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Abstract

In this thesis, we present a numerical approximation of Darcy’s flow through a fractured

porous medium which employs discontinuous Galerkin methods on polytopic grids. Our

method is very flexible from the geometrical point of view, being able to handle meshes

made of arbitrarily shaped elements, with edges/faces that may be in arbitrary number

(potentially unlimited) and whose measure may be arbitrarily small. Our approach is

then very well suited to tame the geometrical complexity featured by most of applications

in the computational geoscience field. We adopt a model for single-phase flows that treats

fractures as a (d − 1)-dimensional interfaces between two d-dimensional subdomains,

d = 2, 3. In the model, the flow in the porous medium (bulk) is assumed to be governed

by Darcy’s law and a suitable reduced version of the law is formulated on the surface

modelling the fracture. The two problems are then coupled through physically consistent

conditions. For simplicity, in the first part of the thesis, we consider the case where the

porous medium is cut by a single, non-immersed fracture. We take into account all the

possible combinations of primal/primal, mixed/primal, primal/mixed and mixed/mixed

formulations for the Darcy’s law describing the flow in the bulk and fracture problems,

respectively. In particular, the primal discretizations are obtained using the Symmetric

Interior Penalty DG method, and the mixed discretizations using the Local DG method,

both in their generalization to polytopic grids. We perform a unified analysis, based on the

flux formulation, of all the derived combinations of DG discretizations, where the coupling

conditions between bulk and fracture are imposed through a suitable definition of the

numerical fluxes on the fracture faces. We prove well-posedness and derive a priori hp-error

estimates in a suitable (mesh-dependent) energy norm. Next, we extend the primal-primal

formulation to the case of networks of intersecting fractures, supplementing the model with

conditions prescribing pressure continuity and flux conservation along the intersections.

Both the bulk and fracture discretizations are obtained employing the SIPDG method
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extended to the polytopic setting, the key point to obtain a DG discretization being

the generalization of the concepts of jump and average at the intersection. We prove

the well-posedness of the discrete formulation and perform an error analysis obtaining a

priori hp-error estimates. All our theoretical results are validated performing numerical

tests with known analytical solution. Moreover, we consider more realistic configurations

involving totally immersed networks of fractures. Finally, we briefly explore the case

where the position of the fractures is uncertain and may be described by a stochastic

parameter. We present some preliminary numerical results that employ a stochastic

collocation approach.
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Sommario

In questa tesi presentiamo un’approssimazione numerica per il flusso di Darcy attraverso

un mezzo poroso fratturato, che utilizza i metodi discontinuous Galerkin su griglie

poligonali. Il nostro metodo è molto flessibile dal punto di vista geometrico, essendo in

grado di gestire griglie composte da elementi di forma arbitraria, con un numero qualsiasi

(potenzialmente illimitato) di lati/facce, la cui misura può essere arbitrariamente piccola.

Il nostro approccio risulta quindi molto efficace nel gestire la complessità geometrica che

caratterizza la maggior parte delle applicazioni nell’ambito delle geoscienze. Il modello

per flussi monofase adottato considera le fratture come interfacce (d− 1)-dimensionali

tra due sottodomini d-dimensionali, d = 2, 3. Il modello assume che il flusso nel mezzo

poroso (bulk) sia governato dalla legge di Darcy e che una opportuna versione ridotta

della legge sia formulata sulla superficie che descrive la frattura. I due problemi sono poi

accoppiati tramite condizioni fisicamente consistenti. Per semplicità, nella prima parte

della tesi, consideriamo il caso in cui il mezzo poroso è tagliato da una singola frattura

non immersa. Prendiamo in considerazione tutte le possibili combinazioni di formulazioni

per il problema di Darcy che descrive il flusso nel mezzo poroso e lungo la frattura,

cioè primale/primale, mista/primale, primale/mista e mista/mista. In particolare, le

discretizzazioni primali sono ottenute con il metodo DG Symmetric Interior Penalty e

le discretizzazioni miste con il metodo Local DG, entrambi nella loro generalizzazione

a griglie poligonali/poliedriche. Svolgiamo un’analisi unificata di tutte le combinazioni

di discretizzazioni DG derivate, nella quale le condizioni di accoppiamento tra bulk e

frattura sono imposte tramite una opportuna definizione dei flussi numerici sulle facce di

frattura. Proviamo la loro buona posizione e deriviamo stime hp dell’errore a priori in una

norma dell’energia opportuna (dipendente dalla mesh). Successivamente, estendiamo la

formulazione primale-primale al caso di network di fratture che si intersecano tra loro. A tal

fine estendiamo il modello fisico aggiungendo delle condizioni che impongono la continuità
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della pressione e la conservazione del flusso lungo le intersezioni. Sia la discretizzazione

del problema nel bulk, che quella del problema lungo le fratture sono ottenute utilizzando

il metodo SIPDG esteso al setting poligonale. Il punto fondamentale per ottenere una

discretizzazione DG del problema risiede nella opportuna generalizzazione dei concetti

di salto e media alle intersezioni. Dimostriamo la buona posizione della formulazione

discreta e svolgiamo un’analisi dell’errore ottenendo stime a priori hp. Tutti i nostri

risultati teorici sono validati tramite test numerici con soluzione analitica nota. Inoltre

consideriamo anche configurazioni più realistiche che coinvolgono network di fratture che

presentano intersezioni e sono totalmente immersi nel dominio computazionale. Infine,

esploriamo brevemente il caso in cui la posizione delle fratture è affetta da incertezza e

può essere descritta tramite un parametro stocastico. In particolare presentiamo alcuni

risultati numerici preliminari dove utilizziamo un approccio di tipo collocazione stocastica.
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Introduction

Many Geophysical and Engineering applications, including, for example, fluid-structure

interaction, crack and wave propagation problems, and flow in fractured porous media, are

characterized by a strong complexity of the physical domain, possibly involving thousands

of fault/fractures, heterogeneous media, moving geometries/interfaces and complex

stratigraphies and topographies. Whenever classical Finite-Element-based approaches are

employed to discretize the underlying differential model, the process of mesh generation

can represent the bottleneck of the whole simulation, as classical finite elements only

support computational grids composed by tetrahedral/hexahedral/prismatic elements.

To overcome this limitation, in the last decade a wide strand of literature focused on the

design of numerical methods that support computational meshes composed of general

polygonal and polyhedral (polytopic, for short) elements. In the conforming setting,

we mention for example the Composite Finite Element Method that was developed in

[94, 93]; the Polygonal Finite Element Method [115] and the eXtended Finite Element

Method (XFEM) [81, 116, 88], which achieve conformity by enriching/modifying the

standard polynomial finite element spaces; the Mimetic Finite Difference (MFD) method

[96, 56, 54, 55, 39] and its evolution, the Virtual Element Method (VEM), introduced

in [38, 40, 7, 8] (see also [107, 102, 104, 103] for some recent applications), which

overcome the difficulty in handling non-standard shape functions and the resulting

increase in computational effort by only using the degrees of freedom of the added

non-polynomial functions; and the Hybrid High-Order (HHO) method [79, 77, 78, 80],

which is formulated in terms of discrete unknowns attached to mesh faces and cells

employing local reconstruction operators and a local stabilization term. In the setting of

non-conforming/discontinuos polygonal methods, we mention, for example, Composite

Discontinuous Finite Element methods [16, 17], which exploit general meshes consisting

of agglomerated elements; Hybridizable Discontinuous Galerkin methods [68, 69, 70, 71],
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Introduction

where additional unknowns are introduced on the boundary of each element so that the

solution may be recovered solving many local problems; non-conforming VEM [22, 28, 62],

which, unlike the conforming case, provides in one-shot a nonconforming approximation of

any degree for any spatial dimension and any element shape; Gradient Schemes [83] and

the polytopic Discontinuous Galerkin (polyDG) method[5, 34, 35, 33, 61, 59, 58, 19, 6, 60],

which will be introduced below.

Within this framework, this thesis focuses on the problem of modelling the flow in a

fractured porous medium. This problem has received increasing attention in the past

decades, being fundamental in many energy or environmental Engineering applications,

such as water resources management, oil migration tracing, isolation of radioactive waste

and groundwater contamination, for example. In all these applications, the porous

medium often features regions, typically called fractures, that are characterized both by

a different porous structure and by a very small width compared to their length and to

the size of the domain. The first feature implies that fractures have a very strong impact

on the flow, since they can possibly act as barriers for the fluid (when they are filled

with low permeable material), or as preferential paths (when their permeability is higher

than that of the surrounding medium). The second feature entails the need for a very

large number of elements for the discretization of the fracture layer and, consequently, a

high computational cost. For this reason, the task of effectively modelling the interaction

between the system of fractures and the porous matrix is particularly challenging. One

popular modelling choice consists in a reduction strategy, so that fractures are treated

as (d− 1)-dimensional interfaces between d-dimensional porous matrices, d = 2, 3. The

development of this kind of reduced models, which can be justified in case of fractures

with very small width, has been addressed for single-phase flows in several works, see e.g.

[2, 1, 101, 89]. In the first part of the thesis we will refer mainly to the model described

in [101], see also [74, 15], which considers the simplified case of a single, non-immersed

fracture. Here, the flow in the porous medium (bulk) is assumed to be governed by

Darcy’s law and a suitable reduced version of the law is formulated also on the surface

modelling the fracture. Physically consistent coupling conditions are then added to

account for the exchange of fluid between the fracture and the porous medium. We

remark that this model is able to handle both fractures with low and large permeability.

The first version of this model has been introduced in [2, 1] under the assumption of large
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Introduction

permeability in the fracture. In [101] it has been generalised to handle also fractures

with low permeability. Moreover, its extension to the case of two-phase flows has been

addressed in [91, 97], while the case where the porous medium is cut by a totally immersed

fracture has been considered in [3]. Finally, the model may be generalized in order to

handle network of intersecting fractures. In this case, some physical conditions need to

be added to describe the behaviour of the flow at the intersection points/lines. A possible

choice is to impose pressure continuity and balance of fluxes as in [87, 51]. Other, more

general conditions, where the angle between fractures is taken into account and jumps of

pressure across the intersection are allowed, can be found, for example, in [86, 112].

Even if the use of this kind of dimensionally reduced models avoids the need for ex-

tremely refined grids inside the fracture domains, in realistic cases, the construction of

a computational grid aligned with the fractures is still a major issue. For example, a

fractured oil reservoir can be cut by several thousands of fractures, which often intersect,

create small angles or are nearly coincident [87]. Various numerical methods have been

employed in the literature for the approximation of this coupled bulk-fracture model.

Roughly speaking, they can be classified depending on the interaction between the bulk

and the fracture meshes: the computational grid can be either aligned or not-aligned

with the fracture network. In more traditional approaches the bulk meshes are usually

chosen to be aligned with the fractures and to be made of simplicial elements. Some

examples can be found in [2, 89, 101], where mixed finite element schemes have been

employed for the discretization. However, in realistic cases, the geometrical conformity of

the bulk mesh to the fracture can either lead to low-quality elements or to very fine grids,

and the process of grid generation might become unaffordable from the computational

view point, especially in three-dimensions. An alternative strategy consists in the use of

not-aligned discretizations, where the fractures are allowed to arbitrarily cut the bulk

grid. This allows for the choice of a fairly regular mesh in the bulk. We refer in particular

to [74, 91, 85], where an approximation employing XFEM has been proposed and to the

recent work [57], where the use of the cut Finite Element Method has been explored.

We also mention the promising framework, based on an optimization procedure, to treat

flows in systems of fracture networks introduced in [46, 47, 48, 49].

A good compromise with respect to the above issues is represented by methods based

on computational meshes consisting of general polytopic elements (polygons in two

dimensions and polyhedra in three dimensions). First a (possibly structured) bulk grid is

xv



Introduction

Figure 1: A two-dimensional example of fracture network cutting a Cartesian grid

generated independently of the fracture networks, secondly the elements are cut according

to the fracture geometry see Figure 1 for a representative example in 2D. The above

approach leads to a grid that

(i) is aligned with the fracture network;

(ii) contains possibly arbitrarily shaped elements in the surrounding of fractures;

(iii) is regular far from fractures.

Beyond the simplicity of generating the computational grid based on employing the

previously described approach, one of the main advantages of polytopal decompositions

over standard simplicial grids is that, even on relatively simple geometries, the average

number of elements needed to discretize complicated domains is lower [16, 17], without

enforcing any domain approximation. This advantage becomes even more evident

whenever the domain presents complex geometrical features (large number of fractures,

fractures intersecting with small angles, etc.) and the bulk grid is chosen to be matching

with the interfaces. In line with the previous discussion, various numerical methods

supporting polytopic elements have been employed in the literature for the approximation

of the coupled bulk-fracture problem. For example, a mixed approximation based on the

use of MFD method has been explored in [15] and generalized to networks of fractures in

[87]; in [44, 45, 43] a framework for treating flows in Discrete Fracture Networks based

on VEM has been introduced, and in [65] the HHO method has been employed.

In this thesis we aim at employing Discontinuous Galerkin (DG) finite elements on

polytopic grids to discretize the coupled bulk-fracture problem stemming from the
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modelling of flows in fractured porous media. The inherited flexibility of DG methods in

handling arbitrarily shaped, non-necessarily matching, grids and elementwise variable

polynomial orders represents, in fact, the ideal setting to handle such kind of problems

that typically feature a high-level of geometrical complexity. Discontinuous Galerkin

methods were first introduced by Reed and Hill in the early 1970s for the discretization

of hyperbolic problems [110]. Right afterward they were successfully proposed for dealing

with the approximation of elliptic and parabolic problems. We refer in particular to the

early works by Baker [32], Douglas [82], Wheeler [119] and Arnold [26], which contributed

to the development of the interior penalty method. DG methods were then employed

for the approximation of problems arising from a wide range of applications: various

examples can be found, for example, in [36, 64, 67, 52, 95, 111, 76]. Over the last 20 years,

alongside the development of High Performance Computing technologies, tremendous

progress has been made on the study of both the analytical and computational aspects

of DG methods [60]. In particular, since they employ local polynomial spaces defined

elementwise without any continuity constraint, DG methods feature a high-level of

intrinsic parallelism. Moreover, the local nature of the test spaces allows elementwise

variable polynomial orders (p-refinement), which, together with h-refinement, enables

more accurate approximation of solutions that vary in character from one part of

the domain to another (hp-adaptivity). Furthermore, the lack of continuity between

neighbouring elements allows for the employment of extremely broad families of meshes,

featuring hanging nodes or made of general polygons or polyhedra. The first effort

to extend DG methods to polytopic meshes can be found in [5]. The key idea for

dealing with arbitrarily shaped elements is to construct a basis in the physical frame

without resorting to the use of local element mappings to a given reference element.

The local polynomial discrete space can then be defined, for example, making use of

a bounding box of each element, so that, spaces of polynomials of total degree p may

be employed, irrespective of the shape of the element [61]. In particular, this implies

that the dimension of the local polynomial space and thus the order of convergence

of the method is independent of the element shape [60]. This strategy has been first

proposed by Cangiani et al. in [61, 59], extending the techniques developed by Bassi et

al. in [35] and by Antonietti, Giani and Houston in [16, 17]. In [35], Bassi et al. applyed

DG methods to meshes consisting of general agglomerated elements, while in [16, 17],

Antonietti, Giani and Houston proposed the so-called composite DG methods, which
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are a DG discretization of elliptic problems posed on domains featuring a very large

number of local geometrical components or microstructures. The interior penalty DG

method proposed by Cangiani et al. in [61, 59] (see also [6] for a review) is characterized

by a careful choice of the discontinuity penalization parameter, which allows for the

use of meshes made of polytopic elements whose edges/faces may have arbitrarily

small measure compared to their diameter. In this thesis we will employ a further

generalization of this scheme, described in [58, 19, 60] (see also [23, 4] for an application

to elastodynamics and elasto-acoustic problems and [10] for a review on geophysical

applications), which allows elements to possess faces not only with degenerating measure,

but also in unlimited number. Note that this is made possible by an assumption that

may be seen as the generalization of the standard shape-regularity property to polytopic

domains. Finally, we mention that the capability of DG methods of handling general

polytopic meshes provides great advantages also in the context of multilevel linear solvers,

such as Schwarz-based domain decomposition preconditioners and multigrid schemes.

Indeed, the key issue of constructing a hierarchy of coarser meshes, starting from a given

fine mesh, may be naturally solved by agglomerating fine elements into coarser polytopes.

Regarding Schwarz-based domain decomposition preconditioners, we refer in particular

to [18, 84, 100, 98] and to the recent work [21]. In the multigrid context, we mention

[19, 25] in the case of nested polytopic grids, and [24] for the non-nested case.

Finally, we conclude remarking that the intrinsic geometric flexibility of DG methods

illustrated above is not the only motivation to employ DG methods for addressing the

problem of approximating the flow in a fractured porous medium. In fact, the choice

of employing them arises quite spontaneously in view of the discontinuous nature of

the solution at the matrix-fracture interface. Moreover, as previously described, the

differential model that we adopt, which comes from [101], is based on Darcy’s equations

for the bulk and fracture flows, together with suitable conditions that couple the two

problems at the interface. We will show that these coupling conditions can be naturally

reformulated using jump and average operators, which are one of the basic tools for the

construction of DG methods. This will enable us to efficiently handle the coupling of the

two problems, which will be indeed naturally embedded in the variational formulation.

In the following we provide a brief description of the contents of each chapter of the

thesis.
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• In Chapter 1 we introduce the notation and all the basic tools needed for dealing with

the development and the analysis of polytopic DG approximations. In particular,

we summarize the main theoretical results concerning this class of methods, see

[61, 59, 6, 58, 60], for example. Following [58, 60], we start from the generalization

of the standard shape-regularity property to polytopic elements and we introduce

suitable trace and inverse inequalities and polynomial approximation properties

of the underlying discrete spaces. These results, together with a specific choice

of the interior penalty parameter, represent the main tools for handling elements

with an unlimited number of faces/edges, which may also have arbitrarily small

measure compared to the diameter of the element. The content of this chapter form

the basis for the theoretical analysis of the discretization schemes for the flow in

fractured porous media presented in the rest of the thesis.

• In Chapter 2 we start addressing the problem of discretizing the flow in a fractured

porous medium by considering the simplest case, where one single non-immersed

fracture divides the porous medium in two halves. We consider the primal for-

mulation of Darcy’s law for modelling the flow both in the bulk and along the

fracture, and we propose a discretization that combines a DG approximation for

the problem in the bulk, with a conforming finite element approximation in the

fracture. For the DG approximation in the bulk we employ the Symmetric In-

terior Penalty discontinuous Galerkin (SIPDG) method [119, 26], generalized to

the polytopic setting that we have introduced in Chapter 1 taking as a reference

[61, 59, 6, 58, 19, 60]. Regarding the problem in the fracture, the use of standard

conforming finite elements is made here just for the sake of simplicity, so that

we can put better focus on the polyDG-discretization of the problem in the bulk

and on the coupling of the two problems. A polyDG-based discretization of the

fracture problem will be considered in the next chapters. Here, we analyse the

resulting method, prove its well-posedness and derive a priori hp-error estimates in

a suitable (mesh-dependent) energy norm. Moreover, we present some numerical

experiments in a two-dimensional setting, with the aim of validating the theoretical

error estimates. Finally, we test the capability of the method of handling more

complicated geometries, including networks of partially immersed fractures.

The results of this chapter are original, and have been published in [12].
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• In Chapter 3 we extend the results obtained in Chapter 2 (see also [12]), where the

mathematical model (and the corresponding discretization based on PolyDG meth-

ods) was in a primal setting for both the bulk and fracture problems. Indeed, when

dealing with the approximation of Darcy’s flow there are two possible approaches:

primal and mixed. The primal approach considers a single-field formulation with

the pressure field of the fluid as only unknown. The mixed approach describes the

flow not only through the pressure field, but also through an additional unknown

representing Darcy’s velocity, which is of primary interest in many Engineering

applications. The primal setting has the advantage of featuring less degrees of

freedom and leads to a symmetric positive definite system algebraic system of

equations that can be efficiently solved based on employing multigrid techniques.

In this case, Darcy’s velocity is afterwards reconstructed taking the gradient of the

computed pressure and multiplying it by the permeability tensor. However, this

process usually entails a loss of accuracy and does not guarantee mass conservation

[105, 53]. For this reason, the mixed setting is sometimes preferred. In this case

Darcy’s velocity is directly computed, so that a higher degree of accuracy is achieved,

together with local and global mass conservation. However, the drawback of this

approach is the complexity of the resulting scheme, which leads to a generalized

saddle point algebraic system of equations.

From the above discussion we may infer that, according to the desired approximation

properties of the model, one may resort to either a primal or mixed approximation

for the problem in the bulk, as well as to a primal or mixed approximation for the

problem in the fracture. For this reason, the aim of Chapter 3 is to design and

analyze, in the unified framework of [27] based on the flux-formulation, all the pos-

sible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed

formulations for the bulk and fracture problems, respectively. In particular, the

primal discretizations are obtained using the Symmetric Interior Penalty discon-

tinuous Galerkin method [119, 26], whereas the mixed discretizations are based

on employing the local DG (LDG) method of [72], both in their generalization

to polytopic grids [61, 59, 6, 58, 60]. Moreover, the coupling conditions between

bulk and fracture are imposed through a suitable definition of the numerical fluxes

on the fracture faces. Such an abstract setting allows to analyse theoretically at

the same time all the possible formulations. We perform a unified analysis of
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Figure 2: Example of network of intersecting fractures and corresponding normal vectors for d = 3.

all the derived combinations of DG discretizations for the bulk-fracture problem.

We prove their well-posedness and derive a priori hp-version error estimates in a

suitable (mesh-dependent) energy norm. Finally, we present numerical experiments

assessing the validity of the theoretical error estimates and testing and comparing

the practical performance of the proposed formulations.

All the results presented in this chapter are original and are contained in [14].

• In Chapter 4, we consider again the primal-primal setting and we focus on extending

our formulation to the case of networks of intersecting fractures. To this aim, we

supplement our mathematical model [101] with some suitable physical conditions

at the intersections, prescribing the behaviour of the fluid. In particular, following

[87, 51, 45], we impose pressure continuity across fractures and flux conservation,

the latter condition implying that no exchange of fluid between bulk and fracture

network takes place along the intersections. From the DG-discretization point of

view, the key instrument for dealing with intersections is the generalization of the

concepts of jump and average. If we assume that the fracture network may be

approximated by the union of NΓ fractures γk, each of which is a one co-dimensional

planar manifold, i.e. Γ =
⋃NΓ

k=1 γk, the intersections correspond to lines when d = 3

and to points when d = 2. Let us focus for simplicity on the case d = 3, see Figure 2

for an example. Here, the intersection line is denoted by I∩ and each fracture γk,

k = 1, 2, 3, 4, is characterised by the outward normal vector τ k at the intersection,

which belongs to the plane containing the fracture. In order to describe the pressure

field in all the network, we employ the global variable pΓ = (p1
Γ, . . . , p

NΓ
Γ ), defined

in a suitable product space of all the local fracture spaces. Our aim is to introduce
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some operators that are able to capture the behaviour of the function pΓ across

the intersection line, taking into account the contribution from all the fractures,

similarly to how classic jump and average operators [27] describe the discontinuity

of a piecewise-continuous function across elemental interfaces. The main difference

with respect to the standard case is that the normal vectors, contained into the

definition of the operators, are not aligned. This is related to the linear DG

approximation of elliptic PDEs on surfaces presented in [75], then extended to

high order in [9]. Here, the surface is approximated by a piecewise linear surface

composed of planar triangles, so that a new definition of jump and average operators

is needed, to take into account the fact that the outward normal vectors of two

neighbouring triangles are not, in general, opposite. Our definition is a further

generalization, since it considers the intersection of an arbitrary number of planar

surfaces.

Using the newly defined jump and average operators we are able to define a DG

approximation for the problem in the bulk combined with a DG approximation for

the problem in the fracture network, where the conditions at the intersection are

imposed “in the spirit of DG methods ”. In particular, this means that continuity

is enforced penalizing the jump of the pressure (after a suitable definition of the

penalization coefficient at the intersection), while balance of fluxes is imposed

naturally, similarly to how homogeneous Neumann boundary conditions are usually

enforced. Both the bulk and fracture discretizations are obtained employing the

SIPDG method extended to the polytopic setting. In this chapter we also prove

the well-posedness of the method and derive a priori hp-version error estimates in

a suitable (mesh-dependent) energy norm. Finally, we present some preliminary

numerical experiments with known analytical solution assessing the validity of the

theoretical error estimates and a more realistic configuration involving a totally

immersed network of fractures.

All the results presented in this chapter are original and are contained in [13].

• In Chapter 5 we briefly explore the case where the position of the fractures is

uncertain and may be described by stochastic parameters. The characterization of

fluid dynamics in geological media is, indeed, a classical field for the application of

Uncertainty Quantification (UQ) methodologies, due to the difficulty in obtaining

precise measurements. In the context of fractured porous media, typical quantities
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that may be affected by uncertainty are the actual position and geometry of the

fractures, so that a description of these features is usually only available in the

form of probabilistic distributions. We start from the observation that, due to the

discontinuous nature of the solution at the bulk-fracture interface, the state variables

(pressure or Darcy’s velocity) may undergo discontinuities also in their dependence

on the stochastic parameters describing the fracture position. Since the accuracy of

standard UQ techniques (in particular, we will consider the stochastic collocation

method of [29]) typically deteriorates in the presence of discontinuities with respect

to the random variables, we take inspiration from the approach of [73] to propose

a technique to avoid this drawback. In particular, we introduce a mapping to a

reference domain, where all fractures are aligned, so that continuity with respect

to the random variables may be recovered. We present some preliminary results

showing that, applied to a simple test case, where the position of the fracture is

determined by a single stochastic parameter, our technique is effective to recover

the convergence properties of the stochastic collocation method of [29].

The preliminary results presented in this chapter are original and are contained in

[11].
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1 | hp-version Polytopic Discontinu-

ous Galerkin methods

In this chapter we introduce the notation and all the theoretical tools needed for dealing

with polytopic Discontinuous Galerkin approximations. In particular, we summarize the

main theoretical results concerning this class of methods contained in [61, 59, 6, 58, 60],

where an hp-version interior penalty DG method for the numerical solution of elliptic

problems on polytopic meshes has been proposed and analysed. The use of grids made

of general polytopic elements presents challenges on a number of points. Indeed, in

contrast to the case when standard-shaped elements are employed, polytopes may

admit an arbitrary number of faces/edges and the measure of the faces/edges may

potentially be much smaller than the measure of the element itself. In [61, 59, 6] it is

assumed that the number of edges/faces of each mesh element is uniformly bounded. In

[58, 60] this assumption is no longer required (i.e., elements with an arbitrary number

of possibly degenerating faces/edges are admitted). However, this comes at the cost

of adding an assumption (see Assumption 1.1.1 below) that may be regarded as the

natural generalization to polytopic grids of the classical shape-regularity assumption

[60]. Here, we adopt the setting of [58, 60]. In particular, in Section 1.1, we introduce

the notation related to the discretization of domains using polytopic elements and we

state the regularity assumptions on the meshes. In Section 1.2 we define the DG discrete

spaces and introduce standard jump and average operators. Finally, in Section 1.3,

starting from the mesh assumption of Section 1.1, we state trace inverse inequalities and

approximation results for general polytopic elements that are sensitive to the type of

face degeneracy described above. We also remark that the capability of the method of

handling faces with arbitrarily small measure is intimately related to the correct choice

of the discontinuity-penalization function, which will be introduced in the next chapters.
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Chapter 1. Polytopic DG methods

We will employ the following notation. For an open, bounded domain D ⊂ Rd, d = 2, 3,

we denote by Hs(D) the standard Sobolev space of order s, for a real number s ≥ 0.

For s = 0, we write L2(D) in place of H0(D). The usual norm on Hs(D) is denoted by

|| · ||Hs(D) and the usual seminorm by | · |Hs(D). We also introduce the standard space

Hdiv(D) = {v : D → Rd : ||v||L2(D) + ||∇ · v||L2(D) <∞}. Given a decomposition of the

domain into elements Th, we will denote by Hs(Th) the standard broken Sobolev space,

equipped with the broken norm || · ||s,Th . Furthermore, we will denote by Pk(D) the space

of polynomials of total degree less than or equal to k ≥ 1 on D. The symbol . (and &)

will signify that the inequalities hold up to multiplicative constants that are independent

of the discretization parameters, but might depend on the physical parameters. If both

. and & hold, we will write ≈.

1.1 Grid assumptions

First, following [61, 59, 6], we introduce the notation related to the discretization of the

domains by means of polytopic meshes. We consider classes of meshes Th made of disjoint

open polygonal/polyhedral elements E. For each element E ∈ Th, we denote by |E| its

measure, by hE its diameter and we set h = maxE∈Th hE. With the aim of handling

hanging nodes, we introduce the concept of mesh interface, defined as the intersection of

the (d− 1)-dimensional facets of two neighbouring elements. We need now to distinguish

between the case when d = 3 and d = 2:

• when d = 3, each interface consists of a general polygon, which we assume may be

decomposed into a set of co-planar triangles. We assume that a sub-triangulation

of each interface is provided and we denote the set of all these triangles by Fh. We

then use the terminology face to refer to one of the triangular elements in Fh;

• when d = 2, each interface simply consists of a line segment, so that the concepts

of face and interface are in this case coincident. We still denote by Fh the set of all

faces.

Note that Fh is always defined as a set of (d− 1)-dimensional simplices (triangles or line

segments).

2



1.1. Grid assumptions

In order to introduce the DG formulation, it is useful to further subdivide the set Fh into

Fh = F Ih ∪ FBh

where F Ih is the set of interior faces and FBh is the set of faces lying on the boundary

of the domain ∂Ω. Moreover, if ∂Ω is split into the Dirichlet boundary ∂ΩD and the

Neumann boundary ∂ΩN , we will further decompose the set FBh = FDh ∪ FNh , where FDh
and FNh are the boundary faces contained in ∂ΩD and ∂ΩN , respectively. Implicit in this

definition is the assumption that the mesh Th is conforming to the partition of ∂Ω.

Finally, given an element E ∈ Th, for any face F ⊂ ∂E, with F ∈ Fh, we define nF as

the unit normal vector on F that points outward of E.

Next, we outline the key assumptions that the polytopic mesh Th needs to satisfy in order

to derive suitable inverse inequalities and approximation results.

Definition 1.1.1. A mesh Th is said to be polytopic-regular if, for any E ∈ Th, there

exists a set of nE non-overlapping (not necessarily shape-regular) d-dimensional simplices

{SiE}
nE
i=1 contained in E, such that F̄ = ∂Ē ∩ S̄iE, for any face F ⊆ ∂E, and

hE .
d|SiE|
|F |

, i = 1, . . . , nE, (1.1)

with the hidden constant independent of the discretization parameters, the number of

faces of the element nE, and the face measure.

We remark that the union of simplices SiE does not have to cover, in general, the whole

element E, that is ∪nEi=1S̄
i
E ⊆ Ē, see Figure 1.1 for an example. In the following, for

simplicity and clarity we shall write SFE instead of SiE. We also underline that this

definition does not give any restriction on the number of faces per element, nor on their

measure. In particular, it allows the size of a face |F | be arbitrarily small compared to

the diameter of the element hE, provided that the height of the corresponding simplex

SFE is comparable to hE. Figure 1.1 shows two examples of elements belonging to a

polytopic-regular mesh, while Figure 1.2 shows an element which does not satisfy the

definition. We refer to [60] for more details.

Assumption 1.1.1. We assume that the mesh Th is polytopic-regular.
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Chapter 1. Polytopic DG methods

Figure 1.1: Two examples of polytopic-regular elements as
in Definition 1.1.1. Here, all the triangles SFE (coloured in teal)
have height of size comparable to the diameter hE . Note also
that the element on the right is not covered by the union of
the simplices.

F

Figure 1.2: Example of an el-
ement that violates polytopic-
regularity: the shape of the
polygon does not allow for the
definition of a triangle SFE with
base F whose height is compa-
rable to the diameter hE .

This assumption will allow us to state the inverse trace estimate in Lemma 1.3.2 below.

The next definition and assumption are instrumental for the validity of the approximation

results contained in Lemma 1.3.3 below.

Definition 1.1.2. [61, 59, 6, 58, 60] A covering T# = {TE} related to the polytopic

mesh Th is a set of shape-regular d-dimensional simplices TE, such that for each E ∈ Th,
there exists a TE ∈ T# such that E ⊂ TE.

Assumption 1.1.2. [61, 59, 6, 58, 60] There exists a covering T# of Th (see Definition

1.1.2) and a positive constant OΩ, independent of the mesh parameters, such that

max
E∈Th

card{E ′ ∈ Th : E ′ ∩ TE 6= ∅, TE ∈ T# s.t. E ⊂ TE} ≤ OΩ,

and hTE . hE for each pair E ∈ Th and TE ∈ T#, with E ⊂ TE.

Note that the mesh-regularity is assumed for the covering T#, and not for the mesh Th.
Assumption 1.1.2 implies that when the computational mesh Th is refined, the amount of

overlap present in the covering T# remains bounded.
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1.2. DG discrete spaces

1.2 DG discrete spaces

Given a polytopic mesh Th, partition of the domain Ω, the corresponding scalar and

vector-valued discontinuous finite element spaces are defined as

QDG
h = {qh ∈ L2(Ω) : qh|E ∈ PkE(E) ∀E ∈ Th}, kE ≥ 1∀E ∈ Th,

WDG
h = {v ∈ [L2(Ω)]d : v|E ∈ [PkE(E)]d ∀E ∈ Th}, kE ≥ 1∀E ∈ Th.

Remark 1. From the implementation point of view, an essential feature of polyDG

methods is that the local elemental polynomial spaces can be defined in the physical

space, without the need to introduce a mapping to a reference element, as typically done

for classical FEMs. This allows DG methods to naturally deal with general polytopic

elements and with polynomial degrees varying from one element to the other. A possible

approach for the definition of the basis functions was first proposed in [61]. It is based

on the definition of the polynomial spaces over suitably defined bounding boxes of

each polytopic element. More precisely, given an element E ∈ Th, we can define (for

example) its Cartesian bounding box BE, such that the sides of BE are aligned with

the Cartesian axes and Ē ⊆ B̄E. On the Cartesian bounding box BE, we can then

define a standard polynomial space, employing, for example, tensor-product Legendre

polynomials. Finally, the polynomial basis over the general polytopic element may be

defined by simply restricting the support of the basis functions to E. We refer to [60] for

further details. We also mention that another key aspect related to the implementation

of DG methods is the design of efficient numerical integration schemes over polytopic

elements. This is still an open and active area of research and we refer in particular to

the recent work [20].

In order to efficiently deal with discontinuous functions, we now introduce the concepts

of average and jump across a face, which play a central role in the design and analysis of

all DG methods [27]. Let F ∈ F Ih be an interior face shared by the elements E1 and E2.

We define n1 and n2 to be the unit normal vectors on F pointing exterior to E1 and E2,

respectively. Then, for a (regular enough) scalar-valued function q and a (regular enough)

vector-valued function v, we define the standard jump J·Kand average {·} operators across

5



Chapter 1. Polytopic DG methods

F as

{q} =
1

2
(q1 + q2) JqK = q1n1 + q2n2,

{v} =
1

2
(v1 + v2) JvK = v1 · n1 + v2 · n2,

(1.2)

where the subscript i = 1, 2 denotes the trace on F of the functions restricted to Ei. Note

that the jump of a scalar-valued function is a vector parallel to the normal, while the

jump of a vector-valued function is a scalar quantity. Note also that these definitions do

not depend on assigning an ordering to the elements Ei.

For future use, we remark that on every F ∈ F Ih we can use the definition of jump and

average to write

JqvK = JvK{q}+ {v} · JqK. (1.3)

Moreover, if, for a boundary face F ∈ FBh , we extend the definitions of jump and average

as

JqK = qnF , {v} = v, (1.4)

identity (1.3) implies the following well-known formula [26]:

∑
E∈Th

∫
∂E

qv · nE =

∫
FIh∪F

B
h

{v} · JqK +

∫
FIh

JvK{q}, (1.5)

where we have used the compact notation
∫
Fh

=
∑

F∈Fh

∫
F

.

1.3 Inverse estimates and polynomial approximation

on polytopic meshes

Trace inverse estimates and hp-interpolation bounds are the tools at the base of stability

and error analysis. In particular, Lemma 1.6 is required to establish the stability of the

DGFEM approximation, while the approximation Lemma 1.3.3 is instrumental for the

convergence analysis.

1.3.1 Trace inverse estimates

Trace inverse estimates bound the norm of a polynomial on an element’s face/edge by

the norm on the element itself. First, we recall a classical hp-version inverse estimate

6



1.3. Inverse estimates and polynomial approximation on polytopic meshes

valid for generic simplices [118].

Lemma 1.3.1. Let S ⊂ Rd be a simplex, and let q ∈ Pk(S). Then, for each F ⊂ ∂S we

have

||q||2L2(F ) ≤
(k + 1)(k + d)

d

|F |
|S|
||q||2L2(S).

The inverse estimate for polytopic elements is then obtained under the polytopic-regular

assumption 1.1.1 as in [58], Lemma 4.1, and [19, 60]. The proof is reported here for

completeness.

Lemma 1.3.2. Let E be a polygon/polyhedron satisfying Assumption 1.1.1 and let

q ∈ PkE(E). Then, we have

||q||2L2(∂E) .
k2
E

hE
||q||2L2(E), (1.6)

where the hidden constant depends on the dimension d, but it is independent of the

discretization parameters and of the number of faces of the element.

Proof. The proof follows immediately if we apply Lemma 1.3.1 to each simplex SFE ⊂ E

and from Assumption 1.1.1, together with (1.1). More in detail, we have

||q||2L2(∂E) =
∑
F⊂∂E

||q||2L2(F ) . k2
E

∑
F⊂∂E

|F |
|SFE |
||q||2L2(SFE ) .

k2
E

hE
||q||2L2(

⋃
F⊂∂E S

F
E )

≤ k2
E

hE
||q||2L2(E).

Note that the estimate bounds the L2-norm of the polynomial on the whole boundary

of E, not just on one of its edges/faces. This will be of fundamental importance in the

analysis for dealing with elements with an arbitrary number of faces.

1.3.2 Approximation results

The tool at the base of the error analysis are hp-interpolation estimates. In [61, 59, 6]

standard results on simplices are extended to polytopic elements, considering appropriate

coverings and submeshes made of d-dimensional simplices (where standard results

can be applied) and using appropriate extension operators. In [58] these results are

7



Chapter 1. Polytopic DG methods

further extended in order to be successfully applied also in the case when the number of

edges/faces is unbounded. Here, we summarize the results contained in [61, 59, 6, 58, 60].

