
POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONICS, INFORMATION AND BIOENGINEERING

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

A MORPHOACOUSTIC APPROACH TOWARDS HEAD

RELATED TRANSFER FUNCTION PERSONALIZATION

Doctoral Dissertation of:
Muhammad Shahnawaz

Supervisor:
Prof. Augusto Sarti

Tutor:
Prof. Andrea Monti Guarnieri

The Chair of the Doctoral Program:
Prof. Barbara Pernici

Academic Year : 2018-2019
PhD Cycle : XXX





To my parents, my siblings, and my wife.





Acknowledgement

First of all, I would like to thank ALLAH for giving me strength, chance, and endurance
to go through this long journey. After that, I will thank everybody at the Erasmus-
Mundus INTACT project team, especially the organizers and coordinators, to make it
possible for me to pursue my Ph.D. in Europe.

After, that the first person I will thank is my Ph.D. supervisor Prof. Augusto Sarti,
for all the guidance, support, the motivation he provided me throughout my Ph.D. and
giving me enough self-confidence to believe that I can do it and prepared me to be an
independent researcher. I am also very grateful to Prof. Marcon for the multiple discus-
sions we had regarding shape space modeling and introducing me to industry contacts
to arrange an internship and financial support for me. It is him who is the reason behind
me finding an open-ended contract and working for a big company like STMicroelec-
tronics today.

I would also express my sincerest and deepest gratitude to Prof. Craig Jin from the Uni-
versity of Sydney, Australia, for not just offering me an opportunity to spend some time
at his lab but also funding it. During this time, I was able to use the tools, databases,
and lab facilities, which were crucial and played a big part in creating and formulating
this Ph.D. study. Without his help and guidance, it would be tough for me to gradu-
ate. I would also like to thank him for having in-depth discussions and working on my
research skills and personal development during my stay at CARLab, which did not
just help me during my Ph.D. but will help me for the rest of my life. Through him,
I also met Prof. Tony Tew, of The University of York, UK, and Prof. Joan Glaunes,
from Paris, who also contributed towards some studies in this work and provided useful
insights.

I would also like to thank the reviewers for this thesis, professor Maximo Cobos and
professor Federico Avanzini, for providing valuable feedback to improve the thesis.

After thanking all the professors, I will like to express my deepest gratitude to every-
one at the DEIB admin team who made this my second home. Special thanks to Mme.
Cortiana, Mme. Brambila, Mme. Rosa, Mme. Parada and Mme. Clemenza for all their
bureaucratic support, Gianfranco and Resmini from IT support team for providing all
the IT related support whenever needed.

3



After thanking everyone in universities, I will like to thank people who had more per-
sonal and selfless contributions. I would like to thank every single one who helped me
through this long journey. There were countless people, and it is hard to mention every
single one, but I would like to thank especially, Bruno, Michele, Antonio, Max, Paolo,
Fabio, Federico, Alberto, from Italy, and Reza, Abdullah, Sam, and Duy from Aus-
tralia to help me in technical aspects and discussions. I will also thank Farooq, Saleem,
Naveed from Italy, Aaminah, Basit, Hammad, Tanvir, Jeff, and Graham from Australia,
Naumana, Ayesha, and Sanober from the UK to motivate me. I will also thank, Naeem,
Israr, Akram, Sara, Silvia, from Italy, and Nadim, Rashid, Junaid, Aasim, Waseem,
Mubashir, Sagheer, Abdullah Alazzawi, from Australia for making my life fun during
this time. I will also express sincere thanks to my eldest friend in this world, Dr. Ahsan
Zafarullah, whom I had very deep discussions with on philosophy of life, religion, love,
and whatnot.

Finally, I would like to extend my special thanks to my family: starting from my par-
ents, Malik Imtiaz Ahmed and Mrs. Tasneem Akhtar, for all the motivation, support,
and selfless love. I am also very thankful to my siblings, Muhammad Umar Sajjad
and Muhammad Talha Imtiaz, and my sister in law Mrs. Sonia Bashir for taking care
of all the family matters back in the home and letting me focus on my studies, to my
nephews, Muhammad Asadullah and Muhammad Alam for being super cute and ask-
ing super-smart questions, and my niece to be the light of our house.

Finally, I would like to mention a new addition to my life, my precious, lovely, car-
ing, and kind wife, Huma Hatun, who has not just contributed towards the completion
of this thesis but has also completed my life.





Abstract

THe head-related transfer function (HRTF) for a location describes the transfer
characteristics for the sound waves as they travel from a sound source at that
location to the ear canal in free space conditions. These transfer functions de-

pend significantly on the individual’s head, torso, and ear morphology and are highly
idiosyncratic. The knowledge of these individualized acoustic transfer functions is cru-
cial to present personalized 3D audio through binaural rendering. This thesis builds
on the currently available knowledge on the HRTF personalization and aims to widen
this knowledge space by presenting some studies. These studies can aid in modeling
and understanding the relationship between the morphology of an individual and cor-
responding HRTFs and facilitate one to create a simple HRTF personalization method
to estimate individualized HRTFs without performing acoustic measurements or long
numerical simulations. This thesis work is a composite of many studies and con-
cepts from different fields. These studies include primary signal processing techniques
such as spectral analysis, notch extraction, principal component analysis (PCA), and
sparse representation based modeling, the physics of numerical simulations like Fast-
Multipole Boundary Element Methods (FM-BEM), and functional space analysis of
shapes like large deformation diffeomorphic metric mapping (LDDMM), and kernel
principal component analysis (KPCA) on LDDMM data. The studies performed in this
thesis can be divided into two groups. The first set of works provides some prelim-
inary studies which can be used to personalize the HRTFs based on anthropometric
data. These studies are mainly performed on the CIPIC database, and focus on the per-
sonalization methods based on the anthropometric data. On the other hand, the second
set of works presents the studies based on the morphoacoustic approach and considers
3D morphology data for subjects. This work aims to widen the understanding of the
relationship between the outer ear shapes and the corresponding acoustics by study-
ing the variations in both spaces separately and then finding a mapping between the
variations in two spaces. All the studies presented in this group are performed on the
SYMARE database. There are two studies in the first group. The first study provides a
statistical analysis of the center frequencies of first notches in the HRTFs of CIPIC and
SYMARE databases. The notches for the HRTFs in the median plane are extracted for
both databases and clustered into three clusters using k-means. Each cluster represents
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the notch created due to one of the three main contours of the ear shape, as suggested
in past studies. The centroids of the clusters show the evolution of notches in frequency
as a function of elevation angles. The results are compared for two databases showing
almost the same results. The results show that the mean value for three notch frequen-
cies in both databases evolves monotonically for the first two notches as a function of
elevation angle from -45◦ to 45◦. In contrast, for the third notch, this frequency almost
stays flat. The mean notch frequency for first, second, and third notches range from
6 kHz to 8.5 kHz, 10 kHz to 12 kHz, and 13.5 kHz to 14 kHz respectively. This study
also compares these frequencies for left and right ears in both databases. The results
show that these frequencies are not symmetric in both ears. This asymmetry suggests
either the possible effectiveness of the binaural cues in the median plane or could be
simply due to the asymmetry in the ear shapes of the involved subjects or measurement
setup. The second study provides a preliminary HRTF personalization method based on
weighted sparse representation based modeling. Like past sparse representation-based
methods this method also relies on two strong assumptions, 1) the anthropometric fea-
tures of the available subject set are rich enough to model the anthropometric features
of any new subject, and 2) a same sparse modeling (linear combination) can be used
to model both the anthropometric features as well as the corresponding HRTFs. How-
ever, the study presented in this work is different from the past sparse representation
based HRTF personalization studies for two reasons. The first difference is that it uses
a separate sparse representation for both left and right ears, while the past studies used
the same model for both left and right ears. The reason to do so is the findings of our
previous studies on notch analysis, which showed asymmetry in HRTF of both ears.
The second difference and contribution of this work is the use of weighted sparse rep-
resentation. The previous studies considered all the anthropometric parameters to be
equally relevant while calculating the sparse representation. However, our work cal-
culates the relevance of each of the available anthropometric parameters and use these
relevance metrics as the weights to the sparse representation. Hence the name weighted
sparse representation. Furthermore, this compares the results of the method with some
famous closest-matching based personalization schemes and shows that it outperforms
the previous techniques. In the second group of studies, the first work analyzes the
effects of affine transformations of the ear shapes on the corresponding HRTFs. As
a counter product, this study creates a synthetic database from SYMARE (one of its
kind), which we call affine models for the SYMARE population. For the affine models,
the ear shapes are affine matched with the template ear shape to have the same scale,
orientation, and position. The affine matched ears are then attached to the template
head and torso shapes to create a 3D model of the head, torso, and (affine matched
ears), called an affine model. The benefits of creating an affine model can be multi-
fold. The first and most important benefit of this is that it creates a simplistic paradigm
to study the morphoacoustics of the ear shape, by limiting the variations to only ear
shape variations, and removing all the variations due to different head and torso shapes,
ear sizes, ear rotations, and position of the ears on the head. The second benefit is
that it simplifies the process of modeling the ear shape as one has to model the shape
variations only using LDDMM and KPCA, not the scale and rotation. Third, it sup-
posedly simplifies the modeling process of the acoustics, as all the ear shapes are at
the same scale, position, and rotation and are placed on the same head and torso shape.
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However, this may end up creating artifacts that outweigh all these benefits. This work
investigates all these questions. In this work, we present a study that provides an anal-
ysis of how simple corrections such as frequency scaling of the HRTFs (to correct for
the scales) and rotation of HRTF directivity patterns (to correct for the rotations) can
significantly compensate for these affine transformations. This also studies and calcu-
late the amount of inter-subject variations coming from affine matching vs. the original
shape. Finally, the study calculates the optimal frequency scaling factor from a purely
acoustic point of view, which matches the affine modeled HRTFs to the original HRTFs
in the best way. These optimal scaling factors are then related to the physical scaling
factors by using linear regression. The results show these scaling factors can be inferred
simply by knowing the ear shape scaling factors coming from the affine matching pro-
cess. The second study in this group provides a simple Spatial Principal Component
Analysis (SPCA) based modeling method to analyze the variations in the acoustic di-
rectivity patterns of the HRTFs as a function of frequency. The directivity patterns of
different frequencies are modeled separately, and the number of principal components
required to model the directivity patterns for a given frequency is quantified for all the
frequency bins in the frequency range from 0.2-17 kHz. This study reasserts the impor-
tance of the affine models by showing that the directivity patterns of the affine models
can be described by using only eight principal components at even high frequencies up
to 17 kHz, keeping the average standard spectral difference (SDD) of less than 3 dBs.
Using the existing morphable model of the ear shapes this work model the ear shapes
with just first eight principal components and showing results for some ears. Finally,
using the eight principal components of the shape space, it estimates the acoustic prin-
cipal components through linear regression to provide a simple personalization method
for HRTFs.

The last study in this work provides a novel idea of morphological weighting to cre-
ate a weighted morphable model for ear shapes. This study proposes to assign different
weights to different ear portions and use a weighted kernel for KPCA on LDDMM
data to create a weighted morphable model. The results of this preliminary work show
a better prediction for the acoustic principal components is achieved when weighted
KPCA is used compared to traditional KPCA on LDDMM data. These insights are
very interesting and suggest that with further work, this tool can be used to not just bet-
ter prediction of personalized HRTFs but also could be an effective way to understand
the contributions of different parts of the ear shapes as a variant of morphoacoustic
perturbation analysis.

III





Sommario

LA Head-Related Transfer Function (HRTF) esprime la funzione di trasferimento
delle onde sonore che viaggiano da una sorgente audio, posta ad una certa po-
sizione nello spazio, fino al canale uditivo, in condizioni di spazio aperto. Queste

funzioni di trasferimento, per tutte le posizioni, dipendono in modo significativo dalla
morfologia della testa, del busto e dell'orecchio dell'individuo, e sono perciò molto id-
iosincrasiche, ovvero uniche da individuo a individuo. Lo studio di queste funzioni
di trasferimento indivuali è cruciale per poter generare audio 3D attraverso rendering
binaurale. Questa tesi parte dalle conoscenze odierne sulla personalizzazione della
HRTF e mira ad allargare questa conoscenza. Gli studi presentati in questa tesi pos-
sono aiutare a capire e modellare la relazione che intercorre tra la morfologia di un
individuo e la sua HRTF, e facilitare la creazione di un metodo semplice per la person-
alizzazione della HRTF, o stimare HRTF personalizzate, senza il bisogno di condurre
misurazioni acustiche o lunghe simulazioni numeriche. Questa tesi si compone di di-
versi studi e concetti presi da diversi ambiti. Gli studi includono tecniche primarie
di elaborazione dei segnali, come analisi spettrale, estrazione di notch, analisi delle
componenti principali (principal component analysis, PCA), e modellazione basata su
rappresentazioni ridotta (sparse), la fisica dietro a simulazioni numeriche come i metodi
di compuazione veloce di elementi finiti con vincoli (Fast-Multipole Boundary Element
Methods, FM-BEM), e analisi funzionale di forme come large deformation diffeomor-
phic metric mapping (LDDMM) e kernel principal component analysis (KPCA) su
dati LDDMM. Gli studi condotti in questa tesi possono essere divisi in due gruppi.
Il primo gruppo di lavori fornisce degli studi preliminari che possono essere utiliz-
zati per personalizzare the HRTF a partire da dati antropometrici. Questi studi sono
stati condotti principalmente sul database CIPIC, e si concentrano sui metodi di per-
sonalizzazione basati su dati antropometrici. Il secondo gruppo presenta studi basati
sull'approccio morfoacustico e considera la morfologia 3D degli individui. Questo la-
voro mira ad ampliare la comprensione della relazione tra le forme del padiglione auri-
colare e la relativa acustica studiando le variazioni in entambi gli spazi separatamente
e poi trovando un collegamento tra le variazioni nei due spazi. Gli studi presentati
nel secondo gruppo sono stati condotti sul database SYMARE. Il primo gruppo com-
prende due studi. Il primo studio fornisce un'analisi statistica delle frequenze centrali
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dei primi notch nelle HRTF dei database CIPIC e SYMARE. I notch delle HRTF sul
piano mediano sono estratti da entrambi i database e raggruppati in tre cluster usando
l'algoritmo k-means. Ogni cluster rappresenta il notch creato da ognuno dei tre con-
torni principali della forma dell'orecchio, come suggerito dalla letteratura. I centroidi
dei cluster mostrano l'evoluzione dei notches in frequenza in funzione dell'angolo di
elevazione. I risultati sono confrontati per i due database, mostrando praticamente gli
stessi risultati. Questi risultati mostrano che il valore medio per le tre frequenze di notch
in entrambi i database evolve monotonicamente per i primi due notch come in funzione
dell'angolo di elevazione da -45◦ a 45◦. Il terzo notch, invece, presenta una frequenza
praticamente piatta. La frequenza di notch media per i primi tre notch Ã¨ compresa
rispettivamente: tra 6 kHz a 8.5 kHz, da 10 kHz a 12 kHz, e da 13.5 kHz a 14 kHz.
Questo studio inoltre confronta queste frequenze per l'orecchio destro e sinistro in en-
trambi i database. I risultati mostrano che queste frequenze non sono simmetriche per
entrambe le orecchio. L'asimmetria potrebbe essere causata o da una possibile efficacia
di “indizi” binaurali sul piano mediano, o semplicemente dall'asimmetria delle forme
delle orecchie dei soggetti coinvolti nella misurazione.

Il secondo studio presenta un metodo preliminare per la personalizzazione della
HRTF basata su una modellazione di una rappresentazione ridotta pesata. Come altri
metodi basati su rappresentazione ridotta della letteratura, questo metodo assume che:
1) le caratteristiche antropometriche dei soggetti coinvolti siano sufficientemente in-
formative da modellare le caratteristiche di nuovi soggetti e 2) la stessa modellazione
ridotta (tramite combinazione lineare) può essere usata per modellare sia le caratteris-
tiche antropometriche che le HRTF corrispondenti. Questo studio però si discosta dai
metodi presentati in letterature in due modi. La prima differenza è l'utilizzo di due spazi
di rappresentazione ridotta diversi per orecchio destro e sinistro, anzichÃ© un unico
spazio. La scelta è motivata dalla suddetta analisi delle frequenze di notch che aveva
mostrato un certo grado di asimmetria tra le orecchie. La seconda differenza è l'uso
di una rappresentazione ridotta pesata, mentre gli studi in letteratura consideravano i
parametri parametrici come equamente rilevanti nel calcolo della rappresentazione ri-
dotta. Invece, il nostro lavoro calcola la rilevanza dei vari parametri e la utilizza come
pesi della rappresentazione ridotta, da cui il nome di rappresentazione ridotta pesata. I
risultati di questo approccio sono comparabili con alcuni metodi di personalizzazione
basati sul closest-matching e sono migliori di molte tecniche della letteratura. Nel sec-
ondo gruppo di studi, il primo lavoro analizza gli effetti delle trasformazioni affini delle
forme dell'orecchio sulle HRTF corrispondenti. Per realizzarlo, questo studio crea un
database sintetico a partire dal (SYMARE), che abbiamo chiamato “modelli affini per la
popolazione del SYMARE”. Per i modelli affini, le forme dell'orecchio sono combinate
in modo affine con la forma base dell'orecchio in modo da avere stesso orientamento,
dimensione e posizione. Gli orecchi così composti sono attaccati alle forme base di
busto e testa per creare un modello 3D chiamato modello affine. I benefici di creare
un modello affine sono molteplici. Il primo e principale è di creare un paradigma sem-
plicistico per studiare la morfoacustica dell'orecchio, limitando le variazioni solo alle
variazioni della forma dell'orecchio e rimuovendo quelle relative alla forma di testa
e busto, o di dimensione, orientamento e posizione delle orecchie sulla testa. Il sec-
ondo vantaggio Ã¨ che questo semplifica fortemente il processo di modellamento della
forma dell'orecchio, in quanto bisogna modellare solo le variazioni usando LDDMM
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e KPCA, non dimensioni e rotazioni. Terzo beneficio è che semplifica il processo di
modellazione dell'acustica, se tutte le forme dell'orecchio sono della stessa scala, po-
sizione e rotazione, e sono posti sulle stesse forme di testa e busto. Ad ogni modo,
questo potrebbe creare artefatti che superano i benefici. Questo lavoro affronta queste
domande. In questo lavoro, presentiamo uno studio che fornisce un'analisi di come
semplici correzioni come un ridimensionamento delle frequenze delle HRTF e una ro-
tazione dei loro pattern di direttivitÃ possono significativamente compensare per tutte
queste trasformazioni affini. Inoltre, presentiamo la quantità di variazioni inter-soggetti
provenienti dall'abbinamento affine confrontati con la forma originaria. Infine, Questo
studio calcola il fattore di scala ottimale per la frequenza a partire da un punto di vista
puramente acustico, che abbina nel modo migliore le HRTF modellate in modo affine
a quelle originarie. Questi fattori di scala ottimali sono poi collegati ai fattori di scala
fisici usando una regressione lineare. I risultati mostra che i fattori di scala possono
essere dedotti semplicemente conoscendo la forma dell'orecchio e i fattori di scala che
arrivano dal processo di abbinamento affine. Il secondo studio in questo gruppo for-
nisce un semplice metodo di modellazione basato sull'analisi dei componenti principali
spaziali (SPCA) per analizzare le variazioni dei modelli di direttivitÃ acustica delle
HRTF in funzione della frequenza. I modelli di direttivitÃ di frequenze diverse sono
modellati separatamente e il numero di componenti principali richiesti per modellare i
modelli di direttivitÃ per una data frequenza è quantificato per tutti i bin di frequenza
nella gamma di frequenza da 0,2-17 kHz. Questo studio riafferma l'importanza dei
modelli affini dimostrando che i modelli di direttività dei modelli affini possono es-
sere descritti usando solo otto componenti principali a frequenze anche elevate fino a
17 kHz, mantenendo la differenza spettrale standard media (SDD) inferiore a 3 dB.
Utilizzando il modello morfologico esistente delle forme dell'orecchio, questo lavoro
modella le forme dell'orecchio con solo i primi otto componenti principali e mostrando
risultati per alcuni padiglioni auricolari. Infine, utilizzando le otto componenti princi-
pali dello spazio della forma, stima i componenti acustici principali attraverso la regres-
sione lineare per fornire un semplice metodo di personalizzazione delle HRTF. L'ultimo
studio in questo lavoro fornisce una idea innovativa di ponderazione morfologica per
creare un modello morfologico pesato per le forme dell'orecchio. Questo studio pro-
pone di assegnare pesi diversi a diverse porzioni dell'orecchio e di utilizzare un kernel
pesato per eseguire una KPCA su dati LDDMM per creare un modello misurabile pon-
derato. I risultati di questo lavoro preliminare mostrano una migliore previsione per
le componenti acustiche principali quando si utilizza KPCA pesato rispetto al KPCA
tradizionale su dati LDDMM. Queste intuizioni sono molto interessanti e suggeriscono
che con un ulteriore lavoro, questo strumento può essere utilizzato non solo per una
migliore predizione delle HRTF personalizzati, ma potrebbe anche essere un modo ef-
ficace per comprendere i contributi di diverse parti delle forme dell'orecchio come una
variante dell'analisi delle perturbazioni morfoacoacustiche.
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CHAPTER1
Introduction

This thesis work aims to develop simple HRTF personalization methods for person-
alized binaural reproduction of the spatial audio over headphones. Mainly this thesis
studies the relationship between the morphology of human head, ear, and torso shapes.
It performs various studies to understand the underlying phenomenons which are re-
sponsible for generating the individualized acoustic transfer function. This thesis is a
composite study of multiple works from many fields, such as human acoustics, compu-
tational anatomy, signal processing, and data analysis. Using the existing knowledge
from these fields, it describes a simple framework to map the morphology of a subject
to the estimate of the corresponding set of HRTFs. It starts by providing a simple study
to analyze the notch features in two of the most famous existing databases, namely
CIPIC [14] and SYMARE [16] and provides insights on the evolution of notch features
of HRTFs in the median plane. This knowledge can aid in the development of a pre-
liminary HRTF personalization method. Continuing the exploration studies for HRTFs,
this work analyzes the existing sparse representation based HRTF modeling and per-
sonalization methods. This thesis also reports on exploratory research that evaluates
the relevance of various anthropometric features to the HRTF personalization process.
Based on these relevance metrics, a novel method for weighted sparse representation
based HRTF personalization is proposed, which provides comparable or even slightly
improved results using fewer parameters.

