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Abstract

Over the last years algorithmic game theory has received growing interest
in AI, as it allows to tackle complex real-world scenarios involving mul-
tiple artificial agents engaged in a competitive interaction. These settings
call for rational agents endowed with the capability of reasoning strategi-
cally, i.e., taking into account not only how their actions affect the external
environment, but also their impact on the behavior of other agents. This is
achieved by exploiting ideas from game theory, and, in particular, equilib-
rium concepts that prescribe the agents how to behave strategically. Thus,
the challenge faced by the researchers working in algorithmic game theory
is to design scalable computational tools that enable the adoption of such
equilibrium notions in real-world problems.

In this thesis, we study the computational properties of a specific game-
theoretic model known as the Stackelberg paradigm. In a Stackelberg
game, there are some players who act as leaders with the ability to com-
mit to a strategy beforehand, whereas the other players are followers who
decide how to play after observing the commitment. Recently, Stackelberg
games and the corresponding Stackelberg equilibria have received consid-
erable attention from the algorithmic game theory community, since they
have been successfully applied in many real-world settings, such as, e.g.,
in the security domain, toll-setting problems, and network routing. Nev-
ertheless, the majority of the computational works on Stackelberg games
study the case in which there is one leader and one follower, focusing, in
most of the cases, on instances enjoying very specific structures, such as
security games. A comprehensive study of general Stackelberg games with
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(possibly) multiple leaders and followers is still lacking.
In this thesis, we make substantial steps towards filling this gap. In

particular, in the first part of the work, we address the largely unexplored
problem of computing Stackelberg equilibria in games with a single leader
and multiple followers, focusing on the case in which the latter play a Nash
equilibrium after observing the leader’s commitment. We analyze different
classes of games, from general normal-form Stackelberg games to games
with a compact representation, namely, Stackelberg polymatrix and con-
gestion games. Then, in the second part of the thesis, we study Stackelberg
games with multiple leaders, proposing a new way to apply the Stackelberg
paradigm in such settings. Our idea is to let the leaders decide whether
they want to participate in the commitment or defect from it by becoming
followers. This is orchestrated by a suitably defined agreement protocol,
which allows us to introduce interesting properties for the commitments.
Finally, in the last part of the thesis, we focus on Stackelberg games with a
sequential structure, addressing, for the first time in such setting, the prob-
lem of equilibrium refinement. This problem has been widely investigated
for the Nash equilibrium, as it is well-known that refinements can amend
some of its weaknesses, such as sub-optimality off the equilibrium path. In
this work, we show that such issues also arise in Stackelberg settings, and,
thus, we introduce and study Stackelberg equilibrium refinements based on
the idea of trembling-hand perfection so as to solve them.
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CHAPTER1
Introduction

Since artificial intelligence (AI) was officially founded during the work-
shop held at Dartmouth in the summer of 1956, most of the research in the
field has focused on how to design artificial agents endowed with rational
behaviors. Nowadays, one of the biggest challenges in AI research is to
build rational agents that are not only able to interact with an external en-
vironment, but they can also handle more complex interactions involving
different actors, such as other artificial agents and human beings.

Over the last two decades, algorithmic game theory has received an in-
creasing interest from the AI community, since it allows to tackle complex
real-world scenarios where multiple artificial agents are engaged in a com-
petitive interaction. These settings call for rational agents with the ability
to reason strategically, taking into account not only how their actions af-
fect the external environment, but also how they influence the behaviors of
the other agents. These capabilities are achieved by exploiting ideas from
economics, specifically microeconomic models called games, and their cor-
responding solutions, usually known as equilibria, which have been intro-
duced and studied by game theorists during the last century (see, among
others, the widely acclaimed notion of equilibrium defined by Nash (1951),
worth him a Nobel prize in economics). The challenge faced by the re-
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Chapter 1. Introduction

searchers working in algorithmic game theory is to design scalable compu-
tational tools that can deal with these mathematical notions of equilibrium,
enabling their adoption for the solution of real-world problems.

The recent advances in the development of equilibrium-finding tech-
niques have lead to the successful application of game-theoretic models in
real-world settings. For instance, game theory has been extensively adopted
in security domains, with the goal of devising protection strategies which
are robust against strategic attackers (Tambe, 2011). Other application
domains are found in the Internet, where interactions involving multiple
strategic agents naturally arise, given the intrinsic distributed nature of the
network. One examples is, among others, the problem of designing auc-
tion mechanisms for web advertising (Gatti et al., 2015; Farina and Gatti,
2017b). Moreover, great achievements have been made towards the devel-
opment of artificial agents capable of beating human professional in large
two-player zero-sum recreational games like Chess (Campbell et al., 2002),
Go (Silver et al., 2016), and Poker (Brown and Sandholm, 2018, 2019).

Despite the great attention devoted to algorithmic game theory in the
last years, the majority of the works in the literature study (relatively)
simple settings involving only two players with opposite objectives, i.e.,
two-player zero-sum games. In such models, there is a clear and well-
established definition of solution, in which each player aims to maximize
her utility given that the opponent acts so as to minimize it. In zero-sum
games, this definition corresponds to that of Nash equilibrium. Thus, con-
siderable efforts have been devoted to studying the problem of comput-
ing (possibly approximate) Nash equilibria in such settings. Instead, more
complex games where there are more than two players and/or arbitrary, i.e.,
general-sum, utilities are widely unexplored. In such scenarios, there is
no clear definition of solution to a game, as this strongly depends on the
specific application that one wish to represent. As a result, many solution
concepts other than the Nash equilibrium have been introduced and studied.
However, there is still a lot of work to be done on the computational side,
as the algorithmic works on multi-player general-sum games are only few.

In this work, we study settings beyond two-player zero-sum games, fo-
cusing on a particular game paradigm which leads to the definition of what
is known in the literature as the Stackelberg equilibrium.

1.1 The Stackelberg Paradigm

The Stackelberg paradigm was originally introduced by von Stackelberg in
1934 to model economic situations where a firm (the leader) moves first
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1.1. The Stackelberg Paradigm

and, then, another firm (the follower) moves second by reacting to the first
firm’s move (Von Stackelberg, 1934). Recently, this paradigm was brought
to new attention by the work of Von Stengel and Zamir (2010), who study a
variant of the original Stackelberg paradigm in which the leader commits to
a (possibly randomized, i.e., mixed) strategy beforehand, while the follower
decides how to play after observing the leader’s strategy. In general settings
involving multiple players, a Stackelberg game is characterized by a group
of players who act as leaders with the ability to commit to (possibly mixed)
strategies beforehand, whereas the other players are followers who observe
the commitment and decide how to play thereafter.

Over the last years, Stackelberg games and their corresponding Stackel-
berg equilibria have received growing attention in the AI literature, where
the computational problem of finding such equilibria in often referred to
as the problem of computing optimal strategies to commit to (Conitzer and
Sandholm, 2006). This surge of interest was motivated by the successful
applications of Stackelberg games in many interesting real-world settings.
In particular, among the others, the security domain is the most explored
one, and, in it, different game models have been introduced, usually re-
ferred to as security games (Paruchuri et al., 2008; Kiekintveld et al., 2009;
An et al., 2011; Tambe, 2011). In such models, there is a defender that
has to protect some valuable targets from an attacker, who can wait while
observing the defender’s protection strategy before deciding where, when
and how to attack. This scenario naturally fits into the Stackelberg model,
where the defender is the leader and the attacker is the follower. Other in-
teresting applications are found in toll-setting games, where the leader is
a central authority which collects tolls from the users of a network who,
acting as followers, decide on how to best travel through the network so
as to minimize their cost after observing the pricing strategy chosen by
the authority (Labbé et al., 1998; Labbé and Violin, 2016). Besides the
security domain and toll-setting games, applications of Stackelberg games
can be found in, among others, interdiction games (Caprara et al., 2016;
Matuschke et al., 2017), network routing (Amaldi et al., 2013), inspection
games (Avenhaus et al., 1991), and mechanism design (Sandholm, 2002).

Despite the attention that Stackelberg games received from the AI lit-
erature, most of the works related to them focus, with some exceptions
(see, e.g., (Von Stengel and Zamir, 2010; Conitzer and Korzhyk, 2011; Gan
et al., 2018)), on particular game settings that involve only two players
(i.e., one leader and one follower) and enjoy specific structures, as it is the
case in security games. It is worth pointing out two works that study gen-
eral Stackelberg games with a single leader and multiple followers; specif-
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Chapter 1. Introduction

ically, Von Stengel and Zamir (2010) study the case in which the followers
play a Nash equilibrium given the leader’s commitment, whereas Conitzer
and Korzhyk (2011) address the case where they play a correlated equilib-
rium. We refer the reader to Chapter 3 for a complete survey of the state of
tha art on Stackelberg equilibrium computation.

Let us also notice that, while some works (see, e.g., (Letchford and
Conitzer, 2010; Bošanský and Cermak, 2015; Cermak et al., 2016)) ad-
dress the computation of Stackelberg equilibria in games with a sequential
(i.e., tree-form) structure, none of them investigates refinements of such
equilibria. This is surprising as refinements have been extensively studied
for the Nash equilibrium, since it is well-known that classical (unrefined)
solution concepts may lead to a sub-optimal behavior off the equilibrium
path in games with a sequential structure (see (Van Damme, 1987; Farina
et al., 2018a) for some references on the topic).

1.2 Original Contributions

The goal of this thesis is to advance the state of the art on equilibrium
computation in general Stackelberg games. In particular, we follow three
directions. First, we study the problem of finding Stackelberg equilibria
in general Stackelberg games with a single leader and multiple followers.
Then, we address Stackelberg games with multiple leaders, proposing a
novel way to apply the Stackelberg paradigm in such settings. Finally, we
tackle, for the first time, the problem of defining (and computing) equilib-
rium refinements in Stackelberg games with a sequential structure.

In the rest of this section, we survey all the original contributions that
we provide in this thesis. For an easy reference, Table 1.1 shows the con-
tributions related to Stackelberg games with a single leader, summariz-
ing the computational complexity and the algorithmic aspects of the prob-
lems we study, with focus on normal-form, extensive-form, Bayesian, and
polymatrix games. The table also shows, for comparison, other state-of-
the-art results, including those about single-leader single-follower Stackel-
berg games (our original contributions are those without a reference). Our
contributions on Stackelberg congestion games are instead detailed in Ta-
ble 1.2. The reader can refer to Chapter 3 for additional details on state-of-
the-art results reported in the tables.

1.2.1 Stackelberg Games with Multiple Followers

In the first part of the thesis, we address Stackelberg games with a single
leader and multiple followers. Following Von Stengel and Zamir (2010),
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Chapter 1. Introduction

we study settings in which, after observing the leader’s commitment, the
followers play a Nash equilibrium in the resulting game. We refer to this
solution as Stackelberg-Nash equilibrium. We focus on the case in which
the followers are restricted to pure (i.e., non-mixed) strategies, as the gen-
eral problem with followers playing mixed strategies is already known to
be computationally intractable (Basilico et al., 2017a). As we will see, this
restriction leads to interesting computational complexity results. Moreover,
this is without loss of generality in games always admitting pure-strategy
Nash equilibria, as it is the case for congestion games (Rosenthal, 1973).

We study the problem of computing Stackelberg-Nash equilibria, focus-
ing on two cases: the one in which the followers break ties in favor of the
leader (what is usually referred to as a strong equilibrium), and the case
where they break ties against the leader (leading to a weak equilibrium).

We analyze three different classes of games, namely, normal-form games,
polymatrix games, and congestion games.

Norma-Form Stackelberg Games

After briefly pointing out that a strong Stackelberg-Nash equilibrium (with
followers restricted to pure strategies) can be computed efficiently (in poly-
nomial time) by solving multiple linear programs (LPs), we entirely de-
vote the remainder of our analysis to the weak case (with, again, follow-
ers restricted to pure strategies). In terms of computational complexity, we
show that, differently from the strong case, in the weak one the equilibrium-
finding problem is NP-hard with two or more followers, while, when the
number of followers is three or more, the problem cannot be approximated
in polynomial time to within any polynomial multiplicative factor unless
P = NP (i.e., in formal terms, it is not in the class Poly-APX unless P = NP).
To establish these two results, we introduce two reductions, one from Inde-
pendent Set and the other one from 3-SAT.

After analyzing the complexity of the problem, we focus on its algo-
rithmic aspects. First, we formulate the problem as a bilevel programming
problem. We then show how to recast it as a single-level quadratically con-
strained quadratic program (QCQP), which we show to be impractical to
solve due to admitting a supremum, but not a maximum. We then intro-
duce a restriction based on a mixed-integer linear program (MILP) which,
while forsaking optimality, always admits an optimal (restricted) solution.
Next, we propose an exact algorithm to compute the value of the supremum
of the problem based on an enumeration scheme which, at each iteration,
solves a lexicographic MILP (lex-MILP) where the two objective functions
are optimized in sequence. Subsequently, we embed the enumerative algo-
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1.2. Original Contributions

rithm within a branch-and-bound scheme, obtaining an algorithm which is,
in practice, much faster. We also extend the algorithms so that, for cases
where the supremum is not a maximum, they return a strategy by which
the leader can obtain a utility within an additive loss α with respect to the
supremum, for any α > 0. To conclude, we experimentally evaluate the
scalability of our methods over a testbed of randomly generated instances.

Stackelberg Polymatrix Games

We identify two classes of Stackelberg polymatrix games that allow to char-
acterize the complexity of computing Stackelberg-Nash equilibria (with
followers restricted to pure strategies). The key property of these games
is that, once fixed the number of players, computing a strong or weak equi-
librium presents the same complexity, namely polynomial (again assuming
that the followers play pure strategies). These games are of practical inter-
est in security problems. Moreover, they are equivalent to Bayesian Stack-
elberg games with one leader and one follower, where the latter may be of
different types. Our first class is equivalent to games with interdependent
types, while the second one is equivalent to games with independent types
(i.e., the leader’s utility is independent of the follower’s type). Thus, every
result that holds for a game class also holds for its equivalent class.

We investigate whether the problem keeps being easy when the num-
ber of players is not fixed. We show that it is NP-hard to compute a weak
Stackelberg-Nash equilibrium, and we provide an exact (exponential-time)
algorithm (conversely, to compute a strong equilibrium, one can adapt the
algorithm provided in (Conitzer and Sandholm, 2006) for Bayesian games,
by means of our mapping). We also prove that, in all the instances where the
weak Stackelberg-Nash equilibrium is a supremum but not a maximum, an
α-approximation of the supremum can be found in polynomial time (also
in the number of players) for any given additive loss α > 0. As for ap-
proximation complexity, we show that the problem is Poly-APX-complete.
This also shows that, in Bayesian Stackelberg games with uncertainty over
the follower, computing a weak Stackelberg-Nash equilibrium is as hard as
finding a strong one (Letchford et al., 2009).

Next, we investigate whether, in general polymatrix games with follow-
ers restricted to play pure strategies, the problem admits polynomial-time
approximation algorithms. We provide a negative answer, showing that in
the strong case the problem is not in Poly-APX if the number of players is
non-fixed, unless P = NP. We also prove that the same inapproximability
result holds for the weak case, even with a fixed number of players.
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Chapter 1. Introduction

strong Stackelberg-Nash equilibrium
Leader’s commitment Pure Mixed

Identical
action spaces
(symmetric

games)

Monotonic
costs

Complexity P P

Algorithm Greedy Greedy

Generic
costs

Complexity P NP-hard, /∈ Poly-APX
Algorithm Dynamic Programming MILP

Different
action spaces

Monotonic
costs

Complexity NP-hard, /∈ Poly-APX NP-hard, /∈ Poly-APX
Algorithm MILP MILP

Generic
costs

Complexity NP-hard, /∈ Poly-APX NP-hard, /∈ Poly-APX
Algorithm MILP MILP

weak Stackelberg-Nash equilibrium
Leader’s commitment Pure Mixed

Identical
action spaces
(symmetric

games)

Monotonic
costs

Complexity P P

Algorithm Greedy Greedy

Generic
costs

Complexity P NP-hard, /∈ Poly-APX
Algorithm Dynamic Programming multi-lex-MILP

Different
action spaces

Monotonic
costs

Complexity NP-hard, /∈ Poly-APX NP-hard, /∈ Poly-APX
Algorithm multi-lex-MILP multi-lex-MILP

Generic
costs

Complexity NP-hard, /∈ Poly-APX NP-hard, /∈ Poly-APX
Algorithm multi-lex-MILP multi-lex-MILP

Table 1.2: Summary of the results on the computation of Stackelberg equilibria in Stack-
elberg singleton congestion games with a single leader.

Stackelberg Congestion Games

We provide a comprehensive study of the computational complexity of find-
ing Stackelberg-Nash equilibria in congestion games. These are games with
a large number of players that compete for the use of some shared resources,
where the cost of each resource is a function of the number of players us-
ing that resource, i.e., its congestion. Notice that, in such setting, assuming
that the followers play a pure-strategy Nash equilibrium is without loss of
generality, as congestion games always admit one (Rosenthal, 1973).

First, we focus on games with singleton actions, i.e., where each player
selects only one resource at a time. We draw a complete picture of the
computational complexity of the problem of finding equilibria in Stack-
elberg singleton congestion games, with pure or mixed-strategy commit-
ments, and considering the cases of finding either a strong equilibrium or
a weak one. Interestingly, we identify two features which allow for thor-
oughly characterizing hard and easy game instances. The first one concerns
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the relationship among the action spaces of the players, with two possibili-
ties: the one where the players are symmetric as they have identical action
spaces and therefore they share the same set of resources, and the one where
their action spaces may differ. The second feature is related to the shape
of the players’ cost functions. Two cases are possible: the one where these
functions are monotonically increasing in the resource congestion and the
one in which they may be not.

In particular, we show that, in games where the players’ action spaces
can be different, computing a (strong or weak) Stackelberg-Nash equilib-
rium is not in Poly-APX unless P = NP even when the players’ cost func-
tions are monotonic, the leader has only one action available, and her costs
are equal to the followers’. This result also holds if we restrict the leader
to pure-strategy commitments, given that the leader has only one action
available. For symmetric games where the players have identical action
spaces, we show that the complexity of computing an equilibrium depends
on the nature of the players’ cost functions. For the case where the play-
ers’ costs are generic (monotonic or not) functions of the resource conges-
tion, we prove that the problem is not in Poly-APX unless P = NP. On
the other hand, we show that, in symmetric games, the problem of com-
puting a strong or weak Stackelberg-Nash equilibrium can be solved in
polynomial time when the cost functions are monotonic by proposing an
algorithm for it. We also consider the case where the leader is restricted
to pure-strategy commitments, providing a polynomial-time algorithm for
its solution which applies even to symmetric games with generic cost func-
tions. This algorithm is based on a polynomial-time dynamic programming
algorithm available in the literature for computing a socially optimal Nash
equilibria in non-Stackelberg singleton congestion games with identical ac-
tion spaces, which we improve and extend to solve our problem.

Then, we switch the attention to games beyond singleton ones. We show
that having actions made of only one resource is necessary to have effi-
cient (polynomial-time) algorithms. Indeed, we prove that finding a strong
Stackelberg-Nash equilibrium is NP-hard and not in Poly-APX unless P =
NP, even if players’ actions contain only two resources, costs are mono-
tonic, and players are symmetric. We also introduce and study singleton
congestion games in which the players are partitioned into classes, with
followers of the same class sharing the same set of actions. These are a
generalization of singleton games with symmetric players, capturing the
common case in which users can be split into (usually few) different classes,
such as, e.g., users with different priorities. For these games, we provide a
dynamic programming algorithm that computes a strong Stackelberg-Nash
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equilibrium in polynomial time, when the number of classes is fixed and the
leader is restricted to play pure strategies. On the other hand, we prove that,
if the leader is allowed to play mixed strategies, then the problem becomes
NP-hard even with only four classes and monotonic costs.

Finally, for all the settings we study, we design MILP formulations for
computing a strong Stackelberg-Nash equilibrium, and we experimentally
evaluate them on a testbed containing both randomly generated game in-
stances and worst-case instances based on our hardness reductions.

1.2.2 Stackelberg Games with Multiple Leaders

In the second part of the thesis, we focus our attention on games with multi-
ple leaders, providing a new way to apply the Stackelberg paradigm to any
finite (underlying) game. Our approach extends the idea of commitment
to correlated strategies in settings involving multiple leaders and follow-
ers, generalizing the work of Conitzer and Korzhyk (2011). The crucial
component of our framework is that a leader can decide whether to partic-
ipate in the commitment or to defect from it by becoming a follower. This
induces a preliminary agreement stage that takes place before the underly-
ing game is played, where the leaders decide, in turn, whether to opt out
from the commitment or not. We model this stage as a sequential game,
whose size is factorial in the number of players. Our goal is to identify
commitments guaranteeing some desirable properties that we define on the
agreement stage. The first one requires that the leaders do not have any
incentive to become followers. It comes in two flavors, called stability and
perfect stability, which are related to, respectively, Nash and subgame per-
fect equilibria of the sequential game representing the agreement stage. The
second property is also defined in two flavors, namely efficiency and per-
fect efficiency, both enforcing Pareto optimality with respect to the leaders’
utility functions, though at different levels of the agreement stage.

We introduce three solution concepts, which we generally call Stackel-
berg correlated equilibria. They differ depending on the properties they
call for. Specifically, (simple) Stackelberg correlated equilibria, Stackel-
berg correlated equilibria with perfect agreement, and Stackelberg corre-
lated equilibria with perfect agreement and perfect efficiency require, re-
spectively, stability and efficiency, perfect stability and efficiency, and both
perfect stability and perfect efficiency.

First, we investigate the game theoretic properties of our solution con-
cepts. We show that Stackelberg correlated equilibria with or without per-
fect agreement are guaranteed to exist in any game, while Stackelberg cor-
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related equilibria with perfect agreement and perfect efficiency may not.
Moreover, we compare the former with other solution concepts, both Stack-
elberg and non-Stackelberg ones.

Then, we switch the attention to the computational complexity perspec-
tive. We show that, provided a suitably defined stability oracle is solvable
in polynomial time, a Stackelberg correlated equilibrium optimizing some
linear function of leaders’ utilities (such as the leaders’ social welfare) can
be computed in polynomial time, even in the number of players. The same
holds for finding a Stackelberg correlated equilibrium with perfect agree-
ment, while we prove that computing an optimal one is an intractable prob-
lem. Nevertheless, in the latter case, we provide an (exponential in the
game size) upper bound on the necessary number of queries to the oracle.

In conclusion, we study which classes of games admit a polynomial-
time stability oracle, focusing on succinct games of polynomial type (Pa-
padimitriou and Roughgarden, 2008). We show that the problem solved
by our oracle is strictly connected with the weighted deviation-adjusted so-
cial welfare problem introduced by Jiang and Leyton-Brown (2011). As
a result, we get that our oracle is solvable in polynomial time in all the
game classes where the same holds for the problem of finding an optimal
correlated equilibrium.

1.2.3 Trembling-Hand Perfection in Stackelberg Games

In the last part of the thesis, we study Stackelberg games with a sequen-
tial structure, usually referred to as extensive-form Stackelberg games. In
particular, we show that classical Stackelberg equilibria may prescribe the
players to play sub-optimally off the equilibrium path, as it is the case for
the Nash equilibrium. Thus, in order to amend these weaknesses, we pro-
pose a way to refine Stackelberg equilibria thorough trembling-hand per-
fection, which is based on the idea that each player might play each action
with low-but-non-zero probabilities, usually called trembles (Selten, 1975).

We show that for every perturbation scheme (i.e., any possible way of
introducing trembles), the set of limit points of Stackelberg equilibria for
perturbed games with vanishing perturbations is always a nonempty sub-
set of the Stackelberg equilibria of the non-perturbed game. This does not
hold when focusing only on strong (or weak) equilibria: for a given game,
the set of strong Stackelberg equilibria (or weak Stackelberg equilibria)
in the non-perturbed game may be disjoint from the set of limit points of
strong Stackelberg equilibria (or weak Stackelberg equilibria) in the per-
turbed game. We resort to the perturbation schemes used for quasi-perfect
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equilibria (Van Damme, 1984) and extensive-form perfect equilibria (Sel-
ten, 1975) to define their Stackelberg counterpart—and their strong and
weak versions—as refinements of the Stackelberg equilibrium.

Next, we focus on quasi perfection. We formally define the quasi-
perfect Stackelberg equilibrium refinement game theoretically in the same
axiomatic fashion as the quasi-perfect equilibrium was defined for non-
Stackelberg games (Van Damme, 1984). Thus, our definition is based on a
set of properties of the players’ strategies, and it cannot be directly used to
search for a quasi-perfect Stackelberg equilibrium. Subsequently, we define
a class of perturbation schemes for the sequence form such that any limit
point of a sequence of Stackelberg equilibria in perturbed games with van-
ishing perturbation is a quasi-perfect Stackelberg equilibrium. This class
of perturbation schemes strictly includes those used to find a quasi-perfect
equilibrium by Miltersen and Sørensen (2010). Then, we extend the al-
gorithm by Cermak et al. (2016) to the case of quasi-perfect Stackelberg
equilibrium computation. We derive the corresponding mathematical pro-
gram for computing a Stackelberg extensive-form correlated equilibrium
when a perturbation scheme is introduced and we discuss how the individ-
ual steps of the algorithm change. In particular, the implementation of our
algorithm is much more involved, requiring the combination of branch-and-
bound techniques with arbitrary-precision arithmetic to deal with small per-
turbations. This does not allow a direct application of off-the-shelf solvers.
Finally, we experimentally evaluate the scalability of our algorithm.

In conclusion, we also study the computational complexity of finding
Stackelberg equilibrium refinements, showing that the problem of deciding
the existence of a Stackelberg equilibrium—refined or not—that gives the
leader expected value at least ν is NP-hard.

1.3 Structure of the Work

In this section, we describe the structure of the thesis. Before presenting
our results, we introduce the main concepts related to algorithmic game
theory, with particular emphasis on Stackelberg games. Specifically:

• Chapter 2 introduces, in the first part, the formal definition of game,
describing the different game representations which are studied in the
thesis. Then, the second part of the chapter defines two classical (non-
Stackelberg) equilibrium concepts that are relevant for the rest of the
work, namely, Nash and correlated equilibria.

• Chapter 3 surveys the main state-of-the-art results on Stackelberg games
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and the computation of Stackelberg equilibria. These results represent
the groundings upon which we build our original contributions.

Part I: Stackelberg Games with Multiple Followers

Our contributions are organized as follows:

• Chapter 4 provides our computational results on Stackelberg-Nash
equilibria (with follower restricted to pure strategies) in normal-form
Stackelberg games. A preliminary version of the results provided in
this chapter appeared in (Coniglio et al., 2017), while a complete and
extended version is in (Coniglio et al., 2019).

• Chapter 5 addresses the problem of computing Stackelberg-Nash equi-
libria in Stackelberg polymatrix games, also pointing out which re-
sults can be directly extended to the Bayesian setting. The results in
this chapter appeared in (De Nittis et al., 2018a) (see (De Nittis et al.,
2018b) for an extended version).

• Chapter 6 focuses on the problem of finding Stackelberg-Nash equi-
libria in Stackelberg congestion games. The results related to sin-
gleton games appeared in (Marchesi et al., 2018a) and its extended
version (Castiglioni et al., 2019c). Instead, all the other results are
provided by (Marchesi et al., 2019a) (see (Marchesi et al., 2019b) for
an extended version of the latter).

• Chapter 7 reports the experimental evaluation of the algorithms de-
veloped for Stackelberg games with multiple followers. All these
results are taken from the papers related to the previous chapters,
namely (Coniglio et al., 2019; De Nittis et al., 2018a; Castiglioni et al.,
2019c; Marchesi et al., 2019a).

Part II: Stackelberg Games with Multiple Leaders

The results provided in this part of the thesis appeared in (Castiglioni et al.,
2019a) (see Castiglioni et al. (2019b) for an extended version). Our contri-
butions are organized as follows:

• Chapter 8 introduces our model for multi-leader Stackelberg games,
studying the game theoretic properties of the related solution concepts,
in terms of existence and relation with other equilibrium notions.

• Chapter 9 analyses the computational complexity of the problem of
computing equilibria in our multi-leader Stackelberg games.
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Part III: Trembling-Hand Perfection in Stackelberg Games

Our contributions are organized as follows:

• Chapter 10 studies trembling-hand perfection in extensive-form Stack-
elberg games, so as to refine the classical notion of Stackelberg equi-
librium. The results in this chapter appeared in (Farina et al., 2018b).

• Chapter 11 focuses on a particular type of refinement, known as quasi-
perfection. The results in this chapter appeared in (Marchesi et al.,
2019c) (see (Marchesi et al., 2018b) for an extended version).

Finally, Chapter 12 concludes the thesis by drawing some overall obser-
vations and pointing out possible directions for future research.
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CHAPTER2
Games and Equilibria

In this chapter, we provide a brief introduction to the theory of games and
their equilibria, surveying the basic concepts needed in the rest of this work,
with particular emphasis on computational results.

Section 2.1 starts introducing the general picture of finite games and
their most common representations, namely, the normal form and the ex-
tensive form. In Section 2.2, we also introduce some succinct game repre-
sentations that allow to compactly encode games with a specific structure,
focusing on polymatrix and congestion games. Finally, Section 2.3 shades
the light on what it means to solve a game by defining classical equilibrium
concepts, such as Nash and correlated equilibria.

For a comprehensive treatment of the subject, we refer the reader to the
books by Shoham and Leyton-Brown (2008) and Nisan et al. (2007).

2.1 Games and How to Represent Them

Games are powerful mathematical tools that provide rigorous models of
complex strategic interactions involving multiple rational agents (or play-
ers). Such interactions arise in many different real-world settings, such
as, e.g., cybersecurity problems (Tambe, 2011), auctions for web adver-
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tising (Gatti et al., 2015), and, more naturally, common recreational games
like Chess (Campbell et al., 2002), Go (Silver et al., 2016), and Poker (Brown
and Sandholm, 2018, 2019). The three fundamental ingredients defining a
game are: the participating players, the strategies they are allowed to play,
and their preferences over the possible game outcomes, which are usually
quantified by means of their utilities. Formally:

Definition 2.1 (Finite Game). A (finite) game Γ is a tuple (N,S, u), where:

• N := {1, . . . , n} is a finite set of players;

• S :=×p∈N Sp is a set of (pure) strategy profiles (or outcomes), with
Sp denoting a finite set of player p’s (pure) strategies;

• u := {up}p∈N is a set of players’ utility functions, with up : S → R
defining player p’s utility over strategy profiles s = (s1, . . . , sn) ∈ S.

In general, players are also allowed to randomize their play according to
some probability distribution. Formally, for every player p ∈ N , we let xp
be a player p’s mixed strategy, i.e., a probability distribution defined over
her set of strategies Sp, with xp(sp) denoting the probability of playing sp ∈
Sp. Moreover, Xp := ∆(Sp) denotes the set of player p’s mixed strategies,
while x = (x1, . . . , xn) ∈×p∈N Xp is a mixed strategy profile specifying
a mixed strategy xp ∈ Xp for each player p ∈ N . With an overload of
notation, we use up(x) to denote the player p’s expected utility when the
mixed strategy profile x is played, i.e., up(x) :=

∑
s∈S up(s)

∏
q∈N xq(sq).

For the ease of presentation, we also introduce the following notation.
Given a strategy profile s ∈ S, we let s−p ∈ S−p :=×q∈N\{p} Sq be the
partial profile obtained by dropping player p’s strategy sp from s, so that
s = (sp, s−p). Similarly, given a mixed strategy profile x ∈×p∈N Xp, we
let x−p ∈×q∈N\{p}Xq be such that x = (xp, x−p).

While a game may admit different equivalent representations, the most
natural one for that game depends on its specific structure. In the rest of
this section, we introduce the two most common game representations: the
normal form and the extensive form.

2.1.1 Normal-Form Representation

The normal form is a tabular representation in which each player’s util-
ity function is specified by a matrix, where each entry defines the player’s
utility for some combination of players’ actions. Formally:

Definition 2.2 (Normal-Form Game). A normal-form game Γ is a tuple
(N,A,U), where:
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• N := {1, . . . , n} is a finite set of players;

• A :=×p∈N Ap is a set of action profiles, with Ap denoting a finite set
of player p’s actions, of cardinality mp := |Ap|;
• U := {Up}p∈N is a set of matrices, with Up ∈ Qm1×...×mn representing

a player p’s (multidimensional) utility (or payoff) matrix, in which
each component Ua1...an

p corresponds to the utility of player p when
all the players play the action profile a = (a1, . . . , an) ∈ A.

Any finite game can be represented in normal form by letting A = S
and Ua1...an

p = up(a) for every p ∈ N and a = (a1, . . . , an) ∈ A.
For the ease of presentation and when no ambiguity arises, we will often

write Ua
p in place of Ua1...an

p . Moreover, given an action profile a ∈ A, we
define a−p ∈ A−p := ×q∈N\{p}Aq so that a = (ap, a−p), with U

a−p,ap
p

denoting the component of Up corresponding to the action profile a.
Using matrix notation, we represent a player p’s mixed strategy (or strat-

egy, for short) using a vector xp ∈ [0, 1]mp such that
∑

ap∈Ap x
ap
p = 1, where

each component xapp of xp is the probability by which player p plays ac-
tion ap ∈ Ap. Moreover, ∆p := {xp ∈ [0, 1]mp :

∑
ap∈Ap x

ap
p = 1} denotes

the set of player p’s strategies, corresponding to the standard (mp − 1)–
simplex in Rmp . As customary when working with normal-form games, a
strategy is said pure when only one action is played with positive probabil-
ity, i.e., when xp ∈ {0, 1}mp , and mixed otherwise. Mixed strategy profiles
(or strategy profiles, for short) are defined as in general finite games. Given
a strategy profile x = (x1, . . . , xn) ∈ ×p∈N ∆p, the expected utility of
player p ∈ N is the n-th-degree polynomial

∑
a∈A U

a
px

a1
1 xa2

2 . . . xann .

Bayesian Normal-Form Games

In some scenarios, the players are uncertain about the preferences of their
opponents (i.e., their utilities). We can model these situations using Bayesian
games. In normal form, we have the following formal definition.

Definition 2.3 (Bayesian Normal-Form Game). A Bayesian (normal-form)
game Γ is a tuple (N,Θ,Ω, A, U), where:

• N := {1, . . . , n} is a finite set of players;

• Θ :=×p∈N Θp is a set of type profiles, with Θp denoting a finite set
of player p’s types;

• Ω ∈ ∆(Θ) is a probability distribution over the set of type profiles;
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• A :=×p∈N×θp∈Θp
Ap,θp is a set of action profiles, withAp,θp denoting

a finite set of actions for player p’s type θp;

• U := {Up,θ}p∈N,θ∈Θ is a set of matrices, with Up,θ ∈ Q|A1,θ1
|×...×|An,θn |

representing a player p’s utility matrix when the players’ type profile
is θ = (θ1, . . . , θn), in which each component Ua1...an

p,θ corresponds to
the utility of player p when the players’ type profile is θ and all the
players play the action profile a = (a1, . . . , an) ∈×p∈N Ap,θp .

Intuitively, before the game starts, a type profile θ = (θ1, . . . , θn) ∈ Θ is
drawn according to the probability distribution Ω, and, then, each player is
informed about her type θp as specified by θ, while she keeps to be uncertain
about the other players’ types. As a result, the players do not have complete
knowledge of θ, and, in turn, of their utilities.

Let us remark that, in a Bayesian game, a player’s pure strategy specifies
an action for each type of that player, while, as usual, mixed strategies are
defined as probability distributions over pure strategies. Thus, using the
formalism of general finite games, we have S = A and, for every p ∈
N and a = (a1, . . . , an) ∈ A, up(a) =

∑
θ∈Θ Ω(θ)Ua1...an

p,θ . This also
shows how any Bayesian game can be equivalently represented as a non-
Bayesian normal-form game, in which each player has a number of actions
exponentially larger (in the number of types) than in the original game.

2.1.2 Extensive-Form Representation

The extensive form allows to represent games where the players play se-
quentially, and it is usually specified by defining a game tree. Formally:

Definition 2.4 (Extensive-Form Game). An extensive-form game with im-
perfect information Γ is a tuple (N,H,Z,A, ρ, χ, πc, u, I) in which:

• N := {1, . . . , n} is a finite set of players;

• H :=
⋃
p∈N Hp ∪Hc is a finite set of nonterminal nodes, where Hc is

a set of chance nodes, while Hp is a set of player p’s decision nodes;

• Z is the set of terminal nodes;

• A :=
⋃
p∈N Ap∪Ac is a finite set of actions, whereAc contains chance

moves, while Ap is a set of player p’s actions;

• ρ : H → 2A is an action function that assigns to each nonterminal
node a set of available actions;
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• χ : H × A → H ∪ Z is a successor function that defines the node
reached when an action is performed in a nonterminal node;

• πc : H ∪ Z → [0, 1] assigns each node with its probability of being
reached given chance moves;

• u := {up}p∈N is a set of players’ payoff functions, where up : Z → R
specifies player p’s payoffs (or utilities) in each terminal node;

• I := {Ip}p∈N is an information partition, where Ip defines a parti-
tion of Hp into information sets, which are groups of nodes that are
indistinguishable by player p.

Let us remark that, for every player p ∈ N and information set I ∈ Ip, it
must be the case that ρ(h) = ρ(h′) := A(I) for any pair of nodes h, h′ ∈ I ,
otherwise player p would be able to distinguish them. As usual, w.l.o.g.,
we assume that each action a ∈ A belongs to only one set A(I).

We focus on extensive-form games with perfect recall, i.e., games in
which no player forgets what she did or knew in the past. Formally, for ev-
ery p ∈ N and information set I ∈ Ip, we require that all nodes belonging
to I share the same player p’s actions on their paths from the root node.

Note that any extensive-form game can also be represented using the for-
malism of general finite games. In particular, a player p’s strategy sp ∈ Sp
defines a collection of actions, one per information set I ∈ Ip, thus specify-
ing player p’s behavior at every decision node of the game tree. As a result,
any extensive-form game admits an equivalent normal-form representation,
which, however, may be exponentially larger than the original game tree.

Strategies in Extensive-Form Games

A straightforward way of defining mixed strategies in an extensive-form
game is to identify them as the strategies of the corresponding, exponen-
tially sized normal form. Fortunately, under the perfect recall assumption,
it is sufficient to restrict the attention to behavioral strategies (Kuhn, 1953),
which define, for every player p ∈ N and information set I ∈ Ip, a prob-
ability distribution over the actions A(I). For p ∈ N , let πp ∈ Πp be a
player p’s behavioral strategy, with πpa denoting the probability of playing
action a ∈ Ap. As for the other types of strategies, we let π ∈×p∈N Πp be
a behavioral strategy profile. Moreover, overloading notation, we use up as
if it were defined over behavioral strategies instead of terminal nodes, with
up(π) being player p’s expected utility when π ∈×p∈N Πp is played.

While behavioral strategies require space polynomial in the size of the
game tree, players’ expected utilities up(π) depend non-linearly on the

19



Chapter 2. Games and Equilibria

single strategy components πpa, and, thus, they are not amenable to effi-
cient computational techniques. However, assuming perfect recall, behav-
ioral strategies admit an equivalent, computationally efficient representa-
tion, which is based on what is called the sequence form of an extensive-
form game (Von Stengel, 1996; Romanovskii, 1962).

In the sequence form, every node h ∈ H∪Z defines a sequence σp(h) for
player p ∈ N , which is the ordered set of player p’s actions on the path from
the root of the game tree to h. Let Σp be the set of player p’s sequences.
As usual, we let σ∅ ∈ Σp be a fictitious element representing the empty
sequence. In perfect-recall games, given an information set I ∈ Ip, for
any pair of nodes h, h′ ∈ I it holds σp(h) = σp(h

′) := σp(I). Given
σp ∈ Σp and a ∈ A(I) with I ∈ Ip : σp = σp(I), we denote as σpa the
extended sequence obtained by appending a to σp. Moreover, for any pair
of sequences σp, σ′p ∈ Σp, we write σ′p v σp whenever σ′p is a prefix of σp,
i.e., σp can be obtained by extending σ′p with a finite number of actions.
Given σp ∈ Σp, we also denote with Ip(σp) the information set I ∈ Ip such
that σp = σp(I)a for some action a ∈ A(I).

A sequence-form strategy is called realization plan, and it assigns each
sequence with its probability of being played. For p ∈ N , we let rp ∈ Rp

be a player p’s realization plan. In order to be well-defined, a realization
plan rp must be such that rp(σ∅) = 1 and, for every I ∈ Ip:

rp(σp(I)) =
∑
a∈A(I)

rp(σp(I)a).

A realization plan profile r ∈×p∈N Rp is defined as usual.
Finally, letting Σ := ×p∈N Σp be the set of sequence profiles σ =

(σ1, . . . , σn), overloading notation, up : Σ 7→ R is the player p’s utility
function in the sequence form, defined as follows:

up(σ) :=
∑

h∈Z :σ(h)=σ

ui(h)πc(h),

where, for h ∈ H ∪ Z, we let σ(h) be the sequence profile defined by
the sequences σp(h). Moreover, we also use up as if it were defined over
realization plans. Formally, up(r) :=

∑
σ∈Σ up(σ)

∏
q∈N rq(σq), where rq

is the player q’s realization plan in the profile r.
The sequence form is usually expressed with matrix notation, as follows.

Player p’s utility function is a |Σ1| × . . . × |Σn| matrix Up whose entries
are the utilities up(σ), for σ ∈ Σ. The constraints defining rp ∈ Rp are
expressed as Fprp = fp, where: Fp is a (|Ip|+1)×|Σp| (multidimensional)
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matrix, fp ∈ R|Ip|+1, and, overloading notation, rp ∈ R|Σp| is a vector
representing rp. Specifically, introducing a fictitious information set I∅,
the entry of Fp indexed by (I∅, σ∅) is 1, and, for I ∈ Ip and σp ∈ Σp, the
entry indexed by (I, σp) is−1 if σp = σp(I), while it is 1 if σp = σp(I)a for
some a ∈ A(I). Fp is zero everywhere else. Moreover, f>p = (1 0 · · · 0).
Finally, given r ∈×p∈N Rp, we can write up(r) = Up

∏
q∈N rq, where the

products involving the matrix Up and the vectors rq representing players’
realization plans are defined in such a way that the result is a scalar.

In perfect-recall games, behavioral strategies and realization plans are
equally expressive (Von Stengel, 1996). Given rp ∈ Rp, we obtain an
equivalent πp ∈ Πp by setting, for all I ∈ Ip and a ∈ A(I), πpa = rp(σp(I)a)

rp(σp(I))

when rp(σp(I)) > 0, while πpa can be any otherwise. Similarly, πp ∈ Πp

has an equivalent rp ∈ Rp with rp(σp) =
∏

a∈σp πpa for all σp ∈ Σp. 1

In conclusion, let us remark that the constraints defining players’ real-
ization plans are linear, and, in two-player games, the same holds for ex-
pected utilities. As a result, the sequence form allows for the development
of efficient computational tools for two-player extensive-form games.

2.2 Succinct Games

In this section, we introduce some game representations that allow to com-
pactly represent finite games with many players and strategies by leverag-
ing the specific structure of such games. In particular, we focus on succinct
games, as formally defined by Papadimitriou and Roughgarden (2008).

Definition 2.5 (Succinct Game). A succinct game of polynomial type is a
finite game Γ = (N,S, u) such that:

• the number of players n and the cardinalities |Sp| of the players’ strat-
egy sets are polynomially bounded in the size of the game;

• there exists a polynomial-time algorithm that, given as input a player
p ∈ N and a strategy profile s ∈ S, returns up(s).

There are many classes of games that can be defined as succinct games
of polynomial type, such as, e.g., graphical games (Kearns et al., 2001,
2013), polymatrix games (Janovskaja, 1968; Howson Jr, 1972; Eaves, 1973),
anonymous games (Blonski, 2000), congestion games (Rosenthal, 1973),

1Here, the equivalence is in terms of probabilities that the strategies induce on terminal nodes, i.e., what is
usually known in the literature as realization equivalence.
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facility location games (Chun et al., 2004), network design games (An-
shelevich et al., 2008), local-effect games (Leyton-Brown and Tennenholtz,
2003), and scheduling games (Fotakis et al., 2009).

Next, we provide further details on polymatrix and congestion games.

2.2.1 Polymatrix Games

Polymatrix games capture settings in which the players interact pairwise.
Specifically, in a polymatrix game, each player competes in a two-player
normal-form game with every opponent, adopting a common strategy in
all such games. Then, a player’s overall utility is given by the sum of the
utilities perceived in the pairwise games. Formally:

Definition 2.6 (Polymatrix Game). A polymatrix game Γ is defined as a
tuple (N,A, U), where:

• N := {1, . . . , n} is a finite set of players;

• A := {Ap}p∈N contains players’ actions sets, withAp denoting a finite
set of player p’s actions, of cardinality mp := |Ap|;
• U := {Up,q}p 6=q∈N is a set of matrices, with Up,q ∈ Qmp×mq repre-

senting a player p’s utility (or payoff) matrix, in which each compo-
nent Uapaq

p,q corresponds to the utility of player p when playing against
player q, with their actions being ap ∈ Ap and aq ∈ Aq, respectively.

When working with polymatrix games, we define action profiles a =
(a1, . . . , an) ∈ A := ×p∈N Ap, mixed strategies xp ∈ ∆p, and strategy
profiles x = (x1, . . . , xn) ∈ ×p∈N ∆p as in normal-form games, using
the same notation and conventions. Furthermore, given a strategy profile
x = (x1, . . . , xn), the expected utility of player p ∈ N is given by the sum
of the expected utilities resulting from each two-player normal-form game
involving p, i.e., the polynomial

∑
q 6=p∈N

∑
ap∈Ap

∑
aq∈Aq U

apaq
p,q x

ap
p x

aq
q .

Clearly, we can cast polymatrix games as general finite games by let-
ting S = A and up(a) =

∑
q 6=p∈N U

apaq
p,q for every p ∈ N and a =

(a1, . . . , an) ∈ A. Moreover, notice that they are succinct games of polyno-
mial type since the size of a game instance (N,A, U) is O(n2m2), where n
is the number of players and, w.l.o.g., we assumed mp = m for all p ∈ N .

2.2.2 Congestion Games

In a congestion game, the players compete for the use of a set of shared
resources, with each player choosing a subset of such resources. Then, a
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player incurs a cost (i.e., the opposite of utility) equal to the sum of the
costs for the selected resources, where each resource cost depends on the
number of players using it (called the resource congestion). Formally:

Definition 2.7 (Congestion Game). A congestion game Γ is defined as a
tuple (N,R,A, c), where:

• N := {1, . . . , n} is a finite set of players;

• R := {1, . . . , r} is a finite set of resources;

• A := {Ap}p∈N defines players’ actions sets, with Ap ⊆ 2R denoting
a finite set of player p’s actions, in which each action ap ∈ Ap is a
non-empty subset of resources, i.e., ap ⊆ R;

• c := {ci}i∈R is a finite set of resource cost functions, with ci : N→ Q
defining the cost of resource i as a function of its congestion.

We assume that ci(0) = 0 for every resource i ∈ R. Given an action
profile a = (a1, . . . , an) ∈ A :=×p∈N Ap, we let cp(a) :=

∑
i∈ap ci(ν

a
i ) be

player p’s cost when the game is played according to the actions defined by
a, with νia := |{q ∈ N | i ∈ aq}| denoting the congestion induced by a on
i ∈ R, i.e., the number of players choosing resource i.

When working with congestion games, we adopt the same notation and
conventions as for normal-form games, defining mixed strategies xp ∈ ∆p

and strategy profiles x = (x1, . . . , xn) ∈ ×p∈N ∆p. Moreover, with an
abuse of notation, given a strategy xp ∈ ∆p, we let xip :=

∑
ap3i x

ap
p be the

probability of selecting resource i ∈ R when xp is played.
In the literature, many classes of congestion games have been studied,

depending on the specific structure of the players’ action sets. For in-
stance, one possibility is that the players play a congestion game on a graph,
with their actions being either paths from a source to a destination (Fab-
rikant et al., 2004) or spanning trees (Werneck et al., 2000), or, as studied
by Ackermann et al. (2008), the players’ action sets may be represented
as matroids. In this work, we extensively analyze singleton congestion
games (Ieong et al., 2005), where the players’ actions are required to be
singletons, i.e., |ap| = 1 for every p ∈ N and ap ∈ Ap. Formally:

Definition 2.8 (Singleton Congestion Game). A singleton congestion game
is a congestion game Γ = (N,R,A, c) in which Ap ⊆ R for all p ∈ N .

When working with singleton games, we use mixed strategies xp ∈ ∆p

as if they were directly defined over resources in Ap, with xip denoting the
probability by which player p selects resource i ∈ Ap.
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2.3 Classical Equilibrium Concepts

Since the birth of game theory, researchers have put much of their effort
trying to come up with a universal definition of “optimal” solution for a
game. Indeed, while in optimization it is clear that the best solution for a
model is one maximizing (or minimizing) the given objective function, in
game theory no such clear definition exists, as games involve multiple play-
ers having their own objectives. In game theory, the most suitable definition
of solution is the one of equilibrium, i.e., a stable situation from which no
player wants to leave. Unfortunately, it turns out that no unique definition
of equilibrium exists, and, thus, over the last decades many possible equi-
librium concepts have been introduced, differing on the specific classes of
games they refer to and the assumptions they make.

In this section, we survey the two most widely adopted equilibrium con-
cepts in finite games: the Nash equilibrium (Nash, 1951) and the corre-
lated equilibrium (Aumann, 1974). Next, in the following Chapter 3, we
introduce and extensively describe the Stackelberg equilibrium (Von Stack-
elberg, 1934), which is the main focus on this work.

2.3.1 Nash Equilibrium

The Nash equilibrium has been the most acclaimed and studied equilibrium
concept in the literature, since it was originally introduced by Nash (1951).
The idea of Nash equilibrium is strikingly simple: the players in a game
are at an equilibrium if none of them has an incentive to unilaterally devi-
ate from the currently played strategy, given that the others do not deviate
either. It turns out that if we consider equilibria in which the players are al-
lowed to play general mixed strategies, then any finite game admits at least
one Nash equilibrium. Formally:

Definition 2.9 (Nash Equilibrium). A mixed strategy profile x ∈×p∈N Xp
is a Nash equilibrium (NE) of a finite game Γ if, for every player p ∈ N
and mixed strategy x′p ∈ Xp, the following holds:

up(x) ≥ up(x
′
p, x−p). (2.1)

Theorem 2.1 (Nash (1951)). Every finite game admits at least one Nash
equilibrium in mixed strategies.

Notice that it is also possible to define NEs on pure strategy profiles
s ∈ S, and these are usually referred to as pure-strategy NEs (or, for short,
pure NEs). Formally:
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Definition 2.10 (Pure Nash Equilibrium). A pure strategy profile s ∈ S is
a pure NE of a finite game Γ if, for every player p ∈ N and pure strategy
s′p ∈ Sp, the following holds:

up(s) ≥ up(s
′
p, s−p). (2.2)

Let us observe that not all finite games admit a pure NE. Nevertheless,
there are some specific classes of games that always admit at least one pure
NE, such as, e.g., congestion games (Rosenthal, 1973).

Due to the proliferation of NEs, most of the early works in algorith-
mic game theory has focused on the problem of computing them. Indeed,
one of the most important results on the characterization of the computa-
tional complexity of finding equilibria is that of Daskalakis et al. (2009),
who prove that computing an NE is a PPAD-complete problem. More-
over, other works further investigate the complexity of finding NEs, study-
ing, e.g., approximate NEs (Braverman et al., 2014; Deligkas et al., 2016),
the problem of computing social-welfare-maximizing NEs (Conitzer and
Sandholm, 2008), and the complexity of finding equilibria in games with a
specific structure (Fabrikant et al., 2004).

Refinements of the Nash Equilibrium in Extensive-Form Games

In the specific context of extensive-form games, considerable attention has
been devoted to the definition of refinements of the NE. The reason is that,
in games with a sequential structure, an NE may prescribe the players sub-
optimal actions off the equilibrium path, i.e., at those decision points which
are never reached if the players play as the equilibrium prescribes.

In order to refine the NE concept, several approaches have been in-
vestigated. Among them, trembling-hand perfection (introduced by Selten
(1975)) received the attention of the majority of the works on equilibrium
refinements in the literature. The main idea behind this approach is to in-
troduce the possibility that the players may tremble, i.e., play each action
with a minimum low-but-non-zero probability. As a result, any information
set of the game is reached with positive probability, which ensures that the
resulting equilibria prescribe to play optimally everywhere.

Among the plethora of NE refinements based on trembling-hand perfec-
tion (see (Van Damme, 1987) for details), the quasi-perfect equilibrium,
proposed by Van Damme (1984), plays a central role, and it is consid-
ered one of the most attractive NE refinement concepts, as argued, e.g.,
by Mertens (1995). The rationale behind the quasi-perfect equilibrium con-
cept is that every player, in every information set, plays her best response
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to perturbed, i.e., subject to trembles, strategies of the opponents. Another
well-known NE refinement is the extensive-form perfect equilibrium intro-
duced by Selten (1975), where, differently from the quasi-perfect equilib-
rium, the players also take into account their own trembles (in addition to
those of the opponents). Notice that addressing the opponents’ mistakes
only (which is the core idea of quasi perfection) is generally considered
as a reasonable assumption, and it also excludes some unreasonable play-
ers’ strategies (Mertens, 1995). Finally, yet another possibility is to apply
trembles to the normal-form representation of the extensive-form game, re-
sulting in the definition of normal-form perfect equilibrium. Differently
from a quasi-perfect equilibrium, a normal-form perfect equilibrium does
not guarantee that the strategies of the players are sequentially rational, and,
additionally, quasi-perfection implies normal-form perfection.

Computation of NE refinements has received extensive attention in the
literature. In the two-player case, Miltersen and Sørensen (2010) provide
algorithms for finding a quasi-perfect equilibrium, while Farina and Gatti
(2017a) for finding an extensive-form perfect equilibrium. In particular,
Miltersen and Sørensen (2010) show that a strict subset of the quasi-perfect
equilibria can be found when the sequence form is subject to a specific
perturbation, while Farina and Gatti (2017a) do the same for the extensive-
form perfect equilibrium. Iterative algorithms for such perturbed games in
the zero-sum extensive-form perfect equilibrium setting were introduced
by Kroer et al. (2017) and Farina et al. (2017).

2.3.2 Correlated Equilibrium

The correlated equilibrium assumes that there is an external mediator (usu-
ally referred to as the correlation device) that privately communicates how
to play to the players, who must not have any incentive to deviate from the
recommendations. Formally, given any finite game Γ = (N,S, u), we let
X := ∆(S) be the set of correlated distributions defined over strategy pro-
files in S, i.e., each x ∈ X satisfies

∑
s∈S x(s) = 1 and x(s) ≥ 0 for all

s ∈ S. Moreover, overloading notation, we let up(x) :=
∑

s∈S x(s)up(s)
be player p’s expected utility in x ∈ X .

Definition 2.11 (Correlated Equilibrium). A correlated distribution x ∈ X
is a correlated equilibrium (CE) of a finite game Γ if, for every player p ∈ N
and pair of strategies sp, s′p ∈ Sp, the following holds:∑

s−p∈S−p

x(sp, s−p)
(
up(sp, s−p)− up(s′p, s−p)

)
≥ 0. (2.3)

26



2.3. Classical Equilibrium Concepts

We can interpret a CE as follows: a correlation device draws some strat-
egy profile s = (s1, . . . , sn) ∈ S from the publicly known correlated distri-
bution x, and, then, it privately communicates each recommendation sp to
player p. Then, the distribution is an equilibrium if no player has an incen-
tive to deviate from the recommendation, as made formal by the incentive
constraints of Equation (2.3).

The coarse correlated equilibrium weakens the original version by only
enforcing protection against a priori defections, i.e., before the recommen-
dations are revealed to the players (Moulin and Vial, 1978).

Definition 2.12 (Coarse Correlated Equilibrium). A correlated distribution
x ∈ X is a coarse correlated equilibrium (CCE) of a finite game Γ if, for
every player p ∈ N and strategy s′p ∈ Sp, the following constraint holds:∑

s∈S

x(s)
(
up(s)− up(s′p, s−p)

)
≥ 0. (2.4)

From the computational perspective, CEs (and their coarse variant) en-
joy some nice properties. For instance, in the basic setting of normal-form
games, the problem of computing a CE (or a CCE) can be formulated as an
LP, whose size is polynomial in the size of the normal-form game (Shoham
and Leyton-Brown, 2008). Moreover, CEs and CCEs can be approximated
efficiently by letting the players play iteratively by means of regret mini-
mizing procedures (Hart and Mas-Colell, 2000; Cesa-Bianchi and Lugosi,
2006), which have been shown to converge to an equilibrium in a sub-linear
(in the size of the game) number of iterations in many classes of games be-
yond the normal form (see, e.g., (Hartline et al., 2015; Celli et al., 2019)).
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CHAPTER3
Stackelberg Games and Equilibria

In this chapter, we introduce the core subject of this work: Stackelberg
games and their corresponding equilibria, called Stackelberg equilibria. 1

Section 3.1 defines Stackelberg games in general, introducing the nota-
tion we adopt in the rest of the work. Then, the rest of the chapter surveys
the main state-of-the-art computational results on Stackelberg games and
equilibria. In particular, Section 3.2 presents the results about the com-
putation of Stackelberg equilibria in single-leader single-follower games,
while Sections 3.3 and 3.4 do the same for single-leader multi-follower
and multi-leader games, respectively. Finally, Section 3.5 addresses some
related works studying variations of the Stackelberg paradigm that are dif-
ferent from the classical one addressed in this work.

3.1 Stackelberg Games

Any finite game has a Stackelberg counterpart where some of the play-
ers are leaders and the others are followers. The former have the ability
to commit to a course of play beforehand, while the latter decide how to

1In some works, Stackelberg games are also called leadership (or leader-follower) games, while their equilib-
ria are named leader-follower equilibria. Here, we use the term Stackelberg since it is the most widely adopted.
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play after observing the commitment (Von Stackelberg, 1934; Conitzer and
Sandholm, 2006; Von Stengel and Zamir, 2010).

Definition 3.1 (Stackelberg Game). Given a finite game Γ = (N,S, u), a
Stackelberg game (SG) is a tuple (Γ, L, F ) where L and F are the sets of
leaders and followers, respectively, with N = L ∪ F .

When focusing on SGs with a single leader and multiple (i.e., more than
one) followers, we adopt the convention that player n is the leader, and we
let F be the set of followers, i.e., N = F ∪ {n}. Furthermore, for SGs
with a single leader and a single follower, we do not explicitly refer to the
sets L and F , as we always assume that player 2 is the leader and player
1 is the follower. For the ease of presentation, we use ` and f to denote
the leader and the follower, respectively, i.e., N = {`, f}. In both cases,
when no ambiguity arises, we simply refer to a SG with its underlying non-
Stackelberg finite game Γ = (N,S, u).

3.2 Single-Leader Single-Follower Stackelberg Games

In single-leader single-follower SGs, the leader first commits to a mixed
strategy, and, then, the follower best responds to the commitment (Conitzer
and Sandholm, 2006; Von Stengel and Zamir, 2010). Given a leader’s
mixed strategy x` ∈ X`, we define BR(x`) := arg maxxf∈Xf uf (x`, xf )
as the set of follower’s best responses to x`. If there are multiple best re-
sponses to the same strategy, in order to determine an optimal commitment
the leader needs to make an assumption about the follower’s tie-breaking
scheme. A follower response function specifies how the follower responds
to any possible mixed-strategy commitment of the leader. Formally:

Definition 3.2. A follower response function is a function τ : X` → Xf
such that τ(x`) ∈ BR(x`) for every leader’s mixed strategy x` ∈ X`.

Definition 3.3 (Stackelberg Equilibrium). In an SG with a single leader and
a single follower Γ, given a follower response function τ , a τ -Stackelberg
equilibrium, if it exists, is a mixed strategy profile (x`, τ(x`)) ∈ X` ×Xf :

x` ∈ arg max
x`∈X`

u`(x`, τ(x`)). (3.1)

Moreover, a mixed strategy profile (x`, xf ) ∈ X` × Xf is a Stackelberg
equilibrium (SE) of Γ if there exists a follower response function τ such
that (x`, xf ) is a τ -Stackelberg equilibrium.
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Intuitively, an SE prescribes the leader to play a utility-maximizing strat-
egy, under the assumption that the follower best responds according to some
response function. An SG may admit many SEs depending on how the fol-
lower is assumed to break ties. Two notable examples are the strong SE and
the weak SE, where the follower is assumed to break ties either in favor or
against the leader. 2 Formally, we let:

• τ s : X` → Xf be a follower response function in which the follower
always breaks ties in favor of the leader, i.e., for all x` ∈ X`, it holds
τ s(x`) ∈ arg maxxf∈BR(x`)

u`(x`, xf );

• τw : X` → Xf be a follower response function that always prescribes
her to break ties against the leader, i.e., for all x` ∈ X`, it holds
τw(x`) ∈ arg minxf∈BR(x`)

u`(x`, xf ).

Then, the following definitions hold.

Definition 3.4 (Strong Stackelberg Equilibrium). A strong Stackelberg equi-
librium (SSE) is a τ s-Stackelberg equilibrium.

Definition 3.5 (Weak Stackelberg Equilibrium). A weak Stackelberg equi-
librium (WSE) is a τw-Stackelberg equilibrium.

Strong and weak SEs define the extreme values for the utility that the
leader could get when playing an SE. Moreover, while an SSE is always
guaranteed to exist (Von Stengel and Zamir, 2010), a WSE may not, since
the function u`(x`, τw(x`)) does not in general admit a maximum over X`.
When a WSE does not exist, it is customary to look at the supremum at-
tained by u`(x`, τw(x`)) over X` (Von Stengel and Zamir, 2010) (see also
the example in the proof of Proposition 4.1).

3.2.1 Computing SEs in Single-Leader Single-Follower SGs

The problem of computing an SE 3 is known to be easy in two-player (i.e.,
single-leader single-follower) normal-form SGs in both the strong and the
weak setting, as shown in, respectively, (Conitzer and Sandholm, 2006) and
(Von Stengel and Zamir, 2010). The key insight for efficiently solving the
problem (in both settings) is that we can restrict the attention, w.l.o.g., to
pure-strategy follower’s best responses, since u`(x`, xf ) and uf (x`, xf ) are

2The terms strong and weak were originally introduced by Breton et al. (1988), who first studied these two
variants of the SE. In the literature, sometimes the terms optimistic and pessimistic are used in place of strong
and weak (see, e.g., (Coniglio et al., 2017; De Nittis et al., 2018a)).

3In the literature related to AI, the problem of computing an SE is also referred to as computing an optimal
strategy to commit to (see (Conitzer and Sandholm, 2006) and other following related works).
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linear functions in x` and xf . In the strong case, an SE can be found in
polynomial time by solving an LP for each action of the (single) follower
(the algorithm is, thus, a multi-LP). Each LP maximizes the expected util-
ity of the leader subject to a set of constraints imposing that the given fol-
lower’s action is a best response (Conitzer and Sandholm, 2006). As shown
in Conitzer and Korzhyk (2011), all these LPs can be encoded into a single
LP—a slight variation of the LP that is used to compute a CE. 4 Some works
study the equilibrium-finding problem in structured games where the action
space is combinatorial. See (Basilico et al., 2017c) for more references.

For what concerns the weak case, Von Stengel and Zamir (2010) study
the problem of computing the supremum of the leader’s expected utility
u`(x`, τ

w(x`)). They show that, for the latter, it suffices to consider the
follower’s actions which constitute a best response to a full-dimensional
region of the leader’s strategy space. The multi-LP algorithm the authors
propose solves two LPs per action of the follower, one to verify whether
the best-response region for that action is full-dimensional (so to discard
it if full-dimensionality does not hold) and a second one to compute the
best leader’s strategy within that best-response region. The algorithm runs
in polynomial time. While the authors limit their analysis to computing
the supremum of the leader’s utility u`(x`, τw(x`)), we remark that such
value does not always translate into a strategy that the leader can play as,
in the general case where the leader’s utility does not admit a maximum,
there is no leader’s strategy giving her a utility equal to the supremum. In
such cases, one should rather look for a strategy providing the leader with
an expected utility which approximates the value of the supremum. This
aspect, which is not addressed in (Von Stengel and Zamir, 2010), will be
tackled on the multi-follower case by our work.

Besides normal-form SGs, the literature has devoted considerable at-
tention to two-player Bayesian SGs where the follower can be of different
types, mainly due to their relevance in security games. In this setting, it is
known that finding an SSE is Poly-APX-complete (Letchford et al., 2009)
and that an equilibrium can be found with an MILP (Paruchuri et al., 2008).

Over the last years, the Stackelberg paradigm has also been applied to
two-player extensive-form SGs. In particular, Letchford et al. (2009) prove
that finding an SSE is NP-hard even in games without nature. Works such
as (Bošanský and Cermak, 2015; Cermak et al., 2016; Bošanskỳ et al.,
2017) address the problem of computing an SSE in extensive-form games,
providing worst-case exponential-time algorithms based on MILPs. In the

4In this case, the leader and the follower play correlated strategies under rationality constraints imposed on
the follower only, maximizing the leader’s expected utility.
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context of extensive-form games, attempts have also been made towards
the refinement of SEs. In particular, Kroer et al. (2018) introduce the idea
of a robust SE, where an optimal commitment is found against a worst-case
follower’s utility model.

3.3 Single-Leader Multi-Follower Stackelberg Games

In SGs with multiple (i.e., at least two) followers, many definitions of SE
are possible depending on how the followers are assumed to play after ob-
serving the leader’s mixed-strategy commitment. Here, we present two
notable cases, which correspond to assuming that the followers play an NE
and a CE, respectively.

3.3.1 Stackelberg-Nash Equilibria

A reasonable choice, which was first introduced and studied by Von Sten-
gel and Zamir (2010), is that the followers play non-cooperatively after ob-
serving the leader’s commitment, thus reaching an NE in the game obtained
after fixing the leader’s strategy. By letting XF :=×p∈F Xp be the set of all
the followers’ mixed strategy profiles, we denote with E(xn) ⊆ XF the set
of NEs in the followers’ game resulting from the leader’s mixed strategy
xn ∈ Xn. Then, we have the following formal definitions. 5

Definition 3.6 (Strong Stackelberg-Nash Equilibrium). In an SG with a sin-
gle leader and multiple followers Γ, a strong Stackelberg-Nash equilibrium
(SSNE) is a mixed strategy profile x = (xn, x−n) ∈×p∈N Xp such that:

(xn, x−n) ∈ arg max
xn∈Xn

max
x−n∈E(xn)

un(xn, x−n). (3.2)

Definition 3.7 (Weak Stackelberg-Nash Equilibrium). In an SG with a sin-
gle leader and multiple followers Γ, a weak Stackelberg-Nash equilibrium
(WSNE), if it exists, is a profile x = (xn, x−n) ∈×p∈N Xp such that:

(xn, x−n) ∈ arg max
xn∈Xn

min
x−n∈E(xn)

un(xn, x−n). (3.3)

As for the single-follower case, an SSNE is always guaranteed to exist,
while a WSNE may not (Von Stengel and Zamir, 2010). Moreover, notice
that, in the basic setting of single-leader single-follower SGs, SSNEs and
WSNEs reduce to SSEs and WSEs, respectively.

5In this work, when working with single-leader multi-follower SGs, we are only concerned with the two
specific cases of strong and weak SEs. However, note that it is possible to define generic SEs even in this setting,
as we did in Definition 3.3 for single-leader single-follower SGs. In order to do so, it is sufficient to generalize
the concept of response function to the general setting with multiple followers.
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We remark that the adoption of either the strong or the weak setting does
not correspond to assuming that the followers could necessarily agree on
a specific equilibrium in a practical application. Rather, by computing an
SSNE and a WSNE the leader becomes aware of the largest and smallest
utility she can get without having to make any assumptions on which equi-
librium the followers would actually end up playing if the game resulting
from the leader’s commitment were to admit more than a single one. What
is more, while an SSNE accounts for the best case for the leader, a WSNE
accounts for the worst case. In this sense, the computation of a WSNE is
paramount in realistic scenarios as, differently from an SSNE, it is robust,
guaranteeing the leader a lower bound on the maximum utility she would
get independently of how the followers would break ties among multiple
equilibria. As we will see, though, this degree of robustness comes at a
high computational cost, as computing a WSNE is a much harder task than
computing its strong counterpart.

The problem of computing SNEs has already been investigated in n-
player normal-form games with n ≥ 3 (i.e., one leader and at least two
followers). In this case, it is known that finding an S/WSNE is not in Poly-
APX unless P = NP even when there are only two followers (i.e., with n =
3) (Basilico et al., 2016, 2017a). As for algorithms, Basilico et al. (2016,
2017a, 2019) show how to formulate the problem of finding an SSNE in
n-player normal-form games as a nonlinear and nonconvex mathematical
program, which they solve via spatial branch-and-bound techniques.

3.3.2 Commitment to Correlated Strategies

Some works address single-leader multi-follower SGs in which the fol-
lowers do not play an NE. 6 In particular, Conitzer and Korzhyk (2011)
study what they call optimal correlated strategies to commit to, where the
leader commits to a utility-maximizing correlated distribution satisfying
the incentive constraints (Equation (2.3)) for the followers only. By letting
X CE
P ⊆ X be the set of correlated distributions that satisfy the incentive

constraints of Equation (2.3) only for a subset of players P ⊆ N , we can
state the following formal definition:

Definition 3.8 (Optimal Correlated Strategy to Commit to). In an SG with
a single leader and multiple followers Γ, x ∈ X is an optimal correlated
strategy to commit to if it maximizes the leader’s utility un(x) over X CE

F .

