
∑Ns
j=1

∑n
i=2 (xj(Tj) · ei)2

can be made arbitrary small, without changing the
input-output map represented by the model (see Sec. 5.2.4).

The equilibrium condition

In Sec. 6.1.1 we have defined the initial full-order state X0 as the steady-state asso-
ciated to the input u0. Therefore, such state is by definition an equilibrium solution
for the input u0 (i.e. F(X0,u0) = 0), a condition that should be satisfied also by
the ROM (i.e. f(x0,u0) = 0). To enforce this condition (which we call equilibrium
condition), we envisage two alternative strategies. The first one, which we call weak
imposition, consists in adding to the cost functional the following further penalization
term:

E2
e = a−1

e |f(x0,u0)|2, (6.4)

where the normalization factor is defined as ae = n. The second one consists in
manipulating the ANN architecture in such a way that the equilibrium condition is
exactly satisfied. Specifically, we redefine f as f(x,u) = f̄(x,u) − f̄(x0,u0), where f̄
represents the ANN to be trained (from which we remove the last layer of biases since
it is canceled by the subtraction). We call this second approach strong imposition of
the equilibrium condition as the latter is satisfied by construction. In other words, we
train the ANN weights and biases, but for the biases of the output layer, which are
defined in such a way that the equilibrium condition is satisfied. The reduction of the
number of the unknowns is a consequence of the reduction of the space of candidate
solutions (we have excluded the functions not satisfying the equilibrium condition).

6.1.4 Gray-box model reduction

The introduction of the cycle condition and of the equilibrium condition, made in
Sec. 6.1.3, would not be possible in a strict black-box framework since the internal
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state would not be observable. We have thus moved towards a gray-box approach
since we have mixed a black-box technique with some insight on the HF model. Before
stating the formulation of the gray-box model reduction problem, we introduce the
following notation to denote the cost-functional of the black-box formulation (5.18),
which penalizes the error between the output of the HF model and that of the ROM:

E2
b = a−1

b

Ns∑
j=1

∫ Tj

0

|ŷj(t)− yj(t)|2dt, (6.5)

where ab =
∑Ns
j=1

∫ Tj
0
|ŷj(t)|2dt. Then, the gray-box MOR problem reads:

min
f∈F̂,g∈Ĝ

1
2w

2
bE

2
b + 1

2w
2
cE

2
c + 1

2w
2
eE

2
e

s.t. ẋj(t) = f(xj(t), ûj(t)), t ∈ (0, Tj ], j = 1, . . . , Ns,

xj(0) = x0, j = 1, . . . , Ns,

yj(t) = g(xj(t)), t ∈ (0, Tj ], j = 1, . . . , Ns.

(6.6)

The weight factors wb, wc, we ∈ R+ allow to tune the contribution of the different
terms. The normalization factors ab, ac and ae allow to keep the relative weight of
the different terms unaffected by changes in the number of training samples, in Jc or
in n. When the strong imposition of the equilibrium condition is employed, we set
we = 0 and we modify the architecture of f accordingly.

6.1.5 Discrete version of the MOR problem

As is Chap. 5, we choose as space of candidate functions F̂ the space of ANNs with
n+Nu input variables and n output variables. Moreover, in the output-outside-the-
state approach, we choose as space Ĝ the space of ANNs with n input variables and
Ny output variables. We denote by µ and, respectively, ν the vectors collecting the
weights and biases of the two ANNs.

We discretize problem (6.6) both for the state equation and the objective func-
tional. As in Chap. 5, we consider uniform subdivisions of the time intervals [0, Tj ]
with time step size ∆t; then, we discretize the state equation by a Forward Euler
scheme and the objective functional in (6.6) by the composite trapezoidal rule.

We notice that all the terms of the objective functional of problem (6.6) can be
written as sums of squares. The optimization problem retains a least-squares structure
and the Levenberg-Marquardt algorithm can thus be applied. The unique change with
respect to the solution of the fully black-box problem (5.18) is that it requires the
calculation of the gradient of the terms Ec and Ee with respect to the design variables
µ and ν, which can be performed by means of the Lagrange Multiplier method (as in
Chap. 5) and by differentiation with respect to µ and ν, respectively.

6.2 Reduced RUs model (activation-MH)

In this section, we consider the activation-MH model (proposed in Chap. 2), and we
show the results of the application of the MOR methods presented above. As our goal
is to obtain a ROM to be exploited in multiscale cardiac simulations, our inputs will
span the range of values possibly covered during the cardiac activity. In particular,
since calcium concentration during each heartbeat varies between 0.1µM and 1µM and
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Chapter 6. Reduced order models of sarcomere dynamics

the working range of sarcomeres spans a length from 1.7µm to 2.3µm [Ber01; Kat10],
our input takes values in U = [cmin, cmax]× [SLmin, SLmax], where we prudentially set
cmin = 0 µM, cmax = 1.5 µM, SLmin = 1.6 µM, SLmax = 2.4 µM. Since the output of
the model represents the fraction of units in permissive state, we define the space of
output values as Y = [0, 1].

To train the ANN we generate a training set by means of the HF model, i.e. a
collection of input-output pairs (ûj , ŷj), for j = 1, . . . , Ns. In such training set we
insert three kind of input functions:

• 50 step responses of duration T = 3 s, in the form of u(t) = u0+(ū−u0)1[t1,t2)(t),
where t1 = 0.2 s, t2 = 2 s and where ū is randomly selected. Specifically, we put
into the train set 40 inputs where the values ū are selected by Latin Hypercube
Sampling (LHS) of the input set U and 10 additional inputs obtained by LHS
of the subset [0.3, 0.6]µM× [2.15, 2.25]µm ⊂ U , a region where the steady-state
force-length relationship has a non regular shape and thus requires a better
resolution to be appreciated. The samples belonging to this set are such that
the final full state X(T ) virtually coincides (with a relative error lower than
10−4) with X0. Therefore, we insert the corresponding indexes into the set Jc.

• 45 oscillating inputs of duration T = 1 s, in the form of:

u(t) =

(
cmin +A sin

(
2π

T1
t

)2

, B + C sin

(
2π

T2
t

))T
,

where the periods T1 and T2 are randomly selected in the range 0.1− 0.8 s and
the constants A, B and C are randomly selected, with the constrain that the
function values belong to the set U .

• 60 randomly generated inputs of duration T = 1 s.

In order to select the hyperparameters, we proceed by a trial-and-error approach.
Aiming at a drastic reduction of dimensionality of the HF model, we set n = 2
internal variables for the ROM. For this choice we found that two hidden layers of 6
neurons each yield accurate results without a significant overfitting, as we will show
later (Table 6.1). Finally, we set wb = 1, wc = 10−1 and, for the weak imposition of
the equilibrium condition, we = 10−1. Concerning the time discretization, we employ
a time step of ∆t = 1 · 10−2 s. In order to lower the computational cost of the training
stage, we evaluate the loss functional (6.5) of the step responses every two time steps,
as the samples belonging to the latter class do not feature a fast dynamics.

To evaluate the accuracy of the ROM, we build a testing set with a collection of
step inputs, randomly generated inputs and the physiological and pathological inputs
described in Sec. 6.2.1. Moreover, in order to evaluate the reliability of the ROM over
time intervals longer than the one used for the training, we also test the ROM with
random inputs of duration T = 10 s.

Therefore, the ANN is trained based on the input-output pairs generated by the HF
model under fundamental regimes (step responses, frequency responses) and random
inputs. Then, the learned model is tested on different test cases, including physiolog-
ical samples. If the ANN model, which has been exposed during the training stage
only to fundamental inputs, is able to reproduce the results of the HF model also for
physiological inputs, we can conclude that the ANN has really learned the dynamics
of the system, and it is not simply interpolating among a database of precomputed
solutions.
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6.2. Reduced RUs model (activation-MH)

Equilibrium condition Cycle condition Relative errors
Training Test

- - 1.62 · 10−2 2.66 · 10−2

weak (we = 10−1) - 1.52 · 10−2 2.10 · 10−2

strong - 1.70 · 10−2 3.10 · 10−2

weak (we = 10−1) wc = 10−1 1.48 · 10−2 2.35 · 10−2

strong wc = 10−1 1.44 · 10−2 1.97 · 10−2

Table 6.1: Training and test relative errors obtained by training the ANN model with
or without imposition of the equilibrium condition (in either weak or strong form) and
with or without imposition of the cycle condition.

To make a comparison, this approach is similar to learning a language by studying
its rules and the grammar: if the student, after having studied the rules, shows to be
able to apply them in practice, we can say that he truly learned the language; if, on
the contrary, he studies directly the sentences he needs, we cannot be sure whether
he truly learned the language or he is simply repeating sentences learnt by heart.

In Table 6.1 we compare the training and test errors obtained with and without
imposition of the equilibrium condition (in weak or strong form) and with or without
imposition of the cycle condition. We conclude that the best strategy consists in intro-
ducing in the learning process both the cycle condition and the equilibrium condition
(the latter with strong imposition).

6.2.1 Validation of the reduced model

We perform with the HF and the ANN model some of the test cases typically employed
to validate microscopic cardiac force generation models and we check that the ANN
model did not lose the capability of the HF model to reproduce the experimentally
observed features of cardiac force generation. The results, reported in Fig. 6.1 and
briefly commented in what follows, show a remarkably good match.

Steady-state force-calcium-length relationships

Figures 6.1a and 6.1b show the steady-state force-calcium and force-length relationship
(see Sec. 1.3.2).

Isometric twitches

We perform simulations of isometric twitches, i.e. force transients in response to
the calcium wave occurring at each heartbeat, at constant SL (see Sec. 1.3.3), by
imposing the calcium transient of Eq. (2.23), with c0 = 0.1 µM, t0 = 0.1 s, τ1 = 0.02 s,
τ2 = 0.11 s. In Fig. 6.1c, we set cmax = 1.2 µM and we consider different values of SL.
Conversely, in Fig. 6.1d, we set SL = 2 µm and we let cmax vary.

Sudden development of tension

Figure 6.1e shows the responses to a step change in calcium at different levels, with
SL = 2.2 µm, showing that the rate of tension development following a sudden rise of
[Ca2+]i increases with the calcium level.
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Figure 6.1: Comparison between the results of the HF model activation-MH (colored
solid lines) and the corresponding ANN-based ROM (black dashed lines) for different
test cases, discussed in Sec. 6.2.1.
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Isometric versus shortening twitches

The systolic contraction of the myocardium leads to a shortening of the muscle fibers
and, as a consequence, to a decrease of SL. Therefore, in the normal cardiac activ-
ity, shortening twitches, rather than isometric twitches, are observed. To investigate
the difference between the two settings, we consider the experimentally measured
[Ca2+]i and SL transients reported in [JT97]. The results of the simulations, shown
in Fig. 6.1f, show that the decrease of SL leads to a decrease of force peak and to a
slight decrease of duration of activation (see e.g. [Kat10; Ber01]).

Long-term twitches

The normal cardiac activity features a nearly periodic behavior. To test the capability
of our model to sustain a periodic input after several cycles, we perform 10 s long
simulations by applying the calcium transient (2.23), with cmax = 1.1 µM and SL =
2 µm, with different periods, ranging from 0.3 to 1.5 s (see Fig. 6.1g). We notice
that for the highest frequency the wave summation phenomenon occurs, by which the
effect of consecutive twitches sum up in a sustained contraction state (see e.g. [Kat10;
Ber01]).

6.3 Reduced full-sarcomere models (SE-ODE and
MF-ODE)

In this section we consider the SE-ODE and the MF-ODE models of full-sarcomere
dynamics (proposed in Chap. 4). We recall that, with respect to the activation-MH
model considered in Sec. 6.2, in this case we have a further input, namely the time
derivative of SL. Hence, we define the space of the inputs

u(t) = ([Ca2+]i(t), SL(t),
d

dt
SL(t))T

as:
U = [cmin, cmax]× [SLmin, SLmax]× [vSLmin, v

SL
max],

where we prudentially set cmin = 0 µM, cmax = 1.2 µM, SLmin = 1.6 µM, SLmax =
2.4 µM, vSLmax = −vSLmin = 12 µm s−1.

Clearly, the input functions used in the training set must be consistent with the
fact that the third input variable is the time derivative of the second one. Hence, un-
like for the activation-MH model, in this case we cannot employ sharp step responses
(corresponding to d

dtSL(t) → ±∞). We insert in the training set the following func-
tions.

• 20 smoothed step responses, where we randomly select a pair c ∈ [cmin, cmax]
and SL ∈ [SLmin, SLmax] and we define:

[Ca2+]i(t) = c0 + (c− c0)1[t1,t3)(t),

SL(t) =



SL0 t ∈ [0, t1),

SL0 + SL−SL0

2

(
1 + cos

(
π t2−t
t2−t1

))
t ∈ [t1, t2),

SL t ∈ [t2, t3),

SL+ SL0−SL
2

(
1 + cos

(
π t4−t
t4−t3

))
t ∈ [t3, t4),

SL0 t ∈ [t4, T ],
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where the amplitude of the time intervals [t1, t2] and [t3, t4] is chosen so that the
time derivative of SL is always contained in the range [vSLmin, v

SL
max]. Specifically,

we set t1 = 0.05 s, t2 = 0.12 s, t3 = 1.18 s, t4 = 1.25 s and T = 2 s. Moreover,
during the time interval [t4, T ] the model state X goes back (up to an error lower
than 10−4) to X0. Hence, we insert the indexes corresponding to the samples of
this first class into the set Jc.

• 50 randomly generated inputs of duration T = 0.5 s.

In order to better capture the velocity-related effects (that are more relevant than for
the activation-MH model, which neglects the dependence on the shortening velocity),
we adopt a higher temporal resolution than in Sec. 6.2, by setting ∆t = 2 · 10−3 s.
However, to lower the computational cost associated with the ANN training, we eval-
uate the loss functional (6.5) with a time step of ∆t = 1 · 10−2 s. On the basis of the
results obtained in Sec. 6.2, we adopt a strong imposition of the equilibrium condition
and we set wc = 10−1.

We notice that, unlike the activation-MH model, the SE-ODE and the MF-ODE
models feature two distinct outputs, namely Ta(t) and Ka(t). However, the results
of numerical simulations show that the values of the two outputs feature a very high
correlation (data not shown). Hence, we believe that, in the case of the SE-ODE and
MF-ODE models, the output-outside-the-state approach is more convenient than the
input-inside-the-state approach, as the latter would “lost resources”, by making two
state variables coincide with the highly correlated variables Ta(t) and Ka(t).

As in Sec. 6.2, we adopt a trial-and-error approach to select the hyperparameters.
For brevity reasons, we only report the final setup. For both the SE-ODE and the
MF-ODE model, we train an ANN model with n = 3 internal variables. The ANN
representing the observation function g has a single hidden layer with 4 neurons, while
the ANN representing the right-hand side f has two hidden layers with 6 (for the SE-
ODE model) or 7 neurons (for the MF-ODE model) in both layers. The ANN model
trained from the results of the SE-ODE model features a training error of 1.29 · 10−2

and a test error of 2.46 · 10−2, while the ANN model trained from the MF-ODE model
has a training and a test error of 0.85 · 10−2 and 1.50 · 10−2 respectively. Similarly to
Sec. 6.2, we insert in the testing set a collection of smoothed step inputs, randomly
generated inputs, the inputs described in Sec. 6.3.1 and long-term inputs.

6.3.1 Validation of the reduced models

In this section we validate the two reduced ANN-based models, whose derivation
is described above in Sec. 6.3, with respect to the HF models SE-ODE and MF-
ODE. With this aim, similarly to what done in Sec. 6.2.1, we consider some of test
cases typically employed to validate cardiac force generation models. Specifically, we
consider:

• The steady-state force-calcium and force-length relationships.

• Isometric twitches for different values of SL and of calcium peak, where we apply
the calcium transient predicted by the TTP06 model for human cardiomyocytes
(suitably rescaled to obtain different calcium peak values).

• Shortening twitches for different values of calcium peak, by adopting the calcium
transient of the TTP06 model and the SL transient of Eq. (2.24).

• Responses to steps in calcium concentration.
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• Long-term periodic twitches, in order to test the capability of the ROM to
sustain a long simulation, obtained by applying the calcium transient of the
TTP06 model with period T = 0.8 s.

The results obtained for the SE-ODE and the MF-ODE models are respectively shown
in Figs. 6.2 and 6.3. In both cases, the results show a good agreement between the
HF and the ROMs, under both steady-state and dynamic conditions.

6.4 Discussion

The ANN models described in this chapter are built from data generated by the
corresponding HF models. This is somehow similar to the way the so-called phe-
nomenological models, i.e. models built by fitting the experimental observations with
a few number of variables (see e.g. [HMTK98; NHS06; Ric+08; Lan+17]), are built.
A natural question is how those models compare with the ANN models.

Building a model consists in the solution of an inverse problem: starting from ex-
perimental observations, one looks for a law, written in mathematical terms, and a set
of parameters describing the phenomenon that generated the observations themselves.
However, experimental data are typically noisy and defective (this is particularly evi-
dent in the case considered in this work, due to the microscopic scale at which force
is generated and to the intrinsic difficulties in measuring the internal properties of
myofilaments without damaging them [Ken+86; DKT02; TK+08]). In the context of
inverse problems and statistical learning, the action of compensating for noise and de-
ficiency of data is known as regularization (see e.g. [Hay09; LBH15]). Regularization
is typically performed either by suitable penalization of the unknown variables, or by
restricting the set of candidate solutions [KS06].

Phenomenological models are derived by finding the best fit of experimental data
with a simple law chosen a priori. Such a priori assumptions allow for a lumped
description of the phenomenon with a small number of parameters to be tuned from
experimental data. This is crucial, due to the noisy and defective nature of data. In
fact, such a priori assumptions are a way of performing regularization. For instance, to
reproduce the nonlinear response of activation to calcium concentration – consequence
of the nearest-neighborhood interaction within units – without explicitly representing
the units themselves, a power law dependence on [Ca2+]i is typically assumed, and
the exponent is estimated by fitting experimental data. However, this law has a
phenomenological basis and it is not derived by first principles [Ric+08].

With our approach, instead, regularization is performed during the construction
of the HF model thanks to the introduction of physics first principles and to a de-
tailed description of the microscopic arrangement of the contractile system. In such
a way, indeed, the set of possible relationships among the variables is restricted to
those satisfying some physical principles. Clearly, a detailed physics-based descrip-
tion leads to complex models (in the previous example, a physics-based description
of nearest-neighborhood interactions within units is not possible without a spatially-
explicit description of the filament). On the other hand, establishing a model on
physics principles clearly enhances its predictive power. Then, in a second stage, the
ROM is learned from the HF model, which does not suffer from the problems affecting
experimental data: training data can be generated from the HF model without noise
and without limitations in their quantity. This allows to fit data within a much wider
class of candidate solutions (specifically, we fit training data with ANN-based models,
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Figure 6.2: Comparison between the results of the HF model SE-ODE (colored solid
lines) and the corresponding ANN-based ROM (black dashed lines) for different test
cases, discussed in Sec. 6.3.1.
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Figure 6.3: Comparison between the results of the HF model MF-ODE (colored solid
lines) and the corresponding ANN-based ROM (black dashed lines) for different test
cases, discussed in Sec. 6.3.1.
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which are able to virtually represent all ODE models, if a sufficient number of neurons
is used, as proved in Chap. 5).

To summarize, whereas phenomenological models are directly derived from exper-
imental observations, with our approach the process is splitted into two stages. First,
we build an HF model, by compensating for the deficiency and bad quality of experi-
mental data thanks to physics. Then, in a second stage, we build a ROM, by fitting
data (no more noisy nor defective) generated by HF model. Thus, the ROM should
be seen merely as a way of efficiently solving the physics-based model itself.

A further advantage of building a model on the ground of a microscopical descrip-
tion is that this allows to investigate the effects of microscopical properties on the
macro-level tissue features (e.g. study the effect of drugs affecting the binding rate of
myofilament proteins), whereas the parameters of phenomenological models may not
have a clear physical interpretation.

6.5 Final remarks

In this chapter, we have extended the purely black-box MOR approach technique
proposed in Chap. 5 by informing the learning machine about some a priori knowledge
on the HF model to be reduced. In this way we have obtained a semi-physical, or
gray-box, MOR technique.