We also mention that other hp-interpolation results that do not require the introduction

of a covering for the polytopic mesh (valid in the d = 2 setting and for non-degenerate

faces) were proposed in [41, 42].

Let E : Hs(Ω)→ Hs(Rd), s ≥ 0, be the classical continuous extension operator introduced

in [113], such that E (q)|Ω = v and ||E q||Hs(Rd) . ||E q||Hs(Ω). Based on the existence of a

suitable covering of the polytopic mesh (see Definition 1.1.2)), we can state the following

approximation result:

Lemma 1.3.3. [61, 59, 6, 58] Let E ∈ Th and TE ∈ T# denote the corresponding

simplex such that E ⊂ TE (see Definition 1.1.2). Suppose that q ∈ HrE(E) is such that

E q|TE ∈ HrE(TE), for some rE ≥ 0. Then, if Th satisfies Assumption 1.1.2, given an

integer kE ≥ 0, there exists a polynomial Π̃kE
E q ∈ PkE(E) such that the following bound

holds

||q − Π̃kE
E q||Hm(E) .

hsE−mE

krE−mE

||E q||HrE (TE), 0 ≤ m ≤ rE. (1.7)

Moreover, if rE ≥ 1 + d/2,

||q − Π̃kE
E q||L2(∂E) .

h
sE−1/2
E

k
rE−1/2
E

||E q||HrE (TE). (1.8)

Here, sE = min(kE + 1, rE) and the hidden constants depend on the shape-regularity of

TE, but are independent of q, hE, kE and the number of faces per element.

Proof. See [61] for a detailed proof of (1.7) and [58] for the proof of (1.8).

Note that the fact that estimate (1.8) holds on the whole boundary ∂E is fundamental

for treating the case when the number of faces/edges is not uniformly bounded.

Remark 2. (Global approximant). If q ∈ L2(Ω) and Lemma 1.3.3 holds for all E ∈ Th,
then we can define a global approximation Π̃q ∈ QDG

h , which satisfies bounds (1.7) and

(1.8) on each E ∈ Th. Moreover, in case of uniform mesh-size and polynomial order, i.e.

if hE ≈ h and kE ≈ k for all E ∈ Th, and q ∈ Hr(Ω), with r ≥ k+ 1, the following global

bound holds:

||q − Π̃q||Hm(Th) .
hk+1−m

kr−m
||q||Hr(Ω), 0 ≤ m ≤ r.
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2 | Pressure-Pressure formulation

and its polyDG discretization

In this chapter, we present a numerical approximation of Darcy’s flow through a

porous medium that is cut by one single non-immersed fracture, represented by a

(d − 1)-dimensional interface between two d-dimensional subdomains, d = 2, 3. We

consider the primal formulation of Darcy’s law for modelling the flow both in the bulk

and along the fracture with suitable (physically consistent) conditions coupling the

two problems. We propose a discretization that combines a DG approximation for the

problem in the bulk, with a conforming finite element approximation in the fracture.

For the DG approximation in the bulk we employ the Symmetric Interior Penalty

discontinuous Galerkin (SIPDG) method [119, 26], generalized to the polytopic setting

that we have introduced in Chapter 1 taking as a reference [61, 59, 6, 58, 19, 60]. We

remark that the use of standard conforming finite elements for approximating the flow in

the fracture is made only in order to keep the analysis of the method as clear as possible,

so that we can put better focus on the polyDG-discretization of the problem in the

bulk and on the coupling of the two problems. The chapter is structured as follows. In

Section 2.1 we introduce the governing equations for the coupled problem. The problem

is then written in a weak form in Section 2.2, where we also prove its well-posedness. In

Section 2.3 we introduce the DG discretization on polytopic grids of the coupled problem.

The main results in the analysis of the method are included in Section 2.4, where we

state (and prove) Theorem 2.4.3 about well-posedness and Theorem 2.4.5 containing an

a priori error estimate in a suitable (mesh-dependent) norm. Section 2.5 is devoted to

the presentation of a series of two-dimensional numerical experiments assessing both the

validity of the theoretical error estimates and the capability of the method of handling

more complicated cases, including networks of partially immersed fractures.
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Chapter 2. Pressure-Pressure formulation

The results of this chapter are original, and have been published in [12].

2.1 Model problem

In the following we present the governing equations for our model, which is the model

for single-phase flow in fractured porous media presented in [101]. The key idea of the

model is to treat fractures as (d−1)-dimensional interfaces between d-dimensional porous

matrices, d = 2, 3, justified in case of fractures with very small width. This model

has been first introduced in [2, 1] under the assumption of large permeability in the

fracture. In [101] it has been generalised to handle fractures with low permeability. The

extension to the case of two-phase flows has been addressed in [91] and [97], while a totally

immersed fracture has been considered in [3]. This model is valid both for fractures with

low permeability (i.e., acting as barriers for the flow) and for very permeable fractures.

For simplicity, we assume that there is only a single fracture in the porous medium

and that the fracture cuts the domain exactly into two disjoint connected subregions

(see Figure 2.1). More precisely, Let Ω ⊂ Rd, d = 2, 3, be an open, bounded, convex

polygonal/polyhedral domain representing the porous matrix. We suppose that the

fracture is a (d − 1)-dimensional C∞ manifold with no curvature Γ ⊂ Rd−1, d = 2, 3,

whose measure satisfies |Γ| = O(1), and assume that Γ separates Ω into two connected

subdomains, which are disjoint, i.e., Ω \ Γ = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅. For i = 1, 2,

we denote by ∂Ωi the part of boundary of Ωi shared with the boundary of Ω, i.e.,

∂Ωi = ∂Ωi ∩ ∂Ω. Moreover, if we decompose the boundary of Ω into two disjoint

subsets ∂ΩD and ∂ΩN , i.e., ∂Ω = ∂ΩD ∪ ∂ΩN , with ∂ΩD ∩ ∂ΩN = ∅, we can define

∂ΩD,i = ∂ΩD ∩ ∂Ωi and ∂ΩN,i = ∂ΩN ∩ ∂Ωi, for i = 1, 2. Finally, we denote by nΓ

the normal unit vector on Γ with a fixed orientation from Ω1 to Ω2, so that we have

nΓ = n1 = −n2.

If we assume that the fractures are filled by a porous medium with different porosity and

permeability than the surroundings, Darcy’s law can be used both for modelling the flow

in the porous matrix and for the (d − 1)-dimensional flow problem along the fracture.

The flow of an incompressible fluid through a fractured d-dimensional porous medium,

d = 2, 3, can then be described by the following three ingredients:

1. the governing equations for the flow in the porous medium;
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Ω1

Ω2

n2

n1

�

Γ

(a)

Ω1

Ω2

Γ

∂ΩN,1

∂ΩD,2

∂ΩN,2

∂ΩD,1

n1

n2

(b)

Figure 2.1: The subdomains Ω1 and Ω2 separated by the fracture Γ considered as an interface, for
d = 3 (left) and d = 2 (right).

2. the governing equations for the flow in the fractures;

3. a set of physically consistent conditions which couple the problems in the bulk and

fracture along their interface.

2.1.1 Governing equations

According to the above discussion, we suppose that the flow in the bulk is governed by

Darcy’s law. Let ν = ν(x) ∈ Rd×d be the bulk permeability tensor, which satisfies the

following regularity assumptions:

(i) ν is a symmetric, positive definite tensor whose entries are bounded, piecewise

continuous real-valued functions;

(ii) ν is uniformly bounded from below and above, i.e.,

xTx . xTνx . xTx,∀x ∈ Rd.

Given a function f ∈ L2(Ω) representing a source term and g ∈ H1/2(∂Ω), the motion of

an incompressible fluid in each domain Ωi, i = 1, 2, with pressure pi is described by:

−∇ · (νi∇pi) = fi in Ωi, i = 1, 2, (2.1a)

pi = gi on ∂ΩD,i, i = 1, 2, (2.1b)

νi∇pi · n = 0 on ∂ΩD,i, i = 1, 2. (2.1c)

11



Chapter 2. Pressure-Pressure formulation

Here, we have denoted by νi and fi, the restrictions of ν and f to Ωi, i = 1, 2,

respectively, and by gi the restriction of g to ΩD,i, i = 1, 2 and n is the unit normal

vector pointing outward of Ω. For simplicity, in the following we will impose Dirichlet

boundary conditions on the whole ∂Ω, i.e. we will take ∂ΩN = ∅.

The second ingredient for the model is represented by the governing equations for the

fracture flow. In our model the fracture is treated as a (d − 1)-dimensional manifold

immersed in a d-dimensional object. If we assume that the fracture is filled by a porous

medium with different porosity and permeability than the surroundings, Darcy’s law

can be used also for modelling the flow along the fracture [37]. The reduced model is

then obtained through a process of averaging across the fracture: in the beginning the

fracture is treated as a d-dimensional subdomain of Ω, that separates it into two disjoint

subdomains. Then Darcy’s equations are written on the fracture in the normal and

tangential components and the tangential component is integrated along the thickness

`Γ > 0 of the fracture domain, which is typically some orders of magnitude smaller

than the size of the domain. We refer to [101] for a rigorous derivation of the reduced

mathematical model.

The fracture flow is then characterized by the fracture permeability tensor νΓ, which

is assumed to satisfy the same regularity assumptions as those satisfied by the bulk

permeability ν and to have a block-diagonal structure of the form

νΓ =

[
νnΓ 0

0 ντΓ

]
, (2.2)

when written in its normal and tangential components. Here, ντΓ ∈ R(d−1)×(d−1) is a

positive definite, uniformly bounded tensor (it reduces to a positive number for d = 2)

representing the tangential component of the permeability of the fracture.

Setting ∂Γ = Γ ∩ ∂Ω, and denoting by pΓ the fracture pressure, the governing equations

for the fracture flow read

−∇τ · (ντΓ`Γ∇τpΓ) = `ΓfΓ + J−ν∇pK in Γ, (2.3a)

pΓ = gΓ on ∂Γ, (2.3b)

where fΓ ∈ L2(Γ), gΓ ∈ H1/2(∂Γ) and ∇τ and ∇τ · denote the tangential gradient
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2.1. Model problem

and divergence operators, respectively. Equation (2.3a) represents Darcy’s law in the

direction tangential to the fracture and a source term J−ν∇pK is introduced to take

into account the contribution of the bulk flow to the fracture flow [101]. For the sake of

simplicity, we impose Dirichlet boundary conditions at the boundary ∂Γ of the fracture

Γ.

Finally, following [101], we provide the interface conditions to couple problems (2.1a)-

(2.1b)-(2.1c) and (2.3a)-(2.3b). Let ξ be a positive real number, ξ 6= 1
2
, that will be

chosen later on. The coupling conditions are given by

ξ(−ν1∇p1 · nΓ) + (1− ξ)(−ν2∇p2 · nΓ) =
1

ηΓ

(p1 − pΓ), (2.4)

(1− ξ)(−ν1∇p1 · nΓ) + ξ(−ν2∇p2 · nΓ) =
1

ηΓ

(pΓ − p2), (2.5)

where ηΓ = `Γ
νnΓ

, `Γ > 0 and νnΓ being the fracture width and the normal component of the

fracture permeability tensor, see (2.2). These equations are obtained through a process

of averaging the flux across the fracture in the normal direction, together with a suitable

condition on the behaviour of the pressure through the fracture (a different value of the

parameter ξ should represent a different condition imposed on the pressure’s behaviour).

The introduction of the parameter ξ thus yields a family of models, see [101] for more

details.

Next, we observe that the interface conditions (2.4) and (2.5) can be rewritten, after

summing and subtracting the equations, using classical jump and average operators (1.2)

as

−{ν∇p} · nΓ = βΓ(p1 − p2) on Γ, (2.6a)

−Jν∇pK = αΓ({p} − pΓ) on Γ, (2.6b)

where

βΓ =
1

2ηΓ

, αΓ =
2

ηΓ(2ξ − 1)
. (2.7)

Condition (2.6a) implies that the jump in the bulk pressure across the fracture induces

a net flux, while condition (2.6b) entails that the difference between the average bulk

pressure across the fracture and the fracture pressure pΓ induces a net bulk-fracture flow.

We also remark that the reformulation of the coupling conditions using jump and average
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Chapter 2. Pressure-Pressure formulation

operators will be convenient for employing DG methods in the discretization.

In conclusion, the coupled model problem reads:

−∇ · (νi∇pi) = fi in Ωi, i = 1, 2,

pi = gi on ∂Ωi, i = 1, 2,

−∇τ · (ντΓ`Γ∇τpΓ) = `ΓfΓ + J−ν∇pK in Γ,

pΓ = gΓ on ∂Γ,

−{ν∇p} · nΓ = βΓ(p1 − p2) on Γ,

−Jν∇pK = αΓ({p} − pΓ) on Γ.

(2.8)

This system can be seen as a domain decomposition problem, with non-standard boundary

conditions between the subdomains. We remark that problem (2.8) depends actually

on two physical, fracture-dependent coefficients: the product ντΓ`Γ and the ratio
νnΓ
`Γ

,

which appears in the coefficient ηΓ. The first coefficient is related to the jump in the

normal component of the velocity (discontinuity of the Darcy velocity across the fracture),

whereas the second one is related to the pressure jump (discontinuity of the pressure

across the fracture).

2.2 Weak formulation and its well-posedness

In this section we present a weak formulation of our model problem (2.8) where the

coupling conditions (2.6a)-(2.6b) are imposed in a weak sense, and prove its well-posedness.

In order to combine the problem in the bulk and in the fracture, we define a bilinear

form which is the sum of three different terms, each representing a specific part of the

problem, namely the bulk flow, the fracture flow and the coupling conditions. Similarly,

we build a linear operator summing the contributions from the bulk and the fracture.

The well-posedness of the resulting weak problem is proved in Theorem 2.2.1.

For the sake of simplicity we will assume that homogeneous Dirichlet boundary conditions

are imposed for both the bulk and fracture problems, i.e., gi = 0, i = 1, 2, and gΓ = 0.

The extension to the general non-homogeneous case is straightforward. We introduce the
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following spaces

Qb = {q = (q1, q2) ∈ Qb
1 ×Qb

2}, QΓ = H1
0 (Γ) ∩Hs(Γ),

where we define, for i = 1, 2 and s ≥ 1, Qb
i = Hs(Ωi) ∩ H1

0,∂Ωi
(Ωi), with

H1
0,∂Ωi

(Ωi) = {q ∈ H1(Ωi) s.t. q|∂Ωi = 0}.

Next we introduce the bilinear forms Ab : Qb × Qb → R, AΓ : QΓ × QΓ → R and

C : (Qb ×QΓ)× (Qb ×QΓ)→ R defined as

Ab(p, q) =
2∑
i=1

∫
Ωi

νi∇pi · ∇qi, AΓ(pΓ, qΓ) =

∫
Γ

ντΓ`Γ∇τpΓ · ∇τqΓ,

C((p, pΓ), (q, qΓ)) =

∫
Γ

βΓJpK · JqK +

∫
Γ

αΓ({p} − pΓ)({q} − qΓ),

where αΓ and βΓ are defined as in (2.7). Clearly, the bilinear forms Ab(·, ·) and AΓ(·, ·)
take into account the problems in the bulk and in the fracture, respectively, while C(·, ·)
takes into account the coupling conditions at the interface (2.6). We also introduce the

linear functional Lb : Qb → R defined as Lb(q) =
∑2

i=1

∫
Ωi
fqi, and the linear functional

LΓ : QΓ → R defined as LΓ(qΓ) =
∫

Γ
`ΓfΓqΓ, that represent the source terms in the bulk

and fracture, respectively.

With the above notation, the weak formulation of our model problem reads as follows:

Find (p, pΓ) ∈ Qb ×QΓ such that, for all (q, qΓ) ∈ Qb ×QΓ,

A ((p, pΓ), (q, qΓ)) = L(q, qΓ), (2.9)

where A : (Qb ×QΓ)× (Qb ×QΓ)→ R is defined as the sum of the bilinear forms just

introduced:

A ((p, pΓ), (q, qΓ)) = Ab(p, q) +AΓ(pΓ, qΓ) + C((p, pΓ), (q, qΓ)), (2.10)

and the linear operator L : Qb ×QΓ → R is defined as

L(q, qΓ) = Lb(q) + LΓ(qΓ).
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Chapter 2. Pressure-Pressure formulation

Next, we show that formulation (2.9) is well-posed. To this aim we introduce the following

norm on Qb ×QΓ:

||(q, qΓ)||2 =
2∑
i=1

||ν1/2
i ∇qi||2L2(Ωi)

+ ||(ντΓ`Γ)1/2∇τqΓ||2L2(Γ)

+ ||β1/2
Γ JqK||2L2(Γ) + ||α1/2

Γ ({q} − qΓ)||2L2(Γ). (2.11)

This is clearly a norm if αΓ ≥ 0. Since αΓ = 2
ηΓ(2ξ−1)

, see (2.7), from now on, we will

assume that ξ > 1/2. We remark that the same condition on the parameter ξ has been

found also in [101] and [15].

Theorem 2.2.1. Let ξ > 1/2. Then, problem (2.9) is well-posed.

Proof. We show that A(·, ·) is continuous and coercive on Qb × QΓ equipped with the

norm (2.11), as well as L(·) is continuous on Qb × QΓ with respect to the same norm.

Then, existence and uniqueness of the solution, as well as linear dependence on the data,

follow directly from Lax-Milgram’s lemma. Coercivity is straightforward, as we clearly

have that A((q, qΓ), (q, qΓ)) = ||(q, qΓ)||2 for any (q, qΓ) ∈ Qb ×QΓ. On the other hand,

continuity is a direct consequence of Cauchy-Schwarz inequality, while continuity of L(·)
on Qb ×QΓ is guaranteed by the regularity of the forcing term f .

2.3 Numerical discretization

In this section we present a numerical discretization of our problem which combines a

Discontinuous Galerkin approximation on general polytopic elements for the problem in

the bulk, with a conforming finite element approximation in the fracture (see Remark 4

below). DG methods result to be very convenient for handling the discontinuity of the

bulk pressure across the fracture, as well as the coupling of the bulk-fracture problems,

which has been formulated using jump and average operators. As a result, we can employ

the tools offered by DG methods to prove the well-posedness of our discrete method

(see Proposition 2.4.3, below). In particular, we will adopt the techniques developed in

[61, 59, 6, 58] (that we have summarized in Chapter 1), where an hp-version interior

penalty discontinuous Galerkin method for the numerical solution of elliptic problems on

polytopic meshes has been proposed and analysed.
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2.3. Numerical discretization

For the discretization of the bulk problem, we consider a family of meshes Th made of

general polytopic elements, which are aligned with the fracture Γ, so that any element

E ∈ Th cannot be cut by Γ. Note that, since Ω1 and Ω2 are disjoint, each element E

belongs exactly to one of the two subdomains.

Clearly, each mesh Th induces a subdivision of the fracture Γ into faces, that we will

denote by Γh. It follows that, if we denote as in Chapter 1 by Fh the set of all the faces

of the mesh Th, we can decompose

Fh = F Ih ∪ FBh ∪ Γh,

where F Ih is the set of interior faces not belonging to the fracture (see also Remark 5) and

FBh is the set of boundary faces (since we are imposing Dirichlet boundary conditions on

the whole ∂Ω we have FBh = FDh ).

With the aim of building a DG-conforming finite element approximation, we choose to

set the discrete problem in the finite-dimensional spaces

Qb
h = {qh ∈ L2(Ω) : qh|E ∈ PkE(E) ∀E ∈ Th}, kE ≥ 1, ∀E ∈ Th

QΓ
h = {qΓ,h ∈ C0(Γ) : qΓ,h|F ∈ Pk(F ) ∀F ∈ Γh} k ≥ 1.

Note that to each element E ∈ Th is associated the polynomial degree kE. We also remark

that the polynomial degrees in the bulk and fracture discrete spaces just defined are

chosen independently.

Next, we introduce the bilinear forms ADGb : Qb
h × Qb

h → R and

CDG : (Qb
h ×QΓ

h)× (Qh
b ×QΓ

h)→ R, defined as follows

ADGb (ph, qh) =
∑
E∈Th

∫
E

ν∇ph · ∇qh −
∑

F∈Fh\Γh

∫
F

{ν∇ph} · JqhK

−
∑

F∈Fh\Γh

∫
F

{ν∇qh} · JphK +
∑

F∈Fh\Γh

∫
F

σF JphK · JqhK,

CDG((ph, pΓ,h), (qh, qΓ,h)) =
∑
F∈Γh

∫
F

βΓJphK · JqhK +
∑
F∈Γh

∫
F

αΓ({ph} − pΓ,h)({qh} − qΓ,h).

The non-negative function σ ∈ L∞(Fh \ Γh) is the discontinuity penalization parameter
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Chapter 2. Pressure-Pressure formulation

(σF = σ|F , for F ∈ Fh \ Γh). The precise definition of σ will be presented in Definition

2.4.1 below. Finally we define the linear functional LDGb : Qb
h → R as

LDGb (qh) =
∑
E∈Th

∫
E

fqh.

Remark 3. Since we are imposing homogeneous boundary conditions, LDGb has the same

structure of the linear functional Lb previously defined. In general, for g 6= 0, LDGb
contains some additional terms:

LDGb (qh) =
∑
E∈Th

∫
E

fqh +
∑
F∈FDh

∫
F

(−ν∇qh · nF + σF qh)g.

The DG discretization of problem (2.9) reads as follows: Find (ph, pΓ,h) ∈ Qb
h ×QΓ

h such

that

Ah ((ph, pΓ,h), (qh, qΓ,h)) = Lh(qh, qΓ,h) ∀(qh, qΓ,h) ∈ Qb
h ×QΓ

h, (2.12)

where Ah : (V b
h ×QΓ

h)× (Qb
h ×QΓ

h)→ R is defined as

Ah ((ph, pΓ,h), (qh, qΓ,h)) = ADGb (ph, qh) +AΓ(pΓ,h, qΓ,h) + CDG((ph, pΓ,h), (qh, qΓ,h)),

and Lh : Qb
h ×QΓ

h → R is defined as

Lh(qh, qΓ,h) = LDGb (qh) + LΓ(qΓ,h).

Note that the discrete bilinear form Ah has the same structure as the bilinear form A
previously defined in (2.10), being the sum of three different components, each representing

a specific part of the problem.

Remark 4. The choice of employing a conforming finite element approximation for the

flow in the fracture has been made only in order to keep the analysis of the numerical

method as clear as possible and to put the focus on the discretization of the bulk problem

and on the imposition of the coupling conditions, cf. Section 2.4. The analysis of the

numerical method with a DG discretization for both the bulk and fracture problems will

be addressed in Chapter 3, see also Remark 5 below.

We now want to consider the stability and the error analysis of formulation (2.12).
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2.4 Theoretical analysis

For simplicity, we suppose that the bulk permeability tensor ν is piecewise constant on

mesh elements, i.e., ν|E ∈ [P0(E)]d×d for all E ∈ Th, and that the fracture permeability

tensor is constant on the whole domain, i.e. νΓ ∈ [P0(Γ)](d−1)×(d−1). In the following, we

will employ the notation ν̄E = |
√

ν|E|22, where | · |2 denotes the l2-norm.

In order to show the stability and the error analysis of formulation (2.12), we will employ

the technical results for polytopic discretizations summarized in Chapter 1. In particular,

we will assume that the bulk meshes Th satisfy the polytopic-regularity Assumption 1.1.1

and the covering Assumption 1.1.2.

Remark 5. The induced subdivision of the fracture Γh consists of the faces of the elements

of Th that share part of their boundary with the fracture, so that, according to the

definition of Fh given in Section 1.1, Γh is made up of line segments when d = 2 and of

triangles when d = 3. Since we are employing a conforming finite element approximation

for the flow in the fracture, we need to assume that, when d = 3, these triangles are

shape-regular and that they do not present hanging nodes. However, we remark that

the use of DG methods for the fracture problem as well would make this assumption

unnecessary, thus allowing for the use of very general meshes, see Chapter 3, Section 3.3.

To complete the definition of our method, we need to specify the form of the discontinuity

penalization parameter σ. Taking as a reference [61, 59, 6, 58], we give the following

Definition 2.4.1. The discontinuity-penalization parameter σ : Fh \Γh → R+ is defined

facewise by

σ(x) = σ0


maxE∈{E+,E−}

ν̄Ek
2
E

hE
, if x ∈ F ∈ F Ih , F̄ = ∂Ē+ ∩ ∂Ē−

ν̄Ek
2
E

hE
, if x ∈ F ∈ FBh , F̄ = ∂Ē ∩ ∂Ω̄,

(2.13)

with σ0 > 0 independent of kE, |E| and |F |.

Following [61, 59, 6, 58], we base our analysis on the introduction of an appropriate

inconsistent formulation for the problem in the bulk. This choice is determined by the

necessity of avoiding to make further (unnatural) regularity requirements for the exact

solution, cf. Assumption 2.4.4 below. Indeed, those would be in need if we wanted
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to obtain optimal hp-approximation estimates for the H1(Fh)-seminorm on polytopic

meshes, as those enunciated in Chapter 1, Lemma 1.3.3. To this end we define the

following extension of the forms ADGb and LDGb :

ÃDGb (p, q) =
∑
E∈Th

∫
E

ν∇p · ∇q −
∑

F∈Fh\Γh

∫
F

{νΠ2(∇p)} · JqK

−
∑

F∈Fh\Γh

∫
F

{νΠ2(∇q)} · JpK +
∑

F∈Fh\Γh

σF

∫
F

JpK · JqK,

L̃DGb (q) =
∑
E∈Th

∫
E

fq +

 ∑
F∈FBh

∫
F

(−νΠ2(∇q) · nF + σF q)g

 ,
where the integral between square brackets vanishes if we consider homogeneous boundary

conditions. Here, Π2 : [L2(Ω)]d → [Qb
h]
d denotes the orthogonal L2 - projection onto the

bulk finite element space [Qb
h]
d. It follows that these forms are well defined on the space

Qb(h) = Qb
h +Qb,

since the terms {νΠ2(∇q)} and {νΠ2(∇p)} are traces of elementwise polynomial functions.

Moreover, it is clear that

ÃDGb (ph, qh) = ADGb (ph, qh) for all qh, ph ∈ Qb
h

and

L̃DGb (qh) = LDGb (qh) for all qh ∈ Qb
h.

Thereby, ÃDGb (·, ·) and L̃DGb (·) are extensions of ADGb (·, ·) and LDGb (·) to Qb(h)×Qb(h) and

Qb(h), respectively. Hence, we may rewrite our discrete problem (2.12) in the following

equivalent form:

Find (ph, pΓ,h) ∈ Qb
h ×QΓ

h such that

Ãh ((ph, pΓ,h), (qh, qΓ,h)) = L̃h(qh, qΓ,h) ∀(qh, qΓ,h) ∈ Qb
h ×QΓ

h, (2.14)

where Ãh is obtained from Ah by replacing the bilinear form ADGb (·, ·) with its inconsistent

version ÃDGb (·, ·), and L̃h is obtained by replacing the linear operator LDGb (·) with L̃DGb (·).
We remark that formulation (2.14) is no longer consistent due to the discrete nature of
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the L2-projection operator Π2.

Next, we equip the space Qb(h) 2.4 with the following norm

|||(q, qΓ,h)|||2 = ||q||2DG + ||qΓ,h||2Γ + ||(q, qΓ,h)||2C,

where

||q||2DG =
∑
E∈Th

||ν1/2∇q||2L2(E) +
∑

F∈Fh\Γh

||σ1/2
F JqK||2L2(F ),

||qΓ,h||2Γ =
∑
F∈Γh

||(ντΓ`Γ)1/2∇τqΓ,h||2L2(F ),

||(q, qΓ,h)||2C =
∑
F∈Γh

||β1/2
Γ JqK||2L2(F ) +

∑
F∈Γh

||α1/2
Γ ({q} − qΓ,h)||2L2(F ).

It is easy to show that || · ||DG is a norm if σF > 0 for all F ∈ Fh \ Γh and that ||| · ||| is a

norm if αΓ ≥ 0 (that is ξ > 1/2). Note that ||| · ||| is also well defined on the extended

space Qb(h)×QΓ(h).

2.4.1 Stability analysis

We can now proceed with the stability analysis of our method. We remark that

well-posedness of the discrete problem (2.12) is guaranteed if we show that, more in

general, problem (2.14) extended to the space Qb(h)×QΓ
h is well-posed. The choice of

proving this more general property is made for future use in the error analysis.

Taking as a reference [61, 59, 6, 58], we state and prove the following result. Note that,

for the proof, the polytopic-regularity Assumption 1.1.1 will play a fundamental role

as well as the choice of the discontinuity-penalization parameter σ, see Definition 2.4.1.

Before proving that formulation (2.12) is well-posed, we state (and prove) some auxiliary

results, see Lemma 2.4.1 and 2.4.2 below.

Lemma 2.4.1. Let σ : Fh \ Γh → R+ be defined as in (2.13). Then, if Assumption 1.1.1

holds, the bilinear form ÃDGb (·, ·) is continuous on Qb(h)×Qb(h) and, provided that σ0 is
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sufficiently large, it is also coercive on Qb(h)×Qb(h), i.e.,

ÃDGb (p, q) . ||q||DG||p||DG, ÃDGb (q, q) & ||q||2DG,

for any q, p ∈ Qb(h).

Proof. For the proof we follow [61] and [58]. We start with coercivity. For any q ∈ Qb(h),

ÃDGb (q, q) = ||q||2DG − 2
∑

F∈Fh\Γh

∫
F

{νΠ2(∇q)} · JqK

= I + II.

In order to bound term II, we employ Cauchy-Schwarz’s, triangular and Young’s inequal-

ities to obtain∫
Fh\Γh

{νΠ2(∇q)} · JqK . ||σ−1/2
F ν(Π2(∇q+) + Π2(∇q−))||0,Fh\Γh ||σ

1/2
F JqK||0,Fh\Γh

. ε
∑

F∈Fh\Γh

(
ν̄E+σF ||Π2(∇q+)||2L2(F )

+ ν̄E−σF ||Π2(∇q−)||2L2(F )

)
+

1

4ε
||σ1/2

F JqK||2L2(F ),

with ε > 0. Employing the inverse inequality of Lemma 1.3.1 over the simplices SFE and

the definition of the interior penalty parameter σ (2.13), we have

∑
F∈Fh\Γh

∫
F

{νΠ2(∇q)} · JqK . ε

σ0

∑
E∈Th

∑
F∈∂E

hE|F |
d|SFE |

||Π2(∇q)||2L2(SFE )

+
1

4ε

∑
F∈Fh\Γh

||σ1/2
F JqK||2L2(F )

.
ε

σ0

∑
E∈Th

||ν1/2∇q||2L2(E) +
1

4ε

∑
F∈Fh\Γh

||σ1/2
F JqK||2L2(F ),

where we have used Assumption 1.1.1 and bound (1.1), together with the L2-stability of

the projector Π2 and the boundedness of tensor ν. In conclusion, using the polytopic-

regularity Assumption 1.1.1, we proved that

ÃDGb (q, q) & ||q||2DG for all q ∈ Qb(h),
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2.4. Theoretical analysis

for an appropriate choice of the constant ε and for σ0 large enough. The proof of continuity

can be obtained employing analogous arguments.

Lemma 2.4.2. The bilinear form AΓ(·, ·) is coercive and continuous on QΓ
h ×QΓ

h with

respect to the norm || · ||Γ.

Proof. Since AΓ(qΓ,h, qΓ,h) = ||qΓ,h||2Γ for any qΓ,h ∈ QΓ
h, AΓ(·, ·) is clearly coercive.

Continuity follows directly from Cauchy-Schwarz’s inequality.

Employing Lemma 2.4.1 and Lemma 2.4.2, we can easily prove the well-posedness of the

discrete problem (2.12). We can then state the following stability result.

Theorem 2.4.3. Let σ be defined as is (2.13). Then, if σ0 is chosen sufficiently large,

problem (2.12) is well-posed.

Proof. We have that, for any (q, qΓ,h) ∈ Qb(h) × QΓ
h, it holds

CDG((qh, qΓ,h), (q, qΓ,h)) = ||(q, qΓ,h)||2C. Moreover from Lemma 2.4.1 and Lemma

2.4.2 we know that ÃDGb (q, q) & ||q||2DG and AΓ(qΓ,h, qΓ,h) = ||qΓ,h||2Γ, respectively.

Therefore

Ãh ((q, qΓ,h), (q, qΓ,h)) & |||(q, qΓ,h)|||2 ∀(q, qΓ,h) ∈ Qb(h)×QΓ
h.

Next we prove continuity. Let (q, qΓ,h), (w,wΓ
h) ∈ Qb(h)×QΓ

h. Then, from Lemma 2.4.1

and Lemma 2.4.2

ÃDGb (q, w) . ||q||DG||w||DG . |||(q, qΓ,h)||| · |||(w,wΓ
h)|||,

AΓ(qΓ,h, w
Γ
h) . ||qΓ,h||Γ||wΓ

h ||Γ . |||(qh, qΓ,h)||| · |||(wh, wΓ
h)|||.

Finally, from Cauchy-Schwarz inequality, we get

CDG((q, qΓ,h), (w,w
Γ
h)) ≤

∑
F∈Γh

||β1/2
Γ JqK||2L2(F )||β

1/2
Γ JwK||2L2(F )

+
∑
F∈Γh

||α1/2
Γ ({q} − qΓ,h)||2L2(F )||α

1/2
Γ ({w} − wΓ

h)||2L2(F )

≤ |||(q, qΓ,h)||| · |||(w,wΓ
h)|||.
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Chapter 2. Pressure-Pressure formulation

In conclusion we have proved that

Ãh
(
(q, qΓ,h), (w,w

Γ
h)
)
. |||(q, qΓ,h)||| · |||(w,wΓ

h)|||.

The continuity of L̃h(·) on Qb(h) × QΓ
h can be easily proved using Cauchy-Schwarz

inequality, thanks to the regularity assumptions on the forcing terms f and fΓ.

2.4.2 Error analysis

In this section we prove that the discrete solution (ph, pΓ,h) to problem (2.12) (or,

equivalently, to problem (2.14)) converges to the exact solution (p, pΓ) to problem (2.9).

and provide an a priori error estimate.

For i = 1, 2, we denote by Ei the classical continuous extension operator, cf. [113] (see

also Chapter 1, Section 1.3.2), Ei : Hs(Ωi)→ Hs(Rd), for s ∈ N0, and make the following

regularity assumptions for the exact solution (p, pΓ):

Assumption 2.4.4. We assume that the exact solution ((p1, p2), pΓ) is such that:

A1. for every E ∈ Th, if E ⊂ Ωi, it holds Eipi|TE ∈ HrE(TE), with rE ≥ 1 + d/2 and

TE ∈ T# with E ⊂ TE. Moreover, we assume that the normal components of the

exact fluxes ν∇p are continuous across internal mesh interfaces, that is Jν∇pK = 0

on F Ih ;

A2. pΓ ∈ Hr(Γ), with r ≥ 1.

We can then state the following error estimate.

Theorem 2.4.5. Let T# = {TE} denote the covering related to Th consisting of shape-

regular simplexes as in Definition 1.1.2, satisfying Assumption 1.1.2. Let (p, pΓ) be the

solution of problem (2.9) and (ph, pΓ,h) ∈ Qb
h ×QΓ

h be its approximation obtained with the

method (2.12) with the penalization parameter given by (2.13) and σ0 sufficiently large.

Moreover, suppose that the exact solution (p, pΓ) satisfies the regularity Assumption 2.4.4.
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Then, the following error bound holds:

|||(p, pΓ)− (ph, pΓ,h)|||2 .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

Gb
E(hE, kE, ν̄E)||E p||2HrE (TE) (2.15)

+
∑
F∈Γh

h2k
F

k2(r−1)
|pΓ|2Hr(F ),

where the E p is to be interpreted as E1p1 when E ⊂ Ω1 and as E2p2 when E ⊂ Ω2.

Moreover, sE = min(kE + 1, rE) and

Gb
E(hE, kE, ν̄E) = ν̄E + hEk

−1
E max

F⊂∂E\Γ
σF + (αΓ + βΓ)hEk

−1
E

+ ν̄Eh
−1
E kE max

F⊂∂E\Γ
σ−1
F + ν̄Eh

−1
E k2

E max
F⊂∂E\Γ

σ−1
F .

Remark 6. (Uniform orders and mesh size) In case of uniform mesh-size and polynomial

order, i.e. if hE ≈ h and kE ≈ k ≥ 1 for all E ∈ Th, and hF ≈ h for all F ∈ Γh, if the

exact solutions in the bulk and in the fracture satisfy p ∈ Hr(Ω) and pΓ ∈ Hr(Γ), with

r ≥ k + 1, then the error estimate (2.15)reduces to

|||(p, pΓ)− (ph, p
Γ
h)||| . hk

kr−3/2
||p||Hr(Ω) +

hkΓ

kr−1
Γ

||pΓ||Hr(Γ).

We point out that Galerkin’s orthogonality does not hold true, due to the inconsistency

of the bilinear form Ãh. Thereby, the error bound will be derived starting from Strang’s

second lemma. From Proposition 2.4.3 and Strang’s second lemma we directly obtain the

following abstract error bound on the error.

Lemma 2.4.6. Assuming that the hypotheses of Proposition 2.4.3 are satisfied, it holds

|||(p, pΓ)− (ph, pΓ,h)||| . inf
(qh,qΓ,h)∈Qbh×Q

Γ
h

|||(p, pΓ)− (qh, qΓ,h)|||

+ sup
(wh,w

Γ
h)∈Qbh×Q

Γ
h

|Rh((p, pΓ), (wh, w
Γ
h))|

|||(wh, wΓ
h)|||

,

where the residual Rh is defined as

Rh((p, pΓ), (wh, w
Γ
h)) = Ãh((p, pΓ), (wh, w

Γ
h))− Lh(wh, wΓ

h).
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Chapter 2. Pressure-Pressure formulation

We can now proceed with the proof of Theorem 2.4.5.

