
Politecnico di Milano
Department of Mathematics
Doctoral Programme in

Mathematical Models and Methods in Engineering

STEADY NAVIER-STOKES EQUATIONS IN DOMAINS WITH
OBSTACLE AND APPLICATIONS TO THE STABILITY OF

SUSPENSION BRIDGES

Doctoral Dissertation of:
Gianmarco Silvio Sperone Mart́ı

Supervisor:
Professor Filippo Gazzola

Tutor:
Professor Riccardo Sacco

The Chair of the Doctoral Programme:
Professor Irene Maria Sabadini

2019 - Cycle XXXII





ABSTRACT

Vortex shedding is the phenomenon observed when a fluid hits a rigid structure immersed in the
fluid, causing the formation of vortices on the downwind side of the obstacle. Indeed, vortices are shed
alternately from one side to the other giving rise to the von Kármán vortex street. Shifting low-pressure
zones are then created on the leeward side of the structure which, in turn, generate a fluctuating force
that acts orthogonally to the flow direction; we shall refer to this force as the lift. When the structure
considered is the deck of a suspension bridge and the fluid flow is the wind, a consequence of the von
Kármán vortex street is the oscillating movement of the deck towards the low-pressure zone, a tremor
known in the literature as vortex-induced vibration. Naturally, if the input of energy from the wind into
the deck grows unsteadily, violent lift forces will appear, possibly leading to the collapse of the suspen-
sion bridge. In this chaotic situation, the whole structure oscillates and both the cables and the hangers
generate unexpected behaviors of the deck, such as torsional movements. The main general goal of the
present research is to understand, analyze and quantify (in a suitable manner) the existing relationship
between the fluid velocity, the resulting lift, and, ultimately, the attainment of the thresholds for hanger
slackening and cable shortening.

This thesis is organized as follows. The Introduction (Chapter 1) serves as a summary and is taken
from [39], where we survey some of the existing (and sometimes contradictory) results on turbulence,
fluids and structures, and suggest several natural questions whose answers would increase the mathe-
matical understanding of these phenomena. In Chapter 2, following [126], we focus our attention on the
structure: the Melan equation for suspension bridges is derived by assuming small displacements of
the deck and inextensible hangers. We determine the thresholds for the validity of the Melan equation
when the hangers slacken, thereby violating the inextensibility assumption. To this end, we preliminarily
study the possible shortening of the cables: it turns out that there is a striking difference between even
and odd vibrating modes since the former never shorten. These problems are studied both on beams and
plates. For the remaining parts of this work we analyze exclusively the hydrodynamic component of the
fluid-structure interaction problem considered. In Chapter 3, taken from [127], a variational formulation
for a class of mixed and nonstandard boundary conditions (based on the vorticity, pressure, normal and
tangential components of the velocity field) on a smooth obstacle is discussed for the Stokes equations.
Possible boundary data are then derived through separation of variables of biharmonic equations in a
planar region having an internal concave corner. Explicit singular solutions show that, at least qual-
itatively, these conditions are able to reproduce vortices over the leeward wall of the obstacle. Then,
Chapter 4 (whose results are contained in the preprint [124]) is devoted to the study of planar viscous
flows governed by the stationary Navier-Stokes equations with inhomogeneous Dirichlet boundary data
in non simply connected domains. In a symmetric framework the appearance of forces is strictly related
to non-uniqueness of the solution. Explicit bounds on the data ensuring uniqueness are then sought and
several functional inequalities (concerning relative capacity, Sobolev embedding, the continuity constant
of the Bogovskii operator) are analyzed in detail: explicit bounds are obtained. The case of “almost
symmetric” frameworks is also considered. An explicit universal threshold on the Reynolds number
ensuring that the flow generates no lift is obtained regardless of the shape and the nature of the obstacle.
A shape optimization problem, aiming to minimize the impact of forces, is then addressed numerically.
Connections of the results with elasticity and mechanics are also emphasized. Finally, several concluding
remarks, open problems and future perspectives are the main content of Chapter 5.
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Tomás, Santiago and Elisa, Juan Pablo and Amanda), whose invaluable and unconditional friendship
has given me the strength to overcome times of adversity and the joy to enjoy the countless moments
of fun. Despite the distance in these three years of separation that we have lived, all of you, family and
friends, have continued to bring happiness, light and wisdom into my life, specially during periods that
I lacked of all three of them.

On an academic level, I begin by expressing my admiration to all the teachers, colleagues and ad-
ministrative staff of the Department of Mathematics of the Polytechnic University of Milan, for their
professionalism and good will. I would like to underline my recognition to professors Monica Conti,
Filippo Dell’Oro, Maurizio Garrione, Maurizio Grasselli, Gabriele Grillo, Vittorino Pata, Nicola Soave,
Franco Tomarelli and Gianmaria Verzini for all the knowledge they transmitted to me through courses,
seminars or just friendly discussions. Professor Irene Sabadini deserves my special appreciation for
managing the administrative aspects of the doctoral programme in the most proficient way. Outside
the Polytechnic University of Milan, the same tribute applies to professors Denis Bonheure (Brussels),
Manuel del Pino (Bath), Eduard Feireisl (Prague), Andrei Fursikov (Moscow), Giovanni Paolo Galdi
(Pittsburgh) and Sebastian Schwarzacher (Prague).

Finally, but of greater importance, my most profound gratitude is directed to Professor Filippo
Gazzola. Not only his vision, leadership and expertise (in many areas of mathematical analysis) are
primarily responsible for the achievements contained in this PhD thesis, but also his constant dedication,
kindness and patience that guided me through this quest. Furthermore, his prudence and countless
advices, which transcended the professional field, permitted me to mature both as a mathematician and
as person, and therefore I consider him not only a teacher, but a mentor: from every meeting we held,
whether it was a lecture, a seminar or a friendly talk, I could extract a valuable lesson. From the very
first day he believed and trusted in me, and this attitude remained immovable over these three years,
despite of my endless mistakes; for this I will always be grateful to him. My biggest desire is that the end
of this PhD research will represent another important step in a fruitful and long-lasting collaboration
and relationship.

II



Contents

1 Introduction - Some mathematical questions on fluids and structures 1
1.1 Why do airplanes fly? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Fluid-structure interaction: where do we stand? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Thresholds for hanger slackening and cable shortening in the Melan equation for suspension
bridges 12
2.1 Thresholds for cable shortening in a beam model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Thresholds for hangers slackening in a beam model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Behavior of cables and hangers in a plate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Boundary conditions for planar Stokes equations inducing vortices around concave corners 28
3.1 The Stokes equations with nonstandard boundary conditions . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 From the three-dimensional problem to the planar problem . . . . . . . . . . . . . . . . . . 30
3.1.2 An existence and uniqueness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 An overview of the separation of variables for biharmonic equations . . . . . . . . . . . . . . . . . . 36
3.3 Singular Stokes flows around a right angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Some boundary conditions leading to vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Boundary conditions for laminar inflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Boundary conditions with oriented velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for
unique solvability 49
4.1 Functional inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Relative capacity and pyramidal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Bounds for some Sobolev constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.3 Functional inequalities for the Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . 61
4.1.4 An estimate of the continuity constant for the Bogovskii operator . . . . . . . . . . . . . . . 63
4.1.5 Gradient bounds for solenoidal extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 The planar Navier-Stokes equations around an obstacle . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Existence, uniqueness and regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Symmetry and almost symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.3 Definition and computation of drag and lift . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.4 A universal threshold for the appearance of lift . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.5 Multiplicity of solutions and numerical testing of shape performance . . . . . . . . . . . . . 88

4.3 Two connections with elasticity and mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 An impressive similitude with buckled plates . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 A three-dimensional model: the deck of a bridge . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Estimates for the norms of mollifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions and future developments 98

Bibliography 101

III



Chapter 1

Introduction - Some mathematical
questions on fluids and structures

N�e
s�	s��u�n�a� �c�e�r�t�e�z�z�a� �d�e�l�l�e 	s��c�i�e�n�z�e �è �d�o�v�e �n�o�n� 	s��i� 	p�ò �a	p	p�l�i�c�a�r�e �u�n�a� �d�e�l�l�e 	s��c�i�e�n�z�e �m�a�t�e�m�a�t�i�ch�e, �o�v�v�e�r�
�ch�e �n�o�n� 	s��o�n�o �u�n�i�t�e �c�o�n� �e
s�	s��e �m�a�t�e�m�a�t�i�ch�e.

L�e�o�n�a�r�d�o �d�a� V�i�n�c�i� (1452-1519)

Strong blowing winds, especially when they hit an obstacle, generate air turbulence with subsequent
appearance of vortices behind the obstacle. The first documented and surviving realization of vortices
is usually attributed to some sketches by Leonardo da Vinci, see Figure 1.1. Nowadays, wind tunnel

Figure 1.1: Drawing of water vortex by Leonardo da Vinci, ca. 1510-1513.

experiments artificially blow air flows and give precise pictures of turbulence and of the dependence of the
vortex shedding on the parameters of the flow [91, 139, 215, 216], see e.g. the left picture in Figure 4.7.
Vortex shedding is the cause of so-called vortex-induced vibrations [11, 86, 87, 268, 269, 271], namely
oscillatory motions of the obstacle. Thanks to the huge progresses of the numerical analysis of fluid
flows and the increasing computer capacities, turbulence may also be detected by refined numerics using
Computational Fluid Dynamics (CFD), see e.g. [98, 103, 109, 223]. However, the current knowledge of
turbulence is still foggy with frequent updates. We refer to [105] for a general introduction and to [20]
for

the most recent advances in attacking these questions [the fundamental questions in turbulence]
using rigorous mathematical tools.

Helmholtz [140] published the foundation of the theory 160 years ago, followed by Stokes (1845), Strouhal
(1878), Prandtl (1904), Bénard (1908), von Kármán (1912) and, nowadays, according to [216, Section
1.1],

it is not only that the accumulated knowledge is vast, but also that the accretion of knowledge and
experience on the topic continues to grow unabated, perhaps exponentially.

1



Figure 1.2: Left: vortices around the deck of a scaled bridge obtained experimentally in the wind tunnel
of the Politecnico di Milano. Right: clouds off the Chilean coast showing Kármán vortex streets (Landsat
7 image-NASA).

The vortex formation within a flow surrounding an object is the basic observation that laid the foun-
dations of aerodynamics. Complicated phenomena were quickly observed, and the important parameters
were identified. A general understanding of viscosity effects began to emerge during the mid-nineteenth
century, particularly in the works of Stokes [249, 250], followed later by Prandtl [210] who introduced
his boundary layer theory. Prandtl claims that the no-slip condition holds even for very small viscosity,
but its influence is confined to a small region along the body, the so-called boundary layer. Within this
layer the velocity of the fluid rapidly changes from zero on the surface of the body to the free-stream
velocity of the flow. In presence of high curvature of the obstacle surface, the flow can be interrupted
entirely and the boundary layer may detach from the surface: this phenomenon is called separation.

The separation process depends on viscosity and stream velocity whose important influence is col-
lected in the Reynolds number Re that expresses the ratio between inertial forces and viscous forces of
the flow. In the year 1883, Reynolds [226] investigated which factors determine whether the motion of
water in a pipe is direct or sinuous, thereby introducing the dimensionless parameter

Re =
ρuL

µ
=
uL

ν
,

where ρ is the density of the fluid, u is its velocity, µ is its dynamic viscosity, ν is the kinematic viscosity
and L is the diameter of the pipe. Reynolds was interested in the transition from laminar to turbulent
regime: a flow is called laminar or streamlined if it follows parallel layers, with no disruption between the
layers, whereas it is called turbulent if it undergoes irregular fluctuations or mixing, see Figure 1.3. In a

Figure 1.3: Left: laminar flow around a bluff body. Right: turbulent flow from an airplane wing (NASA-
Photo ID: EL-1996-00130).

turbulent flow, the speed of the fluid is widely changing both in magnitude and direction. Experiments
and numerics show that for Re� 1, the flow is laminar. For a Reynolds number in the range between 1
and 100, the flow exhibits a complicated (chaotic) structure, while for Re � 100, the flow is turbulent,
displaying a complex pattern formed by the velocity field. Quoting [99]:
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While much of the hemodynamics in a healthy human body has low Reynolds number, resulting in
laminar flow, relatively high Reynolds number flow is observed at some specific locations [...] For
instance, the peak Reynolds number in the human aorta has been measured to be approximately
4000 [163].

Besides a blood flow in arteries, other turbulent flows include most natural rivers which have Reynolds
numbers well above 2000, lava flow, atmosphere and ocean currents, wind-turbines wake, boat and
building wakes or aircraft-wing tips. The Reynolds number for the air surrounding an aircraft during
flight varies from about 2× 106 for small slow-speed airplanes to 2× 107 for large high-speed airplanes.

According to Batchelor [22, Section 5.11], in practice, the most significant feature of a flow past a
fixed body (fully immersed in a steady stream that is constant at infinity), is the force exerted on the
body by the fluid, which is usually decomposed into two components: the drag force FD parallel to the
flow direction and the lift force FL perpendicular to the flow. In practice, these forces are computed
through the formulas

FD =
CD
2
ρAfW

2 , FL =
CL
2
ρApW

2 , (1.1)

where ρ is the fluid density, W is the upstream velocity, Af is the frontal area (the projected area seen by
an observer looking towards the object from a direction parallel to the upstream velocity), and Ap is the
planform area (the projected area seen by an observer looking towards the object from a direction normal
to the upstream velocity). In (4.135), CD and CL denote, respectively, the drag and lift coefficients,
giving dimensionless forms of the drag and lift forces. They are usually determined by help of a simplified
analysis, some numerical procedures or empirical rules based on (e.g. wind tunnel) experiments. We refer
to [204, Chapter 9] for more details and to [88, 139] in the particular case of suspension bridges. The
lift force is intimately related to the vortex shedding process: when asymmetric vortices appear behind
the bluff body, the asymmetry generates a forcing lift which starts the vortex-induced vibrations. The
vortex shedding in the wake of a structure may also achieve one of its natural frequencies, resulting in
a vortex-induced resonance, with subsequent vibrations of the structure. A large variety of models were
used to phenomenologically study vortex shedding and vortex-induced vibrations but a unified theory
seems lacking: from [216] we quote

literature on vortex-induced vibrations is vast and continuously growing, both on fundamental issues
and on methods for their prediction in engineering, where applications are numerous. [...] In fact,
because of the practical and theoretical importance of vortex-induced vibrations, models have been
developed and used since the 1960s. Reviews show not only a large number of them, but also
significant differences in the fundamental aspects of their formulations.

For instance, the aerodynamic forces acting on the deck of a suspension bridge vary with respect to
many parameters. It is therefore important to study the aerodynamic derivatives which measure how
those forces and moments change as other parameters (such as airspeed, angle of attack, etc.) related
to stability are perturbed. The aerodynamic derivatives have been so far determined experimentally,
and given the complexity of the vortex shedding phenomena and vortex-induced vibrations, one needs a
huge amount of experimental data before attempting a theoretical analysis. Still concerning suspension
bridges, we quote [216]:

some recent effort has gone into obtaining the aerodynamic derivatives using numerical methods.
For example, Larsen [175] uses a discrete vortex method to obtain the aerodynamic derivatives for
two different cross-sections. A comparison between his results and the experimental data of Scanlan-
Tomko [232] shows the numerical data to be reasonably good, but probably not good enough to
obtain accurate stability predictions.

The study of vortex shedding is intimately related to vortex dynamics for which a huge literature
is available from the physical, engineering and mathematical communities, see for instance [9, 21, 157,
185, 186, 189, 193, 208, 224, 225, 227] and the numerous citations therein. Vortices appear in a great
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variety of Ginzburg-Landau theories, models in fluid-mechanics, superconductivity and superfluidity
[10, 29, 155, 214, 239, 256, 267].

The unforced incompressible Euler equations

ut + (u · ∇)u+∇p = 0 , ∇ · u = 0 (x, y, z) ∈ Ω , t > 0 (1.2)

play a central role in theoretical fluid mechanics and even in mathematical physics, not only because
they model adiabatic and inviscid flows, but also because they can be seen, in some particular situations,
as the inviscid limit of the Navier-Stokes system [189, 191] or as the limit of other model equations in
some asymptotical regime, see for instance [47, 240]. Nevertheless, if one wishes to model turbulence,
there are several reasons not to consider (1.2). One is that vortices do not only appear in high Reynolds
regimes (e.g. for small viscosity), for which (1.2) would be a good approximation; indeed, vortices can
also be generated at low Reynolds, for instance by singularities in the domain and, in particular, by
possible obstacles in the flow. Another one is the celebrated d’Alembert paradox [179, 180, 181, 182],
see next section, which shows that the Euler equations (1.2) are not appropriate to directly describe the
lift and drag exerted from fluids on bluff bodies.

1.1 Why do airplanes fly?

On the authority NASA website [1] one may read:

There are many explanations for the generation of lift found in encyclopedias, in basic physics
textbooks, and on Web sites. Unfortunately, many of the explanations are misleading and incorrect.
Theories on the generation of lift have become a source of great controversy and a topic for heated
arguments for many years. [...] To truly understand the details of the generation of lift, one has to
have a good working knowledge of the Euler equations.

The conclusion is a quite strong mathematical statement. So, let us start modelling an incompressible
non-viscous fluid in R3 \ B, where B is a solid ball, with the Euler equations (1.2). We suppose that
the stream velocity is constant at infinity, i.e. there exists u∞ ∈ R3 such that u(x) → u∞ as |x| → ∞.
Denoting by R the radius of the ball and assuming that it is centered at the origin, it is readily seen
that the potential

U(x, y, z) =

(
1 +

R3

2(x2 + y2 + z2)3/2

)
x (1.3)

yields a steady state solution u = ∇U of (1.2) in R3 \B with constant velocity u∞ = (1, 0, 0) at infinity
and such that u is tangent to ∂B, by which we mean that u · n = 0 on ∂B. Due to the symmetry of the
field u = ∇U , one easily checks that the flow pressure on the boundary of the ball is zero, i.e.∫

∂B
pn̂ dσ = −1

2

∫
∂B
|u|2n̂ dσ = 0,

which means that the fluid neither produces a drag, nor a lift. This obviously contradicts everyday
experience. Moreover, this theoretical paradox is not a consequence of the symmetry of the obstacle B
(that induces the symmetry of u). Indeed, in the 18th century, d’Alembert [179, 180, 181, 182] proved
a surprising result about stationary solutions of the Euler equations:

Après avoir ainsi développé mes principes, j’examine une hypothèse dont plusieurs auteurs d’hydro-
dynamique se sont servis jusqu’ici, & je fais voir que si on suivait une telle hypothèse pour déterminer
la résistance d’un fluide, cette résistance se trouverait nulle, ce qui est contraire à toutes les
expériences.

This result, nowadays known as the d’Alembert paradox has been and still is a source of debate. In
modern terminology, the d’Alembert paradox may be stated as follows.
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Theorem 1.1 ([179, 180, 181, 182]). Let D ⊂ R3 be a compact smooth set and let n̂ be the inward unit
normal vector to ∂D. Let u = u(x) (x ∈ Ω = R3 \D) be a smooth field over the closure of Ω, divergent-
free, tangent to ∂D, and constant at infinity. If u is irrotational, then u is a stationary solution of (1.2)
in Ω and the fluid force on the obstacle is zero, that is,

F =

∫
∂D

pn̂ ds = 0 .

The proof of Theorem 1.1 is based on classical tools from potential theory and on the Divergence
Theorem, see e.g. [135, Theorem 2.1], [192, Theorem 4.3] or [265, Section 8.2]. Some comments about the
irrotational assumption on the flow are in order. A physical justification of this assumption is based on
the fact that, at very large distances from the obstacle, the flow may be seen as uniform (u ≡ constant)
so that it is indeed irrotational. But whether this condition remains true all over R3 \ D is a delicate
matter. In fact, by the vorticity-transport formula [189, Proposition 1.8, p.20], the behavior of the
vorticity at infinity is transported in all the domain, provided the particle trajectories are smooth and
invertible, which would justify the assumption of irrotational flows in Theorem 1.1, see also [114]. Even
though this was already a concern of Birkhoff [32] (see below), it is still an open problem whether (1.2)
admits steady rotational solutions.

We refer to [60, 136, 190, 247] and the numerous references therein for further discussions on the
paradox. As shown by Theorem 1.1, although the Euler equations (1.2) provide a good model of reality
for many problems of fluid dynamics, they cannot directly account for the lift force. Since only a viscous
fluid satisfies the no-slip condition of its particles on the surface of the body immersed in the flow, it
is nowadays commonly accepted that viscosity is needed to generate a lift, as first suggested by Saint-
Venant [81]. However, any rigorous physical justification or mathematical proof remains far out of reach
[135, 265]. Birkhoff [32, p.21] conjectured the drag could be the result of an instability of potential flows:

the paradoxes of ideal fluid theory may be, in part, paradoxes of topological oversimplification
[by which he meant that there is no valid mathematical reason to consider potential flows only].
[...] Though Dirichlet flows and other steady flows are mathematically possible, there is no reason
to suppose that any steady flow is stable. It is perfectly conceivable that, in an “ideal” fluid,
initially departing slightly from Dirichlet flow, irregularly varying turbulent “eddies” are built up
mathematically in the “wake” of an obstacle-reproducing mathematically what is observed physically
at large Reynolds’ numbers R. [...] To admit this possibility, we must reject the idea that there
is a necessary tendency towards symmetry in natural phenomena, and admit the possibility that a
symmetrically stated problem may not have any stable symmetric solution.

Birkhoff was violently criticised by Stoker [248], especially for invoking instability, and he did not insist
more on this idea. Even more, in the second version of Birkhoff’s book [33], these thoughts disappeared.
More recently, Hoffman and Johnson [146] reconsidered Birkhoff’s attempt to explain the paradox. Part
of the conclusion in [146] says:

We have presented a resolution of d’Alembert’s paradox based on analytical and computational
evidence that a potential solution with zero drag is illposed as a solution of the Euler equations, and
under perturbations develops into a wellposed turbulent solution with substantial drag in accordance
with observations.

In a followup paper based on this explanation, Hoffman-Jansson-Johnson [144] presented a new math-
ematical theory of flight, see also [145], which is fundamentally different from the theory by Prandtl-
Kutta-Zhukovsky [34, 262, 264]. Quoting the authors:

The new theory shows that the miracle of flight is made possible by the combined effects of (i)
incompressibility, (ii) slip boundary condition and (iii) 3d rotational slip separation, creating a flow
around a wing which can be described as (iv) potential flow modified by 3d rotational separation.
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The basic novelty of the theory is expressed in (iii) as a fundamental 3d flow phenomenon only
recently discovered by advanced computation and analysed mathematically, and thus is not present
in the classical theory. Finally, (iv) can be viewed as a realization in our computer age of Euler’s
original dream to in his equations capture an unified theory of fluid flow.

The paper curiously starts with an Editorial Foreword which states:

The special character of this article requires some comments by the editors on the purpose of its
publication. Though, its mathematical content does not meet the degree of mathematical rigor
usually expected by articles in this journal, the implications of the argument and the accompany-
ing novel numerical computations are of such far reaching importance for technical fluid dynamics,
particularly for the computation of certain features in turbulent flow, that it deserves serious con-
siderations. The main purpose of this publication is therefore to stimulate critical discussion among
the experts in this area about the relevance and justification of the view taken in this article and
its possible consequences for modelling and computation of turbulent flow.

It is surprising that this paper has not received much attention and did not stimulate neither public
criticism nor interest so far, see however the (publicly revealed) private debate on Johnson’s blog [154].
Birkhoff’s doubt on the instability is, at least mathematically, quite natural: it is well-known that
symmetric problems can simultaneously have unstable symmetric solutions and non symmetric stable
solutions. Among others, Tang and Aubry [255] have numerically studied Föppl’s vortex model [102,
171, 227] which aims to describe an incompressible fluid past a cylinder. Tang and Aubry analysed the
symmetry breaking instability leading to vortex shedding:

It is well known that if a circular cylinder starts moving from rest in an incompressible fluid, twin
vortices spinning in opposite directions form behind the cylinder soon after motion begins. These
vortices grow and become more and more elongated as time increases until they reach their maximal
size. After that time, the bubble of vortices remains steady at low Reynolds numbers, develops into
a time-dependent oscillating wake regime in which the bubble remains attached to the body at about
Re 48−50 or breaks down into a Kármán vortex street at higher Reynolds numbers. It is interesting
to notice that if the initial condition is symmetric, the solution formally remains symmetric at all
later times. In other words, the subspace of symmetric solutions is an invariant subspace of the
Navier-Stokes equations [see Proposition 1.1 below] subject to the boundary conditions considered
here. The fact that the flow goes away from this subspace beyond the critical Reynolds number
in both physical and numerical experiments means that the symmetric bubble becomes unstable
beyond the critical Reynolds number. It remains, nevertheless, a solution at all Reynolds numbers.
This observation led Föppl [102] to investigate whether one can find steady solutions in the form of
twin vortices and study their stability property. Föppl represented the system by building a two-
dimensional, incompressible potential flow consisting of a uniform oncoming flow, a pair of point
vortices symmetrically located with respect to the centerline behind the cylinder, and inner vortices
placed to satisfy the boundary condition on the body [see e.g. [171, 227]]. He found fixed points i.e.,
steady flows for which the twin vortices can indeed maintain their locations relative to the cylinder.
Such equilibrium positions are located on two symmetric curves starting from the rear stagnation
point of the bubble. Föppl, who also studied the stability of the equilibrium, showed that the vortices
are stable to all symmetric perturbations and unstable to some asymmetric perturbations. However,
there was a mistake in Föppl’s analytical results which was later detected and corrected by Smith
[243] who showed that the equilibrium is only marginally stable to all symmetric perturbations
instead of being stable as originally found by Föppl.

The symmetry breaking is well documented by experimental works, see e.g. [67, 68, 69]. Jackson
[153] and Zebib [273] computationally tackled the symmetry breaking instability from the Navier-Stokes
equations

ut − ν∆u+ (u · ∇)u+∇p = 0 ∇ · u = 0, (1.4)

6



where, as usual, ν > 0 is the kinematic viscosity, in the neighbourhood of the critical Reynolds number.
The transition is marked by a Hopf bifurcation which is not fully understood as the Navier-Stokes
equations yield an infinite-dimensional dynamical system.

Even if a direct connection cannot be established with a symmetry breaking instability of a steady
state of the Euler equations, it is certainly worth mentioning the following striking theoretical result due
to Bardos et. al [19] that somehow suggests that Birkhoff’s feeling is maybe not unreasonable:

Proposition 1.1 ([19]). Let u0 be a function of (x, y) only, then the weak solution of the 3D Euler
equations (1.2) might become spontaneously a function of (x, y, z). If the initial data is axi-symmetric
or helical symmetric, the weak solutions of the Euler equations might spontaneously break the symmetry.
On the contrary, if u0 is a function of (x, y), then the Leray-Hopf weak solution of the 3D Navier-Stokes
equations (1.4) remains a function of (x, y) only. For axi-symmetric initial data, or helical initial data,
the symmetry is also preserved.

In fact, the wild weak solutions of the Euler equations that do not obey the two-dimensional symmetry
of the initial data should be ruled out because they cannot be obtained as vanishing viscosity limit
solutions of the Navier-Stokes equations (1.4). The existence of weak solutions of the Navier-Stokes
equations has been treated in pioneering works [149, 169, 183, 187] in cylindrical domains. In the
case of a non-cylindrical, but a priori known domain, weak solutions were first studied in [106] for
the case of homogeneous Dirichlet boundary conditions. For further details, we refer to some classics
[7, 63, 115, 194, 257].

Having in mind obstacles modelling suspension bridges, we consider the case where the fluid is
enclosed in a bounded box of R3 and we assume that the obstacle is a cylinder, namely a 2D object times
an interval. More precisely, we consider

Ω = {(−L,L)2 × (0,Λ)} \ {K × (0,Λ)}

for some L,Λ > 0 and some 2D obstacle K with D = K × (0,Λ). Since our purpose is to analyse
the drag and lift forces acting on the obstacle D, it is sometimes convenient (especially for the lift) to
restrict the attention to a 2D section of the box, for instance at the midpoint. The domain Ω and its
intersection Σ with the plane z = Λ

2 are represented in Figure 1.4 (not in scale!), together with a sketch
of the flow and the appearance of vortices. The rectangular shape of the cross section K of the obstacle
D has been chosen here for simplicity of the picture; this model was first suggested in [38, 125] and
subsequently applied in [127] for a study of non-standard boundary conditions for the planar Stokes
equations inducing vortices around concave corners.

Figure 1.4: The domain Ω and its intersection Σ with the plane z = Λ
2 .

We next discuss the computation of the drag and lift forces exerted on an obstacle by the flow of a
viscous fluid. The rate of strain tensor σ and the stress tensor T of any viscous incompressible fluid are
given by (see [173, Chapter 2]):

σ(u) = ∇u+∇Tu , T(u, p) = −pI + νσ(u) , (1.5)
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where I is the identity matrix (either 2 × 2 or 3 × 3, according to the space dimension). As expressed
by (4.123), in a viscous fluid, in addition to the pressure drag, one needs to take into account the skin
friction so that the total force exerted by the fluid over the obstacle D is given by the vector field

FD = −
∫
∂D

T(u, p) · n̂ , (1.6)

where the minus sign is due to the fact that the outward unit normal n to Ω is directed towards
the interior of D. Assuming that the inflow is horizontal, namely the only nonzero component of the
boundary velocity is the x-component on the boundary of the box (−L,L)2 × (0,Λ), the horizontal
component in (4.124) is the drag force, while the orthogonal component is the lift force. For smooth
obstacles D ⊂ R3 the drag force may also be written as

ν

2

∫
Ω
|σ(u)|2 . (1.7)

see e.g. [25] for the details. It is clear that while the drag force is always acting in the direction of
the flow and hence in a one-dimensional direction, the lift force is orthogonal to the drag and has two
degrees of freedom in a 3D setting; this is the precise reason why it may be convenient to focus on 2D
cross sections of the obstacle, especially when the obstacle is a cylinder aiming to model the deck of a
bridge as in Figure 1.4. In this case, for the drag force in (1.7), the integral must be computed over the
cross-section Σ.

It is possible to derive exact formulas for the drag exerted by a creeping flow over bodies displaying
special symmetries like spheres, ellipsoids and cylinders. In 1851, Stokes [250] addressed the problem of
the steady flow of a viscous fluid (having constant density ρ and a constant free-stream velocity equal to
u0 ∈ R3) surrounding a rigid sphere of radius R. By neglecting, with respect to viscosity, the convective
term (u · ∇)u appearing in the Navier-Stokes equations, he explicitly computed the velocity field of the
flow and provided the following formula for the drag over the sphere:

FD = 6πρνR|u0|, (1.8)

a result that remained in history as the Stokes law, see [174, Chapter 6]. Similar expressions for an
ellipsoid, a circular disk moving broadside-on, or a circular disk moving edge-ways can be found in the
book of Lamb [171, Article 339] (the first edition of this work was published in 1879), from where we
quote:

The formula of Stokes (1.8) for the resistance experienced by a slowly moving sphere has been
employed in physical researches of fundamental importance, as a means of estimating the size of
minute globules of water, and thence the number of globules contained in a cloud of given mass.
Consequently the conditions of its validity have been much discussed both from the experimental
and from the theoretical side.

A rigorous refutation of the validity of Stokes law was performed by Oseen in 1910, see [213], where it was
proven that the convective term may be neglected only at a sufficiently short distance from the sphere,
precisely when |x|� ν/|u0|. Far away from the body one may approximate u with u0, and subsequently
(u · ∇)u with (u · ∇)u0, by means of which Oseen presented the following linear model for the far-field
velocity:

− ν∆u+ (u0 · ∇)u+
1

ρ
∇p = 0 ∇ · u = 0, (1.9)

usually known as the Oseen equations, which constitute an intermediate step between the linear Stokes
system and the fully non-linear Navier-Stokes system. An exact resolution of (1.9) yields an improvement
of Stokes law given by:

FD = 6πρνR|u0|
(

1 +
3R|u0|

8ν

)
,
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as well as the following expression for the drag, by unit length, applied over an infinite-length cylinder
of radius R that is being held orthogonally to the stream, see [173, Chapter II]:

FD =
4πρν|u0|

1
2 − γ − log

(
R|u0|

4ν

) ,
where γ = 0.57721... is the Euler-Mascheroni constant.

1.2 Fluid-structure interaction: where do we stand?

Most of the current fluid-structure interaction models that are used in practical applications rely on
experimental and numerical tools. In the case of wind-bridge interaction, these tools, that are nowadays
consolidated, are fairly simple and are based on the following assumptions: the wind is considered
ergodic and stationary, the bridge behaviour is considered linear, the aerodynamic loads are governed
by linear laws. As explained in [39, Section 5], see also [167], the assumption of linear behaviour of
bridges is unreasonable. In the Engineering literature, the studies started from the approaches used in
the aeronautical field almost one century ago since the works of Küssner [164], Sears [234, 235], Wagner
[266] and Theodorsen [258], and later applied to wind engineering by Davenport [77], Scanlan [230, 231]
and others. The aeroelastic problem was initially studied on simple geometries like flat plates, where
simplified analytical solutions are achievable, and then extended to more complex shapes like airfoils
or deck bridges through semi-empirical methodologies. In the Mathematical literature, most of the
contributions to fluid-structure interactions are numerical. The reason is that even simple models give
rise to extremely difficult problems: already well-posedness turns out to be quite challenging. Let us
survey some of the existing models and results.

After the seminal paper of Serre [241], the breakthrough theoretical results on fluid-structure interac-
tion appeared around 2000, see [62, 134, 147, 148]. For a finite number of rigid bodies and incompressible
as well as compressible fluid models, we refer to Desjardins and Esteban [84, 85]. We recall here the
simpler case of one spherical body following Conca, San Mart́ın and Tucsnak [62]. Let A ⊂ R3 be an
open bounded set representing the domain occupied by both the fluid and the body, assumed to be a
moving ball of radius 1. Denote, respectively, by Ωt ⊂ A and Bt = A \ Ωt the parts of A occupied by
the fluid and the body at a given instant t. Then the system of equations modelling this fluid-structure
interaction reads 

ut − ν∆u+ (u · ∇)u+∇p = 0 , ∇ · u = 0 in Ωt , t > 0 ,

u = 0 on ∂A , t > 0 , u = h′(t)− ω(t) ∧ n̂ on ∂Bt , t > 0 ,

Mh′′(t) = −
∫
∂Bt

σn̂ , t > 0 , Jω′(t) =

∫
∂Bt

n̂ ∧ σn̂ , t > 0 ,

u(x, 0) = u0(x) in Ω0 , h′(0) = h1 ∈ R3 , ω(0) = ω0 ∈ R3 .

(1.10)

In the above system, the unknowns are u(x, t), h(t) and ω(t), namely the velocity field of the fluid, the
position of the center of the ball and the angular velocity of the ball, respectively. Therefore, the second
identity in (1.10)2 imposes the no-slip condition at the fluid-solid interface whereas (1.10)3 expresses the
conservation of linear and angular momentum for the body (as in (4.123), σ denotes the rate of strain
tensor of the fluid). The existence of weak solutions, up to collision, for problem (1.10) is established in
the following theorem.

Theorem 1.2. [62] Assume that the open set Ã = {x−y |x, y ∈ A} has smooth boundary. Given h0 ∈ A
such that dist(h0, ∂A) > 1, suppose that (u0, h1, ω0) is an element of the following space:

Hh0 = {(v, `, k) ∈ L2(Ã)×R3×R3 | ∇ · v = 0 in Ã, v · n̂ = 0 on ∂Ã, v|B1(y) = `+ k× y, v|Eh0
= 0},
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where B1 is the unit ball of R3 and Eh0 = Ã \ (A− h0). Then, there exists T0 > 0 such that the problem
(1.10) has a weak solution (U, h,w) for any T < T0. Moreover, one of the following alternatives holds
true:

T0 = +∞ or lim
t→T0

dist(B(t), ∂A) = 0. (1.11)

The “no-contact” assumption is crucial. Starovoitov [246] proved that there exist at least two gener-
alised solutions to the problem if collisions of the body with the boundary of the flow region are allowed.
These solutions are distinguished by the behaviour of the body after collision with the boundary: in the
first solution, the body moves away from the boundary after the collision while in the second solution,
the body and the boundary remain in contact. Also, in the case of a compressible fluid, Feireisl [94] con-
structed a solution in which a ball remains attached to the top surface of the cavity A regardless of the in-
tensity of the gravity force, thus showing that collisions may lead to non-physical situations in a standard
mathematical framework. The problem discussed in Theorem 1.2 was also tackled for the Euler equations
[212]. For further developments, we refer to [45, 54, 70, 89, 95, 116, 117, 118, 138, 207, 209, 229, 253]
and the references therein. A uniqueness result has been obtained by Glass and Sueur [133] (both when
the fluid is governed by the Euler equations or the Navier-Stokes equations). It is also worth mentioning
that fluid-structure interaction problems have been considered for compressible fluids in [41, 42, 43, 46]
and stabilisation or control issues have been tackled e.g. in [15, 16, 44, 254].

Related to the unrealistic situation discovered in [94] lies the no-collision paradox, firstly encountered
by O’Neill et al. [64, 65, 82, 211] during the 1960s. By considering a rigid sphere, immersed in a stationary
Stokes flow and falling over a flat wall, they showed that the drag over the body diverges rapidly as it
approaches the ramp, thus impeding the sphere from touching the wall in finite time. The paradox was
later extended to the case of a Navier-Stokes flow, first in 2D and subsequently in 3D [141, 142]. Only
frontal collisions are taken into account in those papers. In the 3D setting, as shown in [143], grazing
collisions between smooth bodies can occur. Here we just recall a result by Gérard-Varet and Hillairet
[129] who, in an attempt to explain the no-collision paradox, consider a general solid body St ⊂ A and
take into account that if the distance between ∂A and ∂St becomes very small (less than 10−6m), the
no-slip condition is no longer accurate and must be replaced by the following Navier condition:{

(u− uS) · n̂ = 0, (u− uS) ∧ n̂ = −2α(σ · n̂) ∧ n̂ on ∂St

u · n̂ = 0, u ∧ n̂ = −2β(σ · n̂) ∧ n̂ on ∂A,
(1.12)

where uS(x, t) = h′S(t) + ω(t) ∧ (x − h(t)) is the velocity, at every point x of the solid body St, whose
center of mass is in position h(t) ∈ R3 at time t > 0. In (1.12), impermeability is ensured by imposing
that the normal component of the relative velocity of the fluid is zero, whereas the coefficients α, β > 0
are the so-called slip lengths (note that the tangential component of the relative velocity may exhibit
discontinuities). The existence of weak solutions, up to collision, for problem (1.10)-(1.12) (exchanging
Bt by St) is established in the following:

Theorem 1.3. [129] Let S ⊂ A be two C1,1 bounded domains of R3. Let u0 ∈ D(A)
L2(A)

, with D(A)
being the subspace of solenoidal vector fields belonging to C∞0 (A), and assume that there exist V,W ∈ R3

such that uS0 (x) = V + W ∧ (x − h(0)), for every x ∈ ∂S. Furthermore, suppose that (u0 − uS0 ) · n̂ = 0
on ∂S. Then, there exists T0 ∈ (0,+∞] and a weak solution of (1.10)-(1.12) over [0, T ) associated to
the initial data u0 and uS0 . Moreover, such a weak solution exists up to collision, that is, the alternative
(1.11) holds.

Further theoretical results are related to models with a linear elastic hyperbolic-type equation de-
scribing the dynamics of the solid, by the Euler equations [57] or the Navier-Stokes equations [17, 18]
or the Stokes equations [176] for the dynamic of the fluid, and by suitable Neumann-type transmission
boundary conditions (see also [152] for the case of a non-Newtonian fluid). A major difficulty is then
to deal with the mismatch between parabolic and hyperbolic regularity and, so far, only very few sat-
isfactory regularity results have been obtained [13, 18, 176], thereby proving that the setting is correct.
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Nonlinear plates interacting with fluids have also been studied [56, 84, 203]. In fact, there are further
models, with nonstandard interface conditions [178], with mechanical damping [177] or stochastic forcing
[59]. Finally, let us mention the survey [58] where a variety of models mathematically describing the
interaction between flows and oscillating structures are discussed.
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Chapter 2

Thresholds for hanger slackening and
cable shortening in the Melan equation
for suspension bridges

In the present chapter we consider a simplified fluid-structure interaction problem given by the oscilla-
tion of the deck of a suspension bridge as a consequence of the wind action; we focus our attention on
the fluctuation of the structure after the fluid flow has input a large amount of energy into it.

In 1888, the Austrian engineer Josef Melan [198] introduced the so-called deflection theory and
applied it to derive the differential equation governing a suspension bridge, modeled as a combination
of a string (the sustaining cable) and a beam (the deck), see Figure 2.1. The beam and the string are
connected through hangers. Since the spacing between hangers is usually small relative to the span, the
set of the hangers is considered as a continuous membrane connecting the cable and the deck.

Figure 2.1: Beam (red) sustained by a cable (black) through parallel hangers.