Successively, we have applied such technique to the activation-MH model, proposed
in Chap. 2, and to the SE-ODE and MF-ODE models, proposed in Chap. 4. In this
manner, we have derived an ANN-based ROM for each of the above mentioned HF
models. These ROMs approximate the results of the corresponding HF models within
a relative error of the order of 10−2 and with a drastic reduction of the computational
cost associated to their numerical approximation. Indeed, the ANN-based ROMs fea-
ture as few as two or three state variables, and allow to simulate 1 s of physical time in
less than 1 ms of computational time, thus reducing by a factor 104 the computational
time needed by the corresponding HF models.

At a first sight, the derivation of the models proposed in Part I, which allow to
simulate the force generation phenomenon with a significantly reduced computational
complexity than with MC (Monte Carlo) models, might appear useless, in light of
the MOR technique presented in this chapter. Indeed, the latter technique could in
principle be applied directly to the computationally expensive MC models, thus pro-
viding ROMs capable of reproducing their results with a very small computational
effort. However, the models proposed in Part I (such as the activation-MH model, the
SE-ODE and the MF-ODE model) find application in several contexts. Indeed, we
recall that the ANN-based ROMs derived in this chapter are associated to a specific
set of parameters. Hence, if different values of the parameters are considered, the
training phase needs to be re-executed. Conversely, the models proposed in Part I
allow to directly investigate the effects on the macroscale of the parameters describing
the microscopic force generation apparatus and are suitable for patient-specific per-
sonalization of the models. Moreover, the accurate calibration performed in Sec. 4.3
has been possible thanks to the reduced computational cost of the models proposed
in Part I. Finally, we remark that the training of the ANN-based ROMs requires or-
der of 102 simulations generated with the HF model. Therefore, the generation of an
adequate number of simulations with, e.g., the W12 model (that requires nearly 72
hours to simulate 1 s of physical sime, see Chap. 2), would demand nearly one year of
computational time.
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Upscaling active force subcellular
models

In Part I we derived models describing the generation of active force in the cardiac
muscle at the subcellular level. Then, in Part II, we proposed a strategy to reduce
the computational cost associated with the numerical approximation of such models,
in order to make them suitable for organ-level simulations. In this last part (Part III)
the goal is that of coupling the microscale models proposed in Part I with models of
cardiac electrophysiology and tissue mechanics to build a multiscale integrated EM
model.

Cardiac EM is in fact a multiscale problem, with spatial scales ranging from tens of
nanometers (XB dynamics) to centimeters (ventricle mechanics) and temporal scales
ranging from microseconds (XB dynamics) to seconds (heartbeat) [Kat10; Ber01]. As
the direct numerical approximation of the EM problem with a resolution corresponding
to the smallest involved spatial scale (i.e. by explicitly representing all the cardiomy-
ocytes composing the myocardium) would clearly lead to unbearable computational
costs, a multiscale formulation in mandatory in this setting. Hence, in this chapter we
derive some relationships linking the microscopic quantities associated with the force
generation phenomenon (such as the sarcomere elongation and the sarcomere-level
active tension) with quantities referred to the macroscale (such as the tissue strain
and stress tensors).

Moreover, the active force at the myofilament level is largely stochastic and it
features significant stochastic fluctuations. In this chapter, thus, we also study the
effect of stochasticity when a large number of interacting myofilaments are arranged
in the series-parallel manner they are arranged in the cardiac tissue.
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7.1. Continuum mechanics

7.1 Continuum mechanics

We start by recalling the basic notion of continuum mechanics that are needed to
describe the tissue strains and stresses at the macroscopic scale. Detailed derivations
of the results here shown can be found, e.g., in [Ant95; Ogd97].

7.1.1 Kinematics

Let Ω0 ⊂ Rd, where d = 3, be an open connected set, that we denote as the reference
(or undeformed) configuration, designating the region of space occupied by an elastic
body at rest. We consider a time-dependent deformation map ϕ : Ω0 × [0, T ] → Rd
and the associated deformation gradient F(X, t) = ∇0ϕ(X, t), where ∇0 denotes the
nabla differential operator in the reference (material) coordinate. Hence, we denote by
X the material coordinate and by x = ϕ(X) the spatial coordinate. The deformation
map is assumed to be smooth enough (twice continuously differentiable is enough, but
weaker regularity is admissible), injective and orientation preserving (i.e. its Jacobian
J = det F satisfies J > 0 for any X ∈ Ω0). We denote by N the outward unit
vector normal to the boundary of Ω0 and by n the outward unit vector normal to the
boundary of the deformed configuration Ω(t) (i.e. the image of ϕ at time t). Oriented
infinitesimal surfaces in the reference and current configurations are related by the
Nanson’s formula [Ant95; Ogd97]:

n dA = J F−TN dA0, N dA0 = J−1 FTn dA, (7.1)

where dA0 and dA denote the infinitesimal areas in the reference and current config-
uration, respectively.

We define the displacement field d(X) := ϕ(X) − X. We notice that we have
F = I +∇0d, where I denotes the identity tensor. We also introduce the left Cauchy-
Green tensor, the right Cauchy-Green tensor and the Green-Saint Venant tensor,
defined respectively as:

B = FFT , C = FTF, E =
1

2
(C− I) . (7.2)

We define the invariants of C, which coincide with those of B, as:

I1 = tr(C), I2 =
1

2

(
tr(C)2 − tr(C2)

)
, I3 = det C = J2.

By denoting by Lin the vector space of the linear transformations from Rd into itself,
we introduce the following subsets:

Lin+ := {A ∈ Lin s.t. det A > 0},
Sym+ := {A ∈ Lin+ s.t. AT = A},
Orth+ := {A ∈ Lin+ s.t. AT = A−1}.

(7.3)

By these definitions, we clearly have F ∈ Lin+. Moreover, thanks to the assumption
J > 0, by the polar decomposition theorem [Ant95; Ogd97], there exists a unique
R ∈ Orth+ and U,V ∈ Sym+ such that:

F = RU = VR.

Moreover, C = U2, B = V2.
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7.1.2 Stress tensors

The state of stress at a given material point X is defined by the collection of the
stress vectors per unit area associated with each plane passing through X, that we
denote by tm(X), where m is the unit vector orthogonal to the plane. By the Cauchy
stress theorem [Ant95; Ogd97], there exists a second-order symmetric tensor (more
precisely, a tensor field), the Cauchy stress tensor T, independent of the direction
m, such that tm(X) = T(X)m. The physical interpretation of the Cauchy tensor is
thus given through its application to a unit vector. Indeed, if we consider a surface A
intersecting the body in the current configuration (possibly belonging to its boundary),
the total stress acting on the body through the surface is given by:

t =

∫
A

Tn dA, (7.4)

where n denotes the unit vector normal to the surface. By the Nanson’s formula, the
same quantity can be written as an integral referred to the reference configuration:

t =

∫
A0

JTF−TN dA0 =

∫
A0

PN dA0, (7.5)

where P := JTF−T is called the first Piola-Kirchhoff stress tensor (or simply Piola
stress tensor).

The balance of momentum equation for the continuum body Ω0 reads as follows:

ρ
∂2d

∂t2
−∇0 ·P = h in Ω0 × (0, T ], (7.6)

where ∇0· denotes the divergence differential operator in reference coordinates, ρ
denotes the density of the material and h denotes an external load (force per unit
volume).

7.1.3 Hyperelasticity

For the sake of model closure, Eq. (7.6) must be supplemented with a material con-
stitutive law, that is to say a relationship linking the state of strain of the body with
its state of stress. The constitutive law can possibly depend on the rate of strain (e.g.
in the case of visco-elastic materials), but in this work we focus on elastic materials,
thus assuming that the stress tensors can be written as functions of the strain tensor
(i.e. T = TF(F) and P = PF(F)).

In particular, we focus on hyperelastic materials, characterized by a strain energy
density W, such that

∫
Ω0
W(X)dV0 gives the total elastic energy stored by the body as

a consequence of the deformation. The strain energy density is uniquely determined
by the deformation gradient, that is to say there exists a functional WF : Lin+ →
R ∪ {+∞} such that W(X) = WF(F(X)). Hyperelastic materials are such that the
Piola stress tensor is obtained by differentiating the strain energy density with respect
to F:

P =
∂W
∂F

. (7.7)

7.1.4 Frame-indifference

Consider a given deformation with gradient F. Suppose to further deform the body by
a rigid rotation Q. The new deformation gradient is given by QF. Then, we expect
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that the body is characterized by the same state of stress. This is a requirement, called
frame-indifference, that needs to be satisfied by the material constitutive relation to
be physically meaningful.

By the frame-indifference principle, if the stress vector in direction m before the
rotation is t, the force in direction Qm, after the rotation, must be Qt. This entails
TF(QF)Qm = Qt = QTF(F)m for any direction m, or, equivalently, TF(QF) =
QTF(F)QT . By taking Q = RT , we have QF = U = C2, and thus TF(F) =
RTTF

√
CR, so the function TF is determined by its restriction to Sym+. By similar

considerations, the frame-indifference principle can be equivalently stated in one of
the following ways. For any Q ∈ Orth+,F ∈ Lin+, we have:

TF(QF) = Q TF(F) QT , PF(QF) = Q PF(F), WF(QF) =WF(F).

Equivalently, it is possible to write the following quantities as functions of C:

T = TC(C), P = PC(C), W =WC(C).

7.1.5 Material symmetries

If we imagine to rotate a body by Q ∈ Orth+ and then to apply a deformation with
gradient F, we expect the material response to be in general different than the re-
sponse of the non-rotated body (that is, in general TF(FQ) 6= TF(F). However, some
materials are such that their response in not affected by a precise class of rotations.
This is linked to the symmetry properties of the material. This leads to the definition
of the material-symmetry group as:

G := {Q ∈ Orth+ : TF(FQ) = TF(F) ∀F ∈ Lin+}
= {Q ∈ Orth+ : PF(FQ) = PF(F) Q ∀F ∈ Lin+}
= {Q ∈ Orth+ :WF(FQ) =WF(F) ∀F ∈ Lin+}.

Isotropic materials

Isotropic materials are such that G = Orth+. In this case, taking Q = RT , since
FQ = V =

√
B, all the quantities in the above definitions can be written as a function

of B:

T = TB(B), P = PB(B), W =WB(B).

By combining this with frame-indifference, we get that W must be a function of the
invariants of B, that coincide with the invariants of C, i.e. W =WI(I1, I2, I3).

Transversely isotropic materials

Transversely isotropic materials are endowed with a preferential direction a and feature
an isotropic behavior in the plane transverse to a. More precisely, we have:

G = {Q ∈ Orth+ : Qa = a}.

This, combined with frame-indifference, is equivalent to writing the strain energy
density as W =WI(I1, I2, I3, I4,a, I5,a), where:

I4,a = aTCa = |Fa |2, I5,a = aTC2a = |Ca |2. (7.8)
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Orthotropic materials

Orthotropic materials have three mutually orthogonal preferential directions a, b and
c:

G = {Q ∈ Orth+ : Qa = a,Qb = b,Qc = c}.

In this case the strain energy density can be written as

W =WI(I1, I2, I3, I4,a, I5,a, I4,b, I5,b),

or equivalentely, as

W =WI(I1, I2, I3, I4,a, I4,b, I5,a, I8,ab),

where we have defined the invariant I8,ab = aTCb = Fa · Fb.

7.2 Linking the microscale with the macroscale

The heart muscle tissue is characterized by the presence of muscle fibers, organized in
sheets (see Sec. 1.2.1), that endow the material with anisotropic properties. Indeed,
the heart passive mechanical response is characterized by three mutually orthogonal
preferential directions, namely f0, the direction of fibers, s0, the direction of sheets and
n0, the fibers-sheets normal direction. The triplet (f0, s0,n0) forms a local orthogonal
frame of reference spanning the continuum Ω0. In this thesis we do not consider the
visco-elastic properties of the heart [GSH16] and we assume that the cardiac muscle
tissue is described by an hyperelastic material constitutive relation.

In this section, we derive the relationships linking the microscale, where the gen-
eration of active force takes place, with the macroscale, thus allowing to couple the
microscopic force generation models considered in the first two parts of this thesis
with the mathematical models describing the muscle tissue.

We remark that the models presented in Part I have a stochastic nature, as they are
based on CTMCs (continuous-time Markov Chains). Therefore, their solution is never
a deterministic quantity, but rather a probability distribution (or some function of the
probability distribution, such as an expected value or a distribution-moment). Cleary,
the effect of the stochastic fluctuations characterizing the results of such models must
be taken into account when the microscopic variables are coupled with other models.
In this section we neglect, for the moment, the stochastic nature of the considered
models, by identifying the model output with its expected value. Then, in Sec. 7.3 we
will study the role of stochastic fluctuations when the microscopic models are coupled
in a multiscale setting.

7.2.1 From the macroscale to the microscale

To link the tissue deformation at the macroscopic level with the microscopical stretch
of sarcomeres, we compute the change of SL associated with a body deformation d.
Let us consider a sarcomere located at the material point X ∈ Ω0. Let X1,X2 ∈ Ω0

denote the two ends of the sarcomere in the reference configuration. Being SL0 the
length of a sarcomere when the tissue is at rest, since sarcomeres are aligned with the
fibers direction f0, we have:

X1 = X− 1

2
SL0 f0(X), X2 = X +

1

2
SL0 f0(X).
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The sarcomere length at time t corresponds to the distance between the images of the
two points through the deformation map. Thanks to the scale separation between the
sarcomere level and the tissue level, the distance between the two close points ϕ(X1, t)
and ϕ(X2, t) is well approximated by a first-order Taylor expansion:

SL(X, t) = |ϕ(X2, t)− ϕ(X1, t)|
' |∇0ϕ(X, t) (X2 −X1) |
= SL0|F(X, t) f0(X)|

= SL0

√
I4,f (X, t),

(7.9)

where I4,f = Ff0·Ff0 denotes the fourth invariant in the fibers direction (see Eq. (7.8)).
Equation (7.9) provides a bridge from the macroscale to the microscale, as it allows
to compute the microscopic quantity SL from the macroscopic tissue deformation d.

7.2.2 From the microscale to the macroscale

The active force models proposed in Part I describe a pair of interacting AF and
half MF. The force predicted by the models, thus, corresponds to the force generated
by half MF and is denoted by Fhf. In order to link this scalar quantity, defined
at the microscale, to the macroscopic momentum balance Eq. (7.6), we consider an
infinitesimal surface A0 in the reference configuration, orthogonal to f0. The active
tension exerted through the surface has the same direction of fibers in the current
configuration (i.e. f = Ff0/ |Ff0 |). Moreover, the intensity of the active stress vector
corresponds to the force exerted by a half MF, times the number of crossed half
filaments, given by |A0|σhf, where σhf is the surface density of interacting AFs and
MFs. Therefore, by Eq. (7.5), the active part of the Piola Stress tensor (that we
denote by Pact) satisfies: ∫

A0

Pactf0 dA0 = |A0|σhfFhf
Ff0
|Ff0 |

.

By dividing both sides by |A0| and letting |A0| → 0, we get:

Pactf0 = σhfFhf
Ff0
|Ff0|

. (7.10)

On the other hand, the active force through surfaces orthogonal to the directions s0

and n0 is null. By proceeding as above, we get:

Pacts0 = 0, Pactn0 = 0. (7.11)

Equations (7.10) and (7.11) give the outcome of the application of Pact to three
independent vectors and thus allow to uniquely identify it as:

Pact = σhfFhf
Ff0 ⊗ f0
|Ff0|

. (7.12)

We obtain in this way an expression for the active Piola stress tensor also used in
other works available in literature (see e.g. [Was+15; Aug+16; GMR19]).

Due to the additive nature of force, the total Piola stress tensor is given by P =
Ppass + Pact, where the passive part of the Piola stress tensor is obtained as Ppass =
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∂W
∂F . Similarly, the Cauchy stress tensor can be written as T = Tpass + Tact, where:

Tpass = J−1PpassFT = J−1 ∂W
∂F

FT ,

Tact = J−1PactFT = J−1σhfFhf
Ff0 ⊗ Ff0
|Ff0|

.
(7.13)

Models without XB description

We consider now the case of models not incorporating an explicit description of XBs,
such as the activation-MH, presented in Chap. 2. The underlying assumption of
such models is that the fraction of cycling XBs is given by the permissivity and that
each cycling XB exerts a fixed amount of force, so that the total active tension is
proportional to the permissivity. Thus, by denoting by Fmax

hf the force exerted by the
half filament in condition of full activation (i.e. P = 1), Eq. (7.12) reads:

Pact = σhfF
max
hf P

Ff0 ⊗ f0
|Ff0|

= Tmax
a P

Ff0 ⊗ f0
|Ff0|

, (7.14)

where Tmax
a = σhfF

max
hf is the maximum tissue-level active tension (see Eq. (2.5)).

Models with XB description

We consider now the models proposed in Chap. 4 (such as the SE-ODE and the MF-
ODE models) and we show the specific form assumed by Eq. (7.12) in the case that
an explicit representation of XBs is available. We recall that the force generated by
half MF is given by (see Eq. (4.31)):

Fhf = kXB
SL0

2
NAµ

1, (7.15)

where µ1 denotes the mean distortion of attached XBs times the fraction of attached
XBs. By combining Eq. (4.31) with Eq. (7.12), we get:

Pact =
1

2
σhf kXB SL0NA

Ff0 ⊗ f0
|Ff0 |

µ1 = aXB
Ff0 ⊗ f0
|Ff0 |

µ1, (7.16)

where we have defined the active elastic modulus aXB := 1
2σhf kXB SL0NA. Even if in

Chap. 4 we have directly calibrated the value of aXB from experimental measurements,
this equation provides a link between the macroscopic parameter aXB and microscopic
quantities.

The same result can be derived by energetic considerations. Indeed, if we define
the energy associated to a single XB as:

WXB(x) =
1

2
kXBx

2,

the energy stored by the pair of interacting AF and half MF is:

Whf =
∑

i s.t. Zi 6=∅

WXB(Zi).

Thus, the energy density, at the tissue level, stored by XBs is given by:

Wact = ρhfWhf =
2σhf

SL0
Whf,
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where ρhf = 2σhf/SL0 is the volume density of interacting AFs and half MFs. There-
fore, by identifying the active part of the strain energy density with its expected value,
we have:

Wact(t) =
σhf kXB

SL0

NA∑
i=1

∫ +∞

−∞
x2

f
[
Zti = x

]
dx

=
σhf kXB

SL0

NA∑
i=1

∫ +∞

−∞
x2
(
f
[
Zti = x, T ti = P

]
+ f

[
Zti = x, T ti = N

])
dx

=
σhf kXB

SL0

NA∑
i=1

∫ +∞

−∞
x2 (ni,P(x, t) + ni,N (x, t)) dx

=
σhf kXB SL0NA

4
µ2(t)

=
1

2
aXB µ

2(t),

(7.17)

where we have used the definitions of Eqs. (4.21), (4.28) and (4.32).
The active part of the Piola stress tensor can be obtained by differentiating the

energy density stored by XBs, Wact, with respect to the strain tensor F. However,
to compute the differential of Wact with respect to F, one should take into account
that the microscopic strain x is related to the macroscopic one by Eq. (7.9). With
this aim, we observe that, denoting by x̂ the XB elongation in reference (Lagrangian)
coordinates, we have:

x = x̂+
SL− SL0

2
.

To simplify the notation, we define λ =
√
I4,f − 1, so that the elongation of fibers

in direction f0 is 1 + λ (see Eq. (7.9)). We have SL = SL0(1 + λ), which entails
x = x̂+ SL0

2 λ. We thus define as µ̂p the moments of the displacements in Lagrangian
coordinates, for p ∈ N:

µ̂p(t) =
1

NA

NA∑
i=1

∫ +∞

−∞

(
x̂

SL0/2

)p(
ni,N

(
x̂+

SL0

2
λ, t

)
+ ni,P

(
x̂+

SL0

2
λ, t

))
dx̂

=
1

NA

NA∑
i=1

∫ +∞

−∞

(
x

SL0/2
− λ
)p

(ni,N (x, t) + ni,P (x, t)) dx.