6Here, we only discuss the idea of commitment to correlated strategies introduced by Conitzer and Korzhyk
(2011) (see Definition 3.8). Some works address different models, such as, e.g., a setting in which the followers
play in a hierarchical fashion, where finding an equilibrium is NP-hard Conitzer and Sandholm (2006).
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Conitzer and Korzhyk (2011) show that finding an optimal correlated
strategy to commit to is easy in n-player normal-form games, as the prob-
lem can be cast as an LP, which is a variation of the LP for finding a CE.

Notice that optimal correlated strategies to commit to coincide with
SSEs in the basic setting of single-leader single-follower SGs, as the fol-
lower’s incentive constraints (Equation (2.3)) reduce to the best response
conditions. Thus, the two models provide the same leader’s utility in single-
leader single-follower SGs. However, optimal correlated strategies to com-
mit to may be strictly better in SGs with two or more followers (see (Conitzer
and Korzhyk, 2011) for an example).

3.4 Multi-Leader Stackelberg Games

Settings including multiple leaders are widely unexplored in the literature.
In spite of this, many real-world applications naturally involve more than
one player with competitive advantages, playing the role of leader. Some
scenarios are, e.g., network platforms with premium (prioritized) users,
markets where a group of firms forms a price-determining dominant car-
tel (Diamantoudi, 2005), and political elections in which some candidates
choose policy positions in advance of challengers (Anderson and Glomm,
1992). In the second part of this work, we fill this gap by proposing a novel
model that can be applied to any SG with multiple leaders and followers.
In the following, we briefly discuss some results related to ours.

Restricted to the security context, there are some works addressing games
with multiple uncoordinated defenders (leaders) (Lou and Vorobeychik,
2015; Laszka et al., 2016; Lou et al., 2017; Gan et al., 2018). The common
point that unifies all these work is that they enforce Nash-like constraints on
the leaders’ strategies. However, the resulting models suffer from two ma-
jor drawbacks: (i) an exact equilibrium may not exist, and (ii) they strongly
rely on problem-specific structures arising in security problems.

The operations research literature provides further works on multi-leader-
follower settings, under the name of mathematical programs with equilib-
rium constraints (Luo et al., 1996). They assume that both leaders and fol-
lowers are subject to Nash constraints, with the latter playing in the game
resulting from the leaders’ strategies (Pang and Fukushima, 2005; Leyf-
fer and Munson, 2010; Kulkarni and Shanbhag, 2014). Furthermore, other
works from the same field focus on oligopoly models with multiple lead-
ers (Sherali, 1984; DeMiguel and Xu, 2009; Sinha et al., 2014). All these
works considerably depart from ours, as they use fundamentally different
models and lack thorough game theoretic and computational studies.
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3.5 Other Stackelberg Paradigms

When studying SGs, we apply the Stackelberg paradigm to finite games
following the approach of Von Stengel and Zamir (2010) and Conitzer and
Sandholm (2006), i.e., we treat the leader as a special player who seeks for
an optimal (in terms of her utility) strategy to commit to. In the literature,
there are a number of works that apply the Stackelberg paradigm following
different approaches. This is the case, e.g., in congestion games. Even if
these works address settings that are are substantially different from ours,
it is worth discussing how their results relate to our work.

There are some works, such as, e.g., (Roughgarden, 2004; Swamy, 2007;
Sharma and Williamson, 2009; Fotakis, 2010), which study congestion
games where the leader is an authority whose objective is to minimize the
inefficacy (in terms of followers’ social welfare) of the NE reached by the
followers (i.e., minimize the price of anarchy). This setting is fundamen-
tally different form ours, as we assume that the leader looks for a strategy
to commit to that minimizes her own cost, while she is not concerned with
the maximization of followers’ social welfare. Let us remark that our ap-
proach leads to what is usually called SE, while the Stackelberg strategies
analyzed in these works are not SEs according to the classical definitions
(Conitzer and Sandholm, 2006; Von Stengel and Zamir, 2010).

Moreover, there are other works, such as, e.g., (Leme et al., 2012; de Jong
and Uetz, 2014; Correa et al., 2015), which apply the Stackelberg paradigm
to congestion games following yet another approach. They assume that the
players play sequentially in a predefined order, reaching a subgame per-
fect equilibrium in the extensive-form extension of the original congestion
game where each player plays after observing the actions performed by the
preceding players. This is different from our setting in two fundamental
ways: (i) we assume that the followers play simultaneously, rather than
sequentially; and (ii) these works study the inefficiency (in terms of follow-
ers’ social welfare) of subgame perfect equilibria, rather than the computa-
tional problem of finding an optimal leader’s strategy. Furthermore, we re-
mark that an SE is a subgame perfect equilibrium of a particular extensive-
form extension of the original congestion game, known as mixed exten-
sion (Von Stengel and Zamir, 2010). In this extended game, the leader first
commits to a mixed strategy (having a continuum of actions), and, then,
the followers observe it and play simultaneously, reaching an NE. This is
different from the extensive-form extension studied in the work by Leme
et al. (2012) and its follow-ups, where only pure-strategy commitments are
possible and the followers play sequentially.
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Stackelberg Games with Multiple
Followers
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CHAPTER4
Computing Stackelberg-Nash Equilibria in

Normal-Form Stackelberg Games

In this chapter, we study the problem of finding SNEs in n-player normal-
form SGs. We focus on the case where the followers are restricted to pure
strategies. This restriction is motivated by two reasons. First, while the un-
restricted problem is already hard with two followers (as shown by Basilico
et al. (2016, 2017a)), it is not known whether the restriction to followers
playing pure strategies makes the problem easier or not. Secondly, many
games admit pure-strategy NEs, among which potential games (Monderer
and Shapley, 1996), toll-setting problems (Labbé and Violin, 2016), and
congestion games (Rosenthal, 1973) (see also Chapter 6).

We start, in Section 4.1, introducing the rigorous definitions of the prob-
lems analyzed in this chapter. First, we briefly address the strong version
of the problem (showing that it can be solved in polynomial time), and,
then, we formally define its weak variant, on which we focus our atten-
tion entirely in the rest of the chapter. In particular, Section 4.2 studies the
computational complexity of finding WSNEs in n-player normal-form SGs
(with followers restricted to pure strategies). Then, Sections 4.3 and 4.4
focus on the algorithmic aspects of the problem.
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4.1 The Problem and Its Formulation

In this section, we formally define the problem analyzed in this chapter and
show some preliminary results related to it. For the ease of notation, we
define AF := A−n =×p∈F Ap as the set of followers’ action profiles, i.e.,
the set of all the collections of followers’ actions. We also assume, unless
otherwise stated, mp = m for every player p ∈ N , where m denotes the
number of actions available to each player. This is without loss of gen-
erality, as one can always introduce additional actions with a utility small
enough to guarantee that they would never be played, thus obtaining a game
where each player has the same number of actions.

We tackle the problem of computing an SNE in n-player normal-form
SGs where the followers play a pure NE once they have observed the
leader’s mixed-strategy commitment. We refer to a strong Stackelberg-
pure-Nash equilibrium (SSPNE) when the followers play a pure NE which
maximizes the leader’s utility, and to a weak Stackelberg-pure-Nash equi-
librium (WSPNE) when they seek a pure NE minimizing the leader’s utility.

First, we briefly discuss SSPNEs, showing that an equilibrium can be
computed in polynomial time (in the size of the n-player normal-form game
given as input). Then, we formally define WSPNEs, which are the focus of
our attention in the rest of this chapter.

4.1.1 The Strong Case

An SSPNE can be found by solving the following bilevel programming
problem:

max
xn,x−n

∑
a∈A

Ua
nx

a1
1 xa2

2 . . . xann

s.t. xn ∈ ∆n

xp ∈ arg max
xp

∑
a∈A

Ua
px

a1
1 xa2

2 . . . xann ∀p ∈ F

s.t. xp ∈ ∆p ∩ {0, 1}mp .

(4.1)

Note that, due to the integrality constraints on xp for all p ∈ F , each fol-
lower can play a single action with probability 1. By imposing the arg max
constraint for each p ∈ F , the formulation guarantees that each follower
plays a best-response action ap, thus guaranteeing that the action profile
a−n = (a1, . . . , an−1) with, for all ap ∈ Ap, ap = 1 if and only if xapp = 1,
be an NE for the given xn. It is crucial to note that the maximization in
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the upper level is carried out not only w.r.t. xn, but also w.r.t. x−n. This
way, if the followers’ game admits multiple NEs for the chosen xn, optimal
solutions to Problem (4.1) are then guaranteed to contain followers’ action
profiles which maximize the leader’s utility.

The following theorem shows that computing an SSPNE is easy.

Theorem 4.1. In an n-player normal-form SG, an SSPNE can be computed
in polynomial time by solving a multi-LP.

Proof. It suffices to enumerate, in O(mn−1), all the followers’ action pro-
files a−n ∈ AF and, for each of them, solve an LP to: (i) check whether
there is a strategy vector xn for the leader for which the action profile a−n
is an NE and (ii) find, among all such strategy vectors xn, one which max-
imizes the leader’s utility. The action profile a−n which, with the corre-
sponding xn, yields the largest expected utility for the leader is an SSPNE.
Given a followers’ action profile a−n, (i) and (ii) can be carried out in poly-
nomial time by solving the following LP, where the second constraint guar-
antees that a−n = (a1, . . . , an−1) is a pure NE in the followers’ game for
any of its solutions xn:

max
xn

∑
an∈An

Ua−n,an
n xann

s.t.
∑
an∈An

Ua−n,an
p xann ≥

∑
an∈An

U
a1...a′p...an−1an
p xann ∀p ∈ F, a′p ∈ Ap

xn ∈ ∆n.

As the size of an instance of the problem is bounded from below by mn,
one can enumerate over the set of the followers’ action profiles (of cardinal-
ity mn−1) in polynomial time. The polynomiality of the overall algorithm
follows due to linear programming being solvable in polynomial time.

4.1.2 The Weak Case

The computation of a WSPNE amounts to solving the following bilevel
problem:

sup
xn

min
x−n

∑
a∈A

Ua
nx

a1
1 xa2

2 . . . xann

s.t. xn ∈ ∆n

xp ∈ arg max
xp

∑
a∈A

Ua
px

a1
1 xa2

2 . . . xann ∀p ∈ F

s.t. xp ∈ ∆p ∩ {0, 1}mp .

(4.2)
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There are two differences between this problem and Problem (4.1): the
presence of the min operator in the objective function and the fact that
Problem (4.2) calls for a sup rather than for a max. The former guarantees
that, in the presence of many pure NEs in the followers’ game for the chosen
xn, one which minimizes the leader’s utility is selected. The sup operator is
introduced because, as illustrated in Subsection 4.1.3, Problem (4.2) does
not admit a maximum in the general case.

Throughout the paper, we will compactly refer to Problem (4.2) as

sup
xn∈∆n

f(xn),

where f is the leader’s utility in the weak case, defined as a function of xn.
Since a pure NE may not exist for every leader’s strategy xn, we define
supxn∈∆n

f(xn) = −∞ whenever there is no xn such that the resulting
followers’ game admits a pure NE. Note that f is always bounded from
above when assuming bounded payoffs and, thus, supxn∈∆n

f(xn) <∞.

4.1.3 Some Preliminary Results

First, we provide an example showing that Problem (4.2) may not admit a
maximum. This is provided in the proof of the following proposition.

Proposition 4.1. In an n-player normal-form SG, Problem (4.2) may not
admit a max even if the followers’ game admits a pure NE for every leader’s
mixed strategy xn ∈ ∆n.

Proof. Consider a game with n = 3, A1 = {a1
1, a

2
1}, A2 = {a1

2, a
2
2},

A3 = {a1
3, a

2
3}. The matrices reported below are the utility matrices for,

respectively, the case where the leader plays action a1
3, action a2

3, or the
strategy vector x3 = (1 − ρ, ρ) for some ρ ∈ [0, 1] (the third matrix is the
convex combination of the first two with weights x3):

a1
2 a2

2

a1
1 1,1,0 2,2,5

a2
1

1
2

, 1
2

,1 1,1,0

a1
3

a1
2 a2

2

a1
1 0,0,0 2,2,10

a2
1

1
2

, 1
2

,1 0,0,0

a2
3

a1
2 a2

2

a1
1 1− ρ,1− ρ,0 2,2,5 + 5ρ

a2
1

1
2

, 1
2

,1 1− ρ,1− ρ,0

x3 = (1− ρ, ρ)

It is easy to verify that (a1
1, a

2
2, a

2
3) is the unique SSPNE (as it achieves

the largest leader’s payoff, no mixed strategy would yield a better utility).
In an WSPNE, the leader induces the followers’ game in the third matrix

by playing x3 = (1 − ρ, ρ). For ρ < 1
2
, (a1

1, a
2
2) is the unique NE, giving
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1
2

1

5

5 + 5
2

ρ

f(x3)

(a) Leader’s utility in the normal-form SG in the
proof of Proposition 4.1, showing that Prob-
lem (4.2) may not admit a maximum.

1

2

µ2

4

µ

1

ρ

f(x3)

(b) Leader’s utility in the normal-form SG in the
proof of Proposition 4.2, plotted as a function
of ρ, where x3 = (1− ρ, ρ).

Figure 4.1: Leader’s utility in the normal-form SGs used for Propositions 4.1 and 4.2.

the leader a utility of 5 + 5ρ. For ρ ≥ 1
2
, there are two NEs, (a1

1, a
2
2) and

(a2
1, a

1
2), with a utility of, respectively, 5 + 5ρ and 1. Since in a WSPNE

the latter is selected, we conclude that the leader’s utility is equal to 5 + 5ρ
for ρ < 1

2
and to 1 for ρ ≥ 1

2
(see Figure 4.1a for an illustration). Thus,

Problem (4.2) admits a supremum of value 5 + 5
2
, but not a maximum.

We remark that the result in Proposition 4.1 is in line with a similar
result shown in (Von Stengel and Zamir, 2010) for the single-leader single-
follower case, as well as with those which hold for general pessimistic
bilevel problems (Zemkoho, 2016).

The relevance of computing a weak SPNE is highlighted by the follow-
ing proposition:

Proposition 4.2. In an n-player normal-form SG with payoffs in [0, 1], the
leader’s utility in a WSPNE can be arbitrarily worse than that in an SSPNE.
Moreover, the utility obtained by perturbing the leader’s strategy in a neigh-
borhood of an SSPNE can be arbitrarily worse than that one in a WSPNE.

Proof. Consider the following normal-form SG where n = 3,A1 = {a1
1, a

2
1},

A2 = {a1
2, a

2
2}, A3 = {a1

3, a
2
3}, parametrized by µ > 4:

a1
2 a2

2

a1
1 0,0,0 0,0,1

a2
1 1,1, 2

µ2 0,0,0

a1
3

a1
2 a2

2

a1
1

1
2

, 1
2

,0 0,0,0

a2
1 1,1, 4

µ
1
2

, 1
2

,0

a2
3

a1
2 a2

2

a1
1

ρ
2

, ρ
2

,0 0,0,1− ρ

a2
1 1,1, 2+(4µ−2)ρ

µ2
ρ
2

, ρ
2

,0

x3 = (1− ρ, ρ)
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Let x3 = (1 − ρ, ρ). The followers’ game admits the NE (a2
1, a

1
2) for

all values of ρ (with leader’s utility 2+(4µ−2)ρ
µ2 ) and the NE (a1

1, a
2
2) for ρ =

0 (with leader’s utility 1). Therefore, the game admits a unique SSPNE
achieved at ρ = 0 (utility 1), and a unique WSPNE achieved at ρ = 1
(utility 4

µ
). See Figure 4.1b for an illustration of the leader’s utility function.

To show the first part of the claim, it suffices to observe that the ratio
between the leader’s utility in an SSPNE and that one in a WSPNE, which
is equal to µ

4
, becomes arbitrarily large when letting µ→∞.

As to the second part of the claim, after perturbing the value that x3 takes
in the unique SSPNE by any arbitrarily small ε > 0 (i.e., x3 = (1 − ε, ε))
we obtain a leader’s utility of 2+4µε

µ2 , whose ratio w.r.t. the utility of 4
µ

in the
unique WSPNE becomes again arbitrarily large for µ→∞.

4.2 Computational Complexity of Finding WSPNEs

In this section, we focus on the problem of computing a WSPNE for n-
player normal-form SGs. In Subsection 4.2.1, we show that the problem
is NP-hard for n ≥ 3 (i.e., with at least two followers). Moreover, in
Subsection 4.2.2 we prove that for n ≥ 4 (i.e., for games with at least
three followers) the problem is inapproximable, being not in Poly-APX un-
less P = NP, i.e., it cannot be approximated, in polynomial time, to within
any polynomial multiplicative factor. We introduce two reductions, a non
approximation-preserving one which is valid for n ≥ 3 and another one
only valid for n ≥ 4 but approximation-preserving.

In decision form, the problem of computing a WSPNE reads:

Definition 4.1 (WSPNE). Given an n-player normal-form SG with n ≥
3 players and a finite number K, is there a WSPNE in which the leader
achieves a utility greater than or equal to K?

In Section 4.2.1, we show that WSPNE is NP-complete by polynomi-
ally reducing to it Independent Set (one of Karp’s original 21 NP-complete
problems (Karp, 1972)), which, in decision form, reads as follows:

Definition 4.2 (IND-SET). Given an undirected graph G := (V,E) and an
integer J ≤ |V |, does G contain an independent set (a subset of vertices
V ′ ⊆ V : ∀u, v ∈ V ′, {u, v} /∈ E) of size greater than or equal to J?

In Subsection 4.2.2, we the inapproximability result for the case with
at least three followers by means of a polynomial reduction from 3-SAT
(another of Karp’s 21 NP-complete problems (Karp, 1972)). 3-SAT reads:
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Definition 4.3 (3-SAT). Given a collection C of clauses defined on a finite
set V of Boolean variables, with |φ| = 3 for every φ ∈ C, is there a truth
assignment for V which satisfies all the clauses in C?

4.2.1 NP-Completeness

Before presenting our reduction, we introduce the following class of games:

Definition 4.4. Given two numbers b, c ∈ Q with 1 > c > b > 0 and an
integer k ≥ 1, let Γcb(k) be a class of normal-form games with three players
(n = 3), the first two having k + 1 actions each with action sets A1 =
A2 = A = {1, ..., k, χ} and the third one having k actions with action set
A3 = A \ {χ}, such that, for every third player’s action a3 ∈ A \ {χ}, the
other players play a game where:

• the payoffs on the main diagonal (where both players play the same
action) satisfy Ua3a3a3

1 = Ua3a3a3
2 = 1, Uχχa3

1 = c, Uχχa3

2 = b and, for
every a1 ∈ A \ {a3, χ}, Ua1a1a3

1 = Ua1a1a3
2 = 0;

• for every a1, a2 ∈ A \ {χ} with a1 6= a2, Ua1a2a3
1 = Ua1a2a3

2 = b;

• for every a2 ∈ A \ {χ}, Uχa2a3

1 = c and Uχa2a3

2 = 0;

• for every a1 ∈ A \ {χ}, Ua1χa3

1 = 1 and Ua1χa3

2 = 0.

No restrictions are imposed on the third player’s payoffs.

See Figure 4.2 for an illustration of one such game Γcb(k) with k = 3,
parametric in b and c. The special feature of Γcb(k) games is that, no mat-
ter which mixed strategy the third player (the leader) commits to, with the
exception of (χ, χ) only the diagonal outcomes can be pure NEs in the re-
sulting followers’ game. Moreover, for every subset of diagonal outcomes
there is a leader’s strategy such that this subset precisely corresponds to the
set of all pure NEs in the followers’ game. Formally:

Proposition 4.3. A Γcb(k) game with c ≤ 1
k

admits, for all D ⊆ {(a1, a1) :
a1 ∈ A \ {χ}} with D 6= ∅, a leader’s strategy x3 ∈ ∆3 such that the
outcomes (a1, a1) ∈ D are exactly the pure NEs in the followers’ game.

Proof. First, observe that the followers’ payoffs that are not on the main
diagonal are independent of the leader’s strategy x3. Thus, any outcome
(a1, a2) with a1, a2 ∈ A \ {χ} and a1 6= a2 cannot be an NE, as the first
follower would deviate by playing action χ so to obtain a utility c > b.
Analogously, any outcome (χ, a2) with a2 ∈ A \ {χ} cannot be an NE
because the second follower would deviate by playing χ (since b > 0).
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1 2 3 χ

1 1,1,0 b,b,0 b,b,0 1,0,0

2 b,b,0 0,0,−1−c
c

b,b,0 1,0,0

3 b,b,0 b,b,0 0,0,1 1,0,0

χ c,0,0 c,0,0 c,0,0 c,b,0

1

1 2 3 χ

1 0,0,−1−c
c

b,b,0 b,b,0 1,0,0

2 b,b,0 1,1,0 b,b,0 1,0,0

3 b,b,0 b,b,0 0,0,−1−c
c

1,0,0

χ c,0,0 c,0,0 c,0,0 c,b,0

2

1 2 3 χ

1 0,0,1 b,b,0 b,b,0 1,0,0

2 b,b,0 0,0,−1−c
c

b,b,0 1,0,0

3 b,b,0 b,b,0 1,1,0 1,0,0

χ c,0,0 c,0,0 c,0,0 c,b,0

3

Figure 4.2: A Γcb(k) game with k = 3. The third player (the leader) selects a matrix,
while the first and the second players (the followers) select rows and columns, respec-
tively. The third player’s payoffs are defined starting from the graph in Figure 4.4, as
explained in the proof of Theorem 4.2.

The same holds for any outcome (a1, χ) with a1 ∈ A \ {χ}, since the
second follower would be better off playing another action (as b > 0). The
last outcome on the diagonal, (χ, χ), cannot be an NE either, as the first
follower would deviate from it (as she would get c in it, while she can
obtain 1 > c by deviating).

As a result, the only outcomes which can be pure NEs are those in
{(a1, a1) : a1 ∈ A \ {χ}}. When the leader plays a pure strategy a3 ∈
A \ {χ}, the unique pure NE in the followers’ game is (a3, a3) as, due to
providing the followers with their maximum payoff, they would not deviate
from it. Outcomes (a1, a1) with a1 ∈ A\{χ, a3} are not NEs as, with them,
the first follower would get 0 < c. In general, if the leader plays an arbi-
trary mixed strategy x3 ∈ ∆3 the resulting followers’ game is such that the
payoffs in (a3, a3) with a3 ∈ A \ {χ} are (xa3

3 , x
a3
3 ). Noticing that (a3, a3)

is an equilibrium if and only if xa3
3 ≥ c (as, otherwise, the first follower

would deviate by playing action χ), we conclude that the set of pure NEs
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in the followers’ game is defined as follows: {(a3, a3) : xa3
3 ≥ c}.

In order to guarantee that, for every possible D ⊆ {(a1, a1) : a1 ∈
A \ {χ}} with D 6= ∅, there is a leader’s strategy such that D contains all
the pure NEs of the followers’ game, we must properly choose the value of
c. Choosing c ≤ 1

k
suffices, as, for any set D, the leader’s strategy x3 ∈ ∆3

such that xa3
3 = 1

|D| for every a3 ∈ A \ {χ} with (a3, a3) ∈ D induces a
followers’ game in which all the outcomes in D are NEs.

Notice that the followers’ game always admits a pure NE for any leader’s
commitment x3 in a Γcb(k) game with c ≤ 1

k
. As shown in Figure 4.3 for

k = 3, the leader’s strategy space ∆3 is partitioned into 2k − 1 regions,
each corresponding to a subset of {(a1, a1) : a1 ∈ A \ {χ}} containing
those diagonal outcomes which are the only pure NEs in the followers’
game. Hence, in a Γcb(k) game with c ≤ 1

k
the number of combinations of

outcomes which may constitute the set of pure NEs in the followers’ game
is exponential in r, and, thus, in the size of the game instance.

A

A

A

A

B

B

B

B

CC

C
C

Figure 4.3: A Γcb(k) game with k = 3 and c ≤ 1
k . The leader’s strategy space ∆3 is

partitioned into 2k − 1 regions, one per subset of {(a1, a1) : a1 ∈ A \ {χ}} (the three
NEs in the followers’ game, (1, 1), (2, 2), and (3, 3), are labeled A, B, C).

Relying on Proposition 4.3, we can establish the following result:

Theorem 4.2. WSPNE is strongly NP-complete even for n = 3.

Proof. For the sake of clarity, we split the proof over multiple steps.
Mapping. Given an instance of IND-SET, i.e., an undirected graph

G = (V,E) and a positive integer J , we construct a special instance Γ(G)
of WSPNE of class Γcb(k) as follows. Assuming an arbitrary labeling of
the vertices V := {v1, v2, ..., v|V |}, let Γ(G) be an instance of Γcb(k) with
k := |V |, c < 1

r
and 0 < b < c < 1, where each action a1 ∈ A \ {χ}
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is associated with a vertex va1 ∈ V . In compliance with Definition 4.4, in
which no constraints are specified for the leader payoffs, we define:

• for any pair of vertices va1 , va2 ∈ V : Ua1a1a2
3 = Ua2a2a1

3 = −1−c
c

if
{va1 , va2} ∈ E, and Ua1a1a2

3 = Ua2a2a1
3 = 1 otherwise;

• for every a3 ∈ A \ {χ}: Ua3a3a3
3 = 0 and Uχχa3

3 = 0;

• for every a3 ∈ A \ {χ} and for every a1, a2 ∈ A with a1 6= a2:
Ua1a2a3

3 = Ua2a1a3
3 = 0.

As an example, Figure 4.4 illustrates an instance of IND-SET from which
the game depicted in Figure 4.2 is obtained by applying our reduction. Fi-
nally, let K := J−1

J
. Notice that this transformation can be carried out in

time polynomial in the number of vertices |V |. W.l.o.g., we assume that
the graph G contains no isolated vertices. Indeed, it is always possible to
remove all the isolated vertices from G (in polynomial time), solve the prob-
lem on the residual graph, and, then, add the isolated vertices back to the
independent set that has been found, still obtaining an independent set.

v1

v2 v3

Figure 4.4: Undirected graph G = (V,E), V = {v1, v2, v3}, E = {{v1, v2}, {v2, v3}}.

If. We show that, if the graph G contains an independent set of size
greater than or equal to J , then Γ(G) admits a WSPNE with leader’s utility
greater than or equal to K. Let V ∗ be an independent set with |V ∗| = J .
Consider the case in which outcomes (a1, a1), with va1 ∈ V ∗, are the only
pure NEs in the followers’ game, and assume that the leader’s strategy x3

is such that xa3
3 = 1

|V ∗| if va3 ∈ V ∗ and xa3
3 = 0 otherwise. Since, by

construction, Ua1a1a3
3 = 1 for all a3 ∈ A \ {χ, a1}, the leader’s utility at an

equilibrium (a1, a1) is:∑
a3∈A\{χ}

Ua1a1a3
3 xa3

3 =
∑

a3∈A\{χ,a1}

Ua1a1a3
3 xa3

3 =
∑

a3∈A\{χ,a1}

xa3
3 =

|V ∗| − 1

|V ∗| = K.

Only if. We show that, if Γ(G) admits a WSPNE with leader’s util-
ity greater than or equal to K, then G contains an independent set of size
greater than or equal to J . Due to Proposition 4.3, at any WSPNE the leader
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plays a strategy x̄3 inducing a set of pure NEs in the followers’ game corre-
sponding toD∗ = {(a3, a3) : x̄a3

3 ≥ c}. We now show that the leader would
never play two actions a1, a2 ∈ A\{χ} and {va1 , va2} ∈ E with probability
greater than or equal to c in a WSPNE. By contradiction, assume that the
leader’s equilibrium strategy x̄3 is such that x̄a1

3 , x̄
a2
3 ≥ c. When the follow-

ers play the equilibrium (a1, a1) (the same holds for (a2, a2)), the leader’s
utility is:∑

a3∈A\{χ}

Ua1a1a3
3 x̄a3

3 =
∑

a3∈A\{χ,a1,a2}

Ua1a1a3
3 x̄a3

3 + x̄a2
3

−1− c
c

.

In the right-hand side, the first term is < 1 (as the leader’s payoffs are ≤ 1
and

∑
a3∈A\{χ,a1,a2} x̄

a3
3 = 1 − x̄a1

3 − x̄a2
3 < 1, since x̄a1

3 , x̄
a2
3 ≥ c). The

second term is less than or equal to c −1−c
c

= −1 − c (as x̄a2
3 ≥ c), which

is strictly less than −1. It follows that, since (a1, a1) (or, equivalently,
(a2, a2)) always provides the leader with a negative utility, she would never
play x̄3 in an equilibrium. This is because, by playing a pure strategy she
would obtain a utility of at least zero (as the followers’ game admits a
unique pure NE giving her a zero payoff when she plays a pure strategy).
As a result, we have Ua3a3a3

3 = 0 for every action a3 such that x̄a3
3 ≥ c and

Ua1a1a3
3 = 1 for every other action a1 such that x̄a1

3 ≥ c (since va1 and va3

are not connected by an edge).
Note that, in any equilibrium (a1, a1) ∈ D∗, the leader’s utility is:∑

a3∈A\{χ}

Ua1a1a3
3 x̄a3

3 =
∑

a3∈A\{χ,a1}:x̄
a3
3 ≥c

Ua1a1a3
3 x̄a3

3 +
∑

a3∈A\{χ}:x̄
a3
3 <c

Ua1a1a3
3 x̄a3

3 ,

where, in the first summation in the right-hand side, each payoff Ua1a1a3
3

is equal to 1 (as x̄a1
3 ≥ c and x̄a3

3 ≥ c). We show that the same holds for
each payoff Ua1a1a3

3 appearing in the second summation. By contradiction,
assume that there exists an action a3 ∈ A \ {χ} such that x̄a3

3 < c and
Ua1a1a3

3 = −1−c
c

for some equilibrium (a1, a1) ∈ D∗. By shifting all the
probability that x̄3 places on a3 to actions a1 such that (a1, a1) ∈ D∗ (so
that x̄a3

3 = 0), we obtain a new leader’s strategy which induces the same
set D∗ of pure NEs in the followers’ game. Moreover, the leader’s utility in
any equilibrium (a1, a1) ∈ D∗ strictly increases if Ua1a1a3

3 = −1−c
c

, while
it stays the same when Ua1a1a3

3 = 1. This contradicts the fact that x̄3 is
a WSPNE. Thus, all the actions a3 ∈ A \ {χ} such that x̄a3

3 < c satisfy
Ua1a1a3

3 = 1 for every equilibrium (a1, a1) ∈ D∗.
As a result, the leader’s utility at an equilibrium (a3, a3) ∈ D∗ is 1− x̄a3

3 .
Since in a WSPNE the leader maximizes her utility in the worst NE, her
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best choice is to select an x̄3 such that all NEs yield the same utility, that
is: x̄a1

3 = x̄a2
3 for every a1, a2 with (a1, a1), (a2, a2) ∈ D∗. This results

in the leader playing all actions a3 such that (a3, a3) ∈ D∗ with the same
probability x̄a3

3 = 1
|D∗| , obtaining a utility of |D

∗|−1
|D∗| = K. Therefore, the

vertices in the set {va3 : (a3, a3) ∈ D∗} form an independent set of G of
size |D∗| = J . The reduction is, thus, complete.

NP membership. Given a triple (a1, a2, x3) which is encoded with a
number of bits that is polynomial w.r.t. the size of the game, we can verify
in polynomial time whether (a1, a2) is an NE in the followers’ game in-
duced by x3 and whether, when playing (a1, a2, x3), the leader’s utility is at
least as large as K. The existence of such a triple follows as a consequence
of the correctness of either of the two equilibrium-finding algorithms that
we propose in Section 4.4—we refer the reader to Section 4.4.2 for a dis-
cussion on this. Therefore, we deduce that WSPNE belongs to NP. More-
over, since in the game of the reduction the players’ payoffs are encoded
with a polynomial number of bits and due to IND-SET being strongly NP-
complete, WSPNE is strongly NP-complete.

4.2.2 Inapproximability

We show now that the search problem of computing a WSPNE is not only
NP-hard (due to its decision version, WSPNE, being NP-complete), but it
is also difficult to approximate. Since the reduction from IND-SET in The-
orem 4.2 is not approximation-preserving, we propose a new one based on
3-SAT (see Definition 4.3). We remark that, differently from our previous
reduction (which holds for any number of followers greater than or equal
to two), this one requires at least three followers.

In the following, given a literal l (an occurrence of a variable, possibly
negated), we define v(l) as its corresponding variable. For a generic clause
φ = l1 ∨ l2 ∨ l3, we denote the ordered set of possible truth assignments to
the variables, namely, x = v(l1), y = v(l2), and z = v(l3), by

Lφ = {xyz, xyz̄, xȳz, xȳz̄, x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄},

where, in each truth assignment, a variable is set to 1 if positive and to
0 if negative. Given a generic 3-SAT instance, we build a corresponding
normal-form SG as detailed in the following definition.

Definition 4.5. Given a 3-SAT instance where C := {φ1, . . . , φ|C|} is a
collection of clauses and V := {v1, . . . , v|V |} is a set of Boolean variables,
and some ε ∈ (0, 1), let Γε(C, V ) be a normal-form SG with four players
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(n = 4) defined as follows. The fourth player has an action for each vari-
able in V plus an additional one, i.e., A4 = {1, . . . , |V |} ∪ {w}. Each
action a4 ∈ {1, . . . , |V |} is associated with variable va4 . The other players
share the same set of actions A, with A = A1 = A2 = A3 = {ϕca | c ∈
{1, . . . , |C|}, a ∈ {1, . . . , 8}} ∪ {χ}, where each action ϕca is associated
with one of the eight possible assignments of truth to the variables in clause
φc, so that ϕca corresponds to the a-th assignment in the ordered set Lφc .
For each player p ∈ {1, 2, 3}, we define her utilities as follows:

• for each a4 ∈ A4 \ {w} and for each a1 ∈ A \ {χ} with a1 = ϕca =
l1l2l3, Ua1a1a1a4

p = 1 if v(lp) = va4 and lp is a positive literal or
v(lp) 6= va4 and lp is negative;

• for each a4 ∈ A4 \ {w} and for each a1 ∈ A \ {χ} with a1 = ϕca =
l1l2l3, Ua1a1a1a4

p = 0 if v(lp) = va4 and lp is a negative literal or
v(lp) 6= va4 and lp is positive;

• for each a1 ∈ A \ {χ} with a1 = ϕca = l1l2l3, Ua1a1a1w
p = 0 if lp is a

positive literal, while Ua1a1a1w
p = 1 otherwise;

• for each a4 ∈ A4 and for each a1, a2, a3 ∈ A \ {χ} such that a1 6=
a2 ∨ a2 6= a3 ∨ a1 6= a3, Ua1a2a3a4

p = 1
|V |+2

;

• for each a4 ∈ A4, a3 ∈ A \ {χ}, and a2 ∈ A \ {χ} with a2 = ϕca =
l1l2l3, Uχa2a3a4

1 = 1
|V |+1

if l1 is a positive literal, whereas Uχa2a3a4

1 =
|V |
|V |+1

if l1 is negative, while Uχa2a3a4

2 = Uχa2a3a4

3 = 0;

• for each a4 ∈ A4, a3 ∈ A \ {χ}, and a1 ∈ A \ {χ} with a1 = ϕca =
l1l2l3, Ua1χa3a4

2 = 1
|V |+1

if l2 is a positive literal, whereas Ua1χa3a4

2 =
|V |
|V |+1

if l2 is negative, while Ua1χa3a4

1 = 1 and Ua1χa3a4

3 = 0;

• for each a4 ∈ A4, a1 ∈ A \ {χ}, and a2 ∈ A \ {χ} with a2 = ϕca =
l1l2l3, Ua1a2χa4

3 = 1
|V |+1

if l3 is a positive literal, whereas Ua1a2χa4

3 =
|V |
|V |+1

if l3 is negative, while Ua1a2χa4

1 = 0 and Ua1a2χa4

2 = 1;

• for each a4 ∈ A4, Ua1χχa4

1 = Ua1χχa4

3 = 1 and Ua1χχa4

2 = 0, for all
a1 ∈ A \ {χ};
• for each a4 ∈ A4, Uχa2χa4

1 = 1 and Uχa2χa4

2 = Uχa2χa4

3 = 0, for all
a2 ∈ A \ {χ};
• for each a4 ∈ A4, Uχχa3a4

1 = Uχχa3a4

3 = 0 and Uχχa3a4

2 = 1, for all
a3 ∈ A.
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The payoff matrix of the fourth player is so defined:

• for each a4 ∈ A4 and for each a1 ∈ A \ {χ} with a1 = ϕca =
l1l2l3, Ua1a1a1a4

4 = ε if the truth assignment identified by ϕca makes φc
false (i.e., whenever, for each p ∈ {1, 2, 3}, the clause φc contains the
negation of lp), while Ua1a1a1a4

4 = 1 otherwise;

• for each a4 ∈ A4 and for each a1, a2, a3 ∈ A such that a1 6= a2∨a2 6=
a3 ∨ a1 6= a3, with the addition of the triple (χ, χ, χ), Ua1a2a3a4

4 = 0.

Games adhering to Definition 4.5 have some interesting properties, which
we formally state in the following Propositions 4.4 and 4.5.

First, we give a characterization of the strategy space of the leader in
terms of the set of pure NEs in the followers’ game. In particular, given a
game Γε(C, V ), the leader’s strategy space ∆4 is partitioned according to
the boundaries xa4

4 = 1
|V |+1

, for a4 ∈ A4\{w}, by which ∆4 is split into 2|V |

regions, each corresponding to a possible truth assignment to the variables
in V . Specifically, in the assignment corresponding to a region, variable va4

takes value 1 if xa4
4 ≥ 1

|V |+1
, while it takes value 0 if xa4

4 ≤ 1
|V |+1

. Moreover,
for each a1 ∈ A \ {χ} and a1 = ϕca an outcome (a1, a1, a1) is an NE in
the followers’ game only in the regions of the leader’s strategy space whose
corresponding truth assignment is compatible with the one represented by
ϕca. For instance, if ϕca = v̄1v2v3 the corresponding outcome is an NE
only if x1

4 ≤ 1
|V |+1

, x2
4 ≥ 1

|V |+1
, and x3

4 ≥ 1
|V |+1

(with no further restrictions
on the other probabilities). Formally, we can claim the following:

Proposition 4.4. Given a game Γε(C, V ) and an action a1 ∈ A \ {χ} with
a1 = ϕca = l1l2l3, the outcome (a1, a1, a1) is an NE of the followers’ game
whenever the leader commits to a strategy x4 ∈ ∆4 such that:

• xa4
4 ≥ 1

|V |+1
if v(lp) = va4 and lp is positive, for some p ∈ {1, 2, 3};

• xa4
4 ≤ 1

|V |+1
if v(lp) = va4 and lp is negative, for some p ∈ {1, 2, 3};

• xa4
4 can be any if v(lp) 6= va4 for each p ∈ {1, 2, 3}.

All the other outcomes of the followers’ game, i.e., those belonging to the
set {(a1, a2, a3) : a1, a2, a3 ∈ A with a1 6= a2 ∨ a2 6= a3 ∨ a1 6= a3} ∪
{(χ, χ, χ)}, cannot be NEs for any of the leader’s commitments.

Proof. Observe that, the followers’ payoffs do not depend on the leader’s
strategy x4 in the outcomes not in {(a1, a1, a1) : a1 ∈ A \ {χ}}. Thus, for
every a1, a2, a3 ∈ A \ {χ} such that a1 6= a2 ∨ a2 6= a3 ∨ a1 6= a3 the
outcome (a1, a2, a3) cannot be an NE as the first follower would deviate
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by playing action χ, obtaining a utility at least as large as 1
|V |+1

, instead of
1

|V |+2
. Also, for all a2, a3 ∈ A \ {χ} the outcome (χ, a2, a3) is not an NE

since the second follower would be better off playing χ (as she gets 1 > 0).
Analogously, for all a1, a3 ∈ A \ {χ} the outcome (a1, χ, a3) cannot be an
NE as the third follower would deviate to χ (getting a utility of 1 > 0).
For all a3 ∈ A, a similar argument also applies to the outcome (χ, χ, a3) as
the first follower would have an incentive to deviate by playing any action
different from χ (note that (χ, χ, χ), whose payoffs are defined in the last
item of Definition 4.5, is included). Moreover, for all a1 ∈ A \ {χ} the
outcome (a1, χ, χ) is not an NE as the second follower would deviate to
any other action (getting a utility of 1). For all a1, a2 ∈ A \ {χ}, the same
holds for the outcome (a1, a2, χ), where the first follower would deviate
and play action χ, and for the outcome (χ, a2, χ) where, for all a2 ∈ \{χ},
the second follower would deviate and play χ.

Therefore, the only outcomes which can be NEs in the followers’ game
are those in {(a1, a1, a1) : a1 ∈ A \ {χ}}. Assume that the leader commits
to an arbitrary mixed strategy x4 ∈ ∆4. For each a1 ∈ A \ {χ} with
a1 = ϕca = l1l2l3 and for each p ∈ {1, 2, 3}, the outcome (a1, a1, a1)
provides follower p with a utility of up such that:

• up = xa4
4 if v(lp) = va4 and lp is a positive literal;

• up = 1− xa4
4 if v(lp) = va4 and lp is a negative literal;

The outcome (a1, a1, a1) is an NE if the following conditions hold:

• up ≥ 1
|V |+1

for each p ∈ {1, 2, 3} such that lp is positive, as otherwise
follower p would deviate and play χ;

• up ≥ |V |
|V |+1

for each p ∈ {1, 2, 3} such that lp is negative, as otherwise
follower p would deviate and play χ;

These conditions together with the definition of up prove the claim.

The characterization of the leader’s strategy space given in Proposi-
tion 4.4 establishes the relationship between the leader’s utility in a WSPNE
of a game Γε(C, V ) and the feasibility of the corresponding 3-SAT instance.
We highlight it in the following proposition.

Proposition 4.5. Given a game Γε(C, V ), the leader’s utility in a WSPNE
is 1 if and only if the corresponding 3-SAT instance is feasible, and it is
equal to ε otherwise.
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Proof. The result follows form Proposition 4.4. If the 3-SAT instance is
a yes instance (i.e., if it is feasible), there exists then a strategy x4 ∈ ∆4

such that all the NEs of the resulting followers’ game provide the leader
with a utility of 1. This is because there is a region corresponding to a truth
assignment which satisfies all the clauses. On the other hand, if the 3-SAT
instance is a no instance (i.e., if it is not satisfiable), then in each region
of the leader’s strategy space there exits an NE for the followers’ game
which provides the leader with a utility of ε. Therefore, the followers would
always play such equilibrium due to the assumption of pessimism.

We are now ready to state the result.

Theorem 4.3. With n ≥ 4 and unless P = NP, the problem of computing a
WSPNE in an n-player normal-form SG is not in Poly-APX.

Proof. Given a generic 3-SAT instance, let us build its corresponding game
Γε(C, V ) according to Definition 4.5. This construction can be done in
polynomial time as |A4| = |V | + 1 and |A| = |A1| = |A2| = |A3| =
8|C| + 1 are polynomials in |V | and |C|, and, therefore, the number of
outcomes in Γε(C, V ) is polynomial in |V | and |C|. Furthermore, let us
select ε ∈

(
0, 1

2|V |

)
(the polynomiality of the reduction is preserved as 1

2|V |

is representable in binary encoding with a polynomial number of bits).
By contradiction, let us assume that there exists a polynomial-time ap-

proximation algorithm A capable of constructing a solution to the problem
of computing a WSPNE with a multiplicative approximation factor 1

poly(I)
,

where poly(I) is any polynomial function of the size I of the normal-form
game given as input. By Proposition 4.5, it follows that, when applied to
Γε(C, V ), A would return an approximate solution with value greater than
or equal to 1 · 1

poly(I)
> 1

2|V |
(for a sufficiently large |V |) if and only if the

3-SAT instance is feasible. When the 3-SAT instance is not satisfiable, A
would return a solution with value at most 1

2|V |
. Since this would provide us

with a solution to 3-SAT in polynomial time, we conclude that the problem
of computing a WSPNE in an n-player normal-form SG cannot be approx-
imated in polynomial time to within any polynomial multiplicative factor
unless P = NP.

4.3 Single-Level Reformulation and Restriction

We propose a single-level reformulation of the problem of computing a
WSPNE admitting a supremum but, in general, not a maximum, and a cor-
responding restriction which always admits optimal (restricted) solutions.
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For notational simplicity, we consider the case with n = 3 players. Al-
though notationally more involved, the generalization to n ≥ 3 is straight-
forward. With only two followers, Problem (4.2), i.e., the bilevel program-
ming formulation we gave in Section 4.1, reads:

sup
x3

min
x1,x2

∑
a1∈A1

∑
a2∈A2

∑
a3∈A3

Ua1a2a3
3 xa1

1 xa2
2 xa3

3

s.t. x3 ∈ ∆3

x1 ∈ arg max
x1

∑
a1∈A1

∑
a2∈A2

∑
a3∈A3

Ua1a2a3
1 xa1

1 xa2
2 xa3

3

s.t. x1 ∈ ∆1 ∩ {0, 1}m
x2 ∈ arg max

x2

∑
a1∈A1

∑
a2∈A2

∑
a3∈A3

Ua1a2a3
2 xa1

1 xa2
2 xa3

3

s.t. x2 ∈ ∆2 ∩ {0, 1}m.

(4.3)

4.3.1 Single-Level Reformulation

In order to cast Problem (4.3) into a single-level problem, we first introduce
the following reformulation of the followers’ problem:

Lemma 4.1. The following MILP, parametric in x3, is an exact reformu-
lation of the followers’ problem of finding a pure NE which minimizes the
leader’s utility given a leader’s strategy x3 ∈ ∆3:

min
y

∑
a1∈A1

∑
a2∈A2

ya1a2

∑
a3∈A3

Ua1a2a3
3 xa3

3 (4.4a)

s.t.
∑
a1∈A1

∑
a2∈A2

ya1a2 = 1 (4.4b)

ya1a2

∑
a3∈A3

(Ua1a2a3
1 − Ua′1a2a3

1 )xa3
3 ≥ 0 ∀a1, a

′
1 ∈ A1, a2 ∈ A2 (4.4c)

ya1a2

∑
a3∈A3

(Ua1a2a3
2 − Ua1a′2a3

2 )xa3
3 ≥ 0 ∀a1 ∈ A1, a2, a

′
2 ∈ A2 (4.4d)

ya1a2 ∈ {0, 1} ∀a1 ∈ A1, a2 ∈ A2. (4.4e)

Proof. Note that, in Problem (4.3), a solution to the followers’ problem
satisfies xa1

1 = xa2
2 = 1 for some (a1, a2) ∈ A1×A2 and xa

′
1

1 = x
a′2
2 = 0 for

all (a′1, a
′
2) 6= (a1, a2). Problem (4.4) encodes this in terms of the variable

ya1a2 by imposing ya1a2 = 1 if an only if (a1, a2) is an NE minimizing the
leader’s utility. Due to Constraints (4.4b) and (4.4e), ya1a2 is equal to 1 for
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one and only one pair (a1, a2). Due to Constraints (4.4c) and (4.4d), for all
(a1, a2) such that ya1a2 = 1 there can be no action a′1 ∈ A1 (resp., a′2 ∈ A2)
by which the first follower (resp., the second follower) could obtain a better
payoff when assuming that the other would play action a2 (resp., action a1).
This guarantees that (a1, a2) be an NE. Also note that Constraints (4.4c)
and (4.4d) boil down to the tautology 0 ≥ 0 for any (a1, a2) ∈ A1 × A2

with ya1a2 = 0. By minimizing the objective function (which corresponds
to the leader’s utility), a pure NE with the desired properties is found.

To arrive at a single-level reformulation of Problem (4.3), we rely on
linear programming duality to restate Problem (4.4) in terms of optimality
conditions which do not employ the min operator. First:

Lemma 4.2. The linear programming relaxation of Problem (4.4) always
admits an optimal integer solution.

Proof. Let us focus on Constraints (4.4c) and analyze , for all (a1, a2) ∈
A1×A2 and a′1 ∈ A1, the coefficient

∑
a3∈A3

(Ua1a2a3
1 −Ua′1a2a3

1 )xa3
3 which

multiplies ya1a2 . The coefficient is equal to the regret the first player would
suffer from by not playing action a′1. If equal to 0, we have the tautol-
ogy 0 ≥ 0. If the regret is positive, after dividing by

∑
a3∈A3

(Ua1a2a3
1 −

U
a′1a2a3

1 )xa3
3 both sides of the constraint we obtain ya1a2 ≥ 0, which is sub-

sumed by the nonnegativity of ya1a2 . If the regret is negative, after diving
both sides of the constraint again by

∑
a3∈A3

(Ua1a2a3
1 −Ua′1a2a3

1 )xa3
3 we ob-

tain ya1a2 ≤ 0, which implies ya1a2 = 0. A similar reasoning applies to
Constraints (4.4d). Let us now define O as the set of pairs (a1, a2) such
that there is as least an action a′1 or a′2 for which one of the followers suf-
fers from a strictly negative regret. Relying on O, Problem (4.4) can be
rewritten as:

min
y

∑
a1∈A1

∑
a2∈A2

ya1a2

∑
a3∈A3

Ua1a2a3
3 xa3

3

s.t.
∑
a1∈A1

∑
a2∈A2

ya1a2 = 1

ya1a2 = 0 ∀(a1, a2) ∈ O
ya1a2 ∈ {0, 1} ∀a1 ∈ A1, a2 ∈ A2.

All variables ya1a2 with (a1, a2) ∈ O can be discarded. We obtain a prob-
lem with a single constraint imposing that the sum of all the ya1a2 variables
with (a1, a2) /∈ O be equal to 1. The linear programming relaxation of
such problem always admits an optimal solution with ya1a2 = 1 for the pair
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(a1, a2) which achieves the largest value of
∑

a3∈A3
Ua1a2a3

3 xa3
3 (ties can be

broken arbitrarily), and with ya1a2 = 0 otherwise.

As a consequence of Lemma 4.2, we can prove the following:

Theorem 4.4. The following single-level QCQP is an exact reformulation
of Problem (4.3):

sup
x3,y
β1,β2

∑
a1∈A1

∑
a2∈A2

ya1a2

∑
a3∈A3

Ua1a2a3
3 xa3

3 s.t. (4.5a)

∑
a1∈A1

∑
a2∈A2

ya1a2 = 1 (4.5b)

ya1a2

∑
a3∈A3

(Ua1a2a3
1 − Ua′1a2a3

1 )xa3
3 ≥ 0 ∀a1, a

′
1 ∈ A1, a2 ∈ A2 (4.5c)

ya1a2

∑
a3∈A3

(Ua1a2a3
2 − Ua1a′2a3

2 )xa3
3 ≥ 0 ∀a1 ∈ A1, a2, a

′
2 ∈ A2 (4.5d)∑

a1∈A1

∑
a2∈A2

ya1a2

∑
a3∈A3

Ua1a2a3
3 xa3

3 ≤
∑
a3∈A3

Ua1a2a3
3 xa3

3 +

−
∑
a′1∈A1

β
a1a2a′1
1

∑
a3∈A3

(Ua1a2a3
1 − Ua′1a2a3

1 )xa3
3 +

−
∑
a′2∈A2

β
a1a2a′2
2

∑
a3∈A3

(Ua1a2a3
2 − Ua1a′2a3

2 )xa3
3 ∀a1 ∈ A1, a2 ∈ A2 (4.5e)

∑
a3∈A3

x3 = 1 (4.5f)

β
a1a2a′1
1 ≥ 0 ∀a1, a

′
1 ∈ A1, a2 ∈ A2 (4.5g)

β
a1a2a′2
2 ≥ 0 ∀a1 ∈ A1, a2, a

′
2 ∈ A2 (4.5h)

ya1a2 ≥ 0 ∀a1 ∈ A1, a2 ∈ A2 (4.5i)
xa3

3 ≥ 0 ∀a3 ∈ A3. (4.5j)

Proof. By relying on Lemma 4.2, we first introduce the linear programming
dual of the linear programming relaxation of Problem (4.4). Thanks to
Constraints 4.4b, ya1,a2 ∈ {0, 1} can be relaxed w.l.o.g. into ya1,a2 ∈ Z+ for
all a1 ∈ A1, a2 ∈ A2. This way, we do not have to introduce a dual variable
for each of the constraints ya1,a2 ≤ 1 which would be introduced when
relaxing ya1,a2 ∈ {0, 1} into ya1,a2 ∈ [0, 1]. Letting α, βa1a2a′1

1 , and βa1a2a′2
2

be the dual variables of, respectively, Constraints (4.4b), (4.4c), and (4.4d),
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the dual reads:

max
α,β1,β2

α

s.t. α +
∑
a′1∈A1

β
a1a2a′1
1

∑
a3∈A3

(Ua1a2a3
1 − Ua′1a2a3

1 )xa3
3 +

+
∑
a′2∈A2

β
a1a2a′2
2

∑
a3∈A3

(Ua1a2a3
2 − Ua1a′2a3

2 )xa3
3

≤
∑
a3∈A3

Ua1a2a3
3 xa3

3 ∀a1 ∈ A1, a2 ∈ A2

α free

β
a1a2a′1
1 ≥ 0 ∀a1, a

′
1 ∈ A1, a2 ∈ A2

β
a1a2a′2
2 ≥ 0 ∀a1 ∈ A1, a2, a

′
2 ∈ A2.

A set of optimality conditions for Problem (4.4) can then be derived by
simultaneously imposing primal and dual feasibility for the sets of primal
and dual variables (by imposing the respective constraints) and equating
the objective functions of the two problems. The dual variable α can then
be removed by substituting it by the primal objective function, leading to
Constraints (4.5e). The result in the claim is obtained after introducing the
leader’s utility as objective function and then casting the resulting problem
as a maximization problem (in which a supremum is sought).

Since, as shown in Proposition 4.1, the problem of computing a WSPNE
in a normal-form SG may only admit a supremum but not a maximum, the
same must hold for Problem (4.5) due to its correctness (Theorem 4.4). We
formally highlight this property in the following proposition, showing in the
proof how this can manifest in terms of the variables of the formulation.

Proposition 4.6. Problem (4.5) may not admit a finite optimal solution.

Proof. Consider the game introduced in the proof of Proposition 4.1 and
let x3 = (1 − ρ, ρ) for ρ ∈ [0, 1]. Adopting, for convenience, the notation
(a1

1, a
1
2) = (1, 1), (a1

1, a
2
2) = (1, 2), (a2

1, a
1
2) = (2, 1), and (a2

1, a
2
2) = (2, 2),

Constraints (4.5e) read:

y12(5 + 5ρ) + y21 ≤ −β112
1 (0.5− ρ)− β112

2 (−1− ρ)

y12(5 + 5ρ) + y21 ≤ 5 + 5ρ− β122
1 (1 + ρ)− β121

2 (1 + ρ)

y12(5 + 5ρ) + y21 ≤ 1− β211
1 (−0.5 + ρ)− β212

2 (−0.5 + ρ)

y12(5 + 5ρ) + y21 − β221
1 (−1− ρ)− β221

2 (0.5− ρ).
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Note that the left-hand sides of the four constraints are all equal to the
objective function (i.e., to the leader’s utility).

Let us consider the case ρ < 0.5 for which, as shown in the proof of
Proposition 4.1, (1, 2) is the unique pure NE in the followers’ game. (1,2)
is obtained by letting y12 = 1 and y11 = y21 = y22 = 0, for which the left-
hand sides of the four constraints become equal to 7.5− 5ε. Note that such
value converges to the supremum as ε→ 0. For this choice of y and letting
ρ = 0.5 − ε for ε ∈ (0, 0.5] (which is equivalent to assuming ρ < 0.5), we
can rearrange the four constraints as follows:

β111
2 ≥ 7.5− 5ε+ εβ112

1

1.5− ε
(1.5− ε) (β122

1 + β121
2 ) ≤ 0

β211
1 + β212

2 ≥ 6.5− 5ε

ε

β221
1 ≥ 7.5− 5ε+ εβ221

2

1.5− ε .

The second constraint implies β122
1 = β121

2 = 0. Letting β112
1 = β221

2 = 0,
which is the least restriction on the first and fourth constraints, we get:

β111
2 ≥ 7.5− 5ε

1.5− ε and β211
1 + β212

2 ≥ 6.5− 5ε

ε
and β221

1 ≥ 7.5− 5ε

1.5− ε .

As ε→ 0, we have a finite lower bound for β111
2 and β221

1 , but we also have
β211

1 + β212
2 ≥ 6.5−5ε

ε
→ ∞, which prevents β211

1 and β212
2 from taking a

finite value. With a similar argument, one can verify that there is no other
way of achieving an objective function value approaching 7.5 as, for ρ ≥ 5,
the third constraint in the original system imposes an upper bound on the
objective function value of 1.

4.3.2 A Restricted Single-Level (MILP) Formulation

As state-of-the-art numerical optimization solvers usually rely on the bound-
edness of their variables when tackling a problem, due to the result in
Proposition 4.6 solving the single-level formulation in Problem 4.5 may
be numerically impossible.

We consider, here, the option of introducing an upper bound of M on
both βa1a2a′1

1 and βa1a2a′2
2 , for all a1 ∈ A1, a2 ∈ A2, a

′
1 ∈ A1, a

′
2 ∈ A2. Due

to the continuity of the objective function, this suffices to obtain a formula-
tion which, although being a restriction of the original one, always admits a
maximum (over the reals) as a consequence of Weierstrass’ extreme-value
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theorem. Quite conveniently, this restricted reformulation can be cast as an
MILP, as we now show.

Theorem 4.5. There is an exact MILP reformulation of Problem (4.5) for
the case where βa1a2a′1

1 ≤ M and βa1a2a′2
2 ≤ M hold for all a1 ∈ A1, a2 ∈

A2, a
′
1 ∈ A1, a

′
2 ∈ A2, and a restricted one when the bounds are not valid.

Proof. After introducing the variable za1a2a3 , each bilinear product ya1a2xa3
3

in Problem (4.5) can be linearized by substituting za1a2a3 for it and intro-
ducing the McCormick envelope constraints (McCormick, 1976), which
are sufficient to guarantee za1a2a3 = ya1a2xa3

3 if ya1a2 takes binary val-
ues (Al-Khayyal and Falk, 1983). Assuming β

a1a2a′1
1 ∈ [0,M ] for each

a1 ∈ A1, a2 ∈ A2, a
′
1 ∈ A1, we can restrict ourselves to βa1a2a′1

1 ∈ {0,M}.
This is the case also in the dual (reported in the proof of Theorem 4.4).
Indeed, the dual problem asks for solving the following problem:

max
β1,β2≥0

 min
(a1,a2)∈A1×A2


∑
a′1∈A1

β
a1a2a′1
1

∑
a3∈A3

(Ua1a2a3
1 − Ua′1a2a3

1 )xa3
3 +∑

a′2∈A2

β
a1a2a′2
2

∑
a3∈A3

(Ua1a2a3
2 − Ua1a′2a3

2 )xa3
3


 .

The min operator ranges over functions (one for each pair (a1, a2) ∈ A1 ×
A2) defined on disjoint domains (the β1, β2 variables contained in each such
function are not contained in any of the other ones). Therefore, we can
w.l.o.g. set the value of β1 and β2 so that each function be individually max-
imized. For each (a1, a2) ∈ A1 × A2, this is achieved by setting, for each
a′1 ∈ A1 (resp., a′2 ∈ A2) βa1a2a′1

1 (resp., βa1a2a′2
2 ) to its upper bound M if∑

a3∈A3
(Ua1a2a3

1 −Ua′1a2a3

1 )xa3
3 ≥ 0 (resp.,

∑
a3∈A3

(Ua1a2a3
2 −Ua1a′2a3

2 )xa3
3 ≥

0), otherwise setting βa1a2a′1
1 (resp., βa1a2a′2

2 ) to its lower bound of 0.
We can, therefore, introduce the variable pa1a2a′1

1 ∈ {0, 1}, substitut-
ing Mp

a1a2a′1
1 for each occurrence of βa1a2a′1

1 . This way, for each a1 ∈
A1, a2 ∈ A2, a

′
1 ∈ A1, the term β

a1a2a′1
1

∑
a3∈A3

(Ua1a2a3
1 − Ua′1a2a3

1 )xa3
3 be-

comes M
∑

a3∈A3
(Ua1a2a3

1 − U
a′1a2a3

1 )p
a1a2a′1
1 xa3

3 . We can, then, introduce

the variable qa1a2a′1a3

1 and impose qa1a2a′1a3

1 = p
a1a2a′1
1 xa3

3 via the McCormick
envelope constraints. This way, M

∑
a3∈A3

(Ua1a2a3
1 − U

a′1a2a3

1 )p
a1a2a′1
1 xa3

3

becomes the linear term M
∑

a′1∈A1

∑
a3∈A3

(Ua1a2a3
1 − U

a′1a2a3

1 )q
a1a2a′1a3

1 .

Similar arguments hold for βa1a2a′2
2 , leading to an MILP formulation.
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The impact of bounding βa1a2a′1
1 and βa1a2a′2

2 by M is explained as fol-
lows. Assume that those upper bounds are introduced into Problem (4.5).
If M is not large enough for the chosen x3 (remember that, as shown in
Proposition 4.6, one may need M →∞ for x3 approaching a discontinuity
point of the leader’s utility function), Constraints (4.5e) may remain active
for some (â1, â2) which is not an NE for the chosen x3. Let (a1, a2) be
the worst-case NE the followers would play and assume that the right-hand
side of Constraint (4.5e) for (â1, â2) is strictly smaller than the utility the
leader would obtain if the followers played the NE (a1, a2), namely,∑
a3∈A3

U â1â2a3
3 xa3

3 −
∑
a′1∈A1

β
â1â2a′1
1

∑
a3∈A3

(U â1â2a3
1 − Ua′1â2a3

1 )xa3
3 −

−
∑
a′2∈A2

β
â1â2a′2
2

∑
a3∈A3

(U â1â2a3
2 − U â1a′2a3

2 )xa3
3 <

∑
a3∈A3

Ua1a2a3
3 xa3

3 .

Letting ya1a2 = 1, this constraint would be violated (as, with that value of
y, the left-hand side of the constraint would be

∑
a3∈A3

Ua1a2a3
3 xa3

3 , which
we assumed to be strictly larger than the right-hand side). This forces the
choice of a different x3 for which the upper bound of M on βa1a2a′1

1 and
β
a1a2a′2
2 is sufficiently large not to cause the same issue with the worst-case

NE corresponding to that x3, thus restricting the set of strategies the leader
could play. In spite of this, by solving the MILP reformulation outlined
in Theorem 4.5 we are always guaranteed to find optimal (restricted) solu-
tions to it (if M is large enough for the restricted problem to admit feasible
solutions). Such solutions correspond to feasible strategies of the leader,
guaranteeing her a lower bound on her utility at a WSPNE.

4.4 Exact Algorithms for Computing WSPNEs

In this section, we propose an exact exponential-time algorithm for the
computation of a WSPNE, i.e., of supxn∈∆n

f(xn), which does not suf-
fer from the shortcomings of the formulations we introduced in the previ-
ous section. In particular, if there is no xn ∈ ∆n where the leader’s utility
f(xn) attains supxn∈∆n

f(xn) (as f(xn) does not admit a maximum), our al-
gorithm also returns, together with the supremum, a strategy x̂n which pro-
vides the leader with a utility equal to an α-approximation (in the additive
sense) of the supremum, namely, a strategy x̂n satisfying supxn∈∆n

f(xn)−
f(x̂n) ≤ α for any additive loss α > 0 chosen a priori. We first introduce a
version of the algorithm based on explicit enumeration, in Subsection 4.4.1,
which we then embed into a branch-and-bound scheme in Subsection 4.4.3.
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In the remainder of the section, we denote the closure of a set X ⊆ ∆n

relative to aff(∆n) by X , its boundary relative to aff(∆n) by bd(X), and
its complement relative to ∆n by Xc. Note that, here, aff(∆n) denotes the
affine hull of ∆n, i.e., the hyperplane in Rm containing ∆n.

4.4.1 Enumerative Algorithm

Computing supxn∈∆n
f(xn)

The key ingredient of our algorithm is what we call outcome configura-
tions. We say that a pair (S+, S−) with S+ ⊆ AF and S− = AF \ S+ is
an outcome configuration for a given xn ∈ ∆n if, in the followers’ game
induced by xn, all the followers’ action profiles a−n ∈ S+ constitute an NE
and all the action profiles a−n ∈ S− do not.

For every a−n ∈ AF , we define X(a−n) as the set of all leader’s strate-
gies xn ∈ ∆n for which a−n is an NE in the followers’ game induced by xn.
Formally, X(a−n) corresponds to the following (closed) polytope:

X(a−n) :=


xn ∈ ∆n :

∑
an∈An

Ua−n,an
p xann ≥

∑
an∈An

U
a′−n,an
p xann

∀p ∈ F, a′p ∈ Ap \ {ap}
with a′−n = (a1, . . . , ap−1, a

′
p, ap+1, . . . , an−1)

 .

For every a−n ∈ AF , we also introduce the set Xc(a−n) of all xn ∈ ∆n

for which a−n is not an NE. For that purpose, we first define the following
set for each p ∈ F :

Dp(a−n, a
′
p) :=

xn ∈ ∆n :
∑
an∈An

Ua−n,an
p xann <

∑
an∈An

U
a′−n,an
p xann

with a′−n = (a1, . . . , ap−1, a
′
p, ap+1, . . . , an−1)

 .

Dp(a−n, a
′
p), which is a not open nor closed polytope (as it has a miss-

ing facet, the one corresponding to its strict inequality), is the set of all
values of xn for which player p would achieve a better utility by deviat-
ing from a−n and playing a different action a′p ∈ Ap. For every p ∈ F ,
a−n ∈ AF , and a′p ∈ Ap, we call the corresponding set Dp(a−n, a

′
p) de-

generate if Ua−n,an
p = U

a′−n,an
p for each an ∈ An (recall that a′−n =

(a1, . . . , ap−1, a
′
p, ap+1, . . . , an−1)). In a degenerate Dp(a−n, a

′
p), the con-

straint
∑

an∈An U
a−n,an
p xann <

∑
an∈An U

a′−n,an
p xann reduces to 0 < 0. Since,

in principle, any player could deviate from a−n by playing any action not
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in a−n, Xc(a−n) is the following disjunctive set:

Xc(a−n) :=
⋃
p∈F

 ⋃
a′p∈Ap\{ap}

Dp(a−n, a
′
p)

 .

Notice that, since any point in bd(Xc(a−n)) which is not in bd(∆n)
would satisfy, for some a′p, the (strict, originally) inequality of Dp(a−n, a

′
p)

as an equation, such point is not in Xc(a−n) and, hence, bd(Xc(a−n)) ∩
Xc(a−n) ⊆ bd(∆n). The closure Xc(a−n) of Xc(a−n) is obtained by dis-
carding any degenerate Dp(a−n, a

′
p) and by turning the strict constraint in

the definition of each nondegenerate Dp(a−n, a
′
p) into a nonstrict one. Note

that degenerate sets are discarded as turning their strict inequality into a ≤
inequality would result in turning the empty setDp(a−n, a

′
p) (whose closure

is the empty set) into ∆n. An illustration of X(a−n) and Xc(a−n), together
with the closure Xc(a−n) of the latter, is reported in Figure 4.5.

X(a−n) Xc(a−n) Xc(a−n)

Figure 4.5: An illustration of X(a−n), Xc(a−n), and Xc(a−n) for the case with m = 3.
The three sets are depicted as subsets (highlighted in gray and continuous lines) of the
leader’s strategy space ∆n. Dashed lines and circles indicate parts of ∆n which are
not contained in the sets.

For every outcome configuration (S+, S−), we define the following sets:

X(S+) :=
⋂

a−n∈S+

X(a−n) and X(S−) :=
⋂

a−n∈S−
Xc(a−n).

While the former is a closed polytope, the latter is the union of not open
nor closed polytopes and, thus, it is not open nor closed itself. Similarly
to Xc(a−n), X(S−) satisfies bd(X(S−)) ∩ X(S−) ⊆ bd(∆n). The clo-
sure X(S−) of X(S−) is obtained by taking the closure of each Xc(a−n).
Hence, X(S−) =

⋂
a−n∈S− X

c(a−n).
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By leveraging these definitions, we can focus on the set of all leader’s
strategies which realize the outcome configuration (S+, S−), namely:

X(S+) ∩X(S−).

As for X(S−), X(S+) ∩ X(S−) is not an open nor a closed set. Due to
X(S+) being closed, the only points of bd(X(S+)∩X(S−)) which are not
in X(S+) ∩X(S−) itself are the very points in bd(X(S−)) which are not
in X(S−). As a consequence, X(S+) ∩X(S−) = X(S+) ∩X(S−).

Let us define the set P := {(S+, S−) : S+ ∈ 2AF ∧ S− = 2AF \ S+},
which contains all the outcome configurations of the game. The following
theorem highlights the structure of f(xn), suggesting an iterative way of
expressing the problem of computing supxn∈∆n

f(xn). We will rely on it
when designing our algorithm.

Theorem 4.6. Let ψ(xn;S+) := min
a−n∈S+

∑
an∈An

Ua−n,an
n xann . It holds:

sup
xn∈∆n

f(xn) = max
(S+,S−)∈P :

X(S+)∩X(S−)6=∅

max
xn∈X(S+)∩X(S−)

ψ(xn;S+).

