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Abstract
The aim of this work is to develop multirate time integration methods for
multiphase flow in heterogeneous porous media. Numerical simulations
of multiphase systems may involve many challenges: physical phenomena
that take place at different space scales (from micro-scales to real field
scales) and highly heterogeneous permeability fields that may cause the
co-existence of fast and slow processes. For these reasons we propose a
solution strategy based on a self-adjusting conservative implicit multirate
method. The scheme is able to use different time step sizes in different area
of the domain preserving the local mass conservation thanks to a flux-based
refinement strategy. The properties of the proposed method, consistency and
stability, are analyzed, showing that the multirate approach preserves the
properties of the underlying numerical scheme used to integrate the system
in time.

The novel multirate approach is combined with an advanced multi-
scale technique. The obtained method is able to address the multiscale in
space nature of the problem, and also to tackle multiple time scales for the
sequentially coupled flow and transport equations.

Moreover, a space-time algebraic dynamic multilevel method (ADM-LTS)
to solve transport equations in heterogeneous porous media is presented.
The method constructs an adaptive multilevel space-time grid, based on error
estimators, and solves the time dependent problem with local time stepping.
The method employs space-time fine-grid cells only at the moving saturation
fronts, reducing the computational costs and preserving the accuracy of the
solution.

The accuracy and efficiency of the new methods are investigated in a
wide range of numerical test cases for multiphase flows in heterogeneous
porous media. The results demonstrate that the proposed methods provide a
promising strategy to optimize the trade-off between accuracy and efficiency.
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1Introduction

Computational models of multiphase flows in porous media are of great
importance in many areas of engineering – e.g., hydrology and groundwater
flows, oil and gas reservoirs, geothermal energy, and waste management,
including CO2 sequestration in the subsurface.

In hydrology and groundwater applications, the quality of the water
is often endangered by a large number of contaminants (e.g., atmospheric
contaminants, leakage from storage tanks that may contain gasoline, oil or
chemicals), as shown in Fig. 1.1. Multiphase flow models allow us to predict
the flow of these contaminants, which may form a separate phase immiscible
with water, by means of suitable equations [59].

Regarding oil reservoirs exploitation, an important technique for Hydro-
carbon extractions is EOR – Enhanced Oil Recovery. EOR methods are based
on the injection of different substances (thermal, gas, or chemicals) in the
reservoir in order to increase the recovery factor of the oil. It is crucial to
develop high-fidelity simulations of EOR in order to operate efficiently these
advanced techniques.

One of the most relevant application of multiphase flow is geothermal
energy production, which is strictly linked with renewable energy. The
thermal energy is contained in the rocks and fluids from the shallow ground to
several miles below the surface. Indeed, these underground reservoirs can be
topped to generate electricity or used to directly heat and cool buildings. The
energy can be extracted directly from the groundflow, with no combustions
and nearly zero air emissions – see [88]. This complex scenario can be
modeled by the equations of multiphase flow to understand the phenomena
and increase the amount of green energy production.

Finally, CO2 sequestration is a process used to capture and store the
atmospheric carbon dioxide (CO2). This carbon dioxide is the product of
industrial processes and it can be stored in geological formations, such as
subsurface saline aquifers, reservoirs, or coal seams – see Fig. 1.3. Moreover,
the captured CO2 can be also used for EOR to displace oil. Numerical
methods are very important to study the physical mechanisms related to
CO2 sequestration, in particular to assess the safety of long-term storage by
evaluating the risk of leakage.

All these geoengineering applications involve a number of physical phe-
nomena that take place at different scales, from the micro-scale scale, where
localized alteration of the rock properties may occur, to the large reservoir
scale where the fluids displace. In fact, on one hand geological formations
extend for several hundreds of meters; on the other hand, physical and
chemical phenomena, which are of interest for the described applications,
occur at much smaller scales (cm and below). Moreover, fast processes
(e.g., high velocity flow in highly permeable rocks and fractures) and slow
processes (e.g., flow in low permeable porous rocks) coexist, and they both
have to be correctly represented to obtain reliable numerical simulations.
Additionally, at the continuum (or Darcy) scale, porous media present highly
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Fig. 1.1.: Source of groundwater contaminants (Figure from groundwater founda-
tion website).

Fig. 1.2.: Gelogical storage options (Figure from [70]).
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Fig. 1.3.: Different scales involved in geoengineering simulations (Figure from
[102]).

heterogeneous permeability tensors which are a measure of the ability of the
rock to conduct flow. Thus, accurate numerical models require very high
resolution grids both in space and time to capture all the relevant physics
of the phenomena. However, the large size of the domains and the large
number of realizations needed to reduce uncertainty [13, 74], make field
scale simulations impracticable on such high resolution grids.

Traditionally, upscaling techniques [27, 31, 30, 34] were used to reduce
the computational costs. These methods map the rock and the fluid properties
defined on a fine-scale grid to a coarser resolution. However, in presence of
complex physics and in big ratio between the fine and the coarse resolution,
the upscaled solution may be non-satisfactory. For this reason some advanced
schemes that are able to employ higher resolution grids have been developed.
An example are the dynamic local grid refinements (DLRG) methods [7, 36]
that allow to use an adaptive grid resolution throughout the time dependent
simulation. They need some pre-calculated upscaled static quantities and
at each time step, when the grid resolution is determined, the linear system
needs to be constructed. The well known multiscale methods [52, 33, 47]
are another example of advanced algorithms that combines different scales
and speed-up simulations. Finally, the algebraic dynamic multilevel method
(ADM) [23, 24] is able to use a dynamic adaptive grid in space. Thanks to
the restriction and prolongation operators, it does not need to construct the
discrete linear system at each time step but it is able to use an automatic
(algebraic) procedure which constructs the linear system directly from the
fine resolution. However, all these approaches use a fixed time resolution grid
at each time step and are not combined with any advanced time integration
scheme.

3



On the other hand, the challenge of time adaptivity has been addressed
by Adaptive Implicit methods (AIM) [90, 19, 69, 38, 39, 73], which operate
with different levels of implicitness in different regions of the domain. This
permits to apply the right scheme required to guarantee a stable solution.
Another class of advanced schemes for the time complexity is the class of
multirate methods. They allow for a flexible selection of time step size within
the domain. In the early developments of multirate methods, the different
time steps employed to integrate in time the sytem were selected a-priori,
exploiting the knowledge of the problem at hand [3]. More recent extensions
include a self-adjusting strategy to select the fast components in the system
automatically [86]. Note that most of the developments within the multirate
literature address only ODE systems and hyperbolic wave equations [20, 37].
Furthermore, they mainly implement non-conservative procedures, which
can lead to stability issues when applied to coupled flow-transport systems.

The aim of this thesis is the development of advanced techniques for the
space-time discretization of multiphase flows in highly heterogeneous porous
media simulation. These techniques are based on the adaptation of the
computational grids, in space and in time, in order to optimize the trade-off
between the accuracy of the solution and the efficiency of the simulation. We
developed a new multirate technique able to preserve the mass conservation
based on a flux partition strategy. Local mass conservation is a desired
property for numerical methods that solve time dependent conservation laws
to converge to the right weak solution [62]. For the first time, we integrated
this method into nonlinear multiphase flow simulators. We combined the
time adaptivity, obtained by the multirate method, with different advanced
techniques able to treat the spatial heterogeneity. First, we combined the
multirate method with a multiscale approach. It solves the problem on a
coarse grid capturing all the fine scale properties with the help of some ad hoc
basis functions. Then, we integrated the multirate approach with an algebraic
dynamic multilevel method for the solution of the transport equations. The
obtained method is able to use different grid resolutions, both in space and
time, based on an error estimator. In this way, the method employs the
highest grid resolution only at the location of the moving saturation fronts.

The thesis is organized as follows:

• Chapter 2 presents a mass conservative multirate method for hyperbolic
conservation laws. The properties of the method – e.g. consistency,
stability, mass conservation – are analyzed in details.

• Chapter 3 illustrates the mathematical model which describes mul-
tiphase flow in porous media with a brief overview on the classical
numerical schemes and strategies used to compute the numerical solu-
tion.

• Chapter 4 presents a novel conservative multirate multiscale method
for multiphase flow simulation in highly heterogeneous porous media
developed in collaboration with Prof. Hadi Hajibeygi of TU Delft.
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• Chapter 5 shows the algebraic dynamic multilevel approach combined
with a mass conservative local time-stepping strategy for the solution of
the transport equation of multiphase flow in porous media developed
in collaboration with Prof. Hadi Hajibeygi and Dr. Matteo Cusini of TU
Delft.

• Chapter 6 contains general conclusions and some comments about
future developments of the work presented in this thesis.
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2A conservative implicit
multirate method for
hyperbolic equations

Multirate methods have been mostly applied to general systems of ODEs.
In this chapter we focus exclusively on systems that result from the space
discretization of hyperbolic conservation laws. Unlike previous attempts,
we propose a component partitioning strategy which is based on the the
numerical fluxes, in order to preserve the mass conservation properties of
the single rate method. This approach is inspired by the flux partitioning
strategy proposed in [57] to derive monotonic methods for space discretized
conservation laws. First an overview of a self adjusting multirate approach
is provided. Then, the proposed conservative multirate method is described
in details, analyzing its properties. Several numerical experiments have
been performed to test the accuracy of the solution and the efficiency of the
method. In all the test cases, the TR-BDF2 time integration scheme has been
used.

2.1 State of art
Multirate methods were originally proposed in [83] in the context of

systems of ordinary differential equations. Many studies have been then
devoted to the improvement of these methods, see e.g. [3], [40]. The main
idea of multirate methods is to integrate each component of the system
using a different time steps. Slow components – i.e. components with
longer characteristic time scales – are integrated with larger time steps, while
smaller time steps are used for fast components. Thus, multirate methods
can avoid a significant amount of the computations compared with single
rate approaches, if the faster components are confined in a small part of the
domain (possibly evolving in time). In other words, in the multirate approach
the most appropriate time resolution is employed for each variable of the
system. In earlier multirate methods, as already mentioned in Chapter 1,
the system was partitioned a priori, based on the knowledge of the specific
problem to be solved. A self-adjusting, recursive time stepping strategy has
been then proposed in [86]. In this more recent approach, a tentative global
step is first taken for all components, using a robust, unconditionally stable
method. The time step is then reduced only for those components for which
a suitable local error estimator is greater than the specified tolerance. In this
way, automatic detection of fast components is achieved.

In [20] and [37] the authors propose multirate Runge-Kutta methods
that preserve the stability properties of the single rate approach. We will base
our work on the strategy proposed in [86] for the θ-method and extended in
[9] to the TR-BDF2 method as fundamental single rate solver.

Parts of this chapter have been published in the Computational Geosciences journal [28]
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While multirate methods have been mostly applied to general systems
of ODEs, in this work we will focus exclusively on systems that arise from
the space discretization of conservation laws. Unlike previous attempts,
we propose a component partitioning strategy which is based on the the
numerical fluxes, in order to preserve the mass conservation properties of
the single rate method.

2.2 A self-adjusting multirate approach
In this section the self-adjusting multirate approach proposed in [9] is

outlined, as applied to the solution of the Cauchy initial value problem

y′(t) = f(t, y(t)), t ∈ (0, T ], y(0) = y0 ∈ Rm. (2.1)

where f(t, y) : R× Rm → Rm is continuous with respect to both arguments
and it is Lipschitz-continuous with respect to its second argument. We con-
sider time discretizations associated to discrete time levels tn, n = 0, . . . , N
such that ∆tn = tn+1− tn and we will denote by un the numerical approxima-
tion of y(tn). We will also denote by un+1 = S(un,∆tn) the implicitly defined
operator S : Rm → Rm whose application is equivalent to the computation of
one step of size ∆tn of a given single step method. While here only implicit
methods will be considered, the whole framework can be extended to explicit
and IMEX methods.

Let P the orthogonal projector onto a linear subspace AC ⊂ Rm with
dimension p < m, and let SAC : Rp×Rm−p → Rp the operator that represents
the solution of the subsystem obtained by freezing the components of the
unknown belonging to A⊥C to a value z ∈ Rm−p. Then, the operator SAC
can be defined by y = SAC (x, z,∆tn) = PS(x ⊕ z,∆tn). Furthermore, we
will denote by Q(un+1, un, ζ) the interpolation operator that provides an
approximation of the numerical solution at intermediate time levels tn + ζ,
where ζ ∈ [0,∆tn]. Linear interpolation is often employed, but, for multistage
methods, knowledge of the intermediate stages also allows the application of
more accurate interpolation procedures without substantially increasing the
computational cost.

In a multirate approach, system (2.1) is partitioned into a sub-system
of so called active components with a faster time scale and into the comple-
mentary sub-system of the latent components, which are associated to slower
phenomena. In this context, the basic idea of a self-adjusting strategy is to
use a tentative global time step to identify the set of the active components,
which have to be recomputed with a smaller time step to maintain the desired
accuracy and stability. In particular, the self-adjusting multirate algorithm
introduced in [9] is a generalization of that proposed in [86] and can be
summarized as in Algorithm 1.

A stability analysis of the above described approach has been proposed
in [9] in the case of a linear system with a simplified refinement strategy.
The effectiveness of the above procedure depends in a crucial way on the
accuracy and stability of the basic ODE solver S, as well as on the time step
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Algorithm 1: Self-adjusting multirate

1 Perform a tentative global (or macro) time step of size ∆tn with

the standard single rate method and compute ûn+1 = S(un,∆tn);
2 Apply an error estimator to partition the state space into active and

latent variables.

3 Set P (0)
n , the projection onto the subspace AC0 of the active variables.

4 Set P̄ (0)
n , the subspace projection onto the complementary;

5 Set P̄ (0)
n un+1 = P̄ (0)

n ûn+1 un,0 = un, tn,0 = tn, and k = 0.;

6 repeat

7 Set k = k + 1 ;

8 Choose a local (or micro) time step ∆t(k)
n for the active variables,

based on the value of the error estimator ;

9 Set tn,k = min{tn,k−1 + ∆t(k)
n , tn+1} ;

10 Update the latent variables by interpolation

P̄ (k)
n un,k = Q(P̄ (k−1)

n un+1, P̄ (k−1)
n un,k,∆t(k)

n ) ;

11 Update the active variables by computing

P (k)
n un,k = SACk−1 (P (k−1)

n un,k, P̄ (k−1)
n un,k−1,∆t(k)

n );
12 Compute the error estimator for the active variables in ACk−1 and

partition again ACk−1 into new latent and active variables.

Denote by ACk ⊂ ACk−1 the new subspace of active variables and

by P (k)
n the corresponding projection ;

until tn,k = tn+1;

13 Go to the next time step ;

2.2 A self-adjusting multirate approach 9



refinement and partitioning criterion. In [9], the embedded error estimator
of the TR-BDF2 method was used for the error estimator and the error
control strategy proposed in [37] was extended to employ a combination
of absolute and relative error tolerances. It is important to remark that the
previously defined approach, when applied to ODE systems stemming from
the space discretization of conservation laws like (2.2), does not guarantee
mass conservation for the numerical solution, since some of the fluxes are
recomputed during refinement only for one of the two adjacent variables. For
this reason, in section 2.3 we propose a conservative version of the method.

2.3 The conservative implicit multirate
approach for hyperbolic conservation
laws

The aim of this section is to introduce a novel mass conservative, implicit
multirate scheme to integrate in time nonlinear conservation laws of the form

∂u

∂t
+ ∂f(u)

∂x
= 0 x ∈ R, t > 0,

with given initial datum u(x, 0) = u0(x) for x ∈ R. For the sake of simplicity,
in this section we will treat scalar problems only, and consider the differential
problem on the whole real line, postponing to a later stage a discussion
on how to treat boundary conditions for problems in a bounded domain.
To discretize the equation in space, we consider the set of the cells Ii =[
xi− 1

2
, xi+ 1

2

]
, for i ∈ Z, with xi being the center of cell Ii and ∆xi = xi+ 1

2
−xi− 1

2
the cell size.

We denote by ui(t) the approximation of the average of u(x, t) in cell

Ii, i.e Ui(t) '
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

u(x, t) dx for t > 0, while the initial value at t = 0 is

obtained from the initial data,

Ui(0) = 1
∆xi

∫ x
i+ 1

2

x
i− 1

2

u0(x) dx.

A conservative finite volume discretization yields the following system
of ordinary differential equations

dUi
dt

(t) = − 1
∆xi

[
Fi+ 1

2
(t)− Fi− 1

2
(t)
]
, i ∈ Z, t > 0, (2.2)

where Fi± 1
2
(t) = F (Ui∓p(t), · · · , Ui(i), · · · , Ui±q(i)) is the semi-discrete nu-

merical flux at the control volume face xi± 1
2

and xi∓p, · · · , xi, · · · , xi±q is the
stencil of nodes used to evaluate it. For instance, in the classical two-point
flux approximation p = 0 and q = 1.

Equations in the form (2.2) are the starting point for our multirate ap-
proach, which, differently from the scheme outlined in the previous section,
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employs an error estimator based on the fluxes rather than on the system com-
ponents to identify active and latent components, with the aim to maintain
the mass conservation properties of the basic scheme.

We give here a general overview of the method, postponing to a later
section a more detailed description of the algorithm. Given the numerical
solution at time tn and a global time step ∆t(0)

n = tn+1 − tn, we aim at a
numerical scheme that can be written eventually in the form

un+1
i = uni −

1
∆xi

(
Hi+ 1

2
−H1− 1

2

)
, (2.3)

where

Hi± 1
2
∼=
∫ tn+1

tn
Fi± 1

2
dt

is the numerical flux, which typically depends on Fi± 1
2

sampled at different
times. Note that we are using a non-standard definition for the numerical
flux, since we are not dividing the time integral by the time step length.
Furthermore, we have not yet indicated the time at which the numerical fluxes
are evaluated, since we will consider both implicit and explicit formulations.
Discretizations in the form (2.3) are conservative in the sense that, for any
set of indices I, the quantity

∑
i∈I ∆xi(un+1

i − uni ) depends only on the values
of the numerical fluxes at the boundary of the set ∪i∈IIi.

At each time step, we first compute the approximate solution at tn+1 for
all components with a tentative time step. The accuracy of the numerical
fluxes at all interfaces is checked using an appropriate error estimator. If the
flux is rejected on the basis of the error estimator, all components involved
in its stencil are added to the set of active components that need to be re-
computed with a smaller time step. During the re-computation, the accepted
numerical fluxes are kept constant inside the time slab and interpolation
in time is used to obtain their appropriate value, while the rejected ones
are recomputed. In this way, interpolation is applied directly to the fluxes,
rather than to the components, which allows to maintain the structure of
the scheme in the form (2.3), where the Hi± 1

2
will consist, at the end of the

procedure, of contributions coming from the accepted fluxes.