Let us quickly outline how the Melan equation is derived; we follow here [263, VII.1]. We denote by
L the length of the beam at rest (the distance between towers) and x ∈ (0, L) the position on the beam;
p = p(x) the live load and −q < 0 the dead load per unit length applied to the beam;
g = g(x) the displacement of the cable due to the dead load −q;
Lc the length of the cable subject to the dead load −q;
A the cross-sectional area of the cable and Ec its modulus of elasticity;
H the horizontal tension in the cable, when subject to the dead load −q only;
EI the flexural rigidity of the beam;
w = w(x) the displacement of the beam due to the live load p;
h = h(w) the additional tension in the cable produced by the live load p.
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When the system is only subject to the action of dead loads, the cable is in position g(x) while the
unloaded beam is in the horizontal position w ≡ 0, see Figure 2.1. The cable is adjusted in such a way
that it carries its own weight, the weight of the hangers and the weight of the deck (beam) without
producing a bending moment in the beam, so that all additional deformations of the cable and the beam
due to live loads are small. The cable is considered as a perfectly flexible string subject to vertical dead
and live loads. The string is subject to a downwards vertical constant dead load −q and the horizontal
component H > 0 of the tension remains constant. If the mass of the cable is neglected, then the
dead load is distributed per horizontal unit. The resulting equation simply reads Hg′′(x) = q (see [263,
(1.3),VII]) so that the cable takes the shape of a parabola with a ∪-shaped graph. If the endpoints of
the string (top of the towers) are at the same level γ > 0 (as in suspension bridges, see again Figure
2.1), then the solution g and the length Lc of the cable are given by:

g(x)=γ+
q

2H
x(x− L) , g′(x) =

q

H

(
x− L

2

)
, g′′(x) =

q

H
, ∀x ∈ (0, L), (2.1)

Lc=

L∫
0

√
1+g′(x)2 dx. (2.2)

The elastic deformation of the hangers is usually neglected, so that the function w describes both the
displacements of the beam and of the cable from its equilibrium position g. This classical assumption is
justified by precise studies on linearized models, see e.g. [188]. When the live load p is added, a certain
amount p1 of p is carried by the cable whereas the remaining part p − p1 is carried by the bending
stiffness of the beam. In this case, it is well-known [198, 263] that the equation for the displacement w
of the beam is

EI w′′′′(x) = p(x)− p1(x) ∀x ∈ (0, L) . (2.3)

At the same time, the horizontal tension of the cable is increased to H + h(w) and the deflection w is
added to the displacement g. Hence, according to (2.1), the equation which takes into account these
conditions reads (

H + h(w)
)(
g′′(x) + w′′(x)

)
= q − p1(x) ∀x ∈ (0, L) . (2.4)

Then, by combining (2.1)-(2.3)-(2.4), we obtain

EI w′′′′(x)−
(
H + h(w)

)
w′′(x)− q

H
h(w) = p(x) ∀x ∈ (0, L) , (2.5)

which is known in literature as the Melan equation [198, p.77]. The beam representing the bridge is
hinged at its endpoints, which means that the boundary conditions to be associated to (2.5) are

w(0) = w(L) = w′′(0) = w′′(L) = 0 . (2.6)

Theoretical results on the Melan equation (2.5) are quite demanding [122, 128] and this is the reason
why it has attracted the attention of numerical analysts [236, 237, 238, 270]. In this chapter, which is
based on the published article [126], we analyze and quantify the two main nonlinear (and challenging)
behaviors of (2.5). The first one is the additional tension of the cable, h(w) which is a nonlocal term
and is proportional to the length increment of the cable. Depending on the deflection of the beam,
the cable may vary its shape and tension, and such phenomenon is studied in Section 2.1 where we
compute the exact thresholds of shortening, depending on the deflection w. In Theorem 2.1 we show
that there is a striking difference between the even and odd vibrating modes of the beam. The second
source of nonlinearity is the possible slackening of the hangers which, however, is not considered in (2.5)
due to the assumption of inextensibility of the hangers. Indeed, w in (2.5) aims to represent both the
deflections of the beam and of the cable, implying that the cable reaches the new position g + w. But
since the hangers do not resist to compression, they may slacken so that the cable and the beam move
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independently and w will no longer represent the displacement of the cable from its original position.
This phenomenon is analyzed in detail in Section 2.2 where we suggest an improved version of (2.5)
which also takes into account the slackening of the hangers, see (2.15). In Section 2.3 we extend this
study to a partially hinged rectangular plate aiming to model the deck of a bridge and thereby having
two opposite edges completely free: we view these free edges as beams sustained by cables and governed
by the Melan equation. The results are complemented with some enlightening figures.

2.1 Thresholds for cable shortening in a beam model

A given displacement of the deck w ∈ C1([0, L],R) generates an additional tension h(w) in the cable
that is proportional to the increment of length of the cable Γ(w), that is,

h(w) =
EcA

Lc
Γ(w) where Γ(w) =

L∫
0

[√
1 +

(
w′(x) + g′(x)

)2 −√1 + g′(x)2
]
dx . (2.7)

Definition 2.1. We say that a displacement w shortens the cable if Γ(w) < 0.

There are at least three rude ways to approximate h(w), by replacing Γ(w) with

− q
H

∫ L

0
w(x)dx, − q

H

∫ L

0
w(x)dx+

∫ L

0

w′(x)2

2 dx, − q
H

∫ L

0

w(x)[
1+

q2

H2

(
x−L2

)2
]3/2dx.

These approximations are obtained through an erroneous argument. While introducing (2.5), Biot-von
Kármán [263] warn the reader by writing whereas the deflection of the beam may be considered small, the
deflection of the string, i.e., the deviation of its shape from a straight line, has to be considered as of finite
magnitude. However, they later decide to neglect g′(x)2 in comparison with unity. A similar mistake with
a different result is repeated by Timoshenko [259, 260]. These approximations may lead to an average
error of about 5% for h(w). Around 1950 the civil and structural German engineer Franz Dischinger
emphasized the dramatic consequences of bad approximations on the structures and 5% turns out to be a
too large error. Moreover, since related numerical procedures are very unstable, see [122, 236, 237, 238],
also from a mathematical point of view one should analyze the term h(w) with extreme care.

Since the displacement of the deck w, created by a live load p, is the solution of the Melan equation
(2.5), we study here which loads yield a shortening of the cable. In particular, we analyze the fundamental
modes of vibration of the beam so that we consider the following class of live loads:

pn(x) = ρ
(nπ
L

)2
{(nπ

L

)2
EI +H + h

(
ρ sin

(
nπx
L

))}
sin
(nπx
L

)
− q

H
h
(
ρ sin

(
nπx
L

))
∀n ∈ N, (2.8)

for varying values of ρ ∈ R. The load pn consists of a negative constant part − q
Hh
(
ρ sin(nπxL )

)
and

a part that is proportional to the fundamental vibrating modes of the beam sin
(
nπx
L

)
, which are the

eigenfunctions of the following eigenvalue problem:

v′′′′(x) = λv(x) (0 < x < L) , v(0) = v(L) = v′′(0) = v′′(L) = 0 . (2.9)

The reason of this choice for pn is that, after some computations, one sees that the resulting displacement
wn (solution of (2.5)) is proportional to a vibrating mode:

wn(x) = ρ sin
(nπx
L

)
∀x ∈ [0, L]. (2.10)

Whence, |ρ| measures the amplitude of oscillation of the vibrating mode wn. For every n ∈ N, we put
Γn(ρ) := Γ(wn) and from (2.7) we infer that
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Γn(ρ) =

L∫
0

√
1 +

[
q

H

(
x− L

2

)
+
nπ

L
ρ cos

(nπx
L

)]2

dx− Lc ∀ρ ∈ R. (2.11)

In the next result we emphasize a striking difference between even and odd modes.

Theorem 2.1. Assume that q
H < 2

5 .
• If n ≥ 1 is even, then Γn(ρ) ≥ 0 for all ρ; therefore, an even vibrating mode cannot shorten the cable.
• If n ≥ 1 is odd, then there exists a (unique) critical value ρ∗n > 0 such that Γn(ρ∗n) = 0 and Γn(ρ) < 0
for all ρ ∈ (0, ρ∗n); therefore, odd vibrating modes shorten the cable when their amplitude of oscillation ρ
is within this interval.

Theorem 2.1 is proved in Section 2.4. The assumption q/H < 2/5 in Theorem 2.1 is verified in
the vast majority of real suspension bridges. For instance, for the numerical data employed in [270], it
happens that q/H = 1.739 × 10−3 [m−1]. Moreover, as reported in [221, Section 15.17], the sag-span
ratio in a suspension bridge always lies in the range ( 1

12 ,
1
8). In view of (2.1), this means that

L

12
< g(0)− g

(
L

2

)
<
L

8
or, equivalently,

2

3L
<

q

H
<

1

L
.

Therefore, the assumption q
H < 2

5 is valid for any suspension bridges with a span of at least 2.5 [m]! In
any case, numerical results seem to show that the assumption q

H < 2
5 is not necessary for the validity of

Theorem 2.1.
Related to ρ∗n, as characterized by Theorem 2.1, we introduce the quantity

ξ∗n = ρ∗n

(nπ
L

)2
{(nπ

L

)2
EI +H +

EcA

Lc
Γ
(
ρ∗n sin

(
nπx
L

) )}
∀n ∈ N, (2.12)

which is the amplitude of oscillation of the live load pn in (2.8) that generates the critical oscillation
w∗n(x) = ρ∗n sin(nπxL ). Throughout this chapter, as far as numerical data are needed, we use the parame-
ters taken from [270]:

L = 460 [m], EI = 57× 106 [kN ·m], EcA = 36× 106 [kN ],
q

H
= 1.739× 10−3 [m−1]. (2.13)

Table 2.1 shows the critical values of ρ∗n and ξ∗n (according to Theorem 2.1 and (2.12)), as functions of
some odd values of n ∈ N.

n 1 3 5 7 9 11 13 15 17 19
ρ∗n 94.807 3.056 0.657 0.239 0.112 0.061 0.037 0.024 0.016 0.011
ξ∗n 444.016 156.115 125.811 124.578 132.962 145.676 160.734 177.192 194.559 212.620

Table 2.1: Critical coefficients for cable shortening in odd-vibrating modes.

As stated in Theorem 2.1, even modes never shorten the cable. This does not mean that odd
modes are “worse” or more prone to elongate the cable. On the contrary, thinking of a periodic-in-time
oscillation proportional to a vibrating mode (2.10), that is,

ρ(t) sin
(nπx
L

)
∀x ∈ [0, L], ∀t > 0 ,

with ρ(t) varying between ±ρ, we reach the opposite conclusion. To see this, in Figure 2.2 we plot the
graphs of Γ2 and Γ3 and we see that

max{Γ3(ρ),Γ3(−ρ)} > max{Γ2(ρ),Γ2(−ρ)} = Γ2(ρ) .
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Therefore, even if the cable shortens when ρ(t) ∈ (0, ρ∗3) for the third mode, the cable itself elongates
more than for the second mode when ρ(t) < 0. We come back to this issue in Section 2.3.
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Figure 2.2: Increment of cable length in the second (left) and third (right) vibrating modes.

2.2 Thresholds for hangers slackening in a beam model

In this section we estimate the thresholds that provoke the slackening of some hangers. Since the hangers
resist to extension but not to compression, if the deck goes too high above its equilibrium position, then
the hangers may no longer be considered as rigid inextensible bars. In particular, they will not push
upwards the cable in such a way that it loses convexity: the general principles governing the deformation
of a finite-length cable under the action of a downwards vertical load (see [263, (1.3), VII]) indicate that
the cable remains convex. This means that if g+w is not convex, then it does not describe the position
of the cable anymore.

In order to explain how the Melan equation (2.5) should be modified in case of hanger slackening we
briefly recall the concept of convexification which can be formalized in several equivalent ways, see [92,
(3.2), I] for full details.

Let I ⊂ R be a compact interval. The convexification f∗∗ of a continuous function f : I → R is:
• the pointwise supremum of all the affine functions everywhere less than f ;
• the pointwise supremum of all the convex functions everywhere less than f ;
• the largest convex function everywhere less than or equal to f ;
• the convex function whose epigraph is the closed convex hull of the epigraph of f ;
• the second Fenchel conjugate of f , that is,

f∗∗(x) = sup
y∈R
{xy − f∗(y)} ∀x ∈ I , where f∗(y) = max

x∈I
{yx− f(x)} ∀y ∈ R .

This notion enables us to give the following:

Definition 2.2. We say that a displacement w slackens the hangers in some (nonempty) interval
(a, b) ⊂ [0, L] if the graph of

z := g + w (2.14)

lies strictly above that of its convexification z∗∗ in (a, b). Then, the slackening region S ⊂ [0, L] is the
union of all the slackening intervals, that is,

S = {x ∈ (0, L) | z(x) > z∗∗(x)} .

In the slackening region, not only the Melan equation (2.5) is incorrect but also (2.3) fails since the
whole amount of live load is carried by the beam: one has p1(x) = 0 for all x ∈ S. Therefore (2.5) should
be replaced with the more reliable equation

EI w′′′′(x) +
(
χS(w)− 1

)((
H + h(w)

)
w′′(x) +

q

H
h(w)

)
= p(x) ∀x ∈ (0, L) (2.15)
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where χS(w) is the characteristic function (that depends on w) of the slackening region S, see Definition
2.2. We summarize these results in the following statement.

Proposition 2.1. In absence of slackening (S = ∅) the two equations (2.5) and (2.15) coincide; in this
case, the solution w represents the displacement of the beam whereas z in (2.14) represents the position
of the cable.

In presence of slackening (S 6= ∅) the correct equation is (2.15) and the position of the cable is
described by z∗∗.

The term (χS(w) − 1) adds a further nonlinearity to the Melan equation (2.5). As far as we are
aware, there is no general theory to tackle equations such as (2.15). It would therefore be interesting to
study its features in detail.

Although the exact slackening region is difficult to determine, it is clear that the non-convexity
intervals of z in (2.14) represent proper subsets of these regions. Therefore, we have

Proposition 2.2. Let w be the solution of (2.15) and let z be as in (2.14). If S 6= ∅, then

{x ∈ (0, L); z′′(x) ≤ 0} $ S .

We now apply Proposition 2.1 to the case of the loads pn in (2.8).

Proposition 2.3. Let pn and wn be as in (2.8) and (2.10). Let

C∗n :=
q

H

(
L

nπ

)2

∀n ∈ N . (2.16)

Slackening occurs if and only if

ρ > C∗1 when n = 1 , |ρ| > C∗n when n ≥ 2 ; (2.17)

in this case, the position of the cable is described by z∗∗n (with zn = g + wn).

The proof of Proposition 2.3 is fairly simple. The slackening region of wn is nonempty if and only if
there exists x ∈ (0, L) such that z′′n(x) < 0, where

zn(x) = g(x) + wn(x) = γ +
q

2H
x(x− L) + ρ sin

(nπx
L

)
∀x ∈ [0, L].

This property translates into

∃x ∈ (0, L) such that ρ sin
(nπx
L

)
> C∗n ,

which is equivalent to (2.17).
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Figure 2.3: Slackening of the third vibrating mode when ρ3 < −C∗3 (left) and when ρ3 > C∗3 (right).
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Since it is by far nontrivial to determine explicitly the convexification of zn and the slackening region
Sn, we follow a numerical-geometrical approach, that is, we plot the closed convex hull of the epigraph of
zn. We take again the numerical values (2.13). In order to illustrate the procedure, consider the function
z3 (with γ = 0, since we are only interested in the shape of the curve), whose slackening threshold is
C∗3 ≈ 4.1426. By putting amplitudes of ρ3 = ±10, we obtained the graphs of z3 in Figure 2.3 where
the slackening intervals have been highlighted over the horizontal axis, and the closed convex hull of the
epigraph of z3 has been shaded. Similarly, by putting amplitudes of ρ5 = ±5, we obtained the plots
displayed in Figure 2.4 for the graphs of z5 (for which C∗5 ≈ 1.4913):
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Figure 2.4: Slackening of the fifth vibrating mode when ρ5 < −C∗5 (left) and when ρ5 > C∗5 (right).

It is worthwhile noticing that the hangers slackening in even modes occurs asymmetrically with
respect to the center of the beam but, at the same time, symmetrically with respect to the value of ρn.
To clarify this point, in Figure 2.5 we display the graphs of z2 (where C∗2 ≈ 9.3208) when ρ2 = −20,
and of z4 (where C∗4 ≈ 2.3301) when ρ4 = 8. The remaining figures when ρ2 > C∗2 or ρ4 < −C∗4 may be
obtained by simply reflecting the curves with respect to the center of the beam.
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Figure 2.5: Slackening of the second vibrating mode when ρ2 < −C∗2 (left), and of the fourth vibrating
mode when ρ4 > C∗4 (right).

The numerical values of C∗n for n ≤ 10 are reported in Table 2.2 where we used the parameters as in
(2.13).

One last issue must be addressed. In some of the pictures in Figures 2.3, 2.4 and 2.5 we observe that
the endpoints of the deck x = 0 and x = L actually belong to the slackening region Sn. This is clearly
a physically impossible situation since the hangers are not expected to slacken at the endpoints of the
beam. Geometrically, one expects instead that the tangent lines to the curve at the endpoints of the
beam lie strictly below the graph of zn in (0, L), that is:

zn(x) > max{z′n(0)x, z′n(L)(x− L)} ∀x ∈ (0, L), ∀n ∈ N. (2.18)

Clearly, condition (2.18) is not satisfied for large values of |ρn|, but it remains valid even when |ρn| is
slightly larger than the slackening (and convexity) threshold (2.16). For the first ten vibrating modes,
we numerically computed the threshold ρ∗∗n that ensures condition (2.18), when |ρn| ≤ ρ∗∗n (if n is even)
and ρn ≤ ρ∗∗n (if n is odd), with the parameters as in (2.13). We obtained the second line in Table 2.2.
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n 1 2 3 4 5 6 7 8 9 10
C∗n 37.283 9.321 4.143 2.330 1.491 1.035 0.761 0.582 0.460 0.372
ρ∗∗n 58.564 14.641 6.507 3.660 2.342 1.626 1.195 0.915 0.723 0.585

Table 2.2: Thresholds for non-convexity and hangers slackening in the first ten vibrating modes.

2.3 Behavior of cables and hangers in a plate model

The deck of a real bridge cannot be described by a simple (one-dimensional) beam since it fails to display
torsional oscillations. In this section we take advantage of the results so far obtained in order to analyze
the vibrating modes of a rectangular plate Ω = (0, π) × (−`, `) (2` > 0 is the width of the plate and
2` � π); for simplicity, we take here L = π. Specifically, we consider a partially hinged plate whose
elastic energy is given by the Kirchhoff-Love functional, see [206, 251] for discussions on the boundary
conditions and updated derivation of the corresponding Euler-Lagrange equation. From [97] we know
that the vibrating modes of the plate Ω are obtained by solving the following eigenvalue problem

∆2u = λu for (x, y) ∈ Ω
u = uxx = 0 for (x, y) ∈ {0, π} × (−`, `)
uyy + σuxx = uyyy + (2− σ)uxxy = 0 for (x, y) ∈ (0, π)× {−`, `} ,

(2.19)

where σ ∈
(
0, 1

2

)
is the Poisson ratio. The boundary conditions for x = 0 and x = π show that the short

edges of the plate are hinged, while the conditions for y = ±` show that the plate is free on the long
edges. Problem (2.19) is the two-dimensional counterpart of (2.9). From [97] we also know that the
eigenvalues of (2.19) may be ordered in an increasing sequence of strictly positive numbers diverging to
+∞. Correspondingly, the eigenfunctions are identified by two indices m, k ∈ N+ and they have one of
the following forms:

Wm,k(x, y) = ϕm,k(y) sin(mx) with corresponding eigenvalue νm,k ,

Wm,k(x, y) = ψm,k(y) sin(mx) with corresponding eigenvalue µm,k .

The ϕm,k are odd while the ψm,k are even and this is why the Wm,k are called torsional eigenfunctions
while the Wm,k are called longitudinal eigenfunctions. The main difference between these two classes
is precisely that Wm,k(x, `) = Wm,k(x,−`) so that the free edges y = ±` are in the same position for
longitudinal vibrations, while Wm,k(x, `) = −Wm,k(x,−`) so that the free edges are in opposite positions
for torsional vibrations.

We first deal with the slightly more complicated case of torsional vibrating modes. Then the eigen-
values νm,k are the (ordered) solutions λ > m4 of the following equation:√
λ1/2 −m2[λ1/2+(1−σ)m2]2 tanh(`

√
λ1/2 +m2) =

√
λ1/2 +m2[λ1/2−(1−σ)m2]2 tanh(`

√
λ1/2 −m2) ,

while the function ϕm,k may be taken as

ϕm,k(y) =
[
ν

1/2
m,k −(1−σ)m2

] sinh

(
y
√
ν

1/2
m,k+m2

)
sinh

(
`
√
ν

1/2
m,k+m2

) +
[
ν

1/2
m,k +(1−σ)m2

] sin

(
y
√
ν

1/2
m,k−m2

)
sin

(
`
√
ν

1/2
m,k−m2

) ,
see [97]. In particular, ϕm,k(`) = 2

√
νm,k = −ϕm,k(−`).

We view both the free edges of the plate y = ±` as beams connected to a cable and governed by the
modified Melan equation (2.15). Then we take the following function as a solution of (2.15):

wm,k(x) := αWm,k(x, `) = αϕm,k(`) sin(mx) = 2α
√
νm,k sin(mx) ∀x ∈ [0, π], (2.20)

19



for m, k ∈ N and α ∈ R, a function that belongs to the family of eigenfunctions of (2.9), see (2.10),
assuming that L = π. As already mentioned, together with wm,k in (2.20), for torsional modes one needs
to consider also its companion −wm,k.

For longitudinal modes, one has to replace wm,k in (2.20) with

wm,k(x) := αWm,k(x, `) = αψm,k(`) sin(mx) ∀x ∈ [0, π], (2.21)

where ψm,k(`) depends on the longitudinal eigenvalue µm,k of (2.19); see [97] for the precise characteri-
zation of µm,k. For longitudinal modes, the behavior is the same on the two opposite edges.

The above discussion, combined with Theorem 2.1, yields the following statement.

Proposition 2.4. Assume that q
H < 2

5 .
• If m ≥ 1 is even, then the vibrating mode (either torsional or longitudinal) cannot shorten the cable.
• If m ≥ 1 is odd and the mode is longitudinal, then there exists a (unique) critical value α∗ = α∗m,k > 0
such that for α ∈ (0, α∗) both the cables are shortened while for other values of α no cable is shortened.
• If m ≥ 1 is odd and the mode is torsional, then there exists a (unique) critical value α∗ = α∗m,k > 0
such that for 0 < |α| < α∗ one and only one cable is shortened, while for other values of α no cable is
shortened.

Following the guideline of Section 2.1, one may then determine the exact critical values α∗m,k (for
odd m). It suffices to consider the critical values ρ∗n from Theorem 2.1 and to take

α∗m,k =
ρ∗m

ϕm,k(`)
or α∗m,k =

ρ∗m
ψm,k(`)

,

depending on whether the vibration is torsional or longitudinal.
Regarding slackening and the loss of convexity, the above discussion, combined with Propositions 2.2

and 2.3, yields the following statement.

Proposition 2.5. Let w be the solution of (2.15) and assume that one of the free edges of Ω is in
position w. Let z be as in (2.14). If S 6= ∅, then

{x ∈ (0, L); z′′(x) ≤ 0} $ S .

In particular, if wm,k in (2.20) (resp. wm,k in (2.21)) is the position of one of the free edges of Ω,
then slackening of the hangers on that edge occurs if and only if

α1 >
q

Hϕ1,k(`)
when m = 1 , |αm| >

q

Hm2ϕm,k(`)
when m ≥ 2(

resp. α1 >
q

Hψ1,k(`)
when m = 1 , |αm| >

q

Hm2ψm,k(`)
when m ≥ 2

)
;

in this case, the position of the cable is described by z∗∗m,k (with zm,k = g+wm,k, resp. zm,k = g+wm,k).

The final step consists in considering the evolution equation modeling the vibrations of the partially
hinged rectangular plate Ω. According to [97], this leads to the following fourth-order wave-type equation:

utt + ∆2u = 0 for (x, y, t) ∈ Ω× R+

u = uxx = 0 for (x, y, t) ∈ {0, π} × (−`, `)× R+

uyy + σuxx = uyyy + (2− σ)uxxy = 0 for (x, y, t) ∈ (0, π)× {−`, `} × R+ .
(2.22)

We wish to analyze here the evolution of the cable shortening and of the hanger slackening for the
torsional vibrating modes Wm,k of (2.19); as for the stationary case, the behavior of the longitudinal
modes Wm,k is simpler. Therefore, we associate to (2.22) the following initial conditions

u(x, y, 0) = BWm,k(x, y), ut(x, y, 0) = 0 ∀(x, y) ∈ Ω, (2.23)
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for some B ∈ R. The problem (2.22)-(2.23) may be solved by separating variables and the solution is

um,k(x, y, t) = B cos
(√
νm,k t

)
Wm,k(x, y) ∀(x, y, t) ∈ Ω× R+ . (2.24)

Again, we view both the free edges of Ω as beams connected to a cable and governed by the modified
Melan equation (2.15). Therefore, we consider the restriction to the free edge y = ` (the case y = −`
being similar) of the function um,k in (2.24):

vm,k(x, t) := um,k(x, `, t) = B cos
(√
νm,k t

)
ϕm,k(`) sin(mx) ∀(x, t) ∈ (0, π)× R+ , (2.25)

see (2.20). Similarly, for the longitudinal modes, we consider the function

vm,k(x, t) := B cos
(√
µm,k t

)
ψm,k(`) sin(mx) ∀(x, t) ∈ (0, π)× R+ , (2.26)

see (2.21). We are interested in determining the conditions under which the cables shorten their length
(in odd vibrating modes) or when the hangers slacken. Unlike the preceding situations, such conditions
will now be observed over a space-time region, because the coefficients representing the amplitude of the
expressions (2.25) and (2.26) are periodic functions in time.

Concerning the shortening of the cables, we introduce some notations. Let α∗m,k > 0 be as in
Proposition 2.4. If m ≥ 1 is odd and the mode is longitudinal, put

IS = {t ≥ 0; 0 < B cos(
√
µm,k t) < α∗m,k} , IN = R+ \ IS .

If m ≥ 1 is odd and the mode is torsional, put

IS = {t ≥ 0; 0 < |B cos(
√
νm,k t)| < α∗m,k} , IN = R+ \ IS .

Note that all these sets are nonempty, although IN may have null measure: this happens if |B| ≤ α∗m,k.
Then, from Proposition 2.4 we deduce the following statement.

-0.00010 -0.00005 0.00000 0.00005 0.00010
0.00

0.01

0.02

0.03

0.04

0.05

B

t

Figure 2.6: For B ∈ [−0.0001, 0.0001], values of t ∈ IS (shaded) provoking cable shortening in the third
torsional mode.

Proposition 2.6. Assume that q
H < 2

5 .
• If m ≥ 1 is even, then the vibrating mode (either torsional or longitudinal) does not shorten the cables
for any t > 0.
• If m ≥ 1 is odd and the mode is longitudinal, then both the cables are shortened if t ∈ IS whereas no
cable is shortened if t ∈ IN .
• If m ≥ 1 is odd and the mode is torsional, then one and only one cable is shortened when t ∈ IS

whereas no cable is shortened if t ∈ IN .
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Once more we emphasize the striking difference between odd and even modes. Proposition 2.6 is
illustrated in Figure 2.6 by shading the sub-regions of the rectangle (B, t) ∈ [−0.0001, 0.0001]× [0, 0.05]
in which t ∈ IS for the third torsional mode. It turns out that for 0 < |B| / 0.000032, for almost
every t > 0 one (and only one) cable is shortened, whereas for larger values of |B| the white regions (no
shortening) have positive measure.

Also the slackening of the hangers (and the loss of convexity) in all the vibrating modes is now
observed in a space-time region which periodically-in-time reproduces itself. In order to discuss together
the longitudinal and torsional cases, we use the same notation to denote the function to be convexified:

zm,k(x, t) = g(x) + vm,k(x, t)
(

resp. zm,k(x, t) = g(x) + vm,k(x, t)
)

∀(x, t) ∈ (0, π)× R+ , (2.27)

where vm,k and vm,k are as in (2.25) and (2.26). Concerning the non-convexity regions, for a given B ∈ R
they are characterized by the points (x, t) ∈ [0, π]× [0,∞) that satisfy the inequality:

∂2zm,k
∂x2

(x, t) ≤ 0

or, equivalently, by the points (x, t) ∈ [0, π]× [0,∞) in which:

Bm2ϕm,k(`) cos
(√
νm,k t

)
sin (mx) ≥ q

H

(
resp. Bm2ψm,k(`) cos

(√
νm,k t

)
sin (mx) ≥ q

H

)
. (2.28)

Notice that inequality (2.28) defines a region of R2 of positive measure only when |B| > C∗m,k, where the
convexity threshold is now given by:

C∗m,k =
q

Hm2ϕm,k(`)
for the torsional modes, C∗m,k =

q

Hm2ψm,k(`)
for the longitudinal modes,

for every integers m, k ≥ 1. Precisely, given B ∈ R and integers m and k, let us put:

αm,k(t) = B cos
(√
νm,k t

) (
resp. αm,k(t) = B cos

(√
µm,k t

) )
∀t ≥ 0.

Then, as a consequence of Proposition 2.5, we obtain the following statement.

Proposition 2.7. Let u be the solution of (2.22) and assume that one of the free edges of Ω is in
position vm,k as in (2.25) or vm,k as in (2.26). Let zm,k be as in (2.27), depending on the vibrating mode
considered. If |B| > C∗m,k, then S 6= ∅. Furthermore, whenever |αm,k(t)| > C∗m,k we have:{

x ∈ (0, π) | ∂
2zm,k
∂x2

(x, t) ≤ 0

}
$ S .

More precisely, if |B| > C∗m,k and if vm,k in (2.25) (resp. vm,k in (2.26)) is the position of one of the
free edges of Ω, then slackening of the hangers on that edge occurs for all t > 0 such that:

α1,k(t) >
q

Hϕ1,k(`)
when m = 1 , |αm,k(t)| >

q

Hm2ϕm,k(`)
when m ≥ 2(

resp. α1,k(t) >
q

Hψ1,k(`)
when m = 1 , |αm,k(t)| >

q

Hm2ψm,k(`)
when m ≥ 2

)
;

in this case, the position of the cable is described by z∗∗m,k, with zm,k = g + vm,k as in (2.27).

Proposition 2.7 defines the slackening regions in the (x, t)-plane. Since these are difficult to determine
explicitly, we focus our attention on the non-convexity regions. As a first example, we take the second
torsional mode, whose convexity threshold is C∗2,1 ≈ 1.52 × 10−4. In this case, setting B = ±2 × 10−4

and considering the rectangle (x, t) ∈ [0, π]× [0, 0.035], we obtained Figure 2.7.
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Figure 2.7: Non-convexity region of the second torsional mode for a time-varying amplitude.

Similar plots are obtained for the function z3,1, whose convexity threshold is C∗3,1 ≈ 4.5× 10−5. By

taking B = ±1×10−4, we get the following sub-region of the space-time rectangle (x, t) ∈ [0, π]×[0, 0.025]
defined by Proposition 2.7:
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Figure 2.8: Non-convexity region of the third torsional mode for a time-varying amplitude.

All these plots may also be read by assuming that the right and left pictures represent simultaneously
the non-convexity intervals for each cable, as far as torsional vibrations are involved: for any given t > 0
one should cross horizontally the two pictures in order to find which part of the interval (0, π) of the
two cables would be non-convex. In fact, the non-convexity regions are proper subsets of the slackening
regions, see Proposition 2.7. Hence, the slackening regions are slightly wider in the x-direction than the
“ellipses” in the above plots. This fact is illustrated in Figure 2.9 where we compare the non-convexity
and slackening regions in the third torsional mode.

2.4 Proof of Theorem 2.1

The first step is a technical lemma which involves hyper-geometric integrals:
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Figure 2.9: Slackening region for the third torsional mode

Lemma 2.1. For odd n ∈ N and 0 < µ < 2
5 we have

Gn :=

π/2∫
0

t sin(nt)√
1 + (µt)2

dt

{
> 0 if n ≡ 1 (mod 4)
< 0 if n ≡ 3 (mod 4).

(2.29)

Proof. For t ∈ R such that |t| < 1

µ
, the following power expansion is valid:

1√
1 + (µt)2

=
∞∑
k=0

(−1/2

k

)
(µt)2k.

Therefore, since µ < 2
5 , for all t ∈

[
0,
π

2

]
we can write:

Gn =

∞∑
k=0

(−1/2

k

)
In,k µ

2k ∀n ∈ N, where In,k =

π/2∫
0

t2k+1 sin(nt) dt ∀n, k ∈ N. (2.30)

Since we are considering odd values of n ∈ N, after integrating by parts twice In,k in (2.30) we obtain:

In,k = −2k(2k + 1)

n2
In,k−1 + δ(n)

2k + 1

n2

(π
2

)2k
∀k ≥ 1,

with In,0 =
δ(n)

n2
, for every odd n ∈ N, and:

δ(n) =

{
1 if n ≡ 1 (mod 4)

−1 if n ≡ 3 (mod 4).
(2.31)

An inductive argument over k ≥ 1 allows then to deduce

In,k = δ(n)
k∑
j=0

(−1)k+j

n2(k+1−j)
(2k + 1)!

(2j)!

(π
2

)2j
∀k ≥ 1. (2.32)
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Our first claim is that In,k > 0 when n ≡ 1 (mod 4), and that In,k < 0 when n ≡ 3 (mod 4), for all
k ∈ N. But, according to (2.31) and the form of expression (2.32), it suffices to show that:

Jn,k := (−1)k
k∑
j=0

(−1)j

(2j)!

(nπ
2

)2j
> 0 ∀n ∈ N odd, k ≥ 1. (2.33)

In order to prove (2.33), we distinguish two cases.

• Case (A): k >

√
1 + (nπ)2 − 7

4
. Since n ∈ N is odd, we know that

0 = cos
(nπ

2

)
=

k∑
j=0

(−1)j

(2j)!

(nπ
2

)2j
+

∞∑
j=k+1

(−1)j

(2j)!

(nπ
2

)2j
. (2.34)

We put aj =
1

(2j)!

(nπ
2

)2j
and observe that, for every j ≥ 1,

aj
aj−1

=
(nπ)2

8j(2j − 1)
< 1 ⇐⇒ j >

√
1 + (nπ)2 + 1

4
.

Hence, the Leibniz criterion can be applied to the tail series
∑∞

j=k+1(−1)jaj if j >

√
1+(nπ)2+1

4 . But
since the first ratio to be considered is ak+2/ak+1, the Leibniz criterion may be applied whenever

k + 2 >

√
1 + (nπ)2 + 1

4
⇐⇒ k >

√
1 + (nπ)2 − 7

4
,

which is precisely the case considered. Therefore, the tail series
∑∞

j=k+1(−1)jaj has the same sign as

(−1)k+1. In view of (2.34), the finite sum
∑k

j=0(−1)jaj has the sign of (−1)k, that is, the opposite sign
of the tail series. In turn, Jn,k > 0 in this case, for all odd values of n ∈ N.

• Case (B): k <

√
1+(nπ)2−7

4 . We distinguish here further between odd and even values of k. For even
k ∈ N, we may write

Jn,k = 1 +

k/2∑
i=1

(a2i − a2i−1)

and, since 2i ≤ k, all the terms in the sum are positive in view of the assumption of case B. Therefore,
Jn,k > 0 for even k.

For odd k ∈ N, we may write

Jn,k =

k−1
2∑
i=0

(a2i+1 − a2i)

and, since 2i+1 ≤ k, all the terms in the sum are positive in view of the assumption of case B. Therefore,
Jn,k > 0 also for odd k.

Inequality (2.33) is so proved for all n and k. Let us now fix an integer n ≡ 1 (mod 4) (the case
when n ≡ 3 (mod 4) follows a completely analogous procedure). As a consequence of (2.33), we obtain
the upper bound:

In,k = −2k(2k + 1)

n2

(2k − 1)!

n2k
Jn,k−1 +

2k + 1

n2

(π
2

)2k
<

2k + 1

n2

(π
2

)2k
∀k ≥ 1. (2.35)

Back to (2.30), we may write:

Gn =
1

n2
+
∞∑
k=1

(−1/2

k

) k∑
j=0

(−1)k+j

n2(k+1−j)
(2k + 1)!

(2j)!

(π
2

)2j

µ2k. (2.36)
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We observe that the binomial coefficient
(−1/2

k

)
is negative when k is odd and positive otherwise. Fur-

thermore, if we put

bk :=

∣∣∣∣(−1/2

k

)∣∣∣∣ ∀k ≥ 1,

then one has that
bk+1

bk
=

2k + 1

2k + 2
< 1 ∀k ≥ 1, (2.37)

so that bk ≤ b1 = 1/2 for all k ≥ 1. Since in (2.36) all the terms in the sum over j ∈ {0, . . . , k} are
strictly positive as a consequence of (2.33), by exploiting (2.35) and (2.37) we obtain

Gn >
1

n2
−

∞∑
k=1
k odd

1

2

2k + 1

n2

(µπ
2

)2k
=

1

n2

1− 1

2

∞∑
p=0

(4p+ 3)
(µπ

2

)4p+2

 .
For every x ∈ (−1, 1), the geometric series can be differentiated term by term, that is,

d

dx

 ∞∑
p=0

x4p+3

 =

∞∑
p=0

(4p+ 3)x4p+2 =
d

dx

(
x3

1− x4

)
=
x6 + 3x2

(1− x4)2
∀x ∈ (−1, 1).

Hence, we finally infer that

Gn >
1

n2

1−

(µπ
2

)6
+ 3

(µπ
2

)2

2

[
1−

(µπ
2

)4
]2

 . (2.38)

Some computations show that the right-hand side of (2.38) is strictly positive (at least) when
µπ

2
< 0.65,

so in particular, when µ < 0.4. This concludes the proof. 2

For the sake of illustration, in Table 2.3 we give the numerical approximation of Gn, for odd values
of n ∈ N up to n = 19, when µ = 1.739× 10−3 (as in (2.13)):

n 1 3 5 7 9 11 13 15 17 19

Gn 0.9999 -0.1111 0.0399 -0.0204 0.0123 -0.0082 0.0059 -0.0044 0.0034 -0.0027

Table 2.3: Numerical values of the integral Gn in (2.29), for some odd values of n ∈ N.

In fact, for every µ ≥ 0 we know that Gn −→ 0 as n −→ ∞, as a direct consequence of the
Riemann-Lebesgue Theorem. This is quite visible also in Table 2.3.

Our second technical result gives a qualitative property of the graph of Γn(ρ).

Lemma 2.2. For all integer n ≥ 1, the map ρ 7→ Γn(ρ) is strictly convex.

Proof. It suffices to analyze the case when L = π, and so:

Γn(ρ) =

π∫
0

√
1 +

[ q
H

(
x− π

2

)
+ nρ cos(nx)

]2
dx− Lc ∀ρ ∈ R, ∀n ∈ N.

After differentiating under the integral sign we obtain the following:

Γ′n(ρ) =

π∫
0

n cos(nx)
[ q
H

(
x− π

2

)
+ nρ cos(nx)

]
√

1 +
[ q
H

(
x− π

2

)
+ nρ cos(nx)

]2
dx, (2.39)
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Γ′′n(ρ) =

π∫
0

[n cos(nx)]2[
1 +

( q
H

(
x− π

2

)
+ nρ cos(nx)

)2
]3/2

dx,

for ρ ∈ R and n ∈ N. Therefore, Γ′′n(ρ) > 0, for every n ≥ 1 and ρ ∈ R, so that Γn is a strictly convex
function all over R. 2

In view of (2.39), we see that

Γ′n(0) =
nq

H

π∫
0

(
x− π

2

)
cos(nx)√

1 +
( q
H

)2 (
x− π

2

)2
dx. (2.40)

If n is even, then the integrand in (2.40) is skew-symmetric with respect to x = π/2 and hence

Γ′n(0) = 0 for even n . (2.41)

If n is odd, then we make the substitution t = x− π

2
and we note that

cos
(
nt+

nπ

2

)
=

{
− sin(nt), if n ≡ 1 (mod 4)

sin(nt), if n ≡ 3 (mod 4),

for all n ≥ 1 and t ∈
[
−π

2
,
π

2

]
. Therefore, after setting µ =

q

H
, we see that Γ′n(0) = −2µnδ(n)Gn if n is

odd. From (2.31) and Lemma 2.1 we then infer that

Γ′n(0) < 0 for odd n . (2.42)

Since Γn(0) = 0 for all n, Theorem 2.1 follows by combining Lemma 2.2 with (2.41) and (2.42).
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Chapter 3

Boundary conditions for planar Stokes
equations inducing vortices around
concave corners

For the remaining parts of this work we analyze exclusively the hydrodynamic component of the fluid-
structure interaction problem considered: the obstacle is assumed to remain static and we study the
interaction between the fluid and the rigid walls of the domain.