Proof. Let ∆′n be the set of leader’s strategies xn for which there exists
a pure NE in the followers’ game induced by xn, namely, ∆′n := {xn ∈
∆n : f(xn) > −∞}. Since, by definition, f(xn) = −∞ for any xn /∈ ∆′n
and the supremum of f(xn) is finite due to the finiteness of the payoffs (and
assuming the followers’ game admits at least a pure NE for some xn ∈ ∆n),
we can, w.l.o.g., focus on ∆′n and solve supxn∈∆′n

f(xn). In particular, the
collection of the sets X(S+) ∩ X(S−) 6= ∅ which are obtained for all
(S+, S−) ∈ P forms a partition of ∆′n. Due to the fact that at any xn ∈
X(S+) ∩X(S−) the only pure NEs induced by xn in the followers’ game
are those in S+, f(xn) = ψ(xn;S+). Since the supremum of a function
defined over a set is equal to the largest of the suprema of that function
over the subsets of such set, we have:

sup
xn∈∆n

f(xn) = max
(S+,S−)∈P :

X(S+)∩X(S−)6=∅

sup
xn∈X(S+)∩X(S−)

ψ(xn;S+).

What remains to show is that the following relationship holds for all
X(S+) ∩X(S−) 6= ∅:

sup
xn∈X(S+)∩X(S−)

ψ(xn;S+) = max
xn∈X(S+)∩X(S−)

ψ(xn;S+).
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Since ψ(xn;S+) is a continuous function (it is the point-wise minimum of
finitely many continuous functions), its supremum over X(S+) ∩ X(S−)

equals its maximum over the closure X(S+) ∩X(S−) of that set. Hence,
the relationship follows due to X(S+) ∩X(S−) = X(S+) ∩X(S−).

In particular, Theorem 4.6 shows that f(xn) is a piecewise function with
a piece for each set X(S+) ∩ X(S−), each of which corresponding to the
(continuous over its domain) piecewise-affine function ψ(xn;S+). It fol-
lows that the only discontinuities of f(xn) (due to which f(xn) may admit
a supremum but not a maximum) are those where, in ∆n, xn transitions
from a set X(S+) ∩X(S−) to another one.

We show how to translate the formula in Theorem 4.6 into an algorithm
by proving the following theorem:

Theorem 4.7. There exists a finite, exponential-time algorithm which com-
putes supxn∈∆n

f(xn) and, whenever supxn∈∆n
f(xn) = maxxn∈∆n f(xn),

also returns a strategy x∗n with f(x∗n) = maxxn∈∆n f(xn).

Proof. The algorithm relies on the expression given in Theorem 4.6. All
pairs (S+, S−) ∈ P can be constructed by enumeration in time exponential
in the size of the instance. 1 In particular, the set P contains 2m

n−1 outcome
configurations, each corresponding to a bi-partition of the outcomes of the
followers’ game into S+ and S− (there are mn−1 such outcomes, due to
having m actions and n− 1 followers).

For every p ∈ F , let us define the following sets, parametric in ε ≥ 0:

Dp(a−n, a
′
p; ε):=

xn ∈ ∆n :
∑
an∈An

Ua−n,an
p xann + ε ≤

∑
an∈An

U
a′−n,an
p xann

with a′−n = (a1, . . . , ap−1, a
′
p, ap+1, . . . , an−1)

 ,

Xc(a−n; ε) :=
⋃
p∈F

 ⋃
a′p∈Ap\{ap}

Dp(a−n, a
′
p; ε)

 ,

X(S−; ε) :=
⋂

a−n∈S−
Xc(a−n; ε).

We can verify whetherX(S+)∩X(S−) 6= ∅ by verifying whether there
exists some ε > 0 such that X(S+) ∩X(S−; ε) 6= ∅. This can be done by

1Recall that the size of a game instance is lower bounded by mn.
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solving the following problem and checking if ε > 0 in its solution:

max
ε,xn

ε

s.t. xn ∈ X(S+) ∩X(S−; ε)
ε ≥ 0
xn ∈ ∆n.

(4.7)

Notice that degenerate sets Dp(a−n, a
′
p) play no role in Problem (4.7). This

is because if Dp(a−n, a
′
p) is degenerate, its constraint reduces to ε ≤ 0 and,

thus, any solution to Problem (4.7) with xn belonging to a degenerate set
Dp(a−n, a

′
p) would achieve ε equal to 0. Thus, ε > 0 can be obtained only

by choosing xn not belonging to a degenerate Dp(a−n, a
′
p). Problem (4.7)

can be cast as an MILP. To see this, observe that each Xc(a−n; ε) can be
expressed as an MILP with a binary variable for each term of the disjunction
which composes it, namely:∑

an∈An

Ua−n,an
p xann + ε ≤

∑
an∈An

U
a′−n,an
p xann +M

a−n,a′p
p z

a−n,a′p
p

∀p ∈ F, a′p ∈ Ap \ {ap},with a′−n = (a1, . . . , a
′
p, . . . , an−1) (4.8a)∑

p∈F

∑
a′p∈Ap\{ap}

1− za−n,a
′
p

p = 1 (4.8b)

z
a−n,a′p
p ∈ {0, 1} ∀p ∈ F, a′p ∈ Ap \ {ap} (4.8c)

xn ∈ ∆n (4.8d)
ε ≥ 0. (4.8e)

In Constraints (4.8), the constantM
a−n,a′p
p := maxan∈An{Ua−n,an

p −Ua′−n,an
p }

is key to deactivate any instance of Constraints (4.8a) when the correspond-
ing z

a−n,a′p
p is equal to 1. The set X(S−; ε) is obtained by simultaneously

imposing Constraints (4.8) for all a−n ∈ S−.
After verifying X(S+) ∩ X(S−) 6= ∅ by solving Problem (4.7), the

value of maxxn∈X(S+)∩X(S−) ψ(xn;S+) can be computed in, at most, expo-
nential time by solving the following MILP:

max
η,xn

η

s.t. η ≤
∑
an∈An

Ua−n,an
n xann ∀a−n ∈ S+

xn ∈ X(S+) ∩X(S−; 0)
η ∈ R
xn ∈ ∆n,

(4.9)
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where the first constraint accounts for the maxmin aspect of the problem.
The largest value of η found over all setsX(S+)∩X(S−) for all (S+, S−) ∈
P corresponds to supxn∈∆n

f(xn).
In the algorithm, to verify whether f(xn) admits maxxn∈∆n f(xn) (and

to compute it if it does) we solve the following problem (rather than the
aforementioned maxxn∈X(S+)∩X(S−) ψ(xn;S+)):

lex–max
ε≥0,xn∈X(S+)∩X(S−;ε)

[ψ(xn;S+); ε]. (4.10)

This problem calls for a pair (xn, ε) with xn ∈ X(S+) ∩ X(S−; ε) such
that, among all pairs which maximize ψ(xn;S+), ε is as large as possible.
This way, in any solution (xn, ε) with ε > 0 we have xn ∈ X(S+) ∩
X(S−) (rather than xn ∈ X(S+) ∩ X(S−)). Since, there, ψ(xn;S+) =
f(xn), we conclude that f(xn) admits a maximum (equal to the value of
the supremum) if ε > 0, whereas it only admits a supremum if ε = 0.

Problem (4.10) can be solved in, at most, exponential time by solving
the following lex-MILP:

max
η,xn,ε

[η ; ε]

s.t. η ≤
∑
an∈An

Ua−n,an
n xann ∀a−n ∈ S+

xn ∈ X(S+) ∩X(S−; ε)
η ∈ R
ε ≥ 0
xn ∈ ∆n,

(4.11)

where η is maximized first, and ε second. In practice, it suffices to solve two
MILPs in sequence: one in which the first objective function is maximized,
and then another one in which the second objective function is maximized
after imposing the first objective to be equal to its optimal value.

Finding an α-Approximate Strategy

For those cases where f(xn) does not admit a maximum, we look for a
strategy x̂n such that, for any given additive loss α > 0, supxn∈∆n

f(xn)−
f(x̂n) ≤ α, i.e., for an (additively) α-approximate strategy x̂n. Its existence
is guaranteed by the following lemma:

Lemma 4.3. Consider the sets X ⊆ Rn, for some n ∈ N, and Y ⊆ R, and
a function f : X → Y with s := supx∈X f(x) satisfying s < ∞. For any
α ∈ (0, s], there exists then an x ∈ X : s− f(x) ≤ α.

67



Chapter 4. Computing SNEs in Normal-Form SGs

Proof. By negating the conclusion, we deduce the existence of some α ∈
(0, s] such that, for every x ∈ X , s− f(x) > α. Then, f(x) < s−α for all
x ∈ X . This implies s = supx∈X f(x) ≤ s− α < s: a contradiction.

After running the algorithm we outlined in the proof of Theorem 4.6 to
compute the value of the supremum, an α-approximate strategy x̂n can be
computed a posteriori thanks to the following result:

Theorem 4.8. Assume that f(xn) does not admit a maximum over ∆n and
that, according to the formula in Theorem 4.6, s := supxn∈∆n

f(xn) is
attained at some outcome configuration (S+, S−). Then, an α-approximate
strategy x̂n can be computed for any α > 0 in at most exponential time by
solving the following MILP:

max
ε,xn

ε

s.t.
∑
an∈An

Ua−n,an
n xann ≥ s− α ∀a−n ∈ S+

xn ∈ X(S+) ∩X(S−; ε)
ε ≥ 0
xn ∈ ∆n.

(4.12)

Proof. Let x∗n ∈ X(S+)∩X(S−) be the strategy where the supremum is at-
tained according to the formula in Theorem 4.6, namely, whereψ(x∗n, S

+) =
maxxn∈X(S+)∩X(S−) ψ(xn;S+) = s. Problem (4.12) calls for a solution xn
of value at least s − α (thus, for an α-approximate strategy) belonging to
X(S+) ∩X(S−; ε) with ε as large as possible, whose existence is guaran-
teed by Lemma 4.3. Let (x̂n, ε̂) be an optimal solution to Problem (4.12).
If ε̂ > 0, x̂n ∈ X(S+)∩X(S−) (rather than x̂n ∈ X(S+)∩X(S−)). Thus,
f(xn) is continuous at xn = x̂n, implying ψ(xn;S+) = f(xn). Therefore,
by playing x̂n the leader achieves a utility of at least s− α.

Outline of the Explicit Enumeration Algorithm

The complete enumerative algorithm is detailed in Algorithm 4.1. In the
pseudocode, CHECKEMPTYNESS(S+, S−) is a subroutine which looks for
a value of ε ≥ 0 which is optimal for Problem (4.7), while SOLVE-LEX-
MILP(S+, S−) is another subroutine which solves Problem (4.11). Note
that Problem (4.7) may be infeasible. If this is the case, we assume that
CHECKEMPTYNESS(S+, S−) returns ε = 0, so that the outcome configu-
ration (S+, S−) is discarded. Let us also observe that (in Algorithm 4.1)
Problem (4.11) cannot be infeasible, as it is always solved for an out-
come configuration (S+, S−) whose corresponding Problem (4.7) is fea-
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sible. Due to the lexicographic nature of the algorithm, f(xn) admits a
maximum if and only if the algorithm returns a solution with best.ε∗ > 0.
If best.ε∗ = 0, x∗n is just a strategy where supxn∈∆n

f(xn) is attained (in
the sense of Theorem 4.6). In the latter case, an α-approximate strategy is
found by invoking SOLVE-MILP-APPROX(best.S+, best.S−, best_value),
which solves Problem (4.12) on the configuration (best.S+, best.S−) on
which the supremum has been found.

Algorithm 4.1 Explicit Enumeration
1: function EXPLICIT ENUMERATION
2: best← nil
3: best_val← −∞
4: for all S+ ⊆ AF do
5: S− ← AF \ S+

6: (ε, ·)← CHECKEMPTYNESS(S+, S−) . Solve MILP Problem (4.7)
7: if ε > 0 then
8: (η, ε∗, x∗n)← SOLVE-LEX-MILP(S+, S−) . Solve lex-MILP Problem (4.11)
9: if η > best_val then

10: best← (S+, S−, x∗n, ε
∗)

11: best_val← η
12: end if
13: end if
14: end for
15: if best.ε∗ > 0 then
16: x̂n ← best.xn
17: else
18: x̂n ← SOLVE-MILP-APPROX(best.S+, best.S−, best_val) . Solve MILP Problem (4.12)
19: end if
20: return best_val, best.x∗n, x̂n
21: end function

4.4.2 On The Polynomial Representability of WSPNEs

The algorithm that we have presented is based on solving Problem 4.11 a
number of times, once per (S+, S−) ∈ P . As Problem 4.11 is an MILP,
its solutions can be computed by a standard branch-and-bound algorithm
based on solving, in an enumeration tree, a set of linear programming relax-
ations of Problem 4.11 in which the value of (some of) its binary variables is
fixed to either 0 or 1. We remark that both Problem 4.11 and its relaxations
with fixed binary variables contain a polynomial (in the game size) number
of variables and constraints. Moreover, all the coefficients in the problem
are polynomially bounded, as they are produced by adding/subtracting the
players’ payoffs. Since the extreme solution of an LP can be encoded by a
number of bits which is also bounded by a polynomial function of the in-
stance size (see Lemma 8.2, page 373, in (Bertsimas and Tsitsiklis, 1997)),
we have that any xn which constitutes a WSPNE can be succinctly encoded
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by a polynomial number of bits. This observation completes the proof of
Theorem 4.2, showing that WSPNE belongs to NP.

4.4.3 Branch-and-Bound Algorithm

As it is clear, computing supxn∈∆n
f(xn) with the enumerative algorithm

can be impractical for any game of interesting size, as it requires the explicit
enumeration of all the outcome configurations of a game—many of which
will, incidentally, yield empty regions X(S+) ∩ X(S−). A more efficient
algorithm, albeit one still running in exponential time in the worst-case, can
be designed by relying on a branch-and-bound scheme.

Computing supxn∈∆n
f(xn)

Rather than defining S− = AF \ S+, assume now S− ⊆ AF \ S+. In this
case, we call the corresponding pair (S+, S−) a relaxed outcome configura-
tion. Starting from any followers’ profile a−n ∈ AF with X(a−n) 6= ∅, the
algorithm constructs and explores, through a sequence of branching opera-
tions, two search trees, whose nodes correspond to relaxed outcome config-
urations. One tree accounts for the case where a−n is an NE and contains
the relaxed outcome configuration (S+, S−) = ({a−n},∅) as root node.
The other tree accounts for the case where a−n is not an NE, featuring as
root node the relaxed outcome configuration (S+, S−) = (∅, {a−n}).

If S− ⊂ AF \ S+ (which can often be the case when relaxed outcome
configurations are adopted), solving maxxn∈X(S+)∩X(S−) ψ(xn;S+) might
not give a strategy xn for which the only pure NEs in the followers’ game
it induces are those in S+, even if xn ∈ X(S+) ∩X(S−) (rather than xn ∈
X(S+) ∩X(S−)). This is because, due to S+ ∪ S− ⊂ AF , there might be
another action profile, say a′−n ∈ AF \(S+∪S−), providing the leader with
a utility strictly smaller than that corresponding to all the action profiles
in S+. Since, if this is the case, the followers would respond to xn by play-
ing a′−n rather than any of the profiles in S+, maxxn∈X(S+)∩X(S−) ψ(xn;S+)

could be strictly larger than supxn∈∆n
f(xn), thus not being a valid candi-

date for the computation of the latter.
In order to detect whether one such a′−n exists, it suffices to carry out

a feasibility check (on xn). This corresponds to looking for a pure NE in
the followers’ game different from those in S− (which may become NEs
on bd(X(S+) ∩ X(S−)) which minimizes the leader’s utility—this can
be done by inspection in O(mn−1). If the feasibility check returns some
a′−n /∈ S+, the branch-and-bound tree is expanded by performing a branch-
ing operation. Two nodes are introduced: a left node with (S+

L , S
−
L ) where
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S+
L = S+ ∪ {a′−n} and S−L = S− (which accounts for the case where
a′−n is a pure NE), and a right node with (S+

R , S
−
R ) where S+

R = S+ and
S−R = S− ∪ {a′−n} (which accounts for the case where a′−n is not a pure
NE). If, differently, a′−n ∈ S+, then ψ(xn;S+) represents a valid candidate
for the computation of supxn∈∆n

f(xn) and, thus, no further branching is
needed (and (S+, S−) is a leaf node).

Proposition 4.7. Solving maxxn∈X(S+)∩X(S−) ψ(xn;S+) for some relaxed
outcome configuration (S+, S−) gives an upper bound on the leader’s util-
ity under the assumption that all followers’ action profiles in S+ constitute
an NE and those in S− do not.

Proof. Due to (S+, S−) being a relaxed outcome configuration, there could
be outcomes not in S+ which are NEs for some xn ∈ X(S+) ∩ X(S−).
Due to ψ(xn;S+) being defined as mina−n∈S+

∑
an∈An U

a−n,an
n xann , ignor-

ing any such NE at any xn ∈ X(S+) ∩ X(S−) can only result in the min
operator considering fewer outcomes a−n, thus overestimating ψ(xn;S+)
and, ultimately, f(xn). Thus, the claim follows.

As a consequence of Proposition 4.7, optimal values obtained when
computing maxxn∈X(S+)∩X(S−) ψ(xn;S+) throughout the search tree can
be used as bounds as in a standard branch-and-bound method. Given that
maxxn∈X(S+)∩X(S−) ψ(xn;S+) is not well-defined for nodes with S+ = ∅,
for them we solve a restriction of Problem (4.1) with constraints imposing
that all the followers’ action profiles in S− are not NEs. We employ the
following formulation, introduced directly for the lexicographic case:

max
y,xn,ε

[∑
a∈A

Ua−n,an
n ya−nxann ; ε

]
(4.13a)

s.t.
∑

a−n∈AF

ya−n = 1 (4.13b)

ya−n
∑
an∈An

(Ua−n,an
p − Ua′−n,an

p )xann ≥ 0

∀p ∈ F, a−n ∈ AF , a′p ∈ Ap \ {ap}
with a′−n = (a1, . . . , ap−1, a

′
p, ap+1, . . . , an−1) (4.13c)

ya−n ∈ {0, 1} ∀a−n ∈ AF (4.13d)
xn ∈ ∆n (4.13e)
xn ∈ X(S−; ε). (4.13f)
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The problem can be turned into a lex-MILP by linearising each bilinear
product ya−nxann by means of McCormick’s envelope constraints and by
restating Constraint (4.13f) as done in the MILP Constraints (4.8).

Finding an α-Approximate Strategy

In the context of the branch-and-bound algorithm, an α-approximate strat-
egy x̂n cannot be found by just relying on the a posteriori procedure out-
lined in Theorem 4.8. This is because when (S+, S−) is a relaxed outcome
configuration there might be an action profile a′−n ∈ AF \ (S+ ∪ S−) (i.e.,
one not accounted for in the relaxed outcome configuration) which not only
is an NE in the followers’ game induced by x̂n, but which also provides the
leader with a utility strictly smaller than ψ(x̂n;S+). Then, the strategy x̂n
found with the procedure of Theorem 4.8 may return a utility arbitrarily
smaller than the supremum s and, in particular, smaller than s− α.

To cope with this shortcoming and establish whether such an a′−n ex-
ists, we first compute x̂n according to the a posteriori procedure of Theo-
rem 4.8 and, then, perform a feasibility check. If we obtain an action profile
a′−n ∈ S+, x̂n is then an α-approximate strategy and the algorithm halts. If,
differently, we obtain some a′−n /∈ S+ for which the leader obtains a utility
strictly smaller than ψ(x̂n;S+), we carry out a new branching operation,
creating a left and a right child node in which a′−n is added to, respectively,
S+ and S−. This procedure is then reapplied on both nodes, recursively,
until a strategy x̂n for which the feasibility check returns an action profile
in S+ is found. Such a strategy is, by construction, α-approximate.

Observe that, due to the correctness of the algorithm for the computation
of the supremum, there cannot be at x∗n an NE a′−n worse than the worst-
case one in S+. If a new outcome a′−n becomes the worst-case NE at x̂n,
due to the fact that it is not a worst-case NE at x∗n there must be a strategy
x̃n which is a convex combination of x∗n and x̂n where either a′−n is not an
NE or, if it is, it yields a leader’s utility not worse than that obtained with
the worst-case NE in S+. An α-approximate strategy is thus guaranteed to
be found on the segment joining x̃n and x∗n by applying Lemma 4.3 with X
equal to that segment. Thus, the algorithm is guaranteed to converge.

Outline of the Branch-and-Bound Algorithm

The complete outline of the branch-and-bound algorithm is detailed in Al-
gorithm 4.2. F is the frontier of the two search trees, containing all nodes
which have yet to be explored. INITIALIZE() is a subprocedure which cre-
ates the root nodes of the two search trees, while PICK() extracts fromF the
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Algorithm 4.2 Branch-and-Bound
1: function BRANCH-AND-BOUND
2: best← nil, lb← −∞, ub←∞
3: F ← INITIALIZE()
4: while F 6= ∅ do
5: node← F .PICK()
6: if node.ub > lb then
7: a−n ← FEASIBILITYCHECK(node.x∗n, node.S

−)
8: if a−n ∈ node.S+ then
9: best← (node.S+, node.S−, node.x∗n, node.ε

∗)
10: lb← node.ub
11: else
12: S+

L = node.S+ ∪ {a−n}
13: F ← F + CREATENODE(S+

L , node.S
−)

14: S−R = node.S− ∪ {a−n}
15: F ← F + CREATENODE(node.S+, S−R )
16: end if
17: ub← max

node∈F
{node.ub}

18: end if
19: end while
20: if best.ε∗ > 0 then
21: x̂n ← best.x∗n
22: else
23: x̂n ← SOLVE-MILP-APPROX(best.S+, best.S−, best_val) . Solve MILP Problem (4.12)
24: a′−n ← FEASIBILITYCHECK(x̂n, best.S−)

25: if a′−n /∈ best.S+ then
26: x̂n ← BRANCH-AND-BOUND-APPROX(best.S+, best.S−, best.x∗n)
27: end if
28: end if
29: return ub, best.x∗n, x̂n
30: end function

Algorithm 4.3 CreateNode
1: function CREATENODE(S+, S−)
2: (ε, ·)← CHECKEMPTYNESS(S+, S−) . Solve MILP Problem (4.7)
3: if ε > 0 then
4: node← EMPTYNODE()
5: node.S+ ← S+

6: node.S− ← S−

7: if S+ = ∅ then
8: (η, ε∗, x∗n)← SOLVE-LEX-MILP-OPT(S+, S−) . Solve lex-MILP Problem (4.13)
9: else

10: (η, ε∗, x∗n)← SOLVE-LEX-MILP(S+, S−) . Solve lex-MILP Problem (4.11)
11: end if
12: node.ub← η
13: node.x∗n ← x∗n
14: node.ε∗ ← ε∗

15: return node
16: end if
17: return ∅
18: end function
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next node to be explored. FEASIBILITYCHECK(xn, S
−) performs the fea-

sibility check operation for the leader’s strategy xn, looking for the worst-
case pure NE in the game induced by xn and ignoring any outcome in S−.
CREATENODE(S+, S−) (detailed in Algorithm 4.3) adds a new node to F ,
also computing its upper bound and the corresponding values of xn and ε.
More specifically, CREATENODE(S+, S−) performs the same operations of
a generic step of the enumerative procedure in Algorithm 4.1 for a given S+

and S−, with the only difference that, here, we invoke SOLVE-LEX-MILP-
OPT(S+, S−) when S+ = ∅ to solve Problem (4.13), while we invoke
SOLVE-LEX-MILP(S+, S−) to solve Problem (4.11) if S+ 6= ∅. In the last
part of the algorithm, SOLVE-MILP-APPROX(best.S+, best.S−, best_val)
attempts to compute an α-approximate strategy as done in Algorithm 4.1.
If the feasibility check fails for the returned strategy x̂n, then the sub-
procedure BRANCH-AND-BOUND-APPROX(best.S+, best.S−, best.x∗n) is
run, executing a second branch-and-bound method, as described in Subsec-
tion 4.4.3, until an α-approximate solution is found.
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CHAPTER5
Computing Stackelberg-Nash Equilibria in

Stackelberg Polymatrix Games

In this chapter and the following Chapter 6, we study the problem of com-
puting SPNEs in succinct SGs with a single leader and multiple followers.
Specifically, we focus here on polymatrix games. As for normal-form SGs,
we restrict ourselves to the case in which the followers are only allowed
to play pure strategies, since the unrestricted problem is computationally
intractable even with only two followers (Basilico et al., 2016, 2017a).

First, in Section 5.1, we introduce two classes of Stackelberg polyma-
trix games which allow us to characterize the computational complexity of
finding SPNEs in polymatrix games. We also show that these two classes
of games are intimately connected with two-player Bayesian Stackelberg
games, and, thus, our computational results can be directly extended to the
Bayesian setting. Section 5.2 formally defines the computational problems
addressed in the rest of the chapter. Finally, Section 5.3 presents our com-
plexity results for Stackelberg polymatrix games, while Section 5.4 pro-
vides exact algorithms for finding SPNEs in such games.
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5.1 Two Relevant Classes of Stackelberg Polymatrix Games

We introduce two classes of Stackelberg polymatrix games (SPGs) which
are crucial for providing a complete characterization of the computational
complexity of finding SPNEs in polymatrix games. Moreover, these classes
of games are of interest in their own, as they are connected with particular
Bayesian (normal-form) SGs and security games.

Definition 5.1 (One-Level Tree SPG). An SPG with a single leader and
multiple followers Γ = (N,A, U) is a one-level tree Stackelberg polyma-
trix game (OLTSPG) if, for every pair p, q ∈ F , it holds Up,q = Uq,p = 0.

Intuitively, in an OLTSPG the followers play only against the leader,
while they do not play against each other (this is encoded by letting the
follower-follower utility matrices be identically equal to zero). Thus, while
a general SPG can be graphically depicted as a complete graph whose ver-
tices represent players, the graphical representation of an OLTSPG is a tree
with only one level, in which the root node corresponds to the leader and
the leaves are associated to the followers. Moreover, we also introduce the
following subclass of OLTSPGs:

Definition 5.2 (Star SPG). An OLTSPG Γ = (N,A, U) is a star Stackel-
berg polymatrix game (SSPG) if, for every p ∈ F , it holds mp = m and
Un,p = Un, wherem is the number of actions available to each follower and
Un ∈ Qmn×m is the leader’s utility matrix when playing against a follower.

An SSPG is a particular OLTSPG in which the leader’s payoffs are al-
ways the same, regardless of the follower she is playing against.

Notice that OLTSPGs and SSPGs are closely connected with many se-
curity scenarios. Indeed, in security games with multiple attackers (i.e.,
multiple followers), it is often the case that the attackers do not influence
each other’s payoffs, since they have different preferences over the targets,
as it is the case, e.g., when some groups of criminals attack different spots in
the same city. This scenario corresponds to the OLTSPG model. Moreover,
SSPGs can represent situations in which the payoffs of the defender (i.e.,
the leader) are not affected by the identity of the attacker who performed
the attack, as, from the defender’s perspective, it may be more important
protecting the targets than knowing who committed the attack.

5.1.1 Connection with Bayesian Normal-Form SGs

Next, we show the key connection between our classes of SPGs and Bayesian
SGs with a single leader and a single follower, where the latter can be of dif-
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ferent types, while the former has only one type. Specifically, OLTSPGs are
equivalent to what we define as Bayesian SGs with interdependent types, in
which the leader’s utility may depend on the follower’s type. Furthermore,
SPGs are equivalent to what we call Bayesian SGs with independent types,
where the leader’s utility does not depend on the follower’s type. Formally:

Definition 5.3 (Bayesian SG with Interdependent Types). A Bayesian SG
with interdependent types (BSG-INT) is a Bayesian SG with a single leader
and a single follower Γ = (N,Θ,Ω, A, U) in which the leader has a single
type, i.e., |Θ`| = 1, and, thus, we can define Θ := Θf , Ω ∈ ∆(Θf ), A :=

×θf∈Θf
Af,θf × A`, and U := {Up,θf}p∈N,θf∈Θf with Up,θf ∈ Q|Af,θf |×|A`|.

Definition 5.4 (Bayesian SG with Independent Types). A Bayesian SG with
independent types (BSG-IND) is an instance Γ = (N,Θ,Ω, A, U) of BSG-
INT in which, for every follower’s type θf ∈ Θf , it holds Af,θf = Af and
U`,θf = U`, where Af is the finite set of follower’s actions (common to
all the follower’s types) and U` ∈ Q|Af |×|A`| is the leader’s utility matrix
(which does not depend on the follower’s type).

The following theorem, whose formal proof follows from (Howson Jr
and Rosenthal, 1974), shows the connection between our classes of SPGs
and Bayesian SGs with interdependent and independent types.

Theorem 5.1. There exists a polynomial-time-computable function which
maps any instance of BSG-INT (respectively, BSG-IND) to an OLTSPG
(respectively, SSPG) and vice versa, where:

• each follower’s type θf ∈ Θf in the Bayesian SG corresponds to a
follower p ∈ F in the SPG, i.e., Af,θf = Ap and Uf,θf = Up,n;

• the leader ` in the Bayesian SG corresponds to the leader n in the
SPG, i.e., A` = An and Un,p = U>`,θf (respectively, U` = U>n );

such that, given any mixed strategy profile, the expected utility of each
player in the OLTSPG (respectively, SSPG) and the corresponding player
or follower’s type in the BSG-INT (respectively, BSG-IND) are the same.

We remark that, given the equivalences established in Theorem 5.1, all
the computational results (including approximation results) that hold for
OLTSPGs can be directly extended to BSGs-INT, while the results regard-
ing SSPGs are also valid for BSGs-IND, and vice versa. As a conse-
quence, computing an SSPNE in OLTSPGs is already know to be Poly-
APX-complete (Letchford et al., 2009).
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5.2 The Problem and Its Formulation

As for normal-form SGs, we let AF := ×p∈F Ap be the set of follow-
ers’ action profiles, i.e., all the collections of followers’ actions a−n =
(a1, . . . , an−1). Then, we can formally define the problem of computing an
SSPNE in an n-player SPGs as the following bilevel problem:

max
xn∈∆n

max
a−n∈AF

∑
p∈F

∑
an∈An

Uanap
n,p xann

s.t. ap ∈ arg max
ap∈Ap

∑
q 6=p∈N

Uapaq
p,q +

∑
an∈An

Uapan
p,n xann ∀p ∈ F.

(5.1)

Notice that the objective in Problem (5.1) is the leader’s expected util-
ity when the followers play the actions prescribed by a−n and the leader
plays the mixed strategy xn. Moreover, the arg max constraints require
that each follower’s action ap be a best response, thus guaranteeing that
a−n = (a1, . . . , an−1) be a pure NE for the given xn. In particular, the first
term in the arg max constraint accounts for follower p’s utility when play-
ing action ap against the other followers q 6= p ∈ F , while the second term
is the utility obtained by playing against the leader.

Analogously, computing a WSPNE in an n-player SPG amounts to solve
the following bilevel problem:

sup
xn∈∆n

min
a−n∈AF

∑
p∈F

∑
an∈An

Uanap
n,p xann

s.t. ap ∈ arg max
ap∈Ap

∑
q 6=p∈N

Uapaq
p,q +

∑
an∈An

Uapan
p,n xann ∀p ∈ F.

(5.2)

We remark that the sup operator in Problem (5.2) is needed since, as
it is the case in general normal-form SGs, the problem may not admit a
maximum (see also Proposition 4.1).

Notice that, when focusing on the special case of OLTSPGs, the first
term in the arg max constraint can be removed, as Up,q = 0 for every pair of
followers p 6= q ∈ F . As a result, a−n ∈ AF is a pure NE in the followers’
game resulting from the leader’s mixed-strategy commitment xn ∈ ∆n if
and only if each follower is playing a best response to xn in the two-player
normal-form game played against the leader. Thus, since the followers’
utilities in such games are liner functions of xn (specifically, for p ∈ F ,
it is equal to

∑
an∈An U

apan
p,n xann ), the restriction to followers playing pure

strategies is without loss of generality when working with OLTSPGs.
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5.3 Computational Complexity

In Subsection 5.3.1, we show that the problem of computing a WSPNE is
Poly-APX-complete, even if we restrict the attention to OLTSPGs. 1 More-
over, given the connection between OLTSPGs and BSGs-INT, established
in Theorem 5.1, the same result also holds for the latter. Then, in Subsec-
tion 5.3.2, we prove that, when the number of players in non-fixed, finding
an SSPNE is not in Poly-APX unless P = NP, while the same holds for
WSPNEs even with a fixed number of players. This is in contrast with
the case of n-player normal-form SGs, in which the problem of finding
an SSPNE can be solved in polynomial time. We remark that, when the
number of players n in an SPG is fixed, an SSPNE can be computed in
polynomial time by adapting the algorithm proposed in Theorem 4.1.

5.3.1 Approximating a WSPNE in OLTSPGs

We study the computational complexity of approximating a WSPNE. Our
results rely on an approximation-preserving reduction from the Maximum
Clique problem, which is Poly-APX-hard (Zuckerman, 2006).

Definition 5.5 (MAX-CLIQUE). Given an undirected graph G := (V,E),
find a maximum clique of G, i.e., a complete subgraph with maximum size.

Theorem 5.2. Computing a WSPNE in SSPGs is Poly-APX-hard.

Proof. First, we provide a polynomial reduction from MAX-CLIQUE to
the problem of finding a WSPNE, reducing an arbitrary instance of MAX-
CLIQUE to an SSPG. Then, we prove that the correspondence among in-
stances is correct and the reduction is approximation-preserving. Specifi-
cally, we show that the graph G defined by MAX-CLIQUE admits a clique
of size J if and only if the leader gets a utility of J in a WSPNE.

Mapping. Letting V := {v1, . . . , v|V |}, for every vertex vp ∈ V we
introduce a follower p, i.e., N = F ∪ {n} with F = {1, . . . , |V |} and
n = |V | + 1. Each follower has two actions, i.e., Ap = {χ0, χ1} for all
p ∈ F , while the leader has an action per vertex, i.e., An = {1, . . . , |V |}.
Players’ utilities are defined as follows:

• Uχ0an
p,n = 1 + |V |2 for every p ∈ F and an ∈ An with (vp, van) /∈ E;

• Uχ0an
p,n = 1 for every p ∈ F and an ∈ An with (vp, van) ∈ E;

• Uχ1an
p,n = |V | for every p ∈ F and an ∈ An with an = p;

1Computing an SSPNE is already known to be Poly-APX-complete in OLTSPGs (Letchford et al., 2009).
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• Uχ1an
p,n = 0 for every p ∈ F and an ∈ An with an 6= p;

• Uanχ0
n = 0 and Uanχ1

n = 1 for all an ∈ An.

If. Suppose that the graph G admits a clique C ⊆ V of size J . W.l.o.g.,
we can assume J < |V |, since instances with a maximum clique of size
|V | can be safely ruled out as we can check if the graph is complete in
polynomial time. Consider a leader’s mixed strategy such that each action
an ∈ An with van ∈ C is played with probability equal to 1

J
. Then, each

follower p ∈ F with vp ∈ C plays χ1: in fact, by playing χ1, they get
a utility of |V |

J
> 1, while by playing χ0 they can only get 1, since no

an ∈ An with (vp, van) /∈ E is ever played by the leader, given that C is a
clique. Therefore, the leader’s utility is |C| = J by playing such strategy.

Only if. Suppose that, in a WSPNE of the SSPG, the leader gets a
utility of J and, thus, given the definition of the game, there are exactly
J followers who play action χ1. Let C be the subset of vertices vp such
that follower p plays action χ1: we prove that C is a clique. In order for
follower p to play χ1 instead of χ0, the leader must play action an = p with
probability greater than or equal to 1

|V | , otherwise the follower would get a
higher utility by playing χ0. Moreover, the leader cannot play any action
an ∈ An such that (vp, van) /∈ E with probability at least 1

|V | , because
otherwise the follower would play χ0, getting a utility greater than or equal
to 1 + 1

|V | · |V |2 = 1 + |V |, which is strictly greater than |V |, i.e., the
maximum utility the leader can get by playing action χ1. Thus, the leader
must play all the J actions an = p such that vp ∈ C with probability at least

1
|V | , and there is no pair of vertices vp, van ∈ C such that (vp, van) /∈ E. So,
the vertices in C are completely connected, and C is a clique of size J .

The reduction is approximation-preserving since the leader’s utility co-
incides with the cardinality of the clique. Thus, given that MAX-CLIQUE
is Poly-APX-hard, the result follows. Notice that the reduction works in
both the strong SPNE and the weak SPNE cases, as there is no follower
who is indifferent among multiple best responses.

Next, we provide a polynomial-time approximation algorithm for the
WSPNE finding problem guaranteeing an approximation factor polynomial
in the game size, thus showing that the problem is in the Poly-APX class.

Theorem 5.3. Computing a WSPNE in OLTSPGs is in Poly-APX.

Proof. To prove the result, we provide an algorithm A working as follows.
First, A makes the leader play a two-player normal-form SG against each
follower independently. Let U∗n,p be the utility the leader gets in the game
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played against follower p ∈ F . Then, the algorithm selects the leader’s
strategy which is played against a follower p such that U∗n,p is maximum.
The utility the leader gets adopting the strategy computed by means of al-
gorithmA is equal to UAPX

n ≥ maxp∈F U
∗
n,p, while the utility she would get

in a WSPNE is equal to UOPT
n ≤ (n− 1) ·maxp∈F U

∗
n,p. Thus, algorithm A

guarantees an approximation factor equal to

UAPX
n

UOPT
n

≥ maxp∈F U
∗
n,p

(n− 1) ·maxp∈F U∗n,p
=

1

n− 1
=

1

O(n)
.

This concludes the proof.

The next result directly follows from Theorems 5.2 and 5.3.

Theorem 5.4. Computing a WSPNE in OLTSPGs is Poly-APX-complete.

5.3.2 Inapproximability of SPNEs in General SPGs

In the previous subsection, we analyzed the approximation complexity of
finding equilibria in the specific setting of OLTSPGs. Now, we investigate
the approximability of computing an S/WSPNE in general SPGs.

We provide two inapproximability results. The first one is for the prob-
lem of computing an SSPNE in general SPGs with a non-fixed number of
players, and it relies on a reduction from 3-SAT (see Definition 4.3).

Theorem 5.5. The problem of computing an SSPNE in SPGs is not in Poly-
APX unless P = NP.

Proof. We provide a reduction from 3-SAT.
Mapping. Given a 3-SAT instance, i.e., a set V := {v1, . . . , v|V |} of

variables and a set of three-literal clauses C := {φ1, . . . , φ|C|}, we build
an SPG with n = |C| + 1 players, as follows. The set of players is N =
F ∪ {n}, where the followers in F = {1, . . . , |C|} are associated with the
clauses in C, i.e., follower p ∈ F corresponds to φp ∈ C. The leader
(player n) has an action for each variable in V , plus an additional one, i.e.,
An = {1, . . . , |V |, w} (where w = |V | + 1). On the other hand, each
follower has only four actions, namely Ap = {χ0, χ1, χ2, χ3} for every
p ∈ F . For any clause φp ∈ C, with φp = l1 ∨ l2 ∨ l3, the payoffs of the
corresponding follower p are so defined:

• Uχian
p,n = |V |+ 1 for every i ∈ {1, 2, 3} and an ∈ An with van = v(li)

and li positive (recall that v(li) denotes the variable of li);

• Uχian
p,n = 0 for every i ∈ {1, 2, 3} and an ∈ An such that van 6= v(li)

and li is positive;
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• Uχian
p,n = 0 for every i ∈ {1, 2, 3} and an ∈ An such that van = v(li)

and li is negative;

• Uχian
p,n = |V |+1

|V | for every i ∈ {1, 2, 3} and an ∈ An such that van 6=
v(li) and li is negative;

• Uχ0an
p,n = 0 for every an ∈ An;

• Uapaq
p,q = 0 for ap ∈ Ap \ {χ0} and aq ∈ Aq, for every q ∈ F \ {p};

• Uχ0aq
p,q = 1

|C|−1
for aq ∈ Aq \ {χ0}, for every q ∈ F \ {p};

• Uχ0χ0
p,q = |V |+ 1 for every q ∈ F \ {p};

The leader’s payoffs are defined as follows:

• Uanap
n,p = 1

|C| for every an ∈ An, ap ∈ Ap \ {χ0}, and p ∈ F ;

• Uanχ0
n,p = ε

|C| for every an ∈ An;

where ε > 0 is an arbitrarily small positive constant. In the following, for
the ease of presentation and with abuse of notation, we define Uapxn

p,n as
the utility follower p ∈ F expects to obtain by playing against the leader,
when the latter plays strategy xn ∈ ∆n, i.e., Uapxn

p,n =
∑

an∈An U
apan
p,n xann .

Furthermore, given a truth assignment to the variables T : V → {0, 1}, let
us define X(T ) as the set of leader’s strategies xn ∈ ∆n such that xann >

1
|V |+1

if T (van) = 1, while xann < 1
|V |+1

whenever T (van) = 0. Clearly,
no matter the truth assignment T , the set X(T ) is always non-empty, as
one can make the probabilities in the strategy xn sum up to one by properly
choosing xwn . On the other hand, given a leader’s strategy xn ∈ ∆n, we
define T xn as the truth assignment in which T xn(van) = 1 if xann > 1

|V |+1
,

while T xn(van) = 0 whenever xann < 1
|V |+1

(the case xann = 1
|V |+1

deserves a
different treatment, although the proof can be easily extended to take it into
consideration, we omit it for simplicity). W.l.o.g., let us assume |C| ≥ 3.

Before going into the core of the proof, we prove the following:

Lemma 5.1. For any leader’s strategy xn ∈ ∆n and follower p ∈ F , there
exists an action ap ∈ Ap \ {χ0} such that Uapxn

p,n > 1 if and only if φp
evaluates to true under T xn .

Proof. Suppose that T xn makes φp = l1∨ l2∨ l3 true, and let li be one of the
literals that evaluate to true in φp (at least one must exist). Letting an ∈ An
be such that van = v(li), given the definition of T xn , xann > 1

|V |+1
if li is

positive, whereas xann < 1
|V |+1

when li is negative. Two cases are possible.
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If li is positive, then Uχixn
p,n = xann · (|V |+ 1) > 1, while, if li is negative we

have Uχixn
p,n = (1− xann ) · |V |+1

|V | > 1. Thus, χi is the desired action.
Now, let us prove the other way around. Suppose ap ∈ Ap \ {χ0} is

such that Uapxn
p,n > 1 and consider the case in which ap = χi and literal

li is positive in φp (similar arguments also hold for the case where li is
negative). Letting an ∈ An be such that van = v(li), it easily follows that
xann · (|V | + 1) > 1, implying that xann > 1

|V |+1
. Thus, given the definition

of T xn , φp must evaluate to true.

Yes instance. Suppose that the given 3-SAT instance has a yes answer,
i.e., there exists a truth assignment T that satisfies all the clauses. We prove
that, if this is the case, then in an SSPNE the leader gets a utility of 1.
Consider a leader’s strategy xn ∈ X(T ) and a followers’ action profile
a−n ∈ AF where follower p’s action ap is such that ap = χi and literal
li of φp evaluates to true under truth assignment T . Clearly, the action
profile is always well-defined since T satisfies all the clauses. Moreover,
when there are many possible choices for action ap, we assume that the
follower plays the one providing her with the maximum utility given xn.
Now, we prove that a−n is a pure NE in the followers’ game resulting from
the leader’s commitment to xn. Let p ∈ F be a follower. Clearly, the
follower’s expected utility in action profile a−n is Uapxn

p,n since she gets 0
by playing against the other followers. The follower could deviate from
ap in two different ways, either by playing an action corresponding to a
different literal in the clause or by playing χ0. In the first case, the follower
cannot get more than what she gets by playing ap, given the definition of
ap. In the second case, the follower gets 1

|C|−1
· (|C| − 1) = 1, which is the

utility obtained by playing against the other followers. Observing that T is
actually the same as T xn and using Lemma 5.1, we conclude thatUapxn

p,n > 1
and no follower has an incentive to deviate from a−n, which makes it a pure
NE given xn. Finally, since we are in the strong case, the followers always
play a−n since it is the NE maximizing the leader’s utility, as, in it, the
leader gains |C| · 1

|C| = 1, which is her maximum payoff. Moreover, for the
same reason, the leader’s utility in an SSPNE is 1.

No instance. Suppose the 3-SAT instance has a no answer, i.e., there is
no truth assignment which satisfies all the clauses. First, we prove that the
followers’ action profile a−n ∈ AF in which all the followers play χ0 is a
pure NE, no matter the leader’s strategy xn. In a−n, every follower gets a
utility of (|C|−1)·(|V |+1) which does not depend on the leader’s strategy.
Now, suppose that follower p ∈ F deviates from a−n by playing some
action ap 6= χ0, then she would getUapxn

p,n ≤ |V |+1, which is clearly strictly
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less than |V | · (|C| − 1) given the assumption s ≥ 3. Hence, a−n is always
a pure NE in the followers’ game and it provides the leader with a utility of
|C|· ε|C| = ε. Finally, we show that, for all leader’s strategies xn ∈ ∆n, there
cannot be other NEs in the followers’ game, and, thus, a−n is the unique
NE the followers can play. Let us start proving that all the action profiles
in which some followers play ap 6= χ0 and some others play χ0 cannot be
NEs. Let p ∈ F be a follower such that ap 6= χ0. Clearly, p has an incentive
to deviate by playing χ0 since Uapxn

p,n ≤ |V |+ 1 < ]i · 1
|C|−1

+ ]0 · (|V |+ 1)

given that ]0 ≥ 1, where ]i is the number of followers other than p who
are playing ap 6= χ0 and ]0 is the number of followers playing χ0. In
conclusion, it remains to prove that the followers’ action profile in which
they all play actions ap 6= χ0 cannot be an NE. Let p ∈ F be a follower such
that φp is false under truth assignment T xn (she must exist, as, otherwise,
the 3-SAT instance would have answer yes). Clearly, p has an incentive to
deviate playing χ0 since, using Lemma 5.1, Uapxn

p,n < 1 = (|C| − 1) · 1
|C|−1

.
Therefore, in an SSPNE, the leader must get a utility of ε.

Contradiction. Suppose there exists a polynomial-time approximation
algorithm A with approximation factor 1

poly(n)
, where poly(n) is any poly-

nomial function of n. Moreover, let us fix ε = 1
2n

(notice that the poly-
nomiality of the reduction is preserved, as ε can still be represented with
a number of bits polynomial in n). If the 3-SAT instance has answer yes,
then A, when applied to the corresponding polymatrix game, must return
a solution with value greater than or equal to 1

poly(n)
> ε. Instead, if the

answer is no, A must return a solution of value ε
poly(n)

< ε. Thus, the ex-
istence of A would imply that 3-SAT is solvable in polynomial time (the
answer is yes if and only if the returned solution has value greater than ε),
which is an absurd, unless P = NP.

The second inapproximability result we provide (still based on a reduc-
tion from 3-SAT) is for the problem of computing a WSPNE in general
SPGs, which we prove to be harder than the corresponding problem for
SSPNEs, as we show that it is not in Poly-APX even when the number of
players is fixed. Formally:

Theorem 5.6. The problem of computing a WSPNE in SPGs is not in Poly-
APX even when n = 4, unless P = NP.

Proof. We provide a reduction from 3-SAT.
Mapping. Given a 3-SAT instance, i.e., V := {v1, . . . , v|V |} and C :=

{φ1, . . . , φ|C|}, we build an SPG with n = 4 players, as follows. The leader
(player 4) has an action for each variable in V , plus an additional one, i.e.,
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A4 = {1, . . . , |V |, w} (where w = |V | + 1). On the other hand, each
follower has 8 actions per clause (each corresponding to a truth assignment
to the variables in the clause), plus an additional one, namely A = A1 =
A2 = A3 = {φca = l1l2l3 | c ∈ {1, . . . , |C|}, a ∈ {1, . . . , 8}}∪{χ}, where
φca = l1l2l3 identifies a truth assignment to the variables in φc such that
v(li) is set to true if and only if li is a positive literal. For each follower
p ∈ F , her payoffs are defined as follows:

• Uapan
p,n = 1 for all ap = φca = l1l2l3 ∈ Ap \ {χ} and an ∈ An \ {w}

with either v(lp) = van and lp positive or v(lp) 6= van and lp negative;

• Uapan
p,n = 0 for all ap = φca = l1l2l3 ∈ Ap \ {χ} and an ∈ An \ {w}

with either v(lp) = van and lp negative or v(lp) 6= van and lp positive;

• Uapw
p,n = 0 for all ap = φca = l1l2l3 ∈ A \ {χ} if lp is positive, while

U
apw
p,n = 1 if it is negative;

• Uχan
p,n = 0 for all an ∈ An;

• Uapaq
p,q = 0 for all ap ∈ A \ {χ}, aq = ap ∈ A \ {χ}, and q ∈ F \ {p};

• Uapaq
p,q = −1 for all ap ∈ A\{χ}, aq 6= ap ∈ A\{χ}, and q ∈ F \{p};

• Uχχ
p,q = 0 and Uχχ

q,p = 1 for all q > p ∈ F ;

• Uχaq
p,q = 1

2(|V |+1)
for all aq = φca = l1l2l3 ∈ Aq \ {χ} with lp positive,

while Uχaq
p,q = |V |

2(|V |+1)
if lp is negative, for every q > p ∈ F ;

• Uaqχ
q,p = 1

2(|V |+1)
for all aq = φca = l1l2l3 ∈ A \ {χ} with lq positive,

while Uaqχ
q,p = |V |

2(|V |+1)
if lq is negative, for every q > p ∈ F ;

• Uχap
q,p = 0 for all ap ∈ A \ {χ} and q > p ∈ F ;

• Uapχ
p,q = 1 for all ap ∈ A \ {χ} and q > p ∈ F .

The payoffs for the leader are so defined:

• Uanap
n,p = 1

3
for all an ∈ An and ap = φca = l1l2l3 ∈ A \ {f} if the

truth assignment identified by φca makes φc true, while Uanap
n,p = ε

3
otherwise, where ε > 0;

• Uanχ
n,p = 1 for all an ∈ An.

Before going into the core of the proof, we prove the following:
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Lemma 5.2. For every φca = l1l2l3 ∈ A\{χ}, the outcome (φca, φca, φca) is
a pure NE in the followers’ game whenever the leader commits to a strategy
xn ∈ ∆n satisfying the following constraints:

• xann ≥ 1
|V |+1

if v(lp) = van and lp is a positive literal, for some p ∈ F ;

• xann ≤ 1
|V |+1

if v(lp) = van and lp is a negative literal, for some p ∈ F .

All the outcomes of the followers’ game that are not in {(φca, φca, φca) |
ap ∈ A \ {χ}} cannot be part of a WSPNE.

Proof. Initially, we prove the first part of the statement. Let xn ∈ ∆n be
an arbitrary leader’s strategy. Then, for every φca = l1l2l3 ∈ A \ {χ}, the
outcome (φca, φca, φca) provides follower p with the following utilities Up:

• Up := xann if v(lp) = van and lp is positive;

• Up := 1− xann if v(lp) = van and lp is negative.

Thus, by definition, (φca, φca, φca) is an NE if the following conditions hold:

• Up ≥ 1
|V |+1

for each p ∈ F such that lp is positive, as otherwise p
would deviate and play χ;

• Up ≥ |V |
|V |+1

for each p ∈ F such that lp is negative, as otherwise p
would deviate and play χ.

Notice that, for every xn ∈ ∆n, there always exists at least one outcome
(φca, φca, φca) which is an NE in the followers’ game. Moreover, all the
outcomes (a1, a2, a3) such that a1, a2, a3 ∈ A \ {χ} and ap 6= aq for some
p, q ∈ F cannot be NEs since the followers get a negative payoff, while they
can obtain a positive utility by deviating to χ. Furthermore, the following
outcomes cannot be NEs:

• (χ, χ, χ), as the first follower would deviate by playing any other ac-
tion, increasing her utility from zero to at least 1;

• (χ, χ, a3), for any a3 ∈ A \ {χ}, as the third follower would deviate
playing action χ, which guarantees her a utility of 2 instead of ≤ 1;

• (χ, a2, χ), for any a2 ∈ A \ {χ}, as the first follower would deviate to
a2, thus increasing her utility above 1;

• (a1, χ, χ), for any a1 ∈ A \ {χ}, as the second follower would deviate
to a1, thus increasing her utility above 1;
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• (χ, a2, a3), for any a2 = a3 ∈ A \ {χ}, as the second follower would
deviate to χ, thus increasing her utility above 1;

• (a1, χ, a3), for any a1 = a3 ∈ A \ {χ}, as the third follower would
deviate to χ, thus increasing her utility above 1.

Finally, all the outcomes (a1, a2, χ), for all a1 = a2 ∈ A \ {χ}, are never
played by the followers in a WSPNE since, even if they could become NEs
for some leader’s commitment, they always provide the leader with a utility
greater than 1, while, as previously shown, there is always at least another
NE which gives her a utility at most equal to 1.

Yes instance. Suppose that the given 3-SAT instance has a yes answer,
i.e., there exists a truth assignment which satisfies all the clauses. Then, by
Lemma 5.2, there exists a strategy xn ∈ ∆n such that the worst (for the
leader) NE in the followers’ game provides her with a utility of 1. Thus,
the leader’s utility in a WSPNE is 1.

No instance. Let us consider the case in which the instance has a no
answer. By Lemma 5.2, for every leader commitment xn ∈ ∆n, there exists
an NE in the followers’ game that gives the leader a utility of ε. Thus, the
leader’s utility in a WSPNE is ε.

Contradiction. Now, suppose there exists a polynomial-time approx-
imation algorithm A with approximation factor 1

poly(n)
, where poly(n) is

any polynomial function of n. Moreover, let us fix ε = 1
2n

. If the 3-SAT
instance has answer yes, then A, when applied to the corresponding SPG,
must return a solution with value greater than or equal to 1

poly(n)
> ε. In-

stead, if the answer is no, A must return a solution of value ε
poly(n)

< ε.
Thus, the existence ofA would imply that 3-SAT is solvable in polynomial
time, which is an absurd, unless P = NP.

5.4 Exact Algorithm for Finding a WSPNE in OLTSPGs

We provide an exact algorithm for computing a WSPNE in OLTSPGs whose
compute time is exponential in the number of players and polynomial in the
number of actions available to the players. The algorithm extends the pro-
cedure given in (Von Stengel and Zamir, 2010) to find a supremum of the
leader’s utility function with two-player normal-form SGs, and it also in-
cludes a procedure to compute a strategy that allows the leader to achieve
an α-approximation (in additive sense) of the supremum when there is no
maximum, for any α > 0.
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The algorithm is based on the enumeration of all the followers’ ac-
tion profiles, i.e., all the tuples a−n = (a1, . . . , an−1) ∈ AF , and, for
each of them, it computes the best strategy the leader can commit to (in
the weak case) provided that ap is a best response for follower p, for ev-
ery p ∈ F . For the ease of notation, given ap ∈ Ap with p ∈ F , let
U
ap
p ∈ Q|An| be a vector whose components are defined as Uapan

p,n , for every
an ∈ An. The complete algorithm procedure is detailed in Algorithm 5.1,
where the parameter α defines the quality of the approximation of the supre-
mum, whenever a maximum does not exist. At each iteration, the algo-
rithm calls two sub-procedures that solve two LP programs. Specifically,
SOLVE-EMPTYNESS-CHECK({Tp}p∈F , a−n) computes the optimum of the
following program:

max
ε≥0,xn∈∆n

ε

s.t.
∑
an∈An

Uapan
p,n xann −

∑
an∈An

U
a′pan
p,n xann ≥ ε ∀p ∈ F, a′p ∈ Ap \ Tp;

while SOLVE-MAX-MIN({Tp}p∈F , a−n) solves the following:

max
xn∈∆n

∑
p∈F

vp

s.t. vp ≤
∑
an∈An

U
ana′p
n,p xann ∀p ∈ F, a′p ∈ Tp∑

an∈An

Uapan
p,n xann −

∑
an∈An

U
a′pan
p,n xann − ζpa′p = 0 ∀p ∈ F, a′p ∈ Ap \ Tp

ζpa′p ≥ 0 ∀p ∈ F, a′p ∈ Ap \ Tp.

Finally, FIND-APX({Tp}p∈F , a∗−n, v(a∗−n), α) employs the following LP pro-
gram to find a leader’s strategy providing an α-approximation of the supre-
mum:

max
ε≥0,xn∈∆n

ε

s.t.
∑
p∈F

vp ≥ v(a∗−n)− α

vp ≤
∑
an∈An

U
ana′p
n,p xann ∀p ∈ F, a′p ∈ Tp∑

an∈An

Uap,an
p,n xann −

∑
an∈An

U
a′pan
p,n xann ≥ ε ∀p ∈ F, a′p ∈ Ap \ Tp.
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Algorithm 5.1 Exact-WSPNE
1: function EXACT-WSPNE(α)
2: for all a−n = (a1, . . . , an−1) ∈ AF do
3: for all p ∈ F do

4: Tp ←
{
a′p ∈ Ap | U

ap
p = U

a′p
p

}
5: end for
6: ε← SOLVE-EMPTYNESS-CHECK({Tp}p∈F , a−n)
7: if ε > 0 then

8:
(
v(a−n), xn(a−n), ζp

a′p

)
← SOLVE-MAX-MIN({Tp}p∈F , a−n)

9: β(a−n)← |{ζp
a′p
| ζp
a′p

= 0}| > 0

10: end if
11: end for
12: a∗−n ← arg maxa−n∈AF

v(a−n)

13: if β(a∗−n) then
14: return FIND-APX({Tp}p∈F , a∗−n, v(a∗−n), α)
15: end if
16: return xn(a∗−n)
17: end function

The following theorem shows that Algorithm 5.1 is correct.

Theorem 5.7. Given an OLTSPG, Algorithm 5.1 finds a WSPNE, and,
whenever the leader’s utility function does not admit a maximum, it returns
an α-approximation of the supremum.

Proof. Before proving the statement, we introduce some useful notation.
Given ap ∈ Ap, with p ∈ F , let X(ap) ⊆ ∆n be the set of those strategies
xn ∈ ∆n such that follower p’s best response to xn is the action ap, i.e.,
X(ap) := {xn ∈ ∆n | ap ∈ arg maxa′p∈Ap

∑
an∈An U

a′pan
p,n xann }. Given

a followers’ action profile a−n = (a1, . . . , an−1) ∈ AF , let X(a−n) :=⋂
p∈F X(ap). We denote with Xo(·) the interior of X(·) relative to ∆n, and

we call X(·) full-dimensional if Xo(·) is non-empty.
In order to prove the result, we define the search problem of computing

a WSPNE in OLTSPGs, as follows:

max
a−n∈AD

max
xn∈X(a−n)

min
a′−n∈AF :U

ap
p =U

a′p
p

∑
p∈F

∑
an∈An

U
ana′p
n,p xann , (5.3)

where AD = {a−n ∈ AF | X(a−n) is full-dimensional }.
First, using a simple inductive argument, we derive a new definition for

∆n, which is as follows:

∆n :=
⋃

a−n∈AD

X(a−n) (5.4)
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Let us start noticing that ∆n =
⋃
a−n∈AF X(a−n). Then, take a′−n ∈ AF \

AD and define S := ∆n \
⋃
a−n∈AF \{a′−n}

X(a−n). We observe that S is
a subset of X(a′−n), and, thus, it is also a subset of Xo(a′−n), which is
empty since a′−n /∈ AD, so S is empty. Therefore, we can write ∆n =⋃
a−n∈AF \{a′−n}

X(a−n), which we use as new definition for ∆n. Iterating
in this manner until all the elements in AF \ AD have been considered, we
eventually obtain the result.

Second, we recall a result from Von Stengel and Zamir (2010), i.e., for
every ap, a′p ∈ Ap, it holds:

xn ∈ Xo(ap) ∧ xn ∈ X(a′p) =⇒ Uap
p = U

a′p
p . (5.5)

We are now ready to prove Equation (5.3), as follows:

V := sup
xn∈∆n

min
a′−n∈AF :xn∈X(a′−n)

∑
p∈F

∑
an∈An

U
ana′p
n,p xann

= max
a−n∈AD

sup
xn∈X(a−n)

min
a′−n∈AF :xn∈X(a′−n)

∑
p∈F

∑
an∈An

U
ana′p
n,p xann ,

where the first equality directly follows from the definition of the problem,
while the second one is obtained rewriting ∆n as given by (5.4). Restricting
X(a−n) to Xo(a−n) and using (5.5), we obtain:

V ≥ max
a−n∈AD

sup
xn∈Xo(a−n)

min
a′−n∈AF :xn∈X(a′−n)

∑
p∈F

∑
an∈An

U
ana′p
n,p xann

= max
a−n∈AD

sup
xn∈Xo(a−n)

min
a′−n∈AF :U

ap
p =U

a′p
p

∑
p∈F

∑
an∈An

U
ana′p
n,p xann

= max
a−n∈AD

sup
xn∈X(a−n)

min
a′−n∈AF :U

ap
p =U

a′p
p

∑
p∈F

∑
an∈An

U
ana′p
n,p xann

≥ max
a−n∈AD

sup
xn∈X(a−n)

min
a′−n∈AF :xn∈X(a′−n)

∑
p∈F

∑
an∈An

U
ana′p
n,p xann = V,

where the last equality holds since the minimum is taken over a finite set of
linear functions and it is continuous, while the last inequality comes from
the fact that the minimum is taken over a larger set of elements. Hence, all
the inequalities must hold as equalities, which proves Equation (5.3).

The algorithm exploits Equation (5.3) to compute a WSPNE. Notice
that, if X(a−n) is not full-dimensional, then by calling the sub-procedure
SOLVE-EMPTYNESS-CHECK({Tp}p∈F , a−n) we get zero, as, if there is

90



5.4. Exact Algorithm for Finding a WSPNE in OLTSPGs

no strategy xn ∈ Xo(a−n), then there is always at least one inequality
in the LP program which can be satisfied only by setting ε = 0. The
algorithm iterates over all the followers’ action profiles in AD, as every
a−n ∈ AF \ AD is discarded since ε = 0 for such a−n. Then, for each re-
maining action profile, the algorithm solves the max-min expression on the
right of Equation (5.3), which can be done with the LP program solved by
SOLVE-MAX-MIN({Tp}p∈F , a−n). Finally, the algorithm selects the fol-
lowers’ action profile with the highest max-min expression value.

In conclusion, note that, given some a−n ∈ AD, β(a−n) is true if and
only if xn(a−n) is such that there is at least one follower p who has a best
response a′p that is not in Tp, i.e., at least one variable ζpa′p is zero. Thus,
if β(a∗−n) is true, the leader’s utility function does not admit a maximum,
since for x

a∗−n
n there is some follower who can play a best response which

is worse than the one played in a∗−n in terms of leader’s utility. If that
is the case, FIND-APX({Tp}p∈F , a∗−n, va

∗
−n , α) finds an α-approximation

of the supremum va
∗
−n by looking for a strategy xn ∈ Xo(a∗−n), with the

additional constraints imposing that the leader’s utility (in the weak case)
does not fall below va

∗
−n − α. Such approximation always exists since

Xo(a∗−n) is non-empty and the leader’s utility is the minimum of a finite set
of affine functions.

Even though, as described next, one can adopt the algorithm proposed
in (Von Stengel and Zamir, 2010) to find a WSPNE in an OLTSPG, this
would result in a procedure that is more inefficient than Algorithm 5.1. In-
deed, one should first transform an OLTSPG into a BSG-INT, by means of
the mapping provided in Theorem 5.1, and, then, cast the resulting game in
normal form. However, this would require the solution of an exponential
number of LP programs, each with an exponential number of constraints,
since the number of actions of the resulting normal-form SG is exponential
in the size of the original game. Conversely, Algorithm 5.1 exploits the
separability of players’ utilities, avoiding the explicit construction of the
normal form before the execution of the algorithm. As a result, our algo-
rithm still requires the solution of an exponential number of LP programs,
but each with a polynomial number of constraints. Notice that avoiding
the explicit construction of the normal form also allows the execution of
Algorithm 5.1 in an anytime fashion, stopping the algorithm whenever the
available time is expired.
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CHAPTER6
Computing Stackelberg-Nash Equilibria in

Stackelberg Congestion Games

In this chapter, we continue the study of the problem of computing SPNEs
in succinct SGs with a single leader and multiple followers, focusing on
congestion games. We remark that, in these games, restricting the followers
to pure strategies is without loss of generality, since the followers’ game
resulting from a leader’s mixed-strategy commitment is still a congestion
game, and, thus, it admits at least one pure NE (Rosenthal, 1973) which
can be reached by the followers in an iterative fashion by playing a best-
response dynamics (Monderer and Shapley, 1996).

Initially, in Section 6.1, we formally define the models and the compu-
tational problems we study, also pointing out some application examples.
Then, we extensively address Stackelberg singleton congestion games, iden-
tifying two features which allow for a characterization of hard and easy
game instances. The first feature concerns the symmetry of the players
(whether they have the same action spaces or not), while the second fea-
ture is about the shape of the cost functions (monotonically increasing or
not). In particular, Section 6.2 presents computational complexity results
that completely characterize hard game instances, while Section 6.3 pro-
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vides polynomial-time algorithms for easy instances. Then, we switch the
attention to more general settings, specifically, Section 6.4 studies games
with non-singleton actions, while Section 6.5 extends some of the positive
results for symmetric Stackelberg singleton congestion games to the case
in which the players are split into a finite number of classes. In conclu-
sion, Section 6.6 shows how to formulate the problem of finding SSPNEs
in congestion games (in different game classes) as an MILP.

6.1 The Model and Its Applications

First, we introduce some additional notation useful in the following and
provide the formal definitions of Stackelberg congestion games and the re-
lated equilibrium-computation problems studied in this chapter. We con-
clude the section with some application examples showing how the games
we consider map to real-world problems.

6.1.1 Stackelberg Congestion Games and Their Variants

As for other game models, in the Stackelberg counterpart of a congestion
game, we define N = F ∪ {n}, where F is the set of followers and player
n is the leader. Moreover, in order to capture as much real-world settings as
possible, we assume that the leader’s costs may differ from the followers’.
Formally, we study the following class of games:

Definition 6.1 (Stackelberg Congestion Game). A Stackelberg congestion
game (SCG) is a tuple (N,R,A, cn, cF ), where:

• N , R, andA are defined as in a congestion game, with N = F ∪{n};
• cn = {ci,n}i∈R and cF = {ci,F}i∈R are finite sets of, respectively,

leader’s and followers’ cost functions, with ci,n, ci,F : N → Q being
the costs of resource i as a function of its congestion for, respectively,
the leader and the followers.

As usual, we assume ci,n(0) = ci,F (0) = 0 for every i ∈ R. We call
the players’ cost functions (weakly) monotonic if, for every resource i ∈ R,
ci,n(y) ≤ ci,n(y + 1) and ci,F (y) ≤ ci,F (y + 1) for all y ∈ N, and strictly
monotonic if all the inequalities are strict. Whenever the inequalities are
not satisfied, we say that the players’ cost functions are non-monotonic.

In this chapter, we collectively denote by x = (xn, a−n) a strategy pro-
file in which the leader plays a (possibly) mixed strategy xn ∈ ∆n and the
followers play as prescribed by the action profile a−n := (a1, . . . , an−1) ∈
AF , where AF :=×p∈F Ap is the set of followers’ action profiles.
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Let a−n = (a1, . . . , an−1) ∈ AF be a followers’ action profile. Over-
loading notation, we denote by νia−n := |{p ∈ F | ap = i}| the number
of followers selecting resource i ∈ R in a−n. This quantity is equal to the
resource congestion caused by the followers’ presence only. Moreover, we
call followers’ configuration (induced by the action profile a−n) the vector
νa−n ∈ Nr whose i-th component is νia−n for all i ∈ R.

For any leader’s strategy xn ∈ ∆n, we define the followers’ expected
cost for resource i ∈ R given xn as the function cxni,F : N→ Q. Specifically,
cxni,F is a function of the number y ∈ N of followers selecting resource i, i.e.:

cxni,F (y) := xinci,F (y + 1) + (1− xin)ci,F (y).

Note that, given a leader’s strategy xn and a followers’ congestion y, all
the followers who select resource i ∈ R experience a congestion that may
(with probability xin) or may not (with probability 1 − xin) be incremented
by one w.r.t. y, depending on whether the leader chooses resource i or not.
Given the strategy profile x = (xn, a−n), the costs experienced by each
follower p ∈ F and the leader are, respectively,

cxp :=
∑
i∈ap

cxni,F (νia−n) and cxn :=
∑
an∈An

xann
∑
i∈an

ci,n(νia−n + 1).

Note that, whenever the leader selects resource i ∈ R (which happens with
probability xin), her costs depends on the followers’ congestion νia−n plus
an additional unit of congestion which due to her choosing that resource.

Different subclasses of SCGs can be defined by making additional as-
sumptions on their elements. One possibility is to restrict the structure of
the players’ action sets Ap. Along this direction, we address, in the first
part of this chapter, games in which players’ actions are required to be sin-
gletons, i.e., |ap| = 1 for every p ∈ N and ap ∈ Ap. Thus, when studying
such games, we identify actions with resources. Formally:

Definition 6.2 (Stackelberg Singleton Congestion Game). A Stackelberg
singleton congestion game (SSCG) is an SCG Γ = (N,R,A, cn, cF ) in
which we define Ap ⊆ R for all p ∈ N .

We recall that, when working with singleton games, we use xn ∈ ∆n as
if it were directly defined over resources in An, with xin being the prob-
ability of playing resource i ∈ An. Moreover, given a strategy profile
x = (xn, a−n), the following holds:

cxp = cxnap,F (νapa−n) and cxn =
∑
i∈An

xinci,n(νia−n + 1).
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Another possibility is to consider different kinds of players’ structures.
We focus on two notable cases. In the first one, all players share the same
set of actions, i.e., Ap := A ⊆ 2R for all p ∈ N . We refer to these games
as symmetric. Instead, in the second case, there exists a finite set T :=
{1, . . . , T} of followers’ classes, with followers of the same class sharing
the same set of actions. We say that these games are T -class. Specifically,
in a T -class SCG, we can partition the followers into T disjoint sets, i.e.,
F :=

⋃
t∈T Ft, so that, for each t ∈ T , Ap := At ⊆ 2R for all p ∈ Ft.

