
POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONICS INFORMATICS AND BIOENGINEERING

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

ALLOWING A REAL COLLABORATION BETWEEN

HUMANS AND ROBOTS

Doctoral Dissertation of:
Andrea Casalino

Supervisor:
Prof. Paolo Rocco

Tutor:
Prof. Luca Bascetta

The Chair of the Doctoral Program:
Prof. Barbara Pernici

Cycle XXXII

A Chiara
alla mia

e alla sua famiglia

«You don’t completely control anything,
except from your thoughts.»

— Rene Descartes

«I tell you: one must still have chaos in one,
to give birth to a dancing star.»

— Friedrich Nietzsche

«Do not judge wrong what you don’t know,
take the opportunity to understand!»

— Pablo Picasso

Acknowledgements

First of all, I would like to thank Prof. Paolo Rocco for giving me the possibility to
develop a PhD in Robotics. Working at the Merlin lab was a great experience, full of
opportunities that will have a big impact on my future path. I want to thank Prof. An-
drea Zanchettin for the constructive feedbacks he gave throughout my entire academical
experience and I would like to thank also Prof. Luigi Piroddi, for his suggestions and
interesting meetings.
My PhD experience would have not been the same without the interactions I had
with my office mates, Riccardo Maderna, Davide Nicolis, Renzo Villa, Matteo Pa-
rigi Polverini, Roberto Rossi and Nicolò Tomiati. A special mention must be done for
Costanza Messeri and Davide Bazzi, who were firstly two students I supervised and
secondly two valuable mates, who had good times with me in the office till late.
This work was also made possible by the efforts spent by the master students that col-
laborated with me, Luka Juricic, Silvia Quartulli, Nicola Massarenti, Eleonora Maz-
zocca, Maria Grazia Di Giorgio, Filippo Cividini, Alberto Brameri, Sebastain Guzman,
Marco Maiocchi and Roberto Cherubin. Working with each of them was constructive
and positive.
Finally, I would like to thank Prof. Alessandro De Luca and Prof. Olaf Stursberg for
reviewing this thesis and providing valuable suggestions for improving this work.

5

Abstract

COllaborative Robotics is emerging as one of the most active lines of research
in automation. This term indicates a group of methodologies and techniques
that allow robots to work side by side with humans. The human should exe-

cute highly cognitive tasks, like e.g. assembly operations that could be too difficult to
fully automatize, while robots have to both undertake autonomous operations and as-
sist the humans in many ways. The combination of the human flexibility and the robots
efficiency can significantly improve the production process. This level of interaction
requires at least the sharing of a common space. This topic has attracted the interest
of many researchers in the recent years and many controlling algorithms have been de-
veloped to allow a safe coexistence of humans and robots. In this context, tracking the
human motion is of paramount importance. Then, a safe motion controller can opti-
mize the trajectory of the robots with the aim of dodging humans. We can state that the
safe interaction of humans and robots, while performing disjoint tasks, is something
achieved.
For this reason, the aim of this thesis was to study more in depth the collaboration be-
tween human and robot. In particular, this was done by focusing on industrial contexts,
where typical applications are collaborative assemblies (or co-assemblies). In such sce-
narios, humans and robots have to execute alternating tasks, with the aim of realizing
a set of possible finite products. The robots have to adapt and synchronize with the
humans, since the collaboration was conceived as human-centric: it’s the human that
regulates the interaction. To this purpose, robots have to interpret the human inten-
tions as well as to predict them in order to take the best actions for providing a reliable
assistance. Such an interpretation is possible only through increased cognitive capabil-
ities. For this, sensors can be exploited to produce a large amount of data describing
the workspace surrounding a robot, which are at a second stage interpreted by machine
learning techniques.

Within the above scenario, this thesis proposes the three following main contributions:

• introduce algorithms and methodologies for inferring the current action that a hu-
man operator is undertaking, from the simplest ones, as for instance those for

I

reaching tools or objects, to the more complex ones, as performing a screwing.
Two inferring algorithms will be proposed. The first one analyzes the motion of
the hands, as well as the orientation of the gaze, for inferring the next reaching
target of an operator adopting a Gaussian Mixture model. The second algorithm
takes into account the motion of the entire body and is based on Markov Random
Fields.

• predict the actions performed by human operators in the near-far future. The pro-
posed solution is made of two parts. One models the sequence of operations,
while the other one the time durations. The first kind of modelling can be done by
making use of two alternative approaches, one based upon Higher Order Markov
model and the other one based on the construction of a Suffix Tree.

• optimally schedule the operations assigned to robots, with the aim of assisting the
human and minimizing the inactivity times. This must be done by properly taking
into account the time variability of human actions. All the developed scheduling
approaches consider a particular class of Timed Petri Nets, specifically derived
for describing collaborative tasks. The optimal commands to be sent to robots are
extracted from a reachability tree representing many alternative evolutions of the
system.

Although collaborative robots are intrinsically safe, an additional minor objective of the
thesis was to investigate how to optimally control their motion in collaborative cells.
This problem was solved as similarly done for the aforementioned scheduling, i.e. by
taking into account a prediction of the human motion.
All the proposed methodologies were tested in realistic robotic co-assemblies.

II

Sommario

LA Robotica Collaborativa si sta affermando come una delle linee di ricerca mag-
giormente studiate nell’ambito dell’automazione. Il termina indica quel gruppo
di tecniche e metodologie che permettono ai robot di lavorare fianco a fianco

degli uomini, ai quali dovrebbero essere destinati i compiti altamente cognitivi, per cui
una completa automatizzazione risulterebbe difficile o quasi del tutto impossibile. In-
vece, i robot dovrebbero allo stesso tempo compiere delle azioni autonome e assistere
gli uomini in vari modi. La combinazione data dalla flessibilità umana e dall’efficienza
dei robot consente di migliorare notevolmente i processi produttivi. Un tale livello di
interazione richiede quantomeno la coesistenza sicura in uno spazio condiviso. Questa
tematica ha attratto gli sforzi di molti ricercatori nel recente passato e molte strategie di
controllo per i robot sono state sviluppate con il fine di garantire una sicura coesistenza
fra uomini e robot. In un tale scenario, riuscire a monitorare nel tempo i movimenti
degli operatori umani diventa di primaria importanza. Infatti, analizzando il moto degli
umani presenti nella cella robotica, i controllori possono ottimizzare la traiettoria dei
manipolatori robotici allo scopo di evitare pericolose collisioni. Si può affermare con
buona sicurezza che l’ottenimento di un’interazione sicura fra operatori e robot, quando
questi svolgono operazioni autonome, è un risultato pienamente raggiunto.
Per questa ragione, lo scopo di questa tesi è stato quello di studiare con maggiore at-
tenzione la tematica legata alla collaborazione fra uomini e robot. Nello specifico, ci
si è concentrati su scenari industriali, dove applicazioni tipiche sono gli assemblaggi
collaborativi (detti anche co-assemblaggi). In queste situazioni, operatori e robot de-
vono compiere delle azioni che si alternano fra loro, con l’obiettivo di realizzare un
certo numero di possibili prodotti finiti. I manipolatori devono adattarsi e sincroniz-
zarsi con gli operatori umani, dato che la collaborazione è stata concepita in questa
tesi come umano-centrica: deve essere l’operatore a regolare l’interazione con il robot.
Per ottenere una tale sinergia, i robot devono poter essere in grado di interpretare le
reali intenzioni correnti degli operatori e allo stesso tempo prevedere quelle future, allo
scopo di poter decidere l’azione ottimale da svolgere nel presente per assistere nella
maniera migliore gli umani. L’interpretazione del comportamento umano è possibile
solo attraverso migliorate capacità cognitive. A tal proposito i sensori di cui può essere

III

dotato un manipolatore sono oggi in grado di produrre una grande quantità di dati, che
deve essere in seconda battuta interpretata attraverso tecniche di machine learning.

Nel contesto descritto, questa tesi presenta i seguenti contributi:

• proporre algoritmi e tecniche per comprendere l’azione svolta da un operatore
umano, basandosi sulla sola analisi del suo movimento nel tempo, da quelle più
semplici, come ad esempio afferrare degli oggetti in dei contenitori, a quelle più
complesse, come eseguire l’avvitamento di alcuni componenti. Due algoritmi
distinti verrano proposti per affrontare questo problema. Il primo analizza il moto
delle mani e l’orientamento del volto, per stimare la destinazione dei movimenti
di un operatore. Tale stima viene svolta attraverso l’uso di un modello basato su
misture di Gaussiane. Il secondo algoritmo proposto considera il movimento di
tutto il corpo ed è basato sull’analisi di un Markov random field.

• predire le azioni che verranno svolte dall’operatore nel breve-lungo periodo. La
soluzione proposta è costituita da due parti principali. La prima modella la se-
quenza logica delle operazioni, mentre la seconda descrive le loro possibili durate
temporali. La modellazione logica delle sequenze può essere svolta tramite due
approcci alternativi, uno basato su un modello Markoviano di ordine superiore e
l’altro basato sulla costruzione e sul mantenimento di un albero di suffissi.

• schedulare nella maniera più ottimale le operazioni assegnate ai robot collaboranti,
con lo scopo di assistere l’umano e minimizzare i tempi di inattivatà. Questa pi-
anificazione di attività dovrà essere svolta tenendo in conto la variabilità associata
alla durata delle operazioni svolte dagli operatori umani. Le tecniche di schedu-
lazione sviluppate sono tutte basate sull’utilizzo di una particolare classe di reti di
Petri temporizzate, appositamente introdotta per descrivere scenari collaborativi.

Sebbene i robot collaborativi siano intrinsecamente sicuri, un obiettivo secondario della
tesi ha riguardato lo studio di tecniche innovative di controllo del moto in ambiti di col-
laborazione. Le tecniche proposte risultano essere migliorative in quanto, similmente
a quelle di scheduling, prendono in considerazione una predizione del comportamento
futuro degli umani (in questo caso in termini di movimenti futuri).
Tutte le tecniche sviluppate sono state sperimentate in situazioni realistiche di co-
assemblaggio.

IV

Outline

The future production plants will see more and more the presence of robots, performing
a large variety of actions, from simple moving tasks to complex manipulations. In the
past, the most active research lines were mainly devoted to develop algorithms for mo-
tion or force control, while the current trend is trying to provide robots with some more
sophisticated cognitive capabilities. Indeed, robots are becoming smarter, thanks to an
increased computational power. Therefore, artificial intelligence and machine learning
are entering more and more into robotic researches.
This is also due to the fact that robots are no longer conceived as something that will
completely replace the human workers. On the opposite, robots will enter into the pro-
duction lines (and not only there) in order to become valuable assistants of the humans,
helping them in many ways. At the same time, robots will have a certain level of auton-
omy, in order to prevent humans from doing something wrong or anticipate the human
needs. This kind of tasks can be accomplished by robots only with an increased cog-
nitive capability. The field studying all this aspects is the Collaborative Robotics and
is progressively attracting the interest of the robotic community. The way Collabora-
tive Robotics conceive robots is far from the old paradigm adopted, where robots were
physically segregated from humans for safety reasons.
The first step toward a collaboration was done by allowing the robots to share the space
with the humans. Safety was ensured by developing many dedicated motion control
strategies. Clearly, this was only an initial step towards a real human-robot collabora-
tion, which only in very recent times is starting to be studied. Collaborate with a human
mate is a non trivial task for a robotic device. Indeed, robots should be able to behave as
humans naturally do, interpreting the other workers actions and forecasting the future
ones. This is actually what make Collaborative Robotics a tough topic.
The interpretation of the human behaviour can be tackled by exploiting advanced sen-
sors, providing the robots a huge amount of data to process. Finding a way to handle
such data in a fast and reliable way is becoming crucial.
The main goal of this thesis was to develop algorithms and strategies able to allow an
efficient collaboration between humans and robots, with a particular attention to in-
dustrial contexts, where these agents have to alternate and synchronize for performing
structured tasks, as for instance assemble some components. The approaches devel-

V

oped allow robots to adapt, in many ways, to the human mates while at the same time
they provide the proper assistance. All the proposed methods are validated in various
realistic use cases of collaboration.

Thesis Contributions and Organization

In this thesis, the following main contributions are given:

• the proposal of algorithms and methodologies for inferring the current action that
a human operator inside a robotic cell is undertaking, from the simplest ones as
for instance those for reaching tools or objects, to the more complex ones as for
instance performing a screwing.

• the study of an approach for predicting the human actions in the near-far future.

• the introduction of innovative scheduling algorithms for planning the operations
assigned to robots, with the aim of assisting human mates and minimizing the
inactivity times. All the developed scheduling approaches consider a particular
class of Timed Petri Nets, specifically derived for describing collaborative tasks.

• the proposal of innovative approaches for the motion control of collaborative
robots (cobots).

This manuscript is organised as follows:

Part I will focus on the problem of inferring the human behaviour, mainly in terms
of: what is the current action that the human is undertaking, Chapter 3 and 4; what
actions will be executed in the future, Chapter 5. Chapter 3 exploits a Gaussian Mix-
ture for building a model of the human intention, with the aim of inferring the current
goal of the human. This is done by mainly considering the motion of the operator’s
wrists. A second approach for the intention inference is proposed in Chapter 4, where
Markovian Random Fields are exploited for segmenting the actions performed by the
human in the recent past. The motion of the entire body of an operator is considered in
this case.
Regarding the prediction topic, the strategy proposed in Chapter 5 is made of two main
parts. The first one models the sequence of actions, without considering temporal im-
plications. To this purpose, two possible approaches for performing such modelling
will be proposed: the one in Section 5.1 exploits higher order Markov models, while
the one in Section 5.2 makes use of suffix trees. Both these models can be used for
predicting the time to see again a certain human activity, Section 5.3.

The predictions made by the algorithms in Chapter 5 are exploited for optimally sched-
ule the actions assigned to robots, as extensively detailed in Part II. Some theoretical
aspects regarding the scheduling of collaborative cells will be discussed in Chapter 6.
The concepts discussed will be used for describing the principles behind the developed
scheduling approaches, which are detailed in Chapter 7. In particular, three approaches
will be proposed in Sections 7.2, 7.3 and 7.4. They are all based on Timed Petri Nets.
The ones in Section 7.2 and 7.4 propagate the uncertainties characterizing the system,
due mainly to the durations of the human actions, in a closed form; while the approach

VI

in Section 7.3 makes use of a numerical method. Several use cases of realistic co-
assemblies will be adopted for validating these techniques.

Finally, Part III will focus on the safe control of collaborative robots. Although this
topic is well studied, new algorithms were developed applying some of the concepts
adopted for the scheduling approaches discussed in the previous Part. Chapter 8 will
propose a reactive approach in Section 8.1 and a proactive one in Section 8.2. One key
aspect of the above methodologies is the possibility to keep track of the human motion
during time. In this context, managing occlusions became crucial and is the aim of the
approach proposed in Chapter 9.

Concluding considerations will be provided in Chapter 10.

Publications

This thesis is based on the following publications.

International Journals:

1. Andrea Casalino, Andrea Maria Zanchettin, Luigi Piroddi, and Paolo Rocco "Op-
timal scheduling of human-robot collaborative assembly operations with time petri
nets". IEEE Transactions on Automation Science and Engineering, available
on line, DOI: 10.1109/TASE.2019.2932150

2. Andrea Maria Zanchettin, Andrea Casalino, Luigi Piroddi, and Paolo Rocco. "Pre-
diction of human activity patterns for human-robot collaborative assembly tasks".
IEEE Transactions on Industrial Informatics, Vol. 15, No. 7, pp. 3934−3942,
July 2019

3. Andrea Casalino, Costanza Messeri, Maria Pozzi, Andrea Maria Zanchettin, Paolo
Rocco, and Domenico Prattichizzo. "Operator awareness in human−robot collab-
oration through wearable vibrotactile feedback". IEEE Robotics and Automa-
tion Letters, Vol. 3, No. 4, pp. 4289−4296, October 2018

International Conferences:

1. Andrea Casalino, Eleonora Mazzocca, Maria Grazia Di Giorgio, Andrea Maria
Zanchettin, and Paolo Rocco. "Task scheduling for human−robot collaboration
with uncertain duration of tasks: a fuzzy approach". IEEE International Con-
ference on Control, Mechatronics and Automation (ICCMA 2019), Delft (The
Netherlands), November 2019.

2. Andrea Casalino, Alberto Brameri, Andrea Maria Zanchettin, and Paolo Rocco.
"Adaptive swept volumes generation for human−robot coexistence using gaussian
processes". IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2019), Macau, November 2019.

3. Andrea Casalino, Davide Bazzi, Andrea Maria Zanchettin, and Paolo Rocco.
"Optimal proactive path planning for collaborative robots in industrial contexts".
IEEE International Conference on Robotics and Automation (ICRA 2019),
Montréal (Canada), May 2019.

VII

4. Andrea Casalino, Filippo Cividini, Andrea Maria Zanchettin, Luigi Piroddi, and
Paolo Rocco. "Human−robot collaborative assembly: a use−case application".
16th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM 2018), Bergamo (Italy), June 2018

5. Andrea Casalino, Sebastian Guzman, Andrea Maria Zanchettin, and Paolo Rocco.
"Human pose estimation in presence of occlusion using depth camera sensors, in
human−robot coexistence scenarios". IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2018), Madrid (Spain), October 2018,
pp. 6117−6123.

6. Andrea Casalino, Andrea Maria Zanchettin and Paolo Rocco. "Enhance the col-
laboration between human and robots through activity prediction and reactive
scheduling". 12th International Workshop on Human−Friendly Robotics (HFR
2019), Reggio Emilia (Italy), October 2019

and on the following submitted material:

1. Andrea Casalino, Nicola Massarenti, Andrea Maria Zanchettin, and Paolo Rocco.
"Predicting the human behaviour in human−robot co−assemblies: an approach
based on suffix trees". IEEE International Conference on Robotics and Au-
tomation (ICRA 2019), Paris (France), May 2020.
2020 International Conference on Robotics and Automation (ICRA), IEEE, Novem-
ber 2020.

Finally, the following publications contain relevant results, that are not covered in
the doctoral dissertation:

1. Andrea Casalino, Andrea Maria Zanchettin, and Paolo Rocco. "MT−RRT: a gen-
eral purpose multithreading library for path planning". IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2019), Macau, Novem-
ber 2019.

2. Andrea Casalino, Paolo Rocco, and Maria Prandini. "Hybrid control of manipu-
lators in human−robot coexistence scenarios". American Control Conference
(ACC 2018), Milwaukee (USA), June 2018, pp. 1172−1177

3. Riccardo Maderna, Andrea Casalino, Andrea Maria Zanchettin, and Paolo Rocco.
"Robotic handling of liquids with spilling avoidance: a constraint−based con-
trol approach". IEEE International Conference on Robotics and Automation
(ICRA 2018), Brisbane (Australia), May 2018, pp. 7414−7420

4. Andrea Casalino, Andrea Maria Zanchettin, and Paolo Rocco. "Online planning
of optimal trajectories on assigned paths with dynamic constraints for robot ma-
nipulators". IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2016), Daejeon (Korea), September 2016.

VIII

Contents

1 Introduction and State of the Art 1

I Understanding the human behaviour 7

2 Preamble 9

3 Understanding the human intentions 11
3.1 Estimating the current intended goal 11

3.1.1 Background . 12
3.1.2 Proposed approach . 13
3.1.3 Operator awareness through intention recognition 18

4 Segmenting the human actions by analysing the upper body motion 27
4.1 Evolving factor graphs for segmenting the human actions 27

4.1.1 Modelling the correlation existing between the observations and
the human actions . 28

4.1.2 Modelling the sequence of actions 30
4.1.3 Segmenting the actions on a fixed window of observations 31
4.1.4 Segmenting the actions on evolving windows 32
4.1.5 Tuning of the parameters . 34

4.2 Experiments . 34
4.2.1 Results . 36

5 Predicting the future activities 41
5.1 Higher Order Markov Model . 42
5.2 Suffix Tree . 46

5.2.1 The predictive model . 46
5.2.2 Comparison of the proposed predictive models 52

5.3 Evaluating waiting times . 54
5.4 Performance comparison . 56

5.4.1 Use case a . 56

IX

Contents

II Assistive scheduling 61

6 Scheduling of the robotic actions 63
6.1 Petri Nets as scheduling tools . 65
6.2 Temporal Petri Nets: main concepts 66

6.2.1 Reachability Tree . 67
6.3 Task specification . 75

6.3.1 Modeling robot actions . 77
6.3.2 Modeling human actions . 77
6.3.3 Modelling collaborative actions 78
6.3.4 Modelling mobile robots . 78

7 Scheduling approaches 81
7.1 Receding horizon scheduling . 81
7.2 Best scenario approach . 83

7.2.1 Description of the use case . 83
7.2.2 Selection of the best plan . 85
7.2.3 Remarks . 88

7.3 Monte Carlo scheduling . 89
7.3.1 Selection of the best plan . 89
7.3.2 Off line simulations . 95

7.4 Fuzzy scheduling . 96
7.4.1 Selection of the best plan . 99

7.5 Validating experiments . 100
7.5.1 Use case a . 100
7.5.2 Use case b . 101
7.5.3 Use case c . 110

III Motion control of cobots 115

8 Safe control of cobots 117
8.1 The reactive approach . 120

8.1.1 Background about Swept Volumes generation 120
8.1.2 Gaussian Processes for Swept Volumes generation 121
8.1.3 Experiments . 126

8.2 The proactive approach . 130
8.2.1 Modelling the human-robot collaboration 130
8.2.2 Probabilistic description of the human motion 131
8.2.3 Proactive path planning . 134
8.2.4 Experiments . 136

9 Occlusions handling 143
9.0.1 Representation of the human pose 144

9.1 Dealing with occlusions in the human silhouette 145
9.1.1 Single point tracking . 145
9.1.2 Human pose tracking . 148
9.1.3 Experiments . 151

X

Contents

10 Conclusions 155

Appendices 159

A Generalities about learning 161

B Expectation Maximization 163
B.0.1 Learning of Gaussian Mixture Models 165

C Factor graphs 169
C.0.1 The message passing algorithm 172
C.0.2 Learning the weight parameters 179
C.0.3 Learning structures with shared weights 182

D Fuzzy theory 185

E Gaussian Processes 189
E.0.1 Scalar case . 189
E.0.2 Vectorial case . 192

Bibliography 209

XI

CHAPTER1
Introduction and State of the Art

Up to the recent past, the paradigm universally adopted for industrial robotics provided
for the strict segregation of robots in protected environments, adopting fences or optical
barriers. The robots were mainly conceived to work alone in highly structured environ-
ments, replacing humans in carrying out activities that were repetitive, dangerous or
requiring high precision. Only recently, the potential benefits of a real collaboration
beween humans and robots have gained the attention of roboticists [45], [62], [1], [25]
and [32]. Such interest is mainly motivated by the Industry 4.0 paradigm [113], which
considers as a fundamental pillar the massive presence of robots in production plants,
cooperating with humans. Indeed, there are still many actions that also the more
evolved robots are not able to perform without exploiting high-tech sensors or dedi-
cated end-effectors, [63]. Therefore, it seems natural to let humans and robots share
common tasks: highly cognitive actions are undertaken by humans, while those requir-
ing high precision and repeatability are performed by robots. This framework is par-
ticularly appealing in that it allows for a higher variable production mix with respect
to pure automatized and dedicated assembly lines [10]. This aspect is particularly rele-
vant for small and medium sized enterprises (SMEs). On the other hand non-industrial
applications are rapidly emerging such as healthcare and domestic robotics. Collabo-
rative applications must be accurately designed in order to get the maximum possible
benefits from the human-robot interaction. Regarding the latter aspect, [137] revised
some automotive use cases, with the aim of highlighting the principles for a profitable
collaborative robotic implementation.

Safe coexistance of humans and robots

The starting point for a real cooperation is clearly the coexistance in a shared space.
This kind of issues have been heavily studied in the past years, since were the main fo-

1

Chapter 1. Introduction and State of the Art

cus of almost every research in the field of Human Robot Collaboration (HRC), [113].
Indeed, standard industrial robots are able to move at a high speed and they could
severely injure humans [44]. For this reason, a new generation of robots, called cobots,
has been specifically designed to allow for a safe interaction with humans1. They are
lighter, without edges, sometimes covered with paddings to damp the effects of im-
pacts, and often equipped with kinematic redundancy [45], i.e. they have a number
of joints greater than the strictly necessary ones in order to perform more dexterous
motions able to let a task advancing while at the same time preserving the safety of
humans [21].
This new designing paradigm has also been endowed with new motion control tech-
niques, [105], [36], based on the use of sensors perceiving the scene, that track the
motion of the human operators. To this purpose, high-visibility industrial clothing de-
tection strategies based on RGB and IR cameras have been proposed in [88], while [92]
introduced the concept of "smart floor" by adopting pressure-sensitive sensors to keep
track of human motions. RGB-D cameras have been exploited in [89].
Consider a manipulator whose task is reaching some target configuration. If no human
operator is within its workspace, then, the manipulator can move following a nominal
point-to-point trajectory, which is computed ignoring the presence of humans so as to
be optimal for the assigned task. When a human gets too close to the manipulator, an
action has to be taken. An option is to interrupt the task execution and slow down/arrest
the manipulator [134]. Alternatively, a corrective trajectory can be planned online with
the aim of dodging the human and, at the same time, keep driving the manipulator to the
desired target position [106]. Also a combination of the previous strategies is possible
as done in [85]. Such motion controllers were developed both for cobots, which are
intrinsically safe, as well as standard industrial robots, see [36], [64] and [116]. [79]
focused also in the safety aspect, but considering service robotics contexts. Since the
trajectories of the robots may be altered from the nominal one, the time required to
complete a robotic task becomes an aleatory quantity. For this reason Pellegrinelli et
al. [97] proposed a way to estimate such completion time, considering a probabilistic
time independent description of the space occupied by humans.
In all works cited so far, robots were conceived as something that should interfere as
less as possible with the activities simultaneously undertaken by the human populating
the same cell. While the safe coexistence of humans and robots, performing indepen-
dent tasks, seems to have a well-established literature, the level of collaboration needs
still to be explored.

Understanding the behaviour of the human

More recently, researchers have started working on methods to allow a fluent collabo-
ration between humans and robots. The possibility for a properly instrumented robotic
device to understand and somehow predict humans’ intentions is now considered as im-
portant as safety. This kind of activities are made possible by providing the robots the
proper cognitive capability. Indeed, artificial intelligence and machine learning are en-
tering more and more into modern robotics. In the last years, collaborative robots have
become faster, smarter, more accurate and reliable, even though challenges remain in
adaptability [130], decision making and robustness to changing, especially when a con-

1See e.g. http://blog.robotiq.com/collaborative-robot-ebook.

2

http://blog.robotiq.com/collaborative-robot-ebook

tinuous interaction with a human mate is required. Cognitive algorithms allow robots
to understand the behaviour of their fellow human team-mates in order to anticipate,
and adapt to them, [52].
In this context, a crucial role is played by vision sensors, which give to the robot the
sense of sight. The analysis of the human motion is one of the most important feature
to consider for understanding an operator intentions. For instance, in [38] the intuition
that people tend to follow efficient trajectories rather than random paths is exploited.
The proposed strategy learns common destinations within the environment by cluster-
ing training examples of trajectories.
Gaussian Processes (GPs) have been also proved to be effective in predicting the human
motion. Such a prediction can be used also for compensating occlusions and noise, as
done in [125]. The method proposed in [129] exploits a GP in conjunction with an
Unscented Kalman Filter for motion tracking, while [73] adopts GPs for activity clas-
sification.
Even though, the analysis of the human motion is paramount, the correct way to ap-
proach the human intention estimation problem is through a multimodal perspective:
any kind of information should be exploited. For example [71] introduced an approach
based on game theory to estimate the objective of the human, through the measured
interaction force. In this context, many results have been reported showing the increas-
ing capability of robots to semantically interpret their human fellows. In [61] a method
based on conditional random files (CRF) is used by the robot to anticipate its assistance.
In Luo et al. [77] Gaussian Mixture Models (GMMs) are used to predict human reach-
ing targets. HMMs have been also adopted in [69] to recognise and label sequences of
activities based on occupancy grids. The approach capitalises on the multi-modal per-
ception algorithm discussed in [68]. In [111] human intention is inferred by combining
expectation-maximisation (EM) algorithms and an online model learning strategy.
Once the intention of the human has been recognized, the robot should plan a com-
plementary assistive action. The development of anticipatory behaviors has been ex-
tensively investigated in the literature, and several results have highlighted the corre-
sponding benefits, see e.g. [3, 50]. This behavior, which is also referred to as proac-
tive behavior, has been also applied to multi-agent scheduling for job shops in [76].
Hawkins et al. [47] developed an inference mechanism based on Hidden Markov Mod-
els (HMMs) allowing the robot to predict when particular robot actions would be ap-
propriate, based on the current state of the human worker. Other approaches based on
neural networks [95], or Dynamic Bayesian Networks (DBN) [3, 65, 78] have been de-
veloped to investigate the mutual adaptation of hybrid human-robot teams by modelling
motion patterns.
At the end of the intention inference process, it could be beneficial to inform the hu-
man about what the robot device understood of his or her real intention. Recent papers
have started to motivate the need for mutual understanding [33, 100]. The technol-
ogy advancements have introduced a plethora of new methodologies to increase the
awareness of the operator during the collaboration with a robot. For example, in [81]
an augmented reality (AR) has been introduced to support the human in collaborative
assembly operations. Signal lights and their optimal positioning have been addressed
in [56] to inform the human operator about the status of the robot. Verbal feedback,
i.e. the most natural (for the human) interaction modality, has been addressed in [122]

3

Chapter 1. Introduction and State of the Art

showing its capability to improve the performance in HRC.
Not only to infer the current human action is important, but also to predict the ones
of the near-far future is relevant for planning in the medium-long term robotic actions.
To this aim Li et al. [70] proposed a framework based on variable order Markov mod-
els to predict activity patterns using causal relationships between actions. Variable
order stochastic automata were before used for predictions in [114]. Other works fo-
cusing on high-order stochastic processes, but not applied to robotics, can be found
in [26,103,104]. In [59] a model for the prediction of the worker’s arrival time at a cer-
tain working position has been introduced and applied within an automotive assembly
process. In [47] a planning algorithm was developed to select robot-actions that mini-
mize the expected waiting cost based upon the distribution over predicted human-action
timings.

Assistive scheduling

Typical applications of human-robot cooperation are collaborative assemblies. In such
contexts, the prediction of the sequence of future human activities is crucial. Indeed
many assigned tasks are usually required to obtain a single finite product, having many
precedence constraints. For this reason, the behaviour of the robots influences the one
of the human, possibly leading to situations were the operator is forced to wait. The op-
timization of the robotic action sequence should be done through a multi agent schedul-
ing approach, accounting for the predicted human actions.
The task allocation problem can be solved prior to scheduling, when assuming a static
approach, or simultaneously. Chen et al. [23] describe a genetic algorithm for a col-
laborative assembly station which minimises the assembly time and costs. In [108], a
trust-based dynamic subtask allocation strategy for manufacturing assembly processes
has been presented. The method, which relies on a Model Predictive Control (MPC)
scheme, accounts for human and robot performance levels, as well as far their bilateral
trust dynamics. Furthermore, in [54], the authors proposed a multi-layered planner for
task allocation, sequencing and execution using AND/OR graph and A∗ graph search.
Similarly, in [124] Tsarouchi et al. proposed an intelligent decision-making method
that allows human-robot task allocation according to their capabilities. By taking inspi-
ration from real-time processor scheduling policies, Gombolay et al. [41] developed a
multi-agent task sequencer, where task specifications and constraints are solved using a
MILP (Mixed Integer Linear Programming) algorithm, showing near-optimal task as-
signments and schedules. A similar approach has been also derived in [118]. Bruno et
al. proposed to formalize the task allocation as a classification problem: novel tasks
are assigned to agents according to a certain training set [10]. Finally, [93] proposes a
task assignment method, based on the exploration of possible alternatives, that enables
the dynamic scheduling of tasks to available resources between humans and robots.
Regarding the pure scheduling of multi-agent systems, not necessarily humans and
robots, a rich literature can be found. In [35] a theory on correlation scheduling is de-
veloped, while [34] formalises the problem as a graph search in the space of all possi-
ble sequences of actions. Moreover, [76] proposed an approach that can be robust with
respect to uncertain durations of tasks. All these works consider all agents to be con-
trollable. Indeed, a centralised approach is followed to compute a global plan, which is
then dispatched to every agent. Decentralized approaches were also developed by split-

4

ting some global task into smaller ones and synthesising some local supervisors for
agents [29] with a top-down approach. With the aim of reducing the worker’s waiting
time, Kinugawa et al. [59] developed an online learning algorithm to feed an adaptive
task scheduling system for the collaborative robot. More recently, Bogner et al. pro-
posed a pure integer linear programming (ILP) formulation for optimal scheduling of
robots that are shared among multiple collaborative stations, using some heuristics to
obtain a solution within an acceptable time [8]. [48,49] focused on cycle time optimiza-
tion based on deterministic marked graphs, proposing an iterative heuristic algorithm
to find a proper schedule for a generic manufacturing system.
Regarding HRC assemblies, the collaborative cell can be designed according to a spe-
cific assembly sequence, as done in [101]. Then a centralised global plan can be com-
puted by exploiting one of the above techniques, which is then executed in real time by
humans and robots. Many alternative plans are computed in [124], where a dynamic
task allocation of activities is also possible, by taking into account the different capa-
bilities of agents (robots and humans). In [24], the scheduling problem is solved using
a Generalised Stochastic Petri Net. The selection of the optimal plan takes into account
the amount of time for which the agents remain inactive, waiting for the activation of
some tasks. However, all the aforementioned works model the human operators no
more than highly cognitive manipulators whose actions can be scheduled in an optimal
way.
The factories of the future will adapt their behaviours, reacting to rapidly changing pro-
duction plants. In this scenario, robots can no longer be adopted to simply accomplish
repetitive tasks. Instead, humans and robots will both adapt and synchronize in many
ways, collaborating to accomplish common tasks. Human-robot turn-taking models
based on time Petri nets have been presented in [22], emphasizing their ability to han-
dle multiple resources and actions, such as speech, gaze, gesture, and manipulation.
Finally attention must be paid to the modelling of co-assemblies. De Mello et al. pro-
posed a representation of automated assembly sequences using AND/OR graphs [83].
In [115], a representation of assembly sequences using an ad hoc developed SFC-like
language has been developed, while precedence graphs were used in [112]. The adop-
tion of queuing theory in manufacturing processes is also discussed in [42]. However,
a single tool or formalism is unlikely to simultaneously fit the need to capture both the
high-level flow of the process (which is needed from the point of view of the process
expert) and the low-level details which are needed for computation and optimization
purposes. For example, in [75] a visual programming method has been proposed to
automatically translate an assembly process described in terms of action blocks into an
equivalent Petri net.

This work will propose an approach that allows and promotes an active collabora-
tion between industrial (collaborative) robots and human operators. Remarkably,
such an approach will be applied in realistic industrial scenarios, which is something
that most of the previous approaches did not. The robot will be conceived as a smart
agent, able to continuously interpret the human actions and needs and consequently
adapt to provide the optimal assistance, without waiting for explicit human requests.
With respect to the cited literature, few information will be assumed as a prior knowl-

5

Chapter 1. Introduction and State of the Art

edge, since the data collected during the interaction will be used to progressively refine
a model describing the human to assist.
An efficient collaboration will be made possible by proposing a unique framework
that integrates methodologies for solving the following three problems: understand
and predict the human behaviour, schedule in an optimal way the tasks assigned to
robots for providing the proper assistance and safely control the motion of the robots,
by taking into account the predicted human behaviour. Such an integrated solution is
original in the current state of the art, where prior works typically focus on only one or
two of the above aspects.

6

Part I

Understanding the human behaviour

7

CHAPTER2
Preamble

One fundamental goal to achieve for allowing an efficient cooperation between any set
of agents, is to endow them with some capabilities to understand the behaviour of the
other agents. This is true also when considering human-robot teams. In particular, the
human should have the control, allowing him or her to advance a global task, while the
robots should assist in the proper way the operator. This could be made possible by
interpreting the human behaviour both in terms of:

• Understanding which is the current action that the human is performing.

• Predicting the sequence of future actions.

Both the above problems are non trivial to address, due to the highly stochastic and
weakly repeatable nature of human behaviour. We can assume the operator inside a
cell as monitored by sensors like depth cameras, able to perceive the motion of the hu-
man body during time. According to such data, the algorithms described in this part of

Workspace

G1 G3

G2 G4

Figure 2.1: Examples of goals related to actions in A.

9

Chapter 2. Preamble

this dissertation will address the above problems.
The prediction of the future human actions will be the starting point for all the schedul-
ing strategies detailed in Part II.

For the rest of this document, the following notation will be adopted. When consid-
ering any kind of human-robot collaboration, there are actions that both the human
and the robots have to perform for completing a common goal, like for instance per-
forming the assembly of an object. For industrial contexts it is reasonable to assume
A = {a1, · · · , am}, the set of actions assigned to the human, as finite and known. Ac-
tions in A can be simple operations like taking tools from buffers or moving objects
from one place to another one. In such cases, every action a ∈ A is associated to a
region Ga of the workspace: when an operator’s hand enters this area the beginning of
the corresponding action can be detected. Ga is assumed as a spherical region with a
radius ra and a center Ca, see Fig. 2.1 as an example.
When having a one to one correspondence between actions and goals, the motion of the
hands is critical for inferring the human intention see Section 3.1,5.1 and 5.2. Other-
wise, when more complex operations compose set A, the analysis of the whole human
body motion has to be considered, as discussed in Chapter 4.

10

CHAPTER3
Understanding the human intentions

To achieve an efficient human-robot collaboration, it is essential for the robot to infer
the human’s intention and then decide the best action to take. The difficulty of this
inference process is proportional to the level of abstraction associated to the possible
activities that the operator can undertake. For instance, when monitoring an operator
in a robotic cell, we can just infer which tool the human intends to reach, or solve the
more difficult problem of inferring what part he/she is going to assemble within a set
of possible ones (activity labelling).
The first kind of problem will be the objective of the method proposed in Section 3.1,
while the second one could be solved by the approach reported in Chapter 4.
Generally speaking, reducing the level of abstraction, we can make inference in more
general contexts, relying on a reduced a priori knowledge. Indeed, the method of Chap-
ter 4 is effective for inferring complex behaviours of the human, even though it requires
an extensive initial data set for tuning the inferring model. On the other hand, the ap-
proach in Section 3.1 can be applied only to simple reaching actions. The best approach
to follow depends on the specific application.

3.1 Estimating the current intended goal

The aim of this Section is to propose a method for inferring the next goal that will be
reached by the operator’s hand, among a set of possible known ones G1, · · · , Gm (see
the introduction of Part I). In principle, this problem could be solved by monitoring
the whole operator’s arm trajectory [77]. Indeed, the observed trajectory of the hand,
as well as other skeletal points of interest (see also Figure 9.1), are treated as features,
which are exploited to classify the trajectory using a learnt Gaussian Mixture Model
(GMM) (see Section 3.1.2). After classification, it is possible to forecast the trajectory

11

Chapter 3. Understanding the human intentions

on a small future horizon time. The predicted motion is evaluated to make inference
about the target location of the human.
The approach detailed in this Section has a similar intent and extends the one proposed
in [135], which considered only the operator’s hand trajectory and solved the problem
by using a recursive Bayesian classifier. The novel proposed approach considers the es-
timation of the operator’s gaze direction and additional features not taken into account
by [135]. This is actually what allows the method to perform better.
Monitoring the operator’s gaze is something already explored in human-robot interac-
tion (HRI). It is used, for example, to let social robots perform human-like motions.
In [139], authors focused on producing coordinated head-arm motions for a humanoid
robot with a two degrees-of-freedom head.
Even for human-human interactions, the gaze constitutes an important measure, since
it is closely tied to what people are thinking and doing [60]. Motivated by this fact,
the estimate of the gaze (face orientation) was introduced to help in the process of in-
ference. In a similar way, Bednarik et al., in [5], developed a classifier that is able to
detect when a person observes an intended goal location. The classifier is adopted to
avoid the so called Midas touch problem, i.e., considering as intended every goal that at
a certain time is in the operator’s field of view. The same problem can be mitigated by
considering also other observations rather than only the gaze, as for example one hand
trajectory. This approach was followed in [11], where a hidden Markov model (HMM)
was adopted. The HMM allows to make inference about a sliding temporal window of
observations.

3.1.1 Background

The position p of the operator’s hand was adopted in [135] to update with discrete sam-
pling time the distribution of probability

[
P(G1) · · · P(Gm)

]
, explaining in a proba-

bilistic way which is the next goal intended by the human with that hand (two distinct
probability distributions can be updated simultaneously for the two hands). The update
of P(G1,··· ,m) was done computing the angles δ1,··· ,m. δik is the angle between an esti-
mation of the operator’s hand velocity vk and a nominal one ṽik. ṽik is the velocity at
step k of a minimum jerk trajectory that starts in pk−1 with a velocity equal to vk−1 and
terminates into Ci, i.e. the center of Gi, refer to the left picture of Figure 3.1.
Notice that at every step, m different angles δ must be computed, considering the dif-
ferent positions C1,··· ,m of goals in A. The more δi is low, at least null, the more it is
evident that the human is intending Gi. Since only a single operator’s hand was con-
sidered for the inference process, the model proposed in [135] had a feature set Φ = δ.
The probabilities P(G1,··· ,m)k were updated considering a recursive Bayesian classifier
which assumes P(G1,··· ,m)k−1 as priors, leading to:

P(Gi)k ∝ L(δik|Gi)P(Gi)k−1

P(Gi)k =
L(δik|Gi)P(Gi)k−1∑m
j=1 L(δjk|Gj)P(Gj)k−1

(3.1)

L is a likelihood function that assumed the value of a Gaussian distribution, having
a null mean and a variance Σ which was a tunable parameter, whose value was set
according to heuristic considerations.

12

3.1. Estimating the current intended goal

surveillance camera surveillance camera

G1
G2

pk

pk−1
vk−1

vkδ1

Zanchettin et al [135]

G1
G2

pRk

vRk
δ1W1

h

d1

z

δ1H
δ1W2

pLk

vLk

z

zKine
zKine

ṽ1k

Casalino et al [17]

Figure 3.1: Sets of evidences Φ considered by the approach in [135] and [17]. In case of [17], the
estimation of z is made according to some detected facial points, which are depicted as blue points.

The pipeline of the approach in [135] is reported in upper part of Figure 3.2, while the
left part of Figure 3.1 describes the features involved for making inference.

3.1.2 Proposed approach

In [17] the probability distribution modelling the intended goal is computed in a re-
cursive way, as done in [135], however considering a different set of evidences. For
notational purposes, we’ll distinguish the position p of the operator’s hands, adopting
pR for the position of the right wrist, while pL will be adopted for the left one. z will in-
dicate the estimated orientation of the head, while h will denote the estimated position.
Depth cameras like MICROSOFT KINECT, compute z as the normal of a plane which
interpolates some detected facial points (Figure 3.1). Not only the estimate of z is re-
turned, but a flag F about its validity is returned too. When the operator looks towards
a direction that is very different from the normal of the camera frame zKin (Figure 3.1),
the retrieved measure is non reliable.
The directions of the velocities of the wrists, vR and vL, are estimated as similarly done
in the method described in the previous Section, i.e. according to the past acquired
samples for pR and pL. The probabilities P(G1,··· ,m) are updated by making use of a
recursive Bayesian classifier, however adopting a different likelihood function L as will
be described in the following.
In principle, the probabilities P(G1,··· ,m)R of the right arm intended goal could be up-
dated considering only the evidences related to the right arm and similarly P(G1,··· ,m)L

with the left one. Actually, this was the approach followed in [135], equation (3.1).
On the opposite, [17] proposed to compute L by considering as features both the hand
positions for updating P(G1,··· ,m)R and P(G1,··· ,m)L. The entire set of evidences Φ is
composed as follows (see also Figure 3.1):

Φ =
(
δW1 δW2 δH d

)T
13

Chapter 3. Understanding the human intentions

Φ1,··· ,m

Goal positions C1,··· ,m

L(Φi|Gi)

Normalization

z−1
Ψ1,··· ,m L(Ψi|Gi)

P(G1,··· ,m)k

GMM4d

GMM2d

F

h, z, pR, pL

Pipeline of the approach in [17]

Goal positions C1,··· ,m

Normalization

z−1

δ1,··· ,m L(δi|Gi)
P(G1,··· ,m)k

p

Pipeline of the approach in [135]

P(G1,··· ,m)k−1

Figure 3.2: Pipelines of the inference approaches proposed in [135] and [17]. In [17], flag F is ex-
ploited to select the proper mixture model to use for computing the likelihood L.

When considering inference for the right hand, δiW1 is taken as the angle between vR

and the vector connecting pR to the center Ci of Gi, while δiW2 is a similar angle but
considering vL. On the contrary, when inference is made for left hand, δiW1 is computed
according to vL and δiW2 according to vR. The angle δiH is the one between z and
the vector connecting h to Ci, while di is the Euclidean distance between pR and Ci,
when considering inference for the right hand, while is the same involving pL when
considering inference for the left one. Angle δW2 is included in Φ because a high
evidence that the left hand is going to a certain goal, reduces the probability that this
goal is intended for the right hand. Clearly we assume that the operator uses a single
hand to reach a certain goal1. On the contrary, not considering δW2 in Φ would lead
to update the probability distributions related to the hands in a completely independent
way, which is not realistic. Also in this case, Φ must be computed at every step for every
possible goal, leading to a population of Φ1,··· ,m. The updating law is the following one:

P(Gi)
R
k ∝ L(Φi

k|Gi)P(Gi)
R
k−1

P(Gi)
R
k =

L(Φi
k|Gi)P(Gi)

R
k−1∑m

j=1 L(Φj
k|Gj)P(Gj)Rk−1

(3.2)

A data driven approach was adopted for determining the likelihood function L. In
fact, L was approximated with a GMM learnt from a training set. Prior to detail the
steps involved for learning a model for L, some basic concepts about Gaussian Mixture
Models will be provided.

1But moving simultaneously both hands to reach different locations.

14

3.1. Estimating the current intended goal

Gaussian Mixture models as approximating functions

GMMs can be adopted for approximating unknown probability density distributions as
will be shown.

Mixture models Mixture models are in general a way to define a probability density
function as the combination of a certain number of simpler ones. Let f be the proba-
bility density function of a continuous random variable x. Assuming X as domain for
the possible realizations of x it holds what follows:

f : X → [0, 1] (3.3)∫
X

f(x)dx = 1 (3.4)

It is possible to define a generic mixture model, by combining N probability densi-
ties f1,··· ,N satisfying equation (3.4) and having the same domain X . Indeed, consider-
ing N weights λ1,··· ,N , the density of the mixture fmix is defined as follows:

fmix(x) =
N∑
i=1

λifi(x) (3.5)

To ensure that fmix is in turn a valid probability density function satisfying equation
3.4, it is necessary to impose that the combination expressed in equation (3.5) should
be convex, meaning that:

N∑
i=1

λi = 1 (3.6)

In fact, when the above specification holds, it is true that:∫
X

fmix(x)dx =

∫
X

[λ1f1(x) + · · ·+ λNfN(x)]dx

=

∫
X

λ1f1(x)dx+ · · ·+
∫
X

λNfN(x)dx

= λ1

∫
X

f1(x)dx+ · · ·+ λN

∫
X

fN(x)dx∫
X

fmix(x)dx = λ1 + · · ·+ λN =
N∑
i=1

λi = 1 (3.7)

The simplifications made in the above equation are justified by the fact that every func-
tion fi is a probability distribution function satisfying equation (3.4):

∫
X
f1(x)dx = 1

...∫
X
fN(x)dx = 1

(3.8)

It is worth noticing that no particular hypothesis were posed about the combining
distributions f1,··· ,N . We need only to require they are valid probability density func-
tions defined over the same domain. The above considerations are true also when con-
sidering multivariate distributions.

15

Chapter 3. Understanding the human intentions

The values of the weights λ1,··· ,N , as well the parameters characterizing every single
fi in the mixture, are tuned through a learning process which considers as training set
〈x1, · · · , xM〉, i.e. M realizations of fmix.
The functions characterizing the mixture can be interpreted as clusters. In such cases,
the values of weights λ1,··· ,N are priors for the probability that a sample was drawn from
the corresponding fi. The classification of a value x, according to the Bayes formula,
can be done as follows:

P(x ∈ Clusteri) = P(Clusteri|x) ∝ L(x|Clusteri)Pprior(Clusteri)
∝ fi(x)λi

=
fi(x)λi∑N
j=1 fj(x)λj

(3.9)

Gaussian Mixture models Gaussian mixture models are particular mixture models com-
bining N multivariate Gaussian distributions. From Section 3.1.2, it follows that the
distribution of a GMM, fGMM , is defined in this way:

fGMM(x1,··· ,n) =
N∑
i=1

λifGauss i(x1,··· ,n)

fGauss i(x1,··· ,n|Σi, µi) =
1√

(2π)n |det(Σi)|

exp(−1

2
(x− µi)TΣ−1

i (x− µi)) (3.10)

where in the above equation Σi and µi are the variance and mean, respectively, of the
ith Gaussian distribution in the mixture.

Learning of GMM is typically made using the Expectation Maximization (EM),
whose steps are extensively described in Appendix B. EM, is essentially an itera-
tive algorithm that starts from an initial guess for the parameters of the clusters θ =
{· · ·λi,Σi, µi, · · · }, usually computed employing a k-means classifier, and then adjusts
the model values until the convergence to a maximum for L(θ|X), see Appendix B.
EM is considered as an unsupervised algorithm, since only the number of clusters must
be specified when performing learning, omitting the labels 2 of the elements in the
training set.