2.3.1 A first example
For the sake of clarity, we first present the proposed multirate method

using the θ-method as implicit time integration scheme, and we use a uniform
grid of size ∆x. The purpose is to introduce the scheme on a simple example
before presenting its most general description. We will also employ a two-
point flux approximation, which means that Fi± 1

2
= F (ui, ui±1) . At the global

time level tn,(0), using the time step ∆tn = ∆t, the following expression is
obtained in the first tentative calculation:

ûn+1
i = uni −

θ

∆x

[
F n+1
i+ 1

2
− F n+1

i− 1
2

]
− 1− θ

∆x
[
F n
i+ 1

2
− F n

i− 1
2

]
,
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where F n
1± 1

2
denotes the numerical flux computed using the value of the

approximated components at time tn. Clearly, with a simple reformulation
the scheme can be rewritten in the form (2.3). We recall that ∆tn is included
in the numerical fluxes, in contrast to the usual definitions found in the
literature.

If we suppose, as shown in Fig. 2.1, that the error estimator rejects the
flux at the interface point xi+ 1

2
, we have to recompute the components in

the stencil of Fi+ 1
2
. Therefore, ui and ui+1 will be recomputed using a smaller

time step. Here, for simplicity, we reduce ∆t(0)
n by a half. If instead Fi− 1

2
is

accepted, at the new intermediate time tn+ 1
2 = tn + ∆t(1)

n = tn + 1
2∆t(0)

n we
have

u
n+ 1

2
i = uni −

θ

∆x

[
F
n+ 1

2
i+ 1

2
− 1

2F
n+1
i− 1

2

]
− 1− θ

∆x

[
F n
i+ 1

2
− 1

2F
n
i− 1

2

]
.

Here, F n
1− 1

2
and F n+1

1− 1
2

have been kept frozen at the value computed at the
larger time step (since Fi− 1

2
has been accepted). They are multiplied by a

factor 1
2 to account for the time step reduction ∆t(1)

n

∆t(0)
n

. As for cell i+ 1, if we
suppose to accept the numerical flux at the interface point xi+ 3

2
, a similar

expression is obtained:

u
n+ 1

2
i+1 = uni+1 −

θ

∆x

[1
2F

n+1
i+ 3

2
− F n+ 1

2
i+ 1

2

]
− 1− θ

∆x

[1
2F

n
i+ 3

2
− F n

i+ 1
2

]
.

If the new time step ∆t(1)
n is such that all fluxes are accepted, we can recom-

pute the solution at time tn+1 as

un+1
i = u

n+ 1
2

i − θ

∆x

[
F n+1
i+ 1

2
− 1

2F
n+1
i− 1

2

]
− 1− θ

∆x

[
F
n+ 1

2
i+ 1

2
− 1

2F
n
i− 1

2

]
,

un+1
i+1 = u

n+ 1
2

i+1 −
θ

∆x

[1
2F

n+1
i+ 3

2
− F n+1

i+ 1
2

]
− 1− θ

∆x

[1
2F

n
i+ 3

2
− F n+ 1

2
i+ 1

2

]
.

For cell i− 1, if also the flux Fi− 3
2

has been accepted, the solution at time tn+1

is simply:

un+1
i−1 = uni −

θ

∆x

[
F n+1
i− 1

2
− F n+1

i− 3
2

]
− 1− θ

∆x
[
F n
i− 1

2
− F n

i− 3
2

]
.

One can verify that mass conservation at the global step is guaranteed,
since all fluxes at interface i + 1

2 and i− 1
2 cancel each other exactly. Since

the choice of i is arbitrary, this fact holds true for all interfaces.

2.3.2 The time refinement and time stepping
strategy

We now present the general algorithm to perform numerical integration
inside one global step tn → tn+1. The algorithm is recursive and, inside the
global step, we define a new sub-step each time a flux has been rejected
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Fig. 2.1.: An example of flux partitioning that preserves mass at each global time
step.

at the current sub-step. Moreover, in the general case the refinement ratio
can be different from 1

2 . We will indicate with AC and AF the set of active
components (i.e. those that have to be recomputed) and of accepted fluxes,
respectively. Superscripts may be added to indicate different instances. These
sets always satisfy the property

AC = {ui : Fi− 1
2
∈ RF ∨ Fi+ 1

2
∈ RF}

where RF is the set of the rejected fluxes (A⊥F ). The set of the fluxes,
accepted and rejected, involved to compute the active components is called
F = { Fi± 1

2
: ui ∈ AC}. We also introduce the vector TF , that for each flux in

AF records the length of the sub-step when the flux has been accepted. For
consistency of notation, we will use subscripts of the form i± 1

2 to indicate
fluxes or flux related quantities. We assume that an error estimator for the
fluxes is provided and we only consider a two-point flux approximation,
although the procedure can be extended to other types of numerical flux
constructions. We denote by S the operator that starting from u∗ returns
the vector u4 of updated active components within a given sub-step, and
also computes the new sets AF and AC , together with the new time step to
be used for the refined sub-steps or the next step. Operator S, described in
Algorithm 3 , is the building block for the operator M, which is described in
Algorithm 2 . The operator M is used recursively to compute a single global
time step with our multirate method. It takes as input a set of components
u∗ and a time step, proceeding then recursively across all rejected sub-steps
to produce the final value at the end of the time step. The parameter p takes
track of the level of refinement.

The first time that the multirate algorithm is applied so, the algorithm M
is called, pwill be equal to 0, u∗ = un, u4 = ûn+1 and ∆t∗ = ∆t4 = ∆tn. Time
t∗ and t4 are the times where u∗ and u4 have been computed, respectively.

In Algorithm 2, the index p, as said before, indicates the level of refine-
ment, while the index s is the sub-step taken at each level of refinement.
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Algorithm 2: Operator M
input :u∗,∆t∗, p
output :u4,∆t4

1 Set s = 1 ;

2 while t∗ + ∆t∗ ≤ t4 do

3 u(s) = u∗;

4 if p = 0 then

5 Set A(0)
C equal to the set of all components, A(0)

F = ∅, T (0)
F = ∅ ;

end

6 Call S(u∗,A(p)
C ,A(p)

F , T (p)
F ,∆t∗;u4,A(p+1)

C ,A(p+1)
F , T (p+1)

F ,∆t4);
7 if A(p+1)

C 6= ∅ then

8 Call M(u(s),∆t4, p+ 1;u(s+1); ∆t(s+1)) ;

else

9 Set u∗ = u4, t∗ = t4 and ∆t∗ = ∆t4;

10 set s = s+ 1 ;

end

end
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Note that the set of fluxes marked as accepted at the given level are kept
as such on all sub-steps associated to that level. This is the key for mass
conservation, as explained later.

Algorithm 3: Operator S
input :u∗,A∗C ,A∗F , T ∗F ,∆t∗

output :u4,A4C ,A
4
F , T

4
F ,∆t4

1 Compute u4 ∀ components in A∗C starting from u∗ and using ∆t∗:

u4i = u∗i +
∑

i± 1
2∈AF

∆t∗
∆ti± 1

2

Fi± 1
2

+
∑

i± 1
2∈RF

Fi± 1
2

where RF = F \ AC is the set of rejected fluxes. ∆ti± 1
2

indicates the

corresponding elements of T ∗F ;

2 Estimate the error ei+ 1
2

for all the rejected fluxes RF ;

3 Compute the set of rejected flues for the new sub-step:

RF = {Fi+ 1
2

: ei+ 1
2
> tol} ;

4 if RF 6= ∅ then

5 Compute the set of active components for the new sub-step

A4C = {ui : Fi− 1
2
∈ RF ∨ Fi+ 1

2
∈ RF} ;

6 Compute the new time step for the next sub-step

∆tnew = ν min
F
i+ 1

2
∈RF

τr|Fi+ 1
2
|+ τa

εi+ 1
2

 1
r+1

; (2.4)

7 Set ∆t4 = min{∆t∗,∆tnew} ;

else

8 Set A4C = ∅ and ∆t4 = ∆t∗ ;

end

The formula in Algorthm 3 for the new time step (2.4) is an extension
of the formula originally proposed in [37] and already adapted in [9]. In
(2.4), τr and τa are a relative and absolute tolerance, respectively, r is the
order of convergence of the chosen time advancing method and ν an user
defined parameter taking values in (0, 1]. As customary in adaptive time
integration approaches, see e.g. [80], these parameters are employed to tune
the adaptation criterion and to impose a more conservative choice of the time
step if necessary.
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∆ t

Fig. 2.2.: Example of the time stepping multirate method.

We mention that the Algorithm 3 keeps track also of the time instants
the fluxes have to be computed, for the sake of simplicity we have omitted to
indicate it explicitly. In Fig. 2.2 we sketch an example of what is obtained
combining the two algorithms. The circles indicate the latent components
inside the sub-step, while the crosses indicate the active components that
have to be recomputed in the next sub-refinement step.

2.4 Properties: Mass conservation,
Consistency, Stability

2.4.1 Mass conservation
Considering a global step ∆tn = tn+1− tn, the values of the numerical ap-

proximation using the multirate approach and the θ-method as time-advances
scheme, can be written in the following way:

un+1
i = uni −

1
∆x

[
H+
i+ 1

2
−H−

i− 1
2

]
(2.5)

where the fluxes are

H+
i+ 1

2
=

∑
p,s:{up,si ∈A

p,s∗
C ∧up,si /∈Ap,s4C }

{
θHp,s4

i+ 1
2

+ (1− θ)Hp,s∗
i+ 1

2

}

H−
i− 1

2
=

∑
p,s:{up,si ∈A

p,s∗
C ∧up,si /∈Ap,s4C }

{
θHp,s4

i− 1
2

+ (1− θ)Hp,s∗
i− 1

2

}

with:

Hp,s4
i+ 1

2
=


F p,s,4
i+ 1

2
if F p,s

i+ 1
2
/∈ Ap,s∗F

∆tp,s
∆tp̂,ŝF

p̂,ŝ4
i+ 1

2
otherwise

,
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similarly,

Hp,s∗
i+ 1

2
=


F p,s,4
i+ 1

2
if F p,s

i+ 1
2
/∈ Ap,s∗F

∆tp,s
∆tp̂,ŝF

p̂,ŝ∗
i+ 1

2
otherwise

,

ŝ and p̂ denote the sub-steps of the previous sub-refinement where the flux
has been accepted (the last p, s : F p,s

i+ 1
2
∈ Ap,s∗F )

Proposition 2.4.1. Let i and i− 1 two generic consecutive cells, computed with
the method (2.5), then the fluxes at the common interface H−

i− 1
2

and H+
i− 1

2
, are

equal.

Proof. It is easy to show that H+
i− 1

2
= H−

i− 1
2

if:

∀p, s : {us,pi ∈ A
p,s∗
C ∧ up,si /∈ Ap,s4C } ⇐⇒ {us,pi−1 ∈ A

p,s∗
C ∧ up,si−1 /∈ A

p,s4
C }

because in this case both cells i and i − 1 have been accepted in the same
sub-step and the number of evaluated fluxes as their values are the same.

Instead if,

∃p̄, s̄ : {up̄,s̄i−1 ∈ A
p̄,s̄∗
C ∧ up̄,s̄i−1 /∈ A

p̄,s̄4
C } ∧ {up̄,s̄i ∈ A

p̄,s̄∗
C ∧ up̄,s̄i ∈ A

p̄,s̄4
C }

this means that the flux Fi− 1
2

in that step has been accepted, because the
component ui−1 is not active, but the flux Fi+ 1

2
has been rejected and it has

to be recomputed, so that a new sub-refinement is required.
The flux H+

i− 1
2

at this point can be written as:

H+
i− 1

2
=

p̄,s̄−1∑
p,s

(
θHp,s4

i− 1
2

+ (1− θ)Hp,s∗
i− 1

2

)
+ θF p̄,s̄4

i− 1
2

+ (1− θ)F p̄,s̄∗
i− 1

2

and H−
i− 1

2
as:

H−
i− 1

2
=

p̄,s̄−1∑
p,s

(
θHp,s4

i− 1
2

+ (1− θ)Hp,s∗
i− 1

2

)
+

N∑
j=1

θ
∆tj

∆tp̄,s̄F
p̄,s̄4
i− 1

2
+

N∑
j=1

(1− θ) ∆tj
∆tp̄,s̄F

p̄,s̄∗
i− 1

2
,

the j steps are all the later steps of the later sub - refinements. Due to the
recursive nature of the algorithm, we have that

∑N
j=1 ∆tj = ∆tp̄,s̄ because

the Algorithm 2 ends when the synchronization between two consecutive
sub-refinements is verified. So that the two different contribution at the end
have the same value H+

i− 1
2

= H−
i− 1

2
.

This argument is easily applicable also in the opposite case, when ui is a
not active component while ui−i is an active component(

{uŝ,p̂i ∈ A
p̂,ŝ∗
C ∧ up̂,ŝi /∈ Ap̂,ŝ4C } ∧ {uŝ,p̂i−1 ∈ A

p̂,ŝ∗
C ∧ up̂,ŝi−1 ∈ A

p̂,ŝ4
C }

)
.

Since there are no other possible cases, the correct flux balance is pre-
served at each interface of the domain for each global time steps.
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Remark 2.4.1. Since the fluxes at the interface between two consecutive generic
cells are the same this means that the local conservation mass is preserved at
the and of each global time step.

2.4.2 Consistency
In [53] the authors analyze not self-adjusting explicit multirate schemes

of Runge-Kutta type applied to hyperbolic equations and show that a scheme
of that sort is either consistent or conservative.

In this section we will recall the concept of consistency of a numerical
scheme for hyperbolic equations, by introducing a definition of weak con-
sistency more suited for finite volume schemes of the type considered in
this work. We then recover the results of [53] for the classic consistency
concept used in finite differences, showing that weak consistency is instead
maintained.

We finally show that the application of self-adjusting multirate strategy
allows to recover consistency in both senses. We start to recall the problem
we wish to approximate,

∂u

∂t
+ ∂f(u)

∂x
= 0, x ∈ R, t > 0, (2.6)

for a given initial data u0. Here f(u) is the flux, assumed to be a continuosly
differentiable function. We also assume that the problem is well-posed and u
is bounded.

Given a spatial grid of size ∆x and a time-step size ∆t we indicate with

Un
i = 1

∆x

∫ x
i+ 1

2

x
i− 1

2

u(tn, x) dx,

the average solution on cell Ii =
[
xi− 1

2
, xi+ 1

2

]
at time tn, and with

F i± 1
2

=
∫ tn+1

tn
f
(
u
(
t, xi± 1

2

))
dt (2.7)

the integrated exact flux at location xi±1/2.
We consider discretizations of (2.6) of the form

un+1
i − uni = 1

∆x
(
F θ
i− 1

2
− F θ

i+ 1
2

)
, (2.8)

where θ = n or θ = n+ 1 depending on the choice of an explicit or implicit
scheme, respectively,

F θ
i+ 1

2
= ∆tF̂ (uθi , uθi+1) ' F i+ 1

2

is a two-point flux approximation, while uni is the approximation of Un
i . The

initial data is given by u0
i = U0

i . In this section we indicate with F̂ (a, b)
the numerical flux function that characterize the specific scheme, to avoid
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confusion with the numerical flux Fi+ 1
2
, which in our notation depends also

on ∆t.
We provide the following definition, see [11, 35].

Definition 2.4.1. A finite volume scheme in the form (2.8) is consistent if the
numerical flux function F̂ is Lipschitz continuous in its arguments and satisfies
the following consistency condition,

F̂ (w,w) = f(w), ∀w ∈ R,

The previous definition implies the following

Proposition 2.4.2. For a scheme of the form (2.8) with fluxes satisfying the
conditions in Definition 2.4.1 we have that

un+1
i = Un

i −
∆t
∆x

(
δi+ 1

2
− δi− 1

2

)
, ∀i, ∀n ≥ 0, (2.9)

with lim
∆t,∆x→0

δi± 1
2

= 0, when setting uni = Un
i and F θ

i± 1
2

= ∆tF̂ (U θ
i , U

θ
i±1) in

scheme (2.8). We will term this property as weak consistency.

We note that (2.9) is related to weak convergence, see [11], and is
different from the one classically used for finite difference schemes, based on
the analysis of the local truncation error, defined as

τi = u(tn+1, xi)− u(tn, xi)
∆t + F̂ (u(tθ, xi), u(tθ, xi+1))− F̂ (u(tθ, xi−1), u(tθ, xi))

∆x .

In the finite difference framework, a scheme is said to be consistent if, for all
i, lim

∆t,∆x→0
τi = 0. We may note that instead (2.9) is equivalent to set

τ̂i =
∫ x

i+ 1
2

x
i− 1

2

[
u(tn+1, x)− u(tn, x)

∆t + F̂ (U θ
i , U

θ
i+1)− F̂ (U θ

i−1, U
θ
i )

∆x

]
dx

with τ̂i = δi+ 1
2
− δi− 1

2
, and this latter, weaker, formulation is more suitable for

finite volume schemes, since in these schemes uni ' Un
i .

Proof. If we integrate (2.6) in space and time in the interval In × [tn, tn+1]
we have

Un+1
i − Un

i +
F θ
i+ 1

2
− F θ

i− 1
2

∆x = 0.

We take uni = Un
i and F θ

i± 1
2

= ∆tF̂ (U θ
i , U

θ
i±1) in (2.8), subtracting the previous

relation we obtain an expression of the form (2.9) with

δi± 1
2

=
F i± 1

2
− Fi± 1

2

∆t .
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Thanks to the consistency and Lipshitz continuity of the numerical flux
function we have

Fi± 1
2

= ∆tF̂ (U θ
i , U

θ
i±1) = ∆t

[
f
(
u
(
tθ, xi± 1

2

))
+O(∆x)

]
,

while, from (2.7),

F i± 1
2

= ∆tf
(
u
(
tθ, xi± 1

2

))
+O(∆t2).

By which, δi± 1
2

= O(∆t) +O(∆x), and the Proposition is proved.

Note that we have proved at least first order of consistency, however,
by exploiting the expression of a specific numerical flux, for instance the
Lax-Wendroff flux, we can better the order of consistency.

We now state that

Proposition 2.4.3. A non self-adjusting multirate scheme which uses (2.8) as
basic scheme is not consistent in a finite-difference sense, while we can recover
weak consistency.

Proof. Short of giving a general proof, we consider the special case of an
explicit-scheme. Same arguments may be used for an implicit scheme. First
of all we recall that in a multirate scheme relation (2.8) is effectively replaced
by

un+1
i − uni = 1

∆x
(
Hθ
i− 1

2
−Hθ

i+ 1
2

)
,

where Hi± 1
2

is possibly built by a linear combination of Fi± 1
2

taken at different
sub-steps within [tn, tn+1].

We assume that just the flux F n
i+ 1

2
has been (a-priori) rejected, and thus

refined by computing its value F
n+ 1

2
i+ 1

2
at an intermediate step. We have

un+1
i = u

n+ 1
2

i − 1
∆x

(
F
n+ 1

2
i+ 1

2
− 1

2F
n
i− 1

2

)
,

un+1
i+1 = u

n+ 1
2

i+1 −
1

∆x

(1
2F

n
i+ 3

2
− F n+ 1

2
i+ 1

2

)
,

u
n+ 1

2
i = uni −

1
2∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
,

u
n+ 1

2
i+1 = uni+1 −

1
2∆x

(
F n
i+ 3

2
− F n

i+ 1
2

)
,

where F
n+ 1

2
i+ 1

2
= ∆t

2 F̂
(
u
n+ 1

2
i , u

n+ 1
2

i+1

)
. Using the previous relations, we have

un+1
i = uni −

1
∆x

[(1
2F

n
i+ 1

2
+ F

n+ 1
2

i+ 1
2

)
− F n

i− 1
2

]

We can recognize that Hn
i+ 1

2
= 1

2F
n
i+ 1

2
+ F

n+ 1
2

i+ 1
2

and Hn
i− 1

2
= F n

i− 1
2
. We first

prove that we do not satisfy finite-difference consistency. For this purpose,
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we use the short hand notation uni = u(t+ n, xi) and un
i+ 1

2
= u

(
t+ n, xi+ 1

2

)
.