The main contributions of this thesis are three morphoacoustic studies performed
on the SYMARE database. These studies greatly involve the concepts and knowledge
base built in [1, 17]. Using the foundations laid in these two works, the first study
proposes an affine model for the head, torso, and ear shapes of the listers. In [1],
authors have shown for few subjects that this affine model can provide simplifications
in terms of modeling the corresponding acoustics and morphology of the listeners. In
this work, we extend this study to all the subjects. Furthermore, the possible corrections
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and compensations for these affine transformations are also studied. The second study
analyzes the inter-subject variations in the corresponding HRTFs of these affine models
using spatial principal component analysis SPCA as a function of frequency. Using the
parameters for the ear shapes derived through the morphable ear model, the variations
in the shape and acoustic spaces are related using linear regression. This study showed
that the inter-subject variations for the spectral content at even very high frequencies
can be captured using very few principal components again highlighting the benefits of
the affine models. In the final study in this thesis, reports on a novel method for ear
shape modeling using weighted kernel principal component analysis (W-KPCA). The
results of this model show an improvement when used for the linear regression for the
prediction of personalized HRTFs.

Following this chapter provides a brief background and the motivation to pursue
this study. Sec. 1.2, highlights the problem statement. Sec. 1.3 and Sec. 1.4, provides
contributions and the structure for the rest of the thesis. While Sec. 1.5 reports on
the research articles and conference papers published and under progress, which are
stemmed from this work. Spatial hearing is an ability of listeners to perceive the spread,
distance, and direction of the incoming sound, as well as enables one to understand its
surroundings, such as the size or properties of the room (cave, glass room, open area,
etc.).

This ability comes as the result of the interaction of the sound signal, the envi-
ronment, and mainly the anatomy of the listener, as the sound travels from the sound
source to the eardrums of the listener. This interaction results in various physical phe-
nomenons such as scattering, reflection, and refraction of sound energy waves, manip-
ulating them differently depending on the direction of arrival, frequency, and distance
from the eardrums. These spectral modifications provide psycho-perceptual cues to
the brain to map the incoming sound to a particular position in the space. This ability
to sound localization is developed in mammals through the evolution process of thou-
sands of years and is essential in terms of both predatory and prey senses for survival.
The generated psycho-perceptual cues fall into two categories. Cues inferred from the
signal received at one ear cues or monaural cues and cues which are generated based
on the signal received at both ears (as the difference in level or time of arrival of the
signals) or binaural cues (refer to section 2.1.1 for more details). All these spectral col-
oration or transfer properties of the sound signals can be described by a set of impulse
responses called head-related impulse responses (HRIRs). These HRIRs are different
for both left and right ears. The frequency counterpart of these impulse responses is
called head-related transfer functions (HRTFs) (refer to section 2.2 for details). Hence,
HRTFs are the mathematical functions of distance, the direction of arrival, and fre-
quency, which describe the spatial filter properties of the head, torso, and external ears
for a sound source of a given frequency at a given distance and direction. Mostly dis-
tance is kept fixed, and the HRTFs are considered to be a function of frequency and
direction of arrival only.

Knowledge of these transfer functions in hand enables one to present the spatial
hearing experience to a listener by simply filtering the audio signal with both transfer
functions and presenting on left and right ears, hence the term binaural hearing. How-
ever, as these transfer functions are the results of the interaction between morphology
and anatomy of the listeners, these are not just dependent on the direction and frequency
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but also the body of the listener and are unique for every listener. In the past, a lot of
studies and experiments have focused on understanding the underlying psychophysical
principals of the spatial hearing and on investigating the phenomenons which generate
these transfer functions or spatial cues to create a personalized spatial hearing experi-
ence. Thanks to these studies, the importance and relevance of these cues are known
these days, along with the frequency regions where they are relevant. The past studies
show that binaural cues are mainly responsible for the sound localization in the hori-
zontal plane and primarily work for the lower frequencies (i.e., up to 5 kHz for ILDs).
These cues are mainly attributed to head shapes. While the monaural cues, which are
generally the complex features of frequency in the form of deep notches and peaks in
the high-frequency regions, are mainly contributed by the outer ear shapes (refer to
section 2.1.1 for further details). This fact is further supported by the studies conducted
in [18], which showed that the HRTFs for the occluded ear shapes, results in significant
localization errors in the elevation plane.

Although there have been many studies to understand the reproduction of the binau-
ral cues, the understanding of the generation of monaural cues is minimal in compar-
ison. The possible reason for this is that the binaural cues mainly depend on the head
shape, which is relatively more straightforward than the intricate and complex shape
of the outer ear. Simple models can reproduce binaural cues by just knowing the head
width, height, and depth. While there are no explicit models of such kind which re-
late the ear shapes to the corresponding complex monaural cues. The mechanisms that
generate the monaural cues are much complicated to understand and require a more
in-depth study to understand better and model the mapping between the ear shapes and
monaural cues. This enforces the importance of the outer ear morphology and its ef-
fects on the HRTFs, and demands for a better understanding of the mapping between
two to create a better HRTF personalization method.

1.1 Motivation

The listening experience through the traditional headphones lags in this aspect and fails
to offer a quality 3D listening experience. Often hearing through headphones gives a
notion as if the sound is coming from the center of the head. Even when the stereo, it
can only pan the sound towards the left or right on the inter-aural axis, failing to provide
the sense of true externalization and do not contain any spatial cues.

In a relatively sophisticated setup, a generic set of HRTFs measured on the manikins
with average anthropometry for a given population, such as KEMAR or B&K are used
through binaural rendering to provide a sensation of spatial hearing over headphones.
The sound signal is convolved with the left and right HRTFs and presented as a two-
channel signal at both ears. This reproduction of spatial audio over headphones is
also called virtual auditory space generation [19, 20]. The psycho-perceptual exper-
iments conducted in the past show that when spatial audio is generated using non-
individualized HRTFs, it creates a bad listening experience resulting in problems such
as lack of externalization, sound localization errors, up-down reversals, and front-back
reversals. These studies suggested that to reproduce high-fidelity spatial audio over
headphones; personalized HRTFs are to be used [20, 21].

The personalized HRTFs are traditionally acquired either through empirical mea-
surements that require a big and expensive setup along with an expert and skilled

3



Chapter 1. Introduction

scientist or audio engineer. Alternatively, through running numerical simulations on
the high-resolution 3D models of the human head, ear and torso morphology (refer to
Sec. 2.3 for more details), which avoid the requirement of big measurement system but
shifts the burden to the acquisition of the high-resolution mesh and a very power-hungry
computation setup which can very well spend a day or more to acquire the HRTF of
a single ear of the listener. This makes both of these modes of acquisitions for public
mass usage unpractical, creating a bottleneck for the commercialization of personalized
binaural rendering for the mass market.

This demands a simple and effective method to acquire and personalize the HRTFs
for a listener based on easily gatherable information, such as low-resolution 3D models,
ear images, and anthropometric features. The main driving force for this study is the
ability to provide a personalization method. To the best of the knowledge of the author,
currently, there are not any fast, accurate, and comprehensive methods to obtain the
individualized HRIRs or HRTFs.

This study is a part of a large ongoing Australian Research Council (ARC) Discov-
ery project, which aims at providing a framework that seeks to provide a comprehensive
framework to understand the underlying phenomenons of HRTF generation and its re-
lationship to various components of the ear shape. This limitation demands an in-depth
study that can unveil the underlying functions and mechanisms that relate the ear, head,
and torso morphology to the HRIRs of an individual. An accurate understanding of this
will enable us to provide a method to obtain the individualized HRIRs for a listener in
a fast and precise manner. The obtained HRIRs can then be of great use in medical and
commercial applications (refer to section 2.4.1).

1.2 Problem statement and goals

Finding the relationship between the anatomy of the listener and corresponding HRTFs
is essential to provide a personalized 3D hearing experience over headphones. How-
ever, due to the complex shape of the ears and the complexity of the corresponding
acoustic features makes it challenging. Modeling and mapping the variations in the
acoustic and shapes spaces is not trivial. The outer ear shape has many cavities and
ridges which interact with the sound field in a unique way for every individual. These
interactions are greatly dependent on the frequency and direction of arrival of the sound.
Due to these interactions, the HRTF functions end up having complicated features in
the form of peaks and sharp notches. The center frequency, width, and height/depth
of these features play a vital role in generating psycho-perceptual cues for the listeners
enabling them to localize a sound source in space. This complexity in both domains
makes the task of finding a general model for both domains and a relationship between
these models very difficult. However, it is necessary to understand to create a person-
alization method for HRTFs which work well for the mass market.

Even though the importance of this is well known, to the best of author’s knowledge,
there is no well defined and comprehensive framework available for the personalization
of the HRTFs based on morphology. This framework should be able to understand the
cues in HRTFs and the underlying phenomenons creating them to provide a personal-
ized HRTF efficiently.

Although there are many existing methods for HRTF personalization which pro-
vide a great deal of understanding on the personalization process providing with some
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knowledge about the underlying features in the HRTFs, which makes them unique for
an individual, how these are generated, and basic mappings between the some of the
features in the morphology to these acoustic features. However, they all have their
limitations when it comes to using them for VAS (refer to Sec. 3.4 for details). For ex-
ample, in the study [8], authors modeled the underlying mechanisms for first and third
notch generation for a given HRTF using a simple parabolic sheet. In [11, 22] authors
introduced micro perturbations on the surface of the outer ear and studied its effects on
the notches and peaks in the HRTFs. The aim of these studies was to understand which
features are sensitive to the perturbations in which parts of the ear shape. Similarly,
in [23], authors took a rather sophisticated approach; they first analyzed the notches in
the HRTFs for the median plan. They reasserted the fact that the center frequencies for
these notches increase by increasing the elevation. Furthermore, they suggested that
the three primary notches in the HRTFs are the result of the reflection of the sound
waves from the three main contours of the ear shape, and proposed a mapping based
on 2D ray tracing on these contours. While these findings are significant and relevant,
considering the complexity of the ear shape and its significant variations amongst dif-
ferent listeners, an in-depth study is required to understand the relationship between
these variations and the corresponding acoustics. To solve this problem, we propose a
divide and conquer approach.

The problem of HRTF personalization can be divided into three smaller problems.

1. Modeling of the variations of ear shapes in a parametric way.

2. Modeling of the variations of the HRTFs in a parametric way.

3. Creating a map between the parameters of morphology and acoustics to create a
personalization method for HRTFs.

The ear shape variations are modeled using the morphable ear shape model proposed
in [17]. Using the powerful LDDMM framework, this work models the variations in
the SYMARE database using KPCA. This simple yet powerful model lets one model
any ear in the given ear population with only a few numbers as parameters. However,
this works has a twist. As we are mainly interested in modeling the shape of the ears,
all the ear shapes are affine transformed to the to match with the template ear shape [5]
in size, position, and orientation. The motivation behind doing this is to simplify the
modeling process of shape as well as the corresponding acoustics. The affine matchings
used are scaling, rotation, and translation.

The first work analyzes the newly created synthetic database and explores the an-
swers to the following research questions: 1) Does affine transformation simplify the
modeling process of acoustics and/or morphology? If yes, can we quantify the sim-
plifications? 2) Is this divide and conquer approach works, i.e., is it easy to model
and compensate for the artifacts created because of these affine transformations? 3)
Finally, can the correction parameters can be be obtained from the affine transforma-
tions [24–26].?

The second big step is to model the variations in the HRTFs. For this, we investigate
the application of a frequency-dependent spatial principal component analysis based
approach? This analysis examines the following questions: 1) Is the amount of varia-
tion captured using a given number of principal components is frequency dependent?
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2) If yes, how many principal components are required to model the data for each of
the frequency?

The final missing piece of solving the HRTF personalization problem is the map-
ping between both morphology and acoustic parametric models. So the last research
question of this thesis work would be, can we use simple linear regression to relate the
parameters in the morphology with the parameters in the acoustics?

Once this whole framework is in place, we also investigated if there is a way to
explore the use of morphological weighting of the ear shape to create a better morphable
model for the ear shapes. More specifically, can we put more emphasis on certain parts
of the ears while creating a morphable model to model these parts better compared
to the rest of the ear shape? Using this weighted KPCA model, we can improve the
personalization of the HRTFs. Furthermore, this tool can be used to understand the
relative contributions of each of the ear portions in the HRTFs?

1.3 Contributions

The ultimate goal of this study is to aid in creating a comprehensive and straightforward
framework for HRTF personalization. This framework can be used to provide personal-
ized sets of HRTFs for any subject avoiding the cumbersome and exhaustive numerical
simulations. More specifically, in this thesis, we propose a simple method which uses
parametric models for both outer ear shapes and the HRIRs/HRTFs, to efficiently and
compactly represent the morphology and corresponding acoustics and enable one to ob-
tain the personalized HRTFs for a listener without running the cumbersome simulations
or going through laborious measurements.

This work has five major contributions:

1. It performs a simple statistical analysis of the median plane HRTFs for two databases
CIPIC [14] and SYMARE [16]. This study uses simple signal and data processing
techniques to analyze how the notch frequencies evolve as a function of the eleva-
tion angle. The findings suggest three things, 1) It verifies and reasserts the claim
that the notch center frequencies are directly proportional to the elevation angle
in the median plane. 2) The evolution of the center frequencies for three main
notches is the same in two databases. 3) The notch frequencies for both left and
right ears are not symmetric, suggesting that there might be some binaural cues
that can help one to localize in the median plane (a novel finding). The results
were published in [27].

2. Starting from the existing sparse representation based HRTF personalization tech-
nique [28], and knowing that not all the anthropometric features are equally rel-
evant in creating the HRTFs, in this work we proposed a simple weighted-sparse
representation based approach for HRTF personalization. This study finds the
relative importance for each of the anthropometric features using an exhaustive
search. Furthermore, this study compares the performance of the weighted-sparse
representation with previously available approaches and some famous closest-
matching based solutions. The results show that our approach outperforms the
previous approaches as well as all the closest matching based approaches when
spectral distortion based evolution is used. The results are published in [29].
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3. A synthetic data-set is created to study the acoustic effects of the affine transfor-
mations on the ear shapes. In this work, a simple affine model is proposed, and
the effects of the affine transformation on the ear shapes are studied and modeled.
Then a simple correction method for the HRTFs of the affine models to obtain the
HRTFs of the individual shapes is studied through frequency axis scaling like [25].
However, instead of using a single scaling factor, two scaling factors separate for
head and ear regions are created, and a simple mapping between the ear and head
scaling, and the optimal scaling factor derived from a pure acoustic point of view
is created. The results are being prepared as an article to be submitted to the IEEE
transaction of Audio, Speech, and Language Processing.

4. A simple method to analyze the variations in the acoustic directivity patterns of the
HRTFs based on principal spatial components is proposed. This model analyzes
the inter-subject variations as a function of frequency and models the directivity
patterns of every frequency separately. Furthermore, this work analyzes how many
principal components are required to model the directivity patterns of a given
frequency. This work also analyzes how many variations in the ear shapes can
be captured using the first eight principal components. Once the model is created,
this work uses this model to create a simple mapping between the ear shape model
parameters and the HRTF parameters. Part of this work is published in [30]. With
some more analysis and further refinement, the work is to be submitted to some
journals.

5. The final contribution of this work is the use of morphological weighting to un-
derstand the ear shape model better. In this work, we explore the potential for
morphological weighting of different regions of the pinna (outer ear) to improve
the prediction of acoustic directivity patterns associated with head-related transfer
functions. Using a large deformation diffeomorphic metric mapping framework,
we apply kernel principal component analysis to model the pinna morphology.
Different regions of the pinna can be weighted differently before the kernel prin-
cipal component analysis. By varying the weights applied to the various regions
of the pinna, we begin to learn the relative importance of the various regions to
the acoustic directivity of the ear as a function of frequency. The pinna is divided
into nine parts comprising the helix, scaphoid fossa, triangular fossa, concha rim,
cymbal concha, cavum concha, conchal ridge, ear lobe, and back of the ear. Re-
sults indicate that weighting the conchal region (concha rim, cavum, and cymbal
concha) improves the predicted acoustic directivity for frequency bands centered
around 3 kHz, 7 kHz, 10 kHz, and 13 kHz. Similarly, weighting the triangular and
scaphoid fossa improves the prediction of acoustic directivity in frequency bands
centered around 7 kHz, 13 kHz and, 15.5 kHz. The results are published in pro-
ceedings of the IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, 2019 [31].

1.4 Thesis Structure

This thesis consists of seven chapters in total. The first three chapters are introduc-
tory and provide the reader with the introduction, background, and an overview of the
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existing literature and state of the art for this study; the next three chapters are the con-
tributing chapters that contain the research work performed by the author in the course
of this Ph.D. Finally, the seventh chapter sums it all up and provide a conclusion of the
dissertation. Following is an overview of what each chapter contains.

Ch. 2 equips the reader with the basic and necessary background knowledge to un-
derstand the work. It starts by providing the introduction to the spatial audio and ex-
plains what it is in Sec. 2.1. In Sec. 2.1.1 it talks about the localization cues used by
the listener for spatial hearing. In Sec. 2.2 a simple overview on the HRIRs and HRTFs
is provided. Sec. 2.3 comments on the methods to obtain the HRTFs. This is fol-
lowed by a section on the Virtual Auditory Space(VAS) and its applications in Sec. 2.4.
The purpose of discussing this here is to give the reader a general idea of how this
study fits within a larger prospectus of the spatial audio field and why it is important
to solve the research problem under consideration. In Sec. 2.5, 2.6, and 2.7 the details
on Principal Component Analysis (PCA), Large Deformation Diffeomorphic Mapping
Metric (LDDMM) framework and Kernel Principal Component Analysis (KPCA) are
provided. These details are essential to understand the work performed in this work.
The concepts provided in this chapter are widely used in the rest of the thesis.

Ch. 3 reports the literature reviewed. This chapter is aimed to equip the reader with
a brief review over the state of the art shape on shape modeling in Sec. 3.1, use of
LDDMM on the ear shapes in Sec. 3.2, morphoacoustic perturbation analysis (MPA)
in Sec. 3.3 and HRTF modeling, and personalization techniques in Sec. 3.4. Finally, it
provides some of the different measures used in shape and acoustic space in Sec. 3.5.

Ch. 4 provides the details on the preliminary studies conducted in this thesis. In
Sec. 4.1 the details on a simple notch analysis technique along with the results and find-
ings are provided while in Sec. 4.2 presents the weighted-sparse representation based
personalization technique developed in this work.

Ch. 5 presents a simple model for 3D shapes to obtain the HRTFs either through
BEM simulations or some kind of modeling. Sec. 5.1 provides the details on how the
affine models for a subject are created using LDDMM and shows how the scale factors
for head and ear shapes are measured. Furthermore, it shows how these factors sit with
respect to the template head and ear size. Sec. 5.2 quantifies the simplifications caused
by the affine matching of the ear shapes. Sec. 5.3 shows how to find the optimal scale
factors for the head, ear, and whole frequency range. Finally, it concludes the chapter
explaining how these optimal scale factors are related to the physical scale factors.

Ch. 6 provides details on the spatial principal component analysis performed to
study the variations in acoustic transfer functions as a function of frequency. Sec. 6.1
shows how the directivity patterns are preprocessed to perform this analysis. Sec. 6.2
describes how these directivity patterns are modeled frequency by frequency. Sec 6.3
quantifies the number of principal components required to model the directivity pat-
terns for a given frequency. Sec. 6.4 provides a simple analysis of using SPCA in the
view of personalization. Finally, the Sec. 6.5 provides the details on weighted KPCA
and shows how the results of this study can be used to understand the contributions of
each part of the ear in HRTFs.

Finally, Chapter 7 provides the concluding remarks for the thesis revisiting the con-
tributions along with indicating some future works and challenges faced during this
work.
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CHAPTER2
Background

This chapter provides a brief overview of the key concepts, techniques, and methods
from past studies that are extensively used in this work. It is essential to revisit these
details to understand this thesis. The main aim of this work is to broaden the under-
standing of the HRTF personalization process, which will enable every individual to
have an immersive and high-quality spatial hearing experience over headphones. As
mentioned in the previous chapter, a substantial part of this thesis work is the continua-
tion of the work presented in [1], so some of the sections in this chapter are extensively
borrowed from [1]. This chapter covers the topics which will assist a reader in under-
standing the work conducted in this study. Moreover, it will get the reader familiarized
with the relevant concepts and techniques widely used in the field of spatial hearing,
human acoustics, statistical shape, and data processing.

At the start, a brief overview of the spatial hearing and the sound localization cues
is provided. These cues enable an individual to perceive the size and volume of the
sound sources and localize them in 3D space (Sec. 2.1). Following this section is the
description of the Head-Related Impulse Responses (HRIRs) and Head-Related Trans-
fer Functions (HRTFs) in Sec. 2.2. Subsequently, the details on the processes to acquire
individualized HRTFs are provided in Sec. 2.3. Sec. 2.4 discusses what virtual audi-
tory space (VAS) is and highlights the applications of VAS in various fields. Sec. 2.5
provides the introduction to the principal component analysis (PCA) and shows its ap-
plication to a set of HRTFs.

This morphological modeling in this study and largely in this project is revolving
around Large Deformation Diffeomorphic Mapping Metric (LDDMM), so Sec. 2.6
provides a detailed introduction to LDDMM. Furthermore, it also highlights the appli-
cation of the LDDMM framework in the context of ear shape modeling [32]. In Sec. 2.7
we provide some introduction to the kernel principal component analysis (KPCA).

Although it is advised to go through this chapter to review the concepts and used
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notations in the thesis, readers already familiar with these topics can skip this chapter
and go to Ch. 3 right away to see the literature review.

2.1 Spatial Audio

Thanks to the powerful and complex human vision system, humans are mainly visual-
oriented. However, with all its might and benefit visual sense is limited when it comes
to observe or feel objects behind the head or at situations when the lighting is not ade-
quate. In contrast, humans can perceive and localize sound originating from all direc-
tions in space. This ability of humans listeners to perceive the location (direction and
distance), the spaciousness of the sound sources in space, and the acoustic properties of
the environment is called “spatial hearing” [33]. The spatial hearing compliments the
sense of vision and helps humans to interact with their surroundings more effectively.
On top of it, just like the visual sense, the spatial hearing also lets the listener focus and
concentrate on a single audio source in a particular position in the space.

A real-life example of seeing spatial hearing in action is the conversations in cock-
tail parties [34]. In such cases, there are multiple talkers, and many competing sound
sources exist around an individual listener. In the absence of the spatial hearing, the
listener will not be able to distinguish the direction of sound sources, and it will put
him in an awkward situation by making it very difficult to respond to the speakers
appropriately. This example shows that without the spatial hearing, the quality of an
individual to have a social interaction is severely limited. The same is the case with
playing games and navigating through scenes and mazes in the game, where players
have a limited point of view, the spatial hearing can add a great deal to the experience.