Proof of Theorem 2.4.5. From Lemma 2.4.6 we know that the error satisfies the following

bound

|||(p, pΓ)− (ph, pΓ,h)||| . inf
(qh,qΓ,h)∈Qbh×Q

Γ
h

|||(p, pΓ)− (qh, qΓ,h)|||︸ ︷︷ ︸
I

+ sup
(wh,w

Γ
h)∈Qbh×Q

Γ
h

|Rh((p, pΓ), (wh, w
Γ
h))|

|||(wh, wΓ
h)|||︸ ︷︷ ︸

II

. (2.16)

We bound the two terms on the right-hand side of (2.16) separately. We can rewrite term

I as

I = inf
qh∈Qbh

||p− qh||2DG︸ ︷︷ ︸
(a)

+ inf
qΓ,h∈QΓ

h

||pΓ − qΓ,h||2Γ︸ ︷︷ ︸
(b)

+ inf
(qh,qΓ,h)∈Qbh×Q

Γ
h

||(p− qh, pΓ − qΓ,h)||2C︸ ︷︷ ︸
(c)

.

Again we consider each of the three terms separately. To bound term (a), we exploit the

two approximation results stated in Lemma 1.3.3; we obtain that

(a) ≤ ||p− Π̃p||2DG =
∑
E∈Th

||ν1/2∇(p− Π̃p)||2L2(E) +
∑

F∈Fh\Γh

σF ||Jp− Π̃pK||2L2(F )

.
∑
E∈Th

[
ν̄E|p− Π̃p|2H1(E) + ( max

F⊂∂E\Γ
σF )||p− Π̃p||2L2(∂E\Γ)

]

.
∑
E∈Th

[
h

2(sE−1)
E

k
2(rE−1)
E

ν̄E||E p||2HrE (TE) +
h

2(sE−1/2)
E

k
2(rE−1/2)
E

( max
F⊂∂E\Γ

σF )||E p||2HrE (TE)

]

=
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

(
ν̄E +

hE
kE

( max
F⊂∂E\Γ

σF )

)
.

Using classical interpolation estimates [30] we can bound term (b) as follows:

(b) ≤ ||pΓ − pIΓ||2Γ .
∑
F∈Γh

h2k
F

k2(r−1)
|pΓ|2Hr(F ).

26



2.4. Theoretical analysis

Finally, for term (c), we have

(c) ≤ ||(p− Π̃p, pΓ − pIΓ)||2C . βΓ

∑
F∈Γh

||Jp− Π̃pK||2L2(F ) + αΓ

∑
F∈Γh

||{p− Π̃p}||2L2(F )

+ αΓ

∑
F∈Γh

||pΓ − pIΓ||2L2(F ).

Exploiting the approximation result (1.8), we obtain

βΓ

∑
F∈Γh

||Jp− Π̃pK||2L2(F ) ≤ βΓ

∑
E∈Th

∂E∩Γ6=∅

||p− Π̃p||2L2(∂E) . βΓ

∑
E∈Th

∂E∩Γ6=∅

h
2(sE− 1

2
)

E

k
2(rE− 1

2
)

E

||E p||2HrE (TE)

= βΓ

∑
E∈Th

∂E∩Γ6=∅

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

hE
kE
.

Similarly, we have

αΓ

∑
F∈Γh

||{p− Π̃p}||2L2(F ) . αΓ

∑
E∈Th

∂E∩Γ 6=∅

h
2(sE−1)
E

k
2(rE−1)
E

hE
kE
||E p||2HrE (TE).

Finally, using again classical interpolation estimates, we deduce that

αΓ

∑
F∈Γh

||pΓ − pIΓ||2L2(F ) . αΓ

∑
F∈Γh

h2k
F

k2(r−1)
|pΓ|2Hr(F ).

In conclusion, combining all the previous estimates, we can bound the term I on the

right-hand side of (2.16) as follows:

I .
∑
F∈Γh

h2k
F |pΓ|2Hk+1(F )

+
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄E + hEk

−1
E ( max

F⊂∂E\Γ
σF ) + (αΓ + βΓ)hEk

−1
E

]
. (2.17)

Next, we derive a bound on the term II on the right-hand side of (2.16). First, we note

that, integrating by parts elementwise and using that the couple (p, pΓ) satisfies (2.9) as
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Chapter 2. Pressure-Pressure formulation

well as the regularity assumption 2.4.4, we can rewrite the residual Rh as

Rh((p, pΓ), (wh, w
Γ
h)) =

∑
F∈Fh\Γh

∫
F

{ν(∇p− Π2(∇p))} · JwhK.

Employing Cauchy-Schwarz inequality and the definition of the norm ||| · |||, we then

obtain

II ≤

 ∑
F∈Fh\Γh

σ−1
F

∫
F

|{ν(∇p− Π2(∇p))}|2
1/2

.

If we still denote by Π̃ the vector-valued generalization of the projection operator Π̃

defined in Lemma 1.3.3, we observe that

∑
F∈Fh\Γh

σ−1
F

∫
F

|{ν(∇p− Π2(∇p))}|2 .
∑

F∈Fh\Γh

σ−1
F

∫
F

|{ν(∇p− Π̃(∇p))}|2

+
∑

F∈Fh\Γh

σ−1
F

∫
F

|{νΠ2(∇p− Π̃(∇p))}|2

≡ (1) + (2).

To bound term (1), we proceed as above, employing the approximation result stated in

Lemma 1.3.3. We obtain

(1) .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

(
ν̄E( max

F⊂∂E\Γ
σ−1
F )

h−1
E

k−1
E

)
||E p||2HrE (TE).

Exploiting, in order, the boundedness of the permeability tensor ν, the inverse inequality

(1.6), the L2-stability of the projector Π2 and the approximation results stated in Lemma

1.3.3, we can bound term (2) as follows:

(2) .
∑
E∈Th

( max
F⊂∂E\Γ

σ−1
F )ν̄E||Π2(Π̃(∇p)−∇p)||2L2(∂E\Γ)

.
∑
E∈Th

( max
F⊂∂E\Γ

σ−1
F )ν̄E

k2
E

hE
||Π̃(∇p)−∇p||2L2(E)

.
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

(
ν̄E

k2
E

hE
( max
F⊂∂E\Γ

σ−1
F )

)
.
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Hence, term II on the right-hand side of (2.16) may be bounded as:

II .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄E( max

F⊂∂E\Γ
σ−1
F )h−1

E kE

+ ν̄E( max
F⊂∂E\Γ

σ−1
F )h−1

E k2
E

]
. (2.18)

Finally, substituting (2.17) and (2.18) into (2.16), leads to the thesis.

2.5 Numerical results

In this section we present some two-dimensional numerical experiments to confirm the

validity of the a priori error estimates that we have derived for our method. The test

cases have been chosen intentionally with increasing complexity: we start with some

academic numerical tests that aim at validating the convergence properties of the method,

and we end the section with a physical experiment that investigates the effect of large

and low permeability in the fracture to the bulk flow.

The numerical results have been obtained in Matlabr. Throughout this section we

set the fracture thickness (appearing in the coupling conditions (2.6a)-(2.6b)) equal to

`Γ = 0.001 = ηΓ and ντΓ = 1. For the generation of polygonal meshes conforming to the

fractures we have suitably modified the Matlabr code PolyMesher developed by G.H.

Paulino and collaborators [117].

2.5.1 Example 1

In this first test case we take Ω = (0, 1)2, and choose as exact solutions in the bulk and

in the fracture Γ = {(x, y) ∈ Ω : x+ y = 1} as

p =

ex+y in Ω1,

ex+y + 4ηΓ√
2
e in Ω2,

pΓ = e+
2ηΓ√

2
e.

It is easy to prove that p and pΓ satisfy the coupling conditions (2.6a)-(2.6b) with ξ = 1

and ν = I. Finally we need to adjust the source terms for the bulk accordingly as

f = −2ex+y in Ω1 and Ω2. Note that in this case fΓ = 0 since the solution is constant and

Jν∇pK = 0. In Figure 2.2 we report three successive levels of refinement of the polygonal

29



Chapter 2. Pressure-Pressure formulation

mesh conforming to the fracture employed in this set of experiments. .

(a) (b) (c)

Figure 2.2: Example 1: Three refinements of the polygonal mesh grid conforming to the fracture.
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||p− ph||DG
||pΓ − pΓ,h||Γ
||p− ph||L2(Ω)

(a) Bulk and fracture k = 1

100.6 100.8 101 101.2 101.4

10−6

10−5

10−4

10−3

10−2

10−1

100

1
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1/h

k = 1

k = 2

k = 3

(b) Bulk k = 1, 2, 3

Figure 2.3: Example 1: Computed errors in the bulk and in the fracture as a function of the inverse of
the mesh size (loglog scale) with polynomial degree k = 1 on the left, and computed errors ||p− ph||DG
in the bulk for polynomial degrees k = 1, 2, 3 on the right.

In Figure 2.3(a) we plot the computed errors ||p−ph||DG and ||pΓ−pΓ,h||Γ as a function of

inverse of the mesh size (loglog scale). Here we have taken the polynomial degree kE = 1

∀E ∈ Th and k = 1 for the fracture finite dimensional space. In both cases the numerical

results are in agreement with the theoretical estimates, i.e., the error goes to zero at a

rate O(h) . In the same plot we also report the behaviour of the error ||p− ph||L2(Ω). One

order of convergence is clearly gained. Finally, in Figure 2.3(b) we report the computed

errors in the bulk ||p− ph||DG as a function of 1/h for kE = k = 1, 2, 3. The theoretical

convergence rates are clearly achieved.
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2.5.2 Example 2

In the second test case we take Ω = (0, 1)2, and choose as exact solutions in the bulk and

in the fracture Γ = {(x, y) ∈ Ω : x+ y = 1} as

p =

ex+y in Ω1,

ex+y

2
+ (1

2
+ 3ηΓ√

2
)e in Ω2,

pΓ = e(1 +
√

2ηΓ).

It is easy to prove that p and pΓ satisfy the coupling conditions (2.6a)-(2.6b) with ξ = 1

and ν = I. Finally we need to adjust the source terms for the bulk and fracture problems

accordingly: We choose ξ = 1 and take ν = I. In this case we set the source term as

f =

−2ex+y in Ω1,

−ex+y in Ω2

fΓ =
e√
2`Γ

.

Notice that on the fracture the source term satisfies `ΓfΓ = −∇τ · (ντΓ`Γ∇τpΓ) + Jν∇pK,
and, since pΓ is constant, it holds fΓ = Jν∇pK.

100.6 100.8 101 101.2 101.4

10−3

10−2

10−1

1

1

2

1/h

||p− ph||DG
||pΓ − pΓ,h||Γ
||p− ph||L2(Ω)

(a) Bulk and fracture k = 1

100.6 100.8 101 101.2 101.4
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10−5

10−4

10−3

10−2

10−1

1

2

3

1/h

k = 1

k = 2

k = 3

(b) Bulk k = 1, 2, 3

Figure 2.4: Example 2: (a) Computed errors in the bulk and in the fracture as a function of the inverse
of the mesh size (loglog scale) with polynomial degree k = 1. (b) Computed errors ||p− ph||DG in the
bulk for polynomial degrees k = 1, 2, 3.

Figure 2.4(a) shows the computed errors ||p − ph||DG for the bulk problem and the

corresponding computed errors ||pΓ − pΓ,h||Γ in the fracture. The results have been

obtained taking the polynomial degree k = 1 for both the bulk and fracture problems. As

predicted from our theoretical error bounds, a convergence of order 1 is clearly observed
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for both ||p− ph||DG and ||pΓ − pΓ,h||Γ. Moreover from Figure 2.4(a) one can clearly see

that also in this test case one order of convergence is gained if we compute the error

||p− ph||L2(Ω). In Figure 2.4(b) we plot the computed errors in the bulk ||p− ph||DG for

polynomial degrees kE = k = 1, 2, 3. The observed convergence rate is of O(hk).

2.5.3 Example 3

In this third example we consider the circular fracture Γ = {(x, y) ∈ Ω : x2 + y2 = R},
with R = 0.7 included in the domain Ω = (0, 1)2. We choose the exact solutions in the

bulk and in the fracture as follows

p =


x2+y2

R2 in Ω1,

x2+y2

2R2 + 3
R
ηΓ + 1

2
in Ω2,

pΓ = 1 +
7

4

ηΓ

R
,

so that they satisfy the coupling conditions (2.6a)-(2.6b) with ξ = 3
4

and ν = I. The

source term is chosen as

f =

− 4
R2 in Ω1,

− 2
R2 in Ω2

`ΓfΓ =
1

R
.

(a) Mesh grid

100.6 100.8 101 101.2
10−4

10−3

10−2

10−1

1

2

1

||p− ph||DG
||pΓ − pΓ,h||Γ
||p− ph||L2(Ω)

(b) Errors

Figure 2.5: Example 3: (a) Example of the polygonal mesh grid with circular fracture. (b) Computed
errors as a function of inverse of the mesh size (loglog scale) with polynomial degree k = 1.

Figure 2.5(a) shows an example of mesh grid employed in this set of experiments. One

can see that here the fracture is approximated by a polygonal line.
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In Figure 2.5(b) we report the computed errors ||p − ph||DG and ||pΓ − pΓ,h||Γ as a

function of 1/h for kE = k = 1 (we disregard the variational crime coming from the

polygonal approximation of the circular fracture). The numerical experiments validate

the theoretical estimates, as a linear decay of the error is clearly observed.

2.5.4 Example 4

We consider the domain Ω = (0, 1)2 and the fracture Γ = {(x, y) ∈ Ω : x = 0.5}.
Following [65], we choose the exact solutions in the bulk and in the fracture as follows

p =

sin(4x) cos(πy) if x < 0.5,

cos(4x) cos(πy) if x > 0.5,
pΓ =

3

4
[cos(2) + sin(2)] cos(πy),

so that they satisfy the coupling conditions (2.6a)-(2.6b) with ξ = 3
4

and ν = I. We

also choose the fracture thickness to be equal to `Γ = 0.25 and the tangential and

normal components of the permeability tensor in the fracture to be ντΓ = 1 and νnΓ = 1,

respectively. We impose Dirichlet boundary conditions on the whole ∂Ω and also on ∂Γ.

Finally the source terms are chosen accordingly as

f =

sin(4x) cos(πy)(16 + π2) if x < 0.5,

cos(4x) cos(πy)(16 + π2) if x > 0.5,
fΓ = cos(πy)[cos(2) + sin(2)](4 +

3

16
π2).

The exact solution in the bulk is shown in Figure 2.6(a). In Figure 2.6(b) we show the

computed errors in the bulk and in the fracture for polynomial degree equal to 1 for

both the bulk and fracture problems. In Figure 2.7(a) we report the errors ||p− ph||DG
obtained with polynomial degrees kE = 1, 2, 3 in the bulk and k = 1 in the fracture. We

observe that for kE = 3 the convergence rate is suboptimal. This is due to the fact that

the polynomial degree in the fracture is not accurate enough. In fact, if we assume to

know the exact solution pΓ in the fracture and we solve the problem in the bulk, we

recover the expected rates, as shown in Figure 2.7(b). This behaviour did not appear in

the previous test cases, where the solution in the fracture was chosen to be constant.
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(a) Exact solution
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||p− ph||L2(Ω)

(b) Errors

Figure 2.6: Example 4: Exact solution in the bulk with the plane x = y = 0 (left) and Computed
errors as a function of inverse of the mesh size (loglog scale) with polynomial degree k = 1 (right).
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Figure 2.7: Example 4: (a) Computed errors ||p− ph||DG in the bulk as a function of the inverse of
the mesh size (loglog scale) for polynomial degrees k = 1, 2, 3. (b) Computed errors in the bulk with
polynomial degree k = 3 and known fracture pressure.

2.5.5 Quarter five-spot problem

The quarter five-spot problem is often used to validate numerical schemes for the approx-

imation of Darcy’s flow, see for example [65, 92]. A five-spot is a standard technique

used in petroleum engineering for oil recovery, where four injection wells are located at

the corner of a square and one production well is located in its center. Fluid (typically

water, steam or gas) is injected simultaneously through the four injection wells causing
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the displacement of the oil toward the production well in the center. Since the problem

is symmetric, we can consider only a quarter of this injection pattern, represented by

the domain Ω = (0, 1)2. The single injection well will be then located in (0, 0) and the

production well in (1, 1). Their presence is included in the model via the source term

f(x) = 10.1
[

tan(200(0.2−
√
x2 + y2))− tanh(200(0.2−

√
(x− 1)2 + (y − 1)2))

]
.

Moreover, we enforce homogeneous Neumann and Dirichlet boundary conditions, respec-

tively, on ∂ΩN = {x = 0 or y = 0} and ∂ΩD = {x = 1 or y = 1}. We also assume

that the domain is cut by the fracture of equation Γ = {(x, y) ∈ Ω : x + y = 1} with

thickness `Γ = 0.005, and we let fΓ = 0. Finally, we impose homogeneous Dirichlet

boundary conditions on ∂Γ. The domain configuration is reported in Figure 2.8(a) for

clarity. We aim, in particular, at investigating the effect of large and small permeability

in the fracture to the overall flow. We perform two numerical experiments:

1. Permeable fracture: we choose νnΓ = 1 and ντΓ = 100.

2. Impermeable fracture: we choose νnΓ = 10−2 and ντΓ = 1.

In both cases we let the bulk permeability tensor ν = I and we solve the problem choosing

a polygonal mesh with h = 7.5 · 10−2 and the polynomial degree kE = 2 in the bulk and

k = 1 in the fracture.

The bulk pressures obtained are shown in Figure 2.9. As expected, in both cases the bulk

pressure has a peak in correspondence of injection well and it decreases going toward

the production well. In the permeable case, the decrease is continuous, while in the

impermeable case we can observe a clear jump of the pressure across the fracture. This

behaviour is better captured in Figure 2.8(b), where we have plotted the trend of the

pressure along the line x = y in both cases. Our qualitative results are in agreement with

those obtained in [65].

2.5.6 Immersed fractures

We now investigate the capability of our discretization method to deal with immersed

fractures. We take as a reference [3], where the model developed in [101] has been

extended to fully immersed fractures. In particular, our set of equations (2.8) needs to

be supplemented with a condition on the boundary ∂Γ immersed in the porous medium.
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⊕
ν∇p · n = 0 pΓ = 0

p = 0

	
p = 0pΓ = 0

ν∇p · n = 0

Γ

Ω1

Ω2

(a) (b)

Figure 2.8: Quarter five-spot: The subdomains Ω1 and Ω2 separated by the fracture Γ and boundary
conditions (left) and pressure in the bulk along the line x = y (right).

(a) Permeable fracture (b) Impermeable fracture

Figure 2.9: Quarter five-spot: Pressure in the bulk for the quarter-five spot problem with permeable
(left) and impermeable (right) fracture.

Following [3], we will we assume that the mass transfer across the immersed tip can be

neglected, imposing the Neumann boundary condition ντΓ∇τpΓ · τ = 0 on ∂Γ. On the

fracture tip intersecting the bulk boundary, i.e., ∂Γ∩ ∂Ω, we impose boundary conditions

coincident with those imposed on ∂Ω.

We perform two sets of numerical experiments, that were already proposed in [3]. The

aim is that of investigating the flow depending on the physical properties of the fractures

(permeable, impermeable), first in the case of a single fracture, and then in the more

complex situation of a network of partially immersed fractures. Our results are in perfect

agreement with those obtained in [3], thus showing that our method can be easily extended
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2.5. Numerical results

to the treatment of more complex and realistic situations.

For all the experiments we take as computational domain Ω = (0, 1)2 and we assume

that the bulk permeability tensor is isotropic, i.e., ν = Id. Moreover we take the forcing

terms f = fΓ = 0, so that the flow is only generated by boundary conditions. Finally,

we choose the parameter ξ = 0.55. Our results have been obtained with cartesian grids

with approximately the same number of elements as those employed in [3]. Note that the

grids are aligned with the fractures so that the immersed tips coincide with one of the

mesh vertices.

Single partially immersed fracture

In the first experiment we study the case when the porous medium is cut by the fracture

Γ = {(x, y) ∈ (0, 1)2 : x = 0.5, y ≥ 0.5} that is partially immersed in the domain and has

constant aperture `Γ = 0.001. We consider two different configurations where we vary

the boundary conditions and the permeability of the fracture:

1. Permeable fracture: we choose νnΓ = 100 and ντΓ = 106 and impose Dirichlet

boundary condition on the whole ∂Ω as described in Figure 2.10(a).

2. Impermeable fracture: we choose νnΓ = ντΓ = 10−7 and impose mixed boundary

conditions on ∂Ω as in Figure 2.10(b) .

p = 0

p = 2

p = 0

p = 1

y = 0.75

(a) Permeable fracture

ν∇p · n = 0

p = 1

ν∇p · n = 0

p = 0

(b) Impermeable fracture

Figure 2.10: Single immersed fracture: Configurations and boundary conditions for the permeable test
case (left) with ντΓ = 106, νnΓ = 102, and the impermeable test case (right) with ντΓ = νnΓ = 10−7.

The results obtained with a mesh of 16128 elements are shown in Figure 2.11. In both

cases, on the left part of the figure, we show the pressure field in the bulk (where the
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intensity of the color increases with the increasing of the pressure) together with the

streamlines of the Darcy’s velocity. In the middle, we report the behaviour of the bulk

pressure along the line y = 0.75. Finally, on the right we plot the pressure field in the

fracture. As expected, in the impermeable case we can observe a clear jump of the bulk

pressure across the fracture, that it is not present in the permeable case. The results

presented in Figure 2.11 are in agreement with those of [3].

Pressure field and streamlines Pressure along y = 0.75 Pressure in the fracture

Figure 2.11: Single immersed fracture: permeable case (top) and impermeable case (bottom).

Network of partially immersed fractures

In the second experiment we consider a network of four partially immersed frac-

tures of aperture `Γ = 0.01, namely Γ1 = {(x, y) ∈ (0, 1)2 : x ≥ 0.3, y = 0.2},
Γ2 = {(x, y) ∈ (0, 1)2 : x ≤ 0.7, y = 0.4}, Γ3 = {(x, y) ∈ (0, 1)2 : x ≥ 0.3, y = 0.6},
Γ4 = {(x, y) ∈ (0, 1)2 : x ≤ 0.7, y = 0.8}. The fractures Γ2 and Γ4 are impermeable

(ντΓ = νnΓ = 10−2), while Γ1 and Γ3 are partially permeable (νnΓ = 10−2, ντΓ ∈ {100, 1} ).

We consider two different configurations, varying the value of the permeability ντΓ on the
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partially permeable fractures Γ1 and Γ3 and the boundary conditions as illustrated in

Figure 2.12(a).

p = 0

p = 1

ν
∇
p
·n

=
0

ν
∇
p
·n

=
0

x = 0.65

(a) Configuration 1: ντΓ = 100 on Γ1,Γ3

p = (2x− 1)(3x− 1)

p = (2x− 1)(3x− 1)

p
=

2

p
=

1

x = 0.65

(b) Configuration 2: ντΓ = 1 on Γ1,Γ3

Figure 2.12: Network of immersed fractures: Configurations and boundary condition for the two test
cases.

In Figure 2.13 we show the results obtained for the two test cases with a mesh of 26051

elements. In particular, we report the pressure field in the bulk with the streamlines of

the velocity (left), the value of the bulk pressure along the line x = 0.65 (middle) and

the pressure field inside the four fractures (right). Again, we can see a perfect agreement

between our results and those obtained in [3].

39



Chapter 2. Pressure-Pressure formulation

Pressure field and streamlines Pressure along x = 0.65 Pressure in the fracture

Figure 2.13: Network of immersed fractures: first configuration (top) and second configuration
(bottom).

40



3 | Unified analysis of polyDG ap-

proximation of flows in frac-

tured porous media

The aim of this chapter is to extend the results presented in Chapter 2, where the

mathematical model and its discretization based on PolyDG methods were in a primal

setting (with pressure as only unknown) for both the bulk and fracture problems. Indeed,

when dealing with the approximation of Darcy’s flow, one may also resort to a mixed

approach, where the flow is described through an additional unknown representing the

(averaged) velocity of the fluid. This variable, often referred to as Darcy’s velocity, is of

primary interest in many engineering applications [105, 53], so that the mixed setting is

often preferred to the primal one, which may only return velocity after post-processing

the computed pressure, thus entailing loss of accuracy. On the other hand, the primal

approach is easier to solve, featuring a smaller number of degrees of freedom. For this

reason, our aim is to design a unified setting where, according to the desired approximation

properties of the model, one may resort to either a primal or mixed approximation for the

problem in the bulk, as well as to a primal or mixed approximation for the problem in the

fracture. In particular, for the primal discretizations we employ the Symmetric Interior

Penalty discontinuous Galerkin method [119, 26], whereas for the mixed discretizations

we employ the local DG (LDG) method of [72], both in their generalization to polytopic

grids [61, 59, 6, 58, 60]. Our main reference for the design of such setting is the work

by Arnold, Brezzi et al. [27], where a unified analysis of all DG methods present in

the literature is performed. This framework is based on the flux-formulation, where the

so-called numerical fluxes are introduced on elemental interfaces as approximations of

the exact solution. Different choices of the numerical fluxes affect the stability and the
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accuracy of the DG method and provide conservation properties of desired quantities

such as, for example, mass, momentum, and energy [60]. In the particular context of flow

in fractured porous media, we also show that the coupling conditions between bulk and

fracture problems may be imposed through a suitable definition of the numerical fluxes

on the fracture faces. Such an abstract setting allows to analyse theoretically at the same

time all the possible combinations of primal-primal, mixed-primal, primal-mixed and

mixed-mixed formulations for the bulk and fracture problems, respectively.

The chapter is organized as follows. In Section 3.1 we introduce the model problem; its

weak formulation is discussed in Section 3.2. The discretization based on employing

PolyDG methods is presented, in the unified setting of [27], in Section 3.3. In Section 3.4,

we address the problem of stability and prove that all formulations, namely primal-primal

(PP), mixed-primal (MP), primal-mixed (PM) and mixed-mixed (MM) are well-posed.

The corresponding error analysis is presented in Section 3.5. Several numerical tests,

focusing, for the sake of brevity, on the mixed-primal (MP) case, are presented in

Section 3.6 to confirm the theoretical bounds. Moreover, we assess the capability of the

method of handling more complicated geometries, presenting some test cases featuring

networks of partially immersed fractures.

The results presented in this chapter are original and are contained in [14].

3.1 Model problem

We recall that we are adopting the mathematical model of [101], which we have introduced

in Section 2.1. We consider again the case where a porous medium is cut by a single,

non immersed fracture. However, in this chapter, we deal with the governing equations

in their mixed form. This means that, for both the problem in the bulk and in the

fracture, we will introduce an auxiliary vector-valued variable, called Darcy’s velocity.

This quantity is of primary interest in many engineering applications, such as oil recovery

and groundwater pollution modelling. Indeed, in these cases, in order to be effective, the

simulation of the phenomenon requires very accurate approximation of the velocities of

the involved fluids.

As in the previous chapter, the porous matrix is represented by the open, bounded,

convex and polygonal/polyhedral domain Ω ⊂ Rd, d = 2, 3 and the fracture is described
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3.1. Model problem

by the (d− 1)-dimensional C∞ manifold (with no curvature) Γ ⊂ Rd−1, d = 2, 3. Since

we are assuming that Γ is not immersed, it separates Ω into the two connected disjoint

subdomains Ω1 and Ω2.

We now introduce the governing equations in mixed form. In the bulk, in each domain

Ωi, i = 1, 2, the motion of an incompressible fluid with pressure pi and velocity ui may

be described by: 

ui = νi∇pi in Ωi,

−∇ · ui = fi in Ωi,

pi = gD,i on ∂ΩD,i,

ui · ni = 0 on ∂ΩN,i,

(3.1)

where we have adopted the same notation as in the previous Chapter, so that f ∈ L2(Ω)

represents a source term, gD ∈ H1/2(∂ΩD) is the Dirichlet boundary datum and

ν = ν(x) ∈ Rd×d is the bulk permeability tensor, which we still assume to be sym-

metric, positive definite, uniformly bounded from below and above and with entries that

are bounded, piecewise continuous real-valued functions.

On the manifold Γ representing the fracture, we formulate a reduced version of Darcy’s

law in the tangential direction and assume that the fracture permeability tensor νΓ, has

a block-diagonal structure when written in its normal and tangential components and

that ντΓ ∈ R(d−1)×(d−1) is positive definite, uniformly bounded. Moreover, νΓ satisfies the

same regularity assumptions as those satisfied by the bulk permeability ν. Denoting by

pΓ and uΓ the fracture pressure and velocity, the governing equations for the fracture

flow are 

uΓ = ντΓ`Γ∇τpΓ in Γ,

−∇τ · uΓ = `ΓfΓ − JuK in Γ,

pΓ = gΓ on ∂ΓD,

uΓ · τ = 0 on ∂ΓN ,

(3.2)

where fΓ ∈ L2(Γ), gΓ ∈ H1/2(∂Γ), τ is vector in the tangent plane of Γ normal to ∂Γ and

∇τ and ∇τ · denote the tangential gradient and divergence operators, respectively.

Finally, we close the model providing the interface conditions in mixed form:

−{u} · nΓ = βΓJpK · nΓ on Γ, (3.3a)

−JuK = αΓ({p} − pΓ) on Γ, (3.3b)
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where we recall that βΓ = 1
2ηΓ

and αΓ = 2
ηΓ(2ξ−1)

with ηΓ = `Γ
νnΓ

and that nΓ denotes the

normal unit vector on Γ with a fixed orientation from Ω1 to Ω2. We also recall that the

conditions depend on the parameter ξ 6= 1
2

that will be chosen later on.

In conclusion, the coupled bulk-fracture model problem in mixed form is the following:

ui = νi∇pi in Ωi,

−∇ · ui = fi in Ωi,

pi = gD,i on γD,i,

ui · ni = 0 on γN,i

uΓ = ντΓ`Γ∇τpΓ in Γ,

−∇τ · uΓ = `ΓfΓ − JuK in Γ,

pΓ = gΓ on ∂ΓD,

uΓ · τ = 0 on ∂ΓN ,

−{u} · nΓ = βΓJpK · nΓ on Γ,

−JuK = αΓ({p} − pΓ) on Γ.

(3.4)

3.2 Weak formulation

In this section we introduce the weak formulation of our model problem (3.4) and prove

its well-posedness. We start with the introduction of the functional setting.

3.2.1 Functional setting

Here, we introduce the functional spaces for our weak formulation. For

the bulk pressure and velocity, we introduce the spaces M b = L2(Ω) and

Vb = {v ∈ Hdiv(Ω) : JvK|Γ ∈ L2(Γ), {v}|Γ ∈ [L2(Γ)]d,v · n|∂ΩN = 0}, and equip

the space Vb with the norm ||v||2
Vb = ||v||2L2(Ω) + ||∇ · v||2L2(Ω) + ||JvK||2L2(Γ) + ||{v}||2L2(Γ).

Similarly, for the fracture pressure and velocity we define the spaces MΓ = L2(Γ)

and VΓ = {vΓ ∈ Hdiv,τ (Γ) : vΓ · τ |∂Γ = 0}. The norm on VΓ is given by

||vΓ||2VΓ = ||vΓ||2L2(Γ) + ||∇τ ·vΓ||2L2(Γ). Finally, we define the global spaces for the pressure

and the velocity as M = M b×MΓ and W = Vb×VΓ, equipped with the canonical norms

for product spaces. In order to deal with non-homogeneous boundary conditions, we also

introduce the affine spaces V b
g = Lg + Vb and V Γ

g = LgΓ
+ VΓ, where Lg ∈ Hdiv(Ω) and
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LgΓ
∈ Hdiv,τ (Γ) are liftings of the boundary data g and gΓ, respectively. We can then

define the global space Wg = Vb
g ×VΓ

g .

3.2.2 Weak problem

We can now formulate problem (3.4) in weak form as follows: Find (u,uΓ) ∈Wg and

(p, pΓ) ∈M such thatA((u,uΓ), (v,vΓ)) +B((v,vΓ), (p, pΓ)) = Fu(v,vΓ)

−B((u,uΓ), (q, qΓ)) = F p(q, qΓ)
(3.5)

where the bilinear form A(·, ·) : Wg × Wg → R is defined as

A((u,uΓ), (v,vΓ)) = a(u,v) + aΓ(uΓ,vΓ) with

a(u,v) =

∫
Ω

ν−1u · v +

∫
Γ

1

αΓ

JuKJvK +

∫
Γ

1

βΓ

{u} · {v},

aΓ(uΓ,vΓ) =

∫
Γ

(ντΓ`Γ)−1uΓ · vΓ,

and the bilinear form B(·, ·) : Wg × M → R is defined as

B((v,vΓ), (q, qΓ)) = b(v, q) + bΓ(vΓ, qΓ) + d(v, qΓ), with

b(v, q) =

∫
Ω

∇ · v q, bΓ(vΓ, qΓ) =

∫
Γ

∇τ · vΓ qΓ, d(v, qΓ) = −
∫

Γ

JvKqΓ.

Finally the linear operators Fu(·) : Wg → R and F p(·) : M → R are defined as

Fu(v,vΓ) =

∫
∂Ω

gv · n +

∫
∂Γ

gΓvΓ · τ , F p(q, qΓ) =

∫
Ω

fq +

∫
Γ

`ΓfΓqΓ.

Next, we prove that formulation (3.5) is well-posed. For the sake of simplicity, we will

assume that homogeneous Dirichlet boundary conditions are imposed for both the bulk

and fracture problems, i.e., gD,i = 0, i = 1; 2, and gΓ = 0 and that the domain and

fracture are smooth enough. The extension to the general non-homogeneous case is

straightforward. Note that the existence and uniqueness of the problem can be proven

only under the condition that the parameter ξ > 1/2.

Theorem 3.2.1. Suppose that ξ > 1/2. Then problem (3.5) admits a unique solution.
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Proof. For the proof we follow the technique of [101]. First, we define the subspace of

W, Ŵ = {(v,vΓ) ∈W : B((v,vΓ), (q, qΓ)) = 0 ∀(q, qΓ) ∈ M}. To show existence and

uniqueness of the solution of (3.5), we only need to show that A(·, ·) is Ŵ-elliptic and

that B(·, ·) satisfies the inf-sup condition, that is

inf
(v,vΓ)∈Ŵ

A((v,vΓ), (v,vΓ))

||(v,vΓ)||2W
& 1, inf

(q,qΓ)∈M
sup

(v,vΓ)∈W

B((v,vΓ), (q, qΓ))

||(q, qΓ)||M ||(v,vΓ)||W
& 1.

First, we prove that A(·, ·) is Ŵ-elliptic. Since for elements in (v,vΓ) ∈ Ŵ we have

∇ · v = 0 in L2(Ω) and ∇τ · vΓ = JvK|Γ in L2(Γ), the norm ||(v,vΓ)||W is equivalent to

||v||2L2(Ω) + ||vΓ||2L2(Γ) + ||JvK||2L2(Γ) + ||{v}||2L2(Γ). Owing to the regularity properties of

the permeability tensors ν and νΓ, this implies that

A((v,vΓ), (v,vΓ)) & ||(v,vΓ)||2W.

Note that the hidden constant also depends on the parameter αΓ, and that we need to

assume αΓ > 0, or, equivalently, ξ > 1/2, for the inequality to hold true.

To show that B satisfies the inf-sup condition, given (q, qΓ) ∈M , we construct, exploit-

ing the adjoint problem, (v,vΓ) ∈ W such that B((v,vΓ), (q, qΓ)) = ||(q, qΓ)||2M and

||(v,vΓ)||W . ||(q, qΓ)||M . Given (q, qΓ) ∈M , let (φ, φΓ) be the solution of−∆φ = q, on Ω

φ = 0, on ∂Ω
and

−∆τφΓ = qΓ, on Γ

φΓ = 0, on ∂Γ.

If we set v = (v1,v2) with vi = −∇φ|Ωi , i = 1, 2, and vΓ = −∇τφΓ, we obtain ∇ · v = q,

∇τ · vΓ = qΓ and JvK|Γ = 0, since v ∈ H1(Ω). This implies that (v,vΓ) ∈ W and

B((v,vΓ), (q, qΓ)) = ||q||2L2(Ω) + ||qΓ||2L2(Γ) = ||(q, qΓ)||2M . Finally, from elliptic regularity,

we have

||(v,vΓ)||2W = ||∇φ||2L2(Ω) + ||∇τφΓ||2L2(Γ) + ||q||2L2(Ω) + ||qΓ||2L2(Γ) + ||{∇φ}||2L2(Γ)

. ||q||2L2(Ω) + ||qΓ||2L2(Γ),

and this concludes the proof.
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3.3 Numerical dicretization based on PolyDG meth-

ods

In this section we present a family of discrete formulations for the coupled bulk-fracture

problem (3.5), which are based on Discontinuous Galerkin methods on polytopic grids.

In particular, since we can choose to discretize the problem in the bulk and the one in

the fracture either in their mixed or in their primal form, we derive four formulations

that embrace all the possible combinations of primal-primal, mixed-primal, primal-mixed

and mixed-mixed discretizations. The mixed discretizations will be based on the Local

Discontinuous Galerkin method (LDG) [72, 64, 109], while the primal discretizations

on the Symmetric Interior Penalty method (SIPDG) [26, 119], all supporting polytopic

grids [61, 59, 6, 58, 60]. The derivation of our discrete formulations will be carried out

following the same strategy as in [27], so that it will be based on the introduction of the

numerical fluxes, which approximate the trace of the solutions on the boundary of each

mesh element. In particular, the imposition of the coupling conditions (3.3a)-(3.3b) will

be achieved through a proper definition of the numerical fluxes on the faces belonging to

the fracture.

We consider meshes Th that are aligned with the fracture Γ and we denote, as in

Chapter 1, by Fh the set of all the faces of the mesh Th, that we can decompose in

Fh = F Ih ∪ FBh ∪ Γh, where F Ih is the set of interior faces not belonging to the fracture,

FBh is the set of faces lying on the boundary of the domain ∂Ω (which can be further

decomposed into FBh = FDh ∪ FNh ) and Γh is the set of fracture faces. In particular,

as already observed in Remark 5, the induced subdivision of the fracture Γh consists

of the faces of the elements of Th that share part of their boundary with the fracture,

so that, according to the definition of Fh given in Section 1.1, Γh is made up of line

segments when d = 2 and of triangles when d = 3. In the latter case, the triangles are not

necessarily shape-regular and they may present hanging nodes, due to the fact that the

sub-triangulations of each elemental interface is chosen independently from the others. For

this reason, we here extend the concept of interface introduced in Section 1.1 also to the

(d− 2)-dimensional facets of elements in Γh, defined again as intersection of boundaries of

two neighbouring elements. When d = 2, the interfaces reduce to points (see Figure 3.1),

while when d = 3 they consists of line segments. Moreover, since we aim at employing

DG methods also for the discretization of the problem in the fracture, we denote by EΓ,h
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Ω1
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Γ

Figure 3.1: Example of two neighbouring elements of a polygonal bulk mesh aligned with the fracture
and of the induced subdivision.

the set of all the interfaces (that we will also call edges) of the elements in Γh, and we

write, accordingly to the previous notation, EΓ,h = EIΓ,h ∪ EBΓ,h, with EBΓ,h = EDΓ,h ∪ ENΓ,h.
For the forthcoming stability and the error analyses, we will make use once again of the

technical results for polytopic discretizations summarized in Chapter 1. In particular,

we will assume that both the bulk meshes Th and the fracture meshes Γh satisfy the

polytopic-regularity Assumption 1.1.1 and the covering Assumption 1.1.2.