We also assume that u be sufficiently regular and F̂ twice continuously
differentiable. The local truncation error may be written as

τni = un+1
i −uni

∆t + F̂(uni+1,u
n
i )−F̂(uni−1,u

n
i )

∆x +
F̂

(
ũ
n+ 1

2
i+1 ,ũ

n+ 1
2

i

)
−F̂(uni+1,u

n
i )

2∆x ,
(2.10)

where we recall that the numerical fluxes F n
i±1/2 are computed using the exact

solution at location xi±1/2, respectively. Here,

ũ
n+ 1

2
i = uni −

∆t
2∆x

(
F̂
(
uni+1, u

n
i

)
− F̂

(
uni−1, u

n
i

))
,

ũ
n+ 1

2
i+1 = uni+1 −

∆t
2∆x

(
F̂
(
uni+2, u

n
i+1

)
− F̂

(
uni+1, u

n
i

))
.

The first two terms on the right-hand side of (2.10) form the basic
scheme, which is by hypothesis finite-difference consistent, so they give an
infinitesimal w.r.t. ∆t and ∆x. It remains to examine the numerator of the
last fraction.

By expanding in Taylor series and neglecting higher order terms, we can
easily obtain that

F̂
(
ũ
n+ 1

2
i+1 , ũ

n+ 1
2

i

)
− F̂

(
uni+1, u

n
i

)
= O(∆t) +O(∆x),

by which,

F̂
(
ũ
n+ 1

2
i+1 , ũ

n+ 1
2

i

)
− F̂

(
uni+1, u

n
i

)
2∆x = O

(
∆t
∆x

)
.

If we refine at a constant Courant number
∆t
∆x is constant and thus we are

introducing a term O(1) in the local truncation error. Thus we may conclude
that the scheme is not consistent (in the finite difference sense).

Now, we proceed as in Proposition 2.4.2. In particular, we have set
uni = Un

i and, since we are using an explicit scheme, also the numerical fluxes
at time step n are computed using the Un values.

We find that δi− 1
2

has the same expression as before, but instead

δi+ 1
2

= 1
∆t

(
F n
i+ 1

2
−Hn

i+ 1
2

)
,

with Hn
i+ 1

2
= ∆t

2

(
F̂
(
Un
i , U

n
i+1

)
+ F̂

(
ũ
n+ 1

2
i , ũ

n+ 1
2

i+1

))
, where now

ũ
n+ 1

2
i = Un

i −
∆t

2∆x
(
F̂
(
Un
i+1, U

n
i

)
− F̂

(
Un
i−1, U

n
i

))
,

ũ
n+ 1

2
i+1 = Un

i+1 −
∆t

2∆x
(
F̂
(
Un
i+2, U

n
i+1

)
− F̂

(
Un
i+1, U

n
i

))
.
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It is clear that Hn
i+ 1

2
is in fact a three point numerical flux, since it depends

indirectly also on Un
i+2. However, it is still Lipschitz continuous, being the

composition of Lipschitz continuous functions, and if we set Un
i = Un

i+1 =
Un
i+2 = U we obtain f(U), thanks to the consistency of the numerical flux

functions of the basic numerical scheme. So we can apply Proposition 2.4.2
to reach the conclusion that weak consistency is still verified.

On the other hand, it is also possible to verify that

F̂
(
ũ
n+ 1

2
i , ũ

n+ 1
2

i+1

)
= F (Un

i , U
n
i ) +O(∆t) +O(∆x) = f (Un

i ) +O(∆x) +O(∆x).

and so, following the same arguments as in Proposition 2.4.2, we reach
the conclusion that δi± 1

2
= O(∆t) + O(∆x) and thus the weak consistency

condition is satisfied.

The last result prompts two considerations. The first is that the scope of
a multirate scheme is to perform local refinements in time on a given spatial
grid, in order to ensure a good accuracy in time of the discrete solution. In
that respect we could consider ∆x as fixed. So consistency for ∆x→ 0 may
be of concern only when multirate is coupled with adaption in space, since it
may hinder convergence.

The second consideration regards the self-adjusting multirate schemes
proposed in this work, and is detailed in the next subsection.

Consistency of self-adjusting multirate schemes

In self-adjusting multirate schemes the decision to accept or refine at a certain
location is driven by an error indicator e, which is typically function of the
discrete solution or fluxes. In our proposed scheme the error indicator at the
interface xi+ 1

2
,denoted ei+ 1

2
, depends on the numerical fluxes computed at

two different time steps. We have

Proposition 2.4.4. If, given a tolerance tol > 0 there exists a ∆t∗ and such
that for all i the error indicator ei+ 1

2
satisfies ei+ 1

2
> tol whenever ∆t < ∆t∗

and for any ∆x sufficiently small, then a self-adjusting conservative multirate
scheme using a fully consistent (2.8) as basic scheme is consistent both in finite
difference and finite volume (weak) sense.

Proof. It is sufficient to recall that in our conservative multirate scheme
the multirate flux is a linear combination of basic numerical fluxes possibly
computed at intermediate sub-steps. In general, we may write

Hθ
i± 1

2
= α0Fi± 1

2
+

s∑
i=1

αsF
n+δs
i± 1

2

with δs ∈ (0, 1) for s > 0, being s the number of sub-steps used to compute
the given flux. However, if ∆t < ∆t∗ all fluxes will be accepted straightaway,
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so s = 0 and α0 = 1. That is, for ∆t < ∆t∗ the scheme recovers the basic
scheme, which is fully consistent.

We mention that the condition on the error indicators εi+1/2 is also
necessary to ensure that our multiscale algorithm terminates.

2.4.3 Von Neumann stability analysis
In this section we will analyze the stability of the conservative multirate

approach using, as method to integrate in time, the Implict Euler, and a fixed
number of sub-refinements. We consider the model problem

∂u

∂t
+ a

∂u

∂x
= 0 x ∈ R, t > 0

To discretize in space a first order upwind scheme has been used.

Proposition 2.4.5. Assuming that the initial condition is 2-π periodic so that
can be expanded in a Fourier series:

u0(x) =
∞∑

k=−∞
αke

ikx

where
αk = 1

2π

∫ 2π

0
u0(x)e−ikxdx

is the k-th Fourier coefficient of u0. A numerical scheme is stable with respect to
the ||·||∆,2 norm, if the absolute value of the amplification coefficient |γk| ≤ 1 ∀k,
where || · ||∆,2 is the following discrete norm:

||v||∆,2 =
∆x

∞∑
j=−∞

|vj|p
 1

p

.

For detail see [81].

Definition 2.4.2. The amplification coefficient of the k-th frequency (or har-
monic) γk ∈ C is defined as the ratio between the k-frequency of the current
time step [un+1

i ] and the k-th frequency of the previous step [uni ]:

γk = [un+1
i ]k

[uni ]k
.

Considering a 1-step of sub-refinement of the multirate method, a global
time step for the linear advection equation (a > 0) reads as:

un+1
i = uni −

{
F n+1
i+ 1

2
− F n+1

i− 1
2

}
= uni −

{
λa
(
un+1
i + un+1

i−1

)}

where λ = ∆x
∆t . Let us suppose, as for the consistency analysis, that the

numerical flux F n+1
i− 1

2
is accepted after the tentative global time step and,
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instead, the flux F n+1
i+ 1

2
needs to be recomputed; to write the amplicitation

coefficient, first of all we need the k-th frequency [un+1
i−1 ]k, written respect to

the k-th frequency [uni ]k:

[un+1
i−1 ]k = [uni−1]k − aλ

{
[un+1
i−1 ]k − [un+1

i−2 ]k
}

= [uni ]ke−ik∆x − aλ
{

[un+1
i−1 ]k − [uni−1]ke−ik∆x

}
= e−ik∆x

(1 + aλ (1− e−ik∆x)) [uni ]k

(2.11)

Computing the first sub-refinement step with a size step equal to ∆t
2 , the k-th

frequency for the solution [un+ 1
2

i ]k as function of [uni ]k would be:

[un+ 1
2

i ]k = [uni ]k − a
λ

2

{
[un+ 1

2
i ]k − [un+1

i−1 ]k
}
,

using the expression (2.11) we obtain:

[un+ 1
2

i ]k =
(

1 + λ

2

)−1 {
1 + a

λ

2
e−ik∆x

1 + aλ (1− e−ik∆x)

}
[uni ]k. (2.12)

If the numerical flux F
n+ 1

2
i+ 1

2
would be accepted, the final k-th frequency reads:

[un+1
i ]k = 4[un+ 1

2
i ]k − a

λ

2

{
[un+1
i ]k − [un+1

i−1 ]k
}

using expressions (2.12) and (2.11) we finally obtain:

[un+1
i ]k =


(

1 + λ

2

)−2 {
1 + a

λ

2
e−ik∆x

1 + aλ (1− e−ik∆x)

}

+ a
λ

2

(
1 + λ

2

)−1
e−ik∆x

1 + aλ (1e−ik∆x)

[uni ]k

Generalizing the process with m sub-refinements with fixed internal step
size equal to ∆t

m
the expression for the amplification coefficient will be:

γk =
(

1 + λ

m

)−m {
1 + a

λ

m

e−ik∆x

1 + aλ (1− e−ik∆x)

}

+
m−1∑
s=1

a
λ

m

(
1 + λ

m

)−s
e−ik∆x

1 + aλ (1− e−ik∆x) .

As said before, the absolute value of the modulus of a numerical method
has to be lower or equal to one to be the method stable and, moreover, if
it satisfies the condition for any choice of ∆t and ∆x it is unconditionally
stable.
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Fig. 2.3.: Amplification coefficients (left column) and propagation factor (right
column), for different number of sub-refinements and for different choices
of aλ.

It is difficult to compute when |γk| ≤ 1 analytically so, in Fig. 2.3, we
plotted the amplification errors and the dispersion errors for different values
of aλ. The amplification error in our case coincides with the amplification
coefficient, as explained in [81], instead the dispersion coefficient is the ratio
between the velocity of propagation of the numerical solution relative to its
k-th harmonic ω

k
and the velocity a of the exact solution.

The amplification and dispersion errors are functions of the phase angle
ϕk = k∆x that varies on the interval 0 ≤ ϕk ≤ π. We can see that, even if
we increase the number of sub-refinements, for all Courant number aλ the
amplification coefficient is below one.

Fig. 2.4 shows the exact solution (dashed line) and the numerical
solutions (solid line) at t = 1 for the problem:

∂u

∂t
+ ∂u

∂x
= 0 x ∈ [−1, 3], t > 0

u(x, 0) =

sin (2πx) x ∈ [−1, 1]
0 otherwise.

For each column the CFL number is fixed and the number of sub-
refinements is varying. First row shows the results for the backward Euler
approach without sub-refinements. The solution is more dissipate as long
as the CFL value has been increased. This shows how the use of multirate
technique allows to reduce the overall numerical dissipation of the basic
scheme.
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Fig. 2.4.: Exact solution (dashed line) and numerical solution (solid line) at t = 1
for the advection problem with a = 1 for different global CFL values.
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2.5 Time discretization with TR-BDF2
While a time discretization based on the θ−method has been employed

to introduce the proposed conservative multirate method and for its analysis
in term of consistency and stability, in this chapter we focus on the use of
multirate TR-BDF2 method, as in [9], because of its interesting properties.
This method is a composite one step, two stages method, consisting of one
stage of the trapezoidal scheme followed by one stage of the BDF2 method.
It can be written for the discretization of an ODE system y′ = f(t, y) as

un+γ = un + ∆tnγ
2

(
f(tn, un) + f(tn+γ, un+γ)

)
un+1 = 1

γ(2− γ)u
n+γ − (1− γ)2

γ(2− γ)u
n + 1− γ

2− γ∆tnf(tn+1, un+1)

For γ = 2−
√

2, the method is L-stable and also employs the same Jacobian
matrix for the two stages. In [50] it has been interpreted as a Diagonally
Implicit Runge Kutta (DIRK) method with two internal stages, proving the
following properties:

• the method is strongly S-Stable;

• it is endowed with a Cubic Hermite interpolation algorithm that yields
globally C1 continuous trajectories.

Due to its favorable properties, it has been recently applied for efficient
discretization of high order finite element methods for numerical weather
forecasting in [93], while its monotonicity properties have been studied
in [8].

2.5.1 Flux-partitioning and error estimator
To select the components that have to be recomputed with a smaller

time step, we need to introduce a local error estimator for the fluxes. A
simple approach is to compare the fluxes computed with the θ-method or the
TR-BDF2 method, with the fluxes at the same interface cell computed with a
more accurate method. The absolute value of the difference between the two
fluxes can be used as a measure of the error. For γ = 2 −

√
2 the TR-BDF2

scheme has a third order method embedded, this fact can be exploited to
derive the error estimator, yet as remarked in [50], the third order method
embedded in TR-BDF2 is not A-stable. In that work a heuristic approach that
entails the solution of an additional linear system per time step has been
proposed to stabilize the error estimator. For a large ODE systems coming
from the spatial discretization of PDEs, solving at each time step this extra
linear system could turn out to be very expensive.

Therefore, we propose other types of error estimator, which are less
expensive. At each time step, for a two stage method as the TR-BDF2 method,
we know the active components values at times tn and tn+γ , so we can use
an extrapolation technique to obtain a prediction of the value at time tn+1. If
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we call the extrapolated solution at time tn+1 as ūn+1
ext , the extrapolated fluxes

at the interface are F̄ n+1
ext

i+ 1
2

and we obtain the error estimator as:

RF = {Fi+ 1
2

: |F n+1
i+ 1

2
− F̄ n+1

ext
i+ 1

2
| > τr|F n+1

i+ 1
2
|+ τa}

where τr > 0 is a relative tolerance, and τa > 0 is needed to handle the case
|F n+1
i+ 1

2
| = 0.

The simplest extrapolation technique is the linear extrapolation, given
by

ūn+1
lin = un + tn+1 − tn

tn+γ − tn
(
un+γ − un

)
,

by which we obtain the extrapolated values of F n+1
lin

i+ 1
2

at the required interface,

whose difference with the computed value provides the error estimator.

A more precise estimator can be obtained by applying a cubic Hermite
extrapolation at time tn and tn+γ considering the fact that the TR-BDF2
method provides a formula to compute the coefficient for the cubic Hermite
extrapolation easily.

The extrapolation can be evaluated as:

ūcub(t) = (α3 − 2α2)β(t)3 + (3α2 − α3)β(t)2 + α1β(t) + α0,

α coefficients are:

α0 = un, α1 = γ∆tnf(tn, un), α2 = un+γ − un − α1,

α3 = γ∆tn(f(tn+γ, un+γ)− f(tn, un)),

instead β is:

β(t) = t− tn

γ∆tn
.

At time tn+1 the extrapolated solution would be:

ūt+1
cub = (α3 − 2α2)

(
1
γ

)3

+ (3α2 − α3)
(

1
γ

)2

+ α1

(
1
γ

)
+ α0,

In our test cases we use the error estimator based on the Cubic Hermite
extrapolation.

2.5.2 Systems of PDEs
The multirate method is easily extended to a system of nonlinear con-

servation laws. The only non trivial part is how to define the set of active
fluxes.

A system of d nonlinear conservation laws can be written as:

∂u
∂t

+ ∂(f(u))
∂x

= 0 x ∈ R t > 0 (2.13)
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Fig. 2.5.: Example of rejected fluxes in a system of non-linear conservation laws.

where u and f are d-vectors on the problem domain, u = [u1, u2, · · · , ud]T
and

F(u) = [F1(u1, · · · , ud), F2(u1, · · · , ud), · · · , Fd(u1, · · · , ud)]T

is a vector of fluxes.

If we use a two-point flux approximation, when (2.13) is semi-discretized
in space, the numerical flux at each interface xi+ 1

2
depends on the approxi-

mation ui and ui+1 at nodes xi and xi+1, respectively. To preserve the mass
of the whole system, if the j-th components of the flux for the i-th variable
has been rejected, all components should be considered as rejected.

In Fig. 2.5, we show a simple example with d = 2. If the flux for the
variable u1 has been rejected in position xi+ 1

2
, the components u1i and u1i+1

will be included in the set of active components but, to be conservative, also
the flux for the variable u2 will be rejected and so also the components u2i
and u2i+1 will be recomputed with a smaller time step.

2.5.3 Boundary conditions
To illustrate our scheme we have assumed that the differential problem is

set on the whole real line. However, in the numerical tests of the next Section
(as well as in all practical situations) we have to deal with bounded domain,
and proper boundary conditions must be imposed. Since we are adopting a
finite volume scheme, the boundary conditions have been applied by comput-
ing the fluxes at the fictitious boundary interface by the well known “ghost
node” technique. With this method the correct type of information (i.e. that
corresponding to the characteristics entering the domain) is automatically
selected by the numerical scheme.

It may happen that a flux between a ghost node and a real node is
rejected inside a generic time step. In this case, the ghost cell is evaluated
at the internal time and the flux is computed with a smaller time step as an
internal flux of the domain.
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2.6 Numerical results
In this section, we present different numerical experiments to test the

efficiency and the accuracy of the conservative multirate method. First we
apply it to the Burgers’ equation, then to a more complex scalar test case,
the Buckley-Leverett equation and, at the end, we illustrate the multirate
method applied to a system of nonlinear conservation laws, the Shallow
Water equations.

2.6.1 Test case 1: Burgers equation
Here, we apply the multirate method to Burgers equation with Dirichlet

boundary conditions, thus repeating the tests presented in [9], but with the
conservative variant of our algorithm. The Burgers equation is a nonlinear
conservation law and we consider the following setting:

∂u

∂t
+ ∂

∂x

(1
2u

2
)

= 0 (x, t) ∈ (−1, 3)× (0, 1),

u(x, 0) = u0(x) x ∈ (−1, 3),
u(−1, t) = ul(t) u(3, t) = ur(t) t ∈ (0, 1),

where u0(x) =

ul(0) x < 0,
ur(0) x > 0.

First case: ul > ur
In this case we consider ul = 1 and ur = 0 with a number of cells

equal to 400, the absolute and relative error tolerances are τa = 10−4, τr =
10−6, respectively, while the tolerance for the Newton solver is 10−14 on the
difference between two consecutive iterations. The TR-BDF2 method has
been used as solver to integrate in time, the size of the global time step is
equal to 0.1. To obtain an entropic solution we used the local Lax Friedrichs
flux [91] (also know as Rusanov flux) as numerical flux for the two point
Finite Volume method:

Fi+ 1
2

= Fi+ 1
2
(ui, ui+1) = 1

2 [(f(ui+1) + f(ui))− α(ui+1 − ui)] , (2.14)

where α = max
ω
|f ′(ω)| and the maximum is taken in the range ω ∈ [ui, ui+i].