Approximating capabilities of GMM GMM can be also adopted for approximating com-
plex unknown distributions. Indeed, samples in the training set do not have to be ac-
tually generated from a mixture of Gaussians. They can be generated by an unknown
distribution, that will be approximated later by a set of Gaussians. Then, considering
the proper number of clusters, any kind of probability distribution can be approximated
by a GMM. To this purpose, it is possible to undertake many training sessions with
the EM algorithm, varying every time the number of clusters of the model, obtaining a
population of possible models. Then, the one maximising the likelihood of the training

2The Gaussian in the mixture that produced that sample

16

3.1. Estimating the current intended goal

-1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2

-1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2

Figure 3.3: The uniform density between 0 and 1 is compared with an approximating mixture, varying
the number of components.

set is assumed as the one approximating the unknown distribution.
As an example, consider to approximate the uniform distribution U(0, 1) with a GMM,
fapprox, made of nmix components defined as follows:

fapprox(x|nmix) =

nmix∑
i=1

fGauss i(x|Σi, µi)

Σi =

(
1

nmix

)2

µi =
1

nmix

(
i− 0.5

)
(3.11)

In Figure 3.3, the density of U(0, 1) is compared with the one of fapprox, varying the
number of approximating clusters. As can be visually appreciated, the approximation
error decreases when increasing the number of clusters in the model. This phenomenon
is not always verified when considering other kind of distributions.

Learning the likelihood function describing the human intention

We are now in the position to detail the procedure adopted for learning the likelihood
function L(Φ) (see equation (3.2)). As already discussed, L(Φ) is approximated by an
LGMM(Φ).
LGMM can be learnt from data in a supervised manner. Indeed, we can monitor some
operators during the execution of predefined sequence of tasks, collecting some trajec-
tories pR(t), pL(t), h(t), z(t). Then, knowing the intended goal locations3, it is possible
to extract from the collected data a population of samples 〈Φ1,··· ,M〉, which can be used
to fit LGMM by making use of EM algorithm. Learning is done varying the number
of clusters of the mixture in order to take the model maximising the likelihood of the
parameters w.r.t. to the training set, see Appendix B.
It is worthy to point out that the learnt model is general, in the sense that it can be

3In this sense the approach is supervised.

17

Chapter 3. Understanding the human intentions

applied to any kind of robotic cell (with its own locations C for the goals G). In this
way, when changing the layout of a cell, we can still rely on the learnt GMM, without
a new training of the model. On the other hand, a specific GMM learnt for a newer
layout could achieve higher performance.

Managing non accurate sensor information

Once the GMM describing the likelihood function has been learnt, it is possible to
exploit it on-line, to make inference about the intended goal. For the sake of simplicity,
suppose that only the distribution related to one hand of the operator is updated. To this
purpose, the measures retrieved from the sensor as well as the knowledge about every
possible goal location are exploited to compute Φ1

k+1, · · · ,Φm
k+1, i.e. the evidences.

Then, equation (3.2) is adopted to compute the a posteriori probabilities of every goal
at step k + 1.
Since the information about z is not always reliable, a switching model must be taken
into account. In fact, when z is not available, we can make inference according to a
reduced vector of features Ψi

k =
(
δiW1k dik

)T . Another GMM distribution, let us call
it GMM2d, can be learnt from samples of Ψ, in a similar way as for the one describing
Φ, that can be denoted as GMM4d. Then, depending on the value returned at step k
for flag F , the update of probabilities for every goal is made according to GMM4d, or
according to GMM2d.
The overall pipeline of the presented approach is reported in the lower part of Figure
3.2.

Managing uncertainties for the location of the goals

As stated in the previous Section, the on line computation of the feature vector Φi (or
Ψi) requires to know the goal centres C1,··· ,m. However, in realistic contexts, this quan-
tity is not a precise value, but it is rather a random variable with a certain distribution of
probability. To manage this uncertainty it is only required to characterize the distribu-
tion which describes the goal location, possibly assuming an additional approximating
GMM. In this way, some possible locations for goals can be sampled every time the
update of probability is required.
As done with particle filter algorithms, when computing the likelihood of the ith uncer-
tain goal we can consider a set ofNp samples ci1, · · · , ciNp as hypothesis about the true
goal location. Then, for every sample cij , it is possible to compute the likelihood func-
tion L(Φij|cij), which implies to compute different Φij . The global likelihood function
adopted for updating the probabilities can be computed as a mean of the likelihood of
every sample4:

L(Φk+1|Gi) =
1

Np

Np∑
p=1

L(Φij
k+1|c

ij) =
1

Np

Np∑
p=1

LGMM(Φij
k+1) (3.12)

3.1.3 Operator awareness through intention recognition

The method described in the previous Section was tested in a collaborative task, where
a human operator has to assemble a box with the help of a robotic manipulator. The

4Which can translated in a weighted sum, in case samples are not equally probable.

18

3.1. Estimating the current intended goal

Figure 3.4: Layout of the experimental robotic cell. Locations of possible human goals are indicated
with white dotted circles.

Figure 3.5: Vibrotactile ring with its controller box. During the experiments the ring is worn on the
operator’s left hand and the box is attached to a Velcro bracelet worn on the forearm.

experimental setup is reported in Figure 3.4. The operator’s left hand is equipped with
a vibrotactile ring (Figure 3.5), which contains a 4 mm vibration motor (PRECISION
MICRODRIVESTM)5, that is controlled through an Arduino Pro Mini6. The communi-
cation with the ring is wireless, thanks to two XBee R© RF modules (Digi International
Inc.)7. The ring itself weighs around 2g, whereas the complete device (ring plus con-
troller box placed on the wrist) weights around 40g.
The depth camera, the vibrotactile ring and the robot are connected to a CPU, where
the inference algorithm is implemented. The CPU reads the measurements retrieved
from the MICROSOFT KINECT and sends commands to both the robot and the ring.

5 http://www.precisionmicrodrives.com/product/304-101-4mm-vibration-motor-11mm-type
6http://store.arduino.cc/arduino-pro-mini
7http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

19

http://www.precisionmicrodrives.com/product/304-101-4mm-vibration-motor-11mm-type
http://store.arduino.cc/arduino-pro-mini
http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

Chapter 3. Understanding the human intentions

Description of the collaborative task

The objective of the task is to assemble a box containing a USB pen drive. The task has
5 steps:

1. The human fills the box with two layers of foam, and the USB pen drive.

2. The human brings the filled box towards the robot.

3. The robot adds the cover on the box.

4. The human fixes the cover with some tape.

5. The robot stores the finished product.

The operator is monitored during the experiment by the depth camera, whose ob-
servations are given to the inference algorithm presented before. The set of possible
human goals G1,2,··· is composed as follows (see Figure 3.4):

1. Home position

2. Feeder of the first kind of layer foams

3. Feeder of the second kind of layer foams

4. Collaborative station

5. Feeder of the boxes and pen drives

The haptic feedback is used twice. The first time to inform the human that the
robot understood his/her intention of putting the box in the shared workspace, i.e., the
collaborative station (beginning of step 2). The second time to inform the human that
the robot understood that step 4 has been completed. The decision about the proper
time to send one new feedback is made according to the evolution of probabilities
about the human’s goals, as well as according to the state machine depicted in Fig. 3.6.
When at least one new human is detected in the scene, the state machine goes out of
its initial state and reaches state 1. This state persists until the probability related to
goal 4 grows above a predefined high threshold (0.8 for instance), meaning that the
human has completed the first step and is about to deliver the partially assembled box
to the collaborative station. When this happens, the machine enters state 2 and returns
to state 1 only when the probability of goal 1 grows above another threshold, implying
that the operator has finished step 4 and is about to begin a new cycle. Every time the
machine goes form state 1 to state 2 or vice versa, a vibrotactile feedback (a vibration
burst lasting 120 ms, with a frequency of 200 Hz and an amplitude of 0.8 g) is sent to
the operator. The same kind of feedback was adopted in both cases because the aim of
the delivered message is the same, i.e., informing in a reactive way the human that the
robot has understood his/her intention and is about to move.

Experiments

16 participants were recruited for the experiments. Half of them performed the collab-
orative task with the haptic ring, and half without. In both groups, 5 out of 8 subjects
were considered non-skilled, as they declared to be not familiar with the use of robots.

20

3.1. Estimating the current intended goal

1

0 2

A new operator is detected in the scene

The operator goes out from the scene

P(G4) > 0.8⇒ send vibration burst

P(G1) > 0.8⇒ send vibration burst

Figure 3.6: State machine adopted to send feedback to the operator. Note that vibration bursts are sent
before the operator actually reaches the goals, according to the probabilities evolution.

G4

G1

Figure 3.7: Some trajectories taken from the experiments, going from goal 1 (blue) to goal 4 (red). Green
markers are located at the points of the path for which the subject receives the haptic feedback.

The skilled participants, instead, had previous experience with human-robot collabora-
tive tasks (e.g., they already took part in HRC experiments), but were not specifically
trained for the proposed assembly task. All subjects were asked to perform the collab-
orative task for 5 consecutive times, and those wearing the ring were instructed on the
meaning of the vibration burst. During the experiments the ring was worn on the oper-
ator’s left hand, that was the one tracked with the MICROSOFT KINECT. The execution
time of each trial was recorded and subjects who used the vibrotactile interface were
asked to evaluate their experience with a questionnaire. Fig. 3.7 shows some trajecto-
ries taken from one subject, with the point at which the haptic feedback is sent, which
is almost in the middle of the path.

The method described in Section 3.1.2 was adopted to train the GMM4d and GMM2d
models. Results regarding training of GMM4d are reported in Figure 3.8, where the
likelihood of the model is plotted against the number of clusters considered. A number
of 7 clusters was considered for GMM4d since, as can be seen from Figure 3.8, con-
sidering a greater number does not improve significantly the likelihood of the model.

For the experiments, three different aspects were analyzed: the benefits of using
gaze estimation, the benefits of using the vibrotactile feedback, and the overall subjects’
evaluation of the haptic ring.

Benefits of using gaze estimation

To highlight the benefits of using the estimate of the gaze in the inference process, the
probabilities evolution obtained with the following different methods were compared:

21

Chapter 3. Understanding the human intentions

2 4 6 8
-9.2

-9

-8.8

-8.6

-8.4

Figure 3.8: The figure reports the likelihood of model GMM4d, varying the number of clusters consid-
ered when training the model. The selected number of clusters was 7.

M1: the method proposed in [135];

M2: an approach that updates the probabilities based on the trajectory of a single hand
and using the likelihood function denoted as GMM2d, simulating that the infor-
mation about gaze is always invalid;

M3: the complete approach proposed in Section 3.1.2, where inference is made by
considering both the detected positions of the operator’s hands and his/her gaze.

M3 was applied on-line, while the other two were applied off-line on the same mea-
surements retrieved from the depth camera. Figure 3.9 reports the distribution of the
distance at which goal 4 was correctly recognized by using the aforementioned meth-
ods. As can be seen, the performance of the methods is quite similar. Anyway, the
robustness of the three methods must be taken into account. The number of false pos-
itives is defined as the number of times for which the probability of a certain goal has
risen beyond the threshold of 0.8, but the operator was going to a different target. The
number of true negatives, instead, corresponds to the number of times for which the
operator was going to a certain goal, but the probability of the same did not rise above
the threshold. From the analysis of Table 3.1, that reports data related to goals 1 and 4,
we can state that the information about the gaze allows to acquire an improved robust-
ness in the inference process. The position of goal 1 is much more scattered than goal
4, and this reflects on the performance of our algorithm, even though it remains better
than the method proposed in [135].

22

3.1. Estimating the current intended goal

Table 3.1: Percentages of false positives and true negatives are with respect to the total number of times
the operators went to goal 4 for the upper table. The lower one refers to goal 1.

Goal 4 M1 M2 M3∗

% False Positives 4.54 11.53 0
% True Negatives 16.67 0 0

Goal 1 M1 M2 M3
% False Positives 9.09 11.15 6.06
% True Negatives 21.21 12.3 8.3

∗The third column of the first table contains zeros because during the experiments neither false positives, nor true negatives were
noticed (N.B. method 3 was applied on-line).

5

10

15

20

25

30

di
st

an
ce

 b
ef

or
e

re
co

gn
iti

on

of
 g

oa
l 4

 (
cm

)

M1: M2: M3:

Figure 3.9: Comparison of the three different inference methods regarding the goal recognition per-
formance. Distance before recognition refers to the length of the path described by the wrist of
the operator, from the instant at which the recognition of goal happens until the time at which the
operator reaches goal 4.

Benefits of using haptic feedback

To evaluate the advantages of using haptic feedback, the task execution time was con-
sidered. The intuition behind these kind of experiments is that if the human is aware
that the robot has understood his/her intention, he/she does not have to wait to see it
moving, and can proceed with the task execution in a more fluent and fast way. In
other words, the haptic feedback makes the user confident that his/her artificial mate is
working as expected.

According to the data gathered in the experiments described, the variability in cycle
time is reduced with the help of vibrotactile feedback, however no statistical evidence
of this fact can be proven (Figure 3.10(a)). Within the population of non-skilled partic-
ipants (Figure 3.10), instead, it is possible to find a statistical evidence of the fact that
the average cycle time is reduced with the help of vibrotactile feedback (single-tailed
Wilcoxon rank sum test with confidence α = 0.05 returns r = 0.9907). A tangible
decrease of the cycle time variability for the same population can also be appreciated,
however still without statistical evidence.

The time elapsed from the instant the human finishes to fix the tape on the cover
and the time he/she reaches goal 1 to begin a new assembling cycle was considered
too, for both skilled and non-skilled participants (Fig. 3.11). The average time when
receiving the vibrotactile feedback is strongly proved to be statistically lower (single-
tailed Wilcoxon rank sum test with confidence α = 0.05 returns r = 0.9998). This
confirms the hypothesis that the usage of vibrotactile feedback for some crucial parts
of the interaction makes the user more confident about the robot behaviour, improving
his/her productivity.

The task here proposed is rather easy, and that is probably why performance of peo-

23

Chapter 3. Understanding the human intentions

14

16

18

20

22

24

Without
feedback

With haptic
feedback

(a) Cycle time with and without ring. Here the overall pop-
ulation, composed of skilled and non-skilled subjects, was
considered.

14

16

18

20

22

24

Without
feedback

With haptic
feedback

(b) Cycle time with and without ring for non-skilled sub-
jects.

Figure 3.10

0.5

1

1.5

2

Without
feedback

With haptic
feedback

Figure 3.11: Time elapsed from the instant when the tape is fixed until the one when the operator returns
to goal 1. The overall population, composed of skilled and non-skilled subjects, was considered.

ple with previous experience in robotics does not seem to benefit from haptic feedback.
However, having seen the results obtained with non-skilled subjects, we can expect that
in contexts where the production lines change frequently (e.g., agile manufacturing),
haptic feedback could prove to be significantly beneficial.

To further assess its usability in industrial contexts, haptic feedback could be com-
pared with auditory or visual cues, in case hearing and sight are not impaired during the
task execution. However, the comparison between different types of feedback modali-
ties was out of the scope of this work. Future developments could address this issue and
also study how multimodal interaction [46] can be combined with intention prediction
algorithms to perform HRC tasks.

24

3.1. Estimating the current intended goal

Figure 3.12: Subjects’ answers in percentage to the question Express how much you agree with the
following statements concerning the vibrotactile ring.

Overall evaluation of the haptic ring

After the experiments done with the haptic ring, a questionnaire was submitted to ev-
ery subject to get their subjective evaluation of the device. None of the 8 subjects had
previously used wearable haptic interfaces before. The questions were formulated as
five-level Likert items, and from the answers shown in Figure 3.12 we can derive an
overall appreciation of the ring, that was felt more as a help (cf. R5) than as an en-
cumbrance (cf. R1, R3). Answers to question R5 are in line with the results shown
in Figure 3.11, underlining that the vibrotactile feedback helps in proceeding smoothly
with the task.

25

CHAPTER4
Segmenting the human actions by analysing the

upper body motion

It is not always possible to follow the approach described in Chapter 3 for detecting
the inception or the termination of a human activity. Indeed, it is not ensured that a
one-to-one correspondence exists between actions and goals. For example, multiple
different tools can be stored in the same buffer or distinct goals may be too close for
recognizing that the human is entering into one of them. Moreover, there could be
actions not related to goals as for instance those performed by the human after taking
all the necessary tools.
In these circumstances, the motion of the entire body of an operator must be analysed
and interpreted with more sophisticated approaches, as the one proposed in this Section.
The set of possible human actions A (see the initial Section of Part I) is still assumed
to be finite and known.

4.1 Evolving factor graphs for segmenting the human actions

The aim of the algorithm proposed in this Section is to detect the starting and the ending
time of human actions, by analysing the motion performed by the operator in the recent
past. To this purpose, RGB-D sensors can be exploited to keep track of some points
of interest in the human silhouette (see also Chapter 9). The signals retrieved are sub-
divided into many sub-windows each having a maximal length of lw samples. Then, a
feature vector F i

O =
[
Oi

1 · · · Oi
F

]
made of F components can be extracted from the

ith window, representing an indirect indication of the action a ∈ A that was performed
within the same window. Every F i

O is computed by taking into account the mean and
variance value of some inter-skeletal distances, refer to Figure 4.1. Additionally, the
distance of the wrists w.r.t. the centres of goals C1,··· ,m, representing the position of

27

Chapter 4. Segmenting the human actions by analysing the upper body motion

‖LW −RS‖2
‖LE −RE‖2
‖LW − C1‖2

1:H

2:LS

8:T

4:LE

6:LW

3:RS

5:RE

7:RW

time

C1

lw

F 1
O =

[
O1

1 = 1
lw

∫ t+lw
t ‖LW (t)− C1(t)‖2 dt O1

2 = 1
lw

∫ t+lw
t (‖LW (t)− C1(t)‖2 −O1

1)2dt · · ·
]

· · ·

F 2
O F 3

O FL
O

· · ·

Figure 4.1: The approach followed to obtain the observations. The trajectory of the human is split into
many windows of length equal to lw. The mean and variance of some skeletal distance values are
computed for obtaining the set of observations F 1

O, · · · , FL
O .

buffers storing the parts to use, can be taken into account.
The hypothesis is that a specific action a will produce characteristic values for FO.
However, the main problem to overcome is that the sequence of actions performed by
the human, their durations and their number is not known. Therefore, when dealing
with a macro-window made of L segments of length equal to lw, we have to find a way
to determine the most probable sequence of actions that produced that observations.
The problem can be tackled considering a variable-structured Markovian Random Field
(see Appendix C), having as hidden variables the sequence of actions actually per-
formed by the human and as evidences the features F 1,··· ,L

O contained in the window
for which the segmentation of actions has to be computed. Vector ρ =

[
ρ1 · · · ρS

]
is adopted for describing the durations of the human actions as well as their number.
Indeed, ρi indicates the percentage of time spent by the human when doing the ith ac-
tion in the sequence. Knowing ρ, it is possible to build the underlying factor graph,
assuming to connect ρi · L observations to the node representing the ith action 1, refer
to Figure 4.2. The potentials involved in the structure reported in Figure 4.2 will be
discussed in Section 4.1.1 and 4.1.2. Clearly, it must be ensured that

∑
ρi = 1.

Since the real segmentation ρ∗ describing the sequence of human actions is not avail-
able, the proposed approach considers many hypotheses ρ1, ρ2, · · · , which are itera-
tively compared with the aim of finding the best one, i.e. the one more in accordance
with the observations retrieved from the sensors. More specifically, a genetic algorithm
will be exploited as reported in Section 4.1.3.

4.1.1 Modelling the correlation existing between the observations and the human
actions

The generic potential ΨOjY (Figure 4.2) describes a correlation existing between Oj

and Y , i.e. a variable representing a performed action. It is an exponential potential

1Values are rounded to obtain integer quantities.

28

4.1. Evolving factor graphs for segmenting the human actions

FO computation

ΨO1Y

ΨOFY

ρ =
[
ρ1 = 2

8
, ρ2 = 3

8
, ρ3 = 2

8
, ρ4 = 1

8

]

Hidden variables

ΨOFY

ΨO1Y

Y1 Y2 Y3 Y4

Ψ1
Y Y Ψ1

Y Y

Ψ1
Y Y

Ψ2
Y Y

Ψ2
Y Y

Ψ3
Y Y

Evidences

ρ1 · L ρ2 · L ρ3 · L ρ4 · L

Ô1
1

and discretization

time

Ô1
F

skeletal distances during time

Ô2
1

Ô2
F

Ô8
1

Ô8
F

ΨO1Y ΨOFY

Figure 4.2: Example of graph construction. The observations are partitioned to actions, as described
by the values contained in vector ρ. The observations Ô1,··· ,F are computed as indicated in Section
4.1.1.

29

Chapter 4. Segmenting the human actions by analysing the upper body motion

empirical cumulative distribution function

domain of Oj

domain of Ôj

0

0 1 2 3 4 5 +∞

1

Figure 4.3: The intervals considered for computing Ôj fromOj , are obtained by considering equispaced
portion of the image of the empirical cumulative distribution function describing the values that Oj

can assume.

(see Appendix C) defined in this way:

ΨOjY (Ôj, Y) = exp

(
wOj · ΦOjY (Ôj, Y)

)
(4.1)

where Ôj is a discrete projection of Oj , while wOj is a weighting coefficient whose
value becomes known after performing training, as indicated in Section 4.1.5. Ôj is a
categorical variable whose relationship with Oj is obtained by considering some statis-
tics about Oj , retrieved from a training set made of recorded human actions. Indeed,
each trajectory in the set is subdivided into many equispaced portions having a length
equal to lw and the value of Oj in each sub-portion is computed. In this way, a pop-
ulation of values for Oj is collected and an empirical cumulative distribution function
can be built. The latter distribution is considered for defining some non-equispaced
partitions of the domain of Oj , refer to Figure 4.3. Ôj assumes the value associate to
the interval containing the real value of Oj . The value of ΦOjY in a particular combi-
nation Ôj, Y is assumed to be equal to the times for which that pair is encountered in
the training set.

4.1.2 Modelling the sequence of actions

The potentials Ψ1
Y Y , · · · ,Ψo

Y Y (Figure 4.2) correlating the actions performed during
time are assumed to be defined in this way:

Ψi
Y Y (Yk, Yk−i) = exp

(
wY · Φi

Y Y (Yk, Yk−i)

)
= exp

(
wY · λi ·Qi(Yk, Yk−i)

)
(4.2)

where in the above equation λi and Qi are the parameters of an Higher order Marko-
vian model (Section 5.1) modelling the sequence of actions. Qi(Yk, Yk−i) refers to the
value in row Yk and column Yk−i 2 of the ith matrix in the model. The weight wY is
shared by all the potentials connecting the hidden variables. The proportion between
wY and wO1, wO2, · · · modulates the importance given to Markovian model w.r.t. the
one assigned to the information coming from the observations.

2Notice that the variables involved in the graphs are all categorical

30

4.1. Evolving factor graphs for segmenting the human actions

4.1.3 Segmenting the actions on a fixed window of observations

Suppose for the moment to perform the segmentation of actions, after having acquired
all the observations F 1

O, · · · , FL
O in a temporal window. A factor graph (Appendix C)

can be built for each segmentation hypothesis ρ, as indicated before. Then, alternative
hypothesis must be compared. We might think to perform the comparison by consider-
ing the following likelihood function (Appendix A):

L(ρ|F 1
O, · · · , FL

O) = P(F 1
O, · · · , FL

O |ρ)P(ρ)prior (4.3)

The computation of P(F 1
O, · · · , FL

O |ρ) could be done by considering the underlying
factor graph (the notation introduced at the beginning of Appendix C is adopted):

P(Ô1
1, · · · , Ô1

F , · · · , ÔL
F |ρ) =

∑
Ỹ

P(Ô1
1, · · · , Ô1

F , · · · , ÔL
F , Ỹ1,2,···|ρ)

=
∑
Ỹ

E(Ô1
1, · · · , ÔL

F , Ỹ1,2,···)

Z

=
∑
Ỹ

E(Ô1
1, · · · , ÔL

F , Ỹ1,2,···)∑
Õ1

1 ,,··· ,ÕL
F
E(Õ1

1, · · · , ÕL
F , Ỹ1,2,···)

(4.4)

However, the above derivations are computationally intractable even for small sized
graphs. For this reason, an approximation of the above quantity must be used. Such
approximation will be treated as a fitness parameter by the genetic algorithm in charge
of finding the optimal segmentation and it is defined as follows:

%(ρ) =

E

(
Ô1

1, · · · , ÔL
F , YMAP |ρ

)
sup{E(ρ)}

P(ρ)prior (4.5)

where YMAP is the maximum a posteriori estimation (Appendix C.0.1) of variables Y
when assuming Ô1

1, · · · , ÔL
F as evidences, while sup{E(ρ)} is the maximum possible

value assumed by the energy function E, which is the product of the maximal possible
value of the images of every potentials involved in the graph.
Priors P(ρ)prior are computed considering |ρ|, i.e. the length of vector ρ. Indeed, the
following Poisson distribution is assumed:

P(ρ) =
exp(−λ)λ|ρ|

|ρ|!
(4.6)

λ is tuned in order to have for |ρ| > L a value equal to zero.

Get the optimal segmentation adopting a genetic algorithm

The fitness function %(ρ) is adopted by a genetic algorithm [40] for determining the
optimal segmentation. This kind of algorithms progressively evolve a population of
solutions, also called generations, till a certain number of maximal iterations. The
generation at step k is a made of a set of solutions Ωk = {ρk,1, · · · , ρk,G}, representing
segmenting hypothesis. The starting generation Ω1 is obtained by randomly sampling 3

some initial individuals. Then, the following steps are iteratively followed:
3Some random values for ρ are taken and then normalized. The number of values to consider is sampled too.

31

Chapter 4. Segmenting the human actions by analysing the upper body motion

ρa1parent a

parent b

generated child

example 1 example 2

ρa2 ρa3

ρb1 ρb2 ρb3 ρb4 ρb5

ρa1 ρa2 ρa3 ρa4 ρa5

ρb1 ρb2 ρb3 ρb4

ρa1 ρb2 ρb3ρa1 ρa2 ρb3 ρb4 ρb5

Figure 4.4: Examples of individual generation. At a random point, the solutions in the parents are
broken and mixed to obtain the child.

1. The fitness values {%(ρk,1), · · · , %(ρk,G)} of individuals in Ωk are computed.

2. G new individuals are determined for obtaining a new generation Ωk+1. Every
element in Ωk+1 is generaed by combining two selected parents in Ωk. The se-
lection process can be done in many ways: tournament selection [84], roulette
selection [72] and others. All the approaches have in common that the probability
to be selected as a generating parent for an element in Ωk is proportional to its fit-
ness value. Once a pair of parents 〈ρa, ρb〉 is taken, a new solution ρab is obtained
by combining the values of the parents, refer to Figure 4.4.

3. With a certain frequency, the elements in the new generation are randomly muted.
In the algorithm proposed here, the mutation can consist in: a variation in the
values of a solution ρ; an insertion of a new value 4.

The element in the final generation having the maximum % is assumed as the best solu-
tion.

4.1.4 Segmenting the actions on evolving windows

The approach described so far is able to provide the most likely segmentation on a
window of already acquired observations. However, in real cases, it is impossible to
wait for the human to terminate all the assigned tasks and then execute the algorithm
described before. Indeed, it might be desirable to determine partial results, considering
the available observations.
The algorithm described in the previous Section can be invoked every time L new ob-
servations F 1

O, · · · , FL
O become available. After the optimal segmentation is found for

the first batch of observations, an initial graph is determined. Then, only a portion of
this graph is kept for performing the segmentation on the second batch of observations.
When assuming that the Markovian model used for computing Ψ1,··· ,o

Y Y is of order o,
the last o hidden variables in the chain are kept for the subsequent computations. Then,
the message passing algorithm (Appendix C.0.1) is exploited for determining the mes-
sages incoming into the surviving variables. Such messages are computed and stored
as additional simple potentials (here the terminology introduced in Appendix C was
used). The factors not contained in the sub-portion of the network that encompasses

4After the mutation, a solution is always re-normalized.

32

4.1. Evolving factor graphs for segmenting the human actions

time

First window of observations

time

Second window of observations

time

Second window of observations

ρ1

Messages incoming into the
gray subgraph reported above

surviving portion

Figure 4.5: Mechanism adopted for performing a sliding window segmentation. The first segmentation
is computed as described in Section 4.1.3. Then, the surviving variables are designated (the gray
area in the picture at the top) and the incoming messages are computed. The surviving graph is kept
constant and taken into account for performing the segmentation on the second window of observa-
tions (picture in the middle). When the optimal segmentation for the second step is determined, the
new surviving variables are identified and the procedure is iterated.

the remaining variables are deleted.
The segmentation on the second batch is done with the same genetic algorithm previ-
ously introduced, with the only difference that the underlying factor graphs are com-
puted in a different way. Indeed, the surviving portions of graph obtained at the pre-
vious step, are kept constant and are taken into account for connecting the new hidden
variables. The first value of ρ indicates the portion of observations pertaining to the
last hidden variable in the surviving chain. Figure 4.5 summarizes the above consider-
ations.
After the optimal segmentation along the second window of observations is computed,
the novel surviving portion of graph is designated, the messages incoming to the vari-
ables involved in such portion are computed and the procedure is iterated for the sub-
sequent steps.

33

Chapter 4. Segmenting the human actions by analysing the upper body motion

4.1.5 Tuning of the parameters

Weights wO1, · · · , wOF and wY must be learnt from a library of recorded human mo-
tions. We can assume to collect in a preliminary stage a certain number of samples for
every action a ∈ A. Each sample is then subdivided into many equally spaced tempo-
ral windows with a maximal possible length equal to lw, with the aim of computing the
corresponding feature vectors FO.
The knowledge of the precedence constraints existing among the human actions can
be exploited for producing a population of artificial sequences, as similarly done in
Section 5.2.2. Such data can be exploited for fitting the Higher Order Markov model
exploited for determining the potentials Φ1,2,···

Y Y (Section 4.1.2).
The set of artificial sequences becomes the training set to use for training a graph con-
taining weights wO1, · · · , wOF and wY . The values of the observations in the training
set of the graph are sampled from the library of human motion described before. Since
wO1, · · · , wOF and wY are shared by multiple potentials, the approach describe in Ap-
pendix C.0.3 is followed for computing the gradients of the likelihood function. Figure
4.6 summarizes the training procedure.

4.2 Experiments

The segmentation algorithm described so far has been adopted to recognize the actions
performed by an operator when assembling the same torch described in Section 7.5.3.
The operator is monitored while performing all the phases leading to the realization of
a finite product, which comprises:

• a1: Perform the screwing of the first cap into the body of the torch

• a2: Insert the batteries into the battery case

• a3: Insert the light into the second cap of the torch

• a4: Insert the battery group and a spring into the body of the torch

• a5: Finalize the assembly by performing the screwing of the second cap

The steps described above are reported into Figure 4.9.
The assembling operations must be done with an order consistent with the prece-

dence constraints reported at the bottom of Figure 4.9 5. The experimental set-up re-
ported in Figure 4.7 was exploited. The assembling operations are performed as ap-
proximately indicated in Figure 4.9. The RGB-d camera reported in Figure 4.7 is used
to retrieve the human posture with a sampling time equal to 40 ms. Such data are saved
into textual files for off-line processing. The positions of the buffers reported in Figure
4.7 are exploited for computing additional skeletal distances to consider for computing
FO (refer to Figure 4.1).
4 volunteers were enrolled for the experiments. They were asked to assemble 5 torches
each, by following the order they prefer for the assembling steps. The acquired motion
of the operators was off-line processed, assuming a lw equal to 400 ms, while a new
segmentation was computation every time 30 new observations become available, i.e.
L = 30.

5The Markovian model describing the sequence of actions was computed off-line considering such constraints, in the way
discussed in Section 4.1.5.

34

4.2. Experiments

a1 a2 a3

Library of human motions (extracted values for FO)

Graph adopted for performing learning

a4

F 1
O

Precedence constraints existing

among the human actions

Training set

a1 a2 a3 a4

variables inH the observations setO is sampled from the motion library

F 2
O F 3

O

sequences

O

H

Figure 4.6: The procedure adopted for tuning the model parameters. The sequence in the training set
(values for the hidden variables Y) are sampled from those consistent with a known set of precedence
constraints. The values of the observed variables are sampled from the recorded examples of human
motion (if ai is sampled at a certain step as the performed human action, the value of the connected
FO is sampled from the ones associated with this particular action).

.

35

Chapter 4. Segmenting the human actions by analysing the upper body motion

Buffer A

Buffer B

Buffer D Buffer C

M1
M2

M3

RGB-d sensor

Figure 4.7: The experimental set-up taken by two distinctive perspectives. The operator’s working area
consists in 4 buffers storing parts and 3 assembly stations. Buffer A contains the first and the second
kind of caps; B the springs and the lights; C the batteries and the batteries and the battery case while
D the bodies of the torch.

4.2.1 Results

Every time a new batch of observations is available, the optimal ρ∗ related to that tem-
poral window is computed. Then, considering the graph structure induced by ρ∗ (Sec-
tion 4.1), the following marginal probabilities (see Appendix C.0.1) are computed:

Xi =
[
P(Yi = a1) · · · P(Yi = am)

]
(4.7)

The above probabilities are associated to each hidden variable in the segmenting graph.
The estimated duration of action Yi is assumed to be equal to Ti = lw · L · ρi. The time
series represented by X1,2,··· and T1,2,··· is assumed to be the one describing the actions
performed in time by the operator. The real sequence of actions happened within the
same window is a time series Ŷ1,2,··· and T̂1,2,···, with Ŷi ∈ A. The segmentation error
Es can be evaluated considering the times for which the maximal values in Xi doesn’t
match with Ŷi, w.r.t the total number of observations retrieved from the camera. Statis-
tics about Es, on the data of the assembly task proposed in the previous Section, are
reported in Figure 4.10. As can be seen, there is a positive effect in considering the
positions of the goals storing raw materials w.r.t the case where only the inter-skeletal
distances are exploited.
Figure 4.11, shows an example of segmentation obtained when considering the centres
of the buffers of Figure 4.7: the segmentation is quite good at recognizing the starting
and ending time of the assembly steps. Indeed, marginals of Xi are in good accordance
with Ŷ .

36

4.2. Experiments

Description of a1: After assembling the first kind of cap and the torch, the resulting work in progress is
inserted into M2.

Description of a2: three batteries must be taken and inserted into the battery case. Then, the assembled
components are put into M3.

Description of a4: the battery group is inserted into the body of the torch. Then a spring is taken and
mounted.

Figure 4.8: Description of a1, a2 and a4. The locations of M2 and M3 is reported in Figure 4.7.

37

Chapter 4. Segmenting the human actions by analysing the upper body motion

Description of a3: after the light is assembled with the second kind of cap, the resulting work in progress
is put into M1.

Description of a5: finalization of the product and storing in a buffer outside the working space.

a1

a2

a5

a3

a4

Figure 4.9: At the top, snapshots describing a3 and a5, while at the bottom the precedence constraints
existing among the actions. M1 is located as indicated in Figure 4.7.

without buffer centres with buffer centres

10

15

20

Figure 4.10: Distributions of the segmentation error Es on the data acquired by the experiments when
considering: on the right an approach considering all the combinations of possible inter-skeletal
distances and the distances of the wrists (right and left) w.r.t. the center of the buffers indicated in
the left part of Figure 4.7; on the left a similar approach not taking into account the centres of the
buffers storing raw materials (only the distance of the wrists w.r.t. the camera origin is considered).

38

4.2. Experiments

P(Yi = aj) = [0.8, 1.0]
P(Yi = aj) = [0.6, 0.8]

P(Yi = aj) = [0.4, 0.6]
P(Yi = aj) = [0.2, 0.4]

Ŷ

Figure 4.11: An example of obtained segmentation. The black curve refers to value assumed in time
by the time series Ŷ1,2,···,T̂1,2,···, while X1,2,···,T1,2,··· is reported in blue. Since Xi is a marginal
distribution of probability, a color code is exploited for representing it, refer to legend on the right.

39

CHAPTER5
Predicting the future activities

In typical collaborative scenarios, the human and the robot have to mutually synchro-
nize and coordinate. For this reason, predicting the future human behaviour become
crucial. The aim of this Chapter is to show how it is possible to predict human activity
patterns. In particular, we are interested in evaluating the waiting time τa before seeing
again a particular action a ∈ A. Such a predicting problem is subdivided into two
distinct ones: modelling the activity sequence and computing the waiting time. Two
possible approaches will be proposed for modelling the activity sequence in Section
5.1 and 5.2, which can be equivalently used for predicting also the waiting time τa,
whose computation is detailed in Section 5.3. The two predicting approaches will be
compared in Section 5.4.
All the proposed methods are data driven: statistics about the duration of the human
activities are collected during time as well as the past activities sequence, see Figure
5.1. In particular, the sequence of past actions are considered when updating the model
describing the activity sequence (with the model of Section 5.1 or the one in Section
5.2), while the statistics about the time durations are exploited for predicting τa, see
Section 5.3.

Human assembly sequences usually form quasi-repetitive patterns. In other words,
the sequence of human activities can be modelled through a time series, which is the
output of a certain dynamic process. AssumeAk as the ongoing activity at discrete time
instant k, the behaviour of the human fellow co-worker can be modelled through the
following discrete-time process

Ak+1 = f (Ak, Ak−1, Ak−2, . . . , Ak−n)

tk+1 = tk + g (Ak)
(5.1)

where tk ∈ R+ ∪ {0} represents the time instant corresponding to the transition from

41

Chapter 5. Predicting the future activities

Model Identification Prediction

FIFO buffer collecting the past activities

Past durations for a ∈ A

τa

Figure 5.1: Approach followed for predicting the waiting times.

Figure 5.2: Example of behaviour of the human: tk represents the time instant corresponding to the
activation of activity Ak, while t̄ represents the current time-stamp.

Ak−1 to Ak and g (a) = T a > 0 is the duration of activity a ∈ A. In the prediction
model (5.1) the robot actions and their influence on the sequence of human actions
are not explicitly accounted. However, as the parameters of model will be constantly
updated using online data, the identified model will be be indirectly influenced by robot
actions in case they have influence on human ones. A possible time evolution of the
process is represented in Fig. 5.2. The dynamic system in equation (5.1) is more
easily identifiable in two stages. First, the identification of the underlying discrete
event process governing the evolution of activities (i.e. the first equation) is addressed,
regardless of their durations, which is the aim of this Section and the following one.
Then, in Section 5.3 a model for the duration of the activities will be provided.

5.1 Higher Order Markov Model

The stochasticity of the underlying discrete process governing the sequence of activities
can in principle be modelled by making use of Markov models (equivalently Markov
Chain, MC). MC are able to express the evolution of a discrete time system, character-
ized by a finite number of possible states. In the case of predicting human patterns, the
state at step k is represented by Ak. In a MC, the evolution of the system is governed

42

5.1. Higher Order Markov Model

a1

a2

a3

a5

a6

a4

transitiona1 → a2
P(Ak+1 = 2|Ak = 1)

transitiona1 → a1
P(Ak+1 = 1|Ak = 1)

transitiona1 → a3
P(Ak+1 = 3|Ak = 1)

transitiona1 → a4
P(Ak+1 = 4|Ak = 1)

Figure 5.3: Example of transitions governing a Markov model. Transitions a1 → a1, a1 → a2, a1 → a3
and a1 → a4 are governed by the conditional probability distribution expressed by q1. q1 has null
values for rows 5 and 6, since the corresponding transitions are not allowed in this example.

by the transition probability matrix Q:

P(Ak+1 = i) =
m∑
j=1

P(Ak+1 = i|Ak = j)P(Ak = j) (5.2)

 P(Ak+1 = 1)
...

P(Ak+1 = m)

 =

 P(Ak+1 = 1|Ak = 1) · · · P(Ak+1 = 1|Ak = m)
...

P(Ak+1 = m|Ak = 1) · · · P(Ak+1 = m|Ak = m)


 P(Ak = 1)

...
P(Ak = m)


 P(Ak+1 = 1)

...
P(Ak+1 = m)

 = Q

 P(Ak = 1)
...

P(Ak = m)

 (5.3)

The jth column of Q, qj , is a discrete conditional probability distribution and the sum
of the values in qj must be equal to 1. Markov models are conceptually similar to
state machines, with the important difference that the transitions between states happen
randomly, refer to Figure 5.3.

Let Xk+1 =
[
P(Ak+1 = 1) · · · P(Ak+1 = m)

]T be the probability distribution
describing the state of the system at step k + 1. Xk+1 can be computed using the
following compact form (refer to equation (5.2)):

Xk+1 = QXk (5.4)

The above equation is the equation of motion of a discrete time dynamical system
having X as state. Propagating forward in time the above equation we can obtain:

XN = QXN−1

XN = Q(QXN−2)

XN = QnX0 (5.5)

One important property characterizing MC is the memory absence 1. Indeed, refer
to equation (5.2), the computation of the probability distribution of Ak+1 is influenced
only by Ak. Equivalently, the determination of Xk+1 is made considering only Xk. In

1The memory absence term is here used with a little bit of abuse, since the memory of a MC is represented by the state Xk

itself, without taking into account the preceding ones.

43

Chapter 5. Predicting the future activities

other words, the transition that the system will do from step k to k + 1 depends only
upon the state reached at step k, no matter the sequence of states in the trajectory lead-
ing to Ak.
Markov Chains, or in general Hidden Markov Models (HMM)s, have been exten-
sively used in the literature to model and predict human behaviour in collaborative
tasks, [47, 69]. However, common manufacturing or assembly activities are difficult
to model as Markov Chains, i.e. implying that the next activity only depends on the
current one (which is inherent in the Markov’s assumption above introduced). This
restricts the modelling capabilities of strictly Markovian processes, which are weakly
able to capture periodic or repetitive patterns of actions which are however common in
assembly stations. In fact, in manufacturing environments (and especially in assembly)
the next activity to be performed does not depend solely on the current one. In other
words the process has a memory longer than one step (the whole sequence of assembly
steps). Also, the authors of [70] reported the same limitation of HMMs to model long-
term causality dependencies between actions.
Better results can be achieved if the human behaviour is modelled with an higher-order
Markov model (HOMM), as we are interested in computing the probability associated
to the next activity (or more in general to the next sequence of activities, if evaluated
recursively) given a set of previous ones, i.e. :

P (Ak+1 = a |Ak = k0, Ak−1 = k1, . . . , Ak−n = kn) . (5.6)

Differently from usual Markov Chains, generic higher-order Markov Chains require
mn+1 (m− 1) parameters to be estimated, resulting in an exponential complexity with
respect to the order of the stochastic process to be identified.
The work from Raftery [103, 104] proposed an efficient way to describe higher-order
Markov Chains using Mixture Transition Distribution (MTD) models. Specifically, the
probability distribution in equation (5.6) is represented as

P (Ak+1 = a |Ak = k0, . . . , Ak−n = kn) ≈

≈
n∑
i=0

λiP (Ak+1 = a |Ak−i = ki)
(5.7)

hence as a convex combination of multiple-steps transition probabilities, i.e. it is a
mixture model (Section 3.1.2) involving discrete distributions. This model, that cor-
responds to usual Markov Chains for n = 0, requires only m2 (n+ 1) parameters.
According to the work from Raftery, [104], a prediction of the probability distribution
X̂k+1 at time k + 1 can be computed as

X̂k+1 =
n∑
i=0

λiQiXk−i (5.8)

where m × m matrix Qi denotes the i-steps transition probability matrix that can be
simply evaluated through count statistics. As for the online estimation of the weights
λi from data, differently from Ching et al. [26] who adopted an estimate of the station-
ary distribution X∞, [136] introduced a data-driven procedure. Using all the available
evaluations until the present time instant one can evaluate the squared norm of the pre-

diction error, i.e.
∥∥∥X̂k+1 −Xk+1

∥∥∥2

= ‖
∑n

i=0 λiQiXk−i −Xk+1‖2. By stacking all

44

5.1. Higher Order Markov Model

these evaluations available for different values of k, i.e.Q1Xk−2λ1 +Q2Xk−3λ2 + . . .

Q1Xk−3λ1 +Q2Xk−4λ2 + . . .
...

−
 Xk

Xk−1

...

 = Aλ− b

the optimal solution for the λi’s parameters can be obtained by a non negative least-
squares problem of the following type:

min
λ
‖Aλ− b‖2 subject to

n∑
i=0

λi = 1, and λi ≥ 0 (5.9)

where the column vector λ collects all the unknown parameters λi, while the regression
matrix A and vector b can be simply evaluated from data.

The effectiveness of HOMM w.r.t. simpler Markovian models will be now discussed
considering some artificial data adopted as benchmark. Set A was assumed to have 5
elements and the sequence a1 → a2 → a3 → a1 → a2 → a4 → a3 → a5 has been
repeated for 75 times, and random mutations with probability 3% have been applied.
The same resulting sequence has been processed with different algorithms.
Figure 5.4 reports the average 1-step ahead prediction error for the analysed methods:
every models is constantly re-fitted, considering the data in the FIFO buffer (Figure
5.1), whose length is varied for comparing the performance. The error reported in Fig-
ure 5.4 refers to the times for which the maximal value in Xk was in a row different
from the real action ak performed at step k.
It can be noticed that HOMM sensibly outperforms the others, especially for high
lengths of the FIFO buffer. The reason is due to the least-squared optimisation method
which provide robustness to the algorithm in case of quasi-periodic patterns. Moreover,
the limited prediction capabilities of Markov Chains in case of higher-order causality
can be also appreciated. Finally, it is worth noticing that the memory storage required
by the VOMM method proposed in [114] is linear with respect to the length of the FIFO
buffer, and significantly higher then the one required by the methods based on Markov
chains, which, in turn, does not depend on the length of the FIFO buffer. Anyway, for
better performance in case of a sudden change of pattern, the length of the FIFO buffer
should be kept at a minimum. It follows that a rough knowledge of length of the typical
pattern is necessary for the algorithm to achieve the best prediction accuracy.

45

Chapter 5. Predicting the future activities

10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

90

100

Figure 5.4: Comparison of different methods in terms of prediction error: the presented algorithm
(n = 7, blue), the VOMM method proposed in [114] (purple), a Markov Chain model (n = 0, red),
a higher-order Markov Chain models trained with the algorithm proposed by Ching et al. in [26]
(n = 7, yellow).

5.2 Suffix Tree

It is reasonable to assume the existence of affine subsets C ⊂ A of actions, for which
the probability to be executed in sequence is high. The approach of Section 5.1 does
not seem to allow considering such knowledge, without severe modifications. On the
opposite, the aim of the approach proposed here is meant to predict the human actions
by considering both the aforementioned a-priori knowledge as well as a data-driven
model, whose evolution depends upon the actions performed during time by the opera-
tor.
For the rest of this Section, Aσk will be adopted for referring to the ordered sequence of
actions Aσk = Ak−σ � · · ·� Ak−2 � Ak−1 preceding Ak in the time series A.

5.2.1 The predictive model

The probability of Ak ∈ A conditioned to Aσk is characterized in the following way:

P(Ak = a|Aσk) =
Ψ(Aσk , a, t)∑
ã∈AΨ(Aσk , ã, t)

=
Ψ(Aσk , a, t)

Z
(
t
) (5.10)

The factors characterizing Ψ are all exponentials:

Ψ = Ψv

(
Aσk , a, t

)
·
NC∏
i=1

Ψci

(
Aσk , a

)
(5.11)

Ψv = exp

(
w0Φv

(
Aσk , a, t

))
(5.12)

ΨCi = exp

(
wiΦCi

(
Aσk , a

))
(5.13)

46

5.2. Suffix Tree

1 2 1A :

A2
4

1

a4

1 2 1 1 2A :

A2
6

3

a6

1 2 1 1 2 3 1 2A :

A2
9 a9

1

root

1

1

2

1

2

1

A2
4 � a4

γ = 4Γ1

1

root

1

2 3

21

1

2

1

A2
6 � a6

γ = 6

root

1

12 3

21

11 2

2 3

31 1

A2
9 � a9

γ = 9

Figure 5.5: Examples of suffix tree updates. The structure of the tree after the update is reported for
each example. The token sets Γ associated to the leaves are indicated in the lower part of the pictures
containing the trees.

Φv is a piecewise time varying function, depending on the definition of a suffix tree, see
Section 5.2.1. On the opposite, functions Φc1,··· ,C remain invariant and are assumed as
given. They model an a-priori knowledge to be used in the prediction process, see Sec-
tion 5.2.1. Equation (5.10) is used for the single step prediction. Then, by recursively
propagating it, the probability of a sequence Ak � Ak+1 � · · · � Ak+L, conditioned to
Aσk can be also evaluated. The computations for Ak � Ak+1 will be detailed, then it is
easy to extend the reasoning to the general case:

P(Ak = a0, Ak+1 = a1|Aσk) = pk · pk+1

pk = P(Ak = a0|Aσk)

pk+1 = P(Ak+1 = a1|Ak−σ+1 � · · ·� Ak−1 � a0)(5.14)

Both pk and pk+1 are computable by making use of equation (5.10). On the other
hand, the conditional probability of Ak+L w.r.t Aσk , regardless the intermediate values
Ak,··· ,k+L−1 can be computed with the following summation:

P(Ak+L = aL|Aσk) =∑
ã0,··· ,L−1∈A×···×A

P(Ak = ã0, · · · , Ak+L = aL|Aσk) (5.15)

The above expression can be evaluated by making use of equation (5.14).

Definition of the suffix tree

A suffix tree (ST) is a time varying structure: every time a new value Ak+1 is available,
the tree should be updated. A ST describes in a compact way the information contained
in the sequence A0 � · · · � Ak. To every node, excluding the root, an action a ∈ A is
assigned. The path connecting the root with the ith leaf, also called branch, is denoted
as Bj and is an ordered sequence of actions aBj1 � aBj2 � · · · . The population of all

47

Chapter 5. Predicting the future activities

Y = {2, 1, 3, 3, 2}


I[Y]1 = 1

I[Y]2 = 2

I[Y]3 = 2





O[Y]11 = 2 O[Y]21 = 0

O[Y]12 = 1 O[Y]22 = 5

O[Y]13 = 3 O[Y]23 = 4


Table 5.1: Results obtained when applying operators I and O on the series Y reported at the top.

the branches of the tree contains all the observed sub-sequences in A, up to step k.
The construction of the tree is made considering a particular order σ. σ + 1 will be the
length of every branch. A set of tokens Γj = {γj1, γ

j
2, · · · } is assigned to the jth leaf,

whose meaning will be clear later.
Every ST is initialized with the presence of the sole root. The sequenceA1� · · ·�Aσ+1

is inserted as first branch B1 at step σ + 1, i.e. after observing the first σ + 1 values of
A. At the same step, set Γ1 is initialized with a single token γ1

1 = σ + 1. Then, at the
generic step k the ST is updated in this way:

• Case a): Aσk � Ak is already contained in the ST, i.e. there exists a branch Bj =
Aσk � Ak. In this case, a token equal to k is added to Γj , i.e. Γj = Γj ∪ k.