We also let nt := |Ft| be the number of followers of class t ∈ T . When
studying these games, given a followers’ action profile a−n ∈ AF , we let
νt,ia−n := |{p ∈ Ft | i ∈ ap}| be the number of followers of class t ∈
T selecting resource i ∈ R in a−n. Moreover, we define the followers’
configuration of class t induced by a−n as the vector νta−n ∈ Nr whose i-th
component is νt,ia−n . Let us remark that symmetric SCGs are a special case
of T -class SCGs with only one class, i.e., T = {1}, and leader’s action set
equal to the followers’, i.e., An = A1.

Observe that T -class SSCGs, and, in particular, symmetric Stackelberg
singleton congestion games (SSSCGs), can be fully analyzed using follow-
ers’ configurations, rather than action profiles. This is because only the
number of followers of each class selecting each resource is significant,
and, thus, a followers’ action profile a−n ∈ AF can be equivalently repre-
sented with the followers’ configurations {νta−n}t∈T . Thus, we can directly
use the vector νt ∈ Nr with

∑
i∈R ν

t,i = nt to denote a followers’ configu-
ration of class t ∈ T . Moreover, for notational convenience, given {νt}t∈T ,
we let ν ∈ Nr be such that νi :=

∑
t∈T ν

t,i for i ∈ R.

6.1.2 Computing SPNEs in SCGs

We study the computational problem of finding SPNEs in SCGs. As usual,
we address two versions of the problem: the strong one (i.e., finding an
SSPNE), where we assume that followers play a pure NE minimizing the
leader’s cost, and the weak one (i.e., finding a WSPNE), which assumes
that they play a pure NE maximizing the leader’s cost.

In an SCG, after observing a leader’s commitment xn ∈ ∆n, the fol-
lowers play a congestion game where the resource costs are specified by
the functions cxni,F , for i ∈ R. Given a strategy profile x = (xn, a−n), the
followers’ action profile a−n is a pure NE in the followers’ game for xn if,
for every follower p ∈ F and action a′p ∈ Ap, it holds:

cxp ≤ cx
′

p , where x′ = (xn, a
′
−n) and a′−n = (a1, . . . , a

′
p, . . . , an−1).
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Moreover, given xn ∈ ∆n, overloading notation, we let E(xn) be the set of
pure NEs in the followers’ game for xn.

In the specific setting of SSCGs, given x = (xn, a−n), the followers’
action profile a−n is a pure NE for xn if the following holds:

cxnap,F (νapa−n) ≤ cxna′p,F (ν
a′p
a−n + 1) ∀p ∈ F, a′p ∈ Ap.

Furthermore, in T -class SSCGs, given σ = (xn, {νt}t∈T ), the followers’
configurations {νt}t∈T define a pure NE for xn if the following holds:

cxni,F (νi) ≤ cxnj,F (νj + 1) ∀t ∈ T , i ∈ At : νt,i > 0, j ∈ At.

Given the previous definitions, finding an SSPNE and a WSPNE amounts
to solving two bilevel problems, respectively,

min
xn∈∆n

min
a−n∈E(xn)

c(xn,a−n)
n and inf

xn∈∆n

max
a−n∈E(xn)

c(xn,a−n)
n .

Clearly, an SSPNE always exists in SCGs (Von Stengel and Zamir, 2010),
and, since the same objective function is minimized in both levels, the prob-
lem can be equivalently rewritten as the following single-level problem:

min
xn∈∆n, a−n∈E(xn)

c(xn,a−n)
n .

Moreover, let us observe that the problem of computing a WSPNE calls for
an inf rather than a min since, in general, the problem may not admit a min-
imum (but only an infimum). When the problem does admit a minimum,
a WSPNE does not exist (Von Stengel and Zamir, 2010). The following
proposition shows that this happens even in the basic case of SSSCGs.

Proposition 6.1. There are SSSCGs in which a WSPNE does not exist.

Proof. Consider the following instance of an SSSCGs (whose cost func-
tions are reported in the table below), where |F | = 1 and R = {r1, r2}. 1

y cr1,n cr1,F cr2,n cr2,F
1 2 1 2 1

2 0 2 2 2

Clearly, the single follower selects r1 if xr1n < 1
2
, she chooses r2 if xr1n > 1

2
,

and she is indifferent between r1 and r2 if xr1n = 1
2
. Thus, the leader’s cost

1In the rest of the chapter, for the ease of presentation and to avoid cumbersome notation, instead of denoting
players and resources with integers, i.e, N := {1, . . . , n} and R := {1, . . . , r}, we assign labels to them (such
as r1 and r2 in the proof of Proposition 6.1). Clearly, we can always map such labels to integers.
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is 2−2xr1n if xr1n < 1
2
, while it is 2 if xr1n ≥ 1

2
, since, in the pessimistic case,

the follower selects r2 rather than r1 when xr1n = 1
2
. As a result, the problem

of computing a WSPNE achieves an infimum with value 1 at xr1n = 1
2
, but it

does not admit a minimum. Thus, the game does not admit a WSPNE.

6.1.3 Some Applications of SCGs

Introduced in (Suri et al., 2007), one of the simplest problems that can be
modeled as an SCG is a job scheduling problem where the users (players)
select which machines (resources) have to execute their jobs (such as in
virtualized environments or data centers). The time needed to complete a
job on a machine (the resource cost) depends on its workload (the resource
congestion). Assuming a single job per player to be executed on a single
machine without preemption, the players’ actions are singletons and the
problem fits in the specific setting of SSCGs. The case of a single-leader
Stackelberg game arises when one of the players is the owner of the ma-
chines and is willing to share her resources with the others, but, being the
owner, she decides which resource/machine to pick before the others do.
Under the assumption that the players schedule their jobs in an open-loop
fashion, i.e., without any knowledge of the current congestion of the ma-
chines, it is plausible that the followers could not observe the machine on
which the leader’s job is running. It is therefore natural, for the leader, to
try and achieve a smaller cost by committing to a mixed strategy.

Another application can be found in facility location problems (Konur
and Geunes, 2012) where the players are firms and they have to decide on
which site to locate their infrastructures (which, depending on the specific
application, may be, e.g., factories, shops, or mineral extraction plants).
Each firm selects a location from a list of candidate sites (the resources)
and the cost it incurs depends on the number of firms that made the same
choice. In these scenarios, the single-leader Stackelberg game case arises
whenever one of the firms either has a competitive advantage over the oth-
ers (due to, e.g., being a governmental agency) or, as in the job scheduling
problem, it owns the candidate sites and, thus, can decide before the other
ones where to locate its infrastructures. Mixed-strategy commitments are
plausible when the time between the choice of the location and the begin-
ning of the construction works of the facility is extremely long, due to, e.g.,
administrative issues and/or the time needed for obtaining the authoriza-
tions. In this case, the follower could prefer to choose her location before
observing the beginning of the construction works of the leader’s facility to
avoid incurring an excessive delay with respect to the leader.
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6.2 Computational Complexity Results on SSCGs

In this section, we address the problem of computing SPNEs in SSCGs,
i.e., games with singleton actions. We start our analysis with some negative
results that identify which are the hard-to-solve game instances. In partic-
ular, Subsection 6.2.1 focuses on the case of general SSCGs with players
having different action spaces, while Subsection 6.2.2 analyses the special
case of SSSCGs, in which the players are symmetric.

6.2.1 NP-hardness and Inapproximability of SSCGs

We start showing that the problem of computing an S/WSPNE in SSCGs
with different action spaces is computationally intractable even if the leader
can only select a single resource and all the costs are monotonic functions of
the resource congestion. This also shows that, in general non-Stackelberg
singleton congestion games with different action spaces, computing an NE
which maximizes/minimizes the usage of a resource (or the cost incurred
by a player) is hard, which may be of independent interest. Moreover,
given that our intractability results hold even when the leader has only one
resource available, computing an S/WSPNE in SSCGs with different action
spaces is intractable even if we restrict the leader to pure strategies.

First, we prove that finding an SSPNE is not in Poly-APX unless P =
NP using a reduction from 3-SAT. As a result, the leader’s cost in an
SSPNE cannot be approximated, in polynomial time, up to any approxi-
mation factor which depends polynomially on the size of the game given
as input, unless P = NP. Then, we show that the same intractability result
holds for WSPNEs by means of a different reduction still based on 3-SAT.

Computational Complexity of Finding an SSPNE in SSCGs

We analyze the problem of computing an SSPNE in SSCGs with different
action spaces. The hardness and inapproximability results that we present
are based on a reduction from 3-SAT (see Definition 4.3). In the following,
we simply denote a 3-SAT instance as a pair (C, V ). We introduce our
reduction in the proof of the following theorem.

Theorem 6.1. Computing an SSPNE in SSCGs with different action spaces
is NP-hard, even if the leader has only one action (i.e., she can only select
a single resource) and the cost functions are monotonic.

Proof. We provide a reduction from 3-SAT showing that the existence of
a polynomial-time algorithm for finding an SSPNE in SSCGs would allow
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us to solve any 3-SAT instance in polynomial time. Specifically, given a
3-SAT instance (C, V ) and a real number 0 < ε < 4, we build an instance
Γε(C, V ) of SSCG admitting an SSPNE in which the leader’s cost is ε if
and only if (C, V ) is satisfiable; if not, the leader’s cost is 4 in any SSPNE.

Mapping. Γε(C, V ) is defined as follows:

• N = F ∪ {n}, with F = {pφ, pφ,t | φ ∈ C} ∪ {pv | v ∈ V } ∪
{pv,k, pv̄,k | v ∈ V, k ∈ {1, . . . , |C|}} ∪ {pφ,v, pφ,v̄ | φ ∈ C, v ∈ V };
• R = {rt} ∪ {rφ | φ ∈ C} ∪ {rv, rv,t, rv̄, rv̄,t | v ∈ V } ∪ {rφ,v, rφ,v̄ |
φ ∈ C, v ∈ V };
• Apφ = {rφ} ∪ {rφ,l | l ∈ φ}, Apφ,t = {rφ, rt} for all φ ∈ C;

• Apv,k = {rv,t, rv}, Apv̄,k = {rv̄,t, rv̄} for all v ∈ V, k ∈ {1, . . . , |C|};
• Apv = {rt, rv,t, rv̄,t} for all v ∈ V ;

• Apφ,v = {rv, rφ,v}, Apφ,v̄ = {rv̄, rφ,v̄} for all φ ∈ C, v ∈ V ;

• An = {rt}.
The cost functions take values according to the following table, and satisfy
crv̄ ,F = crv ,F , crφ,v̄ ,F = crφ,v ,F , crv̄,t,F = crv,t,F , and crt,F = crt,n (let us re-
mark that, given ε < 4, they are all monotonic functions of the congestion):

y crφ,F crv ,F crv,t,F crφ,v ,F crt,F
1 2 0 0 1 ε

[2, |C|] 5 0 6 6 4

[|C|+ 1,∞] 5 7 6 6 4

Figure 6.1 shows an example of a game instance Γε(C, V ).
Given a 3-SAT instance (C, V ), Γε(C, V ) can be constructed in poly-

nomial time, as it features n = 2|C| + |V | + 4|C||V | + 1 players and
r = |C|+ 4|V |+ 2|C||V |+ 1 resources. Since, in Γε(C, V ), the leader can
only select a single resource, rt, the only leader’s commitment is xn ∈ ∆n :
xrtn = 1. As a result, the leader’s cost is ε if and only if no follower selects
resource rt; otherwise, it is 4.

If. Assume that (C, V ) is satisfiable, and let T : V → {0, 1} be a
truth assignment satisfying all the clauses in C. Using T , we show how to
recover a followers’ action profile a−n = (a1, . . . , an−1) ∈ AF such that
a−n ∈ E(xn), with x = (xn, a−n) providing cxn = ε. Note that, since ε is
the minimum cost the leader can achieve and the followers behave in favor
of the leader, x is an SSPNE. In particular, let apφ,t = rφ, for all φ ∈ C.
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<latexit sha1_base64="Dqrfv7FMYjmEx8w7k2WLCJ4Wudc=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxL6eS2sVL26N4O7SvyCVEGBVlj5CWKBUoa5QRRq3fc9aS4p5LFG0EZlUBmCKM7LQaqxhGgMh7hvKYcM60E2+z53z60Su4lQdrhxZ+rfiwwyrScsspsMmpFe9qbif14/NcnNICNcpgZzNA9KUuoa4U6rcGOiMDJ0YglEithfXTSCCiJjC1tIYSk1RImnvGxL8pcrWSWdRt336v59o9q8KuoqgVNwBi6AD65BE9yBFmgDBCR4Aa/gzXl23p0P53O+uuYUNydgAc7XL6Gnnq8=</latexit><latexit sha1_base64="Dqrfv7FMYjmEx8w7k2WLCJ4Wudc=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxL6eS2sVL26N4O7SvyCVEGBVlj5CWKBUoa5QRRq3fc9aS4p5LFG0EZlUBmCKM7LQaqxhGgMh7hvKYcM60E2+z53z60Su4lQdrhxZ+rfiwwyrScsspsMmpFe9qbif14/NcnNICNcpgZzNA9KUuoa4U6rcGOiMDJ0YglEithfXTSCCiJjC1tIYSk1RImnvGxL8pcrWSWdRt336v59o9q8KuoqgVNwBi6AD65BE9yBFmgDBCR4Aa/gzXl23p0P53O+uuYUNydgAc7XL6Gnnq8=</latexit><latexit sha1_base64="Dqrfv7FMYjmEx8w7k2WLCJ4Wudc=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxL6eS2sVL26N4O7SvyCVEGBVlj5CWKBUoa5QRRq3fc9aS4p5LFG0EZlUBmCKM7LQaqxhGgMh7hvKYcM60E2+z53z60Su4lQdrhxZ+rfiwwyrScsspsMmpFe9qbif14/NcnNICNcpgZzNA9KUuoa4U6rcGOiMDJ0YglEithfXTSCCiJjC1tIYSk1RImnvGxL8pcrWSWdRt336v59o9q8KuoqgVNwBi6AD65BE9yBFmgDBCR4Aa/gzXl23p0P53O+uuYUNydgAc7XL6Gnnq8=</latexit><latexit sha1_base64="Dqrfv7FMYjmEx8w7k2WLCJ4Wudc=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxL6eS2sVL26N4O7SvyCVEGBVlj5CWKBUoa5QRRq3fc9aS4p5LFG0EZlUBmCKM7LQaqxhGgMh7hvKYcM60E2+z53z60Su4lQdrhxZ+rfiwwyrScsspsMmpFe9qbif14/NcnNICNcpgZzNA9KUuoa4U6rcGOiMDJ0YglEithfXTSCCiJjC1tIYSk1RImnvGxL8pcrWSWdRt336v59o9q8KuoqgVNwBi6AD65BE9yBFmgDBCR4Aa/gzXl23p0P53O+uuYUNydgAc7XL6Gnnq8=</latexit>

p�2
<latexit sha1_base64="gVDs+Kz+uRfCX8cEmkZxVnMOaME=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxI28lpYqXp1bwZ3lfgFqYICrbDyE8QCpQxzgyjUuu970lxSyGONoI3KoDIEUZyXg1RjCdEYDnHfUg4Z1oNs9n3unlsldhOh7HDjztS/FxlkWk9YZDcZNCO97E3F/7x+apKbQUa4TA3maB6UpNQ1wp1W4cZEYWToxBKIFLG/umgEFUTGFraQwlJqiBJPedmW5C9Xsko6jbrv1f37RrV5VdRVAqfgDFwAH1yDJrgDLdAGCEjwAl7Bm/PsvDsfzud8dc0pbk7AApyvX6NNnrA=</latexit><latexit sha1_base64="gVDs+Kz+uRfCX8cEmkZxVnMOaME=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxI28lpYqXp1bwZ3lfgFqYICrbDyE8QCpQxzgyjUuu970lxSyGONoI3KoDIEUZyXg1RjCdEYDnHfUg4Z1oNs9n3unlsldhOh7HDjztS/FxlkWk9YZDcZNCO97E3F/7x+apKbQUa4TA3maB6UpNQ1wp1W4cZEYWToxBKIFLG/umgEFUTGFraQwlJqiBJPedmW5C9Xsko6jbrv1f37RrV5VdRVAqfgDFwAH1yDJrgDLdAGCEjwAl7Bm/PsvDsfzud8dc0pbk7AApyvX6NNnrA=</latexit><latexit sha1_base64="gVDs+Kz+uRfCX8cEmkZxVnMOaME=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxI28lpYqXp1bwZ3lfgFqYICrbDyE8QCpQxzgyjUuu970lxSyGONoI3KoDIEUZyXg1RjCdEYDnHfUg4Z1oNs9n3unlsldhOh7HDjztS/FxlkWk9YZDcZNCO97E3F/7x+apKbQUa4TA3maB6UpNQ1wp1W4cZEYWToxBKIFLG/umgEFUTGFraQwlJqiBJPedmW5C9Xsko6jbrv1f37RrV5VdRVAqfgDFwAH1yDJrgDLdAGCEjwAl7Bm/PsvDsfzud8dc0pbk7AApyvX6NNnrA=</latexit><latexit sha1_base64="gVDs+Kz+uRfCX8cEmkZxVnMOaME=">AAACE3icbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFNCZPJpB06L2YmSgn5DN3qf7gTt36Av+EXOG2zsK0HLhzOuZdzOZGkRBvP+3bW1jc2t7ZLO+Xdvf2Dw8rRcUeLVCHcRoIK1YugxpRw3DbEUNyTCkMWUdyNxrdTv/uIlSaCP5iJxAMGh5wkBEFjpaAmwyyQIxI28lpYqXp1bwZ3lfgFqYICrbDyE8QCpQxzgyjUuu970lxSyGONoI3KoDIEUZyXg1RjCdEYDnHfUg4Z1oNs9n3unlsldhOh7HDjztS/FxlkWk9YZDcZNCO97E3F/7x+apKbQUa4TA3maB6UpNQ1wp1W4cZEYWToxBKIFLG/umgEFUTGFraQwlJqiBJPedmW5C9Xsko6jbrv1f37RrV5VdRVAqfgDFwAH1yDJrgDLdAGCEjwAl7Bm/PsvDsfzud8dc0pbk7AApyvX6NNnrA=</latexit>

p�2,z̄
<latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit><latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit><latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit><latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit>

rx
<latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit><latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit><latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit><latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit> rx̄

<latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit><latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit><latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit><latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit>

rȳ
<latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit><latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit><latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit><latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit>

rz̄
<latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit><latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit><latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit><latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit>

rz
<latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit><latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit><latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit><latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit>ry

<latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit><latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit><latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit><latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit>

rx,t
<latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit><latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit><latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit><latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit> rx̄,t

<latexit sha1_base64="ZpkLQPBE8ekXf+4vqkftWI1e85o=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melVw5Lv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv91SfYQ==</latexit><latexit sha1_base64="ZpkLQPBE8ekXf+4vqkftWI1e85o=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melVw5Lv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv91SfYQ==</latexit><latexit sha1_base64="ZpkLQPBE8ekXf+4vqkftWI1e85o=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melVw5Lv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv91SfYQ==</latexit><latexit sha1_base64="ZpkLQPBE8ekXf+4vqkftWI1e85o=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melVw5Lv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv91SfYQ==</latexit>

rȳ,t
<latexit sha1_base64="05TfRNkKfmq0J1CGLdjn10yRqF0=">AAACFXicbVDLSgNBEJz1GeMr6tHLYCJ4CGE3CHoMePEYwTwgiaF3MkmGzM4uM71KWPIdetX/8CZePfsbfoGTZA8msaChqOqmmvIjKQy67reztr6xubWd2cnu7u0fHOaOjusmjDXjNRbKUDd9MFwKxWsoUPJmpDkEvuQNf3Qz9RuPXBsRqnscR7wTwECJvmCAVnoo6G7S9kHTcREnhW4u75bcGegq8VKSJymq3dxPuxeyOOAKmQRjWp4bYVGC6hkGNiwBjYJJPsm2Y8MjYCMY8JalCgJuOsns/wk9t0qP9kNtRyGdqX8vEgiMGQe+3QwAh2bZm4r/ea0Y+9edRKgoRq7YPKgfS4ohnZZBe0JzhnJsCTAt7K+UDUEDQ1vZQkoQSxQ6fJpkbUneciWrpF4ueW7JuyvnK5dpXRlySs7IBfHIFamQW1IlNcKIJi/klbw5z8678+F8zlfXnPTmhCzA+foF+PyfYg==</latexit><latexit sha1_base64="05TfRNkKfmq0J1CGLdjn10yRqF0=">AAACFXicbVDLSgNBEJz1GeMr6tHLYCJ4CGE3CHoMePEYwTwgiaF3MkmGzM4uM71KWPIdetX/8CZePfsbfoGTZA8msaChqOqmmvIjKQy67reztr6xubWd2cnu7u0fHOaOjusmjDXjNRbKUDd9MFwKxWsoUPJmpDkEvuQNf3Qz9RuPXBsRqnscR7wTwECJvmCAVnoo6G7S9kHTcREnhW4u75bcGegq8VKSJymq3dxPuxeyOOAKmQRjWp4bYVGC6hkGNiwBjYJJPsm2Y8MjYCMY8JalCgJuOsns/wk9t0qP9kNtRyGdqX8vEgiMGQe+3QwAh2bZm4r/ea0Y+9edRKgoRq7YPKgfS4ohnZZBe0JzhnJsCTAt7K+UDUEDQ1vZQkoQSxQ6fJpkbUneciWrpF4ueW7JuyvnK5dpXRlySs7IBfHIFamQW1IlNcKIJi/klbw5z8678+F8zlfXnPTmhCzA+foF+PyfYg==</latexit><latexit sha1_base64="05TfRNkKfmq0J1CGLdjn10yRqF0=">AAACFXicbVDLSgNBEJz1GeMr6tHLYCJ4CGE3CHoMePEYwTwgiaF3MkmGzM4uM71KWPIdetX/8CZePfsbfoGTZA8msaChqOqmmvIjKQy67reztr6xubWd2cnu7u0fHOaOjusmjDXjNRbKUDd9MFwKxWsoUPJmpDkEvuQNf3Qz9RuPXBsRqnscR7wTwECJvmCAVnoo6G7S9kHTcREnhW4u75bcGegq8VKSJymq3dxPuxeyOOAKmQRjWp4bYVGC6hkGNiwBjYJJPsm2Y8MjYCMY8JalCgJuOsns/wk9t0qP9kNtRyGdqX8vEgiMGQe+3QwAh2bZm4r/ea0Y+9edRKgoRq7YPKgfS4ohnZZBe0JzhnJsCTAt7K+UDUEDQ1vZQkoQSxQ6fJpkbUneciWrpF4ueW7JuyvnK5dpXRlySs7IBfHIFamQW1IlNcKIJi/klbw5z8678+F8zlfXnPTmhCzA+foF+PyfYg==</latexit><latexit sha1_base64="05TfRNkKfmq0J1CGLdjn10yRqF0=">AAACFXicbVDLSgNBEJz1GeMr6tHLYCJ4CGE3CHoMePEYwTwgiaF3MkmGzM4uM71KWPIdetX/8CZePfsbfoGTZA8msaChqOqmmvIjKQy67reztr6xubWd2cnu7u0fHOaOjusmjDXjNRbKUDd9MFwKxWsoUPJmpDkEvuQNf3Qz9RuPXBsRqnscR7wTwECJvmCAVnoo6G7S9kHTcREnhW4u75bcGegq8VKSJymq3dxPuxeyOOAKmQRjWp4bYVGC6hkGNiwBjYJJPsm2Y8MjYCMY8JalCgJuOsns/wk9t0qP9kNtRyGdqX8vEgiMGQe+3QwAh2bZm4r/ea0Y+9edRKgoRq7YPKgfS4ohnZZBe0JzhnJsCTAt7K+UDUEDQ1vZQkoQSxQ6fJpkbUneciWrpF4ueW7JuyvnK5dpXRlySs7IBfHIFamQW1IlNcKIJi/klbw5z8678+F8zlfXnPTmhCzA+foF+PyfYg==</latexit>

rz̄,t
<latexit sha1_base64="VqOR0fDExzJoKZTO7KAMpF9j/A8=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melV4pLv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv+qSfYw==</latexit><latexit sha1_base64="VqOR0fDExzJoKZTO7KAMpF9j/A8=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melV4pLv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv+qSfYw==</latexit><latexit sha1_base64="VqOR0fDExzJoKZTO7KAMpF9j/A8=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melV4pLv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv+qSfYw==</latexit><latexit sha1_base64="VqOR0fDExzJoKZTO7KAMpF9j/A8=">AAACFXicbVDLSgNBEJyNrxhfUY9eBhPBQwi7QdBjwIvHCOYBSQy9k0kyZHZ2melV4pLv0Kv+hzfx6tnf8AucPA4msaChqOqmmvIjKQy67reTWlvf2NxKb2d2dvf2D7KHRzUTxprxKgtlqBs+GC6F4lUUKHkj0hwCX/K6P7ye+PUHro0I1R2OIt4OoK9ETzBAK93ndSdp+aDpUwHH+U425xbdKegq8eYkR+aodLI/rW7I4oArZBKMaXpuhAUJqmsY2LAENAom+TjTig2PgA2hz5uWKgi4aSfT/8f0zCpd2gu1HYV0qv69SCAwZhT4djMAHJhlbyL+5zVj7F21E6GiGLlis6BeLCmGdFIG7QrNGcqRJcC0sL9SNgANDG1lCylBLFHo8HGcsSV5y5Wsklqp6LlF77aUK1/M60qTE3JKzolHLkmZ3JAKqRJGNHkhr+TNeXbenQ/nc7aacuY3x2QBztcv+qSfYw==</latexit>rz,t

<latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit><latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit><latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit><latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit>

ry,t
<latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit><latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit><latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit><latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit>

rt
<latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit><latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit><latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit><latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit>

py
<latexit sha1_base64="W1T2SDbd005S2XWz3rkaUmJiNwk=">AAACDHicbVDLSgMxFL3js9ZX1aWbYCu4kDJTBF0W3Lis4LSFtpRMJtOGJpkhyShD6S/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEs60cd1vZ219Y3Nru7BT3N3bPzgsHR03dZwqQn0S81i1A6wpZ5L6hhlO24miWASctoLR7dRvPVKlWSwfTJbQnsADySJGsLGSX0n6WaVfKrtVdwa0SryclCFHo1/66YYxSQWVhnCsdcdzE3PJsQw1wTZjjJVhhNNJsZtqmmAywgPasVRiQXVvPHt7gs6tEqIoVnakQTP178UYC60zEdhNgc1QL3tT8T+vk5ropjdmMkkNlWQeFKUcmRhNO0AhU5QYnlmCiWL2V0SGWGFibFMLKSLlhqn4aVK0JXnLlaySZq3quVXvvlauX+V1FeAUzuACPLiGOtxBA3wgwOAFXuHNeXbenQ/nc7665uQ3J7AA5+sXJt6bvQ==</latexit><latexit sha1_base64="W1T2SDbd005S2XWz3rkaUmJiNwk=">AAACDHicbVDLSgMxFL3js9ZX1aWbYCu4kDJTBF0W3Lis4LSFtpRMJtOGJpkhyShD6S/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEs60cd1vZ219Y3Nru7BT3N3bPzgsHR03dZwqQn0S81i1A6wpZ5L6hhlO24miWASctoLR7dRvPVKlWSwfTJbQnsADySJGsLGSX0n6WaVfKrtVdwa0SryclCFHo1/66YYxSQWVhnCsdcdzE3PJsQw1wTZjjJVhhNNJsZtqmmAywgPasVRiQXVvPHt7gs6tEqIoVnakQTP178UYC60zEdhNgc1QL3tT8T+vk5ropjdmMkkNlWQeFKUcmRhNO0AhU5QYnlmCiWL2V0SGWGFibFMLKSLlhqn4aVK0JXnLlaySZq3quVXvvlauX+V1FeAUzuACPLiGOtxBA3wgwOAFXuHNeXbenQ/nc7665uQ3J7AA5+sXJt6bvQ==</latexit><latexit sha1_base64="W1T2SDbd005S2XWz3rkaUmJiNwk=">AAACDHicbVDLSgMxFL3js9ZX1aWbYCu4kDJTBF0W3Lis4LSFtpRMJtOGJpkhyShD6S/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEs60cd1vZ219Y3Nru7BT3N3bPzgsHR03dZwqQn0S81i1A6wpZ5L6hhlO24miWASctoLR7dRvPVKlWSwfTJbQnsADySJGsLGSX0n6WaVfKrtVdwa0SryclCFHo1/66YYxSQWVhnCsdcdzE3PJsQw1wTZjjJVhhNNJsZtqmmAywgPasVRiQXVvPHt7gs6tEqIoVnakQTP178UYC60zEdhNgc1QL3tT8T+vk5ropjdmMkkNlWQeFKUcmRhNO0AhU5QYnlmCiWL2V0SGWGFibFMLKSLlhqn4aVK0JXnLlaySZq3quVXvvlauX+V1FeAUzuACPLiGOtxBA3wgwOAFXuHNeXbenQ/nc7665uQ3J7AA5+sXJt6bvQ==</latexit><latexit sha1_base64="W1T2SDbd005S2XWz3rkaUmJiNwk=">AAACDHicbVDLSgMxFL3js9ZX1aWbYCu4kDJTBF0W3Lis4LSFtpRMJtOGJpkhyShD6S/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEs60cd1vZ219Y3Nru7BT3N3bPzgsHR03dZwqQn0S81i1A6wpZ5L6hhlO24miWASctoLR7dRvPVKlWSwfTJbQnsADySJGsLGSX0n6WaVfKrtVdwa0SryclCFHo1/66YYxSQWVhnCsdcdzE3PJsQw1wTZjjJVhhNNJsZtqmmAywgPasVRiQXVvPHt7gs6tEqIoVnakQTP178UYC60zEdhNgc1QL3tT8T+vk5ropjdmMkkNlWQeFKUcmRhNO0AhU5QYnlmCiWL2V0SGWGFibFMLKSLlhqn4aVK0JXnLlaySZq3quVXvvlauX+V1FeAUzuACPLiGOtxBA3wgwOAFXuHNeXbenQ/nc7665uQ3J7AA5+sXJt6bvQ==</latexit>

pz
<latexit sha1_base64="jU+tO4qIvadaAILw7dfrW6/hF9s=">AAACDHicbVBLTgJBFHyDP8Qf6tLNRDBxYcgMMdEliRuXmDhAAoT09DTQoT+T7h4NTriCbvUe7oxb7+A1PIENzELASl5SqXov9VJhzKg2nvft5NbWNza38tuFnd29/YPi4VFDy0RhEmDJpGqFSBNGBQkMNYy0YkUQDxlphqObqd98IEpTKe7NOCZdjgaC9ilGxkpBOe49lXvFklfxZnBXiZ+REmSo94o/nUjihBNhMENat30vNhcMiUhjZDNSpAzFjEwKnUSTGOERGpC2pQJxorvp7O2Je2aVyO1LZUcYd6b+vUgR13rMQ7vJkRnqZW8q/ue1E9O/7qZUxIkhAs+D+glzjXSnHbgRVQQbNrYEYUXtry4eIoWwsU0tpPCEGark46RgS/KXK1kljWrF9yr+XbVUu8zqysMJnMI5+HAFNbiFOgSAgcILvMKb8+y8Ox/O53w152Q3x7AA5+sXKIObvg==</latexit><latexit sha1_base64="jU+tO4qIvadaAILw7dfrW6/hF9s=">AAACDHicbVBLTgJBFHyDP8Qf6tLNRDBxYcgMMdEliRuXmDhAAoT09DTQoT+T7h4NTriCbvUe7oxb7+A1PIENzELASl5SqXov9VJhzKg2nvft5NbWNza38tuFnd29/YPi4VFDy0RhEmDJpGqFSBNGBQkMNYy0YkUQDxlphqObqd98IEpTKe7NOCZdjgaC9ilGxkpBOe49lXvFklfxZnBXiZ+REmSo94o/nUjihBNhMENat30vNhcMiUhjZDNSpAzFjEwKnUSTGOERGpC2pQJxorvp7O2Je2aVyO1LZUcYd6b+vUgR13rMQ7vJkRnqZW8q/ue1E9O/7qZUxIkhAs+D+glzjXSnHbgRVQQbNrYEYUXtry4eIoWwsU0tpPCEGark46RgS/KXK1kljWrF9yr+XbVUu8zqysMJnMI5+HAFNbiFOgSAgcILvMKb8+y8Ox/O53w152Q3x7AA5+sXKIObvg==</latexit><latexit sha1_base64="jU+tO4qIvadaAILw7dfrW6/hF9s=">AAACDHicbVBLTgJBFHyDP8Qf6tLNRDBxYcgMMdEliRuXmDhAAoT09DTQoT+T7h4NTriCbvUe7oxb7+A1PIENzELASl5SqXov9VJhzKg2nvft5NbWNza38tuFnd29/YPi4VFDy0RhEmDJpGqFSBNGBQkMNYy0YkUQDxlphqObqd98IEpTKe7NOCZdjgaC9ilGxkpBOe49lXvFklfxZnBXiZ+REmSo94o/nUjihBNhMENat30vNhcMiUhjZDNSpAzFjEwKnUSTGOERGpC2pQJxorvp7O2Je2aVyO1LZUcYd6b+vUgR13rMQ7vJkRnqZW8q/ue1E9O/7qZUxIkhAs+D+glzjXSnHbgRVQQbNrYEYUXtry4eIoWwsU0tpPCEGark46RgS/KXK1kljWrF9yr+XbVUu8zqysMJnMI5+HAFNbiFOgSAgcILvMKb8+y8Ox/O53w152Q3x7AA5+sXKIObvg==</latexit><latexit sha1_base64="jU+tO4qIvadaAILw7dfrW6/hF9s=">AAACDHicbVBLTgJBFHyDP8Qf6tLNRDBxYcgMMdEliRuXmDhAAoT09DTQoT+T7h4NTriCbvUe7oxb7+A1PIENzELASl5SqXov9VJhzKg2nvft5NbWNza38tuFnd29/YPi4VFDy0RhEmDJpGqFSBNGBQkMNYy0YkUQDxlphqObqd98IEpTKe7NOCZdjgaC9ilGxkpBOe49lXvFklfxZnBXiZ+REmSo94o/nUjihBNhMENat30vNhcMiUhjZDNSpAzFjEwKnUSTGOERGpC2pQJxorvp7O2Je2aVyO1LZUcYd6b+vUgR13rMQ7vJkRnqZW8q/ue1E9O/7qZUxIkhAs+D+glzjXSnHbgRVQQbNrYEYUXtry4eIoWwsU0tpPCEGark46RgS/KXK1kljWrF9yr+XbVUu8zqysMJnMI5+HAFNbiFOgSAgcILvMKb8+y8Ox/O53w152Q3x7AA5+sXKIObvg==</latexit>

px,1
<latexit sha1_base64="qj1ctEAv7oxJ2BTI4tTNScjA28s=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfIFnTk=</latexit><latexit sha1_base64="qj1ctEAv7oxJ2BTI4tTNScjA28s=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfIFnTk=</latexit><latexit sha1_base64="qj1ctEAv7oxJ2BTI4tTNScjA28s=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfIFnTk=</latexit><latexit sha1_base64="qj1ctEAv7oxJ2BTI4tTNScjA28s=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfIFnTk=</latexit>

px,2
<latexit sha1_base64="wBFjxG49iy/EOdHyQRA2TS/aw6Y=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/OrnTo=</latexit><latexit sha1_base64="wBFjxG49iy/EOdHyQRA2TS/aw6Y=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/OrnTo=</latexit><latexit sha1_base64="wBFjxG49iy/EOdHyQRA2TS/aw6Y=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/OrnTo=</latexit><latexit sha1_base64="wBFjxG49iy/EOdHyQRA2TS/aw6Y=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1qGOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/OrnTo=</latexit>

px̄,2
<latexit sha1_base64="XUahFSodvLWPyy/Ui2Ad5Ia4qng=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4conx0=</latexit><latexit sha1_base64="XUahFSodvLWPyy/Ui2Ad5Ia4qng=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4conx0=</latexit><latexit sha1_base64="XUahFSodvLWPyy/Ui2Ad5Ia4qng=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4conx0=</latexit><latexit sha1_base64="XUahFSodvLWPyy/Ui2Ad5Ia4qng=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4conx0=</latexit>

px̄,1
<latexit sha1_base64="DfNf2joN5fERYBjNwuwYDjkL3E0=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4WCnxw=</latexit><latexit sha1_base64="DfNf2joN5fERYBjNwuwYDjkL3E0=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4WCnxw=</latexit><latexit sha1_base64="DfNf2joN5fERYBjNwuwYDjkL3E0=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4WCnxw=</latexit><latexit sha1_base64="DfNf2joN5fERYBjNwuwYDjkL3E0=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqKWkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4WCnxw=</latexit>

pȳ,1
<latexit sha1_base64="T6lYAPwnuXvE0AuvpkCHXg0LkDk=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFSdrDIsle2aPQNeJU5OyihHc1j66XshiQMqNOGgVM+xI13lIDxFwISlIDUjnGbFfqxoBGQCI9ozVEBA1SCd/Z/hc6N42A+lGaHxTP17kUKgVBK4ZjMAPVbL3lT8z+vF2r8epExEsaaCzIP8mGMd4mkZ2GOSEs0TQ4BIZn7FZAwSiDaVLaQEMddMhk9Z0ZTkLFeyStr1mmPXnLt6uXGZ11VAp+gMXSAHXaEGukVN1EIESfSCXtGb9Wy9Wx/W53x1zcpvTtACrK9fhyqfHQ==</latexit><latexit sha1_base64="T6lYAPwnuXvE0AuvpkCHXg0LkDk=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFSdrDIsle2aPQNeJU5OyihHc1j66XshiQMqNOGgVM+xI13lIDxFwISlIDUjnGbFfqxoBGQCI9ozVEBA1SCd/Z/hc6N42A+lGaHxTP17kUKgVBK4ZjMAPVbL3lT8z+vF2r8epExEsaaCzIP8mGMd4mkZ2GOSEs0TQ4BIZn7FZAwSiDaVLaQEMddMhk9Z0ZTkLFeyStr1mmPXnLt6uXGZ11VAp+gMXSAHXaEGukVN1EIESfSCXtGb9Wy9Wx/W53x1zcpvTtACrK9fhyqfHQ==</latexit><latexit sha1_base64="T6lYAPwnuXvE0AuvpkCHXg0LkDk=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFSdrDIsle2aPQNeJU5OyihHc1j66XshiQMqNOGgVM+xI13lIDxFwISlIDUjnGbFfqxoBGQCI9ozVEBA1SCd/Z/hc6N42A+lGaHxTP17kUKgVBK4ZjMAPVbL3lT8z+vF2r8epExEsaaCzIP8mGMd4mkZ2GOSEs0TQ4BIZn7FZAwSiDaVLaQEMddMhk9Z0ZTkLFeyStr1mmPXnLt6uXGZ11VAp+gMXSAHXaEGukVN1EIESfSCXtGb9Wy9Wx/W53x1zcpvTtACrK9fhyqfHQ==</latexit><latexit sha1_base64="T6lYAPwnuXvE0AuvpkCHXg0LkDk=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFSdrDIsle2aPQNeJU5OyihHc1j66XshiQMqNOGgVM+xI13lIDxFwISlIDUjnGbFfqxoBGQCI9ozVEBA1SCd/Z/hc6N42A+lGaHxTP17kUKgVBK4ZjMAPVbL3lT8z+vF2r8epExEsaaCzIP8mGMd4mkZ2GOSEs0TQ4BIZn7FZAwSiDaVLaQEMddMhk9Z0ZTkLFeyStr1mmPXnLt6uXGZ11VAp+gMXSAHXaEGukVN1EIESfSCXtGb9Wy9Wx/W53x1zcpvTtACrK9fhyqfHQ==</latexit>

pȳ,2
<latexit sha1_base64="Eow0wQczAatfdgC9FmXRUDhv8hY=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFTrWWVYKts1ewa8SpyclFGO5rD00/dCEgdUaMJBqZ5jR7rKQXiKgAlLQWpGOM2K/VjRCMgERrRnqICAqkE6+z/D50bxsB9KM0Ljmfr3IoVAqSRwzWYAeqyWvan4n9eLtX89SJmIYk0FmQf5Mcc6xNMysMckJZonhgCRzPyKyRgkEG0qW0gJYq6ZDJ+yoinJWa5klbTrNceuOXf1cuMyr6uATtEZukAOukINdIuaqIUIkugFvaI369l6tz6sz/nqmpXfnKAFWF+/iNCfHg==</latexit><latexit sha1_base64="Eow0wQczAatfdgC9FmXRUDhv8hY=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFTrWWVYKts1ewa8SpyclFGO5rD00/dCEgdUaMJBqZ5jR7rKQXiKgAlLQWpGOM2K/VjRCMgERrRnqICAqkE6+z/D50bxsB9KM0Ljmfr3IoVAqSRwzWYAeqyWvan4n9eLtX89SJmIYk0FmQf5Mcc6xNMysMckJZonhgCRzPyKyRgkEG0qW0gJYq6ZDJ+yoinJWa5klbTrNceuOXf1cuMyr6uATtEZukAOukINdIuaqIUIkugFvaI369l6tz6sz/nqmpXfnKAFWF+/iNCfHg==</latexit><latexit sha1_base64="Eow0wQczAatfdgC9FmXRUDhv8hY=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFTrWWVYKts1ewa8SpyclFGO5rD00/dCEgdUaMJBqZ5jR7rKQXiKgAlLQWpGOM2K/VjRCMgERrRnqICAqkE6+z/D50bxsB9KM0Ljmfr3IoVAqSRwzWYAeqyWvan4n9eLtX89SJmIYk0FmQf5Mcc6xNMysMckJZonhgCRzPyKyRgkEG0qW0gJYq6ZDJ+yoinJWa5klbTrNceuOXf1cuMyr6uATtEZukAOukINdIuaqIUIkugFvaI369l6tz6sz/nqmpXfnKAFWF+/iNCfHg==</latexit><latexit sha1_base64="Eow0wQczAatfdgC9FmXRUDhv8hY=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0tdxMJu3QySTMTJQQ8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NGnClt29/W2vrG5tZ2Yae4u7d/cFg6Om6rMJaEtkjIQ9l1QVHOBG1ppjntRpJC4HLacSc3U7/zSKViobjXSUQHAYwE8xkBbaSHSjRM+y5InFTrWWVYKts1ewa8SpyclFGO5rD00/dCEgdUaMJBqZ5jR7rKQXiKgAlLQWpGOM2K/VjRCMgERrRnqICAqkE6+z/D50bxsB9KM0Ljmfr3IoVAqSRwzWYAeqyWvan4n9eLtX89SJmIYk0FmQf5Mcc6xNMysMckJZonhgCRzPyKyRgkEG0qW0gJYq6ZDJ+yoinJWa5klbTrNceuOXf1cuMyr6uATtEZukAOukINdIuaqIUIkugFvaI369l6tz6sz/nqmpXfnKAFWF+/iNCfHg==</latexit>

py,2
<latexit sha1_base64="dtEfy54xCJNvlZwKMBeR4GloNEQ=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk1ojq47KFbfuzgFXiZeTCsjRGpW/B4HEMSfCYIa07ntuZGoMiUBjZHNSpAzFjGSlQaxJhPAUjUnfUoE40cN0/noGz6wSwFAqO8LAufr7IkVc64T7dpMjM9HL3kz8z+vHJrwaplREsSECL4LCmEEj4awHGFBFsGGJJQgran+FeIIUwsa29SeFx8xQJR+zki3JW65klXQadc+te7eNSvMir6sITsApOAceuARNcANaoA0w4OAZvIBX58l5c96dj8VqwclvjsEfOJ8/9VOdOw==</latexit><latexit sha1_base64="dtEfy54xCJNvlZwKMBeR4GloNEQ=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk1ojq47KFbfuzgFXiZeTCsjRGpW/B4HEMSfCYIa07ntuZGoMiUBjZHNSpAzFjGSlQaxJhPAUjUnfUoE40cN0/noGz6wSwFAqO8LAufr7IkVc64T7dpMjM9HL3kz8z+vHJrwaplREsSECL4LCmEEj4awHGFBFsGGJJQgran+FeIIUwsa29SeFx8xQJR+zki3JW65klXQadc+te7eNSvMir6sITsApOAceuARNcANaoA0w4OAZvIBX58l5c96dj8VqwclvjsEfOJ8/9VOdOw==</latexit><latexit sha1_base64="dtEfy54xCJNvlZwKMBeR4GloNEQ=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk1ojq47KFbfuzgFXiZeTCsjRGpW/B4HEMSfCYIa07ntuZGoMiUBjZHNSpAzFjGSlQaxJhPAUjUnfUoE40cN0/noGz6wSwFAqO8LAufr7IkVc64T7dpMjM9HL3kz8z+vHJrwaplREsSECL4LCmEEj4awHGFBFsGGJJQgran+FeIIUwsa29SeFx8xQJR+zki3JW65klXQadc+te7eNSvMir6sITsApOAceuARNcANaoA0w4OAZvIBX58l5c96dj8VqwclvjsEfOJ8/9VOdOw==</latexit><latexit sha1_base64="dtEfy54xCJNvlZwKMBeR4GloNEQ=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk1ojq47KFbfuzgFXiZeTCsjRGpW/B4HEMSfCYIa07ntuZGoMiUBjZHNSpAzFjGSlQaxJhPAUjUnfUoE40cN0/noGz6wSwFAqO8LAufr7IkVc64T7dpMjM9HL3kz8z+vHJrwaplREsSECL4LCmEEj4awHGFBFsGGJJQgran+FeIIUwsa29SeFx8xQJR+zki3JW65klXQadc+te7eNSvMir6sITsApOAceuARNcANaoA0w4OAZvIBX58l5c96dj8VqwclvjsEfOJ8/9VOdOw==</latexit>

py,1
<latexit sha1_base64="9Avg1dVCMtV9UKUb3jXFL4h76Bo=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk5qXVUflilt354CrxMtJBeRojcrfg0DimBNhMENa9z03MjWGRKAxsjkpUoZiRrLSINYkQniKxqRvqUCc6GE6fz2DZ1YJYCiVHWHgXP19kSKudcJ9u8mRmehlbyb+5/VjE14NUyqi2BCBF0FhzKCRcNYDDKgi2LDEEoQVtb9CPEEKYWPb+pPCY2aoko9ZyZbkLVeySjqNuufWvdtGpXmR11UEJ+AUnAMPXIImuAEt0AYYcPAMXsCr8+S8Oe/Ox2K14OQ3x+APnM8f862dOg==</latexit><latexit sha1_base64="9Avg1dVCMtV9UKUb3jXFL4h76Bo=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk5qXVUflilt354CrxMtJBeRojcrfg0DimBNhMENa9z03MjWGRKAxsjkpUoZiRrLSINYkQniKxqRvqUCc6GE6fz2DZ1YJYCiVHWHgXP19kSKudcJ9u8mRmehlbyb+5/VjE14NUyqi2BCBF0FhzKCRcNYDDKgi2LDEEoQVtb9CPEEKYWPb+pPCY2aoko9ZyZbkLVeySjqNuufWvdtGpXmR11UEJ+AUnAMPXIImuAEt0AYYcPAMXsCr8+S8Oe/Ox2K14OQ3x+APnM8f862dOg==</latexit><latexit sha1_base64="9Avg1dVCMtV9UKUb3jXFL4h76Bo=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk5qXVUflilt354CrxMtJBeRojcrfg0DimBNhMENa9z03MjWGRKAxsjkpUoZiRrLSINYkQniKxqRvqUCc6GE6fz2DZ1YJYCiVHWHgXP19kSKudcJ9u8mRmehlbyb+5/VjE14NUyqi2BCBF0FhzKCRcNYDDKgi2LDEEoQVtb9CPEEKYWPb+pPCY2aoko9ZyZbkLVeySjqNuufWvdtGpXmR11UEJ+AUnAMPXIImuAEt0AYYcPAMXsCr8+S8Oe/Ox2K14OQ3x+APnM8f862dOg==</latexit><latexit sha1_base64="9Avg1dVCMtV9UKUb3jXFL4h76Bo=">AAACEHicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6kLWUymbRD5xFmJkoI+Qnd6n+4E7f+gb/hFzhts9DWAxcO59zLuRw/YlQb1/1yCmvrG5tbxe3Szu7e/kH58KijZawwaWPJpOr5SBNGBWkbahjpRYog7jPS9afXM7/7QJSmUtyZJCJDjsaChhQjY6X7ajRKk5qXVUflilt354CrxMtJBeRojcrfg0DimBNhMENa9z03MjWGRKAxsjkpUoZiRrLSINYkQniKxqRvqUCc6GE6fz2DZ1YJYCiVHWHgXP19kSKudcJ9u8mRmehlbyb+5/VjE14NUyqi2BCBF0FhzKCRcNYDDKgi2LDEEoQVtb9CPEEKYWPb+pPCY2aoko9ZyZbkLVeySjqNuufWvdtGpXmR11UEJ+AUnAMPXIImuAEt0AYYcPAMXsCr8+S8Oe/Ox2K14OQ3x+APnM8f862dOg==</latexit>

pz,1
<latexit sha1_base64="L3UuvSz01UjFOnFHjjE8H8rqUOY=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfVVnTs=</latexit><latexit sha1_base64="L3UuvSz01UjFOnFHjjE8H8rqUOY=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfVVnTs=</latexit><latexit sha1_base64="L3UuvSz01UjFOnFHjjE8H8rqUOY=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfVVnTs=</latexit><latexit sha1_base64="L3UuvSz01UjFOnFHjjE8H8rqUOY=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9Egeap4aXlQLLlVdwa4SryMlECGxqD40wskjjkRBjOkdddzI1NhSAQaI5uTIGUoZiQt9GJNIoTHaEi6lgrEie4ns9dTeGaVAIZS2REGztS/FwniWk+4bzc5MiO97E3F/7xubMKrfkJFFBsi8DwojBk0Ek57gAFVBBs2sQRhRe2vEI+QQtjYthZSeMwMVfIxLdiSvOVKVkmrVvXcqndbK9Uvsrry4AScgnPggUtQBzegAZoAAw5ewCt4c56dd+fD+Zyv5pzs5hgswPn6BfVVnTs=</latexit>

pz,2
<latexit sha1_base64="7jggd2IgTkAFYB8NLWjsm28R3h4=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/b7nTw=</latexit><latexit sha1_base64="7jggd2IgTkAFYB8NLWjsm28R3h4=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/b7nTw=</latexit><latexit sha1_base64="7jggd2IgTkAFYB8NLWjsm28R3h4=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/b7nTw=</latexit><latexit sha1_base64="7jggd2IgTkAFYB8NLWjsm28R3h4=">AAACEHicbVBLSgNBFOyJvxh/UZduGhPBRQgzQdBlwI3LCOYjSQg9PT1Jk/4M3T1KHOYSutV7uBO33sBreAI7ySxMYsGDouo96lF+xKg2rvvt5NbWNza38tuFnd29/YPi4VFLy1hh0sSSSdXxkSaMCtI01DDSiRRB3Gek7Y+vp377gShNpbgzk4j0ORoKGlKMjJXuy9EgearU0vKgWHKr7gxwlXgZKYEMjUHxpxdIHHMiDGZI667nRqbCkAg0RjYnQcpQzEha6MWaRAiP0ZB0LRWIE91PZq+n8MwqAQylsiMMnKl/LxLEtZ5w325yZEZ62ZuK/3nd2IRX/YSKKDZE4HlQGDNoJJz2AAOqCDZsYgnCitpfIR4hhbCxbS2k8JgZquRjWrAlecuVrJJWreq5Ve+2VqpfZHXlwQk4BefAA5egDm5AAzQBBhy8gFfw5jw7786H8zlfzTnZzTFYgPP1C/b7nTw=</latexit>

pz̄,2
<latexit sha1_base64="9FbwhNdi2VStRH638LGgwmVeN4M=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4p4nx8=</latexit><latexit sha1_base64="9FbwhNdi2VStRH638LGgwmVeN4M=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4p4nx8=</latexit><latexit sha1_base64="9FbwhNdi2VStRH638LGgwmVeN4M=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4p4nx8=</latexit><latexit sha1_base64="9FbwhNdi2VStRH638LGgwmVeN4M=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qdKLS0PiiW7as+AV4mTkRLK0BgUf3peSOKACk04KNV17EhXOAhPETBhCUjNCKdpoRcrGgEZw5B2DRUQUNVPZv+n+MwoHvZDaUZoPFP/XiQQKDUJXLMZgB6pZW8q/ud1Y+1f9RMmolhTQeZBfsyxDvG0DOwxSYnmE0OASGZ+xWQEEog2lS2kBDHXTIaPacGU5CxXskpatapjV53bWql+kdWVRyfoFJ0jB12iOrpBDdREBEn0gl7Rm/VsvVsf1ud8NWdlN8doAdbXL4p4nx8=</latexit>

pz̄,1
<latexit sha1_base64="nC0ypJHlP9pD8jNXk6kHW5pL9Ug=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4jSnx4=</latexit><latexit sha1_base64="nC0ypJHlP9pD8jNXk6kHW5pL9Ug=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4jSnx4=</latexit><latexit sha1_base64="nC0ypJHlP9pD8jNXk6kHW5pL9Ug=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4jSnx4=</latexit><latexit sha1_base64="nC0ypJHlP9pD8jNXk6kHW5pL9Ug=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6greVmMmmHTiZhZqLUkO/Qrf6HO3Hr2t/wC5y2WdjWAxcO59zLuRw34kxp2/62cmvrG5tb+e3Czu7e/kHx8KilwlgS2iQhD2XHBUU5E7Spmea0E0kKgctp2x1fT/32A5WKheJOTyLaD2AomM8IaCPdl6NB0nNB4qeKk5YHxZJdtWfAq8TJSAllaAyKPz0vJHFAhSYclOo6dqQrHISnCJiwBKRmhNO00IsVjYCMYUi7hgoIqOons/9TfGYUD/uhNCM0nql/LxIIlJoErtkMQI/UsjcV//O6sfav+gkTUaypIPMgP+ZYh3haBvaYpETziSFAJDO/YjICCUSbyhZSgphrJsPHtGBKcpYrWSWtWtWxq85trVS/yOrKoxN0is6Rgy5RHd2gBmoigiR6Qa/ozXq23q0P63O+mrOym2O0AOvrF4jSnx4=</latexit>

p�1,z̄
<latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit><latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit><latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit><latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit>

p�2,x
<latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit><latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit><latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit><latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit>

p�1,x̄
<latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit><latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit><latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit><latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit> p�2,z

<latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit><latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit><latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit><latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit>

p�1,ȳ
<latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit><latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit><latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit><latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit>

p�2,y
<latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit><latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit><latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit><latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit>

p�1,y
<latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit><latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit><latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit><latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit>

p�1,x
<latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit><latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit><latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit><latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit>

p�1,z
<latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit><latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit><latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit><latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit>

p�2,x̄
<latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit><latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit><latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit><latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit>

p�1,t
<latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit><latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit><latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit><latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit>

p�2,t
<latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit><latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit><latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit><latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit>

r�1,x
<latexit sha1_base64="5sYDMH+N/1B1Pp/BqAHw8rHVxZs=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwUVn2k=</latexit><latexit sha1_base64="5sYDMH+N/1B1Pp/BqAHw8rHVxZs=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwUVn2k=</latexit><latexit sha1_base64="5sYDMH+N/1B1Pp/BqAHw8rHVxZs=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwUVn2k=</latexit><latexit sha1_base64="5sYDMH+N/1B1Pp/BqAHw8rHVxZs=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwUVn2k=</latexit>

r�1,y
<latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit><latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit><latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit><latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit>

r�1,z
<latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit><latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit><latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit><latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit>

r�2,x̄
<latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit><latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit><latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit><latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit>

r�2,z̄
<latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit><latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit><latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit><latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit>

r�2,y
<latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit><latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit><latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit><latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit>

r�2,x
<latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit><latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit><latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit><latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit>

r�1,x̄
<latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit><latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit><latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit><latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit> r�2,ȳ

<latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit><latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit><latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit><latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit>

r�1,ȳ
<latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit><latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit><latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit><latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit>

r�2,z
<latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit><latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit><latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit><latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit> r�1,z̄

<latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit><latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit><latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit><latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit>

p�2,ȳ
<latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit><latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit><latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit><latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit>

Figure 6.1: Example of a game instance Γε(C, V ) used in the reduction in the proof of
Theorem 6.1, with V = {x, y, z}, C = {φ1, φ2}, φ1 = x∨ y ∨ z, and φ2 = x̄∨ y ∨ z̄.

Moreover, if T (v) = 1, let apv = rv̄,t and apφ,v = rv, apφ,v̄ = rφ,v̄ for all
φ ∈ C, while, for all k ∈ {1, . . . , |C|}, let apv,k = rv,t and apv̄,k = rv̄.
Instead, if T (v) = 0, let apv̄ = rv,t and apφ,v̄ = rv̄, apφ,v = rφ,v for all
φ ∈ C, while, for all k ∈ {1, . . . , |C|}, let apv̄,k = rv̄,t and apv,k = rv.
Notice that, since either T (v) = 1 or T (v) = 0, two cases are possible. If
T (v) = 1, we have νrva−n = |C| (followers pφ,v), νrv̄a−n = |C| (followers pv̄,k),
ν
rv,t
a−n = |C| (followers pv,k), and νrv̄,ta−n = 1 (follower pv). If T (v) = 0, we

have νrv̄a−n = |C| (followers pφ,v̄), νrva−n = |C| (followers pv,k), ν
rv̄,t
a−n = |C|

(followers pv̄,k), and νrv,ta−n = 1 (follower pv). Assume, w.l.o.g., T (v) = 1,
as the other case is analogous. First, no follower pφ,v would deviate from
rv to rφ,v, as, otherwise, she would incur a cost of at least 1, rather than 0.
The same holds for followers pφ,v̄, as their cost is at most 6 while, if any
of them switched to rv̄, she would incur a cost of 7. Similarly, followers
pv,k would not deviate from rv,t (as 6 < 7) and followers pv̄,k would not
deviate from rv̄ (as 0 < 6). Since νrv̄,ta−n = 1, follower pv would not deviate
from rv̄,t (as 0 < 6 and 0 < 4 ). Furthermore, since T is a truth assignment
satisfying (C, V ), at least one literal l ∈ φ evaluates to true under T for
every φ ∈ C. Let apφ = rφ,l for every φ ∈ C. Since l evaluates to true, it
must be apφ,l = rl, thus pφ is the only follower who selects rφ,l. As a result,
pφ incurs a cost of 1, and she has no incentive to deviate. Finally, pφ,t does
not deviate from rφ to rt as 2 < 4. Thus, we can conclude that a−n is an
NE and that, since no follower chose rt, the leader’s cost is ε.

Only if. Suppose there exists an SSPNE x = (xn, a−n) in which the
leader’s cost is ε. We show that, in polynomial time, one can recover a truth
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assignment T that satisfies all the clauses in C from a−n = (a1, . . . , an−1).
First, notice that no follower selects rt in a−n as, otherwise, the leader’s cost
would be 4 > ε. As a consequence, all followers pφ,t and pv must select one
of the other resources available to them, i.e, apφ,t = rφ and apv ∈ {rv,t,rv̄,t}.
Moreover, there cannot be two followers using resource rφ for every φ ∈ C
as, otherwise, pφ,t would have an incentive to deviate from rφ to rt (as
5 > 4). Thus, apφ 6= rφ, and, for all φ ∈ C, there must be a literal l ∈ φ such
that apφ = rφ,l. In addition, there cannot be two followers selecting rφ,l as,
otherwise, pφ would have an incentive to deviate to rφ (as 5 < 6). Thus, it
must be the case that apφ,l = rl. This implies that νrla−n ≤ |C| as, otherwise,
the cost of pφ,l would be 7 > 6, and that follower would change resource,
switching to rφ,l. Thus, at least one of the followers pl,k must select rl,t as,
otherwise, νrla−n > |C|. As a consequence, if l is positive and v(l) = v, pv
selects rv̄,t as, if she selected rv,t, she would have an incentive to deviate
(as 6 > 4). Moreover, no other follower would select rv̄,t as, otherwise, pv
would deviate to rt (as 6 > 4). This implies that νrv̄,ta−n = 1 (follower pv)
and all the followers pv̄,k select resource rv̄, while the followers pφ,v̄ choose
resources rφ,v̄. On the other hand, if l is negative and v(l) = v, similar
arguments allow us to conclude that νrv,ta−n = 1 (follower pv) and all the
followers pv,k select resource rv, while the followers pφ,v choose resources
rφ,v. As a result, either νrv,ta−n = 1 or νrv̄,ta−n = 1. In conclusion, we can define
a well-defined truth assignment T such that T (v) = 1 if apv = rv̄,t and
T (v) = 0 if apv = rv,t. As previously shown, for every φ ∈ C there exists a
literal l ∈ φ such that apφ,l = rl, which, letting v = v(l), implies νrv̄,ta−n = 1.
Thus, T (v(l)) = 1 if l is positive, while νrv,ta−n = 1 and T (v(l)) = 0 if
negative. Hence, T satisfies all the clauses.

The proof of Theorem 6.1 also shows the following:

Corollary 6.1.1. In general non-Stackelberg singleton congestion games
with different action spaces, computing an NE minimizing the cost of a
given player (or the usage of a given resource) is NP-hard even if the cost
functions are monotonic.

Proof. The result is easily proved by noticing that, in the Γε(C, V ) games
defined in the proof of Theorem 6.1, since the leader can only use a single
resource any SSPNE x = (xn, a−n) is also an NE. Thus, given that the
followers behave in favor of the leader, such games admit an NE with cxn =
ε if and only if the corresponding 3-SAT instance is satisfiable; otherwise
cxn = 4 in any NE. As a result, due to 3-SAT being NP-complete, computing
an NE minimizing the cost of a given player (the leader) is NP-hard. Since
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cxn = ε if and only if νrta−n = 0, the same holds for the problem of finding
an NE which minimizes the usage of a given resource.

Theorem 6.1 also implies that the leader’s cost in an SSPNE cannot be
efficiently approximated up to any factor which depends polynomially on
the size of the input:

Corollary 6.1.2. The problem of computing an SSPNE in SSCGs with dif-
ferent action spaces is not in Poly-APX unless P = NP even if the leader
has only one action and the cost functions are monotonic.

Proof. Given a 3-SAT instance (C, V ), let us build an SSCG Γε(C, V ) as
in the proof of Theorem 6.1. We have already proved that Γε(C, V ) ad-
mits an SSPNE x = (xn, a−n) in which cxn = ε if and only if (C, V )
is satisfiable and that, otherwise, cxn = 4. Let ε = 4

2n+r . Assume that
there exists a polynomial-time approximation algorithm A with approxi-
mation factor poly(n, r), i.e., a polynomial function of n and r. Assume
(C, V ) is satisfiable. A applied to Γε(C, V ) would return a solution with
cxn ≤ 4

2n+r poly(n, r). Since, for n and r large enough, 4
2n+r poly(n, r) < 4,

A would allows us to decide in polynomial time whether (C, V ) is satisfi-
able, a contradiction unless P = NP.

Since the intractability results in Theorem 6.1 and Corollary 6.1.2 hold
even when the leader can select only a single resource, we also obtain the
following:

Corollary 6.1.3. The problem of computing an SSPNE in SSCGs with dif-
ferent action spaces is NP-hard and not in Poly-APX unless P = NP even
if we restrict the leader to pure-strategy commitments.

Since the followers break ties in favor of the leader in the reduction, the
results in Theorem 6.1 and Corollaries 6.1.2 and 6.1.3 do not apply to the
problem of finding a WSPNE. We consider this case in the next subsection.

Computational Complexity of Finding a WSPNE in SSCGs

The hardness and inapproximability results that we are about to present for
the problem of computing a WSPNE in SSCGs with different action spaces
are still based on 3-SAT but rely on a different reduction.

Theorem 6.2. Computing a WSPNE in SSCGs with different action spaces
is NP-hard even if the leader has only one action and the cost functions are
monotonic.
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Proof. We provide a reduction from 3-SAT showing that the existence of
a polynomial-time algorithm for computing a WSPNE in SSCGs would
allow us to solve any 3-SAT instance in polynomial time. Specifically,
given a 3-SAT instance (C, V ) and a real number 0 < ε < 4, we build an
SSCG instance Γε(C, V ) such that it admits a WSPNE where the leader’s
cost is ε if and only if the 3-SAT instance admits a no answer, i.e., if and
only if (C, V ) is not satisfiable. Instead, if the 3-SAT instance has answer
yes, i.e., if (C, V ) is satisfiable, then the leader’s cost is 4 in any WSPNE.

Mapping. Γε(C, V ) is defined as follows:

• N = F ∪ {n}, where F = {pφ,t | φ ∈ C} ∪ {pv,t, pv, pv̄ | v ∈
V } ∪ {pl,φ | φ ∈ C, l ∈ φ} ∪ {pφ,v, pφ,v̄ | φ ∈ C, v ∈ V };
• R = {rt} ∪ {rφ | φ ∈ C} ∪ {rv,t, rv, rv̄ | v ∈ V } ∪ {rφ,v, rφ,v̄ | φ ∈
C, v ∈ V };
• Apφ,t = {rφ, rt} for all φ ∈ C;

• Apv = {rv,t, rv}, Apv̄ = {rv,t, rv̄}, Apv,t = {rv,t, rt} for all v ∈ V ;

• Apl,φ = {rφ} ∪ {rφ,l} for al φ ∈ C, l ∈ φ;

• Apφ,v = {rv, rφ,v}, Apφ,v̄ = {rv̄, rφ,v̄} for all φ ∈ C, v ∈ V ;

• An = {rt}.
The cost functions take values according to the following table, and satisfy
crv̄ ,F = crv ,F , crφ,v̄ ,F = crφ,v ,F , and crt,F = crt,n (let us remark that, given
ε < 4, they are all monotonic functions of the resource congestion):

y crφ,F crv ,F crv,t,F crφ,v ,F crt,F
1 2 1 2 0 ε

[2, |C|] 5 1 5 7 ε
|C|+ 1 5 6 5 7 ε

[|C|+ |V |+ 1,∞] 5 6 5 7 4

Figure 6.2 shows an example of the game instance Γε(C, V ).
Given (C, V ), Γε(C, V ) can be constructed in polynomial time, as it

features n = 3|C| + |C| + 3|V | + 2|C||V | + 1 players and r = |C| +
3|V | + 2|C||V | + 1 resources. Observe that, in Γε(C, V ), the leader can
only select a single resource rt and, hence, the only leader’s commitment
is xn ∈ ∆n : xrtn = 1. As a result, the leader’s cost is 4 if and only if all
followers pφ,t and pv,t select resource rt; otherwise, it is ε.