When it comes to the accuracy of sound localization in space, the past studies sug-
gest, an average human listener can localize an audio source in space very accurately
and precisely. The precision and resolution with which the sound sources can be lo-
calized are different for azimuthal and elevation planes. For example, in the azimuthal
planes, a human listener can distinguish between the direction of arrival for a sound sig-
nal with a resolution of 1◦ to 3◦ on average [35]. On the other hand, localization of the
sound source in elevation plane is more complicated and depending on the sound source
properties and stimuli humans can only localize a sound source in elevation plane with
an average resolution of 4◦ (for white noise) and 17◦ (for speech stimuli) [35,36]. These
values for minimum resolution angles are called minimum audible angles (MAA). The
ability of spatial hearing is the result of the spatial cues generated by the interaction of
the sound field with listeners’ anatomy and surroundings on its way to the eardrums of
the listener. Following, we provide a brief introduction to these cues.

2.1.1 Sound Localization Cues

The studies conducted in the past generally put spatial audio cues into two main cate-
gories. The first set of cues are the cues that are inferred from the sound signal received
at both ears, hence called binaural cues. While the other set of cues are monaural cues,
the cues which are generated or can be interpreted by using just single ear data. These
cues are also called spectral cues [37, 38].
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2.1. Spatial Audio

Binaural Cues

The spatial cues which are inferred by utilizing the sound signals in both left and right
ears are called the binaural cues. Binaural cues are one of the oldest spatial hearing
cues known by humans, firstly introduced by Lord Rayleigh, more than a century ago
in [37]. The underlying phenomenon for the generation of these cues is the physical
separation between two ears by the head. This separation results in the difference in
the time of arrival and received signal intensity in both ears, in a location depending
way. For example, the sound coming from a sound source in the right direction from
the head of the listener has to travel more distance to reach the left ear than to the right
ear. Hence, the signal is delayed when it reacher to the left eardrum compared to the
right eardrum. This difference in time of arrival is called inter-aural time difference
(ITD). Also, the head casts a shadow to the signals coming from the right direction,
which results in a smaller value of the sound intensity for the received signal in the left
ear than the right ear. This difference between the received sound intensity or level is
called inter-aural intensity difference (IID) or inter-aural level difference (ILD). Both of
these cues are very important and useful for sound source localization on the horizontal
plane. The ITD is used for localizing the low-frequency sounds when the wavelength
of the signal is comparable to the size of the head. While the ILD is used for higher
frequencies when the wavelength becomes smaller than the size of the head [39].

(a) ITD (b) ILD

Figure 2.1: This figure shows the binaural cues in play. a) Inter-aural Time Differences (ITD), (the
magnitudes of both HRTFs are normalized to only show the time delays) and b) Inter-aural Level
Differences (ILD).

Monaural Cues

The other type of spatial cues that are important for spatial hearing is the monaural
cues. These cues are the results of the spectral coloration imprinted in the sound signal
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Chapter 2. Background

due to the interaction between the sound field and the head, torso, and the ears of the
listener. As these cues are different for left and right ears, they are called monaural
cues [2, 40]. The previous studies report that the notches and peaks in the monaural
cues in lower frequencies are contributed by head and torso. In contrast, the notches
and peaks in the high frequencies are mainly contributed by ear shapes [2, 40].

An example ear is shown in Fig. 2.2. This figure shows that the outer ear shape
is a complex surface with multiple ridges and cavities. Each of these cavities plays a
role in the generation of the spectral coloration in a frequency and direction-dependent
way [41]. This happens because upon getting reflected from these surfaces, the sound
waves get delayed in comparison to the direct path sound and depending on the direc-
tion and frequency the cause either constructive or destructive interferences, creating
peaks and notches.

Figure 2.2: This figure shows an image of the left ear of a human subject with annotations indicating
different parts of the ear shape. Picture taken from [1].

The previous studies have shown that although all torso, head, and ear shapes play
role in the generation of monaural cues, when it comes to the perceptual relevance, the
outer ear shapes are the main contributor [18, 42, 43].
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2.1. Spatial Audio

Figure 2.3: The acoustic transfer functions corresponding to three different shapes are presented in this
figure for a cone of confusion located at azimuth angle θ = 25◦. (a) pinna less KEMAR, (b) The
acoustic response of the pinna shapes(PRTF), (c) The sum of (a) and (b). d) The measured acoustic
response of KEMAR head, ear, and torso shape. Image reprinted from [2].

This argument is further strengthened when we have a look at Fig. 2.3. In this figure,
(a) shows the acoustic response recorded for KEMAR head and torso shape without an
outer ear attached. While the response recorded for just the outer ear shape is reported
in Fig. 2.3(b). Fig. 2.3(c) shows the sum of first two, while in Fig. 2.3(d) presents
the response recorded on head, torso, and ear shape is provided. Having a look at
these figures, it is evident that the outer ear shapes make the main contributions in the
spectral coloration. This finding inspired some of the scientists working in this field to
work only on the acoustic responses of the outer ear shape, ignoring the effects of head
and torso shapes [3, 23, 40, 44]. The same is the case of this study. In this study, we
mainly focus on the morphoacoustics of the ear shapes, paying little to no attention to
head and torso shapes.

It is generally believed the cues for localization in the median plane are the first
peak and first two notches. To further verify that these cues are generated by the ear
and not the head and torso, authors in [3], numerically calculated the acoustic responses
for some human subjects, by running finite-difference time-domain method on the ear
shape only and, head and ear shape attached. The results for four subjects, two males
M1 and M2 and two females F1 and F2 are reprinted in Fig. 2.4. The first columns
show the acoustic responses calculated for head and torso meshes, which are also called
HRTFs. While the second column contains the figures showing the acoustic responses
calculated only on the ear shapes, which are also called Pinna-Related Transfer Func-
tions (PRTFs). It is quite evident from these figures that even in the absence of the
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heads, PRTFs manage to capture most of the variations which are present in HRTFs,
further affirming that the outer ear shape contributes the most of the acoustic features
in the head and ear acoustic responses (HRTFs) [2].

Figure 2.4: The first column contains HRTFs for two male subjects M1 & M2 and two female subjects
F1 & F2. The second column contains the PRTFs for these subjects. Image reprinted from [3]

.

The notches and peaks shown in these figures are primary cues for elevation percep-
tion and are produced as a result of the interaction of the sound field with the complex
geometry of the pinna. It would be almost impossible to have elevation perception om
the absence of these notches. This was confirmed by the studies in [18], reporting that
when the responses recorded on the occluded ears are used for the localization tests, the
sound localization is almost impossible. Furthermore, psycho-perceptual experiments
conducted in [45,46] suggest that removing notches from the sound signal deteriorates
the spatial hearing experience and considerably reduces the ability to localize audio
sources. All these studies confirm the importance of the outer ear shape and its acous-
tic implications in the spatial cues. Considering these findings of these studies in this
work, we focus our studies only on the ear shapes and their corresponding acoustics.
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Functions(HRTFs)

2.2 Head Related Impulse Responses (HRIRs) and Head-Related Trans-
fer Functions(HRTFs)

The Head-related Impulse Response (HRIR) is a finite impulse response that mathe-
matically explains the spatial acoustic filtering properties of the head, torso, and the ear
shape for a given direction in space. These impulse responses describe how the sound
signal transforms on its way from the sound source, sitting at an arbitrary position in
space to the eardrum [47,48]. A pair of HRIRs for the left and right ears contain all the
binaural and monaural cues required by a listener for spatial hearing. The frequency-
domain counterpart of the HRIRs is obtained by performing the Fast Fourier Transform
(FFT) and is called the Head-Related Transfer Function (HRTF). The HRTF represents
gains and losses for the sound signals at a given frequency on its way from the sound
source to the eardrum for a given direction. It is a complex-valued function and has a
magnitude and phase at each frequency and direction. Directions in space are usually
identified by the head centered spherical coordinate system. The directions have two
coordinates which are donated by θ called the “azimuthal angle” and φ or the “elevation
angle”. The coordinate system for these angles is shown in Fig. 2.5.

Figure 2.5: A head centered coordinate system showing the auditory angles. The angle θ denotes the
horizontal or azimuth angle, while φ denotes the vertical or elevation angle. Image taken from [1]

HRTFs exist for each direction for both left and right ears and are unique. Fig. 2.6
shows a plot of the left ear HRIR and its corresponding HRTF for a given direction
(θ = 0◦, φ = 0◦) of the space for Subject 1 in SYMARE database.
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Figure 2.6: The head-related impulse response (HRIR) and the head-related transfer function (HRTF) is
shown in the above plots for azimuth angle 0◦ and elevation of 0◦ for Subject1 in SYMARE database.

These two representations show the variation in the gains as a function of time and
frequency for a given direction. However, we can also show the gain or directivity of
the ear shape for all the directions in space for a given frequency, as shown in Fig. 2.7.
This representation is known as the directivity pattern and is represented as a Spatial
Frequency Response Surface (SFRS) [49]. Figure 2.7 shows the directivity pattern for
subject 1 at 6kHz for left ear.

Figure 2.7: The SFRS plot shows the directivity pattern for Subject 1 at 6 kHz for the left ear. Positive
values of azimuth angles correspond to the ipsilateral side, and the contralateral side is represented
by negative values. It can be seen from the SFRS plot that the left side shows higher gains than the
right side. Also, the upper quadrant in the left side has higher gains than the lower side due to the
shadowing casted by the torso of the subject.
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(a) HRTF Measurement Setup 1 (b) HRTF Measurement Setup 2

Figure 2.8: The above images show the HRTF recording setups. In (a) the individual sits in the chair
and the loudspeaker arc is rotated around him and in the (b) the loudspeaker arc is fixed and the user
is rotated with the help of a rotation table.

2.3 Acquiring Individualized HRTFs

This section provides details on how to acquire the individualized HRTFs for a subject.
Traditionally and to date, the most accurate method to obtain the individualized

HRTF is to measure it through acoustic measurements. In this method, the HRTFs of
an individual are extracted from the acoustic recordings made using miniature micro-
phones placed in the ear canals of the listener and playing known signals from loud-
speaker by placing it at different locations [14, 50, 51]. The recordings are made in
anechoic chambers to emulate the free space conditions. As mentioned in section 2.2,
HRTFs represent the transfer characteristics for the sound as it travels from one partic-
ular location to the ear canal of the listener. The recordings are required to be made
for every single location for which HRTFs is needed. These recordings are generally
performed in one of the two most popular settings. In the first setup, the listener sits in
the middle of the room, and the single or multiple loudspeakers are moved around the
user with the help of a robotic arm. While in the second setup, multiple speakers are
placed on a fixed vertical circular arc, and the user is rotated with the help of a rotation
table. In both setups, the user is supposed to avoid any kind of movement and always
keep his head still. Fig. 2.8a and Fig. 2.8b shows these two setups respectively.

For high-quality recordings, in both settings, not just room but also the apparatus
involved has to be anechoic, and covered with the same material that covers the walls,
roof and floor. The equipment includes the robotic arm, the loudspeakers, and the sitting
chair. These two settings have a very strict requirement for user to keep his head still
for the whole measurement process. Any involuntarily made movements will distort the
acquisitions and the whole recording process is to be repeated all over again. Keeping
ones head still for this long is almost impossible. Some works use a guidance system for
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Figure 2.9: HRTF recordings setup at Auditory Localization Facility at Wright-Patterson AFB, Dayton,
OH. Image taken from [4]

the head tracking while the measurement process to help user to keep his head still via a
feedback system and head tracker [51]. While some other research groups have focused
on making the measurement process faster by using multiple speakers and innovative
measurement techniques [50]. An extreme solution to this problem is also used by US
air force labs. In there setup they placed loudspeakers at every location, which shortens
the measurement process time by removing the need of moving of speakers or user [4].
Fig. 2.9 shows this setup.

Although a combination of these two studies together can provide a very fast and
accurate measurement technique, acoustically measuring the HRTFs is still relatively
expensive and time-consuming method. Also, the requirement of anechoic chamber
and such a cumbersome setup limits the acquisition to a single place or lab as it is
almost impossible to move it. All these limitations make it impractical for commercial
use and limit it to laboratory use only.

The second and more flexible method for getting individualized HRTFs is, to nu-
merically calculate them by solving boundary integral equations, generated based on
a high-resolution 3D model for the head, torso, and pinna of the listeners [51–53]. In
this thesis most of the studies are performed on the data coming from this process, as
well as, this process is also used to get the HRTFs for a synthetic dataset created in this
thesis. So, to provide readers a brief review following provides details on this method.
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2.3.1 Numerical Simulations for HRTFs

Numerical solutions for obtaining the HRIRs involve numerically solving and comput-
ing the solution to the Partial Differential Equation (PDE) that governs the scattering
of sound waves around objects in three-dimensional space. The PDE for the scattering
of sound waves is known as the Helmholtz PDE [54, 55]. The use of numerical sim-
ulations to get the HRTFs is a very interesting topic for many scientists for multiple
reasons. First and foremost, it lets one, to avoid the cumbersome measurement pro-
cess to get the individualized HRTFs. The second reason is the recent advent of more
powerful and fast computing machines, and the advancements of the algorithms such
as the fast multiple method (FMM) [52] make this reasonably fast. The third reason is
that in these days, obtaining the high-quality 3D model has become feasible due to the
availability of various forms of scanning, such as magnetic resonance imaging (MRI),
laser scanning, and computed tomography (CT Scan). Some labs have also started to
use photogrammetry for this purpose.

There are different kinds of numerical simulations which can be used to calculated
the HRTFs. For example, authors in [22] used the Finite-Difference Time-Domain
Method (FD-TDM) to simulate the HRIRs of pinna after applying micro-perturbation
in a different position on it. The problem with this kind of studies is that they require
volumetric data for the 3D models to voxelate the model and surface data only is not
enough.

Another very famous method is the Finite Element Method (FEM). The studies pre-
sented in [53, 56, 57] used FEM to calculate the HRTFs numerically. However, the
problem with FEM is that it not only requires one to model the 3D morphology of the
listener but also the space around it needs to be sampled to include the loudspeaker
positions in the analysis. The third most widely used method for the HRTF calcu-
lations is the Boundary Element Method (BEM). Many studies has used this method
included [51, 52, 58]. In this work and another thesis [1], which is of same nature, Fast
Multipole BEM or FM-BEM, a faster and more accurate version of traditional BEM is
used. Following we provide details on getting the HRTFs from FM-BEM simulations.
Parts of this sectioin are borrowed from [1].
Preparing meshes for BEM simulations
The quality of obtained HRTFs by the numerical simulations is directly proportional to
the resolution of the used meshes, i.e., for a mesh with more number of mesh elements,
the result will be more accurate when compared to a coarser mesh [1]. An example of
this is shown in Fig. 2.13, showing results of BEM simulations for same ear in high
and low resolution settings. However, a denser and high-resolution mesh will require
more computational resources and longer simulation time. This demands to find a
trade-off between the number of mesh elements to get reasonably accurate results, and
the computation time required to perform numerical simulations. This section details
on an iterative mesh coarsening process to prepare the meshes for BEM simulations,
which provide a good and accurate acoustic response to a given maximum or critical
frequency. After passing through this procedure, each mesh is optimally coarsened and
converted to a uniformly sampled mesh to reduce the number of mesh elements and
simulation time, without compromising the accuracy of the results.

The study presented in [59] reports the criteria for preparing such a mesh in great
detail. The findings of this study suggest that to obtain an accurate set of HRTFs from
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FM-BEM simulations, the mesh must have a certain minimum resolution for a given
maximum or critical frequency up to which the simulations have to be accurate. Fur-
thermore, all edges in the mesh should be close to of the same size, and there should
not be any triangles that are very long and pointy, with one of the edges being a lot
smaller than the other two edges. Finally, it emphasizes the need for having a smooth
and uniform sampling of the mesh. In this work, an iterative process of remeshing is
performed using a remeshing software called ACVD [60]. After passing through this
software, each of the meshes must satisfy the following four criteria to be BEM ready
mesh.

1. The smallest edge should not be smaller than one-fifth of the largest edge.

2. The minimum angle between any two edges should be greater than 15◦.

3. The maximum angle between any two edges should be less than 150◦.

4. The length of the longest edge should be smaller than one-sixth of the wavelength
corresponding to the largest frequency.

Although, ACVD is generally used for coarsening and down-sampling the high-resolution
meshes, it can also be used for the opposite, i.e., for remeshing or subdividing triangu-
lar elements for the upsampling purpose. The main parameter used as an input to the
ACVD software is the number of vertices Nv in the resulting mesh. Using this value,
ACVD tries to create a uniform mesh such that the output mesh is an approximate to
the input mesh to a given threshold and have the number of vertices equal to or very
close to Nv. If the number of vertices in the mesh is more than Nv, the mesh is coars-
ened, and if the number of vertices is smaller than Nv, the new triangles are created by
applying the surface subdivision first resulting in more number of vertices.

This process is performed using a MATLAB script that iteratively checks the quality
of the output mesh against the requirements one through four. This adjusts the number
of vertices allowed Nv iteratively by checking if the resulted mesh can be used for the
given critical frequency of fc. In this work we used the same scripts with little to no
modifications as were used to create SYMARE database [1, 51]. For every iteration, it
prepares the mesh, which has NV (I) vertices in it. This mesh is supposed to provide
us with the accurate results up to fc or critical frequency of the mesh. The critical fre-
quency is calculated using Eq. 2.1. This frequency is used as the input to the MATLAB
script. The script adjusts the value for Nv(I + 1), at every iteration, and input it to the
ACVD program in the next iteration to provide a mesh that has a critical frequency,
which is equal or higher than the target critical frequency f targc . The number of vertices
for the next iteration is calculated using the expression given in Eq. 2.2.

fc =
c

6emax
(2.1)

NV (I + 1) = NV (I)(
f targc

fc
)2 (2.2)

In Eq. 2.1, emax denotes the length of the longest edge in the mesh. For our simulations
we set the critical frequency fc = 26kHz. It is observed that for this critical frequency,
the average edge length (AEL) for the meshes is below 1.5mm. HRTFs obtained by
running the FM-BEM simulations on these meshes are shown to be in good agreement
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with the acoustically measured HRTFs [51,61]. It is to be noted that due to the iterative
nature of the MATLAB program and also because the output mesh shapes have to
satisfy criteria 1− 4 specified above, the resultant meshes can have a critical frequency
value that is higher and not equal to 26kHz.

Finally, the created meshes are passed through a final cleaning process. This clean-
ing is performed using Meshlab [62]. The cleaning process does three things:

1. It removes all the duplicated vertices.

2. It removes all the unreferenced vertices.

3. It removes all the non-manifold edges.

After passing through this final cleaning process, the meshes are now ready to be used
for FM-BEM simulations.
Performing BEM simulations
There are various ways to perform the BEM simulations, i.e. someone can write there
own scripts or can use some commercial tools for it. In this work all the BEM simula-
tions were performed using Coustyx [63], a commercial software for advanced numer-
ical solutions provided by Ansol. The same software was used to obtain the SYMARE
database originally in [51]. Coustyx lets one to use reciprocity principle based simula-
tions in which during numerical calculations of the HRTFs, the virtual loudspeaker (a
vibrating source) is placed in the ear canal, and virtual sensors are placed at the desired
directions in space. The benefit of using this technique while running the BEM simula-
tions is that the HRTFs for all the directions can be computed simultaneously, reducing
the simulation times by multiple orders. The use of the reciprocity principle was first
validated by [53]. The virtual sound source is simulated by cutting an element of the
triangular mesh loose and vibrating it to generate the signal for a given frequency. The
position of the vibrating element is chosen by finding the intersection of the inter-aural
axis with the gear mesh. In Fig. 2.10 the position of a vibrating element is shown for
the left ear. Fig. 2.10 shows a section of head mesh prepared for BEM simulations,
showing the vibrating element in red color, and the inter-aural axis by a green line. The
intersection between the inter-aural axis and the mesh is presented with a blue point.
The element containing this point is cut loose and treated as a vibration element, as
shown in the figure. Keeping the center of the head as origin, an imaginary sphere
is created of a radius equal to 1m. This imaginary sphere is sampled uniformly us-
ing Icosahedral subdivision [64] to have 2562 uniformly spaced points on the sphere.
These points are used as the positions for the virtual sensors, and HRTFs for all these
positions are calculated. Fig. 2.11 shows an imaginary sphere of such kind.

The HRTFs are then calculated from the results of the numerical simulations, using
the Burton-Miller BIE formulation using the Galerkin implementation. The benefit of
using this method is that it provides a better accuracy compared to other formulations
while solving the Helmholtz PDE using the BEM [1]. This work uses a special kind
of BEM simulations called Fast Multipole Multi-level BEM method. To compute the
number of FM levels NFM , first, the dimension rHE and average edge length eavg
of the object (head shape) is calculated. These values are then used in the Algo. 1
to find the value of levels required NFM . The FM-BEM implementation in Coustyx
uses the Generalized minimal residual method (GMRES) iterative solver for the FM
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Figure 2.10: This figure shows a screen shot of the a portion of head mesh in which the vibrating element
is shown in red and the inter-aural axis is represented with a green line. The blue dot shows the point
of intersection between the inter-aural and the 3D model.(Picture taken from [1]

computation on the BEM system of equations, which accelerates the convergence to a
solution.

Algorithm 1 Calculating the required number of levels for FM-BEM simulations.

inputs: rHE , eavg .
outputs: NFM .
L← 20.
for l = 2 to L do

if 2× rlHE − eavg ≤ 0 then
NFM = l
break;

end if
end for

Extracting acoustic data from BEM simulations
Coustyx provides the results of FM-BEM simulations on the head, torso and ear sur-
faces of the affine models as complex pressure values for given frequencies f at given
directions represented by angles (θ, φ). These results are denoted as Φ(f, θ, φ) and
needs to be interpreted and processed to find the HRIRs/HRTFs. This section describes
how the HRTFs can be extracted from the obtained pressure levels. Fig. 2.12 shows the
convention used for angles θ and φ in 3D space. The angle θ is in the range π ≤ θ ≤ π
and the angle φ is in the range of −π

2
≤ φ ≤ π

2
. The obtained values for the pres-

sures are normalized to obtain the raw HRTFs using free field Green function, given in
Eq. 2.3.

G(f) =
−i1.21f

2π
e

2πf
c , (2.3)
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Figure 2.11: This figure shows the spatial grid on which the positions for which the HRTFs are measured
using FM-BEM simulations using reciprocity principal.(picture taken from [1]).

here f denotes the sound wave frequency in Hz and c denotes the speed of the sound
in the medium (air at room temperature) and is 343 m/s. The HRTF value for a given
frequency, azimuth and elevation angle is then obtained from these pressure values as
below:

HRTF (f, θ, φ) =
φ(f, θ, φ)

G(f)
. (2.4)

As the HRTFs are considered to be minimum phase filters, their phase information
can be reconstructed from the Hilbert transform of the magnitude responses. However,
as the phase information is not used in this thesis, it is not relevant to discuss the process
of the phase calculation.