Therefore, we have:

µ0 = µ̂0, µ1 = λµ̂0 + µ̂1, µ2 = λ2µ̂0 + 2λµ̂1 + µ̂2. (7.18)

This entails:

Wact =
1

2
aXB

(
µ̂0λ2 + 2µ̂1λ+ µ̂2

)
. (7.19)

Thanks to the fact that we have written the XBs coordinate in the reference config-
uration, the unique term depending on F in Eq. (7.19) is λ = λ(F). Therefore, the
active part of the Piola stress tensor can be obtained by the chain rule as:

Pact =
∂Wact

∂F
=
∂Wact

∂λ

∂λ

∂F
,
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where:

∂Wact

∂λ
= aXB

(
µ̂0λ+ µ̂1

)
,

∂λ

∂F
=

Ff0 ⊗ f0
1 + λ

.

Finally, we obtain the same result of Eq. (7.16):

Pact = aXB

(
µ̂0λ+ µ̂1

) Ff0 ⊗ f0
1 + λ

. (7.20)

From Eq. (7.20) it follows that the active stress vanishes whenever µ1 =
(
µ̂0λ+ µ̂1

)
vanishes, that is to say when the average elongation of attached XBs is zero. Moreover,
the active stress tends to compress the fibers when µ1 > 0 (i.e. when the XBs are
attached in average with positive displacement) and to stretch them when µ1 < 0
(negative average displacement).

Notice that the condition µ1 = 0, giving zero active force, is equivalent to the
condition λ = λ∗ := −µ̂1/µ̂0, corresponding to the mean XB strain in reference
coordinates. With this notation, when µ̂0 > 0, the active tensor can be written as:

Pact = µ̂0aXB (λ− λ∗) Ff0 ⊗ f0
1 + λ

. (7.21)

Equation (7.21) can be interpreted as follows: the attached XBs produce a restore
force around the equilibrium λ = λ∗ with a stiffness equals to µ̂0aXB, i.e. the stiffness
associated to the full activated state times the fraction of attached XBs.

7.2.3 Order preserving properties of the active stress Piola ten-
sor

In both the cases considered in Sec. 7.2.2, the active part of the Piola stress tensor
can be written in the form:

Pact = ψ(λ)
Ff0 ⊗ f0

1 + λ
, (7.22)

where λ =
√
I4,f − 1. Specifically, we have ψ(λ) = aXB

(
µ̂0λ+ µ̂1

)
for models with

explicit description of XBs and ϕ(λ) = Tmax
a P when XBs are not explicitly modeled.

We notice that any tensor in the form of Eq. (7.22) is compliant with the frame-
indifference principle. Indeed, λ, being a function of C, is not affected by a left
multiplication of the strain tensor by a rotation matrix. Thus, we have, for any
Q ∈ Orth+:

Pact
F (QF) = ψ(λ)

QFf0 ⊗ f0
1 + λ

= QPact
F (F). (7.23)

Besides the frame-indifference principle, the stress tensor of an elastic body needs to
satisfy other properties in order to be physically meaningful. A reasonable assumption
is that an increase in a component of strain should be followed by an increase in the
corresponding component of stress (see e.g. [Ant95]). Such order-preserve property
can be stated in different forms, the simplest one being the strong order-preserving
property:

H :
∂P

∂F
H > 0 ∀F ∈ Lin+,H ∈ Lin. (7.24)

In the case of hyperelastic materials whose strain energy density is twice differentiable,
this condition is equivalent to the convexity of the strain energy density itself.
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However, the strong order-preserving condition is too strong to develop a physically
meaningful theory of elasticity, as it features some drawbacks. First, it is incompatible
with frame-indifference [Ant95]. Moreover, it entails uniqueness of the equilibrium
under any given load, but this is not coherent with the experience (for instance, a
body with a strongly order-preserving constitutive law does not admit buckling). A
different notion, weaker than condition (7.24), is the rank-1 order-preserving property:

H :
∂P

∂F
H > 0 ∀F ∈ Lin+,H of rank 1. (7.25)

We recall that a second order tensor H is of rank-1 whenever it can be written as
H = a ⊗ b. For hyperlastic materials, condition (7.25) corresponds to the rank-1
convexity of the strain energy density [Dac07; Ant95]. This condition does not feature
the above mentioned drawbacks. Moreover, a body whose stress tensor satisfies such
condition is characterized by traveling waves with real velocity [Ant95].

Other intermediate notions have been proposed in the literature, besides conditions
(7.24) and (7.25), such as the notion of quasi-convexity of the strain energy density,
that, together with suitable growth conditions, allows to prove the existence of equi-
libria [Dac07]. We notice that such condition is stronger than (7.25) and weaker than
(7.24).

Because of the additive decomposition of the Piola stress tensor in passive and
active components (P = Ppass + Pact), if the passive constitutive behavior of the
material is compliant with one of the above mentioned order-preserving notions, it is
sufficient, for the total Piola stress tensor to fulfill the same notion, that the active
part satisfies its non-strict counterparts (that is to say, the strict inequality can be
replaced by the nonstrict one):

H :
∂Pact

∂F
H ≥ 0 ∀F ∈ Lin+,H ∈ Lin, (7.26)

H :
∂Pact

∂F
H ≥ 0 ∀F ∈ Lin+,H of rank 1. (7.27)

Motivated by the above observations, we study the order-preserving properties of the
active Piola stress tensors belonging to the family of Eq. (7.22). Such properties are
fully characterized by the following result, giving a condition that is necessary for the
weaker notion and sufficient for the stronger one.

Proposition 7.1. Let us consider the Piola stress tensor of Eq. (7.22), where ψ is
a differentiable function. If (7.27) holds true, than the following two inequalities are
satisfied:

ψ(λ) ≥ 0, ψ′(λ) ≥ 0 ∀λ ∈ (−1,+∞). (7.28)

Conversely, if the inequalities of (7.28) are satisfied, the property (7.26) holds true.

Proof. First, we notice that:

H :
∂Pact

∂F
H =

ψ(λ)

1 + λ
|Hf0 |2 +

ψ′(λ)(1 + λ)− ψ(λ)

(1 + λ)3
(Ff0 ·Hf0)

2
, (7.29)

where we have used the equality |Ff0| = 1 + λ.
Let us suppose that property (7.27) holds. Let us first consider H = a⊗ b, where

b = f0 and a is a unit vector orthogonal to Ff0. Then, |Hf0 |2 = |a |2 = 1 and
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Ff0 ·Hf0 = Ff0 · a = 0 and the sign of the result is that of ψ(λ). Thus ψ(λ) ≥ 0 is a
necessary condition for (7.27).

On the other hand, let us take b = f0 and a = Ff0. In this case Hf0 = Ff0 and
the result is ψ′(λ)(1 + λ)2, whose sign is that of ψ′(λ). Thus ψ′(λ) ≥ 0 is a necessary
condition for (7.27) too.

To show the other implication, we suppose that the inequalities of (7.28) are satis-
fied and we consider two cases. First, if ψ′(λ)(1 +λ)−ψ(λ) ≥ 0, under the hypothesis
ψ(λ) ≥ 0 all the terms are nonnegative, giving the thesis. On the other hand, if the

ψ′(λ)(1 + λ)− ψ(λ) < 0, since (Ff0 ·Hf0)
2 ≤ |Ff0 |2 |Hf0 |2, we have:

H :
∂Pact

∂F
H ≥ ψ(λ)

1 + λ
|Hf0 |2 +

ψ′(λ)(1 + λ)− ψ(λ)

(1 + λ)3
|Ff0 |2 |Hf0 |2

= ψ′(λ) |Hf0 |2 ≥ 0,

(7.30)

whence the thesis.

Remark 7.1. The necessity of ψ(λ) > 0 holds even if we restrict ourselves to incom-
pressible materials, that is if we consider the manifold det F = 1 (i.e. considering those
H such that F−T : H = 0, which is equivalent in case rank-1 convexity is addressed
to a ·F−1b = 0). Indeed, it is sufficient to take a orthogonal not only to Ff0 but also
to F−1f0, which is always possible.

We notice that, in the case of hyperelastic materials, since the inequalities (7.28)
are necessary for the rank-1 order preserving property (weaker than quasi-convexity)
and sufficient for the strong order-preserving property (stronger than quasi-convexity),
they are also necessary and sufficient conditions for quasi-convexity, that allows to
prove existence of equilibria [Dac07].

As simple corollaries of Prop. 7.1, we can derive under which conditions the Piola
stress tensors given by the models proposed in this thesis are compliant with the
order-preserving property.

Models without XB description

In this case, the active Piola tensor always satisfies property (7.26). Indeed, we have
ϕ(λ) = Tmax

a P , which is nonegative and constant.

Models with XB description

Conversely, the active Piola tensor given by models with an explicit XB description
satisfies the order-preserving property just on the set of deformation F ∈ Lin+ such
that µ1 = µ̂0λ + µ̂1 ≥ 0. Indeed, in this case we have ψ(λ) = aXB

(
µ̂0λ+ µ̂1

)
,

and ψ′(λ) = aXBµ̂0 ≥ 0. As we mentioned before, µ1/µ0 corresponds to the mean
stretch of attached XBs. Therefore, µ1 < 0 corresponds to a condition where XBs
are attached in average with a negative stretch. This is only possible when the tissue
is compressed by an external agent. Indeed, when the XB stretch switches from a
positive to a negative value, the active tension is not compressive any more and the
tissue stops its spontaneous compression. Incidentally, this is the microscopical basis
of the phenomenon by which, when the shortening velocity reaches a given positive
value vmax, the active force reaches zero. In conclusion, under the normal activity of
the muscle tissue (when the tissue is not compressed by external agents and, thus, the
shortening velocity is lower than vmax), the condition µ1 > 0 is always satisfied.
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7.3 Dealing with stochasticity

The models presented in Part I have a stochastic nature, because of the probabilis-
tic formalism employed to describe the transitions of the RUs and the attachment-
detachment process. Therefore, the output quantities of the models are not deter-
ministic values, but rather random variables, with their probability distribution. In
fact, the stochastic fluctuations featured by the models are not negligible. The MC
simulations performed in Chap. 2 show that, during the activation peak, the standard
deviation of the active tension can be up to 25% of its expected value:√

Var [Fhf(t)]

E [Fhf(t)]
' 0.25.

Such significant stochastic fluctuations must be taken into account when the force
generation models are coupled in a multiscale setting.

7.3.1 From the microscale to the macroscale

As we mentioned before, the force generated by half MF features large stochastic
fluctuations. However, by looking at the same phenomenon at the macroscale, the
active tension in a given region of space is the result of the sum of the force generated
by many MFs. If we consider a small region of space (let us consider, to fix ideas, a
volume of V = 1 mm3), the active force associated to this region of space is given by
the sum of the force generated by Nhf = ρhfV ' 1012 interacting AF and half MF
(where we have estimated ρhf = 2σhf/SL0 by using the data reported in [Was+15]).
If we denote by F ihf the force exerted by the i-th half filament of the volume, the total
force generated in the small volume is thus given by:

FV (t) =

Nhf∑
i=1

F ihf(t). (7.31)

Since the two inputs of the model (the calcium concentration and the local stretch
of the tissue) vary with a characteristic spatial scale that is that of the macroscale
(of the order of 1 mm), the force generated by the filaments belonging to the same
small region of space can be considered identically distributed. Moreover, thanks to
the independence of the different filaments, we have:√

Var [FV (t)]

E [FV (t)]
=

√
Nhf Var [F 1

hf(t)]

NhfE [F 1
hf(t)]

= (Nhf)
− 1

2

√
Var [F 1

hf(t)]

exp [F 1
hf(t)]

' 10−6

√
Var [F 1

hf(t)]

exp [F 1
hf(t)]

.

Thus, even if the stochastic fluctuations at the level of the single filament are large
(more than 0.25), at the tissue level their value is negligible (order of 2.5 · 10−7).
Indeed, due to the scale separation between the microscopic level and the macroscopic
one, stochastic fluctuations are homogenized, so that the active force at the tissue
level can, in practice, be replaced by its expected value. In other terms, even if the
tissue-level active force is a random variable, its variance is so small that it can be
considered, in practice, as a deterministic value.

7.3.2 From the macroscale to the microscale

Equation (7.9) allows to relate the macroscopic tissue stretch with the microscopic
sarcomere deformation as SL = SL0

√
I4,f . However, due to the scale separation
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… …

thin filament thick filamentM-line
Z-disc

titin (kp)
half sarcomere

Figure 7.1: Representation of a chain of n half sarcomeres.

between the two levels, I4,f should be regarded as an average deformation, as it can
be the result of nonhomogeneous deformations of the different sarcomeres belonging
to the same region of space, in the same manner as the total active force at the tissue
level is the result of the sum of many half-filaments forces, each one with a different
value. Therefore, to support the validity of Eq. (7.9), we need to investigate the
following question: can we assume that sarcomeres close to each others feature similar
elongations, or, conversely, nonhomogeneous elongations are possible? We will see
that the answer to this question depends on which range of the force-length curve the
muscle is working in.

With this aim, we consider the following mesoscale model describing the arrange-
ment of myofilaments and sarcomeres (see Fig. 7.1). Let L denote the length of a
chain of n half sarcomeres and let sj denote the length of the j-th half sarcomere (so
that we have L =

∑n
j=1 sj). Each half sarcomere consists of a parallel arrangement

of N ∼ 104 pairs of interacting AFs and half MFs, each one pulling the same Z-disc
towards the M-line of the sarcomere [Ber01; Kat10]. Besides the active force, we as-
sume that the sarcomeres are also characterized by a passive stiffness kp, due to the
presence of structural proteins such as titin (see Sec. 1.2.3).

We define the mean half sarcomere length as s := L/n and the deviation of the
j-th half sarcomere as dj := sj−s. We notice that we have

∑n
j=1 dj = 0. The balance

of momentum written at each node connecting two adjacent half sarcomeres (i.e. at
each Z-disc and M-line) reads as follows, for j = 1, . . . , n− 1:

− kp(sj − s0)− F jhs = −kp(sj+1 − s0)− F j+1
hs , (7.32)

where s0 is the rest length of half sarcomere. It follows that the quantity C :=
dj + F jhs/kp is constant for each j. To find the value of the constant, we sum over

j, obtaining C = F hs/kp, where F hs = n−1
∑n
j=1 F

j
hs denotes the mean active force.

Finally, the deviation of the j-th sarcomere from the mean elongation is given by:

dj =
1

kp

(
F hs − F jhs

)
. (7.33)

In conclusion, whenever, due to stochastic fluctuations of the different terms F jhs, they
differ from their mean value, half sarcomeres close to each others would feature nonho-
mogeneous deformations. However, thanks to the parallel arrangement of filaments in
each sarcomere, the same homogenization phenomenon of Sec. (7.3.1) occurs. Indeed,

the active force of half sarcomere is given by F jhs =
∑N
i=1 F

j,i
hf , where F j,ihf denotes

the force generated by the i-th pair of interacting AF and half MH of the j-th half
sarcomere. Thus, by proceeding as in Sec. (7.3.1), the stochastic fluctuations at the
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level of half sarcomere are given by:√
Var[F jhs(t)]

E[F jhs(t)]
= N−

1
2

√
Var[F j,1hf (t)]

exp[F j,1hf (t)]
' 10−2

√
Var[F j,1hf (t)]

exp[F j,1hf (t)]
≤ 2.5 · 10−3.

Moreover, in this simple model we are not considering the interactions between sar-
comeres belonging to the same plane, that enhances the homogenizing effect due to
the parallel arrangement of filaments. In conclusion, the fluctuations at the level of
half sarcomere are much smaller than those taking place at the level of filament.

At a first sight, we can thus assume, with a little approximation, that in Eq. (7.33)
we have F jhs = F hs for any j, so that dj = 0 for any j and all the sarcomeres have
the same elongation. However, we need to check that the solution in which dj = 0
for any j is stable, otherwise any little discrepancy from the state of homogeneous
sarcomere elongations, caused by the stochastic fluctuations, would lead the system
far from such state. This is precisely the goal of the next sections.

Stability of a single half sarcomere

We start by considering a single half sarcomere contracting while loaded by an external
force. By denoting by Fhs(t) the force of the sarcomere, the length of the half sarcomere
is clearly a decreasing function of the force (the more the half sarcomere pulls, the
more it shortens). We have thus s(t) = h(Fhs(t)) for some decreasing function h. An
example is given by a half sarcomere acting against an external force E. The balance
of momentum reads kp(s−s0)+Fhs = E, which gives s = h(Fhs) = s0 +(E−Fhs)/kp.

We consider for the moment a very simple dynamical model, that however provides
a good insight into the phenomenon, namely:

dFhs

dt
(t) = f(Fhs(t), s(t)), t ≥ 0. (7.34)

We notice that we do not include the dependence on [Ca2+]i as we are working under
a condition of constant calcium concentration. We denote by Fiso(s) the steady-state
force associated to the length s. The function Fiso encodes the well-known force-length
relationship (see Sec. (1.3.2)). Experiments show that such steady-state condition is
a condition of stable equilibrium for the force generation machinery. We have thus,
for any s:

f(Fiso(s), s) = 0, ∂F f(Fiso(s), s) < 0, (7.35)

where we denote ∂F f := ∂f
∂Fhs

.

Conditions (7.35) imply that the equilibrium configuration Fhs = Fiso(s) is stable
for a fixed s (i.e. under isometric conditions). The goal of this section is that of
studying under which conditions the configuration Fhs = Fiso(s), where s = h(Fhs),
is stable when the half sarcomeres is not kept in isometric conditions, but rather the
length is determined by s = h(Fhs). In other terms, we are interested in studying the
effect, in terms of stability, of the feedback of force on elongation. We thus consider
the following dynamical model:

dFhs

dt
(t) = f(Fhs(t), h(Fhs(t))), t ≥ 0. (7.36)

To study the stability of the equilibrium solution, we study the sign of the derivative
of the right-hand side of Eq. (7.36) with respect to the unknown Fhs:

d

dFhs
f(Fhs, h(Fhs)) = ∂F f(Fhs, s) + ∂sf(Fhs, s)h

′(Fhs). (7.37)
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In order to compute the term ∂sf(Fhs, s), we notice that, since for any s have the
equality f(Fiso(s), s) = 0, it follows:

0 =
d

ds
f(Fiso(s), s) = ∂F f(Fiso(s), s)F ′iso(s) + ∂sf(Fiso(s), s). (7.38)

Therefore, we have:

d

dFhs
f(Fhs, h(Fhs)) = ∂F f(Fhs, s) (1− F ′iso(s)h′(Fhs)) . (7.39)

The steady-state solution is thus stable if and only if F ′iso(s) > 1/h′(Fhs). In the case
of constant external force, the condition reads F ′iso(s) > −kp. Being h′(Fhs) < 0,
it follows that all the equilibria belonging to the ascending limb of the force-length
relationship (i.e. for s such that F ′iso(s) > 0) are stable. Conversely, in the descending
limb (F ′iso(s) < 0), the equilibrium may become unstable.

Fig. 7.2 shows a visual representation of the solution in the case of half sarcomere
acting against a fixed load (i.e. kp(s − s0) + Fhs = E). The solution s is found at
the intersection of the curve Fhs = Fiso(s) with Fhs = E − kp(s − s0). Depending
on the value of E and on the slope of kp, the curves can have one or three distinct
intersections, corresponding to as many solutions. Close to the ascending limb, the
solution is always unique (Fig. 7.2a). On the descending limb, conversely, the solution
can be either unique (if kp is large enough, like in Fig. 7.2b), or multiple (for small
kp, like in Fig. 7.2c). In such case, the solution corresponding to the intermediate
value of s is unstable (since F ′iso(s) < −kp), while the other two are stable (since
F ′iso(s) > −kp). The single equilibrium bifurcates, by effect of a pitchfork bifurcation
[Str18], into three equilibria (two stable, one unstable).

We now show that the same result can be obtained for a wide class of force gen-
eration models, similar to the models considered in this thesis. We consider indeed a
model with an internal state z ∈ Rnz , written in the following form:

dz

dt
(t) = f(z(t), s(t)) t ≥ 0,

Fhs(t) = g(z(t)) t ≥ 0,
(7.40)

where we do not include for simplicity velocity-related effects. We denote by z = ziso(s)
the steady-state solution corresponding to the length s, so that Fiso(s) = g(ziso(s)).
We make the following assumptions, that ensures that the steady-state solution is a
stable equilibrium for the force generation dynamics:

f(ziso(s), s) = 0, ∂zf(ziso(s), s) is negative definite, (7.41)

where we denote by ∂zf the partial derivative of the right-hand side with respect to the
state variables. Then, we study the stability of the steady-state solution z = ziso(s),
where s = h(g(z)). With this aim we study the spectrum of the Jacobian matrix of
the right-hand side of the following dynamical system:

dz

dt
(t) = f(z(t), h(g(z(t)))), t ≥ 0. (7.42)

We have:

∇zf(z, h(g(z))) = ∂zf(z, h(g(z))) + ∂sf(z, h(g(z)))h′(g(z))∇gT (z). (7.43)
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(a) Ascending limb.