• Case b): Aσk � Ak is not present in the ST. In this circumstance, a new branch
BM = Aσk � Ak is inserted in the tree, whose corresponding set ΓM is initialized
with the value k.

Fig. 5.5 reports some examples. Function Φv, equation (5.12) depends on the structure
of a ST. Prior to define Φv, the operators I[·] and O[·] must be introduced. I describes
the actions contained in a sequence Y = y1 � · · · � ys, regardless their order, and is
defined as follows:

I[Y]ai =
s∑
j=1

L(yj)ai ai ∈ A (5.16)

where the indicator function L is here defined:

L(yj)a =

{
1 if yj = a

0 otherwise
(5.17)

On the opposite, O aims at describing the order of actions in a sequence:

O[Y]Kai =

{
0 if I[Y]ai < K

k if I[Y k
k � yk]ai = K ∧ yk = ai

(5.18)

Refer to the example reported in Table 5.1. Two possible distances, dI and dO can
express the similarity existing between two sequences X and Y . They are defined

48

5.2. Suffix Tree

according to the two previously introduced operators:

dI(X, Y) =

m=|A|∑
i=1

∣∣∣∣I[X]i − I[Y]i

∣∣∣∣ (5.19)

dO(X, Y) =
+∞∑
j=1

m=|A|∑
i=1

∣∣∣∣O[X]ji −O[Y]ji

∣∣∣∣ (5.20)

The domain of Φv is divided into three disjoint regionsDI(ST),DII(ST),DIII(ST)
(refer to equation (5.12)):

Φv(A
σ
k , a|ST) =


ΦvI if {Aσk , a} ∈ D1

ΦvII if {Aσk , a} ∈ D2

ΦvIII if {Aσk , a} ∈ D3

(5.21)

Set D1 contains those sequence already existing in the ST. More formally:

D1 = {Aσk , a | ∃Bj ∈ ST s.t. Bj = Aσk � a} (5.22)

Then, the complement of D1 is divided into two parts: the first one contains all those
sequences for which in the ST there exists at least one branch having the same actions
(with a different order) while the second one contains all the remaining ones. Assume
operator V defined in the following way:

V [X,ST] = {Bj ∈ ST | dI(Bj, X) = 0} (5.23)

Then, it holds that:

D2 = {Aσk , a | V [Aσk � a, ST] 6= ∅} (5.24)
D3 = {Aσk , a | V [Aσk � a, ST] = ∅} (5.25)

Figure 5.6 summarizes the above considerations, reporting an example of domain par-
tition.

We are now in position to discuss the definition of ΦvI ,ΦvII and ΦvIII . To this
purpose, the activation function fΓ

act must be introduced:

fΓ
act(n) =

∑
γ∈Γ

exp

(
− α(n− γ)

)
(5.26)

The parameter α is determined in order to verify that fΓ
act(N) ∼= 0 for N > 5

α
, with N

a desired forgetting time. ΦvI is defined as follows:

ΦvI(A
σ
k , a) = fΓj

act(k) (5.27)

The Γj in the above equation is the one related to branch Bj = Aσk � a. Therefore,
the aim of tokens is to activate more those sequences recently seen. However, since
a summation is present in equation (5.26) a high activation value is provided also by

49

Chapter 5. Predicting the future activities

1

root

1

2 3

21

1

2

1

Figure 5.6: Example of domain ripartition. The left part of the Figure reports sets D1,2,3 when consid-
ering the suffix tree on the right.

those sequences seen many times. ΦvII is defined in this way:

ΦvII(A
σ
k , a) =

1

|S|

(∑
Bi∈S

1

β
fΓi

act(k)

)
(5.28)

where S = V [Aσk � a, ST] (5.29)
β = dO

(
Bi, Aσk � a

)
(5.30)

Finally, the definition of ΦvIII is as follows:

ΦvIII(A
σ
k , a) =

1

|ST |

(∑
Bi∈ST

1

δi
fΓi

act(k)

)
(5.31)

where δi = dI
(
Bi, Aσk � a

)
+ dO

(
Bi, Aσk � a

)
(5.32)

Handling the prior knowledge of the process

As humans, we are easily able to make predictions by exploiting contextual informa-
tion. For instance, when someone takes a screwdriver, we naturally think that a subse-
quent action will involve screws. Similarly, when we see an operator gluing a surface,
we guess that in the near future something will be attached. For this reason, the ap-
proach proposed her was developed for managing some prior information regarding
the process to predict. More formally, the generic activation function ΦCi (equation
(5.10)), expresses the circumstance that a subset of actions Ci ⊆ A are affine. The

50

5.2. Suffix Tree

evaluation of ΦCi, is done as follows:

ΦCi(A
σ
k , a) =

σ∑
j=1

LCi(Ak−j, a) · exp
(
− α · j

)

where LCi(A, a) =


1 if A ∈ Ci ∧ A 6= a

− 1
|Ci|−1

if A = a

0 if A /∈ Ci

(5.33)

where α in the above equation has the same meaning of the one in equation (5.26).
We assume the sub-sets C1,2,··· as given: they can be easily determined by clustering
actions with a strong ontological similarity (an extensive review of this topic can be
found in [28]). The importance of the information provided by the a priori knowledge
w.r.t the one contained in the predictive suffix tree (i.e. the data-driven one) discussed in
the previous Section, is determined by tuning weights w0,1,2,··· (equation (5.10)), which
is the aim of training, see Section 5.2.1.

Tuning the model

The weights w0,1,2,···, see Section 5.2.1, can be determined through learning. In fact,
they can be determined in order to maximize the likelihood of A, up to a step K, i.e.
considering all the known realizations A1,··· ,K . The logarithm of the joint probability of
all the values in A till K (equation (5.10)) can be determined as the following product:

L = log

(
P(Aσ+1|Aσσ+1) · · · · · ·P(AK |AσK)

)
=

K∑
j=σ+1

(
w0Φv(A

σ
j , Aj|ST) +

∑
Ci

wCiΦCi(A
σ
j , Aj|ST)− log

(
Z(j)

))
(5.34)

Since it is impossible to find the value maximising L in a closed form, a gradient as-
cend strategy can be adopted. To this purpose, the derivatives

[
∂L
∂w0

∂L
∂wC1

∂L
∂wC2

· · ·
]

must be evaluated. It is not difficult to prove that their expressions are as follows (the
computations are analogous to those discussed in Appendix C.0.2):

∂L

∂w0

=
K∑

j=σ+1

(
Φv(A

σ
j , Aj|ST)−

∑
a∈A

(
P(a|Aσj , ST) · Φv(A

σ
j , a|ST)

))
(5.35)

∂L

∂wCi
=

K∑
j=σ+1

(
ΦCi(A

σ
j , xj)−

∑
a∈A

(
P(a|Aσj , ST) · ΦCi(A

σ
j , a)

))
(5.36)

In principle, it is possible to re-train a model every time a new actionAk is observed,
as indicate in the pipeline of Figure 5.1. In such a case, the update of the ST and a new
learning of weights w0, wC1, wC2, · · · are done for every step. This is reasonable for
the most of real contexts, since the human activity durations (which are in the order of
seconds) are higher than the time required for performing the gradient ascent described
(in the order of the milliseconds). However, an approach where learning is done only
sporadically is also possible.

51

Chapter 5. Predicting the future activities

Approach in Section 5.1
Suffix tree without affine sets
Suffix tree considering only C1
Suffix tree conisdering C1,2,3,4

Figure 5.7: Statistics of the prediction error obtained from the simulations. In all the figures, model order
refer to the number of previous actions taken into account for computing the one-step probability
prediction (in case of suffix trees is clearly σ) and the curve of the 50th quartile is inserted into a
shaded area delimited by the 80th quartile and the 20th one. The legend of reported in the right
lower part applies. The pictures on the left part consider the complete assembly in Fig. 5.8, while
the one the right takes into account the simplification reported in Fig. 5.9.

5.2.2 Comparison of the proposed predictive models

With the aim of comparing the developed approach described in Section 5.1, some off-
line simulations were performed, considering the assembly of the emergency button
reported in Fig. 5.8. Steps involved for the completion of a finite product are reported
in the same Figure and are made of a series of forks and joints. All the operations
in the same fork must be done before the succeeding ones, without a particular order
(for instance the screws can be taken before the screwdriver and vice-versa). A pop-
ulation of artificial series A were created, by alternating 20 assembly cycles. Each
cycle is a random sequence of operations consistent with the precedence constraints
expressed in Fig. 5.8. Then, an error simulating the non perfect segmentation of hu-
man actions was introduced: the 5% of the elements of a A were replaced with random
numbers. A total amount of 100 artificial series were generated for producing the re-
sults reported in the following. Comparisons are made computing the mean prediction

error
∥∥∥X̂k+1 −Xk+1

∥∥∥2

, see Section 5.1. The affine sets are made by considering the

actions in the same fork 2 leading to the definition of the following sets: C1 = {a1, a2}
; C2 = {a4, a5, a6}; C3 = {a7, a8} and C4 = {a9, a10}.
The left pictures in Fig. 5.7 reports the results when considering the complete assembly
process, while the result on the right part of the same Figure reports similar statistics
but considering the simplified assembly reported in Fig. 5.9, for which the existence of
the affine sets was ignored. As it can be seen, in the first kind of comparison, the curve
of the mean prediction error of the proposed approach is completely below the one of
the approach in Section 5.1. Moreover, the dispersion is lower (curves of the quantile
are closer). Performance are significantly improved when introducing the affine sets
and the best performance are achieved when all of them are taken into account. It is in-

2This can be also the systematic criterion to follow in industrial contexts.

52

5.2. Suffix Tree

a1 = Take upper case

a2 = Take cylinder

a3 = Take lower case

a4 = Take ring 1

a5 = Take ring 2

a6 = Take ring 2

a7 = Place QR code

a8 = Place bar code

a9 =

a10 =
Take screwdriver

Take screws

Figure 5.8: On the top left part the complete sequence of actions required for assembling an emergency
button: the actions contained in a box can be done with no particular order, but before the actions
contained in the boxes following in the sequence. A total number of 10 actions are needed to finalize
the product. The top right part of the Figure reports the emergency button to assemble.

a1

a2

a3

a4

a5

Figure 5.9: The Figure reports a simplification of the assembly reported in Figure 5.8, for which the size
of set A is equal to 5.

teresting to notice that the performance gap is reduced when considering the assembly
simplification.
As a general consideration, the proposed approach seems to perform well also for low
values of σ. Indeed, even with a low order, the suffix tree is able to represent the
temporal correlations among the actions, by simply including more branches. For this
reason a repeating pattern of actions with a length higher than the model order, would
be anyway handled.

53

Chapter 5. Predicting the future activities

5.3 Evaluating waiting times

Both in Section 5.1 and 5.2, the human behaviour has been modelled as a sequence
of activities, regardless of their duration. In order to predict in the most effective way
when a certain activity is undertaken by the human, it is necessary to account for their
time durations as well. We here assume that the duration of activity a ∈ A, i.e. T a,
can be modelled as a stochastic variable with a strictly positive lower bound, i.e. T a ≥
T amin > 0.
In order to estimate the waiting time needed for the certain activity a to show up, say
τa, we can combine this information with the models describing the activity sequence.
In particular, at the present continuous time instant t̄, given the sequence of the last
activities (possibly including the currently running one)Ak, Ak−1, . . . , Ak−n, we would
like to estimate the probability distribution of the waiting time for the beginning of a
certain activity a, i.e. P (τa ≤ t |Ak, Ak−1, . . . , Ak−n).
The key idea is to construct a predictive reachability tree. Then, evaluating the time
spent to traverse each possible branch in the tree, terminating with the desired activity
a ∈ A, it is possible to estimate τa as will be discussed. Since the reachability tree is,
in principle, infinite, a prediction horizon ∆T must be defined, meaning that the given
probability will be computed up to the instant t = t̄+ ∆T .
The probability associated to each branch can be simply computed by multiplying the
probability of each arc of the branch, i.e.

pbranch =
∏

(i,j)∈branch

p(i,j).

As for the waiting time associated to each branch τbranch, this is simply the sum of the
duration of each activity T a, i.e

τbranch =
∑

j:(i,j)∈branch

T j.

Notice that the elapsed time of the ongoing activity as well as the tails of the activi-
ties exceeding the prediction horizon ∆T have to be removed. The time associated to
each branch is computed as the sum of stochastic variables which are not, in general,
identically distributed. Moreover, neither the associated distribution nor its parameters
are a priori known. Since it may turn out to be difficult to select a model to describe
the probability distribution of the duration of each activity, the statistics associated to
recently acquired samples can be directly used. Figure 5.10 also reports an example of
distribution of duration of a certain activity.
Finally, given the distributions of the times associated to each branch, the overall distri-
bution of the waiting time of the activity a can be simply computed as a weighted sum
of the waiting times associated to each branch, i.e.

P (τa ≤ t |Ak, Ak−1, . . . , Ak−n) =

=
∑
branch

pbranchP (τbranch ≤ t). (5.37)

Figure 5.10 reports an example of the application of the developed method, refer also
to the pipeline reported in Figure 5.1.

54

5.3. Evaluating waiting times

1

4

2

3

3

2

1

2

1

4

4

1

4
1

3
1

Figure 5.10: Example of prediction of human future activities. The transition probabilities associated
to each arc are evaluated using a model for the activity sequence (see Section 5.1, 5.2). The lower
bounds on the duration of each activities are used to prune branches of the tree that surely exceed
the given prediction horizon ∆T . For all the remaining branches (three in the reported example), the
corresponding distributions of waiting times τbranch are computed and used within equation (5.37) to
estimate the distribution of the waiting time needed for a certain activity to show up. In this example,
the probability distribution of the waiting time of activity 4, i.e. τ4, is computed.

Algorithm 1 Reachability Tree Expansion

1: procedure TREEEXPAND(Activity sequence model , ∆T, a ∈ A)
2: while true do
3: set the root as an expanded leaf;
4: if all leaves expanded then
5: return;
6: else
7: pick a non expanded leaf;
8: if current leaf corresponds to activity a then
9: mark current node as expanded;

10: else
11: compute {P(a1|branch), · · · ,P(am|branch)};
12: append m leaves to the current node;
13: for each leaf do
14: set τbranch =

∑
j:(i,j)∈branch T

j
min;

15: evaluate pbranch;
16: if τmin

branch > ∆T or pbranch < ε then
17: mark current node as expanded;

55

Chapter 5. Predicting the future activities

Figure 5.11: Example of sequence of activities (top) and corresponding typical behaviour of the estimate
of the waiting time of activity 4, i.e. τ4, (bottom) evaluated and continuously updated during time.

When the described algorithm is run continuously at a certain frequency, an updated
estimation of the waiting time for a certain activity to arrive is available at each iteration.
As an example, Fig. 5.11 reports the typical behaviour of the output of the algorithm
corresponding to a certain activity sequence.

5.4 Performance comparison

In this Section the effectiveness of the proposed predictive algorithms will be tested
in various use cases, representing realistic human-robot collaborative assemblies, in-
volving ABB dual-arm robot YUMI. A MICROSOFT KINECT depth camera is used
to acquire the positions of the human’s hands in order to recognize the sequence of
performed operations.

5.4.1 Use case a

In this case the human and the robot actively cooperate to perform the assembly of a
PCB board to be accommodated within an IP 54 plastic enclosure. A picture of the
experimental setup is shown in Fig. 5.12.

Task description and implementation

The human is responsible for an autonomous task which consists in assembling an inte-
grated circuit into a socket already soldered onto a PCB. In turn, the robot is responsible
for verifying the quality of the resulting assembly. The different phases of the assembly
procedure are shown in Fig. 5.13.

The method described in Section 5.3, adopting HOMM for modelling the activity
sequence, Section 5.1, is considered for computing the probability distribution of the
waiting time for a certain human activity to show up. Should this activity require some
kind of assistive behaviour from the robot, it is essential for the robot task planner to
know whether a subtask can be initiated or not. Within the present use case, the robot is
responsible for an autonomous activity (quality check) but also for being of assistance
to the human in holding, like a third hand, the cap while the operator is fixing the

56

5.4. Performance comparison

Cables

PCBs

Boxes

Feeder

Collaborative
area

ICs

Figure 5.12: Layout of the experimental setup: the human can access six stations, the central one being
dedicated to the collaboration with the robot.

(a) Human’s autonomous task

(b) Robot’s autonomous task

(c) Collaborative task

Figure 5.13: Different phases of the assembly procedure. IC insertion (top left): the human takes a PCB
board from the red box on the left and an IC from the red rightmost box, inserts the IC in the pre-
soldered socket, and finally fills the feeder. Quality check (top right): the robot takes a PCB from the
feeder, accommodates it within a fixture, then it takes a picture of the PCB using the in-hand camera,
and finally drops it on the feeder. Flat assembly and finalisation (bottom): the human takes a plastic
enclosure from the left tray and places it in the fixture in front of the robot within the collaborative
area, the robot picks a verified PCB and places it inside the enclosure, the human takes a flat cable
from the right red box, meanwhile the robot takes the cap from a feeder and assists the human while
fixing the cable on it, the robot accommodates the cap on the enclosure and finally stores the finished
part.

57

Chapter 5. Predicting the future activities

WAIT 0.5 s

WaitingTime >

QualityCheck

WAIT FOR HUMAN

WAIT FOR HUMAN

Figure 5.14: Workflow of the robot program: based on WaitingTime, i.e. the p-percentile tp returned
by the algorithm, the first decision the robot takes is whether to wait for the human to initiate the
collaborative operation (on the right, grey box) or to start the autonomous subtask (on the left, green
box). The collaborative operation (in the middle, orange box) starts when initiated by the human.

flat cable. Therefore, the waiting time for the collaborative operation is constantly
estimated and, when needed, compared to the execution time of the quality check.
If the time remaining before the collaborative operation is larger than the time the robot
needs to complete the quality inspection of one part, the robot initiates its autonomous
task. Otherwise, the robot waits in order to be ready to assist the human during the
collaborative operation. This behaviour has been coded within the robot programming
language and the corresponding flow chart is reported in Fig. 5.14. This is a simplified
scheduling approach that will be greatly extended by the approaches described in Part
II. Every time a human activity is terminated, the HOMM model parameters Qi and λi
are updated.

Experiments and discussion

For validation, two different experiments have been run. The second experiment has
been run for comparison: the predictive algorithm has been disabled and the robot keeps
executing its autonomous task, unless the human operator has already initiated the col-
laborative operation. In other words, the robot implements a purely reactive strategy.
On the contrary, the strategy exploiting the predictive algorithm can be considered a
proactive one.

58

5.4. Performance comparison

Human

Robot

Ti
m

e
to

Time [s]

4 cycles in 133.4 s

co
lla

bo
ra

tio
n

(a) Reactive approach

Human

Robot

Ti
m

e
to

Time [s]

4 cycles in 113.6 s

co
lla

bo
ra

tio
n

(b) Proactive approach

Figure 5.15: Execution of the collaborative assembly experiment with the reactive (left) and the proac-
tive (right) approach. The top Figures shows the sequence of activities of the human left hand and of
the robot (blue and red represent autonomous activities, while the collaborative operation is marked
in green). The bottom figures show the predicted time to collaboration (picking a box from the left
tray, see Fig. 5.12) as compared to the ground truth (black).

Figure 5.15 reports the sequence of activities performed by the robot and the human,
together with the estimate of the waiting time until the request for collaboration. As one
can see, after a training phase lasting around 60 s, which is required for the method to
collect enough data, the robot is able to schedule the right operation, i.e. to wait for the
human to initiate the collaborative task instead of initiating its autonomous assignment,
which would have caused the human to wait before being assisted.
For comparison, during the second experiment the same assembly task is executed
without a prediction about the human behaviour, but using a purely reactive approach.
Differently from the previous case, the robot is always assigned to the autonomous task,
unless the human has already initiated the collaborative part. As one can notice from
Fig. 5.15 the overall execution of the last complete four assembly cycles takes around
20 s more (133.4 s vs. 113.6 s with the proposed approach), which corresponds to
an increase of 17% in terms of throughput, thus confirming that predicting the human
behaviour is able to let the robot plan in an better way the assigned actions. Moreover,
in collaborative applications, and because of safety limitations, robots are typically
slower than caged industrial manipulators. Thanks to the developed technology, the
possibility to reduce the cycle time and thus improve the efficiency of the assembly
cycle would further boost the return on investment (ROI) of collaborative robots. As
a further confirmation, Fig. 5.16 reports the distribution of the cycle time correspond-
ing to the reactive and the prediction based approaches. As already stated, the second
outperforms the reactive one in terms of a reduced cycle time (Wilcoxon signed rank
right-tail test, r = 0.9848), Fig. 5.16 also shows that the variability can be reduced (F-
test, r = 0.9705) by adopting a proactive behaviour. Overall, the prediction algorithm
based on a HOMM performs well in predicting the time before the next demand for
collaboration from the human. As one can see from Fig. 5.15, the estimated waiting
time is slightly underestimated with respect to the ground truth value, and results in a
saw-toothed profile with respect to time, as expected.

59

Chapter 5. Predicting the future activities

Reactive Proactive

28

29

30

31

32

33

34

35

36

37

Figure 5.16: Distribution of cycle times of the whole assembly sequence with the two approaches. The
approach considering the predictive algorithm is responsible of a higher throughput as well as a
reduced variability in cycle times.

Human

Robot

Time [s]

Ti
m

e
to

co
lla

bo
ra

tio
n

Figure 5.17: Execution of the collaborative assembly when the human adopts a different pattern which
consists in two consecutive IC insertions and two consecutive collaborative operations. The notation
is identical to the one of Fig. 5.17, except from the blue curve which represents a purely data-drive
approach.

So far the, a one piece flow pattern has been adopted by the human operator. In differ-
ent production scenarios, some other patterns can be also adopted. Another experiment
has been performed to test the capabilities of the algorithm. In particular, the human
adopted pattern which consisting in two consecutive IC insertions and two consecutive
collaborative operations. The results are reported in Fig. 5.17. It is worth noticing that
the duration of the time interval between the beginning of two consecutive collabora-
tive operations now assumes a bimodal distribution. For this reason, any other approach
based solely on this information will be surely less precise than any other method that
attempts to model what happens between two consecutive events with a higher granu-
larity. In Fig. 5.17 a comparison between the method based upon HOMM and a purely
data-drive approach is reported. The latter is obtained by collecting the time intervals
between two consecutive requests for collaboration (up to the present time instant), and
the prediction is made extracting the same percentile from the obtained distribution. As
one can notice the proposed method significantly outperforms the other in predicting
the remaining time before the next demand for collaboration from the human operator.

60

Part II

Assistive scheduling

61

CHAPTER6
Scheduling of the robotic actions

Common industrial plants are populated by many machines, handling different kind
of dedicated operations. Machines are seen as resources of the system and the jobs to
perform compete for their usage. In order to maximise the throughput, scheduling algo-
rithms must be applied. This is done typically considering every machine of the plant as
a controllable agent, whose actions can be imposed during time, with the aim of react-
ing to both forecasted and unexpected events. To this aim, cyber-physical approaches
are becoming popular [67], [87]. Essentially, a model of the plant, called digital twin, is
considered for representing the plant state and evaluate the consequences of alternative
scheduled plans, assuming to have the complete control of all the agents of the plants.
When considering collaborative stations, the above approach is not easy to implement,
due to the weakly controllable nature of human operators. Those techniques conceiving
the human as an additional quasi-controllable agent which receives during time noti-
fications about the work to do, are ineffective. Moreover, in such cases the human is
treated no more than a high cognitive robot, performing the operations that are difficult
to be executed by common industrial robots.
On the opposite, in this work the whole system of a collaborative station (i.e. all the
robots constituting the cell) is intended to assist human workers, performing during
time complementary operations. In this way, the operator is allowed to drive the inter-
action. The problem becomes essentially to decide the most convenient assistive action
to impose to cobots, taking into account the future human behaviour. Such behaviour
will be predicted by making use of the algorithms discussed in Chapter 5, which pro-
vide an estimation about the time at which the operator would prefer to perform every
assigned action. Then, according to the preferences of the operator, a scheduled plan
for the system is produced and robots are instructed to perform the actions in this plan.
Therefore, with the proposed approach, the human is directly influencing the future be-

63

Chapter 6. Scheduling of the robotic actions

Scheduler

Do screwing

Plant

Commands

Visual instructions

Production mix

Plant state

Standard scheduling approach

Plant

Commands

Assistive scheduling

Infer intentions, Predictions,Ak Scheduler

Plant state

Surveillance system

Surveillance system

see Chapter 3 see Chapter 5

Figure 6.1: Differences between a standard scheduling approach, on the top, and an assistive schedul-
ing, on the bottom.

haviour of the plant, refer to Figure 6.1 (Assistive scheduling).
All the proposed approaches have been implemented in a receding horizon fashion. In-
deed, new predictions for the human behaviour are constantly produced. Accordingly,
new plans are computed and the first actions in the plans are applied to the robots, see
Section 7.1.

The next part of this Chapter will review some general concepts, which will be ex-
ploited in Chapter 7 for explaining the developed scheduling approaches.

64

6.1. Petri Nets as scheduling tools

6.1 Petri Nets as scheduling tools

When performing collaborative assemblies, humans and robots compose a certain num-
ber of parts into complex finite products, executing many intermediate operations like,
for instance, taking parts from intermediate buffers, performing the screwing of an ob-
ject into another, and so on. Prior to performing any kind of scheduling, tasks have to
be allocated to agents, i.e. to the humans and to the robots of the cell. A dynamic ap-
proach is in principle possible, solving on line and simultaneously the allocation and the
scheduling problems. However, this work assumes a static task allocation: the assem-
bly flow 1 is identified and actions are off line assigned to agents, taking into account
their specific capabilities. The problem amounts to optimally schedule the operations
assigned to robots, since, as already discussed, the human is treated like a non control-
lable agent.
An example of assembly flow is reported in Figure 6.2, which describes the operations
required to assemble three distinct products. The AND of Figure 6.2 indicates some
compositional tasks, requiring to take multiple work in progress (WIP) from preceding
buffers. The actions reported in Figure 6.2, will be executed concurrently by agents,
assuming the task allocation reported in Figure 6.3. Although this is not the case in the
example provided, a single action may require to be executed with the collaboration of
multiple agents (robots-robots, or human-robots).
The presence of intermediate buffers storing WIP, see Figure 6.2, must be taken into
account when scheduling. In particular, the non infinite capacity of such buffers is
something that the scheduler must be aware of. This in not completely true when con-
sidering the buffers containing raw materials, i.e. the ones not having a predecessor in
the assembly flow. Indeed, such buffers are assumed to be constantly refurnished and
therefore we can assume they persistently contain an infinite number of items.

When scheduling, alternative evolutions of the system are compared, in order to un-
derstand the best actions to do. For this purpose, the collaborative cell can be modelled
as a Timed Petri Net (TPN). This modelling tool is suited for describing the temporal
concurrencies in a system, which are in case of collaborative assemblies, the actions
performed during time by both humans and robots. The Petri Nets modelling the sys-
tem are built according to the assembly flow characterizing a particular collaborative
assembly. Section 6.3 will propose a systematic way to translate a large class of assem-
bly flows into PN.

As it is well known, Petri Nets are adopted for modelling discrete event systems,
having agents that share finite resources. Some formal definitions will be now pro-
vided.
Petri Nets (PN) [90] are bipartite graphs made of transitions and places. Places are
marked with tokens, describing in a compact way the state of the system. The firing of
a transition in a PN, represents the occurrence of an event, leading the system to a new
state, since the firing of a transition alters the positions of the tokens inside the net. A
transition may fire only if enabled, in the sense that some preconditions must be met.
More formally, a PN is a tuple 〈P, T, Pre, Post,m0〉, where: P is the set of places; T
the set of transitions; Pre and Post are matrices such that P ×T → N defines the flow

1The assembly flow is an intuitive formalism adopted for indicating the precedence constraints existing among actions, see the
examples provided in the following.

65

Chapter 6. Scheduling of the robotic actions

Action A.1Product A Action A.2 Action A.3

work in progress

Action B.3AND

Action C.1

Action B.1

Action B.2

Action C.2

Action C.3

AND Action C.4

Product B

Product C

Figure 6.2: The assembly flow of a mix involving three different products. All actions with the same
color have to be performed to produce a single finite product.

Action A.1

Human

Action A.2 Action A.3

Action C.1

Action B.3

Action C.4

Action C.3 Action C.2

Robot 1 Robot 2

Action B.1 Action B.2

Figure 6.3: Example of task allocation. Actions refer to the assembly flow of Figure 6.2

of tokens through the net, while m0 is the initial marking. m is a vector of numbers
specifying the number of tokens that all places have for a particular state.
Pre and Post are incidence matrices defining the preconditions to be met for enabling
every transition, as well as the token flow deriving from the firing events. More pre-
cisely, the jth transition in T , is enabled if and only if for every place i it is satisfied
that:

Preij < mi (6.1)

where Preij refers to the ith row and jth column of matrix Pre, whilemi is the number
of token present in the ith place. Suppose transition j is enabled in the marking mk.
Then, in case that transition fires, the new marking mk+1 reached is computable as:

mk+1 = mk + Postj − Prej (6.2)

where Postj and Prej refer to the jth column of the respective matrices.

6.2 Temporal Petri Nets: main concepts

Time Petri Nets [120] are a particular class of PNs, embedding the concept of time. In
such kind of nets, transitions not necessarily fire instantaneously, but a particular firing
delay for each transition is assumed. Such delays model the fact that the actions repre-
sented by transitions take a certain amount of time to be accomplished. Every transition
in the net has a distinctive firing delay. More formally, TPNs are PNs, for which to each
transition T a firing delay d is assigned. d can be a deterministic number, or more in

66

6.2. Temporal Petri Nets: main concepts

general a quantity suitable to represent uncertainty, like for example a probability dis-
tribution. When a transition becomes enabled, its firing must occur after a delay d from
the enabling event. Otherwise, the firing of a transition can be disabled only by the
firing of another one, which makes the preconditions of the first one no longer met.
Many kinds of TPN were proposed in the literature. However, this work will address
only partially controllable TPNs. They are a particular class of TPN specifically derived
for describing collaborative assembly. Two particular subclasses will be discussed:
TPNs having the generic delay d characterized by a probability density function (PDF)
or described by a fuzzy number.
Among all kind of TPN for which all the firing delays are described by a PDF, Stochas-
tic Petri Net (SPN) [86] are the most popular one. In particular, every transition in a
SPN is described by an exponential PDF. This implies, see Section 6.2.1, that SPNs
have the memory absence property, making the temporal evolution of these nets equiv-
alent to Markovian Processes. However, it was already discussed in Chapter 5.1 that
when dealing with collaborative assembly, the Markovian property is not realistic,
meaning that SPN cannot be adopted. Indeed, the framework proposed is able to deal
with any kind of distributions, generalizing SPN.

A partially controllable Timed Petri Net (pcTPN) is a TPN for which the set T is parti-
tioned as T = Tc ∪ Tu, Tc ∩ Tu = ∅, as similarly done in Ramadge and Wonham [109].
Tu contains all the uncontrollable transitions, for which the firing mechanism is the one
described so far, valid for any kind of TPN. Instead, Tc contains all the controllable
transitions, for which firing occurs at a relative time with respect to the enabling event,
that is a control variable, i.e. its value can be decided within an interval [0,+∞).
For modelling collaborative assemblies, controllable transitions must be introduced al-
ternatively to the uncontrollable ones. Indeed, transitions in Tc will be associated to
the activation of certain tasks, while those in Tu are introduced to model their possible
durations. For example, an autonomous task performed either by a robot or the human,
will be represented as a transition in Tc followed by a single transition in Tu, see the
nets reported in Section 7.2.1, 7.3.1 and 7.5.2. On the other hand, tasks shared between
more than one agent can be represented by a controllable transition, followed by several
others in Tu, to be fired in sequence or in parallel, see Section 7.2.1. In this way, the
fact that some agents can finish their subtasks before the others is modelled.
In the following, the generic transition of a net will be indicate with the letter t. Then,
for referring to a controllable transition, the notation t will be used.

6.2.1 Reachability Tree

Timed Petri Nets are exploited to evaluate possible alternative evolutions of the system.
With this aim, the Reachability Tree (RT) of the system is computed. RT is a collection
of states S1,2,···, that are reachable within a certain temporal range from the initial state
of the system. A connection between two states in a RT, implies that the firing of a
certain transition allows to reach one state from the other.
It could be in principle possible to compute an RT, by considering in a parametric way
the firing delays of controllable transitions. This amounts essentially to consider pos-
sible different versions of the RT, one for every combination of delays imposed for the
transitions in Tc. Such an approach would end up to be too much computationally de-

67

Chapter 6. Scheduling of the robotic actions

manding and will be therefore not followed. On the opposite, we’ll assume transitions
in Tc to have only two possible firing delays: 0 or +∞. This implies that controllable
transitions may be fired or not, but in case of firing they are instantaneously fired.
The states in a RT are reached from the root by firing a particular sequence of transi-
tions. Apart from the root, every state Si have a father Sf = fath(Si), which represents
the preceding node in the RT, i.e. the state to reach before Si. After firing a transition
t from Sf , node Si is reached. Formally, states S0,1,2··· ∈ RT are characterized in this
way:

Si = 〈mi, αi〉 (6.3)

mi is the marking of the modelling Petri Net associated to Si, while αi is the corre-
sponding arrival time. The root S0 of a RT is a node describing the state of the system
at the present time, therefore α0 = 0 for any kind of nets. Figure 6.4 reports an example
of RT. Notice that the tree reported in Figure 6.4 is similar to the one of Figure 5.10.
However, when dealing with TPN, the computation of arrival times as well as the prob-
ability to get to the end of a particular path is more articulated, as it will be discussed.
If node Sa is the father of node Sb, this implies that the transition tab leading from
Sa to Sb is enabled in Sa, but at the same time it does not imply that tab is enabled
just upon arriving in Sa, since it could have been enabled earlier. Let (Sa;Sc) be the
path connecting Sa to Sc. The farthest enabling ancestor of the generic node Si, is the
node Se ∈ (S0;Si), such that (Se;Si) is the largest subpath that contains only nodes
for which the transition leading to Si is enabled. In other words, Se is the node in the
RT for which the transition leading to Si becomes to be enabled. The above definition
clearly does not exclude the root S0 to be the farthest enabling ancestor of some other
nodes. The following notation will be adopted: Se = enab(Si). When considering
deterministic firing delays, the RT is a simple chain of states, whose arrival time is a
given real number. However, both the presence of controllable transitions, as well as
the uncertainties related to the firing delays of the uncontrollable ones, make alternative
evolutions of the system possible, which leads to a tree structure. In particular, a RT
will be populated by conflicts, which can be controllable or not.

A controllable conflict arises when reaching a state for which multiple controllable
transitions are enabled 2. On the opposite, when the only transitions enabled are uncon-
trollable, an uncontrollable conflict arises. When dealing with controllable conflicts,
the alternative future evolutions of the system must be considered in order to decide
which transition to fire. Performing the latter choice is in essence the aim of schedul-
ing. Since the firing of controllable transitions is instantaneous, the node reached in the
RT after firing has the same arrival time of its father.

On the other hand, handling of uncontrollable transitions is more complex. In fact,
most of the time it is not true that all transitions in such conflicts become enabled just
after arriving in the same state. This implies that the arrival time α of the furthest en-
abling ancestor of every enabled transition, plays a fundamental role for computing the
arrival time in the children of a node having an uncontrollable conflict. As an intro-
ductory example, consider the Example A of Figure 6.5. Both transitions 1 and 2 are
enabled in the initial state of the net. The arrival times in S1 and S2 (Figure 6.6) is an

2It is irrelevant to consider the non controllable ones in such cases, since controllable transitions fire instantaneously.

68

6.2. Temporal Petri Nets: main concepts

0

time

S0

S6 S7 S8

S5

S4S3

S13

S12

S11

S10

S9

S2

t1 t2

t2
t1

uncontrollable conflict

m9 = m5; S0 = enab(S9)

controllable conflict

S1

t3
t4

Figure 6.4: Portion of a reachability tree. Nodes S6,7,8 are reached by firing controllable transitions, i.e.
α4 = α6,7,8. m9 = m5 since the same kind of transitions lead to the corresponding nodes. However,
S9 and S5 are reached with a different order of firing, implying that the arrival times to that nodes
are different.

uncertain quantity, governed by a PDF. When not considering the presence of the con-
flict, the support of α1 is simply assumed as the interval [0, 1], while for α2 is [0, 0.75].
However, an uncontrollable transition may be disabled only by the firing of another
one. Therefore, after a time equal to 0.75, transition 2 is forced to fire. Therefore, it is
not possible to get to S1 at a time equal to 0.8 for example, since prior to that instant
transition 2 would have already fired, leading to state S2. Indeed, the real support of α1

is [0, 0.75].
Example B of Figure 6.5 depicts a similar net. However, in this new example, transi-
tions 1 and 2 are preceded by transitions 3 and 4, which are deterministic. Considering
the reachability tree of this new net, Figure 6.6, another uncontrollable conflict arises
between transition 1 and 2. Anyway, for this conflict, the transitions involved become
enabled in different times. This is something to consider when computing the support
(or, more in general, when characterizing the entire arrival time distribution, see the
following Section) of α1. The supports of the unconditioned arrival times in S1 and
S2, would be equal in this case to [0, 1] and [0.5, 1.25] respectively. Then, for similar
considerations exposed for the previous example, the real support of α2 would end up
to be equal to [0.5, 1].

Basically, the examples provided, tell us that it is important to characterize for a state Si,
not only the marking mi, but also the particular trajectory (i.e. the particular sequence
of transitions fired, controllable or not) leading to Si, since it is crucial for computing
the arrival time in that node as well as the one of the successors in the RT. As will be
shown, the only class of nets for which the latter consideration is not true are SPN.
Indeed, when considering the RT of a SPN, the particular trajectory followed to get to
a state does not influence the further evolution of the system. Therefore, for the only

69

Chapter 6. Scheduling of the robotic actions

d1 ∼ U(0, 1)

d2 ∼ U(0, 0.75)

Example A Example B
d1 ∼ U(0, 1)

d2 ∼ U(0, 0.75)

d3 = 0

d4 = 0.5

Figure 6.5: Examples of TPN. All the transitions reported are uncontrollable. Transitions 3 and 4 in Ex-
ample B are deterministic, while for both the examples transitions 1 and 2 are uniformly distributed.

t3

t1

t4

t1 t2

S1

S2

t1 t2

S1

S2

Example A Example B

Figure 6.6: Portions of the reachability trees of the temporal nets in Figure 6.5.

case of SPN, we can get rid of α and consider only m. For all the other cases the above
considerations about the enabling time of transitions are valid, no matter the way delays
are modelled (using PDF or with other methods).

Arrival probabilities

In order to present some characteristics of a RT we assume in this Section to deal only
with firing delays modelled as PDFs. The concepts presented here will be then ex-
tended to fuzzy numbers in Section 7.4.
Assume then to have an uncontrollable conflict, see Figure 6.7. For every state SCi,
both the arrival time αCi as well as the conditioned probability Pfi, representing the
probability to reach SCi having reached Sf , have to be characterized. Pfi represents the
probability of transition tCi to win the conflict, i.e. fire before all the others involved,
leading the system to mCi. Instead, αCi is a conditioned probability distribution, de-
scribing the possible arrival time in SCi, conditioned to the fact that SCi is reached from
the root of the RT.
Nodes enab(SC1,2,···) must be taken into account for computing αCi, i.e. the uncondi-
tioned arrival time. αCi is an arrival time which does not consider the existance of the

70

6.2. Temporal Petri Nets: main concepts

conflict. Assuming αEi as the arrival time in enab(SCi) and dCi as the firing delay of
the transition leading to SCi, the following is true:

αCi = αEi + dCi (6.4)

Indeed, when not considering the conflict, the arrival time in a node is simply the sum
of the arrival time of the furthest enabling ancestor and the firing delay of the transition
leading to that node. αCi is an uncertain quantity, modelled by a PDF in this case.
For computing Pfi, it can be noticed that firing events in a conflict are statistically inde-
pendent. Therefore, the probability of having some specific arrival times as realizations
for α1,··· ,u, as well as an arrival time in node Sf as a consequence of the preceding
conflicts, is computable as a product of the probabilities of independent events:

P(αf = a0, αE1 + dC1 = a1, · · · , αEu + dCu = au) =

= P(αf = a0)
u∏
i=1

P(αCu = ai) (6.5)

Pf1 is computed considering all the combinations of arrival times, for which αC1 is
lower than all the others αC2,··· ,u (the corresponding transition fires before all the others)
and is greater than the arrival time in Sf , i.e. the probability of having the transition
leading to SC1 as the winner of the conflict. Therefore it holds that:

Pf1 =

∫ +∞

0

P(ᾱC1 = a1, a1 > αf , a1 < ᾱC2,··· ,n)da1

=

∫ +∞

0

αC1(a1)

(∫ a1

−∞
αf (a0)da0

)(u∏
i=2

∫ +∞

a1

αCi(ai)dai

)
da1

=

∫ +∞

0

αC1(a1)

(
1−Gf (a1)

)
GC2(a1) · · ·GCu(a1)da1

=

∫ +∞

0

α̂C1(a1)da1 (6.6)

where in the above equation GCi(a1) refers to P(αCi > a1), which is the complement
of the cumulative distribution function of αCi 3. Clearly,

∑u
i=1 Pfi = 1.

Regarding the conditioned arrival time distribution αC1, it is equal to α̂C1 in equation
(6.6), apart from a normalization coefficient:

αC1(a1) =
α̂C1(a1)

Pf1

(6.7)

since for the Bayes law it holds that:

P(αC1 = a1) = P(ᾱC1 = a1|a1 > αf , a1 < ᾱC2,··· ,n)

=
P(ᾱC1 = a1, a1 > αf , a1 < ᾱC2,··· ,n)∫ +∞

0
P(ᾱC1 = a1, a1 > αf , a1 < ᾱC2,··· ,n)da1

(6.8)

As can be noticed, computations in equation (6.6) are difficult to be performed in a
3Gf is a similar complement, considering the distribution αf

71

Chapter 6. Scheduling of the robotic actions

SC1
SCu· · ·

enab(SC1)

enab(SCu)

SC2

Sf
enab(SC2)

Pf1

Pf2

Pfu

Figure 6.7: The depicted conflict is uncontrollable: all transitions leading to SC1,2,··· are uncontrollable.

closed form, even when considering simple expressions for the PDFs modelling the
firing times.
Similarly to the tree of Figure 5.10, the probability of reaching a leaf in the reachability
tree is the product of the probabilities of winning all the conflicts in the path leading
to that node. Every single winning probability is computed by making use of equation
(6.6). The difference w.r.t. the tree of Figure 5.10 is that the transitions probabilities are
not constant, but have to be recomputed every time, taking into account the particular
trajectories leading to the nodes from which conflicts departs.
Steps involved for determining the arrival time distribution α of some nodes in the trees
shown in Figure 6.6, are reported in Figure 6.8.

Exponential distributions

When considering stochastic Petri Nets, the computations discussed in the previous
Section are easy to perform. The generic di(t) of a transition in a SPN is an exponential
distribution, i.e.:

di ∼ λexp(−λit) (6.9)

Such distributions have the memory absence property as will be here shown. Let a
distribution in a SPN begin to be enabled at a time equal to 0. Then, knowing that it
hasn’t fired within [0, T] is not meaningful for determining the real firing time, as the

72

6.2. Temporal Petri Nets: main concepts

0.25 0.5 0.75 1

uconditioned

Example A

α2

α1

G2 = P(tfire > T)

α1

Pf1 =
∫+∞
0 α(a1)G2(a1)da1

α1distribution of the

Example B

α2

α1

α2

G1 = P(tfire > T)

Pf2 =
∫+∞
0 α(a2)G1(a2)da2

α2

arrival times

conditioned arrival time

0.25 0.5 0.75 1

0.25 0.5 0.75 1 0.25 0.5 0.75 1

0.25 0.5 0.75 1 0.25 0.5 0.75 1

Figure 6.8: Steps involved for determining the distribution of the arrival time in S1 of the Example A of
Figure 6.6, and the same for S2 of Example B. Notice that distributions Gf of the arrival time in the
node preceding, equation (6.6), is not considered because for both the examples above, the transition
leading to the node of interest begin to be enabled after arriving in Sf .

73

Chapter 6. Scheduling of the robotic actions

d(t)

d(t|t > Ta)

d(t|t > Tb)

Ta Tb

P(t > Ta)

P(t > Tb)

Figure 6.9: The conditioned density of an exponential distribution is in turn the same exponential dis-
tribution.

conditional distribution of the firing time is equal to the initial one. Indeed:

P(t|t > T) =
P(t)

P(t > T)

=
λiexp(λit)∫ +∞

T
λiexp(λit)dt

=
λiexp(λit)

exp(λiT)

= λiexp(λi(t− T)) (6.10)

Notice that equation (6.10) is identical to (6.9) setting t̂fire = t− T , i.e. a scaled time,
see also Figure 6.10. The important consequence of what reported above, is that know-
ing the time at which an uncontrollable transition begins to be enabled is irrelevant.
For this reason, the reachability tree of SPN is actually a finite graph, were nodes are
characterized only by the state reached, no matter the trajectory leading to the nodes,
as similarly happens for Markovian Processes, see Section 5.1.
When computing the transition probabilities characterizing the conflict of a set of ex-
ponentially distributed firing delays, leading to nodes SC1,··· ,u, we can assume all the
transitions in the conflict as enabled from the time the system arrived into the state from
which the conflict departs, thanks to the memory absence property, see equation (6.10).
Indeed, applying equation (6.6) to these situations leads to compute the transition prob-
ability Pf1 in this way4:

Pf1 =

∫ +∞

0

λC1exp(−λC1t)

(
exp(−λC2t)exp(−λCut)

)
dt

= λC1

∫ +∞

0

exp(−
u∑
i=1

λCit)dt

=
λC1∑u
i=1 λCi

∫ +∞

0

(u∑
i=1

λCi

)
exp(−

u∑
i=1

λCit)dt =
λC1∑u
i=1 λCi

(6.11)

where λCi is the parameter of the exponential distribution characterizing the transition
leading to SCi.

4The contribution of Gf is equal to 1 for all t, since, due to the memory absence property, for all the transitions in the conflict
it can be assumed they started to begin enabled after arriving in the node from which the conflict departs.

74

6.3. Task specification

6.3 Task specification

One of the challenges in collaborative assembly operations is the maximization of the
throughput, regardless of the high variability of humans in executing assembly tasks,
as compared to purely automated solutions. Due to this variability, off-line scheduling
and predefined assembly sequences appear to be suboptimal and unable to minimize the
cycle time in a robust manner. Moreover, in realistic production scenarios, actual col-
laborative operations may be sporadic and interleaved with other activities performed
autonomously by either the robot(s) or the human(s). Although these activities might
be considered less relevant from a human-robot collaboration point of view, they should
actually be regarded as equally important when modeling the system behavior. For ex-
ample, if the robot has to autonomously complete an operation previously initiated by
the human, an interaction between these two agents actually takes place, although the
two actions are not in the same temporal span. The possibility to model and account
for this kind of interaction is then crucial for the control of the overall flow of the pro-
duction process. In view of this, together with the possibility for robotic non-experts
to specify even complex processes from a system point of view, i.e. without focusing
on the actual execution of the cycle, a systematic way to analytically describe a col-
laborative production process, emphasizing all types of interaction between agents, is
here proposed. This approach has the aim to build in a systematic way modelling par-
tially controllable Timed Petri Nets (pcTPNs), starting from some high level describing
information, like the assembly flow for instance.

A fundamental difficulty for practitioners in modeling complex assembly sequences
is represented by the modeling formalisms, which are either suitable for describing the
sequence of actions, or designed for their computational capabilities, [42,75,112,115].
In the following, a simple formalism is introduced that allows to describe a certain
assembly process from a high-level point of view. The properties characterizing the
proposed class of nets can be analyzed by adopting formal techniques available in the
literature and the reader may refer e.g. to [20] for an overview.

The descriptive formalism includes some basic building blocks that can be modelled
as Petri Nets (see Table 6.1) and can be assembled together using standard sequential,
parallel and alternative connections. Differently from the commonly adopted modeling
strategies, a clear distinction between shared resources and buffers is done. In the
former case, the token identifying the resource is returned when the corresponding
action is terminated, whereas in the latter the token identifying an occupied spot in the
buffer is returned only when the subsequent action starts, taking the corresponding part
from the buffer.

In order to be executed, the actions in Tab.6.1 require one or more agents. When
dealing with human-robot collaboration in assembly processes, the agents considered
herein are the human and the robot. The main difference to deal with is that robots are
completely controllable, while humans are only partially controllable and non deter-
ministic.

Controllable transitions are such that their firing can be prevented by a supervisor,
whereas uncontrollable transitions cannot be prevented from firing, see Section 6.2.
An ad hoc formalism is now introduced to take into account the human behaviour. In
the following, controllable transitions may be graphically represented with thick bars.

75

Chapter 6. Scheduling of the robotic actions

Table 6.1: Descriptive formalism adopted in this work and equivalent PN blocks for automatic transla-
tion.