2.4 Virtual Auditory Space (VAS)

The spatial sound field reproduced through rendering the audio scenes over loudspeaker
arrays [65]or headphones [33, 66, 67] is called virtual auditory space. Fig. 2.14 shows
the loudspeaker arrangements of 5.1 and 7.1 surround sound systems for VAS. Where
“X” in X.1 denotes the number of loudspeakers, and .1 denotes the one sub-woofer.
The sub-woofer is usually placed outside of these arrangements for its inherent non-
directive nature. The deriving signals for these loudspeakers are calculated by using
complex wave field synthesis techniques. The focus of this study, however, is the re-
production of VAS over headphones, which is also called binaural VAS.

A simplified binaural VAS setup is presented in Fig. 2.15. Here Sn denotes the nth

sound source, and hL/R(θn, φn) denotes the left or right ear time-domain acoustic re-
sponses or HRIRs for the direction of sound source Sn, in a head-centered spherical
coordinate system presented in Fig.2.5. It can be seen in Fig. 2.15 that the knowledge
of HRIRs is crucial for binaural VAS reproduction. As it is not possible to measure
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Figure 2.12: Figure shows the conventional coordinate system used for for the angles θ and φ when
running the HRTF simulations. It also shows the horizontal and vertical or median planes. (Image
taken from [1]

Figure 2.13: The results of BEM simulations obtained by solving BIE for low resolution and high res-
olution mesh. The “low-res” and “low-res” meshes had and 12000 and 13488 triangular faces,
respectively. Image taken from [1].
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Figure 2.14: A typical 5.1 and 7.1 surround sound speaker configuration. Image taken from [1].

the HRIRs for every individual, the HRIRs measured for standard mannequins (dum-
mies with average anthropometric properties for a given population), such as KEMAR,
Bruel, and Kjaer or Samurai are used in such systems. However, the past psycho-
perceptual evaluations of these systems using average HRIRs suggest these systems
generally result in poor localization and externalization experience, making the vir-
tual spatial hearing experience unnatural and somewhat dry [18, 20]. This nullifies
the whole purpose of VAS, which is to provide realistic and immersive, virtual spatial
auditory experiences. The past studies suggest that in order to provide high quality
and immersive experience, individualized HRTFs must be used. Despite this, there are
not any comprehensive frameworks to provide individualized HRTFs/HRIRs for listen-
ers for the mass market, which limits the use of binaural VAS to laboratory settings
only. This demands a comprehensive and computation and inexpensive cast method
for HRTF personalization. Some of the studies in the past have proposed some basic
personalization methods for HRTF personalization. Details on a few of these methods
are provided in Sec. 3.4.
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Figure 2.15: Binaural VAS over headphones

Having the HRIRs in hand, one can generate a very basic binaural VAS following
the steps in Fig. 2.15. While reproducing the binaural VAS audio, we can emulate dif-
ferent cases, such as a) single source single direction, b) multiple sources with a single
direction, c) multiple sources multiple directions. The basic mechanism is the same
for all these setups. For the production of VAS over headphones involves emulating a
sound signal, S1, coming from a source located in a particular direction in space given
by the auditory spherical coordinate angles, θ1 and, φ1. It is worth noting that we are
only discussing the direction, not the position, which also requires the value of r. The
reason for that is usually for a point source at a distance greater than 1 m is considered
to be in the far-field making it easy to emulate the distance by simply changing the in-
tensities of the sound signal (higher intensities for a closer source and lower intensities
for a far located source). However, this is not the scope of this work; hence the details
on this are not provided here.

To virtually put a sound source S1 in a given direction (θ1, φ1), the sound signal
is simply convolved with the left and right ear HRIRs for that direction providing the
deriving signals for left and right channels as Eq. 2.5.

L1 = S1 ∗ hL(θ1, φ1)

R1 = S1 ∗ hR(θ1, φ1)
(2.5)

Here symbol ∗ denotes 1D convolution operation. Now lets consider we have n sources,
S1, S2, ... ,Sn, in n directions (θ1, φ1), (θ2, φ2), ... , (θn, φn). To virtually put these
sources in these directions the steps in Eq. 2.5 has to be repeated to generate the driving
signal for each sound source. At the end these individual signals for left and right ears
are combined by using simple addition operation as shown in Eq. 2.6 and in the block
diagram presented in Fig. 2.15.

L = S1 ∗ hL(θ1, φ1) + S2 ∗ hL(θ2, φ2) + · · ·+ Sn ∗ hL(θn, φn),

R = S1 ∗ hR(θ1, φ1) + S2 ∗ hR(θ2, φ2) + · · ·+ Sn ∗ hR(θn, φn).
(2.6)
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Another thing to be noted here is that the VAS system presented in Eq. 2.6, and Fig. 2.15,
considers that the sound reproduction is happening in the “free-field” using the HRIRs
recorded in the free field. Which means that, the other effects such as the reverbera-
tions are not accounted for. If someone requires to reproduce the spatial audio with a
particular room environment over the headphones including the reverberations in the
room etc. a more comprehensive impulse response called binaural-room impulse re-
sponses (BRIR) is to be used [67]. BRIRs are the transfer functions from the sound
sources placed at any arbitrary point in a particular room to the ear drum. If the room
and equipment in the room is anechoic BRIRs will be equalled to the HRIRs and the
VAS produced using these BRIRs will be same as the “free-field VAS”.

Furthermore, to make it more natural, we need to consider that when the human
listeners move their heads while listening to a sound, the position of sound also changes
depending on the movement of the head. So in order to make it real, one needs to
track the head and adjust the direction for the used HRIRs accordingly. The reason is
that when an individual moves his head, the relative direction of the sound source with
respect to the ears also moves with the movement of the head [67,68]. Such systems are
called dynamic VAS systems. This feature is not present in the VAS system presented
in figure 2.15.

Another thing to be noted for is that the VAS produced over the loudspeaker arrays
can be converted to the binaural VAS by simply convolving the loudspeaker driving
signals with the HRTFs of the loudspeaker directions and combining the signals using
equations 2.6 to produce the driving signals for left and right channels.

The following subsection provides a set of possible applications of VAS in various
fields.

2.4.1 Possible Application of VAS

The listening experiences with the virtual auditory displays are different from the other
acoustic displays as the listener perceives if the audio signal is generated by a real
source around him [19]. Especially when the dynamic binaural VAS is used, a very
natural immersion and localization experience can be provided. However, when VAS
over loudspeaker array is used, the performance is good only in a small region called the
sweet spot. The size of this sweet spot changes depending on the rendering technique
and the number of used loudspeakers.

The applications of VAS spans on various areas ranging from science and academics
to entertainment, music and gaming industry, and from medical and clinical studies to
defense and military training, and even in simple social life (enabling a patient with
hearing aid to have a natural conversation interaction) [69]. For example, in the re-
search sector, there have been many studies and clinical experiments to study how
the spatial hearing abilities of subjects can be restored for the listeners having hear-
ing impairments [70]. VAS has also been used in localization experiments in order
to obtain a better understanding of the mechanisms and underlying psycho-physical
phenomenons of spatial hearing [71]. In clinical setup tests for spatial hearing have
been suggested for evaluating everything from hearing aid functions to deficits in au-
ditory brainstem [72–74]. In real social life, at the emotional health level, adding VAS
capabilities to traditional hearing implants can assist many people who have hearing
impairments to interact more effectively with their environment and other people when
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having interactions and discussions.
From an entertainment perspective, broadcasting agencies such as BBC and Mi-

crosoft are investing a significant amount of resources into the production of VAS for
listeners. Facebook has also built a whole devoted research lab for this. With the advent
of graphics accelerators, games are becoming much more involved, through rendering
3D scenes not just on screens but also on head-mounted displays and special glasses.
Although this engages and immerses the user more, without the availability of hi-fi
VAS to complement it, the experience is still somewhat dry. Adding VAS headphones
instead of standard stereo audio can make the experience with the virtual reality and
augmented reality much more immersive and natural. The quality of movies and cine-
mas has also rapidly increased with the availability of 3D screens using special glasses,
and 4K movies for home entertainment systems are becoming increasingly popular
these days. VAS can complement these cinematic, and home entertainment technolo-
gies with personalized spatial audio experience, which can increase the quality of the
immersion and naturalness of the multimedia experience by several folds. The same is
also applicable to mobile phones and communication software on computers as well.
VAS can add a great to the teleconferencing and online collaborative meeting tools by
making them more engaging, sociable, and immersive [75].

VAS can also be of great aid in the applications where human operator analyzes
and respond to the spatial information. For example, in aviation, an air controller must
keep track of multiple planes under their control tower. Pilots must land, take off and
fly their crafts, tracking the enemy crafts, hostile targets, and objects and buildings at
the ground. Operators operating the remote rescue robots can be assisted with the help
of reproducing the sound field in the remote target area on VAS to make the rescue
more effective. All these applications make the production of binaural VAS a hot and
important area.

2.5 Principal Component Analysis (PCA

Principal component analysis (PCA) is a statistical technique that employees an orthog-
onal transformation to convert a set of values on correlated variables (entities each of
which takes on various numerical values) into a set of values of linearly uncorrelated
variables, called principal components. The aim is usually to study the variations in the
data. This section provides a brief overview of the standard principal component anal-
ysis (PCA) with the prospect of its application to analyze the variations of the HRTF
magnitude responses for SYMARE users. In this section, using HRTF data, we show
how the PCA is applied and what we can expect from it. The readers are advised to
familiarize themselves with the notations and procedures developed in this section, as
these will be referred and used in different parts of this thesis.

To begin with, let us suppose a single HRTF vector is denoted as H . H is a function
of frequency f , azimuth angle θ, and elevation angle φ, hence H(f, θ1, φ1) denotes the
value for the frequency bin f of a single HRTF vector for direction (θ1, φ1). Each HRTF
has K elements, which are the complex gains for each of the K frequency bins of the
HRTF spectrum. The discrete K, frequencies are denoted as fi in the HRTF spectrum.
Considering that the HRTFs can be modeled as minimum phase filters and the constant
delay and minimum phase can be retrieved using Hilbert transform from the magnitude
response, for the sake of simplicity, we use only the magnitudes of the HRTF spectrum
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by ignoring the phase. Let us consider we have a matrix X containing L HRTFs for L
different directions in space given as:

X =




H(f1, θ1, φ1) H(f2, θ1, φ1) · · · H(fK , θ1, φ1)

H(f1, θ2, φ2) H(f2, θ2, φ2) · · · H(fK , θ1, φ1)
...

... · · · ...
H(f1, θL, φL) H(f2, θL, φL) · · · H(fK , θL, φL)




(2.7)

To perform PCA on the dataset X following steps are performed.

Step 1

The first step is to compute the mean of the data frequency by frequency. As we have
L data points the mean for kth is given as:

H̄k =
1

L

L∑

i=1

H(fk, θi, φi) (2.8)

Step 2

The zero mean data X̂ is computed by subtracting the mean of the feature from each of
the features for all HRTFs:

X̂ = X− 1T H̄, (2.9)

where 1T denotes a column vector of ones of length L.
The singular value decomposition on this zero mean data matrix X̂ can be performed

as:
X̂ = GX̂OX̂FTX̂. (2.10)

This will be used later in this section.

Step 3

The next step is to compute the covariance matrix C as follows:

C = X̂
T

X̂, (2.11)

and each entry Ck,p can be computed as:

Ck,p =
L∑

j=1

H(fk, θj, φj)H(fp, θj, φj) (2.12)

Step 4

The singular value decomposition on this covariance matrix is then computed as:

C = FOFT . (2.13)

However, using the Eq.2.10, the singular value decomposition can also be written as:

C = FX̂OT
X̂GT

X̂GX̂OX̂FX̂

= FX̂OT
X̂OFTX̂

(2.14)
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Figure 2.16: The mean HRTF H̄ and first three principal components f1, f2, and f3

From Eq. 2.14 and Eq. 2.13 it is deduced that FX̂ = F and O = OT
X̂OX̂ . The dimension

for the matrices F,O,∈ IRK×K . The matrix F constitutes the new orthogonal bases
for our data, where each column fi in F is a principal component, which means each
column is orthogonal to other columns:

〈fi, fj〉 = 0, (2.15)

where i 6= j, and 〈., .〉 denotes the inner product in R3 Furthermore, the matrix O is a
diagonal matrix containing the eigen values from the SVD.

Step 5

All of the HRTFs can be represented as the weighted sum of these principal components
fi, where weights for these principal components for H(f, θx, φx) can be computed as:

w = (H(f, θx, φx)− H̄)TF (2.16)

the vector w ∈ Rk. Furthermore, the complete weights in the form of a matrix W for
our data matrix X̂ are obtained as:

W = X̂F (2.17)

To see the PCA in action, we now show an example of its application to real-life
HRTFs. The data matrix X is generated by combining the HRTFs for left ears available
in the SYMARE database. We have 61 subjects, and HRTFs are available for 393 direc-
tions, hence X ∈ IR23973×172, where 172 is the number of frequency bin corresponding
to 16 kHz. Fig. 2.16 shows the mean (H̄ ) and the first three principal components f1,
f2 and f3 for the example DTF data.

A full and accurate reconstruction for any of the DTFs in our data set can be ob-
tained by linearly combining all of the principal components fi with the appropriate
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Figure 2.17: The HRTF for a given direction and the same HRTF reconstructed using all the acoustical
principal components

wi. Fig. 2.17 shows a specific HRTF and the reconstructed HRTF when all principal
components are used.

When using PCA, we typically do not require the full set of L weights to represent
the data with reasonable accuracy. In this sense, PCA provides a lossy compression of
the data. Fig. 2.18 shows the reconstruction of the PCAs using a subset of the weights.

2.6 Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work

Large Deformation Diffeomorphic Metric Mapping (LDDMM) is another framework
which was extensively used in this work to model the variations of the ear shapes across
the database population. The section is borrowed from [1], another Ph.D. thesis which
extensively used LDDMM to for morphoacoustics and provides readers with the nec-
essary background and concepts of LDDMM in ear shape modeling viewpoint. The
LDDMM framework was originally presented in [76, 77] and then further developed
and used for surface matching by [78]. It includes knowledge of functional analysis,
variational analysis, and reproducible kernel Hilbert spaces. In this study, we use LD-
DMM to match the triangular meshed surfaces, so in this section, a brief overview
of LDDMM is provided in this context. Let us consider we have two surfaces given
as S1(X) and S2(Y ), containing the vertices and triangular connectivity information.
LDDMM models the matching or morphing of S1(X) to S2(Y ) as a dynamic flow of
diffeomorphism of the ambient space, IR3, in which the surfaces are embedded. This
flow of diffeomorphism, φv(t, .), is defined via the partial differential equation:

∂φv(t,X)

∂t
= v(t) ◦ φv(t,X) (2.18)

where v(t) is a time-dependent vector field with a vector defined for each point in space,
for t ∈ [0, 1]. This vector field models the infinitesimal efforts of the flow, and ◦ denotes
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Figure 2.18: The above plot shows how the the same HRTF (blue curve) is reconstructed using differ-
ent number of weights (red curve). The number of principal components and weights used in the
reconstruction of the HRTF is shown above the plot [1].

function composition function.
At this stage, the vector field represented by v(t) can be any vector field belonging

to a Hilbert space of regular vector fields denoted by V which is equipped with a kernel,
kV , and a norm ‖.‖V that models the infinitesimal cost of the flow.

The superscript v in Eq. 2.18 simply denotes that, this diffeomorphic flow is de-
fined for a particular time-dependent vector field v(t). The v(t) can be determined by
minimizing the cost function JS1,S2:

JS1,S2(v(t)) = γ

∫ t

0

‖v(t)‖2V dt+ E(S1(φ
v(t,X), S2(Y)). (2.19)

As shown in Eq. 2.19, the cost function is composed of two terms. The first term
‖v(t)‖2V dt, is called the energy term and is the measure of the energy required to trans-
form the shapes S1(X) to match to the target shape S2(Y). The solution to term v(t)
can be expressed as the convolution of the momentum vectors, αn(t) with the kernel
kV , with one momentum vector defined for each of the N vertices in X [79], as:

v(t) =
dx(t)

dt
=

N∑

n=1

kV(xn(t), xn)αn(t), (2.20)

where term kV is called the deformation kernel, and is given by:

kV (x, y) =
1

1 + ||x−y||2
σ2
V

. (2.21)
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σV is called the deformation scalar and controls the smoothness of the deformation.
While the second term in the cost function, E(S1(φ

v(t,X)), S2(Y)) is called the
the shape comparison term and quantifies the differences between the matched shape
S1(φ

v(t,X)) and the target shape S2(Y). This term is computed as:

E(S1
t , S2) =

∑

f,g

〈nSt1(f), kW (cSt1(g), cSt1(f))nSt1(g)〉

+
∑

p,q

〈nS2(p), kW (cS2(q), cS2(p))nS2(q)〉

−2
∑

f,q

〈nSt1(f), kW (cS2(q), cSt1(f))nS2(q)〉,

(2.22)

where nSt1(f), nS2(p) and cSt1(f), cS2(p) denote the normal vectors and centers for
faces f and p for shape St1 and S2 respectively. The lengths of the normal vectors for
every face are equal to the area of the face. The terms kW is called the shape matching
kernel and controls how the matching of a given vertex effects the neighbouring vertices
through variable σW . kW is given by:

kW (x, y) =
1

1 + ||x−y||2
σ2
W

. (2.23)

Hence minimizing the cost functions in Eq. 2.19 ensures that the shape error is min-
imum, which means the shape best matches the target shape, as well as the energy
required to morph the given shape to the target shape, is also minimized. The param-
eter γ in the cost function is a scaling parameter for the energy term, higher the value
for γ, more the energy term is penalized when doing the cost minimization. The en-
ergy term also ensures that the deformations are diffeomorphic; hence this is called the
regularization term.

One can notice that the solution presented in Eq. (2.20) is a continuous-time differ-
ential equation; however, when solving this differential equation numerically, the time
axis is discretized. The differential equations are then solved using the Euler scheme,
i.e., the flow operation is performed on the discrete meshes with discrete time steps.
Using the Euler method, this diffeomorphic flow is characterized by a sequence of de-
formations, which are uniformly ordered in time with a single deformation occurring
at every time step.

Figure 2.19: The results of the flow of diffeomorphisms for several time steps are shown for the matching
of S1 to S2. The colour indicates the displacement. A a constant luminance color map is used for
clarity. (picture must be seen in color) Picture taken from [5].

Fig. 2.19 shows the evolution of ear shape S1(X) to ear shape S2(Y) using the LD-
DMM flow operation with a vector field that has been computed specifically for map-
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ping on ear to other. Further, Fig. 2.20 shows an example of a single point in space and
its displacement over seven contiguous time steps under LDDMM. The displacement
vectors, v(t), are obtained by applying the convolution given in Eq. 2.20.

Figure 2.20: The flow of a point or particle p is shown in space. The velocity vectors v(t) signify the
direction and magnitude of the displacement of the particle at each time step starting from time t=0
and ending at time t=1 [1].

[80] suggests that instead of using normal Euler scheme, the use of centered Euler
scheme provides a more accurate solution when used to solve Ordinary Differential
Equations (ODEs) in Eq. (2.20). Furthermore, [5] suggests that while mapping one ear
shape to another target ear the whole matching process can be modeled using 11 steps.

Once the matchings are done from the template to the target shape, the target shape
can be computed using the geodesic shooting from the initial momentum vectors. To
provide an analogy for understanding the geodesic shooting between two shapes, one
can consider the path two points on the sphere surface. The surface of the sphere is a
non-linear Riemannian space. Fig. 2.21 shows two points on a sphere denoted by green
stars. The shortest path, known as the geodesic path, connecting these two points is
colored in black and lies along the great circle containing the two points. Other paths
on the sphere can also be constructed that join these two points, but these paths are
longer.

2.6.1 LDDMM Induced Distances in Shape

This section provides the details on the cost function used in the LDDMM framework.
As described before the first term in the cost function described in Eq. (2.19) is called
the energy term and provides the measure of the energy required to deform a given
shape S1(X) in to a target shape S2(Y), and is given by:

dDef (S1, S2) =

∫ 1

0

‖v(t)‖2V dt. (2.24)
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Figure 2.21: The above figure illustrates the concept of the geodesic path using the surface of a sphere.
The surface of a sphere is non-linear Riemannian space the two points on a sphere are shown using
green and red stars, the optimal geodesic path between the points is shown as a black curve [1].

When the optimal momentum vectors are obtained by minimizing the cost function,
the energy term shown in Eq. (2.25) will become a measure of the geodesic distance
between the source and the target shapes. In order to obtain an optimal solution or
set of momentum vectors and to minimize the LDDMM cost function, an optimization
algorithm is run. If we have unlimited time, there will be a possibility to find the most
accurate momentum vectors resulting in a zero or minimal value for the second term.
Still, in reality, due to time constraints, the optimization is conducted for only a finite
number of iterations, which yields a set of momentum vectors that are close to optimal
ones. The term ‖v(t)‖2V is a normed squared value that can be expanded using the
discrete flow equations Eq. (2.20):

‖v(t)‖2V =
N∑

i=1

N∑

j=1

〈αi(0), kV (xi(t), xj(t))αj(t)〉. (2.25)

There is a wide range of kernels kV that can be used for the purposes of LDDMM
mappings. The kernels that are selected in LDDMM mappings have to adhere to a set
of mathematical conditions. Details on the selection of the deformation kernel can be
seen in [81]. Radially decaying kernels such as the Cauchy or gauss kernels are widely
used for LDDMM surface mappings and are also used for mapping shapes in this study.
The Cauchy kernel is defined as:

kV (x, y) =
1

1 + ‖x−y‖2
σ2
V

(2.26)
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Figure 2.22: The gain of the Cauchy kernel verses the distance between x and y for different values of
σv [1].

where the σV parameter is the deformation scale parameter. This parameters determines
the range of the influence of a given momentum vector through kernel function kV .
The deformation scale parameter σV is an important parameter and plays a vital role
when mapping shapes using LDDMM. The gain for Cauchy kernel as a function of the
distance between x and y for different values of σv is show in Fig. 2.22.

The Role of σV Parameter

The σV parameter defines the coupling between the vertices of the source shape as they
move along the deformation path from the source shape to the target shape. The value
of σV greatly impacts the quality and characteristic of the mapping between the two
shapes. Consider the discrete mesh-flow equation shown in Eq. (2.20) and a point on
the source mesh denoted by x(t). As the σV parameter is made larger, the momentum
vectors surrounding this point will have a greater impact on the movement at x(t). Con-
sequently, the vertices will move more coherently along the deformation path. The σV
parameter greatly influences the energy for deforming a shape in the LDDMM frame-
work.