We have now all the ingredients to introduce the discrete formulation of model problem

(3.5).

3.3.1 Discrete formulation

For simplicity in the forthcoming analysis, we will suppose that the permeability tensors

ν and νΓ are piecewise constant on mesh elements, i.e., ν|E ∈ [P0(E)]d×d for all E ∈ Th,
and νΓ|F ∈ [P0(F )](d−1)×(d−1) for all F ∈ Γh. First, we introduce the finite-dimensional

spaces where we will set our discrete problem. We set

Qb
h = {q ∈ L2(Ω) : q|E ∈ PkE(E) ∀E ∈ Th}

Wb
h = {v ∈ [L2(Ω)]d : v|E ∈ [PkE(E)]d ∀E ∈ Th}

QΓ
h = {qΓ ∈ L2(Γ) : qΓ|F ∈ PkF (F ) ∀F ∈ Γh}

WΓ
h = {vΓ ∈ [L2(Γ)]d−1 : vΓ|F ∈ [PkF (F )]d−1 ∀F ∈ Γh}.

Note that, to each element E ∈ Th is associated the polynomial degree kE ≥ 1, as well as

to each face F ∈ Γh is associated the degree kF ≥ 1. We remark that the polynomial

degrees in the bulk and fracture discrete spaces just defined are chosen independently of

each other. Note also that here, unlike in Chapter 2, test functions are not characterised

48



3.3. Numerical dicretization based on PolyDG methods

by the subscript h, for easier reading.

We first focus on the problem in the bulk. Multiplying the first and second equations in

(3.1) by test functions v ∈Wb
h and q ∈ Qb

h, respectively, and integrating by parts over

an element E ∈ Th, we obtain∫
E

ν−1u · v = −
∫
E

p∇ · v +

∫
∂E

pv · nE,∫
E

u · ∇q =

∫
∂E

q u · nE +

∫
E

fq.

In the spirit of [27], we start the derivation of our DG discretization from these equations.

Adding over the elements E ∈ Th, the general discrete formulation for the problem in the

bulk will then be: Find ph ∈ Qb
h and uh ∈Wb

h, such that for all E ∈ Th we have

∑
E∈Th

∫
E

ν−1uh · v = −
∑
E∈Th

∫
E

ph∇ · v +
∑
E∈Th

∫
∂E

p̂Ev · nE

∑
E∈Th

∫
E

uh · ∇q =
∑
E∈Th

∫
∂E

q ûE · nE +
∑
E∈Th

∫
E

fq,

where the numerical fluxes p̂E and ûE are approximations to the exact solutions u and p,

respectively, on the boundary of E. The definition of the numerical fluxes in terms of ph,

uh, of the boundary data and of the coupling conditions (3.3a)-(3.3b) will determine the

method. Using identity (1.5), we get∫
Th

ν−1uh · v =−
∫
Th
ph∇ · v +

∫
FIh∪Γh

{p̂}JvK +

∫
FIh∪F

B
h ∪Γh

Jp̂K · {v}, (3.6)∫
Th

uh · ∇q −
∫
FIh∪F

B
h ∪Γh

{û} · JqK−
∫
FIh∪Γh

JûK{q} =

∫
Th
fq, (3.7)

where we have introduced p̂ = (p̂E)E∈Th and û = (ûE)E∈Th . The numerical fluxes p̂ and

û must be interpreted as linear functionals taking values in the spaces ΠE∈ThL
2(∂E)

and [ΠE∈ThL
2(∂E)]d, respectively. In particular, this means that they are, in general,

double-valued on F Ih ∪ Γh and single-valued on FBh . We also observe for future use that,

after integrating by parts and using again identity (1.5), equation (3.6) may also be

rewritten as∫
Th

ν−1uh · v =

∫
Th
∇ph · v +

∫
FIh∪Γh

{p̂− ph}JvK +

∫
FIh∪F

B
h ∪Γh

Jp̂− phK · {v}. (3.8)

49



Chapter 3. Unified analysis

We now reason analogously for the fracture. Multiplying the first and second equations

in (3.2) by test functions vΓ and qΓ, respectively, integrating by parts over an element

F ∈ Γh and summing over all the elements in Γh we obtain the following problem: Find

pΓ,h ∈ QΓ
h and uΓ,h ∈WΓ

h such that for all F ∈ Γh we have

∑
F∈Γh

∫
F

(ντΓ`Γ)−1uΓ,h · vΓ = −
∑
F∈Γh

∫
F

pΓ,h∇ · vΓ +
∑
F∈Γh

∫
∂F

p̂Γ,Fv · nF ,

∑
F∈Γh

∫
F

uΓ,h · ∇qΓ −
∑
F∈Γh

∫
∂F

qΓûΓ,F · nF =
∑
F∈Γh

∫
F

`ΓfΓqΓ −
∑
F∈Γh

∫
F

JûKqΓ.

Here, we have introduced the numerical fluxes p̂Γ,F and ûΓ,F . Again, the idea is that they

represent approximations on the boundary of the fracture face F of the exact solutions

pΓ and uΓ, respectively. Note also that here û is the numerical flux approximating the

bulk velocity on Γh. Using identity (1.5), we get∫
Γh

(ντΓ`Γ)−1uΓ,h · vΓ = −
∑
F∈Γh

∫
F

pΓ,h∇ · vΓ +

∫
EIΓ,h

{p̂Γ}JvΓK +

∫
EΓ,h
{vΓ} · Jp̂ΓK (3.9)∫

Γh

uΓ,h · ∇qΓ −
∫
EIΓ,h

{qΓ}JûΓK−
∫
EΓ,h
{ûΓ} · JqΓK =

∫
Γh

`ΓfΓqΓ −
∫

Γh

JûKqΓ (3.10)

We point out that, in all previous equations, the gradient and divergence operators are

actually tangent operators. Here, we have dropped the subscript τ in order to simplify

the notation.

In the following, we explore all possible combinations of primal-primal, mixed-primal,

primal mixed and mixed-mixed formulations for the bulk and fracture, respectively.

Primal-Primal formulation

In order to obtain the primal-primal formulation, we need to eliminate the velocities uh

and uΓ,h from equations (3.6)-(3.7) and (3.9)-(3.10). To do so, we need to express uh

solely in terms of ph (and pΓ,h), and uΓ,h solely in terms of pΓ,h. As in [27] this will be

achieved via the definition of proper lifting operators.

We start by focusing on the problem in the bulk. In order to complete the specification

of the DG method that we want to use for the approximation, we need to give an

expression to the numerical fluxes. We choose the classic symmetric interior penalty
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3.3. Numerical dicretization based on PolyDG methods

method (SIPDG). Moreover, coupling conditions (3.3a)-(3.3b) are imposed through a

suitable definition of the numerical fluxes on the fracture faces. Since we want a primal

formulation, the definition of p̂ and û will not contain uh. The numerical fluxes are

defined as follows:

p̂ = p̂(ph) =



{ph} onF Ih
gD onFDh
ph onFNh
ph on Γh

û = û(ph, pΓ,h) =



{ν∇ph} − σF JphK onF Ih
ν∇ph − σF (ph − gD)nF onFDh
0 onFNh
−[αΓ({ph} − pΓ,h)

nF
2

+ βΓJphK] on Γh

(3.11)

Here, we have introduced the discontinuity penalization parameter σ. In particular, σ is

a non-negative bounded function, i.e., σ ∈ L∞(F Ih ∪ FDh ) and its precise definition will

be given in Definition 3.4.1 below. Moreover, we have used the notation σF = σ|F , for

F ∈ F Ih ∪ FDh . We remark that, with this choice, the numerical flux p̂ is doubled valued

on Γh and single valued on F Ih ∪ FBh .

Using the definition of the numerical fluxes, it follows that

{p̂− ph} = 0, JûK = 0 onF Ih ,

{p̂− ph} = 0, JûK = −αΓ({ph} − pΓ,h) on Γh,

Jp̂− phK = −JphK, {û} = {ν∇ph} − σF JphK onF Ih ,

Jp̂− phK = (gD − ph)nF , {û} = ν∇ph − σF (ph − gD)nF onFDh ,

Jp̂− phK = 0, {û} = 0 onFNh ,

Jp̂− phK = 0, {û} = −βΓJphK on Γh,

so we rewrite (3.8) as∫
Th

ν−1uh · v =

∫
Th
∇ph · v−

∫
FIh∪F

D
h

JphK · {v}+

∫
FDh

gDv · n. (3.12)
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At this point, we proceed with the elimination of the auxiliary variable uh from our

equations. To this aim, we introduce the lifting operator L SIP
b : [L1(F Ih ∪ FDh )]d →Wb

h

defined by ∫
Th

L SIP

b (ξ) · v = −
∫
FIh∪F

D
h

{v} · ξ ∀v ∈Wb
h. (3.13)

Similarly, we define the lifting Gb(gD) ∈Wb
h of the Dirichlet boundary datum gD as∫

Th
Gb · v =

∫
FDh

gDv · n ∀v ∈Wb
h. (3.14)

Thanks to the introduction of the lifting operators, equation (3.12) may be rewritten as∫
Th

(
uh − ν[∇ph + L SIP

b (JphK) + Gb]
)
· v = 0.

Since ∇Qb
h ⊆Wb

h, we can write

uh = ν[∇ph + L SIP

b (JphK) + Gb], (3.15)

where ∇ph + L SIP
b (JphK) +Gb can be seen as a discrete approximation of the gradient ∇p.

We can then rewrite equation (3.7) as∫
Th

ν[∇ph + L SIP

b (JphK) + Gb] · ∇q −
∫
FIh∪F

B
h ∪Γh

{û} · JqK−
∫
FIh∪Γh

JûK{q} =

∫
Th
fq.

Using the definition of the discrete gradient (3.15), of the lifting operators (3.13) and

(3.14) and of the numerical flux û (3.11), we have

∫
Th

ν∇ph · ∇q +

∫
Th

νL SIP

b (JphK) · ∇q +

∫
Th

νL SIP

b (JqK) · ∇ph +

∫
FIh∪F

D
h

σF JphK · JqK

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h){q}

=

∫
Th
fq +

∫
FDh

gDσF q −
∫
Th

νGb · ∇q. (3.16)

Now we move our attention to the problem in the fracture. We define the numerical fluxes
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p̂Γ and ûΓ in order to obtain a symmetric interior penalty approximation as follows:

p̂Γ = p̂Γ(pΓ,h) =


{pΓ,h} on EIΓ,h
gΓ on EDΓ,h
pΓ,h on ENΓ,h,

ûΓ = ûΓ(pΓ,h) =


{ντΓ`Γ∇pΓ,h} − σeJpΓ,hK on EIΓ,h
ντΓ`Γ∇pΓ,h − σe(pΓ,h − gΓ)ne on EDΓ,h
0 on ENΓ,h.

(3.17)

Again, we have introduced the discontinuity penalization parameter σΓ ∈ L∞(EIΓ,h ∪ EDΓ,h)

and we set σe = σΓ|e for e ∈ EIΓ,h∪EDΓ,h. Its precise definition will be given in Definition 3.4.2

below. Next, as before, we introduce the lifting operator L SIP
Γ : [L1(EIΓ,h∪EDΓ,h)]d−1 →WΓ

h

and the lifting of the boundary datum GΓ(gΓ,D) ∈WΓ
h defined by∫

Γh

L SIP

Γ (ξΓ) · vΓ = −
∫
EIΓ,h∪E

D
Γ,h

ξΓ · {vΓ} ∀vΓ ∈WΓ
h, (3.18)∫

Γh

GΓ · vΓ =

∫
EDΓ,h

gΓ,DvΓ · nτ ∀vΓ ∈WΓ
h. (3.19)

Integrating by parts and using (1.5), we can rewrite equation (3.9) as∫
Γh

(
uΓ,h − ντΓ`Γ[∇pΓ,h + L SIP

Γ (JpΓ,hK) + GΓ]

)
· vΓ = 0.

Again, since ∇QΓ
h ⊆WΓ

h elementwise, we can write

uΓ,h = ντΓ`Γ[∇pΓ,h + L SIP

Γ (JpΓ,hK) + GΓ].

Plugging this last identity and the definition of the numerical fluxes û (see (3.11)) and
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ûΓ (see (3.17)) into equation (3.10), we obtain

∫
Γh

ντΓ`Γ∇pΓ,h · ∇qΓ +

∫
Γh

ντΓ`ΓL SIP

Γ (JpΓ,hK) · ∇qΓ +

∫
Γh

ντΓ`ΓL SIP

Γ (JqΓK) · ∇pΓ,h

+

∫
EIΓ,h∪E

D
Γ,h

σeJpΓ,hK · JqΓK +

∫
Γh

αΓpΓ,hqΓ −
∫

Γh

αΓ{ph}qΓ

=

∫
Γh

`ΓfΓqΓ +

∫
EDΓ,h

gΓσeqΓ −
∫

Γh

ντΓ`ΓGΓ · ∇qΓ. (3.20)

In conclusion, summing equations (3.16) and (3.20) we obtain the following discrete

formulation: Find (ph, p
Γ
h) ∈ Qb

h ×QΓ
h such that

APP

h

(
(ph, p

Γ
h), (q, qΓ)

)
= LPPh (q, qΓ) ∀(q, qΓ) ∈ Qb

h ×QΓ
h, (3.21)

where PP stands for primal-primal and where Lh : Qb
h × QΓ

h → R is defined as

LPPh (q, qΓ) = LPb (q) + LPΓ(qΓ) and APP
h : (Qb

h ×QΓ
h)× (Qb

h ×QΓ
h)→ R is defined as

APP

h

(
(ph, p

Γ
h), (q, qΓ)

)
= AP

b (ph, q) +AP

Γ(pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

with

AP

b (ph, q) =

∫
Th

ν∇ph · ∇q +

∫
Th

νL SIP

b (JphK) · ∇q

+

∫
Th

νL SIP

b (JqK) · ∇ph +

∫
FIh∪F

D
h

σF JphK · JqK, (3.22)

AP

Γ(pΓ,h, qΓ) =

∫
Γh

ντΓ`Γ∇pΓ,h · ∇qΓ +

∫
Γh

ντΓ`ΓL P

Γ (JpΓ,hK) · ∇qΓ

+

∫
Γh

ντΓ`ΓL SIP

Γ (JqΓK) · ∇pΓ,h +

∫
EIΓ,h∪E

D
Γ,h

σeJpΓ,hK · JqΓK, (3.23)

C((ph, pΓ,h), (q, qΓ)) =

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h)({q} − qΓ,h), (3.24)

and

LPb (q) =

∫
Th
fq +

∫
FDh

gDσF q −
∫
Th

νGb · ∇q, (3.25)

LPΓ(qΓ) =

∫
Γh

`ΓfΓqΓ +

∫
EDΓ,h

gΓσeqΓ −
∫

Γh

ντΓ`ΓGΓ · ∇qΓ. (3.26)
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We remark that we have recovered the formulation already obtained in Chapter 2 (in its

not strongly consistent version), the only difference being that the bilinear form for the

problem in the fracture is in the shape of SIPDG method, instead of classical conforming

finite elements.

Mixed-Primal formulation

In this section, we discretize the problem in the bulk in its mixed form. To this aim,

we use the local discontinuous Galerkin (LDG) method [72, 64, 108, 109]. The LDG

method is a particular DG method that can be included in the class of mixed finite

element methods. However, the variable uh can be locally solved in terms of ph and

then eliminated from the equations, giving rise to a primal formulation with ph as only

unknown.

In what follows, we first derive the formulation of our method in a mixed setting. After

that, we recast it in a primal setting, in order to perform the analysis in the framework

of [27, 108]. However, we remark that the mixed formulation is the one that will actually

be implemented for the numerical experiments of Section 3.6. As far as the problem in

the fracture is concerned, we work again in a primal setting, using the SIPDG method

for the discretization.

In the bulk, we define the numerical fluxes as

p̂ = p̂(ph) =



{ph}+ b · JphK onF Ih
gD onFDh
ph onFNh
ph on Γh

û = û(uh, ph, pΓ,h) =



{uh} − bJuhK− σF JphK onF Ih
uh − σF (phnF − gDnF ) onFDh
0 onFNh
−[αΓ({ph} − pΓ,h)

nF
2

+ βΓJphK] on Γh

Here, b ∈ [L∞(F Ih)]d is a (possibly null) vector-valued function which is constant on each
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face. It is chosen such that

||b||∞,FIh ≤ B, (3.27)

with B ≥ 0 independent if the discretization parameters. Moreover, σ is the penalization

parameter introduced in (3.11) , whose precise definition will be given in (3.45) below.

Note that the numerical flux p̂ does not depend on uh. This will allow for an element-by-

element elimination of the variable uh, generating a primal formulation of the problem.

We also point out that the definition of the numerical fluxes on the fracture faces is the

same as in the primal SIPDG setting.

With this definition of the numerical fluxes, and after integration by parts as in (3.8),

equation (3.6) becomes

∫
Th

ν−1uh · v−
∫
Th
∇ph · v +

∫
FIh

JphK · ({v} − bJvK) +

∫
FDh

phv · nF =

∫
FDh

gDv · nF ,

(3.28)

while equation (3.7) turns into

∫
Th

uh · ∇q −
∫
FIh

({uh} − bJuhK) · JqK +

∫
FIh∪F

D
h

σF JphK · JqK−
∫
FDh

quh · nF

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h){q} =

∫
Th
fq +

∫
FDh

σFgDq. (3.29)

If we discretize the problem in the fracture with the SIPDG method, we obtain the

following discrete mixed problem: Find
(

(ph,uh), p
Γ
h

)
∈ Qb

h ×Wb
h ×QΓ

h such that

Mb(uh,v) + Bb(ph,v) = Fb(v) ∀v ∈Wb
h,

−Bb(q,uh) + Sb(ph, q) + C1(ph, q, pΓ,h) = Gb(q) ∀q ∈ Qb
h, (3.30)

AP

Γ(pΓ,h, qΓ) + C2(ph, pΓ,h, qΓ) = LPΓ(qΓ) ∀qΓ ∈ QΓ
h,

56



3.3. Numerical dicretization based on PolyDG methods

where

Mb(uh,v) =

∫
Th

ν−1uh · v,

Bb(ph,v) = −
∫
Th
∇ph · v +

∫
FIh

JphK · ({v} − bJvK) +

∫
FDh

phv · nF ,

Sb(ph, q) =

∫
FIh∪F

D
h

σF JphK · JqK,

C1(ph, q, pΓ,h) =

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h){q},

C2(ph, pΓ,h, qΓ) =

∫
Γh

αΓ(pΓ,h − {ph})qΓ,

Fb(v) =

∫
FDh

gDv · nF ,

Gb(q) =

∫
Th
fq +

∫
FDh

σFgDq,

and AP
Γ(·, ·) and LPΓ(·) are defined as in (3.23) and (3.26), respectively. Also note that we

have C((ph, pΓ,h), (q, qΓ)) = C1(ph, q, pΓ,h) + C2(ph, pΓ,h, qΓ).

We now focus on rewriting the problem in the bulk in a primal form, taking advantage of

the local solvability of LDG method. We proceed as in the SIPDG case and introduce an

appropriate lifting operator, L LDG
b : [L1(F Ih ∪ FDh )]d →Wb

h, defined by∫
Th

L LDG

b (ξ) · v = −
∫
FIh

({v} − bJvK) · ξ −
∫
FDh

ξ · v ∀v ∈Wb
h (3.31)

From equation (3.28) we obtain

uh = ν(∇ph + L LDG

b (JphK) + Gb), (3.32)

where Gb is the lifting of the Dirichlet boundary datum defined in (3.14). Equation (3.29)
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now becomes∫
Th

ν∇ph · ∇q +

∫
Th

νL LDG

b (JphK) · ∇qh +

∫
Th

νGb · ∇q

−
∫
FIh

({uh}+ bJuhK) · JqK−
∫
FDh

quh · nF +

∫
FIh∪F

D
h

σF JphK · JqK

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h){q} =

∫
Th
fq +

∫
FDh

σF qgD.

Using again the definition of the lifting L LDG
b and the identity (3.32), we obtain

∫
Th

ν(∇ph + L LDG

b (JphK)) · (∇q + L LDG

b (JqK)) +

∫
FIh∪F

D
h

σF JphK · JqK

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ){q}

=

∫
Th
fq +

∫
FDh

σF qgD −
∫
Th

νGb · (∇q + L LDG

b (JqK)). (3.33)

Summing equations (3.33) and (3.20) we obtain the following discrete formulation: Find

(ph, p
Γ
h) ∈ Qb

h ×QΓ
h such that

AMP

h

(
(ph, p

Γ
h), (q, qΓ)

)
= LMP

h (q, qΓ) ∀(q, qΓ) ∈ Qb
h ×QΓ

h, (3.34)

where MP stands for mixed-primal and where AMP
h : (Qb

h × QΓ
h) × (Qb

h × QΓ
h) → R is

defined as

AMP

h

(
(ph, p

Γ
h), (q, qΓ)

)
= AM

b (ph, q) +AP

Γ(pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

and LMP
h : Qb

h ×QΓ
h → R is defined as

LMP

h (q, qΓ) = LMb (q) + LPΓ(qΓ)
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with

AM

b (ph, q) =

∫
Th

ν(∇ph + L LDG

b (JphK)) · (∇q + L LDG

b (JqK)) +

∫
FIh∪F

D
h

σF JphK · JqK

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ){q}, (3.35)

LMb (q) =

∫
Th
fq +

∫
FDh

σF qgD −
∫
Th

νGb · (∇q + L LDG

b (JqK)).

Note that the mixed formulation (3.30) is equivalent to the primal formulation (3.34)

together with the definition of the lifting operator (3.31) and equation (3.32).

Primal-Mixed formulation

We now want to approximate the problem in the fracture in mixed form, employing the

LDG method and the problem in the bulk using the SIPDG method. We define the

numerical fluxes as follows

p̂Γ = p̂Γ(pΓ,h) =


{pΓ,h}+ bΓ · JpΓ,hK on EIΓ,h
gΓ on EDΓ,h
pΓ,h on ENΓ,h

ûΓ = ûΓ(uΓ,h, pΓ,h) =


{uΓ,h} − bΓJuΓ,hK− σeJpΓ,hK on EIΓ,h
uΓ,h − σe(pΓ,hne − gΓne) on EDΓ,h
0 on ENΓ,h

Here, bΓ ∈ [L∞(EIΓ,h)]d−1 is a vector-valued function that is constant on each edge and

it is chosen such that ||bΓ||∞,EIΓ,h ≤ BΓ, with BΓ ≤ 0 independent of the discretization

parameters. Equations (3.9) and (3.10) now become

∫
Γh

(ντΓ`Γ)−1uΓ,h · vΓ −
∫

Γh

vΓ · ∇pΓ,h +

∫
EIΓ,h

JpΓ,hK · ({vΓ} − bΓJvΓK)

+

∫
EDΓ,h

pΓ,hvΓ · ne =

∫
EDΓ,h

gΓvΓ · ne (3.36)
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∫
Γh

uΓ,h · ∇qΓ −
∫
EIΓ,h

JqΓK · ({uΓ,h} − bΓJuΓ,hK) +

∫
EΓ,h

σeJpΓ,hK · JqΓK

−
∫
EDΓ,h

qΓuΓ,h · ne =

∫
Γh

`ΓfΓqΓ +

∫
Γh

αΓ({ph − pΓ,h})qΓ +

∫
EΓ,h

σegΓqΓ, (3.37)

where we have also used the definition of the numerical flux û on Γh (see (3.11)) to rewrite

−JûK = αΓ({ph} − pΓ,h). For the bulk we proceed as in the primal-primal setting using

for the discretization the SIPDG method. We then obtain the following primal-mixed

problem: Find
(
ph, (p

Γ
h,uΓ,h)

)
∈ Qb

h ×QΓ
h ×WΓ

h such that

AP

b (ph, q) + C1((ph, q), pΓ,h) = LPb (q) ∀q ∈ Qb
h

MΓ(uΓ,h,vΓ) + BΓ(pΓ,h,vΓ) = FΓ(vΓ) ∀vΓ ∈WΓ
h, (3.38)

−BΓ(qΓ,uΓ,h) + SΓ(pΓ,h, qΓ) + C2(ph, (pΓ,h, qΓ)) = GΓ(qΓ) ∀qΓ ∈ QΓ
h,

where

MΓ(uΓ,h,vΓ) =

∫
Γh

(ντΓ`Γ)−1uΓ,h · vΓ,

BΓ(pΓ,h,vΓ) = −
∫

Γh

vΓ · ∇pΓ,h +

∫
EIΓ,h

JpΓ,hK · ({vΓ} − bΓJvΓK) +

∫
EDΓ,h

pΓ,hvΓ · ne,

Sb(pΓ,h, qΓ) =

∫
EΓ,h

σeJpΓ,hK · JqΓK,

FΓ(vΓ) =

∫
EDΓ,h

gΓvΓ · ne,

GΓ(qΓ) =

∫
Γh

`ΓfΓqΓ +

∫
EΓ,h

σegΓqΓ,

and AP
b (ph, q) and LPb (q) are defined as in (3.22) and (3.25), respectively.

Aiming at rewriting the problem in the fracture in primal form, we introduce the lifting

operator, L LDG
Γ : [L1(EIh ∪ EDh )]d →WΓ

h, defined by∫
Γh

L LDG

Γ (ξΓ) · vΓ = −
∫
EIΓ,h

({vΓ} − bΓJvΓK) · ξΓ −
∫
EDΓ,h

ξΓ · vΓ ∀vΓ ∈WΓ
h (3.39)
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From equation (3.36) we obtain

uΓ,h = ντΓ`Γ[∇pΓ,h + L LDG

Γ (JpΓ,hK) + GΓ] (3.40)

where GΓ is the lifting of the Dirichlet boundary datum defined in (3.19). Equation (3.37)

now becomes∫
Γh

ντΓ`Γ(∇pΓ,h + L LDG

Γ (JpΓ,hK)) · (∇qΓ + L LDG

Γ (JqΓK)) +

∫
EIΓ,h∪E

D
Γ,h

σeJpΓ,hK · JqΓK

+

∫
Γh

αΓ(pΓ,h)−{ph}) =

∫
Γh

`ΓfΓqΓ +

∫
EDΓ,h

σeqΓgΓ−
∫

Γh

ντΓ`ΓGΓ · (∇qΓ + L LDG

Γ (JqΓK)).

We obtain the following primal formulation: Find (ph, p
Γ
h) ∈ Qb

h ×QΓ
h such that

APM

h

(
(ph, p

Γ
h), (q, qΓ)

)
= LPMh (q, qΓ) ∀(q, qΓ) ∈ Qb

h ×QΓ
h, (3.41)

where PM stands for primal-mixed and where APM
h : (Qb

h × QΓ
h) × (Qb

h × QΓ
h) → R is

defined as

APM

h

(
(ph, p

Γ
h), (q, qΓ)

)
= AP

b (ph, q) +AM

Γ (pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

and LPMh : Qb
h ×QΓ

h → R is defined as

LPMh (q, qΓ) = LPb (q) + LMΓ (qΓ)

with

AM

Γ (pΓ,h, qΓ) =

∫
Γh

ντΓ`Γ(∇pΓ,h + L LDG

Γ (JpΓ,hK)) · (∇qΓ + L LDG

Γ (JqΓK))

+

∫
EIΓ,h∪E

D
Γ,h

σeJpΓ,hK · JqΓK, (3.42)

LMΓ (qΓ) =

∫
Γh

`ΓfΓqΓ +

∫
EDΓ,h

σeqΓgΓ −
∫

Γh

ντΓ`ΓGΓ · (∇qΓ + L LDG

Γ (JqΓK)).
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Mixed-Mixed formulation

Finally, if we approximate both the problem in the bulk and in the fracture with the

LDG method, we obtain the following formulation: Find (ph, pΓ,h) ∈ Qb
h × QΓ

h and

(uh,uΓ,h) ∈Wb
h ×WΓ

h such that

Mb(uh,v) + Bb(ph,v) = Fb(v) ∀v ∈Wb
h,

−Bb(q,uh) + Sb(ph, q) + C1(ph, q, pΓ,h) = Gb(q) ∀q ∈ Qb
h, (3.43)

MΓ(uΓ,h,vΓ) + BΓ(pΓ,h,vΓ) = FΓ(vΓ) ∀vΓ ∈WΓ
h,

−BΓ(qΓ,uΓ,h) + SΓ(pΓ,h, qΓ) + C2(ph, (pΓ,h, qΓ)) = GΓ(qΓ) ∀qΓ ∈ QΓ
h,

This formulation, together with the definition of the lifting operators (3.31) and (3.39)

and of the discrete gradients (3.32) and (3.40) is equivalent to the following: Find

(ph, pΓ,h) ∈ Qb
h ×QΓ

h such that

AMM

h

(
(ph, p

Γ
h), (q, qΓ)

)
= LMM

h (q, qΓ) ∀(q, qΓ) ∈ Qb
h ×QΓ

h, (3.44)

where MM stands for mixed-mixed and where AMM
h : (Qb

h × QΓ
h) × (Qb

h × QΓ
h) → R is

defined as

AMM

h

(
(ph, p

Γ
h), (q, qΓ)

)
= AM

b (ph, q) +AM

Γ (pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

and LMM
h : Qb

h ×QΓ
h → R is defined as

LMM

h (q, qΓ) = LMb (q) + LMΓ (qΓ).

Next, we perform a unified analysis of all of the derived DG discretizations for the

fully-coupled bulk-fracture problem. We remark that the analysis will be performed

considering the mixed LDG discretizations recast in their primal form, following [108].

For clarity, in Table 3.1 we summarize the bilinear forms for all the four approaches.
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Method Primal bilinear form

Primal-Primal (PP) APb (p, q) +APΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ))

Mixed-Primal (MP) AMb (p, q) +APΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ))

Primal-Mixed (PM) APb (p, q) +AMΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ))

Mixed-Mixed (MM) AMb (p, q) +AMΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ))

Table 3.1: Primal forms for the DG discretizations of the bulk-fracture problems.

The bulk, fracture and interface bilinear forms are defined in:

APb (p, q): (3.22)

AMb (p, q): (3.35)

APΓ (pΓ, qΓ): (3.23)

AMΓ (pΓ, qΓ): (3.42)

C((p, q), (pΓ, qΓ)): (3.24)

3.4 Well-posedness of the discrete formulations

In this section, we address the problem of stability. We prove that the primal-primal

(PP) (3.21), mixed-primal (MP) (3.34), primal-mixed (PM) (3.41) and mixed-mixed

(MM)(3.44) formulations are well-posed. We remark that all these formulations are not

strongly consistent, due to the presence of the lifting operators. This implies that the

analysis will be based on Strang’s second Lemma, [114].

We recall that, for simplicity in the analysis, we are assuming the permeability tensors ν

and ντΓ to be piecewise constant and that we employ the following notation ν̄E = |
√
ν|E|22

and ν̄τF = |
√

ντΓ|F |22, where | · |2 denotes the l2-norm.

To consider the boundedness and stability of our primal bilinear forms, we

introduce the spaces Qb(h) = Qb
h + Q̃b and QΓ(h) = QΓ

h + Q̃Γ where

Q̃b = {q = (q1, q2) ∈ H1(Ω1) × H1(Ω2)} ∩ H2(Th) and Q̃Γ = H1(Γ) ∩ H2(Γh). We

remark that all the bilinear forms A∗∗h (·, ·) are also well-defined on the extended space

Qb(h)×QΓ(h).

Further, we introduce the following energy norm on the discrete space Qb
h ×QΓ

h

|||(q, qΓ)|||2 = ||q||2b,DG + ||qΓ||2Γ,DG + ||(q, qΓ)||2C
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where

||q||2b,DG = ||ν1/2∇q||20,Th + ||σ1/2
F JqK||20,FIh∪FDh

||qΓ||2Γ,DG = ||(ντΓ`Γ)1/2∇qΓ||20,Γh + ||σ1/2
e JqΓK||20,EIΓ,h∪EDΓ,h

||(q, qΓ)||2C = ||β1/2
Γ JqK||20,Γh + ||α1/2

Γ ({q} − qΓ)||20,Γh

Note that ||| · ||| is also well defined on the extended space Qb(h)×QΓ(h).

Next, we need to give an appropriate definition of the discontinuity penalization parameter,

so that we can work in a polytopic framework. Taking as a reference [61, 59, 6, 58, 60]

as in Chapter 2, we give the following two definitions for the bulk and fracture penalty

functions:

Definition 3.4.1. The discontinuity-penalization parameter σ : Fh \ Γh → R+ for the

bulk problem is defined facewise as

σ(x) = σ0


maxE∈{E+,E−}

ν̄Ek
2
E

hE
if x ⊂ F ∈ F Ih , F̄ = ∂Ē+ ∩ ∂Ē−,

ν̄Ek
2
E

hE
if x ⊂ F ∈ FDh , F̄ = ∂Ē ∩ ∂Ω̄,

(3.45)

with σ0 > 0 independent of kE, |E| and |F |.

Definition 3.4.2. The discontinuity-penalization parameter σΓ : EΓ,h → R+ for the

fracture problem is defined edgewise as

σΓ(x) = σ0,Γ


maxF∈{F+,F−}

ν̄τF k
2
F

hF
if x ⊂ e ∈ EIΓ,h, ē = ∂F̄+ ∩ ∂F̄−,

ν̄τF k
2
F

hF
, if x ⊂ e ∈ EDΓ,h, ē = ∂F̄ ∩ ∂Γ̄,

(3.46)

with σ0,Γ > 0 independent of kF , |F | and |e|.

Next, we will state and prove some estimates that will be instrumental for the proof of

the well-posedness of our discrete formulations. We start deriving some bounds on the

lifting operators, with arguments similar to those of [108, 109, 18]. Note that all the

results hold true on the extended spaces Qb(h) and QΓ(h).
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Lemma 3.4.1. Let L SIP
b (·) be the lifting operator defined in (3.13). Then, for every

q ∈ Qb(h) it holds

||ν1/2L SIP

b (JqK)||L2(Ω) .
1

σ
1/2
0

||σ1/2
F JqK||0,FIh∪FDh . (3.47)

Proof. Denoting by ΠWb
h

the L2-projection onto Wb
h, by definition of the lifting operator

L SIP
b and Cauchy-Schwarz inequality, we have

||ν1/2L SIP

b (JqK)||L2(Ω) = sup
z∈[L2(Ω)]d

∫
Ω
ν1/2L SIP

b (JqK) · z
||z||L2(Ω)

= sup
z∈[L2(Ω)]d

∫
Ω

L SIP
b (JqK) ·ΠWb

h
(ν1/2z)

||z||L2(Ω)

= − sup
z∈[L2(Ω)]d

∫
FIh∪F

D
h
σ

1/2
F JqK · σ−1/2

F {ΠWb
h
(ν1/2z)}

||z||L2(Ω)

≤ sup
z∈[L2(Ω)]d

||σ1/2
F JqK||0,FIh∪FDh ||σ

−1/2
F {ΠWb

h
(ν1/2z)}||0,FIh∪FDh

||z||L2(Ω)

.

Using the triangular inequality, the definition of the penalization coefficient σF (3.45), the

inverse inequality (1.6), the assumptions on the permeability tensor ν and the continuity

property of the L2-projector we have

||σ−1/2
F {ΠWb

h
(ν1/2z)}||20,FIh∪FDh .

∑
E∈Th

1

σ0

hE
ν̄Ek2

E

||ΠWb
h
(ν1/2z)||2L2(∂E)

.
∑
E∈Th

1

ν̄E

1

σ0

||ΠWb
h
(ν1/2z)||2L2(E) .

1

σ0

∑
E∈Th

||z||2L2(E) =
1

σ0

||z||2L2(Ω). (3.48)

This proves the desired estimate.

Lemma 3.4.2. Let L SIP
Γ (·) be the lifting operator defined in (3.18). Then, for every

qΓ ∈ QΓ(h) it holds

||(ντΓ`Γ)1/2L SIP

Γ (JqΓK)||L2(Γ) .
1

σ
1/2
0,Γ

||σ1/2
e JqΓK||0,EIΓ,h∪EDΓ,h .
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Proof. Same arguments as in in the proof of Lemma 3.4.1.

Lemma 3.4.3. Let L LDG
b (·) be the lifting operator defined in (3.31). Then, for every

q ∈ Qb(h) it holds

||ν1/2L LDG

b (JqK)||L2(Ω) .
1 +B

σ
1/2
0

||σ1/2
F JqK||0,FIh∪FDh . (3.49)

Proof. We proceed as in the proof of Lemma 3.4.1. By definition of the lifting operator

L LDG
b and Cauchy-Schwarz inequality, we have

||ν1/2L LDG

b (JqK)||L2(Ω) = sup
z∈[L2(Ω)]d

∫
Ω
ν1/2L LDG

b (JqK) · z
||z||L2(Ω)

= sup
z∈[L2(Ω)]d

∫
Ω

L LDG
b (JqK) ·ΠWb

h
(ν1/2z)

||z||L2(Ω)

≤ sup
z∈[L2(Ω)]d

∣∣∣∣− ∫FIh σ1/2
F JqK · σ−1/2

F ({ΠWb
h
(ν1/2z)} − bJΠWb

h
(ν1/2z)K)

∣∣∣∣
||z||L2(Ω)

+ sup
z∈[L2(Ω)]d

∣∣∣∣− ∫FDh σ1/2
F JqK · σ−1/2

F ΠWb
h
(ν1/2z)

∣∣∣∣
||z||L2(Ω)

≤ sup
z∈[L2(Ω)]d

||σ1/2
F JqK||0,FIh∪FDh ||σ

−1/2
F {ΠWb

h
(ν1/2z)}||0,FIh∪FDh

||z||L2(Ω)

+ sup
z∈[L2(Ω)]d

||σ1/2
F JqK||0,FIh ||σ

−1/2
F bJΠWb

h
(ν1/2z)K||0,FIh

||z||L2(Ω)

= (a) + (b)

From (3.48) we know that (a) . 1

σ
1/2
0

||σ1/2
F JqK||0,FIh∪FDh , while using similar arguments and

bound (3.27) on b, we can prove that

||σ−1/2
F bJΠWb

h
(ν1/2z)K||20,FIh .