Experimental evidence (see, e.g. [35, 78, 87, 272]) shows that, when a fluid hits a bluff body, its
flow is modified and creates vortices around the body (behind it), see Figure 4.1. Vortices may also be

Figure 3.1: Vortices obtained in wind tunnel experiments at the Politecnico di Milano.

detected numerically [103, 109]. Depending on the geometry of the body, a symmetrical or asymmetrical
rotating flow is periodically developed in that hidden part. A detailed description of this phenomenon
is given in [233] but, even in the case of a perfectly circular cylinder, instabilities in the vortex shedding
pattern may appear, see [210, Section 4.2.6]. In the vortex formation, flow separations and reattachments
strongly depend on the Reynolds number through fairly complicated rules (see e.g. [103]), which makes
the analytical and the numerical treatments very challenging. So far, the mathematical modeling of
these phenomena is rather poor and totally unsatisfactory for engineers [139]. A viscous fluid past a
rigid body immersed in the fluid is usually tackled under (no-slip) homogeneous Dirichlet boundary
conditions for the velocity field on the surface of the obstacle, see [169, Chapter 2, Section 2] and [173,
Chapter 2]. But since in the long term we have in mind to study an obstacle representing a suspension
bridge which undergoes oscillations (moving obstacle) [38], an interactive motion of the obstacle should
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also be studied with different boundary conditions, as in [62]. Mixed boundary conditions (based on the
normal velocity, tangential velocity, vorticity and pressure) arise naturally in a network of pipes [195],
in fluid-structure models in hemodynamics [53] and in the thermoelectromagnetic flow of a viscous fluid
[6]. These nonstandard boundary conditions for the Stokes and Navier-Stokes equations were introduced
by Conca et al. [30, 31, 61] (see also [26, 49, 76, 119, 131] for subsequent developments), suggesting an
alternative variational formulation for problems of fluids around an obstacle. Having in mind to explain
the vortex shedding generated by the wind acting on the deck of an oscillating suspension bridge, in
this chapter (which is based on the published article [127]) we pursue a double objective: we discuss
nonstandard variational formulations for the Stokes equations in domains with an obstacle and we
determine possible boundary data which give rise to vortices.

For the first purpose we consider the stationary Stokes equations in a bounded domain Q ⊂ R3:

− η∆u+∇p = f , ∇ · u = 0 in Q , (3.1)

where η > 0 denotes the kinematic viscosity, u : Q → R3 is the velocity field, p : Q → R is the scalar
pressure, f : Q→ R3 is an external force. The domain Q is not simply connected, it contains an obstacle
D ⊂ R3 representing the bridge. It is clear that linear equations such as (3.1) may not be suitable to
describe turbulent regimes and it is by far more realistic to stick to nonlinear equations such as the
Euler equations or the full Navier-Stokes equations, see [189]. Therefore, this chapter should just be
seen as a first attempt to derive some information from the boundary behavior of the solution, possibly
applicable to more sophisticated models: in fact, by assuming a constant transversal behavior of the
force f , we further simplify the study by reducing to a planar domain. This chapter is also a first
contribution to a research project [38], submitted to the Thelam Fund (Belgium) in March 2018. The
variational formulation in [31] is based on the vorticity instead of the gradient of the velocity and this
suggests to impose boundary conditions on the vorticity itself. In the present chapter, we revisit the
procedure in [31] and we extend it to a slightly more general context, see Section 3.1.1 where we reduce
the 3D problem to a 2D problem and we explain in detail the physical model. The well-posedness of
the considered problem is established in Theorem 3.1 in Section 3.1.2. Its proof is based on a nontrivial
application of the Lax-Milgram Theorem. The ellipticity of the related bilinear form depends on the
regularity and the topology of the domain. If a domain with C2-boundary is not simply-connected,
Foias-Temam [101] showed that the subspace of irrotational vector fields is nontrivial (its dimension is
equal to the number of cuts needed to make the domain simply-connected). In [61, Appendix A], the
authors managed to prove the ellipticity of the bilinear form when the domain is a convex polyhedron
or when its boundary is of class C1,1. Although our domain is neither convex, nor a polyhedron, nor of
class C1,1, nor simply-connected, we are still able to demonstrate the ellipticity of the bilinear form by
combining some results contained in [132].

The second purpose of this chapter is to determine boundary conditions and data which yield solutions
of the Stokes equations (3.1) displaying vortices. Obviously, any change in the boundary data strongly
modifies the behavior of the solution. We identify boundary conditions compatible with the considered
variational formulation, although the “optimal choice” of the boundary data remains unclear. We focus
our attention on an unbounded, simply connected planar region having a concave right angle. If on
the one hand simple connectivity enables us to show the existence of a stream function satisfying a
biharmonic equation (see [75] and Section 3.3), on the other hand it is known [137, 197] that existence
and regularity results may fail in nonsmooth domains even if the data are smooth. A variety of methods
have been developed in order to solve biharmonic equations in planar regions [80, 158, 159, 199, 200, 206].
The singularities of solutions in the neighborhood of a concave corner are described through functional
spaces with weighted norms. In most cases, these singularities are of power type (see Borsuk-Kondrat’ev
[40, Chapter 5]), but in the present chapter the singularity will be represented by the composition
between trigonometric and logarithmic functions, see Theorem 3.2 below, and thus characterized by
chaotic oscillations near the angle. In Section 3.4 we determine some boundary conditions and data
that highlight vortices within the explicit solution, in separated-variable form, of (3.1). These boundary
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conditions impose a null normal component of the velocity field (in both faces of the concave angle) and
some value for the scalar vorticity. Our boundary data are also justified by the regularity properties of
the solution: we introduce singular solutions, see Definition 3.2, and we choose data giving rise to this
kind of solutions.

This chapter is organized as follows. In Section 3.1.1 we describe in detail the domain Q, together
with its two-dimensional projection Ω; the nonstandard boundary conditions for the Stokes equations
to be solved in Ω are presented in Section 3.1.2, whose main core is the corresponding existence and
uniqueness result, see Theorem 3.1. In Section 3.2, a review of the method of separation of variables is
carried out for the biharmonic equation in polar coordinates in an unbounded domain Λ ⊂ R2 having a
concave right angle. A class of separated-variable solutions is obtained in Theorem 3.2 that allows us to
characterize, in Section 3.3, singular solutions of the Stokes equations in Λ, see Definition 3.2. Finally,
in Section 3.4 we give explicit singular solutions of the Stokes system in Λ. This is done by considering
two families of boundary conditions: for laminar inflow and for oriented velocity, see Sections 3.4.1 and
3.4.2, respectively. The results are complemented with some figures.

3.1 The Stokes equations with nonstandard boundary conditions

3.1.1 From the three-dimensional problem to the planar problem

In the space R3 we consider the deck of the bridge to be a thin plate defined by

D = (0, π)× (−`, `)× (−d, d), (3.2)

where d � ` � π. To have an idea, one could take ` = π/150 and d = π/1000 (a deck of length 1km,
with the width of about 13m, whose thickness is about 1m). Then we consider the region where the air
surrounds the deck

Q = (0, π)× (−L,L)2 \D, (3.3)

where L� π, for instance L = 100π (100km, an approximation of an unbounded region). The domains
Q and D, as well as their intersections Ω and K with the plane x = π

2 , are represented in Figure 3.2
(not in scale).

Figure 3.2: The domains Q and D (left) and their intersections Ω and K with the plane x = π
2 .

We are interested in solving (3.1) with nonstandard and mixed boundary conditions on the different
parts of ∂Q, depending on the velocity, vorticity and pressure. This is a particular inflow-outflow problem
in a rectangular cylinder (with obstacle) [123]. We model the case where the wind is blowing only in the
y-direction, so that it is reasonable to analyze the planar section of this configuration, as represented in
the right picture of Figure 3.2. Neither the 3D domain Q nor the 2D domain Ω are simply connected.
From now on, all the two-dimensional vector fields will be considered as three-dimensional vector fields,
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assuming that they do not depend on the first variable and that their first component is identically null.
We are so led to study the planar problem of a flow around the rectangle K.

In fact, in this planar setting we consider a smooth rectangular obstacle of width 2` and height 2d,
still denoted by K, whose corners are smoothened by small quarters of circles, as in the left picture of
Figure 3.3. Therefore, K ⊂ (−`, `) × (−d, d), while the open domain Ω = (−L,L)2 \ K is the region
where the air surrounds the obstacle K: they are both represented, not in scale, in the right picture of
Figure 3.3.

Figure 3.3: The obstacle K (left) and the domain Ω (right).

For our purposes, it will be convenient to decompose the boundary of Ω as:

∂Ω = Γ1 ∪ Γ2 ∪ Γ3,

where:

Γ1 = {(y, z) ∈ ∂K | − ` ≤ y < −`+ ε} ⋃ {(y, z) ∈ R2 | y ∈ (−L,L) , z ∈ {−L,L} },
Γ2 = {(y, z) ∈ R2 | y ∈ {−L,L} , z ∈ (−L,L) },
Γ3 = {(y, z) ∈ ∂K | − `+ ε < y ≤ `},

(3.4)

so that the rounded corners on the left side of K belong to Γ1. Therefore, Ω is an open, bounded
and connected set, with a locally Lipschitz boundary and with the interior boundary ∂K of class C1,1.
Consequently, the outward unit normal n̂ is defined almost everywhere on ∂Ω, as a Lipschitz-function
on each connected component of ∂Ω. This model was first suggested in the research project [38, 125].

3.1.2 An existence and uniqueness result

We model the situation in which a constant wind blows in the y-direction, so that the forcing term f
and its potential F read

f = f(y, z) = (w, 0) , F (y, z) = wy ∀(y, z) ∈ Ω, (3.5)

being w > 0 the scalar wind velocity. In this setting, the cross product of two planar vectors (in the
plane spanned by {̂, k̂}) and the curl of a two-dimensional vector field is a three-dimensional vector field
whose only non-null component is the one parallel to ı̂:

u(y, z) = u1(y, z)̂ + u2(y, z)k̂ =⇒ ∇× u =

(
∂u2

∂y
− ∂u1

∂z

)
ı̂ ∀u ∈ C1(Ω)2.

The stationary Stokes equations are analyzed over the domain Ω:

− η∆u+∇p = f, ∇ · u = 0 in Ω, (3.6)

where, again, u : Ω → R3 is the velocity field (but with null first component) and p : Ω → R is the
scalar pressure while η > 0 is the kinematic viscosity. Given u0 ∈ H1/2(Γ1)2, p0 ∈ H−1/2(Γ2) and
h ∈ H−1/2(Γ3)2, to (3.6) we associate the following generalized boundary conditions:

u = u0 on Γ1, u× n̂ = 0, p = p0 on Γ2, u · n̂ = 0, (∇× u)× n̂ = h× n̂ on Γ3. (3.7)
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The first condition in (3.7) prescribes the velocity field in all parts of Γ1 (nonhomogeneous Dirichlet
boundary condition), according to the expected physical properties of the problem. The second condition
in (3.7) imposes that the flow is normal on the parts of ∂Ω where the flow is entering and exiting and,
therefore, the pressure will be constant with opposite signs in correspondence of the inflow or outflow
parts. The third condition in (3.7) states that the flow is tangential on Γ3. From a physical point of
view, it would be reasonable to assume that h = 0 on the upper and lower faces of the obstacle K;
nevertheless, we will consider general data h ∈ H−1/2(Γ3)2. On the opposite side of the deck (leeward
wall), the velocity u is tangential as well as the vorticity. This last boundary condition is crucial if one
intends to model the shedding of vortices.

Next, we introduce two functional spaces:

V (Ω)
.
= {v ∈ H1(Ω)2 | ∇ · v = 0 in Ω; v = 0 on Γ1; v × n̂ = 0 on Γ2; v · n̂ = 0 on Γ3},

H(∆,Ω)
.
= {q ∈ L2(Ω) | ∆q ∈ L2(Ω)} .

Since the trace operator is linear and continuous from H1(Ω) to H1/2(∂Ω), we infer that V (Ω) is a
closed subspace of H1(Ω)2 and therefore it constitutes a Hilbert space under the usual scalar product of
H1(Ω)2, defined as:

(u, v)H1(Ω)2
.
= (u1, v1)H1(Ω) + (u2, v2)H1(Ω) ∀u, v ∈ H1(Ω)2.

As explained in [31, Théorème 1.9], all the functions of H(∆,Ω) possess a trace belonging to H−1/2(∂Ω).
We also need to introduce the continuous bilinear form A : H1(Ω)2 ×H1(Ω)2 → R defined by

A(u, v) = η

∫
Ω

(∇× u) · (∇× v) dx ∀u, v ∈ H1(Ω)2; (3.8)

note that the last two components of ∇× u and ∇× v are identically null and that

(∇× u) · (∇× v) =

(
∂u2

∂y
− ∂u1

∂z

)(
∂v2

∂y
− ∂v1

∂z

)
∀u, v ∈ H1(Ω)2.

Finally, we will also need the continuous linear functional L : H1(Ω)2 → R defined by

L(v) =

∫
Ω

f(x) · v(x) dx− 〈p0, v · n̂〉Γ2 + η〈h× n̂, v〉Γ3 ∀v ∈ H1(Ω)2, (3.9)

where 〈·, ·〉Γi denotes the duality product between H−1/2(Γi) and H1/2(Γi) (i ∈ {1, 2, 3}).
As in [31] (see also [61]), for the boundary datum u0 we assume that:

∃U0 ∈ H1(Ω)2 such that


∇ · U0 = 0 in Ω
U0 = u0 on Γ1

U0 × n̂ = 0 on Γ2

U0 · n̂ = 0 on Γ3.

(3.10)

Notice that the existence of such U0 depends on u0 ∈ H1/2(Γ1)2 through the Divergence Theorem: hence,
(3.10) is an assumption on u0. More precisely, consider the space X of solutions of the (incomplete)
problem

∇ · V = 0 in Ω, V × n̂ = 0 on Γ2, V · n̂ = 0 on Γ3.

Then the space of admissible u0 coincides with the traces over Γ1 of functions V ∈ H1(Ω)2 ∩X.
In this functional framework, and under assumption (3.10), we consider the following variational

formulation (suggested in [61, (1.25)]) for the boundary-value problem (3.6)-(3.7):

find u ∈ H1(Ω)2 such that: (u− U0) ∈ V (Ω), A(u, v) = L(v) for every v ∈ V (Ω). (3.11)

32



The next result is the main core of the present section: the existence of a unique solution of the
variational (or weak) problem (4.103) is stated, together with the equivalence between this variational
formulation and the boundary-value problem (3.6)-(3.7), which justifies the validity of the weak formu-
lation (4.103):

Theorem 3.1. If p0 ∈ H−1/2(Γ2) and h ∈ H−1/2(Γ3)2, the variational problem (4.103) has a unique
solution u ∈ H1(Ω)2. The solution u is such that (∇× u) ∈ H(∆,Ω)3 and there exists p ∈ H(∆,Ω)/R
such that u and p are solutions of the boundary-value problem (3.6)-(3.7) in the following sense:

� −η∆u+∇p = f and ∇ · u = 0 in Ω, in distributional sense.

� u satisfies (3.7) over Γ1,Γ2 and Γ3 in the sense of traces of functions belonging to H1(Ω)2, whereas p
and (∇× u) satisfy (3.7) over Γ2 and Γ3 in the following sense:∫

Ω

(−η∆u+∇p) · v(x) dx− η
∫
Ω

(∇×u) · (∇× v) dx = 〈p0, v · n̂〉Γ2 − η〈h× n̂, v〉Γ3 ∀v ∈ V (Ω). (3.12)

Furthermore, if ∇× (∇× u) ∈ L2(Ω)3, then (3.12) implies that:

� p = p0 over Γ2 in the sense of H−1/2(Γ2)/R and (∇ × u) × n̂ = h × n̂ over Γ3, in the sense of
H−1/2(Γ3)3.

Finally, if u ∈ C2(Ω;R2) and p ∈ C1(Ω;R) are classical solutions of the boundary-value problem (3.6)-
(3.7), then u is also a solution of the variational problem (4.103).

The proof of Theorem 3.1 follows closely [61] and a hint is given below. We first make precise what
we intend by V (Ω)-ellipticity:

Definition 3.1. We say that the bilinear form A : H1(Ω)2 × H1(Ω)2 → R is V (Ω)-elliptic if there
exists γ > 0 (which depends only on the domain Ω and its boundary) such that:

A(v, v) = η

∫
Ω

|∇ × v|2 dx ≥ γ‖v‖2H1(Ω)2 ∀v ∈ V (Ω). (3.13)

If the bilinear form A is V (Ω)-elliptic, then the Lax-Milgram Theorem allows us to deduce that the
variational problem (4.103) has a unique solution. To this end, the following results contained in [132,
Chapter I, Section 2 and Section 3] need to be recalled:

Lemma 3.1. Let Φ ⊂ R2 be an open bounded set, with a locally Lipschitz boundary. If Φ is a convex
polygon or if its boundary is of class C1,1, then:
• the space

U(Φ) := {v ∈ L2(Φ)2 | ∇ · v ∈ L2(Φ); ∇× v ∈ L2(Φ)3; v · n̂ = 0 on ∂Φ}, (3.14)

is continuously embedded into H1(Φ)2 and there exists C > 0, depending only on Φ, such that:

‖v‖H1(Φ)2 ≤ C{‖v‖2L2(Φ)2 + ‖∇ · v‖2L2(Φ) + ‖∇ × v‖2L2(Φ)3}1/2 ∀v ∈ U(Φ); (3.15)

• the space

W (Φ) := {v ∈ L2(Φ)2 | ∇ · v ∈ L2(Φ); ∇× v ∈ L2(Φ)3; v × n̂ = 0 on ∂Φ}, (3.16)

is continuously embedded into H1(Φ)2 and there exists C > 0, depending only on Φ, such that:

‖v‖H1(Φ)2 ≤ C{‖v‖2L2(Φ)2 + ‖∇ · v‖2L2(Φ) + ‖∇ × v‖2L2(Φ)3}1/2 ∀v ∈W (Φ). (3.17)
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As in [31, 61], we consider the following subspace of L2(Ω)2:

Ψ(Ω) = {v ∈ L2(Ω)2 | ∇×v ∈ L2(Ω)3; ∇·v = 0 in Ω; v× n̂ = 0 on Γ1∪Γ2; v · n̂ = 0 on Γ1∪Γ3}. (3.18)

This functional space is well-defined since, if v ∈ L2(Ω)2 is such that ∇× v ∈ L2(Ω)3 and ∇ · v ∈ L2(Ω),
then its tangential and normal traces exist, respectively, in the boundary spaces

v × n̂ ∈ H−1/2(∂Ω)3; v · n̂ ∈ H−1/2(∂Ω).

Moreover, Ψ(Ω) is a Hilbert space when endowed with the scalar product

〈v, w〉Ψ(Ω) =

∫
Ω

v · w dx+

∫
Ω

(∇× v) · (∇× w) dx ∀v, w ∈ Ψ(Ω),

with corresponding norm ‖v‖Ψ(Ω) = 〈v, v〉1/2Ψ(Ω). Note that if v ∈ Ψ(Ω), then v = 0 on Γ1, since v × n̂ =

v · n̂ = 0 on Γ1. It is also clear that the space V (Ω) (endowed with the standard norm of H1(Ω)2) is
continuously embedded into Ψ(Ω). Actually, the following result holds; the proof follows the same line
as [61, Theorem A.1] in a slightly different geometric context (a planar domain, neither convex nor with
a C1,1 boundary).

Lemma 3.2. The space Ψ(Ω) is continuously embedded into V (Ω), and therefore Ψ(Ω) = V (Ω) (alge-
braically and topologically).

Proof. We employ a localization argument, similar to the one in [61, Appendix A]. Since Ω ⊂ R2 is
compact, it can covered by a finite number of open disks {θi}mi=1, for some m ≥ 1:

Ω ⊂
m⋃
i=1

θi.

By reducing the radius of the disks {θi}mi=1 (if necessary), we may assume that, if i ∈ {1, . . . ,m} is such
that θi ∩ ∂K 6= ∅, then θi does not intersect any of the faces of Ω contained in the lines y = ±L or
z = ±L. Next, we introduce a partition of unity subordinate to the open cover {θi}mi=1, that is, we
consider a family of functions {αi}mi=1 ⊂ C∞0 (R2) such that:

αi ∈ C∞0 (θi), 0 ≤ αi(x) ≤ 1 for every x ∈ Ω, ∀i ∈ {1, . . . ,m},
m∑
i=1

αi(x) = 1 for every x ∈ Ω.

Therefore, for every function v ∈ Ψ(Ω) we can write:

v(x) =
m∑
i=1

αi(x)v(x) ∀x ∈ Ω,

and Ψ(Ω) is continuously embedded into V (Ω) provided that:
– αiv ∈ H1(Ω)2, for every v ∈ Ψ(Ω) and for every i ∈ {1, . . . ,m};
– there exist C > 0 (depending only on Ω, {θi}mi=1 and {αi}mi=1), such that:

‖αiv‖H1(Ω)2 ≤ C‖v‖Ψ(Ω) ∀v ∈ Ψ(Ω), ∀i ∈ {1, . . . ,m}.

Having these targets in mind, let v ∈ Ψ(Ω) and i ∈ {1, . . . ,m} and let us distinguish two different cases.

• Case (A): θi ∩ ∂Ω = ∅, or θi ∩ ∂Ω 6= ∅ but θi ∩K = ∅. In this case, since ∂Ω is a union of sets having
Lipschitz-continuous boundaries and since αi has compact support in θi, it is not restrictive to assume
that the function αiv is defined in an open and convex subset of θi ∩Ω, which we shall denote by ζi (see
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Figure 3.4: Construction of the open set ζi ⊂ (θi ∩ Ω).

Figure 4.6). Then ζi is a convex polygon and supp(αi) ∩ Ω ⊂ ζi. On the other hand, since v ∈ Ψ(Ω),
we infer that αiv ∈ L2(ζi)

2, ∇ · (αiv) ∈ L2(ζi), ∇× (αiv) ∈ L2(ζi)
3 and that (αiv) × n̂ = 0 in ∂ζi. By

applying Lemma 3.1, we then deduce that αiv ∈ H1(ζi)
2 and that there exists Ci > 0 (depending only

on ζi) such that

‖αiv‖H1(ζi)2 ≤ Ci{‖αiv‖2L2(ζi)2 + ‖∇ · (αiv)‖2L2(ζi)
+ ‖∇ × (αiv)‖2L2(ζi)3}1/2

which, in particular, implies that

‖αiv‖H1(θi∩Ω)2 ≤ Ci{‖αiv‖2L2(θi∩Ω)2 + ‖∇ · (αiv)‖2L2(θi∩Ω) + ‖∇ × (αiv)‖2L2(θi∩Ω)3}1/2. (3.19)

• Case (B): θi ∩K 6= ∅. In this case, since ∂Ω is a union of sets with Lipschitz-continuous boundaries
and since αi has compact support in θi, it is not restrictive to assume that the function αiv is defined
in an open subset of θi ∩Ω, which we shall denote by ζi (see Figure 3.5). In the present situation, since

Figure 3.5: Construction of the open set ζi ⊂ (θi ∩ Ω).

the domain K is smooth, we may establish that ζi has a C1,1 boundary and that supp(αi) ∩Ω ⊂ ζi. On
the other hand, as v ∈ Ψ(Ω), we deduce that αiv ∈ L2(ζi)

2, ∇ · (αiv) ∈ L2(ζi), ∇× (αiv) ∈ L2(ζi)
3 and

that (αiv) · n̂ = 0 in ∂ζi. Then, applying again Lemma 3.1, we infer that αiv ∈ H1(ζi)
2 and that there

exists a constant Ci > 0 (depending only on ζi) such that (3.19) holds.
Hence, (3.19) holds in both cases (A) and (B), that is, it holds for every i ∈ {1, . . . ,m} and, therefore,
there exists C > 0 (depending on Ω, {θi}mi=1 and {αi}mi=1) such that

‖αiv‖H1(Ω)2 ≤ C{‖v‖2L2(Ω)2 + ‖∇ · v‖2L2(Ω) + ‖∇ × v‖2L2(Ω)3}1/2.

Since ∇ · v = 0 in Ω, we finally have that

‖αiv‖H1(Ω)2 ≤ C{‖v‖2L2(Ω)2 + ‖∇ × v‖2L2(Ω)3}1/2

for every v ∈ Ψ(Ω) and i ∈ {1, . . . ,m}. This concludes the proof of the lemma. 2
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Next, we recall that [61, Lemma A.2] implies that

the map defined by V (Ω) 3 v 7→ ‖∇ × v‖L2(Ω)3 is a norm in V (Ω). (3.20)

Proof of Theorem 3.1. We now have all the ingredients to demonstrate that the bilinear form A(·, ·)
is V (Ω)-elliptic. Lemma 3.2 implies the existence of a constant C1 > 0 (depending on Ω) such that:

‖v‖H1(Ω)2 ≤ C1{‖v‖2L2(Ω)2 + ‖∇ × v‖2L2(Ω)3}1/2 ∀v ∈ V (Ω). (3.21)

Therefore, in order to prove the V (Ω)-ellipticity of A(·, ·), it suffices to show the existence of another
constant C2 > 0 (also depending only on Ω) such that:

‖v‖L2(Ω)2 ≤ C2‖∇ × v‖L2(Ω)3 ∀v ∈ V (Ω). (3.22)

For contradiction, assume that (3.22) does not hold. Then, there exists a sequence {vn} ⊂ V (Ω) such
that

‖vn‖L2(Ω)2 = 1, ‖∇ × vn‖L2(Ω)3 ≤ 1

n
∀n ∈ N. (3.23)

Using inequality (4.48), we see that (3.23) implies that the sequence {vn}n∈N is bounded in V (Ω) (with
the standard H1(Ω)2-norm). We may then extract a subsequence {vϕ(n)}n∈N such that

vϕ(n) ⇀ v in H1(Ω)2 and vϕ(n) → v in L2(Ω)2 as n→∞ (3.24)

for some v ∈ V (Ω). But, in this situation, (3.23) implies that ∇×v = 0 in Ω. Therefore, since v ∈ V (Ω),
(3.20) allows us to conclude that v = 0, and hence, (3.23) contradicts (3.24). As a consequence, we
conclude that the bilinear form A(·, ·) is V (Ω)-elliptic, and the Lax-Milgram Theorem then ensures that
the variational problem (4.103) has a unique solution.

Finally, the proofs of the statements related with the equivalence between the variational formulation
(4.103) and the boundary-value problem (3.6)-(3.7) are omitted, since they can be found in [61, Section
1.5]. This concludes the proof of Theorem 3.1.

3.2 An overview of the separation of variables for biharmonic equa-
tions

In this section we survey the method of separation of variables for the biharmonic equation

∆2ψ = 0 in Λ
.
= {(y, z) ∈ R2 | y > 0 or z > 0} =

{
(ρ, θ) ∈ R2

∣∣ ρ > 0, −π
2
< θ < π

}
. (3.25)

We emphasize that, with an abuse of notation, Λ represents the domain both in cartesian and polar
coordinates. In polar coordinates, equation (3.25) becomes:(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

)2

ψ(ρ, θ) = 0 ∀(ρ, θ) ∈ Λ. (3.26)

We here seek a solution of (3.26) having a separated-variable form ψ(ρ, θ) = h(ρ)g(θ), for every (ρ, θ) ∈ Λ,
for some differentiable functions h : (0,∞) → R and g : (−π

2 , π) → R. The complete description of the
solutions of (3.26) in separated variables is contained in Theorem 3.2, the main result of this section. We
initially follow the method employed by Stampouloglou-Theotokoglou [245], which extends the work by
Michell [201], allowing the appearance of solutions of the biharmonic equation having oscillatory forms.
Nevertheless, since in Theorem 3.2 we obtain more separated-variable solutions of (3.26) than in [245,
Section 2], the whole (lengthy and delicate) proof is included for the sake of completeness.
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Theorem 3.2. Let ψ : Λ → R be a solution of (3.26) having a separated-variable form ψ(ρ, θ) =
h(ρ)g(θ), for some smooth functions h : (0,∞) → R and g :

(
−π

2 , π
)
→ R. Then, g is a combination

(sum, product or linear combination) of trigonometric functions, exponentials and polynomials and,
therefore, it is globally bounded over

(
−π

2 , π
)
. Moreover, h may take one of the following forms (for

ρ > 0):

h(ρ) = ρ[C1ρ
a + C2ρ

−a + C3ρ
b + C4ρ

−b],

h(ρ) = C1ρ
3 + C2ρ

−1 + ρ[C3 + C4 log(ρ)],

h(ρ) = C1 + C2 log(ρ) + ρ2[C3 + C4 log(ρ)],

h(ρ) = ρ2[C1 cos(µ log(ρ)) + C2 sin(µ log(ρ))] + C3 cos(µ log(ρ)) + C4 sin(µ log(ρ)),

h(ρ) = ρ[C1 cos(µ log(ρ)) + C2 sin(µ log(ρ))],

(3.27)

for some a, b, µ > 0 and some arbitrary constants C1, C2, C3, C4 ∈ R.

Proof. After replacing into (3.26) the ansatz ψ(ρ, θ) = h(ρ)g(θ), we observe that, in order for the
equation to be fulfilled, the following identity must be satisfied

g(4)(θ) + 2χ(ρ)g′′(θ) +M(ρ)g(θ) = 0 ∀(ρ, θ) ∈ Λ, (3.28)

where

χ(ρ)
.
= ρ2h

′′(ρ)

h(ρ)
− ρh

′(ρ)

h(ρ)
+ 2, M(ρ)

.
= ρ4h

(4)(ρ)

h(ρ)
+ 2ρ3h

′′′(ρ)

h(ρ)
− ρ2h

′′(ρ)

h(ρ)
+ ρ

h′(ρ)

h(ρ)
, (3.29)

for every ρ ∈ (0,∞) such that h(ρ) 6= 0. By differentiating (3.28) with respect to ρ, we obtain

2χ′(ρ)g′′(θ) +M ′(ρ)g(θ) = 0 ∀(ρ, θ) ∈ Λ. (3.30)

At this point, we distinguish two cases.
• Case (I): χ′(ρ) 6= 0. In this situation, assuming that the function g is not identically null over (−π

2 , π)
and, after dividing equation (3.30) by χ′(ρ)g(θ), we infer that

g′′(θ)

g(θ)
= −M

′(ρ)

2χ′(ρ)
∀(ρ, θ) ∈ Λ, (3.31)

so that there exists λ ∈ R such that

g′′(θ)− λg(θ) = 0 ∀θ ∈
(
−π

2
, π
)
. (3.32)

In this precise point our procedure differs from that in [245] since we do not assume that −λ is a squared
integer (a “physical number”, see [245, Section 2]). The reason is that, since the angular region Λ does
not cover the full range [0, 2π] for θ, the function g may not be periodic. Nevertheless, (3.32) shows
that g is a linear combination of trigonometric functions, exponentials and first-order polynomials and,
therefore, it is bounded over (−π

2 , π).

Note that (3.32) implies both g′′(θ) = λg(θ) and g(4)(θ) = λ2g(θ) which, inserted into (3.28), yields

M(ρ) + 2λχ(ρ) + λ2 = 0 ∀ρ ∈ (0,∞). (3.33)

By combining (3.29) with (3.33) we obtain:

ρ4h(4)(ρ) + 2ρ3h′′′(ρ) + ρ2(2λ− 1)h′′(ρ) + ρ(1− 2λ)h′(ρ) + λ(4 + λ)h(ρ) = 0 ∀ρ ∈ (0,∞). (3.34)

After the change of variables t = log(ρ), this equation becomes

h(4)(t)− 4h′′′(t) + (2λ+ 4)h′′(t)− 4λh′(t) + λ(4 + λ)h(t) = 0 ∀t ∈ R. (3.35)
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For a given λ ∈ R, the characteristic polynomial of the ODE (3.35) reads

P (z) = z4 − 4z3 + (2λ+ 4)z2 − 4λz + λ(4 + λ) = (z − 1)4 + 2(λ− 1)(z − 1)2 + (λ+ 1)2

so that P (z) = 0 if and only if (z − 1)2 = 1− λ± 2
√
−λ. In the following list, according to the sign of

λ, the roots z1, z2, z3, z4 ∈ C of P are computed, together with the explicit formula of the corresponding
solution of the ODE (3.34).

• Case (I.1): λ < 0, λ 6= −1. Therefore 1− λ± 2
√
|λ| > 0, and P has four real distinct roots, given by:

z1 = 1 +

√
1− λ+ 2

√
|λ|, z2 = 1−

√
1− λ+ 2

√
|λ|,

z3 = 1 +

√
1− λ− 2

√
|λ|, z4 = 1−

√
1− λ− 2

√
|λ|.

Hence, the solutions of (3.34) are as in (3.27)1 with a
.
=
√

1− λ+ 2
√
|λ|, b .=

√
1− λ− 2

√
|λ| and any

constants C1, C2, C3, C4 ∈ R such that χ′ 6= 0.

• Case (I.2): λ = −1. P has the real roots: z1 = 3, z2 = −1 and z3 = z4 = 1. Accordingly, solutions of
(3.34) are as in (3.27)2 for some arbitrary constants C1, C2, C3, C4 ∈ R such that χ′ 6= 0.

• Case (I.3): λ = 0. P has two real double roots: z1 = z3 = 2 and z2 = z4 = 0. Accordingly, solutions
of (3.34) are as in (3.27)3 for some arbitrary constants C1, C2, C3, C4 ∈ R such that χ′ 6= 0.

• Case (I.4): λ > 0. P has two pairs of complex-conjugate roots: z1 = 2 + i
√
λ, z2 = 2− i

√
λ, z3 = i

√
λ,

z4 = −i
√
λ. Accordingly, solutions of (3.34) are as in (3.27)4, where µ =

√
λ and C1, C2, C3, C4 ∈ R are

arbitrary constants such that χ′ 6= 0.

• Case (II): χ′(ρ) = 0. Then χ is constant and, by (3.30), also M is constant: χ(ρ) ≡ α and M(ρ) ≡ β
for some α, β ∈ R. Hence, if g : (−π

2 , π)→ R is not identically null, from (3.28) we infer

g(4)(θ) + 2αg′′(θ) + βg(θ) = 0 ∀θ ∈
(
−π

2
, π
)
, (3.36)

whose solutions are combinations (sum, product or linear combination) of trigonometric functions, ex-
ponentials and polynomials. Furthermore, from (3.29) we obtain the following equations:{

ρ2h′′(ρ)− ρh′(ρ) + (2− α)h(ρ) = 0

ρ4h(4)(ρ) + 2ρ3h′′′(ρ)− ρ2h′′(ρ) + ρh′(ρ)− βh(ρ) = 0
∀ρ ∈ (0,∞), (3.37)

that can be solved through the change of variables t = log(ρ). Equation (3.37)1 yields the following
families of solutions (for ρ > 0):

α < 1 =⇒ h(ρ) = ρ[C1 cos(
√

1− α log(ρ)) + C2 sin(
√

1− α log(ρ))], (3.38)

α = 1 =⇒ h(ρ) = ρ[C1 + C2 log(ρ)], (3.39)

α > 1 =⇒ h(ρ) = C1ρ
1+
√
α−1 + C2ρ

1−
√
α−1, (3.40)

where C1, C2 ∈ R are arbitrary constants.
Concerning (3.37)2, the change of variables t = log(ρ) leads to h(4)(t)− 4h′′′(t) + 4h′′(t)− βh(t) = 0

(t ∈ R) whose characteristic polynomial is

H(z)
.
= z4 − 4z3 + 4z2 − β = (z − 1)4 − 2(z − 1)2 + 1− β,

so that H(z) = 0 if and only if (z− 1)2 = 1±√β. In the following list, according to the values of β, the
roots z1, z2, z3, z4 ∈ C of H are computed, together with the corresponding solutions of (3.37)2.
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• Case (II.1): β < 0. Here, H has two pairs of complex-conjugate roots:

z1 = 1 +

√√
1− β + 1

2
+ i

√√
1− β − 1

2
, z2 = 1−

√√
1− β + 1

2
− i
√√

1− β − 1

2
,

z3 = 1 +

√√
1− β + 1

2
− i
√√

1− β − 1

2
, z4 = 1−

√√
1− β + 1

2
+ i

√√
1− β − 1

2
,

and the general solution of (3.37)2 is:

h(ρ) = ρ1+a[C1 cos(µ log(ρ)) + C2 sin(µ log(ρ))] + ρ1−a[C3 cos(µ log(ρ)) + C4 sin(µ log(ρ))] ∀ρ > 0, (3.41)

where a
.
=
√√

1− β + 1/
√

2, µ
.
=
√√

1− β − 1/
√

2 and C1, C2, C3, C4 ∈ R are arbitrary constants.

• Case (II.2): β = 0. Here H has two double real roots: z1 = z3 = 2 and z2 = z4 = 0. The general
solution of (3.37)2 is then:

h(ρ) = C1 + C2 log(ρ) + ρ2[C3 + C4 log(ρ)] ∀ρ > 0, (3.42)

where C1, C2, C3, C4 ∈ R are arbitrary constants.

• Case (II.3): 0 < β < 1. Therefore 1±√β > 0 and H has four real distinct roots, given by:

z1 = 1 +

√
1 +

√
β, z2 = 1−

√
1 +

√
β, z3 = 1 +

√
1−

√
β, z4 = 1−

√
1−

√
β.

Accordingly, the general solution of (3.37)2 is:

h(ρ) = C1ρ
1+
√

1+
√
β + C2ρ

1−
√

1+
√
β + C3ρ

1+
√

1−
√
β + C4ρ

1−
√

1−
√
β ∀ρ > 0, (3.43)

where C1, C2, C3, C4 ∈ R are arbitrary constants.

• Case (II.4): β = 1. Here H has the real roots: z1 = 1 +
√

2, z2 = 1−
√

2 and z3 = z4 = 1. The general
solution of (3.37)2 is then:

h(ρ) = C1ρ
1+
√

2 + C2ρ
1−
√

2 + ρ[C3 + C4 log(ρ)] ∀ρ > 0, (3.44)

where C1, C2, C3, C4 ∈ R are arbitrary constants.

• Case (II.5): β > 1. Since 1−√β < 0 < 1+
√
β, in this case H has two real and two complex-conjugate

roots, given by:

z1 = 1 +

√√
β + 1, z2 = 1−

√√
β + 1, z3 = 1 + i

√√
β − 1, z4 = 1− i

√√
β − 1.

Accordingly, the general solution of (3.37)2 is:

h(ρ) = ρ[C1 cos(µ log(ρ)) + C2 sin(µ log(ρ))] + C3ρ
1+
√√

β+1 + C4ρ
1−
√√

β+1 ∀ρ > 0, (3.45)

where µ
.
=
√√

β − 1 and C1, C2, C3, C4 ∈ R are arbitrary constants.

From (3.38) until (3.45), the functions that simultaneously solve both the equations in (3.37) are:
– functions (3.43) with C3 = C4 = 0 and α = 2 +

√
β, or with C1 = C2 = 0 and α = 2 − √β, that

coincide with (3.40), a form included in (3.27)1;
– functions (3.44) with C3 = C4 = 0, that coincide with (3.40) if α = 3, a form included in (3.27)1;
– functions (3.44) with C1 = C2 = 0, that coincide with (3.39), a form included in (3.27)2;
– functions (3.45) with C1 = C2 = 0, that coincide with (3.40) if α = 2 +

√
β, a form included in (3.27)1;

– functions (3.45) with C3 = C4 = 0, that coincide with (3.38) if α = 2−√β < 1, giving (3.27)5. 2
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3.3 Singular Stokes flows around a right angle

We consider here the stationary Stokes equations over the domain Λ defined in (3.25):

− η∆u+∇p = f, ∇ · u = 0 in Λ. (3.46)

The region Λ ⊂ R2 is open and simply-connected, with a Lipschitz boundary. The origin O of the
reference system lies in its corner, as depicted in Figure 3.6.

Figure 3.6: Schematic representation of the domain Λ and of the expected flow pattern.

We denote by (u1(y, z), u2(y, z)) the components of the velocity field, so that the scalar vorticity
ω : Λ→ R is:

ω(y, z) =
∂u2

∂y
(y, z)− ∂u1

∂z
(y, z) ∀(y, z) ∈ Λ.

Since Λ is simply-connected, the incompressibility condition implies the existence of a stream function
ψ : Λ→ R such that

u1(y, z) =
∂ψ

∂z
(y, z), u2(y, z) = −∂ψ

∂y
(y, z), ω(y, z) = −∆ψ(y, z) ∀(y, z) ∈ Λ. (3.47)

Moreover, if we assume f to be constant, the equation of conservation of momentum in (3.46) can be
rewritten as the biharmonic equation (3.25) for the stream function ψ; see, e.g., [169, Chapter 2]. Then,
the pressure can be found by solving ∇p = f + η∆u. In the present section, (3.25) will be tackled using
the separation of variables method developed in Section 3.2, with two main targets:
– to find the boundary conditions that could be imposed on the faces of the obstacle;
– to give a precise local description of the solution obtained with these boundary conditions.

Usually, the second target is the first step if one aims to propose a variational formulation of the
Stokes equation (complemented with some boundary conditions) in a weighted Sobolev space, following
the ideas contained in [197]. However, this is beyond the scopes of this chapter. Instead, we are here
interested in classifying the solutions of (3.46), according to the following characterization:

Definition 3.2. Let u = (u1, u2) be a solution of (3.46) in C2(Λ)2. We say that u has a separated-
variable form if its stream function ψ : Λ→ R, defined by (3.47), has the form ψ(ρ, θ) = h(ρ)g(θ), for
some smooth functions h : (0,∞)→ R and g :

(
−π

2 , π
)
→ R. We also say that u is:

• a physical solution if u ∈ L∞loc(Λ)2, • a finite-energy solution if u ∈ H1
loc(Λ)2,

• a singular solution if u ∈ L∞loc(Λ)2 \H1
loc(Λ)2.