2.6.2 Measuring shape differences using currents

The second term of the cost function, E(S1(φ
v(1,X)), S2(Y)), provides the difference

in the surface geometry of the matched surface S1(φ(1,X)) and the target surface S2(Y)
and is calculated based on the theory of currents [78]. Current can be used to represent
the surfaces and are linear functionals on the space of differentials. The intuition behind
using currents to represent surfaces is that they can be integrated over a surface to give a
real value. When two surfaces are similar the difference in the value of the integerals of
the surfaces is close to zero. Let [S] to be denoting the current representing the surface
S. E(S1, S2) is defined as E(S1, S2) = ‖[S1]− [S2]‖2W ? . E(S1, S2) is the squared norm
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of the difference of the two surfaces for a dual norm (i.e. ‖, ‖?W‖) in a Hilbert space W
of differential forms [78].

In the discrete settings, a surface, S, is approximated by a triangular mesh in R3.
Given a face f of S, let cS(f) denote the centre of the face and nS(f) denote the
normal vector to the face with a length equal to the area of the face. We can then
express E(S1, S2) using the mesh elements as:

E(S1, S2) =
∑

f,g

〈nS1(f), kW (cS1(g), cS1(f)), nS1(g)〉

− 2
∑

f,q

〈nS2(f), kW (cS2(q), cS1(f)), nS1(q)〉

+
∑

p,q

〈nS1(p), kW (cS1(p), cS1(q)), nS1(q)〉

(2.27)

where in the above 〈, 〉 represents a vector dot product and the kernel kW is typically
chosen as the Gauss or Cauchy kernel. In this work, we use the Cauchy kernel for
measuring shape mismatches:

kW (x, y) =
1

1 + ‖x−y‖2
σ2
W

(2.28)

The shape comparison scale parameter σW determines the physical scale at which the
shapes are compared. Larger values for σW result in a comparison of shapes at a coarse
level of detail and small values of σW result in a comparison of shapes at a fine detail.
The effect of the σW value on the quality and characteristic of the matching is explained
and shown in Sec. 4.4.2. Please note that because the shape difference measure E is a
metric it can also be defined using the notion of the inner or scalar products:

E(S1, S2) = ‖[S1]− [S2]‖2W ?

= 〈[S1]− [S2], [S1],−[S2]〉W ?

= ‖[S1]‖2W ∗ + ‖[S2]‖2W ∗ − 2〈[S1], [S2]〉W ∗

(2.29)

2.6.3 Geodesic Shooting

Once the initial momentum vectors, αn(0) are computed by minimizing the cost func-
tion J(S1, S2) the diffeomorphic mapping between S1 to S2 can entirely be deter-
mined [82]. This follows from the fundamental principle in the LDDMM framework
known as the conservation of momentums, which was proved in a seminal work by [83].
In other words, S2 can be generated (modelled) as a deformation of S1 through the dif-
feomorphic flow defined by the only the initial momentum vectors {αn(0)}1≤n≤N .

Geodesic shooting consists in using a set of initial momentum vectors, {αn(0)}1≤n≤N ,
to morph a shape S1 into another shape, S3. The shooting is found by solving the shoot-
ing equations, which couple the momentum vectors to the vertex positions across time
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Figure 2.23: The above figure shows the importance of σv . The plots show three ear shapes generated
using geodesic shooting with a single non-zero initial momentum vector and varying σV from 2.5 to
25. The deformations are very local when a small value for σV is used resulting in abnormal ear
shapes having sharp features, while when the large value of σV is used a single momentum vector
does not change the shape too much and the results are very natural looking. Image taken from [1].

and are given by:

dαr(t)

dt
= −

N∑

n=1

〈αr(t), αn(t)〉 5xr(t) (kV (xr(t), xn(t)))

dxr(t)

dt
=

N∑

n=1

kV (xn(t), xr(t))αn(t)

(2.30)

where 5x(t)(.) denotes the gradient operator and 1 ≤ r ≤ N . Note that the initial
conditions for Eq. 2.34 are given by the initial positions of the vertices and the corre-
sponding momentum vectors. Following the findings of this section Fig. 2.23 shows
three ear shapes which are generated by applying geodesic shooting through a single
non-zero momentum vector for different σV values varying from 2.5 to 25. When gen-
erating the three ear shapes, the same initial momentum vector located on the source
shape S1 was used.

2.7 Kernal Principal Component Analysis

This section provides an introduction to Kernel-based Principal Component Analysis
(KPCA) and its use in a particular setting to statistically analyze the deformations of
the multi-scale template ear Ē to any other ear in SYMARE database. The template ear
was calculated using a multi-scale template calculation method proposed in [5]. The
difference between KPCA and PCA is the calculation of the covariance matrix. Instead
of using normal inner product KPCA uses inner product through the same kernel used
by LDDMM operations. This process ensures the calculation of the correlation con-
siders not just the momentum vector for a given vertex but also for the neighboring
vertices through σV .

The first step is to calculate the momentum vectors α(l)
n (t), where t = [0, 1], and

n = 1, 2, · · · , N denotes the id for the vertex, for every ear l in the SYMARE database
which captures the deformation of the Ē to the ear shape Sl. This is done by solving
the minimization problem for cost function J(Ē, Sl) provided in Eq. 2.19. As high-
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lighted in the previous section, once the momentum vectors for deformations are found
the whole flow of deformation can be defined using geodesic shooting on just initial
momentum vectors α(l)

n (0). For simplification reasons α(l)
n (0) is going to be denoted as

αl from now one, where l denotes the subject id. All the initial momentum vectors can
be arranged in a matrix shape as:

A =
[
α1 α2 · · · αL

]
3N×L , (2.31)

whereN is the number of vertices in Ē and L is the number of ear shapes in SYMARE.
Note that the dimensions of the matrix are 3N × L because we are taking all the co-
efficients of the initial momentum vectors for x, y and z axis. The next step is to find
the centered initial momentum vector matrix Â by subtracting mean initial momentum
vectors from each column. The mean initial momentum vectors are computed as:

ᾱ =
1

L

L∑

l=1

αl. (2.32)

Â =
[
α̂1 α̂2 · · · α̂L

]
3N×L , where, α̂l = αl − ᾱ (2.33)

In the next step we form a kernel function K, which contains the kernel values for
the kernel function provided in equation 2.26 for every pair of the vertices for n =
1, 2, · · · , N for both shapes, given by:

K =




K11 K21 · · · K1N

K21 K22
. . . K2N

...
...

KN1 KN1 · · · KNN



,

Kmn = kV (xm, xn)I3×3,

(2.34)

where I3×3 denotes a 3× 3 identity matrix. The next step is to calculate the covariance
matrix C, calculated as:

C =
1

1− LÂ
TKÂ

ci,j =
1

1− L〈{α
(i)
n (0)}, {α(j)

n (0)}〉V =
1

1− Lα̂
T
i Kα̂j.

(2.35)

Having the covariance matrix in hand the next step is to perform the Singular Value
Decomposition(SVD) on it as was performed in the case of normal PCA.

C = VDVT . (2.36)

The matrix of the principal components U is then calculated as:

U = ÂVD−
1
2 . (2.37)

The matrix U contains the principal components for the covariance matrix with each
column representing the corresponding principal component. It is to be noted that the

41



Chapter 2. Background

principal component matrix is orthogonal in the Hilbert space of deformations, i.e.,
UTKU = I. The matrix for the intimal momentum vectors can be reconstructed as:

Â = UD
1
2VT + α̂, (2.38)

where D
1
2VT provides the weights or coefficients for the principal components. Having

this in hand we can perform the KPCA on the morphology domain and reconstruct the
ears using any m principal components, where 1 ≤ m ≤ L.

2.8 Affine Matching two Shapes

This section provides detail on how one shape can be rigid transformed to match the
other shape, in scale, rotation and position. The applied transformation includes scal-
ing, rotation, and translation. In this process the scaling is performed uniformly across
all axis (rigid scaling), i.e. a single scale is used for all the axes. The same matching
process was used in [1] to create the morphable model of the ear shapes details on cre-
ating the morphable model are provided in Sec. 3.2.2. This study uses the matching
performed using the methods described in the study [84]. This study provides a set of
methods to match the 3D distributions and measures. A brief detail of the affine match-
ing process are provided following in this section. The reader interested to read the full
method is invited to read the paper [84].

The process of rigid matching in [84], works by first defining the measure for the
template and given target ear shapes. Let us denote the triangulated mesh for template
ear shape as T , with the vertices denoted as xi, and the target ear shape for a given
subject as Sl, with vertices denoted by ylj . Here, the superscript l indicates the sub-
ject number, and the subscripts i and j are the indices for the vertices of T and Sl,
respectively.

Subsequently, the measures µ and vl for template and subject ear shapes are defined
as:

µ =
1

m

m∑

i=1

δxi

vl =
1

nl

n∑

j=1

δylj

(2.39)

To perform the affine matching between these two measures, two dual spaces I and
I? with Hilbert norm ||.||I and ||.||?I are defined. The detail of these two spaces and
norms can be found in [84]. The affine matching between the two spaces is then ob-
tained by minimizing the cost function J(M, b). In the cost function given in Eq. 2.40,
Ml provides the rotation and scaling matrix from template to the ear shape while bl pro-
vides the translation vector which moves the template ear shape to the same position as
the subject ear shape.

J(Ml, bl) = ||ψM,b(v
l)− µ||2l? (2.40)

This cost function minimizes the norm of the difference between the affine transformed
measure vl and the measure µ. ψM,b(v

l) denotes the affine transformations for the
measure µ and is performed as:

ψM,b(v
l) = Mylj + b, ylj ∈ R3. (2.41)
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2.8. Affine Matching two Shapes

One thing to be noted here is that before performing these affine matchings, the
center of the mass for every ear shape, including the template ear shape, needs to be
moved to the origin. For this the center of mass for all shapes is calculated and a vector
from center of the mass to the origin is added in the vertices to move the ear shapes to
the origin. These center of masses are denoted as tl (for shape l) and are computed as:

tl = − 1

V (l)

V (l)∑

j=1

ylj (2.42)

where, ylj denotes the jth vertex of the lth shape, and V (l) denotes the number of ver-
tices in shape l. Once the shapes are all centered at the origin the process of affine
matching was performed to minimization of the cost function J(Ml, bl) for every shape
l. In Fig. 2.24 shows a set of ear shapes before and after the are affine matched with the
template ear shape. The subscript RTS denotes the order of the transformations applied,
scaling, translation and then rotation to perform the matching.

Figure 2.24: Original and affine matched ear shapes for the first six subjects in SYMARE. The subscript
RTS signifies the fact that these ears have been scaled, translated, and rotated to match the template
ear shape. (Image taken from [1])
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2.8.1 Extracting Scale and Rotation Information from Affine Matching Matrix

Once the two shapes are rigid matched, the relative scaling, rotation and translation
information can be extracted from the matching matrix Ml and translation vector bl.
In the above section it is show how any ear can be matched to the template ear. This
section provides details on the process of extracting the relative scale, rotation and
translation information from the transformation matrix and translation vectors obtained
in this process. One thing to be noted is that to keep the shapes the same, the scale on
all three coordinates of the point clouds is the same (rigid matching). Hence following
the basic property of the affine transformations with a single scale on all coordinates,
we can extract the scale using one of the following expressions:

SFl =
1

K
,

where K comes from K2I = MlM
T
l , or

SFl =(det(Ml)
1
3 )−1

(2.43)

Once the scale factor is computed the rotation matrix Rl is obtained by dividing the Ml

matrix with scale factor:
Rl = (

Ml

SFl
)−1. (2.44)

The Tait-Bryan angles can then be calculated from the Rl matrix as follows:

θx = arctan(
Rl(3, 2)

Rl(3, 3)
)

θy = arctan(
−Rl(3, 1)√

Rl(3, 2)2 +Rl(3, 3)2
)

θz = arctan(
Rl(2, 1)

Rl(1, 1)
)

(2.45)

This expression is valid only when the angles are calculated according to the z-axis,
then the y-axis, and finally the x-axis, i.e., the order is created in a way that, Rl =
Rz × Ry × Rx. Note that these angles can be computed in a different order as well, in
which the values would be different.
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CHAPTER3
Literature Review

This chapter provides a brief overview of the literature related to the morphoacoustic
study of the outer ear shapes. The ultimate goal for the morphoacoustic study is to
obtain a comprehensive framework for rapid mapping between the ear morphology and
the corresponding individualized acoustic transfer functions.

The morphoacoustic approach considers modeling the variations in both domain the
morphology and the acoustics and then create a mapping between both of these models
in a way that we have an end to end personalization method. In this chapter, we start
by providing an overview of the literature related to the shape parameterizations using
two techniques spherical harmonics and the elliptical Fourier transform in Sec. 3.1.2
& Sec. 3.1.3 respectively. Both these techniques can be used for both the acoustic
analysis and the morphology of the head and ear shapes. Furthermore, we also provide
a review of the literature on modeling the ear shapes using simple geometric objects
such as cylinders and parabolic surfaces in Sec. 3.1.1. The motivation behind this is
that despite the simplicity of such models, they still explain some important features
seen in the spectrum of acoustic responses of ear shapes, namely the center frequencies
of the notches and peaks in PRTFs.

Having reviewed these traditional approaches, we provide the literature review on
the use of the LDDMM framework on the ear shapes, along with the methods to calcu-
late the template ears using both single and multi-scale methods in Sec. 3.2. We also
provide the readers with the details on the derivations of a parametric model for ear
shapes in Sec. 3.2.2.

The other study that is described in this chapter is known as morphoacoustic pertur-
bation analysis (Sec. 3.3). In this method, a small portion of the reference ear shape is
perturbed, and the acoustic response is computed using numerical simulations on this
new modified ear. The changes in the acoustics of the perturbed shape are compared to
the acoustic response of the reference shape. These kinds of studies help us to identify
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the regions in the ear shape, which are more sensitive to these perturbations and play
an essential role in the generation of notches and peaks in the acoustic spectrum [22].

In Sec. 3.4 we provide an overview of the literature on the existing personalization
methods for HRTFs. At the end of this chapter in Sec. 3.5 we provide well known
methods to evaluate the performance of ear shape and HRTF modeling. This section
provides the overview on the error metrics used for matching the ear shapes and HRTFs
in Sec. 3.5 & Sec. 3.6 respectively.

3.1 Morphology modeling

This section provides a brief overview of the three of the most popular techniques
used by the researchers to model the head and ear shapes of the human listeners for
HRTF personalization. These include the spherical harmonics for modeling the head
shape of the listener, the use of elliptical Fourier transform to model the head and ear
of the listeners, and the use of simple geometric shapes to approximate the human
morphology and to model the of HRTFs. Following, we provide details on each of
these individually.

3.1.1 Modeling the Acoustics of The Human Morphology Using Simple Geomet-
rical Objects

One of the pioneer studies to understand the underlying phenomenons generating spa-
tial hearing cues was performed by Lord Rayleigh more than a century ago. In the
early model, he proposed to approximate the acoustic response of the head and ear of
the listener using a sphere [85]. This estimation is very ambitious and is based on a
simple model. Still, it provides important insights into the generation of binaural cues.
Furthermore, it enables one to personalize these approximated cues by changing the
diameter of the sphere.

This model was further studied and improved by authors in [6], where they modeled
not just the head but also the torso of the listener and proposed a snowman model to
approximate the listeners morphoacoustics. The image of the model proposed in this
study is provided in Fig. 3.1. The size of the spheres can be chosen as one of the
two most used methods, i.e., IAS (Inter-aural Sphere) sphere or EqVol (equal volume)
spheres. IAS sphere has the diameter equal to the distance between both left and right
pinna, while in the EqVol sphere, the volume of the sphere is chosen to be equal to the
volume of the actual head shape of the listener. The same case follows for the torso. The
model proposed in [6] showed that the torso plays an important role in the generation
of elevation cues. Furthermore, the findings in this work report that the spherical head
and spherical torso models provide a good approximation to the HRTF’s of a pinna
less KEMAR mannequin. The results are presented in the Fig. 3.2. Following the
same lines, authors in [7], modeled the concha shape of the pinna. They considered
the concha and region around the ear canal is the most relevant region. This study first
proposed to model the concha shape using an inclined cylindrical shape with radius
R and depth L, which are equal to the radius and depth of the concha. Later they
improved this model by adding a metallic rectangular flang to the cylindrical concha.
This enhancement improved the directivity of the acoustic spectrum compared to just
a cylindrical concha. Fig. 3.3 shows the increased response of a cylindrical concha
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3.1. Morphology modeling

Figure 3.1: The figure shows the snowman model consisting of two spheres. Image taken from [6]. The
top (smaller) sphere is used to approximate the head of the listener while the bigger (bottom) sphere
is used to approximate the torso.

Figure 3.2: This figure shows the acoustic response for frontal elevation angles δ and frequency ranging
from 0-5 kHz. The results show that the notch center frequencies are symmetric about the elevation
angle δ = 90◦ and are due to the reflections from the torso region. Image taken from [6].
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Figure 3.3: Increase in response when a rectangular flang is added to cylindrical Concha for various an-
gles of incidence θ . Plot (A) is for sources originating in front and plot (B) is for sources originating
at the back. Image taken from [7]

with the added rectangular flang compared to just a cylindrical concha. Fig. 3.4 shows
a comparison of modes and resonances between the average responses of real ears to
that of replicated ear shapes using various geometrical objects, including a cylindrical
concha and cylindrical concha with the addition of a rectangular flang. [7] reports that
in the lower frequencies i.e., frequencies up to 7 kHz, the acoustic response of the real
and modeled ears looks very similar. More recently, authors in [8] explored the use
of parabolic surfaces for the approximation of the pinna models. The experiments in
these studies show that the important features, such as the first and third notches in the
acoustic response of the pinna (PRTF), can be accurately modeled using these models.
Fig. 3.5 shows that the HRTFs obtained from the KEMAR using the DB-61 pinna shape
and the HRTFs calculated using the diffraction and reflection model in [8] are in good
agreement.

3.1.2 Spherical Harmonics

The next technique discussed here for modeling the morphology of humans to study
morphoacoustic problems is the use of spherical harmonics for modeling the head
shapes of the listeners. [86] provides a review of the studies applying the spherical
harmonics for shape modeling. If the surfaces to be modeled are given in the form of a
function, the spherical harmonics framework, like any other transformation framework,
can transform the given shapes into orthogonal components called spherical harmonics.
Like, cartesian coordinate systems where any point in space is represented by x, y, and
z components, in the spherical harmonic system, the surface functions are represented
using spherical harmonics of different degrees and orders. Some of the sample basis
functions for spherical harmonics are given in Fig. 3.6. However spherical harmonics
can only be used to model a certain type of the surfaces which can be presented as a
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Figure 3.4: The above shows (A) the average frequency response of the real ear shapes, averaged over
six subjects. (B) cylindrical Concha, (C) tilted cylindrical Concha (D) cylindrical Concha with tilted
segmented pinna (E) tilted cylindrical Concha with rectangular flang. It can be observed that adding
the flang adds to the directivity of the cylindrical Concha . Reprint from [7]
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Figure 3.5: This figure depicts the acoustic response of the KEMAR with DB61 pinna attached (top
plot) and the acoustic response of the modeled pinna using the diffraction and reflection model of a
parabolic sheet. The results presented in the figure show that the first and third nothces N1 and N3

can be modeled reasonably well. Image taken from [8]

Figure 3.6: First 10 spherical harmonic functions. n and m represents the order and degree of the
spherical harmonics respectively.
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3.1. Morphology modeling

Figure 3.7: Spherical coordinate systems. Taken from [9]

function of θ and φ, and have only one value for ever (θ, φ) pair, i.e. any surface which
is a function of θ and φ.

In other words any surface function r(θ, φ), can be represented using spherical har-
monics [9, 87, 88] as:

r(θ, φ) =
∞∑

n=0

anPn(cos θ)+
∞∑

n=0

n∑

m=1

Pm
n (cos θ)×[anm cos(mφ)+bnm sin(mφ)], (3.1)

where in the above Pm
n represent the Legendre Polynomials of degree n and order m.

Also, one thing to be noted is that we will be using only the non-negative values for m,
such that 0 ≤ m ≤ n. To model any shape function r(θ, φ), perfectly all the spherical
harmonics of degrees n are to be used where 0 ≤ n ≤ ∞. However, in most cases this
is neither efficient nor required. Hence, only a limited degrees of Legendre polynomials
are used by truncating the higher order polynomials. This truncation results into a low-
pass filtered shape, i.e. some of the details of the shape are lost during this process.
Eq. 3.2 shows the truncated version of the representation of the function r(θ, φ) using
spherical harmonics when the Legendre polynomials only to the order N are used.

r(θ, φ) = a00 +
N∑

n=0

n∑

m=1

Pm
n (cos θ)× [anm cos(mφ) + bnm sin(mφ)] (3.2)

The coefficients anm and bnm are called the spherical harmonic coefficients and are
computed as:

anm =

∫ 2π

φ=0

∫ π

θ=0

r(θ, φ)Ȳ 1(θ, φ) sin(θ, φ)dθdφ

bnm =

∫ 2π

φ=0

∫ π

θ=0

r(θ, φ)Ȳ 0(θ, φ) sin(θ, φ)dθdφ

. (3.3)
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Figure 3.8: Multi-resolution representation of the function r(u) = maxr ≥ 0|ru ∈ IU0 used to derive
feature vectors from Fourier coefficients for spherical harmonics.

Here, the functions Ȳ 1 and Ȳ 0 are the real spherical harmonic representations and can
be written as follows:

Ȳ 1 =
1

Nnm

cos(mφ)Pm
n (cos(θ))

Ȳ 0 =
1

Nnm

sin(mφ)Pm
n (cos(θ))

. (3.4)

Where,Nnm is a normalization factor for the real spherical harmonics [89], and is given
by:

Nnm =

√
4π

εm

1

2n+ 1

(n+m)!