If. Suppose that the 3-SAT instance has answer no, i.e., there is no truth
assignment to the variables in V that satisfies all the clauses in C. We prove
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<latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit><latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit><latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit><latexit sha1_base64="Z9se6ZA/NEs3WnGwaNdRPRlx2sE=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj6XjWdVPxS2a25M8BV4uWkDHI0/dJPP5Q44UQYzJDWPc+NTZUhEWqMbFiGlKGYkUmxn2gSIzxGQ9KzVCBO9CCb/T+B51YJYSSVHWHgTP17kSGudcoDu8mRGellbyr+5/USE10PMirixBCB50FRwqCRcFoGDKki2LDUEoQVtb9CPEIKYWMrW0jhCTNUyadJ0ZbkLVeyStr1mufWvLt6uXGZ11UAp+AMXAAPXIEGuAVN0AIYKPACXsGb8+y8Ox/O53x1zclvTsACnK9fBrufag==</latexit>

r�1,z
<latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit><latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit><latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit><latexit sha1_base64="r04SOb7vhfp0VgqfDsrPWmoe/JU=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fU9ypPk7JfLLlVdwa4SryMlECGhl/86YUSJ5wIgxnSuuu5sakwJEKNkQ1LkTIUMzIp9BJNYoRHaEC6lgrEie6ns/8n8MwqIYyksiMMnKl/L1LEtR7zwG5yZIZ62ZuK/3ndxERX/ZSKODFE4HlQlDBoJJyWAUOqCDZsbAnCitpfIR4ihbCxlS2k8IQZquTjpGBL8pYrWSWtWtVzq95trVS/yOrKgxNwCs6BBy5BHdyABmgCDBR4Aa/gzXl23p0P53O+mnOym2OwAOfrFwhhn2s=</latexit>

p�1,y
<latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit><latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit><latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit><latexit sha1_base64="D3IKAY+ekVGcxNEKTlhPBlDj8ZQ=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAR+NZ1UglLZq3kzuKvEz0kZ5GgGpZ9+JFDCMDeIQq17vidNlUIeaQRtWAaVIYjiSbGfaCwhGsMh7lnKIcN6kM3+n7jnVoncWCg73Lgz9e9FBpnWKQvtJoNmpJe9qfif10tMfD3ICJeJwRzNg+KEuka40zLciCiMDE0tgUgR+6uLRlBBZGxlCyksoYYo8TQp2pL85UpWSbte872af1cvNy7zugrgFJyBC+CDK9AAt6AJWgABBV7AK3hznp1358P5nK+uOfnNCViA8/ULA1ufaA==</latexit>

p�1,x
<latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit><latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit><latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit><latexit sha1_base64="EJWFHgf5NAmuiSlQFhKg0TSwUQw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwG1n2c=</latexit>

p�1,z
<latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit><latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit><latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit><latexit sha1_base64="PGUkOvApSEnyAfsrrYU8nFWy3pg=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJkoN/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfjv20Fw+p71WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwUBn2k=</latexit>

rx
<latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit><latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit><latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit><latexit sha1_base64="C8rpuHwwmSzivCSzDhpqanHsysU=">AAACDnicbVDLSgMxFM3UV62vqks3wVZwIWWmCLosuHFZwT6gLeVOJtOGJpkhyahl6D/oVv/Dnbj1F/wNv8C0nYVtPXDhcM69nMvxY860cd1vJ7e2vrG5ld8u7Ozu7R8UD4+aOkoUoQ0S8Ui1fdCUM0kbhhlO27GiIHxOW/7oZuq3HqjSLJL3ZhzTnoCBZCEjYKzUKqt++jQp94slt+LOgFeJl5ESylDvF3+6QUQSQaUhHLTueG5sLjjIQBOwKSkowwink0I30TQGMoIB7VgqQVDdS2ePT/CZVQIcRsqONHim/r1IQWg9Fr7dFGCGetmbiv95ncSE172UyTgxVJJ5UJhwbCI8bQEHTFFi+NgSIIrZXzEZggJibFcLKSLhhqnocVKwJXnLlaySZrXiuRXvrlqqXWZ15dEJOkXnyENXqIZuUR01EEEj9IJe0Zvz7Lw7H87nfDXnZDfHaAHO1y8N75zK</latexit>

rx̄
<latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit><latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit><latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit><latexit sha1_base64="L72nInRQ2ICKM8n6mQ/PBoN/BIg=">AAACFHicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKDeTSTt0ZhJnJmoJ+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FjRpV2nG9rZXVtfWOzsFXc3tnd2y8dHLZUlEhMmjhikez4oAijgjQ11Yx0YkmA+4y0/dH1xG8/EKloJO70OCYeh4GgIcWgjeRVZD/t+SDTpyyr9Etlp+pMYS8TNydllKPRL/30gggnnAiNGSjVdZ1YnzMQgcJgslKQmmJGsmIvUSQGPIIB6RoqgBPlpdP3M/vUKIEdRtKM0PZU/XuRAldqzH2zyUEP1aI3Ef/zuokOr7yUijjRROBZUJgwW0f2pAs7oJJgzcaGAJbU/GrjIUjA2jQ2l8ITpqmMHrOiKcldrGSZtGpV16m6t7Vy/SKvq4CO0Qk6Qy66RHV0gxqoiTC6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFK4ifjw==</latexit>

px px̄

r�2,x
<latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit><latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit><latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit><latexit sha1_base64="fGYmnK9ZXBjnKzIQtLRxnPV8LKw=">AAACFXicbVDLSsNAFJ3UV62vqks3g63gopSkCLosuHFZwT6grWEymbRD5xFmJmoJ/Q7d6n+4E7eu/Q2/wGmbhW09cOFwzr2cywliRrVx3W8nt7a+sbmV3y7s7O7tHxQPj1paJgqTJpZMqk6ANGFUkKahhpFOrAjiASPtYHQ99dsPRGkqxZ0Zx6TP0UDQiGJkrHRfVn7ai4fUr1WeJmW/WHKr7gxwlXgZKYEMDb/40wslTjgRBjOkdddzY1NhSIQaIxuWImUoZmRS6CWaxAiP0IB0LRWIE91PZ/9P4JlVQhhJZUcYOFP/XqSIaz3mgd3kyAz1sjcV//O6iYmu+ikVcWKIwPOgKGHQSDgtA4ZUEWzY2BKEFbW/QjxECmFjK1tI4QkzVMnHScGW5C1XskpatarnVr3bWql+kdWVByfgFJwDD1yCOrgBDdAEGCjwAl7Bm/PsvDsfzud8NedkN8dgAc7XLwa9n2o=</latexit>

r�1,x̄
<latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit><latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit><latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit><latexit sha1_base64="oPmpq78lRXh1LnDoFWh7mr6pQPM=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+a5lZ4PEj9Ny55dcqrOHHiduBkpoQwNz/7pDUISB1RowkGprutEusJBDBQBk5mC1IxwOi30YkUjIBMY0a6hAgKq+un8G1N8bpQBHobSPKHxXP27kUKgVBL4ZjIAPVar3kz8z+vGenjdT5mIYk0FWQQNY451iGed4AGTlGieGAJEMnMrJmOQQLRpbikliLlmMnycFkxJ7mol66RVq7pO1b2rleqXWV15dIrO0AVy0RWqo1vUQE1EUIJe0Ct6s56td+vD+lyM5qxsp4iWYH39Ah06oX0=</latexit>

p�2,x
<latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit><latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit><latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit><latexit sha1_base64="0tWUSab6iugulhc0kBqu/1mZ8Og=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmopbQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQNdn2g=</latexit>

p�1,x̄
<latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit><latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit><latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit><latexit sha1_base64="q6zdZeXu2TADmpVDpfwaAojLvZI=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsxzKz0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BRnQoXs=</latexit>

rx,t
<latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit><latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit><latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit><latexit sha1_base64="S5mQB8BPUnrvWBvuMlK1PHyLcgw=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OWkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2PcnX4=</latexit>

rȳ
<latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit><latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit><latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit><latexit sha1_base64="u6Dt6/BhAnSwiuilyi+DhWGLz30=">AAACFHicbVDLSsNAFJ3UV62vqks3wVZwISUpgi4LblxWsA9oQ7mZTNqhM5M4M1FKyG/oVv/Dnbh172/4BU7bLGzrgQuHc+7lXI4fM6q043xbhbX1jc2t4nZpZ3dv/6B8eNRWUSIxaeGIRbLrgyKMCtLSVDPSjSUB7jPS8cc3U7/zSKSikbjXk5h4HIaChhSDNpJXlYO074NMJ1lWHZQrTs2ZwV4lbk4qKEdzUP7pBxFOOBEaM1Cq5zqxvmAgAoXBZKUgNcWMZKV+okgMeAxD0jNUACfKS2fvZ/aZUQI7jKQZoe2Z+vciBa7UhPtmk4MeqWVvKv7n9RIdXnspFXGiicDzoDBhto7saRd2QCXBmk0MASyp+dXGI5CAtWlsIYUnTFMZPWUlU5K7XMkqaddrrlNz7+qVxmVeVxGdoFN0jlx0hRroFjVRC2H0gF7QK3qznq1368P6nK8WrPzmGC3A+voFLS+fkA==</latexit>

ry
<latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit><latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit><latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit><latexit sha1_base64="VgVQCTe9UvCYfKGaoNYk5HqbBLY=">AAACDnicbVDLSsNAFJ34rPVVdekm2AoupCRF0GXBjcsK9gFtKTeTaTt0HmFmooSQf9Ct/oc7cesv+Bt+gdM2C9t64MLhnHs5lxNEjGrjed/O2vrG5tZ2Yae4u7d/cFg6Om5pGStMmlgyqToBaMKoIE1DDSOdSBHgASPtYHI79duPRGkqxYNJItLnMBJ0SDEYK7UrapAmWWVQKntVbwZ3lfg5KaMcjUHppxdKHHMiDGagddf3InPJQIQag01JQRmKGcmKvViTCPAERqRrqQBOdD+dPZ6551YJ3aFUdoRxZ+rfixS41gkP7CYHM9bL3lT8z+vGZnjTT6mIYkMEngcNY+Ya6U5bcEOqCDYssQSwovZXF49BATa2q4UUHjNDlXzKirYkf7mSVdKqVX2v6t/XyvWrvK4COkVn6AL56BrV0R1qoCbCaIJe0Ct6c56dd+fD+Zyvrjn5zQlagPP1Cw+VnMs=</latexit>

ry,t
<latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit><latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit><latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit><latexit sha1_base64="SsDK7Wp0Isuwltnj4eypHp8rYVY=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6OEkJ/Qrf6HO3HrH/gbfoHTNgttPXDhcM69nMvxIs40OM6XVVhb39jcKm6Xdnb39g/Kh0cdHcaK0DYJeah6HtaUM0nbwIDTXqQoFh6nXW96PfO7D1RpFso7SCI6FHgsWcAIBiPdV9UoTWqQVUflilN35rBXiZuTCsrRGpW/B35IYkElEI617rtOBDWOpa8JNjkpVsAIp1lpEGsaYTLFY9o3VGJB9TCdv57ZZ0bx7SBUZiTYc/X3RYqF1onwzKbAMNHL3kz8z+vHEFwNUyajGKgki6Ag5jaE9qwH22eKEuCJIZgoZn61yQQrTMC09SdFxByYCh+zkinJXa5klXQaddepu7eNSvMir6uITtApOkcuukRNdINaqI0IEugZvaBX68l6s96tj8VqwcpvjtEfWJ8/ZYSdfw==</latexit> r�2,ȳ

<latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit><latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit><latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit><latexit sha1_base64="mQ0FDxozpPgMwXtsB7C75x7NxPQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHn1at8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULII2hfw==</latexit>

r�1,ȳ
<latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit><latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit><latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit><latexit sha1_base64="imaIAcrdin3ZVybz9lxDYM+VBAQ=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyrSy/rxmHlute+DxOm04tllp+bMgdeJm5MyytH07J9+EJEkpEITDkr1XCfWVQ4iUARMZgZSM8LptNhPFI2BTGBEe4YKCKkaZPNvTPGFUQI8jKR5QuO5+ncjg1CpNPTNZAh6rFa9mfif10v08GaQMREnmgqyCBomHOsIzzrBAZOUaJ4aAkQycysmY5BAtGluKSVMuGYyepoWTUnuaiXrpF2vuU7Nva+XG1d5XQV0hs7RJXLRNWqgO9RELURQil7QK3qznq1368P6XIxuWPlOCS3B+voFHuChfg==</latexit>

p�1,ȳ
<latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit><latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit><latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit><latexit sha1_base64="CtDXaiXkKl4XMSCRNrTpfX2vX7c=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPcat8HidNpxbPLTs2ZA68TNydllKPp2T/9ICJJSIUmHJTquU6sqxxEoAiYzAykZoTTabGfKBoDmcCI9gwVEFI1yObfmOILowR4GEnzhMZz9e9GBqFSaeibyRD0WK16M/E/r5fo4c0gYyJONBVkETRMONYRnnWCAyYp0Tw1BIhk5lZMxiCBaNPcUkqYcM1k9DQtmpLc1UrWSbtec52ae18vN67yugroDJ2jS+Sia9RAd6iJWoigFL2gV/RmPVvv1of1uRjdsPKdElqC9fULG3ahfA==</latexit>

p�2,ȳ
<latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit><latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit><latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit><latexit sha1_base64="Uh738A0LKAVIZpIPar7E07fVSrM=">AAACHHicbVDLSsNAFJ34rPUV7dLNYCu4KCUpgi4LblxWsA9oS7iZTNuhk0mYmSgh9Fd0q//hTtwK/oZf4LTNwrYeGDiccy/nzvFjzpR2nG9rY3Nre2e3sFfcPzg8OrZPTtsqSiShLRLxSHZ9UJQzQVuaaU67saQQ+px2/MntzO88UqlYJB50GtNBCCPBhoyANpJnlyqxl/XjMfPq1b4PEqfTimeXnZozB14nbk7KKEfTs3/6QUSSkApNOCjVc51YVzmIQBEwmRlIzQin02I/UTQGMoER7RkqIKRqkM2/McUXRgnwMJLmCY3n6t+NDEKl0tA3kyHosVr1ZuJ/Xi/Rw5tBxkScaCrIImiYcKwjPOsEB0xSonlqCBDJzK2YjEEC0aa5pZQw4ZrJ6GlaNCW5q5Wsk3a95jo1975eblzldRXQGTpHl8hF16iB7lATtRBBKXpBr+jNerberQ/rczG6YeU7JbQE6+sXHSOhfQ==</latexit>

rz̄
<latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit><latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit><latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit><latexit sha1_base64="ADWpizxTOr8tG7VAAAdHW3gCDnk=">AAACFHicbVDLSsNAFJ34rPVVdelmsBVcSEmKoMuCG5cV7APaUG4mk3boZBJnJkoN+Q3d6n+4E7fu/Q2/wGmbhW09cOFwzr2cy/FizpS27W9rZXVtfWOzsFXc3tnd2y8dHLZUlEhCmyTikex4oChngjY105x2Ykkh9Dhte6Prid9+oFKxSNzpcUzdEAaCBYyANpJbkf2054FMn7Ks0i+V7ao9BV4mTk7KKEejX/rp+RFJQio04aBU17Fjfc5B+IqAyUpBakY4zYq9RNEYyAgGtGuogJAqN52+n+FTo/g4iKQZofFU/XuRQqjUOPTMZgh6qBa9ifif1010cOWmTMSJpoLMgoKEYx3hSRfYZ5ISzceGAJHM/IrJECQQbRqbSwkTrpmMHrOiKclZrGSZtGpVx646t7Vy/SKvq4CO0Qk6Qw66RHV0gxqoiQi6Ry/oFb1Zz9a79WF9zlZXrPzmCM3B+voFLtafkQ==</latexit>

rz
<latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit><latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit><latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit><latexit sha1_base64="zwKrD9zuosA6pL/LMLY7lSmuO38=">AAACDnicbVBLSgNBFOyJvxh/UZduBhPBhYSZIOgy4MZlBPOBJIQ3PT1Jk/4M3T1KHHIH3eo93Ilbr+A1PIGdZBYmseBBUfUe9aggZlQbz/t2cmvrG5tb+e3Czu7e/kHx8KipZaIwaWDJpGoHoAmjgjQMNYy0Y0WAB4y0gtHN1G89EKWpFPdmHJMeh4GgEcVgrNQqq376NCn3iyWv4s3grhI/IyWUod4v/nRDiRNOhMEMtO74XmwuGIhQY7ApKShDMSOTQjfRJAY8ggHpWCqAE91LZ49P3DOrhG4klR1h3Jn69yIFrvWYB3aTgxnqZW8q/ud1EhNd91Iq4sQQgedBUcJcI91pC25IFcGGjS0BrKj91cVDUICN7WohhSfMUCUfJwVbkr9cySppViu+V/HvqqXaZVZXHp2gU3SOfHSFaugW1VEDYTRCL+gVvTnPzrvz4XzOV3NOdnOMFuB8/QIRO5zM</latexit>

r�2,z
<latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit><latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit><latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit><latexit sha1_base64="+53wtqP2AJpRxt8NS5VaypJSDnc=">AAACGHicbVDLSgMxFM3UV62Pjrp0E2wFF6XMFEGXBTcuK9gHtGXIZDJtaJIZkoxSh/kR3ep/uBO37vwNv8C0nYVtPRA4nHMv5+b4MaNKO863VdjY3NreKe6W9vYPDsv20XFHRYnEpI0jFsmejxRhVJC2ppqRXiwJ4j4jXX9yM/O7D0QqGol7PY3JkKORoCHFSBvJs8tV6aWDeEy9Rg0+ZVXPrjh1Zw64TtycVECOlmf/DIIIJ5wIjRlSqu86sa4xJAKFkclLkdQUM5KVBokiMcITNCJ9QwXiRA3T+RcyeG6UAIaRNE9oOFf/bqSIKzXlvpnkSI/VqjcT//P6iQ6vhykVcaKJwIugMGFQR3DWBwyoJFizqSEIS2puhXiMJMLatLaUwhOmqYwes5IpyV2tZJ10GnXXqbt3jUrzMq+rCE7BGbgALrgCTXALWqANMEjAC3gFb9az9W59WJ+L0YKV75yAJVhfv+Nmn8c=</latexit>

r�1,z̄
<latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit><latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit><latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit><latexit sha1_base64="wAkAmLg4/OVYq/j4qjOVXHchRKE=">AAACHXicbVDLTgIxFO3gC/GFj52bRjBxQcgMMdEliRuXmAiYAJnc6XSgodOZtB0NTPgW3ep/uDNujb/hF1hgFgKepMnJOffm3B4v5kxp2/62cmvrG5tb+e3Czu7e/kHx8KilokQS2iQRj+SDB4pyJmhTM83pQywphB6nbW94M/Xbj1QqFol7PYppL4S+YAEjoI3kFk/K0k278YC5TgV3PZB4PCm7xZJdtWfAq8TJSAllaLjFn64fkSSkQhMOSnUcO9YVDsJXBExoClIzwumk0E0UjYEMoU87hgoIqeqls39M8LlRfBxE0jyh8Uz9u5FCqNQo9MxkCHqglr2p+J/XSXRw3UuZiBNNBZkHBQnHOsLTUrDPJCWajwwBIpm5FZMBSCDaVLeQEiZcMxk9TQqmJGe5klXSqlUdu+rc1Ur1y6yuPDpFZ+gCOegK1dEtaqAmImiMXtArerOerXfrw/qcj+asbOcYLcD6+gV/FqGp</latexit>

rz,t
<latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit><latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit><latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit><latexit sha1_base64="DfIC6eBEdyKM1v7GKdOdCGDAx+4=">AAACEHicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/SljKZTNqhM5Mwc6PUkJ/Qrf6HO3HrH/gbfoHTNgvbeuDC4Zx7OZfjRZxpcJxvK7e2vrG5ld8u7Ozu7R8UD49aOowVoU0S8lB1PKwpZ5I2gQGnnUhRLDxO2974euq3H6jSLJR3MIloX+ChZAEjGIx0X1aD5KkCaXlQLDlVZwZ7lbgZKaEMjUHxp+eHJBZUAuFY667rRFDhWPqaYJOTYAWMcJoWerGmESZjPKRdQyUWVPeT2eupfWYU3w5CZUaCPVP/XiRYaD0RntkUGEZ62ZuK/3ndGIKrfsJkFAOVZB4UxNyG0J72YPtMUQJ8YggmiplfbTLCChMwbS2kiJgDU+FjWjAlucuVrJJWreo6Vfe2VqpfZHXl0Qk6RefIRZeojm5QAzURQQK9oFf0Zj1b79aH9TlfzVnZzTFagPX1C2csnYA=</latexit>

r�2,x̄
<latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit><latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit><latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit><latexit sha1_base64="aXZk0xuuxGmgcIN4bdSyUlfuWFA=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BR7noX4=</latexit>

r�2,z̄
<latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit><latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit><latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit><latexit sha1_base64="fnJSThRIWmPa9RAkv9UlZvh8xCY=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYZh/6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxLL+1FY+bVKj0fJH6alj275FSdOfA6cTNSQhkanv3TG4QkDqjQhINSXdeJdIWDGCgCJjMFqRnhdFroxYpGQCYwol1DBQRU9dP5N6b43CgDPAyleULjufp3I4VAqSTwzWQAeqxWvZn4n9eN9fC6nzIRxZoKsggaxhzrEM86wQMmKdE8MQSIZOZWTMYggWjT3FJKEHPNZPg4LZiS3NVK1kmrVnWdqntXK9Uvs7ry6BSdoQvkoitUR7eogZqIoAS9oFf0Zj1b79aH9bkYzVnZThEtwfr6BSIzoYA=</latexit>

r�2,y
<latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit><latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit><latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit><latexit sha1_base64="/CNR+HBNzF0sX3hjHFR/w3YPy/k=">AAACFXicbVDLSsNAFJ34rPVVdelmsBVclJIUQZcFNy4r2Ae0NUwmk3boPMLMRAmh36Fb/Q934ta1v+EXOG2zsK0HLhzOuZdzOUHMqDau++2srW9sbm0Xdoq7e/sHh6Wj47aWicKkhSWTqhsgTRgVpGWoYaQbK4J4wEgnGN9M/c4jUZpKcW/SmAw4GgoaUYyMlR4qys/68Yj69Wo6qfilsltzZ4CrxMtJGeRo+qWffihxwokwmCGte54bmypDItQY2bAMKUMxI5NiP9EkRniMhqRnqUCc6EE2+38Cz60SwkgqO8LAmfr3IkNc65QHdpMjM9LL3lT8z+slJroeZFTEiSECz4OihEEj4bQMGFJFsGGpJQgran+FeIQUwsZWtpDCE2aokk+Toi3JW65klbTrNc+teXf1cuMyr6sATsEZuAAeuAINcAuaoAUwUOAFvII359l5dz6cz/nqmpPfnIAFOF+/CGOfaw==</latexit>

r�2

rt
<latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit><latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit><latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit><latexit sha1_base64="N98m3RnSsRuX22Njkp3vQZg/sUM=">AAACDHicbVDLSgMxFM34rPVVdekm2AoupMwUQZcFNy4rOG2hLSWTybShSWZI7ihl6C/oVv/Dnbj1H/wNv8C0nYVtPXDhcM69nMsJEsENuO63s7a+sbm1Xdgp7u7tHxyWjo6bJk41ZT6NRazbATFMcMV84CBYO9GMyECwVjC6nfqtR6YNj9UDjBPWk2SgeMQpASv5Fd2HSr9UdqvuDHiVeDkpoxyNfumnG8Y0lUwBFcSYjucmcCmICg0lNiMjGjgVbFLspoYlhI7IgHUsVUQy08tmb0/wuVVCHMXajgI8U/9eZEQaM5aB3ZQEhmbZm4r/eZ0UoptexlWSAlN0HhSlAkOMpx3gkGtGQYwtIVRz+yumQ6IJBdvUQopMBXAdP02KtiRvuZJV0qxVPbfq3dfK9au8rgI6RWfoAnnoGtXRHWogH1HE0Qt6RW/Os/PufDif89U1J785QQtwvn4BIfObug==</latexit>

p�1,t
<latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit><latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit><latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit><latexit sha1_base64="gL1yCzFlGct9F0ddYnsBwqFd0WM=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0MhlmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+NLzjQ4zre1tr6xubVd2Cnu7u0fHJaOjts6ThShLRLzWHV9rClngraAAaddqSiOfE47/vhm6nceqdIsFvcwkXQQ4aFgISMYjPRQkV7alyPmuVXIKl6p7NScGexV4uakjHI0vdJPP4hJElEBhGOte64jocqxCDTBJizFChjhNCv2E00lJmM8pD1DBY6oHqSz/zP73CiBHcbKjAB7pv69SHGk9STyzWaEYaSXvan4n9dLILwepEzIBKgg86Aw4TbE9rQMO2CKEuATQzBRzPxqkxFWmICpbCElSjgwFT9lRVOSu1zJKmnXa65Tc+/q5cZlXlcBnaIzdIFcdIUa6BY1UQsRpNALekVv1rP1bn1Yn/PVNSu/OUELsL5+AfsOn2M=</latexit>

p�2,t
<latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit><latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit><latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit><latexit sha1_base64="w8KtKsf+8gbSzdXo/D81wv37fM8=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0ZhJmbpQS8h261f9wJ25d+xt+gdM2C9t64MLhnHs5l+PHnGlwnG9rbX1jc2u7sFPc3ds/OCwdHbd1lChCWyTiker6WFPOJG0BA067saJY+Jx2/PHN1O88UqVZJO9hEtOBwEPJQkYwGOmhEntpPx4xr16FrOKVyk7NmcFeJW5OyihH0yv99IOIJIJKIBxr3XOdGKocy0ATbMJSrIARTrNiP9E0xmSMh7RnqMSC6kE6+z+zz40S2GGkzEiwZ+rfixQLrSfCN5sCw0gve1PxP6+XQHg9SJmME6CSzIPChNsQ2dMy7IApSoBPDMFEMfOrTUZYYQKmsoUUkXBgKnrKiqYkd7mSVdKu11yn5t7Vy43LvK4COkVn6AK56Ao10C1qohYiSKEX9IrerGfr3fqwPuera1Z+c4IWYH39Avy2n2Q=</latexit>

p�1,z̄
<latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit><latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit><latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit><latexit sha1_base64="ChtXL+3b7RGz4NQA5eUgp99FjaM=">AAACHHicbVDLSgMxFM3UV62vapdugq3gopSZIuiy4MZlBfuAtgx3Mpk2NJMZkowyDv0V3ep/uBO3gr/hF5g+Frb1QOBwzr2cm+PFnClt299WbmNza3snv1vY2z84PCoen7RVlEhCWyTikex6oChngrY005x2Y0kh9DjteOObqd95oFKxSNzrNKaDEIaCBYyANpJbLFViN+vHI+Y61b4HEj9NKm6xbNfsGfA6cRakjBZousWfvh+RJKRCEw5K9Rw71lUOwlcETGYGUjPC6aTQTxSNgYxhSHuGCgipGmSzb0zwuVF8HETSPKHxTP27kUGoVBp6ZjIEPVKr3lT8z+slOrgeZEzEiaaCzIOChGMd4Wkn2GeSEs1TQ4BIZm7FZAQSiDbNLaWECddMRo+TginJWa1knbTrNceuOXf1cuNyUVcenaIzdIEcdIUa6BY1UQsRlKIX9IrerGfr3fqwPuejOWuxU0JLsL5+AR0coX0=</latexit>

p�2,z
<latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit><latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit><latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit><latexit sha1_base64="AUheoboQGXYaiCXN6yjoSDog37w=">AAACFXicbVDLSsNAFJ3UV62vqks3wVZwUUpSBF0W3LisYB/Q1jCZTNqh82JmotTQ79Ct/oc7ceva3/ALnLZZ2NYDFw7n3Mu5nFBSoo3nfTu5tfWNza38dmFnd2//oHh41NIiUQg3kaBCdUKoMSUcNw0xFHekwpCFFLfD0fXUbz9gpYngd2YscZ/BAScxQdBY6b4sg7QnhySoVZ4m5aBY8qreDO4q8TNSAhkaQfGnFwmUMMwNolDrru9JU6GQRxpBG5ZCZQiieFLoJRpLiEZwgLuWcsiw7qez/yfumVUiNxbKDjfuTP17kUKm9ZiFdpNBM9TL3lT8z+smJr7qp4TLxGCO5kFxQl0j3GkZbkQURoaOLYFIEfuri4ZQQWRsZQspLKGGKPE4KdiS/OVKVkmrVvW9qn9bK9Uvsrry4AScgnPgg0tQBzegAZoAAQVewCt4c56dd+fD+Zyv5pzs5hgswPn6BQapn2o=</latexit>

p�2,z̄
<latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit><latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit><latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit><latexit sha1_base64="zrYEIAozuETBMxuyFzTpHBGiIxA=">AAACH3icbVDLSsNAFJ3UV62vqODGTbAVXJSSFEGXBTcuK9hWaEu4mUzaoZNJmJkoNeZjdKv/4U7c9jf8AqdtFrb1wMDhnHs5d44XMyqVbU+Mwtr6xuZWcbu0s7u3f2AeHrVllAhMWjhikXjwQBJGOWkpqhh5iAWB0GOk441upn7nkQhJI36vxjHphzDgNKAYlJZc86QSu2kvHlI3rVd7Hoj0OcuyimuW7Zo9g7VKnJyUUY6ma/70/AgnIeEKM5Cy69ixqjLgvsSgY1MQimJGslIvkSQGPIIB6WrKISSyn85+klnnWvGtIBL6cWXN1L8bKYRSjkNPT4aghnLZm4r/ed1EBdf9lPI4UYTjeVCQMEtF1rQWy6eCYMXGmgAWVN9q4SEIwEqXt5ASJkxRET1lJV2Ss1zJKmnXa45dc+7q5cZlXlcRnaIzdIEcdIUa6BY1UQth9ILe0Dv6MF6NT+PL+J6PFox85xgtwJj8AqFdo2w=</latexit>

p�2,y
<latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit><latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit><latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit><latexit sha1_base64="yXOkVBzLXREpyBqbyN11JNFK4Xg=">AAACFXicbVDLSsNAFJ34rPVVdekm2AouSkmKoMuCG5cV7APaGiaTSTt0XsxMlBD6HbrV/3Anbl37G36B0zYL23rgwuGcezmXE0pKtPG8b2dtfWNza7uwU9zd2z84LB0dt7VIFMItJKhQ3RBqTAnHLUMMxV2pMGQhxZ1wfDP1O49YaSL4vUklHjA45CQmCBorPVRkkPXliAT1ajqpBKWyV/NmcFeJn5MyyNEMSj/9SKCEYW4QhVr3fE+aKoU80gjasAwqQxDFk2I/0VhCNIZD3LOUQ4b1IJv9P3HPrRK5sVB2uHFn6t+LDDKtUxbaTQbNSC97U/E/r5eY+HqQES4TgzmaB8UJdY1wp2W4EVEYGZpaApEi9lcXjaCCyNjKFlJYQg1R4mlStCX5y5Wskna95ns1/65eblzmdRXAKTgDF8AHV6ABbkETtAACCryAV/DmPDvvzofzOV9dc/KbE7AA5+sXBQOfaQ==</latexit>

p�2,x̄
<latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit><latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit><latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit><latexit sha1_base64="1kpRlrWPkmCKN+QmsaXYptmBxis=">AAACHHicbVDLSgMxFM3UV62v0S7dBFvBRSkzRdBlwY3LCvYBbRnupGkbmskMSUYdhv6KbvU/3Ilbwd/wC0zbWdjWA4HDOfdybo4fcaa043xbuY3Nre2d/G5hb//g8Mg+PmmpMJaENknIQ9nxQVHOBG1qpjntRJJC4HPa9ic3M7/9QKViobjXSUT7AYwEGzIC2kieXSxHXtqLxsyrVXo+SPw0LXt2yak6c+B14makhDI0PPunNwhJHFChCQeluq4T6QoHMVAETGYKUjPC6bTQixWNgExgRLuGCgio6qfzb0zxuVEGeBhK84TGc/XvRgqBUkngm8kA9FitejPxP68b6+F1P2UiijUVZBE0jDnWIZ51ggdMUqJ5YggQycytmIxBAtGmuaWUIOaayfBxWjAluauVrJNWreo6VfeuVqpfZnXl0Sk6QxfIRVeojm5RAzURQQl6Qa/ozXq23q0P63MxmrOynSJagvX1Cxt9oXw=</latexit>

py pȳ pz̄pz

px,�1 py,�1
pz,�1

px̄,�2 py,�2
pz̄,�2

px,t py,t
pz,t

Figure 6.2: Example of a game instance Γε(C, V ) used in the reduction in the proof of
Theorem 6.2 with V = {x, y, z}, C = {φ1, φ2}, φ1 = x ∨ y ∨ z, and φ2 = x̄ ∨ y ∨ z̄.

that, in that case, Γε(C, V ) admits a WSPNE with leader’s cost equal to ε.
By contradiction, let us assume there exists a WSPNE x = (xn, a−n) in
which the leader’s cost cxn is 4 > ε. We show that a−n = (a1, . . . , an−1)
can be employed to recover, in polynomial time, a truth assignment T that
satisfies all the clauses in C, which is a contradiction. First, let us notice
that all the followers pφ,t and pv,t select rt in a−n as, otherwise, the leader’s
cost would be ε < 4. As a result, apφ,t = rt for all φ ∈ C and apv,t = rt
for all v ∈ V . Thus, for every v ∈ V , at least one between pv and pv̄
must select rv,t as, otherwise, player pv,t would deviate from rt (as 2 < 4).
If apv = rv,t, then all the followers pφ,v select rv as, otherwise, pv would
have an incentive to deviate from rv,t (since νrva−n < |C| and pv would incur
a cost of 1 < 2 by switching to rv). Similarly, if apv̄ = rv,t, then all
the followers pφ,v̄ select rv̄. Let us define a truth assignment T such that
T (v) = 1 if apv = rv, T (v) = 0 if apv̄ = rv̄ and T (v) is either 1 or 0
whenever apv = apv̄ = rv,t. Clearly, T is well-defined. Since apφ,t = rt
for all φ ∈ C, there must be at least one follower using resource rφ for
every φ ∈ C as, otherwise, pφ,t would have an incentive to deviate from rt
to rφ (as 4 > 2). Thus, for each φ ∈ C there must be a literal l ∈ φ such
that apl,φ = rφ. This implies that apφ,l = rφ,l as, otherwise, follower pl,φ
would deviate from rφ to rφ,l (as 2 > 0). As a result, it must be the case
that apl = rl, since, if apl = rv(l),t, then pφ,l would select rl instead of rφ,l.
Thus, T (v(l)) = 1 if l is positive and T (v(l)) = 0 if negative. Therefore, T
satisfies all the clauses, a contradiction.

Only if. Suppose that the 3-SAT instance admits answer yes, i.e., there
exists a truth assignment to the variables which satisfies all the clauses in
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C. We prove that in any WSPNE of Γε(C, V ) the leader’s cost is 4 >
ε. Let T : V → {1, 0} be one such truth assignment. We show how to
recover from T a followers’ action profile a−n = (a1, . . . , an−1) ∈ AF
such that a−n ∈ E(xn), with x = (xn, a−n) providing cxn = 4. Since 4 is the
maximum cost the leader can achieve and the followers behave against the
leader, x is clearly a WSPNE. In particular, let apφ,t = rt for all φ ∈ C and
apv,t = rt for all v ∈ V . Moreover, if T (v) = 1, let apv = rv, apv̄ = rv,t,
and, for all φ ∈ C, apφ,v = rφ,v and apφ,v̄ = rv̄. Additionally, for every
clause φ ∈ C and l ∈ φ such that v(l) = v, let apl,φ = rφ if l is positive,
while apl,φ = rφ,l if it is negative. Conversely, if T (v) = 0, let apv̄ = rv̄,
apv = rv,t, and, for all φ ∈ C, apφ,v̄ = rφ,v̄ and apφ,v = rv. Furthermore,
for every clause φ ∈ C and l ∈ φ such that v(l) = v, let apl,φ = rφ if l is
negative, and apl,φ = rφ,l if it is positive. Notice that, since either T (v) = 1
or T (v) = 0, one between pv and pv̄ selects rv,t. Assume, w.l.o.g., T (v) = 1
(as the other case is analogous). First, no follower pφ,v would deviate from
rφ,v to rv, as, otherwise, she would incur a cost of 1, rather than 0. The same
holds for followers pφ,v̄, as their cost is 1 while, if any of them switched to
rφ,v̄, she would incur a cost of 7, because apv̄,φ = rφ,v̄. Similarly, since
there is one follower selecting rv,t, follower pv,t would not deviate from rt
(as 4 < 5), while follower pv would not deviate from rv because her cost
is 1 < 5 and pv̄ would not switch from rv,t (as she would get 6 rather than
1). Furthermore, since T is a truth assignment satisfying (C, V ), for each
φ ∈ C there exists at least one literal l ∈ φ that evaluates to true under T .
Thus, pl,φ would not deviate from rφ (as she pays either 2 or 5 instead of
7), and all the followers pφ,t would not deviate from rt (as 4 < 5). We can
conclude that a−n is an NE. Since |C|+ |V | follower use rt, cxn = 4.

Theorem 6.2 also implies the following:

Corollary 6.2.1. In general non-Stackelberg singleton congestion games
with different action spaces, computing an NE maximizing the cost of a
given player (or the usage of a given resource) is NP-hard even if the cost
functions are monotonic.

Proof. In games Γε(C, V ) such as those used in the proof of Theorem 6.2,
any WSPNE is also an NE (since the leader can choose a single action).
Moreover, Γε(C, V ) admits a WSPNE x = (xn, a−n) in which cxn = 4 if
and only if the given 3-SAT instance has answer no, otherwise cxn = ε. This
proves the result for the problem of finding an NE maximizing the cost of a
given player. Since cxn = 4 if and only if νrta−n = |C|+ |V |, the same holds
for computing an NE maximizing the usage of a given resource.
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Furthermore, from Theorem 6.2 it directly follows that the leader’s cost
in a WSPNE cannot be efficiently approximated up to any approximation
factor which depends polynomially on the size of the input:

Corollary 6.2.2. The problem of computing a WSPNE in SSCGs with dif-
ferent action spaces is not in Poly-APX unless P = NP, even if the leader
has only one action and the cost functions are monotonic.

Proof. Given a 3-SAT instance (C, V ), let us build an instance Γε(C, V )
of SSCG as in the proof of Theorem 6.2. We have already proven that
Γε(C, V ) admits a WSPNE x = (xn, a−n) in which cxn = ε if and only if the
3-SAT instance has answer no; otherwise, cxn = 4 in any WSPNE. Let ε =

4
2n+r . Assume that there exists a polynomial-time approximation algorithm
Awith approximation factor poly(n, r), i.e., a polynomial function of n and
r. Assume the answer to the 3-SAT instance is no. A applied to Γε(C, V )
would return a solution with cxn ≤ 4

2n+r poly(n, r). Since, for n and r large
enough, 4

2n+r poly(n, r) < 4, A would allow us to decide in polynomial
time whether the answer to the 3-SAT instance is yes or no, a contradiction
unless P = NP.

Since in the reduction the leader only has one resource available we can
conclude the following:

Corollary 6.2.3. The problem of computing a WSPNE in SSCGs with dif-
ferent action spaces is NP-hard and not in Poly-APX unless P = NP even
if we restrict the leader to pure-strategy commitments.

6.2.2 NP-hardness and Inapproximability of SSSCGs

Now, we focus on SSSCGs (the subset of SSCGs in which the players have
identical action spaces), showing that the problem of finding an S/WSPNE
in such games is NP-hard and not in Poly-APX unless P = NP. This result
matches the other result that we have established for the problem of com-
puting an S/WSPNE in general SSCGs with different action spaces. For
SSSCGs, the inapproximability result relies on the non-monotonicity of
the players’ cost functions and on the leader’s ability to commit to mixed
strategies. This must necessarily be the case since, as we will show in Sec-
tion 6.3, the problem is easy when the cost functions are monotonic and the
players are symmetric (Theorem 6.9), and the same holds even with generic
cost functions if we restrict the leader to pure-strategy commitments (The-
orem 6.11 and its Corollary 6.11.1).
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For the problem of computing an SSPNE, we rely on a reduction from
K-PARTITION, a variant of PARTITION with an additional size con-
straint, whereas we adopt a different reduction based on the classical ver-
sion of PARTITION for the problem of computing a WSPNE. The two
problems are defined as follows:

Definition 6.3 (PARTITION). Given a finite set S = {y1, . . . , y|S|} of pos-
itive integers yi ∈ Z+ with

∑
i∈S yi even, is there a partition (S ′,S \ S ′) of

S, with S ′ ⊆ S, such that
∑

yi∈S′ yi =
∑

yi∈S\S′ yi?

Definition 6.4 (K-PARTITION). Given a finite set S = {y1, . . . , y|S|} of
positive integers yi ∈ Z+ with both |S| and

∑
i∈S yi even and a positive

integer K ≤ |S|
2

, is there a partition (S ′,S \ S ′) of S , with S ′ ⊆ S and
|S ′| = K such that

∑
yi∈S′ yi =

∑
yi∈S\S′ yi?

Letting Y := 1
2

∑
yi∈S yi, we assume for both problems that yi ≤ Y for

all yi ∈ S. Indeed, if some yi > Y then
∑

yi∈S′ yi > Y holds for every S ′ ⊆
S and, thus, the answer to both PARTITION andK-PARTITION is trivially
no. PARTITION is well-known to be NP-complete (Johnson and Garey,
1979). To see that K-PARTITION is also NP-complete (its membership
to NP is clear), it suffices to observe that PARTITION has answer yes if
and only if K-PARTITION has answer yes for some K ∈

{
1, . . . , |S|

2

}
.

This gives us a simple reduction from PARTITION toK-PARTITION: after
solving K-PARTITION |S|

2
times, once per value of K ∈

{
1, . . . , |S|

2

}
, if

answer yes is found for some K, PARTITION has answer yes; if, instead,
answer yes is never found, PARTITION has answer no.

Computational Complexity of Finding an SSPNE in SSSCGs

We start our analysis with the problem of computing an SSPNE in SSSCGs.
We introduce our main reduction in the proof of the following theorem.

Theorem 6.3. Computing an SSPNE in SSSCGs is NP-hard.

Proof. We prove the theorem using a reduction fromK-PARTITION, show-
ing that the existence of a polynomial-time algorithm for computing an
SSPNE in SSSCGs would allow us to solve K-PARTITION in polynomial
time. Let (S, K) be a given K-PARTITION instance, and let us recall that
we assumed yi ≤ Y for all yi ∈ S, where Y = 1

2

∑
yi∈S yi. Clearly, any

valid partition (S ′,S \ S ′) is uniquely defined by a subset S ′ ⊆ S such
that

∑
yi∈S′ yi = Y and |S ′| = K. Let wi = yi

Y
for all yi ∈ S . Due to

having yi ≤ Y for all yi ∈ S, we also have wi ≤ 1. Given (S, K), we
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build an instance Γε(S, K) of SSSCG with 0 < ε < 1 such that there exists
an SSPNE x = (xn, ν) in which cxn = ε if and only if the K-PARTITION
instance (S, K) admits answer yes.

Mapping. Γε(S, K) is defined as follows:

• N = F ∪ {n}, with |F | = 4|S|+ 2;

• R = {rt1} ∪ {rt2} ∪ {ri | yi ∈ S};
The players’ cost functions are specified in the following table:

y cri,F cri,n crt1 ,F crt,n crt2 ,F crt2 ,n
1 2Y Y 3Y 2 Y 4 1 Y 4

2 0 Y 3Y 2 Y 4 4Y 2 Y 4

3 1
wi

ε 3Y 2 Y 4 4Y 2 Y 4

4
2s− 1

wi
+1

wi
Y 3Y 2 Y 4 4Y 2 Y 4

[5, 4|S| − 2K] 4Y 2 Y 3Y 2 Y 4 4Y 2 Y 4

4|S| − 2K + 1 4Y 2 Y 2Y Y 4 4Y 2 Y 4

4|S| − 2K + 2 4Y 2 Y 1 Y 4 4Y 2 Y 4

[4|S| − 2K + 3,∞] 4Y 2 Y 0 Y 4 4Y 2 Y 4

Clearly, Γε(S, K) can be built in polynomial time, as it features n =
4|S|+ 3 players and r = |S|+ 2 resources.

If. Suppose that the K-PARTITION instance (S, K) admits a yes an-
swer. Let S ′ ⊆ S be a set of integers with |S ′| = K and

∑
yi∈S′ yi = Y . We

prove that Γε(S, K) admits an SSPNE x = (xn, ν) in which cxn = ε. Given
S ′, we build the followers’ configuration ν ∈ Rr and the leader’s strategy
xn ∈ ∆n. Let νri = 2 and xrin = wi for all yi ∈ S ′, while, for every yi /∈ S ′,
let νri = 0 and xrin = 0. Moreover, let νrt1 = 4|S| − 2K + 1, xrt1n = 0,
νrt2 = 1, and xrt2n = 0. First, let us observe that the leader’s strategy xn is
well-defined, as∑

yi∈S

xrin + x
rt1
n + x

rt2
n =

∑
yi∈S′

xrin =
∑
yi∈S′

wi =
∑
yi∈S′

yi
Y

= 1,

where the last equality follows from the fact that S ′ defines a partition of
S. Next, we show that ν is an NE for xn with the following argument.

• All the followers who selected resource ri, with yi ∈ S ′, do not have
any incentive to change resource, as their cost is wi · 1

wi
= 1 and

they cannot improve it by switching to another resource. Indeed, if
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they selected a resource rj with yj ∈ S ′, they would incur a cost of
1
wj
· (1 − wj) +

2Y− 1
wj

+1

wj
· wj = 2Y > 1. Similarly, their cost would

be 2Y if they choose rj with yj /∈ S ′. They would not benefit from
choosing resource rt1 , as they would incur a cost of 1, which is the
same as their current cost, and they would not switch to resource rt2 ,
as their cost would become 4Y 2 > 1.

• All the followers who selected resource rt1 incur a cost of 2Y . Thus,
they do not have an incentive to deviate to a resource ri with yi ∈ S ′,
as they would still incur a cost of 2Y . The same holds for resources ri
with yi /∈ S ′. Similarly, if they chose to play rt2 , they would incur a
cost of 4Y 2 > 2Y .

• The follower who chose resource rt2 does not deviate, as her cost is 1
and she would incur a cost of 2Y and 1 if she switched to resource ri
(for some yi ∈ S) and rt1 , respectively.

Overall, the leader’s cost is:

cxn =
∑
yi∈S

xrin cri,n(νri + 1) + x
rt1
n crt1 ,n(νrt1 + 1) + x

rt2
n crt2 ,n(νrt2 + 1) =

=
∑
yi∈S′

xrin cri,n(νri + 1) =
∑
yi∈S′

εwi = ε.

Only if. Suppose that Γε(S, K) has an SSPNE x = (xn, ν) in which
cxn = ε. Then, xrt1n = x

rt2
n = 0 must hold. Moreover, the leader must

place positive probability only on resources ri with νri = 2. Clearly, there
is always a resource ri with νri = 2 and xrin > 0. Next, we prove that
νrt1 = 4|S|−2K+1. By contradiction, assume that νrt1 6= 4|S|−2K+1.
Three cases are possible.

• νrt1 = 0 implies that either there exists at least one resource ri with
νri ≥ 5 or νrt2 = 2, but, then, the followers who chose ri or, respec-
tively, rt2 , would deviate by choosing rt1 , decreasing their cost from
4Y 2 to 3Y 2.

• 1 ≤ νrt1 ≤ 4|S| − 2K implies that the followers who selected rt1
incur a cost of 3Y 2. Thus, they would deviate to some resource ri
with νri = 2, since their cost would be at most

2Y− 1
wi

+1

wi
< 3Y 2.

• νrt1 ≥ 4|S| − 2K + 2 implies that the followers’ cost when they
deviate by playing resource rt1 is 0. Thus, the followers who selected
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a resource ri with νri = 2 and xrin > 0 would change resource, since
their current cost is strictly greater than 0.

The only remaining option for ν ∈ E(xn) is νrt1 = 4|S| − 2K + 1. Then,
νrt2 = 1 must hold as, if νrt2 = 0, a follower would switch form resource
rt1 to resource rt2 (incurring a cost of 1 instead of 2Y > 1), while, if
νrt2 ≥ 2, the followers who selected resource rt2 would deviate to resource
rt1 (incurring a cost of 1 instead of 4Y 2 > 1). Let us now consider a
resource ri with νri = 2. We prove that xrin = wi by contradiction. Two
cases are possible.

• If xrin < wi, the followers’ cost by switching to resource ri satisfies

1

wi
(1−xrin )+

2Y − 1
wi

+ 1

wi
xrin <

1

wi
(1−wi)+

2Y − 1
wi

+ 1

wi
wi = 2Y,

where the inequality holds since the left-most quantity is a convex

combination of 1
wi

and
2Y− 1

wi
+1

wi
with weights (1 − xrin ) and xrin , and,

since 1
wi
<

2Y− 1
wi

+1

wi
, its maximum for xrin ≤ wi is attained at xrin = wi.

Thus, we deduce that a follower would deviate from resource rt1 to ri
(as her current cost is 2Y ), contradicting the fact that ν ∈ E(xn).

• If xrin > wi, we reach a contradiction since the cost incurred by the
followers who are using resource ri would be 1

wi
xrin > 1 and they

would deviate playing resource rt1 , decreasing their cost to 1.

We have shown that xrin = wi for every resource ri with νri = 2. Finally,
let ri be a resource with νri 6= 2. Clearly, it must be the case that xrin = 0
since the leader’s cost is ε. Moreover, it cannot be the case that νri = 1, as,
if it were the case, the follower would deviate to resource rt1 with a cost of
1, instead of 2Y . Similarly, νri ≥ 3 cannot hold, as one of the followers
who are selecting resource ri would deviate playing rt1 , since her current
cost is greater than 1. Thus, either νri = 2 or νri = 0. As a consequence,
there are K resources ri with νri = 2 and xrin = wi, and |S| −K resources
ri with νri = 0 and xrin = 0. Let us define S ′ as the set of yi ∈ S such that
the corresponding ri satisfy νri = 2. Since

∑
yi∈S′ x

ri
n = 1 and xrin = wi for

all such resources ri, we have that
∑

yi∈S′ wi =
∑

yi∈S′
yi
Y

= 1, and, thus,∑
yi∈S′ yi = Y . As a result, (S ′,S \ S ′) is solution to K-PARTITION.

Next, we show that even approximating the leader’s cost in an SSPNE
up to any polynomial factor of the input size is hard.
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Theorem 6.4. The problem of computing an SSPNE in SSCGs is not in Poly-
APX unless P = NP.

Proof. In order to prove the result, we rely on the reduction introduced
in the proof of Theorem 6.3. We have already shown that in an SSPNE
x = (xn, ν) of Γε(S, K) it holds cxn = ε if and only if the corresponding
instance of K-PARTITION (S, K) admits a yes answer. Now, we prove
that, when the K-PARTITION instance admits a no answer, cxn ≥ 1 in any
SSPNE. By contradiction, assume that there exists an SSPNE x = (xn, ν)
in which cxn < 1. Let S ′ ⊆ S be the set of integers corresponding to a group
of resources ri with νri = 2 (at least one must exist since the leader’s cost
is smaller than 1). Then,

∑
yi∈S′ x

ri
n >

Y−1
Y

since
∑

yi∈S\S′ x
ri
n +x

rt1
n +x

rt2
n

must be smaller than 1
Y

in order to have cxn < 1. Moreover, xrt1n ≤ 1
Y 4 and

x
rt2
n ≤ 1

Y 4 must both hold as, if not, we would get cxn ≥ 1. We prove, now,
that νrt1 = 4|S| − 2K + 2 by contradiction. We identify three cases:

• νrt1 = 0 implies that either there exists at least one resource ri with
νri ≥ 5 or νrt2 = 2, and, thus, either a follower who selected resource
ri or one who selected resource rt2 would have an incentive to deviate
to resource rt1 (as 4Y 2 > 3Y 2).

• 1 ≤ νrt1 ≤ 4|S| − 2K − 1 implies that one of the followers who
selected rt1 would have an incentive to deviate to ri with νri = 2, as

she would incur a cost smaller than or equal to
2Y− 1

wi
+1

wi
< 3Y 2.

• νrt1 = 4|S| − 2K implies that the cost incurred by the followers who
selected resource rt1 is greater or equal than 3Y 2(1 − 1

Y 4 ) + 2
Y 3 , as

x
rt1
n ≤ 1

Y 4 . Thus, since
2Y− 1

wi
+1

wi
< 2Y 2 < 3Y 2 − 3

Y 2 + 2
Y 2 , these

followers would deviate from rt1 to a resource ri with νri = 2.

• νrt1 ≥ 4|S| − 2K + 2 implies that the followers’ cost after deviating
to resource rt1 would be 0 and, since there exists at least one resource
ri with νri = 2 and xrin > 0, one of the followers who selected such
resource would switch from it in favor of rt1 .

Thus, νrt1 = 4|S| − 2K + 1. Let us consider resource rt2 . If νrt2 = 0, the
followers’ cost incurred when deviating to resource rt2 would be smaller
than or equal to (1 − 1

Y 4 ) + 4
Y 2 (as xrt2n ≤ 1

Y 4 ), while the cost incurred
by choosing resource rt1 is at least 2Y (1 − 1

Y 4 ) + 1
Y 4 > (1 − 1

Y 4 ) + 4
Y 4 .

Instead, if νrt2 ≥ 2, the followers’ cost for resource rt2 is 4Y 2 and they
would have an incentive to deviate to rt1 to decrease their cost to 1 or less.
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Thus, νrt2 = 1. We deduce xrt1n = 0 as, otherwise (i.e., with xrt1n > 0), a
follower would deviate from resource rt2 to rt1 , decreasing her cost to 1 or
less. Let us focus on resources ri with νri = 2. If xrin < wi, the followers’
cost of deviating to ri is

1

wi
(1− xrin ) +

2Y − 1
wi

+ 1

wi
xrin <

1

wi
(1− wi) +

2Y − 1
wi

+ 1

wi
wi = 2Y,

and they would deviate from rt1 to ri, as their current cost is 2Y . Instead,
if xrin > wi the cost of any follower who selected ri is greater than 1 and
she would deviate to resource rt1 to decrease her cost to 1. Thus, xrin = wi
for all resources ri with νri = 2. Now, let us consider a resource ri with
νri 6= 2. Clearly, xrin ≤ 1

Y
must hold since cxn ≤ 1. If νri = 1, the followers’

cost for resource ri is at least 2Y 1
Y
> 1 while, if νri ≥ 3, the followers’ cost

for resource ri is at least 1
wi
> 1. In both cases, the followers who selected

resource ri would have an incentive to deviate to rt1 (as they would pay 1).
Thus, either νri = 2 or νri = 0. As a consequence, there are K resources ri
with νri = 2 and xrin = wi and |S|−K resources ri with νri = 0. If cxn ≤ 1,
there must be a subset S ′ ⊆ S with

∑
yi∈S′ x

ri
n =

∑
yi∈S′ wi >

Y−1
Y

, which
implies that

∑
yi∈S′

yi
Y
> Y−1

Y
and

∑
yi∈S′ yi > Y − 1. Note that yi ∈ N

and
∑

yi∈S′ yi = Y
∑

yi∈S′ wi = Y
∑

yi∈S′ x
ri
n ≤ Y . Thus,

∑
yi∈S′ yi = Y

and (S ′,S \ S ′) is solution to K-PARTITION. So far, we have proven that
Γε(S, K) admits an SSPNE x = (xn, ν) in which cxn = ε if and only if
(S, K) has answer yes and that, otherwise, cxn ≥ 1 in any SSPNE. Let ε =

1
2n+r . Assume that there exists a polynomial-time approximation algorithm
A with approximation factor poly(n, r), i.e., a polynomial function of n
and r. Assume (S, K) has answer yes. A applied to Γε(S, K) would return
a solution with cxn ≤ 1

2n+r poly(n, r). Since, for n and r large enough,
1

2n+r poly(n, r) < 1, A would allows us to establish, in polynomial time,
the answer to (S, K), a contradiction unless P = NP.

Computational Complexity of Finding a WSPNE in SSSCGs

We focus now on the problem of computing a WSPNE in SSSCGs. The
proof of the following theorem introduces our main reduction.

Theorem 6.5. Computing a WSPNE in SSSCGs is NP-hard.

Proof. We provide a reduction from PARTITION showing that the exis-
tence of a polynomial-time algorithm for computing a WSPNE in SSSCGs
would allow us to solve PARTITION in polynomial time. Given a PAR-
TITION instance with a set S of positive integers, let, as in the previous
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proof, Y = 1
2

∑
yi∈S yi and wi = yi

Y
for all yi ∈ S . Let us also recall that

we assumed, w.l.o.g., yi ≤ Y for all yi ∈ S , and, thus, wi ≤ 1. Given S ,
we build an instance Γε(S) of SSSCG with 0 < ε < 1 such that cxn = ε in a
WSPNE x = (xn, ν) if and only if PARTITION admits answer yes.

Mapping. Γε(S) is defined as follows:

• N = F ∪ {n}, with |F | = 3|S|;
• R = {rt} ∪ {ri | yi ∈ S};

with the following cost functions:

y cri,F cri,n crt,F crt,n
1 0 ε 1 Y 4

2 1
wi− 1

Y 4
Y 4 1 Y 4

3 1
1−wi− 1

Y 4
ε 1 Y 4

4 0 Y 4 1 Y 4

[5,∞] Y ε 1 Y 4

Clearly, Γε(S) can be built in polynomial time, as it features n = 3|S|
players, and r = |S|+ 1 resources.

If. Suppose that the PARTITION instance admits a yes answer, and let
S ′ ⊆ S be such that

∑
yi∈S′ yi = Y . We show that there exists a WSPNE

x = (xn, ν) in which cxn = ε. Let xrin = wi for all yi ∈ S ′, xrin = 0 for
all yi /∈ S ′, and xrtn = 0. We prove that cxn = ε for any x = (xn, ν) with
ν ∈ E(xn). Assume, by contradiction, that there exists an NE ν ∈ E(xn)
such that cxn = ε. This implies that there is a resource ri with yi ∈ S ′ and
either νri = 1 or νri = 3. If νri = 1, the cost incurred by the followers who
select ri is 1

wi− 1
Y 4
wi > 1 and any of them would deviate to resource rt to

decrease her cost to 1. If νri = 3, the followers’ cost is 1
1−wi− 1

Y 4
(1−wi) > 1

and any of them would deviate to resource rt. In both cases, this contradicts
the fact that ν is an NE, and, thus, it must be that νri 6= 1 and νri 6= 3 for
all yi ∈ S ′. As a result, cxn = ε for any x = (xn, ν) with ν ∈ E(xn).

Only if. Suppose that Γε(S) admits a WSPNE x = (xn, ν) in which
cxn = ε. Then, xrtn = 0 and xrin > 0 only if resource ri is such that νri 6= 1
and νri 6= 3. Let us define R′ ⊆ R as the set of resources ri with xrin ≤
wi − 1

Y 4 , R′′ as the set of resources ri with wi − 1
Y 4 < xrin < wi + 1

Y 4 ,
and R′′′ as the set of resources ri with xrin ≥ wi + 1

Y 4 . Let ν ∈ Rr be a
followers’ configuration such that νri = 1 for all ri ∈ R′, νri = 0 for all
ri ∈ R′′, νri = 3 for all ri ∈ R′′′, and νrt = 3|S| −∑ri∈R\{rt} νri . First,
we show that ν ∈ E(xn). Indeed, all the followers who selected resource
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rt incurs a cost of 1, all those who selected a resource ri ∈ R′ incur a cost
of 1

wi− 1
Y 4
xrin < 1, and all those who selected resource ri ∈ R′′′ incur a cost

of 1
1−wi− 1

Y 4
(1 − xrin ) < 1. If any follower deviated, she would incur a cost

greater than or equal than 1. In particular, no follower would deviate to a
resource ri ∈ R′, as she would incur a cost that is a convex combination
of values greater than 1. Similarly, no follower would deviate to a resource
ri ∈ R′′ or ri ∈ R′′′, as she would incur a cost of, respectively, 1

wi− 1
Y 4
xrin >

1 or Y xrin > 1. Finally, no follower has an incentive to switch to resource
rt, as her cost would not decrease. This shows that, in the followers’ game
resulting from xn, there exists an NE such that, whenever the leader selects
a resource ri in R′ ∪ R′′, she incurs a cost of Y 4. Thus, given that cxn = ε,
R′ = R′′′ = ∅ must hold. Let us define S ′ ⊆ S as the set of integers yi ∈ S
whose corresponding resource ri is such that wi − 1

Y 4 < xrin < wi + 1
Y 4 .

For all the other resources ri, it must be xrin = 0. Since
∑

yi∈S′ x
ri
n = 1, we

have
∑

yi∈S′
(
wi − 1

Y 4

)
< 1 <

∑
yi∈S′

(
wi + 1

Y 4

)
, and, therefore,

Y − 1

Y
< 1−

∑
yi∈S′

1

Y 4
<
∑
yi∈S′

wi < 1 +
∑
yi∈S′

1

Y 4
<
Y + 1

Y
,

which implies Y − 1 <
∑

yi∈S′ yi < Y + 1. Since
∑

yi∈S′ yi is an integer
quantity,

∑
yi∈S′ yi = Y , implying that S ′ solves PARTITION.

Finally, we show that the same inapproximability result that we have
established for SSPNEs also holds for WSPNEs.

Theorem 6.6. The problem of computing a WSPNE in SSCGs is not in
Poly-APX unless P = NP.

Proof. In order to prove the result, we rely on the reduction introduced
in the proof of Theorem 6.5. We have already shown that in a WSPNE
x = (xn, ν) of Γε(S) it holds cxn = ε if and only if the corresponding
instance of PARTITION admits a yes answer. Now, we show that, if the
partition problem has no answer, then cxn ≥ 1 in any WSPNE. Suppose,
by contradiction, that there is a leader’s strategy xn such that all NEs of
the resulting followers’ game provide the leader with a cost smaller than
1. Then, xrin < 1

Y 4 for all resources ri such that νri = 3, xrin < 1
Y 4 for

all resources ri such that νri = 1, and xrtn < 1
Y 4 . If there is a resource

ri with xrin > wi + 1
Y 4 , we have already proven that there is an NE with

νri = 3 providing the leader with a cost greater than Y 4xrin > 1. Con-
sider the set S ′′ ⊆ S of integers yi corresponding to resources ri with
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xrin ≤ wi − 1
Y 4 . We have already shown that there is an NE with νri = 1

for all yi ∈ S ′′. Since the leader can select these resources with, at most,
probability 1

Y 4 (as
∑

yi∈S′′ x
ri
n ≤ 1

Y 4 ), there is a set S ′ of resources ri with
wi− 1

Y 4 < xrin < wi+
1
Y 4 and

∑
yi∈S′ x

ri
n ≥ 1− 1

Y 4 . From
∑

yi∈S′(wi+
1
Y 4 ) >∑

yi∈S′ x
ri
n ≥ 1 − 1

Y 4 , we obtain
∑

yi∈S′ wi > 1 − 1
Y 4 − |S

′|
Y 4 > Y−1

Y
. From∑

yi∈S′(wi−
1
Y 4 ) <

∑
yi∈S′ x

ri
n ≤ 1, we deduce

∑
yi∈S′ wi < 1+ |S

′|
Y 4 <

Y+1
Y

.
Thus, Y − 1 <

∑
yi∈S′ yi < Y + 1 and, since

∑
yi∈S′ yi is an integer quan-

tity, we have that
∑

yi∈S′ yi = Y , showing that S ′ is a solution to PARTI-
TION. We have proven that Γε(S) admits a WSPNE x = (xn, ν) in which
cxn = ε if and only if the PARTITION instance has a yes answer, while,
otherwise, cxn ≥ 1 in any WSPNE. Let ε = 1

2n+r . Assume that there exists
a polynomial-time approximation algorithm A with approximation factor
poly(n, r), i.e., a polynomial function of n and r. Assume the PARTITION
instance has answer yes. A applied to Γε(S) would return a solution with
cxn ≤ 1

2n+r poly(n, r). Since, for n and r large enough, 1
2n+r poly(n, r) < 1,

A would allow us to decide in polynomial time whether the PARTITION
instance has a yes or no answer, a contradiction unless P = NP.

6.3 Polynomial-Time Algorithms for SSCGs

We have shown that the problem of computing an S/WSPNE in SSCGs is,
both in the general case and when restricting ourselves to SSSCGs, compu-
tationally intractable. We provide, here, two positive results for SSSCGs,
showing that, under certain conditions, the computation of an S/WSPNE in
these games can be carried out in polynomial time.

First, we design a polynomial-time algorithm for finding an S/WSPNE
in SSSCGs where the players’ costs are monotonic functions of the re-
source congestion. The algorithm relies on the fact that, as we will show,
in such games the leader cannot decrease her cost by playing mixed strate-
gies and, thus, pure-strategy commitments are sufficient. We also exhibit
a few examples showing that our algorithm cannot be easily extended to
more general settings as, if the players have either different action spaces or
non-monotonic cost functions, the leader could be better off playing mixed
strategies, thus violating the fundamental assumption of our algorithm.

Finally, we show that, if we restrict our attention to pure-strategy com-
mitments in SSSCGs, an S/WSPNE can be found in polynomial time by
means of a dynamic programming (DP) algorithm, even when the players’
cost functions are generic.
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6.3.1 Polynomial-Time Algorithms for Computing an S/WSPNE in
SSSCGs with Monotonic Cost Functions

Let us recall that, in SSSCGs, an NE minimizing the social cost can be
computed in polynomial time (Ieong et al., 2005). It is also easy to show
that an NE minimizing/maximizing the cost incurred by one player can be
found efficiently using an algorithm similar to that of Ieong et al. (2005)
(see Section 6.3.3 for additional details). As a consequence, computing an
S/WSPNE would also be easy if an equilibrium could only be induced by a
leader’s pure-strategy commitment. This is, unfortunately, not the case, as
there are SSSCGs admitting S/WSPNEs in which the leader’s commitment
is a mixed strategy and the followers’ configuration could only be induced
by the leader committing to a mixed strategy.

Proposition 6.2. There are SSSCGs with strictly monotonic cost functions
which admit an S/WSPNE x = (xn, ν) where the leader’s strategy xn is
mixed and, additionally, the followers’ configuration ν is an NE only for
mixed-strategy commitments of the leader.

Proof. Consider the following SSSCG with strictly monotonic cost func-
tions where |F | = 3 and R = {r1, r2, r3}.

y cr1,n cr1,F cr2,n cr2,F cr3,n cr3,F
1 1 1 3 4 1 1

2 2 3 4 5 2 3

3 3 6 5 6 3 6

The followers configuration ν = (1, 1, 1)> in which each follower selects
a different resource is not an NE if the leader commits to a pure strategy
while, e.g., it is an NE for xr1n = xr3n = 1

2
and xr2n = 0. Notice that the game

admits S/WSPNEs in which the leader’s commitment is a mixed strategy.
For instance, for xr1n = xr3n = 1

2
and xr2n = 0 the leader incurs a cost of 2

and there is no other strategy which allows her to pay less than 2.

Next, we focus on finding SSPNEs in SSSCGs with weakly monotonic
cost functions. We show that, for every strategy profile x = (xn, ν) where
the leader’s commitment xn is a mixed strategy and ν is an NE in the follow-
ers’ game, there is another strategy profile x̂ = (x̂n, ν̂) where the leader’s
commitment x̂n is a pure strategy with cost no larger than the one for x.
In particular, this implies that, in order to achieve an SSPNE, the leader
can always commit to a pure strategy. This is formalized in the following
theorem, whose proof shows constructively how to build x̂ from x.
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The idea of the proof is the following. Let x = (xn, ν) be a strategy
profile where xn is a mixed strategy and ν is an NE in the followers’ game.
Assume that the leader switched to selecting with probability one any of the
resources for which she would incur the minimum cost when committing
to xn. As this would increase the congestion of that resource, due to the
cost functions being weakly monotonic the followers could only react by
switching to another resource—this translates in the leader incurring a cost
on that resource which is never larger than the one she would incur when
committing to the mixed strategy xn.

Theorem 6.7. Every SSSCG with weakly monotonic cost functions admits
an SSPNE x = (xn, ν) in which xn is pure.

Proof. Given a strategy profile x = (xn, ν) with xn mixed and ν ∈ E(xn),
we show how to construct another strategy profile x̂ = (x̂n, ν̂) with ν ∈
E(x̂n) in which x̂n is pure and cx̂n ≤ cxn. Let S = {i ∈ R | xin > 0} be the
set of resources played by the leader with positive probability in xn and let
i? ∈ arg mini∈S ci,n(νi + 1). Clearly, since the leader’s utility is a convex
combination weighted by xn of the costs she incurs in the resources chosen
with positive probability, cxn =

∑
i∈An x

i
nci,n(νi + 1) ≥ ci?,n(νi

?
+ 1).

Moreover, since ν is an NE for xn, the following holds by definition:

cxni,F (νi) ≤ cxnj,F (νj + 1) ∀ i ∈ R : νi > 0, j ∈ R. (6.1)

Let us define x̂n ∈ ∆n such that x̂i?n = 1. We now show that such x̂n is part
of an SSPNE. Notice that cx̂ni,F (y) = ci,F (y) for all y ∈ N and i ∈ R \ {i?}
(as the leader does not select these resources), while cx̂ni?,F (y) = ci?,F (y+1)
for all y ∈ N (as the leader selects that resource). Since, in the strong
case, the followers behave in favor of the leader, it is sufficient to exhibit
a ν̂ ∈ E(x̂n) such that x̂ = (x̂n, ν̂) satisfies cx̂n ≤ cxn. We construct a
sequence of followers configurations which starts from ν and reaches such
ν̂. Given x̂n, let us consider the sequence (ν(0) = ν, ν(1), . . . , ν(T ) = ν̂)
such that each configuration differs from the previous one in that a single
follower has changed resource, strictly decreasing her cost. Formally, this
corresponds to showing that, for all 0 ≤ t < T , there is a pair i, j ∈ R
such that ν(t)i > 0, ν(t + 1)i = ν(t)i − 1, ν(t + 1)j = ν(t)j + 1, and
cx̂ni,F (ν(t)i) > cx̂nj,F (ν(t + 1)j). Moreover, let us assume that a follower
deviates to resource i?, i.e., ν(t + 1)i

?
> ν(t)i

? , only if this is the only
way of strictly decreasing some follower’s cost. This is w.l.o.g., as it is
consistent with the assumption that the followers break ties in favor of the
leader. Let us now prove that the sequence of followers’ configurations
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satisfies the following:

ν(t+ 1)i
? ≤ ν(t)i

? ∀ 0 ≤ t < T. (6.2)

By contradiction, assume there exists 0 ≤ t < T such that ν(t + 1)i
?
>

ν(t)i
? . Then, there is a follower who can strictly decrease her cost in ν(t) by

choosing i? instead of some j 6= i? ∈ R : ν(t)j > 0, i.e., cx̂ni?,F (ν(t)i
?
+1) <

cx̂nj,F (ν(t)j) holds. Thus, given that cx̂ni?,F (ν(t)i
?

+ 1) = ci?,F (ν(t)i
?

+ 2) and
cx̂nj,F (ν(t)j) = cj,F (ν(t)j), we conclude that:

cxni?,F (νi
?

+ 1) ≤ ci?,F (ν(t)i
?

+ 2) < cj,F (ν(t)j), (6.3)

where the first inequality holds since ν(t)i
?

= νi
? (as Equation (6.2) holds

for the elements of the sequence preceding ν(t) and the number of follow-
ers selecting i? cannot decrease with respect to νi?). Two cases are possi-
ble. In the first one, ν(t)j ≤ νj , implying, by monotonicity, cj,F (ν(t)j) ≤
cj,F (νj) ≤ cxnj,F (νj), which, together with Equations (6.1) and (6.3), leads
to a contradiction. In the second case, ν(t)j > νj implies that there exists
k 6= i? ∈ R such that ν(t)k < νk (and νk > 0), otherwise

∑
i∈R ν(t)i >

n − 1. It follows that cj,F (ν(t)j) ≤ ck,F (ν(t)k + 1) ≤ cxnk,F (νk), where the
first inequality holds since, due to our assumptions on the sequence, it can-
not be cj,F (ν(t)j) > ck,F (ν(t)k + 1) as ν(t+ 1)i

?
> ν(t)i

? , and the second
inequality follows from ν(t)k < νk. Thus, Equations (6.1) and (6.3) give a
contradiction. As a result, Equation (6.2) holds, and, thus, ν̂i? ≤ νi

? . Given
the monotonicity of the costs, we conclude that cx̂n ≤ cxn. The prove the
claim, it now suffices to take as strategy profile x = (xn, ν) an SSPNE in
which xn is mixed—since the leader’s cost at x is the smallest possible, her
cost at x̂ will be identical to it.