(b) Descending limb (large kp).

(c) Descending limb (low kp).

Figure 7.2: Equilibrium configurations of a half sarcomere acting against an external
load. The blue solid line represents the curve Fhs = Fiso(s), while the black dotted
line represents the curve Fhs = E− kp(s− s0), for different values of E and kp. Green
(respectively, red) dots denote stable (respectively, unstable) equilibria.
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Since we have

0 =
d

ds
f(ziso(s), s) = ∂zf(ziso(s), s)

d

ds
ziso(s) + ∂sf(ziso(s), s), (7.44)

it follows:

∇zf(z, h(g(z))) = ∂zf(z, s)

(
I− h′(Fhs)

d

ds
ziso(s)∇gT (z)

)
, (7.45)

where we write, to ease the notation, s = h(g(z)). Moreover, we notice that:

F ′iso(s) =
d

ds
(g(ziso(s))) = ∇g(z) · d

ds
ziso(s). (7.46)

To asses the stability of the equilibrium, we study the sign of the eigenvalues of
∇zf in the ascending and descending limb of the force-length relationship (i.e. when
F ′iso(s) > 0 and F ′iso(s) < 0 respectively).

Let ci for i = 1, . . . , nz − 1 be a basis of the subspace orthogonal to the subspace
generated by the vector ∇g(z) (that is nonzero as we are not considering the case
F ′iso(s) = 0). We have then:

cTi ∇zf(z, s)ci = cTi ∂zf(z, s)ci < 0, (7.47)

where the last inequality is due to the negative definiteness of ∂zf at the equilibrium
point. Moreover, we have:(

d

ds
ziso(s)

)T
∇zf

(
d

ds
ziso(s)

)
=

(
d

ds
ziso(s)

)
∂zf(z, s)

(
d

ds
ziso(s)

)(
1− h′(Fhs)∇g(z) · d

ds
ziso(s)

)
.

(7.48)

Because of the negative definiteness of ∂zf , the above expression is negative if and
only if 1 − h′(Fhs)∇g(z) · ddsziso(s) = 1 − h′(Fhs)F

′
iso(s) > 0, that is equivalent to

F ′iso(s) > 1/h′(Fhs). Therefore, since the set {c1, . . . , cnz ,
d
dsziso(s)} is a basis of Rnz ,

the steady-state solution is stable if and only if F ′iso(s) > 1/h′(Fhs). We have thus
shown the same result obtained for the simpler model of Eq. (7.34).

Stability of a pair of half sarcomeres

In this section we show that, when two half sarcomeres interact, similar instabilities
as the one featured by a single sarcomere may occur in the descending limb of the
force-length relationship. We consider Eq. (7.33) for N = 2. By denoting d = d1, we
have:

s1 = s+ d, F 1
hs = Fiso(s1),

s2 = s− d, F 2
hs = Fiso(s2),

d =
1

2 kp

(
F 2

hs − F 1
hs

)
.

The equilibria of the pair of interacting half sarcomeres are thus given by the solutions
of the following equation:

2 kp d = Fiso(s− d)− Fiso(s+ d). (7.49)
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(a)

(b)

Figure 7.3: Pair of interacting half sarcomeres. Equilibrium solutions can be found
by intersecting the curve Fiso(s) (blue solid line) with lines of slope −kp (dotted
black line). In the case of multiple intersections, such as in (a), the three solutions
represented in (b) are possible. The homogeneous solution s1 = s2 = s is unstable
(shown in red), while the two solutions s1, s2 = s± d are stable (shown in green).
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Such solutions can be graphically found as the intersections of the Fiso curve with
lines of slope −kp (see Fig. 7.3). When the curves feature more than one intersection,
the corresponding coordinates (s1, F

1
hs) of (s2, F

2
hs) form an equilibrium configuration

for the pair of interacting half sarcomeres. Indeed, the distance s2−s1 is by definition
2 d, while the distance F 2

hs − F 1
hs is given by Fiso(s − d) − Fiso(s + d). Since the two

points (s1, F
1
hs) and (s2, F

2
hs) lay on a line with slope −kp, Eq. (7.49) is satisfied.

On the ascending limb, only a single intersection is possible, and thus the solution
d = 0 is the only possible solution. Conversely, on the descending limb, if kp is large
enough, we still have only the solution d = 0, but if kp is small, multiple intersections
are possible. In such case, the pair of half sarcomeres features different equilibrium
configurations (see Fig. 7.3b): the trivial one, corresponding to s1 = s2 = s (homoge-
neous sarcomeres deformation) and the two nonhomogeneous solutions s1, s2 = s± d.
We now study the stability of the different solutions. Due to the stochastic fluctua-
tions of the force generation dynamics, indeed, the only solutions that can be observed
in reality are those corresponding to stable configurations.

Let us consider, for simplicity, the model of Eq. (7.34), as we have shown above that
considering more complex models with internal variables do not affect the essential
features of the equilibria. The dynamics of the pair of interacting half sarcomeres is
described by the following equation:

dF 1
hs

dt
= f

(
F 1

hs, s+
1

2 kp

(
F 2

hs − F 1
hs

))
t ≥ 0,

dF 2
hs

dt
= f

(
F 2

hs, s+
1

2 kp

(
F 1

hs − F 2
hs

))
t ≥ 0.

(7.50)

We notice that such dynamical system can be written in the following form:

dF

dt
= f(F), t ≥ 0, (7.51)

where we denote by F := (F 1
hs, F

2
hs)

T the state of the system. To investigate the
stability properties of equilibria, we study the spectrum of the Jacobian matrix ∇f ,
that reads:

∇f =

(
∂F f(F 1

hs, s1)− 1
2 kp

∂sf(F 1
hs, s1) 1

2 kp
∂sf(F 1

hs, s1)
1

2 kp
∂sf(F 2

hs, s2) ∂F f(F 2
hs, s2)− 1

2 kp
∂sf(F 2

hs, s2)

)
.

Thanks to Eq. (7.38), by which ∂sf(F jhs, sj) = −∂F f(F jhs, sj)F
′
iso(sj), the Jacobian

matrix can be written as:

∇f =

∂F f(F 1
hs, s1)

(
1 + 1

2 kp
F ′iso(s1)

)
− 1

2 kp
∂F f(F 1

hs, s1)F ′iso(s1)

− 1
2 kp

∂F f(F 2
hs, s2)F ′iso(s2) ∂F f(F 2

hs, s2)
(

1 + 1
2 kp

F ′iso(s2)
) .

The stability of equilibria can be assessed by the sign of the real part of the eigenvalues
of the Jacobian matrix. With this aim, we compute trace and determinant of such
matrix:

tr (∇f) = ∂F f(F 1
hs, s1)

(
1 +

F ′iso(s1)

2 kp

)
+ ∂F f(F 2

hs, s2)

(
1 +

F ′iso(s2)

2 kp

)
,

det (∇f) = ∂F f(F 1
hs, s1)∂F f(F 2

hs, s2)

(
1 +

F ′iso(s1) + F ′iso(s2)

2 kp

)
.
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First, we consider the stability of the homogeneous solution d = 0. In this case, we
have s1 = s2 = s and F 1

hs = F 2
hs = F hs. Hence, trace and determinant of the Jacobian

matrix can be written as follows:

tr (∇f) = 2 ∂F f(F hs, s)

(
1 +

F ′iso(s)

2 kp

)
,

det (∇f) = ∂F f(F hs, s)
2

(
1 +

F ′iso(s)

kp

)
.

Clearly, when F ′iso(s) > −kp, the homogeneous configuration d = 0 is the only possible
solution (since only a single intersection can be possible, see Fig. 7.3). In this case,
we have:

tr (∇f) < 2 ∂F f(F hs, s)

(
1 +
−kp

2 kp

)
= ∂F f(F hs, s) < 0,

det (∇f) > ∂F f(F hs, s)
2

(
1 +
−kp

kp

)
= 0.

Therefore, both eigenvalues have strictly negative real part and, by the Routh–Hurwitz
stability criterion [Gop02], the solution is stable.

Conversely, in the case of multiple equilibria (i.e. F ′iso(s) < −kp), we have:

det (∇f) < ∂F f(F hs, s)
2

(
1 +
−kp

kp

)
= 0.

Hence, one eigenvalue has strictly positive real part and the configuration is thus
unstable.

Let us now study, in the case of multiple equilibria, the stability of the solution
s1 = s+d, s1 = s−d. In this case, we have F ′iso(s1) > −kp, F ′iso(s2) > −kp (otherwise
the two curves cannot intersect). Therefore, trace and determinant of the Jacobian
matrix satisfy:

tr (∇f) < ∂F f(F 1
hs, s1)

(
1 +
−kp

2 kp

)
+ ∂F f(F 2

hs, s2)

(
1 +
−kp

2 kp

)
=
∂F f(F 1

hs, s1) + ∂F f(F 2
hs, s2)

2
< 0,

det (∇f) > ∂F f(F 1
hs, s1)∂F f(F 2

hs, s2)

(
1 +
−kp − kp

2 kp

)
= 0.

The two configurations corresponding to a nonhomogeneous sarcomeres stretch (rep-
resented in green in Fig. 7.3b) are thus stable.

In conclusion, on the ascending limb of the force-length relationship, the unique
solution is the one where the sarcomeres are homogeneously stretched and such so-
lution is stable. Conversely, on the descending limb, we have two possible scenarios.
For large values of the passive stiffness kp, the homogeneous stretch is the unique
solution and it is stable, while, for sufficiently mall kp, a pitchfork bifurcation occurs:
the homogeneous solution becomes unstable, and two nonhomogenous stable solutions
appear.

Stability of a chain of half sarcomeres

We consider then a chain of n half sarcomeres. In this case multiple pitchfork bifurca-
tions can occur on the descending limb of the force-length relationship. However, we

225



Chapter 7. Upscaling active force subcellular models

show that, on the ascending limb, the solution with homogeneous sarcomeres elonga-
tion is stable.

As we have seen at the beginning of Sec. 7.3.2, equilibrium configurations are such
that sj = s + 1

kp
(F hs − F jhs). The dynamics of the chain of half sarcomeres is then

described by the following system of equations:

dF 1
hs

dt
= f

(
F 1

hs, s+
1

kp

(
1

n

n∑
k=1

F khs − F 1
hs

))
t ≥ 0,

dF 2
hs

dt
= f

(
F 2

hs, s+
1

kp

(
1

n

n∑
k=1

F khs − F 2
hs

))
t ≥ 0,

...

dFnhs

dt
= f

(
Fnhs, s+

1

kp

(
1

n

n∑
k=1

F khs − Fnhs

))
t ≥ 0.

(7.52)

Such dynamical system can be written in the form of Eq. (7.51), where the state of
system is given by F := (F 1

hs, . . . , F
n
hs)

T . As in the case of a pair of sarcomeres, we
study the spectrum of the Jacobian matrix ∇f . In the following we will use again the
result of Eq. (7.38). For k 6= j, we have:

[∇f ]j,k = (kpn)−1∂sf(F jhs, sj) = −(kpn)−1∂F f(F jhs, sj)F
′
iso(sj), (7.53)

Conversely, the diagonal entries of the Jacobian matrix can be obtained as:

[∇f ]j,j = ∂F f(F jhs, sj)−
n− 1

kpn
∂sf(F jhs, sj) = ∂F f(F jhs, sj)

(
1 +

n− 1

kpn
F ′iso(sj)

)
.

(7.54)
By hypothesis (7.35), ∂F f(F jhs, sj) < 0. Therefore, on the ascending limb of the
force-length relationship, where F ′iso(sj) ≥ 0, the real part of any eigenvalue λ of the
Jacobian matrix ∇f can be bounded, thanks to Gershgorin circle theorem [GL99], as
follows:

Re(λ) ≤ Re
(

[∇f ]j,j

)
+
∑
k 6=j

∣∣∣[∇f ]j,k

∣∣∣
= ∂F f(F jhs, sj)

(
1 +

n− 1

kpn
F ′iso(sj)

)
−
∑
k 6=j

∂F f(F jhs, sj)(kpn)−1F ′iso(sj)

= ∂F f(F jhs, sj) < 0.

(7.55)

In conclusion, thanks to the Routh–Hurwitz stability criterion [Gop02], the equilib-
rium configuration in which sj = s for any j, when s is on the ascending limb of the
force-length relationship, is stable.

On the validity of Eq. (7.9)

To summarize, even if instabilities may occur on the descending limb of the force-length
relationship, when the heart works on the ascending limb the assumption that all the
sarcomeres belonging to the same region of space feature the same elongation is legit-
imate. Indeed, the normal working regime of sarcomeres in the heart (approximately
1.7-2.3µm, see Sec. 1.3.2) lies within the ascending limb, thanks to the stiffening of the
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parallel elastic component in proximity of SL ' 2.3 µm (see Sec. 1.3.1). This prevents
the heart tissue to enter in the regime of the force-length relationship with negative
apparent stiffness (i.e. the descending limb).

The above considerations provide a justification for Eq. (7.9), that assumes that
the sarcomeres close to each other have similar elongations. Nonetheless, one should be
aware of the limitations of such relationship and should always check a posteriori that
the value of SL does not enter in the descending limb of the force-length relationship.

7.4 Final remarks

In this chapter we have laid the groundwork for a multiscale formulation of cardiac
EM, by deriving relationships linking the microscopic variables describing the input
and the output of the force generation models derived in Part I with the microscopic
variables describing the strains and the stresses at the organ scale. Moreover, we have
analyzed how the random fluctuations that characterize the intrinsically stochastic
microscopical processes reflect on the macroscale.

Specifically, the local sarcomere elongation can be obtained as shown in Eq. (7.9).
Nonetheless, one should be aware that such relationship is based on the assumption
that sarcomeres close to each other are elongated in a similar manner. We have shown
that under the working regime of cardiac sarcomeres this assumption is valid and thus
Eq. (7.9) can be employed to link the two spatial scales. Incidentally, this is not true
when sarcomeres are over-elongated, which however never happens when sarcomeres
are embedded in the cardiac tissue, thanks to stiff parallel elastic components.

Concerning the upscaling from the microscopic to the macroscopic level, we have
derived Eq. (7.12), linking the force generated at the level of myofilmaents with the
stress state of the cardiac tissue. Thanks to the additive nature of force, the stochastic
fluctuations are homogenized in the transition from the microscale to the macroscale,
so that the active tension at the tissue level can be identified with its expected value.
In conclusion, while the models at the microscale need to account for stochasticity,
the models at the macroscale can be written with a deterministic formalism.

Finally, we have shown the physically meaningfulness of the active Piola stress
tensor deriving from the models proposed in Part I, under the normal working regime
of sarcomeres during an heartbeat. More precisely, the active Piola stress tensor
satisfies the frame-indifference principle. Moreover, we have investigated under which
conditions the above-mentioned tensor satisfies the order-preserving property between
strain and stress [Ant95; Ogd97]. We have proven that, in the case the underlying
model does not incorporate an explicit description of XBs (and thus the active force is
assumed to be proportional to permissivity, such as in the activation-MH model), the
order-preserving property is satisfied in its strongest form (7.26). Conversely, in the
case of microscopic models with an explicit description of XBs (such as the SE-ODE
and the MF-ODE models), a condition that is sufficient for the rank-1 order preserving
property (7.27) and necessary for the strong order-preserving property (7.26) is that
µ1(t) > 0. Since this condition is always satisfied, unless the tissue is quickly shortened
by an external agent, we conclude that, during the normal activity of the cardiac
muscle tissue, the Piola stress tensor satisfies the order-preserving properties.
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Chapter 8
Cardiac electromechanics

The main motivation of this thesis is the construction of an accurate and efficient
computational model of cardiac EM, that drove the development of the mathematical
models proposed in Part I and the MOR techniques proposed in Part II. Hence, in this
chapter, after having presented the core mathematical models describing the different
building blocks of the EM system, we describe our strategy to reduce the compu-
tational burden of cardiac multiscale EM simulations. Specifically, the intrinsically
complex model describing the microscale generation of active force is replaced by a
previously trained ANN-based model, that reproduces, within a little approximation,
the results of the corresponding HF model at a significantly lower computational cost.
We achieve, in this manner, a strikingly good balance between biophysical detail of
description and computational cost. Part of the results presented in this chapter are
taken from the submitted paper [RDQ19c].
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Figure 8.1: Domain and boundaries of the EM problem. The domain shown in the
picture is derived from the CAD of [Zyg].

8.1 The electromechanical problem

In this section, we present the models used in this thesis to describe the single building
blocks of cardiac EM, represented in Fig. 1. The different physical phenomena involved
in the cardiac EM function are typically described by means of ODE or PDE systems,
coupled together to account for the intricate interactions among the different building
blocks [NS09; Nor+11; Was+13; Was+15; Cha+16; Qua+17; GDQ18a; GDQ18b;
Qua+19].

We consider a reference computational domain Ω0, representing the region of space
represented by the cardiac muscle tissue at rest (reference configuration) and a time
interval (0, T ]. Specifically, we focus on the EM of the left ventricle (LV), the most
studied of the four cardiac chambers (since it is responsible for the systemic circulation
and it is characterized by the largest pressures and strains [TD08; JKT07]). We
subdivide the boundary of the domain Ω0 into three parts, namely the endocardial
surface Γendo

0 , the epicardial surface Γepi
0 and the base Γbase

0 , an imaginary surface
orthogonal to the LV centerline and cutting the ventricle wall. An example of LV
domain Ω0 with the corresponding boundaries is shown in Fig. 8.1. In order to account
for the anisotropic mechano-electrical properties of the cardiac tissue, we define a local
frame of reference by means of the mutually orthogonal vector fields f0, s0 and n0,
denoting respectively the fibers direction, the sheets directions the fibers-sheets normal
direction [Qua+17; GDQ18a].

8.1.1 Electrophysiology

The contraction of the heart is driven by an electrical signal, generated in the heart
natural pacemaker, the sinoatrial node (see Sec. 1.1.1). Such signal propagates through
the atria, reaches the atrioventricular node and, through the Purkinje network, the
ventricles. The electrical stimulus triggers the activity of the excitable cardiomyocytes,
known as action potential, consisting in a coordinate opening and closing of voltage-
gated ion channels and in the consequent ionic fluxes through the cell membrane.

The mathematical description of these phenomena consists in two building blocks:
a ionic model, describing the cellular-level activity, and an equation describing the
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propagation of the action potential through the cardiac tissue (in this thesis, we con-
sider the monodomain model [CFPS06; CFPS14]).

Ionic models

The mathematical formalism used to describe the dynamics of the ionic fluxes and the
voltage-gated ion channels is that of the Hodgkin-Huxley model [HH52a; HH52b]. The
cell membrane is assumed to behave as a capacitor with capacitance Cm, subject to two
electric currents: Iapp, the externally applied current, and I ion the net current result-
ing by the ion fluxes across the membrane. A large number of models have been pro-
posed in the literature to model the term I ion. Such models include variables tracking
the concentration of different ionic species and the so-called gating variables, describ-
ing the opening state of the voltage-gated channels (such as the O’Hara-Rudy model
[O’H+11], the ten Tusscher-Noble-Noble-Panfilov model [TT+04], the ten Tusscher-
Panfilov 18-variables model [TTP06a] (TTP06 model) and the ten Tusscher-Panfilov
8-variables model [TTP06b]). Due to the large number of variables needed to accu-
rately describe the dynamics of the ion fluxes across the membrane, simplified models,
built on the basis of phenomenological considerations, have been proposed (such as
the FitzHugh–Nagumo model [Fit61; NAY62], the Aliev-Panfilov model [AP96] and
the Bueno-Orovio minimal model [BOCF08]). In general, each of the above mentioned
models can be written in the following form, where w denotes the vector collecting
all the ionic variables (ionic concentrations, gating variables, or phenomenological
variables):


Cm

∂v(t)

∂t
+ I ion(v(t),w(t)) = Iapp(t) t ∈ (0, T ],

dw(t)

dt
= h(v(t),w(t)) t ∈ (0, T ],

v(0) = v0, w(0) = w0.