B2

σ0

||z||2L2(Ω),

so that (b) . B

σ
1/2
0

||σ1/2
F JqK||0,FIh∪FDh . This concludes the proof.

Lemma 3.4.4. Let L LDG
Γ (·) be the lifting operator defined in (3.39). Then, For every
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3.4. Well-posedness of the discrete formulations

qΓ ∈ QΓ(h) it holds

||(ντΓ`Γ)1/2L LDG

Γ (JqΓK)||L2(Γ) .
1 +BΓ

σ
1/2
0,Γ

||σ1/2
e JqΓK||0,EIΓ,h∪EDΓ,h .

Proof. Same arguments as in in the proof of Lemma 3.4.3.

Using these results, we can now prove that the bilinear forms for the bulk problem APb (·, ·)
and AMb (·, ·) are continuous on Qb(h) and coercive on Qb

h, as well as the fracture bilinear

forms APΓ (·, ·) and AMΓ (·, ·) are continuous on QΓ(h) and coercive on QΓ
h.

Lemma 3.4.5. AP
b (·, ·) is coercive on Qb

h×Qb
h and continuous on Qb(h)×Qb(h), that is

AP

b (q, q) & ||q||2b,DG ∀q ∈ Qb
h,

AP

b (p, q) . ||p||b,DG ||q||b,DG ∀p, q ∈ Qb(h),

provided that σ0 is chosen big enough.

Proof. We start with coercivity. Taking p = q ∈ Qb
h, we have

AP

b (q, q) =
∑
E∈Th

||ν1/2∇q||2L2(E) + 2

∫
E

νL SIP

b (JqK) · ∇q

+
∑

F∈FIh∪F
D
h

||σ1/2
F JqK||2L2(F )

From Young inequality we have

2

∫
E

νL SIP

b (JqK) · ∇q ≥ −2||ν1/2L SIP

b (JqK)||L2(E)||ν1/2∇q||L2(E)

≥ −ε||ν1/2L SIP

b (JqK)||2L2(E) −
1

ε
||ν1/2∇q||2L2(E),
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so that, using the bound on the lifting (3.47), we obtain

AP

b (q, q) ≥
∑
E∈Th

[
(1− ε)‖ν1/2∇q‖2

L2(E) −
1

ε
‖ν1/2L SIP

b (JqK)‖2
L2(E)

]
+

∑
F∈FIh∪F

D
h

||σ1/2
F JqK||2L2(F )

& (1− ε)
∑
E∈Th

‖ν1/2∇q‖2
L2(E) +

(
1− 1

σ0ε

) ∑
F∈FIh∪F

D
h

||σ1/2
F JqK||2L2(F )

& ||q||2b,DG,

for σ0 big enough.

Continuity directly follows from Cauchy Schwarz inequality and the bound on the lifting

(3.47).

Lemma 3.4.6. AP
Γ(·, ·) is coercive on QΓ

h ×QΓ
h and continuous on QΓ(h)×QΓ(h), that

is

AP

Γ(qΓ, qΓ) & ||qΓ||2Γ,DG ∀qΓ ∈ QΓ
h,

AP

Γ(pΓ, qΓ) . ||pΓ||Γ,DG ||qΓ||Γ,DG ∀pΓ, qΓ ∈ QΓ(h),

provided that σ0,Γ is chosen big enough.

Proof. Analogous to the proof of Lemma 3.4.5.

Lemma 3.4.7. AM
b (·, ·) is coercive on Qb

h×Qb
h and continuous on Qb(h)×Qb(h), that is

AM

b (q, q) & ||q||2b,DG ∀q ∈ Qb
h,

AM

b (p, q) . ||p||b,DG ||q||b,DG ∀p, q ∈ Qb(h).

Proof. We start with coercivity. From Young’s inequality and the bound on the lifting
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(3.49) we have, for every 0 < ε < 1,

AM

b (q, q) =
∑
E∈Th

||ν1/2∇q||2L2(E) + ||ν1/2L LDG

b (JqK)||2L2(E)

+ 2

∫
E

νL LDG

b (JqK) · ∇q

+
∑

F∈FIh∪F
D
h

||σ1/2
F JqK||2L2(F )

≥
∑
E∈Th

[
(1− ε)‖ν1/2∇q‖2

L2(E) +

(
1− 1

ε

)
||ν1/2L LDG

b (JqK)||2L2(E)

]
+

∑
F∈FIh∪F

D
h

||σ1/2
F JqK||2L2(F )

& (1− ε)
∑
E∈Th

‖ν1/2∇q‖2
L2(E) + (1 + C)

∑
F∈FIh∪F

D
h

||σ1/2
F JqK||2L2(F )

with C = (1+B)
σ0ε

(1 − 1
ε
), so that AM

b (·, ·) is coercive for every choice of the parameters

σ0 > 0 and B > 0 1. Continuity is again a direct consequence of Cauchy Schwarz’s

inequality and the bound on the lifting (3.49).

Lemma 3.4.8. AM
Γ (·, ·) is coercive on QΓ

h ×QΓ
h and continuous on QΓ(h)×QΓ(h), that

is

AM

Γ (qΓ, qΓ) & ||qΓ||2Γ,DG ∀qΓ ∈ QΓ
h,

AM

Γ (pΓ, qΓ) . ||pΓ||Γ,DG ||qΓ||Γ,DG ∀pΓ, qΓ ∈ QΓ(h).

Proof. Analogous to the proof of Lemma 3.4.7.

Employing Lemmas 3.4.5, 3.4.7, 3.4.6 and 3.4.8, we can easily prove the well-posedness

of all of our discrete problems, as stated in the following stability result.

Proposition 3.4.9. Let the penalization parameters σ for the problem in the bulk and in

the fracture be defined as in (3.45) and (3.46), respectively. Then, the fully-coupled discrete

problems PP (3.21), MP (3.34), PM (3.41) and MM (3.44) are well-posed provided that

σ0 and σ0,Γ are chosen big enough for the primal formulations.

1More in detail: we need 1 + C > 0, with 0 < ε < 1. We obtain 1 + (1 − 1
ε ) (1+B)2

σ0
> 0, that is

ε > 1
1+

σ0
(1+B)2

= C̃, being 0 < C̃ < 1 for every possible choice of σ0 > 0 and B > 0.
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Proof. In order to use Lax-Milgram Lemma, we prove that the bilinear forms APPh (·, ·),
AMP
h (·, ·), APMh (·, ·) and AMM

h (·, ·) are continuous on Qb(h) × QΓ(h) and coercive on

Qb
h ×QΓ

h. We have, from Cauchy-Schwarz inequality

C((q, qΓ), (q, qΓ)) = ||(q, qΓ)||2C
C((q, qΓ), (w,wΓ)) ≤

∑
F∈Γh

||β1/2
Γ JqK||2L2(F )||β

1/2
Γ JwK||2L2(F )

+
∑
F∈Γh

||α1/2
Γ ({q} − qΓ)||2L2(F )||α

1/2
Γ ({w} − wΓ)||2L2(F )

≤ |||(q, qΓ)||| · |||(w,wΓ)|||,

so that coercivity and continuity are a direct consequence of the definition of the norm

||| · ||| and of Lemmas 3.4.5, 3.4.7, 3.4.6 and 3.4.8. The continuity of the linear operators

LPPh (·), LMP
h (·), LPMh (·) and LMM

h (·) on Qb(h) × QΓ(h) can be easily proved by using

Cauchy-Schwarz’s inequality, thanks to the regularity assumptions on the forcing terms

f and fΓ and on the boundary data gD and gΓ.

3.5 Error analysis

In this section we derive error estimates for our discrete problems.

For each subdomain Ωi, i = 1, 2, we denote by Ei the classical continuous extension

operator (cf. [113], see also Chapter 2) Ei : Hs(Ωi)→ Hs(Rd), for s ∈ N0. Similarly, we

denote by EΓ the continuous extension operator EΓ : Hs(Γ)→ Hs(Rd−1), for s ∈ N0. We

then make the following regularity assumptions for the exact solution (p, pΓ) of problem

(3.5):

Assumption 3.5.1. Let T# = {TE} and F# = {TF} denote the associated coverings of

Ω and Γ, respectively, of Definition 1.1.2. We assume that the exact solution (p, pΓ) is

such that:

A1. for every E ∈ Th, if E ⊂ Ωi, it holds Eipi|TE ∈ HrE(TE), with rE ≥ 1 + d/2 and

TE ∈ T# with E ⊂ TE;

A2. for every F ∈ Γh, it holds EΓpΓ|TF ∈ HrF (TF ), with rF ≥ 1+(d−1)/2 and TF ∈ F#

with F ⊂ TF .
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Assumption 3.5.2. We assume that the normal components of the exact fluxes ν∇p
and `Γν

τ
Γ∇pΓ are continuous across mesh interfaces, that is Jν∇pK = 0 on F Ih and

J`Γν
τ
Γ∇pΓK = 0 on EIΓ,h.

From Proposition 3.4.9 and Strang’s second Lemma the following abstract error bound

directly follows.

Lemma 3.5.3. Assuming that the hypotheses of Proposition 3.4.9 are satisfied, for all

the discrete problems PP (3.21), MP (3.34), MM (3.44) and PM (3.44) the following

abstract error bound holds

|||(p, pΓ)−(ph, pΓ,h)||| . inf
(q,qΓ)∈Qbh×Q

Γ
h

|||(p, pΓ)−(q, qΓ)|||+ sup
(w,wΓ)∈Qbh×Q

Γ
h

|R∗∗h ((p, pΓ), (w,wΓ))|
|||(w,wΓ)|||

,

where the residual R∗∗h is defined as

R∗∗h ((p, pΓ), (w,wΓ)) = A∗∗h ((p, pΓ), (w,wΓ))− L∗∗h (w,wΓ),

with ∗∗ ∈ {PP,MP,MM,PM}.

Note that, irrespective of the numerical method chosen for the discretization (PP, MP,

PM or MM), the residual can always be split into two contributions, one deriving from

the approximation of the problem in the bulk and one deriving from the approximation

of the problem in the fracture, i.e.,

R∗∗h ((p, pΓ), (w,wΓ)) = R∗b(p, w) +R∗Γ(pΓ, wΓ) (3.50)

It follows that, to derive a bound for the global residual, we can bound each of the two

contributions separately. With this in mind, we state and prove the next two lemmas.

Lemma 3.5.4. Let (p, pΓ) be the exact solution of problem (3.5) satisfying the regularity

Assumptions 3.5.2 and 3.5.1. Then, for every w ∈ Qb(h) and wΓ ∈ QΓ(h), it holds

|RP
b (p, w)|2 .

∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄2
E max
F⊂∂E\Γ

σ−1
F (

kE
hE

+
k2
E

hE
)

]
· ||w||2b,DG,(3.51)

|RP
Γ (pΓ, wΓ)|2 .

∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||E pΓ||2HrF (TF )

[
(ν̄τF `Γ)2 max

e⊆∂F
σ−1
e (

kF
hF

+
k2
F

hF
)

]
· ||wΓ||2Γ,DG.

(3.52)
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Proof. First, we prove (3.51). Let ΠWb
h

be the L2-orthogonal projector onto Wb
h, then,

integrating by parts elementwise, using the fact that p satisfies (3.1) and recalling that,

from Assumption 3.5.2, Jν∇pK vanishes on F Ih , we obtain the following expression for

the residual RP
b :

RP
b (p, w) =

∑
F∈FIh∪F

D
h

∫
F

{ν(∇p−ΠWb
h
(∇p))} · JwK, ∀w ∈ Qb(h).

Employing the Cauchy-Schwarz’s inequality and the definition of the norm ||| · |||, we

then obtain

|RP
b (p, w)|2 .

 ∑
F∈FIh∪F

D
h

σ−1
F

∫
F

|{ν(∇p−ΠWb
h
(∇p))}|2

 · ||w||2b,DG, ∀w ∈ Qb(h).

If we still denote by Π̃ the vector-valued generalization of the projection operator Π̃

defined in Lemma 1.3.3, we observe that

∑
F∈FIh∪F

D
h

σ−1
F

∫
F

|{ν(∇p−ΠWb
h
(∇p))}|2 ≤

∑
F∈FIh∪F

D
h

σ−1
F

∫
F

|{ν(∇p− Π̃(∇p))}|2

+
∑

F∈FIh∪F
D
h

σ−1
F

∫
F

|{νΠWb
h
(∇p− Π̃(∇p))}|2

≡ (1) + (2).

To bound the term (1), we employ the approximation result stated in Lemma 1.3.3. We

obtain

(1) .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

(
ν̄2
E max
F⊂∂E\Γ

σ−1
F

h−1
E

k−1
E

)
||E p||2HrE (TE).

Exploiting, the boundedness of the permeability tensor ν, the inverse inequality (1.6), the

L2-stability of the projector ΠWb
h

and the approximation results stated in Lemma 1.3.3,
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we can bound term (2) as follows:

(2) .
∑
E∈Th

max
F⊂∂E\Γ

σ−1
F ν̄2

E||ΠWb
h
(Π̃(∇p)−∇p)||2L2(∂E\Γ)

.
∑
E∈Th

max
F⊂∂E\Γ

σ−1
F ν̄2

E

k2
E

hE
||Π̃(∇p)−∇p||2L2(E)

.
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

(
ν̄2
E

k2
E

hE
max

F⊂∂E\Γ
σ−1
F

)
,

which concludes the proof of (3.51).

Proceeding as above we obtain the following expression for the residual RP
Γ :

RP
Γ (pΓ, wΓ) =

∑
e∈EIΓ,h∪E

D
Γ,h

∫
e

{ντΓ`Γ(∇pΓ −ΠWΓ
h
(∇pΓ))} · JwΓK.

Estimate (3.52) can then be proven with analogous arguments.

Lemma 3.5.5. Let (p, pΓ) be the exact solution of problem (3.5) satisfying the regularity

Assumptions 3.5.2 and 3.5.1. Then, for every w ∈ Qb(h) and wΓ ∈ QΓ(h), it holds

|RM
b (p, w)|2 .

∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
(1 +B)ν̄2

E max
F⊂∂E\Γ

σ−1
F (

kE
hE

+
k2
E

hE
)

]
· ||w||2b,DG, (3.53)

|RM
Γ (pΓ, wΓ)|2 .

∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||E pΓ||2HrF (TF )

[
(1 +BΓ)(ν̄τF `Γ)2 max

e⊆∂F
σ−1
e (

kF
hF

+
k2
F

hF
)

]
· ||wΓ||2Γ,DG. (3.54)

Proof. We focus on the proof of (3.53), estimate (3.54) can be obtained likewise. Recalling

that ΠWb
h

denotes the L2-orthogonal projector onto Wb
h, the residualRM

b has the following

expression:

RM
b (p, w) =

∑
F∈FIh∪F

D
h

∫
F

(
{ν(∇p−ΠWb

h
(∇p))} − bJν(∇p−ΠWb

h
(∇p))K

)
· JwK

+
∑
F∈FDh

∫
F

wν(∇p−ΠWb
h
(∇p)) · nF ,
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where we have used the identity L LDG
b (JpK) = −Gb and the continuity of ν∇p across

internal faces (Assumption 3.5.2). From Cauchy-Schwarz and triangular inequalities and

the bound on the coefficient b (3.27), we have

|RM
b (p, w)|2 .

 ∑
F∈FIh∪F

D
h

σ−1
F

[ ∫
F

|{ν(∇p−Π̃(∇p))}|2 +

∫
F

|{νΠWb
h
(∇p−Π̃(∇p))}|2

]

+B
∑

F∈FIh∪F
D
h

σ−1
F

[ ∫
F

|Jν(∇p− Π̃(∇p))K|2 +

∫
F

|JνΠWb
h
(∇p− Π̃(∇p))K|2

] · ||w||2b,DG,
where we recall that, with a slight abuse of notation, Π̃ still denotes the vector-valued

generalization of the projection operator Π̃ defined in Lemma 1.3.3. The thesis now

follows from the boundedness of the permeability tensor ν, the inverse inequality (1.6),

the L2-stability of the projector ΠWb
h

and the approximation results stated in Lemma

1.3.3.

Theorem 3.5.6. Let T# = {TE} and F# = {TF} denote the associated coverings of Ω

and Γ, respectively, consisting of shape-regular simplexes as in Definition 1.1.2, satisfying

Assumption 1.1.2. Let (p, pΓ) be the solution of problem (3.5) and (ph, pΓ,h) ∈ Qb
h ×QΓ

h

be its approximation obtained with the method PP, MP, MM or PM, with the penalization

parameters given by (3.45) and (3.46) and σ0 and σ0,Γ sufficiently large for the primal

formulations. Moreover, suppose that the exact solution (p, pΓ) satisfies the regularity

Assumptions 3.5.2 and 3.5.1. Then, the following error bound holds:

|||(p, pΓ)− (ph, pΓ,h)|||2 .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

G∗E(hE, kE, ν̄E)||E p||2HrE (TE) (3.55)

+
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

G∗F (hF , kF , ν̄
τ
F )||EΓpΓ||2HrF (TF ),

where the E p is to be interpreted as E1p1 when E ⊂ Ω1 or as E2p2 when E ⊂ Ω2. Here,

sE = min(kE + 1, rE) and sF = min(kF + 1, rF ), and the constants are defined according
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to the chosen approximation method as follows:

GP
E(hE, kE, ν̄E) = ν̄E + hEk

−1
E max

F⊂∂E\Γ
σF + (αΓ + βΓ)hEk

−1
E

+ ν̄2
Eh
−1
E kE max

F⊂∂E\Γ
σ−1
F + ν̄2

Eh
−1
E k2

E max
F⊂∂E\Γ

σ−1
F ,

GP
F (hF , kF , ν̄

τ
F ) = ν̄τF `Γ + hFk

−1
F max

e⊆∂F
σe + αΓh

2
Fk
−2
F

+ (ν̄τF `Γ)2h−1
F kF max

e⊆∂F
σ−1
e + (ν̄τF `Γ)2h−1

F k2
F max
e⊆∂F

σ−1
e ,

GM
E (hE, kE, ν̄E) = ν̄E + hEk

−1
E max

F⊂∂E\Γ
σF + (αΓ + βΓ)hEk

−1
E

+ (1 +B)ν̄2
Eh
−1
E kE max

F⊂∂E\Γ
σ−1
F + (1 +B)ν̄2

Eh
−1
E k2

E max
F⊂∂E\Γ

σ−1
F ,

GM
F (hF , kF , ν̄

τ
F ) = ν̄τF `Γ + hFk

−1
F max

e⊆∂F
σe + αΓh

2
Fk
−2
F

+ (1 +BΓ)(ν̄τF `Γ)2h−1
F kF max

e⊆∂F
σ−1
e + (1 +BΓ)(ν̄τF `Γ)2h−1

F k2
F max
e⊆∂F

σ−1
e .

Remark 7. (Uniform orders and mesh size) Let us assume that the mesh is uniform, i.e.

hE ≈ h for all E ∈ Th and thus hF ≈ h for all F ∈ Γh, and that the polynomial order

is the same for each element in the bulk and in the fracture, i.e. kE = k ≥ 1 for all

E ∈ Th and kF = kΓ ≥ 1 for all F ∈ Γh. Then if the exact solutions in the bulk and in

the fracture satisfy p ∈ Hr(Ω) with r ≥ k + 1 and pΓ ∈ HrΓ(Γ) with rΓ ≥ kΓ + 1, then

the error estimate (3.55) reduces to

|||(p, pΓ)− (ph, p
Γ
h)||| . hk

kr−3/2
||p||Hr(Ω) +

hkΓ

k
rΓ−3/2
Γ

||pΓ||HrΓ (Γ).

Proof. From Lemma 3.5.3 we know that the error satisfies the following bound

|||(p, pΓ)− (ph, pΓ,h)||| . inf
(q,qΓ)∈Qbh×Q

Γ
h

|||(p, pΓ)− (q, qΓ)|||︸ ︷︷ ︸
I

+ sup
(w,wΓ)∈Qbh×Q

Γ
h

|Rh((p, pΓ), (w,wΓ))|
|||(w,wΓ)|||︸ ︷︷ ︸

II

. (3.56)

We estimate the two terms on the right-hand side of (3.56) separately. We can rewrite
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term I as

I = inf
(q,qΓ)∈Qbh×Q

Γ
h

(
||p− q||2b,DG + ||pΓ − qΓ||2Γ,DG + ||(p− q, pΓ − qΓ||2C

)
≤ ||p− Π̃p||2b,DG︸ ︷︷ ︸

(a)

+ ||pΓ − Π̃pΓ||2Γ,DG︸ ︷︷ ︸
(b)

+ ||(p− Π̃p, pΓ − Π̃pΓ)||2C︸ ︷︷ ︸
(c)

.

Again we consider each of the three terms separately. To bound term (a), we exploit the

two approximation results stated in Lemma 1.3.3 and obtain

(a) ≤ ||p− Π̃p||2b,DG =
∑
E∈Th

||ν1/2∇(p− Π̃p)||2L2(E) +
∑

F∈FIh∪F
D
h

σF ||Jp− Π̃pK||2L2(F )

.
∑
E∈Th

[
ν̄E|p− Π̃p|2H1(E) + ( max

F⊂∂E\Γ
σF )||p− Π̃p||2L2(∂E\Γ)

]

.
∑
E∈Th

[
h

2(sE−1)
E

k
2(rE−1)
E

ν̄E||E p||2HrE (TE) +
∑

F⊂∂E\Γ

h
2(sE−1/2)
E

k
2(rE−1/2)
E

( max
F⊂∂E\Γ

σF )||E p||2HrE (TE)

]

=
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

(
ν̄E +

hE
kE

( max
F⊂∂E\Γ

σF )

)
.

Using analogous interpolation estimates on the fracture we can bound term (b) as follows:

(b) ≤ ||pΓ − Π̃pΓ||2Γ,DG .
∑
F∈Γh

||ντΓ`Γ∇(pΓ − Π̃pΓ)||2L2(F ) +
∑

e∈EIΓ,h∪E
D
Γ,h

σe||JpΓ − Π̃pΓK||2L2(e)

.
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||E pΓ||2HrF (TF )

(
ν̄τF `Γ +

hF
kF

max
e⊆∂F

σe

)

Finally, for term (c), we have

(c) ≤ ||(p− Π̃p, pΓ − Π̃pΓ)||2C ≤ βΓ

∑
F∈Γh

||Jp− Π̃pK||2L2(F ) + αΓ

∑
F∈Γh

||{p− Π̃p}||2L2(F )

+ αΓ

∑
F∈Γh

||pΓ − Π̃pΓ||2L2(F ).
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Exploiting the approximation result (1.8), we obtain

βΓ

∑
F∈Γh

||Jp− Π̃pK||2L2(F ) ≤ βΓ

∑
E∈Th

∂E∩Γ6=∅

||p− Π̃p||2L2(∂E) . βΓ

∑
E∈Th

∂E∩Γ 6=∅

h
2(sE− 1

2
)

E

k
2(rE− 1

2
)

E

||E p||2HrE (TE)

= βΓ

∑
E∈Th

∂E∩Γ6=∅

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

hE
kE
.

Similarly, we have

αΓ

∑
F∈Γh

||{p− Π̃p}||2L2(F ) . αΓ

∑
E∈Th

∂E∩Γ 6=∅

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

hE
kE
.

Finally, using the interpolation estimates for the fracture, we deduce that

αΓ

∑
F∈Γh

||pΓ − Π̃pΓ||2L2(F ) . αΓ

∑
F∈Γh

h2sF
F

k2rF
||E pΓ||2HrF (TF )

= αΓ

∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||E pΓ||2HrF (TF )

h2
F

k2
F

.

In conclusion, combining all the previous estimates, we can bound the term I on the

right-hand side of (3.56) as follows:

I .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄E +

hE
kE

max
F⊂∂E\Γ

σF + (αΓ + βΓ)
hE
kE

]

+
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||E pΓ||2HrF (TF )

[
ν̄τF `Γ +

hF
kF

max
e⊆∂F

σe + αΓ
h2
F

k2
F

]
. (3.57)

Finally, the desired estimates follow from the combination of (3.57), together with the

bound on Term II deriving from what observed in (3.50) and Lemmas 3.5.4 and 3.5.5.

Finally, from the above result we can derive some error estimates also for the velocities u

and uΓ.

Theorem 3.5.7. Let all the hypotheses of Theorem 3.5.6 hold. Let (u,uΓ) ∈Wg and

(p, pΓ) ∈M be the solution of problem (3.5). Then:
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• if
(

(ph,uh), pΓ,h

)
∈ Qb

h ×Wb
h × QΓ

h is its approximation obtained with the MP

method (3.30), it holds

||u− uh||20,Th .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

GM
E ||E p||2HrE (TE) +

∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

GP
F ||EΓpΓ||2HrF (TF );

• if
(
ph, (pΓ,h,uΓ,h)

)
∈ Qb

h × QΓ
h ×WΓ

h is its approximation obtained with the PM

method (3.38), it holds

||uΓ − uΓ,h||20,Γh .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

GP
E||E p||2HrE (TE) +

∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

GM
F ||EΓpΓ||2HrF (TF );

• if
(

(ph,uh), (pΓ,h,uΓ,h)
)
∈ Qb

h×Wb
h×QΓ

h ×WΓ
h is its approximation obtained with

the MM method (3.43), it holds

||u− uh||20,Th + ||uΓ − uΓ,h||20,Γh .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

GM
E ||E p||2HrE (TE)

+
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

GM
F ||EΓpΓ||2HrF (TF ),

where the constants GM
E , GP

F , GP
E and GM

F are defined as in Theorem 3.5.6.

Proof. Let
(

(ph,uh), pΓ,h

)
and

(
(ph, pΓ,h), (uh,uΓ,h)

)
be the discrete solutions obtained

with the MP method and with the MM method, respectively. Then, using identity (3.32)

and the fact that L LDG
b (JpK) = −Gb, we can rewrite

uh − u = ν∇ph + νL LDG

b (JphK) + νGb − ν∇p

= ν(∇ph −∇p) + νL LDG

b (Jph − pK).

From the uniform boundedness of ν, the triangular inequality, the bound on the lifting
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(3.49) and the definition of the || · ||b,DG norm it follows that

||u− uh||0,Th . ||ν1/2∇(ph − p)||0,Th + ||ν1/2L LDG

b (Jph − pK)||0,Th

. ||ph − p||b,DG +
1 +B

σ
1/2
0

||σ1/2
F Jph − pK||0,FIh∪FDh

. ||ph − p||b,DG.

In particular, this implies that

||u− uh||0,Th . |||(p, pΓ)− (ph, pΓ,h)|||,

Similarly, one can prove that, if
(
ph, (pΓ,h,uΓ,h)

)
and

(
(ph, pΓ,h), (uh,uΓ,h)

)
are the

discrete solutions obtained with the PM method and with the MM method, respectively,

it holds

||uΓ − uΓ,h||0,Γh . |||(p, pΓ)− (ph, pΓ,h)|||.

The thesis is now a direct consequence of Theorem 3.5.6.

3.6 Numerical experiments

In this section we present some two-dimensional numerical experiments with the aim

of validating the obtained theoretical convergence results. The validity of the error

estimates for the primal-primal setting has been already assessed in Chapter 2. Here, we

focus on the paradigmatic mixed-primal setting. This means that, for the approximation

of the problem in the bulk, we will employ the LDG method, while, for the problem

in the fracture, we will employ the SIPDG method (both in their generalization to

polygonal grids). All the numerical tests have been implemented in Matlab R©. For the

generation of polygonal meshes conforming to the fractures we have suitably modified

code PolyMesher [117].

In particular, we present three sets of numerical experiments. The first set is obtained

assuming that an analytical solution is known and aims at verifying the a-priori error

estimates obtained in Theorems 3.5.6 and 3.5.7. The second set is derived form physical

considerations and aims at testing how different values of the fracture permeability may

influence the flow in the bulk. Finally, the last set of experiments aims at showing how

the method is capable of handling more complicated geometries, specifically networks of
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partially immersed fractures.

3.6.1 Example 1: Analytical solution

For a start, we consider the same test case of Section 2.5.1, that is, we take Ω = (0, 1)2,

and choose as exact solutions in the bulk and in the fracture Γ = {(x, y) ∈ Ω : x+y = 1}

p =

ex+y in Ω1,

ex+y + 4ηΓ√
2
e in Ω2,

u =

−ex+y in Ω1,

−ex+y in Ω2,
pΓ = e+

2ηΓ√
2
e,

which satisfy the coupling conditions (3.3a)-(3.3b) with ξ = 1, `Γ = 0.001 and ν = νΓ = I.

In order to test the h-convergence properties of our method, we split again the error in

the two contributions given by the bulk and fracture errors. In particular, aiming at

validating the error estimate in Theorem 3.5.6, we compute ||p− ph||1,Th (Figure 3.2(a))

and ||pΓ − pΓ,h||1,Γh (Figure 3.2(d)), while to validate the results of Theorem 3.5.7, we

compute ||u− uh||0,Th (Figure 3.2(c)). In addition, we test the behaviour of the L2-norm

of the error for the primal variables, i.e., ||p− ph||0,Th (Figure 3.2(b)) and ||pΓ − pΓ,h||0,Γh
(Figure 3.2(e)). All the plots in Figure 3.2 show the computed errors as a function of

the inverse of the mesh size (loglog scale), together with the expected convergence rates.

Each plot consists of four lines: every line shows the behaviour of the computed error for

a different polynomial degree in the bulk (we consider k = 1, 2, 3, 4). For the fracture

problem we always choose kΓ = 2.

In Figures 3.2(a), 3.2(d) and 3.2(c) the theoretical convergence rates are clearly achieved.

We observe that, in Figure 3.2(d), the convergence rate for ||pΓ − pΓ,h||1,Th with k = 1 is

suboptimal. This is due to the fact that the polynomial degree for the problem in the

bulk is not accurate enough. Optimal rates are recovered for bulk polynomial degree

k = 2, 3, 4. Finally, Figures 3.2(b) and 3.2(e) show that one order of convergence is gained

for the L2-norm for both the bulk and fracture problems.

3.6.2 Example 2: Discontinuous fracture permeability

Next, we reproduce some numerical experiments first presented in [101]. We ex-

amine two test cases with bulk domain Ω = (0, 2) × (0, 1) and fracture domain

Γ = {(x, y) ∈ R2 : x = 1, 0 ≤ y ≤ 1}. In the first case, we consider a fracture

80



3.6. Numerical experiments

with constant permeability, while in the second case we consider a fracture with lower

permeability in its middle part, thus presenting a discontinuity. In particular:

(a) Case 1: constant permeability: The permeability tensor in the fracture is given

by νnΓ = ντΓ = 100. The bulk permeability ν is chosen to be constant and isotropic,

i.e., ν = I. We impose Dirichlet boundary conditions on the left and right side of

the bulk domain and homogeneous Neumann conditions on the top and bottom

sides. On the fracture boundaries we impose Dirichlet boundary conditions.

(b) Case 2: discontinous permeabilty: The fracture Γ is subdivided into two

areas having different values for the permeability tensor: in the initial and ending

part of the fracture Γ1 = {(x, y) ∈ Γ, 0 ≤ y ≤ 0.25 and 0.75 ≤ y ≤ 1} the

permeability tensor νΓ1 is defined as νnΓ1
= ντΓ1

= 1, while in the middle part

Γ2 = {(x, y) ∈ Γ, 0.25 ≤ y ≤ 0.75} the permeability is low and is defined as

νnΓ2
= ντΓ2

= 0.002. The bulk permeability tensor is chosen again equal to the

identity matrix, i.e., ν = I. In the bulk, we impose the same boundary conditions as

in the previous test case, while at the fracture extremities we impose homogeneous

Neumann conditions.

The two geometrical configurations are shown in Figures 3.3(a)-3.3(b), together with the

boundary conditions. For both test cases we take the fracture thickness `Γ = 0.01, the

model parameter ξ = 2/3 and the source terms f = fΓ = 0. Moreover, we discretize the

problem in the bulk taking as polynomial degree k = 1 and the problem in the fracture

taking kΓ = 2. The obtained results are shown in Figure 3.4. For both cases (constant at

the top, discontinuous at the bottom) we report the pressure field and Darcy velocity in

the bulk (here the grid is very coarse only for visualization purposes) and the value of

the pressure along the fracture. In the first case, since we have taken νnΓ = ντΓ = 100 > 1,

we can observe that the fluid has the tendency to flow along the fracture. In the second

case, one can see that the part of the fracture with low (normal) permeability acts as a

geological barrier, so that the fluid tends to avoid it and we can observe a jump of the

bulk pressure across it. Our results are in agreement with those obtained in [101].

3.6.3 Example 3: Network of partially immersed fractures

With this last set of numerical experiments we investigate the capability of our discretiza-

tion method to deal with more complicated geometrical configurations, considering a
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network of partially immersed fractures. Our reference is again [3], where the mathemat-

ical model developed in [101] has been extended to fully immersed fractures. In Chapter

2 we showed that our method in a primal-primal setting is capable of efficiently handling

the configuration. Here, we reproduce the same numerical experiments to demonstrate

that this holds true also in a mixed-primal setting.

In order to deal with immersed fractures, we need to supplement our model (3.4) with an

equation describing the behaviour of the fracture pressure at the immersed tips. Following

[3], we impose a homogeneous Neumann condition, thus assuming that the mass transfer

across the immersed tips can be neglected, i.e., ντΓ∇τpΓ · τ = 0. At the extremities of the

fractures that are non-immersed, i.e., ∂Γ ∩ ∂Ω, we impose boundary conditions that are

consistent with those imposed on ∂Ω in that point.

We consider the bulk domain Ω = (0, 1)2 cut by a network made of four partially immersed

fractures: Γ1 = {(x, y) ∈ Ω : x ≥ 0.3, y = 0.2}, Γ2 = {(x, y) ∈ Ω : x ≤ 0.7, y = 0.4},
Γ3 = {(x, y) ∈ Ω : x ≥ 0.3, y = 0.6} and Γ4 = {(x, y) ∈ Ω : x ≤ 0.7, y = 0.8}. We perform

two numerical experiments. In both of them, the fractures Γ2 and Γ4 are impermeable

(ντΓ = νnΓ = 10−2), while Γ1 and Γ3 are partially permeable. In the first configuration, we

consider for Γ1 and Γ3 the permeabilities νnΓ = 10−2 and ντΓ = 100, while in the second,

we consider νnΓ = 10−2 and ντΓ = 1. Moreover, we vary the imposed boundary conditions

as illustrated in Figure 3.5.

In both the experiments we consider an isotropic bulk permeability tensor i.e., ν = I and

we assume that all the fractures have aperture `Γ = 0.01. The flow is only generated by

boundary conditions, since we take all the forcing terms f = fΓ = 0. Finally, we choose

as model parameter ξ = 0.55.

To obtain our results, we employed cartesian grids featuring approximately the same

number of elements as those employed in [3] and such that the immersed tips of the

fractures coincide with one of the mesh vertices. For the approximation of the problem

in the bulk and in the fracture we chose the polynomial degrees k = kΓ = 2. In Figure

3.6, we show the results obtained for the two test cases with a mesh of 26051 elements.

In particular, we report the pressure field in the bulk with the streamlines of the velocity

(left), the value of the bulk pressure along the line x = 0.65 (middle) and the pressure

field inside the four fractures (right). Our results are in perfect agreement with those

obtained in [3] and in [12], thus showing that, also in a mixed-primal setting, our method

is able to efficiently handle this configuration.

82



3.6. Numerical experiments

100.6 100.8 101 101.2 101.4
10−9

10−7

10−5

10−3

10−1

1

2

3

4

1/h

k = 1

k = 2

k = 3

k = 4

(a) ||p− ph||1,Th

100.6 100.8 101 101.2 101.4

10−11

10−9

10−7

10−5

10−3

2

3

4

5

1/h

k = 1

k = 2

k = 3

k = 4

(b) ||p− ph||0,Th

100.6 100.8 101 101.2 101.4
10−9

10−7

10−5

10−3

10−1

1

2

3

4

1/h

k = 1

k = 2

k = 3

k = 4

(c) ||u− uh||0,Th

100.6 100.8 101 101.2 101.4

10−9

10−7

10−5

10−3

10−1

2

2

2

2

1/h

k = 1

k = 2

k = 3

k = 4

(d) ||pΓ − pΓ
h||1,Γh

100.6 100.8 101 101.2 101.4

10−11

10−9

10−7

10−5

10−3

10−1

3

3

3

3

1/h

k = 1

k = 2

k = 3

k = 4

(e) ||pΓ − pΓ
h||0,Γh

Figure 3.2: Example 1: Computed errors as a function of 1/h (loglog scale) and expected convergence
rates for bulk polynomial degree k = 1, 2, 3, 4 and fracture polynomial degree kΓ = 2.
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p
=

0

p
=

1

pΓ = 1

pΓ = 0

u · n = 0 u · n = 0

u · n = 0 u · n = 0

νΓ

(a) Constant permeability

p
=

0

p
=

1

uΓ · τ = 0

uΓ · τ = 0

u · n = 0 u · n = 0

u · n = 0 u · n = 0
νΓ1

νΓ2

νΓ1

(b) Discontinuous permeability

Figure 3.3: Example 2: Computational domains and boundary conditions for the two test cases. In the
second case, on the fracture, the permeable (red, dotted line) and impermeable (blue, solid line) areas
are shown.

Pressure field in the bulk Darcy velocity in the bulk Pressure in the fracture

Figure 3.4: Example 2: Bulk pressure field (left), bulk Darcy velocity (middle) and fracture pressure
(right) for the constant permeability (top) and discontinuous permeability (bottom) test cases.
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(a) Configuration 1: ντΓ = 100 on Γ1,Γ3

p = (2x− 1)(3x− 1)

p = (2x− 1)(3x− 1)

p
=

2

p
=

1

x = 0.65

(b) Configuration 2: ντΓ = 1 on Γ1,Γ3

Figure 3.5: Example 3: Configurations and boundary condition for the two test cases.