As we can see in Fig. 2.6, the solution computed with the multirate method
is in excellent agreement with the exact solution. In Fig. 2.7 we represent
the set of active components at each time. We can observe that the multirate
method captures the shock and refines only the region of the domain where
the solution is changing rapidly. We also plot the Courant numbers for each
time step, Fig. 2.7. The self-adjusting strategy selects small Courant numbers
inside the time slab in the locations near the discontinuity, while the global
step corresponds to a Courant number 2.5. Note that we prescribed a global
step size equal to 0.1, that gives a Courant number of 10, but all components
have been rejected for the given value of the error tolerance, so that the
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Fig. 2.6.: Test case 1 ul > ur – Multirate TR-BDF2 integration and exact solution
for the shock wave at different times t = 0s, 0.45s and 1s.
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Fig. 2.7.: Test case 1 ul > ur – The components being computed at each time step
by the TR-BDF2 method (left) and Courant number for each time step
(right).

global time step size is in fact smaller and equal to 0.025 except for the last
two time slabs.

Second case: ur > ul

We set the value at the left ul = 0 and the value at the right ur = 1. In
this case, the solution exhibits a rarefaction wave. The boundary conditions
are u(−1, t) = ul ∀t ∈ (0, 1) and u(3, t) = ur ∀t ∈ (0, 1), while the other
parameters are the same as in the previous test case. In Fig. 2.8 we can see
the solution obtained with the multirate method. Some numerical diffusion is
clearly visible due to the first order monotone flux employed. In this case, the
Courant number for the global step is equal to 10, as shown in Fig. 2.9. The
Courant numbers for the sub-steps inside the time slab are larger than those
obtained in the shock wave solution and consequently less time steps are
necessary to compute the solution at the final time. Fig. 2.9 also represents
the set of active components at each time. As expected, the size of the set
increases with time because the rarefaction zone is expanding.
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Fig. 2.8.: Test case 1 ur > ul – Multirate TR-BDF2 integration and the exact solution
for the rarefaction wave at different times.
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Fig. 2.9.: Test case 2 ur > ul – The components being computed at each time step
with the TR-BDF2 method (left) and Courant number for each time step
(right).
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Fig. 2.10.: Test case 2 – Multirate TR-BDF2 solution and the solution computed
with the ode45 matlab solver.
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Fig. 2.11.: Test case 2 – The components being computed at each time step (left)
and Courant number for each time step (right).

2.6.2 Test case 2: Buckley-Leverett equation
An example of a more complex conservation law is given by the Buckley-

Leverett equation:

∂u

∂t
+ ∂

∂x
f(u) = 0 (x, t) ∈ (0, 2π)× (0, 1)

f(u) = u2

u2 + 1
3(1− u)2

u(x, 0) = sin(x) x ∈ (0, 2π)
u(0, t) = u(2π, t) t ∈ (0, 1).

Also in this case, we use a two-point finite volume scheme with Rusanov flux,
and Nx = 100 cells. The TR-BDF2 method is used to integrate up to time
T = 0.5 with a global size step ∆t = 0.1. In this case, periodic boundary
conditions are employed. The absolute and relative error tolerances are 10−4,
10−5, respectively, while the tolerance for the Newton solver is 10−13. To
compute the l1-norm of the error we use as a reference solution provided by
the Matlab solver ode45 with maximum allowed time step equal to ∆t = 10−5.

This is a rather complex test case, because of the presence of both a
shock and a rarefaction wave, as we can see in Fig. 2.10. The multirate
method refines the time-steps only where the solution is fast moving, as
indicated by the smaller Courant numbers Fig. 2.11.
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Tab. 2.1.: Test case 2 – The ratio between the initial and final mass, the normalized
difference between the initial and final mass in the Buckley-Leverett
equation test case.

ratio diff. l1-norm

MC scheme 1 8.36e− 15 0.0013
N-MC scheme 0.96 0.0313 0.0012

We then compare our mass conservative approach with the original
multirate method proposed in [9]. As shown in Tab. 2.1, we obtain essentially
the same error in the l1-norm for both methods, but, while with the previous
method the system loses 4% of the mass during the simulation, the new
method preserves the total mass of the system, as expected.

2.6.3 Test case 3: Saint-Venant equations or dam
break problem

We consider now our multirate strategy applied to the Saint-Venant (or
shallow water) equations, which can be written in conservative form as:

∂h

∂t
+ ∂q

∂x
= 0

∂q

∂t
+ ∂

∂x

(
q2

h
+ g

h2

2

)
= 0.

Here, h denotes the fluid depth and q = hu the discharge, where u is the
velocity of the fluid. These equations are the core of many numerical models
for river hydraulics and environmental flows. A more complete discussion
of the Saint-Venant equations can be found in [64]. It has to be remarked
that even very efficient single rate semi-implicit methods, see e.g. [84], when
applied to the Saint-Venant equations in presence of shocks, must employ
small time steps throughout the domain to achieve a reasonable accuracy. As
we will see, this shortcoming is overcome by our approach.

The dam break problem is a special case of the Riemann problem, where

at the initial time h0(x) =

hl if x < x0

hr if x > x0
and u = q = 0 everywhere in the

domain. For the spatial discretization of the Saint-Venant equations we used
again the Rusanov flux. In this case, the numerical diffusion coefficient α in
(2.14) is defined as:

α = max{|λ1
i |, |λ2

i |, |λ1
i+1|, |λ2

i+1|},
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λ1
i and λ2

i are eigenvalues of the system for the control volume i:

λ1
i = hi

qi
−
√
ghi

λ2
i = hi

qi
+
√
ghi.

We used 300 cells over the domain (0, 3000) [m], while the absolute
and relative error tolerances are τa = 10−2, τr = 10−4, respectively, while the
tolerance for the Newton solver is 10−13. The size of the global steps is equal
to 8s, and we integrate in the time interval (0, 100] [s]. The initial condition

for the water height is h0(x) =

1.5 if x < 1500
0 if x > 1500

[m], and for the water

velocity we set u = q
h

= 0 [m/s].

When performing this test with the original version of the algorithm
described in the previous sections, numerical oscillation across the boundary
between the refinement and the non-refinement regions were observed.
These oscillations are due to the fact that the error estimator accepted some
fluxes that were changing their values inside the time slab and it was not
correct to use their final time slab values for the entire considered sub-step.
To avoid this problem, we slightly modified the set of rejected fluxes. If a flux
is rejected, we also reject a number of fluxes (on the left or on the right or
on both sides, depending on the sign of the eigenvalues) equal to the local
Courant number. In this way, as shown in Fig. 2.12, the solution has the
correct behavior; of course, we are increasing the set of active components,
but the latent components are still the majority during time integration (Fig.
2.13). It can be seen clearly that, as in the scalar case, the method is able to
identify the complex nonlinear features of the flow automatically. It can also
be seen in Fig. 2.13 that a Courant number larger than one was allowed for
the global time steps without any significant loss in accuracy.

2.6.4 Test case 4: Shallow water equations with
rotation

We have also considered the shallow water equations with rotation,
which are a classical idealized model for the phenomenon of geostrophic
adjustment, see e.g. [41]. This system, in the semi-linear form obtained
discarding the nonlinear momentum advection terms, can be written as:
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Fig. 2.12.: Test case 3 – Solutions at time t = 42 [s] and t = 100 [s] for the h
variable (on the left) and for u = q

h variable (on the right).
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Fig. 2.13.: Test case 3 – Set of active components for one variable at each time (left)
and Courant number for each time step (right).
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

∂η

∂t
+ ∂((η + η0)u)

∂x
= 0 (x, t) ∈ (−L,L)× (0, T )

∂u

∂t
+ g

∂η

∂x
+ fv = 0 (x, t) ∈ (−L,L)× (0, T )

∂v

∂t
− fu = 0 (x, t) ∈ (−L,L)× (0, T )

η(x, t = 0) = exp
(
−(50x)2

(2L)2

)
x ∈ (−L,L)

u(x, t = 0) = v(x, t = 0) = 0 x ∈ (−L,L)
η(−L, t) = η(L, t) = 0 t ∈ (0, T )
u(−L, t) = u(L, t) = 0 t ∈ (0, T )
v(−L, t) = v(L, t) = 0 t ∈ (0, T )

Here, η denotes the free surface height, u the velocity in the x direction, g
the gravity acceleration, f a constant Coriolis parameter and v the velocity
in the direction orthogonal to the one dimensional flow being considered.
This system is of particular interest since it describes a dynamics with two
different time scales, a fast one associated to the propagation of external
gravity waves and a slow one associated with rotational effects and the onset
of geostrophic equilibrium. Semi-implicit techniques commonly applied for
geophysical scale flows (see e.g. the classical paper [42]) allow to achieve
an accurate approximation of the slow components, while sacrificing the
accuracy of the fast ones.

In order to represent a large geophysical scale, we have used L = 8× 106

[m] , T = 3× 106 [s], f = 10−4 1 [s] and η0 = 1000 [m]. We have discretized
in space with Nx = 480 cells and we have used, as space discretization, the
following conservative centered finite difference scheme:

dηi
dt

= −
[
uiηi + ui+1ηi+1

2∆x − uiηi + ui−1ηi−1

2∆x

]
,

dui
dt

= −g
[
ηi + ηi+1

2∆x − ηi + ηi+1

2∆x

]
− fvi,

dvi
dt

= fui.

In this case, we used a global step ∆t = 700 [s] to discretize in time.
The solution is represented in Fig. 2.14, while the set of active/refined
components for the η variable is displayed in Fig. 2.15. It can be seen that,
also in this case, the proposed algorithm is able to identify automatically the
different time scales present in the solution. The component of the solution
at the center of the domain, which tends to geostrophic equilibrium on a slow
time scale, does not require any refinement of the time step, while the fast
propagating gravity waves induce refinement along the wave trails. Notice
that we plot the active components for the η variable only because the set
of active components and active fluxes are the same for each variable of the
system in order to preserve mass. It can also be seen in Fig. 2.15 that Courant
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Fig. 2.14.: Test case 4 – Solutions at the final time computed with the multirate
method.
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Fig. 2.15.: Test case 4 – Set of active components for η variable (left) and Courant
number for each time step (right).

numbers larger than one are feasible for the global time steps without any
significant loss in accuracy.

In Tab. 2.2 we reported the comparison with the single-rate version of
the TR-BDF2 method. In the first column we report the CPU time required
to solve the problem with the two different methods. It has to be remarked
that both methods were implemented in a rather straightforward way and
that the respective codes are far from optimized. On the other hand, exactly
the same computational components, such as e.g. the Newton solver, were
employed in both, so that the ratio of the CPU times required by the two
approaches is a reasonable estimate of the potential speed-up. It can be seen
that the multirate approach solves the problem more than twice as fast as
the single rate method.

The multirate method refines the time steps only for a small portion of
components of the solution, while allowing a larger time step for the other
components. Indeed in Tab 2.2 we may note that the total number of function
evaluation is smaller for the multirate computation, and this reflects on the
computational time.
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Tab. 2.2.: Test case 4 – Computational time and total components number involved,
using a relative tolerance equal to τr = 10−4 and as absolute tolerance
τa = 10−3 for both the single rate and the multirate approach.

comp. time [s] # function eval.

Multirate 74.71 102336
Single rate 179.29 186810
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3Modeling fluid flow in
porous media and
classical discretization
techniques

In this chapter the governing equations used to model flow and transport
processes in porous media are provided. The classical numerical strategies
to solve the problem are discussed and, finally, the discretization techniques
used in this thesis are presented.

3.1 Single phase flow
Single phase flow in porous media is described by the mass conservation

equation:
∂

∂t
(φρ) +∇ · (ρu) = ρq in Ω, t > 0,

where φ is the porosity, ρ is the density and q the source term.

The velocity is expressed by the Darcy velocity:

u = − 1
µ

K (∇p− ρg∇z) in Ω ⊂ R3,

where µ is the viscosity. The rock permeability K is a heterogeneous
symmetric-positive definite tensor. It means that there are two positive
constant kmin and kmax such that kmin ≤ vTK(x)v ≤ kmax for x almost every-
where in Ω and for any v ∈ R3. Finally, g is the gravitational constant and z
a vector pointing in the direction of the gravitational force. The problem is
completed by appropriate initial and boundary conditions.

3.2 Multiphase flow
Let Np be the number of phases present in the fluid, which we assume

is filling the whole pore space. The mass balance for immiscible fluids now
reads

∂

∂t
(φραSα) +∇ · (ραuα) = ραqα, α ∈ {1, ..., Np},

where Sα is the saturation, uα the Darcy velocity, ρα the density and qα the
source term for phase α.

The Darcy phase velocity is given by

uα = −λαK (∇pα − ραg∇z) in Ω,
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where λα = krα/µα > 0 is the phase mobility – i.e. the ratio of the relative
permeability krα (which is a function of the phase saturations [12]) – and the
phase viscosity µα. Phase pressures pα are related by capillary pressure Pc:

pα − pβ = (1− δα,β)Pcα,β ∀α, β ∈ 1, . . . , Np. (3.1)

δα,β is the Kronecker delta, equal 1 if α = β and 0 otherwise. Pcα,β is a
nonlinear function of the wetting saturation. The saturation of the phases
must fulfill the constraint

Np∑
i=1

Si = 1 (3.2)

i.e. the pore space is fully filled with fluid phases. The set of equations
represent a coupled system of differential equations that is strongly nonlinear
because of the nonlinear dependence on the saturation of the capillary
pressures and the relative permeabilities.

These equations together with proper boundary and initial conditions,
form a well-posed coupled system for Np unknowns. Let the boundary ∂Ω of
the computational domain Ω be decomposed into a non-overlapping Dirichlet
ΓD and Neumann ΓN parts, where ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. Possible
boundary conditions for the equations read, for t > 0pα = pαD and Sα = S̄α on ΓD,

ραuα · n = hα on ΓN .
(3.3)

The initial conditions at time t = 0 are

Sα = S0
α and pα = p0

α in Ω,

The boundary conditions (3.3) must be compatible with the algebraic
constraints (3.1) and (3.2). Only Np variables can be chosen as indepen-
dent unknowns. In literature are present different formulations depending
on the choice of the independent variables or primary unknowns. For an
introduction to different formulations see [14].

3.2.1 Capillary pressure curves
If we consider a generic two-phase system with a wetting (w) and a

non-wetting (nw) phase, we need a single capillary pressure curve Pc =
pnw−pw. In general, capillary pressure may depend on temperature and fluid
composition, but in this work we consider only a dependence on wetting
saturation Pc = Pc(Sw), an assumption rather common in literature.

Van Genuchten Capillary Pressure Function

Derivation of the capillary pressure function can be obtained experimentally
through measurement (see [21]) or through an analytical derivation of
functional relationship between capillary pressure and saturation, see [49].
Usually this model contains several parameters that have to be fitted with
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Fig. 3.1.: Van Genuchten and Brooks-Corey capillary pressure functions for different
parameters (Figure from [6]).

experimental data. The Van Genuchten model is written in term of the
effective saturation as

Pc(Sw) = 1
α

(
S̄w
− 1
m − 1

)1/n
(3.4)

where the effective saturation is defined as

S̄w = Sw − Swr
1− Swr − Snwr

,

Swr and Snwr are the wetting phase and non-wetting phase residual saturation,
respectively. The parameter m in (3.4), is often chosen as m = 1− 1

n
where

n is in the range [2, 5] and α is related to the so called entry pressure, i.e. the
minimal pressure required to force the non-wetting flow into a wetting rock
during primary drainage.

Brooks-Corey Capillary Pressure Function

Another model for a two-phase systems is given by the formula proposed by
Brooks and Corey [12]

Pc(Sw) = pdS̄w
− 1
λ (3.5)

where pd is the entry pressure of the porous medium and λ is related to
the pore size distribution, typical values of λ are in the range [0.2, 3]. Fig.
3.1 shows the Van Genuchten function (left) and the Brooks-Corey function
(right) for different values of n and λ, respectively and fixed entry pressure.

J-Leverett Capillary Pressure Function

Another commonly used mothel that describes the capillary pressure in a
two-phase system in the J-Leverett function [65], given by

Pc(Sw) = σ cos(θ)
√
φ

K
J(Sw),
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where σ is the surface tension, θ is the contact angle, φ is the porosity, K is
the permeability and J is the J-Leverett function:

J(Sw) = γ
(
Sw − Swi
1− Swi

)−0.5
,

where γ is normally chosen in the range [0.05, 0.2] and Swi = 0.2, see [67] for
more details.

3.2.2 Relative permeability curves
In this subsection we review several laws that define the relative perme-

ability krα. In two-phase flow this leads to the functions proposed by Van
Genuchten and Brooks-Corey.

Van Genuchten Relative Permeability

The Van Genuchten relative permeability functions for a two-phase system
with wetting (w) and non-wetting phase (nw) are written in terms of residual
saturation as

krw = S̄εw

(
1−

(
1− S̄w

n
n−1
)n−1

n

)2

,

krnw = S̄γnw

(
1−

(
1− ¯Snw

) n
n−1
) 2(n−1)

n

,

where ε and γ are typically chosen as ε = 1
2 and γ = 1

3 , see [49]. Parameter n
is the same of eq. (3.4).

Brooks-Corey Relative Permeability

The Brooks-Corey model is given by the formulas:

Krw(Sw) = S̄w
− 2+3λ

λ ,

Krnw(Snw) = S̄2
nw

(
1−

(
1− S̄nw

) 2+λ
λ

)
.

Also here, the parameter λ is the same as in the capillary pressure function
(3.5). Fig. 3.2 shows an example for the Van Genuchten relative permeability
(left) and the Brooks-Corey relative permeability (right) for different values
of n and λ, respectively.

3.2.3 Immiscible two-phase flow:
pressure-saturation formulation

In this work, we consider a two-phase flow system, the wetting and
non-wetting phase. Under the incompressible fluid and solid assumption,
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Fig. 3.2.: Van Genuchten and Brooks-Corey relative permeability functions for dif-
ferent parameters, residual saturationsSwr = Snwr = 1 (Figure from
[6]).

considering the non-wetting pressure and the wetting saturation as primary
variable [16], the following pressure equation is obtained:

∇ · ut = qt in Ω, (3.6)
ut = −K (λt∇p− λw∇Pc − (λwρw + λnwρnw)g∇z) . (3.7)

where p = pnw, S = Sw, λt = λw + λnw is the total mobility, qt = qw
ρw

+ qnw
ρnw

is

the total source term and ut = uw + unw is the total velocity.

The saturation equation is transformed into

φ
∂S

∂t
+∇ ·

{
Kfwλo(∇Pc + (ρnw − ρw)g∇z) + fwut

}
= qt, in Ω. (3.8)

where fw = λw/λt is the fractional flow. Equations (3.6), (3.7) and (3.8)
are coupled by the total velocity, the phase relative permeability krα and the
capillary pressure Pc.

3.3 Solution strategies
There are three main solution strategies to solve the equations described

in the previous section: a fully implicit (or fully coupled) approach, the
IMPES (IMplicit Pressure, Explicit Saturation) approach and the sequential
implicit strategy.