We prove, now, that a similar result holds for the weak case, i.e., for
computing a WSPNE. The result is weaker though, as it requires the stronger
assumption that the followers’ cost functions be strictly monotonic.

The idea of the proof is similar to the previous one. Given a WSPNE
x = (xn, ν) in which xn is a mixed strategy, we show that there exists
another WSPNE x̂ = (x̂n, ν̂) where the leader’s commitment x̂n is a pure
strategy which selects with probability one any of the resources for which
the leader incurs the minimum cost when committing to xn. In order to
show this, we prove, by contradiction, that any NE ν̂ for x̂n provides the
leader with a cost smaller than or equal to the one for x.

Theorem 6.8. Every SSSCG in which the leader’s and followers’ cost func-
tions are, respectively, weakly and strictly monotonic, admits a WSPNE
x = (xn, ν) in which xn is pure.
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Proof. Assume there exists a WSPNE x = (xn, ν) in which xn is mixed.
We show that there must be another WSPNE x̂ = (x̂n, ν̂) such that x̂n is
pure. Let us define i? ∈ R and x̂n ∈ ∆n as in the proof of Theorem 6.7, so
that cxn ≥ ci?,n(νi

?
+ 1) and Equation (6.1) holds. Given that the followers

behave pessimistically, we need to show that, for every ν̂ ∈ E(x̂n), x̂ =
(x̂n, ν̂) satisfies cx̂n ≤ cxn. By contradiction, assume cx̂n > cxn, which implies
ci?,n(ν̂i

?
+ 1) > ci?,n(νi

?
+ 1). It easily follows from the monotonicity of

the costs that ν̂i? > νi
? . Thus, there must be a resource j ∈ R such that

ν̂j < νj as, otherwise,
∑

i∈R ν̂
i > n − 1. Let us also remark that νj > 0.

Thus:

cxni?,F (νi
?

+ 1) ≤ ci?,F (ν̂i
?

+ 1) ≤ cj,F (ν̂j + 1) ≤ cxnj,F (νj), (6.4)

where the first inequality follows from νi
?
< ν̂i

? , the second one from the
fact that ν̂ is an NE for x̂n, and the third one from ν̂j < νj . Equation (6.1)
implies cxnj,F (νj) ≤ cxni?,F (νi

?
+ 1). If cxnj,F (νj) < cxni?,F (νi

?
+ 1), then Equa-

tion (6.4) leads to a contradiction. Otherwise, if cxnj,F (νj) = cxni?,F (νi
?

+ 1)
all the inequalities in Equation (6.4) hold as equations. This, however, im-
plies cxni?,F (νi

?
+ 1) = ci?,F (ν̂i

?
+ 1) and cj,F (ν̂j + 1) = cxnj,F (νj), which

is a contradiction since xn is mixed and the followers’ cost functions are
strictly monotonic.

Theorem 6.8 fails to hold if the followers’ cost functions are weakly,
rather than strictly, monotonic, as the following result shows:

Proposition 6.3. There are SSSCGs with weakly monotonic cost functions
where any WSPNE prescribes the leader to play a mixed strategy.

Proof. Consider the following instance of SSSCG with weakly monotonic
cost functions, where |F | = 1 and R = {r1, r2}.

y cr1,n cr1,F cr2,n cr2,F
1 1 1 1 1

2 2 1 2 1

Clearly, any followers’ configuration is an NE in this game, independently
of the leader’s commitment. Whenever the leader commits to a pure strat-
egy, be it the selection of r1 or r2, the follower, due to the pessimistic
assumption, chooses the same resource, so to have the leader incur a cost
as large as possible (of 2). By uniformly randomizing between the two
resources, though, the leader can reduce her cost to 21

2
+ 1

2
= 1.5.
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Relying on Theorems 6.7 and 6.8, we can compute an SSPNE (respec-
tively, WSPNE) by enumerating the leader’s pure strategies and, for each
of them, computing a followers’ NE which results in the smallest (respec-
tively, largest) leader’s cost. Such NE can be computed by applying a sim-
ple greedy procedure which progressively assigns followers to resources.
At each step, a single follower is assigned to the resource which is cheap-
est for her, given how the previously considered followers have been dis-
tributed over the resources. At a given step, among all the resources mini-
mizing followers’ cost the procedure selects one minimizing (respectively,
maximizing) the leader’s cost. An S/WSPNE is then obtained by picking
any leader’s pure strategy for which the leader’s cost is the smallest.

The detailed procedure is described in Algorithm 6.1 where, for some
S ⊆ R and i ∈ S, the function S-PICK(S, i) (respectively, W-PICK(S, i))
returns some resource j? ∈ S , giving precedence to resources j? 6= i (re-
spectively, j? = i).

Algorithm 6.1 Algorithm for computing an S/WSPNE in SSSCG with monotonic costs.
1: function COMPUTE-S/W-SPNE
2: for all i ∈ R do
3: xn[i]← xn ∈ ∆n : xin = 1
4: ν[i, j]← 0 ∀ i, j ∈ R
5: while

∑
j∈R ν[i, j] < n do

6: S ← arg minj∈R c
xn[i]
j,F (ν[i, j] + 1)

7: j? ← S/W-PICK(S, i)
8: ν[i, j?]← ν[i, j?] + 1
9: end while

10: cn[i]← ci,n(ν[i, i] + 1)
11: end for
12: i? ← arg mini∈R cn[i]
13: return x = (xn[i?], ν[i?, ·])
14: end function

Let us remark that, in Algorithm 6.1, xn[·], ν[·, ·], and cn[·] are the al-
gorithm’s variables and, for every i ∈ R, ν[i, j] denotes the number of
followers selecting resource j ∈ R in the NE which is reached when the
leader’s strategy is xn[i].

Theorem 6.9. Algorithm 6.1 is correct and it runs in time O(nr log r).

Proof. We rely on the pseudocode reported in Algorithm 6.1 to show its
correctness. Thanks to Theorems 6.7 and 6.8, we only need to prove that,
for every i ∈ R and after the execution of the while loop, the followers
configuration ν is such that, for all j ∈ R, νj = ν[i, j] is an NE for xn[i]
minimizing (or maximizing) the leader’s cost. First, let us show that ν is
an NE. Suppose, by contradiction, that it is not. Then, there exists j ∈
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R : νj > 0 and k ∈ R such that cxn[i]
j,F (νj) > c

xn[i]
k,F (νk + 1). Let ν̄k be

the value of ν[i, k] during the step in which ν[i, j] is set to its final value
νj . Clearly, cxn[i]

j,F (νj) > c
xn[i]
k,F (νk + 1) ≥ c

xn[i]
k,F (ν̄k + 1), and the algorithm

would have not incremented ν[i, j] during that step, a contradiction. Let
us show now that (xn[i], ν) is an S/WSPNE. In the remainder of the proof,
we focus on the strong case (the weak one can be treated analogously).
Suppose, by contradiction, that ν is not an NE minimizing the leader’s cost
for xn[i] (i.e., not an SSPNE). Then, there exists another NE ν̂ for xn[i]
such that ci,n(ν̂i + 1) < ci,n(νi + 1). Given the monotonicity of the costs,
ν̂i < νi must hold. Therefore, there must exist some j 6= i ∈ R such that
ν̂j > νj . Let us consider the step in which ν[i, i] is set to νi, and let ν̄j be
the value of ν[i, j] during that step. Note that cxn[i]

i,F (νi) < c
xn[i]
j,F (ν̄j+1) must

hold as, otherwise, the algorithm would have incremented ν[i, j] instead of
ν[i, i]. But, then, cxn[i]

j,F (ν̄j + 1) ≤ c
xn[i]
j,F (νj + 1) ≤ c

xn[i]
j,F (ν̂j), which implies

c
xn[i]
i,F (ν̂i + 1) ≤ c

xn[i]
i,F (νi) < c

xn[i]
j,F (ν̄j + 1) ≤ c

xn[i]
j,F (ν̂j), contradicting the

fact that ν̂ is an NE for the given xn[i].
Since the while loop is executed exactly r times, each execution carries

out n steps. Using efficient data structures, each step takes time O(log r).
Thus, the overall running time is O(nr log r).

Next, we provide a characterization of S/WSPNEs in SSSCGs with
monotonic costs under the additional assumption that leader’s and follow-
ers’ costs be equal, which may be of independent interest besides the com-
putation of S/WSPNEs.

Theorem 6.10. Given an SSSCG with monotonic costs and cn = cF =
{ci}i∈R, any S/WSPNE x = (xn, ν) with xn pure is an NE.

Proof. Let x = (xn, ν) be an S/WSPNE with xi?n = 1 for some i? ∈ R.
Clearly, given that ν ∈ E(xn), cxni (νi) ≤ cxnj (νj + 1) holds for every i ∈
R : νi > 0 and for every j ∈ R. Therefore, no follower has an incentive
to change resource. Thus, it is sufficient to prove that the leader has no
incentive to deviate from resource i? unilaterally, i.e., without assuming
that the followers would react to her deviation (which is the case in the
Stackelberg setting). If νi? > 0, we have ci?(νi

?
+1) = cxni? (νi

?
) ≤ cxnj (νj+

1) = cj(ν
j + 1) for every j 6= i? ∈ R, and it immediately follows that the

leader does not deviate and x is an NE. The case in which νi? = 0 is more
involved. By contradiction, assume that x is not an NE. As a consequence,
the leader must have an incentive to deviate to some resource j 6= i? ∈ R,
i.e., ci?(νi

?
+ 1) = ci?(1) > cj(ν

j + 1). Let x̂n with x̂jn = 1 be the
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strategy the leader commits to. We prove (by contradiction) that, for every
ν̂ ∈ E(x̂n), x̂ = (x̂n, ν̂) provides the leader with a cost strictly smaller
than ci?(1). Assume cj(ν̂j + 1) ≥ ci?(1). Three cases are possible. In the
first one, ν̂j < νj and ci?(1) > cj(ν

j + 1) ≥ cj(ν̂
j + 1) ≥ ci?(1). In the

second one, ν̂j = νj and cj(ν̂j + 1) ≥ ci?(1) > cj(ν
j + 1). In the third

case, ν̂j > νj , which implies that there must be a resource k 6= i? ∈ R
such that ν̂k < νk, and ci?(1) > cj(ν

j + 1) ≥ ck(ν
k) ≥ ck(ν̂

k + 1) ≥
cj(ν̂

j + 1) ≥ ci?(1). As all the cases lead to a contradiction, it must be
cj(ν̂

j + 1) < ci?(1). The proof is complete as, in x̂, the leader’s cost is
cj(ν̂

j + 1) < ci?(1), contradicting the fact that x is an S/WSPNE.

6.3.2 On the Necessity of the Assumptions

We provide some examples showing why Algorithm 6.1 cannot be easily
extended to more general settings—the reason being that Theorems 6.7 and
6.8 do not hold if the assumption of monotonicity is dropped.

First, let us analyze the general case of SSSCGs in which the costs need
not be monotonic functions of the resource congestion:

Proposition 6.4. There are SSSCGs in which, even if the cost functions of
one player only are nonmonotonic, be it the leader or one of the followers,
any S/WSPNE prescribes the leader to play a mixed strategy.

Proof. Consider the following instance of SSSCG with non-monotonic fol-
lowers’ cost functions, where R = {r1, r2} and |F | = 1.

y cr1,n cr1,F cr2,n cr2,F
1 1 2 1 2

2 2 1 2 1

The follower selects r2 whenever xr1 ≤ 1
2
, while, if xr1n ≥ 1

2
, she chooses

r1. The leader’s cost is 2− xr1n if xr1n ≤ 1
2
, and 1 + xr1n if xr1n ≥ 1

2
. There is,

thus, a unique S/WSPNEE that prescribes the leader to commit to xn with
xr1n = xr2n = 1

2
.

Consider now the following instance of SSSCG with non-monotonic
leader’s cost functions, where R = {r1, r2} and |F | = 1.

y cr1,n cr1,F cr2,n cr2,F
1 2 1 2 1

2 0 2 0 2
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The follower selects r2 if xr1n ≥ 1
2

and r1 if xr1n ≤ 1
2
. The leader’s cost is

thus 2xr1n if xr1n ≥ 1
2

and 2−2xr1n if xr1n ≤ 1
2
. There is, thus, a unique O/PSE

which prescribes the leader to commit to xn with xr1n = xr2n = 1
2
.

Finally, we show that Theorems 6.7 and 6.8 do not hold for general SS-
CGs with different action spaces, even if the cost functions are monotonic:

Proposition 6.5. There are SSCGs with different action spaces and mono-
tonic cost functions where any S/WSPNE prescribes the leader to play a
mixed strategy.

Proof. Consider the following SSCG with R = {r1, r2, r3}, two followers
F = {p1, p2}, and Ap1 = {r1, r2}, Ap2 = {r2, r3}, An = {r1, r2}:

y cr1,F cr1,n cr2,F cr2,n cr3,F
1 1 0 0 1 3

2 1 1 2 1 3

3 1 1 4 1 3

If the leader plays xr1n = 1, there is a unique NE where follower p1 plays
r1 and follower p2 plays r2. Indeed, p2 incurs a cost of 0 and, thus, has
no incentive to deviate, while p1 would incur a cost of 2 > 1 by deviating
to r2. Thus, the leader’s cost is 1. The leader’s cost is also 1 if she played
xr2n = 1, as p2 would also choose r2, while p1 would choose r1. Let us show
that the leader can commit to a mixed strategy and incur a cost smaller than
1. Indeed, with xr1n = xr2n = 1

2
, there is a followers’ NE where p1 chooses

r2 and p2 chooses r3: p1, incurring a cost of 1 (smaller or equal than any
other cost), has no incentive to deviate, while p2, currently incurring a cost
of 3, by switching to r2 would incur the same (expected) cost of 3 (i.e., a
cost of 2 with probability 1

2
and one of 4 with probability 1

2
), thus having no

incentive to deviate. At that NE, the leader’s cost is 0 · 1
2

+ 1 · 1
2

= 1
2
.

6.3.3 Pure-Strategy Commitment in SSSCGs with Generic Costs

We propose, here, a simple polynomial-time algorithm for computing an
S/WSPNE in SSSCGs with generic costs where the leader is restricted to
pure-strategy commitments. It is based on a dynamic programming algo-
rithm proposed in (Ieong et al., 2005) for the computation of an optimal NE
in symmetric non-Stackelberg singleton congestion games. The original al-
gorithm runs in O(n6r5). One can compute an S/WSPNE in r iterations,
fixing, at each iteration, the action the leader would choose and calling the
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previous algorithm to compute an NE which either minimizes or maximizes
the leader’s cost. This takes, overall, O(n6r6).

We show, in the following, how to improve the complexity of the orig-
inal algorithm to O(n4r3), thanks to which we can compute an S/WSPNE
for the restricted case in O(n4r4). The algorithm is based on the same re-
cursive formula shown in (Ieong et al., 2005), which we reintroduce, here,
in a different and, possibly, clearer way.

Let O(h,B,M, V ) be the cost of an optimal NE for a symmetric SCG
without leadership restricted to h resources {1, 2, ..., h} ⊆ R andB players,
where M is the largest cost incurred by a player and V is the smallest cost
a player would incur if she were to switch to another resource.

Proposition 6.6. O(h,B,M, V ) satisfies the following recursive equation:

O(h,B,M, V ) = min
p∈{0,...,B}
m∈Z+, v∈Z+

O(h− 1, p,m, v) + (B − p) ch(B − p)

s.t. m ≤M (6.5a)
v ≥ V (6.5b)
ch(B − p) ≤M (6.5c)
ch(B − p+ 1) ≥ V (6.5d)
ch(B − p) ≤ v (6.5e)
ch(B − p+ 1) ≥ m. (6.5f)

Proof. We show that all the constraints are necessary for the definition of
O(h,B,M, V ) to be respected. If Constraint (6.5a) were not satisfied, m >
M would imply that there is at least a resource among those in {1, . . . , h−
1} costing strictly more than M . If Constraint (6.5b) were not satisfied,
v < V would imply that the cost to deviate to a resource among those
in {1, . . . , h − 1} is strictly smaller than V . If Constraint (6.5c) were not
satisfied, ch(B − p) > M would imply that M is smaller than the cost of
the most expensive chosen resource. If Constraint (6.5d) were not satisfied,
ch(B − p + 1) < V would imply that V is larger than the cheapest cost a
player would incur upon deviating to another resource. If Constraint (6.5e)
were not satisfied, ch(B − p) > v would imply that each of the B − p
players who chose resource h would have an incentive to deviate to any
of the resources in {1, . . . , h − 1}. If Constraint (6.5f) were not satisfied,
ch(B − p + 1) < m would imply that at least one of the p players who
selected a resource in {1, . . . , h − 1} (i.e., all those incurring a cost of m)
would have an incentive to deviate to resource h.
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We now show how to simplify the recursive formula forO(h,B,M, V ):

Theorem 6.11. O(h,B,M, V ) satisfies the following recursive equation:

O(h,B,M, V ) =

= min
p∈{0,...,B}

O(h− 1, p,m(p)∗, v(p)∗) + (B − p) ch(B − p)

s.t. ch(B − p) ≤M (6.6a)
ch(B − p+ 1) ≥ V, (6.6b)

where m(p)∗ = min{M, ch(B − p+ 1)} and v(p)∗ = max{V, ch(B − p)}.
Proof. Constraints (6.5a)–(6.5f) and (6.5b)–(6.5e) imply, respectively,m ≤
min{M, ch(B − p + 1)} and v ≥ max{V, ch(B − p)}. Hence, m(p)∗ and
v(p)∗ are feasible for Problem (6.5). Notice that, if m′ > m and v′ < v,
the feasible region underlying O(h, p,m′, v′) contains the one underlying
O(h, p,m, v), which implies O(h, p,m′, v′) ≤ O(h, p,m, v). The claim
follows since m(p)∗ and v(p)∗ are, respectively, the largest and smallest
values m and v can take.

Corollary 6.11.1. In symmetric non-Stackelberg singleton congestion games,
an optimal NE can be found in O(n4r3). In SSSCGs with the leader re-
stricted to pure strategies, an S/WSPNE can be found in O(n4r4).

Proof. Since there are at most nr different values of cj(y), for all j ∈ R
and y ∈ N, there are at most nr values of M and at most nr values of V .
There are also exactly r values of h and exactly n of B. Hence, the dy-
namic programming table ofO(h,B,M, V ) contains O(n3r3) entries. Due
to Theorem (6.11), computing an entry of the table requires O(n). Overall,
an optimal NE is computed in O(n4r3). For the case with leadership re-
stricted to pure strategies, it suffices to run the algorithm for each resource
the leader may choose, obtaining a complexity of O(n4r4).

6.4 Results on Non-singleton SCGs

We now study the problem of computing an SSPNE in general SCGs with
non-singleton actions, proving it is intractable even when the game is sym-
metric, cost functions are monotonic, and players’ actions are made of only
two resources. Thus, non-singleton actions make the problem considerably
harder than in the singleton case, which admits a polynomial-time algo-
rithm in symmetric games with monotonic costs (see Theorem 6.9).
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In particular, we show that the problem is NP-hard and not in Poly-
APX, unless P = NP, by means of a reduction from 3-SAT. Intuitively,
given ε > 0, we map any 3-SAT instance to an SCG that admits an SSPNE
x with cxn = ε if and only if 3-SAT is satisfiable, otherwise cxn = 1.

Theorem 6.12. Computing an SSPNE in symmetric SCGs is NP-hard, even
when cost functions are monotonic and players’ actions have cardinality at
most two.

Proof. We provide a reduction from 3-SAT showing that a polynomial-time
algorithm for finding an SSPNE in SCGs would allow us to solve any 3-
SAT instance in polynomial time. Given a 3-SAT instance (C, V ) and a
number 0 < ε < 1, we build an SCG Γε(C, V ) admitting an SSPNE x with
cxn = ε if and only if (C, V ) is satisfiable.

Mapping. Γε(C,U) is defined as follows:

• N = F ∪ {n} with F = {pv | v ∈ V } ∪ {pφ | φ ∈ C};
• R = {rw} ∪ {rv, rv̄, rv,t | v ∈ V } ∪ {rφ | φ ∈ C};
• Ap = {av = {rv, rv,t}, av̄ = {rv̄, rv,t} | v ∈ V } ∪ {aw = {rw}} ∪
{aφ,l = {rφ, rl} | φ ∈ C, l ∈ φ} for all p ∈ N .

Cost functions are specified in the following table, and, additionally, crv̄ ,F =
crv ,F and ci,n = ci,F for all i ∈ R.

y crφ,F crv ,F crv,t,F crw,F
1 1 0 3 ε

[2, |C|+ |V |+ 1] 5 2 5 4

Clearly, Γε(C, V ) can be constructed in polynomial time, since n =
|C|+ |V |+ 1, r = |C|+ 3|V |+ 1, and |Ap| = 3|C|+ 2|V |+ 1 for p ∈ N .
We remark that Γε(C, V ) is symmetric, cost functions are monotonic, and
each action has cardinality at most two. Moreover, the leader’s cost is ε if
and only if she is the only player using the singleton action aw, otherwise
her cost is at least 1, since other actions contain two resources.

If. Suppose that (C, V ) is satisfiable, and let T : V 7→ {0, 1} be a truth
assignment satisfying all clauses in C. Let xn ∈ ∆n : xawn = 1. Using T ,
we can build x = (xn, a−n), with a−n ∈ E(xn), such that cxn = ε. Since ε is
the minimum leader’s cost and the followers behave in favor of the leader, x
is an SSPNE. In particular, for every φ ∈ C, there must be a follower p ∈ F
such that ap = aφ,l, where l ∈ φ evaluates to true under T . Clearly, one
such literal l ∈ φ always exists. When there are many, take one minimizing
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νrla−n . Moreover, for every v ∈ V , if T (v) = 1, respectively T (v) = 0,
there must be a follower p ∈ F such that ap = av̄, respectively ap = av.
Thus, νrφa−n = 1 for all φ ∈ C, and, similarly, νrv,ta−n = 1 for all v ∈ V .
Additionally, νrwa−n = 0 as there are |C|+ |V | followers. Next, we show that
a−n ∈ E(xn). First, followers p ∈ F with ap = aφ,l experience a cost cxp =

crφ,F (ν
rφ
a−n) + crl,F (νrla−n) ≤ 3, since νrφa−n = 1. Thus, they do not have any

incentive to deviate. If they switch to aφ′,l′ (with φ′ 6= φ), then they would
pay at least 5 (as ν

rφ′
a−n = 1). Furthermore, they do not deviate to aφ,l′ (with

l′ 6= l ∈ φ), as, if l′ is false, then they would pay 3, while, when l′ is true,
they would incur a cost of crφ,F (ν

rφ
a−n)+crl′ ,F (ν

rl′
a−n) ≥ cxp (as νrl′a−n ≥ νrla−n).

If, instead, they deviate to av or av̄, then their cost would be at least 5 (as
ν
rv,t
a−n = 1). Moreover, they do not switch to aw, since they would pay 4.

Followers p ∈ F with ap = av has cost cxp = crv ,F (νrva−n)+crv,t,F (ν
rv,t
a−n) = 3

since νrva−n = 1. Thus, they do not deviate, as they would pay at least 4.
Similarly, followers p ∈ F with ap = av̄ do not deviate. As a result, a−n is
an NE and, since xawn = 1 and νrwa−n = 0, it holds cxn = ε.

Only if. Suppose there exists an SSPNE x = (xn, a) such that cxn = ε.
Thus, xawn = 1 and νrwa−n = 0. For v ∈ V , νrv,ta−n ≤ 1, otherwise, if νrv,ta−n ≥ 2,
some followers would have an incentive to deviate to action aw, paying
4 < 5. Analogously, for φ ∈ C, νrφa−n ≤ 1. Since there are |C| + |V |
followers, νrv,ta−n = 1 for every v ∈ V , and νrφa−n = 1 for every φ ∈ C. Thus,
for every v ∈ V , there exists p ∈ F such that either ap = av or ap = av̄,
and no other follower selects actions av and av̄. Define a truth assignment
T such that T (u) = 1 if there is p ∈ F with ap = av̄, while T (v) = 0 if
there is p ∈ F with ap = av. Clearly, T is well-defined. Moreover, for
every φ ∈ C, there exists a unique follower p ∈ F and a literal l ∈ φ such
that ap = aφ,l, as νrφ−n = 1. This implies that no follower plays al, otherwise
her cost would be at least 5, and she would deviate to aw, paying 4. Thus,
if l is positive, there is p ∈ F with ap = av̄, while, if it is negative, there is
p ∈ F with ap = av. Therefore, T satisfies all clauses.

By letting ε = 1
2I

, where I is the game size, the reduction used for
Theorem 6.12 also shows the following:

Theorem 6.13. The problem of computing an SSPNE in symmetric SCGs
is not in Poly-APX unless P = NP, even when costs are monotonic and
players’ actions have cardinality two.

Proof. Given a 3-SAT instance (C, V ), we build an SCG Γε(C, V ) as in the
proof of Theorem 6.12. As previously shown, in an SSPNE x of Γε(C,U),
it holds cxn = ε if and only if (C, V ) is satisfiable. Next, we prove that,
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if (C, V ) is not satisfiable, then any SSPNE x has cxn ≥ 1. Suppose, by
contradiction, there exists an SSPNE x = (xn, a) with cxn < 1. This implies
that xawn > 0 and νrwa−n = 0, otherwise cxn ≥ 1. Moreover, all the followers
must experience a cost at most of 4, otherwise they would have an incentive
to switch to aw. Thus, for every v ∈ V , it must be the case that νrv,ta−n ≤
1, otherwise, if νrv,ta−n ≥ 2, some followers would have a cost at least 5.
Similarly, for every φ ∈ C, it must be the case that νrφa−n ≤ 1. Following
the same reasoning as in the proof of Theorem 6.12, we can build a truth
assignment satisfying all clauses, a contradiction. Finally, let ε = 1

2I
, where

I is the size of Γε(C, V ). Suppose there is a polynomial-time approximation
algorithm A with approximation factor poly(I), i.e., a polynomial function
of I . If (C, V ) is satisfiable, then A applied to Γε(C, V ) would return a
solution with cost at most 1

2I
poly(I) < 1, for I large enough. Thus, A

would allow us to solve any 3-SAT instance in polynomial time, which is a
contradiction unless P = NP holds.

In conclusion, we provide some side results that deepen our analysis on
how non-singleton actions impact on the complexity of finding an SSPNE
in SCGs. The following theorem shows that our intractability results hold
even in SCGs where only the followers have non-singleton actions.

Theorem 6.14. The problem of computing an SSPNE in SCGs is NP-hard
and not in Poly-APX unless P = NP, even when leader’s actions are sin-
gletons, costs are monotonic, and followers are symmetric with actions of
cardinality at most two.

Proof. The result is obtained from the proofs of Theorems 6.12 and 6.13,
by setting An = {aw} in the reduction.

Let us observe that, since the SSPNEs of the games used in our reduc-
tion prescribe the leader to play a pure strategy, we have that the results in
Theorems 6.12, 6.13, and 6.14 hold even if we restrict the leader to pure-
strategy commitments.

In conclusion, we consider the case in which only the leader has non-
singleton actions. It is easy to show that in SCGs with symmetric followers
having singleton actions, an SSPNE can be found in polynomial time if
we restrict the leader to play pure strategies. A polynomial-time algorithm
enumerates the leader’s pure strategies, and, for each of them, it computes
an NE minimizing the leader’s cost in the resulting followers’ symmetric
singleton congestion game, which can be done in polynomial time using
dynamic programming, as shown by Ieong et al. (2005).
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6.5 SSCGs with Multiple User Classes

In this section, we switch the attention to T -class SSCGs, a generalization
of symmetric SSCGs in which the players are partitioned into a finite num-
ber of classes. As shown by Theorem 6.3, finding an SSPNE in symmetric
SSCGs with non-monotonic costs is NP-hard, while the problem becomes
easy if: (a) we assume that the leader can only play pure strategies (Corol-
lary 6.11.1), or (b) we force players’ costs be monotonic (Theorem 6.9).
Here, first we show that, under condition (a), computing an SSPNE is easy
also in T -class SSCGs with a fixed number of classes. Next, we prove
that, if condition (a) does not hold, then the problem is NP-hard in T -class
SSCGs even if we enforce (b) and there are only four followers’ classes.

Let us start providing a polynomial-time algorithm for computing SSP-
NEs in T -class SSCGs with a fixed number of classes and the leader re-
stricted to pure strategies. We extend the dynamic programming method
based on the recursive formula defined by Problem 6.5 and Corollary 6.11.1.
Specifically, let O(h,B1, . . . , BT ,M1, . . . ,MT , V1, . . . , VT ) be the cost of
an optimal NE for a T -class singleton congestion game restricted to h re-
sources {1, 2, . . . , h} ⊆ R and Bt players for each class t ∈ T , where Mt

is the largest cost experienced by a player of class t and Vt is the smallest
cost a player of class t would get by switching to another resource.

Lemma 6.1. O(h,B1, . . . , BT ,M1, . . . ,MT , V1, . . . , VT ) satisfies:

O(h,B1, . . . , BT ,M1, . . . ,MT , V1, . . . , VT ) =

= min
pt∈{0,...,Bt} ∀t∈T
mt∈{0,...,Mt} ∀t∈T
vt∈{1,...,Vt} ∀t∈T

O(h− 1, p1, . . . , pT ,m1, . . . ,mT , v1, . . . , vT ) + bch(b)

s.t. b =
∑
t∈T

(Bt − pt) (6.7a)

Bt = pt ∀t ∈ T : h /∈ At (6.7b)
mt ≤Mt ∀t ∈ T (6.7c)
vt ≥ Vt ∀t ∈ T (6.7d)
ch(b) ≤Mt ∀t ∈ T : Bt − pt > 0 (6.7e)
ch(b+ 1) ≥ Vt ∀t ∈ T : h ∈ At (6.7f)
ch(b) ≤ vt ∀t ∈ T : Bt − pt > 0 (6.7g)
ch(b+ 1) ≥ mt ∀t ∈ T : h ∈ At. (6.7h)
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Proof. We show that all the constraints are necessary. If Constrains (6.7b)
were not satisfied, at least one player would play an action not available to
her. If Constraints (6.7c) were not satisfied, there would exist a t ∈ T such
thatmt > Mt, and, thus, there would be at least a resource in {1, . . . , h−1}
having cost larger than Mt for players of class t. If Constraints (6.7d) were
not satisfied, there would exist a t ∈ T such that vt < Vt, and, thus, players
of class t would incur a cost strictly smaller than Vt when deviating to a
resource in {1, . . . , h − 1}. If Constraints (6.7e) were not satisfied, there
would exist a t ∈ T : Bt − pt > 0 such that ch(b) > Mt, and, thus,
Mt would be smaller than the cost of the most expensive resource used
by players of class t. If Constraints (6.7f) were not satisfied, there would
exist a t ∈ T : h ∈ At such that ch(b + 1) < Vt, and, thus, players of
class t would incur a cost strictly smaller than Vt upon deviating to another
resource. If Constraints (6.7g) were not satisfied, there would exist a t ∈
T : Bt − pt > 0 such that ch(b) > vt and, thus, at least one player of class
t using resource h would have an incentive to deviate to another resource.
If Constraints (6.7h) were not satisfied, there would exist a t ∈ T : h ∈ At
such that ch(b + 1) < mt and at least one player of class t experiencing a
cost of mt would prefer to switch to resource h.

Thus, we can conclude the following:

Theorem 6.15. In T -class non-Stackelberg singleton congestion games, an
optimal NE can be found in O(n6T r4T+1). In T -class SSCGs, an SSPNE
can be found in O(n6T r4T+2) if we restrict the leader to pure strategies.

Proof. Since there are at most nr different values of costs ci(y) (i ∈ R, y ∈
{1, . . . , n}), for each t ∈ T there are at most nr values of Mt and Vt. There
are also exactly r values of i ∈ R and exactly nt values of Bt for each t ∈
T . Hence, O(h,B1, . . . , BT ,M1, . . . ,MT , V1, . . . , VT ) has O(n3T r2T+1)
entries. Computing an entry of the table requires O(n3T r2T ). Overall, an
optimal NE is computed in O(n6T r4T+1). For T -class SSCGs with the
leader restricted to play pure strategies, it suffices to run the algorithm for
each i ∈ An, minimizing the cost of i. Since there areO(r) leader’s actions,
the overall complexity is O(n6T r4T+2).

Now, we prove the hardness result, using a reduction fromK-PARTITION,
an NP-compete variant of PARTITION with an additional size constraint
(see Definition 6.4).

Theorem 6.16. Computing an SSPNE in T -class SSCGs is NP-hard, even
when cost functions are monotonic and |T | = 4.
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Proof. Our reduction from K-PARTITION shows that a polynomial-time
algorithm for finding an SSPNE in T -class SSCGs would allow us to solve
any K-PARTITION instance in polynomial time. Given a K-PARTITION
instance (S, K), we build a game Γ(S, K) that admits an SSPNE x with
cxn ≤ 2Y − Y

K
if and only if (S, K) has answer yes, i.e., there is S ′ ⊆ S

with |S ′| = K and
∑

yi∈S′ yi = Y . We assume, w.l.o.g., that yi ≤ Y for all
yi ∈ S (if not, (S, K) trivially has answer no).

Mapping. Γ(S, K) is defined as follows:

• N = F ∪ {n} and T = {1, 2, 3, 4}, where F =
⋃
t∈T Ft with |F1| =

K, |F2| = 2|S|, |F3| = 1, and |F4| = 1;

• R = RS ∪ {rw, rx, ry, rz} with RS = {ri | yi ∈ S};
• A1 = RS ∪ {rw}, A2 = RS ∪ {rz}, A3 = {rw, ry}, A4 = {rx, ry},

and An = RS ∪ {ry}.
Costs are specified in the table below, with Cry ,F = 6K−2

2K2−K , Cri,F =(
1− 2Y K

yi
+ 2Y K

)
2Y K
yi

, and Cri,n = 2Y (2Y−yi)
yi

.

y cri,F crw,F crx,F cry ,F crz ,F cri,n cry ,n

1 0 1
K

3
K

2
K

2Y K Cri,n 0

2 2Y K
yi

1 3
K

Cry ,F 2Y K Cri,n Y 4

[3, n] Cri,F 1 3
K

Cry ,F 2Y K Y 4 Y 4

Clearly, Γ(S, K) can be constructed in polynomial time, since n = K+
2|S| + 3, r = |S| + 4, |A1| = |A2| = |An| = |S| + 1, |A3| = |A4| = 2,
and each cost can be encoded with a number of bits polynomial in the size
of the instance (S, K). Notice that resource costs are monotonic.

If. Suppose that (S, K) has answer yes, and let S ′ ⊆ S be such that
|S ′| = K and

∑
yi∈S′ yi = Y . Using S ′, we can recover x = (xn, {νt}t∈T )

such that the followers’ configurations {νt}t∈T represent an NE for xn and
cxn = 2Y − Y

K
. Thus, in any SSPNE the leader’s cost must be less than or

equal to 2Y − Y
K

. In particular, for every yi ∈ S ′, let ν1,ri = 1, ν2,ri = 0,
and xrin = yi

2Y K
. Instead, for yi /∈ S ′, let ν1,ri = 0, ν2,ri = 2, and xrin = 0.

Moreover, we let ν1,rw = 0, ν2,rz = 2K, ν3,rw = 1, ν3,ry = 0, ν4,rx = 1,
ν4,ry = 0, and xryn = 2K−1

2K
. It is easy to see that both {νt}t∈T and xn are

well-defined. Next, we prove that {νt}t∈T represent an NE for xn. First,
followers of class 1 experience a cost of 2Y K

yi

yi
2Y K

= 1, and, thus, they
do not have incentive to deviate to resource rw, as they would still pay 1.
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Similarly, they do not switch to another resource ri ∈ RS , since, if yi ∈ S ′,
they would get a cost of 2Y K

yi
(1− yi

2Y K
) +Cri,F

yi
2Y K

= 2Y K > 1, while, if
yi /∈ S ′, they would pay Cri,F > 1. Moreover, followers of class 2 do not
deviate, since, if they are selecting a resource ri ∈ RS , then their current
cost is 2Y K

yi
and they would pay at least 2Y K ≥ 2Y K

si
by deviating, while,

if they are using rz, then they experience a cost of 2Y K and they would
pay at least 2Y K by switching to a resource ri ∈ RS . Finally, the follower
of class 3 pays 1

K
and she does not deviate to ry, as she would incur a cost

at least of 2
K

, and, analogously, the follower of class 4 does not deviate
since her cost would be Cry ,F

2K−1
2K

+ 2
K

1
2K

= 3
K

and she is paying 3
K

. In
conclusion, cxn =

∑
yi∈S′ Cri,n

yi
2Y K

=
∑

yi∈S′
2Y
K
−∑yi∈S′

yi
K

= 2Y − Y
K

,
as |S ′| = K and

∑
yi∈S′ yi = Y .

Only if. Suppose there exists an SSPNE x = (xn, {νt}t∈T ) such that
cxn ≤ 2Y − Y

K
. Using x, we build S ′ ⊆ S such that |S ′| = K and∑

yi∈S′ yi = Y , showing that (S, K) has answer yes. First, it must be the
case that xryn > 0 and νry = 0, otherwise the leader’s cost cannot be smaller
than the minimum among costs Cri,n, which, since yi ≤ Y for all yi ∈ S ,
is at least 2Y (2Y−Y )

Y
= 2Y > 2Y − Y

K
. Thus, it must be ν3,ry = ν4,ry = 0

and ν3,rw = ν4,rx = 1. As a result, xryn ≥ 1 − 1
2K

, otherwise the fol-
lower of class 4 would have an incentive to deviate to resource ry, paying
Cry ,Fx

ry
n + 2

K
(1−xryn ) < 3

K
. This implies that

∑
ri∈RS x

ri
n ≤ 1

2K
. Moreover,

ν1,rw = 0, otherwise, if ν1,rw > 0, the follower of class 3 would experience
a cost of 1 and she would switch to ry, paying at most Cry ,F < 1, assuming,
w.l.o.g., K ≥ 4. Thus, there must be K different resources ri ∈ RS such
that ν1,ri = 1 and ν2,ri = 0, since, if either ν1,ri > 1 or ν2,ri > 0, then
νri > 1 and the followers of class 1 selecting ri would experience a cost
greater than or equal to 2Y K

yi
> 1, thus having an incentive to deviate to rw,

paying 1. Let R′S := {ri ∈ RS | ν1,ri = 1} (notice that |R′S | = K). It must
be the case that ν2,ri < 3 for all ri /∈ R′S , otherwise a follower of class 2
would have an incentive to deviate to rz (as Cri,F > 2Y K). Thus, since
|F2| = 2|S|, there are at least 2K followers on rz. Furthermore, ν2,ri > 0
for all ri /∈ R′S , otherwise the followers of class 2 selecting rz would have
an incentive to switch to ri, paying less than 2Y K

yi
≤ 2Y K. Now, let us

fix any ri ∈ R′S . Say xrin < yi
2Y K

, then the followers of class 2 using rz
would deviate to ri, paying 2Y K

yi
(1 − xrin ) + Cri,Fx

ri
n < 2Y K. Moreover,

say xrin > yi
2Y K

, then the follower of class 1 on ri would deviate to rw,
paying 1 < 2Y K

yi
xrin . As a result, xrin = yi

2Y K
for every ri ∈ R′S . Since∑

ri∈RS x
ri
n ≤ 1

2K
, we also have

∑
ri∈R′S

xrin = 1
2Y K

∑
ri∈R′S

yi ≤ 1
2K

,
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implying
∑

ri∈R′S
yi ≤ Y . It must also be the case that xrin = 0 for

all ri /∈ R′S . If not, then there would be rj ∈ R′S with ν2,rj ∈ {1, 2}
and x

rj
n > 0, which implies that cxn = Y 4x

rj
n +

∑
ri 6=rj∈RS Cri,nx

ri
n >∑

ri∈R′S
2Y−yi
K

= 2Y − 1
K

∑
ri∈R′S

yi ≥ 2Y − Y
K

, a contradiction. Finally,
cn =

∑
ri∈R′S

Cri,nx
ri
n = 2Y − 1

K

∑
ri∈R′S

yi ≤ 2Y − Y
K

, which implies∑
ri∈R′S

yi ≥ Y . Thus,
∑

ri∈R′S
yi = Y . Letting S ′ := {yi ∈ S | ri ∈ R′S},

we have |S ′| = K and
∑

yi∈S′ yi = Y .

6.6 MILP Formulations

In this last section, we show how the problem of computing an SSPNE in
SCGs can be formulated as an MILP, providing different formulations for
different classes of games. Our goal is to provide methods which work well
in practice, even though their worst-case running time is exponential. 2 The
proposed formulations are experimentally evaluated in Chapter 7.

Specifically, in Subsection 6.6.1, we provide two MILP formulations for
the problem of computing an SSPNE in SSCGs and SSSCGs for which the
problem is intractable (see Subsections 6.2.1 and 6.2.2). Then, in Subsec-
tion 6.6.2, we present other two formulations: the first one is specifically
tailored for T -class SSCGs, while the second one can be adopted in the
general setting of SCGs (even with non-singleton actions).

6.6.1 MILPs for Computing SSPNEs in SSCGs and SSSCGs

We start from SSSCGs, for which the MILP formulation is simpler, and
then extend the result to the more general case of SSCGs.

Computing an SSPNE in SSSCGs with Generic Costs

For the ease of notation, let V := {1, . . . , n − 1} be the set of possible
congestion levels induced by the followers on a resource. Let, for every
resource i ∈ R and value v ∈ V , the binary variable yiv be equal to 1 if
and only if νi = v, i.e., if and only if v followers select resource i ∈ R. We
use these variables to achieve a binarized representation of the followers’
configuration ν ∈ Nr, namely, νi =

∑
v∈V v yiv for all i ∈ R. Let, for each

i ∈ R, αi ∈ [0, 1] be equal to xin. Let also, for each i ∈ R and v ∈ V , the
auxiliary variable ziv be equal to the bilinear term yivαi.

2We recall that, while we do not directly propose algorithms for the computation of WSPNEs, their compu-
tation can be carried out with the general method proposed in Section 4.4 for general SGs in normal form.
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The complete MILP formulation reads:

min
∑
i∈R

∑
v∈V

ci,n(v + 1) ziv (6.8a)

s.t.
∑
v∈V

yiv ≤ 1 ∀i ∈ R (6.8b)∑
i∈R

∑
v∈V

v yiv = n− 1 (6.8c)∑
v∈V

(
yjvcj,F (v + 1) + zjv

(
cj,F (v + 2)− cj,F (v + 1)

))
≥∑

v∈V

(
yivci,F (v) + ziv

(
ci,F (v + 1)− ci,F (v)

))
∀i 6= j ∈ R (6.8d)

ziv ≤ αi ∀i ∈ R, v ∈ V (6.8e)
ziv ≤ yiv ∀i ∈ R, v ∈ V (6.8f)
ziv ≥ αi + yiv − 1 ∀i ∈ R, v ∈ V (6.8g)
ziv ≥ 0 ∀i ∈ R, v ∈ V (6.8h)∑
i∈R

αi = 1 (6.8i)

αi ≥ 0 i ∈ R (6.8j)
yiv ∈ {0, 1} ∀i ∈ R, v ∈ V. (6.8k)

Function (6.8a) represents the leader’s expected cost (to be minimized).
Constraints (6.8b) ensure that at most one variable yiv be equal to 1 for
each resource i ∈ R, thus guaranteeing that the congestion level of each
resource be uniquely determined (note that

∑
v∈V yiv = 0 if no followers

select resource i ∈ R). Constraints (6.8c) guarantee that the followers’ con-
figuration be well-defined, i.e., that

∑
i∈R ν

i be equal to n− 1 (the number
of followers). Constraints (6.8d) force the followers’ configuration defined
by the yiv variables to be an NE for the leader’s strategy identified by the αi
variables. This is because

∑
v∈V

(
yivci,F (v) + ziv

(
ci,F (v + 1)− ci,F (v)

))
(recall that ziv = yivαi) is equal to the cost incurred by the followers select-
ing i ∈ R, while

∑
v∈V

(
yjvcj,F (v + 1) + zjv

(
cj,F (v + 2)− cj,F (v + 1)

))
(recall that zjv = yjvαj) is equal to the cost they would incur after devi-
ating to resource j ∈ R. Let us remark that Constraints (6.8d) are triv-
ially satisfied if yiv = 0 for all v ∈ V . This is correct as, if no follow-
ers choose resource i ∈ R, no equilibrium conditions need to be enforced.
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Constraints (6.8e)–(6.8h) are McCormick envelope constraints McCormick
(1976) which guarantee ziv = yivαi whenever yiv ∈ {0, 1}. Finally, we
remark that Formulation (6.8) features r(2n − 1) variables, nr of which
binary, and r(r − 1) + r(3n− 2) + 2 constraints.

We now extend Formulation (6.8) to general SSCGs. For the ease of
notation, let, for i ∈ R, v̄i := |{p ∈ F | i ∈ Ap}| be the maximum number
of followers selecting i, and let V (i) := {1, . . . , v̄i} be the set of possible
congestion levels for i. For every p ∈ F and i ∈ Ap, let the binary variable
xpi be equal to 1 if and only if ap = i. All the variables in Formulation (6.8)
are used with the same meaning.

The complete MILP formulation reads:

min
∑
i∈R

∑
v∈V (i)

ci,n(v + 1) ziv (6.9a)

s.t.
∑
i∈Ap

xpi = 1 ∀p ∈ F (6.9b)

∑
v∈V (i)

yiv ≤ 1 ∀i ∈ R (6.9c)

∑
v∈V (i)

v yiv =
∑

p∈F :i∈Ap

xpi ∀i ∈ R (6.9d)

∑
v∈V (i)

(
yjvcj,F (v + 1) + zjv

(
cj,F (v + 2)− cj,F (v + 1)

))
≥

∑
v∈V (i)

(
yivci,F (v) + ziv

(
ci,F (v + 1)− ci,F (v)

))
∀p ∈ F, i 6= j ∈ Ap (6.9e)

ziv ≤ αi ∀i ∈ R, v ∈ V (i) (6.9f)
ziv ≤ yiv ∀i ∈ R, v ∈ V (i) (6.9g)
ziv ≥ αi + yiv − 1 ∀i ∈ R, v ∈ V (i) (6.9h)
ziv ≥ 0 ∀i ∈ R, v ∈ V (i) (6.9i)∑
i∈R

αi = 1 (6.9j)

αi ≥ 0 ∀i ∈ R (6.9k)
αi = 0 ∀i ∈ R \ An (6.9l)
xpi ∈ {0, 1} ∀p ∈ F, i ∈ Ap (6.9m)
yiv ∈ {0, 1} ∀i ∈ R, v ∈ V (i). (6.9n)
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Objective Function (6.9a), Constraints (6.9c), and Constraints (6.9e)–
(6.9k) have the same meaning as their counterparts in Formulation (6.8).
Constraints (6.9b) ensure that each follower selects exactly one resource.
Constraints (6.9d) guarantee that the followers’ configuration be correctly
defined, i.e., for each i ∈ R, νi =

∑
v∈V v yiv is equal to

∑
p∈F xpi, which is

the number of followers who select resource i. Notice that, differently from
the previous formulation, Constraints (6.9e) are enforced for each follower
p ∈ F here, and only for pairs of resources i, j ∈ R follower p has access
to. Note also that, via Constraints (6.9l), αi is forced to be 0 for all the
resources i ∈ R the leader has no access to.

We observe that Formulation (6.9) features
∑

p∈F |Ap|+2
∑

i∈R v̄i+r =

O(r(3n+ 1)) variables,
∑

p∈F |Ap|+
∑

i∈R v̄i = O(2rn) of which binary,
and n+2r+3

∑
i∈R v̄i+

∑
p∈F |Ap| (|Ap| − 1) = O(n+2r+3nr+nr(r−1))

constraints.

Computing a Pure-Strategy SSPNE in SSSCGs and SSCGs with Generic Costs

Formulations (6.8) and (6.9) can be easily modified for the case in which the
leader’s commitment is forced to be in pure strategies. This can be achieved
by imposing the variables αi to be binary. Notice that, when both αi and
yiv are binary variables, ziv becomes binary as well due to the McCormick
constraints. The resulting formulations are ILPs.

One may wonder on the practical advantages of introducing an ILP for-
mulation for computing a pure-strategy OSE in SSSCGs since, in Sec-
tion 6.3.3, we have shown that this can be done in O(n4 r4) by dynamic
programming. As we will see comment on in Section 7.3, preliminary ex-
periments show that, due to the high order of complexity of the dynamic
programming algorithm, it is, in practice, more efficient to solve this formu-
lation with state-of-the-art ILP algorithms than running the dynamic pro-
gramming algorithm, even if solving Formulation (6.8) with branch-and-
bound (and its variants, such as branch-and-cut) may take an exponential
amount of computing time in the worst case.

6.6.2 MILPs for Computing SSPNEs in T -Class SSCGs and SCGs

Let us first focus on T -class SSCGs. For the ease of presentation, let
V (i) := {1, . . . , v̄i} for i ∈ R, with v̄i :=

∑
t∈T :i∈At nt. Moreover, let

V (t) := {1, . . . , nt} for t ∈ T . For every class t ∈ T , resource i ∈ At,
and value v ∈ V (t), let us introduce the binary variable qtiv, which is equal
to 1 if and only if v followers of class t select i. These variables repre-
sent followers’ configurations. Specifically, for t ∈ T , νt ∈ Nr is such
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that νt,i =
∑

v∈V (t) v qtiv for all i ∈ R. All the variables already de-
fined in Formulation (6.8) are used with the same meaning. Finally, let
M > max{ci,F (v) | i ∈ R, v ∈ {1, . . . , v̄i + 2}}.

The complete MILP formulation reads as follows:

min
∑
i∈R

∑
v∈V (i)

ci,n(v + 1) ziv (6.10a)

s.t.
∑
v∈V (t)

qtiv ≤ 1 ∀t ∈ T , i ∈ At (6.10b)

∑
v∈V (i)

yiv ≤ 1 ∀i ∈ R (6.10c)

∑
i∈At

∑
v∈V (t)

v qtiv = nt ∀t ∈ T (6.10d)

∑
t∈T :i∈At

∑
v∈V (t)

v qtiv =
∑
v∈V (i)

v yiv ∀i ∈ R (6.10e)

∑
v∈V (j)

(
yjvcj,F (v + 1) + zjv

(
cj,F (v + 2)− cj,F (v + 1)

))
≥

∑
v∈V (i)

(
yivci,F (v) + ziv

(
ci,F (v + 1)− ci,F (v)

))
+

−M
(

1−
∑
v∈V (t)

qtiv

)
∀t ∈ T , i 6= j ∈ At (6.10f)

ziv ≤ αi ∀i ∈ R, v ∈ V (i) (6.10g)
ziv ≤ yiv ∀i ∈ R, v ∈ V (i) (6.10h)
ziv ≥ αi + yiv − 1 ∀i ∈ R, v ∈ V (i) (6.10i)
ziv ≥ 0 ∀i ∈ R, v ∈ V (i) (6.10j)∑
i∈R

αi = 1 (6.10k)

αi ≥ 0 ∀i ∈ R (6.10l)
αi = 0 ∀i /∈ An (6.10m)
qtiv ∈ {0, 1} ∀t ∈ T , i ∈ At, v ∈ V (t) (6.10n)
yiv ∈ {0, 1} ∀i ∈ R, v ∈ V (i). (6.10o)

Function (6.10a) is the leader’s expected cost. Constraints (6.10b) en-
sure that at most one variable qtiv be equal to 1 for each class t ∈ T and re-
source i ∈ At, and, thus, the number of followers of class t on each resource
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is uniquely determined (note that
∑

v∈V (t) qtiv = 0 if no follower of class t
selects resource i). Constraints (6.10c) ensure that at most one variable yiv
be equal to 1 for each resource i ∈ R, which guarantees that the congestion
level of each resource is uniquely determined. Constraints (6.10d) guar-
antee that the followers’ configuration be well-defined, i.e., for all t ∈ T ,
exactly nt followers of class t are present. Constrains (6.10e) ensure that
the congestion level on resource i ∈ R be equal to the sum of the conges-
tion levels induced by all classes. Constraints (6.10f) force the followers’
configurations defined by the qtiv variables be an NE for the leader’s strat-
egy identified by the αi variables. This follows from the fact that, being
ziv = yivαi and zjv = yjvαj , the right-hand side is the cost incurred by the
followers of class t ∈ T selecting resource i ∈ At, while the left-hand side
is the cost they would incur after deviating to j 6= i ∈ At. Note that, for
each t ∈ T , the constrains are active only if there is at least one follower
of class t selecting i. Constraints (6.10g)–(6.8h) are McCormick envelope
constraints McCormick (1976) guaranteeing ziv = yivαi if yiv ∈ {0, 1}.

Next, we extend Formulation (6.10) to deal with general SCGs. Letting
v̄i := |{p ∈ F | ∃ap ∈ Ap : i ∈ ap}| be the maximum number of followers
who can select resource i ∈ R, we define V (i) := {1, . . . , v̄i}. For every
follower p ∈ F and action ap ∈ Ap, we introduce the binary variable
xp ap , which is equal to 1 if and only if player p plays ap. Moreover, for
every leader’s action an ∈ An, we let αan ∈ [0, 1] be equal to xann . All
the variables already defined in Formulation (6.10) are used here with the
same meaning. Finally, we also need to define the following constant M >∑

i∈R max{ci,F (v) | i ∈ R, v ∈ {1, . . . , v̄i + 2}}.
The complete MILP formulation is provided in Problem (6.11), whose

objective and constraints should be interpreted as follows. Function (6.11a),
Constraints (6.11c), and Constraints (6.11e)–(6.11k) have the same mean-
ing as their counterparts in Formulation (6.10). Note that, in this case,
ziv = yiv

∑
an∈An:i∈an αan , where the summation represents the probabil-

ity xin and xn is identified by the αan variables. Constraints (6.11b) ensure
that each follower selects exactly one action. Constraints (6.11d) guar-
antee that the followers’ configuration represented by the variables yiv be
well-defined. Notice that Constraints (6.11e) are enforced for each fol-
lower p ∈ F here, and they are active only for the action ap ∈ Ap that she
plays. Finally, let us remark that, differently from the other formulations,
Constraints (6.11e) (i.e., the equilibrium constraints) must be enforced for
each follower p ∈ F and pair of actions ap 6= a′p ∈ Ap. Notice that Con-
straints (6.11e) do not account for the costs of resources i ∈ ap ∪ a′p, since
they do not change when deviating from ap to a′p.
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min
∑
i∈R

∑
v∈V (i)

ci,n(v + 1) ziv (6.11a)

s.t.
∑
ap∈Ap

xp ap = 1 ∀p ∈ F (6.11b)

∑
v∈V (i)

yiv ≤ 1 ∀i ∈ R (6.11c)

∑
v∈V (i)

v yiv =
∑
p∈F

∑
ap∈Ap:i∈ap

xp ap ∀i ∈ R (6.11d)

∑
i∈a′p\ap

∑
v∈V (i)

(
yivci,F (v + 1) + ziv

(
ci,F (v + 2)− ci,F (v + 1)

))
≥

∑
i∈ap\a′p

∑
v∈V (i)

(
yivci,F (v) + ziv

(
ci,F (v + 1)− ci,F (v)

))
+

−M
(

1− xp ap
)

∀p ∈ F, ap 6= a′p ∈ Ap (6.11e)

ziv ≤
∑

an∈An:i∈an

αan ∀i ∈ R, v ∈ V (i) (6.11f)

ziv ≤ yiv ∀i ∈ R, v ∈ V (i) (6.11g)

ziv ≥
∑

an∈An:i∈an

αan + yiv − 1 ∀i ∈ R, v ∈ V (i) (6.11h)

ziv ≥ 0 ∀i ∈ R, v ∈ V (i) (6.11i)∑
an∈An

αan = 1 (6.11j)

αan ≥ 0 ∀an ∈ An (6.11k)
xp ap ∈ {0, 1} ∀p ∈ F, ap ∈ Ap (6.11l)
yiv ∈ {0, 1} ∀i ∈ R, v ∈ V (i). (6.11m)
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CHAPTER7
Experimental Results on Stackelberg

Games with Multiple Followers

This chapter concludes the first part of our work by experimentally evaluat-
ing the computational tools developed in the previous chapters for finding
equilibria in SGs with a single and multiple followers.

Section 7.1 provides the results of extensive experiments carried out us-
ing algorithms for finding WSPNEs in normal-form SGs (see Chapter 4).
Then, Section 7.2 shows experimental results related to the WSPNE-finding
algorithm introduced for OLTSPGs (see Chapter 5), whereas Section 7.3
provides an experimental evaluation of the MILP formulations developed
for computing SSPNEs in SCGs (see Chapter 6).

7.1 Normal-Form Stackelberg Games

We carry out an experimental evaluation of the equilibrium-finding algo-
rithms introduced in Chapter 4, comparing the following methods:

• QCQP: the QCQP Formulation (4.5) solved with the state-of-the-art
spatial-branch-and-bound solver BARON 14.3.1 (Sahinidis, 2014). As
global optimality cannot be guaranteed by BARON if the feasible re-
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gion of the problem is not bounded (Sahinidis, 2014), the solutions
obtained with QCQP are not necessarily optimal.

• MILP: the MILP formulation derived according to Theorem 4.5 with
dual variables artificially bounded by M , solved with the state-of-the-
art MILP solver Gurobi 7.0.2.

• BnB-sup: the branch-and-bound algorithm we proposed, run for
computing supxn∈∆n

f(xn). The algorithm is coded in Python 2.7,
relying on Gurobi 7.0.2 as MILP solver.

• BnB-α: the branch-and-bound algorithm we proposed, run to find an
α-approximate strategy whenever there is no xn ∈ ∆n at which the
value of the supremum is attained.

For MILP and Bnb-α, we report the results for different values of M
and α. BnB-sup and BnB-α are initialized with an outcome which results
in an SSPNE for some leader’s strategy. Specifically, we add it to S+ in the
starting node with empty S− and to S− in the starting node with empty S+.
The next node to explore is always selected according to a best-bound rule.

We generate a testbed of random normal-form SGs with payoffs in-
dependently drawn from a uniform distribution over the interval [1, 100],
using GAMUT (Nudelman et al., 2004). The results are then normal-
ized to the interval [0, 1] for the sake of presentation. The testbed con-
tains games with n = 3, 4, 5 players (i.e., with 2, 3, 4 followers), m ∈
{4, 6, . . . , 20, 25, . . . , 70} actions when n = 3, and m ∈ {3, 4, . . . , 14}
actions when n = 4, 5. We generate 30 instances per pair of n and m.

We report the following figures, aggregated over the 30 instances per
game with the same values of n and m:

• Time: average computing time, in seconds (up to the time limit).

• LB: average value of the best feasible solution found (only considered
for instances where a feasible solution is found).

• Gap: average additive gap measured as UB − LB, where UB is the
upper bound returned by the algorithm. 1

• Opt: percentage of instances solved to optimality (reported only for
BnB-sup, as QCQP and MILP are not guaranteed to produce optimal
solutions).

1When solving QCQP and MILP, Gap corresponds to the gap “internal” to the solution method. Since QCQP
and MILP impose artificial restrictions (present by design in MILP and introduced automatically by the solver
in QCQP), such value is, in general, not valid for the original, unrestricted problem. This is not the case for
BnB-sup and BnB-α, for which Gap is a correct estimate of the difference between the best found LB and the
value of the supremum (overestimated by UB).
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• Feas: percentage of instances for which a feasible solution has been
found (reported only for QCQP and MILP as an alternative to Opt).

The experiments are run on a UNIX machine with a total of 32 cores
working at 2.3 GHz, equipped with 128 GB of RAM. The computations
are carried out on a single thread, with a time limit of 3600 seconds per
instance.

7.1.1 Experimental Results with Two Followers

Table 7.1 reports the results on games with two followers (n = 3) and
m ≤ 30, comparing QCQP, MILP (with M = 10, 100, 1000), BnB-sup,
and BnB-α (with α = 0.001, 0.01, 0.1).

QCQP can be solved only for instances with up to m = 18 due to
BARON running out of memory on larger games. With m ≤ 18, feasi-
ble solutions are found, on average, in 91% of the cases, but their quality
is quite poor (the additive gap is equal to 0.34 on average). The time limit
is reached on almost each instance, even those with m = 4, with the sole
exception of those with m = 18, on which the solver halts prematurely due
to memory issues.

MILP performs much better than QCQP, handling instances with up to
m = 30 actions per player. M = 100 seems to be the best choice, for which
we obtain, on average, LBs of 0.68 and gaps of 0.28, with a computing time
slightly smaller than 2600 seconds. For M = 1000, the number of feasible
solutions found increases from 94% to 97%, but LBs and gaps become
slightly worse, possibly due to the fact that MILP solvers are typically quite
sensitive to the magnitude of “big M” coefficients (which, if too large, can
lead to large condition numbers, resulting in numerical issues).

BnB-sup substantially outperforms QCQP and MILP, finding not just
feasible solutions but optimal ones for every game instance with m ≤ 25
and solving to optimality 47% of the instances with m = 30. The average
computing time is of 359 seconds, and it reduces to 126 if we only consider
the instances with m ≤ 25 (all solved to optimality). BnB-sup shows
that the supremum of the leader’s utility is very large on the games in our
testbed, equal to 0.96 on average on the instances with m ≤ 25 for which
the supremum is computed exactly.

The time taken by BnB-α to find an α-approximate strategy is unaf-
fected by the value of α. Since, in its implementation, BnB-α requires
a relaxed outcome configuration on which the value of the supremum has
been attained, we have run it only on instances with m ≤ 25 (on which the
supremum has always been computed).
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Table 7.1: Experimental results for normal-form SGs with n = 3 players. The figures are
averaged over games with the same values of m.
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BnB-sup
m Time LB Gap Opt
35 3573 0.80 0.21 3
40 3560 0.63 0.37 0
45 3600 0.50 0.50 0
50 3600 0.49 0.51 0
55 3600 0.53 0.47 0
60 3600 0.49 0.51 0
65 3600 0.50 0.50 0
70 3600 0.50 0.50 0

Table 7.2: Results obtained with BnB-sup for normal-form SGs with n = 3 players and
35 ≤ m ≤ 70.

Table 7.2 reports further results obtained with BnB-sup for games with
n = 3 and up to m = 70 actions per player. As the table shows, while
some optimal solutions can still be found for m = 35, optimality is lost
for game instances with m ≥ 40. Nevertheless, BnB-sup still manages to
find feasible solutions for instances with up to m = 70, obtaining solutions
with an average LB of 0.55 and an average additive gap of 0.44. Under
the conservative assumption that games with 35 ≤ m ≤ 70 admit suprema
of value close to 1 (which is empirically true when m ≤ 30), BnB-sup
provides, on average, solutions that are less than 50% off of optimal ones.

7.1.2 Experimental Results with More Followers and Observations

Results obtained with BnB-sup with more than two followers (n = 4, 5)
are reported in Table 7.3 for m ≤ 14. For the sake of comparison, we also
report the results obtained for the same values of m and n = 3 that are
contained in Tables 7.1 and 7.2.

BnB-sup BnB-sup BnB-sup
n = 3 n = 4 n = 5

m Time Gap Opt Time Gap Opt Time Gap Opt
4 0 0.00 100 3 0.00 100 8 0.00 100
6 2 0.00 100 17 0.00 100 137 0.00 100
8 5 0.00 100 126 0.00 100 2953 0.11 53

10 7 0.01 100 955 0.00 100 3461 0.46 13
12 15 0.00 100 2784 0.06 60 3600 0.53 0
14 20 0.01 100 3600 0.50 0 3600 0.52 0

Table 7.3: Results obtained with BnB-sup for normal-form SGs with n = 4, 5 players
and m = 4, 6, 8, 10, 12, 14. For comparison, the results for n = 3 are also reported.
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As the table illustrates, computing the value of the supremum of the
leader’s utility becomes very hard already for m = 12 with n = 4, for
which the algorithm manages to find optimal solution in only 60% of the
cases. For m = 14 and n = 4, no instance is solved to optimality within
the time limit. For n = 5, the problem becomes hard already for m = 8,
where only 53% of the instances are solved to optimality. With m = 12
and n = 5, no instances at all are solved to optimality.

We do not report results on game instances with n = 4, 5 and m > 14 as
such games are so large that, on them, BnB-sup incurs memory problems
when solving the MILP subproblems.

In spite of the problem of computing a WSPNE being a nonconvex
bilevel program, with our branch-and-bound algorithm we can find solu-
tions with an additive optimality gap ≤ 0.01 for three-player games with
up to m = 20 actions (containing three payoffs matrices with 8000 entries
each), which are comparable, in size, to those solved in previous works
which solely tackled the problem of computing a single NE maximizing
the social welfare, see, e.g., (Sandholm et al., 2005).

7.2 Stackelberg Polymatrix Games

We ran Algorithm 5.1 (i.e., the algorithm finding an WSPNE in OLTSPGs)
on a testbed of randomly generated game instances, evaluating the running
time as a function of the number of players n and the number of actions
per player m. Specifically, for each pair (n,m), times are averaged over 20
game instances, with n ∈ {3, . . . , 10} and m ∈ {4, 6, . . . 10, 15, . . . , 70}.
Game instances have been randomly generated, with each payoff uniformly
and independently drawn from the interval [0, 100]. All the experiments are
run on a UNIX machine with a total of 32 cores working at 2.3 GHz, and
equipped with 128 GB of RAM. Each game instance is solved on a single
core, within a time limit of 7200 seconds. The algorithm is implemented in
Python 2.7, while all LPs are solved with GUROBI 7.0, using the Python
interface. Figures 7.1a and 7.1b show two plots of the average computing
times, as a function of n and m, respectively.

We observe that, as expected, the computing time increases exponen-
tially in the number of players n, while, once n is fixed, the growth is
polynomial in the number of actions m. Specifically, the algorithm is able
to solve within the time limit instances with three players, up to within
m = 65, while, as the number of players increases, the scalability w.r.t.
m decreases considerably, e.g., with ten players, the algorithm can solve
games with at most m = 4.
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7.3. Stackelberg Congestion Games

(a) Average computing times (in seconds), as a
function of the number of players n.

(b) Average computing times (in seconds), as a
function of the number of actions m.

Figure 7.1: Average computing times (in seconds) of Algorithm 5.1.

7.3 Stackelberg Congestion Games

In this section, we experimentally evaluate the MILP formulations for the
problem of computing SSPNEs in SCGs proposed in Section 6.6.

Since Algorithm 6.1 has a very low complexity—O(nr log r)—its ef-
ficiency is clear and it does not need to be established via computational
experiments. As to the dynamic programming algorithm proposed in Sec-
tion 6.3.3 for SSSCGs with generic costs when the leader is restricted to
pure-strategy commitments, preliminary tests have shown that this algo-
rithm takes several hours to solve instances which are solved only in a
matter of seconds with a state-of-the-art ILP algorithm applied to Formula-
tion (6.8). This happens in, e.g., instances with 10 resources and 25 follow-
ers, on which the dynamic programming algorithm takes more than 11000
seconds while with the ILP formulation we can solve them in less than a
second. Analogous considerations apply to the dynamic programming al-
gorithm in Section 6.5. For these reasons, in the remainder of the section
we solely focus on the mathematical programming formulations.

7.3.1 MILP Formulations for SSCGs and SSSCGs

Notice that games with monotonic cost functions and identical action spaces
can be solved efficiently using Algorithm 6.1 (which we proposed in Sub-
section 6.3.1). For this reason, we focus on games with generic cost func-
tions and/or different action spaces, assessing how state-of-the-art branch-
and-bound methods behave when solving our formulations on instances
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of increasing size. We experiment with Formulations (6.8) and (6.9) on a
testbed of randomly generated game instances of two classes:

• SSSCGs: we assume a number of followers in {20, 40, 60, 80, 100},
with r resources in the range {10, 20, 30, 40, 50} and players’ costs
randomly generated by sampling from {1, . . . , (n − 1) r} with a uni-
form probability. 2

• SSCGs: we assume a number of followers in {20, 40, 60, 80, 100},
with r = 30 resources and a number of actions |Ap| per player in the
range {7, 15, 22}, generated by sampling uniformly at random without
replacement; the players’ costs are sampled from {1, . . . , (n − 1) r}
with uniform probability.

We also test our MILP formulations on the worst-case game instances gen-
erated by following the reductions of Theorems 6.1 and 6.3:

• SSSCGs: instances built following the reduction of Theorem 6.3 start-
ing fromK-PARTITION instances with |S| ∈ {50, 100, 150, 250, 300}
integer numbers with values sampled from {1, . . . , 100}.

• SSCGs: instances built following the reduction of Theorem 6.1 using
random 3-SAT instances with |V | ∈ {3, 5, 7, 9, 11, 13} variables and
|C| = k|V | clauses, where k ≈ 4.26 is the phase-transition parameter
which typically characterizes hard-to-solve 3-SAT instances (Cheese-
man et al., 1991).

We generate 15 instances per combination of the parameters. All the exper-
iments are run on a UNIX machine with a total of 32 cores working at 2.3
GHz, equipped with 128 GB of RAM. Each game instance is solved on a
single core within a time limit of 7200 seconds. We use Python 2.7, solving
the MILP formulations with GUROBI 7.0.