Name Notation Petri Net

Action

EndBegin

Buffered action

Begin End

Use of a re-
source (e.g. a
tool or space)

Resource

Begin End Begin End

Resource

Load, transport
and unload
(e.g. with a
mobile robot)

Begin End EndBegin

FORK

Begin End

Begin

Begin End

End

AND
AND

Begin

Begin End

End

OR
OR

Begin End

Begin End

76

6.3. Task specification

(a) Schematic representation

(b) Equivalent TPN

R

Robot action

[tw, tw]

Robot

[0, 0]

Pre-condition(s) [0, 0]

Post-condition(s)

End

Scheduler forces

the robot to wait

Begin

Figure 6.10: PN model for actions executed by the robot.

Since it was assumed, differently from the usual practice with TPNs, [7], that control-
lable transitions may fire only instantaneously after the enabling event, the act of wait-
ing has to be modeled explicitly as an alternative action that can be scheduled, leaving
it to the scheduler to resolve the possible generated conflicts (if multiple conflicting
controllable transitions are simultaneously enabled, only one of them fires). This is
made possible by explicitly defining the waiting of a predefined quantum of time tw
as an action. This working hypothesis simplifies the control architecture, in that the
scheduler simply decides which of the enabled controllable transitions to fire at each
iteration. To make this decision it can employ a version of the reachability tree of the
TPN that avoids propagating parametric time-related information, as opposed to more
sophisticated concepts such as the State Class Graph, [4]. Some modeling rules are
now suggested, discriminating between actions executed by the human and the robot.

6.3.1 Modeling robot actions

The availability of the robot to perform an action is represented by a marked place, as
a standard resource. The beginning of a certain action performed by the robot corre-
sponds to the firing of a controllable transition that consumes the corresponding robot
token, which is later returned when the action itself is over (the action termination be-
ing modeled as an uncontrollable transition). An alternative controllable transition can
consume the token, marking a special place which explicitly represents the robot being
idle (waiting action). An uncontrollable transition which fires after a predefined quan-
tum of time allows the token to return to its original place. Figure6.10 illustrates the
PN adopted to model the execution of a certain action by the robot. The robot has to
decide whether to wait, marking the red place, or to start the action. Notice that the
decision to wait will be accounted for as a cost, and the total amount of inactivity will
be minimized by the scheduler, so to maximize the throughput.

6.3.2 Modeling human actions

In order to allow non-expert users to model a potentially complex behavior, the human
is modeled only in terms of actions that are relevant from the point of view of the robot

77

Chapter 6. Scheduling of the robotic actions

(a) Schematic representation

H

Human action

(b) Equivalent TPN

Post-condition(s)Pre-condition(s) [0, 0]

Begin End
Human waiting

enabling event

Figure 6.11: PN model for actions executed by the human.

and hence to the overall process. For example, it is not necessary to model whether the
action of dropping a piece in a buffer is performed by the human with the right or the
left hand, but rather its net effect on the process, i.e. that a new piece is available to be
processed by the robot.

The human, differently from the robot, is not assumed to be a controllable agent.
Accordingly, the intention to start an action assigned to the human is modeled with
an uncontrollable transition followed by a special place which represents the human
waiting for some event to be verified in order to actually proceed with the intended
action. In case this pre-condition is satisfied, the corresponding transition fires immedi-
ately. Conversely, if the pre-condition is not met, the special place will remain marked,
causing the human to remain idle. Figure6.11 illustrates the PN adopted to model the
execution of a certain action by the human operator.

6.3.3 Modelling collaborative actions

A collaborative action is performed simultaneously by the robot and the human. The
PN describing the corresponding behavior can be simply obtained by superposition of
the robot action and the human action, as described previously, see Figure6.12. Notice
that the robot is responsible for initiating the actual collaborative task, while both the
agents are allowed to wait when the two red places are marked.

6.3.4 Modelling mobile robots

A common action in assembly processes is the transport of items using a mobile robot.
This action is typically composed of two atomic and subsequent activities: loading and
unloading. As an example, the PN reported in Figure6.13 details the example of a man-
ual loading action and an unloading activity performed by a robot. Notice that, while
the inactivity of either the human or the robot causes a cost, the inactivity of a mobile
robot, which is only responsible for transporting items, does not directly represent a
cost. However, if the unavailability of the mobile robot at the unload station forces the
robot to wait, a cost for the inactivity of the robot is accounted for.

A pcTPN, compliant with the building rules described above, is the one represented

78

6.3. Task specification

(a) Schematic representation

H+R

Collaborative action

(b) Equivalent TPN

Human waiting

enabling event

Scheduler forces

the robot to wait

[tw, tw]

Pre-condition(s)

[0, 0]

[0, 0] Post-condition(s)

Begin End

Robot

Figure 6.12: PN model for collaborative actions.

(a) Schematic representation

H R

(b) Equivalent TPN

Manual loading Unloading

Scheduler forces cart

to wait (no cost)
[0, 0]

[tw, tw]

[0, 0]

[0, 0]

Moving to A
Position A

Position B

Moving to B
Unloading

Human waiting

enabling event

Manual loading

Begin End

EndBegin

Post-condition(s)

Pre-condition(s)

[0, 0]

[tw, tw]

Robot
Scheduler forces

the robot to wait

Figure 6.13: PN model for a mobile robot (cart) that transports items that are loaded manually and
unloaded using a robot.

79

Chapter 6. Scheduling of the robotic actions

A.3

Robot 1

A.1 A.2

Robot 2

B.1

B.2

Robot 1 Robot 2

B.3

Robot 2

C.2

Robot 1

C.3C.1

C.4

(a) (b) (c)

Figure 6.14: By superimposing the above nets, the pcTPN modelling the assembly in Figure 6.2 is
obtained.

in Figure 6.14, which models the assembly described in Figures 6.2 and 6.3.

80

CHAPTER7
Scheduling approaches

Three possible scheduling approaches for assistive scheduling will be presented in this
Section. All the proposed strategies are based on a receding horizon approach, which
is extensively described in Section 7.1. Therefore, in the subsequent Sections, it will
be specified only how the reachability tree of the system is computed and the criteria
adopted for selecting the optimal plan. All the proposed approaches are validated in
realistic situations for which a cobot (or more than one) cooperate with a human for
performing the assembly of some industrial products.
In particular, Section 7.2 will present a best case approach. The approaches in Section
7.3 and 7.4 extend the one in Section 7.2, balancing, when computing the optimal plan
to be imposed to the system, the achievable performance with the risk of a plan to
become infeasible due to the uncertainties characterizing the system. In particular, the
method in Section 7.3 is a numerical method, based upon a Monte Carlo simulation,
while the one in Section 7.4 is based on fuzzy theory.

7.1 Receding horizon scheduling

In this Section, the general approach followed by the three methods proposed in Sec-
tions 7.2, 7.3 and 7.4, for controlling a collaborative cell will be discussed.
The scheduling problem ultimately consists in deciding which activity (also including
a decision to wait, see Section 6.3.1) to perform for the robots of the cell. Since all
controllable transitions are assumed to fire immediately when enabled, the scheduling
algorithm boils down to the problem of deciding which transitions to fire in case of
controllable conflicts. Accordingly, the output of the scheduler consists in the list of
the controllable transitions to fire: actually the corresponding commands are sent to
robots.

81

Chapter 7. Scheduling approaches

Time Petri Net scheduler

Update firing distributions Activity prediction, Chap. 5

Fi
ri

ng
di

st
ri

bu
tio

ns
(h

um
an

)

Commands

Observed events (human)

Collaborative workspace

Observed events (robot)
Fi

ri
ng

di
st

ri
bu

tio
ns

(r
ob

ot
)

Surveillance

system

Update firing distributions

Figure 7.1: Schematic representation of the control architecture adopted for scheduling collaborative
cells.

The control architecture is sketched in Figure 7.1. The main element is the sched-
uler, which interacts with the real robotic cell through events of two types: outgoing
commands (associated to the firing of controllable transitions) issued to the robots, and
incoming events (associated to the firing of uncontrollable transitions), reporting task
terminations. The information regarding the occurrence of events allows the scheduler
to update the state of the TPN that models the system. At the same time, the system
records the duration of the tasks executed by the robots, using this information to up-
date d, i.e. the corresponding distributions (a PDF or a fuzzy quantity) that model the
timing behaviour of the uncontrollable transitions. Actually this is exactly the approach
followed by both the methods described in Sections 7.3 and 7.4, which assume a poor
prior knowledge for d: the samples collected during time allow the system to refine the
distribution modelling d. On the opposite, the approach in Section 7.2 is similar for
all other aspects, but assumes to know in a precise way the support of d prior to the
execution of the scheduler. This is because in 7.2 is not necessary to characterize the
entire distribution of d, but only the domain extremals, which can be easily determined
according to few off line measured times, also adopting conservative values. Anyway,
the approach described in Section 7.2 is amenable to an on line correction of the quan-
tity describing d.
The human actions are similarly monitored, using a surveillance system to detect events.
The timing of these events is also collected to build and update the statistical model em-
ployed by the predictive algorithm, Chapter 5, to forecast the human intentions. In turn,
these predictions are used to update the firing distributions of the uncontrollable transi-
tions associated to the human tasks.
The scheduler is run in an asynchronous way and specifically when one or more con-
trollable agents become available, upon the firing of an uncontrollable transition. The
ultimate goal of any kind of scheduling algorithm is to minimize the time waisted by

82

7.2. Best scenario approach

agents, consequently maximising the throughput. To this aim, the reachability tree of
the underlying TPN is built with the aim of comparing alternatives plans, since a plan
can be seen as a path in the reachability tree, made of a sequence of transitions to fire:
some of them are controllable, some other uncontrollable. Every particular scheduling
strategy is characterized by its own approach adopted for building the RT as well as
the criteria adopted for selecting the optimal plan in the tree. Then, what is common to
the three approaches in Sections 7.2, 7.3 and 7.4, is that a receding horizon approach
is adopted: every time a new plan is computed, only the first controllable transitions in
such plan are applied as commands to the system. Then, the system evolves randomly
till other agents become available. In this case, a new plan is computed and commands
are dispatched to agents.
Since a reachability tree is in principle infinitely large, a finite scheduling horizon Tsch
must be adopted: every time only a portion of the reachability tree is built, starting
from a root representing the current state of the system. The selection of the proper
scheduling horizon is crucial. Clearly, Tsch must be big enough such that at least one
uncontrollable event happens, in order to evaluate the consequences of the applied con-
trols. Therefore, the selection of Tsch must be done considering also the supports of d,
i.e. the firing delays. On the opposite, the size of the reachability tree may grow expo-
nentially with Tsch, affecting severely the computational times. For these reasons, Tsch
must be tuned decided according to the particular application for which the scheduling
is required.

Notice that the developed framework generalizes the control approach adopted in Gen-
eralized Stochastic Petri Nets (GSPNs) [27], a variant of pure SPN having controllable
transitions firing instantaneously. As clarified in Section 6.2.1, the equations governing
the evolution of a SPN are the same of a Markovian process. On the other hand, GSPNs
are analogous to Markov supervisors [6]: the optimal control policy is computed off
line with algorithms like value iterations. This off line solution is simply applied on
line for solving controllable conflicts. This is possible because GSPN contains uncon-
trollable transitions all exponentially distributed. The price to pay when dealing with
generic distributed transitions, which is the aim of the proposed scheduling strategies,
is to re-evaluate on line the possible future evolution of the system, deciding every time
which is the best action to undertake.

7.2 Best scenario approach

Prior to describe the approach, the use case adopted in Section 7.5.1 for validating it
will be presented, thus allowing the reader to better follow the subsequent technical
part.

7.2.1 Description of the use case

The workspace is shared by one human operator and a dual-arm robot, YUMI of ABB,
which actively cooperate to perform the assembly of a PCB board (named board A) to
be inserted in an IP 54 plastic enclosure. A second PCB board (board B) is fixed to
the cap of the enclosure. It is assumed that all items required for the realisation of the
assembly are externally fed at the proper time. The following operations are executed

83

Chapter 7. Scheduling approaches

to obtain one finished product (refer also to assembly flow reported in Figure 7.2):

1. fix one fuse to board A;

2. fix one integrated circuit to the same board;

3. perform a quality control to check the correctness of the previous operations;

4. put one assembled board A into the plastic enclosure;

5. pick one cap and connect with a cable board A to board B;

6. fix the cap on the plastic enclosure.

Steps 4), 5) and 6) are performed within a single collaborative macro-operation involv-
ing the human operator and both robotic arms. As for the tasks executed autonomously,
operation 2) is assigned to the human, while 1) is executed by the left arm of YUMI.
Finally, operation 3) requires both robotic arms to be used. The right arm of YUMI has
no autonomous tasks assigned.
The time when the human is likely to start every assigned task (either autonomous or
collaborative) can be forecasted using one of the algorithms in Chapter 5. Such algo-
rithms are able to characterize the distribution of the waiting time for seeing again a
certain human action, see Section 5.3. However, the approach presented in this Section
only needs to bound it within two percentiles (e.g. the 10th and the 80th).
Every time the left arm of YUMI becomes available, it is instructed to perform a new
operation (actions in cooperation with the right arm can be performed only if the right
arm is also available). To select the proper operation to execute, the estimates of some
P th percentiles of the waiting time to see again certain human activities are taken into
account: Pa1 and Pa2 will denote the percentiles about operation 2), while Pc1 and Pc2
refer to the percentiles of the collaborative task. The designed control policy takes into
account three possible cases:

1. Pa1 < Pc1 and operation 2) is not enabled at the current time. In such case, a
command to execute operation 1) is sent to the left arm of YUMI . In this way,
operation 2) is enabled as soon as possible;

2. Pa1 < Pc1 and operation 2) is enabled at the current time. In this case a non trivial
scheduling of operations is required to select the proper command to be sent to
the robot;

3. Pc1 < Pa1. As for case (2), a non trivial scheduling of operations is required.

In cases (2) and (3), the scheduling algorithm detailed in Section 7.2.2 is invoked to
compute the optimal sequence of robotic actions to undertake before the collaboration
can take place, with the aim of maximising the throughput, while at the same time
avoiding a prolonged inactivity of the human. In case the first action scheduled is the
collaborative task, the robots wait for the human to begin the collaboration, without
starting to execute other tasks. This idle status persists for a maximum waiting time
(further detail will be given in Section 3), after which the robots are available again.

84

7.2. Best scenario approach

Quality control

Collaborative action

Fuse feeder

Board A feeder

IC feeder

input rack

Encloser feeder
Cable feeder

output rack

Cap feeder

Figure 7.2: Sequence of operations required to obtain a finished product for the use case adopted to
validate the best scenario approach scheduling. Red boxes refer to operations assigned to YUMI ,
while the blue one is the autonomous task of the human. The pink box indicates the collaborative
action, executed simultaneously by both the human and the arms of YUMI . Feeders contain an
infinite number of items, since they are externally fed when needed.

7.2.2 Selection of the best plan

The pcTPN of Figure 7.3 is assumed as a model for the system. Uncontrollable tran-
sitions fire at a random time, having PDF whose shape is not modelled for the aim of
this work. Indeed, for every firing delay distribution d, only the corresponding support
[d, d] is taken into account. The same applies for the arrival times into nodes of the
reachability tree, which is within an interval [α, α].
The net in Figure 7.3, was not built according to the guidelines detailed in Section 6.3,
since for the aim of this kind of scheduling, the only inactivity time to evaluate is the
waiting time before initiating the collaborative action. In particular, the firing of tc
indicates that the robots are ready to begin a new collaboration, but the collaborative
operation actually takes place only after the human is also ready, i.e. after firing tch. In
this way, when the robots receive the command to begin the collaboration, they are no
longer available and start waiting for the human to be ready. However, after transition
tc is fired, the robots involved in the collaboration remain in an idle state until a maxi-
mum waiting time, after which the collaboration command is revoked and consequently
the robots return available. To model this behaviour, transition tW is introduced. tW
begins to be enabled after the firing of tc and has a firing delay equal to Twait, where
Twait is the maximal time for which robots can remain inactive, waiting for the human
to initiate the collaborative task.
Notice also that in case the collaboration takes place, Figure 7.3, left arm of YUMI
finishes its subtask before the right one. In this way, the left arm can potentially start to
execute a new operation, while the right one is still involved in the collaboration.
Scheduling aims at finding an optimal plan, consistent with the interval [Pc1, Pc2]. If
the collaboration is constrained to start at a time within [Pc1, Pc2], the involved robots
must be ready before Pc1, which implies that tc should be fired prior to Pc1. This worst
case approach may turn out to be extremely conservative. Instead, the predicted interval
[Pc1, Pc2] are used only as a reference to evaluate the inactive time spent by the robots
or by the human waiting for the collaboration to take place. The scheduling problem
is solved under the following assumption. Since the robots are the sole controllable
agents, when computing the optimal plan it is assumed that transition th is not allowed
to fire (i.e. it has a firing delay dh equal +∞). In this way, the operations that the hu-
man executes simultaneously with the robots before the collaborative one are not taken
into account.

85

Chapter 7. Scheduling approaches

Fuse assembly

IC assembly

Human

Left arm
Right arm

Quality

check

Collaborative task

tc

tch

tw

input rack output rack

th

Figure 7.3: The pcTPN modelling the use case. Thick rectangles denote controllable transitions. Tran-
sitions tc and tch refer to the collaborative operation. As can be seen, the limited capacity of inter-
mediate buffers is taken into account.

Branch and bound strategy

A feasible plan v is a path in the RT described by a firing order: v = tv1; tv2; · · · ; tc,
representing an evolution of the net which leads from m0 (the marking of the root)
to a final state 1, reached by firing as a last transition tc. Notice that the sequence
represented by v is uniquely associated to the node reached at the end of that sequence
of events. Therefore, we’ll refer equivalently to plans and nodes in the RT. Among all
feasible plans, the aim is to find v∗, which is the optimal one (in a sense that will be
formalized in the following). Set F contains all the nodes Sf at the end of the feasible
plans computable in a RT. A cost C can be assigned to every v, whose computation is
now discussed. Assuming that the exact firing time of all the uncontrollable transitions
present in the path leading to a node Sf ∈ F is known, it could be possible to exactly
compute the value of αf , which is the arrival time in Sf and, in this case also represents
the time at which the robots are ready to begin a collaboration with the human. Then,
knowing the exact value of αf , the cost Cf can be computed. Cf is proportional to the
forecasted waiting time spent by either the robots or the human, before the collaboration
actually takes place:

cost (αf) =


cR(Pc1 − αf) when αf < Pc1

0 when Pc1 ≤ αf ≤ Pc2

cH(αf − Pc2) when αf > Pc2

(7.1)

The above conditions are summarised by the cost curve indicated in Figure 7.4. Then to
account for the fact that the exact value of αf is uncertain, the support of the probability
distribution of the arrival time [αf , αf] is considered: the integral mean of function
cost(αf) over that support is assumed as cost C:

C =
1

αf − αf

∫ αf

αf

cost(αf)dαf (7.2)

v∗ is the plan having the lowest possible C among all feasible plans.
1The extension in time of the RT is infinite. However, this approach will not explore the RT further to encounter the collaborative

action, see also Algorithm 2

86

7.2. Best scenario approach

Pc1 Pc2

robots wait zone

0

human wait zone
cost C

α1Pc1

αf

(
Pc2 + cR

cH
Pc1

)

Figure 7.4: Cost curve for a feasible path, in case the arrival time sf is known. cH can be interpreted as
the unit cost, for example $/s, paid when the human is kept inactive (similarly cR when maintaining
the robots inactive).

The developed algorithm constructs the RT in a depth-first way with the aim to find
the optimal plan v∗. At every iteration a new node is created and processed by com-
puting the corresponding marking and arrival set. For every branch, the exploration is
arrested when tc is met or if it is evident that further exploring will lead only to find
suboptimal feasible paths, i.e. feasible nodes with a cost higher than the minimum cost
related to feasible nodes already explored.
To this purpose, for a generic node Si /∈ F , cost Ĉi is computed. Ĉi is a lower bound
for the cost Cj associated to a generic feasible node Sj ∈ F , reached by further explor-
ing the RT from Ni, i.e. Ĉi ≤ Cj.
Before explaining the computation of Ĉi, one key observation must be done. If Sj is a
successor of Si, then it holds that αi ≤ αj , which means that the lower bound of the
minimum possible arrival time monotonically increases when descending levels of the
RT. The same consideration is not valid for the upper bounds αi, αj .
For this reason, when considering the cost curve shown in Figure 7.4, it is not dif-
ficult to derive that Ĉi can be computed as Ĉi = 0, if αi ≤ Pc2, and Ci = (αi −
Pc2)cH , otherwise. The complete scheduling algorithm is reported in Algorithm 2. It
starts by initialising the RT with the root S0. Then, for every iteration, a new node
is selected and all of the possible successors are computed. Algorithm 2 employs the
procedure described in Algorithm 3 when processing new nodes. Algorithm 2 can be
seen as a branch and bound strategy to compute the optimal plan v∗.

It is worth pointing out that Algorithm 2 returns a single optimal path v∗. However,
many different paths having a cost equal to C∗ can be admissible. To overcome this
problem, it is not difficult to slightly modify Algorithm 2 to return a list of paths
{v∗1, · · · , v∗L} having the same cost C∗. Then it is possible to select from this list one
single v∗i .
The selection can be made according to different possible criteria, such as: the number
of non collaborative operations performed by the robots before reaching tc, the min-
imisation of time at which one new scheduling operation will be required2 to maximise
responsiveness, etc.

The first controllable transitions scheduled to fire in v∗ are the actions that the robots

2This implies to minimise the time required to execute the first action contained in v∗.

87

Chapter 7. Scheduling approaches

must begin to execute from the current time. If the first transition in v∗ is tc, the robots
wait for the human to start a new collaboration for the maximum possible waiting time.

Algorithm 2 Scheduling algorithm

v∗=undefined and C∗=undefined
RT ← S0

tag S0 as unexplored
while at least one node in RT is tagged unexplored do

pick an unexplored node Si ∈ RT
for every tk ∈ T enabled in Si do

Compute a new node Sk by using Algorithm 3
if arrival set of Sk is tagged as possible then

if v∗ is undefined then
RT ← RT ∪ Sk

if tk = tc then
v∗=Sk

compute Ck

tag Sk as explored
C∗=Ck

else
if tk = tc then

compute Ck

if Ck < C∗ then
v∗=Sk

C∗=Ck

RT ← RT ∪ Sk

tag Sk as explored
else

compute Ĉk

if Ĉk < C∗ then
RT ← RT ∪ Sk

tag Si as explored
return v∗

7.2.3 Remarks

The approach presented is a best scenario one. Indeed, the partial controllability of the
system implies that in a plan v there will be always controllable transitions alternating
with uncontrollable ones. For this reason, when selecting a certain plan, only the initial
controllable transitions characterizing that plan can be actually fired. Indeed, it is not
ensured that after the first uncontrollable transition the system will follow the optimal
plan. This fact happens because this approach tries to maximize the performance, not
considering at all the probability to get at the end of a scheduled plan or more in general
not considering the alternative evolutions of the system after imposing the first package
of controllable actions. On the opposite, the approaches presented in Section 7.3 and
7.4 will perform the scheduling by considering all the possible evolutions of the system,
not only the best one.
Anyway, it is worth to point out that the receding horizon approach (see Section 7.1)
provides anyway some kind of robustness to the approach. In fact, no matter that the
system evolves or not differently from the scheduled expected way, a new plan is always

88

7.3. Monte Carlo scheduling

Algorithm 3 New node computation. Inputs: Ni, preceding tik
mk ← (Post− Pre)ik +mi

find Se = enab(Sk)
if tik ∈ Tc then

αk ← αe

αk ← αe

else
αk ← αe + dik
αk ← αe + dik

if αk < αk then
tag arrival set of Sk as impossible

else
tag arrival set of Sk as possible
if αk > αi then αi← αk

recomputed by considering the reached state.

7.3 Monte Carlo scheduling

7.3.1 Selection of the best plan

The aim of the scheduling proposed here is to minimize the global inactivity times of
both the human and the robots. In particular, according to the modelling principles
explained in Section 6.3, the idle time can be easily evaluated considering the amount
of time spent by the tokens in the colored places of the net. Therefore, the overall cost
C of a plan can be computed by summing the time spent waiting by the robot(s) WR,i

and by the human WH , i.e. C = cR
∑

iWR,i + cHWH , where coefficients cR and cH
can be used to assign a different cost to the two types of agents (as similarly done in the
approach of the previous Section). It is important to remark that, since the TPN evolves
in a non deterministic manner, the total waiting time C is a random variable itself.
Every time one or more agents become free, new actions to do are computed. The
scheduling proposed in [19] consists in two main stages:

1. generation of a partial state reachability tree and evaluation of the costs through a
Monte Carlo simulation;

2. propagation of the costs and evaluation of the optimal policy;

which are further detailed in the following. The firing distribution d of the net are
assumed to be modelled by the empirical distributions that consider the samples of
durations collected from the real system (see Section 7.1).

Generation of the state reachability tree and cost evaluation

A partial reachability tree is constructed by running N Monte Carlo independent sim-
ulations starting from the current marking of the net. Each trial of the Monte Carlo
is a possible trajectory of the system, i.e. a sequence of firing events (with their asso-
ciated times). If an uncontrollable transition is fired in the simulation, its duration is
sampled from previous observations. If multiple conflicting uncontrollable transitions
are enabled, only the transition that is evaluated to fire first (according to the extracted

89

Chapter 7. Scheduling approaches

duration samples for the unconditioned arrival times α in the children reachable after
the conflict, Section 6.2.1) is actually fired. On the other hand, when the simulation
reaches a marking where multiple conflicting controllable transitions are enabled, the
transition that fires is extracted randomly, according to a uniform distribution. Each
simulation is protracted until time Tsch is met, implying that events occurring after this
time horizon are not considered. Notice that all simulations start with a controllable
transition, since the scheduling algorithm is invoked when (at least) one agent becomes
available.
When the tree construction is completed, aggregating the samples associated to the
same leaf, see Figure 7.5, one can estimate the cost of a certain evolution of the system.
Notice that the percentage of simulations reaching a particular node Si is an estimate
of the arrival probability in that node, while samples accumulated as possible arrival
times, are used to empirically describe the conditioned arrival time distribution αi.

Cost propagation and evaluation of the optimal policy

To determine which of the (controllable) transitions enabled in the current state, i.e.
at the root node of the tree, it is best to fire at the present time instant, the expected
costs associated to the firing of each of them must be evaluated. To this aim, the prob-
ability distributions of the costs associated to the leaf nodes are back-propagated to the
first children nodes of the tree (nodes immediately following the root). In this back-
propagation process, the following rules must be applied if multiple nodes have the
same father node. Precisely:

• a)if this branching follows from an uncontrollable conflict, the probability distri-
bution of the cost of the father node is obtained by combining all the children’s
distributions (all the possible evolutions of the systems must be taken into ac-
count);

• b)if the branching results from a controllable conflict, the cost is inherited from
the child node having the cost distribution with the lowest β-percentile (indeed,
one would choose to fire the controllable transition leading to the smallest cost, at
least in a probabilistic sense);

Notice that this back-propagation process can be effectively implemented through a
simple recursive function, which calculates the cost distribution of a father node from
those of its children, which in turn are calculated based on their own children, and so
on, unless the children nodes are leaves. Algorithm 4 contains the pseudocode imple-
menting the reduction strategy. The algorithm can be called recursively from the root
node.
Figure 7.5 summarizes the above propagation rules.

An illustrative example

Consider the assembly process illustrated in Fig. 7.6 and modeled by the pcTPN of the
same Figure: three operations are performed by the robot (R), the human (H), and in a
collaborative manner (H+R), respectively. Notice that every time the robot is available
to initiate an activity, a conflict arises. The scheduler will be responsible for deciding
which controllable transition to fire among those conflicting. In the example the options

90

7.3. Monte Carlo scheduling

3.2

2.8
3.0

(b) Cost propagation for uncontrollable conflict.

Samples for C

Samples for C

Samples for C

3.2
2.8

3.0

1.4

1.1
0.8

1.4

1.1
0.8

(a) Cost propagation for controllable conflict.

Samples for C

Samples for C

Samples for C

The cost distribution having the lowest β
percentile is propagated.

Figure 7.5: The two rules adopted for back propagating particles of cost in a reachability tree. When
considering the controllable conflict on the left, the edge leading to the node having the lowest β
percentile of cost will be followed in case the system would arrive in the indicated node. Therefore,
the other edge is in some way disabled by the optimal control policy.

Algorithm 4 Reachability Tree Reduction

1: procedure EVALUATECOSTS(node S, percentile β)
2: if ISROOT(S) then
3: B ← +∞;
4: S.Costs← ∅;
5: for all child node c of S do
6: cTemp←EVALUATECOSTS(c, β);
7: bTemp←GETPERCENTILE(cTemp, β);
8: if bTemp < B then
9: B ← bTemp;

10: S.Costs← cTemp;
11: return S.Costs;
12: else if ISLEAF(S) then
13: return S.Costs;
14: else
15: if ISCONTROLLABLE(S) then
16: B ← +∞;
17: S.Costs← ∅;
18: for all child node c of S do
19: cTemp←EVALUATECOSTS(c, β);
20: bTemp←GETPERCENTILE(cTemp, β);
21: if bTemp < B then
22: B ← bTemp;
23: S.Costs← cTemp;
24: return S.Costs;
25: else
26: S.Costs← ∅;
27: for all child node c of S do
28: cTemp←EVALUATECOSTS(c, β);
29: S.Costs← S.Costs

⋃
cTemp;

30: return S.Costs;

91

Chapter 7. Scheduling approaches

t5

t2

(b) Equivalent TPN

(a) Schematic representation

R H H+R

Action 1 Action 3Action 2

Action 1 Action 2 Action 3

Robot

Begin End Begin End Begin End

t1 t1
t2 t4

t3

t3

t7

t6

Figure 7.6: Example of a PN compliant with the proposed modeling strategy.

Table 7.1: Timing parameters of the transitions of the TPN of Fig. 7.6.

Transition Type d
t̄1 controllable U [0, 0]
t̄2 controllable U [0, 0]
t̄3 controllable U [0, 0]
τ1 uncontrollable U [3, 3]
τ2 uncontrollable U [0, 0]
τ3 uncontrollable U [2, 4]
τ4 uncontrollable U [1, 1]
τ5 uncontrollable U [1, 1]
τ6 uncontrollable U [2, 5]
τ7 uncontrollable U [5, 7]

are t̄1 (performing Action 1), t̄3 (performing Action 3) and t̄2 (remaining idle).
The timing parameters of the net’s transitions are reported in Tab. 7.1. Notice that all
controllable transitions have a firing time interval equal to [0, 0], implying that they must
fire immediately upon being enabled. As for the uncontrollable transitions, if the firing
interval does not coincide with a single point, the corresponding type of distribution is
also reported.

The first steps of the Monte Carlo simulation leading to the determination of the
reachability tree for the example of Figure 7.6 will be now reported. A scheduling
horizon Tsch of 4 s is assumed. The reachability tree is built in an incremental way,
according to the trajectories sampled during the Monte Carlo simulation. Initially, only
one node is contained in the tree, representing the actual state of the system.
In each trial, a trajectory for the system is sampled, starting from the root: at every
step a single transition is fired, considering a sampled firing delay. New states are
reached as as consequence of transitions firing. A single trajectory is characterized by

92

7.3. Monte Carlo scheduling

2.9

1.4

2.7

0.3

1.6

0.5

Samples for WR Samples for WH

Cost aggregation 3.2

3.0

3.2

Samples for C = WH +WR

Figure 7.7: Cost aggregation for the single leaf of a reachability tree.

t1
t2

t3 t6t1
t1 t2

t3 t6 t3
t6

t4

t2 t1 t2

t5

t5

P(t1 < min(t3, t6)) = 0.333)

P(t6 < t3|t3 ≥ 3, t6 ≥ 3) = 0.25

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

Figure 7.8: Excerpt of the reachability tree for the example in Fig. 7.6. Nodes correspond to firing
events. Leaves are labeled with the probability distributions of waiting times for the human WH

(blue bars) and the robot WR (yellow bars). Red segments correspond to the states where some
places associated to waiting conditions of the human or the robot are marked (incurring in a cost).
Filled [Empty] red nodes correspond to the firing of transitions that will mark [unmark] a red place.

the aforementioned sequence of events together with the times reached after every fir-
ing. Situations of conflict are handled as described before.
Suppose to sample as first trajectory the one reported at the top of Table 7.2. It is easy
to prove that with that sequence of events, the overall waiting times for the robot and
human are WR = 1s and WH = 0.5s, respectively. The reachability tree is updated,
assuming the aforementioned waiting costs as additional samples for the distribution
describing the possible waits (right picture at the top of Table 7.2). Another simulation
is performed with the same approach, collecting a new sampled trajectory for the sys-
tem, reported at the middle of Table 7.2. In this case, the human is allowed to begin
the assigned action as soon as he/she is ready, since the necessary preconditions are
already true. Accordingly, the waiting costs are equal to WR = 1s and WH = 0.0s,
respectively. The new nodes reached when performing this trial of the Monte Carlo,
are added to the reachability tree (picture on the right of the middle part of Table 7.2).
Now, consider the trajectory reported at the bottom of Table 7.2: the sequence of transi-
tions fired is the same as in the first trial, but with different values for the firing delays,
leading to waiting costs WR = 1s and WH = 0.9s. Such quantities are considered as
additional samples used to correct the distribution of the waiting times associated to the
leaf reached by this trajectory.

After many trials, the detailed reachability tree reported in Figure 7.8 is obtained.
Observe that the leaves of the tree are endowed with the empirical probability distri-
butions of the robot’s and human’s waiting times, obtained aggregating the samples
for the waiting cost. Samples of WR and WH can be in turn aggregated for producing
samples of the entire cost C, see Figure 7.7.

With reference to the same example, Figures 7.9 and 7.10 depict the back-propagation

93

Chapter 7. Scheduling approaches

fired transition reached time [s]
t1 0
t1 3
t2 3
t6 3.5
t5 4

t1

t1
t2

t6

t5
1.0

0.5

Samples for WR Samples for WH

fired transition reached time [s]
t1 0
t1 3
t2 3
t3 3.6
t2 3.6
t5 4

t1

t1
t2

t6

t5
1.0

0.5

t3

t2

t5

0.0

1.0

fired transition reached time [s]
t1 0
t1 3
t2 3
t6 3.1
t5 4

t1

t1
t2

t6

t5
1.0

0.5

t3

t2

t5

0.0

1.0
0.9

1.0

Table 7.2: Sampled trajectories for the system in Figure 7.6. On the left the sequence of events involved
in every single trajectory, with the corresponding times. On the right the progressive update of the
reachability tree.

process for the calculation of the cost distributions at non-leaf nodes. More precisely,
Figure 7.9 illustrate the application of rule (a) to an uncontrollable conflict, while Fig-
ure 7.9 the application of rule (b) to a controllable conflict.

The computational time absorbed for computing a new plan to execute for this exam-
ple is in the order of milliseconds. In particular, when assuming a scheduling horizon
equal to Tsch = 10 s, the average time is equal to 23.9 ms. The latter quantity increases
to 35.4 ms when considering an horizon of Tsch = 20 s, and to 85 ms for an horizon of
Tsch = 30 s.

94

7.3. Monte Carlo scheduling

t1
t2

t3 t6t1
t1 t2

P(t1 < min(t3, t6)) = 0.333

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

P(t6 < t3|t3 ≥ 3, t6 ≥ 3) = 0.25

Figure 7.9: Propagation of the costs for uncontrollable transitions: the probability distribution of the
parent node is the union of the probability distributions of its children nodes.

t1
t2

t3t1

t1

P(t1 < min(t3, t6)) = 0.333

t6

better than

t2

0 0.5 1 0 0.5 1

Figure 7.10: Propagation of the costs for controllable transitions: the distribution of the costs is inher-
ited from the child having the lowest cost. In this case firing transition t1 is evaluated to be more
convenient than firing t2, therefore the branch starting from the latter is pruned from the tree.

7.3.2 Off line simulations

The performance of the Monte Carlo approach so far described were compared both
with other state of the art scheduling methods, through off line simulations, and with
a simpler approach in a realistic human robot collaborative assembly. The results of
the off line simulations are presented in this Section, while Section 7.5.2 describes the
performance achieved in the real experiments.

The simple assembly process depicted in Fig. 7.11, consisting of two sequential jobs
with three actions each, will be considered. Tasks are labeled with the agent that has to
execute them (robots R1 and R2 and the human H). Notice that each agent is in charge
of an action in each job. The task durations are modeled by Gaussian distributions with
a mean equal to 15 s and a standard deviation of 1.67 s. The human persistently repeats
the same assembly pattern, alternating the execution of the task in job A twice with the
execution of the task in job B twice.
With reference to this process, a simulation campaign was carried out to compare the
Monte Carlo scheduler with state-of-the-art methods: the centralized deterministic ap-
proach of [93] and the multi agent stochastic one proposed in [76], which are repre-
sentative of the two main classes of approaches in the literature. In order to apply
these two approaches the distributions associated to the task durations are assumed to
be known. In particular, for [93] the mean time is considered to produce the long time
horizon plan, since the approach is deterministic. Notice, conversely, that the approach

95

Chapter 7. Scheduling approaches

H R2Job A: R1

Action a.1 Action a.2 Action a.3

R1 HJob B: R2

Action b.1 Action b.2 Action b.3

Figure 7.11: Assembly addressed by off line simulations.

85

90

95

100

Figure 7.12: Cycle time distributions obtained in the off line comparative simulations: A refers to [93],
B to [76] while C to the Monte Carlo scheduler in [19].

proposed in [19] does not require any such information.
20 distinct simulations for each approach were performed. A total amount of 10 cy-
cles of the human’s assembly pattern were simulated for each trial. The distribution
of the cycle times obtained in the simulations is reported in Fig. 7.12. Apparently, the
Monte Carlo approach outperforms the other two, the main reason being that the other
approaches spend a lot of time repairing the plans computed off-line assuming that the
human is a controllable agent. Indeed, since the behavior of the human is quite different
from the scheduled one, the system frequently ends up in deadlocking situations that
must be solved, wasting time.

Notice that the methods of [76] and [93] employ different recovery strategies. In
the former case, the plan is repaired using specific rules, whereas in the case of [93]
the long time horizon plan is suspended and one of the task enabled for the robots
(excluding the controllable wait) is randomly executed until the deadlock is solved.
The distributions employed in this analysis were stationary. If, instead, time varying
distributions are considered, the performance gap between approach in [19] (which
learns online the distributions) and those of [93], [76] could even be larger.

7.4 Fuzzy scheduling

The possibilistic approach here described is an alternative to the probabilistic one of
Section 6.2.1. In fact, the approach detailed in this Section exploits the algebraic rules
of fuzzy numbers [133] to propagate the uncertainty. In [16], the firing delays d of the
uncontrollable transitions are assumed to be triangular fuzzy numbers, see Appendix
D. Two main reasons may motivate such a choice. The first one is that the activities
durations are known in a very approximate and imprecise way, especially when consid-
ering those undertaken by the human operator. Also when considering the approach in
the previous Section, the modelling of realistic distribution might require the collection

96

7.4. Fuzzy scheduling

1

0

αf
αEi ⊕ dCi

α̃Ci

1

0

αf
αEi ⊕ dCi

α̃Ci

1

0

αfαEi ⊕ dCi

α̃Ci

Figure 7.13: Examples of computation of α̃. For the left picture maxt

(
α̃Ci(t)

)
= 1, as the support

of the arrival time of the child is completely above the one of the father, while for the picture in the
middle maxt

(
α̃Ci(t)

)
= 0 as the opposite situation arises, meaning that for the situation in the

middle, that node would have been removed from the children list. The situation depicted on the right
is intermediate between the aforementioned cases.

of a big amount of data, before a scheduler exploiting PDFs begins to properly work.
On the opposite, the uncertainty in the activity durations could be modelled considering
a restricted set of statistics, which is efficient only by making use of fuzzy sets.
The second reason is that the propagation of fuzzy numbers presents some interest-
ing numerical properties, reducing the computational load of the approach. Indeed,
when dealing with the propagation of probabilistic quantities, the solution of com-
plex integrals must be often addressed, equation (6.6), which is almost all of the times
non tractable in a closed form. Moreover, numerical methods like the Monte Carlo
approaches in Section 7.3, are able to obtain only approximate solutions, exploiting
algorithms that require hundreds or thousands of iterations. This fact is not true when
considering fuzzy theory.

Computation of the reachability tree

The RT is computed in a closed form, propagating fuzzy quantities. The exploration of
a certain branch is interrupted when the arrival times in the corresponding leaf starts to
be beyond the scheduling horizon Tsch. The commands sent to the robots are computed
after obtaining the RT, as for the other scheduling approaches.
When assuming the firing delays as fuzzy distributed, the arrival times α (Section 6.2.1)
into the nodes of the RT, are also fuzzy numbers. The steps reported in Algorithm 5
summarize all the computations required to build the fuzzy RT and will be discussed in
the following.

The routine Conflict is in charge of computing the arrival times of the nodes in-
volved in an uncontrollable conflict. Clearly, when not considering the presence of
conflict, the unconditioned arrival time αCi is a summation of triangular numbers:

αCi = αEi ⊕ dCi (7.3)

where αEi is the arrival time of enab(SCi), see Section 6.2.1. However, the presence of
the uncontrollable conflict must be taken into account. The computation of the condi-
tional fuzzy distribution αCi is subdivided into two main steps:

• Stage 1: For every transition in the conflict, the arrival time α̃Ci must be first de-
termined. α̃Ci accounts for the fact that the arrival time in Sf , i.e. the father of SCi,
must be lower than the arrival time in SCi. α̃Ci is computable as an intersection of

97

Chapter 7. Scheduling approaches

Algorithm 5
1: procedure TREE COMPUTATION(M0)
2: RT = {S0};
3: Open← {S0};
4: while Open 6= ∅ do
5: Open2 = Open;
6: Open = ∅;
7: for all So2 ∈ Open2 do
8: E ← enabled transitions in So2;
9: Ē ← {te ∈ E|te is controllable };

10: if Ē 6= ∅ then
11: for all t̄e ∈ Ē do
12: mnew = mo2 + Postte − Prete ;
13: Snew ← 〈mnew, α02〉 ;
14: RT← RT ∪Snew;
15: Open = Open ∪Snew;
16: else
17: T = {tCi ∈ E \ Ē};
18: SC1,··· ,n ← Conflict(T, So2);
19: for all i = {1, · · · , n} do
20: if αCi is below Tsch then
21: RT← RT ∪SCi;
22: Open← Open ∪SCi;

events (see Appendix D):

α̃Ci(t) = (αf < t) ∩
(
αEi ⊕ dCi

)
(t) = min

t

(
L(αf , t),

(
αEi ⊕ dCi

)
(t)

)
(7.4)

When maxt
(
α̃Ci(t)

)
< ε, i.e. a small constant, the node is considered unreach-

able and SCi is removed from the list of transitions constituting the conflict. Figure
7.13 reports some examples of computations of α̃.
The arrival time α, i.e. the one agnostic of the conflict, Section 6.2.1, is computed
as follows:

αCi(t) =
1

p
α̃Ci(t) (7.5)

p = max
t

(
α̃Ci(t)

)
(7.6)

Notice that αCi is a convex fuzzy set (Appendix D), but is not a triangular fuzzy
number. It represents an arrival time compatible with the arrival time of father(SCi)
and it is exploited in Stage 2.

• Stage 2: Knowing the set of times αC1,··· ,n, the computation of every αCi can take
place. The fuzzy set describing the arrival time after winning a conflict, can be
computed, as another intersection of events:

α̂C1(t) = αC1(t)
⋂

l=2,··· ,n

(
αCi(t) > t

)
= min

(
αC1(t), L(αC2, t), · · · , L(αCn, t)

)
(7.7)

98

7.4. Fuzzy scheduling

The possibility to win the conflict Pfi is computed as:

Pfi = max
t

(
α̂Ci(t)

)
(7.8)

αCi is finally computed by normalizing α̂Ci:

αCi(t) =
1

Pfi
α̂Ci(t) (7.9)

It is easy to prove that αCi is a convex fuzzy set having the alpha-cut α1(αCi)
which is a singleton. Therefore, the arrival time αCi can be well approximated by
the following triangular fuzzy number:

α
′

Ci = 〈A1, AM , A2〉
AM = α1(αCi)

A1, A2 = extremals of α0(αCi) (7.10)

α
′
Ci is assumed as arrival time αCi for node SCi. The possibility to reach node
SCi, call it FCi, is computable considering an intersection of events: the winning
of all the preceding conflicts in the RT. Therefore, PCi is computed in this way:

FCi = min

(
FCi, Ffather(SCi), Ffather(father(SCi)), · · ·

)
(7.11)

The computations expressed by the above equations are an adaptation of those re-
ported in Section 6.2.1, considering the fuzzy propagation rules. As can be seen, there
are many analogies. However, integrals are replaced with the min or max operator,
leading to a significant computational advantage.

7.4.1 Selection of the best plan

The set of leaves contained in the RT expresses all the possible evolutions of the sys-
tem within the scheduling horizon. Scheduling aims to select the optimal evolution to
impose. This choice is performed by computing for every node Si a fitness parameter
called Ji. The propagation of the fitness parameter J across the RT is similar to the cost
propagation presented in Section 7.3. The following cases have to be considered:

• Si is a leaf. The path in the tree leading to this leaf has to be considered, which
is a possible trajectory of the system. The total idle time WR spent by the robots
when following this trajectory can be easily computed by simply considering the
number of times the robots were forced to wait, see Section 6.3.1.
On the other hand, the idle time spent by the human worker is non trivial to eval-
uate. Indeed, we might think to compute such quantity as the difference between
αI = 〈I1IMI2〉 and the arrival time αS = 〈S1SMS2〉, which are the arrival times
into nodes reached after firing a transition that insert or remove, respectively, a
token from the coloured place in Figure 6.11. However, the difference is an oper-
ation not always possible when dealing with the fuzzy domain. Therefore, WH is
computed in order to obtain a quantity strictly correlated to the magnitude of the
waiting time:

WH = ϕ1 · ϕ2 · ϕ3 (7.12)

99

Chapter 7. Scheduling approaches

where coefficients ϕ are defined in this way:

ϕ1 = 1−max
t

(
min

(
αI(t), αS(t)

))
(7.13)

ϕ2 = 1 +
SM − IM
Tsch

(7.14)

ϕ3 =
S1 − I1

S2 − I1

(7.15)

Notice that in the worst condition, i.e. I2 < S1 , ϕ1 assumes the maximal value.
After computing WH and WR, the fitness parameter can be computed as:

Ji =
1

w1WHi + w2WRi

(7.16)

w1 and w2 are tunable parameters that can be set considering the cost per hour of
the worker against the one of the robots.

• Jf is a non leaf and a controllable conflict departs from this node: it is possible
to decide which action to perform after arriving in this node, i.e. the one leading
to the child having maximal fitness is the one to impose. Therefore the fitness is
assumed equal to (refer to Figure 6.7):

Jf = max
i=1,··· ,n

(JCi) (7.17)

• Jf is a non leaf and an uncontrollable conflict departs from this node. In this
case, J must reflect the fact that the system will evolve from this node in a non
deterministic way. Considering the possibilities Pfi of the children, the fitness is
computed as a combination:

Jf =
∑

i=1,,··· ,n

JCi · Pfi (7.18)

Considering the rules proposed for computing J , it is clear that the computation
process proceeds in a backward way: all the fitness of the leaves are computed at first,
then the computations for the ancestors are performed, traversing the levels of the tree,
analogously to the scheduler in Section 7.3. After the propagation of every coefficients
J from the leaves to the root, the selection of the best commands to send for the robots
is trivial: the action leading from the root to the one having the maximal J .

7.5 Validating experiments

7.5.1 Use case a

The scheduling strategy presented in Section 7.2 was applied to the use case here de-
tailed. Figure 7.14, depicts the workspace shared by the human operator and YUMI.
In this section the results obtained in two kinds of experiments are reported, in which
the human operator continuously performs the same pattern of actions. In the first case
(named pattern 1), the human makes one autonomous assembly followed by one col-
laborative operation, while in the second one (named pattern 2), he/she performs two

100

7.5. Validating experiments

Figure 7.14: Workspace shared by the human operator and YUMI.

autonomous assemblies followed by two collaborative operations. Results regarding
pattern 1 are reported in Fig. 7.15(a). Instead, Fig. 7.15(c) reports the results obtained
by applying a round robin scheduler, which alternates an autonomous assembly with a
quality control.

Then, this sequence of robotic operations is interrupted only when the human begins
a new collaboration (as soon as the robotic arms become available). As can be seen,
when considering the round robin approach, the human operator spends a relevant time
remaining inactive while waiting for the robots to begin a new collaboration. Instead
when considering the controller which employs the pcTPN described, the operations are
scheduled so as to let the robots be ready to collaborate as soon as the human is ready
too. In this way an improvement for the throughput of the system is achieved. Indeed,
when considering a round robin approach, one finite product is produced every 35.80 s
on average, while with the proposed approach this number is reduced to 27.63 s (with
a reduction of cycle time of approximately 23%). Regarding pattern 2, the results3 are
reported in Fig. 7.15(b) and 7.15(d). For this case, the sequence followed by the round
robin scheduler is made up by two autonomous assemblies followed by two quality
control operations. The average throughput in this case is one product every of 33.35
s, with the round robin controller, and one product every 30.10 s when adopting the
strategy proposed in this work (with a reduction of cycle time of approximately 10%).

7.5.2 Use case b

The effectiveness of the Monte Carlo approach described in Section 7.3 has been vali-
dated with the help of a collaborative workspace consisting of an ABB dual-arm robot
YUMI, an ABB IRB 140 robot, two linear positioners (denoted Carts in the follow-
ing) and a human operator, see Figure 7.17. A MICROSOFT KINECT is used to monitor
the positions of the operator and a processing unit runs the scheduling algorithm. The

3Videos are available at http://www.youtube.com/watch?v=KG7WLNdi8Uw.

101

http://www.youtube.com/watch?v=KG7WLNdi8Uw

Chapter 7. Scheduling approaches

(a) Results related to pattern 1, when using
pcTPN for scheduling.

(b) Results related to pattern 2, when using pcTPN for
scheduling.

(c) Results related to pattern 1, when using
a round robin scheduler.

(d) Results related to pattern 2, when using a round robin
scheduler.