3.3.1 Fully implicit method (FIM)
The FIM approach solves pressure and saturation equations simultane-

ously [77]. The equations are first discretized, both in space and time, and
written in the residual form:

r(x) = 0

where r is the residual and x is the vector of the primary unknowns
(p, S1, . . . , SNp−1). The residual is a nonlinear function of the unknowns so a
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linearization technique – namely the Newton-Raphson method – is used to
solve the equation:

rν+1 ≈ rν + ∂r
∂x

∣∣∣∣∣
ν

δxν+1 = 0

ν is the iteration index and δx is the increment. At each iteration, until
convergence is achieved – i.e. residual smaller than a given tolerance – a
linear system is solved

Jνδxν+1 = −rν , (3.9)

J = ∂r
∂x

is the Jacobian matrix. At each iteration the linear system (3.9) has

to be solved, it can be used a direct method or, if the system is too large, an
iterative method [85].

3.3.2 Sequential approaches
Sequential approaches consist in solving the equations separately. First,

the pressure equation (3.6) is solved. Then, the total velocity is calculated.
And, at the end, the saturation equations are solved using eq. (3.8). In this
way, all the transport dependent terms are given, since the pressure is know.

The simplest approach to solve these splitted equations is the IMPES
method [4]. It employs an implicit time integration scheme for the pressure
(it is a parabolic equation in the compressible case) and an explicit one to
solve the saturation equations. In this way, the computational cost to solve
each step is reduced. However, if we solve the saturation equation with an
explicit scheme we may have a severe restriction of the time step because of
the CFL condition. For this reason it is usually preferable to use an implicit
time integration technique also for the saturation equations. The resulting
procedure is called Sequential IMplicit (SIM) strategy. At each time step ∆t
from current time tn to the next simulation time tn+1, the solution at time
tn+1 is found by first solving the pressure equation, keeping all saturation
dependencies frozen at their values at t = tn, i.e.,

−∇ ·
(
Kλnt∇pn+1

)
= qt−∇ · (K(λnw∇P n

c + (λnwρw + λnnwρnw)g∇z)) . (3.10)

Then, the total velocity is computed as

un+1
t = −K

(
λnt∇pn+1 − λnw∇P n

c − (λnwρw + λnnwρnw)g∇z
)
,

and, finally, the new saturation values are found by solving,

φ
Sn+1 − Sn

∆t +∇ ·
(
Kfn+1

w λn+1
o

(
∇P n+1

c + (ρnw − ρw)g∇z
)

+ fn+1
w un+1

t

)
= qt,

(3.11)
which corresponds to an implicit Euler step. Sometimes, in cases with strong
compositional effects (out of the topic of this thesis) this approach can lead to
some instability of the solution. For this reason the sequential fully- implicit
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Fig. 3.3.: Example of control volumes (K,L).

(SFI) method has been introduced [71, 72]. In this strategy sub-iterations
between pressure and saturation equations are performed until convergence.

3.4 Implicit Finite Volume Discretization
The fine-scale (in space) discrete system is obtained by using a finite-

volume-based two-point-flux-approximation scheme. Let Th be the fine scale
mesh with rectangular or hexahedral control volumes K ∈ Th . The set of
faces e of generic element K is denoted by EK . The flow equation (3.10) is
discretized as

−
∑

eKL∈EK
PeKL = |K|qtK −

∑
eKL∈EK

BeKL ∀K ∈ Th, (3.12)

where |K| stands for the measure (volume for three dimensional elements,
area in two dimensional elements) of element K, eKL is the face of element
K shared with element L, and the numerical flux for the pressure PeKL is
given by

PeKL = τK|Lλ
UP
tKL

(pn+1
L − pn+1

K ) ∀eKL ∈ EK ,

where pK is the constant pressure approximation in the current cell K and
pL is the pressure value in the neighboring cell. The interface trasmissibility
value τK|L is the harmonic average of the neighboring cell parameters [6],
i.e.,

τK|L = |eK|L|
dKσ
KK

+ dσL
KL

,

where |eK|L| is the area of the interface (length in two-dimensional domains),
dKσ is the distance between the center of the current cell K and the interface
σ = eK|L and similarly, dσL is the distance between the interface and the
center of the cell L, as shown in Fig. 3.3.

The discrete phase mobility at the interface is given by:

λUPαKL =

λα(SnαU ) if τK|L(pK − pL) + τK|Lραg(zL − zK) > 0
λα(SnαU ) otherwise,

(3.13)

where, SU and SD denote the upstream and downstream saturation values,
respectively. If, for example, the velocity propagates towards the right, the left
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side of the cell K is called upstream side and the right side is the downstream
side, as described in [98].

The numerical fluxes at the right hand side are computed as follows:

BeKL =τK|LλUPwKL(P n
cL
− P n

cK
)+

+τK|L
(
λUPwKLρw + λUPnwKLρnw

)
(zL − zK) ∀eKL ∈ EK ,

where the discrete phase mobilities are chosen as in (3.13). The residual of
the discrete saturation equation (3.11) reads

rn+1
K = φ(Sn+1

K − SnK)− 1
|K|

∑
eKL∈EK

F n+1
eKL
− qn+1

tK
= 0. (3.14)

Here, F n+1
eKL

is the numerical flux and it can be decomposed in three parts
to have a separate treatment of the mobilities [66]:

F n+1
eKL

=
(
V n+1
eKL

+Gn+1
eKL

+ Cn+1
eKL

)
V n+1
eKL

is the viscous numerical flux, Gn+1
eKL

is the buoyancy numerical flux and
Cn+1
eKL

the capillary numerical flux. In the viscous numerical flux the mobilities
are upwinded using the sign of the total velocity:

F n+1
eKL

=

∆tfw(Sn+1
U )uTKL if uTKL > 0

∆tfw(Sn+1
D )uTKL otherwise.

In the gravity numerical flux, the saturations for the mobilities are chosen
based on the density differences:

Gn+1
eKL

=

∆tτK|Lfw(Sn+1
U )λo(Sn+1

U )(ρnw − ρw)g(zL − zK) if (ρnw − ρw)g(zL − zK) > 0
∆tτK|Lfw(Sn+1

D )λo(Sn+1
D )(ρnw − ρw)g(zL − zK) otherwise.

Finally, the capillary numerical flux is approximated as:

Cn+1
eKL

=

∆tτK|Lfw(Sn+1
U )λo(Sn+1

wU
)(P n+1

cL
− P n+1

cK
) if uTKL > 0

∆tτK|Lfw(Sn+1
D )λo(Sn+1

wD
)(P n+1

cL
− P n+1

cK
) otherwise.

The fractional flow, as the mobilities and the capillary pressure, are a
nonlinear function of the saturation, and the Newton method is used to solve
the nonlinear transport equation. Note that the flux function is non-convex,
therefore, the Newton method may diverge for big time steps. To ensure
convergence of the nonlinear method, a modified Newton approach has
been used. The technique relies on the factor that for hyperbolic problems
with S-shaped flux functions, typical of multi phase transport flows, the
iteration of the Newton method is always converges if the initial guess is
equal to the inflection point of the flux function f(S) i.e. the point SC such
that f ′′|SC = d2f

dS2 |SC = 0. However, in some practical cases it is difficult to
determinate the location of the inflection point. Thus, modified Newton
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works in the following way: at the end of each Newton iteration, if the
sign of f ′′ at Sn+1,ν and Sn+1,ν+1 (the superscripts ν andν + 1 indicate the
previous and the current iteration of the Newton iterations, respectively) are
not the same; Sn+1,ν+1 is replaced by (Sn+1,ν+1 +Sn+1,ν)/2 otherwise Sn+1,ν+1

remains unchanged. More details may be found in [55].

3.4.1 Treatment of wells
In this work wells are modeled using Peaceman correction [78]. This is a

standard way to treat a well as a source, or sink, term added to the gridblocks
penetrated by the well [4].

Since well pressure is given, injection or production rate for each phase
is expressed by

qα = WIλα (pα − pw) , (3.15)

where WI is the productivity well index, λα is the already defined phase
mobility, pα is the phase pressure in the perforated gridblock and pw is the
given wellbore pressure. In equation (3.15), the productivity well index
describes the transmissibility between the wellbore and the perforated cell is
modelled by

WI = 2π∆z
ln rb
rw

where ∆z is the perforated cell height, rb is the perforated cell radius and rw
is the well radius.
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4A conservative multirate
multiscale method for
simulation of multiphase
flow in porous media

In this chapter, we present a novel conservative multirate multiscale
method for space-time conservative multiscale simulation of sequentially
coupled flow and transport equations. First, the pressure is solved with
the multiscale finite volume method. The iterative multiscale procedure is
applied to guarantee the desired accuracy of the pressure solution. Once a
good-approximate multiscale pressure solution is obtained, a conservative
velocity field is constructed by solving local pressure equations subject to
Neumann flux from the multiscale pressure solution. This conservative
velocity field is then used to solve the saturation equation using a multirate
method with a given accuracy tolerance. The multirate method employs,
initially, a coarse-scale time step everywhere in the domain to estimate the
updated saturation field. Then, based on the error estimate criterion, the
location of high sensitivity regions (fast dynamics) is detected and solved
with a smaller time step. The integration of the refined time-step zone
(fast dynamics) and the rest of the domain (slow dynamics) is done via the
flux-constrained formulation described in Chapter 2 that guarantees local
mass balance. This combination of a space-time multiscale for flow and
transport allows for reducing the computational cost without compromising
the accuracy of the solution.

4.1 State of art
To tackle the simulation complexity with respect to the space, multiscale

finite element [52, 32, 33] and finite-volume [56, 47] methods have been
developed to construct a spatial coarse-scale systems for elliptic [1, 15, 58,
75] and parabolic [43, 18] flow equations with fine-scale heterogeneous
coefficients. This is achieved by introducing locally-computed basis functions.
After solving the coarse scale system, the approximate fine-scale solution can
be found by interpolating the coarse-scale solution with the local basis func-
tions. The multiscale method also allows converging to the fine-scale solution
using the possibility of a conservative velocity construction at each iteration
step [47]. It has been successfully integrated with both sequential [60] and
fully implicit [25] coupling approaches. Among many other developments,
recent advances include extensions to compositional [63, 44, 75, 76, 24]
and geothermal flows [79, 96]. Multiscale simulation of fractured heteroge-
neous porous media have been also considered for both finite-volume and
finite-element methods [45, 89, 2, 10, 95, 87]. An important feature of the

Parts of this chapter have been published in the Journal of Computational Physics [29]
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multiscale procedure is that it can be formulated algebraically, which allows
for convenient integration with existing commercial simulators for two-level
[68, 101, 99] and dynamic multilevel [51] simulations.

In sequential simulation of two-phase flow, once the pressure solution
is obtained, a saturation equation needs to be solved. Due to the sharp
saturation fronts, small time steps are often required to achieve the desired
accuracy. This challenge can be solved by the multirate techniques prevously
described, which achieve the required accuracy with employing the refined
time step only locally. They are different, yet complementary, to Adaptive
Implicit (AIM) [90, 19, 69, 38, 39, 73] and potential ordering [61] methods,
which aim at increasing stability by combining explicit-implicit integration
strategies, as already explained in Chapter 1. We recall that, instead, in
multirate methods the system is subdivided into two subsystems, one con-
taining the active (fast) components that need a refined time step, and the
other formed by the latent (slow) components, where the current time step
is sufficient for the desired accuracy. Of particular interest is their applica-
tion to heterogeneous porous media and their integration within nonlinear
multiphase flow simulators.

4.2 Multirate multiscale approach
For efficient and accurate solution of the flow and the transport equations,

i.e., Eqs. (3.12) and (3.14), respectively, we propose a multirate multiscale
method which integrates multiscale techniques with our conservative ap-
proach. Fig. 4.1 provides an algorithmic overview of the method for one
global time step. As illustrated, the multiscale finite volume method is used
to solve the pressure equation, and the multirate method for the transport
equation. More details will be provided in the following sub-sections.

4.2.1 Multiscale method for flow
The multiscale method considers two sets of coarse grids, denoted as

primal and dual coarse grids, built starting from a given fine-scale compu-
tational grid. The primal coarse grid defines the control volumes to solve
the pressure equation at the coarse-scale. The dual grid, on the other hand,
provides the local supports for the computation of multiscale basis functions.
Fig. 4.2 illustrates the construction of the coarse grids. Other special local
functions, for instance well-functions near fine-scale source terms, can also
be introduced in the dual coarse grids [99].

Let M and N be the number of coarse cells and of dual coarse cells,
respectively. The multiscale method provides an approximation p′ of the
fine-scale solution pf using a linear combination of solutions at the coarse
grid nodes, namely

pf (x) ≈ p′(x) =
M∑
k=1

Φk(x)p̄k.

Here, Φk and p̄k are respectively the basis function and coarse-scale solution
associated to the coarse node k. The former is found by assembling specially
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Fig. 4.1.: Description of the multirate multiscale algorithm for a time step.
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Fig. 4.2.: Illustration of the multiscale grids. Shown on the right and left are a
coarse cell Ω̆k and a dual-coarse cell Ω̃h, respectively.

constructed local basis functions associated to that node in the dual coarse
cells. More precisely, we set Φk(x) = ∑N

h=1 Φh
k(x), where each Φh

k(x) is built
by solving 

−∇ ·
(
λtK · ∇Φh

k

)
= 0 in Ω̃h

−∇|| ·
(
λtK · ∇Φh

k

)
||

= 0 on ∂Ω̃h

Φh
k(xi) = δik ∀xi ∈ {1, ...M}

on each dual-coarse cells. Here, subscript || denotes a reduced problem
along the tangential direction of the dual-coarse cell boundary. Note that, by
construction, Φh

k is identically zero on coarse mesh cells not containing node
k.

These basis functions can in fact be computed with some algebraic
operations on the matrix of the fine-scale pressure system, as explained
in [99], and collected as columns of the prolongation matrix P used to map
the coarse-scale solution to the fine grid, i.e.

P =
[
Φ1 Φ2 . . . ΦN

]
.

The restriction operator R, needed to map from fine to coarse-scale, is
defined as

R(i, j) =

1 if fine cell j is in coarse cell i,
0 otherwise.

More details can be found in [99].
From the algebraic system of equations for pressure at fine-scale Apf = b,

we build the operator M−1
MSFV = P(RAP)−1R, and the iterative multiscale

procedure: starting from a given p0, for ν = 0, 1, . . . execute the following
steps:

1. Multiscale stage: δpν+ 1
2 = pν+ 1

2 − pν = M−1
MSFV r

ν ;

2. Smoothing stage: δpν+1 = pν+1 − pν+ 1
2 = M−1

ILU(0) r
ν+ 1

2 ;
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where the residual vector r is updated using the latest available pressure,
e.g. rν+k = b − Apν+k. Steps 1 and 2 are repeated until the norm of the
residual is below the desired threshold. Note that an ILU(0) factorization
of the fine-scale matrix A is adopted in the smoothing stage, as it has been
found to be an effective choice [99]. In addition, before entering this iterative
procedure, for the fine-scale source terms the initial guess pν is improved as

pν
′ − pν = M−1

W rν ,

where M−1
W is an adaptive local block-solver which acts only on dual-coarse

cells with a nonzero fine-scale source terms. This can be seen as a form
of well function [55]. Once the pressure is obtained, an additional MSFV
stage is employed to obtain a coarse-scale conservative velocity field. Local
pressure equations on the primal coarse cells are solved, subject to the
velocity computed from the multiscale approximate pressure field. This stage
produces a fine-scale locally conservative velocity which is then used to
update the saturation equations [47].

4.2.2 Conservative multirate method for transport
equation

We now present the details of the conservative multirate method for
the efficient solution of the saturation equation (3.8). We recall that we
are now facing a nonlinear equation whose solution may exhibit highly
localized variations and fronts. The multirate method adopts different time-
step sizes in different parts of the spatial domain to increase computational
efficiency while preserving accuracy. The proposed method is based on a flux
partitioning strategy to maintain local mass conservation.

The multirate method procedure can be summarized as follows: given
the solution at time tn, first an approximate solution at time tn+1 is computed
for all components using the coarse-scale time-step size ∆t. This means
that all cells will be initially assigned to the set of the critical zone EA, and,
following the notation in Section 3.4, thus we compute

Sn+1
αK

= SnαK −
1

φ|K|
∑

eKL∈EK
F n+1
eKL,α

− qn+1
tK

The value of the numerical fluxes at all cell interfaces eKL is then checked,
using an appropriate error estimator ηKL that will be detailed later on. If a
flux is rejected on the basis of the error estimator, i.e. if the error estimate is
greater than a given tolerance, cells K and L are added to the new set EA.
Accordingly, for each cell K we can define the set of active fluxes (where the
flux does not satisfy the error criterion) and the set of fluxes at the interface
between fine and coarse regions, as

EKA = {set of faces of the element K : ηKL > tol ∀eKL ∈ EK},
EKL = {set of faces of the element K : ηKL ≤ tol ∀eKL ∈ EK}.
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Solution in the cells in EA will be recomputed (locally) with a smaller
time step, using an approximate discrete flux at the boundary, obtained by
scaling the coarse-scale fluxes by the ratio of the new and the coarse time
step. This approximation guarantees mass conservation at the global coarse
time step. While, the saturation in cells that have a side at the interface
between fine and coarse region is computed as

S
n+ 1

2
αK = SnαK −

1
φ|K|

∑
eKL∈EKL

1
2F

n+1
eKL,α

− 1
φ|K|

∑
eKL∈EKA

F
n+ 1

2
eKL,α − q

n+ 1
2

tK .

Here, F n+1
eKL

has been kept frozen at the value computed at the larger time
step. If the new time step is such that all fluxes are accepted, the solution at
time tn+1 reads

Sn+1
αK

= S
n+ 1

2
αK − 1

φ|K|
∑

eKL∈EKL

1
2F

n+1
eKL,α

− 1
φ|K|

∑
eKL∈EKA

F n+1
eKL,α

− qn+1
tK

.

The example above is a simple case where just one refinement took place.
However, the method has been extended to deal with an arbitrary level of
refinements until obtaining a desired flux quality. We have indeed adopted a
self-adjusting strategy where the sub-critical zones are updated continuously
until all fluxes satisfy the error threshold criterion. The method, therefore,
entails two main loops. Loop 1 detects and integrates the sub-critical regions
until the flux quality check is satisfied. The time-step in each new sub-critical
zone is divided by 2. Loop 2 advances the sub-critical zones in time until the
global time-step synchronization takes place. Fig. 4.3 illustrates a schematic
example of how the two loops perform. The thick lines represent the sub-
critical zones EA and the highlighted sub-critical zones indicate cells where
the transport equation has been solved either for refinement (Loop 1) or time
advancing (Loop 2).

To check the flux quality we used an a-posteriori error estimator origi-
nally derived in [97]. It is based on the difference of fluxes at the current
and previous local time-steps:

η
(i)
KL = |F (i)

eKL,α
− F (i−1)

eKL,α
|,

where superscript (i) denotes here the i-th refinement inside the current
global time step, while (i− 1) the previously accepted time step.