We use, as baseline for the comparisons, a simple algorithm which, start-
ing from a randomly generated assignment of the players to the resources,
simulates best-response dynamics halting after a time limit of 10 minutes.
When ties arise, i.e., whenever there are two or more players who are not
playing their best response, we select a player lexicographically and make
her switch to playing her (currently) best response. We refer to this algo-
rithm as a best response dynamics heuristic since it is not exact when ap-

2The value (n − 1) r is chosen as, when looking for pure-strategy NEs, cost functions taking (n − 1) r
different values are sufficient to represent every possible SCG.
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plied to the intractable cases of SSCGs and SSSCGs. 3 On average, within
the time limit of 10 minutes we observe a number of deviations to a best
response of the order of 105. Let us recall that the method always produces,
by design, pure-strategy NEs. 4

Figures 7.2 and 7.4a report the results for SSSCGs with generic costs.
Figure 7.2a displays the average computing time required by Formula-
tion (6.8), as a function of the number of followers and for different num-
bers of resources. One can see that, with Formulation (6.8), an optimal
solution is always found within the time limit of 7200 seconds in all the
instances. This suggests that, even if the problem is hard in the worst case,
an optimal solution can be found in a reasonable amount of time on ran-
domly generated instances. Figure 7.4a displays the results for worst-case
instances. Surprisingly, within the time limit of 7200 seconds we are able to
solve games with up to 302 resources and 1202 followers. Thus, while the
instances generated by our reduction from K-PARTITION are the hardest
ones asymptotically, they are solved more easily than randomly generated
instances of the same size. Figure 7.2b reports, as a function of the num-
ber of followers, the average leaders’ cost of the solutions obtained with
Formulation (6.8), compared to the average cost obtained with the best-
response dynamics heuristic. As the figure shows, the difference in leader’s
utility between solutions found with the two methods can be quite large
as the number of followers increases, up to a factor of 6 with n = 100,
showing a clearly growing trend.

Figure 7.3 and 7.4b report the results for SSCGs with generic costs and
30 resources. Figure 7.3a reports the average computing time required by
Formulation (6.9) to find an SSPNE, as a function of the number of follow-
ers and for a different number of actions available to each player. Similarly
to the case of SSSCGs, the chart shows that with Formulation (6.9) we can
find an optimal solution within the time limit of 7200 seconds in all the
instances. This suggests that, even if the problem is hard in the worst case,
also for SSCGs one can find an optimal solution in a reasonable amount of
computing time on randomly generated instances. The chart also shows,
though, that the time required to solve this class of problems is much larger

3We also evaluated different heuristic algorithms combining Algorithm 6.1 together with best response dy-
namics, e.g., using the solution returned by Algorithm 6.1 as a starting point for best-response dynamics instead
of using randomly generated starting points. However, these approaches exhibited worse empirical performances
than the best-response dynamics heuristic for all the settings which we have considered, including the more
symmetric ones, showing that the algorithm does not benefit from the degree of symmetry of the instance.

4Notice that, for games with identical action spaces, one could think of using the dynamic programming
algorithm presented in Section 6.3.3 to find a pure-strategy SSPNE as heuristic approximation of a mixed-strategy
SSPNE. However, as we mentioned above, the dynamic programming algorithm does not scale well enough in
practice.
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(a) Average computing time required by Formu-
lation (6.8), as a function of the number of
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(b) Average leader’s cost obtained with Formula-
tion (6.8) and with the best-response dynam-
ics heuristic as a function of the number of
followers, with 30 resources.

Figure 7.2: Results for the computation of an SSPNE in SSSCGs with generic costs.
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(a) Average computing time required by Formu-
lation (6.9), as a function of the number of
followers and for different numbers of ac-
tions available to each player.
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(b) Average leader’s cost obtained with Formula-
tion (6.9) and with the best-response dynam-
ics heuristics, as a function of the number of
followers and with 15 actions per player.

Figure 7.3: Results for the computation of an SSPNE in SSCGs with generic costs and 30
resources.
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(a) Average computing time required by For-
mulation (6.8) for instances based on K-
PARTITION (Theorem 6.3), as a function of
the number of resources.

(b) Average computing time required by Formu-
lation (6.9) for instances based on 3-SAT
(Theorem 6.1), as a function of the number
of resources.

Figure 7.4: Results for the computation of an SSPNE in worst-case instances built on the
base of our inapproximability reductions.
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than the time required to solve their SSSCGs counterparts. Figure 7.4b dis-
plays results for worst-case instances generated using our reduction from
3-SAT. As for SSSCGs, these instances are not harder than random ones
for the instance sizes used in our experimental setting. In particular, within
the time limit of 7200 seconds, we are able to solve instances with up to
1538 resources and 2983 followers. Figure 7.3b reports, for games with 15
actions per player, the average leader’s cost of the solutions obtained with
the MILP Formulation (6.9) and with the best-response dynamics heuris-
tic, as a function of the number of followers. Differently from the case of
SSSCGs, we observe that for SSCGs the heuristic returns solutions which,
empirically, appear to be within a constant approximation factor of the op-
timal ones which is never larger than 5.

Overall, the results suggest the practical viability of our MILP formula-
tions for finding provably optimal solutions also for games where a simple
best-response heuristic provides poor-quality solutions.

Surprisingly, the results that we have obtained for the worst-case in-
stances are comparable to those for random games, empirically showing
that, for the games that we study, random instances are not easier to solve
than structured ones, differently from what is often observed in other cases
(see, e.g., (Sandholm et al., 2005) for the case of normal-form games).

7.3.2 Experimental Evaluation on T -Class SSCGs and SCGs

We test the MILP Formulations (6.10) and (6.11) on randomly generated
games, which represent instances of average-case complexity, and games
based on the reductions provided in the proofs of Theorems 6.12 and 6.16,
which, instead, represent worst-case complexity instances.

All the experiments are run on a UNIX machine with a total of 32
cores working at 2.3 GHz, equipped with 128 GB of RAM. Each instance
is solved on a single core within a time limit of 3600 seconds. We use
GUROBI 7.0 (with Python interface) as MILP solver.

Random Game Instances

For T -class SSCGs, we generate random games with a number of resources
r ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and T ∈ {1, 2, 3, 4} classes,
with nt ∈ {0.2 r, 0.5 r, r} followers per class t ∈ T and |At| = 0.5 r
actions per class t ∈ T . Cost functions are randomly generated by sampling
uniformly from {1, . . . , nrT}. For general SCGs, we generate instances
with r ∈ {5, 10, 15, 20, 25} resources and n ∈ {r, 2 r, 3 r} followers, with
|ap| ∈ {1, 2, 3, 4, 5} resources per action ap ∈ Ap and |Ap| = 0.5 r actions
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Figure 7.5: Computing times of Formulations (6.10) and (6.11) on randomly generated
game instances and worst-case instances.
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per player p ∈ N . Cost functions are randomly generated by sampling
uniformly from {1, . . . , nr}. We build a testbed with 20 game instances
per combination of the parameters.

Figure 7.5b displays the average computing times for Formulation (6.10)
with 0.5 r followers per class. The formulation scales quite well in practice.
Symmetric games (T = 1) are quickly solved up to r = 100. Moreover,
we are able to solve within the time limit games with up to four classes,
40 resources, and 160 players (40 players per class). Let us notice that
the dynamic programming algorithm presented in Theorem 6.15 can be
employed in this setting to find an SSPNE, if we restrict the leader to play
pure strategies. However, preliminary experiments show that its scalability
is extremely limited with respect to that of our formulation, as it finds a
solution within the time limit only for games with less than 10 resources,
while our formulation scales on much bigger games and it also works for
mixed-strategy commitments.

Figure 7.5e shows the average computing times for Formulation (6.11)
with 2 r followers. We can conclude that, as expected, game instances with
non-singleton actions are much harder to solve than singleton games. Here,
the largest game instances we can solve within the time limit feature actions
of cardinality two, 15 resources, and 30 players.

Finally, we test Formulation (6.11) on instances built according to the
reduction in Theorem 6.12. Specifically, we generate these games from ran-
dom 3-SAT instances with |V | ∈ {4, 5, 6, 7, 8, 9} variables and |C| = k|V |
clauses, where k ≈ 4.26 is the phase transition parameter determining gen-
erally hard-to-solve 3-SAT instances (Cheeseman et al., 1991). We test
10 random instances for each number of variables. Furthermore, we ex-
periment Formulation (6.10) on instances based on the reduction in Theo-
rem 6.16. We generate these games from randomK-PARTITION instances
with |S| ∈ {20, 40, . . . , 160} integers, yi ∈ [2, 100] for all yi ∈ S , and
K = |S|

2
. We test 10 random instances for each value of |S|.

Figures 7.5g and 7.5h show the computing times for T -class SSCGs and
SCGs, respectively. Surprisingly, the results we obtain are comparable to
those for random games, empirically showing that, for the games we study,
random instances are not easier to solve than structured ones, as instead it
is the case, e.g., in normal-form games (Sandholm et al., 2005).

153





Part II

Stackelberg Games with Multiple
Leaders

155





CHAPTER8
Stackelberg Games with Multiple Leaders:

Be a Leader or Become a Follower

In this chapter, we introduce a new way to address the problem of comput-
ing the strategies to commit to in SGs with multiple leaders and followers.
Then, in Chapter 9, we study the computational properties of our model.

Section 8.1 introduces our approach, and, specifically, some reasonable
properties of the leaders’ commitments leading to the definition of different
solution concepts. Then, Section 8.2 analyzes the game-theoretic properties
of our model, while Section 8.3 investigates the relationship between our
solution concepts and other commonly-studied equilibrium notions.

8.1 Multi-Leader-Follower Stackelberg Games

We address SGs with multiple leaders and followers, i.e., games (Γ, L, F )
with Γ being any (underlying) finite game, and L, respectively F , being
the set of the leaders, respectively the followers. The key components of
our model are the following. First, we allow the leaders to decide whether
to participate in the commitment or to defect from it by taking on the role
of followers. This is modeled by the agreement stage of the SG, whose
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result is the formation of an agreement involving a subset of the leaders.
Second, in the spirit of CEs, we introduce a correlation device that, after
the agreement, draws recommendations and privately communicates them
to the players. Following the work by Conitzer and Korzhyk (2011), we
assume that the leaders involved in the agreement commit to play their rec-
ommendations, while the followers obey to the usual incentive constraints
of CEs (see Equation (2.3)). The correlation device may adopt different
distributions depending on the sequence of defections that determined the
agreement, and these distributions are publicly known. Our goal is to de-
sign the device, so as to achieve some desirable properties of the commit-
ment, which we formally describe in the rest of the section.

Before going into our main definitions, we introduce some useful nota-
tion. Given a subset of players P ⊆ N , we denote with ΠP the collection
of ordered subsets of P , including the empty set ∅. Given π ∈ ΠP and
p ∈ P \ π, we let πp be the ordered set obtained by appending p at the
end of π. Moreover, let us recall that, given a subset of players P ⊆ N ,
we denote with X CE

P ⊆ X the set of correlated distributions which satisfy
Equation (2.3) only for the players in P . Thus, X CE := X CE

N defines the set
of CEs of the underlying game.

We use x = [xπ] to denote a vector of correlated distributions xπ ∈
X CE
π∪F , one per ordered subset of leaders π ∈ ΠL, while X =×π∈ΠL

X CE
π∪F

is the set of all such vectors. In words, π ∈ ΠL represents a sequence
of leaders’ defections in the agreement stage, while x defines the publicly
known correlated distributions adopted by the correlation device, with xπ
being the one used when the sequence of defections is π.

Definition 8.1 (Multi-Leader-Follower SG). Given a vector of distributions
x = [xπ] ∈ X, an SG (Γ, L, F ) is structured in the following two stages:

• Agreement. It goes on in rounds. In a given round, each leader, in
turn, decides between OPT-IN and OPT-OUT.1 All the decisions are
perfectly observable. If a player chooses OPT-OUT, then she leaves
the set of leaders becoming a follower, and a new round starts. The
stage ends when, during a round, all the remaining leaders decide
to OPT-IN. The result is the ordered subset π ∈ ΠL of leaders who
decided to OPT-OUT. 2

1We assume that the leaders are asked to take a decision according to some ordering, e.g., p ∈ L decides
before q ∈ L if p < q.

2The agreement stage is finite as there are at most |L| rounds and each round involves at most |L| decisions.
Moreover, our results do not rely on the protocol implemented in the agreement stage. Others could be adopted,
with the only requirement that they must record in which order the leaders do OPT-OUT.
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8.1. Multi-Leader-Follower Stackelberg Games

• Play. The correlation device draws some s ∈ S according to the pub-
licly known correlated distribution xπ. Then, each player is privately
told her recommendation and the underlying game Γ is played, with
the leaders in L \ π sticking to their recommendations.

The agreement stage of an SG can be represented as an extensive-form
game involving the leaders. In such game, the players play in turn, accord-
ing to some fixed order, with only two actions available at each decision
point: OPT-IN and OPT-OUT. When a player chooses OPT-OUT, then she
never plays anymore. The game ends after a sequence of OPT-IN actions
performed by all leaders who have not selected OPT-OUT yet. Thus, each
leaf of the game corresponds to the ordered subset π ∈ ΠL representing
the sequence of leaders who performed OPT-OUT on the path to the leaf.
Players’ payoffs are defined by up(xπ) for p ∈ L. See Figure 8.1b for an
example of sequential-game-representation of the agreement stage.

Next, we introduce some desirable properties that the distributions of the
correlation device should satisfy. In the following definitions, we assume
that an SG (Γ, L, F ) is given.

First, we introduce stability. In words, we require that the leaders in L
do not have any incentive to become followers. We introduce two different
notions of stability, as follows.

Definition 8.2 (Stability). Given x = [xπ] ∈ X, for any π ∈ ΠL, xπ is
stable if, for every p ∈ L \ π, up(xπ) ≥ up(xπp). Moreover:

• x is stable if x∅ is stable;

• x is perfectly stable if xπ is stable for every π ∈ ΠL.

We denote with XS ⊆ X and XPS ⊆ X the sets of stable and perfectly
stable distributions, respectively.

The rationale behind stability is that of NE. Indeed, x ∈ X is stable if
and only if each leader playing OPT-IN is an NE of the extensive-form game
representing the agreement stage. Intuitively, this is because, if x ∈ X is
stable, each leader must not have any incentive to play OPT-OUT given that
the other leaders always play OPT-IN. Instead, the rationale behind perfect
stability is that of subgame perfection. Indeed, x ∈ X is perfectly stable
if and only if each leader playing OPT-IN is a subgame perfect equilibrium
of the agreement stage. The reason is that perfect stability requires that
playing OPT-IN is optimal at any decision point of the sequential game.

The second property that we look for is efficiency. We require that the
correlated distributions of the correlation device are Pareto optimal with re-
spect to the utility functions of the leaders who decided to OPT-IN. Given
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X′ ⊆ X, for π ∈ ΠL, we use PL\π(X′) to denote the set of Pareto opti-
mal correlated distributions in the set {x′π | x′ = [x′π] ∈ X′}, where the
objectives are the functions up, for p ∈ L \ π. Formally:

Definition 8.3 (Efficiency). Given x = [xπ] ∈ X′ ⊆ X, for any π ∈ ΠL,
xπ is efficient on the set X′ if xπ ∈ PL\π(X′). Moreover:

• x is efficient on X′ if x∅ is efficient on X′;

• x is perfectly efficient on X′ if xπ is efficient on X′ for every π ∈ ΠL.

We introduce three different solution concepts for our SGs, which we
refer to as Stackelberg correlated equilibria (SCEs). They differ on the
types of stability and efficiency that they prescribe. Formally:

Definition 8.4 (Stackelberg Correlated Equilibria). Given a multi-leader-
follower SG (Γ, L, F ), x ∈ X is an:

• SCE if it is efficient on the set XS;

• SCE with perfect agreement (SCE-PA) if it is efficient on the set XPS;

• SCE with perfect agreement and perfect efficiency (SCE-PAPE) if it
is perfectly efficient on the set XPS.

We denote with XSCE, XSCE-PA, and XSCE-PAPE the sets of SCEs, SCE-
PAs, and SCE-PAPEs, respectively.

Example 8.1. Consider the normal-form SG in Figure 8.1, where L =
{1, 2} and F = ∅. 3 Let x = [xπ] be such that x∅(s1,1, s2,1) = 1,
x{2}(s1,5, s2,1) = 1, and xπ(s1,1, s2,2) = 1 for all the other π ∈ ΠL. Clearly,
xπ ∈ X CE

π for all π ∈ ΠL. Moreover, being x∅ stable and Pareto optimal,
x is an SCE. Observe that, if player 2 performs OPT-OUT, x prescribes an
irrational behavior to player 1, as u1(x{2}) = 0, while she gets 1 by doing
OPT-OUT. Thus, x is not perfectly stable, as playing OPT-IN must be op-
timal at any decision point of the agreement stage. For instance, x′ = [x′π]
with x′∅(s1,2, s2,1) = 1 and x′π(s1,3, s2,2) = 1 for every other π ∈ ΠL is an
SCE-PA. However, notice that x′ is not an SCE-PAPE since x′{2} does not
maximize player 1’s utility. Instead, it is easy to verify that x′′ = [x′′π] with
x′′∅(s1,4, s2,1) = 1, x′′{2}(s1,3, s2,1), and x′′π(s1,4, s2,2) = 1 for all the other
π ∈ ΠL is an SCE-PAPE.

3In this chapter and the following one, when representing normal-form games we adopt the convention that
A = S, using the equivalence between action profiles in the normal form and pure strategy profiles.
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s2,1 s2,2

s1,1 5, 0 1, 2

s1,2 4, 1 1, 2

s1,3 2, 1 1, 1

s1,4 3, 2 1, 3

s1,5 0, 0 0, 0

(a) Underlying game.

1

2

x∅

OPT-IN
1

x{2}

OPT-IN

x{2,1}

OPT-OUT

OPT-OUT

OPT-IN 2

x{1}

OPT-IN

x{1,2}

OPT-OUT

OPT-OUT

(b) Extensive-form game representing the agreement stage.

Figure 8.1: Example of two-player normal-form SG with L = {1, 2} and the extensive-
form game representing its agreement stage.

8.2 On the Existence of SCEs

We investigate the existence of our solution concepts in general SGs. We
show that SCEs and SCE-PAs always exist, while we provide an SG where
there is no SCE-PAPE.

The fundamental step for proving our existence results (Theorem 8.1) is
to show that (i) XS and XPS are polytopes, and (ii) they are non-empty. The
latter point is a direct consequence of the fact that all vectors x = [xπ] ∈ X
with xπ = x for some CE x ∈ X CE are perfectly stable.

First, we prove a useful property of stable distributions.

Lemma 8.1. The sets XS and XPS are polytopes.

Proof. X ⊆ R|ΠL|·|S| is the set of vectors x = [xπ] such that xπ ∈ X CE
π∪F

for all π ∈ ΠL. Each X CE
π∪F is defined by the linear constraints of Equa-

tion (2.3), thus X is a polytope. Moreover, if x ∈ XPS ⊆ X, xπ is stable
for all π ∈ ΠL, i.e., up(xπ) ≥ up(xπp) for all p ∈ L \ π. Thus, being these
constraints linear, XPS is a polytope. A similar argument holds for XS.

Theorem 8.1. Every SG admits an SCE and an SCE-PA.

Proof. Given an SG (Γ, L, F ), let x ∈ X CE and x = [xπ] ∈ X be such
that xπ = x for all π ∈ ΠL. We prove that x ∈ XPS. First, for each
π ∈ ΠL, xπ ∈ X CE

π∪F , since X CE ⊆ X CE
π∪F . Moreover, each xπ is stable,

since up(xπ) = up(xπp) for all p ∈ L \ π. This shows that XPS 6= ∅.
Finally, being XPS a polytope by Lemma 8.1, there exists x = [xπ] ∈ XPS

such that x∅ ∈ PL(XPS). Thus, XSCE-PA 6= ∅. A similar reasoning holds
for the sets XS and XSCE.

Finally, we provide an example of SGs with no SCE-PAPE.
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s2,1 s2,2

s1,1 0, 2, 0 2, 0, 0

s1,2 0, 2, 0 1, 2, 1

s3,1

s2,1 s2,2

s1,1 0, 2, 0 2, 1, 1

s1,2 0, 2, 0 0, 0, 0

s3,2

s2,1 s2,2

s1,1 0, 0, 1 0, 0, 1

s1,2 0, 0, 1 0, 0, 1

s3,3

Table 8.1: Three-player normal-form SG with no SCE-PAPE (players 1, 2, and 3 select
rows, columns, and matrices, respectively).

Proposition 8.1. There are SGs with no SCE-PAPE. 4

Proof. Consider the SG in Table 8.1, where L = {1, 2, 3} and F = ∅.
Suppose, by contradiction, that there exists x = [xπ] ∈ XSCE-PAPE. First,
for every xπ with player 3 in π, u3(xπ) = 1 (otherwise xπ /∈ X CE

π∪F ,
as player 3 always gets 1 by deviating to s3,3). Let us consider the se-
quences of OPT-OUT defined by the ordered subsets {1, 2} and {2, 1}.
Given that the definition of stability requires u3(x{1,2}) ≥ u3(x{1,2,3}) = 1
and u3(x{2,1}) ≥ u3(x{2,1,3}) = 1, we have that x{1,2} and x{2,1} must
place strictly positive probability only on strategy profiles (s1,2, s2,2, s3,1),
(s1,1, s2,2, s3,2), and those recommending s3,3 to player 3. Moreover, player
1 cannot be told to play s1,2, as she would have an incentive to deviate
to s1,1. The same holds for player 2 and strategy s2,2. As a result, x{1,2}
and x{2,1} must always recommend s3,3 to player 3. Now, let us take the
sequence of OPT-OUT defined by {1}. By stability of x{1}, it must hold
u3(x{1}) ≥ u3(x{1,3}) = 1 and u2(x{1}) ≥ u2(x{1,2}) = 0. Hence, given
x{1} ∈ X CE

{1}, in order to satisfy x{1} ∈ PL\{1}(XPS), x{1} must always rec-
ommend the strategy profile (s1,1, s2,2, s3,2), where player 1 gets a utility of
2. Similarly, for the sequence defined by {2}, x{2} must always recommend
(s1,2, s2,2, s3,1) and, thus, player 2 receives a utility of 2. Thus, for stability,
x∅ must satisfy u1(x∅), u2(x∅) ≥ 2, which is clearly impossible.

As a result, in the rest of this work we focus on SCEs and SCE-PAs.
We remark that the non-existence of SCE-PAPEs implies that, under the
requirements of perfect stability and perfect efficiency, there cannot be an
agreement involving all the leaders. This does not rule out the possibility
that some subsets of leaders can still reach an agreement. However, these
cases are much more involved, as the actual group of leaders reaching an
agreement inevitably depends on the rules of the protocol implemented in
the agreement stage.

4Let us remark that this holds even if, for the efficiency of xπ , we require that xπ ∈ PL(X′), i.e., we use as
objectives the utility function of all the leaders, including those who performed OPT-OUT.
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8.3 SCEs and Other Solution Concepts

First, we show that the optimal correlated strategies to commit to introduced
by Conitzer and Korzhyk [2011] are a special case of SCEs. Intuitively, in
single-leader SGs, efficiency is equivalent to the maximization of leader’s
utility, while stability does not enforce additional constraints on the com-
mitment. Formally:

Theorem 8.2. Given an SG (Γ, {1}, N \ {1}), it holds XSCE = XSCE-PA =
XSCE-PAPE and, given some x = [xπ] ∈ XSCE, x∅ is an optimal correlated
strategy to commit to.

Proof. Since the SG has only one leader (player 1), stability and perfect sta-
bility are equivalent, and, thus, XS = XPS. As a result, XSCE = XSCE-PA.
Moreover, for the same reasons, also efficiency and perfect efficiency are
equivalent, and XSCE-PA = XSCE-PAPE. Note that requiring Pareto op-
timality is the same as maximizing the leader’s utility function u1. Let
x = [xπ] ∈ XSCE and assume, by contradiction, that x∅ is not an optimal
correlated strategy to commit to. This would imply that there exists another
x̂ ∈ X CE

N\{1} such that u1(x̂) ≥ u1(x∅). However, replacing x∅ with x̂ in x

would give us another x̂ ∈ XS (stability constraints are trivially satisfied).
This would contradict the efficiency of x.

Given the relation between optimal correlated strategies to commit to
and SEs in single-leader single-follower SGs, we have the following:

Corollary 8.2.1. Given an SG (Γ, {1}, {2}), any x = [xπ] ∈ XSCE is such
that u1(x∅) is the leader’s utility in an SE.

8.3.1 SCEs and non-Stackelberg Correlation

Now, we analyze how our solution concepts relate to other non-Stackelberg
solutions involving correlation. Specifically, we focus on CEs and CCEs.
We recall that X CE denotes the set of CEs of the underlying game, whereas,
in the following, we let X CCE ⊆ X be the set of correlated distributions
defining CCEs of the game.

In our analysis, we compare CEs and CCEs with the correlated distri-
butions x∅ resulting from our solution concepts in general SGs. Given an
SG (Γ, L, F ), we define X S ⊆ X and X PS ⊆ X as the sets of x∅ such that
x = [xπ] ∈ XS and x ∈ XPS, respectively. Our goal is to investigate the
relationships involving the sets X S and X PS with the sets of CEs and CCEs
of the underlying game Γ, namely X CE and X CCE.
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Figure 8.2 depicts these relationships.

XCCE
<latexit sha1_base64="sB4CqguLXOc8xcfTzKdr9YSDFmI=">AAACAXicbVBNS8NAEN34WetX1IvgJVgETyVRQY/FInisYD+giWWz3bRLN5uwOxFLiBf/ihcPinj1X3jz37hpc9DWBwOP92aYmefHnCmw7W9jYXFpeWW1tFZe39jc2jZ3dlsqSiShTRLxSHZ8rChngjaBAaedWFIc+py2/VE999v3VCoWiVsYx9QL8UCwgBEMWuqZ+26IYUgwTzvZnQv0ARRJ6/WrrGdW7Ko9gTVPnIJUUIFGz/xy+xFJQiqAcKxU17Fj8FIsgRFOs7KbKBpjMsID2tVU4JAqL518kFlHWulbQSR1CbAm6u+JFIdKjUNfd+b3qlkvF//zugkEF17KRJwAFWS6KEi4BZGVx2H1maQE+FgTTCTTt1pkiCUmoEMr6xCc2ZfnSeuk6pxW7ZuzSu2yiKOEDtAhOkYOOkc1dI0aqIkIekTP6BW9GU/Gi/FufExbF4xiZg/9gfH5AwE8lzs=</latexit>XPS

<latexit sha1_base64="cgGYTiq/Z+8slURNOowCINTn9Yo=">AAACAHicbVBNS8NAEN34WetX1IMHL4tF8FQSFfRY9OKxov2AJpbNdtMu3WzC7kQsIRf/ihcPinj1Z3jz37htc9DWBwOP92aYmRckgmtwnG9rYXFpeWW1tFZe39jc2rZ3dps6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHV2G89MKV5LO9glDA/In3JQ04JGKlr73sRgQElImvn9x6wR9A0q9/mXbviVJ0J8DxxC1JBBepd+8vrxTSNmAQqiNYd10nAz4gCTgXLy16qWULokPRZx1BJIqb9bPJAjo+M0sNhrExJwBP190RGIq1HUWA6x+fqWW8s/ud1Uggv/IzLJAUm6XRRmAoMMR6ngXtcMQpiZAihiptbMR0QRSiYzMomBHf25XnSPKm6p1Xn5qxSuyziKKEDdIiOkYvOUQ1dozpqIIpy9Ixe0Zv1ZL1Y79bHtHXBKmb20B9Ynz+WZ5cJ</latexit>

XCE
<latexit sha1_base64="bsMF5xFnuBPf6vqDPkhF/DgmmZw=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokKuiyWASXFewDmlgm00k7dPJg5kYsIRt/xY0LRdz6Ge78GydtFtp64MLhnHu59x4vFlyBZX0bpaXlldW18nplY3Nre8fc3WurKJGUtWgkItn1iGKCh6wFHATrxpKRwBOs440bud95YFLxKLyDSczcgAxD7nNKQEt988AJCIwoEWk3u3eAPYKiaeM665tVq2ZNgReJXZAqKtDsm1/OIKJJwEKggijVs60Y3JRI4FSwrOIkisWEjsmQ9TQNScCUm04fyPCxVgbYj6SuEPBU/T2RkkCpSeDpzvxcNe/l4n9eLwH/0k15GCfAQjpb5CcCQ4TzNPCAS0ZBTDQhVHJ9K6YjIgkFnVlFh2DPv7xI2qc1+6xm3Z5X61dFHGV0iI7QCbLRBaqjG9RELURRhp7RK3oznowX4934mLWWjGJmH/2B8fkDbVOW7g==</latexit>

XPS-NF
<latexit sha1_base64="/UIG0anP7WmXxfSCP5Pz/FP+CSY=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4sSQq6LIoiCupaB/QxDKZTtuhkwczN2IJATf+ihsXirj1J9z5N07aLLT1wIXDOfdy7z1eJLgCy/o2Zmbn5hcWC0vF5ZXVtXVzY7OuwlhSVqOhCGXTI4oJHrAacBCsGUlGfE+whjc4z/zGPZOKh8EtDCPm+qQX8C6nBLTUNrcdn0CfEpE00zsH2AMomlRvDq4u0rZZssrWCHia2DkpoRzVtvnldEIa+ywAKohSLduKwE2IBE4FS4tOrFhE6ID0WEvTgPhMucnohxTvaaWDu6HUFQAeqb8nEuIrNfQ93ZldrCa9TPzPa8XQPXUTHkQxsICOF3VjgSHEWSC4wyWjIIaaECq5vhXTPpGEgo6tqEOwJ1+eJvXDsn1Utq6PS5WzPI4C2kG7aB/Z6ARV0CWqohqi6BE9o1f0ZjwZL8a78TFunTHymS30B8bnD0bwl+g=</latexit>

X S
<latexit sha1_base64="qXFgfeGzIX7F1Zf2St4ew07c0Pc=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkqigi6LblxWtA9oYplMJ+3QySTM3IglZuGvuHGhiFt/w51/46TNQlsPDBzOuZd75vgxZwps+9soLSwuLa+UVytr6xubW+b2TktFiSS0SSIeyY6PFeVM0CYw4LQTS4pDn9O2P7rM/fY9lYpF4hbGMfVCPBAsYASDlnrmnhtiGBLM00525wJ9AEXSm6xnVu2aPYE1T5yCVFGBRs/8cvsRSUIqgHCsVNexY/BSLIERTrOKmygaYzLCA9rVVOCQKi+d5M+sQ630rSCS+gmwJurvjRSHSo1DX0/madWsl4v/ed0EgnMvZSJOgAoyPRQk3ILIysuw+kxSAnysCSaS6awWGWKJCejKKroEZ/bL86R1XHNOavb1abV+UdRRRvvoAB0hB52hOrpCDdREBD2iZ/SK3own48V4Nz6moyWj2NlFf2B8/gDu9Zav</latexit>

X S-NF
<latexit sha1_base64="4DAiTXZLTM7+PdL7BhXhFCCOijc=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgxpKooMuiIK6kon1AE8tkOm2HTh7M3IglBDf+ihsXirj1K9z5N07aLLT1wIXDOfdy7z1eJLgCy/o2Zmbn5hcWC0vF5ZXVtXVzY7OuwlhSVqOhCGXTI4oJHrAacBCsGUlGfE+whjc4z/zGPZOKh8EtDCPm+qQX8C6nBLTUNrcdn0CfEpE00zsH2AMomtwcXF2kbbNkla0R8DSxc1JCOapt88vphDT2WQBUEKVathWBmxAJnAqWFp1YsYjQAemxlqYB8Zlyk9ELKd7TSgd3Q6krADxSf08kxFdq6Hu6MztYTXqZ+J/XiqF76iY8iGJgAR0v6sYCQ4izPHCHS0ZBDDUhVHJ9K6Z9IgkFnVpRh2BPvjxN6odl+6hsXR+XKmd5HAW0g3bRPrLRCaqgS1RFNUTRI3pGr+jNeDJejHfjY9w6Y+QzW+gPjM8fnoiXjg==</latexit>

Figure 8.2: Relations among X S, X PS, X CE, X CCE, X S-NF, X PS-NF.

Let us remark that the relations X CE ⊆ X CCE, X CE ⊆ X PS, and X PS ⊆
X S hold by definition, while it is easy to show that X CE ⊆ X PS (see the
proof of Theorem 8.1).

First, we look at the connection between (perfectly) stable distributions
and CCEs. Given the relation between SEs and SCEs (see Corollary 8.2.1)
in single-leader single-follower SGs, the following result holds as a direct
consequence of (Von Stengel and Zamir, 2010, Remark 13).

Proposition 8.2. There are SGs where X CCE * X S.

Moreover, not all perfectly stable distributions are CCEs.

Proposition 8.3. There are SGs where X PS * X CCE.

Proof. Consider the SG in Table 8.2a, where L = {1, 2} and F = ∅.
Since s1,1 and s2,1 are strictly dominated, there is a unique CCE x ∈ X CCE

with x(s1,2, s2,2) = 1. Let x = [xπ] ∈ X be such that x∅(s1,1, s2,1) = 1
and xπ(s1,2, s2,2) = 1 for all π 6= ∅ ∈ ΠL. Notice that each xπ with
π 6= ∅ satisfies the incentive constraints of Equation (2.3) for every player,
and, thus, xπ ∈ X CE

π . Moreover, for each leader p ∈ L, up(x∅) = 2 and
up(xπ) = 1 for all π ∈ ΠL\{∅}. Thus, each xπ is stable and x ∈ XPS.

Next, we analyze the relationships with the sets X S-NF and X PS-NF,
which are defined as X S and X PS, but for the SG (Γ, N,∅) where each
player is a leader. Our goal is to study the impact of players’ roles in SGs
having the same underlying finite game. The following result shows that
enlarging the set of leaders can only introduce new stable distributions.

Theorem 8.3. X S ⊆ X S-NF and X PS ⊆ X PS-NF.
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s2,1 s2,2

s1,1 2, 2 0, 3

s1,2 3, 0 1, 1

(a) Example of two-player normal-form
SG where X PS * X CCE.

s2,1 s2,2 s2,3 s2,4

s1,1 0, 0 −2, 4 1,−8 1,−2

s1,2 1,−8 0, 0 −2, 4 1,−2

s1,3 −2, 4 1,−8 0, 0 1,−2

(b) Example of two-player normal-form SG where
X CCE * X PS-NF.

Table 8.2: Two-player normal-form SGs used in the proofs of Propositions 8.3 and 8.5.

Proof. We only prove the result for X PS, as similar arguments hold for X S.
Given any SG (Γ, L, F ), for every perfectly stable x = [xπ] ∈ XPS of
(Γ, L, F ), we show that there exists a perfectly stable x′ = [x′π] ∈ XPS of
(Γ, N,∅), such that x∅ = x′∅. Let us define x′π = xπ∩L, for all π ∈ ΠN .
Clearly, it holds x′π ∈ X CE

π , as x′π ∈ X CE
(π∩L)∪F ⊆ X CE

π . For every player
p ∈ L and π ∈ ΠN such that p /∈ π, we have up(x′π) = up(xπ∩L) and
up(x

′
πp) = up(xπp∩L). Thus, given that x ∈ XPS, x′ satisfies the stability

constraints for the players in L. Now, in order to show that x′ ∈ XPS, it is
sufficient to prove that players in F do not have an incentive to OPT-OUT
in (Γ, N,∅). This is the case as, for p ∈ F and π ∈ ΠN with p /∈ π, we
have x′πp = x′π.

Furthermore, we can also provide examples showing that:

Proposition 8.4. There are SGs where X PS-NF * X S.

Proof. Consider the SG in Table 8.2a, where L = {1} and F = {2}. There
is an x = [xπ] ∈ XPS-NF of (Γ, N,∅) in which x∅(s1,1, s2,1) = 1 (see
the proof of Proposition 8.3). Let x′ = [x′π] ∈ XS of (Γ, L, F ). Since
x′∅ ∈ X CE

{2} and s2,1 is strictly dominated, it must be x′∅(s1,1, s2,1) = 0.

Proposition 8.5. There are SGs where X CCE * X PS-NF.

Proof. Consider the SG in Table 8.2b, where L = N = {1, 2}. There is a
CCE x ∈ X CCE with x(s1,1, s2,1) = x(s1,2, s2,2) = x(s1,3, s2,3) = 1

3
. We

show that there is no x = [xπ] ∈ XPS with x∅ = x. By contradiction,
assume there exists such x. Given that u1(x∅) = 0, it should be the case
that u1(x{1}) ≤ 0, by stability of x∅. Take the incentive constraints of
player 1 (Equation (2.3)). Since there must be no incentive to deviate from
s1,1 to s1,2, it holds

x{1}(s1,1, s2,3) ≥ 1

3
x{1}(s1,1, s2,1) +

2

3
x{1}(s1,1, s2,2).
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Similar conditions also hold for the deviation from s1,2 to s1,3 and that from
s1,3 to s1,1. Thus, we can write:

x{1}(s1,2, s2,1) ≥ 1

3
x{1}(s1,2, s2,2) +

2

3
x{1}(s1,2, s2,3),

x{1}(s1,3, s2,2) ≥ 1

3
x{1}(s1,3, s2,3) +

2

3
x{1}(s1,3, s2,1).

As a result, we can conclude that, if x{1} only recommends player 2 to play
s2,1, s2,2, and s2,3, then u2(x{1}) < −2. However, if player 2 decides to
OPT-OUT, then she would get at least −2, as x{1,2} ∈ X CE and player 2 is
guaranteed to get −2 by playing s2,4. Thus, being x{1} stable, it must be
the case that player 2 is always recommended to play s2,4 in x{1}. Thus,
u1(x{1}) = 1, which is a contradiction.

Finally, we prove that the stable distributions for the SG without follow-
ers encompass those defining CCEs.

Theorem 8.4. X CCE ⊆ X S-NF.

Proof. Let x ∈ X CCE be a CCE of a given finite game Γ. We prove that the
SG (Γ, N,∅) admits a stable distribution x = [xπ] ∈ XS with x∅ = x. In
order to do so, for every leader p ∈ N , we let x{p} be such that up(x{p}) ≤
up(x), as shown in the following. Let us fix a player p ∈ N and let ŝp ∈ Sp
be such that, for every s′p ∈ Sp:∑

s∈S

x(s)
(
up(ŝp, s−p)− up(s′p, s−p)

)
≥ 0, (8.1)

i.e., ŝp is the best player p’s strategy against the correlated distribution x.
Given that x ∈ X CCE:∑

s∈S

x(s) (up(s)− up(ŝp, s−p)) ≥ 0. (8.2)

We define x{p} as follows:

• x{p}(ŝp, s−p) =
∑

sp∈Sp x(sp, s−p) for all s−p ∈ S−p;

• x{p}(sp, s−p) = 0 for all sp 6= ŝp ∈ Sp, s−p ∈ S−p.
Given how x{p} is defined and Equation (8.1), we have that the incentive
constraints of player p (Equation (2.3)) are satisfied, and, thus, x{p} ∈ X CE

{p}.
Moreover, Equation (8.2) implies that up(x{p}) ≤ up(x), which concludes
the proof.
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s2,1 s2,2

s1,1 k, k 0, k + 1

s1,2 k + 1, 0 1, 1

Table 8.3: Two-player normal-form SG (with k > 0) where the leaders’ social welfare of
an SCE-PA is arbitrary larger than in any CE.

Observe that, when one looks for equilibria maximizing a linear function
of leaders’ utilities (e.g., the leaders’ social welfare), larger sets result in
better solutions. 5 Moreover, we can provide examples where the difference
in terms of leaders’ social welfare between two solution concepts can be
arbitrarily large. For instance, the following holds. 6

Proposition 8.6. There are SGs (Γ, L, F ) with leaders’ social welfare in
SCE-PAs arbitrarily larger than in any CE of Γ.

Proof. Consider the SG in Table 8.3, where L = {1, 2} and F = ∅. Since
strategies s1,1 and s2,1 are strictly dominated, the only CE is x ∈ X CE with
x(s1,2, s2,2) = 1. Let x = [xπ] ∈ X be such that x∅(s1,1, s2,1) = 1 and
xπ(s1,2, s2,2) = 1 for all π 6= ∅ ∈ ΠL. It is easy to check that x ∈ XSCE-PA.
Moreover, the social welfare of the CE is 2, while the social welfare of the
SCE-PA is 2k.

5Let us remark that, since XS and XPS are polytopes (see Lemma 8.1), maximizing a linear function of
leaders’ utilities over the sets XS and XPS also provides Pareto optimality, and, thus, efficiency over the corre-
sponding set.

6Similar results hold for the other pairs of solution concepts.
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CHAPTER9
Computing Stackelberg Correlated

Equilibria

In this chapter, we study the computational complexity of computing equi-
libria in the multi-leader-follower SGs introduced in the previous chapter.

Section 9.1 studies the complexity of finding SCEs, assuming to have
access to an oracle solving an auxiliary problem, called stability oracle.
Then, in the following Section 9.2, we show which classes of games admit
a polynomial-time stability oracle.

9.1 Computational Complexity of SCEs

We study the computational complexity of SCEs and SCE-PAs in general
SGs. We distinguish between the problem of finding an equilibrium and
that of computing an optimal equilibrium, i.e., one maximizing a specific
given linear function of leaders’ utilities, such as the leader’s social welfare.
We introduce the following formal definitions (problems f-SCE-PA and o-
SCE-PA(λ) are defined analogously for SCE-PAs).

Definition 9.1 (f-SCE). Given an SG (Γ, L, F ), find an SCE.
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Definition 9.2 (o-SCE(λ)). Given an SG (Γ, L, F ) and λ = [λp] ∈ [0, 1]|L|,
find an SCE x = [xπ] ∈ XSCE maximizing the objective function fλ =∑

p∈L
∑

s∈S λpup(s)x∅(s).

Let us remark that, in general, the size of a vector x ∈ X is factorial
in the number of players. Thus, in the following, we assume that there is
some compact representation for x. 1

We establish a tight connection between our problems and an auxiliary
one, which is a generalization of the problem of finding an optimal CE. In
the rest of the section, we assume to have access to an oracle solving this
auxiliary problem, which we call stability oracle. In Section 9.2, we then
investigate for which games the oracle can be efficiently implemented.

Definition 9.3. A stability oracle O(Γ, c, L, {xp}p∈L′⊆L) is an algorithm
that, given a finite game Γ, a coefficients vector c = [cp] ∈ [−1, 1]n, a set
of leaders L ⊆ N , and a collection of correlated distributions xp ∈ X for
p ∈ L′ ⊆ L, returns an x ∈ X CE

N\L maximizing
∑

p∈N
∑

s∈S cpup(s)x(s)

subject to the stability constraints, i.e., up(x) ≥ up(xp) for all p ∈ L′. 2

In the following, we are interested in games where the stability oracle
runs in polynomial time. Thus, we assume that O always returns a corre-
lated distribution with size polynomial in the size of the game. 3 We also
consider the decision form of the stability oracle, which reads as follows:

Definition 9.4. The decision form of a stability oracle O is an algorithm
OD(x, L, {xp}p∈L′⊆L) that, given x ∈ X , L ⊆ N , and xp ∈ X for p ∈ L′ ⊆
L, answers YES if x ∈ X CE

N\L and x satisfies the stability constraints, and
NO otherwise.

In the following, given L ⊆ N and λ = [λp] ∈ [0, 1]|L|, we let cλ =
[cλ,p] ∈ [0, 1]n be such that cλ,p = λp if p ∈ L, while cλ,p = 0 if not.
Moreover, given p ∈ N , we let cp = [cp,q] ∈ [0, 1]n be such that cp,p = −1
and cp,q = 0 for all q ∈ N \ {p}. Note that cλ is the coefficients vector of
the objective fλ, while cp corresponds to minimizing up.

9.1.1 Computing SCEs

We show that, in games admitting a polynomial-time stability oracle, an
optimal SCE can be computed in polynomial time. Intuitively, o-SCE(λ)

1As we see next, for all our positive results we can safely assume that there is a compact representation for
x ∈ X (e.g., x only requires a polynomial number of polynomially-sized distributions).

2Note that, given a finite game G, O(Γ, c,∅,∅) returns an optimal CE x ∈ X CE for the objective function
defined by c ∈ [0, 1]n.

3Indeed, this assumption is not restrictive, as all the games we study in Section 9.2 admit a poly-time oracle
O with this property.
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is solved by x = [xπ] computed as: x{p} = O(Γ, cp, L \ {p},∅) for p ∈ L,
x∅ = O(Γ, cλ, L, {x{p}}p∈L), and xπ = O(Γ, cλ,∅,∅) for every other
ordered subset π ∈ ΠL. Formally:

Theorem 9.1. Given an SG (Γ, L, F ) and λ ∈ [0, 1]|L|, o-SCE(λ) can be
solved with |L|+ 2 queries to an oracle O.

Proof. We build an x = [xπ] ∈ XSCE that maximizes fλ by invoking a
stability oracle O multiple times. For every p ∈ L, we define x{p} =
O(G, cp, L \ {p},∅). Moreover, we let x∅ = O(Γ, cλ, L, {x{p}}p∈L) and
xπ = O(Γ, cλ,∅,∅) for every π ∈ ΠL with |π| ≥ 2. Clearly, we need
|L| + 2 calls to O. First, xπ ∈ X CE

π∪F for every π ∈ ΠL, by definition of
O. For the same reason, we have up(x∅) ≥ up(x{p}) for all p ∈ L. Thus,
we can conclude that x ∈ XS. Let fλ be the value of the objective for x.
We show that fλ is maximized over XS. Being fλ a linear combination of
leader’s utility functions, we immediately get that x∅ ∈ PL(XS), and x ∈
XSCE. By contradiction, suppose that there exists an x′ = [x′π] ∈ XS with
objective function value f ′λ > fλ. This implies that there exists a leader
p ∈ L with up(x′{p}) < up(x{p}), otherwise the solution x∅ returned by
O(Γ, cλ, L, {x{p}}p∈L) would not be optimal. This is a contradiction, since
x{p} minimizes player p’s utility on the set X CE

{p}∪F , and x′{p} ∈ X CE
{p}∪F .

Corollary 9.1.1. Given an SG (Γ, L, F ), if there is a poly-time oracle O,
then o-SCE(λ) can be solved in polynomial time.

9.1.2 Computing SCE-PAs

First, we provide a positive result: one can find an SCE-PA with poly-
nomially many invocations to a stability oracle. It is sufficient to com-
pute x = [xπ] where x{p} = O(Γ, cp,∅,∅) for p ∈ L and, additionally,
x∅ = O(Γ, cλ, L, {x{p}}p∈L). Thus:

Theorem 9.2. Given an SG (Γ, L, F ), f-SCE-PA can be solved with |L|+1
queries to an oracle O.

Proof. Using O, we construct an x ∈ XSCE-PA. Let x{p} = O(Γ, cp,∅,∅),
i.e., x{p} is a CE that minimizes player p’s utility. Moreover, we define
x∅ = O(Γ, cλ, L, {x{p}}p∈L) for some λ ∈ (0, 1]|L|. By setting, for every
leader p ∈ L, xπ = x{p} for all π ∈ ΠL where p is the first to OPT-OUT,
we have x ∈ XPS. Clearly, we only require |L| + 1 queries to O. Now,
we prove that x∅ ∈ PL(XPS), and, thus, x ∈ XSCE-PA. By contradiction,
suppose that it is not the case, i.e., there exists an x′ = [x′π] ∈ XPS with
up(x

′
∅) ≥ up(x∅) for all p ∈ L and uq(x′∅) > uq(x∅) for some leader
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q ∈ L. By stability of x∅, we have that up(x′∅) ≥ up(x∅) ≥ up(x{p}) for
every p ∈ L. Thus, x′∅ satisfies up(x′∅) ≥ up(x{p}) for every leader p ∈ L
(stability), and∑

p∈N

∑
s∈S

cλ,pup(s)x
′
∅(s) >

∑
p∈N

∑
s∈S

cλ,pup(s)x∅(s),

which implies that x′∅ verifies the constraints for a solution to the porblem
solved by O(Γ, cλ, L, {x{p}}p∈L), while providing an objective grater than
that of x∅. This contradicts the correctness of O.

Corollary 9.2.1. Given an SG (Γ, L, F ), if there is a poly-time oracle O,
then f-SCE-PA can be solved in polynomial time.

Now, we switch to the problem of computing an optimal SCE-PA, show-
ing that it cannot be solved efficiently, even with access to a polynomial-
time stability oracle. Specifically, we prove a stronger negative result: even
the easier problem of verifying the perfect stability of a given x ∈ X is
computationally intractable. Our statement is based on a reduction from
the coNP-complete problem of deciding whether a given formula in dis-
junctive normal form (DNF) is a tautology or not (Arora and Barak, 2009).

Theorem 9.3. Given an SG (Γ, L, F ) and x ∈ X, verifying whether x ∈ or
6∈ XPS is not in P unless NP = coNP, even with access to a polynomial-time
decision-form oracle OD.

Proof. Given a DNF formula Φ, we build an SG and an x ∈ X such that
x ∈ XPS if and only if Φ is a tautology. Thus, if one could verify the
perfect stability of x in polynomial time, then there would be a polynomial-
time checkable certificate for the coNP-complete problem of determining
whether a DNF formula is a tautology or not Arora and Barak (2009). This
would imply NP = coNP. Moreover, given how the SG is built, the result
holds even if we get access to a polynomial-time decision oracle OD.

Construction. Given a DNF formula Φ, let V denote the set of variables
appearing in Φ. We construct an SG (Γ, L, F ) involving a leader for each
variable and a single follower, i.e., L = {pv | v ∈ V } and F = {pf}.
Moreover, we let Spf = {sv | v ∈ V } be the set of follower’s strategies,
one per variable, while the leaders share the strategies Spv = {sT, sF},
corresponding to truth values . As a result, any strategy profile s ∈ S
corresponds to a truth assignment τ s defined by leaders’ strategies. We
write Φ(τ s) = T if τ s satisfies Φ, while Φ(τ s) = F otherwise. We also
denote with #F(τ s) the number of false variables in τ s. Table 9.1 reports
the leaders’ utilities, while the follower’s one is always 0. Then, we build
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Φ(τs) = T Φ(τs) = F

spf = sv spf 6= sv ∃v : spv = sF ∀v : spv = sT

sT 0 #F(τs) |V | −1

sF #F(τs)− 1 |V | |V | 0

Table 9.1: Leader pv’s (v ∈ V ) utilities in the SG for the reduction of Theorem 9.3. On
rows, there are pv’s strategies sT and sF, whereas, on columns, we report the four
possible cases for s ∈ S. #F(τs) denotes the number of variables set to false by τs.

an x = [xπ] ∈ X with x∅(s) = 1 for some s ∈ S such that spv = sT

for every v ∈ V . Furthermore, for every v ∈ V and π ∈ ΠL\{pv}, we
let xπpv(s) = 1 for s ∈ S with sp = sF for every p ∈ πpv, sp = sT

for every p ∈ L \ πpv, and spf = sv. Let us remark that our SG admits
a polynomial-time decision oracle OD(x, L, {xp}p∈L′⊆L), since it can be
queried in polynomial time only on polynomially-sized distributions.

If. We prove that, if Φ is a tautology, then x ∈ XPS. For every π ∈
ΠL, xπ recommends all the leaders in π to play sF. Moreover, being Φ
a tautology, strategy sF (weakly) dominates sT (as it is always the case
that Φ(τ s) = T). Thus, xπ ∈ X CE

π∪F . Note that, for every v ∈ V and
π ∈ ΠL\{pv}, upv(xπ) = #F(τ s) = |π|, while, if p decides to OPT-OUT,
she is recommended to play sF and, being spf = sv, she gets the same
utility. As a result, all distributions xπ are stable.

Only if. We prove that, if Φ is not a tautology, then x /∈ XPS. Let s ∈ S
be such that φ(τ s) = F. Two cases are possible. If spv = sT for every
v ∈ V , then x∅ is not stable as the leaders would have an incentive to OPT-
OUT (since they get at least 0 > −1). If this is not the case, then there
exist s, s′ ∈ S such that Φ(τ s) = T and Φ(τ s

′
) = F, where xπ(s) = 1 and

xπpv(s
′) = 1 for some v ∈ V and π ∈ ΠL\{pv}. In this case, upv(xπ) =

#F(τ s) = |π| and upv(xπpv) = |V | > |π|. Thus, xπ is not stable, as leader
pv would have an incentive to OPT-OUT.

Corollary 9.3.1. Given an SG (Γ, L, F ) and x ∈ X, verifying whether
x ∈ X is an SCE-PA maximizing the social welfare is not in P unless NP =
coNP, even with access to a polynomial-time decision-form oracle OD.

Proof. We can modify the proof of Theorem 9.3 so that, when Φ is a tautol-
ogy, x ∈ X is the only perfectly stable distribution maximizing the social
welfare. In order to do this, it is enough to add a leader with a single action
and utility |V |2 if spv = sT for all v ∈ V , while 0 otherwise.
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As a byproduct of Theorem 9.1 we have that, when looking for optimal
SCEs, one can restrict the attention to those x ∈ X admitting a representa-
tion whose size is polynomial in the size of the game. For Theorem 9.2, the
same holds when searching for an SCE-PA. However, Theorem 9.3 implies
that optimal SCE-PAs require an exponential number of different distribu-
tions. Moreover, even when x ∈ X can be easily represented in a compact
form (as in the proof of Theorem 9.3), we cannot check in polynomial time
whether x ∈ XPS or not.

This poses a new intriguing question: can we restrict the attention to
x ∈ X whose size is less than factorial in the number of players? We show
that the answer is positive. It is sufficient to consider x ∈ X whose size is
exponential in the number of players, as only the unordered set of defecting
leaders and the last of them who decided to OPT-OUT matter.

Theorem 9.4. Given an SG (Γ, L, F ) and x = [xπ] ∈ XPS, there is an
x′ = [x′π] ∈ XPS s.t. x′∅ = x∅ and x′πp = x′π′p for every p ∈ L and
π, π′ ∈ ΠL\{p} defining the same set.

Proof. Let us take some x ∈ XPS. For every p ∈ L and π ∈ ΠL\{p},
we define x′πp = xπ′p where xπ′p minimizes up(xπ′p) over all π′ ∈ ΠL\{p}
such that π and π′ define the same set. Moreover, let x′∅ = x∅. Clearly,
x′π ∈ X CE

π∪F for all π ∈ ΠL (as each x′π is set equal to an xπ′ such that π and
π′ correspond to the same set of leaders who performed OPT-OUT). More-
over, it is easy to check that x′ is perfectly stable, as follows. Let us consider
some p ∈ L and π ∈ ΠL\{p}. By definition, for every q ∈ L \ πp, it holds
uq(x

′
πp) = uq(xπ′p), for some π′ ∈ ΠL\{p}. Moreover, uq(xπ′p) ≥ uq(xπ′pq)

by stability of x, and uq(xπ′pq) ≥ uq(x
′
π′′pq) for some π′′ ∈ ΠL\{p}. Finally,

by definition of x′, we have that uq(x′π′′pq) = uq(x
′
πpq), which shows that

uq(x
′
πp) ≥ uq(x

′
πpq). Since this holds for any p ∈ L and π ∈ ΠL\{p}, we

conclude that x′ ∈ XPS.

Theorem 9.4 allows us to reduce the number of queries to a stability
oracle that are necessary to find an optimal SCE-PA.

Theorem 9.5. Given an SG (Γ, L, F ) and λ ∈ [0, 1]|L|, o-SCE-PA(λ) can
be solved with |L|2|L|−1 + 1 queries to O.

Proof. We build an x = [xπ] ∈ XSCE-PA that maximizes fλ by using a
stability oracle O. For every p ∈ L and π ∈ ΠL\{p} with πp = L, we
let xπp = O(Γ, cp,∅,∅). Otherwise, whenever πp 6= L, letting π′ = πp,
we set xπ′ = O(Γ, cp, L \ π′, {xπ′q}q∈L\π′). Moreover, it holds that x∅ =
O(Γ, cλ, L, {x{p}}p∈L). Notice that xπp = xπ′p for every p ∈ L and π, π′ ∈
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s2,1 s2,2

s1,1 1, 2, 0 0, 1, 0

s1,2 1, 2, 0 0, 1, 0

s3,1

s2,1 s2,2

s1,1 2, 1, 0 2, 1, 0

s1,2 1, 0, 0 1, 0, 0

s3,2

s2,1 s2,2

s1,1 2, 2, 0 2, 2, 0

s1,2 2, 2, 0 0, 0, 10

s3,3

Table 9.2: Three-player normal-form SG showing that, when searching for an optimal
SCE-PA, it is necessary to consider the last leader who performed OPT-OUT (players
1, 2, and 3 select rows, columns, and matrices, respectively).

ΠL\{p} with π and π′ defining the same set. Thus, the number of queries to
O is

∑|L|
i=1 |L|

(|L|−1
i−1

)
+1 = |L|2|L|−1 +1. Clearly, by definition ofO, all the

incentive constraints of Equation (2.3) are satisfied. Furthermore, it is easy
to check that xπ is stable for every π ∈ ΠL. As a result, we can conclude
that x ∈ XPS. Now, we prove that x maximizes the objective fλ over the
set XPS. This also proves the efficiency of x, and, thus, x ∈ XSCE-PA.
By contradiction, suppose there exists another x′ = [x′π] ∈ XSCE-PA with
objective value f ′λ > fλ. Three cases are possible:

• there exist p ∈ L and π ∈ ΠL\{p} with πp = L such that up(x′πp) <
up(xπp);

• there exist p ∈ L and π ∈ ΠL\{p} with πp 6= L such that up(x′πp) <
up(xπp) and, letting π′ = πp, uq(x′π′q) ≥ uq(xπ′q) for all q ∈ L \ π′;
• up(x′{p}) ≥ up(x{p}) for all p ∈ L.

All the three cases contradict the correctness of O.

Finally, we can provide an example showing that Theorem 9.5 is tight,
which leads to the following proposition.

Proposition 9.1. Solving o-SCE-PA(λ) requires to take into account the
last player who performed OPT-OUT, while focusing only on the set of
defecting leaders is not sufficient.

Proof. Consider the SG in Table 9.2, with L = {1, 2, 3} and F = ∅. There
exists an x = [xπ] ∈ XSCE-PA such that x∅(s1,2, s2,2, s3,3) = 1, and the
same holds for x{1}(s1,1, s2,2, s3,1), x{2,1}(s1,2, s2,2, s3,1), x{2}(s1,2, s2,1, s3,2),
and x{1,2}(s1,2, s2,1, s3,2). Moreover, for every π ∈ ΠL including player
3, xπ(s1,1, s2,1, s3,3) = 1. Notice that xπ depends on the last player who
decides to OPT-OUT since x{1,2} 6= x{2,1}. We show that there is no
x′ = [x′π] ∈ XSCE-PA where xπ does not depend on the last leader to

175



Chapter 9. Computing Stackelberg Correlated Equilibria

OPT-OUT and x′∅(s1,2, s2,2, s3,3) = 1. Assume, by contradiction, that
there exists such x′. If player 1 performs OPT-OUT, she will get more
than 0, unless only the strategy profiles (s1,2, s2,2, s3,3), (s1,1, s2,2, s3,1), and
(s1,2, s2,2, s3,1) are recommended by x′{1}. The other strategy profiles pro-
viding player 1 with a utility of 0 cannot be recommended, otherwise in-
centive constraints of Eq. (2.3) are not satisfied. As a result, only strat-
egy profiles (s1,1, s2,1, s3,2) and (s1,1, s2,2, s3,2) are recommended in x′{1,2}
(otherwise player 2 would have an incentive to OPT-OUT). Instead, con-
sider the case in which player 2 performs OPT-OUT. Since players 1 and 2
are symmetric, x′{2,1} can only recommend strategy profiles (s1,1, s2,1, s3,1)

and (s1,2, s2,1, s3,1). Thus, x′{2,1} must be different from x′{1,2}, a contradic-
tion.

9.2 Stability Oracle for Compact Games

We study which classes of games admit a polynomial-time stability oracle
O, focusing on those with polynomial type. 4

Inspired by the classical approaches for finding CEs in games with poly-
nomial type (Papadimitriou and Roughgarden, 2008; Jiang and Leyton-
Brown, 2011, 2015), we solve O(Γ, c, L, {xp}p∈L′⊆L) in polynomial time
using the ellipsoid method. This requires that a suitably defined separa-
tion problem (Sep(z, t)) can be computed in polynomial time. Our main
result is that Sep(z, t) can be reduced to the weighted deviation-adjusted
social welfare problem (w-DaSW(y, v, t)) introduced by Jiang and Leyton-
Brown (2011) for finding an optimal (according to some linear function of
players’ utilities) CE. This establishes a strict connection between the prob-
lem solved by our stability oracle and that of computing optimal CEs. As
a consequence, given the results of Jiang and Leyton-Brown (2011), O can
be computed in polynomial time for all the compact games where finding
an optimal CE is computationally tractable. Thus:

Theorem 9.6. The following games admit a polynomial-time stability ora-
cleO: anonymous games, symmetric games, and bounded-treewidth graph-
ical and polymatrix games.

Finally, our results also imply that the polynomial-time stability oracle
O always outputs a polynomially-sized correlated distribution (see Corol-
lary 9.7.1).

Next, we provide a complete proof of Theorem 9.6.
4We remark that, for normal-form games, a polynomial-time stability oracleO can be implemented by using

a variation of the LP for finding optimal CEs (Shoham and Leyton-Brown, 2008).
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For the ease of presentation, we treat x ∈ X as an |S|-dimensional
vector. Moreover, given c = [cp] ∈ [−1, 1]n, let w = [ws] ∈ R|S| be
a vector with ws =

∑
p∈N cpup(s), and, given a collection of correlated

distributions {xp}p∈L′⊆L, let bp =
∑

s∈S up(s)xp(s) for every p ∈ L′ ⊆ L.
The solutions returned by O(Γ, c, L, {xp}p∈L′\L) are the optimal solu-

tions to the following LP:

P :


max wTx

s.t. Ux ≥ 0

1Tx = 1, x ≥ 0,

where U is a matrix of dimensions C × |S| (with C =
∑

p∈N\L |Sp|2 + |L|)
encoding the coefficients of the incentive constraints of Equation (2.3) for
the players in N \ L, and those of the additional stability constraints, i.e.,
for every p ∈ L ∑

s∈S

(up(s)− bp)x(s) ≥ 0.

We denote with Us the column of U corresponding to s ∈ S.
We can write the dual of problem P as:

D :


min t

s.t. UT z + w ≤ t1

z ≥ 0,

where z = [zpsp,s′p ; zp] ∈ RC is a vector of dual variables: zpsp,s′p for all
p ∈ N \ L and sp, s′p ∈ Sp, and zp for all p ∈ L.

A separation problem for D asks whether a given pair (z, t) is feasible,
and if not, it calls for a hyperplane separating (z, t) from the feasible set.
Following Jiang and Leyton-Brown (2011), we focus on a restricted form of
separation, requiring a violated constraint for infeasible points. Formally:

Definition 9.5 (Sep(z, t)). Given a pair (z, t) such that z ≥ 0, determine
if there exists an s ∈ S such that (Us)

T z + ws > t; if so output such an s.

Notice that, for every s ∈ S,

(Us)
T z =

∑
p∈N\L

∑
s′p∈Sp

zpsp,s′p

(
up(s)− up(s′p, s−p)

)
+

+
∑
p∈L

zp (up(s)− bp) .

The following holds:
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Theorem 9.7. If Sep(z, t) can be solved in polynomial time, then O can
be computed in polynomial time.

Proof. Clearly, a polynomial-time algorithm for Sep(z, t) can be used as
separation oracle in the ellipsoid method, solving D in polynomial time. By
duality, the optimal objective for D is the value wTx of a solution x ∈ X
for O. Since we required that separating hyperplanes be constraints for D,
they can be used to compute such solution x.

Corollary 9.7.1. O returns a polynomially-sized x ∈ X .

Proof. This is a direct consequence of the fact that the ellipsoid method, as
applied in Theorem 9.7, generates a polynomial number of violated con-
straints.

Now, we introduce some definitions from (Jiang and Leyton-Brown,
2011). Given a finite game Γ, we let y = [ypsp,s′p ] ∈ RC′ (with C ′ =∑

p∈N |Sp|2) be a vector indexed by p ∈ N and sp, s′p ∈ Sp. Moreover,
we let v = [vp] ∈ Rn be a vector indexed by p ∈ N .

Definition 9.6. Given a finite game Γ, a vector y ∈ RC′ such that y ≥ 0,
and a vector v ∈ Rn, the weighted deviation-adjusted utility for player
p ∈ N in s ∈ S is:

ûps(y, v) = vpup(s) +
∑
s′p∈Sp

ypsp,s′p

(
up(s)− up(s′p, s−p)

)
,

and the weighted deviation-adjusted social welfare is defined as ŵs(y, v) =∑
p∈N û

p
s(y).

The following is the formal definition of weighted deviation-adjusted
social welfare problem. 5

Definition 9.7 (w-DaSW(y, v, t)). Given a triplet (y, v, t) such that y ≥ 0,
determine if there exists an s ∈ S such that ŵs(y, v) > t; if so output such
an s.

Our main result is the following:

Theorem 9.8. Sep(z, t) reduces to w-DaSW(y, v, t).
5The version proposed by Jiang and Leyton-Brown (2011) adds the additional constraints that vp ≥ 0 and∑
p∈N vp = 1.
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Proof. Given (z, t) with z ≥ 0, asking (Us)
T z + ws > t is equivalent to

asking ∑
p∈N\L

∑
s′p∈Sp

ypsp,s′p

(
up(s)− up(s′p, s−p)

)
+

+
∑
p∈L

(cp + yp)up(s) +
∑
p∈N\L

cpup(s)−
∑
p∈L

ypbp > t.

In turn, this is equivalent to solving w-DaSW(ŷ, v̂, t̂) with:

• ŷpsp,s′p = 0 for all p ∈ L, sp, s′p ∈ Sp;

• ŷpsp,s′p = ypsp,s′p for all p ∈ N \ L, sp, s′p ∈ Sp;

• t̂ = t+
∑

p∈L ypbp;

• v̂p = cp + yp for all p ∈ L;

• v̂p = cp for all p ∈ N \ L.

This concludes the proof.

In conclusion, the results in (Jiang and Leyton-Brown, 2011) together
with Theorem 9.8 prove Theorem 9.6.
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Part III

Trembling-Hand Perfection in
Stackelberg Games
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CHAPTER10
Trembling-Hand Perfection in

Extensive-Form Stackelberg Games

In this chapter, we initiate the study of trembling-hand perfection in the
context of extensive-form SGs, i.e., we extend the Stackelberg paradigm
to games in extensive form where the players might tremble, taking off-
equilibrium actions with low-but-non-zero probability. In particular, here,
we introduce a general approach to refine SEs in extensive-form SGs. Then,
in the following Chapter 11, we focus on a specific kind of refinement that
is based on the idea of quasi perfection introduced by Van Damme (1984).

Initially, in Section 10.1, we provide some motivating examples showing
that the refinement of classical solution concepts is needed also in two-
player extensive-form SGs. Section 10.2 presents a general methodology
to refine SEs by applying trembling-hand perfection in extensive-form SGs,
introducing some gadgets, called perturbation schemes, which rely on the
sequence form. Then, Section 10.3 shows our main result, i.e., that the set
of SEs is complete with respect to the limit points induced by perturbation
schemes. Finally, Section 10.4 provides some computational complexity
results about refinements of SEs.
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10.1 Motivating Examples

In extensive-form games, classical equilibrium notions, such as, e.g., NEs,
may prescribe the players suboptimal actions off the equilibrium path. In
the specific case of NEs, these weaknesses are amended by introducing
equilibrium refinements based on trembles (see the discussion at the end
of Subsection 2.3.1). Here, we show that the same problems (i.e., non-
optimality off the equilibrium path) arise in the context of extensive-form
Stackelberg games (EFSGs). Then, in the following sections, we introduce
trembles in EFSGs so as to refine SEs and overcome their weaknesses.

In the games in Figure 10.1, SEs, including as special cases SSEs and
WSEs, may be suboptimal in presence of trembles. In particular, an SE
may be suboptimal due to a leader’s mistake (see Figure 10.1a), a follower’s
mistake (see Figure 10.1b), or both (see Figure 10.1c).

Moreover, the robust SE of Kroer et al. (2018) does not guard against
trembles either. Consider the game in Fig. 10.1b: the leader should com-
mit to (a1

` , a
4
`) in order to get utility 10. However, (a1

` , a
3
`) also achieves

utility 10, but it is a worse strategy when trembles may happen. Adding
payoff uncertainty on the (1, 0)-payoff node such that the follower has a
utility function where she picks a1

f does not solve this problem. The robust
solution would pick a2

` initially, since the worst-case follower picks a1
f . In

contrast, our perturbed SEs will uniquely identify (a1
` , a

4
`) as the solution.

`.1

`.2

0, 0

a3`

1, 1

a4`

a1`

5, 5

a2`

(a) Any strategy at `.2
is optimal in an
SE, while only a4

`

is optimal off the
equilibrium path
(i.e., if the leader
trembles at `.1).

`.1

f.1

`.2

0, 0

a3`

1, 0

a4`

a1f

10, 1

a2f

a1`

5, 5

a2`

(b) Any leader’s strategy at node
`.2 is optimal in an SE, while
only action a4

` is optimal off
the equilibrium path (notice
that, here, `.2 is reached
only if the follower trembles,
playing a1

f , at node f.1).

f.1

3, 3

a1f
`.1

0, 0

a3f

0, 0

a4f

a1`

−2,−2

a3f

1, 1

a4f

a2`

a2f

f.2

(c) Any strategy profile at nodes `.1 and
f.2 is optimal in an SE, while only
(a2
` , a

4
f ) is optimal off the equilib-

rium path (notice that, in this exam-
ple, both the leader and the follower
may tremble at nodes f.1 and `.1, re-
spectively).