Pressure field and streamlines Pressure along x = 0.65 Pressure in the fracture

Figure 3.6: Example 3: first configuration (top) and second configuration (bottom).
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4 | Networks of intersecting frac-

tures

This chapter aims at extending our formulation to the case of networks of intersecting

fractures. For simplicity, we consider, as in Chapter 2, the primal-primal setting, so

that we can mainly focus on handling the intersections. To this aim, in Section 4.1,

we supplement our mathematical model [101] with some suitable physical conditions,

prescribing the behaviour of the fluid at the intersections points. Following [87, 51, 45],

we impose that:

• pressure between fractures is continuous along the intersections;

• flux is conserved, so that no exchange of fluid between bulk and fracture network

takes place along the intersections.

We mention that more general conditions may be imposed. Some examples may be found

in [112, 86, 50, 66, 90].

From the DG-discretization point of view, the key instrument for dealing with intersections

is the generalization of the concepts of jump and average, see Section 4.3.1 below. Using

the newly defined jump and average operators we are able to define a DG approximation

for the problem in the bulk combined with a DG approximation for the problem in the

fracture network, where the conditions at the intersection are imposed “in the spirit of DG

methods ”. In particular, this means that continuity is enforced penalizing the jump of

the pressure (after a suitable definition of the penalization coefficient at the intersection),

while balance of fluxes is imposed naturally, similarly to how homogeneous Neumann

boundary conditions are usually enforced. Both the bulk and fracture discretizations are

obtained employing the SIPDG method extended to the polytopic setting.

The rest of the chapter is structured as follows. In Section 4.1, we supplement the
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mathematical model introduced in the previous chapters with the conditions prescribing

the behaviour of the fluid at the intersections. In Section 4.2, we introduce the weak

formulation of the problem and prove its well-posedness. Section 4.3 contains the polyDG

discretization of the coupled system based on the new definition of jump and average

operators at intersections, which we introduce in Section 4.3.1. Finally, Sections 4.4

and 4.5 enclose the stability and error analysis of the discrete method. We conclude the

chapter with Section 4.6, where we present some preliminary numerical experiments

with known analytical solution, so that we are able to verify the obtained convergence

rates, and one test case featuring a more realistic configuration with a totally immersed

network of fractures.

All the results presented in this chapter are original and are contained in [13].

4.1 Mathematical model

We adopt as in the previous chapters the reduced model introduced in [101], but here

extended for dealing with networks of intersecting fractures. In particular, we impose some

additional conditions in order to describe the behaviour of the fluid at the intersections,

taking as a reference [87, 51].

As before, we consider a domain Ω ⊂ Rd, with d = 2, 3, representing the porous medium.

We assume that the fracture network may be approximated by a collection of one co-

dimensional planar manifolds Γ ⊂ Rd−1. In particular, we consider Γ to be the union of

NΓ fractures γk, i.e.

Γ =

NΓ⋃
k=1

γk,

with every γk being an open, bounded, connected, planar (d− 1)-dimensional orientable

manifold. Each γk is, in fact, the approximation of the actual fracture γ̃k, which we

assume may be characterized by

γ̃k = {x + dnk, for x ∈ γk, d ∈ (−`k(x)

2
,
`k(x)

2
)},

where nk is a unit normal vector to γk, whose precise definition is given below, and `k(x)

is a C1 function that describes the fracture aperture. For all k = 1, . . . , NΓ, we assume
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there is a constant `∗ > 0 such that `k > `∗. Finally, we denote by `Γ the aperture of the

whole fracture network, meaning that `Γ|γk = `k.

Without loss of generality for the analysis (see Remark 8), we can assume that:

Assumption 4.1.1. (i) the fracture network is connected;

(ii) all the fractures intersect in one point if d = 2 or line if d = 3;

(iii) for each fracture, the intersection point corresponds to one of its endpoints if d = 2

or to part of one of its facets if d = 3.

We denote by I∩ the intersection point/line, i.e.,

I∩ =

NΓ⋂
k=1

γ̄k.

We assume that the angle between intersecting fractures is bounded from below, as well

as the angles between fractures and ∂Ω, whenever a fracture touches the boundary. This

implies, in particular, that the number of fractures joining at the intersection is bounded.

We assume that the boundary of the bulk domain may be subdivided into two measurable

subsets for the imposition of boundary conditions on the pressure and on the Darcy’s

velocity, that is ∂Ω = ∂ΩD ∪ ∂ΩN , with |∂ΩD| > 0. This induces a subdivision of

the boundary of each fracture into four different sets, some of which may be empty:

∂γDk = ∂γk ∩ ∂ΩD, ∂γNk = ∂γk ∩ ∂ΩN , the intersection tips ∂γ∩k =
⋃NΓ
j=1
j 6=k

(∂γk ∩ ∂γj)

and finally ∂γFk = ∂γk \ (∂γDk ∪ ∂γNk ∪ ∂γ∩k ), which corresponds to the set of immersed

tips. We also introduce the corresponding definitions for the network ∂ΓD =
⋃NΓ

k=1 ∂γ
D
k ,

∂ΓN =
⋃NΓ

k=1 ∂γ
N
k , ∂Γ∩ =

⋃NΓ

k=1 ∂γ
∩
k and ∂ΓF =

⋃NΓ

k=1 ∂γ
F
k . Some of these sets may as

well be empty, and also the case of totally immersed network, i.e., ∂ΓD ∪ ∂ΓN = ∅ is

admitted. See Figure 4.1(a)-4.1(b) for an explicative example of the notation.

Following the same strategy as in [3, 87, 51], we assume that the fractures can be suitably

extended so that the domain Ω is partitioned into a collection of Lipschitz subdomains ωj ,

with j = 1, . . . , Nω, i.e., Ω =
⋃Nω
j=1 ωj , cf. Figure 4.2. By construction, for each fracture γk

we have exactly two subdomains, ωα+ and ωα− , such that γk ⊂ ∂ωα+ ∩∂ωα− . This implies

that we can identify for each fracture γk the normal nk defined as nk = nα+ = −nα− ,

where nα is the unit normal vector pointing outward of the subdomain ωα. Moreover, we

denote by nΓ the normal to the whole fracture network, meaning that nΓ = nk on γk.
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Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

∂ΩD ∂ΩN

IΓ

∂ΓD

∂ΓN

∂ΓF

∂Γ∩

(a) (b)

Figure 4.1: Example of fracture network satisfying the geometrical assumptions with subdivision of
the boundary into sets for d = 2 (left) and d = 3 (right), see Assumption 4.1.1.

ω
+

αk

ω
−

αk

n
α
+

k

n
α
−

k

γk

Figure 4.2: Partition of the domain Ω into subdomains ωj induced by the prolongation of fractures.

I
1,2

3

Figure 4.3: Example of multiple intersections for d = 3, where an intersection is defined as a
segment shared by a fixed subset of fractures. Here, we can define 3 intersections, I∩1,2 = ∂Γ1 ∩ ∂Γ2,
I∩1,2,3 = ∂Γ1 ∩ ∂Γ2 ∩ ∂Γ3 and I∩2,3 = ∂Γ2 ∩ ∂Γ3

90



4.1. Mathematical model

Then, for a regular-enough scalar-valued function q defined on Ω, we can introduce jump

and average across the fracture γk ⊂ ∂ωα+
k
∩ ∂ωα−k in a standard way (see also Section

1.2) as

JqKγk = qα+
k
nα+

k
+ qα−k

nα−k
, {q}γk =

1

2
(qα+

k
+ qα−k

), (4.1)

where qα+
k

and qα−k
are the restriction to γk of the traces of q on ∂ωα+

k
and ∂ωα−k

, respectively.

We refer to [51] and to [3] for a rigorous definition of the trace operators, also in the case

of immersed tips. Similarly, for a regular-enough vector valued function v, we define

JvKγk = vα+
k
· nα+

k
+ vα−k

· nα−k , {v}γk =
1

2
(vα+

k
+ vα−k

). (4.2)

Moreover, for given functions fk defined on γk, with k = 1, . . . , NΓ, we define the function

fΓ on the network Γ, in the sense of product spaces, as fΓ =
∏NΓ

k=1 fk. We can then define

the jump and average of a function q across the fracture network as JqKΓ =
∏NΓ

k=1JqKγk
and {q}Γ =

∏NΓ

k=1{q}γk , respectively.

Remark 8. We remark that the geometric hypotheses on the fracture network were

made only for the sake of simplicity and the analysis can be easily extended to more

general configurations. More precisely, the case of a network featuring multiple connected

components can be treated analogously, as long as the partition of Ω into subdomains ωα

is aligned with all of them. The case of multiple intersections is an easy extension when

d = 2, and the same holds true when d = 3 if we define an intersection as a segment

shared by a fixed subset of fractures (see Figure 4.3 for an explicative example). Note

that we do not need to impose any condition at the point shared by two intersections,

since we are assuming that no flux is present along the intersections.

4.1.1 Governing equations

In what follows, we present the governing equations for our model. In accordance with

the previous chapters, we take as a reference the model for single-phase flow derived in

[101], where fractures are treated as (d− 1)-dimensional interfaces between d-dimensional

subdomains. In particular, we adopt the extension of the above model to fracture networks

developed in [87, 51].

The flow of an incompressible fluid through a fractured d-dimensional porous medium,

d = 2, 3, may be described by four elements:
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Chapter 4. Networks of intersecting fractures

1. Governing equations for the flow in the porous medium:

We assume that the flow is governed by Darcy’s law. We denote by p the fluid

pressure and by ν the permeability tensor, which we assume to include also the

dependency on the viscosity. Given a function f ∈ L2(Ω) representing a source

term and a function g ∈ H−1/2(∂ΩD), the motion of the fluid in the bulk may be

then described by the following equations

−∇ · (ν∇p) = f in Ω \ Γ̄, (4.3)

p = gD on ∂ΩD,

ν∇p · n = 0 on ∂ΩN ,

where n is the unit normal vector pointing outward of Ω. We also make some regu-

larity assumptions on the tensor ν = ν(x) ∈ Rd×d, requiring that it is symmetric,

positive definite, uniformly bounded from below and above and with entries that

are bounded, piecewise continuous real-valued functions.

2. Governing equations for the flow in the fracture network :

Darcy’s law is used also for modelling the flow along the fractures. In order to

obtain a reduced model, where fractures are (d− 1)-dimensional objects immersed

in a d-dimensional domain, the same process of integration of the equations across

the fracture aperture `Γ as in [101] is carried on. Reduced variables for the average

pressure pΓ = (p1
Γ, . . . , p

NΓ
Γ ) are then defined on each fracture. The flow is also

characterized by the permeability tensor νΓ = (ν1
Γ, . . . ,ν

NΓ
Γ ), scaled by viscosity. It

is assumed that, on each fracture, νkΓ has a block-diagonal structure of the form

νkΓ =

[
νnγk 0

0 ντγk

]
,

when written in its normal and tangential components, k = 1, . . . , NΓ. Here,

ντγk ∈ R(d−1)×(d−1) is a positive definite, uniformly bounded tensor (it reduces to a

positive number for d = 2) representing the tangential component of the permeability

of the fracture γk. Given a source term fΓ = (f 1
Γ, . . . , f

NΓ
Γ ) ∈

∏NΓ

k=1 L
2(γk) and
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4.1. Mathematical model

gΓ ∈ H1/2(∂ΓD), the governing equations for the fracture flow read

−∇τ · (ντΓ`Γ∇τpΓ) = `ΓfΓ − Jν∇pK in Γ, (4.4)

pΓ = gΓ on ∂ΓD,

(ντΓ`Γ∇τpΓ) · τ = 0 on ∂ΓN ,

(ντΓ`Γ∇τpΓ) · τ = 0 on ∂ΓF ,

Here, τ = (τ 1, . . . , τNΓ
) is defined on each fracture γk as the vector in its tangent

plane normal to ∂γk. Note that, when a certain operator is written on quantities

defined on the whole network Γ, it should be interpreted as the product of the

corresponding operators on each fracture γk.

For the condition on the immersed fracture tips, we have taken as reference [3],

where the model developed in [101] has been extended to fully immersed fractures.

In particular, we have imposed a homogeneous conditions for the flux, stating

that the mass transfer across the immersed tips can be neglected in front of the

transversal one.

3. Coupling conditions between bulk and fractures along their interfaces :

The interface conditions to account for the exchange of fluid between the fractures

are still described by the following equations:

−{ν∇p} · nΓ = βΓJpK · nΓ on Γ, (4.5)

−Jν∇pK = αΓ({p} − pΓ) on Γ,

where we recall that

βΓ =
1

2ηΓ

, αΓ =
2

ηΓ(2ξ − 1)
, ηΓ =

`Γ

νnΓ
. (4.6)

4. Conditions at the intersection:

Finally, following [87], at the fracture intersection I∩ we enforce pressure continuity

and flux conservation:
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Chapter 4. Networks of intersecting fractures

p1
Γ = p2

Γ = . . . = pNΓ
Γ in I∩, (4.7a)

NΓ∑
k=1

ντγk`k∇τp
k
Γ · τ k = 0 in I∩. (4.7b)

We remark that other conditions might be imposed at the intersection. Some

examples may be found in [112] or in [86], where the angle between fractures at the

intersection is included in the model and jumps of pressure across the intersection

are allowed.

4.2 Weak formulation

In this section we introduce the weak formulation of the model problem (4.3)-(4.4)-(4.5)-

(4.7) and prove its well-posedness.

For the sake of simplicity we will assume that homogeneous Dirichlet boundary conditions

are imposed for both the bulk and fracture problems, i.e., gD = 0 and gΓ = 0. The

extension to the general non-homogeneous case is straightforward.

First, we introduce the functional spaces for our weak formulation. For the bulk and

fracture pressure we define

Qb = {q ∈ H1(Ω \ Γ̄) : q = 0 on ∂ΩD},

QΓ = {qΓ = (q1
Γ, . . . , q

NΓ

Γ ) ∈
NΓ∏
k=1

H1(γk) : qkΓ = 0 on ∂γDk ∀k = 1, . . . , NΓ

and q1
Γ = · · · = qNΓ

Γ on I∩},

where the trace operators are understood. We remark that functions in the fracture space

QΓ have continuous trace at the intersection. We equip the space Qb×QΓ with the norm

||(q, qΓ)||2 = ||ν1/2∇q||2L2(Ω)+||(ντΓ`Γ)1/2∇τqΓ||2L2(Γ)+||β
1/2
Γ JqK||2L2(Γ)+||α

1/2
Γ ({q}−qΓ)||2L2(Γ),

assuming from now on that αΓ > 0, that is ξ > 1
2
, see (4.6). Moreover, we introduce the

bilinear form A : (Qb×QΓ) × (Qb×QΓ)→ R and the linear functional L : Qb×QΓ → R,
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4.3. DG discretization

defined as

A ((p, pΓ), (q, qΓ)) =

∫
Ω

ν∇p · ∇q +

∫
Γ

ντΓ`Γ∇τpΓ · ∇τqΓ

+

∫
Γ

βΓJpK · JqK +

∫
Γ

αΓ({p} − pΓ)({q} − qΓ)

L(q, qΓ) =

∫
Ω

fq +

∫
Γ

`ΓfΓqΓ,

respectively. With the above notation, the weak formulation of the model problem (4.3)-

(4.4)-(4.5)-(4.7) reads as follows: Find (p, pΓ) ∈ Qb×QΓ such that, for all (q, qΓ) ∈ Qb×QΓ

A ((p, pΓ), (q, qΓ)) = L(q, qΓ). (4.8)

We can now prove the following well-posedness result.

Theorem 4.2.1. Let ξ > 1/2. Then, problem (4.8) is well-posed.

Proof. The statement is a direct consequence of Lax-Milgram Lemma.

We remark that the choice of considering a primal-primal setting for both the bulk and

fracture problems is made here only for the sake of simplicity. We refer to [87] for the

analysis of the mixed-mixed formulation in the case of a totally immersed network of

fractures.

Next, we focus on the numerical discretization of the problem based on polyDG methods.

4.3 DG discretization

In this section we present a numerical discretization for the coupled bulk-network

problem that is based on DG methods on polytopic grids. In particular, we discretize

both the bulk and fracture network problems in primal form, employing the Simmetric

Iterior Penalty DG method [26, 119]. The key idea to obtain a DG discretization

will be the generalization of the concepts of jump and average at the intersection

point/line, so that we will be able to impose the conditions at the intersection

(4.7) in the spirit of DG methods. In particular, pressure continuity will be enforced

penalizing the jump at the intersection, while balance of fluxes will be imposed “naturally”.
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Chapter 4. Networks of intersecting fractures

We start with the introduction of the notation related to the polytopic discretization

of the domains specific for this problem. In the bulk we consider a family of meshes Th
made of disjoint open polygonal/polyhedral elements, which are aligned both with the

fracture network Γ and with the decomposition of Ω into subdomains ωα, α = 1, . . . , Nω.

In particular, any element E ∈ Th cannot be cut by Γ, and, since the subdomains ωα are

disjoint, each element E belongs exactly to one these subdomains.

Each mesh Th induces a subdivision of each fracture in the network γk into faces, which

we will denote by γk,h, for k = 1, . . . , NΓ. The collection of all the fracture faces is

denoted by Γh, i.e. Γh = ∪NΓ
k=1γk,h. This implies that the set of all the faces Fh may be

decomposed, as before, into the three subsets Fh = F Ih ∪ FBh ∪ Γh, with FBh = FDh ∪ FNh .

Moreover, we denote (as in Chapter 3) by EΓ,h the set of all the interfaces (edges) of the

elements in Γh, and we write, accordingly to the previous notation,

EΓ,h = EIΓ,h ∪ EBΓ,h ∪ EFΓ,h ∪ E∩Γ,h,

where:

• EIΓ,h is the set of interior edges;

• EBΓ,h = EDΓ,h ∪ ENΓ,h is the set of edges belonging to the boundaries of the fracture

network ∂ΓD and ∂ΓN , respectively;

• EFΓ,h is the set of edges belonging to the immersed tips of the network;

• E∩Γ,h is the set of edges on the intersection of the fractures. Note that, since we are

considering a network with one single intersection, when d = 2 this set consists

only of one single point.

We will also write E∗γk,h, with ∗ ∈ {I, B, F,∩}, to denote the restriction of each of these

sets to the fracture γk.

4.3.1 Discrete formulation

For simplicity in the forthcoming analysis, we will suppose that the permeability tensors

ν and νΓ are piecewise constant on mesh elements, i.e., ν|E ∈ [P0(E)]d×d for all E ∈ Th,
and νΓ|F ∈ [P0(F )](d−1)×(d−1) for all F ∈ Γh.
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4.3. DG discretization

First, we introduce the finite-dimensional spaces where we will set our discrete problem.

For the problem in the bulk we define the broken polynomial space

Qb
h = {q ∈ L2(Ω) : q|E ∈ PkE(E) ∀E ∈ Th}, kE ≥ 1 ∀E ∈ Th.

Similarly, on each fracture γk, for k = 1, . . . NΓ, we define the space

Qγk
h = {qkΓ ∈ L2(γk) : qkΓ|F ∈ PkF (F ) ∀F ∈ γh,k} kF ≥ 1∀F ∈ γh,k,

so that on the fracture network we can introduce the product space

QΓ
h =

NΓ∏
k=1

Qγk
h .

For future use in the analysis, we also introduce the DG vector-valued spaces

Wb
h = {v ∈ [L2(Ω)]d : v|E ∈ [PkE(E)]d ∀E ∈ Th}, kE ≥ 1∀E ∈ Th,

Wγk
h = {vkΓ ∈ [L2(Γ)]d−1 : vkΓ|F ∈ [PkF (F )]d−1 ∀F ∈ γh,k}, kF ≥ 1∀F ∈ γh,k,

WΓ
h =

NΓ∏
k=1

Wγk
h .

In order to derive a DG discrete formulation of problem (4.8), we make the following

regularity assumption.

Assumption 4.3.1. We assume that the exact solution (p, pΓ) of problem (4.8) is such

that:

A1. p ∈ Qb ∩H2(Th) and pΓ ∈ QΓ ∩H2(Γh);

A2. the normal components of the exact fluxes ν∇p and `Γν
τ
Γ∇pΓ are continuous across

mesh interfaces, that is Jν∇pK = 0 on F Ih and J`Γν
τ
Γ∇pΓK = 0 on EIΓ,h.

Moreover, for the forthcoming analysis, we introduce the following extended continuous

spaces

Qb(h) = Qb
h ⊕

(
Qb ∩H2(Th)

)
(4.9)

QΓ(h) = QΓ
h ⊕

(
QΓ ∩H2(Γh)

)
. (4.10)
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Chapter 4. Networks of intersecting fractures

In order to derive a DG formulation for the problem in the bulk, we proceed as in

Chapters 2 and 3. We obtain the following: Find ph ∈ Qb
h such that for every test

function q ∈ Qb
h it holds

∫
Th

ν∇ph · ∇q −
∫
FIh∪F

D
h

{ν∇ph} · JqK−
∫
FIh∪F

D
h

{ν∇q} · JphK +

∫
FIh∪F

D
h

σF JphK · JqK

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ){q} =

∫
Th
fq −

∫
FDh

(ν∇q · nF − σF q)gD,

where we have introduced the discontinuity penalization parameter σ ∈ L∞(F Ih ∪ FDh ).

Its precise definition will be given in Definition 4.4.1 below.

Next, we derive a DG discrete formulation for the problem in the fracture network.

For generality, we will write our formulation referring to the case d = 3. However, the

expressions are valid also when d = 2, provided that, when the domain of integration

reduces to a point, the integrals are interpreted as evaluations.

First, we focus on a single fracture γk. Given a face F ∈ γk,h, we multiply the first

equation in (4.4) for a test function qkΓ ∈ Q
γk
h and integrate over F . Summing over all

F ∈ γh,k and integrating by parts, we obtain∫
γh,k

ντγk`k∇τp
k
Γ·∇τq

k
Γ−

∑
F∈γh,k

∫
∂F

qkΓν
τ
γk
`k∇τp

k
Γ·nF =

∫
γh,k

`kf
k
Γq

k
Γ−
∫
γh,k

αΓ({p}−pkΓ)qkΓ,

where we have used the second coupling condition in (4.5) to rewrite

−Jν∇pK = αΓ({p} − pkΓ) in the source term. If we sum over all the fractures γk in

the network and use identity (1.5) on each fracture γk, we get

∫
Γh

ντΓ`Γ∇τpΓ · ∇τqΓ −
∫
EIΓ,h

JντΓ`Γ∇τpΓK{qΓ} −
∫
EIΓ,h∪E

B
Γ,h

{ντΓ`Γ∇τpΓ} · JqΓK

−
NΓ∑
k=1

[ ∫
EFγk,h

qkΓν
τ
γk
`k∇τp

k
Γ·τ k+

∫
E∩γk,h

qkΓν
τ
γk
`k∇τp

k
Γ·τ k

]
=

∫
Γh

`ΓfΓqΓ−
∫

Γh

αΓ({p}−pΓ)qΓ,

where we recall that τ k is the vector tangent to the fracture γk, pointing outward of ∂γk,

and J·K and {·} are the standard jump and average operators defined in (4.1), (4.2) and
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4.3. DG discretization

(1.4). In order to treat the term defined on the intersection

NΓ∑
k=1

∫
E∩γk,h

qkΓν
τ
γk
`k∇τp

k
Γ · τ k, (4.11)

we will now extend the definition of jump and average operators to the case when a

number of planes intersect along one line (d = 3) or when a number of segments intersect

in one point (d = 2).

Jump and average operators at the intersection

Let b = (b1, b2, . . . , bNΓ
) and a = (a1, a2, . . . , aNΓ

) be a scalar and vector-valued functions

defined on the network Γ (product space), such that for every k = 1, . . . , NΓ the traces of

bk and ak are well defined on the intersection I∩. Moreover, for k = 1, . . . , NΓ, let τ k be

the vector tangent to the fracture γk, pointing outward of the intersection point/line I∩.

Definition 4.3.1. We define jump and average operators for a and b at I∩ as

{b}∩ =
1

NΓ

(b1 + b2 + · · ·+ bNΓ
)

JbK∩ =
(
bi − bk

)
i,k∈{1,2,...,NΓ}, i<k

{a}∩ =
1

NΓ

(
ai · τ i − ak · τ k

)
i,k∈{1,2,...,NΓ}, i<k

JaK∩ = a1 · τ 1 + a2 · τ 2 + · · ·+ aNΓ
· τNΓ

,

where trace operators on I∩ are understood.

We remark that {b}∩ and JaK∩ are scalar-valued, while JbK∩ and {a}∩ are vector-valued,

taking values in ∈ R(NΓ
2 ). In particular, for the definition of JbK∩ and {a}∩ we take all

the pairs of indices in {1, . . . , NΓ} such that the first index is smaller than the second

one. This is just one possible way of indicating all the pairs of fractures. Accordingly,
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these vectors contain
(
NΓ

2

)
= NΓ(NΓ−1)

2
elements. For example, for NΓ = 4, we have

JbK∩ =



b1 − b2

b1 − b3

b1 − b4

b2 − b3

b2 − b4

b3 − b4


∈ R6,

while, for NΓ = 5, we have

JbK∩ =



b1 − b2

b1 − b3

b1 − b4

b1 − b5

b2 − b3

b2 − b4

b2 − b5

b3 − b4

b3 − b5

b4 − b5



∈ R10.

The vector-valued case is analogous. Note also that, when NΓ = 2, these definitions

coincide with the definitions of jump and average operators introduced in [75, 9], for the

generalization of DG methods to curved surfaces. Indeed we have

{b}∩ =
1

2
(b1 + b2), JbK∩ = b1 − b2,

{a}∩ =
1

2
(a1 · τ 1 − a2 · τ 2), JaK∩ = a1 · τ 1 + a2 · τ 2.

Definition 4.3.1 allows us to find an equivalent version of identity (1.3) on the intersection,

according to the following property

Proposition 4.3.2. The following identity holds

JbaK∩ = JaK∩{b}∩ + {a}∩ · JbK∩, (4.12)

where the vector-valued function ba is defined as ba = (b1 a1, b2 a2, . . . , bNΓ
aNΓ

) and · is
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the standard scalar-product in R(NΓ
2 ).

Proof. By definition we have

JbaK∩ =

NΓ∑
k=1

bkak · τ k.

Moreover, we can write

JaK∩{b}∩ =
1

NΓ

( NΓ∑
k=1

bk

)( NΓ∑
j=1

aj · τ j
)

=
1

NΓ

NΓ∑
k=1

(bkak · τ k) +
1

NΓ

NΓ∑
k=1

(bk

NΓ∑
j=1
j 6=k

aj · τ j),

while we have

{a}∩ · JbK∩ =
1

NΓ

NΓ∑
k=1

NΓ∑
j=k+1

(bk − bj)(ak · τ k − aj · τ j)

=
1

NΓ

NΓ∑
k=1

NΓ∑
j=1
j 6=k

(bk − bj)ak · τ k

=
1

NΓ

NΓ∑
k=1

NΓ∑
j=1
j 6=k

bkak · τ k −
1

NΓ

NΓ∑
k=1

(
ak · τ k

NΓ∑
j=1
j 6=k

bj

)

=
1

NΓ

NΓ∑
k=1

(NΓ − 1)bkak · τ k −
1

NΓ

NΓ∑
k=1

bk

( NΓ∑
j=1
j 6=k

aj · τ j
)
.

This implies

JaK∩{b}∩+{a}∩ ·JbK∩ =
1

NΓ

NΓ∑
k=1

bkak ·τ k+
1

NΓ

NΓ∑
k=1

(NΓ−1)bkak ·τ k =
1

NΓ

NΓ∑
k=1

NΓbkak ·τ k,

and the proof is concluded.

Now we take our focus back to the derivation of a DG discrete formulation for the

problem in the fracture network. Using the above definition of jump and average at the
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intersection 4.3.1 and identity (4.12), we can rewrite (4.11) as

NΓ∑
k=1

∫
E∩γk,h

qkΓν
τ
γk
`k∇τp

k
Γ · τ k =

∫
E∩Γ,h

JqΓν
τ
Γ`Γ∇τpΓK∩

=

∫
E∩Γ,h

JqΓK∩ · {ντΓ`Γ∇τpΓ}∩ +

∫
E∩Γ,h

JντΓ`Γ∇τpΓK∩{qΓ}∩.

The formulation on the fracture network becomes∫
Γh

ντΓ`Γ∇τpΓ · ∇τqΓ −
∫
EIΓ,h

JντΓ`Γ∇τpΓK{qΓ} −
∫
EIΓ,h∪E

B
Γ,h

{ντΓ`Γ∇τpΓ} · JqΓK

−
∫
EFΓ,h

qΓν
τ
Γ`Γ∇τpΓ · τ −

∫
E∩Γ,h

JqΓK∩ · {ντΓ`Γ∇τpΓ}∩ −
∫
E∩Γ,h

JντΓ`Γ∇τpΓK∩{qΓ}∩

=

∫
Γh

`ΓfΓqΓ −
∫

Γh

αΓ({p} − pΓ)qΓ. (4.13)

From the fact that p ∈ QΓ satisfies problem (4.8) and from the regularity Assump-

tion 4.3.1, it holds:

• JντΓ`Γ∇τpΓK = 0 on EIΓ,h;

• JpΓK = 0 on EIΓ,h;

• ντΓ`Γ∇τpΓ · τ = 0 on EFΓ,h ∪ ENΓ,h;

• JpΓK∩ = 0 on E∩Γ,h;

• JντΓ`Γ∇τpΓK∩ = 0 on E∩Γ,h.

It follows that, for any test function qΓ ∈ QΓ
h, identity (4.13) is equivalent to

∫
Γh

ντΓ`Γ∇τpΓ · ∇τqΓ −
∫
EIΓ,h∪E

D
Γ,h

{ντΓ`Γ∇τpΓ} · JqΓK−
∫
EIΓ,h∪E

D
Γ,h

{ντΓ`Γ∇τqΓ} · JpΓK

−
∫
E∩Γ,h

{ντΓ`Γ∇τpΓ}∩ · JqΓK∩ −
∫
E∩Γ,h

{ντΓ`Γ∇τqΓ}∩ · JpΓK∩

+

∫
EIΓ,h∪E

D
Γ,h

σΓ
e JpΓK · JqΓK +

∫
E∩Γ,h

σ∩e JpΓK∩ · JqΓK∩

=

∫
Γh

`ΓfΓqΓ +

∫
Γh

αΓ({p} − pΓ)qΓ −
∫
EDΓ,h

(ντΓ`Γ∇τqΓ · τ − σΓ
e qΓ)gΓ,
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4.3. DG discretization

where σΓ ∈ L∞(EIΓ,h ∪ EDΓ,h) and σ∩ ∈ L∞(E∩Γ,h) are discontinuity penalization parameters,

whose precise definition will be given in Definition 4.4.2 below.

In conclusion, we obtain the following discrete formulation for the coupled bulk-network

problem:

Find (ph, pΓ,h) ∈ Qb
h ×QΓ

h such that

Ah ((ph, pΓ,h), (q, qΓ)) = Lh(q, qΓ) ∀(q, qΓ) ∈ Qb
h ×QΓ

h, (4.14)

where the bilinear form Ah : (Qb
h ×QΓ

h)× (Qb
h ×QΓ

h)→ R is defined as

Ah ((ph, pΓ,h), (q, qΓ)) = Ab(ph, q) +AΓ(pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

and the linear functional Lh : Qb
h ×QΓ

h → R is defined as

Lh(q, qΓ) = Lb(q) + LΓ(qΓ),

with

Ab(ph, q) =

∫
Th

ν∇ph · ∇q −
∫
FIh∪F

D
h

{ν∇ph} · JqK

−
∫
FIh∪F

D
h

{ν∇q} · JphK +

∫
FIh∪F

D
h

σF JphK · JqK

AΓ(pΓ,h, qΓ) =

∫
Γh

ντΓ`Γ∇τpΓ,h · ∇τqΓ

−
∫
EIΓ,h∪E

D
Γ,h

{ντΓ`Γ∇τpΓ,h} · JqΓK−
∫
EIΓ,h∪E

D
Γ,h

{ντΓ`Γ∇τqΓ} · JpΓ,hK

−
∫
E∩Γ,h

{ντΓ`Γ∇τpΓ,h}∩ · JqΓK∩ −
∫
E∩Γ,h

{ντΓ`Γ∇τqΓ}∩ · JpΓ,hK∩

+

∫
EIΓ,h∪E

D
Γ,h

σΓ
e JpΓ,hK · JqΓK +

∫
E∩Γ,h

σ∩e JpΓK∩ · JqΓK∩

C((ph, pΓ,h), (q, qΓ)) =

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h)({q} − qΓ),
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and

Lb(q) =

∫
Th
fq −

∫
FDh

(ν∇q · nF − σF q)gD,

LΓ(qΓ) =

∫
Γh

`ΓfΓqΓ −
∫
EDΓ,h

(ντΓ`Γ∇τqΓ · τ − σΓ
e qΓ)gΓ.

In the following, in order to simplify the notation, we will drop the subscript τ for the

tangent operators on the fracture network.

4.4 Well-posedness of the discrete formulation

In this section, we prove that formulation (4.14) is well-posed. As in the previous chapters,

we make some regularity assumptions on the meshes, so that we can work in the polytopic

framework described in Chapter 1. In particular, we will assume that the bulk mesh

Th and all the fracture meshes γk,h, with k = 1, . . . NΓ, satisfy the polytopic-regularity

Assumption 1.1.1 and the covering Assumption 1.1.2.

Next, following [61, 59, 6, 58, 60], we define the bulk and fracture penalty functions as:

Definition 4.4.1. The discontinuity-penalization parameter σ : Fh ∪ FDh → R+ for the

bulk problem is defined facewise as

σ(x) = σ0


maxE∈{E+,E−}

ν̄Ek
2
E

hE
if x ⊂ F ∈ F Ih , F̄ = ∂Ē+ ∩ ∂Ē−,

ν̄Ek
2
E

hE
if x ⊂ F ∈ FDh , F̄ = ∂Ē ∩ ∂Ω̄,

(4.15)

with σ0 > 0 independent of kE, |E| and |F |.

Definition 4.4.2. The discontinuity-penalization parameter σΓ : EIΓ,h ∪ EDΓ,h ∪ E∩Γ,h → R+

for the fracture problem is defined edgewise as

σΓ(x) = σΓ
0



maxF∈{F+,F−}
ν̄τF k

2
F

hF
if x ⊂ e ∈ EIΓ,h, ē = ∂F̄+ ∩ ∂F̄−,

ν̄τF k
2
F

hF
, if x ⊂ e ∈ EDΓ,h, ē = ∂F̄ ∩ ∂Γ̄,

maxF∈{F 1,...,FNΓ}
ν̄τF k

2
F

hF
if x ⊂ e ∈ E∩Γ,h, ē = ∂F̄ 1 ∩ · · · ∩ ∂F̄NΓ ,

(4.16)
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4.4. Well-posedness of the discrete formulation

with σΓ
0 > 0 independent of kF , |F | and |e|.

Note that the definition of the fracture parameter on the intersection edges will play a

crucial role in proving the well-posedness of our method. In the following we will write

σ∩ to denote σΓ|E∩Γ,h .

We endow the discrete space Qb
h ×QΓ

h with the energy norm

|||(q, qΓ)|||2 = ||q||2b,DG + ||qΓ||2Γ,DG + ||(q, qΓ)||2C,

where

||q||2b,DG = ||ν1/2∇q||20,Th + ||σ1/2
F JqK||20,FIh∪FDh ,

||qΓ||2Γ,DG = ||(ντΓ`Γ)1/2∇qΓ||20,Γh + ||σ1/2
e JqΓK||20,EIΓ,h∪EDΓ,h∪E∩Γ,h , (4.17)

||(q, qΓ)||2C = ||β1/2
Γ JqK||20,Γh + ||α1/2

Γ ({q} − qΓ)||20,Γh .

Remark 9. Since we are assuming that there is a single intersection in the fracture network

Γ, we have that || · ||b,DG is a norm on the bulk space Qb
h. In the case of a general fracture

network, this holds true only if every connected component of Ω \ Γ̄ has part of its

boundary in ∂ΩD. Otherwise, || · ||b,DG is only a seminorm. Similarly, we have that

|| · ||Γ,DG is a norm on the network space QΓ
h, provided that the network is non-immersed,

that is ∂ΓD 6= ∅. However, we remark that, thanks to the coupling term || · ||C, we have

that ||| · ||| is a norm on Qb
h ×QΓ

h for every possible configuration of the fracture network,

including the totally immersed case. Moreover, ||| · ||| is well defined also on the extended

space Qb(h)×QΓ(h) introduced in (4.9)-(4.10).

The analysis will be based on the introduction of an appropriate inconsistent formulation

and, consequently, on Strang’s second Lemma, [114]. To this end, we introduce the

following extensions of the forms Ab(·, ·) and AΓ(·, ·) and Lb(·) and LΓ(·) to the space
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Chapter 4. Networks of intersecting fractures

Qb(h)×QΓ(h):

Ãb(p, q) =

∫
Th

ν∇ph · ∇q −
∫
FIh∪F

D
h

{νΠWb
h
(∇ph)} · JqK (4.18)

−
∫
FIh∪F

D
h

{νΠWb
h
(∇q)} · JpK +

∫
FIh∪F

D
h

σF JpK · JqK

ÃΓ(pΓ,h, qΓ) =

∫
Γh

ντΓ`Γ∇pΓ · ∇qΓ −
∫
EIΓ,h∪E

D
Γ,h∪E

∩
Γ,h

{ντΓ`ΓΠWΓ
h
(∇pΓ)} · JqΓK

−
∫
EIΓ,h∪E

D
Γ,h∪E

∩
Γ,h

{ντΓ`ΓΠWΓ
h
(∇qΓ)} · JpΓK +

∫
EIΓ,h∪E

D
Γ,hE

∩
Γ,h

σΓ
e JpΓK · JqΓK

L̃b(q) =

∫
Th
fq −

∫
FDh

(νΠWb
h
(∇q) · nF − σF q)gD,

L̃Γ(qΓ) =

∫
Γh

`ΓfΓqΓ −
∫
EDΓ,h

(ντΓ`ΓΠWΓ
h
(∇qΓ) · τ e − σΓ

e qΓ)gΓ.

They were obtained by replacing the trace of the gradient operators ∇ and ∇τ with the

trace of their L2-projection onto the DG vector-valued spaces Wb
h and WΓ

h, respectively.

It follows that these newly introduced forms are well-defined on Qb(h)×QΓ(h) and that

they coincide with the formers on the discrete space Qb
h ×QΓ

h. This means, in particular,

that we can consider for the analysis the following equivalent version of the discrete

problem (4.14):

Find (ph, ph,Γ) ∈ Qb
h ×QΓ

h such that

Ãh
(
(ph, p

Γ
h), (q, qΓ)

)
= L̃h(q, qΓ) ∀(q, qΓ) ∈ Qb

h ×QΓ
h, (4.19)

where Ãh is obtained from Ah by replacing the bilinear forms with their extended

versions (4.18). Note that formulation (4.19) is no longer consistent due to the discrete

nature of the L2-projection operators.