(8.1)

In this thesis, we consider the ten Tusscher-Panfilov 18-variables model (that we denote
as TTP06 model), calibrated for human ventricular myocardial cells [TTP06a], as it
provides a detailed description of the calcium dynamics, one of the inputs of the
mechanical activation models that we proposed in Part. I.

The monodomain model

The monodomain model provides a description for the propagation of the action po-
tential through the heart tissue (see e.g. [CFPS06; CFPS14]). In this model, the
cells are not considered as discrete but rather as a continuum. The transmembrane
potential is thus described by a scalar field v : Ω0 × (0, T ] → R (in the following
the dependence on (x, T ) will be implicit). We also define, over the domain Ω0, the
vector field of the ionic variables, that we denote by w. By introducing the membrane
surface-to-volume-ratio χm (corresponding the the total membrane surface per unit
volume), that allows to relate the electical current at the level of the cell membrane
with the currents at the level of the continuum, the evolution of the variables v and
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w is described by the monodomain equation (see e.g. [CFPS06; CFPS14]):

χm

(
Cm

∂v

∂t
+ I ion(v,w)

)
= ∇0 ·

(
J F−1DF−T∇0v

)
+ Iapp in Ω0 × (0, T ],

∂w

∂t
= h(v,w) in Ω0 × (0, T ],(

J F−1DF−T∇0v
)
·N = 0 on ∂Ω0 × (0, T ],

v = v0, w = w0 in Ω0 × {0},
(8.2)

where D denotes the electrical conductivity tensor in the current configuration. The
tensor D0 = J F−1DF−T represents the pull-back of such tensor in the reference
configuration, by accounting for the tissue deformation encoded into F [Qua+17;
CFPS06]. We notice that, while in Eq. (8.1) the term Iapp denotes the applied electric
current per unit area (of membrane surface), in Eq. (8.2) Iapp denotes the applied
current per unit volume (of heart tissue).

To reduce the number of parameters, we divide the first equation by the membrane
surface-to-volume-ratio χm and by the membrane capacitance Cm, obtaining:

∂v

∂t
+ Ĩ ion(v,w) = ∇0 ·

(
J F−1D̃F−T∇0v

)
+ Ĩapp,

where Ĩ ion = C−1
m I ion, Ĩapp = C−1

m χ−1
m Iapp and D̃ = C−1

m χ−1
m D. To account for the

anisotropic properties of the tissue, the diffusion tensor is written as:

D̃ = σisoI + (σf − σiso) f0 ⊗ f0, (8.3)

where σf denotes the conductivity coefficient in the fibers direction and σf the con-
ductivity coefficient in the transverse direction [Qua+17; GDQ18a].

The electric current Iapp, stimulating the heart tissue, originates from the Purkinje
network. In this thesis, we do not explicitly model the Purkinje network (such as, for
instance, in [Lan+18]), but we consider instead a collection of points X1, . . . ,XNp

where the electrical stimulus is applied, representing the terminations of the network
itself. Therefore, we set:

Ĩapp(X, t) = Imax

Np∑
j=1

exp

(
|X−Xj |2

δ2

)
1[0,tapp](t),

where δ is the spatial amplitude of the stimulus, Imax is the current peak and tapp is
the stimulus duration.

8.1.2 Mechanical activation

Among the ionic species involved in the action potential dynamics, calcium ions enter
inside the cell a few instants after the beginning of the cell excitation. The increase of
intracellular calcium ions concentrations triggers the calcium-induced calcium release
of the ions stored in the sarcoplasmic reticulum, causing a further increase of [Ca2+]i
(see Sec. 1.2.4). The increase of calcium concentration, in turn, triggers the activation
of the thin filaments inside the sarcomeres and the generation of active force.

A generic force generation model can be written in the following form (see Chap. 6):
∂z

∂t
= r

(
z, [Ca2+]i, SL,

∂SL

∂t

)
in Ω0 × (0, T ],

z = z0 in Ω0 × {0},
(8.4)
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where z(t) denotes a vector field, defined over Ω0, collecting the state variables of the
force generation model.

The models of the form of Eq. (8.4) have three inputs. The first is the scalar field
[Ca2+]i, denoting the intracellular calcium ions concentration over the domain Ω0.
The most detailed ionic models, including the TTP06 model, provide a description of
the intracellular calcium dynamics, so that the field [Ca2+]i can be obtained directly
from the ionic variables w. The other inputs are the scalar field SL, denoting the
elongation of the sarcomeres belonging to each region of the domain Ω0 (that, thanks
to the considerations of Sec. 7.3.2, is well-defined), and its partial derivative with
respect to time. By Eq. (7.9), the local sarcomere length is obtained by multiplying
the rest sarcomere length SL0 by the local deformation of fibers aligned with the
direction f0 (i.e., SL = SL0

√
I4,f ). However, it is convenient (mainly for numerical

reasons) to regularize the I4,f field (when a low-order FEM discretization is considered,
for instance, I4,f may be discontinuous); hence, we define SL as the solution of the
following differential problem:{(

SL− SL0

√
I4,f

)
− δ2

SL∆SL = 0 in Ω0 × (0, T ],

δ2
SL∇0SL ·N = 0 on ∂Ω0 × (0, T ],

(8.5)

where δSL is the regularization radius.

8.1.3 Mechanics

As we mentioned before, we model the heart muscle as an hyperelastic medium. The
passive mechanical response of the heart is significantly anisotropic, due to the pres-
ence of fibers (see Sec. 1.2.1). Many transversely isotropic or, more in general, or-
thotropic constitutive laws have been proposed in the literature (see e.g. [GMW91;
GCM95; ULM02; HO09]), accounting for the different elastic response along the di-
rections f0, s0 and n0. In this thesis we consider the quasi-incompressible exponential
material model of [ULM02], with the hyperelastic strain energy density defined as:

W =
C

2

(
eQ − 1

)
+
B

2
(J − 1) log J,

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn

+ bfs
(
E2
fs + E2

sf

)
+ bfn

(
E2
fn + E2

nf

)
+ bsn

(
E2
sn + E2

ns

)
,

(8.6)

where Eab = E a0 ·b0, for a, b ∈ {f, s, n}, are the entries of the Green-Lagrange strain
tensor E in the (f0, s0,n0) frame of reference. The parameter B is called bulk modulus
and it weights the volumetric term 1

2 (J − 1) log J , penalizing the deformations that
would lead to a change of the volume occupied by the tissue (J 6= 1).

Following the derivation of Sec. 7.2.2, we write the Piola stress tensor as P =
Ppass+Pact, namely as the sum of a passive term and an active term, given respectively
by:

Ppass =
∂W
∂F

, Pact = Ta
Ff0 ⊗ f0
|Ff0|

, (8.7)

where the scalar field Ta denotes the active tension generated in the domain Ω0 and
it is obtained as a function of the activation variables z.

For model closure, the balance of momentum equation (see Eq. (7.6)) needs to be
supplemented with suitable boundary conditions, that model the interaction of the
LV with the surrounding environment. In the next sections, we present the different
boundary conditions imposed on the different parts of the boundary ∂Ω0.
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Boundary conditions on Γepi
0

The heart is surrounded by the pericardium, a double layered sac, with the function
of protecting the heart from external shocks. The pericardial cavity is filled with
a lubricating serous fluid, that minimizes the friction of the heart wall when the
myocardium contracts [TD08; JKT07; Pfa+19].

To model the effect of the pericardium of the epicardial surface of the LV, we
consider the following generalized Robin boundary conditions on Γepi

0 (see [GDQ18a]):

PN + (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
+ (I−N⊗N)

(
Kepi
‖ d + Cepi

‖
∂d

∂t

)
= 0. (8.8)

The tissues surrounding the heart wall are modeled as a system of springs (elastic

effects) and dashpots (viscous effects). The coefficient Kepi
⊥ (respectively, Kepi

‖ ) repre-

sents the spring stiffness per unit area in the normal (respectively, tangent) direction,

while Cepi
⊥ (respectively, Cepi

‖ ) represents the dashpot viscosity per unit area in the

normal (respectively, tangent) direction. For simplicity, we use a unique set of param-
eters for the region of the LV epicardium in contact with the pericardium and for the
region confining with the RV.

Boundary conditions on Γendo
0

The inner surface of the LV, the endocardium, is in contact with the blood, with which
it exchange forces: during systole, the active force generated inside the cardiomyocytes
quickly pushes the blood from the LV to the aorta, while, during diastole, the pressure
exercised by the blood on the cardiac wall causes the dilation of the LV cavity. To
accurately model the coupling between the heart muscle and the blood, fluid-structure
interaction (FSI) models can be adopted. In this framework, the blood motion inside
the LV cavity is modeled by adopting suitable rheological models for the blood (e.g.
by the Navier-Stokes equation), and the coupling between the fluid and the solid is
obtained by imposing the continuity of displacement and moment across the interface
[Qua+19; TDQ17b; TDQ17a].

Since the focus of this thesis is on cardiac EM, we rather adopt a lumped description
of the fluid, similarly to [GDQ18a]. Specifically, by neglecting the shear stress exercised
by the fluid on the cardiac wall, we only consider the effect of the fluid pressure, which
we assume to be constant in the whole LV cavity (we denote such pressure by the
scalar p(t)). Then, the force exerted by the fluid on the heart muscle across a surface
A ∈ Γendo(t), is given by: ∫

A

Tn dA = −p
∫
A

n dA. (8.9)

By Eq. (7.5) and thanks to the Nanson’s formulae, we get:∫
A0

PN dA0 = −p
∫
A0

JF−TN dA0. (8.10)

Finally, by the arbitrary of the surface, we get:

PN = −pJF−TN on Γendo
0 . (8.11)
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Boundary conditions on Γbase
0

The base Γbase
0 is an artificial boundary and, as such, it must be provided with bound-

ary conditions that account for the effect of the neglected part of the domain on
the considered part. We respectively denote by Ω̃(t) and Ω̃fluid(t) the solid and fluid

domains located above the base, and by Γ̃endo(t) and Γ̃epi(t) the endocardial end epi-
cardial surfaces located above the base. By considering a quasistatic approximation,
the momentum equation in the current configuration entails:

0 =

∫
Ω̃(t)

∇ ·T dV

=

∫
∂Ω̃(t)

Tn dA

=

∫
Γ̃epi(t)

Tn dA+

∫
Γ̃endo(t)

Tn dA+

∫
Γ̃base(t)

Tn dA.

We assume that the epicardial surface located above the base is unloaded [Pfa+19],

that is Tn = 0 on Γ̃epi(t). On Γ̃endo(t), which is in contact with the fluid, we have
Tn = −pn. Moreover, we have the following identity:

0 =

∫
Ωfluid(t)∪Ω̃fluid(t)

∇p dV =

∫
Γendo(t)

pn dA+

∫
Γ̃endo(t)

pn dA,

which entails:∫
Γbase(t)

Tn dA = −
∫

Γ̃base(t)

Tn dA =

∫
Γendo(t)

pn dA =

∫
Γendo
0

p JF−TN dA0. (8.12)

Equation (8.12) allows to derive the total stress applied on the boundary Γbase(t), but
not its pointwise distribution. This is the price to pay as we do not explicitly include
the domain Ω̃(t) into the EM model. Nonetheless, if we assume that the stress is
uniformly distributed, we get:

Tn = |Γbase(t)|−1

∫
Γendo
0

p JF−Tn dA0 on Γbase(t), (8.13)

which reads, in the reference configuration:

PN =
|JF−TN |∫

Γbase
0
|JF−TN |dA0

∫
Γendo
0

pJF−TNdA0 on Γbase
0 . (8.14)

We notice that thanks to Eq. (8.14) the net force exerted by the fluid on the solid is
null since the stress on Γbase

0 perfectly balances the stress exerted on Γendo
0 . This is

coherent with the hydrostatic nature of the pressure force, which contributes to the
energy of the system, but not to its momentum.

Moreover, we notice that, if we assume that the stress is uniformly distributed
in the reference configuration (rather than in the current one), we get the following
alternative boundary condition:

PN = |Γbase
0 |−1

∫
Γendo
0

pJF−TNdA0 on Γbase
0 . (8.15)

However, even if the boundary condition (8.15) allows for simpler implementations, we
will employ the boundary condition (8.14), as it is more natural to assume a uniform
distribution in the current configuration.
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Balance of momentum equation

To sum up, the balance of momentum written in the reference domain, endowed with
boundary and initial conditions, reads as follows :

ρ
∂2d

∂t2
−∇0 ·P = 0 in Ω0 × (0, T ],

PN + (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
+ (I−N⊗N)

(
Kepi
‖ d + Cepi

‖
∂d

∂t

)
= 0 on Γepi

0 × (0, T ],

PN =
|JF−TN |∫

Γbase
0
|JF−TN |dA0

∫
Γendo
0

pJF−TNdA0 on Γbase
0 × (0, T ],

PN = −pJF−TN on Γendo
0 × (0, T ],

d = d0,
∂d

∂t
= 0 in Ω0 × {0}.

(8.16)

Recovering the reference configuration

The stress-strain relationship defined by (7.7) is referred to the natural configuration
Ω0. However, the geometry recovered from images taken in vivo (that we denote by Ω)
does not correspond to the natural stress-free configuration since an internal pressure
p is always present in each phase of the heartbeat. Therefore, in the preprocessing
stage, we need to recover the reference configuration Ω0 from Ω.

We assume that the configuration Ω0 is taken during diastole, when the ventricle
is loaded by a pressure p = p and a residual active tension Ta is present. By adopting
a static assumption, the displacement observed under such conditions is given by the
solution of the following differential problem:

−∇0 ·P = 0 in Ω0,

PN +Kepi
‖ d + (Kepi

⊥ −K
epi
‖ ) (N⊗N) d = 0 on Γepi

0 ,

PN =
|JF−TN |∫

Γbase
0
|JF−TN |dA0

∫
Γendo
0

pJF−TNdA0 on Γbase
0 ,

PN = −pJF−TN on Γendo
0 .

(8.17)

Thus, in order to recover the coordinate x0 of the configuration Ω0 we need to solve
the following inverse problem: find the domain Ω0 such that, if we move x0 by the
solution d of Eq. (8.17) for p = p, we get the coordinate x of the domain Ω (i.e.
x = x0 + d). We notice that, however, the displacement d depends on the Ω0 itself
(i.e. d = d(x0)).

To accomplish this goal, we adopt a strategy similar to that of [Qua+17], where
we initially set x0 = x and then we iteratively proceed by solving Eq. (8.17) for
p = p and setting x0 = x− d(x0), until the distance between the target coordinate x
and the deformed configuration x0 + d(x0) is lower than a prescribed tolerance. The
fixed-point of the above iterative strategy is clearly a solution of the inverse problem.

After the recovery of the reference configuration, in order to find the initial condi-
tion for Eq. (8.16), we set p = pED and we solve again Eq. (8.17).

8.1.4 Blood external circulation

To close the EM problem, the LV activity must be coupled with equations describing
the external circulation. With this aim, we consider a lumped description of the blood

236



8.1. The electromechanical problem

circulation, as done in [GDQ18a], consisting of four phases, where we conventionally
start with systole (see Sec. 1.1.2):

1. In the isochoric contraction phase, the pressure p(t) starts from its end-diastolic
value (pED) and then raises in such a way that the ventricular volume V is kept
constant.

2. When p(t) reaches the aortic valve opening pressure value pAVO (we define such
time instant as t = TAVO), the ejection phase starts. In this phase, we describe
the evolution of p(t) by means of the following two-elements Windkessel model
[WLW09]: Ccirc

dp

dt
= − p

Rcirc
− dV

dt
t ∈ (TAVO, TAVC],

p(TAVO) = pAVO,
(8.18)

where TAVC (aortic valve closing time) is the first time, after TAVO, when the
negative flux dV

dt changes its sign.

3. At this stage, another isochoric phase begins. This phase ends when p(t) reaches
pMVO, the value of the mitral valve opening pressure.

4. In the filling phase, we linearly increase p(t) so that it reaches pED at the final
time T .

In order to compute the ventricular volume V (i.e. the volume of the ventricular
cavity), we proceed as follows. First, we identify the center point of the base as:

b(t) =
1∣∣Γbase
0

∣∣ ∫
Γbase
0

(X + d(t))dA0,

where X denotes the material coordinate. Then, we define the surface Γcap(t) as the
surface connecting the point b(t) with the orifice ring. The ventricular volume is thus
defined as the measure of the volume Ωfluid(t), delimited by Γendo(t) and Γcap(t). By
exploiting the identity ∇ · (x− b(t)) = 3, where x denotes the spatial coordinate, we
have:

3V (t) =

∫
Ωfluid(t)

3 dV =

∫
Ωfluid(t)

∇ · (x− b(t)) dV

=

∫
Γendo(t)

(x− b(t)) · n(t) dA+

∫
Γcap(t)

(x− b(t)) · n(t) dA,

where n(t) and N denote the outward unit vector normal at the surface in the actual
and reference domains, respectively. Since, by construction, (x − b(t)) ⊥ n(t) on
Γcap(t), the second term vanishes, leading to the formula:

V (t) =
1

3

∫
Γendo
0

J(t) (X + d(t)− b(t)) · F−T (t)N dA0.

8.1.5 The coupled EM problem

A recap of the different physics involved in the EM problem is shown in Fig. 1, with the
quantities that couple the different building blocks. The electrical activity, for which
we consider the monodomain model, is tightly coupled with the model describing the
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ionic activity. The ionic model provides the calcium concentration, the main input
to the model describing the mechanical activation, that in turn feeds the mechanics
model with the active component of the stress tensor. The mechanical model, thanks
to the presence of an active stress, allows to compute the displacement associated to
the contraction of the tissue. Finally, the movement of the computational domain
has a feedback both on the electrical activity, as the tissue strain affects the electrical
conductivity tensor, and on the mechanical activation, because of the influence of the
sarcomere length on the machinery of force generation.

Coupling together the four building blocks of the electrical and ionic activity,
mechanical activation and mechanics, we get the EM problem, a system of coupled
PDEs and ODEs that reads as follows:

∂v

∂t
+ Ĩ ion(v,w) = ∇0 ·

(
J F−1D̃F−T∇0v

)
+ Ĩapp in Ω0 × (0, T ],

∂w

∂t
= h(v,w) in Ω0 × (0, T ],

SL− SL0

√
I4,f − δ2

SL∆SL = 0 in Ω0 × (0, T ],

∂z

∂t
= r

(
z, [Ca2+]i, SL,

∂SL

∂t

)
in Ω0 × (0, T ],

ρ
∂2d

∂t2
−∇0 ·P = 0 in Ω0 × (0, T ],(

J F−1DF−T∇0v
)
·N = 0 on ∂Ω0 × (0, T ],

δ2
SL∇0SL ·N = 0 on ∂Ω0 × (0, T ],

PN + (N⊗N)

(
Kepi
⊥ d + Cepi

⊥
∂d

∂t

)
+ (I−N⊗N)

(
Kepi
‖ d + Cepi

‖
∂d

∂t

)
= 0 on Γepi

0 × (0, T ],

PN =
|JF−TN |∫

Γbase
0
|JF−TN |dA0

∫
Γendo
0

pJF−TNdA0 on Γbase
0 × (0, T ],

PN = −pJF−TN on Γendo
0 × (0, T ],

v = v0, w = w0, z = z0, d = d0,
∂d

∂t
= 0 in Ω0 × {0},

(8.19)

where the endocardial pressure p has to be determined, depending on the cardiac cycle
phase, either as Lagrange multiplier for the isovolumetric phases, or as solution of the
circulation model (8.18). In Tab. 8.1 we report the full list of parameters of the EM
model, with the values used in this thesis.

8.2 Numerical approximation of the EM problem

In order to numerically approximate the solution of the EM problem of Eq. (8.19), we
consider a FEM spatial discretization in space and we discretize the time derivatives
by means of first-order finite difference schemes [QSS10].