(n−m)!
ε =

{
1, if m = 0

2, otherwise.
(3.5)

The value of truncation order N is usually a trade off between the computation and
memory required against the accuracy required, and is usually adjusted depending on
the application. Some of the examples for the truncation to get the low-pass filtered
shapes are given in Fig. 3.8. In [9], authors used spherical harmonics to study the
shape of the head for morphoacoustic studies. A low-pass version of the KEMAR head
modeled using truncated spherical harmonic representation is presented in Fig. 3.9. The
truncation order used for this figure is N = 17. To do the morphoacoustic studies on
any shape, the shape is first modeled using spherical harmonics and the coefficients
anm and bnm are calculated. Then different deformations of the shape are obtained by
doing small perturbations to these coefficients. However, the perturbations that can be
applied to the coefficients are limited and restricted. The details on this will be provided
in the section 3.3. The study [9], also investigated the accuracy of the representations
of spherical harmonic using n = 0 to n = N = 34 degree Legendre polynomials
in the spherical harmonic expansions for KEMAR head. This study reports both the
shape errors, as well as the errors in the corresponding acoustic pressure in the acoustic
response calculated using numerical simulations for the modeled low-pass filtered head
shape. The Root Mean Square shape error (RMS) between the reference shape and the
shape reconstructed with degree n Legendre polynomials is given by:

εrrms(n) =

√∑2N2

i=1 [rn(i)− rN(i)]

2N2
(3.6)

The domain function described in Eq. 3.6 is representing the shapes and consists of
a 3D grid. This grid has N distinct points for the vertical angles φ and 2N points for
horizontal angles θ with a total resolution of 2N2 mesh grid of points. The percentage
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Figure 3.9: Simplified head model by low pass filtering using spherical harmonics for KEMAR head
shape. the truncation order used for reconstructing the shape is N = 17. Image taken from [9]

error for the reconstruction of the KEMAR head is shown in Fig. 3.10 as a function
of various values of n. This graph shows that head shape can be reconstructed quite
accurately by using a truncation order N = 15 for all the sections except for the nose
region, which requires higher degree Legendre polynomials for accurate reconstruction.
The plots for the generated pressure field error are discussed in Sec. 3.3.1. Although
the results of the head shape modeling are promising when the spherical harmonics
are used, a big disadvantage in using the spherical harmonics is that it can not be used
for modeling the head shape with pinna on it. The reason for this is that this nullifies
the following conditions for the suitability of the surface function to be modeled using
spherical harmonics, i.e., the surface function r(θ, φ) has to be a one to one function of
(θ, φ). Hence it can not be modeled with the equation 3.2.
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Figure 3.10: The above graph plots the RMS error between the reconstructed KEMAR head shape using
Legendre polynomials of degree n and a reference head shape. Image taken from [9]

.

3.1.3 Elliptical Fourier Transform

The last popular technique reviewed here to model the 3D shapes and then deform
these for morphoacoustic studies is the Elliptical Fourier Transform (EFT). 3D Elliptic
Fourier descriptors EFD3D were originally introduced in [90] for a parametric repre-
sentation and reconstruction of 3D shapes. EFT is a double Fourier transform of serial
cross-sectional contours of shape in three dimensions (3D). This transform retains all
the necessary information about the shape and provides a compact and invariant rep-
resentation of 3D shapes. Furthermore, this also quantifies the volume enclosed in the
3D surface.

This modeling method was further used by authors in [10,91] to model the head and
pinna shapes of the human subjects to perform the morphoacoustic studies and study
the HRTF estimations. One major advantage of using EFT for morphoacoustic studies
of humans is its ability to model the head shape with pinna. However, as highlighted in
the previous section, spherical harmonics failed to do so because of their limitation to
model only the surfaces which can be presented as functions.

The EFT model used by [10,91] is a modification of the EFT method originally pro-
posed in [90]. These two studies suggested that to use the EFT for parametric modeling
of the head and ears, the head and ear mesh is needed to be aligned in a way that the
y-axis passes through the ear canals, i.e., the inter-aural axis lies on the y-axis. Then by
rotating the head and pinna shapes with a step angle of 2π/S, multiple intersections of
the shape are created with the XY plane. In other words, the head and pinna (or only
pinna shape) are rotated for an angle θ, where θ takes the values 0, α, 2α, · · · , 2π − α.
Fig. 3.11 shows this process of rotation and creation of cross-sections. In the Fig. 3.11a
the rotation of the head and pinna surface is shown, while in Fig. 3.11b, the resulting
cross-section with the XY plane is provided. Once all the S + 1 slices are obtained
they are then regularised using the linear interpolation function and then the parametric
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(a) (b)

Figure 3.11: (a) shows the intersecting plane with the head shape while,(b) shows an example contour
(i.e slice) of the head and ear shape. Image taken from [10]

form of these slices is computed based on the parameter t. Where the parameter t, can
take values from, t = 0, 1, 2, 3, 4, · · · , T . For each of the x and y components two
function fxs [t] and f ys [t], are constructed which depend on the parameter t. The EFT
on these functions is computed separately as shown in Eq. 3.7 using sequential elliptic
fourier transform.

Ax[s, n] =
T−1∑

t=0

fxs [t]e
−jnt
T

Bx[m,n] =
S−1∑

s=0

Ax[s, n]e
−jms
s

(3.7)

This results in a set of complex-valued coefficients Ax[s, n] and Bx[m,n]. These co-
efficients provide the parametric representation of the head and pinna shapes. The
perturbations introduced in any of these coefficients Ax[s, n] or Bx[m,n], will result in
deformation in the head and pinna shape. This method can be used to study the mor-
phoacoustic perturbation analysis for HRTFs. However, the problem with using EFT
for morphoacoustic studies of humans is that perturbations in the coefficients of EFT
fail to provide smooth and evenly distributed spatial deformations, like spherical har-
monics. To be more specific, the deformations in the head and pinna produced using
EFT perturbation result in non-linear changes in the acoustics and made the mapping
difficult, which is not desirable for morphoacoustic analysis.

In [11], authors proposed a further adaptation to the EFT proposed in [10, 91]. The
technique proposed in [11], suggest to apply the deformations perpendicular to the
contour of the slices (Fig. 3.11b). The generated coefficients Au,v and Bu,v are called
surface harmonic amplitudes. Similar to the Ax[s, n] and Bx[m,n], perturbing Au,v
and Bu,v also results in the deformations of the shape. Some of the examples for the
perturbation of the coefficients Au,v and Bu,v for two values, u and v are given in
Fig. 3.12.

3.2 LDDMM on SYMARE Ear Shapes

This section provides an overview of the past studies which used the LDDMM frame-
work to model the outer ear shapes. We have already seen how the LDDMM is used
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Figure 3.12: The above figure shows the effect of perturbing the surface harmonic amplitudes which is
detailed in [11] for a range of u and v. u is cross harmonic and v is the slice harmonic. Image taken
from [11]
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to quantify the deformations and shape differences in the outer ear shapes in Sec. 2.6.
In this section, we particularly look at the template calculation using the LDDMM
framework for both single and multi-scale approaches presented in [17]. Furthermore,
we provide a brief overview of how the morphable parametric model for the outer ear
shapes was generated.

3.2.1 Template Calculation

This section discusses the method used to calculate the template or average shape for
the head, ear, and torso for the SYMARE population. We will see both single and
sequential multi-scale methods for calculation of template ear for the SYMARE user
population using the LDDMM framework discussed in 2.6. In this work, the impor-
tance of template or average shapes is very high. A lot of studies have been conducted
to calculate the template shape for a set of shapes using LDDMM framework. Almost
all of these approaches use a single and fixed LDDMM scale, which is chosen to be
smaller than the smallest feature to be modeled [92–94]. In [5], an improved version
of this template creation was proposed, which uses a sequential multi-scale calculation
approach. The calculation of the template is a very lengthy and computation hungry
process. The calculation of the template using both single and multi-scale calculations
can be sped up by first finding a barycenter or rough average of the shape population,
which then can be a seed to the process. In [94], author proposed a quick method to
estimate the barycenter for the shape population. The proposed barycenter calculation
algorithm is presented in Algo. 2. This algorithm works like a moving average filter

Algorithm 2 Barycentre Calculation
inputs: {S1, S2, · · · , SR}, σV , σW
outputs: B
for r = 2 to R do
{α} ←M(B,Sr, σV , σW )
B ← F(Sr, {αr(t)}, σV , 0, 1r )

end for

and performs a moving average on the shapes using LDDMM framework. The algo-
rithm begins by initializing the barycenter B by the first shape in the population S1.
Then it calculates the momentum vectors for matching the shape S1 to shape S2, using
matching operationM, described in section 2.6. Once done with this process, it uses
the geodesic shooting and initial momentum vectors. It maps the barycenter B using
the flow function F in the LDDMM framework, by setting the ending point as halfway
or T = 1

2
. The B is updated and set to the newly obtained shape. The process contin-

ues for all iterations r by finding the mappings from the current barycenter to shape Sr
and then using the flow function to the time point 1

r
, until r = R. Where R denotes

the total number of ear shapes in the whole population. At this point, the barycenter
variable B contains the barycenter for the shape population. This barycenter shape
is then used as a seed to the template calculation function as a rough estimate of the
template shape. Following, we provide details for both single and multi-scale template
calculation methods using the calculated barycenter.
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Single-scale Template Calculation

The template calculation method exploits the geodesic shooting and flow functions in
the LDDMM framework 2.6 originally proposed in [83]. The template ear denoted
by T also called the Fréchet mean, for a shape population {S1, ..., SR} is a shape for
which the sum of the geodesic LDDMM distances to all other shapes in the population
is minimum:

T = argmin
U

R∑

r=1

∫ 1

0

‖vr(t)‖2V dt (3.8)

The assumption here is that vr(t) provides an exact mapping from the source shape U
to a target shape Sr, for every r, 1 ≤ r ≤ R. Considering the complexity of the ear
shapes and limited computational resources, obtaining a template for a big population
can be very hard, particularly when the gradient descent algorithm is used, the number
of the iterations are only limited due to time constraint.

Here we explain the template shape estimation algorithm originally proposed in [82]
and further improved in [5]. In [5], instead of using the landmarks for computing the
shape differences, authors used current based distances for the LDDMM cost function
J (revisit to Sec. 2.6) for more details. Furthermore, unlike the template calculation
procedure in the [82], the starting point is the barycenter calculated using the algo-
rithm 2. Again, the template shape must be a shape for which the squared norm of the
initial momentum vectors from the template shape to all other shapes is zero, which
means the template shape is the real center of the shape population.

T = 0

where
R∑

r=1

αr(0) = 0

and {αr(t)} =M(U, Sr, σV , σW )

(3.9)

In practice the value of
∑R

r=1 α
r(0) ≈ 0 and not exactly equal to zero due to the reason

that only a limited number of iterations are performed. The steps to compute the single
scale template are given below in Algo. 3. At each iteration, the momentum vectors
that map the template shape to each of the ears are computed, and the average initial
momentum vectors are calculated. These average initial momentum vectors are then
used to transform the current template shape to the new template shape using geodesic
shooting. This process continues until the convergence has reached. As highlighted
before the aim is to keep repeating until there is no change between the current and old
template shape or the average of the initial momentum vectors is zero, however as we
have only limited time and resources, only a limited amount of iterations are performed
with setting a small threshold of change to be the limit.

Multi-scale Template Calculation

The second method for template calculations discussed in this work is the sequential
multi-scale method. The motivation behind using a multi-scale template calculation
is that it is observed that for scale parameters σV and σW different values result in
different results. Furthermore, the LDDMM scale parameters have a direct impact
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Algorithm 3 Single Scale Template Estimation

inputs: {S1, S2, · · · , SR}, σV , σW , Optional: B, I.
outputs: T
if B is not provided then
T ← S1

else
T ← S1

end if
if I is not provided then
I ← 20

end if
for i = 1 to I do

for r = 1 to R do
{αr(t)} ←M(T, Sr, σV , σW )
{α̂} ← r−1

r {α̂}+ 1
r{αr(0)}

end for
T = S(α̂}, T, σV )

end for

on the deformations obtained between the template shape and the ear shapes in the
database, i.e., large values of σV imply a larger coupling between neighboring vertices
in the source shape. In contrast, a smaller value will results in a smaller coupling
at the time of the deformation. The same happens with the σW ; for a larger value
coarser differences are considered when performing LDDMM shape comparison, while
a smaller value of σW computes the difference to finer detail and is more accurate.

The second benefit of using the multi-scale approach is that it results in a smoother
and natural LDDMM deformations. Starting from a high-level matching, such that
matching the rotation, translation, and scale operations, then it drills down to finer and
finer details with each coming step, such as matching the contours and cavities of the
ear shapes.

The detailed procedure to calculate the template using multi-scale LDDMM is de-
scribed in Algo. 4. It uses the single scale template calculation in an iterative way using
successively smaller scales. The aim of choosing the multi-scale template calculation
method over the single scale is to have a better convergence of the Eq. 3.8. To this end,
we use multi-scale and iteratively compute the template.

Algorithm 4 Sequential Multiscale Template Estimation

inputs: {S1, S2, · · · , SR}, [σV (1), σV (2), · · · , σV (L)], [σW (1), σW (2), · · · , σW (L)] Optional: B, I.

outputs: TL

S0
r = Sr for r = 1, 2, · · · , R

for l = 1 to L do
Bl ← barycenter(Sl−1

1 , · · · , Sl−1
R , σV (l), σW (l))

T l ← TempEstim(Sl−1
1 , · · · , Sl−1

R , σV (l), σW (l), To)
for r = 1 to R do
{αr(t)} ←M(Sl−1

r , T l, σV (l), σW (l))
Slr ← F(Sl−1

r , {αr(t)}, σV (l))
end for

end for
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3.2.2 Driving a Morphable Ear Shape Model

This section provides the details on how a using LDDMM framework a morphable
model for ear shapes cane be created [17]. The aim of creating a morphable model
is to have a parametric model of the ear shape which can assist in defining a mapping
function between the morphology of the ears and the corresponding acoustic responses.
The morphable model generation approach proposed in [17] creates a parametric model
that compactly models the 3D representation of the ear shapes using few parameters.

Modeling the ear shapes is a complicated and challenging task, however, as we have
shown in Sec. 2.6 and Sec. 3.2.1, the LDDMM framework does a tremendous job to
model the variations in the ear shapes as deformations. We also described in Sec. 3.2.1,
how a template ear shape can be calculated for a given ear shape population using
single or sequential multi-scale LDDMM approach. The calculated template shape is
the centerpiece of the morphable model derivation. We have also provided the details
on the KPCA in Sec. 2.7. We also have seen how using only the initial momentum
vectors, the template shape can be deformed to other target shapes through geodesic
shooting in Sec. 2.6. The readers are advised to review these aforementioned concepts
before reading this section.

[17] proposed a three step procedure to compute the parameters for a new shape
Snew.
Step1: The first step is to find the momentum vectors αnew(t) that map the multiscale
template shape T to the new shape Snew using mapping functionM(T, Snew, σV , σW )
of LDDMM framework.
Step2: As highlighted before any shape can be represented having the reference of
template shape and initial momentum vectors for the mapping in hand. So in this case
also only the initial momentum vectors are used. In second step the initial momen-
tum vectors αnew(0) or αnew are centered by subtracting the mean intimal momentum
vectors ᾱ (given in equation 2.32) from the new initial momentum vectors as:

α̂new = αnew − ᾱ. (3.10)

Step3: In the third step the projections of the initial momentum vectors are computed
over the KPCA components, to find the parameters ṽnew. The detailed algorithm for
this procedure is given in the algorithm below.

Algorithm 5 Calculating the parameters for morphable model of a new shape

inputs: U, ᾱ, Snew, σV , σW
outputs: ṽnew
{α(new)

n }1≤n≤N =M(T, Snew, σV , σW )
α̂new = αnew − ᾱ
ṽnew = UTKα̂new

As highlighted before in KPCA and PCA we can use any number of principal com-
ponents n in range of 1 ≤ n ≤ N . More the number of principal components used
the accurate the result is, with using all the principal components we can construct the
original ears. This model provide one with a capability of modeling the complex pinna
shapes with only few numbers and aid a lot in terms of studying the morphoacoustics
of the ear shapes.
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3.3 Morphoacoustic Perturbation Analysis(MPA)

Anthony Tew initially coined the term Morphoacoustic Perturbation Analysis or (MPA)
for short in his paper [11]. He proposed a method which studies the changes in the
acoustic domain by adding small perturbations to the morphology of the subject and
study the corresponding changes in the acoustic transfer functions. Mostly, the pertur-
bations applied to the template shape are tiny to keep the effect of the corresponding
changes in the acoustic domain linear. Although this term is new and came in 2012 for
the first time, there have been many studies before which use the same method to study
the effects of small perturbations on a reference pinna shape on the acoustic features
of the corresponding HRTFs, like [3, 22, 95]. All these studies used the KEMAR [96]
shape as the reference.

3.3.1 Differential Pressure Synthesis

As discussed before, morphoacoustic is a study which performs some small perturba-
tions in the morphology and studies the corresponding modifications in the acoustics
of the shape to unveil the underlying physical phenomenons that create certain acoustic
features. In Sec. 3.1, provides an overview of various techniques to model the mor-
phology of humans with interest to study the morphoacoustics. In this section, we
discuss Differential Pressure Synthesis, a technique which is particularly used to study
the morphoacoustics when the morphology is modeled using spherical harmonics [95].
This technique aims to rapidly compute the acoustic pressure field around a deformed
template shape. The pressure field around the deformed shape can be computed using
DPS without running the computationally expensive BEM simulations again and again
after each deformation. DPS technique relies on a lookup table in which the acoustic
responses for different spherical harmonic modes saved already. In DPS, the pressure
field around the deformed template shape is calculated using scaling and summing these
pre-computed pressure fields corresponding to orthogonal transformations, which are
obtained by modeling the template shape through spherical harmonics.

Frequency 250 Hz 500 Hz 1 kHz 2 kHz 3 kHz
% Error 0.92 0.22 0.69 18.9 34.6

Table 3.1: Percentage errors between the pressure field computed using BEM simulations, and the one
approximated using the DPS when a sphere is deformed to match the pinna-less KEMAR mannequin.
The image is taken from [9].

These deformations are constrained as the modifications in the acoustic responses
are dependent on the wavelength of the incident sound waves. Keeping these con-
straints in view, first order mappings between shape changes and the corresponding
changes in the acoustic pressure fields are formulated. Considering the original pres-
sure field around the template shape is Φo, after the deformation applied to the template
the new pressure field Φ can be calculated as :

Φ = Φ0 + ∆Φ, (3.11)

where ∆Φ denotes the changes in the pressure field. In brief, the method for calculating
the ∆Φ is obtained by a first-order Taylor series expansion that relates spherical har-
monic coefficients representing the shape changes to the pressure changes [95]. In [9],
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authors conducted an experiment in which they deformed a spherical template shape
into pinna-less KEMAR head. Tab. 3.1 reports the percentage error between the pres-
sure field computed through BEM simulations and the one approximated using DPS.
The table shows that the accuracy of using DPS is very high up-to a frequency of 1kHz,
and it starts to drop greatly as the frequency increases, exhibiting large errors at higher
frequencies. The table also shows the errors at 2kHz and 3kHz. The reason for this
performance degradation is that at these frequencies, the wavelengths of the incident
waves become comparable to the size of the deformations. As the frequency increases,
the wavelength becomes finer and finer. In summary, DPS requires the deformations
from the template shapes to be moderate, depending on the sound wavelength under
consideration, and not satisfying this criterion results in large errors.

3.3.2 Morphoacoustic Perturbation Analysis Frequency Domain (MPA-FD)

The inherent limitations of the DPS which says that the deformations from the template
shape need to be linear with respect to the acoustical changes, it fails to study large
variations in the ear shape.

To address this shortcoming, the authors in [11] introduced a frequency domain
Morphoacoustic Perturbation Analysis (MPA-FD). Just like the DPS, the MPA-FD can
be used to analyze the changes in the acoustics when a small perturbation is applied
to a template shape. Additionally, it enables one to study the perturbations in a partic-
ular view to understand which perturbations create significant changes in a particular
feature of the HRTF (i.e., in the central frequencies of notches in HRTF spectrum). Fur-
thermore, MPA-FD also overcomes one of the key limitations of the DPS not to able to
model the pinna shapes in the head and pinna mesh [95]. Just like DPS, the MPA-FD
can rapidly identify interesting mappings between morphological features and corre-
sponding acoustics by constructing a database of orthogonal deformations and the cor-
responding acoustic changes. However, the orthogonal deformations in the template
shape are conducted using Elliptical Fourier Transforms (EFT) (refer to Sec. 3.1.3 for
more details on EFT). The acoustic responses for the deformed template shapes are
computed using BEM simulations. Fig. 3.13 shows the identified regions in the tem-
plate ear shape that contribute significantly towards the generation of the first notch in
the HRTF spectrum. In summary, MPA-FD is quite useful when it comes to identifying
and relating the regions in the ear shape that influence a particular feature in HRTF and
vice versa. However, similar to the DPS technique, the perturbations should be tiny, and
the formulation requires a linear relationship between the morphological and acoustic
changes. For this reason, the shape changes and their corresponding acoustic responses
to create the database are conducted with tiny perturbations only. Consequently, this
method can not be efficiently used to perform the morphoacoustic studies on ear shapes
of multiple humans as the morphology of the ear shapes changes considerably across
the population of humans.

3.3.3 Acoustic Sensitivity to Micro-perturbations of KEMAR’s Pinna Surface
Geometry

Following the same lines, authors in [12] studied the effects of small perturbation
in voxelated KEMAR ear shape along with a small head patch. Studying these ef-
fects, they examined the acoustic sensitivity of different regions of the ear shape on
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Figure 3.13: The plot on the right shows an HRTF spectrum (solid line) with a notch in the frequency
seen between 11 kHz and 12 kHz. The dotted blue line shows an HRTF spectrum in which the notch
has been shifted to higher frequencies. The green arrows show the movement of the spectrum as the
notch moves to a higher frequency. The ear on the left is the template ear shape with the regions that
contribute towards the formation of the notch colored with warm (red) and cold (blue) colors. Image
taken from [11]
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Figure 3.14: Peaks and notch patterns for a series of PRTFs of the KEMAR pinna with a small head
patch. Image taken from [12]

the notches and peaks in the corresponding HRTFs. Using a Finite-Difference Time-
Domain (FDTD) method, the HRTF for the reference model and the perturbed ear was
computed. The voxelization happened in a way that the voxel grid had a uniform res-
olution of 2mm. The resulting 3D model had a total of 1784 unique voxels. In this
study, each of these voxels is inflated and deflated, creating 1785 FDTD simulations
in total (one for original and 1784 for different voxels). Once the acoustic responses
(Pinna related transfer functions PRTFs) for these shapes are calculated, the features
(peaks and notches) in the resulting PRTFs are then compared with the features in the
reference shape. Fig. 3.14 highlights the identification of a series of peak and notch
patterns occurring for KEMAR PRTFs. Some of the key findings of the work [12] are:

1. The first peak generally has a center frequency around 5kHz and has three patterns
denoted as P1− a, P1− b, P1− c. The P1− a and P1− b are mainly affected
when the perturbations occur in the concha region. The sensitivity is maximum
towards the back wall and decreases going towards the ear canal. P1−a occurs in
almost all directions. While P1− b and P1− c occur for some directions. P1− b
and P1− c are also sensitive to the perturbations in the ear rim.

2. The center frequency for the third peak P3 is around 9.8kHz. This peak appears
consistently across all directions in space. This peak is sensitive to the pertur-
bations in different regions of the Cymba concha, cavum concha, and triangular
Fossa in both positive and negative way (i.e they shift the peak P3 to a lower or
higher frequency value).