Figure 7.15: In all the above figures the top line reports the actions executed by right arm of YUMI over
time, the middle one refers to the actions executed by the left arm, while the bottom line is related
to the actions executed by the human operator. The legenda related to the operations represented
is depicted in Figure 7.16.Dotted gray lines indicate time instants at which the human starts to be
available for a new collaboration, while dotted black line refers to instants at which YUMI begins the
collaborative task (those two kinds of lines are coincident when considering the scheduling obtained
with the use of pcTPN).

Figure 7.16: Legenda related to Figure 7.15.

IRB 140 robot

YuMi robot

Dropoff station

Microsoft Kinect

Carts

Figure 7.17: The experimental setup with the two robots, the carts and the human operator.

102

7.5. Validating experiments

IRB
AND

H
YuMi YuMi H IRB

Quality control Assembly
Housing #1 Housing #2 StoringLabelling

Padding Cart1
Cart2

YuMi

Shared space #1
Shared space #2

(a) Schematic representation

(b) Equivalent TPN

Cart2YuMi

Shared space #1

Shared space #2

Cart1

Quality control Assembly

Padding

Housing #1 Housing #2 Labelling Storing

IRB

Figure 7.18: Schematic representation and equivalent PN adopted for the use-case.

103

Chapter 7. Scheduling approaches

MICROSOFT KINECT standard APIs are used to retrieve the positions of the operator’s
wrists over time, interpreting the depth stream. Then, the detection of a human related
event is triggered by the entering or exiting of the operator’s hand into specific spherical
areas, for the purpose of taking or placing components 4.
The human and the robots cooperate to prepare a kit consisting in the components of
a USB/microSD adapter and to house it in a metal box. In particular, the human op-
erator is responsible for inserting the padding into the metallic box and for placing a
label on it, after having trimmed it from a sheet. The IRB 140 robot performs a func-
tional test on the USB adapter and stores the completed part into a drop-off station (see
again Figure 7.17) for shipment. Finally, the YUMI robot is in charge of performing
the assembly of the adapter with its cap, as well as for housing the adapter in the box.
The modelling pcTPN is represented in Figure 7.18. Notice that the housing operation
has been split into two parts as it is particularly long and requires the two carts to be
available at the same time. By dividing it into two parts, it is possible to release the use
of CART 1 after the completion of the first part of the activity and to continue with the
second one when CART 2 becomes available.

20 volunteers, males and females within MSc and graduate students, were enrolled for
the experiments. They were asked to perform the assembly of USB adapters following
one of two possible patterns:

• Pattern 1: the operators execute a one-piece-flow assembly strategy, cyclically
executing the following three actions: padding, trimming a new label, and apply-
ing the trimmed label in the final product;

• Pattern 2: the operators perform two consecutive padding operations, followed
by two consecutive trimmings and placements of the labels.

Moreover, two different scheduling algorithms were adopted to control the robots and
the two carts:

• Scheduler A: the Monte Carlo scheduler described in Section 7.3;

• Scheduler B: an approach which neglects the real PDFs describing the firing de-
lays, assuming a uniform distribution for all the uncontrollable transitions. The
extremals of the support of the modelling uniform distributions are the maximum
firing times measured from the system. An optimal plan is computed perform-
ing, also for this kind of scheduler, a Monte Carlo simulation, but considering the
aforementioned uniform distributions. Indeed, this scheduler is something inter-
mediate between the approach proposed in Section 7.2 and the one proposed in
this Section.

Volunteers were divided into 4 groups: 1.A, 1.B, 2.A and 2.B. For each group, a partic-
ular assembly pattern was followed, and a particular scheduling approach was consid-
ered, with obvious notation5. The coefficients cR and cH involved for the computation
of the cost C were assumed equal to 0.5 and 1.0, respectively. In each experiment, a
total of 9 products were assembled. The horizon time considered for the scheduler was

4A video to help understanding the assembly cycle and the activities performed by the different agents is available at https:
//youtu.be/_Jxo1mNZ1C8.

5For instance, volunteers in Group 2.A were asked to perform Pattern 2, while the robots were controlled with Scheduler A.

104

https://youtu.be/_Jxo1mNZ1C8
https://youtu.be/_Jxo1mNZ1C8

7.5. Validating experiments

Table 7.3: Excerpt of the PN of Figure 7.18 and example of synchronization between the station and the
PN model used for scheduling.

(a) Operator’s hand enters the dedi-
cated area (red sphere), but he/she is
forced to wait for CART 2

(b) CART 2 arrives and the operator
can drop-off the part, occupying one
spot in the buffer

(c) Operator’s hand leaves the ded-
icated area and CART 2 is free to
move

Begin End Begin
Padding

Begin End Begin
Padding

Begin End Begin
Padding

set equal to Tsch = 30 s, while the deterministic delay considered for the controllable
agents was set equal to tw = 3 s. The mean computation time for building a new reach-
ability tree (including the propagation of costs, when considering N = 150 trials for
the Monte Carlo simulation is equal to 286 ms.

Analysis

Figure 7.19 reports the measured cycle times, computed as the temporal differences
between the completion of two successive products (both detected as the firing of an
End transition of a Storing, see Figure 7.18).

A clear statistical evidence suggests that the proposed approach (Scheduler A) is
able to reduce the cycle time for both the two considered assembly patterns, leading to
an increased productivity. This fact is confirmed by the results reported in Figure 7.24,
which compare the evolution of the system for an experiment in Group 1.A with an-
other experiment from Group 1.B. As it can be seen, the time wasted by the human is

105

Chapter 7. Scheduling approaches

20

40

60

80

100

(a) Distributions of cycle times (batches of size 1)

20

40

60

80

100

120

(b) Distributions of cycle times (batches of size 2)

Figure 7.19: Distributions of the measured cycle times, for the two assembly patterns considered.

10 15 20
0

0.5

1

5 10
0

0.5

1

0 10 20
0

0.5

1

Figure 7.20: Distributions of the measured durations of some uncontrollable transitions of the net re-
ported in Figure 7.18 in the middle (yellow) and at the end (blue) of the experiment.

significantly higher for the trial of Group 1.B, leading to higher cycle times. In particu-
lar, when the operator from Group 1.A finished the 9-th products, the operator in Group
1.B was only able to finalize 7 products. Besides the qualitative results contained in
Figure 7.24, the median cycle time for Group 1.A turns out to be smaller than the one
of Group 1.B (p = 0.9971, Wilcoxon test with α = 0.05), and similarly the median of
Group 2.A is lower than the one of Group 2.B (p = 0.9926).

The reduced cycle times experienced when applying the proposed approach are jus-
tified by the reduced amount of time wasted in an idle state for both the operator and the
robots, as reported in Figures 7.21 and 7.22. The idle times of the robots are computed
by summing all the elapsed times between the ending of an action and the beginning of
a new one. Conversely, the inactivity times of the operators are computed considering
the time spent by the tokens of the PN of Figure 7.18 in the coloured places indicated
in the same figure (see also Figure 7.3(b)). As it can be seen, the distributions of the
idle times highly correlates with ones reported for the cycle times.

Analysis of the firing distributions

Figure 7.20 reports the distributions of the measured times for some of the transitions of
the pcTPN of Figure 7.18. The values retrieved from all the experiments of Group 1.A

106

7.5. Validating experiments

20

40

60

80

(a) Distributions of idling times for the human (batches of
size 1)

10

20

30

40

50

(b) Distributions of idling times for the human (batches of
size 2)

Figure 7.21: Distributions of the human inactivity times, for the two assembly patterns considered.

250

300

350

400

450

500

(a) Distributions of idling times for the robots (batches of
size 1)

200

300

400

500

600

700

(b) Distributions of idling times for the robots (batches of
size 2)

Figure 7.22: Distributions of the agents inactivity times, for the two assembly patterns considered: the
summations of all the idling times of the agents in the system is reported.

107

Chapter 7. Scheduling approaches

and 1.B, for a specific transition, are grouped together. Such times are clearly not ex-
ponentially distributed, implying that any approach based on SPN would be unsuitable
for this application.

Moreover, Figure 7.20 also compares the distributions of three particular activities,
approximately after 5 assembly cycles with the same distributions at the end of the
same experiment. It is possible to notice that distributions are not stationary and their
time dependency has to be accounted for in the scheduling algorithm through learning
and adaptation mechanisms.

Learning capabilities

With the aim of investigating the learning capabilities of the scheduling algorithms,
Figure 7.23 reports the evolution of the total idle times of agents (YUMI, IRB 140 and
the operator) during the experiments from Groups 1.A and 1.B. It is possible to appre-
ciate a monotonic decreasing trend of the idle time in each cycle for all the experiments
performed, indicating the learning capability of the two scheduling algorithms. Both
scheduling algorithms progressively collect duration measurements from the system
(see Section 7.1) and consequently refine the corresponding duration models.
The evolution of the idle times for each of the volunteers was fitted with a linear regres-
sion. The slopes corresponding to Group 1.A were steeper than those corresponding to
group Group 1.B (p = 0.7897, Wilcoxon with α = 0.05), indicating a slightly accentu-
ated learning efficiency for the scheduler proposed in this work (Scheduler A).

0 5 10
0

50

100

150

0 5 10
0

50

100

150

Figure 7.23: The evolution of the overall wait time of the agents, during the experiments of Group 1.A
and Group 1.B. The reported values, refer to the summation of the idle times of YUMI, IRB 140 and
the human operator. The dashed red curves are the regressed lines interpolating all the data.

108

7.5. Validating experiments

Figure 7.24: Sequence of events occurred for two particular experiments: one from Group 1.A (top) and
one from Group 1.B (bottom), see Figure7.5 for the legend. The temporal duration of the activities
performed by the agents is proportional to the length of the corresponding coloured bar (waiting
activities are not reported). The dashed vertical lines refer to time instants when a new finite product
is available (i.e. the end of the storing operation done by the IRB 140): the red ones referring to the
experiment of Group 1.A while the blue ones to that of Group 1.B.

Table 7.4: Composition of the times spent by agents performing the assigned tasks, see Figure 7.5 for the
legend. For each task, the overall time spent doing that action is considered for creating the proposed
histogram charts, summing the values of all the experiments in a specific group.

YUMI IRB 140 Human

Group 1.A

Group 1.B

Group 2.A

Group 2.B

109

Chapter 7. Scheduling approaches

Table 7.5: Color legend for Figures 7.4 and 7.24.

YUMI IRB 140

Wait for a Cart

Labelling

Padding

Trim barcode

Quality Control

Storing

Idle

Assembly

Housing #1

Housing #2

Idle

Wait for a Cart

Labelling

Padding

Trim barcode

Quality Control

Storing

Idle

Assembly

Housing #1

Housing #2

Idle

Human CART 1 & 2

Wait for a Cart

Labelling

Padding

Trim label

Quality Control

Storing

Idle

Assembly

Housing #1

Housing #2

Idle Move toward YuMi

Move toward Human

Wait for a Cart

Labelling

Padding

Trim label

Quality Control

Storing

Idle

Assembly

Housing #1

Housing #2

Idle Move towards YuMi

Move towards Human

7.5.3 Use case c

The effectiveness of the fuzzy scheduling approach in Section 7.4 was tested in the
collaborative assembly of a torch and a clock, see Figure 7.26 6. The experimental
set-up is reported in Figure 7.25. The dual arm YUMI is the robotic co-worker of the
human. The operations reported in Figure 7.26 will be now detailed:

• assembly of a torch:

– Action R1: Assemble the frontal part of the torch with the light inside.
– Action H1: Screw the frontal part with the body of the torch.
– Action L1: Move the body of the torch to assembly station A.
– Action H2: Assemble the batteries of the torch.
– Action R2: Insert the batteries into the body of the torch.
– Action H3: Finalize the torch screwing the bottom part and archive the finite

product.

• assembly of a clock:

– Action R3: Assemble the clock dial with the engine.
– Action H4: Insert the hands.
– Action L2: Insert the glass into the frontal frame.
– Action L3: Add to the frontal frame assembly, the dial with the engine and

the bottom part of the clock.
– Action R4: Move the assembled clock into the delivery buffer.
– Action H5: Finalize the clock by screwing all the angles.

Actions R1,2,3,4 are assigned to the right arm of YuMi, while L1,2,3 to the left one. All
the other actions are assigned to the human. Work in progress are stored in the buffers
located in the green areas of Figure 7.25(c). The QR codes that can be seen in the same
Figure, are placed for making the robot aware of which bins are occupied (the robot’s
hands are embedded with an integrated vision system).

6A video showing all these phases is available at https://www.youtube.com/watch?v=5zhIp51Ndfk$&
$feature=youtu.be.

110

https://www.youtube.com/watch?v=5zhIp51Ndfk$&$feature=youtu.be
https://www.youtube.com/watch?v=5zhIp51Ndfk$&$feature=youtu.be

7.5. Validating experiments

(a) (b)

(c) (d) (e)

Figure 7.25: On the top, the layout adopted for the experiments. On the bottom left part, a detailed
view of the layout: the violet area contains the stations used by the robots to perform the assigned
intermediate assemblies, while the green ones are the buffers through which the human and the
robots exchange components. The pictures on the bottom right part depicts the two products to be
assembled.

Three main sources of fuzzyness affect the system. The first one is clearly related to
the time duration required by the human to perform his or her assigned actions. The
second one is the presence of a shared area for the two robots (violet zone of Figure
7.25(c)). This area contains some assembly stations and can be accessed by robots only
one at a time: when an arm is already inside, the other one is forced to wait till the exit
of the first. Therefore, the time required to perform an action for which the shared area
has to be used, is uncertain. 7.
The last source of uncertainty is the motion control imposed for robots. Indeed, for
safety reasons, the robots are slowed down along the assigned paths when traversing
the green areas of Figure 7.25(c), in case of the simultaneous presence of the operator’s
hands (a MICROSOFT KINECT camera is employed for tracking the positions of the op-
erator’s hands). Therefore, the sharing of a common workspace for humans and robots,
increase the non determinism related to completion times of robotic tasks, making the
fuzzy approach particularly suited 8.

10 volunteers were enrolled. Each volunteer was asked to perform two kinds of
experiments:

1. Experiment A: the operator was asked to persistently perform the assembly of
7In principle the shared area can be modelled as an additional resource of the modelling Petri Net, adding some preconditions

to those actions that use this area, as similarly done for the use case in Section 7.5.2. This approach was not followed only to
increase the uncertainty of the system, in order to show the capabilities of the scheduler.

8Notice that the human and the robots in the use case of Section 7.5.2 did not actively share the space.

111

Chapter 7. Scheduling approaches

R2

AND
R1

H2

H1 L1
H3

R4

AND
R3

L2

H4
L3 H5

H1

R1

L1
H2

H3

R2

R3
H4

L3

R4

L2

H5

Figure 7.26: On the top the actions required for the assembly of a single torch and the corresponding
assembly flow, on the bottom the same for a clock.

torches only, executing in a cyclic manner actions H1, H2 and H3.

2. Experiment B: in this case the operator was asked to repeat the following pattern
of actions: H1, H4, H2, H5 and H3, i.e. alternating the assembly of a new torch
with the one of a new clock.

In each trial of the Experiment A, the involved operator assembled a total number of
5 torches; while in the case of Experiment B, 5 torches and 5 clocks were produced.
The operator was forced to repeat the same pattern of the two kind of experiments.
Therefore, he or she was forced to wait till all the preconditions of the following action
to undertake were not met.
Each volunteer performed Experiment A and B while the robots were controlled with
one of following scheduling approaches 9

1. The fuzzy scheduler reported in Section 7.4.

2. Uniform scheduler: a scheduler similar to [14], which addresses the uncertainties
related to the firing times of transitions in a more naive way, assuming the firing
delays of the transitions as uniformly distributed. This scheduler represents an
attempt to adapt [14] to the approach of Section 7.4. A brief description of the
uniform scheduler is provided in Section 7.5.3.

For the experiments, Tsch was set equal to 50 s, in order to have at an average 4 events
happening within the scheduling horizon. A crisp value of 5s was assumed for tw (see
Section 6.3.1).

95 volunteers performed the experiments with a scheduler while the remaining with the other one.

112

7.5. Validating experiments

Fuzzyfication of the activity durations

The distributions d, modelling the firing delays are updated according to new samples
collected during time (see Section 7.1). Such samples have to undergo a fuzzyfication
process. The problem amounts essentially to find the best triangular fuzzy set describ-
ing a quantity for which a restricted set of samples {D1, · · · , DM} are available.
Many methods have been proposed in literature to address this problem. There is no
objective way to evaluate the goodness or correctness of such methods and mostly the
choice of the method depends on the kind of problem to handle and on the type of data
available. The method proposed in [2] was chosen. The best asymmetrical triangular
set 〈T1, TM , T2〉 approximating samples D1,··· ,M is computed as follows:

TM =
1

M

M∑
j=1

Dj

T1 = max(0, TM − σL)

T2 = TM + σR (7.19)

where σL and σR of the above equations are computed as follows:

S =

∫ TM
−∞ f(s)ds∫ +∞
TM

f(s)ds

σL = σ
S

1 + S

σL = σ
1

1 + S
(7.20)

f(d) is the empirical probability distribution of samples in D, while σ is their standard
deviation.

Results

The idle times measured during the experiments are reported in Figure 7.27. By a qual-
itative analysis, the performance obtained when applying the fuzzy scheduler seems
to be better. This is confirmed by a single-tailed Wilcoxon rank sum returning an
r = 0.0023 when comparing Experiments A with the two scheduling approaches tested,
while returns an r = 0.0251 when comparing Experiments B. The aforementioned tests
were performed with an α = 5%.
The productivity obtained during the experiments was also estimated, by considering
the time elapsing from the exiting of a finite product and the subsequent one. Such
cycle times are reported in Figure 7.28. Also in this case, a clear statistical evidence
confirms that the fuzzy approaches perform better: Wilcoxon test returns r = 0.065
when considering Experiments A, while r = 0.122 comparing Experiments B.
Not surprisingly, the fuzzy approach overcame the other one, which seems to be not
suited for properly addressing the variability of the activity durations (since simple uni-
form distributions are assumed).

113

Chapter 7. Scheduling approaches

Experiments A Experiments A Experiments B Experiments B
0

50

100

O
pe

ra
to

r
in

ac
tiv

ity
 ti

m
es

 [s
] Fuzzy

Uniform

Fuzzy Uniform

Figure 7.27: Idling times of the operator. Every sample of the reported distributions refers to the idling
measured within the assembly of a single product.

Experiments A Experiments A Experiments B Experiments B
1

2

3

4

C
yc

le
 ti

m
es

 [m
in

]

Fuzzy

Uniform

Fuzzy Uniform

Figure 7.28: Measured cycle times.

Uniform scheduler

The uniform scheduler replaces all the triangular firing delays d with trapezoidal fuzzy
numbers d′ having α0(d

′
) = [t, t] and α1(d

′
) = [t + ε, t − ε], with ε that is a positive

sufficient small constant. d′j is defined such that:

α0(d
′
) = [t, t] = α1(d) (7.21)

The construction of the RT as well as the way the best plan is selected (Section 7.4 and
7.4.1) are identical to the fuzzy scheduler described so far, with the only two following
differences. The computation of the generic arrival time αCi is altered, assuming αCi
as that trapezoidal number for which:

α0(αCi) = [t, t] = α0(α
′

Ci) (7.22)

while WH is computed as follows:

WH = ϕ1 · ϕ3 (7.23)

114

Part III

Motion control of cobots

115

CHAPTER8
Safe control of cobots

All the scheduling approaches discussed in Chapter 7 were based on a prediction of the
human activities. Indeed, after predicting the operator’s future behaviour, the proper
assistive actions were scheduled. In a certain sense, the plan imposed to the system,
is induced by the human (see the pipeline at the bottom of Figure 6.1). Indeed, the
produced plan is tailored for a specific human since the system is indirectly adapting to
the behaviour of that particular operator.
It seems natural to endow also the motion controllers with similar adaptation capabili-
ties. In this way, observing the human during time, it is possible to forecast his or her
future motion and then adopt the proper corrective actions for the robots motion. The
approaches proposed in this Section have exactly this aim. In particular, the approach
of Section 8.1 is a reactive one, while the one proposed in Section 8.2 is proactive.
The majority of the approaches developed in the past are classifiable as reactive: the
robot is slowed down along its nominal path or it is forced to undertake local dodging
manoeuvres, in case imminent collisions with the human mate are detected. The mo-
tion of the robot is typically a result of a pure closed loop control scheme. One example
is the strategy described in [36], where a repulsive field deforms the trajectory of the
robot, in order to let it accomplish its task, but in a safe way for the human. A similar
approach was adopted in [107], where the accelerations of the robot are modulated ac-
cording to a scaling factor, computed by solving a constrained optimization problem.
The aim is to modify as little as possible the initial path, to guarantee the satisfaction of
a safety constraint. In [18], the previous approach was extended, to tackle the problem
with a model predictive control perspective, optimizing the accelerations on a longer
time horizon.
The aim of a proactive approach is instead to compute some trajectories for the robot,
designed to reduce in advance the risk of collision with humans, without waiting for

117

Chapter 8. Safe control of cobots

moving obstacle

starting position

goal position
nominal path

Reactive trajectory

starting position

goal position

Proactive trajectory

(a) Reactive approach, closed loop scheme (b) Proactive approach, open loop scheme

Perceiving sensors

Reactive
planner

goal position

+

-

Previous motion

Optimal
planner

goal position

Prediction of
occupied volumes

Proactive
trajectory

of the obstacle

Figure 8.1: Difference between a reactive approach and a proactive one. The motion resulting from a
reactive approach guarantees the absence of collisions with a moving obstacle, but it’s not globally
optimized, since with a certain frequency is constantly recomputed considering the current position
of the obstacle. On the opposite, the proactive path is computed form its start to its end once; by
taking into account a prediction of the entire motion of the yellow obstacle. A combination of the two
approaches is also possible.

the situation to become critical. Figure 8.1 resumes the differences between reactive
and proactive approaches.
Few proactive path planners were proposed in the past. Examples are [58], [121]
and [66]. [58] addressed the problem of co-planning, computing the trajectories for
both a human and a mobile robot. The proposed approach is however able to plan only
2D planar paths. [121] is another example of a 2D planner, where optimal paths for
a mobile cobot are computed considering not only the safety of the human mate but
also the acceptance of the resulting motion, trying to avoid trajectories for which the
robot goes out from the visibility cone of the human. [66] tackled the proactive plan-
ning problem for an articulated robot, even though the developed method relies on an
off-line computation of the paths.
It is important to remark that the computation of proactive trajectories requires to es-
timate which human activities are likely to be executed simultaneously with a specific
robotic one, i.e. predict the behaviour of the human in the near-far future. However,
this allows a proactive planner to achieve a global optimality for the produced mo-
tion, since the whole path is optimized, while reactive approaches are typically locally
optimal, since corrective actions are imposed to avoid in the near future the collisions.

Both the reactive and the proactive approaches here proposed, need to find a way
to adequately model the human motion, which is however one of the most challenging
problems in the context of HRC. It might in fact be desirable to fit a model suitable to
make predictions, using the smallest possible training set. The last aspect is crucial if
we consider that each human worker is physically different. Therefore, it is necessary
to use a model that evolves during time, without the need to undergo a long, off-line,
training phase. This leads to a short, almost zero, set-up time when there is a switch

118

between the people who interacts with the robot. The desire to use a small amount of
training data strikes with the fact that the human motion models are often highly non
linear and highly dimensional.
Possible choices are, for instance, linear dynamical systems with Gaussian process
noise, first- and second-order Markov models, or auto-regressive (AR) models [94].
Switching Linear Dynamic System and hybrid dynamics can provide much richer classes
of temporal behaviours [96], [53]. Nevertheless, they are computationally challenging
to learn, and require large amounts of training data. A possible way to cope with high-
dimensional data, but considering a reduced training sets, is to make use of Gaussian
Processes (GPs). This is actually the approach followed by both the work detailed in
Section 8.1 and 8.2. To be more precise, 8.2 made use of an evolution of the standard
GP formulation, considering a latent variable model called Gaussian Process Dynami-
cal Model (GPDM) [127].

The reactive and the proactive approaches can be also combined: a proactive path can
be computed minimizing the probability of collisions with the human, but then its exe-
cution can be managed by a reactive motion controller, enforcing some additional safety
constraints for handling an unexpected behaviour of the operator. This is similar to the
combination of open loop controls with the closed loop ones: an open loop trajectory
guarantee the global optimality, while the feedback scheme provide robustness.

119

Chapter 8. Safe control of cobots

8.1 The reactive approach

The reactive approach proposed in [13] modulates the robot speed along an assigned
path, according to a prediction of the volume that will be occupied by the human in the
imminent future. It is based upon the definition of Swept Volumes: portions of the en-
vironment, entirely containing the human predicted motion. Swept Volumes are treated
like obstacles to avoid. Predicting in a reliable way the human motion is therefore crit-
ical for building such containing volumes.
[13] was inspired by [107], which actually introduced the concept of Swept Volumes.
However, in [107] the motion of the human was predicted with a simple Kalman filter,
offline tuned. The resulting Swept Volumes were very conservative, assuming always
the worst case scenario. On the other hand, in [13] adaptive Gaussian Processes (GPs)
(see Appendix E) were adopted for predicting the human motion. The model was adap-
tive in the sense that the parameters characterizing the model were constantly recom-
puted, according to recent samples for the human motion. In this way, less conservative
Swept Volumes were produced.

8.1.1 Background about Swept Volumes generation

With the aim of computing the Swept Volumes, the human is treated like a manipulator,
whose motion is described by a 12 d.o.f. kinematic model. q =

[
qbase qarmR qarmL

]
is the vector describing the human posture. qbase =

[
q1 q2 q3 q4

]
contains the posi-

tion and orientation of the torso, while qarmR =
[
q5 q6 q7 q8

]
describes the posture

of the right arm of the operator, similarly qarmL =
[
q9 q10 q11 q12

]
for the left arm.

Refer to the left pictures of Figure 8.2.
Commercially available depth cameras are able to provide on-line the position of some
skeletal points of interest (see Section 9.0.1 and Figure 9.1), which are used together
with an inverse kinematic function to compute q, see [134] for further details. By
considering some kinematic limitations for the human motion (maximal and minimal
joint velocities and accelerations) it is possible to compute the reachable set of every
joint, represented by ∆+ =

[
∆+

1 · · · ∆+
12

]
and ∆− =

[
∆−1 · · · ∆−12

]
. The latter

quantities are, respectively, the maximal and minimal possible excursions that human
articulations can undergo within a prediction time T starting from the current one. More
formally, for the generic jth joint:{

∆+
j = min ∆ s.t.

∆ ≥ 0
∧

qj(t+ δt) < qj(t) + ∆ ∀δt ∈ [0, T]{
∆−j = min ∆ s.t.

∆ ≥ 0
∧

qj(t+ δt) > qj(t)−∆ ∀δt ∈ [0, T]
(8.1)

∆+ and ∆− are considered to compute the swept volumes, by following the method
adopted in [123]. Such shapes are treated like obstacles that need to be avoided, thus
ensuring the human safety.
The method proposed in [107] is effective in guaranteeing the safety, but is at the same
time very conservative when computing ∆+ and ∆−, since the kinematic limitations
considered are not tailored to specific subjects. The aim of [13] was instead to exploit

120

8.1. The reactive approach

(a) (b) (c)

q6

q5

q7

q8

y

x

q4

q2

q3

q1

Figure 8.2: On the left, (a) and (b), the kinematic model adopted to describe the human posture. For
the base of the human, a unicycle model is considered, while for the arms a spherical joint is centred
at the shoulder, with an additional joint located at the elbow. On the right, (c), an example of swept
volumes bounding the future occupancy of the anatomical parts of the human. In blue the volume
swept by the torso, in green those for the forearms, while in yellow those for the upper arms.

Gaussian Processes to forecast the evolution of q in order to compute ∆+ and ∆− in a
less conservative way.

8.1.2 Gaussian Processes for Swept Volumes generation

Gaussian Processes can be exploited to compute customized models of human motion,
tailored to specific subjects. Every operator present in a cell is assumed to be monitored
by a surveillance camera, able to provide an estimate of the operator’s posture q at a
certain sampling frequency 1/∆t. Let φk denote the state of the operator’s articulations
at step k:

φk =
[
q̈Tk q̇Tk qTk

]T (8.2)

φk can be estimated applying a Kalman filter on a linear kinematic model made of a
chain of three integrators:

φk+1 = A φk + w

zk+1 = qk+1 =
[
0 0 I

]
φk + e

A =

 I 0 0

∆tI I 0

0.5∆t2I ∆tI I

 (8.3)

where w and e are the process and the measurement noise respectively, which are as-
sumed to be Gaussian. The classical forward formulation of the Kalman filter is able to
provide recursively φk|k, i.e. the mean of the posterior distribution of the state φk, con-
ditioned to all the measures seen in the past z1,··· ,k. In [107], the estimate φk|k, is taken
into account for computing the reachable sets of every qi, by assuming the accelera-
tions q̈ and the velocities q̇ are bounded. The aforementioned sets are then considered

121

Chapter 8. Safe control of cobots

for the swept volumes computation. However, the kinematic limitations adopted are
not tailored to specific subjects, but worst case values are used.
In collaborative contexts we can assume the human motion to have some kind of period-
icity, since the human and the robot have to alternatively accomplish a certain number
of operations (refer to assembly flows in Section 7.5.1, 7.5.2 and 7.5.3). In similar sce-
narios the worst case approach of [107] produces unnecessary conservative predictions.
On the opposite, the aim of [13] was to model the aforementioned periodicity, to pro-
vide more accurate medium-term predictions. Such predictions cannot be extracted
from the purely linear model expressed in equation (8.3), which can be only adopted
for filtering the observations. However, the estimates φk|k provided by the Kalman
filter are exploited to refine a Gaussian Process able to efficiently describe the human
motion. An adaptive approach is used, starting from an initial model and continuously
refining it at a certain frequency. Let h be the function governing the periodicity of the
human motion. The definition of h is:

φk = h(φk−1, · · · , φk−P) (8.4)

where P is the order of the model. h is clearly unknown, but can be approximated by
making use of a Gaussian Process hGP (see equation (E.7) and (E.18)):

h(φk−1, · · · , φk−P)
.
= hGP (φk−1, · · · , φk−P) (8.5)

Three different possible ways to build hGP will be proposed in the following. As dis-
cussed in Appendix E, Gaussian Processes rely on samples. In this case we can use as
samples for hGP , not the on-line computed estimates φk|k , but φk|K , i.e. the mean of
the posterior distribution of φk conditioned to all measures in a window: z1,··· ,ki,··· ,kf .
Therefore, the proposed approach periodically updates hGP , reasoning on the most re-
cent available window of observations. The frequency of the model update is clearly
lower than 1/∆t, i.e. the sampling time adopted for updating the human state, which is
also the sampling time adopted for updating the swept volumes ∆+ and ∆−. At every
step k, ∆+

k and ∆−k are recomputed on the basis of the most recent learnt hGP .
The computation of φk|K is made applying the backward formulation of the Kalman
filter (see [91] at Section 3.6.1), on the window ki, · · · , kf , leading to:

φk+1|k = Aφk|k; Vk+1|k = AVk|kA
T +W

Jk = Vk|kA
TV −1

k+1|k

φk|K = φk|k + Jk(φk+1|K − φk+1|k) (8.6)

whereW is the covariance ofw, while Vk|k is the covariance of the posterior distribution
of φk, conditioned to the measures z1,··· ,k. Both φk|k and Vk|k are computed on-line
during the canonical application of the Kalman filter, therefore those quantities are
already known when updating the model. Expressions in equation (8.6) are applied
recursively backwards in time. The estimates φki|K,··· ,kf |K are manipulated in a proper
way, to obtain new samples for enriching the training set of hGP .

122

8.1. The reactive approach

For all the approaches the following kernel function (see Appendix E) is assumed:

K =

k11 · · · k1N

...
kN1 · · · kNN


kij = θ1X

iTXj + θ3exp

(
− θ2

2

∥∥X i −Xj
∥∥2

2

)
+ θ4δij (8.7)

where δij is the Kronecker delta.

The way hGP can be adopted for computing human swept volumes is now detailed.
The computation of ∆+

k is made considering a prediction horizon of a certain length
M , the computation of ∆−k is similar. Since GPs are stochastic models, the vector ∆+

k

is actually a collection of probability distribution functions. Clearly, characterizing in
a closed form such distributions its almost impossible. On the opposite, that distri-
butions can be approximated by empirical ones, taking into account a set of samples
{∆̃+

1 , · · · , ∆̃+
T }. These samples are obtained by simulating possible future human mo-

tions. More formally, a Monte Carlo simulation consisting of T trial can be deployed.
Every trial starts from φk|k and propagates it M times by using hGP , obtaining a sam-
pled trajectoryQt. For the tth trial, ∆̃+

t is computed considering the maximal excursion
reached by every joint in that trial. More formally, the required steps are done in this
way:

Qt =
[
qk|k q̃k+1 q̃k+2 · · · q̃k+M

]
φ̃k+l

.
= hGP (φ̃k+l−1, · · · , φ̃k+l−P) ∀l = 1, · · · ,M

∆̃+
j t = max

(
0,max

(
qj k, q̃j k+1, · · · , q̃j k+M

)
− qj k

)
∆̃+
t =

[
∆̃+

1 t · · · ∆̃+
12 t

]T
(8.8)

In the above equation every φ̃k+p (with p negative or null) is assumed to be equal to
φk+p|k+p. Similar considerations hold for computing the distributions describing ∆−k .
Swept volumes are built considering certain percentiles (one for every joint in the kine-
matic model) for ∆+

k and ∆−k . Here, a compromise between the risk to have a collision
and the productivity of the cobot to control must be done. Indeed, selecting high values
for the percentiles leads to the computation of conservative bounding volumes, con-
taing with a very high probability the future motion of the human. However, accepting
a certain low risk of collision, i.e. the 3%, could significantly reduce the sizes of the
volume describing the human occupancy, allowing to move the robot along its path
with an increased speed. Figure 8.3 summarizes the above considerations.
Characterizing the exact relationship between the risk of a collision and the percentiles
of ∆+

k and ∆−k can me a matter for future studies, while in [13], the mean values of the

123

Chapter 8. Safe control of cobots

∆+
k

Cumulative probability distribution of ∆+
k

0.5
0.6
0.7
0.8
0.9
1.0

∆+
a ∆+

b

∆−k

Cumulative probability distribution of ∆−k

0.5
0.6
0.7
0.8
0.9
1.0

∆−a ∆−b

Swept volume obtained when considering ∆+
a ,∆

−
a Swept volume obtained when considering ∆+

b ,∆
−
b

Figure 8.3: On the top, examples of cumulative distributions for ∆+
k and ∆−k (the kinematic chain is

assumed to be made of a single joint), while on the bottom examples of swept volumes for a single
joint mechanism, depicted on the left bottom corner, when assuming different percentiles for ∆+

k and
∆−k

empirical distributions were assumed for the swept volume generation:

∆+
k =

1

T

T∑
t=1

∆̃+
t (8.9)

∆−k =
1

T

T∑
t=1

∆̃−t (8.10)

The entire pipeline of the approach is reported in Fig. 8.4.

Model A, decentralized approach

The first possible model makes 12 independent predictions, one for each human articu-
lation. Indeed, for every joint only the previous accelerations, velocities and positions
are considered to make a prediction about the future trajectory. This is equivalent to
have 12 independent GPs assembled together to form hGP . For notational purposes, let
ϕj denote the state of the jth joint:

ϕj =
[
q̈j q̇j qj

]T (8.11)

The GP modelling the evolution in time of ϕj is a function:

ϕjk
.
= hjGP (ϕjk−1, · · · , ϕ

j
k−P) (8.12)

The comprehensive prediction about φ is obtained by assembling in the proper way
every predicted ϕj .

124

8.1. The reactive approach

Inverse
Kynematics

Kalman Filter
(forward)

Motion
Control

Skeletal point

Swept Volume
Computation

∆+,∆−

Computation

φk|K

Model
update

hGP (φk,··· ,k−P)

∼= 50 ms ∼= 500 ms

Kalman Filter
(backward)

Computation of a
new training set

Update the model

φki|ki, · · · , φkf |kf

Model
update

positions

updated hGP

φki|K , · · · , φkf |K

SCobot

Shared workspace

Operator inside the cell

Figure 8.4: Pipeline describing the developed approach. The picture on the right details the steps
involved for updating hGP , i.e. the model describing human motion.

Every hjGP is updated separately, adding to the training set, a set S of new samples
defined as follows (see Appendix E):

〈
· · · ,

 X l =


ϕjk−1|K

...

ϕjk−P |K


Y l = ϕjk|K

 , · · ·
〉

(8.13)

Model B, centralized approach

The decentralized model introduced before is able to express the periodicity of human
motion. However, such motion usually evolves in a coordinated way among the artic-
ulations. For this reason, it seems more natural to consider a model constituted by a
single GP, that takes into account the past evolution of the entire state φ when making
a prediction for every joint.

φk
.
= hGP (φk−1, · · · , φk−P) (8.14)

Notice that in this case the computational effort required to update the model and com-
pute ∆+, ∆− is significantly higher than a purely decentralized approach, since the
complexity of GP scales quadratically with the cardinality of the domain of the func-
tion to approximate.

Model C, hybrid approach

The centralized model introduced before is meant to represent the coordination existing
between the articulations. However, it is also computationally heavy. Moreover, the
actual coordination governing human motion involves groups of joints. For example,
when the operator moves his/her arms, joints of the left arm are moved independently
from the ones of the right. For this reason, we can think of a third kind of model that

125

Chapter 8. Safe control of cobots

represents separately three main groups of articulations: the moving base, the right arm
and the left one. α, β and γ denotes the state of the three groups of joints:

α =

q̈base kq̇base k

qbase k

 ; β =

q̈armRkq̇armRk

qarmRk

 ; γ =

q̈armLkq̇armLk

qarmLk

 (8.15)

The prediction about φ is the assembly of three independent predictions:

αk
.
= hαGP (αk−1, · · · , αk−P) (8.16)

βk
.
= hβGP (βk−1, · · · , βk−P) (8.17)

γk
.
= hγGP (γk−1, · · · , γk−P) (8.18)

hαGP , hβGP and hγGP are updated considering three independent newer training sets.

8.1.3 Experiments

The experimental set-up adopted is reported in Figure 8.5. The MICROSOFT KINECT
reported in the same Figure is exploited to perceive the posture of the human during the
time. This information is sent to a CPU, which is also connected to YUMI. The robot
speed is modulated as done in [134]. At every steps, the convex shapes representing the
swept volumes are recomputed by the CPU connected to the robot. Such volumes are
exploited for defining a constrained optimization problem whose solution is used for
modulating the robot speed along its current assigned path. The aim is to compute the
maximal speed to set for avoiding collisions with the aforementioned swept volumes
(in case of critical circumstances, the robot motion can be also interrupted). Clearly, a
less conservative computation of human swept volumes leads to reduced size obstacles
to avoid, allowing a greater cruise speed.
A human operator and YUMI are required to simultaneously assemble two distinct
products: the box with a USB pen described in Section 3.1.3 and the PCB board de-
scribed in Section 7.2.1, respectively. The robot’s arms perform the picking of the box
and the caps of the PCB board simultaneously. They then assemble it by making use
of the assembly station indicated by the picture in the middle of Figure 8.5. After the
assembly of the box is completed, the newer piece is taken by the left arm of YUMI
and put in a specific storage area near the right part of Figure 8.5(the storage area is not
visible in the same Figure).
The human autonomously performs all the assembly steps described in Section 3.1.3,
taking the necessary parts from the buffer reported in Figure 8.5. The operator’s trajec-
tory are approximately reported in the right part of Figure 8.5.
As can be seen, both the agents have to cross a shared area. The locations of buffers
were not selected in an ergonomic way, but the experimental set-up was designed
mainly to show the validity of the developed approach, simulating a situation of co-
existance for the human and the robot.
Six volunteers were enrolled for the experiments and were divided into two groups
I and II. For those in the group I, the approach presented in [107] was applied 1 for

1Only for the way swept volumes are generated, but not the way the robot’s motion is controlled, since the approach of [134] is
adopted as clarified at the beginning of this Section.

126

8.1. The reactive approach

(a) (b) (c)

Figure 8.5: Experimental set-up considered for the experiments. (a): YUMI of ABB, is visible in
the centre; with a MICROSOFT KINECT vision system on top. (b): Locations of buffers containing
the items required to assemble the box with the USB and the PCB board. (c): Some approximative
trajectories followed by both the human (in clear green) and the robot (dark blue). The dashed
orange area is the portion of space shared by the human and the robot, while the green shaded one
is the portion of the space occupied by the operator’s torso during the experiments.

the computation of swept volumes adopting a basic linear kinematic model; while for
those in group II, the hybrid approach described in Section 8.1.2 was considered (with
P = 4). Section 8.1.3 will compare performance obtained by the two groups, while
Section 8.1.3 presents the results of some off-line simulations, comparing the perfor-
mance achieved by all methods proposed for modelling the human motion, on the data
(position in time of the operators) acquired on-line during the real experiments.

Real experiments

The sample time of the depth camera was set to 50 ms. When applying the hybrid
method, a newer Gaussian Process model for the three groups of joints is trained every
500 ms. Therefore, for every new training of the models, 10 newer samples are avail-
able. The training set has a fixed size equal to 100 samples. Newer samples replace
10 older ones every time an update of the model is invoked. Samples to replace are se-
lected randomly with a uniform distribution in order to have a novel set with samples of
both the recent and the remote past 2. Each of the volunteers in the groups I and II was
required to accomplish 5 assemblies, while the robot simultaneously accomplished the
assigned operations. The mean cycle time of the robot for the experiments of group II
was about 8.59± 1.3% lower than the one related to experiments for group I, showing
the beneficial effects of having a less conservative prediction of human motion. The
mean time required to train a new model was 309.86 ms, with a standard deviation

2In principle, it could be possible to consider the trace of Vk|K and sample position to replace accordingly, i.e. trying to remove
samples with an higher uncertainty. However, after a transient phase, Kalman Filter reaches a steady state for which the trace of
the estimation covariance stops to changing significantly. Therefore, that approach would end up to be equivalent to sampling with
a uniform distribution.

127

Chapter 8. Safe control of cobots

q2 q3

-0.02

0

0.02

0.04

0.06

0.08

q2 q3

0

0.05

0.1

0.15

Figure 8.6: Distributions of ε+ and ε−, for joint q2 and q3 of the kinematic model reported in Figure
8.2. The legend of Figure 8.7 applies. The red horizontal line, divide conservative predictions from
the ones for which a violation happens. Results for similar joints of both arms are condensed in a
single boxplot.

[107] decentralized P=4 centralized P=4 hybrid P=4
decentralized P=3 centralized P=3 hybrid P=3

decentralized P=2 centralized P=2 hybrid P=2

decentralized P=1 centralized P=1 hybrid P=1

Figure 8.7: Legend to consider for Figure 8.6 and 8.8

equal to 153.07 ms, which is compatible with the frequency selected for updating hGP .

Off-line simulations

For every sample of the data logged on-line during the experiments, it is possible to
compute ε+ = ∆+

pred − ∆+
real and ε− = ∆−pred − ∆−real. ∆+,−

pred are the excursions pre-
dicted for every human articulation using hGP , with the different methods described
so far; while ∆+,−

real is the real excursion followed. The excursions ∆+,−
real are computed

according to the estimates q1|1, · · · , qN |N retrieved on-line by the Kalman filter during
the experiments and saved for this off-line processing phase. Notice that it is a suf-
ficient and necessary condition to require both ε+ > 0 and ε− > 0 for guaranteeing
that the predicted excursion entirely contains the real followed trajectory. Moreover,
the more ε+ is positive and large, the more conservative the prediction was (the same
applies for ε−). Figures 8.6 and 8.8, report some statistics about ε+ and ε−, on the data
of the experiments. As can be seen, the approach in [107] produces predictive excur-
sions that almost always contain the real excursions of joints, even though the approach
turns out to be very conservative, since ε+,− are positive and big. On the opposite,
the methods exploiting any kind of Gaussian Process as model for the human motion,
result to produce lower ε+,− which can be also negative sometimes. In particular, the
hybrid approach of Section 8.1.2 seems to be the one producing predictions with the
best compromise between conservativeness and risk of violation. Surprisingly, in both
in Figure 8.6 and 8.8 no significant differences can be detected when considering a spe-
cific method with different values for the order P . For the hybrid approach of Section
8.1.2, Figure 8.10 reports also the distance of the real positions of wrists, elbows and
shoulders to the predicted swept volumes, considering only those samples for which
ε+ 6 0 or ε− 6 0.

128

8.1. The reactive approach

q1 q4 q5-q9 q6-q10 q7-q11 q8-q12

-10

0

10

20

30

40

q1 q4 q5-q9 q6-q10 q7-q11 q8-q12

0

20

40

60

Figure 8.8: Distributions of ε+ and ε−, for joints q1,4,5,6,7,8,9,10,11,12 (i.e. the rotating ones) of the
kinematic model reported in Figure 8.2. Results for similar joints are condensed in a single boxplot.
The same legend in Figure 8.7 applies.

Figure 8.9: Comparisons between the swept volumes obtained considering [107] (the blue ones on the
first row) against those obtained applying the hybrid approach with P = 4 (the green ones on the
second row), for two sampled instants of the logged data.

Wrist Elbow Shoulder
0

0.02

0.04

0.06

0.08
hybrid P=4
hybrid P=3
hybrid P=2
hybrid P=1

Figure 8.10: Statistics about the distances between skeletal points and predicted swept volumes, in case
of violation of the predicted joint excursion.

129

Chapter 8. Safe control of cobots

As can be seen from the analysis of Figure 8.10, the violation of the predicted swept
volumes by the real trajectory followed by skeletal points is in the order of few cen-
timeters. Figure 8.9 reports also a visual comparison of some swept volumes computed
with [107], w. r. t. the ones computed by the hybrid approach with a P = 4.

8.2 The proactive approach

The computation of proactive paths require to model the interaction between the oper-
ator and each robot.

8.2.1 Modelling the human-robot collaboration

Consider the co-assemblies described in Section 7.5.1, 7.5.2 or 7.5.3: a certain number
of operations are assigned to the robots and others are undertaken by the human. With-
out loss of generality, from now on the workspace is assumed as populated by a single
cobot and a single human mate.
The set AS = {aS1, · · · , aSn} ⊆ A (see the introductive Section of I) contains those
actions requiring the operator to traverse the space shared with the robot. Considering
the robotic agent, set R = {r1, · · · , rm} contains those actions requiring the cobot to
traverse the shared area.
For every rj ∈ R, a corresponding nominal path Qj is preassigned. Qj ensures the
completion of rj , but ignoring the motion that the human mate will simultaneously
perform. It is described by a series of intermediate waypoints qjk’s. In terms of joint
configurations:

Qj =
[
qjo qj1 · · · qjN−1 qjN

]
(8.19)

The objective of the proactive approach in [12] was to compute for every rj , a proactive
path Qpj , modifying the waypoints of Qj , in order to minimize a certain global cost
J (Qpj) (see also Section 8.2.3). The shape of J is designed to obtain a Qpj as much
as possible similar to Qj , but for which the probability of a collision with the human is
minimized (see again Section 8.2.3). On the opposite, a pure reactive approach would
be only able to locally deform a trajectory, executing on-line some near range correc-
tive actions, obtaining most of the time a suboptimal solution, see the initial part of this
Chapter. To be more precise, an adaptive approach was adopted, periodically recom-
puting proactive paths, according to the most recent data describing the motion of the
operator.
To obtain such a description, the trajectories performed by the operator while executing
actions in AS (which are basically sequence of postures), are retrieved from a depth
camera and segmented on-line (possibly using the approach proposed in Chapter 4).
Each acquired realization of a certain aSi is saved as an additional sample in a specific
database (see Figure 8.11). These samples are then exploited to obtain a probabilistic
description of the space occupied by the operator, which is in turn used by the proactive
planner (see Section 8.2.2 and Section 8.2.3).
Pji will be used to indicate the conditional probability that the human is doing a certain
action aSi while the robot simultaneously executes a particular action rj . A(t) will de-
scribe the actions performed during time by the human. A(t) takes values in a discrete
set {0, S1, · · · , Sn}, according to what action in AS the human is doing for time t. A

130

8.2. The proactive approach

value equal to 0, indicates that the human is not doing any of the actions inAS , because
he is doing either nothing or an action in A \ AS . R(t) is a similar function defined
considering actions inR, i.e. those of the robot. Pji is a time varying quantity, defined
as follows:

Pji(t) = P(A(t) = i|R(t) = j) (8.20)

The computation of Pji(t) relies on Ir(t) and Ih(t), which are two indicator functions
defined as follows:

Ir(t) =
(
Ir1(t) · · · Irm(t)

)T
such that Irj(t) =

{
1, if R(t) = j

0, otherwise
(8.21)

Such a function indicates whether the robot, at time t, is executing rj . Ih(t) is similarly
defined, considering A(t), hence the human. Every Pji can be computed considering a
sliding temporal window of length T :

PRH(t) =

P11(t) · · · P1n(t)
...

Pm1(t) · · · Pmn(t)

 =

= M ·
∫ t

t−T
Ir(τ) · Ih(τ)Tdτ (8.22)

M =



1∫ t
t−T Ir1(t)dt

0 · · · 0

0 1∫ t
t−T Ir2(t)dt

0
...

. . .

0 · · · 0 1∫ t
t−T Irm(t)dt

 (8.23)

Even when considering a big set AS , distributions in PRH will have a low entropy,
if we assume that the human actions follow a certain pattern (which for the cases ad-
dressed in this work is reasonable, see Chapter 5). Indeed, few human actions would
be likely to be executed simultaneously to a specific robotic one.

8.2.2 Probabilistic description of the human motion

The starting time of a specific action aSj is a random variable having high variability
[98]. For this reason, it is better to adopt a probabilistic time-independent description
. At a first stage, a trajectory Φj is obtained exploiting the samples acquired for aSj .
Φj is then employed to compute a probabilistic point cloud Cj describing the volume
occupied by the human while executing aSj (see the left part of Figure 8.11). The
computation of a single Φ is detailed in Section 8.2.2, while the steps involved in the
determination of the corresponding C are reported in 8.2.2.