4.3 Numerical results
To test the performance of the multirate multiscale method, we consider

the numerical test cases presented in [46]. In particular, the top and the
bottom layers of the SPE10 test case are used to define the permeability field
distribution [17].

We quantify the accuracy of the multirate multiscale solution by com-
paring it with the one obtained with fine-scale discretization both in space
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Fig. 4.3.: Schematic illustration of the integration in time with the multirate strategy
for a global time step. In row (a) the Loop 1 has been applied to locally
refine in time until the flux quality is satisfied. In row (b) Loop 2 is
employed to advance the sub-critical zones in time until the global coarse
time synchronization is reached. Note that Loop 1 and Loop 2 are fully
integrated, meaning that for each step of Loop 2, Loop 1 will be called to
maintain the flux quality.
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and time (referred to as “reference solution” and denoted with the sub-index
“ref”). Pressure relative errors and saturation absolute errors at each point
and time are defined as

EP (x, t) = |p(x, t)− pref (x, t)|
|pref (x, t)| ,

and
ES(x, t) = |S(x, t)− Sref (x, t)|,

respectively, where | · | is the absolute value.
We will also make use of the relative errors in l2-norm at time t, given by

E2P (t) = ||p(t)− pref (t)||2
||pref (t)||2

and

E2S(t) = ||S(t)− Sref (t)||2
||Sref (t)||2

,

respectively. Here ||a||2 =
√∑

i a
2
i .

In the following test cases, we consider a rectangular domain and a fine-
scale grid of 220×60 cells, over which the multiscale method imposes 20×12
coarse grid cells and two fluids with different viscosity. The less viscous
fluid (water) is injected at the top-left cell (1, 1) with a non-dimensional rate
of 10 and the more viscous fluid (oil) is produced at the bottom-right cell
(220, 60), which is kept at zero pressure. No-flow conditions are applied at
the boundary in all test cases. In all simulations the domain is initially filled
with oil, i.e. S0

o = 1. Quadratic relative permeability functions are employed,
more precisely we set kw(Sw) = S2

w and ko(Sw) = (1 − Sw)2. The viscosity
ratio µo/µw is set equal to 10. In this section we neglected capillary and
gravity effects.

4.3.1 Test case 1: SPE 10 top layer
We consider the top-layer permeability field of the SPE10 test case, as

shown in Fig. 4.4. The simulation consider the time interval (0, 600]. For
t ∈ (0, 20), a time step size equal to 1 is employed in order to start the
multirate computation at t = 20 with a well developed saturation profile.
The global (coarse-scale) time-step size during the multirate procedure is
∆t = 7.25. The flux quality tolerance and the Newton iterative convergence
threshold are set to 10−4 and 10−8, respectively. Fig. 4.5 shows the reference
solution at final time t = 600.

As shown in Fig. 4.6, with the multirate approach only cells near the
saturation front are solved at the fine timescale resolution. These cells are
indeed associated with a fast process and sufficiently small time steps are
needed to guarantee the required accuracy.

Fig. 4.7 illustrates pressure and saturation errors of simulations com-
puted with coarse time steps and multirate (MR). For both of them, we have
used the fine-scale grid in space. It is clear from this figure that the multirate
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Fig. 4.4.: Test case 1 – Natural logarithm of the SPE10 top-layer permeability
distribution.

Fig. 4.5.: Test case 1 – Reference solution maps at final time t = 600 for the global
pressure (left) and water saturation (right).

Fig. 4.6.: Test case 1 – Water saturation solution and active cells at times t =
222.094, t = 435.062 and t = 599.094.
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Fig. 4.7.: Test case 1 – Errors for the pressure (left column) and errors for the water
saturation (right column) at final time t = 600 for the fine space grid,
coarse time steps solution (top row) and for the fine space grid, multirate
solution (bottom row).
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Fig. 4.8.: Test case 1 – Pressure (left) and saturation (right) relative errors in l2-
norm at each global step during simulation time for the multirate approach
and using only coarse time steps, both computed using the fine space grid.

technique improves the solution taking only a small fraction of the cells at
the fine-scale time step. Note that, since pressure and saturation equations
are coupled, improving the saturation solution with the multirate method
produces a more accurate pressure field.

Fig. 4.8 shows the l2-norm of the error of the solutions obtained with
the multirate approach and the coarse time steps approach at each global
time steps (from time t = 20 to time t = 600). For both approaches, the
solution from t = 0 to t = 20 is computed using small time steps to start the
comparison from an already developed saturation field. The solution with
overall coarse time steps start to accumulate errors immediately.

Fig. 4.9 shows that, compared with the single-rate fine timescale solver,
the proposed multirate method applies more Newton iterations to converge
to the nonlinear saturation solutions at each global (coarse-scale) time step.
This fact motivates the definition of an indicator to estimate the overall
computational cost as the cumulative sum of the number of Newton iterations
times the number of active components. This indicator is indeed much
lower for the multirate solution compared to that obtained in the single-
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Fig. 4.9.: Test case 1 – Number of active cells multiplied by the number of Newton
iterations at each time step (both global and local) for the multirate (MR)
and fine-scale in time solvers. In the x-axis we show the corresponding
simulation time. The value presented below each graphic is the total
complexity of the respective solver.
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Fig. 4.10.: Test case 1 – CFL numbers (based on maximum analytical fractional flow
derivative value) at each time step of the multirate method.

rate, fine time-step computation. This is because the steps performed with
the multirate method with a large ∆t require more Newton iterations, as
expected. However, this number drops quickly when the sub-critical zones
are solved at smaller time step sizes because of local refinement. For this test
case, the computational cost of the multirate solution is less than one third
that of the fine-scale reference solver (the precise ratio is 0.29).

Fig. 4.10 shows the CFL number associated with the adaptive time
steps for multirate simulations, computed using the maximum value of the
analytical flux derivative for the saturation. Large portions of the domain (far
from the front) exhibit large CFL numbers, while a smaller fraction (near the
front) advance with smaller CFL numbers. This illustrates the effectiveness
of the proposed multirate method. In the simulations, the refinement of the
time step is stopped once it leads to CFL = 0.8.

Now that the multirate method in time is fully investigated, we combine
it with the multiscale method in space. Fig. 4.11 reports the errors of the
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Fig. 4.11.: Test case 1 – Errors for the pressure (left column) and errors for the
water saturation (right column) at final time for the multiscale with
coarse time steps approach (top row) and for the multirate multiscale
method (bottom row).

Fig. 4.12.: Test case 1 – Errors for the pressure (left column) and errors for the
water saturation (right column) at final time for the multiscale with the
fine time steps approach.

multiscale in space and coarse time-step (top) solution as well as those
obtained with the multiscale multirate approach (bottom). There are no
notable differences between the two solutions because the spatial errors
introduced by the multiscale procedure dominate the overall errors. In fact,
as shown in Fig. 4.12, the errors of the multiscale method with fine time
steps are indistinguishable from those reported in Fig. 4.11.

Fig. 4.13 shows the simulation errors, similarly to Fig. 4.11, but with the
iterative multiscale solver in space. Here, the two-stage multiscale solver is
employed until the l2-norm of the pressure residual is equal to 10−3 (top) and
equal to 10−5 (bottom). For both the simulations the number of smoothing
per iteration step was set to ns = 5. Consistently with what reported in
literature, decreasing the pressure residual tolerance brings more accurate
solution for both pressure and saturation.

Fig. 4.14 presents the multirate multiscale errors compared with those
of multiscale in space single-rate coarse-step in time. It is evident that the
multirate method improves the solution by applying fine-scale time-steps
only close to the saturation front. This is further elaborated in Fig. 4.15,
which reports the l2-norm of pressure saturation relative errors at each global
time-step. Also in this case fine time-steps equal to 1 are employed for both
the approaches in the initial part of the simulation (t ∈ (0, 20)) to have a
good initial saturation profile near the injection point.
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Fig. 4.13.: Test case 1 – Errors for the pressure (left column) and errors for the
water saturation (right column) at final time for the multirate iterative
multiscale approach with tolerance equal to 10−3(top row) and equal to
10−5 (bottom row).

Fig. 4.14.: Test case 1 – Errors for the pressure (left column) and for the water
saturation (right column) at final time for the coarse time steps (top
row) and for the multirate method (bottom row), both considering the
iterative multiscale approach with tolerance equal to 10−5 .
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Fig. 4.15.: Test case 1 – Evolution of pressure (left) and saturation (right) relative
errors in l2-norm at each global time step for the multirate iterative mul-
tiscale approach and the iterative multiscale, coarse time steps approach.
The iterative multiscale tolerance is 10−5.
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Fig. 4.16.: Test case 1 – Number of active cells multiplied by the number of Newton
iterations at each time step for the multirate multiscale and reference
solvers. The iterative multiscale tolerance is 10−5. The value presented
below each graphic is the total complexity of the respective solver.
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Fig. 4.17.: Test case 2 – Bottom-layer logarithmic permeability distribution.

Finally, the number of Newton iterations multiplied by the number of
active cells (complexity) throughout the simulation time is shown in Fig.
4.16. We can notice that, even if the pressure profile is computed with the
multiscale approach, the complexity of the transport equation is comparable
with that of the previous test case, where we have adopted the fine-scale
approach to compute the pressure.

4.3.2 Test case 2: SPE 10 bottom layer
In the second test case, we use the permeability field of the SPE 10

bottom layer, which has higher contrasts and more a channelized distribution,
see Fig. 4.17.

As in the previously, the simulation starts at time t = 0 and ends at time
t = 600. The global time step is equal to 5.5 starting from time t = 5. In the
range t=(0,5] a fine time step equal to 1 has been employed for all approaches
(multirate, fine time-steps and coarse time steps). The flux tolerance for the
multirate approach is equal to 10−3 and the Newton convergence tolerance is
10−8. Fig. 4.18 shows the reference solution at final time.

Fig. 4.19 illustrates the active cells where the saturation transport
equation is solved by the multirate method at a fine timescale, at three
different instants. The method detects regions where the saturation front is
moving fast and it is necessary to use smaller time steps.
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Fig. 4.18.: Test case 2 – Reference solution of pressure (left) and water saturation
(right) at final time t = 600.

Fig. 4.19.: Test case 2 – Water saturation solution and active components at times
t = 103.176, t = 298.443 and t = 599.493.
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Fig. 4.20.: Test case 2 – Errors for the pressure (left column) and for the water
saturation (right column) at final time for the coarse time steps solution
(top row) and for that obtained with the multirate method (bottom row).
Both simulation used the fine spatial grid.
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Fig. 4.21.: Test case 2 – Pressure (left) and saturation (right) relative errors in
l2-norm during the simulation time for the multirate approach and the
coarse time steps approach, both considering the fine space grid.

As in the previous test case, the multirate approach is employed firstly
on a fine spatial grid. Fig. 4.20 shows the errors for single-rate coarse time
steps (top) and the multirate method (bottom). The multirate technique
improves both the pressure error (left) and the saturation error (right). Note
that for this challenging case, the coarse time-step solution does not capture
the right saturation fronts accurately. The multirate method, instead, leads
to a significantly improved solution by employing fine-scale time steps only
in the vicinity of the front.

Fig. 4.21 shows the l2-norm of pressure and saturation relative errors at
each global time-step, starting from time t = 5, for both the multirate and
overall coarse time-step approaches (using the fine spatial grid in both cases).
As expected, the coarse time-step approach is less accurate than the multirate
method.

Fig. 4.22 presents the computational complexity of the methods, i.e. the
number of Newton iterations multiplied by the number of active cells, for
simulations obtained with the multirate (top), fine time-step (center), and
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Fig. 4.22.: Test case 2 – Complexity of the problem: number of Newton iteration
per active components required at each time step for the multirate (top),
fine time steps (center) and coarse time steps (bottom) approaches.
The value presented below each graphic is the total complexity of the
respective solver.

coarse time-step (bottom) approaches. The ratio between the computational
complexity of the multirate method and that of the reference (fine-scale in
space and time) simulation approach is 0.24.

The CFL number for the multirate method are given in Fig. 4.23. Also
here, the CFL number is computed based on the maximum analytical frac-
tional flow derivative value. Thus, clearly, coarse-scale (global) time steps
have rather high CFL values.

Finally, the multirate multiscale method is investigated. The iterative
multiscale solver tolerance is set to 10−6 with ns = 30 ILU(0) smoothing steps
per iterations. Note that we used the same size for the global time steps as
the previous test case.

Fig. 4.24 illustrates the pressure and saturation errors for the solutions of
the iterative multiscale in space and coarse-scale in time (top) and multirate
in time (bottom) methods. The results are analogous to those obtained
with the multirate approach and the coarse time steps approach where the
fine-scale grid was applied. Fig. 4.25 shows the relative errors at the global
time steps for the coarse-scale and multirate in time approaches, where
both employ the iterative multiscale in space simulation approach. Both
the multirate and the single-rate with coarse time steps are performed from
time t = 5. Also, these results are analogous to the results obtained with
the fine-scale grid in space. Finally, Fig. 4.26 shows the number of Newton
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Fig. 4.23.: Test case 2 – CFL numbers at each time steps for the multirate in time
(fine-scale in space) approach.

Fig. 4.24.: Test case 2 – Errors for the pressure (left column) and for the water
saturation (right column) at the final time for the iterative multiscale
coarse time steps approach (top row) and for the multirate iterative
multiscale approach (bottom row).

Fig. 4.25.: Test case 2 – Pressure (left) and saturation (right) relative errors in
l2-norm during the simulation time for the multirate iterative multiscale
approach and the iterative multiscale coarse time steps approach.
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Fig. 4.26.: Test case 2 – Number of Newton iteration multiplied by the active cells
at each time step for the multirate iterative multiscale approach (top),
the fine-scale in time and space (center) and the iterative multiscale
coarse-scale in time (bottom) approaches. The value presented below
each graphic is the total complexity of the respective solver.

iterations multiplied by the active (critical sub-domain) cells for the three
different approaches. As in the previous test case, the multirate method
reduces the complexity of the solution obtained from the transport equation
by a factor equal to 0.24. The error introduced by the multiscale method to
solve the pressure equation does not affect the performance of the multirate
approach.
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5Algebraic dynamic
multilevel method with
local time-stepping
(ADM-LTS) for sequentially
coupled porous media flow

This chapter presents an algebraic dynamic multilevel method with local
time-stepping (ADM-LTS) applied to the equation describing two-phase flow
in heterogeneous porous media. The method employs an adaptive multilevel
space-time grid determined on the basis of two error estimators, one in time
and one in space. More precisely, at each time step, first a coarse time step
on the coarsest space-grid resolution is computed. Then, based on the error
estimators, the transport equation is solved by taking different time step
sizes at different spatial resolutions within the computational domain. In
this way, the method is able to use a fine grid resolution, both in space and
in time, only at the moving saturation fronts. In order to ensure local mass
conservation, two procedures are developed. First, finite-volume restriction
operators and constant prolongation (interpolation) operators are developed
to map the system across different space-grid resolutions. Second, the fluxes
at the interfaces across two different time resolutions are approximated with
the same averaging scheme in time used for the multirate approach and
described in Chapter 2. Several numerical experiments have been performed
to analyze the efficiency and accuracy of the proposed ADM-LTS method for
both homogeneous and heterogeneous permeability fields. The results show
that the method provides accurate solutions, and at the same time it reduces
the number of fine grid-cells both in space and in time.

5.1 State of Art
As explained in Chapter 1, simulation of multiphase flow in natural

porous media is challenging due to the variety of time and length scales
involved in the process. Accurate numerical models require very high reso-
lution both in space and time to capture all relevant physics. However, for
large-scale simulations these kind of grids are unpractical. As already men-
tion in Chapter 1, the computational cost is reduced by employing upscaling
methods [31] which define effective rock and fluid properties to represent the
relevant physics at a much coarser resolution. However, in presence of highly
heterogeneous permeability fields and whenever a clear scale separation is
not present, excessive upscaling may not give accurate results [26]. For this
reason, advanced and scalable algorithms have to be developed to allow
for efficient simulation on high resolution grids without having to define
upscaled quantities.

Parts of this chapter have been published in MOX/Report No. 18/2019
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Multiscale methods [52, 56, 47, 101, 75] and dynamic local grid refine-
ment technique [7, 36] are among these advanced simulation strategies. The
first ones have been already presented in details in Chapter 4. Instead, the
latter takes advantage of the locality of transport processes by dynamically
adapting the grid resolution so to allow for accurate transport simulations
even in presence of sharp gradients (e.g., [94, 26]). Recently, the Algebraic
Dynamic Multilevel (ADM) method [23, 26] has been developed to combine
the consistent multilevel mapping of the pressure field throughout differ-
ent grid resolutions with an adaptive grid refinement technique. In ADM
simulation the governing equations are first discretized on a high resolution
grid (referred to as fine-scale). Then, they are mapped and solved on a
dynamically defined multilevel spatial grid system. The final solution can be
provided both at the dynamic multilevel and fine-scale resolutions, through a
sequence of prolongation and restriction operators.

Along with the advancements in the space-grid adaptivity, in order to
reduce the overall simulation time, an implicit time integration scheme is
usually employed to allow for much larger time step sizes (compared with
the explicit alternative). The use of implicit integration, in the presence
of strong non-linearities, requires Newton-Raphson iterations at each time
step; however the Newton-Raphson method fails to converge for large time
steps. As a consequence, several remedies have been proposed to enhance
non-linear convergence [55, 100, 48] improving the numerical fluxes and
the internal updates of the nonlinear loops; these allow for the use of very
large time steps and considerably improve simulation time. However, the
excessive numerical dispersion introduced by the use of large time steps can
significantly impact the accuracy of the solution, by, for example, smearing
the advancing saturation front. Thus, multirate or local time-stepping (LTS)
approaches are of great interest for porous media flow simulation. These
methods employ different time step sizes within the domain based on the
local flow characteristics. In [54], an explicit adaptive conservative time
integration techniques is presented, where the sizes of the local time steps
are imposing by the CFL restriction.

5.2 ADM-LTS method
In this section, first, the original ADM method [23] is reviewed, then,

the newly proposed ADM-LTS algorithm is presented in detail.

5.2.1 ADM method
The ADM method is employed to reduce the computational cost associ-

ated with the solution of the linear system arising from the linearized problem
of Eq. (3.11).

Let us consider a domain discretized with a high resolution grid which is
assumed to be fine enough to capture all relevant physics and to honour the
heterogeneous distribution of the geological properties. Given this fine-scale
discretization, a hierarchy of nl nested coarse grids is constructed. Each grid
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is formed by Nl = Nlx ×Nly ×Nlz grid cells, where l is the resolution index
and l = 0 represents the fine grid resolution.

The set of all grid cells belonging to resolution level l is called Πl. At each
time step ADM defines a multilevel grid by combining grid cells belonging to
the hierarchy of grids previously defined. Given a multilevel ADM grid, let us
define Ωl as the set of grid cells belonging to all levels from 0 to l which are
present in the ADM grid. Additionally, it is convenient to define the set Γl as
Γl = Ωl ∩ Πl.