We emphasize that there is a small abuse of language in Definition 3.2. If the stream function has
the separated-variable form ψ(ρ, θ) = h(ρ)g(θ) (in polar coordinates), for some smooth h : (0,∞) → R
and g :

(
−π

2 , π
)
→ R, then the components of the velocity field can be recovered through (3.47):

u1(ρ, θ) = h′(ρ)g(θ) sin(θ) +
h(ρ)

ρ
g′(θ) cos(θ), u2(ρ, θ) = −h′(ρ)g(θ) cos(θ) +

h(ρ)

ρ
g′(θ) sin(θ), (3.48)

for (ρ, θ) ∈ Λ. But, strictly speaking, (3.48) do not have a separated-variable form of the kind H(ρ)G(θ).
However, in order to avoid more complicated definitions, we still call it in separated-form.
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We point out that one has H1
loc(Λ) ⊂ Lploc(Λ) for all 1 ≤ p <∞, but the embedding H1

loc(Λ) ⊂ L∞loc(Λ)
fails since Λ is a planar domain. Therefore, not all finite-energy solutions will be physical solutions (nor
the vice-versa). Since we have to deal with the singularity of vortices, we are here interested in singular
solutions (physical infinite-energy solutions), namely bounded solutions of (3.46) with non-L2 vorticity
ω. In view of (3.47), this also means that the stream function ψ does not belong to H2

loc(Λ). Together
with Theorem 3.2, the following result is then obtained:

Theorem 3.3. Consider the radial component h : (0,∞) → R of the stream function of a separated-
variable solution u of (3.46) in Λ. If u is a singular solution, then h is necessarily given by:

hS(ρ) = ρ[C1 cos(µ log(ρ)) + C2 sin(µ log(ρ))] ∀ρ > 0, (3.49)

for some coefficient µ ≥ 0 and arbitrary constants C1, C2 ∈ R.

Proof. Let us write as ψ(ρ, θ) = h(ρ)g(θ), for some smooth h : (0,∞) → R and g :
(
−π

2 , π
)
→ R, the

stream function of a separated-variable solution u of the Stokes equations (3.46) in Λ. From Theorem
3.2 we know that h must have one of the forms in (3.27), while the function g belongs to C∞

(
−π

2 , π
)
.

If we require that u ∈ L∞loc(Λ)2, identities (3.48) imply that

lim sup
ρ→0

[
|h′(ρ)g(θ)|+ 1

ρ
|h(ρ)g′(θ)|

]
<∞. (3.50)

When g is not a constant function, (3.50) is equivalent to the condition

lim sup
ρ→0

(
|h′(ρ)|+ |h(ρ)|

ρ

)
<∞, (3.51)

which immediately allows us to rule out the forms ρ1−α, log(ρ), ρ log(ρ), cos(µ log(ρ)) and sin(µ log(ρ))
(for any α, µ > 0) appearing in (3.27), since they violate (3.51). On the other hand, when g is constant,
there must exist C1, C2, C3, C4 ∈ R (see the proof of Theorem 3.2) such that h(ρ) = C1 + C2 log(ρ) +
ρ2[C3 + C4 log(ρ)], ∀ρ > 0, which fulfills (3.50) if and only if C2 = 0. Nevertheless, as we will see in the
next item, if g is constant and h(ρ) = C1 + ρ2[C3 + C4 log(ρ)], then u belongs to H1

loc(Λ)2 so that it is
not a singular solution.

If u /∈ H1
loc(Λ)2, then there exists δ > 0 such that

π∫
−π

2

δ∫
0

ρ(|∇u1(ρ, θ)|2 + |∇u2(ρ, θ)|2) dρ dθ

=

π∫
−π

2

δ∫
0

ρ

[
h′′(ρ)2g(θ)2 + 2

(
ρh′(ρ)− h(ρ)

ρ2

)2

g′(θ)2 +

(
h′(ρ)

ρ
g(θ) +

h(ρ)

ρ2
g′′(θ)

)2
]
dρ dθ =∞.

(3.52)

Then, the case when g is constant and h(ρ) = C1 + ρ2[C3 + C4 log(ρ)] is ruled out. Moreover, the
condition

r∫
0

(
ρh′′(ρ)2 +

h′(ρ)2

ρ
+
h(ρ)2

ρ3

)
dρ <∞ ∀r ∈ (0,∞) (3.53)

implies that u ∈ H1
loc(Λ)2. This allows us to exclude the terms ρ1+α, ρ2 log(ρ), ρ2 cos(µ log(ρ)) and

ρ2 sin(µ log(ρ)) (for any α, µ > 0) appearing in (3.27), since they verify (3.53).
Summarizing, the only expression in (3.27) not being ruled out by criteria (3.50)-(3.52) is precisely

hS in (3.49). In this case, we infer that g cannot be constant, so that (3.51) may be used to show that
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u belongs to L∞loc(Λ)2. Indeed, hS(ρ)/ρ and h′S(ρ) are bounded in any interval (0, r) with finite r > 0 so
that (3.51) is verified. Moreover, when µ > 0 one has that

1∫
0

cos2(µ log(ρ))

ρ
dρ =

+∞∫
0

cos2(µt) dt =∞ and

1∫
0

sin2(µ log(ρ))

ρ
dρ =∞.

so that (3.52) is verified for δ = 1, and then u /∈ H1
loc(Λ)2 for any µ > 0.

If µ = 0, then (3.49) reduces to hS(ρ) = C1ρ, for every ρ > 0, a function that satisfies condition
(3.51) and that fulfills (3.52) for δ = 1 only when the associated angular function gS does not belong to
the span of {cos(θ), sin(θ)}. Within the proof of Theorem 3.2, the form hS(ρ) = C1ρ yields α = β = 1
in Case (II) and, accordingly, gS solves the ODE

g
(4)
S (θ) + 2g′′S(θ) + gS(θ) = 0 ∀θ ∈

(
−π

2
, π
)
, (3.54)

whose general solution is given by

gS(θ) = Q1θ cos(θ) +Q2θ sin(θ) +Q3 cos(θ) +Q4 sin(θ) ∀θ ∈
(
−π

2
, π
)
, (3.55)

for some constants Q1, Q2, Q3, Q4 ∈ R. The resulting functions ρ cos(θ) and ρ sin(θ) are not singular
so that we may choose Q3 = Q4 = 0. Then we conclude that hS(ρ)gS(θ) fulfills (3.52) and, therefore,
u /∈ H1

loc(Λ)2 also when µ = 0. 2

If we drop the separated-variable assumption, as a consequence of Theorem 3.3 we have

Corollary 3.1. Any stream function of the kind

ψS(ρ, θ) = ρ[Q1θ cos(θ) +Q2θ sin(θ)]

+

∞∑
k=1

ρ[C1 cos(k log(ρ)) + C2 sin(k log(ρ))][ekθ(A1 cos(θ) +A2 sin(θ)) + e−kθ(A3 cos(θ) +A4 sin(θ))],
(3.56)

for every (ρ, θ) ∈ Λ and arbitrary constants Q1, Q2 ∈ R, yields a singular and non-separated variable
solution u of (3.46), provided that the constants A1, A2, A3, A4, C1, C2 ∈ R (that depend on k ∈ N) are
properly chosen in order to ensure the convergence of the series.

Proof. From Theorem 3.3 we know that the radial component hS : (0,∞)→ R of the stream function
of a singular and separated-variable solution u of (3.46) in Λ is given by (3.49), for some coefficient µ ≥ 0
and arbitrary constants C1, C2 ∈ R. Furthermore, the functions χS and MS in (3.29) are given by:

χS(ρ) = 1− µ2, MS(ρ) = (1 + µ2)2 ∀ρ > 0.

That is, according to the proof of Theorem 3.2, (3.49) corresponds to the form (3.27)5, which is obtained
in Case (II) where χ′S ≡ 0. In turn, the associated angular function gS must satisfy (3.28), which reads:

g
(4)
S (θ) + 2(1− µ2)g′′S(θ) + (1 + µ2)2gS(θ) = 0 ∀θ ∈

(
−π

2
, π
)
. (3.57)

When µ > 0, all the solutions of (3.57) may be written as

gS(θ) = eµθ[A1 cos(θ) +A2 sin(θ)] + e−µθ[A3 cos(θ) +A4 sin(θ)] ∀θ ∈
(
−π

2
, π
)
, (3.58)

for some constants A1, A2, A3, A4 ∈ R that may depend on µ. On the other hand, when µ = 0, the
general solution of (3.57) is given by (3.55), for some Q1, Q2, Q3, Q4 ∈ R. However, since we are only
interested in singular solutions of (3.46), we take Q3 = Q4 = 0, as in the proof of Theorem 3.3. Recall
that, by (3.49), the angular functions (3.58) and (3.55) (with Q3 = Q4 = 0) can only be coupled to
the radial functions ρ[C1 cos(µ log(ρ)) + C2 sin(µ log(ρ))] and ρ, respectively. If we restrict ourselves to
integer values of the coefficient µ, this enables us to drop the separated-variable assumption and to find
physical and infinite-energy solutions of (3.25) in the form (3.56). 2
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3.4 Some boundary conditions leading to vortices

In this section we show that some singular solutions of (3.46) can successfully describe, both from
an analytical and physical point of view, the rather chaotic dynamics of the vortex shedding pattern
described in the Introduction. By adapting the first boundary condition over Γ3 in (3.7) to the “localized”
configuration in Λ, we see that the first (resp. second) component of the velocity field must vanish over
the vertical face Γ32 (resp. horizontal face Γ31):

u2 = 0 on Γ31 and u1 = 0 on Γ32. (3.59)

In the next two subsections we complement “by hand” (3.59) with further boundary conditions in order
to build solutions of (3.46) displaying vortices. We will exhibit singular solutions u ∈ C2(Λ \ {(0, 0)})2

whose streamlines qualitatively describe vortices.

3.4.1 Boundary conditions for laminar inflow

In this subsection we exhibit an example in which the boundary conditions satisfied by the singular
solution of (3.25) (in separated variables) lead to the formation of vortices around the corner and over
the leeward wall of the domain Λ. The mechanical description of the vortex shedding given in [210,
Section 4.2.6] and [233] suggest that the flow should be laminar over Γ31. Therefore, taking into account
(3.59), we will seek solutions u = (u1, u2) of (3.46) in Λ verifying

u2 = ω = 0 on Γ31 and u1 = 0, ω = ω0 on Γ32. (3.60)

We point out that boundary conditions such as (3.60) were considered by Kwon-Kweon [166, Section 2]
for ω0 = 0, while our choice will be different, see (3.70) below.

We take hS in (3.49), with C1 = C2 = µ = 1, as the radial component of the singular stream function.
Correspondingly, the angular component gS must satisfy (3.36) with α = 0 and β = 4:

g
(4)
S (θ) + 4gS(θ) = 0 ∀θ ∈

(
−π

2
, π
)
, (3.61)

that is, there exist constants A1, A2, A3, A4 ∈ R such that

gS(θ) = A1 cosh(θ) cos(θ) +A2 cosh(θ) sin(θ) +A3 sinh(θ) cos(θ) +A4 sinh(θ) sin(θ) ∀θ ∈
(
−π

2
, π
)
. (3.62)

Therefore, we take ψS(ρ, θ)
.
= hS(ρ)gS(θ) as singular solution of (3.25) and we use (3.48) to compute

u1
S(ρ, θ) = cos(θ)[cos(log(ρ)) + sin(log(ρ))][(A2 +A3) cos(θ) cosh(θ) + (A4 −A1) sin(θ) cosh(θ)]

+ cos(θ)[cos(log(ρ)) + sin(log(ρ))][(A1 +A4) cos(θ) sinh(θ) + (A2 −A3) sin(θ) sinh(θ)]

+ 2 sin(θ) cos(log(ρ)){[A1 cos(θ) +A2 sin(θ)] cosh(θ) + [A3 cos(θ) +A4 sin(θ)] sinh(θ)}
u2
S(ρ, θ) = sin(θ)[cos(log(ρ)) + sin(log(ρ))][(A2 +A3) cos(θ) cosh(θ) + (A4 −A1) sin(θ) cosh(θ)]

+ sin(θ)[cos(log(ρ)) + sin(log(ρ))][(A1 +A4) cos(θ) sinh(θ) + (A2 −A3) sin(θ) sinh(θ)]

− 2 cos(θ) cos(log(ρ)){[A1 cos(θ) +A2 sin(θ)] cosh(θ) + [A3 cos(θ) +A4 sin(θ)] sinh(θ)},

for (ρ, θ) ∈ Λ. Due to (3.59), the constants A1, A2, A3, A4 must be chosen in such a way thatu
1
S

(
ρ,−π

2

)
= 2 cos(log(ρ))

[
A2 cosh

(π
2

)
−A4 sinh

(π
2

)]
= 0

u2
S(ρ, π) = −2 cos(log(ρ))[A1 cosh (π) +A3 sinh (π)] = 0,

(3.63)
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for ρ > 0. Moreover, for the scalar vorticity we have

ωS(ρ, θ) = −∆ψS(ρ, θ) = −2

ρ
cosh(θ) sin(θ)[(A2 −A3) cos(log(ρ))− (A2 +A3) sin(log(ρ))]

− 2

ρ
cosh(θ) cos(θ)[(A1 +A4) cos(log(ρ)) + (A4 −A1) sin(log(ρ))]

− 2

ρ
sinh(θ) cos(θ)[(A2 +A3) cos(log(ρ)) + (A2 −A3) sin(log(ρ))]

+
2

ρ
sinh(θ) sin(θ)[(A1 −A4) cos(log(ρ)) + (A1 +A4) sin(log(ρ))],

(3.64)

for (ρ, θ) ∈ Λ. In view of (3.60), the constants A1, A2, A3, A4 must also satisfy

ωS(ρ, π) =
2

ρ
sin(log(ρ))[(A4 −A1) cosh(π) + (A2 −A3) sinh(π)]

+
2

ρ
cos(log(ρ))[(A1 +A4) cosh(π) + (A2 +A3) sinh(π)] = 0,

(3.65)

for ρ > 0. Thus, after combining (3.63) and (3.65), we infer that the constants must satisfy the following
algebraic system in matrix form:

cosh(π) 0 sinh(π) 0

− cosh(π) sinh(π) − sinh(π) cosh(π)

cosh(π) sinh(π) sinh(π) cosh(π)

0 cosh
(
π
2

)
0 − sinh

(
π
2

)


A1

A2

A3

A4

 =


0

0

0

0

 . (3.66)

Notice that the matrix of the left-hand side of (3.66) is singular, since the first and third columns are
proportional. Consequently, system (3.66) has infinitely many solutions (as expected, because we are
only imposing three boundary conditions out of possible four) given by

A2 = A4 = 0 , A1 = −A3 tanh(π) .

The resulting expressions for the singular stream function, velocity field and vorticity are given below.

� Stream function: ψS(ρ, θ) = A cos(θ) cosh(θ)[tanh(θ) − tanh(π)] · ρ[cos(log(ρ)) + sin(log(ρ))], for
(ρ, θ) ∈ Λ and any constant A ∈ R.

� Components of the velocity field:

u1
S(ρ, θ) = A cosh(θ) cos(θ)[cos(θ) + tanh(π) sin(θ)][cos(log(ρ)) + sin(log(ρ))]

−A sinh(θ) cos(θ)[sin(θ) + tanh(π) cos(θ)][cos(log(ρ)) + sin(log(ρ))]

− 2A cos(θ) sin(θ)
sinh(π − θ)

cosh(π)
cos(log(ρ))

u2
S(ρ, θ) = A cosh(θ) sin(θ)[cos(θ) + tanh(π) sin(θ)][cos(log(ρ)) + sin(log(ρ))]

−A sinh(θ) sin(θ)[sin(θ) + tanh(π) cos(θ)][cos(log(ρ)) + sin(log(ρ))]

+ 2A cos2(θ)
sinh(π − θ)

cosh(π)
cos(log(ρ)),

(3.67)

for (ρ, θ) ∈ Λ and any constant A ∈ R. Notice that (u1
S , u

2
S) ∈ C2(Λ \ {(0, 0)})2.

� Vorticity:

ωS(ρ, θ) =
2A

ρ
sinh(θ){cos(θ)[sin(log(ρ))− cos(log(ρ))]− tanh(π) sin(θ)[sin(log(ρ)) + cos(log(ρ))]}

+
2A

ρ
cosh(θ){[sin(θ)− tanh(π) cos(θ)] sin(log(ρ)) + [sin(θ) + tanh(π) cos(θ)] cos(log(ρ))},

(3.68)
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for (ρ, θ) ∈ Λ and any constant A ∈ R. As expected, the vorticity is not in L2(Λ). In particular, the
restriction of the vorticity field to the vertical face Γ32 is given by:

ωS

(
ρ,−π

2

)
= −2A

ρ

cosh
(

3π
2

)
cosh(π)

[sin(log(ρ)) + cos(log(ρ))] ∀ρ > 0. (3.69)

Therefore, by selecting the value of A = A0
.
= −1

2
cosh(π)

cosh( 3π
2 )

, we infer that the velocity field uS in (3.67)

satisfies (3.46) in Λ and the boundary conditions (3.60) with

ω0(ρ)
.
=

1

ρ
[sin(log(ρ)) + cos(log(ρ))] ∀ρ > 0. (3.70)

A contour plot of ωS in (3.68), with A = A0, is presented in Figure 3.7, where such quantity is considered
in a disk of radius 0.005 around the corner (compare with the isovorticity plots obtained in [78]).
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Figure 3.7: Contour plot of ωS in (3.68) for A = A0, on a disk of radius 0.005 around the corner.

Furthermore, the streamline plot of the velocity field (3.67) (with A = A0) in Figure 3.8 displays a
noticeable vortex pattern around the corner (to be compared with [78, Figure 12] or [272, Figure 2]).
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Figure 3.8: Streamline plot of uS = (u1
S , u

2
S) in (3.67) for A = A0, on a disk of unitary radius.
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3.4.2 Boundary conditions with oriented velocity

A further natural condition over the horizontal face Γ31 concerns the first component of the velocity field,
which must have a positive sign in order to follow the inflow direction. In [110] (see also [166, Corollary
1.1]) such positivity condition is imposed on some given part of the boundary as a constraint for a related
drag-minimization problem. Therefore, given two functions ξ : Γ31 → (0,∞) and ω0 : Γ32 → R, and
taking into account (3.59), here we seek solutions u = (u1, u2) of (3.46) in Λ verifying

u1 = ξ, u2 = 0 on Γ31 and u1 = 0, ω = ω0 on Γ32. (3.71)

Explicit forms for ξ and ω0 will be given in (3.84), in order to fit singular solutions of (3.46) into the
boundary conditions (3.71). To this end, we need first to “adjust” the general expression (3.56) with
some regular solution of (3.46), according to the following definition:

Definition 3.3. We say that a solution u of (3.46) is regular if u ∈ C2(Λ)2.

Clearly, a regular solution is associated to a stream function ψ ∈ C4(Λ). Following [158], we then
write the solutions of (3.26) as

ψ(ρ, θ) = ψS(ρ, θ) + ψR(ρ, θ) ∀(ρ, θ) ∈ Λ, (3.72)

where ψS is as in (3.56) and ψR : Λ → R denotes the regular component of the stream function. The
regular part ψR in (3.72) has much more freedom, since it only needs to “balance” ψS in order to match
(3.71). Therefore, we consider a very simple form, we take ψR(y, z) = Ay + Bz, for some A,B ∈ R.
Clearly, ∆2ψR = 0 in Λ and

u1
R(y, z) = B , u2

R(y, z) = −A, ωR(y, z) = 0 ∀(y, z) ∈ Λ. (3.73)

Notice that the dependence with respect to ρ in the series (3.56) does not vanish at the boundaries Γ31

and Γ32. Therefore, such series cannot be equalized to a constant different from zero, and the expres-
sion ρ[Q1θ cos(θ) + Q2θ sin(θ)] needs to act as the counterbalance part. After imposing the boundary
conditions (3.71), and in view of (3.56)-(3.72)-(3.73), we see that

• u1
(
ρ,−π

2

)
= u1

R
(
ρ,−π

2

)
+ u1

S
(
ρ,−π

2

)
= 0, for ρ > 0, that is

B − π

2
Q2 +

∞∑
k=1

e−
kπ
2 (A2 + ekπA4)[(C1 + kC2) cos(k log(ρ)) + (C2 − kC1) sin(k log(ρ))] = 0 ∀ρ > 0. (3.74)

This implies that B =
π

2
Q2 and A2(k) = −ekπA4(k), for any integer k ≥ 1.

• u2 (ρ, π) = u2
R (ρ, π) + u2

S (ρ, π) = 0, for ρ > 0, that is

−A− πQ1−
∞∑
k=1

e−kπ(A3 + e2kπA1)[(C1 + kC2) cos(k log(ρ)) + (C2− kC1) sin(k log(ρ))] = 0 ∀ρ > 0. (3.75)

This implies that A = −πQ1 and A3(k) = −e2kπA1(k), for any integer k ≥ 1.

• Regarding the positivity condition in (3.71), the relations derived from (3.74)-(3.75) imply that:

u1(ρ, π) = u1
R(ρ, π) + u1

S(ρ, π)

= −A
π

+ 3B +

∞∑
k=1

[(e−kπ − e2kπ)A4(k) + 2kekπA1(k)][C1(k) cos(k log(ρ)) + C2(k) sin(k log(ρ))],
(3.76)

for ρ > 0. Now, as stated in [222, Supplement 2], for every a ∈ (−1, 1) and x ∈ R we have the following
series

∞∑
k=0

ak cos(kx) =
1− a cos(x)

1− 2a cos(x) + a2
,

∞∑
k=0

ak sin(kx) =
a sin(x)

1− 2a cos(x) + a2
,
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and the sum of the first series is a strictly positive function in R. This leads us to impose −A
π +3B = 1

and to select the following values for the sequences of constants appearing in (3.76):

A1(k) =
e−3kπ

2k
, A4(k) = C2(k) = 0 and C1(k) = 1 ∀k ≥ 1, k ∈ N. (3.77)

After inserting (3.77) into (3.76) we obtain:

u1(ρ, π) = 1 +

∞∑
k=1

e−2kπ cos(k log(ρ)) =
1− e−2π cos(log(ρ))

1− 2e−2π cos(log(ρ)) + e−4π
∀ρ > 0. (3.78)

As a particular case, we choose A = 2π and B = 1, so that Q1 = −2 and Q2 = 2/π. The resulting
expressions for the stream function, velocity and vorticity fields are computed below.

� Stream function:

ψ(ρ, θ) = ρ

[
2(π − θ) cos(θ) +

(
2θ

π
+ 1

)
sin(θ)

]
+
ρ

2
cos(θ)

∞∑
k=1

1

k
[e−k(3π−θ) − e−k(θ+π)] cos(k log(ρ)), (3.79)

for (ρ, θ) ∈ Λ. Notice that the interval of definition of θ ensures the convergence of the series of
functions in (3.79).

� First component of the velocity field:

u1(ρ, θ) =
1

π
[2θ + sin(2θ)]− cos(2θ)

+
1

2
cos2(θ)

[
1− e−(θ+π) cos(log(ρ))

1− 2e−(θ+π) cos(log(ρ)) + e−2(θ+π)
+

1− e(θ−3π) cos(log(ρ))

1− 2e(θ−3π) cos(log(ρ)) + e2(θ−3π)
− 2

]
+

1

2
cos(θ) sin(θ)

[
e−(θ+π) sin(log(ρ))

1− 2e−(θ+π) cos(log(ρ)) + e−2(θ+π)
− e(θ−3π) sin(log(ρ))

1− 2e(θ−3π) cos(log(ρ)) + e2(θ−3π)

]
,

(3.80)

for (ρ, θ) ∈ Λ.

� Second component of the velocity field:

u2(ρ, θ) = 2(θ − π)− sin(2θ) +
1

π
[1− cos(2θ)] +

1

2

∞∑
k=1

1

k
[e−k(θ+π) − e−k(3π−θ)] cos(k log(ρ))

+
1

2
cos(θ) sin(θ)

[
1− e−(θ+π) cos(log(ρ))

1− 2e−(θ+π) cos(log(ρ)) + e−2(θ+π)
+

1− e(θ−3π) cos(log(ρ))

1− 2e(θ−3π) cos(log(ρ)) + e2(θ−3π)
− 2

]
− 1

2
cos2(θ)

[
e−(θ+π) sin(log(ρ))

1− 2e−(θ+π) cos(log(ρ)) + e−2(θ+π)
− e(θ−3π) sin(log(ρ))

1− 2e(θ−3π) cos(log(ρ)) + e2(θ−3π)

]
,

(3.81)

for (ρ, θ) ∈ Λ. Notice again that (u1, u2) ∈ C2(Λ \ {(0, 0)})2.

� Scalar vorticity:

ω(ρ, θ) = − 4

πρ
[cos(θ) + π sin(θ)]

+
1

ρ
sin(θ)

[
1− e−(θ+π) cos(log(ρ))

1− 2e−(θ+π) cos(log(ρ)) + e−2(θ+π)
+

1− e(θ−3π) cos(log(ρ))

1− 2e(θ−3π) cos(log(ρ)) + e2(θ−3π)
− 2

]

− 1

ρ
cos(θ)

[
e−(θ+π) sin(log(ρ))

1− 2e−(θ+π) cos(log(ρ)) + e−2(θ+π)
− e(θ−3π) sin(log(ρ))

1− 2e(θ−3π) cos(log(ρ)) + e2(θ−3π)

]
,

(3.82)

for (ρ, θ) ∈ Λ. As expected, notice that the vorticity is clearly not in L2(Λ). In particular, the
restriction of the vorticity to the vertical face Γ32 is given by:

ω
(
ρ,−π

2

)
=

6

ρ
− 1

ρ

[
1− e−π2 cos(log(ρ))

1− 2e−
π
2 cos(log(ρ)) + e−π

+
1− e− 7π

2 cos(log(ρ))

1− 2e−
7π
2 cos(log(ρ)) + e−7π

]
∀ρ > 0. (3.83)

47



As a consequence of these computations, we infer that the ψ (3.79) is a biharmonic function in Λ, whose
velocity field (3.80)-(3.81) satisfies (3.46) in Λ and (3.71) with:

ξ(ρ)
.
=

1− e−2π cos(log(ρ))

1− 2e−2π cos(log(ρ)) + e−4π
,

ω0(ρ)
.
=

1

ρ

[
6− 1− e−π2 cos(log(ρ))

1− 2e−
π
2 cos(log(ρ)) + e−π

− 1− e− 7π
2 cos(log(ρ))

1− 2e−
7π
2 cos(log(ρ)) + e−7π

]
,

(3.84)

for ρ > 0. A contour plot of the vorticity (3.82) is presented in Figure 3.9. The chaotic dynamics of
the vortex shedding process are properly illustrated and characterized by the increasing values of the
vorticity (to be compared with Figure 3.7 and the isovorticity plots obtained in [78]).
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Figure 3.9: Contour plot of ω in (3.82) on a disk of radius 0.5 around the corner.

On the other hand, a streamline plot of the velocity field (3.80)-(3.81) (where the series of functions
in (3.81) was numerically approximated with the sum of the ten first terms) in Figure 3.10 reproduces
some of the typical geometrical patterns induced by low-Reynolds-number flows past square cylinders
(see [78, Figure 10] or [272, Figure 5]).
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Figure 3.10: Streamline plot of u = (u1, u2) in (3.80)-(3.81) on a disk of radius 0.05 around the corner.
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Chapter 4

Steady Navier-Stokes equations in
planar domains with obstacle and
explicit bounds for unique solvability

Unlike the hydrodynamical model analyzed in Chapter 3, in the present chapter we consider standard
boundary conditions for the equations of fluid mechanics (properly justified), and we study in detail
some of the physical and mathematical properties of the solution that are relevant for our purposes:
unique solvability, regularity, symmetry and the computation of drag and lift exerted over the obstacle.

The whole science of flight is based on the understanding and control of the lift force, the resistance
component orthogonal to the aircraft direction of motion, see e.g. [4, Chapter 1]. The modern theory of
lift, developed in the fundamental works of Kutta [165] and Zhukovsky [274] at the beginning of the 20th
century (see also [4] for the English translation), relies on the principle that a cambered surface produces
lift through its ability to generate vortices about itself, see Figure 4.1 for a wind tunnel experiment.

Figure 4.1: Left: vortices around a plate obtained in wind tunnel experiments at the Politecnico di
Milano. Right: the planar domain Ω in (4.1) with a smooth obstacle K.

The celebrated d’Alembert paradox [179] shows that the lift is characteristic of viscous fluids so that
the full evolution of aerodynamics was possible only after a precise comprehension of viscosity. Vortices
in fluid dynamics appear both for turbulent flows with large Reynolds number and whenever a fluid
surrounds an obstacle. The vortices generate a lift force acting on the obstacle orthogonally to the
direction of the flow so that, if one considers a rigid obstacle having the shape of a 3D cylinder (the
cartesian product of a planar compact set K with a bounded interval, as in the left picture of Figure
4.1), it is convenient to restrict the attention to the cross-section K of the cylinder.

In the plane R2 we consider an obstacle, represented by an open bounded simply connected domain K

49



with Lipschitz boundary ∂K, and a big squared boxQ containing the obstacle and such that ∂Q∩∂K = ∅.
More precisely, we consider the domains

Q = (−L,L)2 , Ω = Q \K
(
L� diam(K)

)
, (4.1)

where Ω should be seen as a sufficiently large (bounded) region surrounding K. The boundary of Ω is
split into two parts, ∂Ω = ∂K∪∂Q, and the outward unit normal n̂ is defined a.e. on ∂Ω. This geometry
appears to be the best choice to model, for instance, the motion of the wind around the cross-section
of a bridge for which one needs a (squared) photo of the flow in a sufficiently large neighborhood, as in
the left picture in Figure 4.1 but on a larger scale. A sketch of this geometry is illustrated in the right
picture in Figure 4.1 (not in scale and with smooth ∂K).

In this chapter, which is based on the preprint [124], we provide the tools for the full theory of planar
stationary flows of viscous fluids around an obstacle, assuming that they are governed by the steady
Navier-Stokes equations

− η∆u+ (u · ∇)u+∇p = f, ∇ · u = 0 in Ω, (4.2)

where u : Ω → R2 is the velocity vector field, p : Ω → R is the scalar pressure, f : Ω → R2 denotes an
external forcing term and η > 0 is the kinematic viscosity. To (4.2) we associate the boundary data

u = (U, V ) on ∂Q, u = (0, 0) on ∂K, (4.3)

for some given (U, V ) ∈ H1/2(∂Q) satisfying the compatibility condition (zero flux across ∂Q)∫ L

−L
[U(L, y)− U(−L, y)] dy +

∫ L

−L
[V (x, L)− V (x,−L)] dx = 0. (4.4)

The boundary conditions (4.3) model the inflow/outflow of fluid across the boundary ∂Q with velocity
(U, V ), and with no-slip condition on the obstacle K where viscosity yields zero velocity of the flow. The
inhomogeneous boundary datum (U, V ) on ∂Q is mandatory since, as explained above, Q represents a
virtual box (a planar region where the flow is analyzed) and not a region with rigid boundary (contrary
to the obstacle). For some of our results we focus the attention on the case where (U, V ) ∈ R2 is constant
on ∂Q; this choice is motivated by the fact that Q is much larger than K and possible effects of the
vortex shedding created by the obstacle are not detectable far away from it.

It is well-known [115] that uniqueness for (4.2)-(4.3) is ensured only whenever the data f and (U, V )
are “small” compared to the viscosity η, see also Theorem 4.6 below. The proof relies on a priori
bounds which lead to a contradiction if one assumes the existence of multiple solutions of (4.2)-(4.3).
While in the case of homogeneous Dirichlet boundary conditions (U, V ) = (0, 0) the a priori bounds
are straightforward, in the inhomogeneous case (U, V ) 6= (0, 0) they are extremely delicate because the
solution of (4.2)-(4.3) is not an admissible test function and, therefore, explicit values for the bounds
are not known. The standard approach is then to transform the inhomogeneous Dirichlet problem into
an homogeneous problem by determining a solenoidal extension of the boundary velocity, namely one
needs to find a vector field w such that

∇ · w = 0 in Ω, w = (U, V ) on ∂Q, w = (0, 0) on ∂K. (4.5)

This problem, whose interest and applicability go far beyond fluid mechanics, has a long story, starting
from the pioneering works by Cattabriga [51] and Ladyzhenskya-Solonnikov [169, 170]; see also the book
by Galdi [115, Section III.3]. Solving (4.5) is an extremely difficult task and a possible way out is to
proceed in two steps. First to find an extension, not necessarily solenoidal, of the data (U, V ), thereby
“inverting” the trace operator for vector fields. Then to solve the Bogovskii problem [36, 37] with the
resulting divergence, see Section 4.1.4: the celebrated Bogovskii formula, from 1979, yields a class of
solutions by means of the Calderón-Zygmund theory of singular integrals. By using instead the Fourier
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transform, Durán [90] proposed in 2012 an alternative approach that can be used to simplify some
computations.

Finding explicit theoretical bounds for the critical Reynolds number, i.e. for the stability of the
steady flow of a viscous fluid, constitutes a fundamental problem in fluid mechanics, see [173, Chapter
III], closely related to the onset of turbulence from a laminar regime [172]. As we shall see in Section
4.2.3, in a symmetric framework the appearance of effective lift forces exerted by the fluid on the obstacle
K is strictly related to non-uniqueness of solutions of (4.2)-(4.3). Therefore, for the uniqueness threshold
of (4.2)-(4.3), explicit bounds are needed, as precise as possible. In turn, the uniqueness threshold is
obtained through a priori bounds for the solutions of (4.5) but, so far, no such bounds are available in
the literature. Obtaining explicit bounds for (4.5) and several related functional inequalities is precisely
the first purpose of the present chapter.

In Section 4.1 we obtain several bounds on the relative capacity of the obstacle K with respect to
Q and on some Sobolev embedding constants; moreover, we suggest a new way to bound the solenoidal
extension w in (4.5). In [120], Gazzola defined the space of web functions, namely the subspace of H1

0 (Ω)
comprising functions which only depend on the distance from the boundary ∂Ω. These functions were
previously introduced by Szegö [252] in a slightly different context. The main novelty in [120] was the
possibility of obtaining bounds for some constants arising in variational problems, see [72, 74] and also
[73] for bounds on the capacity. In our context of non simply connected domain, we cannot use web
functions and we introduce instead the subset of pyramidal functions, see (4.9), in order to obtain bounds
for the relative capacity of the obstacle. Then we need to bound the Sobolev constant for the embedding
H1(Ω) ⊂ L4(Ω), which arises naturally due to the convective term in (4.2): here we have to face both
the difficulties of dealing with a non simply connected domain and of inhomogeneous boundary data,
especially because we seek precise estimates. For this reason, we use an optimal Gagliardo-Nirenberg
inequality by del Pino-Dolbeault [83] with some adjustments: we combine it with Hölder and Poincaré
inequalities in the case of zero traces and with a delicate ad hoc argument for nonzero traces, see Theorem
4.2. Nowadays numerics can give precise bounds, but only for given specific geometries. On the contrary,
our theoretical bounds are independent of the geometry; we also show that they are fairly precise, see
Remark 4.1 and Corollary 4.2. For this reason, and for possible further developments, we embed our
results in a general theory which goes beyond the applications given in this chapter.

The second main purpose of the present chapter is to obtain precise statements about the lift exerted
by the solutions of (4.2)-(4.3) on the obstacle K. To this end, we need the bounds obtained in the first
part: in particular, we use the pyramidal capacity potential in order to obtain bounds for the solutions
of (4.5). The existence of symmetric solutions of the stationary Navier-Stokes equations has been proved
in smooth symmetric domains in the pioneering work by Amick [7] and, subsequently, by several other
authors [107, 108, 161, 184, 202]. As already mentioned, our focus is different, we connect symmetric
solutions with uniqueness and with the computation of the lift. In Theorem 4.9 we study (4.2)-(4.3) in a
perfectly symmetric situation, where a symmetric solution always exists and possible non-uniqueness is
strictly related to the existence of asymmetric solutions. In Section 4.2.3 we define the drag and the lift,
namely the forces exerted by the fluid governed by (4.2) on the bluff body represented by the obstacle K.
We focus most of our attention on the lift force since it is responsible for the instability of K, as in civil
engineering structures where it leads to dangerous oscillations. In regime of uniqueness, we prove that
there is no lift in a symmetric situation and that the lift is small in an “almost symmetric” situation,
see Theorem 4.12. This means that instability and/or non-uniqueness may appear only in asymmetric
situations or with large data. Theorem 4.14 uses all the just mentioned results and gives an explicit
universal bound such that, if a constant inflow velocity of the fluid is below this bound, then the obstacle
is not subject to a lift force. In turn, this result also yields explicit bounds for the threshold of stability
of a bluff body immersed in a viscous fluid.

While our bounds do not depend on the shape of the obstacle, one expects that the threshold of
stability does depend on the shape. However, there is no available theory able to analyze the shape
dependence of the lift, see [25] for related results about the drag. Therefore, in Section 4.2.5 we proceed
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through Computational Fluid Dynamics (CFD) by using the OpenFOAM toolbox. We use an asymme-
try/multiplicity principle (see Corollary 4.4) in order to compute the performance of several obstacles
having the same measure but different shapes. The idea is to numerically detect non-uniqueness for
(4.2)-(4.3) by finding asymmetric solutions in a symmetric framework. The obtained numerical results
give strong hints on which could be the best shape yielding the largest inflow velocity (U, V ) ensuring
that the lift is zero. They also strengthen a conjecture by Pironneau [219, 220] claiming that the inward
face should look like a “rugby ball”, see in particular [219, Figure 3], in order to minimize the drag. We
point out that the numerical bounds for stability cannot be compared with the theoretical ones obtained
in Section 4.1, because the latter are found without assuming symmetry of the data.

Finally, we mention that the functional inequalities discussed in Section 4.1, in particular the bound
of the continuity constant for the Bogovskii operator, have several applications also in different areas
of mathematical physics. A whole bunch of inequalities arises both in fluid mechanics and elasticity
[14, 66, 104, 151, 160], and they are all linked to each other. This is why Section 4.3 is devoted to
some physical applications of our results. In Section 4.3.1 we show that the bifurcation phenomenon
for the Navier-Stokes equations, related to the loss of symmetry, has a counterpart in a model of a
buckled elastic plate. In Section 4.3.2 we embed our 2D results in a 3D framework where, in fact, the
Navier-Stokes equations admit solutions depending only on two variables. This enables us to apply our
results to the stability of suspension bridges [121]: in Corollary 4.6 we obtain an upper bound for the
wind velocity ensuring that a bridge will not oscillate.

This chapter is organized as follows. In Section 4.1 we state and prove some functional inequalities
with explicit constants, in particular: inequalities for the relative capacity, for the embedding H1(Ω) ⊂
L4(Ω), and a priori bounds for (4.5). In Section 4.2 we set up the main tools for the study of (4.2)-(4.3),
we analyze in detail symmetric and almost symmetric situations, we relate the appearance of lift with
multiplicity of solutions; we provide numerical results giving some hints on which could be the most
stable obstacle shape. Finally, Section 4.3 is devoted to some physical applications and interpretations
of our results.

4.1 Functional inequalities

Although we shall deal both with scalar and vector fields (or matrices), all the functional spaces will be
denoted in the same way (except for Section 4.3.2).

4.1.1 Relative capacity and pyramidal functions

Let Ω be as in (4.1). The relative capacity of K with respect to Q is defined by

CapQ(K) = min
v∈H1

0(Q)

v=1 inK

∫
Q
|∇v|2 (4.6)

and the relative capacity potential ψ, which achieves the minimum in (4.6), satisfies

∆ψ = 0 in Ω = Q \K, ψ = 0 on ∂Q, ψ = 1 in K, CapQ(K) = ‖∇ψ‖2L2(Ω). (4.7)

The exact value of the relative capacity is in general not known. In the next result, which has its own
interest regardless of the applications considered in the present work, we give lower and upper bounds
of it in a particular situation. The same idea will also be used to bound the gradients of some solenoidal
extensions, see Theorem 4.5 in Section 4.1.5.

Theorem 4.1. Consider the square Q = (−L,L)2 and the rectangle R = (−a, a) × (−d, d), where
a, d ∈ (0, L). Then

2π

log(L)− log
(√

ad
) ≤ CapQ(R) ≤ 4

(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

. (4.8)
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Proof. Divide the domain Q \ R into four trapezia T1, T2, T3, T4 as in the left picture in Figure 4.2.

Figure 4.2: The domain Q \ R (left) and the level lines of pyramidal functions (right).