Modelling the human trajectories

GPDM [127] can be exploited for learning the human motion from samples. In partic-
ular, GPDM is a latent variable model with a non-linear probabilistic mapping from a

131

Chapter 8. Safe control of cobots

G1

G2

Probabilistic description of the human volume occupation

Cobot

Proactive trajectory Qpj

GPDM
Swept volume
prediction

Octree and
clouds

Weighted
cloud

Proactive planner

Sample 1 Sample 2

Sample 3

Operator

Φ1

Φ2

Φ3

aS1

aS2

aS3

C1

C2

C3

PRH

G3

ςj

Qpj

Qj

Segmenter

A(t)
computationcomputation

Figure 8.11: The entire pipeline of the approach. A depth camera records the motion of the human,
whose trajectories are then segmented and stored in different databases, one for each human action.
Such samples are considered by GPDM to compute regressed trajectories for the human motion,
which in turn are exploited to compute the corresponding probability clouds and the proactive paths.

latent space X to an observation one Y and a non-linear dynamics evolving in the latent
space. Every element Y is a collection of information describing the human posture,
as for example the position in the space of some points of interest like the elbows, the
wrists, etc. The training set consists of a collection of acquired trajectories:

〈 Φ1
1

...
Φ1
L1

 , · · · ,
 ΦN

1

...
ΦN
LN

〉 (8.24)

for which the corresponding latent space sequences:

〈X
1
1

...
X1
L1

 , · · · ,
X

N
1

...
XN
LN

〉 (8.25)

are not known, and are therefore treated like additional hyperparameters (see Section
appendice GP) to be learnt by the training process. The problem amounts essentially
to learn two Gaussian Processes simultaneously: the first one approximating a func-
tion gXX(X) which describes the latent dynamics, and the second one approximating
gXY (X), i.e. the mapping between X and Y .
The details about the learning stepsare omitted, since are extensively discussed in [127]
and they are not much different from the ones described in Appendix E.0.1, with the
only difference that the unknown values assumed by the latent variables for the sam-
ples in the training set, must be computed, considering the gradient of the likelihood
function w.r.t. to them.
The obtained GPDM, can be used to compute the regressed trajectory Φ = 〈Φ1, · · · ,ΦL〉,
which models the human motion for a specific action. Indeed, an initial X1 (which can
be assumed as the mean of every starting X of the trajectories in the training set) is

132

8.2. The proactive approach

propagated by making use of the learnt functions gXX and gXY , taking for every step
their expectations, leading to:

Φk = E[gXY (Xk)]

Xk+1 = E[gXX(Xk)] (8.26)

Computing the probability cloud

The computation of Φ described in the previous Section is the starting point for the
determination of the corresponding probability cloud C. C consists in a set of g points
in the space with an associated probability of occupation:

C = {
[
pC1

γ1

]
, · · · ,

[
pCg

γg

]
}

pC1,··· ,g ∈ R3, γ1,··· ,g ∈ [0, 1] (8.27)

C is computed according to the volume swept by the operator when executing Φ. We
are not interested in describing the volumes swept by the entire body of the operator,
but we can limit our analysis to the motion of the forearms and arms, since those parts
are typically the ones that effectively share the space with the robot. Moreover, without
loss of generality, it is assumed that every action aSj is performed by moving one single
arm.
The exact computation of the swept volumes of an articulated mechanism is a compu-
tationally demanding problem. However, an approximate approach is adopted, consid-
ering the trajectories of the skeletal points (Figure 9.1) between two subsequent poses
Φk,Φk+1 as approximately linear.
This approximation is acceptable when considering a trajectory Φ for which two con-
secutive poses are very close, which is true if the samples in the training set are ac-
quired with a sufficiently high frequency (commercially available depth cameras are
able to provide samples at about 30 Hz). The volume swept between two intermediate
poses Φk, Φk+1 for the forearm or the arm, is assumed to be the Minkowski sum of a
sphere3 and a polytope whose vertices are the positions of the involved skeletal points
(wrist and elbow or elbow and shoulder) for k and k+1. Therefore, such volumes have
convex shapes, that can be approximated by using OctTrees [82] (see Figure 8.12). The
latter approximation is useful for computing in a faster way the probabilistic cloud C.
Indeed, the computation of C is made considering a discretized 3D grid of g equally
spaced elements. Such set contains the nodes of the grid obtained by partitioning into
G parts every dimension of the smallest oriented bounding box entirely containing the
set of volumes swept when performing Φ (refer to Figure 8.12). Clearly, it holds that
G = g3.
For every pair Φk Φk+1, a vector ck of g elements must be computed. Every element in
ck can be equal to 1 or 0, depending on the circumstance that the corresponding point
in the grid is contained or not by the volumes swept from k to k+ 1. The computations
are speeded up considering the approximating OctTree: the points in the grid contained
in every leaf of the tree can be easily extracted and the relative value in the binarized
vector ck is set equal to 1. The occupancy probabilities γ are computed as the mean

3The radius of the sphere is chosen by considering the typical anatomical size of human arms.

133

Chapter 8. Safe control of cobots

Regressed trajectory Φ

The trajectory is interpolated
considering the poses Φ1, · · · ,ΦL

Swept volume of
two consecutives Φk,Φk+1

Grid of points considered
for the probabilistic cloud

Approximating OctTree

Figure 8.12: Pictures on the left depict an example of regressed trajectory taken from two distinct views.
The bounding box containing entirely the trajectory (red box in the figure) is considered for the
definition of the g points contained in C. The volume swept by the arm of the operator, between
two consecutive poses, is approximated by the dark green convex set in the middle, which in turn is
approximated by an OctTree, indicated in the right with light green (only the OctTree of the upper
part of the arm is reported in the figure).

value of c along the trajectory Φ:

γ =

γ1

...
γg

 =
1

L− 1

L−1∑
k=1

ck (8.28)

where L is the number of poses contained in Φ. Those points for which the corre-
sponding γ would result to be 0 or below a certain threshold, can be discarded from the
clouds.

8.2.3 Proactive path planning

For every action aSj ∈ H, a probabilistic cloud Ci is computed by following the steps
detailed in the previous Section. When computing the proactive path associated to the
generic robot action rj , a corresponding cloud ςj must be considered. ςj is a weighted
union of all the clouds C1,··· ,n describing the volume occupancy for every human ac-
tions:

ςj = {{Pj1 � C1} ∪ · · · ∪ {Pjn � Cn}} (8.29)

where the operator � applies as follows:

w � C = {
[
pC1

γ1 · w

]
, · · · ,

[
pCg

γg · w

]
} (8.30)

This is done for considering not only the volume occupied by the human when
executing specific actions, but also the probability that he/she is doing those actions
simultaneously to rj . Once ςj is available, the proactive path Qpj is computed as the

134

8.2. The proactive approach

result of an optimization problem, whose cost function J balances the risk of collisions
with the human and the need to alter as little as possible Qj . Figure 8.11 summarizes
the entire pipeline of the approach.
The points in the resulting cloud ςj , induce a radial repulsive field, for which the poten-
tial can be evaluated for a generic point in the space. The value of the potential of ςj , as
explained below, is taken into account by the cost function. J is a summation of terms,
one for every waypoint q1,··· ,N−1, characterizing the path4:

J =
N−1∑
k=1

J(qk) (8.31)

For the aim of computing proactive paths, J(qk) can be obtained as a summation of
three terms:

J(qk) = JOb(qk) + λ1 · JRep(qk) + λ2 · JDiff (qk)
JRep(qk) =

∑
t∈T

∑
pCj∈ςj

γi exp (−α‖pCj − t‖2)

JDiff (qk) = ‖qjk − qk‖2 (8.32)

where:

• JOb(qk) is the collision cost. It is equal to the summation of the penetration depths
of every robotic links in every fixed obstacles present. In case qk is a collision
free pose, JOb(qk) is equal to 0. For convex shapes, JOb(qk) can be computed by
making use of the GJK algorithm in combination with EPA, refer to [126].

• JDiff discourages big deformations of the path w.r.t. the nominal one, acting like
an attractive field that counterbalances the repulsion induced by the probability
cloud.

• JRep is a repulsive term. It is the value assumed by the potential of a field induced
by ςj , evaluated in a series of points T = {t1, t2 · · · } along the kinematic chain of
the manipulator (for instance the end effector and the elbow).

• λ1,2 are tunable parameters balancing the importance of every term in J . No-
tice that both λ1,2 must be sufficiently small, in order to avoid to compute poses
that result in collision with the fixed obstacles. The exact values to assume are
problem-specific (depending on the number of joints for the robot, the set of ob-
stacles in the environment, etc...) and can be tuned through a set of few offline
simulations.

Figure 8.13 summarizes the above considerations. The minimum for J is found by
applying the STOMP algorithm [57]. STOMP is essentially an iterative stochastic
algorithm which progressively updates an initial path to improve its associated cost,
deforming the position of the intermediate waypoints of the path. A certain number
of samples (hypothesis of alternative poses) are generated at every iteration, locally
exploring the configurational space. The poses for the path considered at the subse-
quent iteration, are obtained as weighted sums of the aforementioned samples. Weights

4qo and qN are not considered here because the starting and the ending poses are fixed.

135

Chapter 8. Safe control of cobots

Probability cloud C

Fixed and

Nominal path Q

Proactive path Qp

Cobot

known obstacle

(a) The initial path of the manipulator (black) and
the corresponding proactive one (red). Blue points
in the middle represent a probability cloud, which
induces the repulsive field depicted with green ar-
rows. The effect produced by the black springs in
the figure is associated to the term JDiff in the cost
function. The black shape on the right upper corner
is a fixed known obstacle.

(b) Different obtained results of STOMP, varying
the proportion between the coefficients λ1,2, on an
example of point cloud taken from the real experi-
ments.

Figure 8.13: Proactive planning.

are set proportionally to the value assumed by function J for the corresponding sample.
This results in a kind of gradient descend applied to path planning. The main advantage
with respect to similar strategies, is that STOMP does not require to know in a closed
form the gradient ∂QJ , allowing large flexibility when designing the cost function. The
right picture of Figure 8.13 reports different results obtained by STOMP, varying the
parameters λ1,2, when considering the nominal path assigned to YUMI for the exper-
iments (see Section 8.2.4) and the probability cloud reported in the right pictures of
Figure 8.20.

8.2.4 Experiments

The proactive approach has been tested adopting the experimental set up of Figure 8.14.
The left arm of YUMI is equipped with a USB camera and is the only arm involved by
the proposed experiments. Both the MICROSOFT KINECT and YUMI are connected
to a CPU, which collects the information from the camera and computes the proactive
paths for the robot. Proactive paths are then sent to YUMI, which executes them by
making use of its native motion planning utilities.

The goal is to assemble a box containing the USB pen drive described in Section
3.1.3. The set of required operations is:

• action 1: take one newer box

• action 2: insert in the box one layer of foam and the USB pen drive

• action 3: bring the filled box to the first quality check station

• action 4: execute a first quality check

• action 5: take the filled box and put a cover

136

8.2. The proactive approach

Figure 8.14: The experimental setup. The left arm of YUMI is involved in the collaborative assembly.

• action 6: put the assembled box on a second quality check station

• action 7: perform the final quality check

Actions 1,2,3,5 and 6 are executed by the human, while 4 and 7 are assigned to
YUMI. Items are stored in buffers, which are located as indicated in Figure 8.14.
Buffers 1 and 2 contain both a certain amount of boxes and covers. Therefore, it’s up to
the operator to choose buffer 1 or 2 when executing action 1 or 5. After the human com-
pletes action 3, YUMI receives the command to start action 4, after which it moves to
the second quality check station waiting for the human to execute action 6. R contains
a single action r1, representing the motion of the robot between the two quality con-
trol stations (quality checks don’t require the robot to move). After the second quality
check, the robot goes to a position far from the shared space with the human, waiting
for a new command. AS is composed of aS1 and aS2. aS1 consists in the picking from
buffer 1 (a box or a cover), while aS2 is a similar action for buffer 2. Two different
databases store samples for aS1 and aS2. Once a newer sample is available, the oldest
one is deleted and the corresponding database is enriched with the newer one (FIFO
logic). Every time a new proactive path is computed, the regressed trajectories Φ1,Φ2

are recomputed, considering the samples contained at that time in the buffers. The ca-
pacity of the databases was set equal to 3 samples for the proposed experiments. Notice
that actions 2, 3, 6 are not contained in AS: action 2 because it doesn’t require the hu-
man to cross the shared workspace with the robot, while actions 3 and 6 are executed
while YUMI is in an idle state. The aim of the experiment is to compute proactive paths
for r1. This choice was made to represent the human motion with a restricted number
of recent samples, in order to acquire a certain level of adaptation.
14 participants were recruited for our experiments, which were divided into two groups
of 7 each. The first group was asked to perform the collaborative assembly with the
robot performing proactive paths, while the others performed the same assembly with
the robot persistently executing its nominal path. For both the groups, the robot’s mo-
tion was controlled with the strategy described in [134], modulating its speed along a

137

Chapter 8. Safe control of cobots

A(t)
R(t)

Figure 8.15: The activities executed during time by both the human and the robot. Green vertical line
indicates instants at which a proactive path is recomputed. Sk indicates the k-th invocation of the
proactive planning algorithm. When A(t) = 1 the human was performing aS1, while A(t) = 2
refers to aS2.

fixed path (respectively a proactive one and a path agnostic of the human presence).
When considering the experiments for the first group, at the beginning no prior

knowledge about the operator’s movement is available, and the robot simply executes
its assigned nominal path. After filling with samples the databases containing samples
for aS1 and aS2, the proactive computation loop starts, recomputing P11, P12 and a
newer proactive path every 20 s. This cycle time was selected in order to have, when
updating the robotic path, approximately two new recorded samples for the human
trajectories.
The evolution in time of A(t), R(t) for one of the experiments 5 of the first group is
reported in Figure 8.15, while Figure 8.20 reports some significant proactive paths for
the same experiment. Figure 8.20 reports some significant proactive paths computed
for one of the experiments of the first group. In that experiment, the operator took all
the parts from buffer 2 for the initial cycles, switching to buffer 1 for the final ones (this
explains the values for the probabilities P11 and P12 reported in Figure 8.20). The total
number of points considered for the binarization process (see Section 8.2.2) was 15625
(every dimension of the bounding boxes of Figure 8.12 was split into 25 uniform bins).
As can be seen in Figure 8.20, when P11 is greater than P12, the path is more deformed
in its initial part (the one for which the robot passes close to the human when this latter
is executing action aS1), see the picture on the right of Figure 8.20. On the opposite,
when P11 is lower than P12, the path is more deformed toward the end, see the picture
on the left of Figure 8.20.

Results

The performance obtained with the two groups of participants are now discussed, from
both an objective and a subjective point of view. In all the experiments, a total amount
of 4 boxes were assembled. The picture at the top of Figure 8.17 shows the distribution
of the distance between the human and the robot during the experiments. There is a
clear statistical evidence that it increases when applying proactive paths (single-tailed

5 A record of this experiment is also available at https://www.youtube.com/watch?v=JExTJakGpZY.

138

https://www.youtube.com/watch?v=JExTJakGpZY

8.2. The proactive approach

0

50

100

150

0
2
4
6
8

5 10 15 20 25 30 35
0

20
40
60
80

Figure 8.16: The pictures report a scalability analysis, varying the grid resolutionG (see Section 8.2.2).
The pictures on the top and on the bottom report the computational times for obtaining a single
probability cloud and a single proactive path respectively. The picture in the middle reports the
approximation error introduced when describing the human trajectories with different resolutions
for the discrete grid. As can be seen, the computational times grows faster than the Ecloud decrease.
Therefore, reducing G leads to minor computation times, without severely compromise the way the
human motion is approximated.

non-proactive proactive

0.3

0.4

0.5

0.6
distance human-robot [m]

non-proactive proactive
0

20

40

60

Figure 8.17: On the top the distribution of the distance between the human and the robot during the
experiments; while on the bottom, the distribution of the percentage of idle time.

Wilcoxon rank sum test with confidence α = 0.05 returns r = 1.0−10−7). The bottom
picture of Figure 8.17 reports the percentage of robot inactivity time (i.e. the amount of
time for which the robot speed goes below the 1.0% of its nominal value). Also in this
case a clear statistical evidence indicates that the latter quantity is reduced when consid-
ering pro active paths (single-tailed Wilcoxon rank sum test with confidence α = 0.05
returns r = 0.9984). Apart from the quantitative metrics previously reported, the sub-
jects were also asked to fill in a survey, whose results are reported in Figure 8.19. It is
interesting to note that subjects that worked with the robot performing pro-active paths,
seem to indicate that the perceived fluency and safety of the interaction have increased.
The population of regressed human trajectories τ retrieved from the experiments was
also exploited to conduct a scalability analysis, whose results are visible in Figure 8.16.
For the general case of updating m robotic paths, taking into account n human trajec-
tories, the total computation time T required for proactive planning would be equal
to:

T = n · Tcloud(G) +
m∑
j=1

·Nj · TSTOMP (G) (8.33)

where in the above equation:

• Tcloud is the time required for computing a single probability cloud C, which is a
function of G, i.e. the resolution adopted (see Section 8.2.2).

139

Chapter 8. Safe control of cobots

Figure 8.18: The nominal path realizing r1 from two different views. The blue curve refers to the
trajectory of the end effector. Red shapes represent the fixed obstacles considered by STOMP. Green
capsules are adopted to depict the robot links for the initial and the final pose of the path.

Neutral Agree Strongly agreeDisagreeStrongly disagree

Figure 8.19: Subjects rate in percentage to the following quotes. R1: "The robot movements were
unnatural and strange"; R2: "The interaction with the robot was fluent"; R3: "The interaction with
the robot was safe"; R4: "The robot was able to efficiently forecast the human trajectories". Picture
on the left refers to the group of participants for which pro active paths were executed. Picture on the
right, to the group for which nominal paths were executed.

• TSTOMP is the time required to compute a single path, normalized w.r.t its number
of waypoints.

• Nj is the number of waypoints of the jth path.

The error Ecloud reported in Figure 8.16 refers, for a single frame Φk(in Figure 8.16 all
errors for the frames from all the regressed trajectories computed are gathered), to the
distance of a single skeletal point (the shoulder, the elbow or the wrist) to the nearest
vertex in the grid depicted in Figure 8.12. The higher Ecloud is, the worse the resulting
cloud describes the human volume occupation. The resolution G can be adapted in
order to balance the precision of the clouds with the maximal allowed computation
time. For the considered experiments, m = 1 n = 2 and G was set equal to 25. The
path of the robot is made of 43 waypoints, leading to a mean computation time T equal
to 1.23 s. Considering a more demanding scenario for which we suppose to havem = 3
n = 5, setting G = 20, the mean T would be about 1.9920 s.

140

8.2. The proactive approach

1

0.5

0
P11 P12

1

0.5

0
P11 P12

1

0.5

0
P11 P12

Figure 8.20: Examples of proactive paths obtained for some invocations of STOMP (Red shapes are
the fixed obstacles populating the scene) during the experiments. For every column: on the top,
the probabilities considered for the computation of the probabilistic cloud; in the middle and in the
bottom, two distinct views of the proactive paths computed (cyan), compared with the initial nominal
one (blue). The probability clouds considered for planning are depicted as a series of blue points
whose intensity is proportional to the probabilities contained in γ.

141

CHAPTER9
Occlusions handling

As clarified in the previous parts of this document, tracking the human motion is of
paramount importance for understanding his or her behaviour. Indeed, the analysis of
the operators motion is one of the few indirect available observations, exploited by the
inferring algorithms described in Chapter 3. Also when assuming simple spherical ar-
eas for detecting the beginning or the ending of a human task, as done for instance in
7.5.2, at least the position during time of the operator’s hands must be estimated. More-
over, when dealing with motion control of cobots, the perception of the human pose is
crucial for imposing to the robots the proper trajectory to follow, as was extensively
discussed in Chapter 8.
However despite many years of research, human pose estimation still remains a tough
task due to: variability of human visual appearance in images, variability in lighting
conditions, variability in human physique, partial occlusions due to self articulation
and layering of objects in the scene, complexity of human skeletal structure, high di-
mensionality of the pose, and the loss of 3D information that results from observing the
pose from 2D planar image projections [119]. Moreover, when considering cluttered
cells the probability to incur in an occlusion of some anatomical parts is high. In such
cases, the information about the position of some human anatomical parts is no longer
available and it can result in unnecessary limitations on the generation of trajectories
that the robot is allowed to follow, for safety reasons. Therefore, occlusions must be
managed to gain both safety and productivity.
One possible approach could be to adopt multiple sensors, positioned so as to avoid as
much as possible occlusions [138], [128]. In such context a strategy for sensors fusion
must be developed. Other common approaches adopt non-parametric Bayesian filters
such as the particle filter [43], which are characterized by representing the posterior
distribution with samples of the state. [55] addresses the full-body articulated human

143

Chapter 9. Occlusions handling

motion tracking from multi-view video sequences, making use of a particle swarm op-
timization (PSO). The joints in the kinematic tree are optimised in a sequence, starting
with the torso and proceeding towards the arms, since motion of joints at higher levels
of the kinematic tree constrains that of joints appearing at lower levels. A hierarchical
approach to estimate the pose has been used also in [80], where the hand tracking prob-
lem is tackled using the Hierarchical Model Fusion framework (HMF), first proposed
by Bray et al. [9]. It is a particle filter variant that decomposes the initial problem into
smaller and simpler problems and efficiently addresses the implications of the high di-
mensionality.
In [38] the intuition that people tend to follow efficient trajectories rather than random
paths is exploited. The proposed strategy learns common destinations within the envi-
ronment by clustering training examples of trajectories, then a path planner procedure
to predict future human motion helps the update stage of the underlying particle filter
algorithm. Another machine learning method is proposed in [74], where Gaussian pro-
cess models (see Appendix E) are used to compensate for self-occlusion. Their method
relies on the evaluation of the similarity between the input posture and a large posture
database, which clearly must be learnt.
Finally, [51] introduced the constrained motion proposal (COMP) algorithm, that uses
multi-target proposal densities and motion models incorporating kinematic constraint
information into a particle filter. Similar constraints will be exploited in this work too.
In [15], a novel approach to address the problem of human pose estimation in presence
of occlusions was proposed and will be detailed in the following. When occlusions oc-
cur, the uncertainty relative to the pose is limited in areas of space consistent with the
shape of the occlusions. The problem is cast in a constrained estimation of the state of
a dynamical system. The developed method does not require any knowledge about the
possible goals that a human operator intends to reach, or learning complex kinematic
models from huge amount of training samples. Moreover it is not computationally
heavy, allowing its implementation for on-line applications.

9.0.1 Representation of the human pose

By human pose, we refer to the configuration of the human body in space, which can
be described in different ways, making use of several distinct kinematic models. The
model introduced in [107] considers only the upper human body kinematic resulting in
a 3-dofs base moving on the ground plane, one lumped 1-dof (flexion/extension) torso,
a head (fixed) and two 4-dofs arms (shoulders are treated like spherical joints). The
entire posture is described using a 12-components vector q, see also Figure 8.2.
An analogous representation can be given in terms of a set of 3D points composing a
rough scheme of the human skeleton. The points of interest are: thorax (T), head (H),
left shoulder (LS), right shoulder (RS), left elbow (LE), right elbow (RE), left wrist
(LW), and right wrist (RW), see Figure 9.1. The position in the space of these points
can be grouped in a single vector c. The skeletal representation is particularly useful
because there are several algorithms in the literature (for instance [131]) that can be
used to extract the skeletal points positions from a depth image. In order to move from
the skeletal representation to the corresponding kinematic one, i.e. obtaining q from c,
an inverse kinematics procedure can be implemented.
The trajectory followed by the human during time is a function q(t), or equivalently

144

9.1. Dealing with occlusions in the human silhouette

1:H

2:LS

8:T

4:LE

6:LW

3:RS

5:RE

7:RW

Figure 9.1: Skeletal approximation of the human silhouette.

a function c(t). The pose estimation problem can then be cast in the state estimation
of a dynamical system, having certain motion and measurement equations. Then, oc-
clusions introduce additional constraints that must be taken into account, as will be
discussed. Indeed, in case of occlusion, portions of the human silhouette cannot be
seen and therefore the position of some skeletal points will not be available. In such
cases, information retrieved from the depth map (which are always available) can be
used to partially compensate.

9.1 Dealing with occlusions in the human silhouette

The problem of tracking the human posture in presence of occlusion was solved in [15]
by making use of particle filtering (PF) [43]. The explanation of the tracking algorithm
developed will be here reported, staring from a simpler example.

9.1.1 Single point tracking

Consider tackling the problem of tracking a simple point object in the 3D space. In this
case the pose is completely defined by just knowing the values of the Cartesian coordi-
nates (x, y, z) of the point, which can be grouped in a single vector u =

[
x y z

]T .
The evolution in time of the pose can be described by the dynamics of three discrete
integrators 1, leading to the following process equation:

Uk+1 = AUk + wk (9.1)

Uk =


uk

u̇k

ük
...
uk

 A =


I ∆TI ∆T 2

2
I ∆T 3

6
I

0 I ∆TI ∆T 2

2
I

0 0 I ∆TI

0 0 0 I

 (9.2)

wk is the process noise, which is supposed to be Gaussian: wk ∼ N (0,W). W
is a diagonal matrix obtained by considering for each block of the state vector the

1It is easy to extend the state till higher order derivatives of u.

145

Chapter 9. Occlusions handling

corresponding first truncated element of the Taylor expansion:

W =


σ2
u

∆T 4

24
I 0 0 0

0 σ2
u̇

∆T 3

6
I 0 0

0 0 σ2
ü

∆T 2

2
I 0

0 0 0 σ2...
u ∆I

 (9.3)

Standard deviations σu, σu̇, σü, σ...
u are tunable parameters. We can assume to have an

automatic object detection procedure implemented in a depth camera monitoring the
environment and providing an estimate for uk in the camera frame (see Figure 9.2).
The measurement equation became:

yk+1 = Csk+1 + ek (9.4)
C =

[
I3×3 O3×9

]
(9.5)

ek ∼ N (0, E) represents the output noise, which is assumed to have a normal distribu-
tion too. On the system described by the equations (9.1) and (9.4) it is possible to apply
the PF technique and retrieve the state estimate Uk. It is worth to point out that for the
linearity characterizing the system, it holds that:

Uk+1 ∼ N (AUk,W) yk+1 ∼ N (CUk+1, E) (9.6)

PF basically tries to approximate the posterior distribution of the estimated state di-
rectly by a set of finite samples called particles [43], which represent hypothesis about
the real value of the system state U and are propagated during time. We denote the

set of particles at time step k by U =

{
U

(1)
k , · · · , U (N)

k

}
where N is the total num-

ber of particles adopted. At every step, new measurements yk+1 are available and the
following stages are followed to update the particle set [43]:

1. Motion update: starting from the set Uk a new set Uk+1 is obtained: each U
(i)

k+1

is drawn from a proposal distribution fq(U
(i)

k+1|U
(i)
0,··· ,k, y0,··· ,k). A common choice

for fq is to impose: fq(U
(i)

k+1|U
(i)
0,··· ,k, y0,··· ,k) = p(U

(i)

k+1|U
(i)
k). p takes into account

only the process equation (equation 9.1), i.e. p(U
(i)

k) = fGauss(U
(i)

k |W,AU
(i)
k)

(see Section 3.1.2 for the meaning of fGauss).

2. Measurement update: for each particle U (i)
k+1 a weight ω(i)

k+1 must be computed.
This quantity is proportional to the probability to retrieve yk+1 (which is the output
measured by the sensor), when assuming the state at step k + 1 equal to U

(i)

k+1:

ωik+1 ∝ ωikh(yk+1|U
(i)

k+1)
p(U

(i)

k+1|U
(i)
k)

fq(U
(i)

k+1|U
(i)
0,··· ,k, y0,··· ,k)

(9.7)

h is a likelihood function whose definition is made according to the measurement
equation:

h(yk+1) =
exp(−1

2
(yk+1 − CU

(i)

k+1)TR−1(yk+1 − CU
(i)

k+1))√
|2πR|

(9.8)

146

9.1. Dealing with occlusions in the human silhouette

i.e. is the value assumed by a Gaussian distribution having as mean CU
(i)

k+1 and
covariance R. Since we have assumed fq equal to p, we can rewrite equation (9.7)
as follows:

ωik+1 = ωikh(yk+1|U
(i)

k+1) (9.9)

leading to a recursive update of weights.

3. Resampling: a new set of N particles Uk+1 is drawn from the posterior belief,
which is described by considering values assumed by weights. Weights of parti-
cles in set Uk+1 (the one obtained after resample), will have all the same weights.

Concerning the resampling phase, this is particularly important in order to avoid de-
generation problems [43]. In literature, different kinds of resampling techniques are
available like the Multinomial Resampling (MR), the Stratified Resampling (SR), the
Residual Resampling (RR), etc.. [102]. [15] made use of the Bootstrap Resampling
(BR), which approximates the posterior belief as a discrete distribution with values
consistent with weights.
Since the system expressed by equation (9.1) and (9.4) is linear, there would be no
reason to adopt the PF formulation, since in this case the Kalman filter is proved to
be the best filtering approach. However, the sample-based nature of the PF algorithm
facilitates the process of including constraints in the state estimation problem, defining
a second likelihood function [117]:

Lc(U
(i)

k+1) =

{
1, if U

(i)

k+1 ∈ Sk+1

0, if U
(i)

k+1 /∈ Sk+1

(9.10)

where Sk+1 represents the admissible region allowed by some constraints at time k+ 1.
Then, the complete expression of function h can be assumed to be:

h = Lc(U
(i)

k+1)h(yk+1|U
(i)

k+1) (9.11)

This modification enables the algorithm to discard all particles violating constraints.
Indeed, weights of these particles will be set to 0 and they will not survive to the subse-
quent resampling phase. Notice that nearly no extra computation is required to manage
constraints. On the contrary, parametric filtering techniques like for instance the Un-
scented Kalman Filter, require the solution of some additional optimization problems
to give a constrained estimation of the state.
When the object we want to keep track of goes under an occlusion, yk+1 is not available,
but the information coming from the depth map is exploited translating it in a constraint
to be enforced. Indeed, those particles for which the pose of the object would not result
in occlusion (see Figure 9.2), have a Lc(U

(i)

k+1) = 0, which implies that their weights
will be set to 0 too. On the contrary, particles consistent with the depth map will have
all the same weight, since no measurements are available. Similar considerations hold
for the human silhouette and are the basis for the pose estimation algorithm as will be
explained in the next Section.

147

Chapter 9. Occlusions handling

surveillance

Occlusion

Occluded position

Visible position velocity

Uk

Uk+1

camera

Figure 9.2: On the left, an example of occlusion, blue dotted lines represent information gained from the
depth map. On the right, estimation of the pose using PF, blue dots are the positions of particles in
set S, i.e. the one computed propagating set S of the previous step using the process equation. The
object at step k is visible, then for the subsequent step goes under an occlusion. Red dots are used to
indicate those particles not consistent with the depth map, which will not survive after the resampling
step of PF.

9.1.2 Human pose tracking

In the previous Section an example of object position tracking, when moving in an en-
vironment for which occlusions occur, was shown. As discussed, additional constraints
for the particles propagation have to be imposed. When considering tracking of the hu-
man silhouette, the mechanism is similar but additional constraints must be enforced.
For each skeletal point (also indicated as joint) returned by a surveillance camera, a
tracking state number is returned too, indicating whether the position of this point is
certain or not (as in case of occlusion). Two distinct approaches can be used to describe
the human posture: the one using a vector of joint values q and the one using the posi-
tion in the Cartesian space of skeletal points c. When managing occlusions, these two
approaches present pros and cons.

Representation of the pose

Consider the pose estimation using q. Since depth cameras provides the skeletal data
in the camera space, to retrieve the measurements we need to perform a kinematic in-
version, whose formulation has to be changed according to which skeletal point goes
under occlusion. However, in the joint space it is very easy to impose constraints in
order to satisfy physical limits on joint variables. Anyway, the description of the oc-
clusion shape in the configurational space (C-space) is totally impractical for a space
made of 12 dimensions. The alternative is to estimate the human pose through skeletal
points, adopting as pose the vector c. In this way, no kinematic inversion is needed to
run the PF because we can operate directly in the Cartesian space. On the other hand,
imposing constraints on the feasible pose is very complex because constraints are nat-
urally expressed as limits on the joint variables. Another disadvantage is related to the
skeletal distances (which are constant during time) that have to be imposed as an addi-
tional constraint on the propagation of particles, as it will be detailed later. On the other
hand, the constraints coming from the occlusions are very trivial to be handled because
also the depth map is given in the Cartesian space. To ensure real-time computation,
the approach which considers c to represent the human pose is suited: joint limitations
are neglected for the pose estimation process.

148

9.1. Dealing with occlusions in the human silhouette

dEH

dSE

(a) (b) (c)

dEH

dSE

dSH

Figure 9.3: Possible occlusion cases considered for left arm. The shapes of the occlusions are depicted
as a gray area, while the the light purple area delimits the area admitted by the skeletal distances
constraints.

Dealing with occlusions

Skeletal points are independently tracked. This startegy is adopted, instead of tracking
at the same time all the 8 skeletal points, since PF suffers from dimensionality prob-
lem. This is a well-known issue in the literature ([43], Section I) that can be mitigated
making use of hierarchical approaches [80]. Instead, [15] reduced the problem of pose
estimation to a problem of tracking multiple point objects in the Cartesian space. There-
fore, for every skeletal point, we adopt the process and measure equation expressed in
equation (9.1) and (9.4) respectively.
Uhk refers to the set of particles related to the hth skeletal point. The propagation step

of PF, is always performed as described in Section 9.1.1, independently for every joint.
Then in case the skeletal point considered is not in occlusion, the subsequent canonical
steps of PF are performed. Instead, in case of occlusion the procedure is different and
varies according to which points are under occlusion. In such cases, constraints com-
ing from the knowledge of the depth map and the estimated values for the anatomical
lengths must be taken into account. The distances between the skeletal points can be
measured in an initialization phase, which starts when a new operator enters the scene.
The management of occlusions relies on the definition of a hierarchical structure for
the skeletal points. Here we limit the possible occlusions to those of the arms (never-
theless the analysis of all the 28 possible cases can be done). However, this simplifying
hypothesis is reasonable if we consider typical human-robot collaboration contexts,
like collaborative assemblies, for which the body parts having a high probability to be
occluded are the arms.

Occlusion cases

Under the previous assumption, the possible situation of occlusions are the following
ones:

• Case 1: occlusion of the hand

• Case 2: occlusion of the elbow

• Case 3: occlusion of both the hand and the elbow

Skeletal points are number as in Figure 9.1. The derivation of the hierarchical structure
will be made according to this numbering. For the sake of simplicity the analysis of
the possible occlusions will be performed only for the skeletal points associated to the
left arm, then similar arguments can be used for the right one. Set U6 contains particles

149

Chapter 9. Occlusions handling

{U6(0)
k , · · · , U6(N)

k } describing possible states for the sixth skeletal point, which is the
hand of the left arm. The first three values of vector U6(i)

k refer to the positional part of
the state and can be denoted also as H(i). The estimate of the position of the left hand,
can be computed as the mean of particles H(i), after resampling. Similar notations can
be adopted for the other skeletal points.

Case 1: we can use the available information of the elbow to limit the possible po-
sition in space of the hand. In fact, the hand must be ideally at a distance dEH , the
Euclidean distance between the elbow and the hand computed during the initialization
phase (refer to the left picture of Figure 9.3), from the estimated position of the elbow
E. Anyway this can result in a too restrictive constraint, that cannot be met by any
particle U6(i)

k . For this reason, the admissible region considered in this work will be
a spherical crown with a mean radius equal to dEH and a certain amplitude ϑ, rather
than a simple spherical surface with radius equal to dEH . To take into account both the
constraint about the depth map and the skeletal distance, the Likelihood function will
have the following expression:

Lc(U
6(i)

k) = Lc1Lc2 (9.12)

where Lc1 is an indicator function which is 1 if the particle is consistent with the depth
map and 0 otherwise, while Lc2 is defined in the following way 2:

Lc2(U
6(i)

k) =

{
1, if − ϑ ≤ ‖E − U6(i)

k ‖ − dEH ≤ ϑ

0, otherwise
(9.13)

When considering Case 1, the skeletal point number 4 is defined as "father" of the
skeletal point 6 and we denote this like 4 � 6.

Case 2: here we can say that 2 � 4 and also 6 � 4. In such a way the particles as-
sociated to the elbow can propagate in the intersection of the two spherical crowns
having a mean radius dSE and dEH , centered in the left shoulder and the left elbow
respectively with the obvious meaning of notation (see the picture at the middle of Fig-
ure 9.3). In this case, function Lc2 is computed as follows (function Lc1 has the same
definition):

Lc2(U
4(i)

k) =


1, if −ϑ ≤ ‖S − U4(i)

k ‖ − dSE ≤ ϑ∧

−ϑ ≤ ‖H − U4(i)

k ‖ − dEH ≤ ϑ

0, otherwise

(9.14)

Case 3: particles associated to the elbow can propagate in a spherical crown centered
in the estimated position of the shoulder with mean radius dSE , while the ones related
to the hand can propagate inside the sphere of radius dSH = dSE + dEH , once again
centered in the shoulder. According to our formalism we have in this case 2 � 4 and

2An alternative approach could be to consider a soft constraints formulation. The value assumed for function Lc2 can be
proportional to the degree of violation of constraints, i.e. distance of particles from a single spherical surface

150

9.1. Dealing with occlusions in the human silhouette

Hierarchy

definition

{U1
k, · · · ,U8

k}
Propagation step

Propagation step

U1
k+1

U8
k+1

ω computation
and resample

ω computation
and resample

Uh1
k+1

Uhn
k+1

application of
constraints

application of
constraints

resample
{U1

k+1, · · · ,U8
k+1}

yk+1

Skeletal point tracking status

depth map

Visible points

Occluded points

resample

Figure 9.4: Pipeline of the proposed approach. yk+1 contains the estimated position of skeletal points,
acquired from a depth camera sensor.

2 � 6 (refer to the right picture of Figure 9.3). The likelihood functions considered in
this case for points 4 and 6 are analogous to those expressed by equations (9.13) and
(9.14).
We are now in position to present the general structure of the tracking algorithm man-
aging occlusions. Figure 9.4 reports a pipeline of the proposed strategy.
After the initialization phase, the system has to keep track of the pose of a human op-
erator. At each iteration, the depth map and the position of the skeletal points (with the
corresponding status, i.e. tracked or in occlusion) are acquired. Propagation of parti-
cles for every joint is performed and then according to which skeletal point is under
occlusion, the aforementioned hierarchy is defined. Those sets of particles pertaining
to points not under an occlusion, the canonical formulation of PF, equation (9.9), ap-
plies for the weight computation. On the opposite, those points under an occlusion,
must consider the likelihood function in equation 9.11, for the computation of weights.
Then, the resampling step is then performed for every set.

9.1.3 Experiments

The pose estimation algorithm described so far was applied in a realistic co-assembly of
some electronic components over a printed circuit board. The robotic cell reproduced
was populated with some obstacles, which force the human to go under an occlusion
during the execution of the task. The layout of the cell is visible in Figure 9.5. A
volume delimiting the robot workspace was defined: if a significant percentage (10 %)
of the particles describing the position of a skeletal point is contained in this volume,
the robot is forced to slow down on the assigned path to avoid a collision with the
human.
The operations performed by the robot and the human are the following ones.
Robot operations (numbers refer to places indicated in Figure 9.5):

1. the left arm picks a board from the slider (1);

2. it carries the board in position (2);

3. when the left arm leaves the board the right arm goes in (2) and assembles a
component on the board;

4. the left arm goes back in (2) and picks up the board;

151

Chapter 9. Occlusions handling

Figure 9.5: The robotic cell considered for the experiment

5. the board is brought to the slide (3);

Human operations (numbers refer to places indicated in Figure 9.5):

1. picks a board from the box (4);

2. takes a fuse from (5) and assembles it on the board;

3. places the board on the slide (1);

4. takes the worked board from the gray box (6) and leaves it in the green one (8).

The aim was to prove that managing occlusions can improve the productivity of the
task, while at the same time preserving safety. To this purpose, the results obtained
applying a Kalman filter formulation (essentially, the forward formulation detailed in
Section 8.1.2) were compared to the PF one. In particulat, Kalman filter was applied
independently for every skeletal point (on the measure and process equation expressed
by equation (9.4) and (9.1) respectively). When a point goes under an occlusion, the
open loop Kalman filter formulation is applied for that point. In the latter case the
covariance related to estimate starts growing (no measurements are available). If we
consider a confidence of 90 % about the estimate given by Kalman filter, we get an
ellipsoid that bounds the possible position of the skeletal point considered. When a
significant portion of this ellipsoid intersects the volume defining the workspace of the
robot, the robot is forced to slow down. Figure 9.6 compares the two approaches.
For the experiment, 500 particles were assumed for every skeletal point when consid-
ering the PF formulation. The cycle times were logged during the experiments. One
cycle is defined as the sequence of operations from a pickup board from slide (1) action
to the next one. The results are reported in Figure 9.7. The reported statistics refer
to 30 robot cycles per each technique considered 3. By the analysis of Figure 9.7 we
can state that managing occlusion is crucial for productivity. Indeed, cycle times are
significantly reduced with the less conservative approach exploiting particle filtering.

3Records of the experiments are available at https://www.youtube.com/watch?v=6ZFsinmKqjo

152

https://www.youtube.com/watch?v=6ZFsinmKqjo

9.1. Dealing with occlusions in the human silhouette

Figure 9.6: The approaches considered to tackle occlusions. On the left, the Kalman filter formulation
(KF), on the right the PF formulation. Red edges are those delimiting the workspace of the robot. In
red are indicated the skeletal points estimated using KF or PF, while in blue are depicted the mea-
surements retrieved from the MICROSOFT KINECT (values are always returned, even though their
status indicate that is an occlusion present). KF goes in open loop when occlusion occur. This reflects
in the growing of the uncertainty covariance ellipsoid, which can occupies regions inconsistent with
the occlusion.

Figure 9.7: Histograms relative to the robot cycle time for the approaches considered

153

CHAPTER10
Conclusions

The aim of this work was to study how to allow humans and robots to actively col-
laborate for performing a common goal. Particular attention was posed to industrial
contexts, were typical applications are represented by collaborative assemblies. Indeed,
there is no need to fully automatize the production processes: repetitive or dangerous
actions are executed by the robots, while the ones requiring medium-high cognitive ca-
pabilities are performed by humans. For this reason, the problem becomes to let these
two agents interact efficiently.
In particular, the humans were not conceived as additional controllable agents which
are instructed to perform actions scheduled by a centralized planner. On the opposite,
the decision-making capabilities of the operators are exploited, since they are allowed
to drive the evolution of the plant. In this context, the robotic mates must be endowed
with the cognitive capabilities required for both: understand and interpret the human
behaviour (the current one as well as the past one) and predict the actions that a human
will perform in the medium-term future. Both these tasks were tackled adopting a data-
driven perspective: a machine learning model is typically off-line trained, representing
an initial generic knowledge describing a generic human operator. Then, the different
kind of data retrieved from the sensors connected to the robotic devices are exploited
to adapt the model describing the human actions, obtaining something that is tailored
for the specific operator that is interacting with the plant.

Predicting the human actions was proved to be crucial when scheduling the robotic
activities. Indeed, when such predictions are properly exploited, the robots can syn-
chronize with humans, performing in advance those operations that will enable the pre-
dicted human ones. Since humans have an intrinsically non-deterministic behaviour,
a stochastic perspective was adopted: robust plans are computed for the plant to min-

155

Chapter 10. Conclusions

imize the expected inactivity times of the humans and the robots. The developed as-
sistive scheduling framework was proved to significantly improve the productivity of
a plant, efficiently combining the flexibility of humans with the efficiency of robots.
In particular, an approach that considers the human activity as uniformly distributed
within two finite bounds, Section 7.2, can be efficiently adopted when the human is as-
signed simple and short actions, whose durations are low and exhibits a low (however
non-negligible) variability. Instead, when more complex actions are done by humans,
the Monte Carlo approach in Section 7.3 is more suited since it is able to handle a
moderated stochasticity in the action durations. Finally, when dealing with worksta-
tions for which the robots and the humans actively share the space, not only the actions
done by the human have a stochastic durations, but also the ones of the robots, since
their motions must be controlled and regulated to avoid collisions. In such contexts,
is is difficult to address the stochasticity by adopting a Monte Carlo approach, which
would require too many samples to perform moderately well. In such circumstances,
the fuzzy approach presented in Section 7.4 is efficiently able to produce robust plans
for controlling the robot actions.

The assistive scheduling framework proposed is based on adapting the robots to the
humans. A similar adaptation was also exploited for enhancing the motion control
of cobots. Indeed, a machine learning perspective can be exploited for predicting the
human motion. Then, the motion of robots can be optimized by considering such a
prediction, as similarly done when scheduling robotic tasks according to the predicted
future human actions. Both reactive and proactive strategies were proved to benefit
from this approach.

The ideal cobots should immediately understand the human behaviour, aligning their
behaviours very fast with the one of the human mate, even when tasks never seen before
arise. The methodologies proposed in this work are an attempt to provide cobots such
an ideal behaviour. However, many challenges remain.
For example, the adaptive learning approaches described in Sections 5.1, 5.2 and 8.2,
requires at least one or two cycles, i.e. repetitions of the same assembly sequence, to
start working properly. Therefore, to deal with much more agile and reconfigurable
contexts, for which new tasks persistently arise, much efforts should be spent to reduce
the learning time.
Moreover, in several parts of this work, it was assumed to deal with structured col-
laborations, for which the human actions are finite and known. This is reasonable in
most of the actual industrial contexts. However, one key concept of the industry 4.0
framework is to design fast reconfigurable manufacturing plants. In such scenarios, the
assumptions posed to the approach modelling the human behaviour can be difficult to
be met.
For all this reasons, future works should address the adoption of frameworks perform-
ing well also when dealing with general evolving and non-structured layouts. Here,
concepts and algorithms typical of the artificial intelligence domain could be exploited
much more, providing methods for efficiently represent and interpret the workspace
surrounding a cobot.

156

Finally, not only the robot adaptation is important, but also the human acceptance.
Indeed, in all the developed strategies, the human indirectly influence the robot be-
haviour, which tries to adapt to the human needs. However, much more sophisticated
strategies could be adopted to estimate or measure (by making use of additional sen-
sors) the stress level of an operator. In this way, the goodness of a certain adaptation
or another can be compared according to the measured effects produced on the human
mate. This could be applied both at a task level (scheduling) as well as at a motion
control level: do the human prefer to improve the productivity, by accepting more ag-
gressive corrective maneuvers for the robot motion or does he/she prefer the safety,
preferring to stay away from the cobot body? In this perspective, reinforcement learn-
ing approaches could be beneficial, allowing to obtain an optimal policy by considering
as reward the stress perceived by humans.

157

Appendices

159

APPENDIXA
Generalities about learning

Learning is usually done to determine the parameters θ = {θ1, θ2, · · · } of a probabilis-
tic model describing the distribution of a variable X . This problem is addressed by
considering a training set 〈X1, X2, · · · 〉 made of independent samples of the distribu-
tion whose parameters have to be learnt. Function L(θ|X1,···), i.e. the likelihood of
the parameters w.r.t. the training set, is the one to maximize for performing learning.
L(θ|X1,···) is defined as follows:

L(θ|X1,···) ∝ L(X1,···|θ) · P(θ)prior (A.1)

Priors for θ could be considered for taking into account an a priori knowledge about the
real value of θ. Actually, the logarithmic likelihood log(L(θ|X1,···) is often considered
and the elements in the training are assumed to be independent, leading to:

log(L(θ|X1,···)) =
∑
i

log(L(X i|θ)) + log(P(θ)prior) (A.2)

θ is computed as the value maximising log(L(θ|X1,···)). In case a prior knowledge
about the parameters is not available, P(θ)prior = 1, leading to:

L(θ|X1,···) ∝ L(X1,···|θ) (A.3)

Therefore, in such cases, maximising L(θ|X1,···) or L(X1,···|θ) has the same effect.