Eq. (3.14) is solved with a Newton-Raphson’s method and at each
Newton’s iteration, a system of the form Jνδxν+1 = −rν has to be solved.
Here, δx is the vector of increment for saturation of phase α, J is the Jacobian
matrix and r is the residual.

Given an ADM grid formed by the set of grid cells Ωl, ADM assumes
that the fine scale solution can be approximated by employing a sequence of
prolongation operators, i.e.

δxwf ≈ δx′w = P̂1
0 . . . P̂ll−1δxADMw .

Here, operator P̂ii−1 interpolates the solution at level i to the finer resolution
level (i− 1) and δxADMw is the vector of increment for the ADM solution on
the adaptive multilevel grid. δxwf is the increment vector at the fine scale.

The fine-scale Jacobian system is mapped to the ADM grid by

R̂l−1
l . . . R̂0

1JP̂1
0 . . . P̂ll−1δxADMw = −R̂l−1

l . . . R̂0
1rf , (5.1)

where R̂i−1
i is the restriction operator which maps the solution from resolution

at level i to coarser level (i− 1). In order to ensure mass conservation at all
levels, a finite volume restriction operator is considered [56]. Thus, the entry
(i, j) of a restriction operator reads

R̂l−1
l (i, j) =

1 if cell i ∈ Γl and cell j ∈ Γl−1,

δij otherwise.

Additionally, constant interpolation is considered,

P̂ll−1 =
(
R̂l−1
l

)T
.

5.2.2 ADM with local time-stepping (ADM-LTS)
At each time step n, after having solved the pressure equation and after

having computed the total velocity field, the transport equation is solved
employing the ADM-LTS algorithm.

First, Eq. (5.1) is solved over the whole domain on the coarsest grid
resolution (lmax) formed by cells belonging to Πlmax and limiting refinement
only around the wells, with time step ∆t.
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Based on the coarse solution obtained, the proper ADM grid resolution is
chosen according to a front-tracking criterion. Two alternative front-tracking
strategies are considered in this work:

• a criterion based on the saturation difference between neighbouring
cells. A cell i belonging to level l is refined whenever the saturation
difference, as defined in [23], between i and one of its neighbours
exceeds a user-defined tolerance εx.

• a time-dependent criterion combined with the previous one to deter-
mine whether cells belonging to Π0 should keep fine. Let us define
ψS = Sn+1−Sn. A fine cell i is kept at the fine resolution only if ψSi > εt,
where εt is a user-defined tolerance. A similar time-based coarsening
criterion has successfully been used in the literature for channelized
heterogeneous problems where stationary gradients are present [22].

Once the ADM grid resolution has been defined, the solution is recom-
puted for all cells belonging to Ωlmax−1 with a time step ∆tlmax−1 = ∆t/η by
imposing local boundary conditions as described in detail in the following
subsection. Here η is the time refinement ratio. Then, the same operation is
repeated for all resolution levels l until l = 0 has been reached. Thus, each
resolution level l (formed by the set of grid blocks Ωl) is solved with a time
step ∆tl = ∆tl+1/η. For the finest level (l = 0) ADM-LTS only recomputes
the solution, with time step ∆t0 = ∆t/ηlmax, for a subset, defined Ω0

A, of the
cells belonging to Ω0. Only fine cells for which ψS = Sn+∆t1 − Sn > εt are
part of the set Ω0

A.
The method advances in time for the active cells in Ω0

A until they reach
t = tn + ∆t1. Once they are synchronized, cells in Ω1 advance in time. At
this point, a new set of cells Ω0

A is selected and these cells are advanced
by ∆t1 performing η ∆t0 time steps. Once all cells in Ω1 have reached time
t = tn + ∆t2 another time step ∆t2 can be performed for all cells belonging
to Ω2. This is a recursive procedure which is performed for all levels until all
cells have reached time tn+1 = tn + ∆t.

Fig. 5.1 illustrates a schematic overview of the ADM-LTS method where
η and lmax are both equal to 2. Fig. 5.2 shows an example of the ADM grid
at each step and the refining area. At the global time step ∆t, the solution
is computed on the coarsest resolution lmax. At the intermediate time step
the ADM grid resolution is defined and the solution is recomputed with the
intermediate time step everywhere except in the coarsest region (middle
figure). At the end, the method checks the errors and defines the set of active
cells Ω0

A (pink region on the right) where the solution is recomputed with
the smallest time step.

Local systems and local boundary conditions

For each resolution level l, the set of grid cells Ωl is solved with the corre-

sponding time step ∆tl = ∆t
η(lmax−l)

. The number of active cells contained by

Ωl is denoted by N l
A.
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Fig. 5.1.: Schematic overview of a time step for the ADM-LTS strategy with η = 2
and lmax = 2.

Fig. 5.2.: Example of ADM grid and active regions for the refinement time steps
with η = 2 and lmax = 2.
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When solving for the cells belonging to Ωl, the numerical flux at the
interface between two cells K and L such that K ∈ Ωl ∧ L ∈ Γl+1 is
approximated by

F
n+β(i)
KL = F

n+γ(j)
KL

η

where
β(i) = i

η(lmax−l)
, i = {1 · · · η(lmax−l)}

γ(j) = j

η(lmax−l−1) , j = {1 · · · η(lmax−l−1)}.

Thus, Eq. (3.14) can be modified to account for the presence of different
time levels as follows

rn+β(i)
K = φ(Sn+β(i)

K − Sn+β(i)−1
K )

− 1
|K|

∑
eKL∈EKA

F n+β(i)
eKL

− qn+β(i)
t − 1

|K|
∑

eKL∈EKL

F n+γ(j)
eKL

η

Here, EKA is the set of interface fluxes exchanged between two cells K and L
both belonging to Ωl. Additionally, EKL is the set of fluxes at the interface
between two cells K and L where K ∈ Ωl and L ∈ Γl+1. Note that, for l = 0
the residual for the active cells is the same described by equation (3.14) but
EKL would be the set of fluxes at the interface between Ω0

A and Ω1 \ Ω0
A .

Remark that, for each level l, the linear system that has to be solved has
the size N l

A×N l
A which is significantly smaller than the full fine-scale system.

Therefore, the dimensions of J and r in (5.1) are smaller. The restriction
operator R̂ = R̂l−1

l . . . R̂f1 and the prolongation operator P̂ = P̂1
f . . . P̂ll−1 have

to be resized in order to solve the smaller linear system. At the beginning of
the time refining strategy, the size of R̂ is equal to NADM

lmax × Nf . To obtain
the correct restriction matrix (R̂lref ), from the fine grid to the active cell
of the ADM grid, we need to select only the rows that represent the active
cells; the columns with all zeros entries need to be eliminated. The reduced
prolongation operator P̂lref is defined as P̂lref = R̂Tlref . So inside each local
time step the following system is constructed:

R̂lref Jlref P̂lref δxADMlref
= −R̂lref rlref

where δxADMlref
is the ADM solution of the active adaptive multilevel grid cells.

The fine solution of the active grid cells is approximated by

δxwA ≈ P̂lref δxADMlref

where the subscripts A represents the subset of active cells on the finest
level. The above strategy allows for conservative multiscale march in time
and space for transport equation within the sequentially implicit simulation
framework. In the following sections, its performance are studied for various
test cases both for 2D and 3D domains.
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Fig. 5.3.: Test case 1 [99× 99] – CFL values for different global time steps at time
t = 500 days.

5.3 Numerical results
The performance of the newly developed ADM-LTS strategy is thoroughly

investigated for several challenging test cases. For all the cases presented,
quadratic relative permeability curves are considered. Additionally, all errors
are computed with respect to a reference solution, obtained by employing a
high resolution discretization both in space and in time. In all the test cases
the gravity ans capillary forces are neglected, except for case test 2 where the
gravity forces are introduced, and case test 7 where we analyzed the same
scenario with and without considering the capillary effects.

5.3.1 Test case 1: 2D homogeneous reservoir
The first test case is a 100 × 100 [m2] homogeneous reservoir, with

isotropic permeability of 5 × 10−15 [m2]. A pressure-constrained wetting-
phase injector well is positioned in the bottom-left corner of the domain
with a pressure pinj = 108 [Pa], whereas a production well is present in the
top-right corner with a relative pressure of pprod = 0 [Pa]. The phase viscosity
values are µw = 10−3 [Pa · s] and µnw = 10−2 [Pa · s] for the wetting and
non wetting phase, respectively. The final simulated time is 600 [days] after
injection has started.

A fine-scale grid with 99× 99 cells is imposed on the domain. ADM-LTS
employs a time refining ratio η = 2 and a space coarsening ratio equal to 3 in
all directions. The user-defined tolerances for the coarsening and refinement
criteria are εx = 0.07 and εt = 5× 10−2.

Simulations are run employing three different global time step sizes: 5,
10 and 20 days. Fig. 5.3 reports the CFL values at time t = 500 days for the
three different time steps for fine-scale in space simulations.

Fig. 5.4 shows a comparison of the ADM-LTS solution with the reference
solution at time t = 500 [days] using three different sizes of the global time
steps, the space grid obtained at the final time are similar capturing the sharp
front.

Fig. 5.5 reports the error for the saturation at time t = 500 days between
a reference solution and the ADM method with fine time steps (first column)
with the LTS approach (second column) and with the coarse time steps (third
column) for the three different time steps sizes ∆t = 5 (first row), ∆t = 10
(second row) and ∆t = 20 (third row). In all cases the AMD-LTS approach
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Fig. 5.4.: Test case 1 [99 × 99] – Reference solution (first column) and ADM-LTS
solution using a global time step size: ∆t = 5, 10 and 20 [days] at time t
= 500 days for the second, third and fourth column, respectively.

improves the errors with respect to the reference solution of the coarse time
step approach.

The complexity of the algorithm is shown in Fig. 5.6. In particular,
each column represents the total amount of active cells multiplied by the
number of Newton iterations involved to compute the solution, for the three
approaches and for the three different global time step sizes. Note that, to
obtain the solution at time t = 600 [days], 120, 60 and 30 global time steps
have been performed using the three analyzed time steps. We remark that
the errors obtained by employing the original ADM method with a fine time
step are comparable to those obtained with ADM-LTS in terms of accuracy.

Fig. 5.7 shows the complexity of a single global time step. For the
ADM method with fine time steps, the local steps are just the small steps
applied at the whole domain. At the end of the local steps both the ADM-LTS
method and the ADM fine step method reach the same time. For the ADM-LTS
method, local step 1 indicates the global step on the coarsest grid, step 2 and
5 are the intermediate time steps performed on level 0 and 1 of the ADM
grid, and the other local steps are the small time steps for the active cells
detected by the error estimator in time. In particular, we can notice that
the intermediate time steps have almost the same complexity of the small
time steps of the ADM fine method, even if the size of the time step is two
times bigger with almost the same number of active cells. This is due to the
improvement of the initial guess for the Newton loop. In the intermediate
time steps we use as initial guess a linear combination of the solution of the
previous time tn and the solution obtained on the coarsest grid at the new
global time tn+1. In the small time steps is not necessary to perform this
technique since a small step is used to advance in time.

The same test case is analyzed after performing a 2× 2 refinement of the
space fine-scale grid. In order to obtain a reasonable solution, using a global
∆t equal to 20 [days], we need to compute more local time steps inside the
global one, so a refining ratio equal to 4 has been taken into account.

Fig. 5.8 reports the complexity for the entire simulation using ADM-LTS
method and the ADM with fine time steps. To obtain the solution at final time
t = 600 [days] with a global time step equal to 20 days, the same number of
global time step are involved (30 time steps in total). Of course the number
of local time step for both the LTS method and the fine time steps approach
has increased; but the ratio between active cells and total cells decreases.
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Fig. 5.5.: Test case 1 [99 × 99] – Saturation errors for the ADM method with fine
time steps (first column), ADM-LTS method (second column) and ADM
coarse time steps method (third column) for the three different global
time step sizes.

Fig. 5.6.: Test case 1 [99× 99] – Total amount of active cells multiplied by number
of Newton iterations for the three different time step sizes. On the
top of each bar the mean in time of the averaged absolute difference
respect to the reference solution for the saturation is displayed Es =
mean|S(tf )− Sref (tf )| where tf is the final time 600 days.
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Fig. 5.7.: Test case 1 [99×99] – Computational complexity history at each local times
step within a global step. The computation complexity is the number of
active cells multiplied by the number of Newton iterations.

Fig. 5.8.: Test case 1 [198×198] – Total amount of active cells multiplied by number
of Newton iterations for the ADM with fine time steps and the ADM LTS
method.

Fig. 5.9 shows the averaged number of active cells times the number of
Newton iterations for each local time step within a global time step.

In Fig. 5.10 we can see that the ADM-LTS approach reduces the errors
obtained using a coarse grid in time.

5.3.2 Test case 2: 3D homogeneous reservoir
A 3D 108× 108× 108 [m3] homogeneous reservoir is considered in this

test case. The domain is discretized, at the fine-scale, with a 54 × 54 × 54
Cartesian grid for a total of 157464 cells. The physical parameters are the
same of the first test case. The size of the global steps is equal to 125 days.
The simulation ends after 70 global steps. The tolerances for the coarsening
criteria in space and time are set to be εx = 0.2 and εt = 5× 10−2.

Fig. 5.11 reports the saturation maps at two different simulation times
(on the top) without considering the gravity effects. The set of active cells
Ω0
A at time t = 1500 (left, bottom) and also a section of the solution at final
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Fig. 5.9.: Test case 1 [198× 198] – Computational complexity history at each local
times step within a global step. The computation complexity is the number
of active cells multiplied by the number of Newton iterations.

Fig. 5.10.: Test case 1 [198 × 198] – Saturation errors at time t = 540 [days] for
the ADM method with fine grid in time (left), ADM-LTS method (center)
and the ADM method with coarse grid in time (right).
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Fig. 5.11.: Test case 2 – Saturation profile (top row) at time t = 1500 days (left)
and at time t = 8750 days (right). Active cells for the level lref=0 at time
t= 1500 (bottom-left) and saturation profile inside the domain at time
t = 8750 (bottom-right).

time t = 8750 days (right, bottom) are also plotted. Note that ADM-LTS
automatically employs fine cells only around the advancing saturation front
and that the active cells in time are only a fraction of them. Fig. 5.14 shows
the total complexity and the mean complexity per local time step for both the
ADM-LTS method and the ADM method with fine time steps. The ADM-LTS
results cheaper with respect to the classical ADM method. The complexity
ratio is equal to 0.6.

Fig. 5.13 shows the saturation maps and the active cells Ω0
A at different

times considering the same scenario but introducing the buoyancy forces.
The density values of the wetting and non-wetting phase have been changed,
the ratio is equal to ρw/ρnw = 5/4. As expected, the wetting profile is not
radially symmetric for the presence of the gravity forces that bring the fluids
at the bottom of the reservoir.

Fig. 5.14 shows the total complexity and the mean complexity per local
time step for both the ADM-LTS method and the ADM method with fine
time steps, with and without considering the gravity effects. The transport
equation is highly nonlinear in the presence of buoyancy forces, so the
nonlinear loops need a large number of Newton iterations to converge for
both the classical ADM method and the new ADM-LTS approach. Instead, as
shown in Fig. 5.15, the number of active cells employed by the ADM-LTS
approach for the two different scenarios is the same for the entire simulation.
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Fig. 5.12.: Test case 2 – Total amount of active cells multiplied by number of Newton
iterations for the ADM with fine time steps and the ADM LTS method
(left) and computational complexity history at each local times step
within a global step (right).

Fig. 5.13.: Test case 2 - Saturation profile (top row) at time t = 1500 days (left),
t = 6375 (center) and t = 8750 days (right). Active cells for the level
lref=0 at time t= 1500 (bottom-left), active cells for the level lref=0 at
time t= 6375 (bottom-center) and saturation profile inside the domain
at time t = 8750 (bottom-right).
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Fig. 5.14.: Test case 2 – Total amount of active cells multiplied by number of Newton
iterations for the ADM with fine time steps and the ADM LTS method
(left) and computational complexity history at each local times step
within a global step (right) with and without buoyancy forces.

Fig. 5.15.: Test case 2 – Number of active cells employed in the ADM-LTS simulta-
tions with and without gravity effects.
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Fig. 5.16.: Test case 3 – Absolute permeability field.

5.3.3 Test case 3: 2D homogeneous reservoir with
barrier

A 2D homogeneous reservoir with low permeability barriers is consid-
ered, as shown in Fig. 5.16. The same permeability field was presented in
[22]. The domain dimensions and the physical parameters are the same of
the first test case, the same 99 × 99 fine scale grid is imposed. The global
time step is equal to 50 [days] and the simulation ends after 100 global time
steps (t = 5000 days).

Simulations are carried out both with the original ADM method em-
ploying a global fine time-step and with ADM-LTS. The coarsening and the
time-refinement criteria tolerances are set to εx = 0.05 and εt = 0.005.

Fig. 5.17 shows a comparison of the saturation profile and the grid
resolution for the two different strategies. The original ADM method with a
saturation difference-based coarsening criterion (top row) employs a large
number of fine grid cells wherever saturation gradients are present even if
they are stationary. On the other hand the newly proposed grid resolution
criterion (bottom row) for the ADM-LTS approach uses fine cells only in those
regions where the saturation gradient is moving, reducing the number of
active cells.

Fig. 5.18 reports the evolution of the active grid cells percentage for the
two different approaches (left) and the evolution of the relative saturation
error in l1-norm (right). In the early steps, we can see that the ADM fine
with just the gradient criterion approach employs almost the same number
of active grid cells used by the ADM-LTS method. For the ADM with fine time
steps at every small local time step we solve both the flow and the transport
equations, instead for the ADM-LTS approach only the transport equation
is solved for the local steps. This is the reason why in the first five steps
the saturation errors for the ADM-LTS approach are larger with respect to
the ADM fine steps approach. Instead, in the last steps the errors increase
because a lower number of fine grid cells has been used.

Fig. 5.19 shows the total complexity (number of active cells multiplied
by the number of Newton iterations) for the ADM with fine steps and the
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Fig. 5.17.: Test case 3 – Saturation profile and ADM grid at different time steps
(columns) for ADM with coarse time steps and classical ADM grid res-
olution (first row) and for ADM-LTS method with the new ADM grid
resolution (second row).

Fig. 5.18.: Test case 3 – number of active cells employed in ADM with fine grid in
time and ADM-LTS simulations expressed as percentage of fine grid cells
(left) and the saturation relative errors in l1-norm for the ADM fine and
ADM-LTS method (right).
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Fig. 5.19.: Test case 3 – Total amount of active cells multiplied by number of
Newton iterations (left) and computational complexity history at each
local times step within a global step (right) for the ADM with fine time
steps approach and for the ADM-LTS method.

Fig. 5.20.: Test case 4 – Natural logarithm of the permeability.

ADM-LTS approach. Note that the local time steps of ADM-LTS method reduce
the complexity of the system compared to the classical ADM approach.