By pyramidal function we mean any function having the level lines as in the right picture of Figure
4.2, namely level lines parallel to ∂Q (and ∂R) in each of the trapezia. In particular, pyramidal functions
are constant on ∂R and constitute the following convex subset of H1

0 (Q):

P(Q) = {u ∈ H1
0 (Q) | u = 1 in R, u = u(y) in T1 ∪ T3, u = u(x) in T2 ∪ T4} . (4.9)

Since P(Q) ⊂ H1
0 (Q), the relative capacity (4.6) may be upper bounded through the inequality

CapQ(R) ≤ min
v∈P(Q)

∫
Q
|∇v|2 . (4.10)

We are so led to find the minimum in (4.10) and this is equivalent to solve a classical problem in calculus
of variations. Precisely, any V φ ∈ P(Q) is fully characterized by a (continuous) function

φ ∈ H1([0, 1];R) such that φ(0) = 1 , φ(1) = 0 , (4.11)

giving the values of V φ on the oblique edges of the trapezia. For instance, consider the right trapezia
T5, T6 ⊂ Q being, respectively, half of the trapezia T1 and T2, defined by

T5 =

{
(x, y) ∈ Q

∣∣∣ d < y < L, 0 < x < a+
L− a
L− d(y − d)

}
, (4.12)

T6 =

{
(x, y) ∈ Q

∣∣∣ a < x < L, 0 < y < d+
L− d
L− a(x− a)

}
. (4.13)

Since V φ is a function of y in T1 and a function of x in T2, φ and V φ are linked through the formulas

V φ(x, y) = φ

(
y − d
L− d

)
∀(x, y) ∈ T5, V φ(x, y) = φ

(
x− a
L− a

)
∀(x, y) ∈ T6. (4.14)

Whence,

∂V φ

∂y
(x, y) =

1

L− dφ
′
(
y − d
L− d

)
∀(x, y) ∈ T5,

∂V φ

∂x
(x, y) =

1

L− aφ
′
(
x− a
L− a

)
∀(x, y) ∈ T6. (4.15)

We then seek the optimal φ minimizing the Dirichlet integral over Q of the pyramidal function V φ.
For symmetry reasons, the contribution of |∇V φ| over T1 ∪T3 is four times the contribution over T5,

whereas the contribution of |∇V φ| over T2 ∪ T4 is four times the contribution over T6. By taking into
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account all these facts, in particular (4.15), we infer that

∫
Q\R
|∇V φ|2 = 4

∫ L

d

∫ a+
L−a
L−d (y−d)

0

∣∣∣∣∂V φ

∂y

∣∣∣∣2 dx dy + 4

∫ L

a

∫ d+
L−d
L−a (x−a)

0

∣∣∣∣∂V φ

∂x

∣∣∣∣2 dy dx
= 4

∫ L

d

[
a+

L− a
L− d(y − d)

] ∣∣∣∣∂V φ

∂y

∣∣∣∣2 dy + 4

∫ L

a

[
d+

L− d
L− a(x− a)

] ∣∣∣∣∂V φ

∂x

∣∣∣∣2 dx
= 4

∫ 1

0

(
a+ (L− a)s

L− d +
d+ (L− d)s

L− a

)
φ′(s)2 ds

= 4
(L− a)2 + (L− d)2

(L− a)(L− d)

∫ 1

0

[
a(L− a) + d(L− d)

(L− a)2 + (L− d)2
+ s

]
φ′(s)2 ds . (4.16)

Minimizing (4.16) among functions φ satisfying (4.11) yields the Euler-Lagrange equation

d

ds

[(
a(L− a) + d(L− d)

(L− a)2 + (L− d)2
+ s

)
φ′(s)

]
= 0 =⇒ φ′(s) =

C
a(L−a)+d(L−d)
(L−a)2+(L−d)2 + s

∀s ∈ [0, 1]

so that

φ(s) = C log

(
s+

a(L− a) + d(L− d)

(L− a)2 + (L− d)2

)
+D ∀s ∈ [0, 1],

for some constants C,D to be determined by imposing the conditions φ(0) = 1 and φ(1) = 0. We find

C =

[
log

(
a(L− a) + d(L− d)

L(L− a) + L(L− d)

)]−1

< 0

and, by inserting this into (4.16), we obtain

min
v∈P(Q)

∫
Q
|∇v|2 = 4

(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

. (4.17)

The upper bound in (4.8) follows from (4.10) and (4.17).
The lower bound in (4.8) is obtained through symmetrization. Let ψ ∈ H1

0 (Q) be the relative capacity
potential of R with respect to Q (see (4.7)), that is:

∆ψ = 0 in Q \ R, ψ = 0 on ∂Q, ψ = 1 in R, CapQ(R) = ‖∇ψ‖2L2(Q). (4.18)

From the maximum principle we know that 0 ≤ ψ ≤ 1 in Q \ R, and hence in Q. Let Q∗ ⊂ R2 be
the disk centered at the origin of radius r2 = 2L/

√
π, and R∗ ⊂ R2 be the disk centered at the origin

of radius r1 = 2
√
ad/π (so that |Q∗| = |Q| and |R∗| = |R|). The symmetric decreasing rearrangement

ψ∗ ∈ H1
0 (Q∗) of ψ satisfies ψ∗ = 0 on ∂Q∗, ψ∗ = 1 in R∗, ‖∇ψ∗‖L2(Q∗) ≤ ‖∇ψ‖L2(Q), so that, by (4.18),

CapQ∗(R∗) ≤ ‖∇ψ∗‖2L2(Q∗) ≤ CapQ(R). (4.19)

The relative capacity potential of R∗ with respect to Q∗, denoted by ϕ ∈ H1
0 (Q∗), is the radial function

given by

ϕ(ρ) =
log(ρ)− log(r2)

log(r1)− log(r2)
∀ρ ∈ [r1, r2],

so that

CapQ∗(R∗) = ‖∇ϕ‖2L2(Ω∗) =
2π

log(L)− log
(√

ad
) .

Combined with (4.19), this concludes the proof of the lower bound. 2
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Remark 4.1. When d = a, the inequalities in (4.8) become

2π

log(L)− log(a)
≤ CapQ(R) ≤ 8

log(L)− log(a)
,

so that CapQ(R) is estimated with a fairly small error, since the ratio between the bounds is π/4 ≈ 0.79.
Moreover, by using the same symmetrization method as in the proof of Theorem 4.1 we see that, for

a general obstacle K ⊂ Q, one obtains the following lower bound for the relative capacity:

CapQ(K) ≥ 4π

log(|Q|)− log(|K|) . (4.20)

4.1.2 Bounds for some Sobolev constants

Let Ω be as in (4.1). We consider both the Sobolev space H1
0 (Ω) and the space of functions vanishing

only on ∂K, which is a proper connected part of ∂Ω having positive 1D-measure:

H1
∗ (Ω) = {v ∈ H1(Ω) | v = 0 on ∂K} .

This space should be seen as the closure of the space C∞c (Q\K) with respect to the norm v 7→ ‖∇v‖L2(Ω):
since |∂K| > 0, the Poincaré inequality holds in H1

∗ (Ω), which means that v 7→ ‖∇v‖L2(Ω) is indeed a
norm on the space H1

∗ (Ω). Then we introduce the following proper subspace of H1
∗ (Ω):

H1
c (Ω) = {v ∈ H1

∗ (Ω) | v is constant on ∂Q} .

This space may be rigorously characterized by using the relative capacity potential ψ of K with respect
to Q, see (4.7); it has the geometric characterization

H1
c (Ω) = H1

0 (Ω)⊕ R(ψ − 1) , H1
0 (Ω) ⊥ R(ψ − 1) , (4.21)

so that H1
0 (Ω) has codimension 1 within H1

c (Ω) and the “missing dimension” is spanned by the function
ψ − 1. To see this, determine the orthogonal complement of H1

0 (Ω) within H1
c (Ω) as follows:

v ∈ H1
0 (Ω)⊥ ⇔ v ∈ H1

c (Ω) ,

∫
Ω
∇v · ∇w = 0 ∀w ∈ H1

0 (Ω) ⇔ v ∈ H1
c (Ω) , 〈∆v, w〉Ω = 0 ∀w ∈ H1

0 (Ω)

so that v is weakly harmonic and, since v ∈ H1
c (Ω), it is necessarily a real multiple of ψ − 1.

For later use, let us introduce

µ0 = the first zero of the Bessel function of first kind of order zero ≈ 2.40483 . (4.22)

Then we define the three Sobolev constants

S = min
v∈H1

∗(Ω)\{0}

‖∇v‖2L2(Ω)

‖v‖2
L4(Ω)

, S0 = min
v∈H1

0 (Ω)\{0}

‖∇v‖2L2(Ω)

‖v‖2
L4(Ω)

, S1 = min
v∈H1

c (Ω)\{0}

‖∇v‖2L2(Ω)

‖v‖2
L4(Ω)

. (4.23)

Since H1
0 (Ω) ⊂ H1

c (Ω) ⊂ H1
∗ (Ω), we have S ≤ S1 ≤ S0. Our first result in this section provides explicit

lower bounds for these embedding constants.

Theorem 4.2. Let Ω be as in (4.1). For any u ∈ H1
0 (Ω) one has

‖u‖2L4(Ω) ≤
2L√
3π3/2

min

{
1,

√
2π

µ0

√
1− |K||Q|

}
‖∇u‖2L2(Ω) . (4.24)
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For any u ∈ H1
c (Ω) one has

‖u‖2L4(Ω) ≤
4L

3π

√
1− |K||Q|

(
1 +

√
3

8
log

( |Q|
|K|

))3/2

×
[

1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Q| − |K| log3/2

( |Q|
|K|

)]1/2

‖∇u‖2L2(Ω).

(4.25)

The inequalities (4.24) and (4.25) hold both for scalar functions and for vector fields.

Proof. We first show that it suffices to prove the inequalities for scalar functions. Indeed, assume that
(4.24) has been proved for scalar functions and let u = (u1, u2) ∈ H1

0 (Ω) be a vector filed. Then, by the
Hölder inequality and the scalar version of (4.24), we obtain

‖u‖4L4(Ω) ≤
(
‖u1‖2L4(Ω) + ‖u2‖2L4(Ω)

)2
≤ 4L2

3π3

(
‖∇u1‖2L2(Ω) + ‖∇u2‖2L2(Ω)

)2
=

4L2

3π3
‖∇u‖4L2(Ω),

which proves the first inequality (4.24) also for vector fields. One proceeds similarly for the second
inequality in (4.24) and for (4.25). Therefore, from now on, we assume that u is a scalar function.

For scalar functions w ∈ H1
0 (Q), we start by recalling that del Pino-Dolbeault [83, Theorem 1]

obtained the optimal constant for the following Gagliardo-Nirenberg inequality in R2:

‖w‖2L4(Q) ≤
(

2

3π

)1/4

‖∇w‖1/2
L2(Q)

‖w‖3/2
L3(Q)

∀w ∈ H1
0 (Q). (4.26)

Since functions in H1
0 (Q) may be extended by zero outside Q, they can be seen as functions defined over

the whole plane. We point out that (4.26) follows from a somehow “magic combination” of exponents:
for general exponents, the optimal constant in the Gagliardo-Nirenberg inequality is not known, this is
why the L3-norm appears. By combining (4.26) with the following form of the Hölder inequality

‖w‖3L3(Q) ≤ ‖w‖L2(Q)‖w‖2L4(Q) ∀w ∈ L4(Q) ,

we obtain

‖w‖2L4(Q) ≤
(

2

3π

)1/2

‖∇w‖L2(Q)‖w‖L2(Q) ∀w ∈ H1
0 (Q) . (4.27)

Then we observe that cos(πx2L) cos(πy2L) is an eigenfunction of the eigenvalue problem −∆v = λv in Q
under Dirichlet boundary conditions. Since it is positive, it is associated to the least eigenvalue which is
then given by λ = π2/2L2. Therefore, the Poincaré inequality reads

‖w‖2L2(Q) ≤
2L2

π2
‖∇w‖2L2(Q) ∀w ∈ H1

0 (Q)

which, combined with (4.27), yields the first bound in (4.24) since any function u ∈ H1
0 (Ω) can be

extended by 0 in K, thereby becoming a function in H1
0 (Q).

In order to obtain the second bound in (4.24), we go back to (4.27) and we use the Faber-Krahn
inequality, see [93, 162]. We point out that the same extension argument as above enables us to compute
all the norms in (4.27) in Ω instead of Q. Therefore, we may bound the L2(Ω)-norm in terms of the
gradient by using the Poincaré inequality in Ω∗, namely a disk having the same measure as Ω. Since
|Ω| = |Q| − |K|, the radius of Ω∗ is given by

R =
2L√
π

√
1− |K||Q|
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that we write in this “strange form” for later use. Since the Poincaré constant (least eigenvalue) in the
unit disk is given by µ2

0, see (4.22), the Poincaré constant in Ω∗ is given by µ2
0/R

2, which means that

min
w∈H1

0 (Ω)

‖∇w‖L2(Ω)

‖w‖L2(Ω)
≥ min

w∈H1
0 (Ω∗)

‖∇w‖L2(Ω∗)

‖w‖L2(Ω∗)
=
µ0

R
.

Therefore,

‖w‖L2(Ω) ≤
R

µ0
‖∇w‖L2(Ω) =

2L

µ0
√
π

√
1− |K||Q| ‖∇w‖L2(Ω) ∀w ∈ H1

0 (Ω)

which, inserted into (4.27) (with Q replaced by Ω), gives the second bound in (4.24).
Let us now prove (4.25) and we restrict our attention to functions u ∈ H1

c (Ω)\H1
0 (Ω): this restriction

will be justified a posteriori because, if we manage proving (4.25) for these functions, then it will also hold
for functions in H1

0 (Ω) since the constant in (4.24) is smaller, see also Figure 4.3 below. For functions
u ∈ H1

c (Ω) \H1
0 (Ω), it suffices to analyze the case where u ≥ 0 in Ω (by replacing u with |u|), u = 1 on

∂Q (by homogeneity), and we define a.e. in Q the function

v(x, y) =

{
1− u(x, y) if (x, y) ∈ Ω
1 if (x, y) ∈ K,

so that v ∈ H1
0 (Q) and v satisfies (4.26). Let us put

A = A(u)
.
=

(
2

3π

)1/2

‖∇v‖L2(Q) =

(
2

3π

)1/2

‖∇u‖L2(Ω),

so that (4.26) reads∫
Q
|v|4 ≤ A

∫
Q
|v|3 =⇒

∫
Ω

[
|1− u|4 +

|K|
|Ω| −A

(
|1− u|3 +

|K|
|Ω|

)]
≤ 0. (4.28)

The next step consists in finding α ∈ (0, 1) and β > 0 (having ratio independent of u) for which

(1− s)4 −A|1− s|3 + (1−A)
|K|
|Ω| ≥ αs

4 − βA4 ∀s ≥ 0. (4.29)

Since the function s 7→ (1 − s)4 − A|1 − s|3 + γ is symmetric with respect to s = 1, for any γ ∈ R, it
suffices to find α ∈ (0, 1) and β > 0 ensuring (4.29) for every s ≥ 1. Thus, for all such α and β we define
the function

ϕ(s) = (s− 1)4 −A(s− 1)3 − αs4 + (1−A)
|K|
|Ω| + βA4 ∀s ≥ 1,

and we seek α ∈ (0, 1) and β > 0 in such a way that ϕ has a non-negative minimum value at some s > 1.
Equivalently, we seek γ > 3/4 such that ϕ(s) attains its minimum at s0 = 1 + γA, that is,

ϕ′(s0) = A3γ2(4γ − 3)− 4α(1 + γA)3 = 0 ⇐⇒ α =
A3

4

γ2(4γ − 3)

(1 + γA)3
∈ (0, 1),

which fixes α in dependence of u. By imposing ϕ(s0) ≥ 0, we obtain the following lower bound for β:

β ≥ γ3

4
+
γ2(4γ − 3)

4A
+
A− 1

A4

|K|
|Ω| .

This condition is certainly satisfied if we choose

β =
γ3

4
+
γ2(4γ − 3)

4A
+

1

A3

|K|
|Ω| . (4.30)
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With the above choices of α and β we obtain the ratio

β

α
=

4

A3

(1 + γA)3

γ2(4γ − 3)

[
γ3

4
+
γ2(4γ − 3)

4A
+

1

A3

|K|
|Ω|

]
, (4.31)

which depends on u and on γ > 3/4; hence, we still have the freedom of choosing γ. By taking γ = 1
(which, numerically, appears to be close to the global minimum of the right-hand side of (4.31)), we
obtain

β

α
=

(
1 +

1

A(u)
+

4

A(u)3

|K|
|Ω|

)(
1 +

1

A(u)

)3

, (4.32)

where we emphasized the dependence of A on u. In order to obtain an upper bound for the ratio β/α
independent of u, we use (4.20) which states that

A(u) ≥
√

2

3π
CapQ(K) ≥

√
8

3

1√
log
(
|Q|
|K|

) ∀u ∈ H1
c (Ω) s.t. u = 1 on ∂Q, u ≥ 0 in Ω.

Hence, from (4.32) we obtain the following uniform bound (independent of u)

β

α
≤
(

1 +

√
3

8
log

( |Q|
|K|

))3 [
1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Ω| log3/2

( |Q|
|K|

)]
.

In turn, from (4.28), by replacing s with u in (4.29) and integrating, we obtain

‖u‖4L4(Ω) ≤
β

α
A(u)4|Ω|

≤ 4|Ω|
9π2

(
1 +

√
3

8
log

( |Q|
|K|

))3 [
1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

|K|
|Ω| log3/2

( |Q|
|K|

)]
‖∇u‖4L2(Ω),

for every u ∈ H1
c (Ω) such that u = 1 on ∂Q and u ≥ 0 in Ω. The bound (4.25) follows by taking the

squared roots in the last inequality. 2

Several remarks about Theorem 4.2 are in order.

Remark 4.2. The interpolation inequality by Ladyzhenskaya [168] (or [169, Lemma 1, p.8]) states that

‖w‖2L4(Ω) ≤
√

2‖∇w‖L2(Ω)‖w‖L2(Ω) ∀w ∈ H1
0 (Ω).

Subsequently, Galdi [115, (II.3.9)] improved this Gagliardo-Nirenberg-type inequality by showing that

‖w‖2L4(Ω) ≤
1√
2
‖∇w‖L2(Ω)‖w‖L2(Ω) ∀w ∈ H1

0 (Ω).

Thanks to the result by del Pino-Dolbeault [83], with (4.27) we improved further the constant of this
inequality by around 35%: indeed,

√
2/3π ≈ 0.65/

√
2. Finally, consider the entire function w(x, y) =

(1+x2 +y2)−1; by computing its norms, we see that the optimal constant in this inequality is larger than
(2π)−1/2, showing that (4.27) cannot be improved by more than 15%.

Remark 4.3. The “break even” in the bound (4.24) occurs when |K|/|Q| = 1 − µ2
0/2π ≈ 0.08: for

smaller |K| the first bound is better, for larger |K| the second bound is better. Note that the constant in
(4.24) tends to 0 whenever |K| → |Q| (the obstacle tends to fill the box) and remains uniformly bounded
when |K| → 0. On the contrary, the constant in (4.25) blows up when |K| → 0: this is not just a
consequence of our proof, also the optimal constant blows up, see Theorem 4.3 below.
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Remark 4.4. The constant in (4.24) depends on the size of the surrounding box Q but it is mostly
independent of the obstacle K (of its shape and of its position inside the box), it only weakly depends
on its measure (in fact, its relative measure within Q); for this reason, we conjecture that it can be
improved. The constant in (4.25) does not depend on the shape of K, nor on its position inside Q but it
strongly depends on its measure; we believe that if K is close to ∂Q, (4.25) can be significantly improved.
However, for our fluid-obstacle model to be reliable, we need to avoid “boundary effects” and maintain
the obstacle K far away from ∂Q (the boundary of the photo, see the Introduction).

Remark 4.5. Some steps in the proof of (4.25) may be performed differently. For instance, one could
have noticed that maxA>0(A−1)/A4 = 27/256, yielding a different bound for β in (4.30). Also the choice
of γ = 1 could be slightly modified. Nevertheless, the overall (small) improvements would not justify the
great effort required and the final form of (4.25) would have a more unpleasant form. Moreover, these
variants would not improve the bounds in Section 4.2.4, see Theorem 4.14 below.

Theorem 4.2 yields the following lower bounds for the Sobolev constants:

Corollary 4.1. Let Ω be as in (4.1). Let S0 and S1 be as in (4.23). Then:

S0 ≥
√

3π3/2

2L
max

1,
µ0√
2π

√√√√√ |Q|
|K|

|Q|
|K| − 1

 ,

S1 ≥
3π

4L

√√√√ |Q|
|K|

|Q|
|K| − 1

(
1 +

√
3

8
log

( |Q|
|K|

))−3/2
1 +

√
3

8
log

( |Q|
|K|

)
+

3
√

3

4
√

2

1
|Q|
|K| − 1

log3/2

( |Q|
|K|

)−1/2

.

By dropping the multiplicative term 1/L, the remainder of the lower bound for S1 in Corollary
4.1 can be treated as a function of |Q|/|K| ∈ [1,∞). This function vanishes like [log (|Q|/|K|)]−1 as
|Q|/|K| → ∞, see its plot in Figure 4.3 where we also compare it with the (larger) lower bound for S0,
that becomes constant when |Q|/|K| ≈ 12.5, see Remark 4.3.

2 4 6 8 10 12 14
|Q| / |K|

2

4

6

8

10

12

Figure 4.3: Behavior of the lower bounds for S0 (red) and S1 (blue) as functions of |Q|/|K|.

It is then natural to wonder whether the lower bounds obtained in Corollary 4.1 are meaningful. This
can be verified through suitable upper bounds. For S0 we take the function w(x, y) = cos(πx2L) cos(πy2L),
defined for (x, y) ∈ Q, so that w ∈ H1

0 (Q) and

‖w‖2L4(Q) =
3L

4
, ‖∇w‖2L2(Q) =

π2

2
=⇒ S0 ≤

2π2

3L
,

showing that the first lower bound for S0 is quite accurate. An upper bound for S1 is given in the next
statement.
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Theorem 4.3. Let Ω be as in (4.1) and assume that

∃ 0 < d ≤ a < L such that R = (−a, a)× (−d, d) ⊃ K . (4.33)

Then

S1 ≤
2
√

2
[
(L− a)2 + (L− d)2

]2
(L− a)(L− d)

√
a(L− a) + d(L− d)

θ√
2L(2L− a− d)(d− a)2θ1 + (L− a)(L− d) [a(L− a) + d(L− d)] θ2

,

where

θ =

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

, θ1 = (1− 4θ + 12θ2 − 24θ3 + 24θ4)

[
L(L− a) + L(L− d)

a(L− a) + d(L− d)

]
− 24θ4,

θ2 = (2− 4θ + 6θ2 − 6θ3 + 3θ4)

[
L(L− a) + L(L− d)

a(L− a) + d(L− d)

]2

− 3θ4.

Proof. Let P(Q) be as in (4.9), let V φ ∈ P(Q) be defined by (4.14) with

φ(s) = log

(
(L− a)2 + (L− d)2

L(L− a) + L(L− d)
s+

a(L− a) + d(L− d)

L(L− a) + L(L− d)

)/
log

(
a(L− a) + d(L− d)

L(L− a) + L(L− d)

)
∀s ∈ [0, 1],

with V φ extended by 1 in R \K. From (4.16) and (4.17) we know that:

‖∇V φ‖2L2(Ω) = 4
(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1

.

For symmetry reasons, the contribution of |1 − V φ|4 over T1 ∪ T3 is four times the contribution over
the trapezium T5 defined in (4.12), whereas the contribution of |1− V φ|4 over T2 ∪ T4 is four times the
contribution over the trapezium T6 defined in (4.13). Then

∫
Q\R
|1− V φ|4 = 4

∫ L

d

∫ a+
L−a
L−d (y−d)

0
|1− V φ(y)|4dx dy + 4

∫ L

a

∫ d+
L−d
L−a (x−a)

0
|1− V φ(x)|4dy dx

= 4

∫ L

d

[
a+ L−a

L−d(y − d)
]
|1− V φ(y)|4 dy + 4

∫ L

a

[
d+ L−d

L−a(x− a)
]
|1− V φ(x)|4 dx

= 4

∫ 1

0
[a(L− d) + d(L− a) + 2(L− a)(L− d)s] |1− φ(s)|4 ds.

Using that V φ ≡ 1 in R \K and the change of variable t = 1− φ(s), for s ∈ [0, 1], we then obtain

‖1− V φ‖4L4(Ω) = 2
a(L− a) + d(L− d)

[(L− a)2 + (L− d)2]
2

{
2L(2L− a− d)(d− a)2θ1 + (L− a)(L− d) [a(L− a) + d(L− d)] θ2

}
.

We finally notice that if v ∈ P(Q), then 1− v ∈ H1
c (Ω) with v = 1 on ∂Q. Therefore,

S1 ≤ min
v∈P(Q)

‖∇v‖2L2(Ω)

‖1− v‖2
L4(Ω)

≤
‖∇V φ‖2L2(Ω)

‖1− V φ‖2
L4(Ω)

,

which concludes the proof. 2

In the case where the obstacle is a square, Theorem 4.3 enables us to evaluate the precision of the
lower bound for S1 given in Corollary 4.1.
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Corollary 4.2. If 0 < a < L and Ω = (−L,L)2 \ (−a, a)2, then

S1 ≥
1

L

3π
4
L
a√(

L
a

)2 − 1

(
1 +

√
3

2
log1/2

(
L

a

))−3/2 [
1 +

√
3

2
log1/2

(
L

a

)(
1 +

3(
L
a

)2 − 1
log

(
L

a

))]−1/2

,

S1 ≤
1

L

4
√

2
L

a
log

(
L

a

)
√[

2 log4

(
L

a

)
− 4 log3

(
L

a

)
+ 6 log2

(
L

a

)
− 6 log

(
L

a

)
+ 3

](
L

a

)2

− 3

.

By dropping the multiplicative term 1/L, the remainder of the lower and upper bounds for S1 in
Corollary 4.2 can be treated as a function of L/a ∈ (1,∞). The ratio between the bounds tends to
4/π ≈ 1.273 as L/a→∞ so that, since we are interested in small obstacles compared to the size of the
photo (a� L), Corollary 4.2 shows that the obtained bounds are quite precise. The plots in Figure 4.4
describe the overall behavior.
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Figure 4.4: On the left: behavior of the lower and upper bounds for S1 from Corollary 4.2, as a function
of L/a. On the right: ratio between the upper and lower bounds for S1 as a function of L/a.

4.1.3 Functional inequalities for the Navier-Stokes equations

In this section we quickly recall some well-known functional spaces and inequalities, by adapting them
to our context. Let us introduce the two functional spaces of vector fields

V∗(Ω) = {v ∈ H1
∗ (Ω) | ∇ · v = 0 in Ω} and V(Ω) = {v ∈ H1

0 (Ω) | ∇ · v = 0 in Ω},

which are Hilbert spaces if endowed with the scalar product (u, v) 7→ (∇u,∇v)L2(Ω). We also introduce
the trilinear form

β(u, v, w) =

∫
Ω

(u · ∇)v · w ∀u, v, w ∈ H1(Ω), (4.34)

which is continuous in H1
∗ (Ω)×H1

∗ (Ω)×H1
∗ (Ω) and satisfies (see e.g. [115, Section IX.2])

|β(u, v, w)| ≤ 1

S ‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀u, v, w ∈ H1
∗ (Ω), (4.35)

|β(u, v, w)| ≤ 1√SS0
‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀u, v ∈ H1

∗ (Ω), w ∈ H1
0 (Ω), (4.36)

where S and S0 are as in (4.23). Moreover,

β(u, v, w) = −β(u,w, v) for any u ∈ V∗(Ω), v ∈ H1(Ω), w ∈ H1
0 (Ω),

β(u, v, v) = 0 for any u ∈ V∗(Ω), v ∈ H1
0 (Ω).

(4.37)
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Since integration by parts will be performed repeatedly in the course, we recall a generalized Gauss
identity from [115, Theorem III.2.2]. Since Ω in (4.1) is a bounded Lipschitz domain, its boundary ∂Ω
has in a.e. point an outward unit normal n̂. Then, for every r, s ∈ (1,∞) such that 1

r + 1
s = 1 one has∫

Ω

u(∇ · v) dx+

∫
Ω

∇u · v dx = 〈v · n̂, u〉∂Ω ∀u ∈W 1,s(Ω) , v ∈ Er(Ω), (4.38)

where Er(Ω)
.
= {v ∈ Lr(Ω) | ∇ · v ∈ Lr(Ω)} and the “boundary term” 〈·, ·〉∂Ω represents the duality

between W−
1
r
,r(∂Ω) and W

1
r
,s(∂Ω); it is well-defined because

v · n̂|∂Ω ∈W−
1
r
,r(∂Ω) and u|∂Ω ∈W

1
r
,s(∂Ω).

For later use, we remark that for constant boundary data one has

(U, V ) ∈ R2 =⇒ ‖(U, V )‖H1/2(∂Q) = ‖(U, V )‖L2(∂Q) = 2
√

2L
√
U2 + V 2 . (4.39)

We now recall a combination of results by Hopf [150] and Ladyzhenskaya-Solonnikov [170], that we
also state for domains Ω that are symmetric with respect to the x-axis, namely (x, y) ∈ Ω if and only if
(x,−y) ∈ Ω.

Proposition 4.1. Let Ω be as in (4.1) and let n̂ be the a.e.-defined outward unit normal to ∂Ω. Let
W ∈ H1/2(∂Ω) be such that ∫

∂Q

W · n̂ ds =

∫
∂K

W · n̂ ds = 0. (4.40)

Then for all ε > 0 there exists a solenoidal extension Aε ∈ H1(Ω) satisfying

∇ ·Aε = 0 in Ω, Aε = W on ∂Ω, |β(v,Aε, v)| ≤ ε‖∇v‖2L2(Ω) ∀v ∈ V(Ω). (4.41)

If Ω is symmetric with respect to the x-axis and W = (W1,W2) is such that W1 is y-even and W2 is
y-odd, then the solenoidal extension Aε = (A1

ε, A
2
ε) can be chosen so that A1

ε is y-even and A2
ε is y-odd,

with no increment of the H1-norm.

Proof. Given ε > 0 and a boundary datum W ∈ H1/2(∂Ω) satisfying (4.40), the existence of a vector
field Aε ∈ H1(Ω) verifying (4.41) is proved (e.g.) in [115, Lemma IX.4.2]; indeed, (4.40) assumes “no
separated sinks and sources of fluid inside Q”, see [115, Formula (IX.4.7)].

Under the symmetry assumptions given in the statement, it can be seen that the vector field

Bε(x, y)
.
=

1

2

(
A1
ε(x, y) +A1

ε(x,−y), A2
ε(x, y)−A2

ε(x,−y)
)

for a.e. (x, y) ∈ Ω,

is y-even in its first component, y-odd in its second component and still verifies (4.41). Indeed, the
solenoidal condition is readily verified, as well as the boundary condition. The H1-bound follows from
the fact that ‖Bε‖H1(Ω) ≤ ‖Aε‖H1(Ω); in turn, this follows from a direct computation (and using the
Young inequality) or by observing that Bε is the “symmetrized” of Aε. Finally, the bound on β follows
by arbitrariness of v: in particular, it holds for the symmetric and/or skew-symmetric parts of any
v ∈ V(Ω). 2

As usual, the pressure p in (4.2) is defined up to an additive constant; therefore, we take it to have
zero mean value and we introduce the space

L2
0(Ω) =

{
g ∈ L2(Ω)

∣∣∣ ∫
Ω
g = 0

}
.
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For any g ∈ L2
0(Ω) we define its gradient ∇g ∈ H−1(Ω) as follows:

〈∇g, ψ〉Ω =

∫
Ω
g (∇ · ψ) ∀ψ ∈ H1

0 (Ω).

Bogovskii [36] showed that, given any q ∈ L2
0(Ω), there exists ψ ∈ H1

0 (Ω) such that ∇ · ψ = q in Ω and

‖∇ψ‖L2(Ω) ≤ CB(Ω)‖q‖L2(Ω), (4.42)

where the constant CB(Ω) > 0 depends only on Ω. Then we obtain the bound

‖∇g‖H−1(Ω) = sup
ψ∈H1

0(Ω)

‖∇ψ‖
L2(Ω)

=1

∣∣∣∣∫
Ω
g (∇ · ψ)

∣∣∣∣ ≥ 1

CB(Ω)
sup

q∈L2
0(Ω)

‖q‖
L2(Ω)

=1

∣∣∣∣∫
Ω
gq

∣∣∣∣ =
1

CB(Ω)
‖g‖L2(Ω),

that is,
‖g‖L2(Ω) ≤ CB(Ω)‖∇g‖H−1(Ω) ∀g ∈ L2

0(Ω). (4.43)

Since the purpose of the present chapter is to obtain explicit bounds, in the next section we give an
estimate of the Bogovskii constant CB appearing in both (4.42) and (4.43).

4.1.4 An estimate of the continuity constant for the Bogovskii operator

In this section we face the problem of estimating (explicitly) the continuity constant CB(Ω) > 0 of the
Bogovskii operator, see (4.42). We will prove bounds in the case where (4.33) holds; we then denote

ΩR = Q \ R (4.44)

and we remark that ΩR = Ω1 ∪ Ω2 for some Ω1,Ω2 ⊂ ΩR that are star-shaped with respect to some
disk. Indeed, as illustrated in the left picture of Figure 4.5, Ω1 is the white region “illuminated” by the
disk in the left top corner of Q, while Ω2 is illuminated by the disk in the opposite corner of Q. Thus,
in the right picture of Figure 4.5, the white region corresponds to Ω1 ∩ Ω2.

Figure 4.5: Decomposition of ΩR as union of two star-shaped domains.

By determining the tangent lines to the disks containing the points (a, d) and (−a,−d) we find

• Ω1 = [(−L,−a) × (−L,L)] ∪ [(−a, L) × (d, L)] ∪ T ((a, d); (L, d); (L, d − α∗)), where, for given points
P1, P2, P3 ∈ R2, T (P1;P2;P3) ⊂ R2 denotes the triangle with vertices in P1, P2 and P3, and

α∗
.
=

L− a
8a(L+ a)

[
(L+ 3a)(L+ a− 2d)− (L− a)

√
(L+ a− 2d)2 + 8a(L+ a)

]
≥ 0, (4.45)

since a ≥ d; Ω1 is star-shaped with respect to the disk
(
x+ L+a

2

)2
+
(
y − L+a

2

)2
<
(
L−a

2

)2
.
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• Ω2 = [(a, L)× (−L,L)] ∪ [(−L, a)× (−L,−d)] ∪ T ((−a,−d); (−L,−d); (−L,α∗ − d)). In this case, Ω2

is star-shaped with respect to the disk
(
x− L+a

2

)2
+
(
y + L+a

2

)2
<
(
L−a

2

)2
.

Then we put

σ
.
= |Ω1| = |Ω2| = 2L(L−a)+(L+a)(L−d)+

α∗
2

(L−a), |Ω1∩Ω2| = 2(L−a)(L−d)+α∗(L−a) (4.46)

and, for every g ∈ L2
0(ΩR), we define

αg
.
=

{
‖g‖2L2(Ω1) +

1

|Ω1 ∩ Ω2|

(∫
Ω1

g(z) dz

)[∫
Ω1

g(z) dz − 2

∫
Ω1∩Ω2

g(z) dz

]}1/2

,

βg
.
=

‖g‖2L2(Ω2\Ω1) +
1

|Ω1 ∩ Ω2|

(∫
Ω2\Ω1

g(z) dz

)2


1/2

.

(4.47)

Then, by combining results from Bogovskii [36, 37] and Durán [90], we prove

Theorem 4.4. Assume (4.33) and let ΩR be as in (4.44). Define σ as in (4.46) and, for g ∈ L2
0(ΩR),

define αg and βg as in (4.47). Then, there exists a solution v ∈ H1
0 (ΩR) of the equation ∇· v = g in ΩR

such that

‖∇v‖L2(ΩR) ≤ 2

[
129.35 +

143.86
√
σ

L− a +
45.36σ

(L− a)2
+

64L2

(L− a)2

(
13.79 + 5.15

√
σ

L− a

)2
]1/2

(αg + βg). (4.48)

Proof. We first prove a general statement which is a quantitative version of results in [90]. We consider
a bounded domain O ⊂ R2 which is star-shaped with respect to a disk B ⊂ O of radius r > 0 and let
g ∈ L2

0(O). Let d(O) denote the diameter of O.
After translation we may assume that the disk B is centered at the origin of R2. Let ω ∈ C∞0 (R2) be

the standard radial mollifier whose support coincides with B, that is,

ω(x, y) =


`

r2
exp

(
r2

x2 + y2 − r2

)
if x2 + y2 < r2,

0 if x2 + y2 ≥ r2,

(4.49)

where ` > 0 is the normalization constant such that ‖ω‖L1(B) = 1; hence,

` =

(
2π

∫ 1

0
te1/(t2−1)dt

)−1

≈ 2.14357.

Bogovskii [36] showed that a solution v ∈ H1
0 (O) of the problem ∇ · v = g can be written as

v(z) =

∫
O

1∫
0

z − z′
t3

ω

(
z′ +

z − z′
t

)
g(z′) dt dz′ ∀z ∈ R2. (4.50)

Following [90], we differentiate (4.50) under the integral sign, and interpret the partial derivatives of v
as operators over the function g. In other words,

∂vk
∂zj

(z) = Tkj,1(g)(z)− Tkj,2(g)(z) ∀z ∈ R2; k, j ∈ {1, 2}, (4.51)
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where, if g is extended by zero outside O,

Tkj,1(g)(z) = lim
ε→0

1∫
ε

∫
R2

1

t2
∂

∂zj

[(
z′k +

zk − z′k
t

)
ω

(
z′ +

z − z′
t

)]
g(z′) dt dz′,

Tkj,2(g)(z) = lim
ε→0

1∫
ε

∫
R2

z′k
t2

∂

∂zj

[
ω

(
z′ +

z − z′
t

)]
g(z′) dt dz′,

for every z ∈ R2 and k, j ∈ {1, 2}. It is shown in [90, Theorem 3.1] that
‖Tkj,1(g)‖L2(O) ≤

(√
2Akj + 2Ãkj

√
|O|
)
‖g‖L2(O),

‖Tkj,2(g)‖L2(O) ≤ d(O)
(√

2Bkj + 2B̃kj
√
|O|
)
‖g‖L2(O) for every k, j ∈ {1, 2},

(4.52)

where the constants Akj , Ãkj , Bkj and B̃kj are explicitly given by
Akj =

1

r
‖zkω‖L1(B) + r

∥∥∥∥∥ ∂2

∂z2
j

(zkω)

∥∥∥∥∥
L1(B)

Ãkj =

∥∥∥∥ ∂

∂zj
(zkω)

∥∥∥∥ 1
2

L1(B)

∥∥∥∥ ∂

∂zj
(zkω)

∥∥∥∥ 1
2

L∞(B)

,

Bkj =
1

r
‖ω‖L1(B) + r

∥∥∥∥∥∂2ω

∂z2
j

∥∥∥∥∥
L1(B)

B̃kj =

∥∥∥∥ ∂ω∂zj
∥∥∥∥ 1

2

L1(B)

∥∥∥∥ ∂ω∂zj
∥∥∥∥ 1

2

L∞(B)

,

(4.53)

for every k, j ∈ {1, 2}. The constants in (4.53) admit the following upper bounds (see Section 4.4):

A11 = A22 < 7.29, A12 = A21 < 3.39, Ã11 = Ã22 <
1.19

r
, Ã12 = Ã21 <

0.66

r
,

B11 = B12 = B21 = B22 <
9.75

r
, B̃11 = B̃12 = B̃21 = B̃22 <

1.82

r3/2
,

for every k, j ∈ {1, 2}. By inserting these values into (4.52) we obtain:

‖T11,1(g)‖L2(O) = ‖T22,1(g)‖L2(O) ≤
(

10.31 +
2.38

r

√
|O|
)
‖g‖L2(O),

‖T12,1(g)‖L2(O) = ‖T21,1(g)‖L2(O) ≤
(

4.8 +
2.38

r

√
|O|
)
‖g‖L2(O),

‖Tkj,2(g)‖L2(O) ≤
d(O)

r

(
13.79 + 3.64

√
|O|
r

)
‖g‖L2(O) for every k, j ∈ {1, 2}.

(4.54)

We then recall (4.51) and apply the Young inequality to obtain

‖∇v‖2L2(O) ≤ 2

 2∑
k,j=1

‖Tkj,1(g)‖2L2(O) +
2∑

k,j=1

‖Tkj,2(g)‖2L2(O)

 .

Thanks to (4.54), we have so proved that there exists a vector field v ∈ H1
0 (O) solving the equation

∇ · v = g in O and satisfying the bound

‖∇v‖L2(O) ≤ 2

[
129.35 +

71.93

r

√
|O|+ 11.34

r2
|O|+ 2

d(O)2

r2

(
13.79 + 3.64

√
|O|
r

)2 ]1/2

‖g‖L2(O). (4.55)
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We apply this general result to the domains Ω1 and Ω2 so that d(Ω1) = d(Ω2) = 2
√

2L and r = L−a
2 .

We proceed as in [37], see also [115, Lemma III.3.2 and Theorem III.3.1] and decompose g as

g = g1 + g2 in ΩR, g1 ∈ L2
0(Ω1) with supp(g1) ⊂ Ω1, g2 ∈ L2

0(Ω2) with supp(g2) ⊂ Ω2.

The functions g1, g2 : ΩR → R are explicitly defined by

g1(z) =

 g(z)− χ∗(z)

|Ω1 ∩ Ω2|

∫
Ω1

g(z′) dz′ if z ∈ Ω1,

0 if z ∈ Ω2 \ Ω1,

g2(z) =

 [1− χ∗(z)]g(z)− χ∗(z)

|Ω1 ∩ Ω2|

∫
Ω2\Ω1

g(z′) dz′ if z ∈ Ω2,

0 if z ∈ Ω1 \ Ω2,

with χ∗ being the characteristic function of the set Ω1 ∩ Ω2. In view of (4.47) we then deduce

‖g1‖L2(ΩR) = αg , ‖g2‖L2(ΩR) = βg . (4.56)

By (4.55), we may find two vector fields v1 ∈ H1
0 (Ω1) and v2 ∈ H1

0 (Ω2) verifying

∇ · v1 = g1 in Ω1, ∇ · v2 = g2 in Ω2,

‖∇vk‖L2(Ωk) ≤ 2

[
129.35 +

143.86
√
σ

L− a +
45.36σ

(L− a)2
+

64L2

(L− a)2

(
13.79 + 5.15

√
σ

L− a

)2
]1/2

‖gk‖L2(Ωk),

for k ∈ {1, 2}. Then, by extending both v1 and v2 by zero outside Ω1 and Ω2, respectively, we infer that
the vector field v

.
= v1 + v2 ∈ H1

0 (ΩR), satisfies ∇ · v = g in ΩR together with the bound (4.48), after
applying (4.56). 2

4.1.5 Gradient bounds for solenoidal extensions

The presence of inhomogeneous boundary conditions in our physical model (4.1)-(4.2)-(4.3) constitutes
a major difficulty when trying to obtain a priori bounds for the solution and a quantitative statement
for its uniqueness. Furthermore, as will be apparent in the proof of Theorem 4.6 below, the fundamental
step lies in the determination of a solenoidal extension v0 of the data (U, V ) ∈ H1/2(∂Q), namely a
solution of (4.5), and a bound for its norm, see (4.75). The choice of v0 influences the explicit form of
the uniqueness bound and, therefore, what is needed is precisely an explicit form of v0. We solve this
problem in two steps. First we determine an extension, not necessarily solenoidal, of the data (U, V ),
then we solve the Bogovskii problem with the resulting divergence. More precisely, imagine that we can
determine

W1 ∈ H1
∗ (Ω) such that W1 = (U, V ) on ∂Q ;

this can be done in several ways but the difficult task is to obtain explicit bounds for ∇W1. Then one
solves the Bogovskii problem

∇ ·W2 = −∇ ·W1 in Ω , W2 ∈ H1
0 (Ω) .