Next, we prove that problem (4.19) extended to the space Qb(h)×QΓ(h) is well-posed.

This, on the one hand, will ensure the well-posedness of discrete problem (4.14) and, on

the other hand, will be used in the error analysis. We remark that the results involving

the bulk problem, contained in Chapter 2 in the case of one single non-immersed fracture,

can be easily extended to the case of a network of fractures. For this reason, in this

chapter, our focus will mainly be on the fracture problem.

Following the same strategy as in Lemma 2.4.1 of Chapter 2, one can prove that the bulk
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4.4. Well-posedness of the discrete formulation

bilinear form Ãb is continuous and coercive:

Lemma 4.4.1. Let σ : F Ih ∪ FDh → R+ be defined as in (4.15). Then, if the polytopic-

regularity Assumption 1.1.1 holds for Th, the bilinear form Ãb(·, ·) is continuous on

Qb(h)×Qb(h) and, provided that σ0 is sufficiently large, it is also coercive on Qb(h)×Qb(h),

i.e.

Ãb(p, q) . ||q||b,DG||p||b,DG, Ãb(q, q) & ||q||2b,DG,

for any q, p ∈ Qb(h).

Proof. We refer to Lemma 2.4.1.

Next, we prove an analogous result for the problem in fracture network.

Lemma 4.4.2. Let σΓ : EIΓ,h ∪ EDΓ,h ∪ E∩Γ,h → R+ be defined as in (4.16). Then, if

Assumption 1.1.1 on Γh holds, the bilinear form ÃΓ(·, ·) is continuous on QΓ(h)×QΓ(h)

and, provided that σΓ
0 is sufficiently large, it is also coercive on QΓ(h)×QΓ(h), i.e.,

ÃΓ(pΓ, qΓ) . ||qΓ||Γ,DG||pΓ||Γ,DG, ÃΓ(qΓ, qΓ) & ||qΓ||2Γ,DG,

for any qΓ, pΓ ∈ QΓ(h).

Proof. We start with coercivity. For any qΓ ∈ QΓ(h), we have

ÃΓ(qΓ, qΓ) = ||qΓ||2DG − 2

∫
EIΓ,h∪E

D
Γ,h

{ντΓ`ΓΠWΓ
h
(∇qΓ)} · JqΓK− 2

∫
E∩Γ,h

{ντΓ`ΓΠWΓ
h
(∇qΓ)}∩ · JqΓK∩

(4.20)

= I + II + III

In order to bound term II, we proceed as in Lemma 2.4.1. We employ Cauchy-Schwarz’s,

triangular and Young’s inequalities to write:∫
EIΓ,h∪E

D
Γ,h

{ντΓ`ΓΠWΓ
h
(∇qΓ)}·JqΓK .

∑
EIΓ,h∪E

D
Γ,h

[
ε

∫
e

(σΓ
e )−1{ντΓ`ΓΠWΓ

h
(∇qΓ)}2+

1

4ε

∫
e

σΓ
e JqΓK2

]
.

From inverse inequality (1.3.2), the definition of the penalty parameter σΓ (4.16), As-
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sumption 1.1.1 and the L2-stability of the projector ΠWΓ
h
, we obtain∫

EIΓ,h∪E
D
Γ,h

{ντΓ`ΓΠWΓ
h
(∇qΓ)} · JqΓK .

ε

σ0,Γ

||(ντΓ`Γ)1/2∇qΓ||20,Γh +
1

4ε
||σ1/2

e JqΓK||20,EIΓ,h∪EDΓ,h .

(4.21)

We now consider the intersection term III. Multiplying and dividing by σ∩ and applying

Cauchy-Schwarz’s and Young’s inequalities we have∫
E∩Γ,h

{ντΓ`ΓΠWΓ
h
(∇qΓ)}∩ · JqΓK∩ .

∑
e∈E∩Γ,h

[
ε

∫
e

(σ∩e )−1{ντΓ`ΓΠWΓ
h
(∇qΓ)}2

∩ +
1

4ε

∫
e

σ∩e JqΓK2
∩

]
.

(4.22)

Using the definition of {·}∩ (4.3.1) and triangular inequality, we obtain∫
e

σ−1
∩ {ντΓ`ΓΠWΓ

h
(∇qΓ)}2

∩

=
1

NΓ

NΓ∑
i,k=1
i<k

∫
e

(σ∩e )−1(ντγi`iΠW
γi
h

(∇qiΓ) · τ i − ντγk`kΠW
γk
h

(∇qkΓ) · τ k)2

≤ 2

NΓ

NΓ∑
i,k=1
i<k

[ ∫
e

(σ∩e )−1(ντγi`iΠW
γi
h

(∇qiΓ)·)2 +

∫
e

(σ∩e )−1(ντγk`kΠW
γk
h

(∇qkΓ))2

]

=
2(NΓ − 1)

NΓ

NΓ∑
k=1

∫
e

(σ∩e )−1(ντγk`kΠW
γk
h

(∇qkΓ))2,

where the last equality follows from the fact that every term appears in the sum exactly

(NΓ− 1) times. Since we are assuming that `Γν
Γ
τ is constant on each F ∈ Γh, this implies

that

(a) =
∑
e∈E∩Γ,h

∫
e

σ−1
∩ {ντΓ`ΓΠWΓ

h
(∇qΓ)}2

∩

≤ ε
2(NΓ − 1)

NΓ

NΓ∑
k=1

∑
F∈γk,h
∂F∩I∩ 6=∅

∫
∂F

σ−1
∩ (ντγk`kΠW

γk
h

(∇qkΓ))2

≤ ε
2(NΓ − 1)

NΓ

NΓ∑
k=1

∑
F∈γk,h
∂F∩I∩ 6=∅

1

σ0,Γ

(
ν̄τFk

2
F )

hF

)−1

ν̄τF ||(ντΓ`Γ)1/2∇qkΓ||2L2(∂F ),
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where we have employed the definition of σΓ and the fact that for all e ⊆ ∂F

σΓ
e ≥ σ0,Γ

ν̄τFk
2
F

hF
.

Note that this is also true if e ⊆ I∩. Finally, employing inverse inequality (1.3.2) and the

stability of the projection operator ΠWΓ
h

we have

(a) .
ε

σ0,Γ

||(ντΓ`Γ)1/2∇qΓ||20,Γh . (4.23)

From (4.20), employing the derived bounds (4.21), (4.22) and (4.23), we obtain that the

bilinear ÃΓ(·, ·) form is coercive, provided that the parameter σ0,Γ is chosen large enough.

Continuity can be proved with analogous arguments.

Employing Lemma 4.4.1 and Lemma 4.4.2, we can now prove the well-posedness of the

discrete problem (4.14).

Proposition 4.4.3. Let the penalization parameters σ and σΓ for the problem in the

bulk and in the fracture network be defined as in (4.15) and (4.16), respectively. Then,

problem (4.14) is well-posed, provided that σ0 and σ0,Γ are chosen large enough.

Proof. In order to use Lax-Milgram Lemma, we prove that the bilinear form Ãh(·, ·) is

continuous and coercive on Qb(h)×QΓ(h). We have, from Cauchy-Schwarz’s inequality,

that

C((q, qΓ), (q, qΓ)) = ||(q, qΓ)||2C
C((q, qΓ), (p, pΓ)) ≤

∑
F∈Γh

||β1/2
Γ JqK||2L2(F )||β

1/2
Γ JpK||2L2(F )

+
∑
F∈Γh

||α1/2
Γ ({q} − qΓ)||2L2(F )||α

1/2
Γ ({p} − pΓ)||2L2(F )

≤ |||(q, qΓ)||| · |||(p, pΓ)|||,

so that coercivity and continuity are a direct consequence of the definition of the norm

||| · ||| and of Lemma 4.4.1 and Lemma 4.4.2. The continuity of the linear operator L̃h(·)
can be easily proved by using the Cauchy-Schwarz inequality, thanks to the regularity

assumptions on the forcing terms f and fΓ and on the boundary data gD and gΓ.
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4.5 Error analysis

In this section, we derive a-priori error estimates for the discrete problem (4.14). To

this aim, for each subdomain ωj, j = 1, . . . , Nω, we denote by Ej the classical continuous

extension operator (cf. [113], see also Chapters 2 and 3) Ej : Hs(Ωj)→ Hs(Rd), for s ∈ N0.

Similarly, we denote by Eγk the continuous extension operator Eγk : Hs(γk)→ Hs(Rd−1),

for s ∈ N0. We then make the following regularity assumptions for the exact solution

(p, pΓ) of problem (4.8):

Assumption 4.5.1. Let T# = {TE} and F# = {TF} denote the associated coverings of

Ω and Γ, respectively, of Definition 1.1.2. We assume that the exact solution (p, pΓ) is

such that:

A1. for every E ∈ Th, if E ⊂ ωj and pj denotes the restriction of p to ωj, it holds

Ejpj|TE ∈ HrE(TE), with rE ≥ 1 + d/2 and TE ∈ T# with E ⊂ TE;

A2. for every F ∈ Γh, if F ⊂ γk, it holds Eγkp
k
Γ|TF ∈ HrF (TF ), with rF ≥ 1 + (d− 1)/2

and TF ∈ F# with F ⊂ TF .

From Proposition 4.4.3 and Strang’s second Lemma the following abstract error bound

directly follows.

Lemma 4.5.2. Assuming that the hypotheses of Proposition 4.4.3 are satisfied, it holds

|||(p, pΓ)−(ph, pΓ,h)||| . inf
(q,qΓ)∈Qbh×Q

Γ
h

|||(p, pΓ)−(q, qΓ)|||+ sup
(w,wΓ)∈Qbh×Q

Γ
h

|Rh((p, pΓ), (w,wΓ))|
|||(w,wΓ)|||

,

where the residual Rh is defined as

Rh((p, pΓ), (w,wΓ)) = Ãh((p, pΓ), (w,wΓ))− L̃h(w,wΓ).

It is easy to show that the residual is the sum of two contributions, one involving only

the bulk problem and one involving only the network problem:

Rh((p, pΓ), (w,wΓ)) = Rb(p, w) +RΓ(pΓ, wΓ) (4.24)

It follows that, to derive a bound for the global residual, we can bound each of the two

contributions separately. Again, we will focus mainly on the term related to the fracture

network.
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Lemma 4.5.3. Let (p, pΓ) be the exact solution of problem (4.8) satisfying the regularity

Assumptions 4.3.1 and 4.5.1. Then, for every w ∈ Qb(h) and wΓ ∈ QΓ(h), it holds

|Rb(p, w)|2 .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄2
E max
F⊂∂E\(Γ∪∂ΩD)

σ−1
F (

kE
hE

+
k2
E

hE
)

]
· ||w||2b,DG,

(4.25)

|RΓ(pΓ, wΓ)|2 .

 ∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||EΓpΓ||2HrF (TF )

[
(ν̄τF )2 max

e⊆∂F\(I∩∪∂ΓN∪∂ΓF )
σ−1
e (

kF
hF

+
k2
F

hF
)

]

+

NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

h
2(sF−1)
F

k
2(rF−1)
F

||EγkpkΓ||2HrF (TF )

[
(ν̄τF )2 max

e⊂∂F∩I∩
(σ∩e )−1(

kF
hF

+
k2
F

hF
)

] · ||wΓ||2Γ,DG,(4.26)

where, in (4.25), the extension operator E is to be interpreted as Ej if E ⊂ Ωj. Similarly,

in (4.26), EΓ is to be interpreted as Eγk if F ⊂ γk.

Proof. Integrating by parts elementwise and using the fact that (p, pΓ) satisfies (4.8) and

the regularity Assumption 4.3.1, we obtain the following expression for the residuals

Rb(p, w) =
∑

F∈FIh∪F
D
h

∫
F

{ν(∇p−ΠWb
h
(∇p))} · JwK,

RΓ(pΓ, wΓ) =
∑

e∈EIΓ,h∪E
D
Γ,h∪E

∩
Γ,h

∫
e

{ντΓ`Γ(∇pΓ −ΠWΓ
h
(∇pΓ))} · JwΓK.

For the proof of (4.25), we refer to Lemma 3.5.4 in Chapter 3. Here, we only focus on

the proof of (4.26). To this aim, we consider the following two terms separately:

(a) =

∣∣∣∣∣
∫
EIΓ,h∪E

D
Γ,h

{`Γν
τ
Γ(∇pΓ −ΠWΓ

h
(∇pΓ))} · JqΓK

∣∣∣∣∣ ,
(b) =

∣∣∣∣∣
∫
E∩Γ,h

{`Γν
τ
Γ(∇pΓ −ΠWΓ

h
(∇pΓ))}∩ · JqΓK∩

∣∣∣∣∣ .
Employing the Cauchy-Schwarz’s inequality and the definition (4.17) of the norm || · ||Γ,DG,
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we obtain

(a) .

(∫
EIΓ,h∪E

D
Γ,h

σ−1
Γ |{`Γν

τ
Γ(∇pΓ −ΠWΓ

h
(∇pΓ))}|2

)1/2

· ||qΓ||Γ,DG.

Let Π̃ denote also the vector-valued generalization of the interpolation operator Π̃ defined

in Lemma 1.3.3. Then, using the triangular inequality we can write

∑
e∈EIΓ,h∪E

D
Γ,h

σ−1
e

∫
e

|{`Γν
τ
Γ(∇pΓ −ΠWΓ

h
(∇pΓ))}|2

.
∑

e∈EIΓ,h∪E
D
Γ,h

σ−1
e

∫
e

|{`Γν
τ
Γ(∇pΓ − Π̃(∇pΓ))}|2

+
∑

e∈EIΓ,h∪E
D
Γ,h

σ−1
e

∫
e

|{`Γν
τ
ΓΠWΓ

h
(∇pΓ − Π̃(∇pΓ))}|2

≡ (a1) + (a2).

Term (a1) can be bounded, employing the approximation results of Lemma 1.3.3, as

(a1) .
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

(
(ν̄τF )2 max

e⊂∂F\(I∩∪∂ΓN∪∂ΓF )
σ−1
e

h−1
F

k−1
F

)
||EΓpΓ||2HrF (TF ).

Exploiting, in order: the boundedness of the permeability tensor `Γν
τ
Γ, inverse inequality

(1.6), the L2-stability of the projector ΠWΓ
h

and the approximation results of Lemma 1.3.3,

we can bound term (a2) as:

(a2) .
∑
F∈Γh

max
e⊂∂F\(I∩∪∂ΓN∪∂ΓF )

σ−1
e (ν̄τF )2||ΠWΓ

h
(Π̃(∇pΓ)−∇pΓ)||2L2(∂F )

.
∑
F∈Γh

max
e⊂∂F\(I∩∪∂ΓN∪∂ΓF )

σ−1
e (ν̄τF )2 k

2
F

hF
||Π̃(∇pΓ)−∇pΓ||2L2(F )

.
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||EΓpΓ||2HrF (TF )

(
(ν̄τF )2 k

2
F

hF
max

e⊂∂F\(I∩∪∂ΓN∪∂ΓF )
σ−1
e

)
.

Next, we consider term (b). Employing the Cauchy-Schwarz’s inequality and the definition
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of the average operator at the intersection {·}∩, we obtain

(b) .

 NΓ∑
k=1

∑
e∈E∩γk,h

∫
e

(σ∩e )−1|`Γν
τ
Γ(∇pkΓ −ΠW

γk
h

(∇pΓ))|2
1/2

· ||qΓ||Γ,DG.

Recalling that Π̃ denotes the vector-valued generalization of the interpolation operator of

Lemma 1.3.3, we can write

NΓ∑
k=1

∑
e∈E∩γk,h

∫
e

(σ∩e )−1|`kντγk(∇p
k
Γ −ΠW

γk
h

(∇pΓ))|2

.
NΓ∑
k=1

∑
e∈E∩γk,h

(∫
e

(σ∩e )−1|`kντγk(∇p
k
Γ − Π̃(∇pkΓ))|2 +

∫
e

(σ∩e )−1|`kντγkΠWΓ
h
(∇pkΓ − Π̃(∇pkΓ))|2

)
≡ (b1) + (b2).

Employing arguments analogous to those for bounding terms (a1) and (a2), we can then

write

(b1) .
NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

h
2(sF−1)
F

k
2(rF−1)
F

(
(ν̄τF )2 max

e⊂∂F∩I∩
(σ∩e )−1h

−1
F

k−1
F

)
||EγkpkΓ||2HrF (TF ),

and

(b2) .
NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

max
e⊂∂F∩I∩

(σ∩e )−1(ν̄τF )2||ΠWΓ
h
(Π̃(∇pkΓ)−∇pkΓ)||2L2(∂F )

.
NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

max
e⊂∂F∩I∩

(σ∩e )−1(ν̄τF )2 k
2
F

hF
||Π̃(∇pkΓ)−∇pkΓ||2L2(F )

.
NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

h
2(sF−1)
F

k
2(rF−1)
F

||EγkpkΓ||2HrF (TF )

(
(ν̄τF )2 k

2
F

hF
max

e⊂∂F∩I∩
(σ∩e )−1

)
.

This concludes the proof.

Theorem 4.5.4. Let T# = {TE} and F# = {TF} denote the associated coverings of Ω
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and Γ, respectively, consisting of shape-regular simplexes as in Definition 1.1.2, satisfying

Assumption 1.1.2. Let (p, pΓ) be the solution of problem (4.8) and (ph, pΓ,h) ∈ Qb
h×QΓ

h be

its approximation obtained with the method (4.14), with the penalization parameters given

by (4.15) and (4.16) and σ0 and σ0,Γ sufficiently large. Moreover, suppose that the exact

solution (p, pΓ) satisfies the regularity Assumptions 4.3.1 and 4.5.1. Then, the following

error bound holds:

|||(p, pΓ)− (ph, pΓ,h)|||2 .
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

GE(hE, kE, ν̄E)||E p||2HrE (TE)

+
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

GF (hF , kF , ν̄
τ
F )||EΓpΓ||2HrF (TF )

+

NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

h
2(sF−1)
F

k
2(rF−1)
F

G∩F (hF , kF , ν̄
τ
F )||EγkpkΓ||2HrF (TF ),

where the E p is to be interpreted as Ejpj when E ⊂ Ωj, j = 1, . . . , Nω, and EΓpΓ is to

be interpreted as Eγkp
k
Γ when F ⊂ γk, k = 1, . . . , NΓ. Here, sE = min(kE + 1, rE) and

sF = min(kF + 1, rF ) and for every E ∈ Th and F ∈ Γh, the constants GE, GF and G∩F

are defined as:

GE(hE, kE, ν̄E) = ν̄E + hEk
−1
E max

F⊂∂E\Γ
σF + (αΓ + βΓ)hEk

−1
E

+ ν̄2
Eh
−1
E kE max

F⊂∂E\Γ
σ−1
F + ν̄2

Eh
−1
E k2

E max
F⊂∂E\Γ

σ−1
F ,

GF (hF , kF , ν̄
τ
F ) = ν̄τF + hFk

−1
F max

e⊆∂F\(I∩∪∂ΓN∪∂ΓF )
σe + αΓh

2
Fk
−2
F

+ (ν̄τF )2h−1
F kF max

e⊆∂F\(I∩∪∂ΓN∪∂ΓF )
σ−1
e

+ (ν̄τF )2h−1
F k2

F max
e⊆∂F\(I∩∪∂ΓN∪∂ΓF )

σ−1
e

G∩F (hF , kF , ν̄
τ
F ) = hFk

−1
F max

e⊆∂F ∩I∩
σ∩e

+ (ν̄τF )2h−1
F kF max

e⊆∂F∩I∩
(σ∩e )−1 + (ν̄τF )2h−1

F k2
F max
e⊆∂F∩I∩

(σ∩e )−1.
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Proof. From Lemma 4.5.2 we know that the error satisfies the following bound

|||(p, pΓ)− (ph, pΓ,h)||| . inf
(q,qΓ)∈Qbh×Q

Γ
h

|||(p, pΓ)− (q, qΓ)|||︸ ︷︷ ︸
I

+ sup
(w,wΓ)∈Qbh×Q

Γ
h

|Rh((p, pΓ), (w,wΓ))|
|||(w,wΓ)|||︸ ︷︷ ︸

II

. (4.27)

We estimate the two terms on the right-hand side of (4.27) separately. We can rewrite

term I as

I = inf
(q,qΓ)∈Qbh×Q

Γ
h

(
||p− q||2b,DG + ||pΓ − qΓ||2Γ,DG + ||(p− q, pΓ − qΓ)||2C

)
≤ ||p− Π̃p||2b,DG︸ ︷︷ ︸

(a)

+ ||pΓ − Π̃pΓ||2Γ,DG︸ ︷︷ ︸
(b)

+ ||(p− Π̃p, pΓ − Π̃pΓ)||2C︸ ︷︷ ︸
(c)

.

We consider each of the three terms separately. To bound term (a), we exploit the two

approximation results stated in Lemma 1.3.3; we obtain that

(a) ≤ ||p− Π̃p||2b,DG =
∑
E∈Th

||ν1/2∇(p− Π̃p)||2L2(E) +
∑

F∈FIh∪F
D
h

σF ||Jp− Π̃pK||2L2(F )

.
∑
E∈Th

[
ν̄E|p− Π̃p|2H1(E) + ( max

F⊂∂E\(Γ∪∂ΩN )
σF )||p− Π̃p||2L2(∂E)

]

.
∑
E∈Th

[
h

2(sE−1)
E

k
2(rE−1)
E

ν̄E||E p||2HrE (TE) +
h

2(sE−1/2)
E

k
2(rE−1/2)
E

( max
F⊂∂E\(Γ∪∂ΩN )

σF )||E p||2HrE (TE)

]

=
∑
E∈Th

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

(
ν̄E +

hE
kE

( max
F⊂∂E\(Γ∪∂ΩN )

σF )

)
.
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Using analogous interpolation estimates on the fracture we can bound term (b) as follows:

(b) ≤ ||pΓ − Π̃pΓ||2Γ,DG .
∑
F∈Γh

||ντΓ`Γ∇(pΓ − Π̃pΓ)||2L2(F ) +
∑

e∈EIΓ,h∪E
D
Γ,h∪E

∩
Γ,h

σe||JpΓ − Π̃pΓK||2L2(e)

.
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||EΓpΓ||2HrF (TF )

(
ν̄τF +

hF
kF

max
e⊆∂F\(I∩∪∂ΓN∪∂ΓF )

σe

)

+

NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

h
2(sF−1)
F

k
2(rF−1)
F

||EγkpkΓ||2HrF (TF )

(hF
kF

max
e⊆∂F ∩I∩

σ∩e

)
.

Finally, for term (c), we have

(c) ≤ ||(p− Π̃p, pΓ − Π̃pΓ)||2C ≤ βΓ

∑
F∈Γh

||Jp− Π̃pK||2L2(F ) + αΓ

∑
F∈Γh

||{p− Π̃p}||2L2(F )

+ αΓ

∑
F∈Γh

||pΓ − Π̃pΓ||2L2(F ).

Exploiting the interpolation result (1.8), we deduce that

βΓ

∑
F∈Γh

||Jp− Π̃pK||2L2(F ) ≤ βΓ

∑
E∈Th

∂E∩Γ6=∅

||p− Π̃p||2L2(∂E) . βΓ

∑
E∈Th

∂E∩Γ 6=∅

h
2(sE− 1

2
)

E

k
2(rE− 1

2
)

E

||E p||2HrE (TE)

= βΓ

∑
E∈Th

∂E∩Γ6=∅

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

hE
kE
.

Similarly, we have

αΓ

∑
F∈Γh

||{p− Π̃p}||2L2(F ) . αΓ

∑
E∈Th

∂E∩Γ 6=∅

h
2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

hE
kE
.

Moreover, using the interpolation estimates for the fracture network, we obtain

αΓ

∑
F∈Γh

||pΓ − Π̃pΓ||2L2(F ) . αΓ

∑
F∈Γh

h2sF
F

k2rF
||E pΓ||2HrF (TF )

= αΓ

∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||E pΓ||2HrF (TF )

h2
F

k2
F

.
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Combining all the previous estimates, we can bound term I on the right-hand side of

(4.27) as follows:

I .
h

2(sE−1)
E

k
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄E +

hE
kE

max
F⊂∂E\(Γ∪∂ΩN )

σF + (αΓ + βΓ)
hE
kE

]
+
∑
F∈Γh

h
2(sF−1)
F

k
2(rF−1)
F

||EΓpΓ||2HrF (TF )

[
ν̄τF +

hF
kF

max
e⊆∂F\(I∩∪∂ΓN∪∂ΓF )

σe + αΓ
h2
F

k2
F

]

+

NΓ∑
k=1

∑
F∈γh,k
∂F∩I∩ 6=∅

h
2(sF−1)
F

k
2(rF−1)
F

||EγkpkΓ||2HrF (TF )

[
hF
kF

max
e⊆∂F ∩I∩

σ∩e

]
. (4.28)

Finally, the desired estimate follows from the combination of (4.28), together with the

bound on Term II that derives from what observed in (4.24) and Lemma 4.5.3.

4.6 Numerical experiments

In this section we present several numerical examples, with increasing complexity, in

order to validate the theoretical bounds and assess the practical performance of our

method. For the first set of experiments the analytical solution is known, so that we

are able to verify the convergence rates obtained in Theorem 4.5.4. We point out that

choice of the model coefficients is here made only with the aim of testing the effectiveness

of the numerical method and it does not intend to have any physical meaning. On the

other hand, the last test case considers a more realistic configuration featuring a totally

immersed network of fractures.

We remark that, in all the presented test cases, the pressure continuity condition at the

intersection points (4.7a) is satisfied, however in some of them the no flux condition

(4.7b) does not hold. To take this into account, we need to modify formulation (4.14),

adding on the right hand side the term∫
E∩Γ,h

JντΓ`Γ∇τpΓK∩{qΓ}∩, (4.29)

where the quantity JντΓ`Γ∇τpΓK∩ =
∑NΓ

k=1 ν
τ
γk
`k∇τp

k
Γ · τ k is given.

For all the experiments we choose a quadratic polynomial degree for both the bulk and
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fracture problems, i.e. kE = 2 ∀E ∈ Th and kF = 2 ∀F ∈ Γh. Moreover, we always choose

the permeability tensor in the bulk ν = I, so as to focus mainly on the fracture problem.

All the numerical tests have been implemented in MATLABr and employ polygonal

grids, which have been generated from Cartesian meshes, employing the hybrid mesh

generation technique previously described.

4.6.1 Example 1: vertical fracture

As first test case, we modify a test case presented in Section 2.5.4, splitting the single

fracture in 3 parts. In particular, we consider the domain Ω = (0, 1)2 and the fracture

network composed of the fractures γ1 = {(x, y) ∈ Ω : x = 0.5, 0 < y < 0.5},
γ2 = {(x, y) ∈ Ω : x = 0.5, 0.5 < y < 0.75} and

γ3 = {(x, y) ∈ Ω : x = 0.5, 0.75 < y < 1}, see Figure 4.4(a). Note that both

the tips of the fracture γ2 are intersection tips.

x

y

γ1

γ2

γ3

x = 0.5

I∩1,2

I∩2,3

(a) Computational domain (b) Solution in the network

Figure 4.4: Example 1: Computational domain (left) and computed fracture pressures (right).

We choose the exact solutions in the bulk and in the fractures as follows

p =

sin(4x) cos(πy) if x < 0.5,

cos(4x) cos(πy) if x > 0.5,
pkΓ = ξ[cos(2) + sin(2)] cos(πy), k = 1, 2, 3

so that they satisfy the coupling conditions (4.5) with ν = I, provided that, ∀k = 1, 2, 3,

we choose βγk = 2, that is νnγk/`k = 4. We impose Dirichlet boundary conditions on the
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whole ∂Ω and also on ∂Γ. Finally, the source term in the bulk is chosen, accordingly, as

f =

sin(4x) cos(πy)(16 + π2) if x < 0.5,

cos(4x) cos(πy)(16 + π2) if x > 0.5,

and, given ∀k = 1, 2, 3 the values ντγkof the tangential components of the permeability

tensor in the fracture, the fracture forcing terms are set as

fkΓ = cos(πy)[cos(2) + sin(2)](ξντγkπ
2 +

4

`k
).

Clearly, pressure continuity at the intersection point (4.7a) is satisfied regardless of the

values chosen for the fracture coefficients ντΓ, νnΓ and `Γ. However, flux conservation

(4.7b) does not hold if the values vary from fracture to fracture. For this reason, we need

to modify the right hand side of the formulation as in (4.29).

We perform two simulations, varying the values of the fracture coefficients (always

satisfying the constraint βΓ = 2). In particular, we take

• Case (a):
ντΓ = [3 · 104, 2 · 103, 4 · 104], (4.30)

νnΓ = 4 ∗ [10−4, 10−2, 10−5],

`Γ = [10−4, 10−2, 10−5];

• Case (b):
ντΓ = [3 · 10−4, 2 · 10−3, 4 · 10−4], (4.31)

νnΓ = [104, 102, 105],

`Γ = 0.25 ∗ [104, 102, 105];

Finally, in all the experiments we set ξ = 0.75.

In Figure 4.4(b) we show the numerical solution for the problem in the fracture net-

work for the case (a), where one can clearly see that the continuity condition at the

intersection points (4.7a) is satisfied. In Figures 4.5(a)-4.5(b) we report the computed

error ||p − ph||b,DG (loglog scale) for the bulk problem as a function of the inverse of

the mesh size h and the corresponding computed error ||pΓ − pΓ,h||Γ,DG (loglog scale)

in the fracture network. We recall that we are taking the polynomial degree k = 2 for
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both the bulk and fracture problems. On the left we show the results obtained for test

case (a) (with coefficients as in (4.30)), while on the right, we report the results for the

case (b) (with coefficient as in (4.31)). As predicted from our theoretical error bounds,

a convergence of order 2 is clearly observed for both ||p− ph||b,DG and ||pΓ − pΓ,h||Γ,DG.

Moreover, the convergence is improved of one order if we consider the errors in the

L2-norms ||p− ph||L2(Ω) and ||pΓ − pΓ,h||L2(Γ).

100.8 101 101.2 101.4 101.6
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3

2

3

1/h

||p− ph||b,DG
||p− ph||L2(Ω)

||pΓ − pΓ,h||Γ,DG
||pΓ − pΓ,h||L2(Γ)

(a)
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3

1/h

||p− ph||b,DG
||p− ph||L2(Ω)

||pΓ − pΓ,h||Γ,DG
||pΓ − pΓ,h||L2(Γ)

(b)

Figure 4.5: Example 1: Computed errors in the bulk and in the fractures as a function of the inverse
of the mesh size (loglog scale). Case (a) on the left and case (b) on the right.

4.6.2 Example 2: Y-shaped intersection

In the second test case we take the bulk Ω = (−2, 2)2 and the fracture network

Γ consisting of the fractures γ1 = {(x, y) ∈ Ω : x = y, −2 < y < 0},
γ2 = {(x, y) ∈ Ω : x = y, 0 < y < 2} and γ3 = {(x, y) ∈ Ω : x = 0, 0 < y < 2}, see

Figure 4.6. We choose the exact solution in the whole bulk as p(x, y) = cos(xy − x2) and

the permeability tensor ν = I. Note that, even if the bulk solution is continuous across the

fractures, the first coupling condition in (4.5) is satisfied because∇p|Γ = 0. In order for the

second coupling condition to hold, we need to choose the solution in the fractures pkΓ = p|γk
for all k = 1, 2, 3, that is pkΓ = 1. Note also that this configuration satisfies the conditions

at the intersection (4.7) irrespective of the choice of the model coefficients. Finally, the

source terms are chosen accordingly as f = cos(xy − x2)(y2 + 5x2 − 4xy)− 2 sin(xy − x2)

and fΓ = 0. We impose Dirichlet boundary conditions on the whole ∂Ω and also on ∂Γ.

In the numerical experiments we choose ξ = 0.55.
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x

y

γ1

γ2

γ3

I∩1,2,3

Figure 4.6: Example 2: computational domain.

We perform two simulations, taking the physical parameters in the fracture network as in

the previous example, that is for case (a) we choose the coefficients as in (4.30), while for

case (b) as in (4.31).

Figures 4.7(a)-4.7(b) show the computed errors (in loglog scale) ||p − ph||b,DG and

||pΓ − pΓ,h||Γ,DG for the bulk and fracture problem, respectively (case (a) on the left and

case (b) on the right). Also in this case the theoretical convergence rates are achieved

and one order is gained for the L2-norm.
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Figure 4.7: Example 2: Computed errors in the bulk and in the fractures as a function of the inverse
of the mesh size (loglog scale). Case (a) on the left and case (b) on the right.
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Chapter 4. Networks of intersecting fractures

4.6.3 Example 3: checkerboard

In the third test case we consider a cross-shaped network of fractures cutting the bulk

Ω = (−1, 1)2. The fractures are defined as γ1 = {(x, y) ∈ Ω : y = 0, −1 < x < −0.5},
γ2 = {(x, y) ∈ Ω : y = 0, −0.5 < x < 0}, γ3 = {(x, y) ∈ Ω : x = 0, −1 < y < 0},
γ4 = {(x, y) ∈ Ω : y = 0, 0 < x < 1} and γ5 = {(x, y) ∈ Ω : x = 0, 0 < x < 1}, see

Figure 4.8(a). Note that fracture γ2 presents two intersection tips.

x

y

γ1 γ2

γ3

γ4

γ5

I∩1,2 I∩2,3,4,5

∂ΩN

−1 1

−1

1

(a) Computational domain (b) Solution in the network

Figure 4.8: Example 3: Computational domain (left) and computed fracture pressures plotted as
3d-lines (right).

We choose again a solution in the bulk continuous across the fractures

p(x, y) = cos(πx) cos(πy) and the permeability tensor ν = I. In this case, the first cou-

pling condition in (4.5) is satisfied because ∇p|Γ · nΓ = 0, where n1 = n2 = n4 = (0, 1)T

and n3 = n5 = (1, 0)T . The validity of the second coupling condition is satisfied if

pkΓ = p|Γk for all k = 1, 2, 3, 4, 5, that is p1
Γ = p2

Γ = p4
Γ = cos(πx) and p3

Γ = p5
Γ = cos(πy).

In the bulk, we impose Neumann boundary conditions on ∂ΩN = {(x, y) ∈ Ω : x = 1}
and Dirichlet boundary conditions on the rest of the boundary. Accordingly, at the

boundary tips of fractures γ1, γ3 and γ5 we impose Dirichlet conditions, and at the

boundary tip of γ4 we impose Neumann conditions. In the numerical experiments

we choose ξ = 0.55. Finally, the source term in the bulk is chosen accordingly as

f = 2π2 cos(πx) cos(πy) and, given the physical coefficients ντΓk and `k, for k = 1, 2, 3, 4, 5,

the source term for each fracture is fkΓ = π2 cos(πx)ντγk . Note that, at intersection I∩1,2
flux conservation does not hold if the values of the coefficients vary from γ1 to γ2, while
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4.6. Numerical experiments

at intersection I∩2,3,4,5 flux conservation is satisfied for every choice, due to the fact that

∇pkΓ|I∩2,3,4,5 = 0, for k = 2, 3, 4, 5.

We perform two simulations:

• in case (a) we take `k = ντγk = νnγk = k · 10k, for k = 1, 2, 3, 4, 5;

• in case (b) we take `k = ντγk = νnγk = k · 10−k, for k = 1, 2, 3, 4, 5.

In Figure 4.8(b) we show the numerical solution for the fracture network problem

computed with the coefficients of case (a). The values of the fracture pressures are

displayed as lines in the 3d space, so that pressure continuity at the intersection points is

evident. The plots in Figures 4.9(a)-4.9(b) show the computed errors in loglog scale for

the bulk and network problems, together with the expected convergence rates. Test case

(a) is on the left and test case (b) is on the right. Once again the results are in agreement

with the theoretical estimates.
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Figure 4.9: Example 3: Computed errors in the bulk and in the fractures as a function of the inverse
of the mesh size (loglog scale). Case (a) on the left and case (b) on the right.

4.6.4 Example 4: cross-shaped intersection

We consider the domain Ω = (0, 1)2 cut by a cross-shaped network made up

of the four fractures γ1 = {(x, y) ∈ Ω : y = 0.5, 0 < x < 0.5},
γ2 = {(x, y) ∈ Ω : x = 0.5, 0 < y < 0.5}, γ3 = {(x, y) ∈ Ω : y = 0.5, 0.5 < x < 1} and
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Chapter 4. Networks of intersecting fractures

γ4 = {(x, y) ∈ Ω : x = 0.5, 0.5 < y < 1}. The bulk domain Ω is then subdivided into

the sets

ΩA = {(x, y) ∈ Ω : 0 < x < 0.5, 0 < y < 0.5},

ΩB = {(x, y) ∈ Ω : 0.5 < x < 1, 0 < y < 0.5},

ΩC = {(x, y) ∈ Ω : 0.5 < x < 1, 0.5 < y < 1},

ΩD = {(x, y) ∈ Ω : 0 < x < 0.5, 0.5 < y < 1},

as shown in Figure 4.10.

x

y

γ1

γ2

γ3

γ4

ΩA ΩB

ΩCΩD

I∩1,2,3,4

1

1

Figure 4.10: Example 4: computational domain.

In order to define the exact solution for the bulk problem, we introduce the functions

pl = sin(
π

2
x) cos(2πy),

pr = cos(
π

2
x) cos(2πy),

pu = cos(
π

2
y) cos(2πx),

pd = sin(
π

2
y) cos(2πx),

where the subscript is related to the position (left, right, up, down). The bulk pressure is
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4.6. Numerical experiments

then defined in each subdomain of Ω as

p(x, y) =



pl + pd in ΩA,

pr + pd in ΩB,

pr + pu in ΩC ,

pl + pu in ΩD.

If we choose the permeability tensor ν = I, the bulk source term will have the following

expression f(x, y) = 17
4
π2p(x, y). Simple calculations show that p(x, y) satisfies the first

coupling condition in (4.5) provided that for k = 1, 2, 3, 4, we choose βγk = π
4
, that is

νnγk = π
2
`k. From the second coupling condition we deduce the following expressions for

the solutions in the fractures

p1
Γ = ξ

√
2 cos(2πx)− sin(

π

2
x), p2

Γ = ξ
√

2 cos(2πy)− sin(
π

2
y),

p3
Γ = ξ

√
2 cos(2πx)− cos(

π

2
x), p4

Γ = ξ
√

2 cos(2πy)− cos(
π

2
y).