Specifically, we consider a Finite Element space Vh ⊂ H1(Ωh0 ), defined over a
tetrahedral computational mesh built upon a suitable discretization Ωh0 of the reference
domain Ω0. Then, we discretize the problem unknowns as vh ∈ Vh, dh ∈ Vh := [Vh]d

and we also discretize each ionic variable and each activation variable as an element of
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Variable Value Unit Description

Electrophysiology
σf 1.204 · 103 mm2 s−1 Electrical conductivity in fiber direction
σiso 0.1761 · 103 mm2 s−1 Electrical conductivity in tangential direc-

tion
Imax 100 V s−1 Applied current value
δ 14 mm Applied current radius
tapp 2 · 10−3 s Applied current duration

Activation
SL0 2.0 µm Reference sarcomere length
δSL 5 mm SL regularization radius

Mechanics
ρ 103 kg m−3 Tissue density
B 50 kPa Bulk modulus
C 2 kPa Material stiffness
bff 8 - Hyperelastic parameter
bss 6 - Hyperelastic parameter
bnn 3 - Hyperelastic parameter
bfs 12 - Hyperelastic parameter
bfn 3 - Hyperelastic parameter
bsn 3 - Hyperelastic parameter

Kepi
⊥ 2 · 10−1 kPa mm−1 Robin boundary condition

Cepi
⊥ 2 · 10−2 kPa s mm−1 Robin boundary condition

Kepi
‖ 2 · 10−2 kPa mm−1 Robin boundary condition

Cepi
‖ 2 · 10−3 kPa s mm−1 Robin boundary condition

Circulation
Rcirc 3.5 · 10−2 Pa s mm−3 Windkessel model parameters
Ccirc 4.5 mm3 Pa−1 Windkessel model parameters
pED 1.333 kPa End-diastolic pressure
pAVO 9.333 kPa Aortic valve opening pressure
pMVO 0.667 kPa Mitral valve opening pressure

Table 8.1: Parameters of the EM problem.
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Electrophysiology

Mechanics

Mechanical Activation

Figure 8.2: The equations describing the building blocks of cardiac EM and the cor-
responding coupling quantities.

Vh (we denote the discretized ionic and activation variables as wh and zh, respectively).
As for the time discretization, we consider a uniform subdivision 0 = t0 < t1 < · · · <
tM = T of the time interval [0, T ] with time step size ∆t. To denote the unknown at

the k-th time step, we use a superscript (e.g. v
(k)
h ≈ v(tk)).

To couple the different core models, different approaches can be adopted. The
coupled EM system of Eq. (8.19) can be solved as a monolithic set of equations in a
unique mesh [WBG07; GDQ18a]. Alternatively, by an operator splitting approach,
the different core models can be sequentially solved in a segregated manner [Was+13;
Was+15; Qua+17; GDQ18b]. The advantage of the latter approach is that it allows to
employ different meshes with different spatial resolutions to discretize cardiac electro-
physiology (that requires a very fine mesh to capture the correct propagation velocity
of the electrical signal) and mechanics (that can be solved on a coarser computational
mesh) and possibly also different time step sizes [Nor+11; Qua+17; GDQ18b].

In this thesis, we employ the segregated strategy presented in [GDQ18b]. Specifi-
cally, at each time step tk, we sequentially perform the following steps.

I) We update the ionic variables by solving the ionic model (8.1), thus obtaining

w
(k)
h .

II) We update the potential field v
(k)
h by solving the monodomain equation (that is

Eq. (8.2)).

III) We recover the local sarcomere length by solving Eq. (8.5) and we update the

activation variables z
(k)
h by solving Eq. (8.4).
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IV) We update the displacement and the ventricular pressure. In the isochoric phases

of the heartbeat, we update d
(k)
h and p(k) simultaneously, by solving Eq. (8.16)

together with the equation V (k) = V (k−1). On the other hand, during the
ejection and the filling phases, the pressure p(k) is updated before solving the
mechanical problem.

At each step, we approximate the quantities that are required to couple the different
physics and that have not been updated yet by an extrapolation coherent with the
order of the scheme used for the time discretization. For instance, in Step I, we employ
the extrapolated value of the electric potential v(∗) to update the ionic variables. Since
in this thesis we consider a first order time-stepping scheme, the extrapolated values
coincide with the values at the previous iteration (i.e. v(∗) = v(k−1)), but the approach
can be easily generalized to higher order schemes.

In the following, we give more details on the different steps.

8.2.1 Step I: Ionic equation

Since the ionic model (8.1) is written as a system of ODEs, we update each degree
of freedom of the FEM discretization of the ionic variables independently of the oth-
ers. To deal with the stiff nature of the TTP06 model, we adopt an implicit-explicit
(IMEX) scheme. More precisely, the 18 ionic variables of the TTP06 model can be
split into 6 ionic concentrations (featuring a nonlinear but non-stiff dynamics) and
12 gating variables (linear but highly stiff dynamics). This suggests to adopt an ex-
plicit handling of the former to avoid the solution of a nonlinear system (such choice
does not compromise the stability of the scheme, thanks to the non-stiff dynamics
of concentrations), and an implicit handling of the latter, because of the severe CFL
condition on the time step that an explicit scheme would bring. However, thanks to
the linear dynamics of the gating variables, such implicit handling does not require the
solution of a system of linear or nonlinear equations. During the update of both the
ionic concentrations and the gating variables, we employ the solution of the potential

at the previous time step v
(k−1)
h . In conclusion, with the considered IMEX scheme,

the ionic variables can be updated without the solution of any system of equations.

8.2.2 Step II: Monodomain equation

We update the potential field v
(k)
h by solving the FEM discretization of the mon-

odomain equation (Eq. (8.2)), with implicit treatment of the diffusive term and explicit

treatment of the Ĩ ion term, by employing the updated value of the ionic variables w
(k)
h

and the displacement of the previous time step d
(k−1)
h . Hence, the solution v

(k)
h ∈ Vh

is obtained as the solution of the following linear variational problem:

∫
Ωh0

(
v

(k)
h − v

(k−1)
h

∆t
+ Ĩ ion(v

(k−1)
h ,w

(k)
h )

)
ξh dV0

+

∫
Ωh0

(
J (k−1) (F(k−1))−1D̃(F(k−1))−T∇0v

(k)
h

)
· ∇0ξh dV0

=

∫
Ωh0

Ĩappξh dV0 ∀ ξh ∈ Vh.

(8.20)
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8.2.3 Step III: Activation equation

We discretize the SL field by means of Finite Element too and we find the value of
SLh ∈ Vh by solving the FEM discretization of Eq. (8.5). Then, as for the ionic
variables, we update each degree of freedom of the FEM discretization of zh indepen-
dently of the others, by employing the updated value of the calcium concentration and
the sarcomere length field obtained above. Since the solution of the activation model
requires a small time step, at this step we perform an inner iteration loop.

8.2.4 Step IV: Mechanics equation

Finally, we solve the FEM discretization of the mechanics problem of Eq. (8.16), with
implicit treatment of the unknown d(k). The discretized version of Eq. (8.16) reads
as the following nonlinear variational problem:∫

Ωh0

ρ
d

(k)
h − 2d

(k−1)
h + d

(k−2)
h

∆t2
· ξh dV0

+

∫
Ωh0

[
∂WF

∂F

(
F(k)

)
+ T (k)

a

F(k)f0 ⊗ f0
|F(k)f0|

]
: ∇0ξh dV0

+

∫
Γepi
0

[
(N⊗N)

(
Kepi
⊥ d

(k)
h + Cepi

⊥
d

(k)
h − d

(k−1)
h

∆t

)

+ (I−N⊗N)

(
Kepi
‖ d

(k)
h + Cepi

‖
d

(k)
h − d

(k−1)
h

∆t

)]
· ξh dA0

−
∫

Γbase
0

[
|J (k)(F(k))−TN |∫

Γbase
0
|J (k)(F(k))−TN |dA0

∫
Γendo
0

p(k)J (k)(F(k))−TNdA0

]
· ξh dA0

+

∫
Γendo
0

p(k)J (k)(F(k))−TN · ξh dA0 = 0 ∀ ξh ∈ Vh.

(8.21)

To solve the nonlinear system of equations arising from the variational problem of
Eq. (8.21), we employ a Newton-Raphson strategy [QSS10]. More precisely, in order
to deal with the nonlocal nature of the boundary condition on Γbase

0 , we adopt a
quasi-Newton strategy, by computing the Jacobian matrix only with respect to the
local terms.

During the two isochoric phases, at the k-th step Eq. (8.21) is solved together
with the constraint V (k) = V (k−1). The resulting system of equations is solved for

d
(k)
h and p(k), that acts in this setting as a Lagrange multiplier. We solve the saddle-

point problem arising from each iteration of the quasi-Newton method by a Schur
complement reduction [BGL05]. During the ejection phase, instead, we update p(k)

by solving the finite difference discretization of Eq. (8.18) with an implicit treatment
of p, before solving Eq. (8.21).

In Sec. 8.4.1, devoted to the SE-ODE and the MF-ODE models, we will propose a
modification of Eq. (8.21), in order to avoid numerical instabilities that can occur for
large shortening velocities with the latter models.

8.2.5 ANN-based efficient EM simulations

The computational cost associated with the numerical approximation of the EM prob-
lem is strongly affected by the solution of the activation model (8.4), both in terms
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of memory storage and computational time (we provide quantitative indications in
Secs. 8.3). To lower such computational burden, we replace the HF activation models
of Eq. (6.1) (activation-MH, SE-ODE or MF-ODE models) with the ROMs given by
the ANN-based model of Eq. (6.2). This can be easily done thanks to the fact that the
HF models and the corresponding ROMs share the same structure in terms of inputs
and outputs.

In Secs. 8.3 and 8.4, we compare the results of EM simulations obtained by em-
ploying the HF activation models and by employing the ANN-based models, which
we will respectively denote by HF-EM and ANN-EM. All the results presented in the
following are obtained with piecewise linear P1 Finite Elements and with a time step
of ∆t = 2 · 10−4 s.

Error estimation of ANN-EM vs HF-EM in 1D

The zero-dimensional simulations obtained with the reduced ANN-based model (see
Secs. 6.2.1 and 6.3.1) are accurate with respect to the ones obtained with the corre-
sponding HF models (relative error of order 10−2). Nevertheless, when the activation
model is embedded in the EM coupled system, the model output (i.e. active force)
has a feedback on its inputs (mostly on SL, as it causes the tissue contraction, but
also on [Ca2+]i, due to the mechano-electrical feedback). Therefore, one should check
whether such feedback has the effect of amplifying the error introduced by the ANN
reduced model, or not.

To gain some insight on the effect of the feedback of mechanics on activation,
we consider a one-dimensional steady-state version of equation (8.16), which can be
regarded as a simple model for the tissue deformation along the direction of the active
force (i.e. the fibers direction). By denoting by d the one-dimensional displacement
and by e = d

dxd the one-dimensional strain, we consider an elastic energy W(e) and
we define the passive stress as P pass(e) :=W ′(e), while we denote by P act the active
stress. The mechanical equilibrium equation in the domain (0, L) reads as follows:

− d

dx

(
P pass

(
d

dx
d(x)

)
+ P act(x)

)
= 0 for x ∈ (0, L),

d(0) = 0,

P ( d
dxd(L)) + P act(L) = p,

(8.22)

where we set a symmetry boundary condition at one side and a load p at the other
side. Coherently with the activation models considered in this thesis, the active
tension is a function of calcium concentration and sarcomere length: P act(x) =
T iso

a ([Ca2+]i(x), SL(x)), where SL(x) = SL0(1 + e(x)). The solution of Eq. (8.22)
satisfies:

P pass(e(x)) + T iso
a ([Ca2+]i(x), SL0(1 + e(x))) = p ∀x ∈ (0, L).

Consider now a perturbed version of Eq. (8.22), where the function T iso
a is replaced

by a surrogate T̃ iso
a = T iso

a + η, affected by the error η (in our case, η can be regarded
as the approximation error associated with the reduced ANN model). By asymptotic
analysis, the perturbed solution d̃ satisfies:

d

dx
d̃− d

dx
d ∼ η

(
∂T iso

a

∂SL
SL0 +W ′′(e)

)−1

.
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Hence, the active stress in the perturbed problem is linked with the HF one by:

T̃ iso
a ([Ca2+]i, SL0(1 + ẽ(x)))− T iso

a ([Ca2+]i, SL0(1 + e(x))) ∼ η

(
1 +

∂T iso
a

∂SL SL0

W ′′(e)

)−1

.

Being the elastic energy convex, the term W ′′(e) is positive. Thus, on the ascending

limb of the force-length relationship (
∂T iso

a

∂SL > 0), the error η is attenuated; conversely,

on the descending limb (
∂T iso

a

∂SL < 0) it is amplified.
The above results suggest that in the normal working-range of sarcomeres (that

lays is the ascending limb of the force-length relationship) the feedback of mechanics
on activation has a favourable effect when the HF activation models are replaced by
ROMs: a positive deviation of active tension leads to a more pronounced shortening
of the tissue (i.e. lower SL), which in turns, makes the active tension decrease,
compensating the initial error in Ta. This will find a confirmation in the numerical
results shown in Sec. 8.3 and 8.4.

8.3 Numerical results: the activation-MH model

In this section we consider the EM problem (8.19) where we employ, to model the
mechanical activation, the activation-MH model. In Sec. 8.3.1 we show the results
obtained with a benchmark problem, consisting in the contraction of a slab of cardiac
tissue. Then, in Sec. 8.3.2, we show the results of the numerical simulation of the
contraction of LV.

8.3.1 Test Case 1: cardiac slab

We consider a slab of cardiac tissue, defined by the computational domain Ω0 =
(0, 40 mm)× (0, 20 mm)× (0, 8 mm). We consider a fibers field f0 = e1 aligned as the
x-axis and a sheets field s0 = e3 aligned as the z-axis. We consider a unique stimulus
location x1 = (0, 0, 0)T (point A of Fig. 8.4). Due to the simple domain employed,

in this Test Case the three boundaries (Γbase
0 , Γepi

0 and Γendo
0 ) are not defined. Thus,

we change the boundary conditions of the mechanical problem (8.16), by imposing
d ·N = 0 and a no-stress condition in tangential direction on the three faces passing
through the origin (i.e. {x : x · ej = 0}, for j = 1, 2, 3). In the remaining subset of the
boundary, we impose a generalized boundary condition with K⊥ = 5 · 10−1 kPa mm−1,
C⊥ = 1 · 10−1 kPa s mm−1 and K‖ = C‖ = 0. Finally, we set Tmax

a = 700 kPa.
We consider a structured computational mesh with a uniform subdivision in 16,

8 and 3 elements along the cartesian directions x,y, and z, respectively, for a total of
2304 tetrahedra and 612 dofs. In Figs. 8.3 and 8.4 we show a comparison between the
HF-EM and the ANN-EM results. The computational costs are compared in Tab. 8.3.

8.3.2 Test Cases 2 and 3: idealized and realistic left ventricle

We consider an idealized LV (Test Case 2) and a realistic LV derived from the CAD of
[Zyg] (Test Case 3). The idealized computational mesh consists of 6500 tetrahedra and
1827 degrees of freedom, whereas the realistic one accounts for 354 · 103 tetrahedra and
65 · 103 degrees of freedom (Fig. 8.5). The electrical stimulus Iapp is applied at three
points, located on the endocardial surface close to the apex. We generate the fibers
and sheets distribution according to the rule-based algorithm proposed in [Bay+12], by
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t = 0 s t = 0.1 s

t = 0.2 s t = 0.3 s

t = 0.5 s t = 0.8 s

Figure 8.3: Test Case 1: comparison of the displacement field (at different time steps)
between the simulations performed with the HF activation-MH model and with the
corresponding ANN-based ROM. For visualization purposes, the domain is splitted
into two identical subregions: in the left subregion, the solution obtained with the HF
model is shown; in the right subregion, the solution obtained with the ANN-based
model.
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Figure 8.4: Test Case 1: comparison of the time course of quantities of interest in
three points (indicated in the top image) obtained with the simulations performed
with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).
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(a) Test Case 2 (b) Test Case 3

Figure 8.5: LV computational meshes of Test Cases 2 and 3.

(a) Field f0 (b) Field s0 (c) Field n0

Figure 8.6: Test Case 3: representation of fibers, sheets and normal fields. Three
sections in the apico-basal direction allow to appreciate the transmural variation of
fibers orientation.
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t = 1 ms t = 2 ms t = 4 ms t = 6 ms

t = 10 ms t = 20 ms t = 30 ms t = 40 ms

Figure 8.7: Test Case 3 (activation-MH model): transmembrane potential at different
times.

setting αendo = −60◦, αepi = +60◦. The fibers, sheets and normal fields are displayed
(just for the realistic geometry) in Fig. 8.6. In Test Case 3, to lower the computational
burden due to the fine mesh, we employ a first-order time splitting scheme by solving
the mechanical subproblem every five time steps (see [GDQ18b; Ger18]). In order to
obtain realistic pressure values, in Test Case 2 we set Tmax

a = 480 kPa, while in Test
Case 3 we set Tmax

a = 700 kPa.

In the preprocessing stage, in order to recover the reference configuration associated
with the domains shown in Fig. 8.5, we adopt the fixed-point algorithm presented in
Sec. 8.1.3. In Test Case 2, we assume that the computational domain of Fig. 8.5a is
associated to the end dyastolic phase. Therefore, we recover the natural configuration
by setting p = pED. On the other hand, as the computational domain of Test Case 3
is associated to a phase of the heart cycle such that the diastolic filling is not fully
completed (more precisely, the beginning of the atrial kick), we recover the natural
configuration by assuming that the computational domain is at equilibrium with an
intermediate pressure between pED and pMVO (specifically we take p = 5.6 mmHg).

In Figs. 8.7 and 8.8 we show the propagation of the v and the [Ca2+]i fields,
respectively, for Test Case 3. The active tension field Ta is visualized, at different
time steps, in Fig. 8.10, where three sections at different quotes along the apex-base
coordinate allow to appreciate the distribution of active stress across the transmural
coordinate. Finally, in Fig. 8.9 (Test Case 2) and in Fig. 8.11 (Test Case 3), we show
the displacement field and the contraction of the LV. The top and frontal sections
highlight the torsion that the LV undergoes during the heartbeat and the consequent
wall thickening.

Then, in Fig. 8.12 (Test Case 2) and Fig. 8.13 (Test Case 3), we compare the
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8.3. Numerical results: the activation-MH model

t = 5 ms t = 10 ms t = 15 ms t = 20 ms

t = 25 ms t = 30 ms t = 40 ms t = 50 ms

Figure 8.8: Test Case 3 (activation-MH model): intracellular calcium concentration
at different times.

results obtained within the HF-EM and the ANN-EM frameworks. In the top row,
we show the time evolution, of the average, minimum and maximum value over the
domain of [Ca2+]i, SL and Ta. In the bottom row we show the time evolution of
the macroscopic quantities p and V and the LV pressure-volume loop. All the curves
show a good match between the results obtained in the HF-EM and the ANN-EM
frameworks.

The main cardiac indicators, some of them clinically meaningful, computed in the
HF-EM and ANN-EM frameworks, are reported in Tab. 8.2. For all the indicators,
the error between HF-EM and ANN-EM is even smaller than the train and of the test
error associated with the ANN model. This is a consequence of the feedback of active
force on SL (see Sec. 8.2.5).

Finally, in Tab. 8.3, we report the computational times associated with the numeri-
cal approximation of the EM problem in the HF-EM and in the ANN-EM frameworks.
For Test Case 2, a single core was employed, whereas for Test Case 3 simulations were
run in parallel on 20 cores.

8.3.3 Reduction of computational cost

The ANN-EM framework accomplishes a significant reduction of computational cost
compared to the HF-EM framework. The solution of the activation models, which
accounts for most of the computational time of the whole simulation, highlights a gain
nearly of a factor 300 in all test cases, reducing the overall computational times by one
order of magnitude. The computational speedup is slightly smaller for finer grids, for
which the relative weight of the mechanical subproblem is more pronounced. However,
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t = 0.10 s t = 0.20 s t = 0.40 s t = 0.60 s

Figure 8.9: Test Case 2 (activation-MH model): deformed geometry and magnitude
of displacement at different times. Top row: full geometry. Middle row: half domain
(top view). Bottom row: half domain (frontal view).