Finally, v0 = W1 + W2 is the desired solenoidal extension and one then needs to find a bound for the
gradient of v0. In turn, this depends on the bound for the gradient of W2 that can be obtained through
Theorem 4.4, at least when (4.33) holds.

The purpose of the present section is to construct an explicit solenoidal extension v0 in the particular
case where (U, V ) ∈ R2. Assume (4.33) and let ΩR be as in (4.44). Let P(Q) be the set of pyramidal
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functions, see (4.9). For all P φ ∈ P(Q), characterized by a continuous function φ as in (4.11), we define
Υφ .

= 1− P φ extended by 0 in R, so that

Υφ ∈ H1
c (Ω) , Υφ = 1 on ∂Q, Υφ ≡ 0 in R .

Then consider the vector field W1 = Υφ
(
U
V

)
(we omit the superscript φ in W1 = W φ

1 ), which verifies

∇ ·W1 = U
∂Υφ

∂x
+ V

∂Υφ

∂y
in Ω, W1 = (U, V ) on ∂Q, W1 = (0, 0) on ∂K; (4.57)

we point out that ∇ ·W1 = 0 in R\K since Υφ ≡ 0 in R\K. Let T5 and T6 be the trapezia defined in
(4.12)-(4.13); then, by arguing as for (4.16), we obtain

‖∇ ·W1‖2L2(Ω) = 4V 2

∫
T5

∣∣∣∣∂Pφ∂y

∣∣∣∣2 + 4U2

∫
T6

∣∣∣∣∂Pφ∂x

∣∣∣∣2
= 4

V 2(L− a)2 + U2(L− d)2

(L− a)(L− d)

∫ 1

0

[
aV 2(L− a) + dU2(L− d)

V 2(L− a)2 + U2(L− d)2
+ s

]
φ′(s)2 ds .

Since we are planning to use (4.50), the bound (4.42) suggests to minimize this integral among functions
φ satisfying (4.11); this yields the Euler-Lagrange equation

d

ds

[(
aV 2(L− a) + dU2(L− d)

V 2(L− a)2 + U2(L− d)2
+ s

)
φ′(s)

]
= 0 ∀s ∈ (0, 1),

so that

φ(s) = C log

(
s+

aV 2(L− a) + dU2(L− d)

V 2(L− a)2 + U2(L− d)2

)
+D ∀s ∈ [0, 1],

for some constants C,D ∈ R to be determined by the conditions φ(0) = 1 and φ(1) = 0. We find

C =
[
log
(
aV 2(L−a)+dU2(L−d)
V 2L(L−a)+U2L(L−d)

)]−1
< 0, D = −C log

(
V 2L(L−a)+U2L(L−d)
V 2(L−a)2+U2(L−d)2

)
> 0. (4.58)

Then, by inserting this into (4.57) and recalling (4.15), we obtain

∇ ·W1 =
V

L− d
1

log
(
V 2L(L−a)+U2L(L−d)
aV 2(L−a)+dU2(L−d)

) 1
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2 + y−d

L−d

in T5,

∇ ·W1 =
U

L− a
1

log
(
V 2L(L−a)+U2L(L−d)
aV 2(L−a)+dU2(L−d)

) 1
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2 + x−a

L−a

in T6,

(4.59)

so that

‖∇ ·W1‖2L2(Ω) = 4C2 V 2(L−a)2+U2(L−d)2

(L−a)(L−d) log
(
V 2L(L−a)+U2L(L−d)
aV 2(L−a)+dU2(L−d)

)
= 4|C|V

2(L− a)2 + U2(L− d)2

(L− a)(L− d)
.

We also have

‖W1‖4L4(Ω) = (U2 + V 2)2

∫
ΩR

|1− P φ|4

= 4(U2 + V 2)2

∫ 1

0
[a(L− d) + d(L− a) + 2(L− a)(L− d)s] |1− φ(s)|4 ds

= 2(U2 + V 2)2(L− a)(L− d)e
1−D
C

{
e−

1+D
C

[
2 + 4C + 6C2 + 6C3 − 3C4

(
e

2
C − 1

)]
+4
[
a(L−d)+d(L−a)

2(L−a)(L−d) −
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2

] [(
1 + 4C + 12C2 + 24C3 + 24C4

)
e−

1
C − 24C4

]}
.
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Moreover:

∇W1 =


U
∂Υφ

∂x
U
∂Υφ

∂y

V
∂Υφ

∂x
V
∂Υφ

∂y

 =⇒ ∇W1 = −∂P
φ

∂y

(
0 U
0 V

)
in T5 , ∇W1 = −∂P

φ

∂x

(
U 0
V 0

)
in T6 ,

so that, by (4.15),

∇W1 =
1

L− d
1

log
(
V 2L(L−a)+U2L(L−d)
aV 2(L−a)+dU2(L−d)

) 1
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2 + y−d

L−d

(
0 U
0 V

)
in T5 , (4.60)

∇W1 =
1

L− a
1

log
(
V 2L(L−a)+U2L(L−d)
aV 2(L−a)+dU2(L−d)

) 1
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2 + x−a

L−a

(
U 0
V 0

)
in T6 . (4.61)

Further explicit computations yield

‖∇W1‖2L2(Ω) = 4C2(U2 + V 2) (L−a)2+(L−d)2

(L−a)(L−d)

{
e
D
C

[
a(L−a)+d(L−d)
(L−a)2+(L−d)2

V 2(L−a)2+U2(L−d)2

aV 2(L−a)+dU2(L−d)
− 1
]
− 1

C

}
.

The next step is to find a suitable vector field W2 ∈ H1
0 (Ω) verifying

∇ ·W2 = −∇ ·W1 = U
∂P φ

∂x
+ V

∂P φ

∂y
in Ω, (4.62)

together with a gradient bound for W2. We define g
.
= −∇ ·W1, which belongs to L2

0(ΩR) in virtue of
the Divergence Theorem. In particular, this shows∫

Ω1

g(z) dz +

∫
Ω2\Ω1

g(z) dz = 0. (4.63)

Notice that ∇ ·W2 = 0 in R\K, and so, after extending by 0 in R\K, it suffices to find W2 ∈ H1
0 (ΩR)

satisfying (4.62) in ΩR. The existence of such W2 is guaranteed by Theorem 4.4, whose gradient satisfies
the estimate (4.48), with σ as in (4.46) and αg, βg as in (4.47). The explicit form of g allows us to go
further with exact computations; in fact, by (4.63) and since g is given in the divergence form (4.59),
the Divergence Theorem and the property (4.14) of pyramidal functions yield

ζ0
.
=

∫
Ω1

g(z) dz = −
∫

Ω2\Ω1

g(z) dz

= 2(dU − aV ) +
(
C + aV 2(L−a)+dU2(L−d)

V 2(L−a)2+U2(L−d)2

)(
(L−a)2√
α2
∗+(L−a)2

(
Uα∗
L−a + V

)
− U(L− d)

)
.

(4.64)

With this particular choice of g we also have∫
Ω1∩Ω2

g(z) dz = 0,

which allows to rule out term appearing in (4.47). Moreover, by determining the intersections of the
trapezia {Ti}4i=1 with the sets Ω1 and Ω2, we find
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α
.
= αg =

{
4|C|V 2(L−a)2+U2(L−d)2

(L−a)(L−d) − C2V 2L−a
L−d

[(
2a
L−a −

aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2

)
eD/C

e−D/C−1
− 1

C

]

− C2U2L−d−α∗
L−a

[(
2d

L−d−α∗ −
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2

)
eD/C

e−D/C−1
− 1

C

]
+

ζ2
0

|Ω1∩Ω2|

}1/2

,

β
.
= βg =

{
C2V 2L−a

L−d

[(
2a
L−a −

aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2

)
eD/C

e−D/C−1
− 1

C

]

+ C2U2L−d−α∗
L−a

[(
2d

L−d−α∗ −
aV 2(L−a)+dU2(L−d)
V 2(L−a)2+U2(L−d)2

)
eD/C

e−D/C−1
− 1

C

]
+

ζ2
0

|Ω1∩Ω2|

}1/2

.

(4.65)

Then one defines v
.
= W1 + W2, which is an element of H1

c (Ω) and whose gradient can be explicitly
bounded in terms of the previously computed constants. We summarize these results in the following
statement, providing the desired explicit form for the solenoidal extension of constant boundary data.

Theorem 4.5. Assume (4.33), and for a given (U, V ) ∈ R2, define α∗ ≥ 0 as in (4.45); σ as in (4.46);
C < 0, D > 0 as in (4.58); ζ0 ∈ R as in (4.64); α, β ≥ 0 as in (4.65). Then, there exists a vector field
v ∈ H1

c (Ω) satisfying
∇ · v = 0 in Ω, v = (U, V ) on ∂Q, (4.66)

together with the estimate

‖∇v‖L2(Ω) ≤ 2|C|
√
U2 + V 2

√
(L−a)2+(L−d)2

(L−a)(L−d)

√
e
D
C

[
a(L−a)+d(L−d)
(L−a)2+(L−d)2

V 2(L−a)2+U2(L−d)2

aV 2(L−a)+dU2(L−d)
− 1
]
− 1

C

+ 2

√
129.35 + 143.86

√
σ

L−a + 45.36σ
(L−a)2 + 64L2

(L−a)2

(
13.79 + 5.15

√
σ

L−a

)2 (
α+ β

)
.

(4.67)

We point out that the bound for ‖∇v‖L2(Ω) does not depend on the shape of the obstacle, it is
obtained under the sole assumption (4.33). This result will be simplified in Section 4.2.4 where we also
assume that V = 0.

4.2 The planar Navier-Stokes equations around an obstacle

4.2.1 Existence, uniqueness and regularity

Let us first define what is meant by weak solution of problem (4.2)-(4.3).

Definition 4.1. Given f ∈ H−1(Ω) and (U, V ) ∈ H1/2(∂Q) satisfying (4.4), we say that a vector field
u ∈ V∗(Ω) is a weak solution of (4.2)-(4.3) if u verifies (4.3) in the trace sense and

η(∇u,∇ϕ)L2(Ω) + β(u, u, ϕ) = 〈f, ϕ〉Ω ∀ϕ ∈ V(Ω). (4.68)

Then we state a result which is essentially known, see e.g. [115, Section IX.4]. Nevertheless, for three
important reasons give we here a proof by emphasizing several steps. First we are concerned with both
nonzero forcing and boundary data, second the a priori bounds are needed in the proof of Theorem 4.11,
third the quantitative bounds for uniqueness will play a crucial role in Section 4.2.4.
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Theorem 4.6. Let Ω be as in (4.1). For any f ∈ H−1(Ω) and (U, V ) ∈ H1/2(∂Q) satisfying (4.4) there
exists a weak solution (u, p) ∈ V∗(Ω)× L2

0(Ω) of (4.2)-(4.3) and any weak solution (u, p) satisfies the a
priori bound ‖∇u‖L2(Ω) ≤ C1

(
‖(U, V )‖2

H1/2(∂Q)
+ ‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω)

)
,

‖p‖L2(Ω) ≤ C2

(
‖∇u‖2L2(Ω) + ‖∇u‖L2(Ω) + ‖f‖H−1(Ω)

)
,

(4.69)

for some C1, C2 > 0 that depend on Ω and η. Moreover, there exists δ = δ(η,Ω) > 0 such that if

‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω) < δ, (4.70)

then the weak solution (u, p) of (4.2)-(4.3) is unique and also satisfies the estimate ‖∇u‖L2(Ω) < S0η.

Proof. Existence of a weak solution (u, p) ∈ V∗(Ω)×L2
0(Ω) of (4.2)-(4.3) satisfying the a priori bounds

(4.69) follow from [115, Theorem IX.4.1], but the proof is given here in order to show how the constants
C1 and C2 appearing in (4.69) depend on Ω. Indeed, Proposition 4.1 ensures the existence of a solenoidal
vector field u0 ∈ V∗(Ω) satisfying

u0 = (U, V ) on ∂Q, ‖∇u0‖L2(Ω) ≤M‖(U, V )‖H1/2(∂Q), |β(v, u0, v)| ≤ η

2
‖∇v‖2L2(Ω) ∀v ∈ V(Ω),

for some constant M > 0 depending only on Ω. Define ξ = u − u0, so that ξ ∈ V(Ω), and substitute
u = ξ + u0 into (4.2) to obtain

− η∆ξ + [(ξ + u0) · ∇](ξ + u0) +∇p = η∆u0 + f, (4.71)

with η∆u0 + f ∈ H−1(Ω). Hence, (4.71) is intended in weak sense, see (4.68); we test it with ξ and we
integrate by parts over Ω in order to obtain

η‖∇ξ‖2L2(Ω) ≤ (η‖∇u0‖L2(Ω) + ‖f‖H−1(Ω))‖∇ξ‖L2(Ω) − β(ξ + u0, ξ + u0, ξ). (4.72)

By (4.36)-(4.37) we have β(ξ + u0, ξ + u0, ξ) = β(ξ + u0, u0, ξ) and the estimate

|β(ξ + u0, u0, ξ)| ≤
η

2
‖∇ξ‖2L2(Ω) +

1√SS0
‖∇ξ‖L2(Ω)‖∇u0‖2L2(Ω), (4.73)

where we have used the definition of S and S0 given in (4.23). By plugging (4.73) into (4.72) we deduce

‖∇u‖L2(Ω) ≤ ‖∇ξ‖L2(Ω) + ‖∇u0‖L2(Ω) ≤
2√SS0 η
‖∇u0‖2L2(Ω) + 3‖∇u0‖L2(Ω) +

2

η
‖f‖H−1(Ω),

and then the inequality ‖∇u0‖L2(Ω) ≤M‖(U, V )‖H1/2(∂Q) yields (4.69)1 in the following way:

‖∇u‖L2(Ω) ≤
2M2

√SS0 η
‖(U, V )‖2

H1/2(∂Q)
+ 3M‖(U, V )‖H1/2(∂Q) +

2

η
‖f‖H−1(Ω). (4.74)

The a priori bound for the pressure in (4.69)2 is obtained after noticing that

∇p = η∆u− (u · ∇)u+ f in the sense of H−1(Ω),

and applying (4.43) with some embedding inequalities.
The quantitative uniqueness statement relies on a different kind of a priori bound, based on a given

solenoidal extension, that is,

v0 ∈ V∗(Ω), v0 = (U, V ) on ∂Q, ‖∇v0‖L2(Ω) ≤ C‖(U, V )‖H1/2(∂Q) , (4.75)
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where the constant C = C(Ω) > 0 is independent on the boundary data, see [170]. Then we seek
solutions u of (4.2)-(4.3) in the form u = ξ + v0 so that ξ ∈ V(Ω) satisfies

− η∆ξ + [(ξ + v0) · ∇](ξ + v0) +∇p = η∆v0 + f, (4.76)

with η∆v0 + f ∈ H−1(Ω). Hence, (4.76) is intended in weak sense, see (4.68); we test it with ξ and we
integrate by parts in Ω in order to obtain

η‖∇ξ‖2L2(Ω) ≤ (η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω))‖∇ξ‖L2(Ω) − β(ξ + v0, ξ + v0, ξ). (4.77)

In view of (4.36)-(4.37) we have β(ξ + v0, ξ + v0, ξ) = β(ξ + v0, v0, ξ) and the estimate

|β(ξ + v0, v0, ξ)| ≤ ‖ξ‖L4(Ω)‖∇v0‖L2(Ω)

(
‖ξ‖L4(Ω) + ‖v0‖L4(Ω)

)
≤
‖∇ξ‖L2(Ω)√S0

‖∇v0‖L2(Ω)

(‖∇ξ‖L2(Ω)√S0
+ ‖v0‖L4(Ω)

)
, (4.78)

where we used the definition of S0 given in (4.23). Inserting (4.78) into (4.77) yields

η‖∇ξ‖L2(Ω) ≤
‖∇v0‖L2(Ω)

S0
‖∇ξ‖L2(Ω) +

‖∇v0‖L2(Ω)‖v0‖L4(Ω)√S0
+ η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω).

Let C be as in (4.75); if the boundary datum is small enough so that

C‖(U, V )‖H1/2(∂Q) < S0η , (4.79)

then, for the chosen extension v0, one also has ‖∇v0‖L2(Ω) < S0η and we infer that

‖∇ξ‖L2(Ω) ≤

‖∇v0‖L2(Ω)‖v0‖L4(Ω)√S0
+ η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω)

η −
‖∇v0‖L2(Ω)

S0

. (4.80)

This is the sought a priori bound for solutions of (4.68), up to the additive solenoidal extension v0 of
the boundary data. We emphasize that it has been obtained under the smallness assumption (4.79).

Assuming (4.79), take two weak solutions u, v ∈ H1
∗ (Ω) of (4.2)-(4.3), with possibly different pressures

that are, however, ruled out by L2-orthogonality of the gradients with V(Ω). Indeed, subtract the
equations (4.68) corresponding to u and v in order to obtain

η(∇w,∇ϕ)L2(Ω) + β(u,w, ϕ) + β(w, v, ϕ) = 0 ∀ϕ ∈ V(Ω),

where w
.
= u− v ∈ V(Ω). By taking ϕ = w, defining ξ = v − v0 and using (4.36) and (4.80), we derive

η‖∇w‖2L2(Ω) = −β(w, v, w) = β(w,w, v) ≤ ‖w‖L4(Ω)‖∇w‖L2(Ω)‖v‖L4(Ω) ≤
‖∇w‖2L2(Ω)√S0

‖v‖L4(Ω)

≤
‖∇w‖2L2(Ω)√S0

(
‖ξ‖L4(Ω) + ‖v0‖L4(Ω)

)
≤
‖∇w‖2L2(Ω)√S0

(‖∇ξ‖L2(Ω)√S0
+ ‖v0‖L4(Ω)

)
≤ ‖∇w‖2L2(Ω)

η(‖∇v0‖L2(Ω) +
√S0 ‖v0‖L4(Ω)) + ‖f‖H−1(Ω)

ηS0 − ‖∇v0‖L2(Ω)
,

(4.81)

which shows that w = 0 provided that

η
(
2‖∇v0‖L2(Ω) +

√
S0 ‖v0‖L4(Ω)

)
+ ‖f‖H−1(Ω) < S0η

2 . (4.82)
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In conclusion, unique solvability of (4.2)-(4.3) is achieved whenever both (4.79) and (4.82) hold. Since
the most restrictive is the latter, and since ‖v0‖L4(Ω) ≤ ‖∇v0‖L2(Ω)/

√
S, uniqueness is ensured whenever

η

(
2 +

√
S0

S

)
‖∇v0‖L2(Ω) + ‖f‖H−1(Ω) < S0η

2 . (4.83)

In turn, by (4.75), (4.83) certainly holds if

ηC
2
√
S +
√S0√
S

‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω) < S0η
2 . (4.84)

Therefore, an explicit expression for δ in (4.70) is given by

δ(η,Ω) = min

{
η

C

S0

√
S

2
√
S +
√S0

, S0η
2

}
. (4.85)

Finally, we have to prove the gradient bound for the unique solution whenever the inequality

‖(U, V )‖H1/2(∂Q) + ‖f‖H−1(Ω) < min

{
η

C

S0

√
S

2
√
S +
√S0

, S0η
2

}

holds. This inequality implies (4.84) which, together with (4.75), implies

‖∇v0‖L2(Ω) < η
√
SS0 ; (4.86)

we point out that (4.86) slightly improves (4.79) since S ≤ S0. For the same reason, and since (4.86)
holds, we may write a “slightly worse” bound than (4.80), namely

‖∇ξ‖L2(Ω) ≤

‖∇v0‖2L2(Ω)√SS0
+ η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω)

η −
‖∇v0‖L2(Ω)√SS0

.

Hence, recalling that u = ξ + v0, by (4.83) we have that

‖∇u‖L2(Ω) ≤ ‖∇ξ‖L2(Ω) + ‖∇v0‖L2(Ω) ≤
2η‖∇v0‖L2(Ω) + ‖f‖H−1(Ω)

η −
‖∇v0‖L2(Ω)√SS0

< S0η .

This proves the gradient bound and completes the proof. 2

Remark 4.6. Theorem 4.6 guarantees unique solvability of (4.2)-(4.3) under a smallness assumption on
the data, which in turn yields the bound ‖∇u‖L2(Ω) < S0η. Conversely, the existence of such a “small”
solution ensures unique solvability, see [115, Theorem IX.2.1].

The constant δ in (4.70) depends on Ω through the embedding constants S and S0 and through
the solenoidal extension constant C in (4.75). Theorem 4.6 guarantees the uniqueness of the solution
whenever the data (U, V ) and f are small also with respect to the kinematic viscosity η. If this smallness
assumption is violated one expects multiplicity results, see [261] and also [115, Theorem IX.2.2] for a
slightly more general situation: at a certain Reynolds number a bifurcation occurs.

What is left open in the proof of Theorem 4.6 is the choice of the particular solenoidal extension v0.
We can find an explicit form of v0 in the case where the boundary data are constant (so that (4.4) is
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automatically fulfilled). To this end, for 0 < d ≤ a < L, define σ > 0 as in (4.46); θ > 0, θ1, θ2 ∈ R as in
Theorem 4.3, and we introduce the constants

γ1 =

[
129.35 +

143.86
√
σ

L− a +
45.36σ

(L− a)2
+

64L2

(L− a)2

(
13.79 + 5.15

√
σ

L− a

)2
]1/2

,

γ2 = 2

√
(L− a)2 + (L− d)2

(L− a)(L− d)

[
log

(
L(L− a) + L(L− d)

a(L− a) + d(L− d)

)]−1/2

,

γ3 = 4

√
2
a(L− a) + d(L− d)

[(L− a)2 + (L− d)2]2
{2L(2L− a− d)(d− a)2θ1 + (L− a)(L− d) [a(L− a) + d(L− d)] θ2} .

Then, if we additionally assume that f = 0, Theorem 4.6 may be strengthened as follows.

Theorem 4.7. Let Ω be as in (4.1) and assume (4.33). Define µ0 > 0 as in (4.22) and α∗ ≥ 0 as
in (4.45). For any (U, V ) ∈ R2 there exists a weak solution (u, p) ∈ V∗(Ω) × L2

0(Ω) of (4.2)-(4.3) with
f = 0. If, moreover,

√
U2 + V 2 <

√
3π3/2

2L max

{
1,
√

µ2
0|Q|

2π(|Q|−|K|)

}
η(

2 + 12γ1

√
1 + 1

2(L−a)(L−d)+α∗(L−a)

)
γ2 +

4√3π3/4
√

2L
max

{
1, 4

√
µ2

0|Q|
2π(|Q|−|K|)

}
γ3

,

then the weak solution of (4.2)-(4.3) is unique.

Proof. Existence of a weak solution (u, p) ∈ V∗(Ω) × L2
0(Ω) of (4.2)-(4.3) with f = 0 follows from

Theorem 4.6, noticing that the compatibility condition (4.4) is automatically fulfilled.
Let P(Q) be as in (4.9), let V φ ∈ P(Q) be defined by (4.14) with

φ(s) = log

(
(L− a)2 + (L− d)2

L(L− a) + L(L− d)
s+

a(L− a) + d(L− d)

L(L− a) + L(L− d)

)/
log

(
a(L− a) + d(L− d)

L(L− a) + L(L− d)

)
∀s ∈ [0, 1],

with V φ extended by 1 in R \K. We know that V φ = 0 on ∂Q, V φ ≡ 1 in R, and from (4.16), (4.17)
and the proof of Theorem 4.3 we also have

‖∇V φ‖L2(Ω) = γ2, ‖1− V φ‖L4(Ω) = γ3. (4.87)

Consider the vector field W1
.
= (1− V φ)

(
U
V

)
, so that:

∇ ·W1 = −U ∂V
φ

∂x
− V ∂V

φ

∂y
in Ω, W1 = (U, V ) on ∂Q, W1 = (0, 0) on ∂K.

Moreover,

‖∇W1‖2L2(Ω) = (U2 + V 2)‖∇V φ‖2L2(Ω), ‖W1‖4L4(Ω) = (U2 + V 2)2 ‖1− V φ‖4L4(Ω). (4.88)

Also note that

|∇ ·W1|2 = (U2 + V 2)

[(
∂V φ

∂x

)2

+

(
∂V φ

∂y

)2
]
−
(
U
∂V φ

∂y
− V ∂V

φ

∂x

)2

≤ (U2 + V 2) |∇V φ|2,

so that
‖∇ ·W1‖2L2(Ω) ≤ (U2 + V 2)‖∇V φ‖2L2(Ω). (4.89)
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The next step is to find a vector field W2 ∈ H1
0 (Ω) verifying

∇ ·W2 = U
∂V φ

∂x
+ V

∂V φ

∂y
in Ω, (4.90)

together with a gradient bound. We define g
.
= −∇ · W1, which belongs to L2

0(ΩR) in virtue of the
Divergence Theorem. Notice that ∇ ·W2 = 0 in R\K, and so, after extending by 0 in R\K, it suffices
to find W2 ∈ H1

0 (ΩR) satisfying (4.90) in ΩR. We now proceed as in Theorem 4.4 and define the two sets
Ω1,Ω2 ⊂ Ω, each one being star-shaped with respect to a disk of radius (L−a)/2, such that Ω = Ω1 ∪ Ω2

and |Ω1 ∩ Ω2| = 2(L − a)(L − d) + α∗(L − a). Thus, there exists a vector field W2 ∈ H1
0 (Ω) satisfying

∇ ·W2 = g in Ω, together with the estimate

‖∇W2‖L2(Ω) ≤ 2γ1(αg + βg).

With this particular choice of g we have ∫
Ω1∩Ω2

g(z) dz = 0,

so that, in view of (4.63), (4.89) and the Jensen inequality, the coefficients αg and βg appearing in (4.47)
admit the following rough estimate:

αg + βg ≤ 2

√
1 +

1

|Ω1 ∩ Ω2|
‖g‖L2(Ω) ≤ 2

√
U2 + V 2

√
1 +

1

|Ω1 ∩ Ω2|
‖∇V φ‖L2(Ω),

so that

‖∇W2‖L2(Ω) ≤ 4γ1

√
U2 + V 2

√
1 +

1

|Ω1 ∩ Ω2|
‖∇V φ‖L2(Ω). (4.91)

Therefore, we define v0
.
= W1 +W2, and we go back to the proof of Theorem 4.6, where the expression

for δ in (4.82) now becomes

2‖∇v0‖L2(Ω) +
√
S0 ‖v0‖L4(Ω) < S0η . (4.92)

Since v0 = W1 +W2, by the triangle inequality and (4.23) we see that (4.92) is certainly fulfilled if

2‖∇W1‖L2(Ω) + 3‖∇W2‖L2(Ω) +
√
S0 ‖W1‖L4(Ω) < S0η .

In turn, thanks to (4.87)-(4.88)-(4.91), we see that the latter inequality is implied by√
U2 + V 2 <

S0η

2γ2 + 12γ1γ2

√
1 +

1

|Ω1 ∩ Ω2|
+ γ3

√S0

. (4.93)

The proof is complete after noticing that the right-hand side of (4.93) is increasing with respect to S0,
and using the lower bound for S0 given in Corollary 4.1. 2

Remark 4.7. Theorem 4.7 not only gives a lower bound for δ in terms of η and Ω; since η and
K are fixed, it also estimates the critical Reynolds number ensuring unique solvability of (4.2)-(4.3)
with zero external forcing. Nevertheless, the method provided in the proof of Theorem 4.7 leads to an
overestimation of the critical boundary velocity, since some of the inequalities employed are far from
being sharp. Similar considerations, following a different approach for the computation of the critical
Reynolds number ensuring the stability of a steady laminar flow, were already pointed out by Landau-
Lifshitz in 1959, see [173, Chapter III]. A refined method will be used in Section 4.2.4 in the case of a
constant horizontal boundary velocity, see Theorem 4.14.
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Regularity results for (4.2)-(4.3) are usually presented under the no-slip boundary condition on the
whole boundary ∂Ω, that is, when U = V = 0 on ∂Q. In this case, if f ∈ L2(Ω), the regularity of a
weak solution (u, p) ∈ H1

0 (Ω) × L2(Ω) of (4.2)-(4.3) can be upgraded up to
[
H2(Ω) ∩H1

0 (Ω)
]
×H1(Ω)

whenever Ω is of class C2 (see [115, Theorem IX.5.2]). If Ω were a convex polygon, the same result holds,
see [156]. But since we consider obstacles K having a merely Lipschitz boundary, the domain Ω may
possess reentrant corners, a fact that introduces singularities in the solution, which may exhibit blow-up
of the pressure and of the vorticity near the non-convex vertices, see [55]. Nevertheless, even if we remain
with the minimal regularity H1(Ω)×L2(Ω), the normal component of the trace of functions in Er(Ω) can
be treated through (4.38). Furthermore, standard elliptic regularity arguments show that the solution
of (4.2)-(4.3) is more regular far from K, a property that we make precise in the next statement. Since
we were unable to find a unique reference for its proof, in particular because of the use of solenoidal
extensions, for the sake of completeness we include it below by combining several known results adapted
to the particular geometry of Ω in (4.1).

Theorem 4.8. Let Ω be as in (4.1). For f ∈ L2(Ω) and (U, V ) ∈ R2, let (u, p) ∈ V∗(Ω) × L2(Ω) be a
weak solution of (4.2)-(4.3). Then, for any any open set Ω0 ⊂ Ω such that ∂Ω ∩ ∂Ω0 = ∂Q and with
an internal boundary of class C2, one has (u, p) ∈ H2(Ω0)×H1(Ω0). Moreover, there exists a constant
C > 0, depending on η and Ω0, such that:

‖u‖H2(Ω0) + ‖p‖H1(Ω0) ≤ C
(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
. (4.94)

Proof. Consider a (non simply connected) C2-domain Ω1 ⊂ Ω0 sharing the interior boundary of Ω0

(namely ∂Ω0 \ ∂Q) and such that ∂Ω1 ∩ ∂Q = ∅. We emphasize that dist(∂Ω1, ∂Q) > 0. From (4.39)
and (4.69) we know that‖∇u‖L2(Ω) ≤ C

(
|(U, V )|2 + |(U, V )|+ ‖f‖L2(Ω)

)
,

‖p‖L2(Ω) ≤ C
(
‖∇u‖2L2(Ω) + ‖∇u‖L2(Ω) + ‖f‖L2(Ω)

)
,

where, from now on, C > 0 will denote a generic constant depending on η and Ω1 (and therefore, on
Ω0). In particular, we have that (u · ∇)u ∈ L3/2(Ω) with

‖(u · ∇)u‖L3/2(Ω) ≤ ‖∇u‖L2(Ω)‖u‖L6(Ω) ≤ C‖∇u‖2L2(Ω) ≤ C
(
|(U, V )|2 + |(U, V )|+ ‖f‖L2(Ω)

)2
,

in view of the embedding H1(Ω) ⊂ L6(Ω). Moreover, the couple (u, p) weakly solves the Stokes problem

−η∆u+∇p = f − (u · ∇)u , ∇ · u = 0 in Ω1.

Then, from [115, Theorem IV.4.1] we know that

‖u‖W 2,3/2(Ω1) + ‖p‖W 1,3/2(Ω1) ≤ C
(
‖f‖L3/2(Ω0) + ‖(u · ∇)u‖L3/2(Ω0) + ‖∇u‖L2(Ω0) + ‖p‖L2(Ω0)

)
≤ C

(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
.

With this additional regularity of u, we infer that (u · ∇)u ∈ L2(Ω1) and, by repeating the above
argument, we obtain

‖u‖H2(Ω1) + ‖p‖H1(Ω1) ≤ C
(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
. (4.95)

This gives the required bound in Ω1, namely far away from ∂Q (and from the obstacle). In order to
reach ∂Q, we employ a localization argument which covers the residual domain Ω∗

.
= Ω \ Ω1: since it is

precompact, it can covered by a finite number of open disks {θi}mi=1, for some m ≥ 1:

Ω∗ ⊂
m⋃
i=1

θi.

75



By reducing the radius of the disks {θi}mi=1 (if necessary), we may assume that θi does not intersect the
internal boundary of Ω1, for all i ∈ {1, . . . ,m} (in particular, θi ∩ ∂K = ∅).

Next, we introduce a partition of unity subordinate to the open cover {θi}mi=1, that is, we consider a
family of functions {φi}mi=1 ⊂ C∞0 (R2) such that:

φi ∈ C∞0 (θi), 0 ≤ φi(x, y) ≤ 1 ∀(x, y) ∈ Ω∗, ∀i ∈ {1, . . . ,m};
m∑
i=1

φi(x, y) = 1 ∀(x, y) ∈ Ω∗.

Therefore, we have

u(x, y) =
m∑
i=1

φi(x, y)u(x, y), p(x, y) =
m∑
i=1

φi(x, y)p(x, y) for a.e. (x, y) ∈ Ω∗,

and it suffices to prove that φiu ∈ H2(Ω∗ ∩ θi) and φip ∈ H1(Ω∗ ∩ θi), for every i ∈ {1, . . . ,m}. In order
to achieve this, we notice that, since Q is convex and φi has compact support in θi, there exists a convex
polygon ζi such that supp(φi) ∩ Ω∗ ⊂ ζi, see Figure 4.6.

Figure 4.6: Construction of the open set ζi ⊂ (θi ∩ Ω∗).

Defining u
.
= u− (U, V ), one notices that (φiu, φip) ∈ H1

0 (ζi)× L2(ζi) and ∇ · (φiu) = ∇φi · u ∈ H1
0 (ζi).

Thus, [115, Theorem III.3.3] guarantees the existence of a vector field vi ∈ H2(ζi) ∩H1
0 (ζi) such that

∇ · vi = ∇φi · u in ζi, ‖vi‖H2(ζi) ≤ ci‖∇φi · u‖H1(ζi), (4.96)

for some constant ci > 0 depending only on θi. Since (u, p) is a solution of (4.2)-(4.3), we deduce that
the pair (φiu− vi, φip) ∈ H1

0 (ζi)× L2(ζi) satisfies the Stokes system

−η∆(φiu− vi) +∇(φip) = ωi + η(∆φi)(U, V ) + η∆vi, ∇ · (φiu− vi) = 0 in ζi,

with ωi
.
= φi[f − (u ·∇)u]−η[(∆φi)u+2(∇φi ·∇)u]+p∇φi ∈ L3/2(ζi) and, by bootstrapping as in Ω1 we

can deduce that ωi ∈ L2(ζi). Then we apply [156, Theorem 2] to infer that (φiu, φip) ∈ H2(ζi)×H1(ζi)
and the existence of Ci > 0 (depending only on θi) such that

‖φiu− vi‖H2(ζi) + ‖φip‖H1(ζi) ≤ Ci
(
‖ωi‖L2(ζi) + η|(U, V )| ‖∆φi‖L2(ζi) + η‖∆vi‖L2(ζi)

)
.

In view of (4.96), this implies

‖φiu‖H2(Ω∗∩θi) + ‖φip‖L2(Ω∗∩θi) ≤ Ci
(
‖ωi‖L2(Ω∗∩θi) + |(U, V )| ‖φi‖H2(Ω∗∩θi) + ‖∇φi · u‖H1(Ω∗∩θi)

)
,

where Ci > 0 now denotes a constant depending on η and θi. By summing over i ∈ {1, . . . ,m} we get

‖u‖H2(Ω∗) + ‖p‖H1(Ω∗) ≤
m∑
i=1

Ci
(
‖ωi‖L2(Ω∗∩θi) + |(U, V )| ‖φi‖H2(Ω∗∩θi) + ‖∇φi · u‖H1(Ω∗∩θi)

)
≤ C

[
‖∇u‖L2(Ω0)

(
‖∇u‖L2(Ω0) + 1

)
+ ‖p‖L2(Ω0) + ‖f‖L2(Ω0) + |(U, V )|

]
≤ C

(
|(U, V )|4 + |(U, V )|+ ‖f‖2L2(Ω) + ‖f‖L2(Ω)

)
,

(4.97)
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after applying the Poincaré-type inequalities to u = u− (U, V ), using that {φi}mi=1 ⊂ C∞0 (R2) and (4.69).
The proof is complete after putting together (4.95) and (4.97). 2

Remark 4.8. If the obstacle K has a C2 boundary, then the arguments of Theorem 4.8 enables to prove
that weak solutions of (4.2)-(4.3) in Ω belong to H2(Ω)×H1(Ω).

4.2.2 Symmetry and almost symmetry

Turbulence in fluids with large Reynolds number may be detected by refined numerical simulations using
Computational Fluid Dynamics [109], see Figure 4.7 where the dependence of the flow on the Reynolds
number is emphasized in a symmetric domain.

Introduction
Solution methods

Results

Flat plate
Lid driven cavity
Square cylinder

Square cylinder Re = 30,↵ = 0�, vorticity

+3

-3

Vladimı́r Fuka, Josef Brechler Flow around structures

Introduction
Solution methods

Results

Flat plate
Lid driven cavity
Square cylinder

Square cylinder Re = 30,↵ = 45�, vorticity

+3

-3

Vladimı́r Fuka, Josef Brechler Flow around structures

Introduction
Solution methods

Results

Flat plate
Lid driven cavity
Square cylinder

Square cylinder Re = 200,↵ = 0�, vorticity

+3

-3

Vladimı́r Fuka, Josef Brechler Flow around structures

Introduction
Solution methods

Results

Flat plate
Lid driven cavity
Square cylinder

Square cylinder Re = 200,↵ = 45�, vorticity

+3

-3

Vladimı́r Fuka, Josef Brechler Flow around structures

Introduction
Solution methods

Results

Flat plate
Lid driven cavity
Square cylinder

Square cylinder Re = 200,↵ = 45�, vorticity

+3

-3

Vladimı́r Fuka, Josef Brechler Flow around structures

Introduction
Solution methods

Results

Flat plate
Lid driven cavity
Square cylinder

Square cylinder Re = 200,↵ = 45�, vorticity

+3

-3

Vladimı́r Fuka, Josef Brechler Flow around structures

Figure 4.7: CFD simulation of a flow around a square cylinder (top line Re= 30, bottom line Re= 200)
by Fuka-Brechler [109], reproduced with courtesy of the authors.

The pattern displayed in Figure 4.7 will be essential to comment the results throughout the chapter.
We consider here domains Ω being symmetric with respect to the x-axis. Moreover, we initially

assume that the boundary data in (4.3) satisfy

U(x,−y) = U(x, y) and V (x,−y) = −V (x, y) ∀(x, y) ∈ ∂Q. (4.98)

Concerning the source f = (f1, f2) ∈ H−1(Ω), we recall that a distribution is called even (resp. odd)
if its kernel contains the space of odd (resp. even) test functions. In this symmetric framework, we
complement Theorem 4.6 with the following result.

Theorem 4.9. Let Ω be as in (4.1), K being symmetric with respect to the x-axis. Suppose that
f = (f1, f2) ∈ H−1(Ω) and that (U, V ) ∈ H1/2(∂Q) satisfy (4.4). Assume moreover that f1 is y-even, f2

is y-odd, and (U, V ) verifies (4.98). Then:
• there exists (at least) one weak solution (u1, u2, p) ∈ V∗(Ω)2 × L2

0(Ω) of (4.2)-(4.3) satisfying the
symmetry property

u1(x,−y) = u1(x, y), u2(x,−y) = −u2(x, y), p(x,−y) = p(x, y) for a.e. (x, y) ∈ Ω; (4.99)

• if (u1, u2, p) ∈ H1(Ω)2 × L2
0(Ω) is a weak solution of (4.2)-(4.3), then also (v1, v2, q) with

v1(x, y) = u1(x,−y), v2(x, y) = −u2(x,−y), q(x, y) = p(x,−y) for a.e. (x, y) ∈ Ω (4.100)

solves (4.2)-(4.3);
• if (4.70) holds, then the unique weak solution of (4.2)-(4.3) satisfies (4.99).
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Proof. By Proposition 4.1, there exists a symmetric solenoidal extension v̂ ∈ H1(Ω) of the boundary
data (U, V ) ∈ H1/2(∂Q) such that∇ · v̂ = 0 in Ω, v̂ = (U, V ) on ∂Q, v̂ = (0, 0) on ∂K

|β(z, v̂, z)| ≤ η

2
‖∇z‖2L2(Ω) ∀z ∈ V(Ω); v̂1 is y-even, v̂2 is y-odd.