161

APPENDIXB
Expectation Maximization

The Expectation-Maximization algorithm aims at learning the optimal parameter θ (see
Appendix A) of a model having some observed variables X and also some latent ones
Z. Z are variables whose values are hidden, but are linked in a probabilistic way to
those observed, i.e. X . Learning is done according to a training set 〈X1, · · · , XM〉,
made of realizations of X: the corresponding values for Z1,··· ,M are not known. EM
is an iterative algorithm, which starts from an initial guess θ0 and iteratively improves
it. At every iteration, an Expectation and a Maximization are preformed, explaining
the name of the algorithm. The Expectation step is performed for taking into account
the expectation of the likelihood w.r.t. Z, in order to maximise the likelihood of the
training set, no matter the values for Z, which are, in a certain sense, eliminated.
As usually done (Appendix A), learning aims at maximizing a likelihood function in-
volving the training set. In this case, we would like to find those θ maximising L(X|θ)
1. L(X|θ) can be computed considering how the joint conditioned distribution of X,Z
is factorizable:

P(X,Z|θ) = P(Z|X, θ)P(X|θ)

P(X|θ) =
P(X,Z|θ)
P(Z|X, θ)

(B.1)

Passing to the logarithms we obtain:

log(P(X|θ)) = log(P(X,Z|θ))− log(P(Z|X, θ)) (B.2)

We are now in position to describe the Expectation step of EM algorithm. Right
hand side of equation (B.2) is a function of Z, which is unfortunately unknown. For

1For the moment assume to have a single sample X in the training set

163

Appendix B. Expectation Maximization

this reason, we want to marginalize Z, by passing to the expectations w.r.t to density
P(Z|X, θk), where θk are the values of the parameter at step k:∑

Z

P(Z|X, θk)log(P(X|θ)) =
∑
Z

P(Z|X, θk)log(P(X,Z|θ)) + · · ·

−
∑
Z

P(Z|X, θk)log(P(Z|X, θ))

log(P(X|θ))
∑
Z

P(Z|X, θk) =
∑
Z

P(Z|X, θk)log(P(X,Z|θ)) + · · ·

−
∑
Z

P(Z|X, θk)log(P(Z|X, θ))

(B.3)

Setting:

Q(θ|θk) =
∑
Z

P(Z|X, θk)log(P(X,Z|θ))

H(θk|θk) = −
∑
Z

P(Z|X, θk)log(P(Z|X, θ)) (B.4)

leads to 2

log(P(X|θ)) = Q(θ|θk) +H(θ|θk) (B.5)

Considering the difference log(P(X|θ))− log(P(X|θk)) and equation (B.5) leads to:

log(P(X|θ)− log(P(X|θk) = Q(θ|θk)−Q(θk|θk) +H(θ|θk)−H(θk|θk) (B.6)

At this point we can apply the Gibbs inequality, prescribing that in case of two distri-
butions f1,2 defined over the same domain applies what follows:

−
∑
x

f1(x)log(f1(x)) ≤ −
∑
x

f1(x)log(f2(x)) (B.7)

Setting f1 = P(Z|X, θk) and f2 = P(Z|X, θ) the inequalities in equation (B.7) allows
us to state that:

H(θ|θk)−H(θk|θk) ≥ 0 (B.8)

and consequently that:

log(P(X|θ))− log(P(X|θk)) ≥ Q(θ|θk)−Q(θk|θk) (B.9)

For this reason, the Maximization step of the algorithm computes θk+1 in order to in-
crease Q, which leads indirectly (equation (B.9)) to an increase of the quantity of inter-
est, i.e. log(P(X|θ)). To be more precise, θk+1 is computed as follows:

θk+1 = argmaxθQ(θ|θk) (B.10)

It is not difficult to prove that function Q, when considering a training set made of a
certain number of independent samples, is a summation of terms:

Q(θ|θk) =
∑
i

Qi(θ|θk) =
∑
i

∑
Z

P(Z|X i, θk)log(P(X i, Z|θ)) (B.11)

2Considering that
∑

Z P(Z|X, θk) = 1.

164

B.0.1 Learning of Gaussian Mixture Models

In case of GMM, the latent variables Z are the labels specifying which cluster produced
every sample X i. Let be γij = P(X i ∈ Clusterj) (see Section 3.1.2). γij is a function
of the model parameters and therefore varies along the iterations of the EM algorithm,
i.e. γijk. Let njk be the sum of γ over samples in the training set, i.e. njk =

∑
i γ

i
jk.

When considering GMM, it is true what follows 3:

P(Z = j|X i, θk) = γijk (B.12)

P(X i, Z = j|θ) = P(X i, |Z = j, θ)P(Z = j|θ)

= λj

(√
2π |Σj|n

)−1

exp

(
− 0.5(X i − µj)TΣ−1

j (X i − µj)
)

(B.13)

In the second equation we exploited the fact that in a mixture model, weights λ ex-
presses the a priori probability of a sample being generated by the corresponding clus-
ter. Considering equations (B.12) (B.13), function Q in case of GMM is computable as
follows:

Q(θ|θk) =
∑
i

N∑
j

γijk

(
log(λj)− 0.5log(|Σj|)− 0.5(X i − µj)TΣ−1

j (X i − µj)
)

=
N∑
j

njk

(
log(λj)− 0.5log(|Σj|)

)
+ · · ·

· · · +
∑
i

N∑
j

−0.5(X i − µj)TΣ−1
j (X i − µj) (B.14)

The maximization step described before, has to solve a constrained maximization prob-
lem, considering Q as objective function and

∑
j λj = 1 as a constraint, since GMM

are mixture models (equation (3.6)). Since we deal with an equality constraints, we
consider the Lagrangian function Q′:

Q
′
(θ) = Q(θ|θk) + ξ(

∑
j

λj − 1) (B.15)

where ξ is the lagrangian multiplier. The maximum of Q′ is obtained by finding those
combinations of values for which the gradient is null.

Imposing the gradient of Q′ w.r.t. the generic weight λj equal to 0 leads to:

∂

∂λj
=
njk
λj

+ ξ = 0

λj = −njk
ξ

(B.16)

3The same notation of Section 3.1.2 was assumed

165

Appendix B. Expectation Maximization

In order to let the constraint
∑

j λj = 1 be satisfied, we have to prescribe that:∑
j

λj =
∑
j

njk
ξ
⇒ ξ = −

∑
j

njk (B.17)

Therefore, substituting into equation (B.16) leads to:

λj k+1 =
njk∑N
j=1 njk

(B.18)

The gradient of Q′ w.r.t. the generic weight µj is equal to:

∂

∂µj
=

∑
i

γijk
∂

∂µj

(
− 0.5(X i − µj)TΣ−1

j (X i − µj)
)

=
∑
i

γijkΣ
−1
j (µj −X i)

= Σ−1
j

(
njkµj −

∑
i

γijkX
i

)
(B.19)

Imposing njkµj −
∑

i γ
i
jkX

i = 0, ensures the entire gradient is null. Therefore, it
applies what follows:

µj k+1 =

∑
i γ

i
jkX

i

njk
(B.20)

Finally, the gradient w.r.t. to Σk is equal to (here the properties reported in [99] are
exploited):

∂

∂Σj

= −0.5njkΣ
−1
j + 0.5

∑
i

γijkΣ
−1
j (X i − µj)T (X i − µj)Σ−1

j

= 0.5Σ−1
j

(
− njkI +

(∑
i

γijk(X
i − µj)T (X i − µj)

)
Σ−1
j

)
(B.21)

Imposing −njkI +
(∑

i γ
i
jk(X

i − µj)T (X i − µj)
)
Σ−1
j = 0 leads to:

Σj k+1 =

∑
i γ

i
jk(X

i − µj)(X i − µj)T

njk
(B.22)

At every step k of EM, every γijk is recomputed and equations (B.18), (B.20) and
(B.22) are applied for updating the parameters of the mixture. After all the simplifi-
cations it turns out that the updating equations of EM, in case of training a GMM, have
an heuristic interpretation. Indeed, equation (B.18), the new value of the weight of a
cluster simply consider the importance if that cluster w.r.t. to all the others, i.e. the

166

summation of the probabilities that samples in the training set belongs to that cluster.
The new means of the clusters are computed as a weighted mean, equation (B.20),
which gives more importance to those samples having an high probability to belongs
to the cluster for which the mean is re evaluated. A similar consideration holds for the
covariance of clusters, equation (B.22).

167

APPENDIXC
Factor graphs

Factor graphs [39] are graphical models able to represent the probabilistic relationships
existing among a network of stochastic variables. In such frameworks, the joint prob-
ability of the variables in the model is computed as a product of a certain number of
factors. Each factor involves a sub portion of the entire population of variables. When
dealing with directed graphical model, every factor must be a conditional probability
distribution (these kind of models are also called Bayesian Networks), while in the case
of undirected graphs, factors must simply be non negative functions describing the cor-
relation existing among the variables involved. Such models are built essentially with
the aim of propagating the belief across the network: when discovering the realization
of certain variables in the net, the probabilistic relationships are taken into account for
performing inference about all the other ones in the model. In this dissertation we will
discuss only undirected graphical models, for which the variables involved are all cat-
egorical.
The generic categorical variable V involved in a factor graph has a discrete domain
Dom(V) = {v0, · · · , vn} containing all the possible realizations of V . The above
notation will be adopted for the rest of this Section: capital letters will refer to vari-
able names, while non capital refer to their possible realizations. Group of categorical
variables can be in turn considered categorical variables, having a domain that is the
Cartesian product of the domains of the variables constituting the group. Suppose vari-
able X = V1 ∪ V2 ∪ V3 ∪ V4, then:

Dom(X) = Dom(V1)×Dom(V2)×Dom(V3)×Dom(V4) (C.1)

The generic realization x of X is a set of realizations of the variables V1,2,3,4, i.e.
x = {v1, v2, v3, v4}.
The entire population of variables contained in a model is a set denoted as V = {V1, · · · , Vm}.

169

Appendix C. Factor graphs

When dealing with factor graphs, the probability of
⋃
Vi∈V Vi

1 is computed as the prod-
uct of a certain number of components called factors.
Every single factor, sometimes also called a potential, is a positive real function de-
scribing the correlation existing among a subset of variables Di ⊂ V . Suppose factor
Φi involves {X, Y, Z}, i.e. Di = {X, Y, Z}. Then, Φi(X, Y, Z) is a non negative
function defined over Di = X ∪ Y ∪ Z. More formally:

Φi(D
i) = Φi(X, Y, Z) : Dom(X)×Dom(Y)×Dom(Z) −→ R+ (C.2)

The aim of Φi is to assume ’high’ values for those combinations di = {x, y, z} that
are probable and low values (at least a null) for those being improbable. The entire
population of factors {Φ1, · · ·Φp} is considered for computing the joint probability
distribution of the variables in the model, i.e. P(V1,··· ,m). At this point the energy
function E must be introduced:

E(V1,··· ,m) = Φ1(D1) · · · · · Φp(D
p) =

p∏
i=1

Φi(D
i) (C.3)

It is exploited for defining the joint probability distribution as follows:

P(V1,··· ,m) =
E(V1,··· ,m)

Z
(C.4)

Z is a normalization coefficient defined as follows:

Z =
∑

Ṽ1,··· ,m∈Dom(V1∪···∪Vm)

E(Ṽ1,··· ,m) (C.5)

Knowing the joint probability of V1,··· ,m, the probability distribution of a subset S ⊂
{V1, · · · , Vm} can be in general (not only for graphical models) obtained through marginal-
ization. Indeed, assuming C as the complement of S, then it follows that:

P(S = s) =
∑

ĉ∈Dom(C)

P(S = s, C = ĉ) (C.6)

In the above equation, variables in C were marginalized, i.e. they were in a certain sense
eliminated since the probability of the sub set S was of interest, regardless the possible
realizations the variables in C.
Although the general theory behind graphical models supports the existance of generic
multivaried factors, here we will consider only pairwise (also called binary) or unary
potentials. Both unary and binary potentials, can be of two possible classes:

• Simple: when the potential is simply described by a set of values characterizing
the image of the factor.

• Exponential: they will be indicated with Ψi and their image set is defined as fol-
lows:

Ψi(X) = exp(w · Φi(X)) (C.7)

where Φi is a simple factor. The weight w is tuned through learning (see Section
C.0.2).

1Which is the joint probability distribution of all the variables in a model

170

D

B

ΨCD

A

C

ΦBD

ΦBC
ΨAC

ΦA

ΨBΨAB

Figure C.1: Example of graph made of 4 variables: A,B,C and D. α, β, γ and δ are assumed as
weights for the exponential potentials ΨAC ,ΨAB ,ΨCD and ΨB respectively.

Figure C.1 reports an example of undirected graph: filled squares indicate the factors
involved, while circles are used for describing the variables 2. For the reported graph V
is made of 4 variables: A,B,C,D and there are 5 binary potentials and 2 unary ones.
Weights α, β, γ and δ are assumed for respectively ΨAC ,ΨAB,ΨCD,ΨB. For the sake
of clarity, the joint probability of the variables in Fig. C.1 is computable as follows:

P(A,B,C,D) =
E(A,B,C,D)

Z(α, β, γ, δ)
=

E(A,B,CD)∑
Ã,B̃,C̃,D̃ E(Ã, B̃, C̃, D̃)

E(A,B,C,D) = ΦA(A) · exp
(
αΦAC(A,C)

)
· exp

(
βΦAB(A,B)

)
· · ·

· · · ΦBC(B,C) · exp
(
γΦCD(C,D)

)
· ΦBD(B,D) · exp

(
δΦB(B)

)
(C.8)

Graphical models are mainly used for performing belief propagation. To this aim,
the subset O = {O1, · · · , Of} ⊂ V must be defined for denoting the set of evidences:
those variables whose value become known for some reason. Conversely, the hidden
variables are contained in the complementary setH = {H1, · · · , Ht}. ClearlyO∪H =
V and O ∩ H = ∅. H will be used for referring to the union of all the variables in the
hidden set:

H =
t⋃
i=1

Hi (C.9)

while O is used for indicating the evidences:

O =

f⋃
i=1

Oi (C.10)

The conditional distribution of H w.r.t. O can be determined in this way:

P(H = h|O = o) =
P(H = h,O = o)∑

ĥ∈Dom(H) P(H = ĥ, O = o)

=
E(h, o)∑

ĥ∈Dom(H) E(ĥ, o)
=
E(h, o)

Z(o)
(C.11)

2The same graphical notation will be adopted also for the rest of this Chapter

171

Appendix C. Factor graphs

X3

X2

X4 X1

Φ24

Φ34

X5

Φ15

Φ4 Φ1

X3

X2

X4 X1

Φ24

Φ34

X5

Φ15

Φ4 Φ1

M3→4

M2→4

M5→1

M4→1

Figure C.2: Example of graph adopted for explaining the message passing algorithm. Below are re-
ported the messages to compute for obtaining the marginal probability of variable x1

The above computations are not actually done, since the number of combinations in
the domain of H is huge also when considering a low-medium size graph. On the
opposite, the marginal probability P(Hi = hi|O = 0) of a single variable in Hi ∈ H is
computationally tractable. Formally P(Hi = hi|O = 0) is defined as follows:

P(Hi = hi|O = o) =
∑

h̃∈{H\Hi}

P(Hi = hi, h̃|O = o) (C.12)

The above marginal distribution is essentially the conditional distribution of Hi w.r.t.
O, regardless the values assumed by the other variables inH.

C.0.1 The message passing algorithm

Message passing [132] is a powerful but conceptually simple algorithm adopted for
propagating the belief across a net. Such a propagation is the starting point for per-
forming many important operations, like computing the marginals of a variable or pre-
forming graph reductions.

An illustrative example

In order to discuss the message passing algorithm, consider the graph reported in Figure
C.2, where, without loss of generality, all the factors were assume as simple potentials.
Suppose also for the sake of simplicity that no evidences are available (i.e. O = ∅).

172

We are interested in computing P(X1), i.e. the marginal probability of X1. Recalling
the previously introduced definition, the marginal probability can be obtained by the
following computation:

P(x1) =
∑

x̃2,3,4,5∈
⋃5

i=2Xi

P(x1, x̃2,3,4,5) (C.13)

Simplifying the notation and getting rid of the normalization coefficient Z we can state
the following:

P(x1) ∝
∑
x̃2,3,4,5

E(x1, x̃2,3,4,5) (C.14)

Adopting the algebraic properties of the sums-products we can distribute the computa-
tions as follows:

P(x1) ∝ Φ1(x1)
∑
x̃5

Φ15(x1, x̃5)
∑
x̃4

Φ14(x1, x̃4)Φ4(x̃4)
∑
x̃2

Φ24(x̃2,4)
∑
x̃3

Φ34(x̃3,4)(C.15)

The first variable to marginalize can be x̃2 or x̃3, since they are involved in the last
terms of the sums products. The ’messages’ M2→4, M3→4 are defined as follows:

M2→4(x̃4) =
∑
x̃2

Φ24(x̃2,4)

M3→4(x̃4) =
∑
x̃3

Φ34(x̃3,4) (C.16)

Inserting M2→4 and M3→4 into equation (C.15) leads to:

P(x1) ∝ Φ1(x1)
∑
x̃5

Φ15(x1, x̃5)
∑
x̃4

Φ14(x1, x̃4)Φ4(x̃4)M2→4(x̃4)M3→4(x̃4) (C.17)

At this point the messages M4→1 and M5→1 can be computed in the following way:

M4→1(x1) =
∑
x̃4

Φ14(x1, x̃4)Φ4(x̃4)M2→4(x̃4)M3→4(x̃4)

M5→1(x1) =
∑
x̃5

Φ15(x1, x̃5) (C.18)

After inserting M4→1 and M5→1 into equation (C.17) we obtain:

P(x1) ∝ Φ1(x1)M4→1(x1)M5→1(x1)

P(x1) =
Φ1(x1)M4→1(x1)M5→1(x1)∑
x̃1

Φ1(x̃1)M4→1(x̃1)M5→1(x̃1)
(C.19)

which ends the computations. Messages are, in a certain sense, able to simplify the
graph sending some information from an area of the graph to another one. Variables
can be replace by messages, that are treated like additional factors. Figure C.2 resumes
the computations described. Notice that the computation of M4→1 must be done after
computing the messagesM2→4 andM3→4, whileM5→1 can be computed independently
from all the others.

173

Appendix C. Factor graphs

MB→A(a)

A

B

ΦAB

MB→A
ΦAV 1

V1

ΦAV 2

V2

...

ΦAV m

MV m→B

MV 2→B

MV 1→B

Remaining structure of the graph

Remaining structure of the graph

A

Vm

Figure C.3: On the top the general mechanism involved in the message computation; on the bottom the
simplification of the graph considering the computed message.

The general case

The aforementioned considerations can be extended to a general structured graph. Look
at Figure C.3: the computation of Message MB→A can be performed only after having
computed all the messages MV1,··· ,m→B, i.e. the messages incoming from all the neigh-
bours of B apart from A. Clearly MB→A is computed as follows:

MB→A(a) =
∑
b̃

ΦAB(a, b̃)MV 1→B(b̃) · · · · ·MV m→B(b̃)

=
∑
b̃

ΦAB(a, b̃)
m∏
i=1

MVi→B(b̃) (C.20)

Essentially, it’s like having simplified the graph: we can append to A the message
MB→A(a) as it’s a simple shape, deleting factor ΨAB and all the other portions of the
graph, see Figure C.3. In turn, MB→A(a) will be adopted for computing the message
outgoing from A.
The above elimination is not actually done when performing belief propagation: all
messages incoming to all nodes of the graph are computed and stored to be used for
subsequent queries. This is partially not true when considering the evidences. Indeed,
when the values of the evidences are retrieved, variables in O can be deleted and re-
placed by messages, see Figure C.4. Suppose variable C is connected to a variable A
through a binary potential ΦAC(A,C) and to variable B through ΦB,C . Suppose also
that variable C is an evidence assuming a value equal to ĉ, then the messages sent to A

174

ΦAB b0 b1
a0 2 0
a1 0 2

ΦXA x0 x1
a0 1 0.1
a1 0.1 1

ΦY B y0 y1
b0 1 0.1
b1 0.1 1

Table C.1: Value assumed by the energy function E, when having X = 0 and Y = 1 as evidences.

A B E(A,B,X = 0, Y = 1)
0 0 0.2
0 1 0
1 0 0
1 1 0.2

Table C.2: Factors involved in the graph of Figure C.7.

and B can be computed independently as follows:

MC→A(a) = ΦAC(a, ĉ)

MC→B(b) = ΦBC(b, ĉ) (C.21)

The factors replacing the observed variables are considered for performing belief prop-
agation on the hidden set, with the rules discussed so far.

The messages computation is possible as exploained above only when considering
politree, i.e. graph without loops. Indeed, for these kind of graphs the message passing
algorithm is able in a finite number of iterations to compute all the messages, see Figure
C.5. The same is not true when having loopy graphs (see Figure C.6), since deadlock-
ing situations arise: no further messages can be computed since for every node some
incoming ones are missing. In such cases a variant of the message passing called loopy
belief propagation can be adopted. It initializes all the messages to basic shapes having
the values of the image all equal to 1 and then recomputes all the messages many times
till no changes are detected.

Maximum a posteriori estimation

Suppose we are not interested in determining the marginal probability of a specific
variable, but rather we want the combination hMAP for H that maximises the prob-
ability P(H = hMAP |O). Clearly, we could try to compute the entire distribution
P(H1,··· ,n|O) and then take the value of H maximising that distribution. However,
this is not computationally possible since even for low medium size graphs the size of
Dom(H) can be huge.
Maximum a posteriori estimations [37] (MAPs) solve this problem: the value max-
imising P(H1,··· ,n|O) is computed, without explicitly building the entire distribution
P(H1,··· ,n|O). This is achieved by performing belief propagation with a slightly differ-
ent version of the message passing algorithm presented before. Indeed, if we suppose to
compute a MAP for the graph in C.3, the message to A would be computed as follows:

MB→A(a) = maxb̃

{
ΦAB(a, b̃)

m∏
i=1

MVi→B(b̃)

}
(C.22)

Essentially, the summation in equation (C.20) is replaced with the max operator. After
all messages are computed, the estimation hMAP = {h1MAP , h2MAP , · · · } is obtained

175

Appendix C. Factor graphs

ΦBCΦAC

A BC

ΦBC

ΦACA B

C = ĉ

C assumes value ĉ

MC→A

MC→B

C = ĉ

ΦB = MC→B

ΦA = MC→AA B

Figure C.4: When variable C become an evidence, is temporary deleted from the graph, replaced by
messages.

176

Step 1 Step 2

Step 3
Step 4

Figure C.5: Steps involved for computing the messages of the politree represented at the top. The leaves
are the first nodes for which the outgoing messages can be computed.

177

Appendix C. Factor graphs

Step 1

Figure C.6: Steps involved for computing the messages on a loopy graph: after computing the messages
outgoing from the leaves, a deadlock is reached since no further messages are computable.

B
ΦAB

(
1
0.1

)ΦY B

Y

ΦXA

X

A B
ΦAB

Y = 1X = 0

A (
0.1
1

)(2
0.2

)

(
0.2
2

)

Figure C.7: Example of graph adopted. When the evidences are retrieved, the messages computed by
making use of the message passing algorithm are reported below.

178

by considering for every variable inH the value maximising:

hiMAP = argmax

{
ΦHi(hiMAP)

L∏
k=1

Mk(hiMAP)

}
(C.23)

where M1,··· ,L refer to all the messages incoming to Hi. To be precise, this procedure is
not guaranteed to return the value maximising P(H1,··· ,n|O), but at least a strong local
maximum was proved to be always obtained.
At this point it is worthy to clarify that the combination hMAP = {h1MAP , h2MAP , · · · }
could not be obtained by simply assuming for every Hi the realization maximising the
marginal distribution:

hMAP 6= {argmax(P(h1)), · · · , argmax(P(hn))} (C.24)

This is due to the fact that P(H1,··· ,n|O) is a joint probability distribution, while the
marginals P(Hi) are not. For better understanding this aspect consider the graph re-
ported in Figure C.7, with the potentials ΦXA, ΦAB and ΦY B having the images de-
fined in table C.1. Suppose discovering that X = 0 and Y = 1. Then, performing the
standard message passing algorithm explained in the previous Section we obtain the
messages reported in Figure C.7. Clearly individual marginals for A and B would be
equal to:

P(A) =

(
P(A = 0)

P(A = 1)

)
=

(
0.5

0.5

)
P(B) =

(
P(B = 0)

P(B = 1)

)
=

(
0.5

0.5

)
(C.25)

Therefore, all the combinations {A = 0, B = 0}, {A = 0, B = 1}, {A = 1, B = 0},
{A = 1, B = 1} maximise P(A,B|O). However, it easy to prove that E(A,B,X, Y)
assumes the values reported in table C.2. Therefore, the combinations actually max-
imising the joint distribution P(A,B|O) are {A = 0, B = 0} and {A = 1, B = 1},
leading to a different result.

C.0.2 Learning the weight parameters

In case of factor graphs, learning essentially consists in determining the optimal values
for all the w (equation (C.7)), i.e. of all the weights of the exponential potentials
involved in the graph. The set of tunable weights can be grouped into a vector W =
{w1, · · · , wD}.
Learning can be done considering a training set T = {t1, · · · , tN} made of realizations
of the joint distribution correlating all variables in V . As discussed at the beginning of
this Appendix, when W is known, the probability of a combination tj can be evaluated
as follows:

P(tj) =
E(tj,W)

Z(W)
(C.26)

At this point we can observe that the energy function is the product of two main factors:
one depending from tj and W and the other depending only upon tj representing the

179

Appendix C. Factor graphs

contribution of all the non-tunable simple potentials:

E(tj,W) = exp
(
w1Φ1(tj)

)
· · · · · exp

(
wDΦD(tj)

)
· E0(tj)

= exp
(D∑
i=1

wiΦi(tj)
)
· E0(tj) (C.27)

The likelihood function L can be defined as follows:

L =
∏
tj∈T

P(tj) (C.28)

passing to the logarithmic likelihood and dividing by the training set size N we obtain:

J =
log(L)

N
=

∑
tj∈T

log(P(tj))

N

=
∑
tj∈T

log(E(tj,W))− log(Z(W)

N

=
1

N

∑
tj∈T

log(E(tj,W))− log(Z(W))

=
1

N

∑
tj∈T

(D∑
i=1

wiΦi(tj)
)
− log(Z(W)) + · · ·

+
1

N

∑
tj∈T

log(E0(tj)) (C.29)

The aim of learning is to find the value of W maximising J . This is done iteratively,
exploiting a gradient ascent approach. The computations to perform for evaluating the
gradient ∂J

∂W
will be detailed in the following. Notice that in equation (C.29), term∑

tj∈T log(E0(tj)) is constant and consequently will be not considered for computing
the gradient of J . Equation (C.29) can be rewritten as follows:

J = α(T,W)− β(W)

α =
1

N

∑
tj∈T

(D∑
i=1

wiΦi(tj)
)

(C.30)

β = log(Z(W)) (C.31)

α is influenced by T , while the same is not valid for β.

Gradient of α

By the analysis of the equation (C.30) it is clear that:

∂α

∂wi
=

1

N

∑
tj∈T

wiΦi(tj) (C.32)

180

Gradient of β

The computation of ∂β
∂wi

requires to manipulate a little bit more equation (C.31). Firstly
the derivative of the logarithm must be computed:

∂β

∂wi
=

1

Z

∂Z

∂wi
(C.33)

The normalizing coefficient Z is made of the following terms (see also equation (C.4)):

Z(W) =
∑

Ṽ ∈
⋃p

i=1 Vi

(
exp
(D∑
i=1

wiΦi(Ṽ)
)
· E0(Ṽ)

)
(C.34)

Introducing equation (C.34) into (C.33) leads to:

∂β

∂wi
=

1

Z

∂

∂wi

(∑
Ṽ

exp
(D∑
i=1

wiΦi(Ṽ)
)
E0(Ṽ)

)

=
1

Z

∑
Ṽ

∂

∂wi

(
exp
(D∑
i=1

wiΦi(Ṽ)
))
E0(Ṽ)

=
1

Z

∑
Ṽ

exp
(D∑
i=1

wiΦi(Ṽ)
)
E0(Ṽ)Φi(Ṽ)

=
∑
Ṽ

exp
(∑D

i=1wiΦi(Ṽ)
)
E0(Ṽ)

Z
Φi(Ṽ)

=
∑
Ṽ

E(Ṽ)

Z
Φi(Ṽ)

=
∑
Ṽ

P(Ṽ)Φi(Ṽ) (C.35)

Last term in the above equations can be further elaborated. Assume that the variables
involved in potential Φj are V1,2, then:

∂β

∂wi
=

∑
Ṽ

P(Ṽ)Φi(Ṽ)

=
∑
Ṽ1,2

Φi(Ṽ1,2)
∑
Ṽ3,4,···

P(Ṽ1,2,3,4,···)

=
∑
Ṽ1,2

Φi(Ṽ1,2)P(Ṽ1,2) (C.36)

where P(Ṽ1,2) is the marginal probability of the variables involved in the potential Φi,
which can be easily computable by considering the sub graph containing only V1 and
V2 as variables. Notice that in case Φi is a unary potential the same holds, considering
the marginal distribution of the single variable involved by Φi:

∂β

∂wi
=
∑
∀Ṽ1

Φi(Ṽ1)P(Ṽ1) (C.37)

181

Appendix C. Factor graphs

A1

B1

C1

A2

B2

C2

A3

B3

C3

ΨAC = exp

(
w1ΦAC(Ai, Ci)

)
i=1,2,3

ΨBC = exp

(
w1ΦBC(Bi, Ci)

)
i=1,2,3

ΨAB = exp

(
w2ΦAB(Ai, Bi)

)
i=1,2,3

Figure C.8: Example of structure having many exponential potentials sharing the same modulating
weight: w1 is simultaneously involved into ΨAC and ΨBC , while w2 is shared among the potentials
connecting A1,2,3 to B1,2,3 respectively.

which can be easily obtained through the message passing algorithm (Section C.0.1).

After all the manipulations performed, the gradient ∂J
∂wi

has the following compact ex-
pression:

∂J

∂wi
=

1

N

N∑
j=1

Φi(D
i
j)−

∑
D̃i

P(D̃i)Φi(D̃
i) (C.38)

C.0.3 Learning structures with shared weights

Suppose to have a structure for which many potentials share the same weight. In such
cases, the learning must be done consistently with the aforementioned specification.
Consider the example reported in Figure C.8. The computation of the gradients of the
likelihood w.r.t. the weight involved in the graph will be detailed.

Gradient of α

Considering the model in Figure C.8, the α part of J (equation (C.30)) can be computed
as follows:

α =
1

N

∑
tj

[
w1

(3∑
k=1

ΦAC(akj, ckj) +
3∑

k=1

ΦBC(bkj, ckj)
)

+ w2

3∑
k=1

ΦAB(akj, bkj)

]
(C.39)

which leads to:

∂α

∂w1

=
1

N

∑
tj

(3∑
k=1

ΦAC(akj, ckj) +
3∑

k=1

ΦBC(bkj, ckj)

)
∂α

∂w2

=
1

N

∑
tj

(3∑
k=1

ΦAB(akj, bkj)

)
(C.40)

182

Gradient of β

Regarding the β part of J we can write what follows:

∂β

∂w1

=
1

Z

∂Z

∂w1

=
1

Z

∂

∂w1

[∑
Ṽ

exp

(
w1

(3∑
k=1

ΦAC(ãk, c̃k) + ΦBC(b̃k, c̃k)
)

+ · · ·
)]

=
∑
Ṽ

P(Ṽ)

(3∑
k=1

ΦAC(ãk, c̃k) + ΦBC(b̃k, c̃k)

)

=
3∑

k=1

(∑
Ṽ

P(Ṽ)ΦAC(ãk, c̃k) + P(Ṽ)ΦBC(b̃k, c̃k)

)

=
3∑

k=1

(∑
ãk,c̃k

P(Ãk, C̃k)ΦAC(ãk, c̃k) +
∑
b̃k,c̃k

P(B̃k, C̃k)ΦBC(b̃k, c̃k)

)
(C.41)

and regarding the second weight

∂β

∂w2

=
1

Z

∂Z

∂w2

=
1

Z

∂

∂w2

[∑
Ṽ

exp

(
w2

(3∑
k=1

ΦAB(ãk, b̃k)
)

+ · · ·
)]

=
∑
Ṽ

P(Ṽ)

(3∑
k=1

ΦAB(ãk, b̃k)

)

=
3∑

k=1

(∑
Ṽ

P(Ṽ)ΦAB(ãk, b̃k)

)

=
3∑

k=1

(∑
ãk,b̃k

P(Ãk, B̃k)ΦAB(ãk, b̃k)

)
(C.42)

Notice that the gradients ∂J
∂w1

and ∂J
∂w2

is the summation of many terms: the ones that
would have been obtained considering separately the potentials in which w1 or w2 are
involved (equation (C.38)). The above consideration has a general validity. Moreover,
the same applies also when dealing with different structures, having some potentials
that share some weights.

183

APPENDIXD
Fuzzy theory

Fuzzy numbers are particular kind of possibilistic distribution functions, adopted as an
alternatively to probability density functions. Possibility theory was born as a need to
represent vague predicates, enriching purely extensional concepts (for instance com-
paring two quantities A > B) with membership degrees, expressing the degree of truth
of predicates.
The elements of a fuzzy set are characterized by a membership degree function µ, that
assumes values between 0 and 1:

µ : X → [0, 1] (D.1)

µ(x) represents the degree of truth about the fact that x is part of the set for which
µ is the membership function. Equation (D.1) is similar to (3.3) as the intent of both
probability and possibility theory is to model uncertain quantity. However, the main
difference is that a membership degree function does not have to satisfy constraints
similar to the one in equation (3.4). In a certain sense, possibility theory tries to extend
results of the classic probability one, considering a greater class of distributions.
X in equation (D.1) is said to be the universe in which the fuzzy set is defined. The
alpha-cut αε(µ) groups all the values characterized by a membership degree greater or
equal to a specific threshold. More formally:

αε(µ) = {x ∈ X s.t. µ(x) ≥ ε} (D.2)

A fuzzy set is said to be convex if all the possible alpha-cuts are compact sets.
The intersection of fuzzy sets µ1, · · · , µn defined on the same universe X is com-

puted as follows:

µ = µ1 ∩ · · · ∩ µn ⇒ (D.3)
µ(x) = min(µ1(x), · · · , µn(x)) ∀x ∈ X (D.4)

185

Appendix D. Fuzzy theory

αε2 (µ)

µ(x)

ε1

ε2

αε1 (µ)

(a) Convex set

αε2 (µ)

µ(x)

ε1

ε2

αε1 (µ)

(a) Non convex set

Figure D.1: Examples of a fuzzy convex set (on the left) and a non convex one (on the right). When
considering the convex set, all the possible alpha-cuts are compact set, which is not verified for the
set in the right.

Fuzzy numbers are particular fuzzy sets for which:

• convexity (as defined before) holds;

• sup(µ) = 1

• the membership function is piece-wise continuous

As a consequence, all fuzzy numbers membership functions are composed of a mono-
tonically increasing part going from 0 up to possibility 1, and then a decreasing one
ending in a value with a membership degree equal to 0. A conventional real number
r ∈ R, also called crisp number, can be seen as a particular fuzzy number having all
possible alpha cuts that are singletons and a membership function which is a Dirac delta
centred at r. Among all the possible classes of fuzzy numbers, the triangular one play
a central role in fuzzy theory. Let be a a triangular number, then it holds that:

a(x) =


x−a1
aM−a1

if x ∈ [a1, aM]
x−a2
aM−a2

if x ∈ [aM , a2]

0 otherwise
(D.5)

where a1 and a2 identify the boundaries of the support of A, while aM is the peak, i.e.
the value having the maximal possibility value. 〈a1, aM , a2〉 will be adopted for indi-
cating in a compact way a.
All the main fuzzy algebraic operations are based upon the extension principle [30], that
will be here briefly revised. Suppose to have a set of fuzzy numbers {µ1(x1), · · · , µn(xn)}
and suppose we are interested in computing y = g(x1,··· ,n), where g is a non fuzzy stan-
dard function s.t. g : Rn → R. The membership function describing y, µy(y), is defined
as follows:

µy : Y → [0, 1]

Y = X1 × · · · ×Xn

µy = sup

{
min

(
µx1(x1), · · · , µxn(xn)

)
s.t. g(x1,··· ,n) = y

}
(D.6)

As a consequence of equation (D.6), the sum of two triangular numbers can be com-

186

L(µ, r)

1

0
a1 aM a2

µ

G(µ, r)

1

0
a1 aM a2

µ

Figure D.2: Example of L (on the left) and G (on the right) of a triangular fuzzy number.

puted as follows:

〈c1, cM , c2〉 = 〈a1, aM , a2〉 ⊕ 〈b1, bM , b2〉 ⇒ (D.7)
c1 = a1 + b1

cM = aM + bM

c2 = a2 + b2 (D.8)

Another important operation is the comparison with a crisp number. Considering the
fuzzy number µ(x) and a crisp number r, Firozja et al. [31] proposed the definition of
a ranking function L extending the ordering relation ≤ r, defined as follows:

L(µ, r) : r ∈ R→ [0, 1]⇒ L(µ, r) =

∫ r
−∞ µ(x)dx∫∞
−∞ µ(x)dx

(D.9)

L(µ, r) expresses the degree of truth about the proposition µ 6 r. Similarly, a dual
ranking function G(µ, r) can be defined to address the proposition µ > r:

G(µ, r) : r ∈ R→ [0, 1]⇒ G(µ, r) =

∫∞
r
µ(x)dx∫∞

−∞ µ(x)dx
(D.10)

Fig. D.2 reports an example of computation for G and L for a triangular number.

187

APPENDIXE
Gaussian Processes

Gaussian Processes are a powerful tool for approximating unknown static mapping
from an input space into an output one.

E.0.1 Scalar case

Suppose we need to approximate a function g defined as follows:

g : X → Y
X ⊆ Rn Y ⊆ R (E.1)

g is unknown and the only available information is represented by a training set S made

of N samples
[
X i ∈ X
Y i ∈ Y

]
:

S = 〈
[
X1

Y 1

]
, · · · ,

[
XN

Y N

]
〉 (E.2)

Since the values in S were generated by the same function g, they are in some way
correlated. However, such a correlation is not known precisely. For this reason, Gaus-
sian Processes approximate this correlation, assuming that all the values in S are jointly

189

Appendix E. Gaussian Processes

Gaussians, i.e.:

Y
1

...
Y N

 ∼ N (0, K(X1,··· ,N))

P
(Y

1

...
Y N

) =
1√

(2π)N |K|
exp

(
− 1

2

[
Y 1 · · · Y N

]
K−1

Y
1

...
Y N

)

P
(Y

1

...
Y N

) =
1√

(2π)N |K|
exp

(
− 1

2
Tr

(
K−1

Y
1

...
Y N

[Y 1 ... Y N

]))
(E.3)

The covariance matrix K, is a function of the inputs in the training set and it’s defined
as follows:

K =

k(X1, X1) · · · k(X1, XN)
...

k(XN , X1) · · · k(XN , XN)

 (E.4)

k is the kernel function and it’s part of the model. As a general prescription, k must
be defined in order to obtain a symmetric positive definite matrix K. For this reason,
for any kind of kernel function it holds that k(x, x

′
) = k(x

′
, x). k should be defined in

order to assume low values for those entries that are strictly correlated. For example,
when dealing with periodic function g, the kernel function k should be able to catch the
periodicity, assuming a low value for a pair x, x′ that is separated by approximately the
value of the period. Common adopted functions are Radial Basis Function, Rational
Quadratic kernel, Linear kernel, Periodic kernel, etc. [110].
A certain number of tunable parameters θ1,2,..., called hyperparameters, characterize
the kernel function k(θ1,2,...). θ1,2,... together with the training set S are actually what
characterize a Gaussian Process model. The values of θ1,2,... are determined after train-
ing, see Section E.0.1 and E.0.2. A Gaussian Process can be exploited for predicting
the value assumed by g(X) in a point X not present in S, see E.0.1. In other words,
function g is approximated with a Gaussian Process gGP (X).

Prediction

Knowing S and θ1,2,..., a prediction Y = g(X) for a generic entry X can be made.
Indeed, Y (X) = g(X) and the population of outputs present in S are assumed as

190

jointly Gaussian:
Y (X)

Y 1

...
Y N

 ∼ N
([

0

0

]
,

[
k(X,X) kX(X)

kX(X)T K

]
, 0

)

kX(X) =
[
k(X,X1) · · · k(X,XN)

]
(E.5)

Therefore, since Y 1,··· ,N are known, the conditional distribution is assumed as a predic-
tion for Y 1:

(Y |S) ∼ N
(
kX(X)K−1

Y
1

...
Y N

 , k(X,X)− kX(X)K−1kX(X)T
)

(E.6)

As can be noticed, the prediction is not a value, but is a probability density function.
Then, we can assume the mean of the above Gaussian (i.e. the value maximising the
PDF) as a prediction, i.e.:

Y (X)
.
= gGP (X) = kX(X)K−1

Y
1

...
Y N

 (E.7)

Notice that to evaluate the expression in equation (E.6), the inverse of K is required.
This is not computationally demanding, since after training K is a constant, meaning
that the computation of K−1 can be done once for all.

Training

Training has the aim of tuning the hyperparameters θ1,2,... characterizing the kernel
function. The logarithmic likelihood of the model, see Appendix A appendix training,
can be obtained considering the joint distribution of the samples in S, equation (E.3) 2:

L = −N
2
log
(
|K(θ)|

)
− 1

2
Tr

(
K(θ)−1

Y
1

...
Y N

 [Y 1 · · · Y N
])

+ · · ·

+ log

(
(P(θ)prior

)
(E.8)

1Here the expression of the conditional distribution of a multivariate Gaussian was exploited.
2Constant values are omitted

191

Appendix E. Gaussian Processes

The maximization of L is typically done through gradient descend. Therefore, the
gradient ∂L

∂θ
must be evaluated 3

∂L
∂θi

= −N
2

∂

∂θi

(
log
(
|K(θ)|

))
− 1

2

∂

∂θi

(
Tr

(
K(θ)−1

Y
1

...
Y N

 [Y 1 · · · Y N
]))

+ · · ·

+
∂

∂θi

(
P(θi)prior

)

= −N
2

1

|K(θ)|
∂

∂θi

(
|K(θ)|

)
− 1

2

(Y
1

...
Y N

 [Y 1 · · · Y N
])T ∂

∂θi

(
K(θ)−1

)
+ · · ·

+
∂

∂θi

(
P(θi)prior

)
= −N

2

1

|K(θ)|
Tr

(
K(θ)−1∂K(θ)

∂θi

)
+ · · ·

+
1

2

(Y
1

...
Y N

 [Y 1 · · · Y N
])T

K(θ)−1∂K(θ)

∂θi
K(θ)−1 +

∂

∂θi

(
P(θi)prior

)
(E.9)

The expression of ∂K(θ)
∂θi

depends on the kernel function adopted.

E.0.2 Vectorial case

Also vectorial functions can be approximated by Gaussian Processes. Suppose function
g is defined as follows:

g : X → Y
X ⊆ Rn Y ⊆ Rm (E.10)

The computations reported so far must be slightly modified for accounting the multidi-
mensionality of Y . Since g is vectorial, it’s like having m distinct functions g1,··· ,m:

g(X) =

g1(X)
...

gm(X)

 (E.11)

Therefore, for approximating g, m distinct Gaussian Processes are required. The learn-
ing of such battery of Gaussian Processes, must be done considering a training set S,
made of samples Y 1,2,···:

S = 〈
[

X1

Y 1 =
[
Y 1

1 · · · Y 1
m

]] , · · · , [XN

Y N

]
〉 (E.12)

3The derivatives were computed considering what reported in [99].

192

The single function gi models the joint density of

Y
1

1

...
Y N

1

. Therefore, the joint density

of Y 1,··· ,N can be computed assuming m independent Gaussians:

P
(

Y1 =

Y
1

1

...
Y N

1

) · · · · · P(Ym =

Y
1
m

...
Y N
m

) = (E.13)

=

(
1√

(2π)N |K|

)m m∏
i=1

exp

(
− 1

2
Tr

(
K(θ)−1YiY

T
i

))
(E.14)

=
1√

(2π)Nm |K|m
exp

(
− 1

2

m∑
i=1

Tr

(
K(θ)−1YiY

T
i

))
(E.15)

=
1√

(2π)Nm |K|m
exp

(
− 1

2
Tr

(
K(θ)−1

[
Y1 · · · Ym

]  Y T
1

...
Y T
m

)) (E.16)

Prediction

m distinct scalar predictions are made for predicting g(X), leading to:

(Y |S) ∼


N
(
kX(X)K−1Y1, k(X,X)− kX(X)K−1kX(X)T

)
...