Note that, with this choice, pressure continuity at the intersection point (4.7) is ensured

by the fact that cos(π
4
) = sin(π

4
). However, flux conservation does not hold, so that we

need to modify the right-hand-side of our formulation as in (4.29). Finally the source

terms for the fracture problems are chosen accordingly as

f 1
Γ = cos(2πx)[

√
2π

2`1

+ 4π2ξ
√

2ντγ1
]− ντγ1

π2

4
sin(

π

2
x),

f 2
Γ = cos(2πy)[

√
2π

2`2

+ 4π2ξ
√

2ντγ2
]− ντγ2

π2

4
sin(

π

2
y),

f 3
Γ = cos(2πx)[

√
2π

2`3

+ 4π2ξ
√

2ντγ3
]− ντγ3

π2

4
cos(

π

2
x),

f 4
Γ = cos(2πy)[

√
2π

2`4

+ 4π2ξ
√

2ντγ4
]− ντγ4

π2

4
cos(

π

2
y).

We perform two simulations choosing the values of the physical coefficients as:

• in case (a) we take ντγk = νnγk = k · 10k and `k = 2
π
νnγk , for k = 1, 2, 3, 4;

• in case (b) we take ντγk = k · 10k, `k = k · 10−k and νnγk = π
2
`k, for k = 1, 2, 3, 4.

In Figure 4.11(a) we show the computed numerical solution for the problem in the bulk,
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Chapter 4. Networks of intersecting fractures

with the coefficients as in case (a). In Figure 4.11(b) we plot the fracture pressure as

lines in the 3d space. Pressure continuity at the intersection point is clearly observed.

(a) Solution in the bulk (b) Solution in the fractures

Figure 4.11: Example 4: Computed bulk pressure (left) and computed fracture pressure plotted as
3d-lines (right).

In Figures 4.5(a)-4.5(b) we report the computed errors ||p− ph||b,DG and ||pΓ− pΓ,h||Γ,DG,

respectively, in loglog scale for the bulk and fracture problems, as a function of the

inverse of the mesh size h. On the left we show the results obtained for test case (a)

and on the right for the case (b). Again, a convergence of order 2 is observed for both

||p− ph||b,DG and ||pΓ− pΓ,h||Γ,DG, while a convergence of order 3 is observed for the error

in the L2-norm.

4.6.5 Example 6: totally immersed network

The aim of this test case is to investigate the capability of our method to deal with

a network of fractures totally immersed in the domain. We reproduce the numerical

experiments performed with mimetic finite differences in [15]. We consider the domain

Ω = (0, 1)2 containing 10 intersecting fractures. The geometry of the problem is shown

in Figure 4.13(a), where the fractures are highlighted with coloured lines. We remark

that for the computations we have employed a mesh made of general polygonal elements,

as shown in the zoomed detail reported in Figure 4.13(b).

We impose homogeneous Dirichlet boundary conditions on the whole ∂Ω and define the
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Figure 4.12: Example 4: Computed errors in the bulk and in the fractures as a function of the inverse
of the mesh size (loglog scale). Case (a) on the left and case (b) on the right.
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p = 0

p = 0
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(a) Computational domain (b) Mesh detail

Figure 4.13: Network of intersecting fractures: computational domain (left) and zoomed detail of the
polygonal mesh employed for the computations (right).

source term as

f(x, y) =

10 if (x− 0.1)2 + (y − 0.1)2 ≤ 0.04,

−10 if (x− 0.9)2 + (y − 0.9)2 ≤ 0.04,

so that we have a source in the lower left corner of the domain and a sink in its top right

corner. The porous medium in the bulk is isotropic and homogeneous, i.e., ν = Id. The

fractures are isotropic, i.e., ντΓ = νnΓ , with constant thickness `Γ = 0.01. We consider
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Chapter 4. Networks of intersecting fractures

three test cases:

1. No fractures are present in the porous medium;

2. Permeable network: all the fractures have high permeability properties, taking

ντΓ = νnΓ = 1000;

3. Impermeable network: all the fractures have blocking properties, taking

ντΓ = νnΓ = 0.001.

In all the test cases, we take ξ = 0.75 and fΓ = 0. The discrete pressures for the

problem in the bulk are reported in Figure 4.14. We observe that, in all the cases, the

results are consistent with those obtained in [87] with mimetic finite differences. In the

permeable case (see Figure 4.14(b)) the pressure is almost continuous across the fractures,

as expected. In agreement with [87], the maximum and minimum values reached by the

pressure are slightly lower than those of the non-fractured case, see Figure 4.14(a). In

the impermeable case, we observe clear jumps of the bulk pressure across the fractures,

see Figure 4.14(c). Once again, our results are in good agreement with those obtained in

[87].

(a) No fractures (b) Permeable (c) Impermeable

Figure 4.14: Network of intersecting fractures: discrete pressure in the bulk for the three test cases, no
fractures (left), permeable network ντΓ = νnΓ = 1000 (middle), impermeable network ντΓ = νnΓ = 0.001
(right).
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5 | Towards Uncertainty Quantifi-

cation for flow in fractured

porous media

This chapter encloses some preliminary results concerning the application of Uncertainty

Quantification (UQ) techniques to the problem of approximating the flow in a fractured

porous medium. The results are original and contained in [11].

5.1 Introduction to Uncertainty Quantification

Our knowledge of geological and physical aspects of the subsurface is typically incomplete,

due to the difficulty in obtaining precise measurements. For this reason, the characteriza-

tion of fluid dynamics in geological media as well as their geomechanical evolution are

classical fields for the application of UQ methodologies [73].

The main goal of Uncertainty Quantification is to devise effective ways to include and

treat the uncertainty in a mathematical model. Uncertainty may be contained in the

input data in various ways, for example in the model coefficients, forcing terms, boundary

conditions and also geometry. In order to obtain a reliable numerical prediction of the

phenomenon under investigation, one has to include this lack of knowledge in the model.

A common approach is to treat the parameters in the equations as random variables or

random fields, so that the model predictions are considered as the outputs of a random

input-output map. Such kind of map should be then analyzed with statistical techniques

[29]. More precisely, let us consider the general PDE problem: find u such that

L(y(θ))(u(θ)) = F (y(θ)) ∈ D ⊂ Rd (5.1)
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Chapter 5. UQ in fractured porous media

where L is a suitable differential operator and some appropriate boundary or initial

conditions are imposed. Here, the data of the problem, i.e., the operator L, the forcing

term F , the domain D and the initial and boundary conditions may depend on a

vector of N random variables y(θ) = (y1(θ), . . . , yN(θ)) : Θ→ RN where (Θ,A,P) is a

complete probability space (with Θ set of outcomes, A sigma-algebra of subsets of Θ and

P : A → [0, 1] probability measure) and θ denotes an elementary random event. Clearly,

in this setting, the solution of the PDE (5.1) is itself a random function, u = u(y(θ), x).

The main question that UQ wants to address is how to effectively approximate the

random function u(θ, x) or some (random) output Quantities of Interest (QoI) Q(u).

Among the various techniques proposed in the literature for the approximation of

the random input-output map, we will take as a reference the stochastic collocation

method analysed in the seminal work by Babuška, Nobile and Tempone [29]. Here,

a surrogate model of the input-output map is constructed employing standard

deterministic techniques in the spatial domain and a tensor product polynomial approxi-

mation in the random domain, see Section 5.2 below for a brief introduction to the method.

In the context of fractured porous media, typical quantities that may be affected by

uncertainty are the actual position and geometry of the fractures, so that a description of

these features is usually only available in the form of probabilistic distributions. Geometric

uncertainties are usually challenging to deal with. Indeed, even a small variation in the

stochastic parameters may induce an abrupt change in the topological structure of the

domain, and this is likely to cause a jump in the values of an associated QoI [63]. For

example, the value of a stochastic parameter could determine whether the intersection

between two fracture is present or not, thus modifying the network connectivity and

possibly the overall direction of the flux. If the considered QoI is non-smooth, applying

the standard stochastic collocation approach for its approximation may not be effective.

Indeed, the accuracy of polynomial approximations obtained from this kind of methods

typically deteriorates in the presence of discontinuous mapping between input parameters

and output variables [63, 73].

An innovative methodology to deal with discontinuous dependence between input

stochastic parameters and output mapping, is the one proposed in [73] for dealing with

sedimentary basins evolution under mechanical and geochemical compaction processes.

Here, the authors consider basins composed of multiple layers, each featuring different
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physical properties. Since the position of each layer is affected by uncertainty, the state

variables describing the material undergo discontinuities in their dependence on the

uncertain parameters (different kind of geomaterials may be found at a given depth and

time for different realizations of the random parameters). Their innovative methodology

relies on a change of coordinate system to align discontinuities within the random

parameter space. Starting from the observation that the position of the interface between

two materials typically depends smoothly on the stochastic parameters, they create a

surrogate model with a two-steps approach: first, a standard sparse-grid approximation

for the position of each interface is computed; next this information is used to define

a mapping to a reference configuration where discontinuities with respect to depth

are aligned; finally, a sparse-grid approximation of the state variables is performed

in the new coordinate system, where the method is effective in each homogeneous lithology.

In this chapter, we take inspiration from [73] to address the problem of approximating

the flow in a porous medium cut by fractures with uncertain position. We start frorm the

observation that, similarly to [73], the state variables (pressure or Darcy’s velocity) may

undergo discontinuities in their dependence on the stochastic parameters describing the

fracture position. Indeed, fixing, for example, the attention on a given point x∗ of the

bulk domain, its relative position to the fracture may change and this can cause a jump

in the value of the pressure at that point, due to the discontinuous nature of the solution

at the bulk-fracture interface. For example, let us consider the simple configuration

reported in Figure 5.1. Here, the position of the vertical fracture is determined by the

value of the stochastic parameter y. If we now focus on the bulk point x∗, we notice that,

according to the different realizations of y, the fracture Γ may be placed either on its

left or right. This intuitively implies that the random function describing the pressure in

the point x∗, namely p(•, x∗), will undergo a discontinuity with respect to y when the

fracture will “walk through”the point x∗. Similarly to the approach of [73], our aim is to

align discontinuities. This will be achieved by means of a mapping to a reference domain,

where all fractures are aligned, see Figure 5.3 below.

In the rest of the chapter, we will briefly introduce the stochastic collocation method

of [29] (Section 5.2) and then illustrate in detail the aligning map technique (Section

5.3). In order to better explain the approach, in Section 5.3.1 we will consider the

simple configuration of Figure 5.1, with a single vertical fracture. We will present some
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y = y1

x
∗

y = y2

x
∗

Γ Γ

Figure 5.1: Vertical fracture Γ with uncertain position described by the stochastic variable y. According
to different realizations of y, Γ may be placed on the left or right of the bulk point x∗.

preliminary convergence numerical results. Extensions of the method and limitations are

discussed in Section 5.4.

5.2 The stochastic collocation method

In this section we briefly introduce the stochastic collocation method of [29]. This

technique enables to solve numerically the stochastic PDE (5.1), employing standard

approximations in space (finite elements, finite volumes, spectral or hp-finite elements,

etc.) and polynomial approximation in the probability domain. The first step in the

approximation process consists in choosing the set of collocation points as the zeros

of tensor product orthogonal polynomials with respect to an appropriate probability

density (related to the joint probability density of the random variables y). Next, the

probabilistic variables (y1, . . . , yN ) are evaluated at each collocation point and the solution

of the corresponding differential problem (which is now deterministic in the domain D)

is computed using the spatial discretization scheme. The final approximation is then

recovered by interpolating the semi-discrete approximations in the polynomial space.

In order to illustrate the technique more in detail, let us focus on the following version of

problem (5.1): find u such that∇ · (a(y, x)∇u(y, x)) = f(y, x), x ∈ D

u(y, x) = 0, x ∈ ∂D,
∀y ∈ Λ =

N∏
n=1

Λn, (5.2)

where y = (y1, . . . , yN) is a random vector with independent real-valued components

and density ρ(y) =
∏N

n=1 ρn (yn), the tensor a is such that 0 < amin ≤ a(y, x) ≤ amax

for a.e. x ∈ D and ρ-a.e. y ∈ Λ, and f(y, •) is square integrable with respect to P i.e.,
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5.2. The stochastic collocation method

∫
D
EP [f 2] dx <∞.

The aim of the collocation method is to look for a numerical approximation of the solution

of (5.2) in a finite dimensional space tensor product space Vp,h = Pp(Λ)⊗Hh(D), where

Hh(D) ⊂ H1
0 (D) is, for example, a standard finite element space and Pp(Λ) ⊂ L2

ρ(Λ) is

the span of tensor product polynomials with degree at most p = (p1, . . . , pN). To this end,

we first introduce the semi-discrete approximation uh : Λ→ Hh(D), which is obtained,

in a finite element fashion, by projecting (5.2) onto the subspace Hh(D), for each y ∈ Λ,

i.e.,∫
D

a(y)∇uh(y, x) · ∇ϕh(x)dx =

∫
D

f(y, x)ϕh(x)dx ∀ϕh ∈ Hh(D), for a.e. y ∈ Λ.

(5.3)

Next, we collocate (5.3) on the zeros of orthogonal polynomials with respect to the

densities of the random variables (y1, . . . , yN). More precisely, for each dimension

n = 1, . . . , N, we consider the points λn,kn ∈ Λn, with 1 ≤ kn ≤ pn + 1, which are

the pn + 1 roots of the orthogonal polynomial qpn+1 with respect to the density ρn, i.e.,∫
Λn
qpn+1v ρndyn = 0 for all v ∈ Ppn (Λn) . We can now consider the tensorized grid of

all these roots {λk = (λm,km)Nm=1, 1 ≤ km ≤ pm + 1}, where the index k is associated

to the vector (k1, . . . , kN) through an appropriate bijection [29]. We denote by MΛ

the cardinality of the tensor grid. After evaluating the semi-discrete approximation uh

at each collocation point λk, with 1 ≤ k ≤ MΛ, we build the fully-discrete solution

up,h ∈ Pp(Λ) ⊗ Hh(D) by interpolating in λ the collocated solutions. To this end, we

introduce for each n = 1, 2, . . . , N, the Lagrange basis {ln,j}pn+1
j=1 of the space Ppn (Λn),

defined such that

ln,j (λn,m) = δjm, j,m = 1, . . . , pn + 1,

with δjm denoting the Kronecker symbol. On the space Pp(Λ) we set, accordingly to the

previous notation,

lk(λ) =
N∏
n=1

ln,kn (λn) .

Therefore, the final approximation of the random solution u(y, x) is defined as

up,h(y, x) =

MΛ∑
k=1

uh (λk, x) lk(y),
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where uh (λk, x) is the semi-discrete solution of problem (5.3) for y = λk. Note that the

stochastic collocation method is equivalent to solve MΛ deterministic problems.

The convergence of the method has been also addressed in [29]. In particular, an a priori

estimate for the total error u−up,h in the L2
ρ(Γ)⊗H1

0 (D) norm is presented (see Theorem

4.1), showing that:

• the convergence with respect to p is (sub)exponential (under some regularity

assumptions);

• the convergence with respect to h depends on the finite element approximation

properties and on the regularity in space of the exact solution u.

Finally, we mention that tensor product spaces suffer from the so-called “curse

of dimensionality”. Indeed, the dimension of the approximating space MΛ grows

exponentially fast in the number N of random variables, thus leading to a huge

computational cost. For this reason, if the number of random variables is even moderately

large, one typical approach is to resort to a sparse grid approximation, see [120, 106, 31].

Next, we focus on the applying a suitably modified version of the stochastic collocation

technique just introduced to the flow in fractured porous media.

5.3 Uncertain fracture position

We consider a fractured porous medium where the position of the fractures depends

on the realization of a random vector y ∈ Λ. We denote by p the variable describing

the pressure in the bulk domain Ω according to the coupled model introduced in the

previous chapters (see for example Section 2.1). The map p will be itself a random

function, that is p = p(y, x), with y ∈ Λ and x ∈ Ω. As previously discussed, the

fact that p is discontinuous with respect to the spatial variable x in correspondence of

fractures, determines also a discontinuous dependence on the stochastic variables. For this

reason, its approximation with the standard stochastic collocation approach introduced

in Section 5.2 may not be effective. Similarly to the approach of [73], our aim is to

align discontinuities. This will be achieved by means of some mappings to a reference

domain, where all fractures are aligned. Let us focus for simplicity on the case where the
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5.3. Uncertain fracture position

porous medium is cut by a single non-immersed fracture. The position of the fracture is

determined by the realization of the stochastic vector y = λ ∈ Λ, so that we will denote

it by Γλ. In particular, this implies that the value λ will determine the subdivision of the

domain Ω into the two disjoint subsets Ωλ1 and Ωλ2 , i.e., Ω = Ωλ1 ∪Ωλ2 . Next, we introduce

the reference domain Ωref ⊂ Rd, d = 2, 3, cut by the (d− 1)-dimensional fracture Γref .

We assume that Ω = Ωref a.e. with respect to the Lebesgue measure. The fracture Γref

partitions the domain Ωref into the disjoint subsets Ωref
1 and Ωref

2 . We can now introduce

the family of mappings {Φλ(x)}λ∈Λ with Φλ : Ωref → Ω and the corresponding set of

inverse mappings {Φ−1
λ (x)}λ∈Λ, with Φ−1

λ : Ω→ Ωref . The single random mapping Φ−1
λ

maps the domain determined by the realization λ ∈ Λ of the random vector y into the

reference configuration such that:

• each bulk subdomain Ωλi is mapped into the corresponding subdomain Ωref
i in the

reference configuration, i.e., Φ−1
λ (Ωλi ) = Ωref

i for i = 1, 2;

• boundaries are preserved;

• the fracture Γλ is always mapped into the fracture Γref .

See Figure 5.2 below for an explicative example.

Γλ

Γref

Φ
−1

λ

Ω
λ
1

Ω
λ
2

Ω
ref
1 Ω

ref
2

Φλ

Figure 5.2: Example of mappings Φλ and Φ−1
λ from and to the reference domain Ωref .

Each mapping Φλ may be regarded as a change of coordinates, so that instead of

considering the random solution mapping p(λ, x), we may consider

p̂(λ, x̂) := p(λ,Φλ(x̂)) = p(λ,Φλ(Φ−1
λ (x))),

with x̂ = Φ−1
λ (x). Since in the reference domain all fractures are aligned, the map p̂ will

be continuous with respect to λ and we can use standard stochastic collocation techniques

for its approximation. It follows that we may construct a semi-discrete approximation of
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the exact random pressure at the point x∗ of the bulk domain, for a given realization of

the random vector y = λ∗ and x̂ = Φ−1
λ∗ (x), as

p(λ∗, x∗) = p̂(λ∗, x̂∗) ≈
MΛ∑
i=1

p̂(λi, x̂
∗)li(λ

∗) =

MΛ∑
i=1

p(λi,Φλi(Φ
−1
λ∗ (x

∗)))li(λ
∗),

where MΛ is the number of stochastic interpolation points and {li}MΛ
i=1 is the corresponding

Lagrange basis. The fully-discretized version of the random map p will then be

p(λ∗, x∗) ≈ pMΛ
h (λ∗, x∗) =

MΛ∑
i=1

ph(λi,Φλi(Φ
−1
λ∗ (x

∗)))li(λ
∗), (5.4)

where ph(λi, •) denotes the DG approximation of the bulk pressure collocated in the

point λi, i.e., the DG-discrete solution relative to the domain cut by the fracture Γλi
.

The above may be regarded as an offline-online approach, where we first compute the

solutions in all the collocation points (where the position of the fracture is determined by

λi) and then use them to reconstruct the solution corresponding to a new configuration

(where the position of the fracture is determined by λ∗). We may then give the following

interpretation of the aligning map technique. For reconstructing the value of the pressure

in x∗ in the new configuration Γλ∗ , we do not employ the value of the pressure at this

same point in the configurations Γλi , since it may not be significant. Therefore, for each

configuration Γλi , we evaluate the pressure at the image through the aligning map of

the point x∗, i.e., Φλi(Φ
−1
λ∗ (x

∗))), which has the same relative position with respect to

Γλi
as x∗ with respect to Γλ∗ . We refer to Figure 5.3 for a visual representation of this

composition of mappings.

Remark 10. Due to their discontinuity, DG discrete functions are not uniquely defined at

element interfaces. Therefore, in order to be able to evaluate, in formula (5.4), the bulk

discrete solution ph at any point, we will in fact consider its continuous reconstruction

p̃h. The latter may be obtained by post-processing the DG discrete solution with an

approach similar to that employed by Karakashian and Pascal in [99] to prove some

a-posteriori error estimates for the DG approximation of second-order elliptic PDEs. The

setting of [99] considers DG spaces defined on standard conforming simplicial meshes with

uniform polynomial order. More precisely, given a simplicial mesh Th, the polynomial

degree k and the corresponding DG discrete space QDG
h,k , they associate to the generic

function qh ∈ QDG
h,k its piecewise polynomial continuous reconstruction q̃h belonging to
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(. . .)

λ1 λ2 λ3 λMΛ

Φλ1

Φλ2
Φλ3
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λ∗

x
∗

x̂∗

Figure 5.3: Composition of mappings for the approximation of p(λ∗, x∗).

the standard finite element space of degree k related to the same mesh Th. The function

q̃h is defined with a quite natural argument: at every node of the simplicial mesh Th
corresponding to a Lagrangian type degree of freedom for polynomial degree k, its value

is set to the average of the values of qh at that node. Moreover, in [99], the reconstruction

q̃h is proved to have suitable approximation properties with respect to qh. In order to

extend the results to the polytopic setting, we can resort to the following strategy. First,

each polytope of the mesh is subdivided into triangles/tetrahedra (for example joining

the barycentre of the element with each vertex), so that a simplicial mesh is defined.

Then, the continuous reconstruction of the poly-DG function is built with the method

of [99], i.e., considering the lagrangian nodes associated to the simplicial mesh and the

corresponding average values of the poly-DG function. See Figure 5.4 for an example of

simplicial mesh obtained from the polytopic one, joining vertexes with the barycenters,

and the corresponding lagrangian nodes for the linear case. In order for the approximation

properties proved in [99] to be still valid in the polytopic case, we need to make some

shape-regularity assumptions on the simplicial mesh. The extension of these results to

more general polytopic meshes has not been explored yet (to the best of our knowledge).

With the aim of better illustrating our approach and testing its effectiveness, we will now

present a simple test case.
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E1

E2

E3

E4

Figure 5.4: Simplicial mesh obtained from a polygonal mesh by joining vertexes with barycenters and
lagrangian nodes for the linear case.

5.3.1 Example: vertical fracture

We consider the case where the porous medium is cut by a single, non-immersed vertical

fracture, whose position is random and depends on the parameter λ. In particular,

we adjust the test case already presented in Section 2.5.4, adding the dependence

on the stochastic variable. We take the bulk Ω = (0, 1)2 and the vertical fracture

Γ = Γλ = {(x, y) ∈ Ω : x = λ}, with λ ∈ Λ. For example, we can assume the

distribution of λ to be uniform in Λ = [a, b], with a = 0.1 and b = 0.9. The exact

solutions in the bulk and in the fracture are then chosen as follows:

p =

sin(4x) cos(πy) if x < λ,

cos(4x) cos(πy) if x > λ,
pΓ = ξ[cos(4λ) + sin(4λ)] cos(πy), (5.5)

and the source terms are chosen accordingly as :

f =

sin(4x) cos(πy)(16 + π2) if x < λ,

cos(4x) cos(πy)(16 + π2) if x > λ,

fΓ = cos(πy)[cos(4λ) + sin(4λ)](
4

`Γ

+ ξπ2ντΓ).

Notice that the solution in the bulk depends on the stochastic parameter λ only through

the definition of the two subdomains Ωλ
1 and Ωλ

2 , while the analytic expression of pΓ

depends explicitly on λ. For simplicity, we will take the permeability tensor ν = I.

Moreover, we will set `Γ = 0.25 and ντΓ = νnΓ = 1. Finally, we impose Dirichlet boundary

conditions on the whole ∂Ω and also on ∂Γ.

We choose as reference configuration the one corresponding to the fracture
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5.3. Uncertain fracture position

Γref = {(x, y) ∈ Ω : x = 0.5}. The aligning maps Φλ : Ωref → Ω and Φ−1
λ : Ω→ Ωref

may then be defined explicitly as:

Φλ(x) =

2λx if 0 < x < λ,

2(1− λ)x+ 2λ− 1 if λ < x < 1,

Φ−1
λ (x) =

 1
2λ
x if 0 < x < λ,

− 1
2(1−λ)

x+ 2λ−1
2(λ−1)

if λ < x < 1.

Let us focus on the random map representing the bulk pressure p : [a, b] × Ω → R
defined in (5.5). As previously discussed, p is discontinuous with respect to the random

variable λ. Indeed, if we consider the generic bulk point x∗ = (x∗(1), x∗(2)), the random

function p(•, x∗) will undergo a discontinuity with respect to λ when the fracture will

“walk through”the point x∗, i.e., when λ = x∗(1). This behaviour is displayed in Figure

5.6, where for several points x∗, we plot the corresponding function p(•, x∗) (dotted line)

and its DG approximation ph(•, x∗) (solid line). In particular, we consider the four bulk

points

x∗1 = (0.2, 0.9),

x∗2 = (0.1, 0.2),

x∗3 = (0.7, 0.3),

x∗4 = (0.8, 0.8),

plotted in Figure 5.5 with corresponding colours. In Figure 5.6, each function p(•, x∗i ),
i = 1, 2, 3, 4, is evaluated for 13 values of the parameter λ, corresponding to the Gauss-

Legendre points in the interval [a, b] (we refer to [31] for more details). We can clearly

see that, for i = 1, 2, 4, the function p(•, x∗i ) undergoes a discontinuity for λ = x∗i (1) (this

is not the case for x∗3 because x∗3(1) = 0.1 = a). Notice that the functions p(•, x∗i ) are

piecewise constant due to the fact that the bulk solution (5.5) depends on λ only through

the definition of the two subdomains Ωλ
1 and Ωλ

2 .

Next, we show that, employing the aligning map technique, we do recover continu-

ity with respect to the random variable. Indeed, let us now consider the function

p̂ : [a, b]× Ωref → R. In Figure 5.7, for several points x̂∗ ∈ Ωref , we plot the correspond-

ing function p̂(•, x̂∗) = p(•,Φ•(x̂∗)) (dotted line) and its DG approximation ph(•,Φ•(x̂∗))
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λ∗a b

x∗1 = (0.2, 0.9)
x∗2 = (0.1, 0.2)
x∗3 = (0.7, 0.3)
x∗4 = (0.8, 0.8)

Figure 5.5: Domain corresponding to the realization of the stochastic parameter λ∗ and the 4 points
x∗1, x∗2, x∗3, x∗4 considered in the experiments.

Figure 5.6: Function p(•, x∗i ) (dotted line) and its DG approximation ph(•, x∗i ) (solid line), for
i = 1, 2, 3, 4. Each colour is related to a different point x∗i as shown in Figure 5.5.

(solid line). In particular, we consider the four points x̂∗i , i = 1, 2, 3, 4, obtained from

the previously considered points x∗i (see Figure 5.5) via the inverse aligning map Φ−1
λ∗ ,

for λ∗ ∈ [a, b] (we take for example λ∗ = 0.3). In Figure 5.7 we can clearly see that the

functions p̂(•, x̂∗i ) are continuous (here we report their evaluation at 13 Gauss-Legendre

points in [a, b]).

We now want to test the convergence properties of our approximation scheme (5.4) for

p : [a, b] × Ω → R, with respect to the random variable. First, we consider point-wise

convergence, i.e., we fix the point (λ∗, x∗) ∈ [a, b]×Ω and measure the error as a function

of the number of stochastic collocation points employed in the approximation. In the

following, we take x∗ = (0.2, 0.9) (the point in blue in Figure 5.5) and λ∗ = 0.3. We

want to test the behaviour of the semi-discrete (only in λ) approximation pMΛ and of the

fully-discrete (in both λ and x) approximation pMΛ
h . We recall that they are defined with
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5.3. Uncertain fracture position

Figure 5.7: Function p̂(•, x̂∗i ) (dotted line) and its DG approximation p̂h(•, x̂∗i ) (solid line), for
i = 1, 2, 3, 4. Each colour is related to a different point x∗i as shown in Figure 5.5.

the aligning map technique as

pMΛ(λ∗, x∗) =

MΛ∑
i=1

p(λi,Φλi(Φ
−1
λ∗ (x∗)))li(λ

∗),

pMΛ
h (λ∗, x∗) =

MΛ∑
i=1

ph(λi,Φλi(Φ
−1
λ∗ (x∗)))li(λ

∗).

Since we are assuming an uniform distribution for the stochastic variable, we will take

{λi}MΛ
i=1 equal to the Gauss-Legendre points in [a, b], see [31]. Notice that, for computing

the fully-discrete approximation pMΛ
h , we need to solve MΛ DG-discrete problems, each

corresponding to the domain cut by fracture Γλi . This implies that, for every fracture

Γλi , with i = 1, . . . ,MΛ, we will generate one (polygonal) mesh. We assume that all these

meshes have comparable mesh-size h. We also remark that instead of the DG solution

ph, we will evaluate its continuous reconstruction p̃h, see Remark 10 above.

In Figure 5.8(a) we plot, in semilogy scale and as a function of the number of the

collocation points MΛ, the following 3 quantities (with corresponding legend entry):

|pMΛ(λ∗, x∗)− p(λ∗, x∗)| (ex-ex) (5.6)

|pMΛ
h (λ∗, x∗)− ph(λ∗, x∗)| (DG-DG) (5.7)

|pMΛ
h (λ∗, x∗)− p(λ∗, x∗)| (DG-ex) (5.8)
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where:

(ex-ex) is the error between the exact solution p(λ∗, x∗) and its semi-discrete approximation

with respect to the stochastic variable;

(DG-DG) is the error between the DG-discrete solution computed in the domain cut by the

fracture Γλ∗ , namely ph(λ
∗, x∗), and the fully-discrete approximation with respect

to the stochastic variable and the spatial variable of the exact solution;

(DG-ex) is the error between the exact solution p(λ∗, x∗) and its fully-discrete approximation

with respect to the stochastic variable and the spatial variable.

The DG solution for λ = λ∗ and those for the collocation points λi were obtained

with Cartesian meshes of approximately the same size (≈ 1150 elements). In Figure

5.8(a) we observe exponential convergence as expected from the theory of stochastic

collocation methods, see Section 5.2. In particular, for the (ex-ex) case the error keeps

decreasing as the number of collocation point increases, while for the (DG-DG) and

(DG-ex) cases we observe a saturation of the error around the value of the error in the

spatial DG-approximation.

In Figure 5.8(b), we consider the behaviour of the L2-norm error. In particular, we

compute

||ph(λ∗, •)− pMΛ
h (λ∗, •)||L2(Ω), (5.9)

i.e., the L2-norm (in the spatial variable x) of the difference between the spatial DG-

approximation ph computed in the configuration Γλ∗ , with λ∗ = 0.3, and the fully-discrete

approximation of the random solution map pMΛ
h evaluated at λ = λ∗. We plot the error

(5.9) (in semilogy scale) as a function of the number of collocation points MΛ employed

for computing pMΛ
h (λ∗, •). We consider 3 cases, where we employ different mesh-sizes hi,

i = 1, 2, 3, for the spatial DG-discretization. In particular, the meshes have the following

sizes: h1 ≈ 70 elements, h2 ≈ 195 elements and h3 ≈ 575 elements. Also in this case, we

observe exponential convergence.

Finally, in Figures 5.9(a) and 5.9(a) we reproduce the same results as in Figures 5.8(a)

and 5.8(b), respectively, without employing the aligning map for the approximation. No

kind of convergence is observed in this case, showing the effectiveness of our approach.

142



5.4. Conclusions

(a) Point-wise convergence (b) Convergence in the L2-norm

Figure 5.8: (Left) Point-wise convergence in (λ∗, x∗), with λ∗ = 0.3 and x∗ = (0.2, 0.9). The 3 errors
defined in (5.6)-(5.7)-(5.8) are displayed as a function of the number of stochastic collocation points in
semilogy scale.
(Right) L2-norm (in the spatial variable) of the error between the spatial DG-solution for λ = 0.3 and the
fully-discrete approximation of the random solution map evaluated at λ = 0.3. The error is presented as
a function of the number of stochastic collocation points, in semilogy scale. Three curves are displayed,
each corresponding to a different mesh-size employed for the spatial discretization.

5.4 Conclusions

We proposed a novel technique to deal with the flow in a porous medium cut by fractures

with uncertain position. Due to the discontinuous dependence of the solution map on

the stochastic parameters, standard UQ techniques may feature loss of accuracy. For

this reason, taking inspiration from the approach of [73], we introduced a mapping to a

reference domain, where all fractures are aligned, so that continuity with respect to the

random variables may be recovered. Applied to a simple test case, where the position of

the fracture is determined by a single stochastic parameter, our technique has proved to

be effective to recover the convergence properties of the stochastic collocation method of

[29].

The extension of our approach to more complicate configurations relies on the possibility

of defining an appropriate aligning map. This is not of easy implementation even for

slightly more complicated fracture geometries, for example in the case of an immersed

fracture. In fact, in Figure 5.10 we display a possible procedure for defining the aligning

map in the latter case. Here, the position of the fracture is determined by the realization

of the stochastic vector λ = (λd, λu, λ`), where λd is related to the position of bottom tip

of the fracture, λu to position of the top tip and λ` to the length of the fracture. The
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(a) Point-wise convergence (b) Convergence in the L2-norm

Figure 5.9: Point-wise convergence and convergence in the L2-norm without employing the aligning
map in the approximation.

aligning map Φλ may then be defined piecewise, by mapping each coloured subdomain of

Ω into the corresponding subdomain (with the same colouring) in the reference domain

Ωref . When considering more complicated configurations, especially in 3D, it is possible

that the map Φλ may not be determined in closed form, so that we need to resort to

some numerical techniques for its approximation. This aspect of our method is still under

investigation and will be the object of future research, as well as the theoretical analysis

of its convergence properties.

Φ
−1

λ

Φλ

1− λℓ

λℓ

λd

λu

L

1− L

M

Figure 5.10: Possible aligning map to reference domain in the case of immersed fracture. The position
of the fracture depends on the stochastic vector λ = (λd, λu, λ`).
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In this thesis we have presented a Discontinuous Galerkin approximation on polytopic

grids of Darcy’s flow through a fractured porous medium, where fractures are treated

as a (d − 1)-dimensional interfaces between two d-dimensional subdomains, d = 2, 3

[101]. We have considered the modelling, theoretical and computational aspects of the

problem, with focus on the numerical discretization and its analysis. PolyDG methods

have proved to be an effective tool for addressing the problem, their main advantages

being: the natural way they can describe the discontinuous nature of the solution at the

matrix-fracture interface; their efficiency in handling the coupling of the bulk-fracture

problems, by virtue of employing jump and average operators in the formulation of

the coupling conditions; their intrinsic geometric flexibility, which is very well suited to

tame the geometrical complexity featured by most of applications in the computational

geoscience field. The main original results contained in the chapters of the thesis can be

summarized as follows.

• In Chapter 2 we have considered the simplest configuration, where one single

non-immersed fracture divides the porous medium in two halves and the primal

formulation of Darcy’s law is employed for modelling the flow both in the bulk

and along the fracture. We have focused on the coupling of the two problems

and on the polyDG-discretization [61, 59, 6, 58, 19, 60] of the problem in the bulk

employing meshes made of arbitrarily shaped elements (with edges/faces that may

be in arbitrary number and whose measure may be arbitrarily small compared

to the diameter of the element they belong to). We have analysed the method,

proving its well-posedness and deriving a priori hp-error estimates in a suitable

(mesh-dependent) energy norm, which we have validated with numerical experiments

in a two-dimensional setting. The results of this chapter and have been published

in [12].

145



Conclusions

• In Chapter 3 we have extended the results obtained in Chapter 2, designing and

analysing, in the unified framework of [27] based on the flux-formulation, a polyDG

approximation for all the possible combinations of primal-primal, mixed-primal,

primal-mixed and mixed-mixed formulations for the bulk and fracture problems,

respectively. The novelty of the method relies on the imposition of coupling

conditions between bulk and fracture through a suitable definition of the numerical

fluxes on the fracture faces. We have proved in an unified setting the well-posedness

of all the formulations and we have derived a priori hp-version error estimates in a

suitable (mesh-dependent) energy norm, whose validity has been assessed performing

numerical experiments. The results presented in this chapter are contained in [14].

• In Chapter 4, we have extended the primal-primal formulation to the case of networks

of intersecting fractures. The key instrument to obtain a polyDG approximation

of the problem in the fracture network was the generalization of the concepts of

jump and average at the intersection, so that the contribution from all the fractures

is taken into account. We proved the well-posedness of the discrete formulation

and performed an error analysis obtaining a priori hp-error estimates. All our

theoretical results were validated performing numerical tests with known analytical

solution and more realistic configurations. The results presented in this chapter are

contained in [13].

• In Chapter 5 we proposed a novel technique to deal with the flow in a porous medium

cut by fractures with uncertain position. Taking inspiration from the approach

of [73], we introduced a mapping to a reference domain, where all fractures are

aligned, so that continuity with respect to the random variables may be recovered.

Applied to a simple test case, where the position of the fracture is determined by a

single stochastic parameter, our technique has proved to be effective to recover the

convergence properties of the stochastic collocation method of [29].

Further developments of this setting include the 3D-implementation of the method and

its validation by performing numerical simulations coming from real-world applications.

Another improvement related to the implementation would be the parallelization of

the algorithm, so that we can take advantage of the intrinsic high-level of parallelism

featured by DG methods. From the modelling point of view, our formulation could be

extended in order to take into account two-phase flows as in [91, 97] or, more in general,
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multi-phase flows. Moreover, we could consider more general conditions for the flow

along the intersections, for example including the angle between fractures in the model or

allowing for jumps of pressure across the intersection as in [112] or [86]. Finally, the UQ

results presented in Chapter 5 are very preliminary and they surely need to be extended in

order to more realistic configurations. This will be the object of future research, together

with the theoretical analysis of the convergence properties of the proposed method.
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solving flow in discrete fracture networks using the Virtual Element Method. Finite

Elements in Analysis and Design, 109:23–36, 2016.

153



Bibliography

[46] S. Berrone, S. Pieraccini, and S. Scialò. On simulations of discrete fracture network
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