(4.101)

We introduce the space

Z(Ω) = {v ∈ V(Ω) | v satisfies the symmetry property (4.99)},

which is a closed subspace of V(Ω) and therefore it constitutes a Hilbert space under the Dirichlet scalar
product. To prove the existence of a weak symmetric solution (u, p) ∈ V∗(Ω) × L2

0(Ω) of (4.2)-(4.3)
amounts to show the existence of (û, p) ∈ Z(Ω)× L2

0(Ω) such that

− η∆û+ (û · ∇)û+ (û · ∇)v̂ + (v̂ · ∇)û+∇p = f + η∆v̂ − (v̂ · ∇)v̂ in Ω (4.102)

in weak sense, then the solution will be given by u = û + v̂ and p will have the required symmetry
property as a consequence of (4.102). Fix v0 ∈ Z(Ω) and consider the linearized version of (4.102),
namely

−η∆û+ (v0 · ∇)û+ (û · ∇)v̂ + (v̂ · ∇)û+∇p = f + η∆v̂ − (v̂ · ∇)v̂, ∇ · û = 0 in Ω.

By symmetric weak solution of this problem we intend a function û ∈ Z(Ω) such that

η(∇û,∇ϕ)L2(Ω) + β(v0, û, ϕ) + β(û, v̂, ϕ) + β(v̂, û, ϕ) = 〈F,ϕ〉Ω ∀ϕ ∈ Z(Ω), (4.103)

where F
.
= f + η∆v̂ − (v̂ · ∇)v̂ ∈ H−1(Ω) is such that F1 is y-even and F2 is y-odd. It is quite standard

for the Navier-Stokes equations to see that the bilinear form A : Z(Ω)×Z(Ω)→ R defined by

A(v, w) = η(∇v,∇w)L2(Ω) + β(v0, v, w) + β(v, v̂, w) + β(v̂, v, w) ∀v, w ∈ Z(Ω),

is continuous and coercive (for the latter property, one needs the bound in (4.101)). Therefore, the
Lax-Milgram Theorem ensures the existence of a unique function û ∈ Z(Ω) satisfying (4.103). Whence,
in view of the compact embedding Z(Ω) ⊂ L4(Ω), we have constructed a compact operator T : L4(Ω)→
L4(Ω) such that, for any v0 ∈ L4(Ω), T (v0) = û is the unique symmetric solution of (4.103). Moreover,
after testing (4.103) with ϕ = û and using the bound in (4.101) we obtain

‖∇û‖L2(Ω) ≤
2

η
‖F‖H−1(Ω),

so that T actually maps the (non-empty) convex compact set {v ∈ L4(Ω) | η‖∇v‖L2(Ω) ≤ 2‖F‖H−1(Ω)}
into itself. Then the Schauder Fixed Point Theorem ensures the existence of û ∈ Z(Ω) such that
T (û) = û, that is, û is a weak solution of (4.102) satisfying the symmetry property (4.99). By the
symmetry properties of F , we infer that the resulting pressure p ∈ L2

0(Ω), which arises as a consequence
of [115, Lemma III.1.1], also satisfies the symmetry property given in (4.99).

Finally, under the assumptions of the statement, one can check that also (4.100) solves (4.2)-(4.3).
Thus, in case of uniqueness, the solution satisfies the symmetry property (4.99). 2

Remark 4.9. Since δ in (4.85) depends increasingly on η, and therefore decreasingly on Re, Figure
4.7 is compatible with Theorem 4.6: as long as Re is small the flow is symmetric, while if Re is large,
uniqueness is lost and asymmetric solutions may arise. Hence, in a symmetric framework, the existence
of an asymmetric solution is a sufficient condition for non-uniqueness. Whether it is also a necessary
condition is an open problem. For 2D symmetric conditions in a channel past a circular cylinder, Sahin-
Owens [228, Fig.6] (see branches 1, 3, 5 therein), numerically found different symmetric solutions for
suitable Reynolds numbers but for different proportions between the width of the channel and the diameter
of the cylinder.
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In real life, perfect symmetry does not exist, there are no perfectly symmetric flows and any obsta-
cle inevitably has small imperfections. It is therefore natural to wonder whether “almost symmetric”
boundary data and obstacles give rise to “almost symmetric” solutions, in a suitable sense. Since we are
not interested in explicit bounds, we will consider

(U, V ) ∈ H1/2(∂Q) f ∈ L2(Ω).

Firstly, we maintain fixed the obstacle K and we perturb the boundary velocity and the external
force. For any ε > 0, (U, V ) ∈ H1/2(∂Ω) and f ∈ L2(Ω) we denote

Bε(U, V, f) =

{
(A,B, g) ∈ H1/2(∂Ω)2 × L2(Ω)

∣∣∣∣∣ (A,B) satisfies (4.4),

‖(A− U,B − V )‖H1/2(∂Ω) + ‖g − f‖L2(Ω) < ε

}
.

In this setting, we prove the following continuous dependence result.

Theorem 4.10. Let Ω be as in (4.1), f ∈ L2(Ω) and (U, V ) ∈ H1/2(∂Ω) satisfying (4.4). There exists
δ0 = δ0(η,Ω) > 0 such that, if

‖(U, V )‖H1/2(∂Q) + ‖f‖L2(Ω) < δ0, (4.104)

then (4.2)-(4.3) in Ω admits a unique weak solution (u, p) ∈ V∗(Ω)×L2
0(Ω) with data (U, V, f). Further-

more, there exists ε0 = ε0(U, V, f) > 0 such that, for all ε < ε0 and all (Uε, Vε, fε) ∈ Bε = Bε(U, V, f),
problem (4.2)-(4.3) with data (Uε, Vε, fε) ∈ Bε admits a unique weak solution (uε, pε) ∈ V∗(Ω) × L2

0(Ω).
Furthermore, the following limit holds:

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

(
‖∇(u− uε)‖L2(Ω) + ‖p− pε‖L2(Ω)

)
= 0.

Proof. The quantitative uniqueness statement (4.104) follows directly from (4.70), since

‖f‖H−1(Ω) ≤ λ−1‖f‖L2(Ω),

with λ > 0 the Poincaré constant of Ω. Now, let δ0 = δ0(η,Ω) > 0 be as in (4.104). Define

ε0 = ε0(U, V, f) = δ0 − ‖(U, V )‖H1/2(∂Ω) − ‖f‖L2(Ω) > 0

so that, if 0 < ε < ε0 and (Uε, Vε, fε) ∈ Bε, we have

‖(Uε, Vε)‖H1/2(∂Ω) + ‖fε‖L2(Ω) ≤ ‖(Uε − U, Vε − V )‖H1/2(∂Ω) + ‖fε − f‖L2(Ω) + ‖(U, V )‖H1/2(∂Ω) + ‖f‖L2(Ω)

< ε+ δ0 − ε0 < δ0,

and problem (4.2)-(4.3) with data (Uε, Vε, fε) admits a unique weak solution (uε, pε) ∈ V∗(Ω) × L2
0(Ω),

see Theorem 4.6. So, fix ε ∈ (0, ε0) and choose any (Uε, Vε, fε) ∈ Bε. In view of Proposition 4.1, there
exists a vector field w0 ∈ V∗(Ω) such that

w0 = (U, V )− (Uε, Vε) on ∂Q, ‖∇w0‖L2(Ω) ≤ C‖(U, V )− (Uε, Vε)‖H1/2(∂Q) ≤ Cε, (4.105)

for some constant C > 0 depending only on Ω. Let ξ
.
= u−uε−w0, so that ξ ∈ V(Ω). After subtracting

the equations (4.2) satisfied by (u, p, f) and (uε, pε, fε) in Ω we infer that:

− η∆ξ+ [(ξ+w0) ·∇](ξ+w0) + [(u−uε) ·∇]uε + (uε ·∇)(u−uε) +∇(p− pε) = η∆w0 + f − fε, (4.106)

with η∆w0 + f − fε ∈ H−1(Ω). Here (4.106) is intended in weak sense, see (4.68); we test it with ξ, we
integrate by parts in Ω in order to obtain the upper bound (after applying (4.105)):

η‖∇ξ‖2L2(Ω) + β(ξ + w0, ξ + w0, ξ) + β(u− uε, uε, ξ) + β(uε, u− uε, ξ) ≤ ε(Cη + 1)‖∇ξ‖L2(Ω). (4.107)
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After applying property (4.37) repeatedly we deduce that:

β(ξ + w0, ξ + w0, ξ) + β(u− uε, uε, ξ) + β(uε, u− uε, ξ) = β(ξ + w0, u, ξ) + β(uε, w0, ξ). (4.108)

In view of (4.35) and (4.105) we have

|β(ξ + w0, u, ξ) + β(uε, w0, ξ)| ≤
1

S0
‖∇u‖L2(Ω)‖∇ξ‖2L2(Ω) +

Cε

S
(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

)
‖∇ξ‖L2(Ω),

inequality that, together with (4.108), can be inserted into (4.107) to yield(
η − 1

S0
‖∇u‖L2(Ω)

)
‖∇ξ‖L2(Ω) ≤

[
C

(
1

S
(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

)
+ η

)
+ 1

]
ε. (4.109)

The uniqueness assumption ensures that ‖∇u‖L2(Ω) < S0η, and since u− uε = ξ + w0, we have

‖∇(u− uε)‖L2(Ω) ≤
C

[(S0

S − 1

)
‖∇u‖L2(Ω) +

S0

S ‖∇uε‖L2(Ω) + 2S0η

]
+ S0

S0η − ‖∇u‖L2(Ω)
ε. (4.110)

On the other hand, by subtracting the equations of conservation of momentum (4.2) satisfied by (u, p, f)
and (uε, pε, fε) in Ω we infer that:

∇(p− pε) = η∆(u− uε) + [(uε − u) · ∇]uε + (u · ∇)(uε − u) + f − fε, (4.111)

an identity that must also be intended in the weak sense of H−1(Ω). In particular:

‖∇(p− pε)‖H−1(Ω) ≤ η‖∇(u− uε)‖L2(Ω) + ‖∇uε‖L2(Ω)‖u− uε‖L6(Ω) + ‖∇(u− uε)‖L2(Ω)‖u‖L6(Ω) + ε

≤
[
η + C

(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

)]
‖∇(u− uε)‖L2(Ω) + ε,

where C > 0 is the embedding constant for H1(Ω) ⊂ L6(Ω). From (4.43) we can deduce the existence
of a constant M > 0 (depending only on Ω) such that ‖p− pε‖L2(Ω) ≤M‖∇(p− pε)‖H−1(Ω). This yields

‖∇(u− uε)‖L2(Ω) + ‖p− pε‖L2(Ω) ≤
[
1 +M

(
η + C

(
‖∇u‖L2(Ω) + ‖∇uε‖L2(Ω)

))]
‖∇(u− uε)‖L2(Ω) +Mε,

which, together with (4.110) and (4.69), completes the proof. 2

Theorem 4.10 is a continuous dependence result which shows, in particular, that if the first component
of f is y-even, the second component of f is y-odd and the boundary data (U, V ) satisfies the symmetry
property (4.98), then the solution (uε, pε) is “almost symmetric”, since in this case (u, p) verifies (4.99).
This is made precise in the following statement for which we introduce a further notation. For any
function (or distribution) φ = φ(x, y) we denote its even and odd parts by

φE(x, y) =
φ(x, y) + φ(x,−y)

2
, φO(x, y) =

φ(x, y)− φ(x,−y)

2
.

Then we have

Corollary 4.3. Let Ω be as in (4.1) and K symmetric with respect to the x-axis. Let f = (f1, f2) ∈
L2(Ω)2 with f1 y-even and f2 y-odd, let (U, V ) ∈ H1/2(∂Q) satisfy (4.4), (4.70) and (4.98). Then there
exists ε0 = ε0(U, V, f) > 0 such that, for all ε < ε0 and all (Uε, Vε, fε) ∈ Bε = Bε(0, 0, 0), the problem

−η∆v + (v · ∇)v +∇q = f + fε in Ω, v = (U + Uε, V + Vε) on ∂Q, v = (0, 0) on ∂K,

admits a unique weak solution (v1, v2, q) ∈ V∗(Ω)× L2
0(Ω) and

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

(
‖∇(vO1 , v

E
2 )‖L2(Ω) + ‖qO‖L2(Ω)

)
= 0 .
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Theorem 4.10 and Corollary 4.3 make assumptions on the fluid flow, namely on the boundary data
(U, V ) and on the force f . This means that two flows having almost the same boundary data and forcing
behave quite similarly. We are now interested in a second perturbation result, by considering the same
flow conditions but with possibly different obstacles, that is, we fix (U, V ) ∈ H1/2(∂Q) and f ∈ L2(Ω),
and we allow K to vary. This is the problem that occurs if an object (the obstacle) has not been
manufactured with enough precision. However, this second problem is extremely more delicate and we
need first to make clear what kind of imprecisions are allowed.

Definition 4.2. Given a C2-domain K ⊂ Q such that ∂K ∩ ∂Q = ∅, we say that the family of Lipschitz
domains {Kε}ε>0 outer-approximates K as ε→ 0 if:

– K ⊂ Kε2 ⊂ Kε1 ⊂ Q, for every 0 < ε2 < ε1;

– distH(Kε,K) ≤ ε, for every ε > 0, where distH denotes the Hausdorff distance;

– there exists a finite number of disks {B1, . . . , BN} such that, for any ε > 0, Kε is contained in the
union of N domains, each one being star-shaped with respect to one of these disks (?).

The first two conditions in Definition 4.2 tell us that Kε approximates K monotonically from outside.
The third condition, that we denote by (?), is a geometric assumption that yields uniform bounds for
some constants depending on Kε. We can now prove the following statement.

Theorem 4.11. Let Ω be as in (4.1), K with C2-boundary. Let f ∈ L2(Ω) and (U, V ) ∈ H1/2(∂Q) satisfy
(4.4)-(4.104), and let (u, p) ∈ V∗(Ω) × L2

0(Ω) be the unique weak solution of (4.2)-(4.3), see Theorem
4.10. For any family of Lipschitz domains {Kε}ε>0 that outer-approximates K, there exists ε0 > 0 such
that if ε < ε0 then (4.2)-(4.3) in Ωε = Q \Kε admits a unique solution (uε, pε) ∈ V∗(Ωε)× L2

0(Ωε) and

lim
ε→0

(
‖∇(uε − u)‖L2(Ωε) + ‖pε − p‖L2(Ωε)

)
= 0. (4.112)

Proof. Take an (open) smooth connected domain K0 such that K ⊂ K0 ⊂ K0 ⊂ Q; we have in mind
a small neighborhood of K. Let Ω0 = Q \K0 and consider a solenoidal extension v of the data in Ω0,
that is,

v ∈ V∗(Ω0), v = (U, V ) on ∂Q, ‖∇v‖L2(Ω0) ≤ C0‖(U, V )‖H1/2(∂Q),

where C0 = C0(Ω0) > 0 is independent on the boundary data, see [170]. Then the function

v0(x, y) =

{
v(x, y) if (x, y) ∈ Ω0

0 if (x, y) ∈ K0 \K

is a solenoidal extension of the data (U, V ) in Ω and also in Ωε, provided ε is small enough in such a way
that Kε ⊂ K0. Hence, the constant C0 can be used to compute the uniqueness threshold (4.85) (and
also (4.104)) in Ω and Ωε, for any small enough ε > 0.

For all ε > 0 the existence of a weak solution (uε, pε) of (4.2)-(4.3) in Ωε follows from Theorem 4.6
applied to Ωε. Theorem 4.10 ensures uniqueness whenever

‖(U, V )‖H1/2(∂Q) + ‖f‖L2(Ωε) < δε, (4.113)

where δε = δε(η,Ωε) is as in (4.104), but relative to Ωε. A careful look at the proof of Theorem 4.10
and formula (4.85) show that δε depends on Sε and Sε0 , namely the Sobolev constants defined in (4.23)
but relative to Ωε, and on the Poincaré constant of Ωε (by the above construction, C0 is independent
of ε). Since Kε outer-approximates K, one has Sε → S and Sε0 → S0 as ε → 0, and also the Poincaré
constants converge. Therefore, by (4.104) and by continuity, we know that (4.113) holds provided ε is
small enough, say ε < ε0. Not only this proves the uniqueness of the solution (uε, pε) but, according to
Theorem 4.6, it also proves the uniform bound

‖∇uε‖L2(Ωε) < Sε0η ≤ B ∀ε > 0, (4.114)
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for some B > 0 (independent of ε) since Sε0 → S0 as ε→ 0.
To complete the proof we have to show that (4.112) holds. To this end, we first claim that there

exist positive constants {σε}ε>0 such that σε → 0 as ε→ 0 and

‖u‖H1/2(∂Kε)
= ‖u‖L2(∂Kε) +

 ∫
∂Kε

∫
∂Kε

|u(z1)− u(z2)|2
|z1 − z2|2

dsz1 dsz2

1/2

≤ σε ∀ε > 0. (4.115)

Indeed, as in the proof of Theorem 4.8, by localizing in a neighborhood of K one may deduce that
(u, p) ∈ H2(O \ K) × H1(O \ K), for any C2-domain O ⊂ Q such that O ∩ ∂Ω = ∂K. In particular,
u ∈ C0,ν

(
O
)

for any 0 < ν < 1. Then, since u vanishes on ∂K, the uniform continuity of u in O ensures
the existence of positive constants {θε}ε>0 such that θε → 0 as ε → 0 and ‖u‖L∞(∂Kε) ≤ θε for every
ε > 0. Moreover, condition (?) ensures the existence of Γ > 0 (depending on Ω but independent of ε)
such that |∂Kε| ≤ Γ2 for all ε > 0. By combining these two facts, we infer

‖u‖L2(∂Kε) ≤ ‖u‖L∞(∂Kε)

√
|∂Kε| ≤ Γ θε ∀ε > 0 . (4.116)

Moreover, if M > 0 denotes the Hölder constant of u in O for ν = 4/5, we have

|u(z1)− u(z2)|2 = |u(z1)− u(z2)|1/8|u(z1)− u(z2)|15/8 ≤ (2θε)
1/8M15/8|z1 − z2|3/2

and, in turn, ∫
∂Kε

∫
∂Kε

|u(z1)− u(z2)|2
|z1 − z2|2

dsz1 dsz2 ≤ (2M15θε)
1/8

∫
∂Kε

∫
∂Kε

dsz1 dsz2
|z1 − z2|1/2

. (4.117)

Next we notice that, for every ε > 0, the boundary ∂Kε can be parametrized by a Lipschitz-continuous
vector field φε : [0, 1]→ Q such that φε(0) = φε(1); by condition (?) we know that the Lipschitz constants
of φε are uniformly bounded (independently of ε). Whence, the double integral in (4.117) is uniformly
bounded, that is, there exists Λ > 0 (independent of ε) such that ∫

∂Kε

∫
∂Kε

|u(z1)− u(z2)|2
|z1 − z2|2

dsz1 dsz2

1/2

≤ Λ θ1/16
ε ∀ε > 0 .

By combining this bound with (4.116) we obtain (4.115) with σε = Γθε + Λθ
1/16
ε .

Note that the incompressibility condition and (4.4) imply that∫
∂Ωε

u · n̂ ds =

∫
∂Kε

u · n̂ ds = 0.

Then, by Proposition 4.1 (applied to Ωε), there exists a solenoidal vector field w0 ∈ H1(Ωε) such that

w0 = (0, 0) on ∂Q, w0 = u|∂Kε on ∂Kε, ‖∇w0‖L2(Ωε) ≤ Cε‖u‖H1/2(∂Kε)
, (4.118)

for some constant Cε > 0 that depends only on Ωε. From [196, Section 1.1.8], we know that condition (?)
yields uniform bounds for the Lipschitz constant of the boundary and a uniform cone property. Then,
by [115, Exercise II.3.5] and [115, Formula (II.4.11)], there exists C > 0 (depending only on the family
of balls {B1, . . . , BN}) such that Cε ≤ C, for every ε > 0. From (4.115) and (4.118) we then obtain

w0 = (0, 0) on ∂Q, w0 = u|∂Kε on ∂Kε, ‖∇w0‖L2(Ωε) ≤ Cσε ∀ε > 0. (4.119)

From now on we follow the procedure of the proof of Theorem 4.10, taking into account that the
functions involved belong to Sobolev spaces defined over different domains. For every ε > 0 define
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ξ = u − uε − w0, so that ξ ∈ V(Ωε). After subtracting the equations (4.2) satisfied by (u, p, f) and
(uε, pε, f) in Ωε we infer that

−η∆ξ + [(ξ + w0) · ∇](ξ + w0) + [(u− uε) · ∇]uε + (uε · ∇)(u− uε) +∇(p− pε) = η∆w0,

with η∆w0 ∈ H−1(Ωε), so that the equation is intended in weak sense, see (4.68). We test it with ξ, we
integrate by parts in Ωε order to obtain the upper bound (after applying (4.115) and (4.119))

η‖∇ξ‖2L2(Ωε)
+ βε(ξ + w0, ξ + w0, ξ) + βε(u− uε, uε, ξ) + βε(uε, u− uε, ξ) ≤ Cησε‖∇ξ‖L2(Ωε), (4.120)

where βε : H1(Ωε)×H1(Ωε)×H1(Ωε)→ R denotes the trilinear form (4.34) with the integral computed
over Ωε. Since ξ ∈ V(Ωε), we have

βε(ξ+w0, ξ+w0, ξ)+βε(u−uε, uε, ξ)+βε(uε, u−uε, ξ) = βε(ξ, u, ξ)+βε(w0, u, ξ)+βε(uε, w0, ξ). (4.121)

Since Ωε ⊂ Ω, every function in H1
∗ (Ωε) may be extended by zero in Kε \K, becoming an element of

H1
∗ (Ω). Therefore, S and S0, defined in (4.23) for Ω, may also be used as embedding constants in Ωε.

By combining this fact with (4.119), we obtain the estimates∣∣βε(ξ, u, ξ)∣∣ ≤ 1

S0
‖∇u‖L2(Ω)‖∇ξ‖2L2(Ωε)

,
∣∣βε(uε, w0, ξ)

∣∣ ≤ Cσε
S ‖∇uε‖L2(Ωε)‖∇ξ‖L2(Ωε),∣∣βε(w0, u, ξ)

∣∣ ≤ Cσε
S ‖∇u‖L2(Ω)‖∇ξ‖L2(Ωε) . (4.122)

We plug (4.121)-(4.122) into (4.120) to deduce that(
η −
‖∇u‖L2(Ω)

S0

)
‖∇ξ‖L2(Ωε) ≤ Cσε

(
η +
‖∇uε‖L2(Ωε)

S +
‖∇u‖L2(Ω)

S

)
.

We have seen above that (4.104) implies (4.70) and, in turn, Theorem 4.6 ensures ‖∇u‖L2(Ω) < S0η.
Hence, the latter inequality yields an upper bound for ‖∇ξ‖L2(Ωε) which, combined with (4.114) and
(4.119), yields

‖∇(u− uε)‖L2(Ωε) ≤ ‖∇ξ‖L2(Ωε) + ‖∇w0‖L2(Ωε) ≤
2Sη + (1− S/S0)‖∇u‖L2(Ω) +B

S0η − ‖∇u‖L2(Ω)

CS0

S σε → 0,

as ε → 0. In order to control the pressure terms, we note that the same extension argument of H1
∗ (Ωε)

into H1
∗ (Ω) proves that the embedding constant of H1

∗ (Ω) ⊂ L6(Ω) bounds the corresponding embedding
constant in Ωε. Then, as in the proof of Theorem 4.10, but applying condition (?), (4.43) and (4.114),
we can deduce the existence of a constant A > 0, depending on η and Ω, such that

‖p− pε‖L2(Ωε) ≤ A
(
1 + ‖∇u‖L2(Ω) + ‖∇uε‖L2(Ωε)

)
‖∇(u− uε)‖L2(Ωε) → 0 as ε→ 0.

This shows (4.112) and completes the proof. 2

4.2.3 Definition and computation of drag and lift

In this section we analyze the forces of a fluid flow in Ω over the obstacle K. The stress tensor of a
viscous incompressible fluid governed by (4.2) is (see [173, Chapter 2])

T(u, p)
.
= −pI2 + η[∇u+ (∇u)ᵀ] in Ω, (4.123)

where I2 is the 2× 2-identity matrix. Accordingly, the total force exerted by the fluid over the obstacle
K is formally given by

FK(u, p) = −
∫
∂K

T(u, p) · n̂ ds, (4.124)
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where the minus sign is due to the fact that the outward unit normal n̂ to Ω is directed towards the
interior of K. To be precise, (4.124) makes sense only if (u, p) are regular while if (u, p) ∈ V∗(Ω)×L2

0(Ω)
is a weak solution of (4.2) with f ∈ L2(Ω), a generalized formula is needed. Indeed, in such case, one
has u ∈ Lp(Ω), for every p <∞ so that, in particular,

T(u, p) ∈ L2(Ω) ⊂ L3/2(Ω) and ∇ · T(u, p) = (u · ∇)u− f ∈ L3/2(Ω). (4.125)

Therefore, T(u, p) ∈ E3/2(Ω) and the normal component of the trace of T(u, p) belongs to W−
2
3
, 3
2 (∂Ω),

the dual space of W
2
3
,3(∂Ω), see (4.38). Then, we can rigorously define the force as follows.

Definition 4.3. Let f ∈ L2(Ω) and let (u, p) ∈ V∗(Ω) × L2(Ω) be a weak solution of (4.2). Then, the
total force exerted by the fluid over the obstacle K is given by

FK(u, p) = −〈T(u, p) · n̂, 1〉∂K , (4.126)

where 〈·, ·〉∂K denotes the duality pairing between W−
2
3
, 3
2 (∂K) and W

2
3
,3(∂K).

The classical literature [3, Introduction] defines the drag force as the component of FK parallel to
the incoming stream and the lift force as the component of FK perpendicular to the stream. This
characterization is rigorous only if the direction of the inflow velocity is constant.

Definition 4.4. For (U, V ) ∈ H1/2(∂Q)\{(0, 0)} such that (U, V )/|(U, V )| is constant, the drag DK(u, p)
and the lift LK(u, p), exerted by the fluid over the obstacle K, are given by

DK(u, p) = FK(u, p) · (U, V )

|(U, V )| and LK(u, p) = FK(u, p) · (−V,U)

|(U, V )| .

In the case where V = 0 and U ∈ H1/2(∂Q) is a strictly positive function on ∂Q, this reduces to

DK(u, p) = FK(u, p) · ı̂ and LK(u, p) = FK(u, p) · ̂.

Clearly, the signs of DK and LK are just a matter of orientation and one could just take the absolute
values, especially if one is merely interested in evaluating the strength of these forces.

The main purpose of this section is to discuss a well-known experimental fact: a bluff body immersed
in a viscous fluid experiences no lift when its cross-section is symmetric with respect to the angle of attack
of the fluid, as well illustrated in [217, Figure 2.6]. Moreover, any small symmetry-breaking angle of
attack produces a lift on the obstacle. This was already observed by Kutta [165] in 1910 (see also [4,
Chapter 12]): “With regard to dynamic lift effects, the most important types of a body immersed in
a flowing fluid are long flat plates placed at an angle to the flow and slightly curved cylindrical shells,
which experience lift forces even if the chord of their cross-section lies parallel to the flow”.

For simplicity, we merely consider the case of constant positive horizontal data (U ∈ R+ and V = 0)
and, if Bε is as in Corollary 4.3, we prove

Theorem 4.12. Let Ω be as in (4.1), let K be symmetric with respect to the x-axis. Assume that U > 0
is constant, V = 0, and that f = (f1, f2) ∈ L2(Ω) is such that f1 is y-even and f2 is y-odd. If

2
√

2L |U |+ ‖f‖L2(Ω) < δ0 , (4.127)

with δ0 as in (4.104), then the fluid governed by (4.2)-(4.3) exerts no lift over K. Moreover, there exists
ε0 = ε0(U, f) > 0 such that, for all ε < ε0 and all (Uε, Vε, fε) ∈ Bε = Bε(0, 0, 0), the problem

− η∆v + (v · ∇)v +∇q = f + fε in Ω, v = (U + Uε, Vε) on ∂Q, v = (0, 0) on ∂K, (4.128)

admits a unique weak solution (vε, qε) ∈ V∗(Ω)× L2
0(Ω) and

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

∣∣LK(vε, qε)
∣∣ = 0.
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Proof. The compatibility condition (4.4) is evidently satisfied, thus ensuring the existence of (at least)
one solution (u, p) ∈ V∗(Ω) × L2

0(Ω) of (4.2)-(4.3), see Theorem 4.6. Furthermore, from (4.39) we see
that (4.104) becomes (4.127) and then Theorem 4.10 ensures that the solution (u, p) is unique. Theorem
4.9 then states that (u, p) satisfies the symmetry properties (4.99).

From (4.126) and Definition 4.4 we have that

LK(u, p) = −〈T2(u, p) · n̂, 1〉∂K = 〈T2(u, p) · n̂, 1〉∂Q − 〈T2(u, p) · n̂, 1〉∂Ω, (4.129)

where

T2(u, p) =

[
η

(
∂u1

∂y
+
∂u2

∂x

)
, 2η

∂u2

∂y
− p
]ᵀ
.

By Theorem 4.8 we know that the term over ∂Q in (4.129) can be treated as an integral. On the
other hand, (4.38) allows us to manage the term over ∂Ω and we obtain

LK(u, p) =

∫
∂Q

T2(u, p) · n̂−
∫

Ω
∇ · T2(u, p)

= η

L∫
−L

[
∂u1

∂y
(L, y)− ∂u1

∂y
(−L, y) +

∂u2

∂x
(L, y)− ∂u2

∂x
(−L, y)

]
dy + 2η

L∫
−L

[
∂u2

∂y
(x, L)− ∂u2

∂y
(x,−L)

]
dx

+

L∫
−L

[
p(x,−L)− p(x, L)

]
dx+

∫
Ω

[
f2(x, y)− u(x, y) · ∇u2(x, y)

]
dx dy = 0.

Let us explain in detail why all the above terms vanish. In the first integral, the terms with ∂u1
∂y vanish

because u1 is constant on ∂Q. For the term with ∂u2
∂x in the first integral we remark that with the change

of variables y 7→ −t it becomes

L∫
−L

[
∂u2

∂x
(L,−t)− ∂u2

∂x
(−L,−t)

]
dt

while, by (4.99), we know that it is also equal to the same expression with opposite sign. The second
integral vanishes because (4.99) implies that ∂u2

∂y is y-even and the summands cancel. The integral
∫

Ω f2

vanishes because f2 is y-odd and Ω is y-symmetric. Finally, u · ∇u2 = u1
∂u2
∂x + u2

∂u2
∂y and, again by

(4.99), each summand is the product of a y-even and a y-odd function so that u · ∇u2 is y-odd.
The number ε0 = ε0(U, f) > 0 can be chosen as in the proof of Theorem 4.10; then Theorem 4.6

guarantees the existence and uniqueness of a solution (vε, qε) ∈ V∗(Ω)×L2
0(Ω) of (4.128). By (4.38) and

(4.126) (and by linearity), we infer

T(vε, qε) = T(vε − u, qε − p) + T(u, p) , FK(vε, qε) = FK(vε − u, qε − p) + FK(u, p) ,

so that, by (4.129),

LK(vε, qε) = LK(vε − u, qε − p) = 〈T2(vε − u, qε − p) · n̂, 1〉∂Q − 〈T2(vε − u, qε − p) · n̂, 1〉∂Ω.

By combining this with Theorem 4.10 (and by continuity of traces, see [111] or [115, Theorem II.4.3])
we obtain the statement. 2

Next, in the spirit of Theorem 4.11, we estimate the difference between the forces exerted by a given
flow over two nearby obstacles.

85



Theorem 4.13. Let Ω be as in (4.1), K with C2-boundary and symmetric with respect to the x-axis.
Assume that U > 0 is constant, V = 0, and that f ∈ L2(Ω) with f1 y-even and f2 y-odd; assume also
that (4.127) holds. Let {Kε}ε>0 be a family of Lipschitz domains that outer-approximates K and let ε0

be as in Theorem 4.11. For all ε ∈ (0, ε0) denote by Ωε = Q \Kε and by (uε, pε) ∈ V∗(Ωε)× L2
0(Ωε) the

unique weak solution of (4.2)-(4.3) in Ωε. Then

lim
ε→0
LKε(uε, pε) = 0.

Proof. Existence and uniqueness of (u, p) and (uε, pε) as in the statement follow as in the proof of
Theorem 4.11. Fix ε ∈ (0, ε0). From Theorem 4.12 we know that LK(u, p) = 0 and, by arguing as in
that proof, we obtain

LKε(uε, pε) = LKε(uε, pε)− LK(u, p)

= η

∫ L

−L

[
∂(uε)1

∂y
(L, y)− ∂u1

∂y
(L, y)− ∂(uε)1

∂y
(−L, y) +

∂u1

∂y
(−L, y)

]
dy

+ η

∫ L

−L

[
∂(uε)2

∂x
(L, y)− ∂u2

∂x
(L, y)− ∂(uε)2

∂x
(−L, y) +

∂u2

∂x
(−L, y)

]
dy

+ 2η

∫ L

−L

[
∂(uε)2

∂y
(x, L)− ∂u2

∂y
(x, L)− ∂(uε)2

∂y
(x,−L) +

∂u2

∂y
(x,−L)

]
dx

+

∫ L

−L
[pε(x,−L)− p(x,−L)− pε(x, L) + p(x, L)] dx

+

∫
Ωε

[u · ∇u2 − uε · ∇(uε)2] +

∫
Ω\Ωε

u · ∇u2 −
∫

Ω\Ωε
f2 ,

(4.130)

and we claim that all the terms after the equality sign in (4.130) vanish as ε→ 0.
For the boundary integrals over ∂Q in (4.130), we fix an open set Ω0 ⊂ Ωε0 ⊂ Ω having an internal

boundary of class C2 and such that ∂Ωε0 ∩ ∂Ω0 = ∂Q; then Theorem 4.8 yields

(u, p), (uε, pε) ∈ H2(Ω0)×H1(Ω0) ∀ε > 0.

Indeed, this choice of Ω0 also ensures that Ω0 ⊂ Ωε and ∂Ωε ∩ ∂Ω0 = ∂Q for all ε > 0 since Kε

outer-approximates K. In fact, (4.94) says more: ‖uε‖H2(Ω0) and ‖pε‖H1(Ω0) are bounded independently
of ε since ‖∇uε‖L2(Ω0) and ‖pε‖L2(Ω0) are bounded by (4.112). Therefore, also ‖uε − u‖H2(Ω0) and
‖pε − p‖H1(Ω0) are bounded, a fact that, combined with an interpolation and with (4.112), shows that

uε → u in Hs(Ω0) ∀s < 2 and pε → p in Hr(Ω0) ∀r < 1 , as ε→ 0.

Then a result by Gagliardo [111] (see also [115, Theorem II.4.3]) states that

uε → u in Hs(∂Ω0) ∀s < 3

2
and pε → p in Hr(∂Ω0) ∀r < 1

2
, as ε→ 0.

In turn, this shows that all the boundary integrals in (4.130) tend to vanish. Concerning the last line in
(4.130), we notice that the first integral tends to vanish thanks to Theorem 4.11 and (4.112) while the
second and third integrals tend to vanish because of the Lebesgue Theorem and because |Ω \Ωε| → 0 as
ε→ 0 (since Kε outer-approximates K).

Summarizing, all the integrals in (4.130) tend to zero as ε→ 0 and the result is proved. 2

Remark 4.10. A careful look at the proof of Theorem 4.12 shows that the lift is due to the asymmetric
part of the solution, namely LK(u1, u2, p) = LK(uE1 , u

O
2 , p

E). Moreover, under suitable assumptions on
the boundary datum (U, V ) ∈ H3/2(∂Q) (needed to prove the H2 × H1-regularity of the solutions, see
[130]), arguments similar to the ones employed in the proofs of Theorems 4.12 and 4.13 can be used to
obtain the (respectively) stronger statements

lim
ε→0

sup
(Uε,Vε,fε)∈Bε

∣∣FK(vε, qε)
∣∣ = 0 , lim

ε→0
FKε(uε, pε) = 0.

This means that also the drag varies with continuity.
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4.2.4 A universal threshold for the appearance of lift

In this section we restrict our attention to a simple case: we consider problem (4.2)-(4.3) assuming that
K is symmetric with respect to the x-axis, that f = 0, U ∈ R+ and V = 0, thereby obtaining{

−η∆u+ (u · ∇)u+∇p = 0, ∇ · u = 0 in Ω,
u = (U, 0) on ∂Q, u = (0, 0) on ∂K.

(4.131)

Note that (4.4) is satisfied and that (4.131) models an horizontal flow as in Figure 4.1.
Our purpose is to study the transition in (4.131) from uniqueness to non-uniqueness regimes (or,

similarly, from symmetric to asymmetric solutions). Then, in the next section, we numerically analyze
how the obtained threshold depends on the shape of the (symmetric) obstacle K.

The advantage of (4.131) is that we focus our attention on a unique parameter. Indeed, u solves
(4.131) for some η > 0 and U = 1 if and only if v = ku (for some k > 0) solves (4.131) for a viscosity ηk
and with U = k. Therefore, the transition of (4.131) from the uniqueness to the non-uniqueness regimes
can be studied for fixed η and variable U . In order to make sure that we are in the uniqueness regime
for (4.131) (see Theorem 4.6), we use the quantitative functional inequalities obtained in Section 4.1.

So, let us revisit Theorem 4.5 in this simplified context. Previously, for 0 < d ≤ a < L, define α∗ ≥ 0
as in (4.45), σ > 0 as in (4.46), γ1 > 0 as in Theorem 4.7, and we introduce the following constants:

C0 =
1

log(L)− log(d)
, ζ̃0 = 2d+

(
d

L− d − C0

)(
α∗(L− a)√
α2
∗ + (L− a)2

+ d− L
)
,

α̃ =

{
4
L− d
L− aC0 −

(L− d− α∗)C2
0

L− a

(
L− d+ α∗
L− d− α∗

L− d
L

+
1

C0

)
+

ζ̃0
2

2(L− a)(L− d) + α∗(L− a)

}1/2

,

β̃ =

{
(L− d− α∗)C2

0

L− a

(
L− d+ α∗
L− d− α∗

L− d
L

+
1

C0

)
+

ζ̃0
2

2(L− a)(L− d) + α∗(L− a)

}1/2

,

λ0 = C0

√
(L− a)2 + (L− d)2

(L− a)(L− d)

√
L− d
L

[
a(L− a) + d(L− d)

(L− a)2 + (L− d)2

L− d
d
− 1

]
+

1

C0
+ γ1

(
α̃+ β̃

)
,

λ1 =

{
2L2(L− a)

L− d

[
2− 4C0 + 6C2

0 − 6C3
0 − 3C4

0

(
d2

L2
− 1

)]

+
4dL(a− d)

L− d

[(
1− 4C0 + 12C2

0 − 24C3
0 + 24C4

0

) L
d
− 24C4

0

]}1/4

.

Theorem 4.14. Let Ω be as in (4.1) and assume (4.33). Define µ0 > 0 as in (4.22) and γ1 > 0 as
in Theorem 4.7. For any U > 0 there exists a weak solution (u, p) ∈ V∗(Ω) × L2

0(Ω) of (4.131). If,
moreover,

U <

√
3π3/2

2L
max

{
1,

√
µ2

0|Q|
2π(|Q| − |K|)

}
η

4λ0 + λ1

4
√

3π3/4

√
2L

max

{
1, 4

√
µ2

0|Q|
2π(|Q| − |K|)

}
+ 2γ1

(
α̃+ β̃

) , (4.132)

then the weak solution of (4.131) is unique. Furthermore, if K is symmetric with respect to the x-axis
and (4.132) holds, then the unique solution of (4.131) exerts no lift on K.
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Proof. Existence of a weak solution (u, p) ∈ V∗(Ω)×L2
0(Ω) of (4.131) follows from Theorem 4.6, noticing

that the compatibility condition (4.4) is automatically fulfilled. On the other hand, by repeating the
procedure of the proof of Theorem 4.5 (putting V = 0), we can deduce the existence of a vector field
v0 ∈ H1

c (Ω) satisfying
∇ · v0 = 0 in Ω, v0 = (U, 0) on ∂Q,

together with the estimates

‖∇v0‖L2(Ω) ≤ 2Uλ0, ‖v0‖L4(Ω) ≤ Uλ1 +
2Uγ1√S0

(
α̃+ β̃

)
. (4.133)

In order to ensure unique solvability of (4.131) we revisit the proof of Theorem 4.6, where (4.82) becomes
(4.92). In view of (4.133), inequality (4.92) is certainly satisfied whenever

U <
S0η

4λ0 +
√S0 λ1 + 2γ1

(
α̃+ β̃

) . (4.134)

The condition (4.132) is reached after noticing that the right-hand side of (4.134) is an increasing function
of S0, and using the lower bound for S0 given in Corollary 4.1.

Finally, in the case when K is symmetric with respect to the x-axis, by combining Theorems 4.9 and
4.12, we infer that the unique solution of (4.131) exerts no lift on K. 2

Combined with Theorem 4.6, Theorem 4.14 states that, for a given measure of the symmetric obstacle,
but regardless of its shape, there is no lift on the obstacle as long as (at least) the horizontal boundary
velocity U satisfies (4.132). Hence, we have obtained

an absolute bound on the fluid velocity under which any symmetric obstacle is subject to no lift.

This bound merely depends on the viscosity of the fluid and is independent of the nature of the obstacle
(a flag, any elastic body, any structure in civil engineering). If we view the fluid as the air and U as the
velocity of the wind, the drag force D is the force directly exerted from the wind on the obstacle and,
therefore, it comes from where the wind is blowing; hence it is mostly concentrated windward (the part
upwind). On the contrary, the lift force L is an indirect force generated by an instability of the obstacle
for large drag forces; this is the reason why it is oriented orthogonally to the flow and it acts downwind,
on the “hidden part” of the obstacle. This situation is depicted in Figure 4.8 for a “stadium-shaped”
obstacle, namely a rectangle ended by two half circles, to be compared with Figure 4.1.