N
(
kX(X)K−1Ym, k(X,X)− kX(X)K−1kX(X)T

)

T

(E.17)

The value maximising the above conditioned probability is:

Y (X)
.
= gGP (X) = kX(X)K−1

[
Y1 · · · Ym

]
(E.18)

Training

Training is done analogously to the scalar case, considering a likelihood function that
takes into account the joint distribution in equation (E.16):

L = −Nm
2
log
(
|K(θ)|

)
− 1

2
Tr

(
K(θ)−1

[
Y1 · · · Ym

]  Y T
1

...
Y T
m

)+ · · ·

+ log

(
(P(θ)prior

)
(E.19)

193

List of Figures

2.1 Examples of goals related to actions in A. 9

3.1 Sets of evidences Φ considered by the approach in [135] and [17]. In
case of [17], the estimation of z is made according to some detected
facial points, which are depicted as blue points. 13

3.2 Pipelines of the inference approaches proposed in [135] and [17]. In
[17], flag F is exploited to select the proper mixture model to use for
computing the likelihood L. 14

3.3 The uniform density between 0 and 1 is compared with an approximating
mixture, varying the number of components. 17

3.4 Layout of the experimental robotic cell. Locations of possible human
goals are indicated with white dotted circles. 19

3.5 Vibrotactile ring with its controller box. During the experiments the ring
is worn on the operator’s left hand and the box is attached to a Velcro
bracelet worn on the forearm. 19

3.6 State machine adopted to send feedback to the operator. Note that vi-
bration bursts are sent before the operator actually reaches the goals,
according to the probabilities evolution. 21

3.7 Some trajectories taken from the experiments, going from goal 1 (blue)
to goal 4 (red). Green markers are located at the points of the path for
which the subject receives the haptic feedback. 21

3.8 The figure reports the likelihood of model GMM4d, varying the number
of clusters considered when training the model. The selected number of
clusters was 7. 22

3.9 Comparison of the three different inference methods regarding the goal
recognition performance. Distance before recognition refers to the length
of the path described by the wrist of the operator, from the instant at
which the recognition of goal happens until the time at which the opera-
tor reaches goal 4. 23

3.10 . 24

195

List of Figures

3.11 Time elapsed from the instant when the tape is fixed until the one when
the operator returns to goal 1. The overall population, composed of
skilled and non-skilled subjects, was considered. 24

3.12 Subjects’ answers in percentage to the question Express how much you
agree with the following statements concerning the vibrotactile ring. 25

4.1 The approach followed to obtain the observations. The trajectory of the
human is split into many windows of length equal to lw. The mean and
variance of some skeletal distance values are computed for obtaining the
set of observations F 1

O, · · · , FL
O . 28

4.2 Example of graph construction. The observations are partitioned to ac-
tions, as described by the values contained in vector ρ. The observations
Ô1,··· ,F are computed as indicated in Section 4.1.1. 29

4.3 The intervals considered for computing Ôj from Oj , are obtained by
considering equispaced portion of the image of the empirical cumulative
distribution function describing the values that Oj can assume. 30

4.4 Examples of individual generation. At a random point, the solutions in
the parents are broken and mixed to obtain the child. 32

4.5 Mechanism adopted for performing a sliding window segmentation. The
first segmentation is computed as described in Section 4.1.3. Then, the
surviving variables are designated (the gray area in the picture at the top)
and the incoming messages are computed. The surviving graph is kept
constant and taken into account for performing the segmentation on the
second window of observations (picture in the middle). When the opti-
mal segmentation for the second step is determined, the new surviving
variables are identified and the procedure is iterated. 33

4.6 The procedure adopted for tuning the model parameters. The sequence
in the training set (values for the hidden variables Y) are sampled from
those consistent with a known set of precedence constraints. The val-
ues of the observed variables are sampled from the recorded examples
of human motion (if ai is sampled at a certain step as the performed
human action, the value of the connected FO is sampled from the ones
associated with this particular action). 35

4.7 The experimental set-up taken by two distinctive perspectives. The op-
erator’s working area consists in 4 buffers storing parts and 3 assembly
stations. Buffer A contains the first and the second kind of caps; B the
springs and the lights; C the batteries and the batteries and the battery
case while D the bodies of the torch. 36

4.8 Description of a1, a2 and a4. The locations of M2 and M3 is reported in
Figure 4.7. 37

4.9 At the top, snapshots describing a3 and a5, while at the bottom the prece-
dence constraints existing among the actions. M1 is located as indicated
in Figure 4.7. 38

196

List of Figures

4.10 Distributions of the segmentation error Es on the data acquired by the
experiments when considering: on the right an approach considering all
the combinations of possible inter-skeletal distances and the distances
of the wrists (right and left) w.r.t. the center of the buffers indicated
in the left part of Figure 4.7; on the left a similar approach not taking
into account the centres of the buffers storing raw materials (only the
distance of the wrists w.r.t. the camera origin is considered). 38

4.11 An example of obtained segmentation. The black curve refers to value
assumed in time by the time series Ŷ1,2,···,T̂1,2,···, while X1,2,···,T1,2,··· is
reported in blue. Since Xi is a marginal distribution of probability, a
color code is exploited for representing it, refer to legend on the right. . 39

5.1 Approach followed for predicting the waiting times. 42
5.2 Example of behaviour of the human: tk represents the time instant cor-

responding to the activation of activity Ak, while t̄ represents the current
time-stamp. 42

5.3 Example of transitions governing a Markov model. Transitions a1 → a1,
a1 → a2, a1 → a3 and a1 → a4 are governed by the conditional proba-
bility distribution expressed by q1. q1 has null values for rows 5 and 6,
since the corresponding transitions are not allowed in this example. . . 43

5.4 Comparison of different methods in terms of prediction error: the pre-
sented algorithm (n = 7, blue), the VOMM method proposed in [114]
(purple), a Markov Chain model (n = 0, red), a higher-order Markov
Chain models trained with the algorithm proposed by Ching et al. in [26]
(n = 7, yellow). 46

5.5 Examples of suffix tree updates. The structure of the tree after the update
is reported for each example. The token sets Γ associated to the leaves
are indicated in the lower part of the pictures containing the trees. . . . 47

5.6 Example of domain ripartition. The left part of the Figure reports sets
D1,2,3 when considering the suffix tree on the right. 50

5.7 Statistics of the prediction error obtained from the simulations. In all
the figures, model order refer to the number of previous actions taken
into account for computing the one-step probability prediction (in case
of suffix trees is clearly σ) and the curve of the 50th quartile is inserted
into a shaded area delimited by the 80th quartile and the 20th one. The
legend of reported in the right lower part applies. The pictures on the
left part consider the complete assembly in Fig. 5.8, while the one the
right takes into account the simplification reported in Fig. 5.9. 52

5.8 On the top left part the complete sequence of actions required for assem-
bling an emergency button: the actions contained in a box can be done
with no particular order, but before the actions contained in the boxes
following in the sequence. A total number of 10 actions are needed to fi-
nalize the product. The top right part of the Figure reports the emergency
button to assemble. 53

5.9 The Figure reports a simplification of the assembly reported in Figure
5.8, for which the size of set A is equal to 5. 53

197

List of Figures

5.10 Example of prediction of human future activities. The transition proba-
bilities associated to each arc are evaluated using a model for the activ-
ity sequence (see Section 5.1, 5.2). The lower bounds on the duration
of each activities are used to prune branches of the tree that surely ex-
ceed the given prediction horizon ∆T . For all the remaining branches
(three in the reported example), the corresponding distributions of wait-
ing times τbranch are computed and used within equation (5.37) to esti-
mate the distribution of the waiting time needed for a certain activity to
show up. In this example, the probability distribution of the waiting time
of activity 4, i.e. τ 4, is computed. 55

5.11 Example of sequence of activities (top) and corresponding typical be-
haviour of the estimate of the waiting time of activity 4, i.e. τ 4, (bottom)
evaluated and continuously updated during time. 56

5.12 Layout of the experimental setup: the human can access six stations, the
central one being dedicated to the collaboration with the robot. 57

5.13 Different phases of the assembly procedure. IC insertion (top left):
the human takes a PCB board from the red box on the left and an IC
from the red rightmost box, inserts the IC in the pre-soldered socket,
and finally fills the feeder. Quality check (top right): the robot takes
a PCB from the feeder, accommodates it within a fixture, then it takes
a picture of the PCB using the in-hand camera, and finally drops it on
the feeder. Flat assembly and finalisation (bottom): the human takes
a plastic enclosure from the left tray and places it in the fixture in front
of the robot within the collaborative area, the robot picks a verified PCB
and places it inside the enclosure, the human takes a flat cable from the
right red box, meanwhile the robot takes the cap from a feeder and assists
the human while fixing the cable on it, the robot accommodates the cap
on the enclosure and finally stores the finished part. 57

5.14 Workflow of the robot program: based on WaitingTime, i.e. the p-
percentile tp returned by the algorithm, the first decision the robot takes
is whether to wait for the human to initiate the collaborative operation
(on the right, grey box) or to start the autonomous subtask (on the left,
green box). The collaborative operation (in the middle, orange box)
starts when initiated by the human. 58

5.15 Execution of the collaborative assembly experiment with the reactive
(left) and the proactive (right) approach. The top Figures shows the se-
quence of activities of the human left hand and of the robot (blue and
red represent autonomous activities, while the collaborative operation is
marked in green). The bottom figures show the predicted time to collab-
oration (picking a box from the left tray, see Fig. 5.12) as compared to
the ground truth (black). 59

5.16 Distribution of cycle times of the whole assembly sequence with the
two approaches. The approach considering the predictive algorithm is
responsible of a higher throughput as well as a reduced variability in
cycle times. 60

198

List of Figures

5.17 Execution of the collaborative assembly when the human adopts a dif-
ferent pattern which consists in two consecutive IC insertions and two
consecutive collaborative operations. The notation is identical to the one
of Fig. 5.17, except from the blue curve which represents a purely data-
drive approach. 60

6.1 Differences between a standard scheduling approach, on the top, and an
assistive scheduling, on the bottom. 64

6.2 The assembly flow of a mix involving three different products. All ac-
tions with the same color have to be performed to produce a single finite
product. 66

6.3 Example of task allocation. Actions refer to the assembly flow of Figure
6.2 . 66

6.4 Portion of a reachability tree. Nodes S6,7,8 are reached by firing con-
trollable transitions, i.e. α4 = α6,7,8. m9 = m5 since the same kind
of transitions lead to the corresponding nodes. However, S9 and S5 are
reached with a different order of firing, implying that the arrival times to
that nodes are different. 69

6.5 Examples of TPN. All the transitions reported are uncontrollable. Tran-
sitions 3 and 4 in Example B are deterministic, while for both the exam-
ples transitions 1 and 2 are uniformly distributed. 70

6.6 Portions of the reachability trees of the temporal nets in Figure 6.5. . . 70

6.7 The depicted conflict is uncontrollable: all transitions leading to SC1,2,···
are uncontrollable. 72

6.8 Steps involved for determining the distribution of the arrival time in S1

of the Example A of Figure 6.6, and the same for S2 of Example B.
Notice that distributions Gf of the arrival time in the node preceding,
equation (6.6), is not considered because for both the examples above,
the transition leading to the node of interest begin to be enabled after
arriving in Sf . 73

6.9 The conditioned density of an exponential distribution is in turn the same
exponential distribution. 74

6.10 PN model for actions executed by the robot. 77

6.11 PN model for actions executed by the human. 78

6.12 PN model for collaborative actions. 79

6.13 PN model for a mobile robot (cart) that transports items that are loaded
manually and unloaded using a robot. 79

6.14 By superimposing the above nets, the pcTPN modelling the assembly in
Figure 6.2 is obtained. 80

7.1 Schematic representation of the control architecture adopted for schedul-
ing collaborative cells. 82

199

List of Figures

7.2 Sequence of operations required to obtain a finished product for the use
case adopted to validate the best scenario approach scheduling. Red
boxes refer to operations assigned to YUMI , while the blue one is the
autonomous task of the human. The pink box indicates the collabora-
tive action, executed simultaneously by both the human and the arms
of YUMI . Feeders contain an infinite number of items, since they are
externally fed when needed. 85

7.3 The pcTPN modelling the use case. Thick rectangles denote controllable
transitions. Transitions tc and tch refer to the collaborative operation.
As can be seen, the limited capacity of intermediate buffers is taken into
account. 86

7.4 Cost curve for a feasible path, in case the arrival time sf is known. cH
can be interpreted as the unit cost, for example $/s, paid when the human
is kept inactive (similarly cR when maintaining the robots inactive). . . 87

7.5 The two rules adopted for back propagating particles of cost in a reach-
ability tree. When considering the controllable conflict on the left, the
edge leading to the node having the lowest β percentile of cost will be
followed in case the system would arrive in the indicated node. There-
fore, the other edge is in some way disabled by the optimal control policy. 91

7.6 Example of a PN compliant with the proposed modeling strategy. . . . 92
7.7 Cost aggregation for the single leaf of a reachability tree. 93
7.8 Excerpt of the reachability tree for the example in Fig. 7.6. Nodes corre-

spond to firing events. Leaves are labeled with the probability distribu-
tions of waiting times for the human WH (blue bars) and the robot WR

(yellow bars). Red segments correspond to the states where some places
associated to waiting conditions of the human or the robot are marked
(incurring in a cost). Filled [Empty] red nodes correspond to the firing
of transitions that will mark [unmark] a red place. 93

7.9 Propagation of the costs for uncontrollable transitions: the probability
distribution of the parent node is the union of the probability distribu-
tions of its children nodes. 95

7.10 Propagation of the costs for controllable transitions: the distribution of
the costs is inherited from the child having the lowest cost. In this
case firing transition t1 is evaluated to be more convenient than firing
t2, therefore the branch starting from the latter is pruned from the tree. . 95

7.11 Assembly addressed by off line simulations. 96
7.12 Cycle time distributions obtained in the off line comparative simulations:

A refers to [93], B to [76] while C to the Monte Carlo scheduler in [19]. 96
7.13 Examples of computation of α̃. For the left picture maxt

(
α̃Ci(t)

)
= 1,

as the support of the arrival time of the child is completely above the one
of the father, while for the picture in the middle maxt

(
α̃Ci(t)

)
= 0 as

the opposite situation arises, meaning that for the situation in the middle,
that node would have been removed from the children list. The situation
depicted on the right is intermediate between the aforementioned cases. 97

7.14 Workspace shared by the human operator and YUMI. 101

200

List of Figures

7.15 In all the above figures the top line reports the actions executed by right
arm of YUMI over time, the middle one refers to the actions executed by
the left arm, while the bottom line is related to the actions executed by
the human operator. The legenda related to the operations represented is
depicted in Figure 7.16.Dotted gray lines indicate time instants at which
the human starts to be available for a new collaboration, while dotted
black line refers to instants at which YUMI begins the collaborative task
(those two kinds of lines are coincident when considering the scheduling
obtained with the use of pcTPN). 102

7.16 Legenda related to Figure 7.15. 102
7.17 The experimental setup with the two robots, the carts and the human

operator. 102
7.18 Schematic representation and equivalent PN adopted for the use-case. . 103
7.19 Distributions of the measured cycle times, for the two assembly patterns

considered. 106
7.20 Distributions of the measured durations of some uncontrollable transi-

tions of the net reported in Figure 7.18 in the middle (yellow) and at the
end (blue) of the experiment. 106

7.21 Distributions of the human inactivity times, for the two assembly pat-
terns considered. 107

7.22 Distributions of the agents inactivity times, for the two assembly patterns
considered: the summations of all the idling times of the agents in the
system is reported. 107

7.23 The evolution of the overall wait time of the agents, during the exper-
iments of Group 1.A and Group 1.B. The reported values, refer to the
summation of the idle times of YUMI, IRB 140 and the human oper-
ator. The dashed red curves are the regressed lines interpolating all the
data. 108

7.24 Sequence of events occurred for two particular experiments: one from
Group 1.A (top) and one from Group 1.B (bottom), see Figure7.5 for
the legend. The temporal duration of the activities performed by the
agents is proportional to the length of the corresponding coloured bar
(waiting activities are not reported). The dashed vertical lines refer to
time instants when a new finite product is available (i.e. the end of the
storing operation done by the IRB 140): the red ones referring to the
experiment of Group 1.A while the blue ones to that of Group 1.B. . . . 109

7.25 On the top, the layout adopted for the experiments. On the bottom left
part, a detailed view of the layout: the violet area contains the sta-
tions used by the robots to perform the assigned intermediate assem-
blies, while the green ones are the buffers through which the human and
the robots exchange components. The pictures on the bottom right part
depicts the two products to be assembled. 111

7.26 On the top the actions required for the assembly of a single torch and the
corresponding assembly flow, on the bottom the same for a clock. . . . 112

7.27 Idling times of the operator. Every sample of the reported distributions
refers to the idling measured within the assembly of a single product. . 114

201

List of Figures

7.28 Measured cycle times. 114

8.1 Difference between a reactive approach and a proactive one. The motion
resulting from a reactive approach guarantees the absence of collisions
with a moving obstacle, but it’s not globally optimized, since with a cer-
tain frequency is constantly recomputed considering the current position
of the obstacle. On the opposite, the proactive path is computed form
its start to its end once; by taking into account a prediction of the entire
motion of the yellow obstacle. A combination of the two approaches is
also possible. 118

8.2 On the left, (a) and (b), the kinematic model adopted to describe the hu-
man posture. For the base of the human, a unicycle model is considered,
while for the arms a spherical joint is centred at the shoulder, with an
additional joint located at the elbow. On the right, (c), an example of
swept volumes bounding the future occupancy of the anatomical parts
of the human. In blue the volume swept by the torso, in green those for
the forearms, while in yellow those for the upper arms. 121

8.3 On the top, examples of cumulative distributions for ∆+
k and ∆−k (the

kinematic chain is assumed to be made of a single joint), while on the
bottom examples of swept volumes for a single joint mechanism, de-
picted on the left bottom corner, when assuming different percentiles for
∆+
k and ∆−k . 124

8.4 Pipeline describing the developed approach. The picture on the right
details the steps involved for updating hGP , i.e. the model describing
human motion. 125

8.5 Experimental set-up considered for the experiments. (a): YUMI of
ABB, is visible in the centre; with a MICROSOFT KINECT vision sys-
tem on top. (b): Locations of buffers containing the items required to
assemble the box with the USB and the PCB board. (c): Some approxi-
mative trajectories followed by both the human (in clear green) and the
robot (dark blue). The dashed orange area is the portion of space shared
by the human and the robot, while the green shaded one is the portion of
the space occupied by the operator’s torso during the experiments. . . . 127

8.6 Distributions of ε+ and ε−, for joint q2 and q3 of the kinematic model
reported in Figure 8.2. The legend of Figure 8.7 applies. The red hor-
izontal line, divide conservative predictions from the ones for which a
violation happens. Results for similar joints of both arms are condensed
in a single boxplot. 128

8.7 Legend to consider for Figure 8.6 and 8.8 128
8.8 Distributions of ε+ and ε−, for joints q1,4,5,6,7,8,9,10,11,12 (i.e. the rotating

ones) of the kinematic model reported in Figure 8.2. Results for similar
joints are condensed in a single boxplot. The same legend in Figure 8.7
applies. 129

8.9 Comparisons between the swept volumes obtained considering [107]
(the blue ones on the first row) against those obtained applying the hy-
brid approach with P = 4 (the green ones on the second row), for two
sampled instants of the logged data. 129

202

List of Figures

8.10 Statistics about the distances between skeletal points and predicted swept
volumes, in case of violation of the predicted joint excursion. 129

8.11 The entire pipeline of the approach. A depth camera records the motion
of the human, whose trajectories are then segmented and stored in dif-
ferent databases, one for each human action. Such samples are consid-
ered by GPDM to compute regressed trajectories for the human motion,
which in turn are exploited to compute the corresponding probability
clouds and the proactive paths. 132

8.12 Pictures on the left depict an example of regressed trajectory taken from
two distinct views. The bounding box containing entirely the trajectory
(red box in the figure) is considered for the definition of the g points
contained in C. The volume swept by the arm of the operator, between
two consecutive poses, is approximated by the dark green convex set in
the middle, which in turn is approximated by an OctTree, indicated in
the right with light green (only the OctTree of the upper part of the arm
is reported in the figure). 134

8.13 Proactive planning. 136

8.14 The experimental setup. The left arm of YUMI is involved in the collab-
orative assembly. 137

8.15 The activities executed during time by both the human and the robot.
Green vertical line indicates instants at which a proactive path is recom-
puted. Sk indicates the k-th invocation of the proactive planning algo-
rithm. When A(t) = 1 the human was performing aS1, while A(t) = 2
refers to aS2. 138

8.16 The pictures report a scalability analysis, varying the grid resolution G
(see Section 8.2.2). The pictures on the top and on the bottom report
the computational times for obtaining a single probability cloud and a
single proactive path respectively. The picture in the middle reports the
approximation error introduced when describing the human trajectories
with different resolutions for the discrete grid. As can be seen, the com-
putational times grows faster than the Ecloud decrease. Therefore, reduc-
ing G leads to minor computation times, without severely compromise
the way the human motion is approximated. 139

8.17 On the top the distribution of the distance between the human and the
robot during the experiments; while on the bottom, the distribution of
the percentage of idle time. 139

8.18 The nominal path realizing r1 from two different views. The blue curve
refers to the trajectory of the end effector. Red shapes represent the fixed
obstacles considered by STOMP. Green capsules are adopted to depict
the robot links for the initial and the final pose of the path. 140

203

List of Figures

8.19 Subjects rate in percentage to the following quotes. R1: "The robot
movements were unnatural and strange"; R2: "The interaction with the
robot was fluent"; R3: "The interaction with the robot was safe"; R4:
"The robot was able to efficiently forecast the human trajectories". Pic-
ture on the left refers to the group of participants for which pro active
paths were executed. Picture on the right, to the group for which nominal
paths were executed. 140

8.20 Examples of proactive paths obtained for some invocations of STOMP
(Red shapes are the fixed obstacles populating the scene) during the ex-
periments. For every column: on the top, the probabilities considered
for the computation of the probabilistic cloud; in the middle and in the
bottom, two distinct views of the proactive paths computed (cyan), com-
pared with the initial nominal one (blue). The probability clouds consid-
ered for planning are depicted as a series of blue points whose intensity
is proportional to the probabilities contained in γ. 141

9.1 Skeletal approximation of the human silhouette. 145
9.2 On the left, an example of occlusion, blue dotted lines represent infor-

mation gained from the depth map. On the right, estimation of the pose
using PF, blue dots are the positions of particles in set S, i.e. the one
computed propagating set S of the previous step using the process equa-
tion. The object at step k is visible, then for the subsequent step goes
under an occlusion. Red dots are used to indicate those particles not con-
sistent with the depth map, which will not survive after the resampling
step of PF. 148

9.3 Possible occlusion cases considered for left arm. The shapes of the oc-
clusions are depicted as a gray area, while the the light purple area de-
limits the area admitted by the skeletal distances constraints. 149

9.4 Pipeline of the proposed approach. yk+1 contains the estimated position
of skeletal points, acquired from a depth camera sensor. 151

9.5 The robotic cell considered for the experiment 152
9.6 The approaches considered to tackle occlusions. On the left, the Kalman

filter formulation (KF), on the right the PF formulation. Red edges are
those delimiting the workspace of the robot. In red are indicated the
skeletal points estimated using KF or PF, while in blue are depicted
the measurements retrieved from the MICROSOFT KINECT (values are
always returned, even though their status indicate that is an occlusion
present). KF goes in open loop when occlusion occur. This reflects in
the growing of the uncertainty covariance ellipsoid, which can occupies
regions inconsistent with the occlusion. 153

9.7 Histograms relative to the robot cycle time for the approaches considered 153

C.1 Example of graph made of 4 variables: A,B,C and D. α, β, γ and δ are
assumed as weights for the exponential potentials ΨAC ,ΨAB,ΨCD and
ΨB respectively. 171

204

List of Figures

C.2 Example of graph adopted for explaining the message passing algorithm.
Below are reported the messages to compute for obtaining the marginal
probability of variable x1 . 172

C.3 On the top the general mechanism involved in the message computation;
on the bottom the simplification of the graph considering the computed
message. 174

C.4 When variable C become an evidence, is temporary deleted from the
graph, replaced by messages. 176

C.5 Steps involved for computing the messages of the politree represented at
the top. The leaves are the first nodes for which the outgoing messages
can be computed. 177

C.6 Steps involved for computing the messages on a loopy graph: after com-
puting the messages outgoing from the leaves, a deadlock is reached
since no further messages are computable. 178

C.7 Example of graph adopted. When the evidences are retrieved, the mes-
sages computed by making use of the message passing algorithm are
reported below. 178

C.8 Example of structure having many exponential potentials sharing the
same modulating weight: w1 is simultaneously involved into ΨAC and
ΨBC , while w2 is shared among the potentials connecting A1,2,3 to B1,2,3

respectively. 182

D.1 Examples of a fuzzy convex set (on the left) and a non convex one (on
the right). When considering the convex set, all the possible alpha-cuts
are compact set, which is not verified for the set in the right. 186

D.2 Example of L (on the left) and G (on the right) of a triangular fuzzy
number. 187

205

List of Tables

3.1 Percentages of false positives and true negatives are with respect to the
total number of times the operators went to goal 4 for the upper table.
The lower one refers to goal 1. 23

5.1 Results obtained when applying operators I and O on the series Y re-
ported at the top. 48

6.1 Descriptive formalism adopted in this work and equivalent PN blocks
for automatic translation. 76

7.1 Timing parameters of the transitions of the TPN of Fig. 7.6. 92
7.2 Sampled trajectories for the system in Figure 7.6. On the left the se-

quence of events involved in every single trajectory, with the correspond-
ing times. On the right the progressive update of the reachability tree. . 94

7.3 Excerpt of the PN of Figure 7.18 and example of synchronization be-
tween the station and the PN model used for scheduling. 105

7.4 Composition of the times spent by agents performing the assigned tasks,
see Figure 7.5 for the legend. For each task, the overall time spent do-
ing that action is considered for creating the proposed histogram charts,
summing the values of all the experiments in a specific group. 109

7.5 Color legend for Figures 7.4 and 7.24. 110

C.1 Value assumed by the energy function E, when having X = 0 and Y =
1 as evidences. 175

C.2 Factors involved in the graph of Figure C.7. 175

207

Bibliography

[1] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-Schäffer, Kazuhiro Kosuge, and Ous-
sama Khatib. Progress and prospects of the human–robot collaboration. Autonomous Robots, pages 1–19,
2017.

[2] Amin Amini and Navid Nikraz. A method for constructing non-isosceles triangular fuzzy numbers using
frequency histogram and statistical parameters. Soft Computing in Civil Engineering, 1(1):65–85, 2017.

[3] Jimmy Baraglia, Maya Cakmak, Yukie Nagai, Rajesh PN Rao, and Minoru Asada. Efficient human-robot
collaboration: when should a robot take initiative? The International Journal of Robotics Research, pages
1–17, 2017.

[4] F. Basile, M. P. Cabasino, and C. Seatzu. State estimation and fault diagnosis of labeled time petri net systems
with unobservable transitions. IEEE Transactions on Automatic Control, 60(4):997–1009, April 2015.

[5] Roman Bednarik, Hana Vrzakova, and Michal Hradis. What do you want to do next: a novel approach for
intent prediction in gaze-based interaction. In Proceedings of the symposium on eye tracking research and
applications, pages 83–90. ACM, 2012.

[6] Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957.

[7] Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems using time Petri
nets. IEEE Transactions on Software Engineering, 17(3):259–273, 1991.

[8] Karin Bogner, Ulrich Pferschy, Roland Unterberger, and Herwig Zeiner. Optimised scheduling in human–
robot collaboration–a use case in the assembly of printed circuit boards. International Journal of Production
Research, 56(16):5522–5540, 2018.

[9] Matthieu Bray, Esther Koller-Meier, and Luc Van Gool. Smart particle filtering for 3d hand tracking. In
Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, pages
675–680. IEEE, 2004.

[10] Giulia Bruno and Dario Antonelli. Dynamic task classification and assignment for the management of human-
robot collaborative teams in workcells. International Journal of Advanced Manufacturing Technology, 98(9-
12):2415–2427, 2018.

[11] Miguel Carrasco and Xavier Clady. Prediction of user’s grasping intentions based on eye-hand coordination.
In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 4631–4637.
IEEE, 2010.

[12] Andrea Casalino, Davide Bazzi, Andrea Maria Zanchettin, and Paolo Rocco. Optimal proactive path planning
for collaborative robots in industrial contexts. In 2019 International Conference on Robotics and Automation
(ICRA), pages 6540–6546. IEEE, 2019.

[13] Andrea Casalino, Alberto Brameri, Andrea Maria Zanchettin, and Paolo Rocco. Adaptive swept volumes gen-
eration for human-robot coexistence using gaussian processes. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019.

[14] Andrea Casalino, Filippo Cividini, Andrea Maria Zanchettin, Luigi Piroddi, and Paolo Rocco. Human-robot
collaborative assembly: a use-case application. IFAC-PapersOnLine, 51(11):194–199, 2018.

209

Bibliography

[15] Andrea Casalino, Sebastian Guzman, Andrea Maria Zanchettin, and Paolo Rocco. Human pose estimation in
presence of occlusion using depth camera sensors, in human-robot coexistence scenarios. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1–7. IEEE, 2018.

[16] Andrea Casalino, Eleonora Mazzocca, Maria Grazia Di Giorgio, Andrea Maria Zanchettin, and Paolo Rocco.
Task scheduling for human-robot collaboration with uncertain duration of tasks: a fuzzy approach. In 2019
International Conference on Control, Mechatronics and Automation (ICCMA). IEEE, 2019.

[17] Andrea Casalino, Costanza Messeri, Maria Pozzi, Andrea Maria Zanchettin, Paolo Rocco, and Domenico
Prattichizzo. Operator awareness in human–robot collaboration through wearable vibrotactile feedback. IEEE
Robotics and Automation Letters, 3(4):4289–4296, 2018.

[18] Andrea Casalino, Paolo Rocco, and Maria Prandini. Hybrid control of manipulators in human-robot coexis-
tence scenarios. In 2018 Annual American Control Conference (ACC), pages 1172–1177. IEEE, 2018.

[19] Andrea Casalino, Andrea Zanchettin, Luigi Piroddi, and Paolo Rocco. Optimal scheduling of human-robot
collaborative assembly operations with time petri nets. IEEE Transactions on Automation Science and Engi-
neering, 2019.

[20] Adamo Castelnuovo, Luca Ferrarini, and Luigi Piroddi. An incremental Petri net-based approach to the
modeling of production sequences in manufacturing systems. IEEE Transactions on Automation Science and
Engineering, 4(3):424–434, 2007.

[21] Nicola Maria Ceriani, Andrea Maria Zanchettin, Paolo Rocco, Andreas Stolt, and Anders Robertsson. Re-
active task adaptation based on hierarchical constraints classification for safe industrial robots. IEEE/ASME
Transactions on Mechatronics, 20(6):2935–2949, 2015.

[22] Crystal Chao and Andrea Thomaz. Timed Petri nets for fluent turn-taking over multimodal interaction re-
sources in human-robot collaboration. International Journal of Robotics Research, 35(11):1330–1353, 2016.

[23] Fei Chen, Kosuke Sekiyama, Ferdinando Cannella, and Toshio Fukuda. Optimal subtask allocation for human
and robot collaboration within hybrid assembly system. IEEE Transactions on Automation Science and
Engineering, 11(4):1065–1075, 2014.

[24] Fei Chen, Kosuke Sekiyama, Jian Huang, Baiqing Sun, Hironobu Sasaki, and Toshio Fukuda. An assembly
strategy scheduling method for human and robot coordinated cell manufacturing. International Journal of
Intelligent Computing and Cybernetics, 4:487–510, 11 2011.

[25] Andrea Cherubini, Robin Passama, André Crosnier, Antoine Lasnier, and Philippe Fraisse. Collaborative
manufacturing with physical human–robot interaction. Robotics and Computer-Integrated Manufacturing,
40:1–13, 2016.

[26] Wai Ki Ching, Eric S. Fung, and Michael K. Ng. Higher-order Markov chain models for categorical data
sequences. Naval Research Logistics (NRL), 51(4):557–574, 2004.

[27] Giovanni Chiola, Marco Ajmone Marsan, Gianfranco Balbo, and Gianni Conte. Generalized stochastic petri
nets: A definition at the net level and its implications. IEEE Transactions on software engineering, 19(2):89–
107, 1993.

[28] Valerie Cross. Semantic similarity: a key to ontology alignment. In OM@ ISWC, pages 61–65, 2018.

[29] Jin Dai, Alessandro Benini, Hai Lin, Panos J Antsaklis, Matthew J Rutherford, and Kimon P Valavanis.
Learning-based formal synthesis of cooperative multi-agent systems with an application to robotic coordina-
tion. In Control and Automation (MED), 2016 24th Mediterranean Conference on, pages 1008–1013. IEEE,
2016.

[30] Laécio Carvalho de Barros, Rodney Carlos Bassanezi, and Weldon Alexander Lodwick. The extension prin-
ciple of zadeh and fuzzy numbers. In A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomath-
ematics, pages 23–41. Springer, 2017.

[31] Luis Miguel de Campos Ibanez and Antonio Gonzalez Munoz. A subjective approach for ranking fuzzy
numbers. Fuzzy sets and systems, 29(2):145–153, 1989.

[32] Ana M Djuric, RJ Urbanic, and JL Rickli. A framework for collaborative robot (cobot) integration in advanced
manufacturing systems. SAE International Journal of Materials and Manufacturing, 9(2):457–464, 2016.

[33] Jill L Drury, Jean Scholtz, and Holly A Yanco. Awareness in human-robot interactions. In Systems, Man and
Cybernetics, 2003. IEEE International Conference on, volume 1, pages 912–918. IEEE, 2003.

[34] A. Elfes, C. R. Weisbin, H. Hua, J. H. Smith, J. Mrozinski, and K. Shelton. The huron task allocation
and scheduling system: Planning human and robot activities for lunar missions. In 2008 World Automation
Congress, pages 1–8, Sept 2008.

210

Bibliography

[35] C. Fiedler and W. Meyer. Transitory assembly scheduling based on deterministic correlation functions. In
2007 IEEE International Symposium on Assembly and Manufacturing, pages 239–244, July 2007.

[36] F. Flacco, T. Kroger, A. De Luca, and O. Khatib. A depth space approach to human-robot collision avoidance.
In 2012 IEEE International Conference on Robotics and Automation, pages 338–345, May 2012.

[37] James Foulds, Nicholas Navaroli, Padhraic Smyth, and Alexander Ihler. Revisiting map estimation, mes-
sage passing and perfect graphs. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 278–286, 2011.

[38] Broz Frank and Gordon Geoffrey. Better motion prediction for people-tracking. 03 2004.

[39] Brendan J Frey. Extending factor graphs so as to unify directed and undirected graphical models. In Proceed-
ings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages 257–264. Morgan Kaufmann
Publishers Inc., 2002.

[40] David E Goldberg. Genetic algorithms in search, optimization, and machine learning, addison wesley, read-
ing, ma. SUMMARY THE APPLICATIONS OF GA-GENETIC ALGORITHM FOR DEALING WITH SOME
OPTIMAL CALCULATIONS IN ECONOMICS, 1989.

[41] Matthew C Gombolay, Ronald Wilcox, and Julie A Shah. Fast scheduling of multi-robot teams with tem-
porospatial constraints. In Robotics: Science and Systems, 2013.

[42] Manish K. Govil and Michael C. Fu. Queueing theory in manufacturing: A survey. Journal of Manufacturing
Systems, 18(3):214–240, 1999.

[43] Fredrik Gustafsson. Particle filter theory and practice with positioning applications. IEEE Aerospace and
Electronic Systems Magazine, 25(7):53–82, 2010.

[44] Sami Haddadin, Simon Haddadin, Augusto Khoury, Tim Rokahr, Sven Parusel, Rainer Burgkart, Antonio
Bicchi, and Alin Albu-Schaffer. On making robots understand safety: Embedding injury knowledge into
control. Int. J. Rob. Res., 31(13):1578–1602, November 2012.

[45] Sami Haddadin, Michael Suppa, Stefan Fuchs, Tim Bodenmüller, Alin Albu-Schäffer, and Gerd Hirzinger.
Towards the Robotic Co-Worker, pages 261–282. Springer Berlin Heidelberg, 2011.

[46] K. S. Hale and K. M. Stanney. Deriving haptic design guidelines from human physiological, psychophysical,
and neurological foundations. IEEE Computer Graphics and Applications, 24(2):33–39, March 2004.

[47] Kelsey P Hawkins, Nam Vo, Shray Bansal, and Aaron F Bobick. Probabilistic human action prediction and
wait-sensitive planning for responsive human-robot collaboration. In Humanoid Robots (Humanoids), 2013
13th IEEE-RAS International Conference on, pages 499–506. IEEE, 2013.

[48] Zhou He, Zhiwu Li, and Alessandro Giua. Cycle time optimization of deterministic timed weighted marked
graphs by transformation. IEEE Transactions on Control Systems Technology, 25(4):1318–1330, July 2017.

[49] Zhou He, ZW Li, and Alessandro Giua. Optimization of deterministic timed weighted marked graphs. IEEE
Trans. Autom. Sci. Eng, 2016.

[50] Chien-Ming Huang and Bilge Mutlu. Anticipatory robot control for efficient human-robot collaboration. In
Human-Robot Interaction (HRI), 2016 11th ACM/IEEE International Conference on, pages 83–90. IEEE,
2016.

[51] A. Papandreou-Suppappola I. Kyriakides, D. Morrell. Multiple target tracking with constrained motion using
particle filtering methods. 01 2006.

[52] Tariq Iqbal, Samantha Rack, and Laurel D Riek. Movement coordination in human–robot teams: A dynamical
systems approach. IEEE Transactions on Robotics, 32(4):909–919, 2016.

[53] Michael Isard and Andrew Blake. A mixed-state condensation tracker with automatic model-switching. In
Computer Vision, 1998. Sixth International Conference on, pages 107–112. IEEE, 1998.

[54] Lars Johannsmeier and Sami Haddadin. A hierarchical human-robot interaction-planning framework for task
allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters, 2(1):41–48,
2017.

[55] Vijay John, Emanuele Trucco, and Spela Ivekovic. Markerless human articulated tracking using hierarchical
particle swarm optimisation. Image and Vision Computing, 28(11):1530 – 1547, 2010.

[56] Teegan Johnson, Gilbert Tang, Sarah R Fletcher, and Phil Webb. Investigating the effects of signal light po-
sition on human workload and reaction time in human-robot collaboration tasks. In Advances in Ergonomics
of Manufacturing: Managing the Enterprise of the Future, pages 207–215. Springer, 2016.

211

Bibliography

[57] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal. Stomp: Stochas-
tic trajectory optimization for motion planning. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 4569–4574. IEEE, 2011.

[58] Harmish Khambhaita and Rachid Alami. Viewing robot navigation in human environment as a cooperative
activity. Springer Proceedings in Advanced Robotics, 10, 2017.

[59] Jun Kinugawa, Akira Kanazawa, Shogo Arai, and Kazuhiro Kosuge. Adaptive task scheduling for an as-
sembly task coworker robot based on incremental learning of human’s motion patterns. IEEE Robotics and
Automation Letters, 2(2):856–863, 2017.

[60] Chris L Kleinke. Gaze and eye contact: a research review. Psychological bulletin, 100(1):78, 1986.

[61] Hema S Koppula and Ashutosh Saxena. Anticipating human activities using object affordances for reactive
robotic response. IEEE transactions on pattern analysis and machine intelligence, 38(1):14–29, 2016.

[62] J. Krüger, T.K. Lien, and A. Verl. Cooperation of human and machines in assembly lines. CIRP Annals,
58(2):628 – 646, 2009.

[63] J. Kruger, G. Schreck, and D. Surdilovic. Dual arm robot for flexible and cooperative assembly. CIRP Annals,
60(1):5 – 8, 2011.

[64] Dana Kulić and Elizabeth Croft. Pre-collision safety strategies for human-robot interaction. Autonomous
Robots, 22(2):149–164, 2007.

[65] Woo Young Kwon and Il Hong Suh. A temporal bayesian network with application to design of a proactive
robotic assistant. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 3685–
3690. IEEE, 2012.

[66] Przemyslaw A Lasota and Julie A Shah. Analyzing the effects of human-aware motion planning on close-
proximity human–robot collaboration. Human factors, 57(1):21–33, 2015.

[67] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manufacturing letters, 3:18–23, 2015.

[68] Claus Lenz, Suraj Nair, Markus Rickert, Alois Knoll, Wolgang Rosel, Jurgen Gast, Alexander Bannat, and
Frank Wallhoff. Joint-action for humans and industrial robots for assembly tasks. In Robot and Human
Interactive Communication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on, pages 130–
135. IEEE, 2008.

[69] Claus Lenz, Alice Sotzek, Thorsten Röder, Helmuth Radrich, Alois Knoll, Markus Huber, and Stefan
Glasauer. Human workflow analysis using 3d occupancy grid hand tracking in a human-robot collabora-
tion scenario. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages
3375–3380. IEEE, 2011.

[70] Kang Li and Yun Fu. Prediction of human activity by discovering temporal sequence patterns. IEEE trans-
actions on pattern analysis and machine intelligence, 36(8):1644–1657, 2014.

[71] Yanan Li, Keng Peng Tee, Rui Yan, Wei Liang Chan, and Yan Wu. A framework of human–robot coordination
based on game theory and policy iteration. IEEE Transactions on Robotics, 32(6):1408–1418, 2016.

[72] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic acceptance. Physica A:
Statistical Mechanics and its Applications, 391(6):2193 – 2196, 2012.

[73] Xianghang Liu and Jian Zhang. Active learning for human action recognition with gaussian processes. In
Image Processing (ICIP), 2011 18th IEEE International Conference on, pages 3253–3256. IEEE, 2011.

[74] Z. Liu, L. Zhou, H. Leung, and H. P. H. Shum. Kinect posture reconstruction based on a local mixture of
gaussian process models. IEEE Transactions on Visualization and Computer Graphics, 22(11):2437–2450,
Nov 2016.

[75] Daniel Losch and Jurgen Rossmann. Visual programming and development of manufacturing processes based
on hierarchical Petri nets. In 3rd International Conference on Soft Computing & Machine Intelligence, pages
154–158, 2016.

[76] Ping Lou, Quan Liu, Zude Zhou, Huaiqing Wang, and Sherry Sun. Multi-agent-based proactive reactive
scheduling for a job shop. 59, 03 2012.

[77] Ruikun Luo, Rafi Hayne, and Dmitry Berenson. Unsupervised early prediction of human reaching for human–
robot collaboration in shared workspaces. Autonomous Robots, pages 1–18, 2017.

[78] Vito Magnanimo, Matteo Saveriano, Silvia Rossi, and Dongheui Lee. A bayesian approach for task recogni-
tion and future human activity prediction. In Robot and Human Interactive Communication, 2014 RO-MAN:
The 23rd IEEE International Symposium on, pages 726–731. IEEE, 2014.

212

Bibliography

[79] J. Mainprice, E. Akin Sisbot, L. Jaillet, J. Cortes, R. Alami, and T. Simeon. Planning human-aware motions
using a sampling-based costmap planner. In 2011 IEEE Int. Conf. on Robotics and Automation, pages 5012–
5017, May 2011.

[80] Alexandros Makris, Nikolaos Kyriazis, and Antonis A. Argyros. Hierarchical particle filtering for 3d hand
tracking. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June
2015.

[81] Sotiris Makris, Panagiotis Karagiannis, Spyridon Koukas, and Aleksandros-Stereos Matthaiakis. Augmented
reality system for operator support in human–robot collaborative assembly. CIRP Annals-Manufacturing
Technology, 65(1):61–64, 2016.

[82] Donald JR Meagher. Octree encoding: A new technique for the representation, manipulation and display of
arbitrary 3-d objects by computer. Electrical and Systems Engineering Department Rensseiaer Polytechnic
Institute Image Processing Laboratory, 1980.

[83] L. S. H. De Mello and Arthur C. Sanderson. Representations of mechanical assembly sequences. IEEE
Transactions on Robotics and Automation, 7(2):211–227, 1991.

[84] Brad L. Miller, Brad L. Miller, David E. Goldberg, and David E. Goldberg. Genetic algorithms, tournament
selection, and the effects of noise. Complex Systems, 9:193–212, 1995.

[85] Abdullah Mohammed, Bernard Schmidt, and Lihui Wang. Active collision avoidance for human–robot col-
laboration driven by vision sensors. International Journal of Computer Integrated Manufacturing, 30(9):970–
980, 2017.

[86] Michael K. Molloy. Performance analysis using stochastic Petri nets. IEEE Transactions on Computers,
31(9):913–917, 1982.

[87] László Monostori, Botond Kádár, T Bauernhansl, S Kondoh, S Kumara, G Reinhart, O Sauer, G Schuh,
W Sihn, and K Ueda. Cyber-physical systems in manufacturing. Cirp Annals, 65(2):621–641, 2016.

[88] Rafael Mosberger and Henrik Andreasson. An inexpensive monocular vision system for tracking humans in
industrial environments. In ICRA, pages 5850–5857, 2013.

[89] Matteo Munaro, Christopher Lewis, David Chambers, Paul Hvass, and Emanuele Menegatti. Rgb-d human
detection and tracking for industrial environments. In Intelligent Autonomous Systems 13, pages 1655–1668.
Springer, 2016.

[90] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580, Apr
1989.

[91] Kevin Patrick Murphy and Stuart Russell. Dynamic bayesian networks: representation, inference and learn-
ing. 2002.

[92] Nima Najmaei, Mehrdad R Kermani, and Mohammed A Al-Lawati. A new sensory system for modeling
and tracking humans within industrial work cells. IEEE Transactions on Instrumentation and Measurement,
60(4):1227–1236, 2011.

[93] Nikolaos Nikolakis, Niki Kousi, George Michalos, and Sotiris Makris. Dynamic scheduling of shared human-
robot manufacturing operations. Procedia CIRP, 72:9–14, 2018.

[94] Ben North, Andrew Blake, Michael Isard, and Jens Rittscher. Learning and classification of complex dynam-
ics. IEEE Transactions on pattern analysis and machine intelligence, 22(9):1016–1034, 2000.

[95] Tetsuya Ogata, Shigeki Sugano, and Jun Tani. Open-end human–robot interaction from the dynamical sys-
tems perspective: mutual adaptation and incremental learning. Advanced Robotics, 19(6):651–670, 2005.

[96] Vladimir Pavlovic, James M Rehg, and John MacCormick. Learning switching linear models of human
motion. In Advances in neural information processing systems, pages 981–987, 2001.

[97] Stefania Pellegrinelli, Federico Lorenzo Moro, Nicola Pedrocchi, Lorenzo Molinari Tosatti, and Tullio Tolio.
A probabilistic approach to workspace sharing for human–robot cooperation in assembly tasks. CIRP Annals,
65(1):57–60, 2016.

[98] Stefania Pellegrinelli and Nicola Pedrocchi. Estimation of robot execution time for close proximity human-
robot collaboration. Integrated Computer-Aided Engineering, (Preprint):1–16, 2017.

[99] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

[100] Elizabeth Kathleen Phillips and Florian G Jentsch. Supporting situation awareness through robot-to-human
information exchanges under conditions of visuospatial perspective taking. Journal of Human-Robot Inter-
action, 6(3):92–117, 2017.

213

Bibliography

[101] F. Pini, F. Leali, and M. Ansaloni. A systematic approach to the engineering design of a hrc workcell for bio-
medical product assembly. In 2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), pages 1–8, Sept 2015.

[102] Joanna Zietkiewicz Piotr Kozierski, Marcin Lis. Resampling in particle filtering , comparison. 2013.

[103] Adrian Raftery and Simon Tavaré. Estimation and modelling repeated patterns in high order markov chains
with the mixture transition distribution model. Applied Statistics, pages 179–199, 1994.

[104] Adrian E Raftery. A model for high-order markov chains. Journal of the Royal Statistical Society. Series B
(Methodological), pages 528–539, 1985.

[105] M. Ragaglia, L. Bascetta, P. Rocco, and A. M. Zanchettin. Integration of perception, control and injury knowl-
edge for safe human-robot interaction. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 1196–1202, May 2014.

[106] M. Ragaglia, A. M. Zanchettin, and P. Rocco. Safety-aware trajectory scaling for human-robot collaboration
with prediction of human occupancy. In 2015 Int. Conf. on Advanced Robotics, pages 85–90, July 2015.

[107] Matteo Ragaglia, Andrea Maria Zanchettin, and Paolo Rocco. Trajectory generation algorithm for safe
human-robot collaboration based on multiple depth sensor measurements. Mechatronics, 2018.

[108] SM Mizanoor Rahman, Behzad Sadrfaridpour, and Yue Wang. Trust-based optimal subtask allocation and
model predictive control for human-robot collaborative assembly in manufacturing. In ASME 2015 Dynamic
Systems and Control Conference, pages V002T32A004–V002T32A004. American Society of Mechanical
Engineers, 2015.

[109] Peter J Ramadge and W Murray Wonham. Supervisory control of a class of discrete event processes. SIAM
journal on control and optimization, 25(1):206–230, 1987.

[110] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine learning,
pages 63–71. Springer, 2004.

[111] Harish Chaandar Ravichandar and Ashwin P Dani. Human intention inference using expectation-
maximization algorithm with online model learning. IEEE Transactions on Automation Science and En-
gineering, 14(2):855–868, 2017.

[112] Dominik Riedelbauch, Tobias Werner, and Dominik Henrich. Enabling domain experts to model and execute
tasks in flexible human-robot teams. In Tagungsband des 2. Kongresses Montage Handhabung Industrier-
oboter, pages 13–22. 2017.

[113] S Robla-Gómez, Victor M Becerra, JR Llata, Esther González-Sarabia, Carlos Torre-Ferrero, and J Pérez-
Oria. Working together: a review on safe human-robot collaboration in industrial environments. IEEE
Access, 5:26754–26773, 2017.

[114] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning probabilistic automata with
variable memory length. Machine Learning, 25(2-3):117–149, 1996.

[115] Anas Salmi, Pierre David, J.D. Summers, and Eric Blanco. A modelling language for assembly sequences
representation, scheduling and analyses. International Journal of Production Research, 52(13):3986–4006,
2014.

[116] Riccardo Schiavi, Antonio Bicchi, and Fabrizio Flacco. Integration of active and passive compliance control
for safe human-robot coexistence. In Robotics and Automation, 2009. ICRA’09. IEEE International Confer-
ence on, pages 259–264. IEEE, 2009.

[117] Xinguang Shao, Biao Huang, and Jong Min Lee. Constrained bayesian state estimation: a comparative study
and a new particle filter based approach. Journal of Process Control, 20(2):143 – 157, 2010.

[118] Zhongshun Shi, Longfei Wang, Pai Liu, and Leyuan Shi. Minimizing completion time for order scheduling:
Formulation and heuristic algorithm. IEEE Transactions on Automation Science and Engineering, 2015.

[119] Leonid Sigal. Human Pose Estimation, pages 362–370. Springer US, Boston, MA, 2014.

[120] José Reinaldo Silva and Pedro MG del Foyo. Timed petri nets. In Petri Nets-Manufacturing and Computer
Science. IntechOpen, 2012.

[121] Emrah Akin Sisbot, Luis F Marin-Urias, Rachid Alami, and Thierry Simeon. A human aware mobile robot
motion planner. IEEE Transactions on Robotics, 23(5):874–883, 2007.

[122] Aaron St Clair and Maja Mataric. How robot verbal feedback can improve team performance in human-robot
task collaborations. In Proceedings of the tenth annual acm/ieee international conference on human-robot
interaction, pages 213–220. ACM, 2015.

214

Bibliography

[123] Holger Täubig, Berthold Bäuml, and Udo Frese. Real-time swept volume and distance computation for self
collision detection. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on,
pages 1585–1592. IEEE, 2011.

[124] Panagiota Tsarouchi, Alexandros-Stereos Matthaiakis, Sotiris Makris, and George Chryssolouris. On a
human-robot collaboration in an assembly cell. International Journal of Computer Integrated Manufacturing,
30(6):580–589, 2017.

[125] Raquel Urtasun, David J Fleet, and Pascal Fua. 3d people tracking with gaussian process dynamical models.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages
238–245. IEEE, 2006.

[126] Gino Van Den Bergen. Proximity queries and penetration depth computation on 3d game objects. In Game
developers conference, volume 170, 2001.

[127] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models for human motion.
IEEE transactions on pattern analysis and machine intelligence, 30(2):283–298, 2008.

[128] Z. Wang, G. Liu, and G. Tian. Human skeleton tracking using information weighted consensus filter in
distributed camera networks. In 2017 Chinese Automation Congress (CAC), pages 4640–4644, Oct 2017.

[129] Ziyou Wang, Jun Kinugawa, Hongbo Wang, and Kosuge Kazahiro. A human motion estimation method
based on gp-ukf. In Information and Automation (ICIA), 2014 IEEE International Conference on, pages
1228–1232. IEEE, 2014.

[130] C. Yang, C. Zeng, Y. Cong, N. Wang, and M. Wang. A learning framework of adaptive manipulative skills
from human to robot. IEEE Transactions on Industrial Informatics, pages 1–9, 2018.

[131] Mao Ye, Qing Zhang, Liang Wang, Jiejie Zhu, Ruigang Yang, and Juergen Gall. A Survey on Human Motion
Analysis from Depth Data, pages 149–187. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[132] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief propagation and its general-
izations. Exploring artificial intelligence in the new millennium, 8:236–239, 2003.

[133] Lotfi Asker Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1):3–28, 1978.

[134] A. M. Zanchettin and P. Rocco. Path-consistent safety in mixed human-robot collaborative manufacturing
environments. In 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 1131–1136, Nov 2013.

[135] A. M. Zanchettin and P. Rocco. Probabilistic inference of human arm reaching target for effective human-
robot collaboration. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6595–6600, Sept 2017.

[136] Andrea Zanchettin, Andrea Casalino, Luigi Piroddi, and Paolo Rocco. Prediction of human activity patterns
for human-robot collaborative assembly tasks. IEEE Transactions on Industrial Informatics, 2018.

[137] Alessandro Zanella, Alessandro Cisi, Marco Costantino, Massimo Di Pardo, Giorgio Pasquettaz, and Giulio
Vivo. Criteria definition for the identification of HRC use cases in automotive manufacturing. Procedia
Manufacturing, 11:372–379, 2017.

[138] L. Zhang, J. Sturm, D. Cremers, and D. Lee. Real-time human motion tracking using multiple depth cameras.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2389–2395, Oct 2012.

[139] Zhijun Zhang, Aryel Beck, and Nadia Magnenat-Thalmann. Human-like behavior generation based on head-
arms model for robot tracking external targets and body parts. IEEE transactions on cybernetics, 45(8):1390–
1400, 2015.

215

	Introduction and State of the Art
	I Understanding the human behaviour
	Preamble
	Understanding the human intentions
	Estimating the current intended goal
	Background
	Proposed approach
	Operator awareness through intention recognition

	Segmenting the human actions by analysing the upper body motion
	Evolving factor graphs for segmenting the human actions
	Modelling the correlation existing between the observations and the human actions
	Modelling the sequence of actions
	Segmenting the actions on a fixed window of observations
	Segmenting the actions on evolving windows
	Tuning of the parameters

	Experiments
	Results

	Predicting the future activities
	Higher Order Markov Model
	Suffix Tree
	The predictive model
	Comparison of the proposed predictive models

	Evaluating waiting times
	Performance comparison
	Use case a

	II Assistive scheduling
	Scheduling of the robotic actions
	Petri Nets as scheduling tools
	Temporal Petri Nets: main concepts
	Reachability Tree

	Task specification
	Modeling robot actions
	Modeling human actions
	Modelling collaborative actions
	Modelling mobile robots

	Scheduling approaches
	Receding horizon scheduling
	Best scenario approach
	Description of the use case
	Selection of the best plan
	Remarks

	Monte Carlo scheduling
	Selection of the best plan
	Off line simulations

	Fuzzy scheduling
	Selection of the best plan

	Validating experiments
	Use case a
	Use case b
	Use case c

	III Motion control of cobots
	Safe control of cobots
	The reactive approach
	Background about Swept Volumes generation
	Gaussian Processes for Swept Volumes generation
	Experiments

	The proactive approach
	Modelling the human-robot collaboration
	Probabilistic description of the human motion
	Proactive path planning
	Experiments

	Occlusions handling
	Representation of the human pose
	Dealing with occlusions in the human silhouette
	Single point tracking
	Human pose tracking
	Experiments

	Conclusions
	Appendices
	Generalities about learning
	Expectation Maximization
	Learning of Gaussian Mixture Models

	Factor graphs
	The message passing algorithm
	Learning the weight parameters
	Learning structures with shared weights

	Fuzzy theory
	Gaussian Processes
	Scalar case
	Vectorial case

	Bibliography