3. The first notch N1, also occurs in three different patterns, denoted as N1 − a,
N1−b andN1−c. These patterns are direction-dependent. The patternN1−a ap-
peared for sources from the lower front regions and had a center frequency around
7.1 kHz. It had positive sensitivity to a region that covers the Cymba concha and
triangular Fossa. The N1 − b pattern occurs for sources in the front hemisphere
near the horizontal plane, and it had a sensitivity to regions corresponding to the
Cymba and the upper back wall of the Concha. While the N1 − c happened for
twelve locations at high elevations and had a mean center frequency of 8.8 kHz.
This pattern is affected by almost all the regions in triangular Fossa, Cymba, and
Cavum Concha.

Figure 3.15 and figure 3.16 show the regions of the ear shape that had positive and
negative sensitivity to the peaks and notches in the PRTF spectrum.
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Figure 3.16: Pinna sensitivity map for notches N1 − N3. The positive sensitivity is shown with warm
(red) colors and negative sensitivity is shown with cold (blue) colors. Image taken from [12]

Figure 3.15: Pinna sensitivity map for peaks P1−P4. The positive sensitivity is shown with warm (red)
colors and negative sensitivity is shown with cold (blue) colors. Image taken from [12]
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3.4 HRTF Individualization Methods

As highlighted in the section 2.2, personalized HRTFs are essential to provide VAS over
headphones. At the same time, we have reviewed in section 2.3, that the acquisition of
the individualized HRTFs is a costly and specialized task, requiring expensive, special-
ized equipment and operators. Hence it is limited to the laboratory environment only.
To solve this problem, a compromise has to be made, and instead of using individual-
ized HRTFs personalized HRTFs are to be used, which provide a listening experience
very close to the individualized HRTFs. Although, there have been plenty of studies
trying to solve this problem, to the best of author’s knowledge there is not a single com-
prehensive framework available that can provide personalized HRTFs for a listener in
a quick, efficient and easy manner which can be used for commercial use for the mass
market. A high-level survey on the state of the art methods for HRTF personalization
was recently published by Guezenoc et al. [97], which provides a taxonomy and re-
view of HRTF personalization methods. This study categorizes HRTF personalization
methods and reviews the advantages and shortcomings of these methods. This section
follows the same scheme and provides a brief overview of different HRTF personaliza-
tion methods. The HRTF personalization methods can be categorized into two broad
categories, namely: a) direct personalization, and b) indirect personalization. Some of
the most famous studies in these two categories are discussed below. The direct HRTF
individualization methods are the acoustic measurements and the numerical simulation
based HRTF calculations. The details of these two methods, along with their limita-
tions, have already been discussed in sections 2.3. Following, we discuss the details of
the indirect HRTF individualization of HRTF personalization methods.

Indirect HRTF individualization methods can be divided into two main categories.
Following, we provide details of these two main categories.

3.4.1 HRTF Personalization based on Anthropometric Data

HRTF of an individual is strongly dependent on the morphology of the listener. Con-
sidering this strong dependence, many studies have tried to find a mapping between
the anthropometry and the corresponding HRTFs of an individual. The aim of all these
studies is to provide a low-cost HRTF individualization method that removes the need
for performing acoustic measurements or running long and computation hungry numer-
ical simulations. These methods can be further divided into three subcategories.
a) Adaptation : The methods in the first category take the existing publicly avail-
able HRTF sets and adjust them to make them more suitable for an individual listener.
Because different people have different sizes of head and ear shapes, authors in [98]
proposed that the differences in the HRTFs can be reduced by simply scaling the fre-
quency axis of the HRTFs of one listener to better match the HRTFs of another listener.
A year later, through simple studies, the same scientists found that the scaling factor
can be estimated using linear regression on the ratio of scales of head and ear shapes of
two individuals. Through performing listening tests on 9 and 11 subjects in both studies
respectively, they reported that the spatial hearing experience for the listeners has im-
proved compared to the non-individualized HRTFs, while still worse than their HRTFs.
Later two studies combined the scaling corrections with the spatial rotation corrections
to account for the head tilts [99, 100]. These studies report a further improvement in
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HRTF matching. However, they did not perform any perceptual experiments.
b) Selection : The second subcategory of anthropometric based HRTF personalization
methods is the selection methods. In this category, an HRTF set for an individual user
is selected from a publicly available HRTF dataset, which has both anthropometry and
acoustics of the listeners. For instance, a study reported in [101] implements a coarse
nearest neighbor based selection method on the anthropometric feature vectors to find
a user from the CIPIC database [14]. Considering the strong dependence of the RHTFs
on the anthropometry, the HRTF of the selected user will match the best to the user in
question. As making the anthropometric measurements is a difficult process, this work
uses only seven anthropometric measurements, which they measure from a picture of
the pinna. The results of the listening experiments show an average gain of 15% in
elevation score compared to non-individualized HRTFs. Authors in [102] used a rather
intuitive and hybrid approach to find the closest matching HRTF. In their earlier work,
they reported that the three main notches in pinna-related transfer functions are the re-
sults of the three main contours on the pinna. Furthermore, the center frequencies for
these notches can be estimated with reasonable accuracy from a single scaled image
of the pinna [23]. By choosing an HRTF from the database which has notches with
notch frequencies closely matching the estimated notch frequencies of the subject in
question, one can find a closely matching HRTF for the subject. The listening tests
showed an improvement of 17% better elevation perception compared to the use of
generic HRTFs.
c) Regressioin : The final subcategory in this group is regression-based HRTF person-
alization methods. In this method, the HRTFs of a given dataset are modeled using dif-
ferent dimension reduction methods such as principal component analysis (PCA) [103]
and independent component analysis (ICA) [104]. Using multiple linear regression,
a mapping between the anthropometry and HRTF parameters is created. Some of the
studies have also used neural networks [105] and High-Order SVD [104]. However,
considering the availability of limited data, this can very easily cause over-fitting. Some
other groups have used an even more, simpler method and tried to predict the HRTFs
of the listeners by considering this as a sparse representation based problem. Relying
on a strong assumption that the anthropometric parameters of any individual can be
represented by the linear combination of anthropometric features of the users in the
dataset, and the HRTF of a subject can be represented by the same linear combination,
they modeled the HRTF of a given individual using linear combination of the HRTFs
in the dataset [28].

Although all these methods are low-cost in terms of effort and computational cost,
the performance of these methods greatly depends on the selection and measurement
accuracy of the anthropometric parameters. Any in-accuracy and a small error in the
measurement can result in errors in the resulting HRTFs.

3.4.2 HRTF Personalization based on Perceptual Feedback

This group also has two major categories. These subcategories and their details are
given as follows:
a) Selection : This type of methods are being used since late 1990s. In this personal-
ization method, a listener is presented with the spatial audio rendered using different
HRTFs available in the dataset, and the listener chooses the one which seems to provide
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more natural experience. This scheme was used by the researchers in [106, 107]. The
results of these works provide a good listening experience with a better localization
performance compared to generic HRTFs. However, these studies use only the azimuth
plane HRTFs for both selection training as well as for the evaluation. In azimuth plane,
interaural cues are more important than spectral cues; hence these methods need to be
tested for the vertical localization. Furthermore, these tests can take a different amount
of time required for different listeners, and for these two studies, the time taken by
subjects to choose a personal HRTFs was anywhere between 15 to 35 minutes. This
time can be further reduced by first clustering the HRTF sets a priori based on objective
or subjective measures as proposed by authors in [107, 108]. Furthermore, this also
depends on the ability of a listener to localize audio sources, as well as being able to
concentrate as well as being able to conduct listening experiments.
b) Adaptation : Another way to get an individualized HRTF set for listeners is to per-
form the adaptation to the existing HRTFs guided through the listening experiments.
The past studies which use this approach can be divided into three different kinds [97].
The first type relies on the findings of frequency scaling studies proposed in [25, 26].
An example of this is proposed in [98], which showed the gain in terms of localiza-
tion performance when the right scaling is used compared to an unscaled HRTF set.
The biggest benefit and also the limitation of this method is that it lets us control the
amount of personalization available through a single number, i.e., the scaling factor.
The studies reported that by spending only 20 minutes, users were able to personalize
the HRTFs well enough to provide almost the same performance as was provided by
using the optimal scaling factor.

The other way of tuning the HRTFs is to model the HRTFs as different filters and
adapt to the right parameters for these filters through listening feedback. Two studies of
this kind were reported in [109,110]. The studies presented in [109] do not consider the
direction dependency and try to solve the problem by following a simple filter equal-
ization scheme. In contrast, the studies showed in [110] used a direction-dependent
tuning. This requires to tune the filters for each direction separately, making the time
needed to do this very large.

In order to address this problem of tuning a large number of parameters the third
group of studies can be very useful. This group of works try to reduce the number of
parameters to model by relying on the statistical modeling. Using a direction dependent
PCA can reduce the number of parameters for a given direction as low as between three
to five making required number of tunings small. Adapting these parameters direction
by direction can provide a personalized HRTF [19, 111, 112]. The results of these
studies have shown localization improvements compared to non-individualized HRTFs,
however the number of listeners included in the tests were very few in [19, 111], while
elevation perceptions were not evaluated in [112]. Although these studies reduce the
number of tunings to be performed for a single direction reasonably, one still need to
perform the tunings for every direction rendering this solution very impractical (only 9
to 10 directions were tuned in these studies). A later study provided a global parametric
model by using spherical harmonics to model the PCA weights of the directional PCA
in [113], reducing the total number to model the HRTFs to 45.
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3.5 Evaluation Metrics for Shape Matching

In section 3.1, a detailed review of some popular shape modeling methods has been
provided. This section provides a review on some of the evaluation methods to evaluate
the performance of modeling of shape by measuring the mismatch between the original
and the modeled shapes.

3.5.1 Vertex Distance

The first and most trivial distance metric for the shape matching to use the Euclidean
distance between the point clouds of the original and matching shapes. This believes
that both the original and mapped shapes have an equal number of points. Given the
original shape Sorig and mapped shape Smod, as defined in section 2.6.1, and given as
Sorig(X) and the mapped shape is given as Smod(Y ), the vertex distance is given as:

d(S,M)(n) =

√
‖x(n)− y(n)‖2, (3.12)

where d(S,M)(n) denotes the distance between the vertices n of shape S and M . This
distance is presented as the color map on the ear shapes, where color for a point denotes
the distance between that particular point index between two shapes.

3.5.2 Hausdorff Distance

The second most used distance metric in ear shape modeling is Hausdorff distance used
in [61,114]. Let us consider the original shape is denoted as Sorig(X) and the modeled
shape is denoted as Smod(Y ), whereX and Y denote the vertices for Sorig and Smod, and
X, Y ∈ R3. The Hausdorff distance between two shapes denoted by dH(Sorig, Smod) is
computed as:

dH(Sorig, Smod) = max{dYH = sup
y∈Y

inf
x∈X

√
‖x− y‖2, dHx = sup

x∈X
inf
y∈Y

√
‖x− y‖2}.

(3.13)
The Hausdorff distance is originally proposed as a scalar quantity that measures the
distance between two population of the points, and it provides only a single value. In
shapes however, one is usually interested to have a look on the areas which are closely
matched and areas which are not matched well. In order to do so a distance map Q
is defined. The distance map contains one distance for each of the vertices. Let us
denoted the value of Q at the point x of shape Sorig as Q(Sorig, Smod, x). This value is
given as:

Q(Sorig, Smod, x) = inf
y∈Y

√
‖x− y‖2. (3.14)

This equation means that we will measure the distance from point x to all the points y
in shape Smod, and the minimum value is chosen as a value of Q. This is repeated for
every point in Sorig. One thing worth noting is that in this distance, the number of points
in both shapes can be different. Hence, the distances from one shape to other are not
necessarily same as the other way around, e.g. Q(Sorig, Smod, x) 6= Q(Smod, Sorig, y) i
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3.5.3 Face Distance

Although Hausdorff distance provides a good representation of the matching, it only
accounts for the proximity between vertices in the shapes through the Euclidean dis-
tance metric. In [17] authors proposed a new shape difference analysis technique based
on currents introduced in [78]. They called it Current based Shape Difference Anal-
ysis or (CSDA). The CSDA works considering two main matching ways, 1) It takes
into account the proximity of points on two surfaces using kernel function described in
equation 2.28, as well as, it considers the orientation of the normal vectors or currents
on the mesh faces in a selected region. Another motivation of using this is the success
of the metric E(S1, S2) given in equation 2.25, capturing the shape difference while
performing mapping for LDDMM.

Given the surface Sorig and Smod, the current based distance d(S1, S2, f) on a face
f of the Sorig is defined as

β1(f) =
∑

g

kR(corig(f)corig(g))〈norig(f), norig(g)〉

β2(f) =
∑

h

kR(corig(f)cmod(h))〈norig(f), nmod(h)〉

d(Sorig,Smod, f) = |β2 − β1|

d̂(Sorig,Smod, f) = min

(
d(Sorig, Smod, f)

|β1(f)| , 1

)

(3.15)

where kR is cauchy kernel with σR, norig(f), is the normal vector on the face f , this
points outwards, located at the center of the face with the length proportional to the
area of the face f . corig(f) is the center of the face f in shape Sorig. β1(f) provides the
sum of the convolution of the normal vector at f with every other face g for the Sorig,
while β2(f) provides the sum of the convolution between the normal vector at face f
of the original shape with all the other faces h on the modeled shape Smod. In case both
surfaces are similar the distance is very small and for exact same surfaces it is zero. On
the other hand when two surfaces are very different the value of β2 will be very small
giving us a large value for the distance. In order to obtain a meaningful representation
[17] created a normalized similarity measure representation as d̂(Sorig, Smod, f). The
overall similarity measure is computed by summing the values of d̂(Sorig, Smod, f) on
all mesh faces as:

d(Sorig, Smod) =
1

F

F∑

f=1

d̂(Sorig, Smod, f). (3.16)

here F denotes the total number of vertices. One thing to be noted is that in general
d̄(Sorig, Smod) 6= d̄(Smod, Sorig).

3.6 HRTF Evaluation Metrics

In this section, we provide popular evaluation methods to evaluate the performance of
the personalization of HRTFs. These methods can be divided into two wider categories,
namely: a) Objective, and b) Subjective or pyscho-perceptual metrics. Following, we
provide some of the most famous methods for each of these categories.
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3.6.1 Objective metrics

This section provides a review of the objective methods for evaluating the personal-
ization of the HRTFs. These methods are purely mathematical and only consider how
well two sets of HRTFs match without considering the perceptual relevance of certain
features or content of the HRTFs.
Root Mean Square Error : A root means square error (RMSE) or root mean square
deviation (RMSD) are the measures widely used to measure the difference between the
values predicted by a model or estimator and real values. This has also been used for
the HRTFs. The RMSE provides the square root of the second sample moment of the
differences between the original and predicted values or the quadratic mean. These
deviations are also called residuals when the calculations are performed over the data
sample that was used for estimation and are called errors (or prediction errors) when
computed out-of-sample. Given the an actual HRTF H(fi, θ, φ), and approximated one
given Ĥ(fi, θ, φ), for N frequency bins in total, the RMSE is computed as:

RMSE(θ, φ) =

√√√√ 1

N

N∑

i=1

(
H(fi, θ, φ)2 − Ĥ(fi, θ, φ)2

)
(3.17)

For getting a global metric called global RMSE or GRMSE the error from all directions
is combined using following equation:

GRMSE =

√√√√ 1

D

∑

(θ,φ)∈D

1

N

N∑

i=1

(
H(fi, θ, φ)2 − Ĥ(fi, θ, φ)2

)
(3.18)

Spectral Distortion : Spectral distortion is another measure for objective evaluation
of the HRTFs. This is the mean square difference in log domain given as:

SD(θ, φ) =

√√√√ 1

N

N∑

i=1

(
20 log10

|H(fi, θ, φ)|
|Ĥ(fi, θ, φ)|

)2

(3.19)

where, H(fi, θ, φ) denotes the original HRTF and Ĥ(fi, θ, φ) denotes the estimated or
approximated HRTF, for direction (θ, φ).
Inter-subject Spectral Difference (ISSD) : Another famous method to evaluate the
matching between two HRTFs is inter-subject spectral difference (ISSD). Authors in
[24] calculated the ISSD for the HRTFs for frequencies between 3.7 kHz to 12.9 kHz
using 64 Equivalent Rectangular Bandwidth (ERB) filter banks. The calculation of the
ISSD between two HRTFs belonging to subjects S1 and S2, is calculated in three steps.
In the first stage the HRTFs are converted into ERB filter banks and differences between
each of the 64 bands was computed as:

∆DTF (θ, φ, fi) = 20 log10 |DTFS1(θ, φ, fi)| − 20 log10 |DTFS2(θ, φ, fi)| (3.20)

Using the ∆DTF (q, f, fi) computed in equation 3.20, the means for all the 64 fre-
quency bands fi are computed:

¯∆DTF (θ, φ, fi) =
1

64

64∑

i=1

∆DTF (θ, φ, fi) (3.21)

71



Chapter 3. Literature Review

In the second stage the variance in ∆DTF (θ, φ, fi) for every direction in space (θ, φ)
are computed as:

σ2(θ, φ) =
1

64

64∑

i

∥∥∆DTF (θ, φ, fi)− ¯∆DTF (θ, φ, fi)
∥∥2 (3.22)

Finally, in the third stage the ISSD between subject S1 and S2 is calculated as:

ISSDS1,S2 =
1

M

∑

θ,φ

σ2(θ, φ) (3.23)

Cross-Correlation : Cross-correlation is one of the most popular approaches to mea-
sure the similarity between two signals or sequences. In [51], authors employed the
cross-correlation to validate the use of BEM simulations to identify if the acoustically
measured HRTFs and BEM simulated HRTFs are matching to each other. In statistics,
the Pearson correlation coefficient (PCC) is a measure of the linear correlation between
two variables X and Y . Its denoted by r and lies in the range −1 ≤ r ≤ 1. A value
equal to 1 means a totally positive relationship. A value equal to −1 means a negative
relationship, while value equal to 0 means no correlation at all. Originally developed
in 1880, it is widely used in different fields of science. Given X and Y the correlation
coefficient is given as:

ρX,Y =
cov(X, Y )

σXσY
, (3.24)

where cov is the covariance function, and σX and σY denote the standard deviation of
X and Y respectively. The term cov(X, Y ) is given as:

σX =
√
E[X − E[X]2]

σY =
√
E[Y − E[Y ]2]

cov(X, Y ) = E[(X − µX)(Y − µY )]

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

cov(X, Y ) = E[XY ]− E[X]E[Y ]

(3.25)

using this the value for the correlation ρ can be rewritten as:

ρX,Y =
E[XY ]− E[X]E[Y ]√

E[X − E[X]2]
√
E[Y − E[Y ]2]

(3.26)

Percentage Mean Square Error : One of the popular approaches to evaluate the
HRTF modeling performance to use is the root-mean-square error used in [115]. In this
method, the performance of the models for the magnitude modeling of HRTFs is evalu-
ated by comparing the mean-square error of the disparity between the approximated and
original HRTFs or HRIRs over the magnitude of the original HRTFs. Mathematically
it is represented as:

ej(θ, φ) = 100%×

∥∥∥hj(θ, φ)− ĥ(θ, φ)
∥∥∥
2

‖hj(θ, φ)‖2
(3.27)

A small amount of this error will denote a greater matching, while a large error will
mean that the performance of the model has deteriorated.
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3.6.2 Subjective metrics

Although objective evaluation methods provide a quick way to test and evaluate the
performance of the HRTF personalization methods by provide difference and matching
measures, these methods do not provide perceptual ratings for the personalized HRTFs.
For example, they fail to tell if these HRTFs are used for the listener in question, what
kind of perception they will provide in terms of localization and externalization capa-
bilities. The obvious way to test the HRTFs in this context is to perform the listening
tests. Listening experiments are used to evaluate the performance of HRTFs in terms
of localization in horizontal and sagittal plans for more than a few decades [97]. These
tests can be of multiple types where listeners are provided with the virtual spatial audio,
binaurally rendered through the HRTFs in question. The listeners are also presented
with a reference sound either via actual speaker sources in different positions or vir-
tual sources rendered through listeners’ own HRTFs. The listeners are then asked to
evaluate the performance of the synthesized or selected HRTFs vs. their HRTFs or vs.
the anchor sound provided through the speaker sounds [30, 116]. Some test includes
a graphical user interface (GUI) based reported system for listeners to report the re-
sults [102], while others use virtual reality and pointer-based reporting systems [117].
Furthermore, the questionnaires can include different kinds of questions such as eval-
uation of externalization, which can be either binary, i.e., if the sound is perceived
inside the head or outside or can be a grading based score from one to five. Listeners
report the perceived location of the sound, and the errors are calculated in terms of lo-
calization error or perceiving error (LE) or (PE), respectively. Furthermore, up-down
and front-back reversals are also calculated [97, 117, 118] and reported as quadrant er-
ror. Although listening tests provide an interesting and perceptual way to evaluate the
HRTFs, they are very difficult to conduct for multiple reasons. First of all, it requires
human participants with some experience to perform the tests. It is reported in past
studies the participants with less experience either required long training or their tests
will have more uncertainties making the localization tests untrustworthy [119]. Fur-
thermore, we need to have either the measured HRTFs of the listeners or sophisticated
setup with an anechoic chamber where the anchor sounds can be presented to listeners
like a reference.