Figure 4.8: Drag D and lift L forces acting on a stadium-shaped obstacle K.

4.2.5 Multiplicity of solutions and numerical testing of shape performance

In the previous sections we gave sufficient conditions ensuring unique solvability of (4.2)-(4.3), but, as
far as we are aware, there exist no sufficient conditions for the existence of multiple solutions. The first
purpose of this section is precisely to give such condition in a symmetric framework, as a consequence
of Theorem 4.9.

Corollary 4.4. Let Ω be as in (4.1), K being symmetric with respect to the x-axis. Suppose that
f = (f1, f2) ∈ H−1(Ω) and that (U, V ) ∈ H1/2(∂Q) satisfy (4.4). Assume moreover that f1 is y-even, f2

is y-odd, and (U, V ) verifies (4.98). If (4.2)-(4.3) admits one asymmetric solution (u, p) ∈ V∗(Ω)2×L2
0(Ω)

(i.e., violating (4.99)), then there exist at least two more solutions of (4.2)-(4.3): its reflection (4.100)
and a symmetric solution satisfying (4.99).
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Corollary 4.4 turns out to be extremely useful for numerical experiments, where one can visualize the
streamlines of the solutions and determine possible asymmetries. In this section we use this principle to
give hints on the shapes having better aerodynamic performances, namely, having smaller drag and lift.
We choose adequately the size of the box (−L,L)2 since we know from [48] that the drag decreases when
L increases, and increases as the obstacle increases. In fact, this is the same monotonicity as for the
Sobolev constant, see Section 4.1.2. Hence, imagine that one wishes to modify the shape of the obstacle
in Figure 4.8 in such a way to lower both the drag and the lift forces: D has to be minimized in order
to decrease as much as possible the input of energy from the wind into the obstacle whereas L has to
be minimized in order to decrease as much as possible the vertical instability of the obstacle. As in any
shape optimization problem, some common geometrical constraints need to be imposed.

� The total area of the obstacle is unchanged. This means that if the rectangle has thickness 2d then each
of the two “caps” (the white semicircles in Figure 4.8) needs to have an area of πd2/2. This constraint
is needed both to ensure that the obstacle maintains its total mass and that the mass itself remains
balanced on the right and the left of the barycenter of the rectangle.
� The obstacle is convex and symmetric with respect to the x-axis.
� The two caps yield a nonsmooth obstacle; this appears as a “numerical constraint”, since corners give
some computational difficulties and it appears unfair to compare smooth and nonsmooth obstacles.

Note that horizontal symmetry is not required and, in fact, it should not be expected as we now
explain. We need to replace the two circular caps with two planar regions. A careful look at Figure 4.7
shows that, for the same Re (same line), the drag is stronger in the left picture while the lift is stronger
on the right picture. Therefore, one expects that the stability might increase with asymmetry, namely
in obstacles with the upwind part different from the downwind part. Since in many geographical regions
the wind has mostly a constant direction, if the fluid modeled by (4.2) is the air, the obstacle K should
be planned asymmetric following the expected wind direction (U, V ).

In order to determine the shape performance, we fix the geometry and measure of the square and
the (symmetric) obstacle. Take a square Q with edges measuring 2L = 30 [m], and the gray rectangle of
Figure 4.8 having thickness 0.25 [m] and width 3 [m]. After completing with the caps (each one having
area equal to π/128 ≈ 0.025 [m2], for a total area of approximately 0.8 [m2]), all of the considered
obstacles can be enclosed by the rectangle R in (4.33) with a = 1.7 [m] and d = 0.125 [m]; the kinematic
viscosity of air is about η = 1.5× 10−5 [m2/s]. With these measures, Theorem 4.14 becomes

Corollary 4.5. Let Ω be as in (4.1) with L = 15 [m], and assume (4.33) with a = 1.7 [m], d = 0.125 [m].
If V = 0 and U < 1.3 × 10−9 [m/s] then the weak solution of (4.2)-(4.3) is unique and it exerts no lift
on K.

In order to determine the shape performance, we proceeded computationally by employing the Open-
FOAM toolbox http://openfoam.org, through the use of the SIMPLE algorithm for the numerical
resolution the steady-state Navier-Stokes equations in laminar regime, see [50]. In Table 4.1 we quote
some numerical results obtained with the above parameters: the flow goes from left to right on the
obstacles depicted in the first column.

In the first column of Table 4.1 we report the shapes of the obstacles, all having two caps of total area
πd2/8, see the above constraints. In the second column we report the numerically found critical velocity
U∗ for which uniqueness for (4.131) fails: due to the symmetry of the problem and to the absence of lift
for U < U∗, see Proposition 4.12, the number U∗ should be seen as the critical velocity generating lift.
In the third column we report, for U = U∗, the drag coefficient CD, which is a dimensionless form of
the drag D exerted by the fluid governed by (4.131). Given a boundary velocity U larger than all the
critical velocities U∗, in the last column we report the lift coefficient CL, which is a dimensionless form
of the lift L exerted by the fluid governed by (4.131). Both the drag and lift coefficients are directly
proportional to the drag and lift, respectively, and for the previously specified inlet velocities, they are
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Shape of the obstacle U∗ × 103 [m/s] C∗D × 106 CD × 106 |CL| × 106

3.7 0.635 139.35 72.55

3.2 0.508 124.21 83.35

1.9 0.239 191.33 306.62

3.1 0.496 280.43 569.51

Table 4.1: Critical velocity U∗, drag coefficient C∗D at critical velocity, drag CD and lift CL coefficients
at velocity U = 0.1 [m/s].

computed numerically according to the following expressions (see [204, Chapter 9]):

C∗D =
D

1

2
ρ(U∗)2Af

, CL =
L

1

2
ρU2Ap

, (4.135)

where ρ = 1 [kg/m2] is the air density, Af is the frontal length (the projected length seen by an observer
looking towards the object from a direction parallel to the upstream velocity), and Ap is the planform
length (the projected length seen by an observer looking towards the object from a direction normal to
the upstream velocity).

It turns out that U∗ and L do not have the same behavior since the threshold of instability does not
have the same monotonicity as the lift at U = 0.1 [m/s]. In fact, the most relevant results are contained in
the last column: there we see the comparison between different shapes for the same flow velocity, ordered
from top to bottom as the “best shape” towards the “worse shape”, namely for increasing values of the lift
coefficient. We tested several intermediate values of U , between U∗ and U = 0.1 [m/s] and, as expected,
for all the shapes we have noticed a clear monotonicity of the lift coefficient as U increases. Since the
threshold of instability U∗ has two orders of magnitude less, what really measures the performances of
the shapes is the rate of increment of lift with respect to the velocity of the flow. Hence, by looking at
the last column in Table 4.1 we see that, as far as the lift is concerned, the performance of the obstacle
increases (lower lift) in presence of a convex angle on the upwind part and a flat face on the downwind
part. Our interpretation is that the upwind part determines the separation of the flow and, therefore, the
amount of energy around the obstacle. On the other hand, the downwind part quantifies how much of
this energy is effectively able to lift vertically the obstacle and, hence, a flat boundary with less friction
yields less lift.

Let us now turn to some numerical results which give strength to a conjecture by Pironneau [219, 220]
about the optimal shape minimizing the drag. We consider a family of “rugby balls”, that is, portion of
ellipses glued together. More precisely, for 0 < β < 2α we consider the family of functions ψ satisfying

ψ(x) = α
√

4− x2 − β , 0 ≤ x ≤
√

4− β2

α2
,

∫ √4−β2/α2

0
ψ(x) dx =

A

4
,

where A is the area of the obstacles represented in Table 4.1. The integral constraint yields

2α arcsin

√
1− β2

4α2
− β arcsin

√
1− β2

4α2
=
A

4
≈ 0.2 . (4.136)

Then we extend by symmetry the graph of ψ, with respect to both the axes, obtaining a rugby ball
as in Figure 4.9.
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Figure 4.9: A rugby-ball-shaped obstacle.

The angle ω of the rugby ball can be computed through the derivative evaluated at the endpoint
ξ =

√
4− β2/α2 of the interval; for instance,

ω = 2π
3

ω = π
2

ω = π
3

⇐⇒

ψ′(ξ) = −

√
3

ψ′(ξ) = −1
ψ′(ξ) = − 1√

3

⇐⇒


4α2 = α2β2 + 3β2

4α2 = α2β2 + β2

4α2 = α2β2 + β2

3

⇐⇒


(α, β) ≈ (0.06696, 0.00517)
(α, β) ≈ (0.06986, 0.00973)
(α, β) ≈ (0.07638, 0.02002)

 ,

where the last equivalence also accounts of (4.136). For these angles we obtained the numerical results
reported in Table 4.2, now ordered increasingly with respect to the second and third columns.

ω U∗ × 103 [m/s] C∗D × 106 CD × 106 |CL| × 106

2π/3 13 4.09 82.87 29.94

π/3 15 5.12 84.27 34.98

π/2 17 6.17 82.24 20.69

Table 4.2: Critical velocity U∗, drag coefficient C∗D at critical velocity, drag CD and lift CL coefficients
at velocity U = 0.1 [m/s].

Table 4.2 gives strength to a conjecture by Pironneau [219, 220] claiming that, not only rugby balls
lower the drag compared to other obstacles but also that the rugby balls minimizing the drag threshold
are the ones having angle ω = 2π/3.

We conclude this section by emphasizing that the second and third columns in Tables 4.1 and 4.2
suggest that the map U∗ 7→ C∗D is increasing and superlinear. Moreover, the data from these two columns
interpolate so nicely that they seem to show that “the drag force does not depend on the shape of the
obstacle”. This would mean that

the shape of the obstacle has the full responsibility of transforming the drag forces into lift forces.

4.3 Two connections with elasticity and mechanics

4.3.1 An impressive similitude with buckled plates

In this section we show that the bifurcation from uniqueness for the Navier-Stokes equations, related to
loss of symmetry, has a counterpart in a model of a buckled elastic plate.

Consider a thin narrow rectangular plate with the two short edges hinged while the two long edges
are free. In absence of forces, the plate lies horizontally flat and is represented by the planar domain
Ω = (0, π) × (−`, `) with 0 < ` � π. The plate is only subject to compressive forces along the edges,
the so-called buckling loads. Following the plate model suggested by Berger [27], the nonlocal equation
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modeling the deformation of the plate reads
∆2u+

[
P − S‖ux‖2L2(Ω)

]
uxx = 0 in Ω

u = uxx = 0 on {0, π} × [−`, `]
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on [0, π]× {−`, `} ,

(4.137)

where σ ∈ (0, 1) is the Poisson ratio, S > 0 depends on the elasticity of the material composing the
plate, S‖ux‖2L2(Ω) measures the geometric nonlinearity of the plate due to its stretching, while P is the
buckling constant: one has P > 0 if the plate is compressed and P < 0 if the plate is stretched in the
x-direction.

Partially hinged rectangular plates governed by (4.137) were introduced in [97] as models for the
deck of suspension bridges. For the variational characterization of (4.137) we introduce the functional
space

H2
∗ (Ω) = {v ∈ H2(Ω) | v = 0 on {0, π} × [−`, `]}

and the inner product

(v, w)H2
∗(Ω) =

∫
Ω

(
∆v∆w − (1− σ)

(
vxxwyy + vyywxx − 2vxywxy

))
dx dy

with corresponding norm ‖v‖2H2
∗(Ω) = (v, v)H2

∗(Ω). Since σ ∈ (0, 1), this inner product defines a norm

which makes H2
∗ (Ω) a Hilbert space; see [97, Lemma 4.1]. The problem (4.137) is variational and this

is the main crucial difference with (4.2): its solutions may be found as critical points of the “energy
functional” defined by

J(v) =
1

2
‖v‖2H2

∗(Ω) −
P

2
‖vx‖2L2(Ω) +

S

4
‖vx‖4L2(Ω) ∀v ∈ H2

∗ (Ω) .

It is proved in [96, 97] that the space H2
∗ (Ω) is spanned by the eigenfunctions of the problem

∆2u = −λuxx in Ω
u = uxx = 0 on {0, π} × [−`, `]
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on [0, π]× {−`, `} ,

(4.138)

that are given by

Ekm(x, y) = ϕm,k(y) sin(mx) , Okm(x, y) = ψm,k(y) sin(mx) , (m, k = 1, 2, ...) , (4.139)

where ϕm,k and ψm,k are explicit linear combinations of sin(y), cos(y), sinh(y), cosh(y); the former are
even with respect to y, while the latter are odd. Dropping this distinction, let us order increasingly
the eigenvalues of (4.138) along a sequence {λn} (n = 1, 2, ...) and let us denote by {wn} the associated
sequence of normalized eigenfunctions, ‖(wn)x‖L2(Ω) = 1: the eigenvalue λ1 is simple and w1 has constant
sign and, as a convention, we put λ0 = 0. It is shown in [96] that {wn} are also eigenfunctions of the
equation ∆2wn = Λnwn under the same boundary conditions.

By combining arguments from [5, 23, 96], we obtain the following statement.

Proposition 4.2. For any S > 0 and P ≥ 0, the function u0 = 0 solves (4.137).
• If P ∈ (λn, λn+1] for some n ≥ 0 and all the eigenvalues smaller than or equal to λn have multiplicity

1, then (4.137) admits exactly 2n+ 1 solutions which are explicitly given by

u0 = 0 , ±uj = ±
√
P − λj
S

wj (j = 1, ..., n) ;

moreover, for each solution the energy is

J(u0) = 0 , J(±uj) = −(P − λj)2

4S
(j = 1, ..., n)
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and the Morse index M is

M(u0) = n , M(±uj) = j − 1 (j = 1, ..., n) .

• If P ∈ (λn, λn+1] for some n ≥ 1 and at least one of the eigenvalues smaller than or equal to λn
has multiplicity larger than 1, then (4.137) admits infinitely many solutions.

In particular, Proposition 4.2 states that (4.137) admits a unique solution whenever P ≤ λ1, whereas
Theorem 4.6 states that (4.2)-(4.3) admits a unique solution whenever ‖(U, V )‖H1/2(∂Q) +‖f‖H−1(Ω) < δ.

At the value P = λ1 a bifurcation in (4.137) occurs and, when P overcomes λ1, two further solutions
appear

±u1 = ±
√
P − λ1

S
w1

and these solutions converge to u0 as P ↘ λ1. The counterpart of this phenomenon is the bifurca-
tion which arises in (4.2)-(4.3) when the symmetric data overcome the critical threshold and multiple
(asymmetric) solutions may appear.

As long as λ1 < P ≤ λ2 only these three solutions exist and the statement about the Morse index
tells us that ±u1 are stable while u0 is unstable. Since w1(x, y) = ϕ(y) sin(x) for some even function ϕ,
see (4.139), the (positive) equilibrium solution of (4.137) has the shape as in Figure 4.10. The buckling
load (black arrows in Figure 4.10) generates a lift (white arrow in Figure 4.10) which is orthogonal to its
action. Clearly, this lift does not have the same meaning as in Section 4.2.3 but, still, we are in presence

Figure 4.10: Buckling load (black) and consequent lift (white) in a partially hinged plate.

of a phenomenon where a force acting on an object has its effect in the orthogonal direction.
Letting P increase further beyond λ2, each time P crosses an eigenvalue λn the number of solutions of

(4.137) increases by 2, thereby their total number remains odd: the solution u0 is symmetric, while the
other solutions ±uj are asymmetric but coupled (each asymmetric solution is coupled with its opposite),
as in Theorem 4.9. The only stable solutions (with zero Morse index) are the asymmetric solutions ±u1.
Since numerics (CFD) usually captures stable solutions, our feeling is that also the asymmetric solutions
displayed in the second line of Figure 4.7 (large Re) are stable, while the symmetric ones are probably
unstable since CFD is unable to detect them.

This pattern continues until P crosses some multiple eigenvalue, if any: in this case, the number of
solutions becomes infinite because there are infinitely many possible linear combinations of the multiple
eigenfunctions that solve (4.137). It is a generic property (with respect to the measures of the rectangular
plate) that all the eigenvalues are simple and, in this situation, Proposition 4.2 shows that (4.137) admits
a finite number of solutions (in fact, an odd number of solutions) for any P ≥ 0. A similar result, obtained
through an application of the Sard-Smale Lemma, holds for the Navier-Stokes equations: problem (4.131)
admits a finite number of solutions, see Foias-Temam [100, 101], generically with respect to U and η.

4.3.2 A three-dimensional model: the deck of a bridge

The purpose of this section is to apply the results of the present chapter to a bridge model that was
first suggested in the research project [125], see also [38, 127]. In the space R3 we consider the deck of
a bridge to be a thin plate defined by

D = (−a, a)× (−d, d)× (−Λ,Λ) = K × (−Λ,Λ), (4.140)
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where d � a � Λ. To have an idea, one could take a = Λ/75 and d = Λ/1000 (a deck of length 1km,
with the width of about 13m, whose thickness is about 1m). Then we consider the region where the air
surrounds the deck

B = (−L,L)2 × (−Λ,Λ) \D = Ω× (−Λ,Λ), (4.141)

where L� Λ, for instance L = 100Λ (100km, as a picture taken far away from the bridge). The domains
B and D, as well as their intersections Ω = (−L,L)2 \ K and K = (−a, a) × (−d, d) with the plane
z = 0, are represented in Figure 4.11 (not in scale).

Figure 4.11: The domains B and D (left) and their intersections Ω and K with the plane z = 0.

The bridge is subject to a wind whose flow is governed by the Navier-Stokes equations. We model
the case where the wind is blowing only in the x-direction, so that one has to analyze the planar section
of this configuration, as represented in the right picture of Figure 4.11, leading us to study the planar
problem of a flow around the obstacle K, governed by (4.2)-(4.3), as in Section 4.2.

In the three-dimensional configuration of the left picture in Figure 4.11, it is be convenient to de-
compose the boundary of B as

∂B = Σ1 ∪ Σ2 ∪ ∂D,
where

Σ1 = {(x, y, z) ∈ ∂B | x ∈ {−L,L} } ⋃ {(x, y, z) ∈ ∂B | y ∈ {−L,L} },
Σ2 = {(x, y, z) ∈ ∂B | (x, y) /∈ D, z ∈ {−Λ,Λ} }. (4.142)

We then consider the three-dimensional Navier-Stokes equations in B, that is

− η∆v + (v · ∇)v +∇q = F, ∇ · v = 0 in B, (4.143)

for some F ∈ L2(B), complemented with appropriate boundary conditions. Notice that the obstacle D
and the domain B are symmetric with respect to the plane y = 0, in the sense that (x, y, z) ∈ B if and
only if (x,−y, z) ∈ B. It is therefore natural to wonder whether symmetry and bifurcation results also
hold in this 3D setting.

Proposition 4.3. For any F = (f1, f2, f3) ∈ L2(B) and (U, V,W ) ∈ H1/2(Σ1 ∪ Σ2) satisfying∫
Σ1∪Σ2

(U, V,W ) · n̂ dA = 0, (4.144)

there exists a weak solution (v, q) = (v1, v2, v3, q) ∈ H1(B)3×L2
0(B) of (4.143) in B complemented with

the boundary conditions

v = (U, V,W ) on Σ1 ∪ Σ2, v = (0, 0, 0) on ∂D. (4.145)

Moreover:
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• there exists γ = γ(η,B) > 0 such that if ‖(U, V,W )‖H1/2(Σ1∪Σ2) +‖F‖L2(B) < γ, then the weak solution
of (4.143)-(4.145) is unique;
• if f1, f3, U,W are y-even and f2, V are y-odd, then also (ξ1, ξ2, ξ3, π) with

ξ1(x, y, z) = v1(x,−y, z), ξ2(x, y, z) = −v2(x,−y, z), ξ3(x, y, z) = v3(x,−y, z), π(x, y, z) = q(x,−y, z),

for a.e. (x, y, z) ∈ B, solves the problem (4.143)-(4.145);
• if f1, f3, U,W are y-even, if f2, V are y-odd and if ‖(U, V,W )‖H1/2(Σ1∪Σ2) + ‖F‖L2(B) < γ, then the

weak solution of (4.143)-(4.145) is unique and satisfies the symmetry property

v1(x, y, z) = v1(x,−y, z), v2(x, y, z) = −v2(x,−y, z), v3(x, y, z) = v3(x,−y, z), q(x, y, z) = q(x,−y, z),

for a.e. (x, y, z) ∈ B.

The proof of this result is completely similar to that of Theorem 4.9 and therefore we omit it. A
particular solution of (4.143) can be obtained by extending to B a solution of the corresponding planar
problem in Ω, as the next result shows.

Proposition 4.4. Let f = (f1, f2) ∈ L2(Ω) and (U, V ) ∈ H1/2(∂Q) satisfy (4.4). Define F (x, y, z) =
(f1(x, y), f2(x, y), 0) for a.e. (x, y, z) ∈ B. There exists γ = γ(η,B) > 0 such that, if ‖(U, V )‖H1/2(∂Q) +
‖f‖L2(Ω) < γ, then:
• problem (4.2)-(4.3) in Ω admits a unique weak (planar) solution (u1, u2, p) ∈ H1(Ω)2 × L2

0(Ω);
• problem (4.143), complemented with the boundary conditions

v = (U, V, 0) on Σ1, v = (u1, u2, 0) on Σ2, v = (0, 0, 0) on ∂D,

admits a unique weak solution (v, q) ∈ H1(B)3 × L2
0(B), which does not depend on z and is given by

v(x, y, z) = (u1(x, y), u2(x, y), 0), q(x, y, z) = p(x, y) for a.e. (x, y, z) ∈ B. (4.146)

Proof. Take γ = min {δ, γ}, with δ as in Theorem 4.6 and γ as in Proposition 4.3. Then problem
(4.2)-(4.3) in Ω admits a unique weak (planar) solution (u1, u2, p) ∈ H1(Ω)2 × L2

0(Ω). From (4.146)
we infer that (v, q) ∈ H1(B)3 × L2

0(B) is a weak solution of (4.143), where (U, V, 0) ∈ H1/2(Σ1)3 and
(u1, u2, 0) ∈ H1/2(Σ2)3 (the definition of weak solution for the 3D problem (4.143) is naturally extended
from Definition 4.1). The uniqueness of such solution is guaranteed by Proposition 4.3. 2

The proof of Proposition 4.4, although simple, makes a connection between the uniqueness of the
Navier-Stokes system in two and three dimensions. As a consequence of Theorem 4.14, and by putting
together the results of the present chapter, we obtain a sufficient condition for the stability of bridges.

Corollary 4.6. Assume that the deck of a bridge coincides with the obstacle D in (4.140) and that
the wind is blowing only in the x-direction with velocity U > 0, in absence of external forces. If U is
sufficiently small, then the bridge does not oscillate.

To see this, it suffices to take U sufficiently small so that we fall in both the uniqueness regimes
for the 2D and 3D Navier-Stokes equations, see Theorem 4.14 and Proposition 4.3. Then the unique
solution of (4.143) with F = 0 is two-dimensional, see Proposition 4.4. In view of the symmetry of the
domain, Theorem 4.14 ensures that there is no lift on any of the two-dimensional cross-sections of the
deck.

4.4 Estimates for the norms of mollifiers

Let ω be the mollifier defined in (4.49) with ` ≈ 2.14357. In order to compute all the norms appearing
in (4.53) we write the corresponding integrals over the disk B in polar coordinates (ρ, θ) ∈ (0, r)× [0, 2π]
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and apply the change of variables t = r2

r2−ρ2 , for 0 < ρ < r. All the integrals are well-defined and we
computed them numerically, finding the following bounds.
• Bounds for the norms of zeroth-order derivatives:

‖ω‖L1(B) = 1; ‖xω‖L1(B) = ‖y ω‖L1(B) = 2`r

∞∫
1

√
t− 1

t5/2
e−t dt < 0.31r.

• Bounds for the norms of first-order derivatives:∥∥∥∥∂ω∂x
∥∥∥∥
L1(B)

=

∥∥∥∥∂ω∂y
∥∥∥∥
L1(B)

=
4`

r

∞∫
1

√
1− 1

t
e−t dt <

1.91

r
;

∥∥∥∥∂ω∂x
∥∥∥∥
L∞(B)

=

∥∥∥∥∂ω∂y
∥∥∥∥
L∞(B)

=
2× 33/4

(1−
√

3)2
exp

( √
3

1−
√

3

)
`

r2
<

1.72

r2
;

∥∥∥∥ ∂∂x(xω)

∥∥∥∥
L1(B)

=
`

2

2π∫
0

∞∫
1

∣∣∣∣ 1

t2
+ 2 cos2(θ)

(
1

t
− 1

)∣∣∣∣ e−t dt dθ < 1.18;

∥∥∥∥ ∂∂y (yω)

∥∥∥∥
L1(B)

=
`

2

2π∫
0

∞∫
1

∣∣∣∣ 1

t2
+ 2 sin2(θ)

(
1

t
− 1

)∣∣∣∣ e−t dt dθ < 1.18;

∥∥∥∥ ∂∂x(xω)

∥∥∥∥
L∞(B)

=

∥∥∥∥ ∂∂y (yω)

∥∥∥∥
L∞(B)

=
4(2
√

7− 5)

(3−
√

7)2
exp

(
1√

7− 3

)
`

r2
<

1.19

r2
;

∥∥∥∥ ∂∂x(yω)

∥∥∥∥
L1(B)

=

∥∥∥∥ ∂∂y (xω)

∥∥∥∥
L1(B)

= 2`

∞∫
1

(
1− 1

t

)
e−t dt < 0.64;

∥∥∥∥ ∂∂x(yω)

∥∥∥∥
L∞(B)

=

∥∥∥∥ ∂∂y (xω)

∥∥∥∥
L∞(B)

=
2(
√

5− 1)

(3−
√

5)2
exp

(
2√

5− 3

)
`

r2
<

0.67

r2
.

• Bounds for the norms of second-order derivatives:

∥∥∥∥∂2ω

∂x2

∥∥∥∥
L1(B)

=
`

r2

2π∫
0

∞∫
1

∣∣∣[(t− 1) sin2(θ)− t]2 − (t− 1)2 cos2(θ)[2 + cos2(θ)]
∣∣∣e−t dt dθ < 8.75

r2
;

∥∥∥∥∂2ω

∂y2

∥∥∥∥
L1(B)

=
`

r2

2π∫
0

∞∫
1

∣∣∣[(t− 1) cos2(θ)− t]2 − (t− 1)2 sin2(θ)[2 + sin2(θ)]
∣∣∣e−t dt dθ < 8.75

r2
;

∥∥∥∥ ∂2

∂x2
(xω)

∥∥∥∥
L1(B)

=
`

r

2π∫
0

∞∫
1

t3/2
√
t− 1 | cos(θ)|

∣∣∣∣∣
(

1− 1

t

)
cos2(θ)

[(
1− 1

t

)
(cos2(θ)− 2 sin2(θ)) + 4

]

− 3

[
1−

(
1− 1

t

)
sin2(θ)

]2
∣∣∣∣∣e−t dt dθ < 6.98

r
;
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∥∥∥∥ ∂2

∂y2
(yω)

∥∥∥∥
L1(B)

=
`

r

2π∫
0

∞∫
1

t3/2
√
t− 1 | sin(θ)|

∣∣∣∣∣
(

1− 1

t

)
sin2(θ)

[(
1− 1

t

)
(sin2(θ)− 2 cos2(θ)) + 4

]

− 3

[
1−

(
1− 1

t

)
cos2(θ)

]2
∣∣∣∣∣e−t dt dθ < 6.98

r
;

∥∥∥∥ ∂2

∂x2
(yω)
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L1(B)

=
`

r

2π∫
0

∞∫
1

√
t− 1√
tet

| sin(θ)|
∣∣∣[(t− 1) sin2(θ)− t]2 − (t− 1)2 cos2(θ)[cos2(θ) + 2]

∣∣∣ dt dθ
<

3.08

r
;

∥∥∥∥ ∂2

∂y2
(xω)
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L1(B)

=
`

r

2π∫
0

∞∫
1

√
t− 1√
tet

| cos(θ)|
∣∣∣[(t− 1) cos2(θ)− t]2 − (t− 1)2 sin2(θ)[sin2(θ) + 2]

∣∣∣ dt dθ
<

3.08

r
.
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Chapter 5

Conclusions and future developments

If we were forced to indicate just one main result among all the others obtained in this work, we would
select Theorem 4.14, which takes into account all the remaining results and gives an explicit universal
bound such that if the boundary velocity of the fluid is below this bound, then the obstacle is not
subject to a lift force. In order to reach this bound, in Section 4.1 we went through several functional
inequalities. Most of these inequalities are stated in literature as “there exists a constant C > 0 such
that...” with little information (or no information at all!) on the magnitude of C. Our purpose was to
give bounds, as precise as possible, on these constants. With these bounds at hand, in Section 4.2 we
tackled the problem of estimating the forces exerted by a viscous fluid on a bluff body. We showed how
uniqueness and symmetry play a fundamental role and, in a simple situation, we managed giving fairly
precise bounds as in Theorem 4.14. As shown in Section 4.3, these bounds have important applications
in physics and engineering. We believe that the results of the present work open new perspectives on
fluid-structure interaction models [217], they lead to a bunch of natural questions and open problems
that we list here.

• The main purpose of Chapter 2 is the determination of thresholds for the validity of the Melan equation,
which is derived by considering the hangers as rigid bars, so that the deck and the cables of the suspension
bridge endure the same movement. Nevertheless, this assumption is unreasonable since the hangers resist
to traction but not to compression. A more complete model, involving the convexification of the cables,
was then proposed in [71]. The main difficulty of this model is that the resulting energy functional is
extremely complicated because it requires the convexification of unknown functions. Also, it is not clear
how this model can give a precise explanation of the origin of torsional instability in terms of Poincaré
maps as in [12], even though numerical evidence of the same qualitative phenomenon is given in [71].
Therefore, important mathematical work needs to be accomplished in this direction.

• In relation to Chapter 3, a natural direction of research concerns the weak formulation for the Stokes
equations (and ultimately, for the Navier-Stokes equations) with the mixed and non-standard boundary
conditions (3.7) in a domain with a merely Lipschitz obstacle. As mentioned in Section 3.3, this would
require the use of weighted Sobolev spaces in order to describe the singularities of the solutions around
concave corners, see also [79].

• In Section 4.1.2 we obtained several bounds for some embedding constants. As pointed out in Remark
4.4, we believe that they could be improved by taking into account the shape and the position of the
obstacle. This would lead to a double shape/position optimization problem. We recall that, since the
outer squared box Q is only virtual (it is the frame of a photo), one has the freedom of moving the
obstacle inside the frame. In fact, the position of the obstacle within the flow plays a significant role,
see [112] where, however, the boundary effects are important.

• As a pure functional-analytic curiosity, one could seek bounds for the embedding H1(Ω) ⊂ Lp(Ω) for
any p ≥ 1, and not just p = 4. For which p is our capacity approach giving better bounds? Moreover,
the very same bounds could be sought in higher space dimension n ≥ 3, where there are two crucial
differences: the capacity potential behaves like 1/|x|n−2 (as the fundamental solution) and there exists
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a critical exponent (p = 2n/(n− 2)) for the Sobolev embedding H1(Ω) ⊂ Lp(Ω). For the capacity, one
should check if the pyramidal functions introduced in Section 4.1.1 still allow to obtain reliable bounds.
For the critical exponent, it could be of some interest to investigate how the method developed in Section
4.1.2 allows to approximate the optimal embedding constant which, not only is known explicitly, but is
independent of the domain.

• A result in the spirit of Theorem 4.14 could be of great interest also for other boundary conditions. For
instance, conditions involving the pressure as in a network of pipes [30, 31, 61] or for the so-called Navier
boundary conditions [205]. For the latter, we mention that they appear appropriate in many physically
relevant cases [242], also for turbulent boundary layers [113, 218]. The Navier-Stokes equations under
the Navier boundary conditions (with and without friction) have been studied by many authors, starting
from Solonnikov-Shchadilov [244], see e.g. [2, 8, 24] and references therein; we mention in particular the
work by Berselli [28] which appears relevant for our purposes since he considers flat 3D boundaries, in
which cases the Navier boundary conditions reduce to combined Dirichlet-Neumann conditions.

• The evolution problem with constant data on ∂Q but with moving obstacle could be tackled from two
different points of view. First, in the spirit of Galdi-Silvestre [117], one could seek periodic solutions by
assuming that the obstacle is oscillating with given periodic law which maintains it far away from ∂Q:
do periodic solutions exist, regardless of the magnitude of the (constant) inflow conditions? Second, in
the spirit of Conca-San Mart́ın-Tucsnak [62], one could set up a full fluid-structure interaction model.
In this case, a major problem is to prevent collisions between the obstacle and ∂Q which, for our specific
problem, is not a physical boundary. How does the non-collision condition vary with respect to the
magnitude and the direction of the (constant) inflow?

• The appearance of violent lift forces creates serious problems in suspension bridges, possibly leading to
disasters [121, Chapter 1]. The whole structure oscillates and both the cables and the hangers generate
unexpected behaviors on the deck, such as torsional movements. It is therefore desirable to find a
relationship between the fluid velocity, the resulting lift, and the attainment of the thresholds for hanger
slackening and cable shortening, as obtained explicitly in [126].

• Quite interesting appears the 3D version of the stationary problem (4.2)-(4.3). By this we mean a
non simply connected domain as in the right picture in Figure 4.11, which would model the deck of a
bridge. As mentioned above, the functional inequalities in these domains appear quite different, as well
as the computation of the lift. Indeed, a simple characterization as in Definition 4.4 is not available,
since the directions orthogonal to the flow generate a plane and not just one line. Moreover, weaker
embeddings are available in 3D, which yields major difficulties in regularity results. For instance, for
the perturbation of the obstacle (Theorem 4.11), we used the embedding H2(Ω) ⊂ C0,ν

(
Ω
)

for all ν < 1
while in 3D one just has ν = 1/2. Therefore, the 3D case is not just an extension of the 2D case, new
issues will be needed.

•We saw in Theorem 4.9 that, in a symmetric framework (both the domain and the data), the existence
of asymmetric solutions implies non-uniqueness of solutions. The multiplicity of symmetric solutions is
however an open problem, see Remark 4.9. It would be extremely important (and very challenging) to
have a complete picture of the bifurcation diagram for multiple solutions of (4.2)-(4.3) in dependence of
the Reynolds number.

• We have seen in Remark 4.1 and Corollary 4.2 that our bounds for the relative capacity and for the
Sobolev constant of the embedding H1(Ω) ⊂ L4(Ω) are quite accurate. Therefore, possible improvements
of the threshold given in Theorem 4.14 may only be achieved through a better analysis of problem (4.5).

• Let (u, p) ∈ V∗(Ω) × L2
0(Ω) be a solution of (4.2)-(4.3) with (U, V ) ∈ R2. Let u = v + w be the

decomposition according to (4.21) so that v ∈ H1
0 (Ω) and w ∈ R(ψ − 1). In fact, from the boundary

conditions we know more, namely

w = (1− ψ)

(
U
V

)
=⇒ ‖∇w‖2L2(Ω) = (U2 + V 2)‖∇ψ‖2L2(Ω) = (U2 + V 2)CapQ(K) .
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By (4.37) we infer that β(u, u, u) = β(u,w,w) and, therefore,

|β(u, u, u)| ≤ (U2 + V 2)2 CapQ(K)2

S1
‖∇u‖L2(Ω) .

Is it possible to use this inequality to improve the bounds? In particular, in Theorem 4.7.

• Is it possible to set up a theoretical shape optimization able to compute the derivative of the lift with
respect to variations of the shape of the obstacle? See [25, 52] for the case of drag derivative.
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[102] L. Föppl. Wirbelbewegung hinter einem Kreiszylinder. Verlag der Königlich Bayerischen Akademie
der Wissenschaften, 1(1):1–18, 1913.

[103] S. Franzetti, M. Greco, S. Malavasi, and D. Mirauda. Flow induced excitation on basic shape
structures. In Vorticity and Turbulence Effects in Fluid Structure Interaction - An Application to
Hydraulic Structure Design, chapter 6, pages 131–156. WIT Press, 2006.

[104] K. Friedrichs. On the boundary-value problems of the theory of elasticity and Korn’s inequality.
Annals of Mathematics, 48:441–471, 1947.

[105] U. Frisch and A. N. Kolmogorov. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge
University Press, 1995.

[106] H. Fujita. On existence of weak solutions of the Navier-Stokes equations in regions with moving
boundaries. Journal of the Faculty of Science, University of Tokyo, Section I: Mathematics, 17:403–
420, 1970.

[107] H. Fujita. On stationary solutions to Navier-Stokes equation in symmetric plane domains under
general outflow condition. Pitman Research Notes in Mathematics Series, pages 16–30, 1998.

[108] H. Fujita and H. Morimoto. A remark on the existence of steady Navier-Stokes flows in a certain
two-dimensional infinite channel. Tokyo Journal of Mathematics, 25(2):307–321, 2002.

[109] V. Fuka and J. Brechler. Large eddy simulation of the stable boundary layer. In Finite Volumes
for Complex Applications VI - Problems & Perspectives, pages 485–493. Springer, 2011. http:

//artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html.

[110] A. Fursikov and R. Rannacher. Optimal Neumann control for the two-dimensional steady-state
Navier-Stokes equations. In New Directions in Mathematical Fluid Mechanics, pages 193–221.
Springer, 2009.

[111] E. Gagliardo. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in
n variabili. Rendiconti del Seminario Matematico della Università di Padova, 27:284–305, 1957.
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[252] G. Szegö. Über einige neue Extremaleigenschaften der Kugel. Mathematische Zeitschrift, 33:419–
425, 1931.

[253] T. Takahashi and M. Tucsnak. Global strong solutions for the two-dimensional motion of an infinite
cylinder in a viscous fluid. Journal of Mathematical Fluid Mechanics, 6(1):53–77, 2004.

[254] T. Takahashi, M. Tucsnak, and G. Weiss. Stabilization of a fluid–rigid body system. Journal of
Differential Equations, 259(11):6459–6493, 2015.

[255] S. Tang and N. Aubry. On the symmetry breaking instability leading to vortex shedding. Physics
of Fluids, 9(9):2550–2561, 1997.

[256] G. Tarantello. Selfdual Gauge Field Vortices - an Analytical Approach. In Progress in Nonlinear
Differential Equations and their Applications, volume 72. Birkhäuser, Boston, 2008.
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Angewandte Mathematik und Mechanik, 5(1):17–35, 1925.

[267] E. Weinan. Dynamics of vortices in Ginzburg-Landau theories with applications to superconduc-
tivity. Physica D: Nonlinear Phenomena, 77(4):383–404, 1994.

[268] C. Williamson and R. Govardhan. Vortex-induced vibrations. Annual Review of Fluid Mechanics,
36:413–455, 2004.

[269] C. Williamson and R. Govardhan. A brief review of recent results in vortex-induced vibrations.
Journal of Wind Engineering and Industrial Aerodynamics, 96(6-7):713–735, 2008.

[270] G. Wollmann. Preliminary analysis of suspension bridges. Journal of Bridge Engineering, 6:227–
233, 2001.

[271] X. Wu, F. Ge, and Y. Hong. A review of recent studies on vortex-induced vibrations of long slender
cylinders. Journal of Fluids and Structures, 28:292–308, 2012.

[272] S. C. Yen and C. W. Yang. Flow patterns and vortex shedding behavior behind a square cylinder.
Journal of Wind Engineering and Industrial Aerodynamics, 99(8):868–878, 2011.

[273] A. Zebib. Stability of viscous flow past a circular cylinder. Journal of Engineering Mathematics,
21(2):155–165, 1987.

[274] N. Zhukovsky. On annexed vortices (in Russian). Transactions of the Physical Section of the
Imperial Society of the Friends of Natural Science, Moscow, 13:12–25, 1906.

116

http://www-users.math.umn.edu/~sverak/course-notes2011.pdf
http://www-users.math.umn.edu/~sverak/course-notes2011.pdf

	Introduction - Some mathematical questions on fluids and structures
	Why do airplanes fly?
	Fluid-structure interaction: where do we stand?

	Thresholds for hanger slackening and cable shortening in the Melan equation for suspension bridges
	Thresholds for cable shortening in a beam model
	Thresholds for hangers slackening in a beam model
	Behavior of cables and hangers in a plate model
	Proof of Theorem 2.1

	Boundary conditions for planar Stokes equations inducing vortices around concave corners
	The Stokes equations with nonstandard boundary conditions
	From the three-dimensional problem to the planar problem
	An existence and uniqueness result

	An overview of the separation of variables for biharmonic equations
	Singular Stokes flows around a right angle
	Some boundary conditions leading to vortices
	Boundary conditions for laminar inflow
	Boundary conditions with oriented velocity


	Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for unique solvability
	Functional inequalities
	Relative capacity and pyramidal functions
	Bounds for some Sobolev constants
	Functional inequalities for the Navier-Stokes equations
	An estimate of the continuity constant for the Bogovskii operator
	Gradient bounds for solenoidal extensions

	The planar Navier-Stokes equations around an obstacle
	Existence, uniqueness and regularity
	Symmetry and almost symmetry
	Definition and computation of drag and lift
	A universal threshold for the appearance of lift
	Multiplicity of solutions and numerical testing of shape performance

	Two connections with elasticity and mechanics
	An impressive similitude with buckled plates
	A three-dimensional model: the deck of a bridge

	Estimates for the norms of mollifiers

	Conclusions and future developments
	Bibliography