Figure 10.1: Examples of EFSGs in which SEs may prescribe suboptimal actions off the
equilibrium path.
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10.2 Game Perturbation Schemes

As discussed in Subsection 2.3.1, many of the most important NE refine-
ment concepts are based on the idea that the player and/or the opponent
makes mistakes at every decision point (i.e., information set) with some
small, vanishing probability. In this section, we introduce a more general
family of such perturbations, of which the typical prior schemes, resulting
in extensive-form perfection and quasi perfection, are subfamilies. Then,
in the following sections, we develop a theory for the whole family and the
subfamilies in the context of EFSGs. 1

In the following definition, X is any sequence-form strategy polytope,
i.e., a set of valid realization plans, where no distinction is made based on
to which player the polytope belongs.

Definition 10.1 (ε-Perturbation Scheme). An ε-perturbation scheme for a
strategy polytope X is a function ε 7→ X(ε) defined over ε ∈ (0, 1] with:

• X(ε) ⊆ X(ε′) for all ε ≥ ε′, and

• cl(
⋃
ε∈(0,1]X(ε)) = X .

The closure operation cl(·) assumes that a topology is defined for the
space containing X . We will always assume that the strategy polytopes
X live in a Euclidean space where the usual metric induces open balls
Bδ(x̄) = {x : ‖x − x̄‖ < δ}. The classical extensive-form-perfect and
quasi-perfect perturbations (which we define formally in the following sub-
section) are two notable subfamilies of ε-perturbation schemes.

As a direct consequence of the conditions in Definition 10.1, every point
in X is eventually “reached” by X(ε) when ε is small enough:

Lemma 10.1. Given x̄ ∈ X and δ > 0, there exists x̂ ∈ X and ε̄ ∈ (0, 1]
such that x̂ ∈ X(ε) ∩Bδ(x̄) for all ε ≤ ε̄.

A perturbed EFSG is now simply an EFSG augmented with a perturba-
tion scheme for each player:

Definition 10.2 (Perturbed EFSG). A perturbed EFSG is defined as an
EFSG, together with two ε-perturbation schemes ε 7→ R`(ε) and ε 7→ Rf (ε)
for the leader’s and the follower’s strategy polytope, respectively.

Given a perturbed EFSG (Γ, ε 7→ R`(ε), ε 7→ Rf (ε)), we denote by
Γ(ε) the EFSG obtained from Γ by letting the leader and follower strategy
polytopes be R`(ε) and Rf (ε), respectively.

1Our perturbation family applies to any strategy polytope, not just EFSGs, and not even just the sequence
form. That said, in the following, we assume that the game is in sequence form.
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10.2.1 Extensive-Form-Perfect and Quasi-Perfect Perturbations

Now, we analyze perturbed EFSGs with extensive-form-perfect and quasi-
perfect perturbations. These are EFSGs which are augmented with particu-
lar ε-perturbation schemes with specific structure.

In an extensive-form-perfect ε-perturbation scheme, each player takes
into account the possibility that all the players, including herself, may make
mistakes in the future. Players are constrained to placing at least a mini-
mum probability α on every action at each information set, and those lower
bounds α are functions of ε that go to zero as ε → 0. A formal definition,
using sequence-form strategy polytopes, follows.

Definition 10.3 (Extensive-Form-Perfect ε-Perturbation Scheme). An
extensive-form-perfect ε-perturbation scheme for a sequence-form strategy
polytope Rp of player p ∈ N is an ε-perturbation scheme ε 7→ REFP

p (ε)

where a realization plan rp belongs to REFP
p (ε) if:

• rp(σp) ≥ α(ε, σp)rp(σ
′
p) for σp, σ′p ∈ Σp : σp = σ′pa for some a ∈ Ap;

• α(ε, σp) ≥ 0 and lim
ε→0+

α(ε, σp) = 0 for all σp ∈ Σp;

• ∑σp∈Σp|σp=σ′pa
α(ε, σp) ≤ 1 for all σ′p ∈ Σp.

In a quasi-perfect ε-perturbation scheme, each player takes into con-
sideration only the possibility of opponent’s errors, assuming she will not
make mistakes in future. This is modeled by requiring that sequences σp be
played with probabilities at least ξp(ε, σp). In words, the lower-bounds on
sequence probabilities enjoy the following properties: (i) they are polyno-
mials in the variable ε; (ii) they approach zero as ε goes to zero; and (iii)
ξp(ε, σp(I)a) approaches zero faster than ξp(ε, σp(I)). Formally:

Definition 10.4 (Quasi-Perfect ε-Perturbation Scheme). A quasi-perfect ε-
perturbation scheme for a sequence-form strategy polytope Rp of player
p ∈ N is an ε-perturbation scheme ε 7→ RQP

p (ε) where a realization plan rp
belongs to RQP

p (ε) if rp(σp) ≥ ξp(ε, σp) for every σp ∈ Σp, and, addition-
ally, ξp : (0, 1]× Σp → R+ is a function such that:

1. ξp(ε, σp) is a polynomial in ε, for all σp ∈ Σp;

2. lim
ε→0+

ξp(ε, σp) = 0, for all σp ∈ Σp \ {σ∅};

3. lim
ε→0+

ξp(ε, σp(I)a)

ξp(ε, σp(I))
= 0, for all I ∈ Ip, a ∈ A(I).

186



10.3. Stackelberg Trembling-Hand Refinements

Now, we introduce new solution concepts defined as limit points of se-
quences of SSEs and WSEs for perturbed game instances Γ(ε) as ε → 0,
given particular perturbation schemes.

Definition 10.5 (Extensive-Form-Perfect SEs). Given a perturbed EFSG
(Γ, ε 7→ REFP

` (ε), ε 7→ REFP
f (ε)), (r`, rf ) ∈ R` × Rf is an extensive-form-

perfect SSE (EFP-SSE) (respectively, extensive-form-perfect WSE (EFP-
WSE)) if it is a limit point of SSEs (respectively, WSEs) of Γ(ε) as ε→ 0.

Definition 10.6 (Quasi-Perfect SEs). Given a perturbed EFSG (Γ, ε 7→
RQP
` (ε), ε 7→ RQP

f (ε)), (r`, rf ) ∈ R` × Rf is an quasi-perfect SSE (QP-
SSE) (respectively, quasi-perfect WSE (QP-WSE)) if it is a limit point of
SSEs (respectively, WSEs) of Γ(ε) as ε→ 0. 2

Since SSEs always exist in an EFSG, and since the strategy spaces are
compact sets, EFP-SSEs and QP-SSEs always exist. The same is not true
for EFP- and QP-WSEs, as a WSE need not exist in an EFSG.

The following proposition shows that the sets of EFP- or QP-SSEs can
be disjoint from the set of SSEs, thereby showing that the EFP- and QP-SSE
solution concepts are not refinements of the SSE solution concept!

Proposition 10.1. There are perturbed EFSGs in which an EFP-SSE is not
an SSE, a QP-SSE is not an SSE, and an EFP-WSE is not a WSE.

Proof. Consider the game of Figure 10.2a. The SSE prescribes the leader
and the follower to play a1

` and a1
f , respectively. On the other hand, in any

perturbed instance the leader has to place positive probability on a2
` , and

the follower’s best response is a2
f .

Consider the game of Figure 10.2b. The follower plays a1
fa

3
f , while in

any perturbed instance resulting from an extensive-form-perfect ε-perturbation
scheme, the follower has to put positive probability on a4

f and her best re-
sponse at the root becomes a2

f .

We leave as an open problem the determination of whether a QP-WSE
is also a WSE (assuming it exists) or not.

10.3 Stackelberg Trembling-Hand Refinements

As we showed in the previous section, SSEs and WSEs are not refinable
by trembling. In this section we remedy this problem by showing that the

2Here, the definition of quasi-perfect SE is given directly in terms of perturbation schemes. In the following
Chapter 11, we provide an axiomatic definition that does not rely on perturbation schemes (see Definition 11.4).
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f.1

`.1

10, 1

a1`

0, 0

a2`

a1f

1, 1

a2f

(a) Game in which per-
turbed SSEs are not re-
finements of SSEs.

f.1

f.2

0, 1

a3f

0, 0

a4f

a1f

1, 1

a2f

(b) Game in which per-
turbed WSEs are not re-
finements of WSEs.

Figure 10.2: Games that we use to prove that perturbed SSEs and WSEs are not refine-
ments of SSEs and WSEs.

universal set of all Stackelberg equilibria is natural for trembling-hand per-
fection: it does not suffer from the problem above. In other words, the set
of SEs is closed under trembling-hand refinement. Formally, we prove that
any limit point of SEs for the perturbed game Γ(ε) as ε→ 0 is an SE of the
original, unperturbed EFSG Γ.

Theorem 10.1. Let {εi} → 0 and let {(r`i, rf i)} be a sequence of SEs for
the perturbed game instances {Γ(εi)}. Then:

• {(r`i, rf i)} has at least one limit point, and

• all limit points of {(r`i, rf i)} are SEs.

We now present three lemmas, and at the end of this section we present
the proof of the theorem using these lemmas.

One can think of SEs as “minimally-rational” for the leader: any strategy
for the leader is acceptable as long as there is no other strategy for the leader
that is better no matter how the follower breaks ties. We now formalize this
by giving the following alternative characterization of SEs.

Lemma 10.2. A strategy profile (r`, rf ) ∈ R` × Rf is an SE if and only
if rf ∈ BR(r`) and for all r′` ∈ R` there exists r′f (r

′
`) ∈ BR(r′`) such that

u`(r
′
`, r
′
f (r
′
`)) ≤ u`(r`, rf ).

Proof. (⇐) Construct the follower response function τ defined as τ(r`) =
rf and τ(r′`) = r′f (r

′
`). Then, for all r′` ∈ R`, u`(r′`, τ(r′`)) ≤ u`(r`, τ(r`)),

and thus (r`, rf ) is a τ -SE.
(⇒) Assume that (r`, rf ) is a τ -SE. Then rf = τ(r`) ∈ BR(r`). Fur-

thermore, by definition of τ -SE, for all r′` ∈ R`, r′f = τ(r′`) is such that
u`(r

′
`, r
′
f ) ≤ u`(r`, τ(r`)) = u`(r`, rf ).
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Lemma 10.3. Let {εi} → 0 and let {(r`i, rf i)} be a sequence of strategy
profiles for the EFSG instances {Γ(εi)}. Then {(r`i, rf i)} has at least one
limit point.

Proof. The conclusion follows directly from the Bolzano-Weierstrass the-
orem since R`(ε) × Rf (ε) ⊆ R` × Rf for all ε ∈ (0, 1] and R` × Rf is a
compact set.

Lemma 10.4. Let {εi} → 0 and let {(r`i, rf i)} be a sequence of strategy
profiles for the EFSG instances {Γ(εi)} where rf i is a best response to r`i.
Then, any limit point (r̄`, r̄f ) of {(r`i, rf i)} is such that r̄f is a best response
to r̄`.

Proof. Existence of at least one limit point for {(r`i, rf i)} is guaranteed by
Lemma 10.3. Without loss of generality, assume that (r`i, rf i)→ (r̄`, r̄f ) ∈
R` × Rf . Suppose, for contradiction, that r̄f is not a best response to r̄`
which means that there exists r̂f ∈ Rf such that uf (r̄`, r̂f ) > uf (r̄`, r̄f ).
By continuity of uf , there exists δ > 0 such that uf (r>` , r

>
f ) > uf (r

<
` , r

<
f )

for all (r>` , r
>
f ) ∈ Bδ(r̄`)× Bδ(r̂f ) and (r<` , r

<
f ) ∈ Bδ(r̄`)× Bδ(r̄f ). From

Lemma 10.1 we know that there exist ε̄ ∈ (0, 1] and r̃f such that r̃f ∈
Rf (ε) ∩ Bδ(r̂f ) for all ε ≤ ε̄. Considering the three converging sequences
εi → 0, r`i → r̄` and rf i → r̄f , we know that there exists an index j ∈ N
such that εj ≤ ε̄, r`j ∈ Bδ(r̄`), and rf j ∈ Bδ(r̄f ). Furthermore, from
εj ≤ ε̄ we deduce that (r`j, r̃f ) ∈ R`(εj)×Rf (ε̄) ⊆ R`(εj)×Rf (εj). Thus
(r`j, r̃f ) is a valid strategy profile for Γ(εj). Yet, (r`j, r̃f ) ∈ Bδ(r̄`)×Bδ(r̂f )
and (r`j, rf j) ∈ Bδ(r̄`) × Bδ(r̄f ), implying uf (r`j, r̃f ) > uf (r`j, rf j) and
contradicting the fact that rf j is a best response to r`j .

Proof of Theorem 10.1. The first bullet is by Lemma 10.3. We now prove
the second one. Let BRΓ(r`) and BRΓ(εi)(r`) be the sets of follower’s best
responses to r` in Γ and Γ(εi), respectively. Without loss of generality,
assume that {r`i, rf i} → (r̄`, r̄f ) ∈ R` × Rf . By Lemma 10.4, r̄f is a best
response to r̄`. Therefore, by Lemma 10.2, we only need to prove that for
all r′` there exists r′f ∈ BRΓ(r′`) with u`(r′`, r

′
f ) ≤ u`(r̄`, r̄f ).

Suppose for contradiction that there exists r′` such that u`(r′`, r
′
f ) >

u`(r̄`, r̄f ) for all r′f ∈ BRΓ(r′`). Let gi be the family of functions with
the property that, for all i, gi(r`) is equal to one of the rf ∈ BRΓ(εi)(r`)
such that u`(r`, rf ) ≤ u`(r`i, rf i); existence is guaranteed by Lemma 10.2
and the fact that (r`i, rf i) is an SE by hypothesis. Construct any sequence
{(r′`i, r′f i)} → (r′`, r̂

′
f ) such that (r′`i, r

′
f i

) are valid profiles for Γ(εi) with
r′f i = gi(r

′
`i). From Lemma 10.4 we know that r̂′f ∈ BRΓ(r′`). How-

ever, u`(r′`i, r
′
f i

) ≤ u`(r`i, rf i), and by continuity we have u`(r′`, r̂
′
f ) ≤
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u`(r̄`, r̄f ).But then r̂′f ∈ BRΓ(r′`) while having value no larger than u`(r̄`, r̄f ),
contradicting our assumption.

Because SSEs and WSEs are SEs, we have from Theorem 10.1 that the
limit of perturbed SSEs (and perturbed WSEs when they exist) is guaran-
teed to be an SE. This means that, even though the limits are not SSEs or
WSEs in general, they preserve minimal rationality of the commitment—as
per Lemma 10.2.

10.4 Computational Complexity of Refined SEs

In this section we study the computational complexity of deciding the ex-
istence of an SE (refined or not) that gives the leader expected value at
least ν. This problem (in the unrefined case) is known to be polynomial in
constant-sum settings, where all SEs give the same expected utility to the
leader, equal to the value of the game. We show that this problem is NP-
hard in general-sum settings, using a reduction from 3-SAT. In particular,
given a 3-SAT formula, we construct a polynomially-large EFSG instance
such that:

• If the 3-SAT formula is satisfiable, all SEs of the EFSG give an ex-
pected utility of 1 to the leader.

• If the 3SAT formula is not satisfiable, all SEs of the EFSG give an
expected utility strictly less than 1 to the leader. 3

Since the 3-SAT decision problem is NP-hard (Johnson and Garey, 1979),
this implies the following theorems.

Theorem 10.2. Deciding the existence of an SE (refined or not) that gives
the leader expected value at least ν in an EFSG is NP-hard.

Theorem 10.3. Given a follower response function τ , deciding the exis-
tence of a τ -SE (refined or not) that gives the leader expected value at least
ν in an EFSG is NP-hard.

10.4.1 EFSG Instance Construction

Definition 10.7. We are given a 3-SAT formula (C, V ), where C is a set
of three-literal clauses defined over a set V of variables. We construct a
perfect-recall EFSG Γ(C, V ) as follows:

3Our reduction is based on the construction of Letchford and Conitzer (2010). However, their construction
only proves the NP-hardness for the special case of SSEs, since, whenever the 3-SAT formula is satisfiable,
there are SEs of the EFSG that provide the leader with an expected utility strictly less than 1. We suitably modify
players’ payoffs so that the result holds for all SEs.
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• The root is h0
f ∈ Hf such that ρ(h0

f ) = {atf} ∪ {avf : v ∈ V } ∪ {aφf :

φ ∈ C}, χ(h0
f , a

x
f ) = h1,x

` ∈ H`.

• All nodes h1,x
` belong to I ∈ I`. The available actions at the informa-

tion set are ρ(I) = {av` : v ∈ V }.
• For all h1,v

` and aw` (v, w ∈ V ), we let χ(h1,v
` , aw` ) = zvw ∈ Z. Fur-

thermore, u`(zvw) = 0, and uf (zvw) =
(
|V |+2

(|V |+1)2 + 1
)
− 1{v = w}.

• For all av` (v ∈ V ), χ(h1,t
` , a

v
` ) = h2,v

f ∈ Hf , ρ(h2,v
f ) = {av,Tf , av,Ff },

χ(h2,v
f , av,xf ) = h3,vx

` ∈ Iv ∈ I`, ρ(Iv) = {av,T` , av,F` }, χ(h3,vx
` , av,y` ) =

zvxy ∈ Z, u`(zvxy) = uf (zvxy) = 1{x = y}.

• For all h1,φ
` and av` (φ ∈ C, v ∈ V ),

u`(zφv) = 0, uf (zφv) = 0, χ(h2,φv
` , av,x` ) = zφvx ∈ Z,

χ(h1,φ
` , av` ) =

{
h2,φv
` ∈ Iv if v is in φ
zφv ∈ Z otherwise,

and u`(zφvx) = 0, uf (zφvT) = |V |+1
3

(resp., uf (zφvF) = |V |+1
3

) if v
appears negated (resp., not negated) in φ, uf (zφvx) = 0 otherwise.

Figure 10.3 shows an example of a game Γ(C, V ).
Intuitively, the leader looks for a strategy such that the follower’s best

response is to play action atf , thus achieving an expected utility of 1. The
leader’s strategy at information sets Iv (v ∈ V ) defines a truth assignment
to the variables such that, whenever a clause φ ∈ C is not satisfied, then the
follower best-responds playing action aφf . Thus, the leader’s goal is to find
a strategy that defines a truth assignment satisfying all clauses.

In the following, for the ease of presentation, given a player p’s behav-
ioral strategy πp ∈ Πp, we use the notation πp(a), rather than πpa, to denote
the probability of playing action a ∈ Ap.

First we show that when the 3-SAT formula is satisfiable there exists a
leader’s strategy that guarantees a payoff of 1.

Lemma 10.5. If (C, V ) is satisfiable, then there exists a leader’s strat-
egy π` such that for all follower’s best responses πf ∈ BR(π`) it holds
u`(π`, πf ) = 1.

Proof. Let T be a truth assignment satisfying all clauses. Take π` such that
π`(a

v
` ) = 1

|V | for all v ∈ V and π`(a
v,T
` ) = 1 if T (v) = 1, while π`(a

v,F
` ) = 1
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Figure 10.3: Game Γ(C, V ), where V = {v1, . . . , v|V |}, C = {φ1, . . . , φ|C|}, and clause
φ ∈ C is such that φ = viv̄jvk. Hollow nodes belong to the leader, while solid ones belong to
the follower.
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whenever T (v) = 0. Clearly, at each node h2,v
f , the unique follower’s best

response is to play the action corresponding to that played by the leader in
Iv. As a result, the follower gets a utility of 1 by playing atf at the root, i.e.,
uf (π`, a

t
f ) = 1. Now, let us prove that playing action atf at the root is the

unique follower’s best-response to π`. Let us consider actions avf , for all
v ∈ V , we have:

uf (π`, a
v
f ) =

( |V |+ 2

(|V |+ 1)2
+ 1

) |V | − 1

|V | +

( |V |+ 2

(|V |+ 1)2

)
1

|V |

=

( |V |+ 2

(|V |+ 1)2
+ 1

)
− 1

|V | < 1.

Thus, playing avf is not a best-response, for all v ∈ V . Now, we ana-
lyze actions aφf , for all φ ∈ C. Since T satisfies all clauses, each clause
φ ∈ C has a literal lk that is true under T and, thus, π`(a

v(lk),T
` ) = 1

if lk requires the corresponding variable to be true, or π`(a
v(lk),F
` ) = 1 if

it requires false. Assume, without loss of generality, that lk requires the
variable to be true for all lk ∈ φ. By playing aφf , the follower gets util-
ity uf (π`, a

φ
f ) = π`(a

v(l1)
` )π`(a

v(l1),F
` ) |V |+1

3
+ π`(a

v(l2)
` )π`(a

v(l2),F
` ) |V |+1

3
+

π`(a
v(l3)
` )π`(a

v(l3),F
` ) |V |+1

3
. Three cases are possible.

1. There exists unique lk ∈ φ such that π`(a
v(lk),T
` ) = 1, for instance lit-

eral l1. Thus, since π`(a
v(l2),F
` ), π`(a

v(l3),F
` ) ≤ 1, it holds uf (π`, a

φ
f ) ≤

|V |+1
3

(π`(a
v(l2)
` ) + π`(a

v(l3)
` )). Also, π`(av` ) = 1

|V | for all v ∈ V im-

plies uf (π`, a
φ
f ) < |V |+1

3

(
1− 1

|V |(|V | − 2)
)

= 2
3
|V |+1
|V | < 1, for n

sufficiently large (|V | > 2).

2. Exactly two literals lk in φ are such that π`(a
v(lk),T
` ) = 1. With a

similar reasoning, we have uf (π`, a
φ
f ) < |V |+1

3

(
1− 1

|V |(|V | − 1)
)
<

1, for every |V |.
3. π`(a

v(lk),T
` ) = 1 for all literals lk ∈ φ, and uf (π`, a

φ
f ) < 1. Therefore,

it must be uf (π`, a
φ
f ) < 1 and aφf is not a follower’s best-response to

π`.

In conclusion, the unique follower’s best response is to play atf at node h0
f ,

and u`(π`, atf ) = 1.

Given that 1 is the maximum leader’s payoff in Γ(C, V ), we can con-
clude the following:
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Corollary 10.3.1. If (C, V ) is satisfiable, then all SEs of Γ(C, V ) give the
leader an expected utility of 1.

We now show that a utility of 1 for the leader implies the existence of a
truth assignment satisfying the 3-SAT formula.

Lemma 10.6. If there exists a leader’s strategy π` and a follower’s best
response πf ∈ BR(π`) such that u`(π`, πf ) = 1, then (C, V ) is satisfiable.

Proof. Since u`(π`, πf ) = 1, it must be the case that in πf the follower
plays atf at the root node h0

f , or else the leader would not get a utility of 1.
Moreover, the leader’s strategy π` must be such that either π`(a

v,T
` ) = 1 or

π`(a
v,F
` ) = 1, for every v ∈ V , and, at each node h2,v

f , the follower must
play the action corresponding to that played by the leader in Iv. Because
atf is a best response, it must be that uf (π`, avf ) ≤ 1 for every v ∈ V , oth-
erwise atf would not be a follower best response. From uf (π`, a

v
f ) ≤ 1,

it follows that uf (π`, avf ) = |V |+2
(|V |+1)2 + 1 − π`(a

v
` ) ≤ 1, so that π`(av` ) ≥

|V |+2
(|V |+1)2 >

1
|V |+1

for every |V |. For every φ ∈ C we have uf (π`, a
φ
f ) ≤ 1,

otherwise playing atf is not a best response for the follower. As a con-
sequence, for every φ ∈ C, there must exist at least one literal lk ∈ φ

such that π`(a
v(lk),T
` ) = 1 if lk requires true, or π`(a

v(lk),F
` ) = 1 if lk re-

quires false. By contradiction, suppose such a literal lk does not exist,
and assume, without loss of generality, that lk requires true for all lk ∈ φ.
Thus, uf (π`, a

φ
f ) = π`(a

v(l1)
` )π`(a

v(l1),F
` ) |V |+1

3
+π`(a

v(l2)
` )π`(a

v(l2),F
` ) |V |+1

3
+

π`(a
v(l3)
` )π`(a

v(l3),F
` ) |V |+1

3
= |V |+1

3
(π`(a

v(l1)
` )+π`(a

v(l2)
` )+π`(a

v(l3)
` )) > 1, as

π`(a
v
` ) >

1
|V |+1

for all v ∈ V . This contradicts the fact that uf (π`, a
φ
f ) ≤ 1.

It follows that φ must be satisfied. Since φ was arbitrary, this shows that
all clauses are satisfied. In conclusion, a variable assignment T such that
T (v) = 1 if π`(a

v,T
` ) = 1, while T (v) = 0 whenever π`(a

v,F
` ) = 1, satisfies

all clauses.

It directly follows from Lemma 10.6 that:

Corollary 10.3.2. If (C, V ) is not satisfiable, then all SEs of Γ(C, V ) give
an expected utility smaller than 1 to the leader.
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CHAPTER11
Quasi-Perfect Stackelberg Equilibrium

In this chapter, we focus on a particular refinement of the SE, which is
based on the idea of quasi perfection introduced by Van Damme (1984).

Initially, in Section 11.1, we provide an axiomatic definition of quasi-
perfect SE, following the line of the original definition of Van Damme
(1984). We also anticipate the main result of this chapter, i.e., that the
limit points (as ε → 0) of sequences of SEs in perturbed EFSGs obtained
for some quasi-perfect ε-perturbation scheme are quasi-perfect SEs accord-
ing to our axiomatic definition. Then, in Section 11.2, we first show some
properties of EFSGs perturbed with quasi-perfect ε-perturbation schemes
and, then, we prove our main result. Finally, Section 11.3 provides an al-
gorithm to compute (approximate) quasi-perfect SSEs and experimentally
evaluates it on some classical extensive-form game test instances.

11.1 Definition of Quasi-Perfect Stackelberg Equilibrim

We start providing an axiomatic definition of quasi-perfect SEs, i.e., one
that does not rely on perturbation schemes defined over the sequence form
(as Definition 10.6), but, instead, it is directly concerned with the extensive
form. Before that, we introduce alternative definitions for SEs and SSEs,
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Chapter 11. Quasi-Perfect Stackelberg Equilibrium

which will help the reader to understand how our definition of quasi-perfect
SEs works. In the following, for the ease of presentation, we denote with
BRΓ(π`) ⊆ Πf the set of follower’s best responses to the leader’s strategy
π` ∈ Π` in the game Γ.

Definition 11.1 (Stackelberg Equilibrium). Given an EFSG Γ, (π`, πf ) is
an SE of Γ if πf ∈ BRΓ(π`) and, for all π̂` ∈ Π`, there exists π̂f ∈ BRΓ(π̂`)
such that u`(π`, πf ) ≥ u`(π̂`, π̂f ).

Definition 11.2 (Strong Stackelberg Equilibrium). Given an EFSG Γ,
(π`, πf ) is an SSE of Γ if πf ∈ BRΓ(π`) and, for all π̂` ∈ Π` and π̂f ∈
BRΓ(π̂`), it holds u`(π`, πf ) ≥ u`(π̂`, π̂f ).

Notice that, using the equivalence between behavioral strategies and re-
alization plans, SEs and SSEs can be defined analogously for EFSGs in
sequence form.

Before introducing our axiomatic definition of quasi-perfect SE, we pro-
vide some useful, additional notation. We say that πp ∈ Πp is completely
mixed if πpa > 0 for all a ∈ Ap. Given two information sets I, Î ∈ Ip, we
write I � Î whenever Î follows I , i.e., there exists a path from h ∈ I

to ĥ ∈ Î . We assume I∅ � Î for all Î ∈ Ip such that there is no
I 6= Î ∈ Ip : I � Î . In perfect-recall games, � is a partial order over
Ip ∪ {I∅}. Given πp, π̂p ∈ Πp and I ∈ Ip ∪ {I∅}, πp

/
I
π̂p is equal to π̂p at

all Î ∈ Ip : I � Î , while it is equal to πp everywhere else. Moreover, for
I ∈ Ip, we write πp =I π̂p if πpa = π̂pa for all a ∈ A(I). Finally, given
completely mixed strategies π` ∈ Π`, πf ∈ Πf and I ∈ Ip, up,I(π`, πf ) de-
notes player p’s expected utility given that I has been reached and strategies
π` and πf are played.

Next, we introduce a fundamental building block: the idea of follower’s
best response at an information set I ∈ If . Intuitively, πf is an I-best
response to π` whenever playing as prescribed by πf at the information set
I is part of some follower’s best response to π` in the game following I ,
given that I has been reached during play. Formally:

Definition 11.3. Given an EFSG Γ, a completely mixed π` ∈ Π`, and I ∈
If , we say that πf ∈ Πf is an I-best response to π`, written πf ∈ BRI(π`),
if the following holds:

max
π̂f∈Πf :
πf=I π̂f

uf,I
(
π`, πf

/
I
π̂f
)

= max
π̂f∈Πf

uf,I
(
π`, πf

/
I
π̂f
)
.

For p ∈ N and πp ∈ Πp, let {πp,k}k∈N be a sequence of completely
mixed player p’s strategies with πp as a limit point. We are now ready to
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define the refinement concept. In words, in a quasi-perfect SE, the leader
selects an optimal strategy to commit to in all information sets, given that
the follower best responds to it at every information set, following some tie-
breaking rule. Specifically, the second point in Definition 11.4 ensures that
the leader’s commitment is optimal also in those information sets that are
unreachable in absence of players’ errors. Notice that the leader only ac-
counts for follower’s future errors, while the follower assumes that only the
leader can make mistakes in future. This is in line with the idea underlying
quasi-perfect equilibria in non-Stackelberg games Van Damme (1984). 1

Definition 11.4. Given an EFSG Γ, (π`, πf ) is a quasi-perfect Stackelberg
equilibrium (QP-SE) of Γ if there exist sequences {πp,k}k∈N, defined for
every p ∈ N and πp ∈ Πp, such that:

1. πf ∈ BRI(π`,k) for all I ∈ If ;

2. for all I ∈ I` ∪ {I∅} and π̂` ∈ Π`, there exists π̂f ∈ Πf : π̂f ∈
BRÎ(π`,k

/
I
π̂`,k) for all Î ∈ If , with:

u`
(
π`,k
/
I
π`, πf,k

)
≥ u`

(
π`,k
/
I
π̂`, π̂f,k

)
. (11.1)

As with SEs, we introduce the strong version of QP-SEs. 2

Definition 11.5. Given an EFSG Γ, (π`, πf ) is a quasi-perfect strong Stack-
elberg equilibrium (QP-SSE) of Γ if there exist {πp,k}k∈N, defined for every
p ∈ N and πp ∈ Πp, such that:

1. πf ∈ BRI(π`,k) for all I ∈ If ;

2. for all I ∈ I` ∪ {I∅}, π̂` ∈ Π`, and π̂f ∈ Πf : π̂f ∈ BRÎ(π`,k
/
I
π̂`,k)

for all Î ∈ If , Equation (11.1) holds.

As we will show in Subsection 11.1.1, QP-SEs are refinements of SEs,
i.e., any QP-SE is also an SE.

11.1.1 QP-SEs and Perturbation Schemes

Let us recall that, in Definition 10.4, we introduced a family of ε-perturbation
schemes for EFSGs in sequence form, claiming that quasi-perfect SEs can

1Van Damme (1984) defines a quasi-perfect equilibrium of an n-player extensive-form game as a strategy
profile (πp)p∈N obtained as a limit point of a sequence of completely mixed strategy profiles {(πp,k)p∈N}k∈N
such that πp ∈ BRI((πq,k)q 6=p∈N ) for all p ∈ N and I ∈ Ip.

2Since Equation (11.1) must hold for every π̂` ∈ Π` and π̂f ∈ Πf : π̂f ∈ BRÎ(π`,k
/
I
π̂`,k) for all

Î ∈ If , Definition 11.5 assumes that the follower breaks ties in favor of the leader.
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be defined in terms of such perturbations. The main result of this chapter
is to show that this is indeed the case, i.e., perturbed EFSGs obtained for
such perturbation schemes satisfy the following fundamental property: lim-
its of SEs in perturbed sequence-form EFSGs are QP-SEs of the original
unperturbed EFSGs as the magnitude of the perturbation ε goes to zero. In
addition to being theoretically relevant, this result enables us to design an
algorithm for computing QP-SEs in EFSGs (Section 11.3).

In the following, for the ease of presentation, we denote by (Γ, ξ`, ξf ) a
ξ-perturbed EFSG obtained for some quasi-perfect ε-perturbation scheme
based on the functions ξ` and ξf (see Definition 10.4). Moreover, we let
Γ(ε) be a particular ξ-perturbed game instance in sequence form, obtained
from Γ by restricting each set of realization plans Rp to be Rp(ε). We also
denote by rp(ε) any realization plan in Rp(ε), and we let ξp(ε) ∈ R|Σp| be
a vector whose components are the lower-bounds ξp(ε, σp). We denote by
r̃p(ε) = rp(ε) − ξp(ε) the residual of rp(ε), which represents the part of
player p’s strategy that is not fixed by the perturbation. 3

Next, we state our main result about sequences of SEs in ξ-perturbed
games. We postpone the proof to Section 11.2.

Theorem 11.1. Given a ξ-perturbed EFSG (Γ, ξ`, ξf ), let {εk}k∈N → 0
and let {(r`(εk), rf (εk))}k∈N be a sequence of SEs in Γ(εk). Then, any
limit point (π`, πf ) of the sequence {(π`,k, πf,k)}k∈N is a QP-SE of Γ, where
(π`,k, πf,k) are equivalent to (r`(εk), rf (εk)) for all k ∈ N.

Theorem 11.1 also allows us to conclude the following, as a conse-
quence of Theorem 10.1.

Corollary 11.1.1. Any QP-SE of an EFSG Γ is an SE of Γ.

The second and third points in Definition 10.4 cannot be removed:

Proposition 11.1. There are ξ-perturbed EFSGs (Γ, ξ`, ξf ) obtained for
ξp-perturbation schemes that violate the second or third point in Defini-
tion 10.4 for which Theorem 11.1 does not hold.

Proof. Consider the EFSG in Figure 11.1b with ξ`(ε, a1
`) = ξ`(ε, a

2
`) = ε

and ξ`(ε, a
2
`a

3
`) = ξ`(ε, a

2
`a

4
`) = ε

3
, which violates the third requirement

in Definition 10.4. Clearly, any SE of Γ(ε) requires r`(ε, a1
`) = 1 − ε,

r`(ε, a
2
`) = ε, r`(ε, a2

`a
3
`) = ε

3
, and r`(ε, a2

`a
4
`) = 2ε

3
. Thus, any limit point

of a sequence of SEs has π`a3
`

= 1
3

and π`a4
`

= 2
3
, which cannot be the

case in a QP-SE of Γ, as the leader’s optimal strategy at `.2 is to play a4
` .

3We assume without loss of generality that Γ(ε) is well-defined, that is, each set Rp(ε) is non-empty for
every ε ∈ (0, 1].

198



11.2. Limits of SEs in ξ-Perturbed Games are QP-SEs

As for the second requirement, we can build a similar example by setting
ξ`(ε, a

2
`) = 1

3
.

`.1

`.2

2, 0

a3`

1, 1

a1f

0, 0

a2f

a4`

a1`

0, 0

a1f

1, 1

a2f

a2`

f.1

(a) Example of EFSG used to show that
our perturbation schemes general-
ize those introduced by Miltersen
and Sørensen (2010).

`.1

2, 0

a1`

`.2

0, 0

a1f

1, 1

a2f

a3`

1, 0

a1f

1, 1

a2f

a4`

a2`

f.1

(b) Example of EFSG used to show
that the second and third points
in Definition 10.4 are neces-
sary for Theorem 11.1 to hold.

Figure 11.1: Examples of EFSGs.

Miltersen and Sørensen (2010) introduced the idea of perturbing games
using the sequence form in order to find a quasi-perfect equilibrium. Our
perturbation scheme generalizes theirs, where ξp(ε, σp) = ε|σp| for all σp ∈
Σp \ {σ∅}, with |σp| being the number of actions in σp. There are games
where our perturbation captures QP-SEs that are not obtainable with theirs.
For instance, in the EFSG in Figure 11.1a, (π`, πf ), with π`a1

`
= π`a3

`
= 1,

π`a2
`

= π`a4
`

= 0, and πfa1
f

= πfa2
f

= 1
2
, is a QP-SE that cannot be obtained

with their perturbation scheme while it is reachable by setting ξ`(ε, a2
`) =

ε2. We observe that (π`, πf ) is also a quasi-perfect equilibrium when we
look at the game as its non-Stackelberg counterpart; this shows that our
perturbation scheme generalizes theirs also for quasi-perfect equilibria.

11.2 Limits of SEs in ξ-Perturbed Games are QP-SEs

Before proving our main result, we now study the properties of the fol-
lower’s best responses to the leader’s strategy in ξ-perturbed games. These
properties will be useful for proving our results later in the section.

In the following, letting Σp(a) = {σp ∈ Σp | a ∈ σp} for all a ∈ Ap,
Σp(I) =

⋃
a∈A(I) Σp(a) denotes player p’s sequences that pass through

information set I ∈ Ip. For the ease of presentation, given I ∈ Ip,
gp,I(r`, rf ) =

∑
σ∈Σ:σp∈Σp(I) up(σ)r`(σ`)rf (σf ) denotes player p’s expected

utility contribution from terminal nodes reachable from I . Finally, for
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I ∈ Ip, let Rp(I) ⊆ Rp be the set of rp ∈ Rp : rp(σp(I)) = 1, while,
for a ∈ A(I), Rp(a) ⊆ Rp(I) is the set of rp ∈ Rp : rp(σp(I)a) = 1.

Let BRΓ(ε)(r`(ε)) = arg maxrf (ε)∈Rf (ε) uf (r`(ε), rf (ε)) be the set of fol-
lower’s best responses to r`(ε) ∈ R`(ε) in Γ(ε). The next lemma gives
a mathematical programming formulation of the follower’s best-response
problem in Γ(ε).

Lemma 11.1. For every r`(ε) ∈ R`(ε), rf (ε) ∈ BRΓ(ε)(r`(ε)) if and only if
r̃f (ε) is optimal for Problem P(ε) below.

P(ε) :

{
max
r̃f

r`(ε)
TUf r̃f

s.t. Ff r̃f = ff − Ffξf (ε), r̃f ≥ 0.

Proof. Since, rf (ε) ∈ BRΓ(ε)(r`(ε)) if and only if

rf (ε) ∈ arg max
rf :Ff rf=ff ,rf≥ξf (ε)

r`(ε)
TUfrf ,

introducing variables r̃f = rf − ξf (ε) and dropping the constant term
r`(ε)

TUiξf (ε) from the objective, we obtain that rf (ε) must be an optimal
solution to Problem P(ε).

The dual of Problem P(ε) above is as follows.

Proposition 11.2. For r`(ε) ∈ R`(ε), Problem D(ε) below is the dual of
Problem P(ε), where vf ∈ R|If |+1 is the vector of dual variables.

D(ε) :

{
min
vf

(ff − Ffξf (ε))T vf
s.t. F T

f vf ≥ UT
f r`(ε).

(11.2a)

(11.2b)

Remark 11.1. Constraints (11.2b) in Problem D(ε) defined above ensure
that, for every I ∈ If and a ∈ A(I), we have

vf,I ≥
∑

σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +
∑

Î∈If :σf (Î)=σf (I)a

vf,Î . (11.3)

The optimal solutions to Problem D(ε) enjoy important properties that
are stated in the following lemmas. The first one says that, in an opti-
mal solution, each variable vf,I must equal the maximum possible expected
utility the follower can achieve following information set I ∈ If . The
second lemma says that if an optimal solution to Problem D(ε) satisfies
Constraint (11.3) with equality for an information set I ∈ If and an action
a ∈ A(I), then playing a at I is optimal in the game following I .
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Lemma 11.2. For every r`(ε) ∈ R`(ε), if v∗f ∈ R|If |+1 is optimal for Prob-
lem D(ε), then for every I ∈ If :

v∗f,I = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ). (11.4)

Proof. Let us consider Problem D(ε). First, observe that, for every infor-
mation set I ∈ If , the objective function coefficient for the variable vf,I
is equal to ξf (ε, σf (I)) −∑a∈A(I) ξf (ε, σf (I)a). Assuming Γ(ε) is well-
defined, such coefficients are positive for every vf,I . Then, in an optimal
solution v∗f ∈ R|If |+1 to Problem D(ε), each variable vf,I is set to its min-
imum given Constraints (11.3). We prove Equation (11.4) using a simple
inductive argument. The base case of the induction is when there is no
information set Î 6= I ∈ If with I � Î . For every action a ∈ A(I),
vf,I ≥

∑
σ∈Σ:σf=σf (I)a uf (σ)r`(ε, σ`), which, using the fact that v∗f,I must

be set to its minimum possible value given the constraints, implies the fol-
lowing:

v∗f,I = max
a∈A(I)

∑
σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) =

= max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ),

where the last equality holds since
∑

a∈A(I) r̂f (σf (I)a) = r̂f (σf (I)) = 1,
for the definition of realization plan. As for the inductive step, let us con-
sider an information set I ∈ If and assume, by induction, that Equa-
tion (11.4) holds for every information set Î 6= I ∈ If with I � Î . We
can write:

v∗f,I = max
a∈A(I)

∑
σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +
∑

Î∈If :σf (Î)=σf (I)a

v∗
f,Î

=

= max
a∈A(I)

∑
σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +

+
∑

Î∈If :σf (Î)=σf (I)a

max
r̂f∈Rf (Î)

gf,Î(r`(ε), r̂f ) =

= max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ),

where the first equality directly follows from the optimality of v∗f , the sec-
ond one from the inductive hypothesis, while the last equality holds since
we have

∑
a∈A(I) r̂f (σf (I)a) = r̂f (σf (I)) = 1.
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Lemma 11.3. For every r`(ε) ∈ R`(ε), I ∈ If , and a ∈ A(I), if Con-
straint (11.3) holds with equality in an optimal solution to Problem D(ε),
then

max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ). (11.5)

Proof. Let v∗ ∈ R|Ii|+1 be an optimal solution to Problem D(ε) that sat-
isfies Constraint (11.3), for I ∈ If and a ∈ A(I), with equality. We can
write:

v∗f,I =
∑

σ∈Σ:σf=σf (I)a

uf (σ)r`(ε, σ`) +
∑

Îf∈If :σf (Î)=σf (I)a

v∗
f,Î

=

= max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ),

where the second equality holds for the optimality of v∗f and the last one for
Lemma 11.2.

Now, we are ready to prove a fundamental property of the follower’s
best responses in ξ-perturbed game instances Γ(ε). Intuitively, in a per-
turbed game instance, the follower best responds playing sequence σ(If )a
with probability strictly greater than its lower-bound ξf (ε, σf (I)a) only if
playing a is optimal in the game following I . Theorem 11.2 formally ex-
presses the idea that, in a perturbed game instance Γ(ε), when the follower
decides how to best respond to a leader’s commitment in a given infor-
mation set, she does not take into account her future trembles, but only
opponents’ ones.

Theorem 11.2. Given r`(ε) ∈ R`(ε), rf (ε) ∈ BRΓ(ε)(r`(ε)), I ∈ If , and
a ∈ A(I), if rf (ε, σf (I)a) > ξf (ε, σf (I)a), then

max
r̂f∈Rf (a)

gf,I(r`(ε), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(ε), r̂f ).

Proof. By Lemma 11.1, rf (ε) ∈ BRΓ(ε)(r`(ε)) if and only if r̃f (ε) = rf (ε)−
ξf (ε) is optimal for Problem P(ε). By applying the complementarity slack-
ness theorem to Problems P(ε) and D(ε) we have that, if r̃f (ε) and v∗f ∈
R|If |+1 are optimal, then, whenever r̃f (ε, σf (I)a) > 0, i.e., rf (ε, σf (I)a) >
ξf (ε, σf (I)a), Constraint (11.3) for information set I and action amust hold
with equality, which, by Lemma 11.3, yields Equation (11.5).

Now, we are ready to prove Theorem 11.1.
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First, we introduce two lemmas. The first provides a characterization of
I-best responses in terms of sequence form. Intuitively, a follower’s strat-
egy πf is an I-best response to π` if and only if it places positive probability
only on actions a ∈ A(I) that are part of some best response of the follower
below information set I .

Lemma 11.4. Given an SEFG Γ, a completely mixed π` ∈ Π` and I ∈ If ,
πf ∈ BRI(π`) if for every a ∈ A(I):

πfa > 0 =⇒ max
r̂f∈Rf (a)

gf,I(r`, r̂f ) = max
r̂f∈Rf (I)

gf,I(r`, r̂f ),

where r` ∈ R` is equivalent to π`.

Proof. First, let us notice that, for every I ∈ If and a ∈ A(I), the following
relation holds:

max
r̂f∈Rf (a)

gf,I(r`, r̂f ) = max
r̂f∈Rf (I)

gf,I(r`, r̂f ) =⇒ (11.6)

max
π̂f∈Πf :π̂fa=1

uf,I
(
π`, πf

/
I
π̂f
)

= max
π̂f∈Πf

uf,I
(
π`, πf

/
I
π̂f
)

In order to see this, for I ∈ If , let Z(I) ⊆ Z be the set of terminal nodes
that are potentially reachable from I , and, for h ∈ Z(I) and π̂f ∈ Πf , let

Uf,h(π`, π̂f ) = uf (h)
∏

a∈σ`(h)

π`a
∏

a∈σf (h)\σf (I)

π̂fa.

Given the realization equivalence of r` and π`, and the fact that r̂f (σf (I)) =
1, the left-hand side in the first line of Equation (11.6) is equivalent to
maxπ̂f∈Πf :π̂fa=1

∑
h∈Z(I) Uf,h(π`, π̂f ), while the right-hand side is the same

as maxπ̂f∈Πf

∑
h∈Z(I) Uf,h(π`, π̂f ). Then, by dividing both sides of the

equality in the first line of Equation (11.6) by
∑

h∈Z(I)

∏
a∈σf (h) πfa, by

definition of uf,I(π`, πf
/
I
π̂f ) we get the second line. Now, say that the

condition of the lemma holds for every a ∈ A(I). Clearly, we have

max
π̂f∈Πf :πf=I π̂f

uf,I(π`, πf
/
I
π̂f ) =

∑
a∈A(I)

πfa max
π̂f∈Πf :π̂fa=1

uf,I(π`, πf
/
I
π̂f ),

and, since πfa > 0 only if it holds that

max
r̂f∈Rf (a)

gf,I(r`, r̂f ) = max
r̂f∈Rf (I)

gf,I(r`, r̂f ),

Equation (11.6) proves the result.
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The next lemma shows that any limit point of a sequence of follower’s
best responses in ξ-perturbed games is a follower’s best response at every
information set in Γ.

Lemma 11.5. Given a ξ-perturbed SEFG (Γ, ξ`, ξf ), let {εk}k∈N → 0 and
let {(r`(εk), rf (εk))}k∈N be a sequence of realization plans in Γ(εk) with
rf (εk) ∈ BRΓ(εk)(r`(εk)). Then, any limit point (π`, πf ) of {(π`,k, πf,k)}k∈N
is such that, eventually, πf ∈ BRIf (π`,k) for all I ∈ If , where (π`,k, πf,k)
are equivalent to (r`(εk), rf (εk)) for all k ∈ N.

Proof. First, notice that there must exist k̄ ∈ N such that, for all k ∈ N :
k ≥ k̄, and for every follower’s information set I ∈ If and action a ∈
A(I), if πfa > 0, then rf (εk, σf (I)a) > ξf (εk, σf (I)a). Otherwise, by
the conditions in Definition 10.4, it would be πfa = 0. Let us fix I ∈ If
and a ∈ A(I). Suppose that πfa > 0. For all k ∈ N : k ≥ k̄, we have
that rf (εk, σf (I)a) > ξf (εk, σf (I)a), which, by Theorem 11.2, implies the
following:

max
r̂f∈Rf (a)

gf,I(r`(εk), r̂f ) = max
r̂f∈Rf (I)

gf,I(r`(εk), r̂f ).

Thus, Lemma 11.4 allows us to conclude that πf ∈ BRI(π`,k) for all k ∈
N : k ≥ k̄, which proves the result.

Finally, we can prove Theorem 11.1.

Proof of Theorem 11.1. First, since rf (εk) ∈ BRΓ(εk)(r`(εk)) for all k ∈ N,
Lemma 11.5 allows us to conclude that the first point in Definition 11.4
holds. Therefore, in order to prove Theorem 11.1, we need to show that
the second point holds as well. For contradiction, suppose that it does not
hold, i.e., no matter how we choose sequences {πp,k}k∈N, for p ∈ N and
πp ∈ Πp, there is an information set I ∈ I` ∪ {I∅} and a leader’s strategy
π̂` ∈ Π` such that, for every π̂f ∈ Πf : π̂f ∈ BRÎ(π`,k

/
I
π̂`,k) for all Î ∈ If ,

we have:
u`(π`,k

/
I
π`, πf,k) < u`(π`,k

/
I
π̂`, π̂f,k).

By continuity, there must exist an index k̄ ∈ N such that, for all k ∈ N :
k ≥ k̄, the following holds:

u`(π`,k
/
I
π`,k, πf,k) < u`(π`,k

/
I
π̂`,k, π̂f,k).

Moreover, u`(π`,k
/
I
π`,k, πf,k) = u`(π`,k, πf,k). Let sequence {π̂`,k}k∈N

be such that r̂`(εk) ∈ R`(εk) for all k ∈ N, where each realization plan
r̂`(εk) is equivalent to the strategy π`,k

/
I
π̂`,k. This is always possible since
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the third point in Definition 10.4 is satisfied. Now, let us consider a se-
quence {(r̂`(εk), r̂f (εk)}k∈N with r̂f (εk) ∈ BRΓ(εk)(r̂`(εk)), and let us de-
fine {(π`,k

/
I
π̂`,k, π̂f,k)}k∈N as a sequence such that each strategy π̂f,k is

equivalent to r̂f (εk). By Lemma 11.5, any limit point (π`
/
I
π̂`, π̂f ) of

{(π`,k
/
I
π̂`,k, π̂f,k)}k∈N satisfies π̂f ∈ BRÎ(π`,k

/
I
π̂`,k) for all Î ∈ If . Thus,

using the equivalence between strategies and realization plans, for all k ∈
N : k ≥ k̄ we have the following:

u`(r`(εk), rf (εk)) < u`(r̂`(εk), r̂f (εk)).

Notice that this holds no matter how we choose r̂f (εk) ∈ BRΓ(εk)(r̂`(εk)),
which contradicts the fact that (r`(εk), rf (εk)) is an SE of Γ(εk).

11.3 Computing a Quasi-Perfect Stackelberg Equilibrium

One can use our perturbation scheme to compute an (approximate) QP-SE.
We do this by developing an LP for computing a Stackelberg extensive-
form correlated equilibrium (SEFCE) in a given ξ-perturbed game instance,
where we maximize the leader’s value. We then conduct a branch-and-
bound search on this SEFCE LP. It branches on which actions to force be
recommended to the follower (by the correlation device of the SEFCE). The
idea is that, as long as we only recommend a single action to the follower at
any given information set, we get an SE of the perturbed game (specifically
an SSE), and, thus, according to Theorem 11.1, a QP-SE (specifically QP-
SSE) if we take the limit point of the perturbations. As in prior papers on
extensive-form correlated equilibrium (EFCE) computation in general-sum
games, we focus on games without chance nodes (Von Stengel and Forges,
2008; Cermak et al., 2016).

For computing an SEFCE we need to specify joint probabilities over
sequence pairs (σ`, σf ) ∈ Σ := Σ` × Σf . However, not all pairs need
to specify probabilities, only pairs such that choosing σf is affected by
the probability put on σ` (we do not need to care about the converse of
this, as only the follower needs to be induced to follow the recommended
strategy). Intuitively, the set of the leader’s sequences relevant to a given
σf ∈ Σf is made of those sequences that affect the expected value of σf or
any alternative sequence σ̂f ∈ Σf whose last action is available at If (σf ).

Definition 11.6 (Relevant Sequences). A pair (σ`, σf ) ∈ Σ is relevant if
either σ` = σ∅ or there exists h, ĥ ∈ H s.t. ĥ precedes h, h ∈ If (σf ), and
ĥ ∈ I`(σ`), or if the condition holds with the roles of σ` and σf reversed.
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For every information set I ∈ Ip, we let rel(I) be the set of sequences
relevant to each child sequence σp(I)a for a ∈ A(I). We let p(σ`, σf ) be the
probability that we recommend that the leader plays sequence σ`, and that
the follower sends her residual (i.e., the probability that is not fixed by the
perturbation) to σf . Moreover, we let η(σf ) be the maximum probability
that the follower can put on a sequence σf ∈ Σf given the ξf -perturbation
scheme.

First, we introduce a new value function representing the value to the
leader of the sequence pair (σ`, σf ) ∈ Σ given that σf represents an assign-
ment of residual probability:

uε`(σ`, σf ) =
∑

h∈Z:σ`(h)=σ`∧σf (h)=σf

η(σf )u`(h) +
∑
σ̂f∈Σf

ξf (ε, σ̂f )u`(σ`, σ̂f ).

The following LP finds an SEFCE in a ξ-perturbed SEFG.

max
p,v

∑
(σ`,σf )∈Σ

p(σ`, σf )u
ε
`(σ`, σf ) (11.7a)

s.t. p(σ∅, σ∅) = 1 (11.7b)
p(σ`, σf ) ≥ 0 ∀(σ`, σf ) ∈ Σ (11.7c)∑
σf∈rel(σ`)

p(σ`, σf ) ≥ ξ`(ε, σ`) ∀σ` ∈ Σ` (11.7d)

p(σ`(I), σf ) =
∑
a∈A(I)

p(σ`(I)a, σf ) ∀I ∈ I`, σf ∈ rel(I) (11.7e)

p(σ`, σf (I)) =
∑
a∈A(I)

p(σ`, σf (I)a) ∀I ∈ If , σ` ∈ rel(I) (11.7f)

v(σf ) = η(σf )
∑

σ`∈rel(σf )

p(σ`, σf )uf (σ`, σf )+

+
∑

I∈If :σf (I)=σf

∑
a∈A(I)

v(σfa) ∀σf ∈ Σf (11.7g)

v(I, σf ) ≥ η(σf (I)a)
∑

σ`∈rel(σf )

p(σ`, σf )uf (σ`, σf (I)a)+

+
∑

Î∈If ;σf (Î)=σf (I)a

v(Î , σf )

∀I ∈ If , a ∈ A(I), σf ∈ prec(I) (11.7h)
v(σf (I)a) = v(I, σf (I)a) ∀I ∈ If , a ∈ A(I). (11.7i)
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In (11.7h) of this LP, prec(I), where I ∈ If , is the set of follower’s
sequences σf that precede I in the sense that there is Î ∈ If with σf (Î) v
σf (I) and σf = σf (Î)a for some a ∈ A(Î). This LP is a modification of
the SEFCE LP given by Cermak et al. (2016). The new LP has two mod-
ifications to allow perturbation. First, it has constraints (11.7d) to ensure
that the sum of recommendation probabilities on any leader’s sequence is
at least ξ`(ε, σ`). Second, because we are now recommending where to send
residual probability for the follower, we must modify the objective in order
to give the correct expected value for the leader. 4

We can branch-and-bound on recommendations to the follower in a way
that ensures that the final outcome is an SSE. That is guaranteed by the
following theorem, which shows that we can add and remove constraints
on which follower actions to recommend in a way that guarantees an SSE
of the perturbed game as long as the follower is recommended a “pure”
strategy with respect to the residual probabilities.

Theorem 11.3. If a solution to LP (11.7) is such that for all I ∈ If there
exists a ∈ A(I) such that p(σ`, σf (I)â) = 0 for all â ∈ A(I), σ` ∈
rel(σf (I)a) with â 6= a, then a strategy profile can be extracted in poly-
nomial time such that it is an SSE of the perturbed game instance.

Proof. First, we check that the leader strategy is valid. The argument is
identical to that of Cermak et al. (2016). For the leader strategy at a given
information set I we pick an arbitrary σf ∈ rel(σ`(I)) that is played with
positive probability and use the value p(σ`(I)a, σf ) for all a ∈ I . All
σf ∈ rel(σ`(I)) recommend identical probability on σ`(I)a due to (11.7e)
and the fact that we allow only a single follower action to be recommended
at every follower information set. The incentive constraints (11.7g) - (11.7i)
are identical to the original constraints given by Von Stengel and Forges
(2008), so we only need to argue that we correctly represent the value of
sending the residual along each sequence. But the value of sending the
residual on σf is simply the original value

∑
σ`∈rel(σf ) p(σ`, σf )uf (σ`, σf ),

except that we can send at most η(σf ) probability on σf , plus the value of
whichever choice we make for sending residual along descendants of σf .
This is exactly the value that we encode in our constraints. It is easy to see
that any SSE is a feasible solution to the LP: since the follower plays a pure
strategy we can assign them their pure strategy, and assign the leader SSE
strategy the same way across all follower recommendations.

4We use the definition of relevant sequences and the LP from Von Stengel and Forges (2008) rather than those
of Cermak et al. (2016). The latter are not well defined for (11.7e) and (11.7f).
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Now it is obvious that the LP (11.7) upper bounds the value of any SSE
since the SSE is a feasible solution to the LP.

Theorem 11.3 shows that one way to find an SSE is to find a solution to
LP (11.7) where the follower is recommended a pure strategy with respect
to the residual probabilities. Since any SSE represents such a solution,
we can branch on which actions we make pure at each information set,
and use branch-and-bound to prune the space of possible solutions. This
approach was proposed by Cermak et al. (2016) for computing SSEs in
unperturbed games, where they showed that it performs better than a sin-
gle MIP. Because our LP for perturbed games uses residual probabilities
for the follower, we can apply the branching methodology of Cermak et al.
(2016). At each node in the search we choose some information set I where
more than one action is recommended. We then branch on which action in
A(I) to recommend. Forcing a given action is accomplished by requir-
ing all other action probabilities be zero. Our branch-and-bound chooses
information sets according to depth, always branching on the shallowest
one with at least two recommended action. We explore actions in descend-
ing order of mass, where the mass on a ∈ A(I) (with sequence σf ) is∑

σ`∈rel(σf ) p(σ`, σf ).
The algorithm finds an SSE of the perturbed game. In the limit as the

perturbation approaches zero, this yields a QP-SE. No algorithm is cur-
rently known for computing such an exact limit. In practice, we pick a
small perturbation and solve the branch-and-bound using that value. This
immediately leads to an approximate notion of QP-SE (akin to approximate
refinement notions in non-Stackelberg extensive-form games (Farina et al.,
2017; Kroer et al., 2017)). Another approach is to use our algorithm as an
anytime algorithm where one runs it repeatedly with smaller and smaller
perturbation values.

11.3.1 Experimental Evaluation

We conducted experiments with our algorithm on two common benchmark
extensive-form games. The first is a search game played on the graph shown
in Figure 11.2. It is a simultaneous-move game (which can be modeled as
a turn-taking EFG with appropriately chosen information sets). The leader
controls two patrols that can each move within their respective shaded areas
(labeled P1 and P2), and at each time step the controller chooses a move
for both patrols. The follower is always at a single node on the graph,
initially the leftmost node labeled S and can move freely to any adjacent
node (except at patrolled nodes, the follower cannot move from a patrolled
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node to another patrolled node). The follower can also choose to wait in
place for a time step in order to clean up their traces. If a patrol visits a node
that was previously visited by the follower, and the follower did not wait to
clean up their traces, they can see that the follower was there. If the follower
reaches any of the rightmost nodes they received the respective payoff at the
node (5 and 10, respectively). If the follower and any patrol are on the same
node at any time step, the follower is captured, which leads to a payoff of
0 for the follower and a payoff of 1 for the leader. Finally, the game times
out after k simultaneous moves, in which case the leader receives payoff 0
and the follower receives −∞ (because we are interested in games where
the follower attempts to reach an end node). This is the game considered
by Kroer et al. (2018) except with the bottom layer removed, and is similar
to games considered by Bošanskỳ et al. (2014) and Bošanský and Cermak
(2015).

P1 P2

S

5

10

Figure 11.2: The graph on which the search game is played.

The second game is a variant on Goofspiel (Ross, 1971), a bidding game
where each player has a hand of cards numbered 1 to 3. There are 3 prizes
worth 1, . . . , 3. In each turn, the prize is the smallest among the remaining
prizes. Within the turn, the each of two players simultaneously chooses
some private card to play. The player with the larger card wins the prize.
In case of a tie, the prize is discarded, so this is not a constant-sum game.
The cards that were played get discarded. Once all cards have been played,
a player’s score is the sum of the prizes that she has won.

The LP solver we used is GLPK 4.63 (GLPK, 2017). We had to make the
following changes to GLPK. First, we had to expose some internal routines
so that we could input to the solver rational numbers rather than double-
precision numbers. Second, we fixed a glitch in GLPK’s rational LP solver
in its pivoting step (it was not correct when the rational numbers were too
small). Our code and GLPK use the GNU GMP library to provide arbitrary-
precision arithmetic. The code, written in the C++14 language, was com-
piled with the g++ 7.2.0 compiler. It was run on a single thread on a 2.3
GHz Intel Xeon processor. The results are shown in Figure 11.3.
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Figure 11.3: Experiments. Dashed lines show compute time. Solid lines show the loss in
the leader’s utility compared to the SSE value in the unperturbed game.
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CHAPTER12
Conclusions and Discussion

In this thesis, we significantly advanced the state of the art on equilibrium
computation in Stackelberg games. In the first part of the work, we ad-
dressed settings involving a single leader and multiple followers, which,
with the exception of very specific cases, were largely unexplored before.
Then, in the second part of the work, we studied for the first time the prob-
lem of computing the strategies to commit to in Stackelberg games with
multiple leaders and followers. Finally, in the last part of the work, we
investigated how to refine the Stackelberg equilibrium in extensive-form
Stackelberg games, providing the first application of trembling-hand per-
fection in Stackelberg settings.

In the rest of this chapter, we conclude the work with a final discussion
on our results and future research directions.

12.1 Single-Leader Multi-Follower Stackelberg Games

We provided the first systematic study of the problem of computing Stack-
elberg equilibria in games with a single leader and multiple followers, fo-
cusing on the case in which the latter play a Nash equilibrium after observ-
ing the leader’s commitment. Specifically, we addressed the case where
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the followers are restricted to pure strategies, for three reasons. First, the
general case of mixed strategies is already known to be computationally
intractable even in the basic setting of two-follower Stackelberg polyma-
trix games (Basilico et al., 2017a). Second, as we showed, the restriction
to pure strategies leads to non-trivial computational results. Finally, this
restriction is without loss of generality in games that always admit a pure-
strategy Nash equilibrium, such as congestion games (Rosenthal, 1973).

In the setting of n-player normal-form Stackelberg games, after briefly
showing that a strong equilibrium (i.e., with the followers breaking ties in
favor of the leader) can be computed in time polynomial in the size of the
input, we extensively studied the problem of computing a weak equilibrium
(i.e., where the tie-breaking is against the leader), which is much more
involved. Among the other results, we provided the first, to the best of our
knowledge, exact algorithms for finding a weak Stackelberg equilibrium
in settings beyond single-leader single-follower games (for an algorithm
working in this case, see the work by Von Stengel and Zamir (2010)).

The algorithms we have proposed can constitute a useful framework for
developing solution methods for games in which the normal-form represen-
tation cannot be assumed as input (such as, e.g., succinct games of poly-
nomial type like polymatrix and congestion games). Retaining the main
structure of our algorithms, such games could be tackled by adapting the
subproblems that are solved for each (relaxed) outcome configuration to
the case where the followers’ actions cannot be all taken into account ex-
plicitly. For outcomes in S+, a cutting plane method could be employed
to generate a best response for each of the followers iteratively, without
having to generate all of them a priori. For outcomes in S−, one could
adopt a column generation approach to iteratively add sets Dp(a−n, a

′
p) for

different followers p ∈ F and action profiles a−n ∈ S−, thus iteratively
enlarging the set of strategies the leader could play to improve her utility
while guaranteeing that the outcomes in S− are not Nash equilibria.

Future developments along the research line of normal-form games,
include establishing the approximability status of the problem with two
followers (left open by Theorem 4.3), and the generalization to the case
with both leader and followers playing mixed strategies, partially addressed
in (Basilico et al., 2017a,b, 2019) (even though we conjecture that this prob-
lem could be much harder, probably Σp

2-hard).
As for Stackelberg polymatrix games, our main contribution was to

identify classes of games in which an equilibrium can be computed in poly-
nomial time once the number of players is fixed (while for the strong case
the algorithm is a straightforward variation of the enumerative algorithm
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designed by Conitzer and Sandholm (2006), for the weak case we proposed
a novel exact algorithm, see Algorithm 5.1). Besides being interesting for
deriving computational complexity results, our classes of games are also
useful in practice, as they model reasonable real-world security problems
and they are equivalent to specific Stackelberg Bayesian games in which
the follower may be of different types. Future developments may investi-
gate more efficient implementations of our exact algorithm (Algorithm 5.1),
for instance, enhancing it with a branch-and-bound scheme like that used
by Jain et al. (2011) in the setting of Stackelberg Bayesian games.

In conclusion, as for Stackelberg congestion games, our main contribu-
tion was a comprehensive characterization of hard and easy game instances
for the specific setting of games with singleton actions. While we also an-
alyzed the impact of non-singleton actions (showing that the problems be-
come highly intractable), possible future works may address what happens
when the actions have specific structures, as it is the case, e.g., in conges-
tion games played on graphs, where the players’ actions represent either
paths (Fabrikant et al., 2004) or spanning trees (Werneck et al., 2000). On
the algorithmic side, in this work we provided MILP formulations for the
strong version of the problem. As discussed above, for the weak case one
could adapt the exact algorithm proposed in the normal-form games setting,
which leads to new research challenges.

12.2 Multi-Leader Multi-Follower Stackelberg Games

We introduced a new way to apply the Stackelberg paradigm to any (un-
derlying) finite game. Differently from previous works, our approach deals
with scenarios involving multiple leaders by introducing a preliminary agree-
ment stage in which each leader can decide whether to be a leader or be-
come a follower. We defined and studied three natural solution concepts
that differ depending on the properties that they require on the agreement
stage (other solution concepts, e.g., requiring stability and perfect effi-
ciency, will be explored in future).

Our equilibria generalize the optimal correlated strategies to commit to
introduced by Conitzer and Korzhyk (2011) for single-leader multi-follower
Stackelberg games. At the same time, they also provided a significant ad-
vancement over the multi-leader solution concepts introduced in the secu-
rity context (see, e.g., (Gan et al., 2018)). First, correlated-strategy commit-
ments are more natural than leaders’ strategies satisfying some Nash-like
constraints. Secondly, our equilibria are funded on strong game-theoretic
groundings, as they are guaranteed to exist independently of the game struc-
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ture. Last but not least our solutions apply to general games.
Finally, our computational findings related to multi-leader Stackelberg

games exploit a general framework relying on a game-independent stability
oracle. Thus, our positive results can be extended to other game classes by
simply designing polynomial-time oracles.

In future, we will investigate new ways to model the agreement stage
involving the leaders. One possibility is to adopt cooperative solution con-
cepts at the leaders’ level. Moreover, we will also study how our model can
be applied in practical applications.

12.3 Refinements of the Stackelberg Equilibrium

We initiated the study of equilibrium refinement based on trembling-hand
perfection in extensive-form Stackelberg games. To the best of our knowl-
edge, this is the first solution concept that guarantees off-equilibrium-path
optimality in extensive-form Stackelberg games. We studied the equilib-
rium space of all the Stackelberg equilibria (containing both strong and
weak Stackelberg equilibria), and showed that it is complete with respect to
the limit points induced by perturbation schemes. We showed that this is not
the case for strong and weak Stackelberg equilibria. We also showed that
deciding the existence of any Stackelberg equilibrium—refined or not—
giving the leader expected value of at least ν is NP-hard.

Then, we focused on quasi-perfection in Stackelberg settings. We pro-
vided a game-theoretic, axiomatic definition of quasi-perfect Stackelberg
equilibrium. We developed a family of game perturbation schemes that lead
to a quasi-perfect Stackelberg equilibrium in the limit. Our family gener-
alizes prior perturbation schemes introduced for finding (non-Stackelberg)
quasi-perfect equilibria. Using our perturbation schemes, we developed
a branch-and-bound algorithm for quasi-perfect Stackelberg equilibrium.
It leverages a perturbed variant of the LP for computing a Stackelberg
extensive-form correlated equilibrium. Experiments show that our algo-
rithm can be used to find an approximate quasi-perfect Stackelberg equilib-
rium in games with thousands of nodes.

We showed that some perturbation schemes outside our family do not
lead to quasi-perfect Stackelberg equilibria in some games. It remains
an open question whether our perturbation family fully characterizes the
whole set of such equilibria. As to the first requirement in Definition 10.4,
can all the quasi-perfect Stackelberg equilibria be captured by perturbation
schemes that only use polynomial lower bounds on trembles?

It was recently shown that in non-Stackelberg extensive-form games,
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there exists a perturbation size that is small enough (while still strictly pos-
itive) that an exact refined (e.g., quasi-perfect) equilibrium can be found by
solving a mathematical program with that perturbation size (Miltersen and
Sørensen, 2010; Farina and Gatti, 2017a; Farina et al., 2018a), and Farina
et al. (2018a) provide an algorithm for checking whether a given guess of
perturbation size is small enough. That obviates the need to try to explicitly
compute a limit of a sequence. It would be interesting to see whether such
theory can also be developed for Stackelberg extensive-form games—and
for our perturbation family in particular.
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