Indicator HF-EM ANN-EM Relative error

Test Case 2 (idealized LV, 1827 dof)
Stroke volume (mL) 63.33 63.57 3.71 · 10−3

Ejection fraction (%) 46.63 46.80 3.71 · 10−3

Systolic pressure (mmHg) 112.96 113.91 8.38 · 10−3

Work (mJ) 766 773 9.08 · 10−3

Test Case 3 (patient-specific LV, 65476 dof)
Stroke volume (mL) 56.64 56.39 4.33 · 10−3

Ejection fraction (%) 44.48 44.29 4.33 · 10−3

Systolic pressure (mmHg) 108.94 109.10 1.51 · 10−3

Work (mJ) 662 659 4.85 · 10−3

Table 8.2: Test Cases 2 and 3 (activation-MH model): main cardiac indicators. Com-
parison between the HF-EM and the ANN-EM frameworks and corresponding relative
errors.

250



8.3. Numerical results: the activation-MH model

t = 0 s t = 0.05 s t = 0.10 s t = 0.15 s

t = 0.20 s t = 0.30 s t = 0.40 s t = 0.50 s

Figure 8.10: Test Case 3 (activation-MH model): active tension at different times.

Simulation type Ionic Potential Activation Mechanics Wall time

Test Case 1 (cardiac slab, 612 dof, 1 core)
HF-EM 6.3% 0.3% 89.0% 4.5% 3h 16’
ANN-EM 53.0% 2.7% 3.3% 41.1% 22’
Test Case 2 (idealized LV, 1827 dof, 1 core)
HF-EM 4.27% 0.29% 91.94% 3.40 % 9h 31’
ANN-EM 53.38% 3.31% 3.74% 39.57% 46’
Test Case 3 (patient-specific LV, 65476 dof, 20 cores)
HF-EM 3.14% 0.47 % 83.07% 13.33% 20h 18’
ANN-EM 41.21% 4.80% 2.54% 51.46% 2h 04’

Table 8.3: Comparison of the computational times associated to the four physics and
the total wall time between HF-EM and ANN-EM, for both Test Cases.
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t = 0.10 s t = 0.15 s t = 0.40 s t = 0.60 s

Figure 8.11: Test Case 3 (activation-MH model): deformed geometry and magnitude
of displacement at different times. Top row: full geometry. Middle row: half domain
(top view). Bottom row: half domain (frontal view).
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Figure 8.12: Test Case 2 (activation-MH model): comparison of the time evolution of
quantities of interest and of the pressure-volume loop obtained with the simulations
performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).
In (a)-(b)-(c) the three lines refer to the minimum, maximum and mean value over
the computational domain.
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Figure 8.13: Test Case 3 (activation-MH model): comparison of the time evolution of
quantities of interest and of the pressure-volume loop obtained with the simulations
performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).
In (a)-(b)-(c) the three lines refer to the minimum, maximum and mean value over
the computational domain.
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whereas the approximation of the electrophysiology subproblem (8.2) requires a finer
grid for the convergence of the solution [Qua+19], the computational mesh used in
Test Case 3 features a large enough number of elements to get accurate results for
the mechanics subproblem (8.16) and to capture the complexity of patient-specific
domains [Qua+19; LN15]. Therefore, since when different meshes are employed for
the different physics the activation subproblem (8.4) is typically solved on the mesh
used for the mechanics [Qua+19], we expect that the speedup obtained in Test Case 3
is representative for the computational gain one can obtain for HF simulations of
patient-specific EM.

With the ANN-EM approach, the number of variables for each degree of freedom
of the domain is 24 (18 ionic variables, the transmembrane potential, 2 activation
variables, 3 components of the displacement), significantly lower than the number of
variables with the HF-EM approach (18+1+2176+3 = 2198).

8.4 Numerical results: the SE-ODE and MF-ODE
models

In this section we consider the cardiac EM problem of Eq. (8.19), with the mechanical
activation subproblem modeled by means of the full-sarcomere models MF-ODE and
SE-ODE. First, in Sec. 8.4.1, we deal with numerical instabilities arising from the
feedback of the generated force on the shortening velocity of the tissue. Then, in
Sec. 8.4.2 we present the results obtained for idealized and realistic LV test cases.

8.4.1 Avoiding velocity-related instabilities

When the SE-ODE or the MF-ODE model are employed, numerical simulations of
cardiac EM obtained with the numerical scheme presented in Sec. 8.2 may feature
spurious oscillations, even for time step sizes for which the simulations obtained with
the activation-MH model are not characterized by oscillations. For instance, by adopt-
ing a time step of ∆t = 4 · 10−4 s for the mechanical subproblem and of ∆t = 2 · 10−4 s
for the remaining physics, we obtain the results shown by the red lines of Fig. 8.14.
Moreover, for slightly larger time steps, the oscillations lead to the divergence of the
solution.

The observed oscillations are the effect of numerical instabilities linked to the
feedback of the generated force on the tissue shortening velocity (indeed, they are not
exhibited by the activation-MH model, that neglects the dependence of velocity on
force). The mechanisms underlying the velocity-related instabilities is rooted in the
following feedback loop: during the ejection phase, when the active tension rapidly
increases, the tissue undergoes a quick shortening; hence, in the next time step, the
increase of velocity causes a drop of active force and, consequently, of shortening
velocity; in the following time step the active force raises again thanks to the reduced
velocity and the cycle is repeated. If the time step ∆t is not sufficiently small in relation
to the shortening velocity, such loop leads to spurious oscillations in the active force
and in the tissue displacement.

Similar numerical instabilities related to the feedback of mechanics of the force
generation apparatus have been considered in [NS08], where they are addressed by
updating the active force at each Newton iteration of the mechanics problem, thus
resulting in a strong coupling between the mechanics and the force generation core
models. Conversely, in this section, we propose to introduce a stabilization term
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in the variational problem of Eq. (8.21), that allows to tackle such velocity-related
instabilities while preserving the fully staggered structure of the scheme presented in
Sec. 8.2.

With the aim of deriving a stable discretization scheme for the mechanical sub-
problem, we take inspiration from the microscale energetic considerations of Sec. 7.2.2
(that lead to the derivation of the active stress tensor Pact, responsible for the ob-
served instabilities). We recall that the active part of the Piola stress tensor can be
written in the following alternative forms:

(F1) Pact = aXB µ
1 Ff0⊗f0
|Ff0| ;

(F2) Pact = aXB

(
µ̂0λ+ µ̂1

)
Ff0⊗f0
|Ff0| .

The two formulations are clearly equivalent, as we have µ1 = µ̂0λ+µ̂1 (see Eq. (7.18)).
The difference lays in the coordinate system (Lagrangian or Eulerian, see e.g. [Ant95]),
used to describe the microscopic elongation of the myosin arms. Indeed, the for-
mulation (F1) is written with a hybrid Lagrangian-Eulerian formalism: while the
macroscale strain F is written in Lagrangian coordinates, the variable µ1 is defined as
the first-order distribution-moment of the microscopic Eulerian coordinate x. On the
other hand, the formulation (F2) is fully Lagrangian.

Hence, even if the variational formulation of Eq. (8.21) (based on the hybrid
Eulerian-Lagrangian formulation (F1)) is formally derived as a fully implicit scheme
(that is known to be unconditionally stable for the momentum balance equation, if the
elastic energy is convex [QV08]), if rewritten in the more coherent fully Lagrangian
formalism of (F2), it appears rather as an implicit-explicit scheme. Indeed, the value
of λ = |Ff0| − 1 (that depends on the displacement d) is referred to the previous
time step, because of the time splitting scheme of Sec. 8.2. Therefore, to derive a
fully-implicit numerical scheme in a fully Lagrangian coordinates system, we employ
the formulation (F2) as starting point.

As the activation models proposed in Chap. 4 are written with respect to the
Eulerian coordinates, we need to relate the Lagrangian quantities (µ̂0 and µ̂1) with
the Eulerian ones (Ta = aXBµ

1 and Ka = aXBµ
0). From Eq. (7.18), it follows that:

aXBµ̂
0 = Ka,

aXBµ̂
1 = Ta − λKa.

At the discrete-in-time level, the values of T
(k)
a ' Ta(tk) and K

(k)
a ' Ka(tk) are

obtained at Step III for λ(tk) '
√
I∗4,f − 1, where I∗4,f denotes the extrapolation of

I4,f from the previous time steps. Hence, we have:

aXB

(
µ̂0
)(k)

= K(k)
a ,

aXB

(
µ̂1
)(k)

= T (k)
a −

(√
I∗4,f − 1

)
K(k)

a .

Therefore, the fully Lagrangian formulation (F2) at the discrete-in-time level reads:(
Pact

)(k)
= aXB

[(
µ̂1
)(k)

+ λ(k)
(
µ̂0
)(k)
] F(k)f0 ⊗ f0
|F(k)f0|

=

[
aXB

(
µ̂1
)(k)

+ aXB

(
µ̂0
)(k)

(√
I(k)

4,f − 1

)]
F(k)f0 ⊗ f0
|F(k)f0|

=

[
T (k)

a +K(k)
a

(√
I(k)

4,f −
√
I(∗)

4,f

)]
F(k)f0 ⊗ f0
|F(k)f0|

,
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Figure 8.14: Results of numerical simulations of Test Case 2 with the MF-ODE model,
obtained with the numerical scheme of Eq. (8.23) (red lines) and of Eq. (8.24) (blue
lines). In (a)-(b)-(c) the three lines refer to the minimum, average and maximum
value over the computational domain.

where, since we consider in this thesis a first-order time discretization, we have I(∗)
4,f =

I(k−1)
4,f . In conclusion we replace, in the variational formulation (8.21), the term:∫

Ωh0

T (k)
a

F(k)f0 ⊗ f0
|F(k)f0|

: ∇0ξh dV0, (8.23)

by the term:∫
Ωh0

[
T (k)

a +K(k)
a

(√
I(k)

4,f −
√
I(k−1)

4,f

)]
F(k)f0 ⊗ f0
|F(k)f0|

: ∇0ξh dV0. (8.24)

We notice that the proposed numerical scheme is consistent (in the sense of [QSS10]).

Indeed, by setting the discretized variables equal to the exact solution (i.e. d
(k)
h =

d(tk), T
(k)
a = Ta(tk) and K

(k)
a = Ka(tk)) and by letting ∆t→ 0, we get:[

T (k)
a +K(k)

a

(√
I(k)

4,f −
√
I(k−1)

4,f

)]
F(k)f0 ⊗ f0
|F(k)f0|

∆t→0−−−−→ Ta(tk)
F(tk)f0 ⊗ f0
|F(tk)f0|

.

The newly introduced term can thus be interpreted as a consistent stabilization term.
In Fig. 8.14 (blue lines), we show the solution obtained by applying the scheme

of Eq. (8.24) to the same test case considered with the scheme of Eq. (8.23). The

256



8.4. Numerical results: the SE-ODE and MF-ODE models

t = 0 s t = 0.05 s t = 0.10 s t = 0.15 s

t = 0.20 s t = 0.30 s t = 0.40 s t = 0.50 s

Figure 8.15: Test Case 2 (MF-ODE model): active tension at different times.

results show that the proposed method successfully accomplishes a stabilization of the
observed spurious oscillations.

8.4.2 Test Cases 2 and 3: idealized and realistic left ventricle

In this section we show the results obtained by applying the stabilized scheme of
Eq. (8.24) to the cardiac EM problem where the mechanical activation is described
by means of the SE-ODE or the MF-ODE model. For the latter model, we show
the results obtained in Test Cases 2 and 3, while for the former, due to its higher
computational cost, we only consider Test Case 2.

In Figs. 8.15, 8.17 and 8.19 we show the active tension obtained with the MF-ODE
model in Test Cases 2 and 3, and for the SE-ODE model, in Test Case 2, respectively.
In Figs. 8.16, 8.18 and 8.20, we show the displacement field obtained in the same cases
listed above.

Then, in Figs. 8.21 and 8.23 (MF-ODE model, Test Cases 2 and 3) and Fig. 8.22
(SE-ODE model, Test Case 2), we show a comparison of the results obtained in the
HF-EM and ANN-EM settings, by considering the time evolution of [Ca2+]i, SL, Ta,
p and V .

Finally, in Tabs. 8.4 and 8.5 we compare the main cardiac indicators obtained
with the MF-ODE and SE-ODE models and we report the errors that we obtain with
the ANN-EM framework, with respect to the reference values obtained in the HF-
EM framework. Similarly to the activation-MH model, thanks to the effect of active
force on SL (see Sec. 8.2.5), the error between HF-EM and ANN-EM is smaller than
the error between the ANN-based models and the corresponding HF models obtained
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t = 0.10 s t = 0.20 s t = 0.40 s t = 0.60 s

Figure 8.16: Test Case 2 (MF-ODE model): deformed geometry and magnitude of
displacement at different times. Top row: full geometry. Middle row: half domain
(top view). Bottom row: half domain (frontal view).
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t = 0 s t = 0.05 s t = 0.10 s t = 0.15 s

t = 0.20 s t = 0.30 s t = 0.40 s t = 0.50 s

Figure 8.17: Test Case 3 (MF-ODE model): active tension at different times.

when such models are considered alone.

8.5 Final remarks

In this chapter we have presented the EM problem and its numerical approximation
by means of FEM discretization in space and a finite difference discretization in time.
To couple the different building blocks of the EM system we have considered a first
order time splitting scheme, similar to that proposed in [GDQ18b].

We have proposed a novel BC formulation for the boundary Γbase
0 , in order to

account for the effect of the part of the domain that is not explicitly included into the
computational model.

We have then proposed the introduction of a stabilization term, aimed at avoid-
ing velocity-related numerical instabilities, whose effectiveness has been numerically
assessed.

Finally, we have shown the results of numerical simulation of EM in a LV, both
for idealized and realistic geometries. We have shown that our proposed ANN-based
framework for cardiac EM, wherein the computationally expensive HF models of force
generation are replaced by the ANN-based ROMs derived in part II, accomplishes a
very good balance between accuracy (the main cardiac indicators are computed with
an approximation of the order of nearly 10−3) and computational cost. Indeed, the
computational time associated with the numerical approximation of the mechanical
activation models is reduced by more that 2 orders of magnitude, with an overall
speedup of nearly one order of magnitude.
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t = 0.10 s t = 0.15 s t = 0.40 s t = 0.60 s

Figure 8.18: Test Case 3 (MF-ODE model): deformed geometry and magnitude of
displacement at different times. Top row: full geometry. Middle row: half domain
(top view). Bottom row: half domain (frontal view).

Indicator HF-EM ANN-EM Relative error

Test Case 2 (idealized LV, 1827 dof)
Stroke volume (mL) 76.24 75.56 8.93 · 10−3

Ejection fraction (%) 56.13 55.63 8.93 · 10−3

Systolic pressure (mmHg) 104.19 103.38 7.81 · 10−3

Work (mJ) 882 869 1.49 · 10−2

Test Case 3 (patient-specific LV, 65476 dof)
Stroke volume (mL) 58.53 58.13 6.92 · 10−3

Ejection fraction (%) 47.00 46.68 6.92 · 10−3

Systolic pressure (mmHg) 87.18 85.93 1.44 · 10−2

Work (mJ) 582 568 2.31 · 10−2

Table 8.4: Test Cases 2 and 3 (MF-ODE model): main cardiac indicators. Comparison
between the HF-EM and the ANN-EM frameworks and corresponding relative errors.
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t = 0 s t = 0.05 s t = 0.10 s t = 0.15 s

t = 0.20 s t = 0.30 s t = 0.40 s t = 0.50 s

Figure 8.19: Test Case 2 (SE-ODE model): active tension at different times.

Indicator HF-EM ANN-EM Relative error

Test Case 2 (idealized LV, 1827 dof)
Stroke volume (mL) 73.89 73.79 1.38 · 10−3

Ejection fraction (%) 54.40 54.32 1.38 · 10−3

Systolic pressure (mmHg) 105.32 105.65 3.07 · 10−3

Work (mJ) 857 855 2.46 · 10−3

Table 8.5: Test Case 2 (SE-ODE model): main cardiac indicators. Comparison be-
tween the HF-EM and the ANN-EM frameworks and corresponding relative errors.
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t = 0.10 s t = 0.20 s t = 0.40 s t = 0.60 s

Figure 8.20: Test Case 2 (SE-ODE model): deformed geometry and magnitude of
displacement at different times. Top row: full geometry. Middle row: half domain
(top view). Bottom row: half domain (frontal view).
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Figure 8.21: Test Case 2 (MF-ODE model): comparison of the time evolution of
quantities of interest and of the pressure-volume loop obtained with the simulations
performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).
In (a)-(b)-(c) the three lines refer to the minimum, maximum and mean value over
the computational domain.
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Figure 8.22: Test Case 2 (SE-ODE model): comparison of the time evolution of
quantities of interest and of the pressure-volume loop obtained with the simulations
performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).
In (a)-(b)-(c) the three lines refer to the minimum, maximum and mean value over
the computational domain.
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Figure 8.23: Test Case 3 (MF-ODE model): comparison of the time evolution of
quantities of interest and of the pressure-volume loop obtained with the simulations
performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).
In (a)-(b)-(c) the three lines refer to the minimum, maximum and mean value over
the computational domain.
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Conclusions

In this thesis, we developed a multiscale mathematical and numerical model for car-
diac EM, wherein the microscale phenomenon of active force generation is described by
newly developed subcellular models. These latter models are based on a biophysically
detailed description of the regulatory and contractile proteins composing the sarcom-
eres and of their interactions. Thanks to the introduction of physically motivated
assumptions on the joint probability distribution of the stochastic variables describing
the states of the different proteins, we derived some models describing the complex
interactions among the above mentioned proteins with a drastically reduced number of
equations, if compared to the full-order FKE (forward Kolmogorov equation). In this
manner, the phenomenon of force generation can be simulated by means of systems of
ODEs, thus overcoming the computational inefficiency of the MC method, typically
employed to approximate the solution of the biophysically detailed force generation
models available in literature [Was+13; Was+15; HTR06].

Moreover, we have reduced the computational cost associated with the numerical
approximation of the solution of the biophysically detailed force generation models by
means of a newly developed MOR technique based on Machine Learning. Within a
gray-box (or semi-physical) approach, an ANN learns the dynamics of the HF model
from a collection of input-output pairs, generated by the HF model itself, combined
with some a priori knowledge, enforced during the learning process. In such a way
we derived ROMs with just two or three state variables, capable of reproducing the
results of the our proposed HF models of force generation with a relative error of
about 10−2.

We thus proposed a novel strategy to reduce the computational burden of cardiac
multiscale EM simulations, wherein the intrinsically complex subcellular mechanisms
leading to the activation of the muscular tissue make it difficult to trade off the de-
tail of description of activation models (and thus their reliability) with computational
efficiency. Specifically, we replace the biophysically detailed HF models of force gener-
ation with ANN-based ROMs derived by means of our proposed MOR technique. This
operation, because of the scale separation between the organ and the myofilaments,
can be performed offline, without any dependence on the three-dimensional setting
where we later embed the ROM. Remarkably, thanks to the stabilizing effect of the
SL feedback on the activation dynamics, the relative error introduced by employing
the ANN-based ROMs in the context of EM is just of about 10−3. We conclude that,
in virtue of the offline ANN learning of the complex force generation models, a very fa-
vorable balance between modeling accuracy and computational efficiency is achieved,
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without any compromise with the detail of description of the microscopic phenomena
pertaining the generation of force.

Besides the above mentioned achievements, in this thesis we obtained the follow-
ing results. In Chap. 2 we proposed a general strategy to describe the dynamics of
spatially-explicit mathematical models for the calcium-driven activation of the thin
filament with a reduced number of equations. This strategy, based on a conditionally
independence assumption that allows to neglect second-order interaction among the
proteins, allows to derive equations with a number of variables that is linear in the
number of RUs, instead of exponential, as in the FKE.

In Chap. 4 we showed that also a CTMC (continuous-time Markov Chain) model
for the full-sarcomere dynamics can be described with a reduced number of equations,
if compared to the associated FKE. Such achievement is obtained by undertaking
assumptions of conditional independence (similar to the one mentioned above) and
by switching from the traditional MF-centered description of XBs [Hux57a; HS71;
Smi+08; CMC19] to an AF-centered one. The latter choice allows to decouple the
description of the two filaments, without the introduction of new approximations. We
then proposed a pipeline to calibrate our SE-ODE and MF-ODE models starting from
values coming from experimental measurements available in literature, based on the
partial decoupling among the model parameters involved by the different experimental
settings. In this manner, we calibrated the two above mentioned models for room-
temperature rat and body-temperature human intact cardiomyocytes.