5.3.4 Test case 4: Heterogeneous reservoir
(SPE10 top layer)

In this test case a heterogeneous reservoir is considered. The perme-
ability map is the top layer of the SPE10 test case [17] and it is presented,
in logarithmic scale, in Fig. 5.20. The size of the reservoir is 2200 × 600
[m2] and a 216 × 54 grid is employed at the finest level. The injector is at
the top left corner and has a constrained pressure 107 [Pa]. A producer is,
instead, located at the bottom right corner of the domain with a pressure
equal to 0 [Pa]. The porosity of the reservoir φ is equal to 0.2. The viscosity
for wetting phase is 10× 10−5 [Pa · s], whereas, for the non-wetting phase, is
10−4 [Pa · s]. The coarsening ratio for the space grid is equal to 2 as well as
the time refining ratio. The error tolerance for the time estimator is equal to
5× 10−2.

Fig. 5.21 reports the saturation map and the ADM grid for different
threshold values of the ADM grid resolution criterion using the classical ADM
approach with fine time steps, and the ADM-LTS approach with the new
grid resolution strategy. The classical approach uses, for small threshold
values, a large number of fine grid cells. If we relax the threshold parameter
the method is not able to capture the fronts. Thanks to the new ADM-LTS
approach, the method is able to apply the fine grid cells only where the front
is moving fast (high permeability regions).
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Fig. 5.21.: Test case 4 – Saturation map and ADM grid for the ADM with fine time
step approach with classical grid criterion for different values of the
threshold εx = 0.05, 0.1, 0.2 (row 1, 2, and 3) and for the ADM-LTS
method with the new grid criterion εx = 0.05 and εt = 0.05 (row 4) at
time t = 1200 days (first column), t = 15000 days (second column) and
t = 20000 days (third column).

Fig. 5.22.: Test case 4 – Active cells for the refinement in time, at time t = 1200
days (left), t = 15000 days (center) and t = 20000 days (right).

Fig. 5.22 shows the active cells in time at the finest level lref = 2 for
different global time steps. The method recomputes the solution with small
time steps only for a few percentage of cells where the front crosses high
permeability regions. In fact, in the last snapshot, the saturation profile is
completely developed everywhere and so, the set of active cells is very small.

In Fig. 5.23 we compare the number of active cells and the saturation
errors for the different simulations. Using the classical ADM approach with
small values of the tolerance a lot of active grid cells are employed giving
very small errors. The classical ADM approach with larger tolerance value
and the ADM-LTS method are comparable in terms of active cells during
all the simulation but the ADM-LTS approach gives better results in term of
errors.

Fig. 5.24 reports the complexity of the four simulations. The ADM
approach with fine grid in time and small threshold values is really expen-
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Fig. 5.23.: Test case 4 – Number of active cells expressed as percentage of fine grid
cells (left) and saturation relative errors in l1-norm (right) for the ADM
with fine grid in time with different values of the threshold and for the
ADM-LTS simulation.

Fig. 5.24.: Test case 4 – Total amount of active cells multiplied by number of Newton
iterations (top) and computational complexity history at each local times
step within a global step (bottom) for the ADM approach.

sive. The ADM-LTS approach is comparable to the ADM with fine time step
approach and large value of εx but, as shown previously, the solution of the
classic ADM, in this case, is not as accurate.

5.3.5 Test case 5: Heterogeneous reservoir
(SPE10 bottom layer)

The permeability of SPE10 bottom layer is used for this test case, as
show in Fig. 5.25. This layer, with respect to the previous case has higher
contrasts and more a channelized distribution.

The global time step is equal to 10 days and the simulation ends after
50 global time steps. The input parameters for the wells and the physical
properties are identical to Test Case 4.
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Fig. 5.25.: Test case 5 – Natural logarithm of the permeability.

The top 2 rows of Fig. 5.26 show the saturation distribution at simu-
lation time of 150, 250 and 350 days obtained with εx = 0.15 and εx = 0.2,
respectively. The bottom rows, instead, show the saturation map, at the
same simulations times, obtained by employing the ADM-LTS method with
εx = 0.05 and εt = 5 × 10−2 and εt = 5 × 10−3. The classic ADM approach
employs a large number of active cell during the simulation, instead the
ADM-LTS method is able to select a fine scale grid only where the fronts are
moving.

Fig. 5.26.: Test case 5 – Saturation map and ADM grid at 150, 250 and 350 days for
the ADM approach with fine time steps and the ADM-LTS approach.

Fig. 5.27 shows the active cells for lref = 2 at time 150, 250 and 350 days.
As expected, for smaller value of the threshold more cells are involved in the
refinement step.

The history of the percentage of active cells employed by the different
simulation strategies for the various tolerances is shown in Fig. 5.28 (left),
along with the l1 norm of the saturation error (right). For both the ADM-LTS
tolerance values less active cells are involved respect to the classical ADM
approach. Since a smaller number of cells is employed, the saturation errors
are higher but still of the same order of magnitude.

Fig. 5.29 reports the complexity of the four simulations for different
tolerance values.
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Fig. 5.27.: Test case 5 – Active cells for the refinement level lref = 2, at 150 (left),
250 (center) and 350 (right) days for the two threshold values.

Fig. 5.28.: Test case 5 – Number of active cells expressed as percentage of fine grid
cells (left) and saturation relative errors in l1-norm (right) for the ADM
with fine grid in time and for the ADM-LTS simulations.

Fig. 5.29.: Test case 5 – Total amount of active cells multiplied by number of Newton
iterations (top) and computational complexity history at each local times
step within a global step (bottom) for the ADM approach.
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Fig. 5.30.: Test case 6 – One of the 20 realization of each of the 5 sets of permeability
fields with different angles (0 deg, 15 deg, 30 deg, 45 deg and patchy
from left to right).

5.3.6 Test case 6: Heterogeneous reservoirs with
different layering orientations.

A 500 × 500 m2 2D reservoir is considered on which a 99 × 99 grid is
imposed. The fluid properties, the location of the wells and their constraints
are the same as in the previous test cases. Five sets of permeability fields,
with different layering orientation and created using sequential Gaussian
simulations with spherical variogram and dimensionless correlation lengths,
0.5 and 0.02 as proposed [82], are considered. Each set consists of 20
statistically identical realizations.

Fig. 5.30 shows one realization for each set. Injection of the wetting
phase, for 560 days, is simulated for each realization. Simulations are run
with the ADM-LTS method. For all runs, the spatial coarsening criterion
tolerance is εx = 0.008. Two different values are instead considered for the
time-based criterion tolerance, εt: 5× 10−2 and 5× 10−3.

Fig. 5.31 shows a comparison, for one permeability realization of each
set, of the saturation map at the end of the simulation obtained with fine-
scale (time and space) simulation (top row), ADM-LTS employing a fixed
refined time-step.

Fig. 5.32 displays the active cells in time for the last refinement level of
the last global time step. As expected, using a bigger value of the tolerance
for the time error estimator, just few cells need to be computed with small
time steps, moreover also the space grid changes and allows to use coarser
grid cells.

Fig. 5.33 represents the mean and the standard deviations of the com-
plexity for the ADM-LTS method using the two different time-based criterion
tolerances and for the solution computed with the fine grid resolution both in
space and in time. Note that the y-axis scale for the two pictures are different.

Fig. 5.34 shows the mean and the standard deviations of the saturation
errors respect to the reference solution for the ADM-LTS method using the
two different time-based criterion tolerances. From these studies, one can
conclude that the ADM-LTS performs robustly when several equiprobable
realizations are considered. In other words, the error and computational
complexities for all 20 realizations are not much different compared with the
average values.
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Fig. 5.31.: Test case 6 – Comparison of the saturation profile, for one realization
of each set of permeability fields at time t = 560 days. Two different
threshold values for the time error estimator are employed for the ADM-
LTS simulation (center row and bottom row), the fine scale solution are
also shown (top row).

Fig. 5.32.: Test case 6 – Active calls at the last refinement level for the last global
time step using two different threshold values for the error estimator in
time.

5.3 Numerical results 93



Fig. 5.33.: Test case 6 – Mean and standard deviation of complexity over 20 real-
ization for the ADM-LTS method (left) and for the reference solution
computed with fine grid resolution both in space and time (right).

Fig. 5.34.: Test case 6 – Mean and standard deviation errors of the satura-
tion errors over 20 realization for the ADM-LTS method with dif-
ferent time threshold values respect to the reference solution ES =
meanNtt=1 (mean|Sf (t)− S(t)|).
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Well x y Pressure [bar]
Prod (W1) 1 1 120
Prod (W2) 99 1 120
Prod (W3) 99 99 100
Prod (W4) 1 99 100
Inj (W5) 50 50 150

Tab. 5.1.: Test case 7 - Wells coordinates and constrains.

5.3.7 Test case 7: Capillary forces.
This test case is the same reported in [24], a 500×500[ m2] heterogeneous

reservoir is considered, the fine-scale grid contains 99× 99 cells. The phase
viscosity are for the wetting and non-wetting phase equal to µw = 1e−4[Pa ·s]
and µnw = 1e − 3[Pa · s], respectively. Five pressure-constrained wells are
present, they are showed in Fig. 5.35 as the heterogeneous permeability field.
The well locations and the pressure values are presented in Tab. 5.1.

Fig. 5.35.: Test case 7: base 10 logarithm of the permeability field.

The final time simulated in 2500[days], with a time step sizes equal
to 10[days]. The ADM-LTS approach employs a time refining ratio η = 2
and a space coarsening ratio equal to 3. The user-defined tolerances are
εx = 0.25 and εt = 1 × 10−2. We considered as capillary pressure curve,
the J-Leverett Capillary pressure function described in Section 3.2.1, where
σ = 4.361 × 10−2[Pa · m], θ = 0 and γ = 0.05. Fig. 5.36 compares the
reference solution (fine-scale) and the ADM-LTS approach with and without
considering the capillary pressure effects. The ADM-LTS approach, as showed
in Fig. 5.37, in presence of capillary pressure involves more fine resolution
cells, since the saturation map in more complex with respect to the case
without capillary effects. In this small case test the complex behavior is
present in the entire domain, so the 70% of active cells are used to capture
the heterogeneous capillary pressure, but in real test cases the fine-scale
resolution, employed to capture the capillary heterogeneity, usually appear
in a small portion of the domain. Fig. 5.37 shows the errors in l1 norm of the
ADM-LTS approach with and without capillary capillary pressure. Before the
global step 150 the errors for the saturation map with capillary pressure are
smaller with respect to the errors without the capillary pressure; instead, at
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Fig. 5.36.: Test case 7: Reference solutions (left) and ADM-LTS saturation maps
(right) without (top) and with (bottom) capillary effects.

Fig. 5.37.: Test case 7 - Number of active cells expressed as percentage of fine
grid cells (left) and saturation relative errors in l1-norm (right) for the
ADM-LTS simulations.

the end of the simulation, the errors start to increase. This is due to the fact
that the ADM-LTS method used some coarse-scale resolution where the front
appear smearing out the solution and increasing the errors.
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6Conclusions and future
perspectives

In this thesis we developed a novel class of conservative multirate schemes
and we applied them in the context of multiphase flow in porous media.
We focused, in particular, on numerical models for subsurface flow at the
Darcy scale where heterogeneous permeability field and the presence of
fast and slow processes, would force to use very high resolution both in
space and in time if tackled with standard discretization schemes. The
conservative implicit multirate method here presented is able to integrate in
time with different time step sizes in different areas of the domain, detecting
automatically where smaller time steps are necessary to improve accuracy.
The combination with advanced schemes that employ a multiscale grid in
space provide an effective methodology that reduces the CPU cost without
degrading accuracy.

The conservative implicit multirate method has been presented in Chap-
ter 2 for the time integration of hyperbolic problems. As basic implicit solver
we used the TR-BDF2 method, which is a second order method, but the
approach can be easily generalized to other implicit methods. The partition
of fast and slow components is based on the numerical flux, in order to
preserve the conservative nature of the spatial discretization employed. A
consistency and stability analysis has been carried out, showing that the
punctual inconsistency only arises at the interface between refined and non
refined regions but, thanks to the self-adjusting strategy, the multirate scheme
recovers consistency. We also proved that the multirate scheme is weakly
consistent for both the fixed sub-refinement strategy and the self-adjusting
strategy. We have tested this approach on several scalar equations and, to
the best of our knowledge, for the first time, we have applied a self-adjusting
multirate method to systems of non-linear conservation laws. The results
show that our approach captures the behavior of the solution automatically
and refines only where it is necessary, thus achieving a reduction of the CPU
costs without significant losses of accuracy.

In Chapter 4, we illustrate a novel multirate multiscale method for cou-
pled flow and transport equation in heterogeneous porous media developed
in collaboration with Prof. Hadi Hajibeygi of TU Delft. To control the errors
in time and space, an iterative multiscale strategy was used to preserve the
spatial accuracy, coupled with the multirate method for temporal accuracy.
The proposed approach was applied to the implicit pressure implicit satu-
ration approximation of two-phase flow, to have the benefit of large time
steps. At the same time, the flux approximation, as well as the iterative
multiscale procedure, guarantees the local conservation of mass throughout
the simulation. Proof-of-concept numerical tests show that pressure and satu-
ration solutions improve compared with those obtained from the coarse-scale
in time simulations, with only a small fraction of the cells being solved at
the fine-scale in time. The investigations included systematic comparisons
of both solution error history and computational complexity. Overall, the
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proposed method allows for advancing the simulation in both space and time
accounting for the intrinsic multiscale nature of the problem. As such, it
develops a promising approach for large-scale multiphase simulations.

Finally, in chapter 5 a dynamic multilevel approach with a local time-
stepping strategy for the solution of the transport equation in both homo-
geneous and heterogeneous porous media was presented. This work has
been developed in collaboration with Prof. Hadi Hajibeygi and Dr. Matteo
Cusini of TU Delft. The ADM-LTS method enables to capture moving fronts
accurately. It combines, at each global time step, a dynamic multilevel grid
in space with a local time-stepping strategy that is able to use small time
step only where it is necessary – e.g., close to the moving saturation fronts.
Compared with the classical ADM approach, the newly developed method
allows to use more coarsear regions where the high gradients do not evolve
in time. This method allows to reduce the size of the system in the nonlinear
loop without loss of accuracy.

6.1 Future works
Generally, multiphase flow problems consider different types of physical

assumptions depending on the nature of the application and on the different
phases involved in the systems. A challenging development would be to
extend the multirate techniques to more complex physics (i.e., compressibility,
compositional effects). For example, if a gas phase is present, one should
also take into account the compressibility into the model.

Another challenge is to improve the linear solver used at each step of
the ADM-LTS approach. Indeed, so far the ADM-LTS algorithm solves the
linear system using a direct method. For very large problems, even if an
ADM grid is used to discretize the space, the resulting linear system may still
be very large. Since the ADM employs hierarchy of nested grid at different
resolutions, a "multigrid" preconditioner can be devised for an iterative solver
[92].

Finally, the ADM-LTS approach uses structured Cartesian grids, for easy
implementation. However, real field applications do not allow to use such
regularity. Unstructured grids should be introduced in order to discretize
complex geometries. The basic multirate scheme, however, would remain
unchanged.

Moreover, we have focused our methodology on flow in porous media,
however it may be beneficial also in other contexts where very different time
scales are present in different parts of the domain.
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AA conservative implicit
multirate method for
parabolic equations

The conservative implicit multirate approach described and analyzed in
Chapter 2 is oriented to integrate in time nonlinear hyperbolic equations.
However, when capillary effects are introduced into the multiphase flow
equations, the transport equations for the saturation become a parabolic
problem.

In this chapter we will test and validate the conservative implicit mul-
tirate method for parabolic equations applying it to 1D parabolic equation
and to the saturation equation for two-phase flow problems in presence of
capillary forces.

A.1 Conservative implicit multirate method
applied to parabolic equations

Nonlinear parabolic equations are of the form

∂u

∂t
+∇ · (k∇u) = 0 x ∈ Ω, t > 0, (A.1)

where k = k(u) is the nonlinear diffusion term.

If we consider scalar problems in a 1D domain, to discretize in space
we can use the set of the cells Ii =

[
xi− 1

2
, xi+ 1

2

]
, for i ∈ Z with xi the center

of cell Ii and size equal to ∆xi = xi+ 1
2
− xi− 1

2
. A conservative finite volume

discretization yields a system of ordinary differential equations of the form

dui
dt

(t) = − 1
∆xi

(
Fi+ 1

2
(t)− Fi− 1

2
(t)
)
, i ∈ Z, t > 0

where Fi± 1
2

is the semi-discrete numerical flux (k∇u) at the interfaces xi± 1
2
.

Here, the algorithm showed in Section 2.3 can be easily applied to the new
semi-discretized equation.

A.1.1 The Barenblatt equation
Here, we apply the multirate approach, with the TR-BDF2 method as

time integration scheme, to the nonlinear parabolic equation of gases in
porous media

∂u

∂t
−∇ · (mum−1∇u) = 0 x ∈ [−10, 10], t ∈ (1, 6],

u(−10, t) = u(10, t) = 0 t ∈ (1, 6].
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Fig. A.1.: Evolution of the exact (continuous line) and multirate solution (circles)
Barenblatt-Pattle solution at different times (left) and set of active com-
ponents at each time (right).

We focus on the so-called Barenblatt-Pattle solutions [5] that can be written
in the form

u(x, t) = (t+ t0)−k
(
A2 − k(m− 1)|x|2

2m(t+ t0)2k

) 1
m−1

+

where t0 is the initial time, A is an arbitrary nonzero constant and k = 1
m+1 .

In this example, as numerical flux at the interfaces of each cell, we
consider the following flux

F θ
i+ 1

2
= ∆t m

(
uθi + uθi+1

2

)m−1 (
uθi+1 − uθi

∆x

)

where m = 3, A = 1 and t0 = 1. The global time step is equal to ∆t = 0.15 ,
the number of cells are equal to 100.

Fig. A.1 shows the multirate solution versus the exact solution at differ-
ent times; the two profile are in perfect agreement. It also shows the set of
active components at each simulation time. At the beginning the multirate
method refines the entire area of the domain where the gas is present; at time
t = 3[s] the multirate approach starts to refine only at the front locations.

A.1.2 Two-phase flow in a porous media
The ADM-LTS approach presented in Chapter 5 has been applied to

numerical experiments with strong effects – e.g., gravity and capillary effects.
In this section, we show the conservative multirate approach applied to a
two-phase flow system with capillary pressure effects. The phase viscosity
ratio is equal to µnw/µw = 10. We consider a 500× 500 [m2] with 99× 99 grid
cells. The final time simulated is 1350 [days] with a global time step equal to
15 [days]. The flux tolerance for the multirate approach is 1× 10−2.

Fig. A.2 reports the logarithm of the heterogeneous permeability field
and the wells location. The pressure constrained value are the same of the
test case 5.3.7, where the values are reported in Tab. 5.1.

Fig. A.3 shows the saturation maps (left) and the active cells involved in
the refinement steps of the conservative multirate approach (right) consider-
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Fig. A.2.: Base 10 logarithm of the permeability field.

Fig. A.3.: Saturation maps (left) and respective active cells (right) at final time
considering capillary effects (top) and without capillary pressure effects
(bottom).

ing the capillary pressure effects (top) and without considering the capillary
forces (bottom). The two profiles are very different as well as the set of
active cells employed by the multirate approach. In fact, the multirate ap-
proach uses more active cells in the first case in order to capture the capillary
heterogeneity.
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