By analyzing the results and the properties of the SE-ODE model, we proposed
a possible explanation for the LDA phenomenon, by which a decrease of SL induces
a decrease in the apparent calcium sensitivity. Such phenomenon, for which a com-
monly agreed explanation is still missing [TK16; AM+16; NCC19], is indeed correctly
reproduced by our SE-ODE model, without the need of phenomenologically tune the
calcium sensitivity as a function of SL, as in most of the existing models [NHS06;
Was+12; Was+13; Was+15]. Our proposed microscopic basis for LDA is linked to
the low probability of being in the P state of the RUs located at the end-points of
the single-overlap zone. Such bias towards the N state is propagated towards the
center of the AF by the cooperative nearest-neighbor interactions so that, when the
muscle shortens, it is enhanced by the reduced extension of the single-overlap zone,
thus reducing the apparent sensitivity to calcium.

In Chaps. 7 and 8 we proposed a multiscale EM formulation, by linking in a theo-
retically sound manner the microscopic scale, where the force generation phenomenon
takes place, with the macroscopic scale, associated to the organ deformation. In this
regard, we analyzed the effect of the stochastic fluctuations characterizing the dynam-
ics of the proteins involved in the force generation machinery. We justified, through
the construction of a mesoscale model, the fact that, when the stochastic microscopic
models of force generation are coupled with macroscopic models of tissue mechanics,
the random variables associated with the former class of models can be identified with
their expected value. This is related to the fact that, thanks to the parallel-series ar-
rangement of myofilaments inside sarcomeres, all the filaments belonging to the same
region of space feature homogeneous elongations. Indeed, despite nonhomogeneous de-
formations are possible when the sarcomeres are over-elongated (so that their length
belongs to the descending limb of the force-length relationship), thanks to the presence
of stiff parallel elastic components this situation cannot occur when sarcomeres are
embedded in the cardiac tissue. Then, we showed that the active Piola stress tensor
is compliant with the basic theoretical requirements for its physical meaningfulness,
including the frame-indifference principle and the order-preserving property between
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strain and stress [Ant95; Ogd97].
Finally, we proposed, in Chap. 8, a stabilized numerical scheme aimed at avoiding

spurious oscillations related to the feedback of the tissue shortening velocity on the
force generation model in cardiac EM.

Future developments

Several perspectives arise from the work carried out in this thesis.

• The models proposed in this thesis are developed under the hypothesis that
ATP is always available when needed by the myosin motors. Despite under
physiological conditions such hypothesis is legitimate [TD08], this is not the
case when pathological events such as ischemia occur. Hence, the sarcomere
models proposed in this thesis can be extended with the inclusion of the role of
metabolite concentrations and of their consumption rates (see e.g. [Was+15])
and successively coupled with models of cardiac perfusion [Cha+10; DG+19]
and metabolism [MD17].

• The applicability of the black-box MOR strategy proposed in Chap. 5 and its
gray-box extension proposed in Chap. 6 overlooks the specific application to
cardiac force generation models. Indeed, they can be generally applied to HF
models written as ODE or PDE systems (we showed some examples in Chap. 5).
Hence, we plan to further develop the proposed MOR strategies, in particular by
investigating other manners (besides the two considered in Chap. 6) of informing
the learning machine about a priori knowledge from the HF model.

• In each of the test cases for which we applied the proposed MOR technique (such
as the ones shown in Chap. 5), we numerically observed a very fast convergence
(specifically, exponential convergence) of the approximation error with respect to
the number of reduced states. Noticeably, the type of convergence is also shown
in the case of hyperbolic PDEs (see Sec. 5.4.4), one of the most complicated
class of problems to be reduced by means of the traditional projection-based
methods [QMN15]. The development of a theoretical framework in which to
derive estimates for the approximation error of the proposed MOR techniques
would provide a fruitful insight into the functioning of the method itself, perhaps
helping to better its performances.

• Due to its non-intrusive nature, the black-box MOR method of Chap. 5 only
needs a collection of input-output pairs, from which it infers a mathematical
model written as an ODE system. Therefore, besides for model reduction pur-
poses, it can be employed for model learning purposes. Indeed, the always
increasing availability of data and computational resources could bring to a
paradigm shift in the Big Data era by which mathematical models are auto-
matically learned from experimental measurements of the phenomenon to be
modeled [BL07; SL09; Sch+11].

• We envision a possible application of the proposed framework (applied in this
thesis to reduce the computational burden associated to the usage of biophysi-
cally detailed force generation models in EM simulations) to ionic models, whose
intrinsic complexity leaves room for offline MOR.
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Appendix A
Conservation of probability and
self-consistency in RU models

In this appendix we report the proof of Prop. 2.4 and of some preliminary results
instrumental for its derivation, including Props. 2.1, 2.2 and 2.3. First, we provide
the proofs of Props. 2.1 and 2.2.

Proof of Prop. 2.1. We have:∑
α∈S

∑
η∈S\{α}

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
= 0,

∑
β∈S

∑
η∈S\{β}

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
= 0,

∑
δ∈S

∑
η∈S\{δ}

[
ΦiR(α, β, η; δ; t)− ΦiR(α, β, δ; η; t)

]
= 0.

(A.1)

Therefore, for any z ∈ RN , UΦ(z, t) = 0.

Moreover, whenever the state z(t) satisfies condition (c), we have, for α, β ∈ S and
for i = 3, . . . , NM − 1:∑
δ∈S

∑
η∈S\{α}

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]

=
∑
δ∈S

∑
η∈S\{α}

∑ξ∈S k
ηα|ξβ
i−1 P((ξ,

i−1
η , β)t)P((η,

i
β, δ)t)∑

ξ∈S P((ξ,
i−1
η , β)t)

−
∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i
β, δ)t)∑

ξ∈S P((ξ,
i−1
α , β)t)



=
∑

η∈S\{α}


∑
ξ∈S

Φi−1
C (ξ, η, β;α; t)

∑
δ∈S P((η,

i
β, δ)t)∑

ξ∈S P((ξ,
i−1
η , β)t)︸ ︷︷ ︸

=1

−
∑
ξ∈S

Φi−1
C (ξ, α, β; η; t)

∑
δ∈S P((α,

i
β, δ)t)∑

ξ∈S P((ξ,
i−1
α , β)t)︸ ︷︷ ︸

=1


=

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
.

(A.2)
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Similarly, we have for i = 2, . . . , NM − 2:∑
α∈S

∑
η∈S\{δ}

[
ΦiR(α, β, η; δ; t)− ΦiR(α, β, δ; η; t)

]
=

∑
η∈S\{δ}

∑
ξ∈S

[
Φi+1
C (β, η, ξ; δ; t)− Φi+1

C (β, δ, ξ; η; t)
]
.

(A.3)

Thus, under the hypothesis that the state z(t) satisfies condition (c), the computation
of the time derivative of both sides of (a) leads to the same result, i.e.:

d

dt

∑
ξ,β∈S

P((ξ,
i−1
α , β)t) =

∑
η∈S\{α}

∑
ξ,β∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
,

d

dt

∑
β,δ∈S

P((α,
i

β, δ)t) =
∑

η∈S\{α}

∑
β,δ∈S

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
=

∑
η∈S\{α}

∑
ξ,β∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
.

By using the same argument, a similar result can be shown for (b). Finally, if condi-
tion (c) hold for z(t), the time derivatives of both sides of (c) coincide. Indeed,

d

dt

∑
δ∈S

P((α,
i

β, δ)t) =
∑

η∈S\{α}

∑
δ∈S

[
ΦiL(η, β, δ;α; t)− ΦiL(α, β, δ; η; t)

]
+

∑
η∈S\{β}

∑
δ∈S

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
=

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]

+
∑

η∈S\{β}

∑
δ∈S

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
,

d

dt

∑
ξ∈S

P((ξ,
i−1
α , β)t) =

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]

+
∑

η∈S\{β}

∑
ξ∈S

[
Φi−1
R (ξ, η, α;β; t)− Φi−1

R (ξ, α, β; η; t)
]

=
∑

η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]

+
∑

η∈S\{β}

∑
δ∈S

[
ΦiC(α, η, δ;β; t)− ΦiC(α, β, δ; η; t)

]
.

Thus, we conclude that Φ(z, t) ∈ Ker(W).
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Proof of Prop. 2.2. We notice that Eq. (A.1) holds also for Φ̃L and Φ̃R. Hence, we
have UΦ(z, t) = 0 for any z ∈ RN .

Moreover, when the right-hand side defined in Eq. (2.10) is considered, properties
equivalent to Eqs. (A.3) and (A.2) holds true even without the assumptions that
the state z(t) satisfies condition (c). Indeed, we have, for α, β ∈ S and for i =
3, . . . , NM − 1:∑
δ∈S

∑
η∈S\{α}

[
Φ̃iL(η, β, δ;α; t)− Φ̃iL(α, β, δ; η; t)

]

=
∑
δ∈S

∑
η∈S\{α}

∑ξ∈S k
ηα|ξβ
i−1 P((ξ,

i−1
η , β)t)P((η,

i
β, δ)t)∑

ξ∈S P((η,
i
β, ξ)t)

−
∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i
β, δ)t)∑

ξ∈S P((α,
i
β, ξ)t)



=
∑

η∈S\{α}


∑
ξ∈S

Φi−1
C (ξ, η, β;α; t)

∑
δ∈S P((η,

i
β, δ)t)∑

ξ∈S P((η,
i
β, ξ)t)︸ ︷︷ ︸

=1

−
∑
ξ∈S

Φi−1
C (ξ, α, β; η; t)

∑
δ∈S P((α,

i
β, δ)t)∑

ξ∈S P((α,
i
β, ξ)t)︸ ︷︷ ︸

=1


=

∑
η∈S\{α}

∑
ξ∈S

[
Φi−1
C (ξ, η, β;α; t)− Φi−1

C (ξ, α, β; η; t)
]
.

(A.4)

Similarly, we have for i = 2, . . . , NM − 2:∑
α∈S

∑
η∈S\{δ}

[
Φ̃iR(α, β, η; δ; t)− Φ̃iR(α, β, δ; η; t)

]
=

∑
η∈S\{δ}

∑
ξ∈S

[
Φi+1
C (β, η, ξ; δ; t)− Φi+1

C (β, δ, ξ; η; t)
]
.

Hence, by proceeding as in the proof of Prop. 2.1, we get the thesis.

In the following we report the proof of Prop. 2.3.

Proof of Prop. 2.3. First, we notice that the transition rates are bounded in [0, T ],
being continuous functions of the bounded variables [Ca2+]i(t) and SL(t). That is,
there exists some constant K > 0 such that we have:

k
βη|αδ
i ≤ K ∀α, β, δ, η ∈ S, ∀ i = 1, . . . , NM . (A.5)

Since the functions Φ are differentiable with respect to their arguments, to prove
that they are Lipschitz continuous it is enough to show that their first partial deriva-
tives with respect to each of their arguments are bounded. Moreover, as Eqs. (2.10)
and (2.13) are written as the sum of many terms, we just need to consider the non-
linear ones (the coefficients multiplying the linear terms are indeed bounded, thanks
to Eq. (A.5)).

In the following, we consider the terms ΦiL(α, β, δ; η; t) and Φ̃iL(α, β, δ; η; t) for
i = 3, . . . , NM −1, since the other nonlinear terms can be treated in a similar manner.
Concerning the term ΦL, whose definition we recall here for the reader’s convenience:

ΦiL(α, β, δ; η; t) =

∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i

β, δ)t)∑
ξ∈S P((ξ,

i−1
α , β)t)

,
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we have, thanks to the fact that the terms P((ξ,
i−1
α , β)t) are nonnegative:∣∣∣∣∣∣∂ ΦiL(α, β, δ; η; t)

∂ P((α,
i

β, δ)t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)∑

ξ∈S P((ξ,
i−1
α , β)t)

∣∣∣∣∣∣ ≤ max
ψ∈S

k
αη|ψβ
i−1 ≤ K.

Moreover, we have, for ϕ ∈ S:

∂ ΦiL(α, β, δ; η; t)

∂ P((ϕ,
i−1
α , β)t)

=

∑
ξ∈S

[
k
αη|ϕβ
i−1 − kαη|ξβi−1

]
P((ξ,

i−1
α , β)t)[∑

ξ∈S P((ξ,
i−1
α , β)t)

]2 P((α,
i

β, δ)t).

Since z ∈ Ker(W), by condition (c) we have:

P((α,
i

β, δ)t) ≤
∑
ξ∈S

P((α,
i

β, ξ)t) =
∑
ξ∈S

P((ξ,
i−1
α , β)t).

Hence:

∣∣∣∣∣∂ ΦiL(α, β, δ; η; t)

∂ P((ϕ,
i−1
α , β)t)

∣∣∣∣∣ ≤
∑
ξ∈S

∣∣∣kαη|ϕβi−1 − kαη|ξβi−1

∣∣∣P((ξ,
i−1
α , β)t)∑

ξ∈S P((ξ,
i−1
α , β)t)

≤ max
ψ∈S

∣∣∣kαη|ϕβi−1 − kαη|ξβi−1

∣∣∣ ≤ 2K.

Therefore, on the set z ∈ Ker(W), the right-hand side defined in Eqs. (2.10) has
bounded first partial derivative with respect to all of its arguments and thus it is
Lipschitz continuous z, uniformly in t.

Concerning the right-hand side of Eqs. (2.13), defined as:

Φ̃iL(α, β, δ; η; t) =

∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i

β, δ)t)∑
ξ∈S P((α,

i

β, ξ)t)

,

we have, for any ϕ ∈ S:

∣∣∣∣∣∂ Φ̃iL(α, β, δ; η; t)

∂ P((ϕ,
i−1
α , β)t)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
k
αη|ϕβ
i−1 P((α,

i

β, δ)t)∑
ξ∈S P((α,

i

β, ξ)t)

∣∣∣∣∣∣∣ ≤ K.
Moreover, for ϕ ∈ S \ {δ}, we have:

∂ Φ̃iL(α, β, δ; η; t)

∂ P((α,
i

β, ϕ)t)

= −
∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)P((α,

i

β, δ)t)[∑
ξ∈S P((α,

i

β, ξ)t)

]2 .
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Hence, since P((α,
i

β, δ)t) ≤
∑
ξ∈S P((α,

i

β, ξ)t), we have:∣∣∣∣∣∣∂ Φ̃iL(α, β, δ; η; t)

∂ P((α,
i

β, ϕ)t)

∣∣∣∣∣∣ ≤
∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)∑

ξ∈S P((α,
i

β, ξ)t)

≤ max
ψ∈S

k
αη|ψβ
i−1

∑
ξ∈S P((ξ,

i−1
α , β)t)∑

ξ∈S P((α,
i

β, ξ)t)

= max
ψ∈S

k
αη|ψβ
i−1 ≤ K,

where we have used by condition (c), since z ∈ Ker(W). Finally, we have:

∂ Φ̃iL(α, β, δ; η; t)

∂ P((α,
i

β, δ)t
=

∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)

∑
ξ∈S\{δ} P((α,

i

β, ξ)t)[∑
ξ∈S P((α,

i

β, ξ)t)

]2

≤
∑
ξ∈S k

αη|ξβ
i−1 P((ξ,

i−1
α , β)t)∑

ξ∈S P((α,
i

β, ξ)t)

≤ max
ψ∈S

k
αη|ψβ
i−1

∑
ξ∈S P((ξ,

i−1
α , β)t)∑

ξ∈S P((α,
i

β, ξ)t)

= max
ψ∈S

k
αη|ψβ
i−1 ≤ K,

where we have used again condition (c).

In order to prove Prop. 2.4, we show the following lemma.

Lemma A.1. Let us consider the closed convex set Σ ⊂ RN , defined as:

Σ :=
{
x ∈ RN : aj · x ≤ bj , for j = 1, . . . , q

}
(A.6)

where aj ∈ RN and bj ∈ R for j = 1, . . . , q. Let us then consider a function Φ : RN ×
[0, T ]→ RN , satisfying, for some constant L > 0:

|Φ(x1, t)−Φ(x2, t)| ≤ L |x1 − x2| ∀x1,x2 ∈ Σ, t ∈ [0, T ]. (A.7)

Let us the suppose that, for j = 1, . . . , q and for any x ∈ Σ and t ∈ [0, T ]:

aj · x = bj =⇒ Φ(x, t) · aj ≤ 0. (A.8)

Let us consider the following ODE system:{
ẋ(t) = Φ(x(t), t) t ∈ [0, T ],

x(0) = x0.
(A.9)

such that x0 ∈ Σ. Then, there exists a unique solution of Eq. (A.9) such that x(t) ∈ Σ
for any t ∈ [0, T ].
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Proof. Let us consider the following ODE system:{
ẋ(t) = Φ(ΠΣ (x(t)) , t) t ∈ [0, T ],

x(0) = x0,
(A.10)

where we denote by ΠΣ : RN → Σ the projection operator onto the convex set
Σ. By the Picard-Lindelöf theorem [Tes12], since the function Φ ◦ ΠΣ is globally
Lipschitz continuous in its first argument, uniformly w.r.t. the second, in the domain
RN × [0, T ] (being the composition of Lipschitz continuous functions), there exists a
unique function x̂ : [0, T ]→ RN solution of Eq. (A.10).

Let us suppose, by contradiction, that for some t ∈ [0, T ] we have x̂(t) /∈ Σ. Due
to the continuity of x̂, it follows that there exist two time instants 0 ≤ t1 < t2 ≤ T
and an index j ∈ {1, . . . , q} such that the quantity zj(t) := aj · x̂(t) satisfies:

zj(t1) = bj , zj(t) > bj for t ∈ (t1, t2].

By the mean value theorem [JJS99], there exists a time instant t∗ ∈ (t1, t2) such that:

żj(t
∗) =

zj(t2)− zj(t1)

t2 − t1
> 0. (A.11)

However, since for t ∈ (t1, t2] we have aj · x̂(t) = zj(t) > bj , the projection ΠΣ (x(t))
satisfies aj ·ΠΣ (x̂(t)) = bj and then, by Eq. (A.8), we have:

żj(t) = aj ·Φ(ΠΣ (x̂(t)) , t) ≤ 0 ∀t ∈ (t1, t2],

that is in contradiction with Eq. (A.11). Hence, x̂(t) ∈ Σ for any t ∈ [0, T ].
In order to show the uniqueness of the solution, we suppose, by contradiction, the

existence of another solution of Eq. (A.9) (that we denote by x̃(t)), such that x̃(t) ∈ Σ
for any t ∈ [0, T ]. Then, x̃(t) is also a solution of Eq. (A.10). By the uniqueness of
solutions of Eq. (A.10), we get the thesis.

Finally, we provide the proof of Prop. 2.4.

Proof of Prop. 2.4. This proof is based on Lemma A.1. Indeed, the set z0 ∈ Ker(W)∩
[0,+∞)N can be written in the form of (A.6), where the vectors aj are given by the
collection of the unit vectors −ej , for j = 1, . . . , N , the rows of the matrix W and
their negative and bj = 0 for any j = 1, . . . , r.

The hypothesis of Eq. (A.7) is a direct consequence of Prop. 2.3. Moreover,
Eq. (A.8) follows from Props. 2.1 and 2.2 and by the fact that, in case ej · z = 0,
the negative terms in Eqs. (2.10) and (2.13) vanish and ej ·Φ(z, t) ≥ 0.

Hence, in virtue of Lemma A.1, both Eqs. (2.10) and (2.13) admit a unique solution
satisfying z(t) ∈ Ker(W) ∩ [0,+∞)N for any t ∈ [0, T ]. Since the right-hand sides of
Eqs. (2.10) and (2.13) coincide on the set Ker(W), the two solutions coincide.

Moreover, we have, thanks to Props. 2.1 and 2.2:

d

dt
(Uz(t)) = UΦ(z(t), t) = 0,

which entails Uz(t) = Uz0 = b for any t ∈ [0, T ].
Finally, the positivity of the solution combined with Uz(t) = b entails ej ·z(t) ≤ 1

for any j = 1, . . . , N and for any t ∈ [0, T ].
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[RDQ18] F. Regazzoni, L. Dedè, and A. Quarteroni. “Active contraction of cardiac
cells: a reduced model for sarcomere dynamics with cooperative interac-
tions”. In: Biomechanics and Modeling in Mechanobiology (2018), pp. 1–
24.
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