To avoid all these problems, researchers came up with an interested computerized
model that can provide a perceptual evaluation of the personalized HRTFs in sagittal
planes for broadband sound signals [119]. This model works by creating a computer-
ized peripheral system that processes sound in the band by band manner. Their model
requires two inputs, namely, the HRTF to test and an uncertainty factor. The uncertainty
factor counts for the contributions coming from non-acoustic factors, such as attention
paid to the relevant cues, accuracy in responding, the ability to conduct scientific exper-
iments, and the amount of training provided. In their later study [118], they suggested
that these models require subject dependent uncertainty parameter, and if a right uncer-
tainty parameter is provided, even a non-individualized HRTF can perform as good as
the individualized one.
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CHAPTER4
HRTF Database Analysis and Personalization

This chapter provides details of two studies. The first study provides a simple statistical
analysis on the notch frequencies of the median plane in two of the most famous public
HRTF databases, namely the CIPIC [14] and SYMARE [51]. The deep notches are
considered to be the most important cues for elevation perception in the median plane.
There have been multiple studies to understand the underlying phenomenons which
generate the notches, how these notches evolve and relate these notches to the mor-
phology features in the ear shapes, [23,44]. This study extracts the pinna contributions
from the HRTFs of the median plane and using simple signal processing techniques to
extract the notches from these transfer functions. It then uses the k-means clustering
to statistically analyze how the notch frequencies of each of the databases evolve as a
function of frequency. This study has two research questions. 1) Are the evolutions
the same for both populations of users? 2) Is this evolution symmetric for the left and
right ears? If not, are there some substantial binaural cues that can be used to localize
the sound sources in the median plane? The results show that the average evolution
of the notches for both databases is almost same, with first notch frequency starting
from around 6 kHz and monotonically increasing to about 8.5 kHz, the second notch
frequency starting from 10 kHz and monotonically increasing as a function of eleva-
tion to 12 kHz. At the same time, the third notch frequency starts from 13 kHz and
keeps on increasing until 14 kHz around the horizontal plane as a function of elevation
and then starts to decrease to reach a value of around 13 kHz at the plus 45◦. These
results are consistent with the previous exploratory studies performed on the CIPIC
database [23,102]. The results of the competitive analysis also happen to show that the
binaural cues can be very useful for localization in the median plane. The difference
between the notch frequencies is mapped to a psycho-perceptual unit. The results show
that although the differences are not very high, there is a structure to these differences,
and these are symmetric around the horizontal plane, suggesting that binaural cues can
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help to localize the sound sources in median planes.
The second study presented in this work uses an existing HRTF personalization

method based on the sparse representation [28] for the CIPIC database and modifies
it to propose an improved version we call the weighted sparse representation. The
research questions for this study are the following: 1) Knowing that different anthro-
pometric parameters have different importance when it comes to generating the HRTF
cues, can we calculate the important metric for these anthropometric parameters? In
order to answer this question, we created a simple yet aggressive search algorithm that
calculates relative importance relevance for the given set of anthropometric features in
the CIPIC databases. 2) Can we use these important vectors as weights and propose a
sparse representation based approach that uses these important factors as weights while
calculating the sparse representation? To answer this question, we created a simple
approach that uses these weights to calculate the sparse linear combination when mod-
eling the anthropometric parameters of the query subject and represent. 3) The third
question in this study is, can we reduce the required number of principal components
and use only the easily gatherable parameters without compromising the performance?
The results show that the HRTFs synthesized using our method are more accurate than
the results obtained with the traditional sparse representation approach. 4) The final
question posed in this work is that is there a dataset matching based personalization
technique that can outperform our approach? The results show the performance of our
systems is better than even from the case when the best HRTFs are matched in terms of
smallest Spectral distortion, suggesting that no database matching scheme can outper-
form our approach [29].

Contribution: The main contributions of this chapter include:

1. A simple approach to understanding the evolution of notches in the median plane
of PRTFs is provided in this chapter. The most prominent notches in all HRTFs
for the left or right ears of all users in a database are grouped into three clusters
using k-mean. These three groups present three main notches in rising due to three
main contours in the ear shape, as reported by [23]. A comparative analysis for
two databases and the results of [23], shows these findings are in line with each
other.

2. Using a comparative analysis for both datasets between the left and right ear, it
reports a novel concept that there are some binaural cues that can be used to lo-
calize the sound in the median plane. These cues are the differences in the notch
frequencies for both left and right ear shapes.

3. A simple method to calculate the relevance of each of the anthropometric features
in CIPIC features is proposed. This produces a relevance importance map sug-
gesting which of the features are more useful when they are used for database
matching based HRTF personalization.

4. The calculated feature importance vector is used as weights to propose a weighted
sparse representation based HRTF personalization method. The results show that
this method outperforms the pervious methods even when fewer anthropometric
features are used.
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5. A comparison of the performance between the popular database matching ap-
proaches, is performed suggesting that our weighted sparse representation ap-
proach outperforms all the available database matching approaches even when
the best subject is chosen always (spectral distortion is used for evaluation).

The following sections provide details of these two studies describing the methodolo-
gies used and reporting the results. This chapter consists of two main sections. The
Sec. 4.1 reports the details on the notch analysis, while in Sec. 4.2 the details on build-
ing of weighted sparse representation for HRTF personalization are provided. Finally
Sec. 4.3 concludes the chapter.

4.1 Notch Analysis of HRTFs

One may recall from Ch. 2, that the spatial hearing is the result of the interaction be-
tween the sound waves and the listener’s body before the audio signal reaches to the
eardrums of the listeners. This interaction creates scattering, reflections, and diffrac-
tions of sound waves altering the spectral content of the sound waves in a direction and
frequency-dependent way. The spectral coloration includes notches and peaks, pro-
viding cues to the listeners’ brain enabling the listeners to have the ability of spatial
hearing and sound localization in the median plane.

Although the shape of the head and torso also play a role; however, the deep spectral
notches, which are the primary cues for providing the elevation sensation, are mainly
contributed by the ears. These notches arise due to the interaction of the sound field
with the intricate surface of outer ear shape and change as the elevation changes provid-
ing useful cues for elevation perception. This section contains the details on an analysis
methodology that helps one to explore the relationship between notch frequencies and
elevation angles in the median plane. In particular, the pinna contributions are extracted
from the HRTFs and analyzed. The notches from the pinna related transfer functions
(PRTFs) are extracted using a simple methodology for all the subjects and all the con-
sidered directions in the median plane −pi

4
≤ φ ≤ pi

4
. The extracted notch frequen-

cies are then clustered using the k-means algorithm to study the statistics of the whole
database, which reveals the relationship between notch frequencies and elevation an-
gles. The results for SYMARE and CIPIC databases are provided. Furthermore, using
comparative analysis, the values for left and right ear are compared in both databases
suggesting the possible relevance of binaural cues for median plane localization. The
details of the approach are provided below.

4.1.1 Analysis Methodology

This subsection provides the details on a statistical study conducted to understand the
evolution of the notch frequencies with respect to elevation angles, for the median plane
HRTFs of the user population in two of the most important HRTF databases. As it
is believed that these notches are the results of the sound wave reflections from the
pinna surface, the first step is to extract the pinna contributions from the HRTFs called
pinna related transfer function (PRTF) by removing all the contributions due to the
head and torso using the method described in [13]. Once we have the PRTFs in hand,
the next step is to extract the notches using a simple method. These notches are then
clustered using a K-means algorithm into three clusters. The motivation behind that
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Figure 4.1: Block diagram for the methodology. This block diagram shows the simple process of notch
extraction happening in G(.) and clustering of these notching using k-means to statistically analyse
the notch frequencies.

Figure 4.2: An expanded version of G(.) indicating how the PRTFs are extracted from the HRIRs and
then used to extract the pinna notches fi,φ.
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Figure 4.3: Right ear median plan (a) HRIRs and (b) HRTFs are displayed as grey scale images for
subject 10 in the CIPIC database. The directions are θ = 0◦ and φ ∈ [−45◦, 230.625◦]. Different
features in the HRIRs and HRTFs are marked as the contributions of different body parts. The scales
for (a) and (b) are linear amplitude and dB scale log magnitude respectively. Image taken from [13].

is that authors in [23] suggested that the three main notches in HRTFs are the results
of the reflections of the sound waves from three main contours of the pinna shapes.
Hence we created three clusters, only each corresponding to one of the contours. The
centroids for these clusters are then analyzed to study the evolution of the notches for
the median plane HRTFs as a function of elevation angles.

The overall methodology can be divided into three conceptual steps: including

• PRTF extraction,

• Notch frequency extraction, and

• Clustering and analysis of the notch frequencies.

The block diagram for the analysis methodology is provided in Fig. 4.1. Following the
details for each of the steps is provided.

PRTF Extraction

The notches and peaks are one of the most important features in HRTFs. These notches
are considered to be the most relevant cues for elevation perception [23]. It is long be-
lieved that these deep spectral notches are produced in HRTF due to reflections caused
by different body parts, including pinna cavities, head, torso, and knees. The details of
the contributions of different body parts in HRIRs and HRTFs are shown in Fig. 4.3. In
this study we aim to analyze the spectral notches caused by pinna. So, the first logical
step involved is of extracting the contributions of pinna from HRIRs by removing all
unnecessary components which are not required for this study, namely the contributions
of head, shoulders and knees. It was reported in [13] that the delays of pinna, torso and
knee reflections are typically around 0.1, to 0.3, 1.6 and 3.2 ms [13, 120] respectively.
Fig. 4.4 shows the simple process of PRIR extraction from HRIRs. To get rid of shoul-
ders, torso, and knees reflection components, we shorten our HRIR by applying a half
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Figure 4.4: Block diagram showing the process of PRIR extraction from HRIRs using the windowing
process.

Figure 4.5: Extracting the PRIRs from the HRIRs. The first step is to find the onset no. Knowing this a
windowing operation is applied to remove the contributions of the shoulders, torso and knees.

Hanning window. [13] suggested that a window of length 1 ms, starting from the onset
of HRIR, is good for this task. This process removes the faint noise signal before the
onset, along with the reflective components due to shoulders, torso, and knees, while
preserving the reflection caused by pinna.

Given the HRIR hi,φ[n] for the user i, and elevation angle φ, the PRIR pi,φ[n] can
be extracted by applying a half Hanning window w[n] of length 1ms, starting from the
onset of HRIR no, i.e. pi,φ[n] = hi,φ[n]w[n − no]. Fig. 4.5 illustrates the windowing
operation with the help of plots of the signal at each step. As HRIRs to be believed
minimum phase filters with linear delay, the value of onset no can be found by taking
the slope of unwrapped phase function of HRTF [13]. Once the PRIR pi,φ[n] is ob-
tained, the PRTF (Pinna related transfer function) Pi,φ[f ] can be obtained by applying
the Fourier transform, where f denotes the frequency of the signal. Next we describe
the notch frequency extraction procedure from the PRTFs Pi,φ[f ], i = 1, 2, · · · , N rel-
ative to all N users.
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Notch Extraction

As highlighted before, the aim of this study to understand the importance of the notches
in the median plane sound source localization and see how the notches evolve as the
elevation angle changes. So we focused on the frequency ranges of the HRTFs, which
are responsible for providing the elevation cues in the median plane. In [42] authors
performed three experiments to understand which frequency contents in the HRTFs for
median planes are responsible for source localization in the median plane, and reported
that the frequency content in the range 4 kHz to 16 kHz provides the main cues for
median plane localization. Knowing this, we restrict the frequency bandwidth of our
analysis to this frequency range.

The notches of the PRIRs are extracted using a simple procedure. Having the PRIRs
in hand, the PRTFs for all the subjects are computed by applying Fast Fourier Trans-
form (FFT). We study these PRTFs in log or dB-scale. Instead of studying the positive
log-scale HRTFs, this study works on the negative log-scale magnitude functions of the
PRTFs, i.e.:

Pi,φ[f ] = −20 log10(|Pi,φ[f ]|). (4.1)

The purpose of studying the negative of the log magnitude functions instead of study-
ing the positives is that this way, we turn the notches into peaks. Peaks can then be
effectively extracted by finding the local maxima in Pi,φ[f ]. The steps are shown in
Fig. 4.6. To get meaningful results, we also have to make sure that we are considering
just the significant and prominent notches while discarding all those that are not rele-
vant. Furthermore, we do not want to take two peaks which are very, very close to each
other and have the same height. For this purpose, we consider the prominence of the
local maxima as our deciding measure. The prominence describes how much the peak
stands out from the neighboring peaks. For instance, a low isolated peak can be more
prominent than one that is higher but is next to another higher peak and vice-versa.

In the following, we considered those peaks in Pi,φ[f ] that have a prominence greater
than 3dBs. This results in a vector of notch frequencies for each subject i and elevation
angle φ denoted as fi,φ and has values as:

fi,φ = [fi,φ,1, · · · , fi,φ,M ], (4.2)

where Mi,φ denotes the number of relevant peaks (notches) in the negative log-scale
PRTF of ith user for elevation angle φ.

Once we have notch frequency vectors, fi,φ ∈ R1×Mi,φ for all the users and eleva-
tions, we arrange them into the vector fφ, which contains the notch frequencies for all
the users for a single elevation φ, i.e.:

fφ = [f1,φ, f2,φ, · · · , fN,φ] ∈ R1×Mφ , with Mφ =
N∑

i=1

Mi,φ (4.3)

Clustering the notches

The next step of the analysis is to drive the meaningful information from these fre-
quency vectors fφ. The findings of a recent study [23], reported that in each PRTF in
CIPIC database up to three main spectral notches can be extracted, and mapped to three
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Figure 4.6: Procedure for extracting notches and notch center frequencies from the PRIRs. The first step
is to find the PRTFs using FFT. The notches are then found by taking the additive inverse of the log
magnitude of the PRTFs and finding the peaks using simple local maxima finding functions. In the
bottom plot the green pointers show the notches considered for this study while the red pointers show
the ones ignored because they lie outside of the perceptually relevant frequency range of 4 to 16 kHz.
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distinctive and prominent pinna contours namely: the helix, anti-helix and outer wall
of the concha or concha rim.

Based on these findings, this study clustered the notch frequencies in vector fφ con-
sisting of Mφ elements using K-means [121] into K = 3 clusters. Where, Mφ =∑N

i=1Mi,φ and N denotes the number of users in the database. At the end of the pro-
cess, each element in fφ will be assigned to a single cluster, whose centroid is the closest
to the actual value of the element.

We evaluate the distance between each element fi,φ,j ∈ fφ and the corresponding
centroid mk,φ as the euclidean distance D(f1,φ,j,mk,φ) = |f1,φ,j −mk,φ|.

The K-means algorithm is initialized by assigning random values to the centroids
mk,φ, k = 1, 2, 3. The algorithm is defined as an iterative two-step process. The details
of each step are provided below.
Step1: The first step is the assignment of each notch frequency to a cluster having
closest centroid and label it with the cluster id of that cluster e.g., 1, 2, or 3. The cluster
labels for the frequencies are found as:

l̂j = argmin
k
{D(fi,φ,j,mk,φ)}, (4.4)

where j = 1, · · · ,Mφ and k = 1, 2, 3. Moreover, a responsibility vector is defined for
each cluster which tell which notches comes under which cluster as:

rk,j =

{
1, if l̂j = k

o, otherwise.
(4.5)

Step2: The second step is to update the centroid for all the clusters. Having the respon-
sibility vectors in hand the new value for the kth centroid is computed as:

mk,φ =

∑M
j=1 rk,jfi,φ,j

Rk

, (4.6)

where Rk denotes the total responsibility of cluster k, and is equal to the number of
data points falling into cluster k. This is mathematically given as:

Rk =
M∑

j=1

rk,j. (4.7)

These two steps keep on repeating until no further changes occur in the cluster centroids
or the responsibility vectors do not change in consecutive iterations. After applying the
K-means algorithm, we obtain the centroids mφ = [m1,φ,m2,φ,m3,φ], corresponding to
helix, anti-helix and outer wall of concha respectively. Moreover, to associate a rele-
vance descriptor to the clustered data, we introduce the cluster spread as the standard
deviation of their elements, i.e. :

σk,φ =

√∑Mφ

j=1 (fi,φ,j −mk,φ)

Rk

(4.8)

4.1.2 Description of Databases

The analysis methodology described in Sec. 4.1.1 is applied to two of the most popular
publicly available HRTF databases. The brief technical details about these databases
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which are necessary to understand this work are given below.
CIPIC Database: CIPIC [14] is a public-domain database of acoustically measured
HRIRs with a high spatial resolution. It contains HRIRs for 45 subjects (27 male, 16
female, and two KEMAR) measured at 1250 different directions around the head of
the subjects. The measurements are done using Golay code as analysis signals, with
a sampling frequency of 44.1kHz. The loudspeakers are mounted on a circular arc of
radius 1m, which is rotated around a fixed listener. The length of each HRIR stored in
the database is 200 samples. For this work, we consider all the HRIRs at azimuth 0◦

and elevations φ between −45◦ and 45◦, with a uniform spacing equal to 5.625◦.
SYMARE Database: SYMARE [51] database was created by a collaborative team of
Sydney University Australia and the University of York England. This database con-
tains acoustically measured HRTFs for 61 users (45 males and 16 females) measured in
393 directions around the head at a distance of 1m, with a non-uniform angular spacing
in elevation for different azimuth angles. Impulse responses are recorded using Golay
codes with a sampling frequency equal to 48kHz. The length of each HRIR is 256
samples. For this work, we consider all the HRIRs at azimuth 0◦ and elevations φ be-
tween −45◦ and 40◦.

4.1.3 Results

After the clustering has been performed on the notch frequencies of the median plane
HRTFs in both databases, we performed two analysis studies. In the first study, we an-
alyzed the notch frequencies and their evolutions for the HRTFs of both left and right
ears separately and compared the results of both databases with each other. While in
the second analysis, we compare the results of the left and right ear HRTFs. Following
is a detailed discussion about the results.

Analysis 1
The HRIRs for the mentioned elevations were retrieved from both the databases, and
PRIRs were extracted. The PRIRs were then transformed to PRTFs by performing a
zero-padded 512-point FFT.

Notch vectors fφ are estimated for each direction φ according to the angular grid
adopted by the database, and notch frequencies are grouped into 3 clusters mk,φ, k =
1, 2, 3, along with their corresponding spread σk,φ using equation 4.8. The results are
presented in figure 4.7. These graphs show the cluster centroids and spread as a func-
tion of the elevation angle φ for the left and right ears of all the subjects in CIPIC
and SYMARE databases for three clusters. The x-axis has the elevation angle varying
from −45◦ to 45◦, while the y-axis shows the mean frequencies of the notch clusters,
the range for the y-axis is set to 4 − 16kHz, which is the frequency range under con-
sideration for this study as is highlighted in the section while performing the notch
extractions.

One thing to be noticed is that in general, all four plots (CIPIC and SYMARE
databases, left and right ears) follow the same patterns. The other thing to notice is
that at φ = −45◦ the value of the mean notch frequency is the same for all four plots
for all three clusters. The centroids for three clusters for all cases lie around 6.5kHz,
10kHz, and 1.4kHz, respectively. Another observation that we want to point out is that
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all the cluster means mk,φ, k = 1, 2, exhibit a monotonically increasing behavior as a
function of φ, despite some slight irregularities. These findings are consistent with the
findings of previous studies, such as [13, 23, 42]. These irregularities are more promi-
nent in the CIPIC database, especially for cluster 2. On the other hand, m3,φ results to
be almost constant in all the four considered cases. In a more general way, we observe
that the slope of the clusters mk,φ, k = 1, 2, 3, is the highest for m1,φ and almost zero
for m3,φ. This behavior suggests that the pinna reflection causing a notch in the range
ofm1,φ might be the most informative one for elevation perception in the median plane.

In the case of data extracted from the CIPIC database, we observe a peak around
φ = 30◦ for the left ear, while the right ear exhibits a peak around φ = 40◦. How-
ever, in the SYMARE database, these irregularities are very mild and are present in
just the right ear, while the evolution of the notch frequencies for the left ear is very
smooth. Another thing worth noticing is that although we did not use any complex
notch tracking scheme or method to group the notches as was used by [23] but still the
notch evolution plots or notch tracks does not intersect or cross each other. Not just the
tracks but also the spread for one track does not come into the range of the spread of
the other track. In the next study, we compare the results for the left ear with the right
ear.

Analysis 2
In the second analysis setup, we compare the results obtained for left ears with the ones
obtained for the right ears for both databases. First, we convert the frequency centroids
mk,φ to the Bark scale [122] and then we compute their Euclidean distance between
the centroids of one ear with the other. In the following we denote by dk,φ the distance
between the centroid of left and right ears for the kth cluster and elevation φ. Results
are reported in Figure 4.8.

It can be observed in both CIPIC and SYMARE, the maximum value for the distance
between clusters is less than 0.5Bark for all the considered cases and for all the eleva-
tions. In the case of SYMARE, database distances have smaller values and a smoother
distribution. In contrast, in the CIPIC database, distances are, in general, greater and
less regular as a function of φ. We would like to point out that the differences exhibit
minima in the horizontal plane (φ = 0◦) in all the considered cases and for all the clus-
ters, suggesting that binaural cues are not relevant in the frontal image creation. On the
other hand, it can be observed that the distances are greater moving away from the hor-
izontal plane; this behavior suggests that both monaural and binaural cues are relevant
for elevation perception in the median plane. This is something contrary to the original
findings of many studies. Another possible reason for having these differences is that
although the left and right ears of different subjects are almost similar, they are not
always symmetric. These results show that the subjects in the SYMARE database has
relatively better symmetry in their left and right ears and head shapes than CIPIC. Or
the measurement facilities for SYMARE are more symmetric in terms of loudspeaker
positions than CIPIC.
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Figure 4.7: Cluster centroids along with cluster standard deviation or spread as a function of the eleva-
tion angles in median plane HRTFs.

86



4.2. Weighted Sparse Representation

Figure 4.8: Distance between the centroids for the left and right ears as a function of elevations for
median plane HRTFs.

4.2 Weighted Sparse Representation

Recently a sparse representation based HRTF personalization method is proposed in [28].
This method treats the problem of HRTF personalization as finding the sparse represen-
tation. This approach applies an extreme assumption that the magnitude of an HRTF
can be described by the same sparse linear representation as to the anthropometric fea-
tures. Based on this assumption, HRTFs for a new subject, which is not present in the
database, can be synthesized using the data in the database by sparse modeling. The
results show that this method can improve the personalization of HRTFs and provide
good results compared to database matching. Later [123], provided an overview of dif-
ferent post and preprocessing approaches, which can enhance the performance of the
sparse representation based HRTF personalization.

Although these approaches [28, 123] provide a very nice performance, there is a
problem with these approaches. All these approaches consider that all anthropometric
parameters are equally important or relevant for HRTF personalization. However, past
studies suggest that it is not the case. As Sec. 2.1.1, highlights the ears are more impor-
tant for the complex feature generation in the HRTFs when compared to head and torso.
This demands the inclusion of the relevance of each of the anthropometric parameters
while calculating the sparse modeling. Following these lines, this study proposed an
HRTF personalization method based on a weighted sparse representation of anthropo-
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metric parameters. This also includes the findings of [123] and use the best pre- and
postprocessing methods for sparse representation reported in this study. Another differ-
ence between our work and previously existing sparse representation based solutions is
that we create a separate sparse model for both ears. The following are the details of
this work.

4.2.1 Methodology

Sparse representation based HRTF personalization scheme treats the problem of mag-
nitude response synthesis of the personalized HRTF by finding a sparse representation
of the test subject’s anthropometric features, i.e finding the linear combinations of the
given anthropometric features which can generate the anthropometric features of the
new subject. The approach is based on two strong assumptions:

• the HRTFs can be represented in the same sparse representation i.e., linear com-
binations as the anthropometric parameter vectors.

• The given training data set is rich enough to capture the anthropometric feature
vector of any subject in the world.

Fig. 4.9 provides an abstract view on how this approach works.

Figure 4.9: The figure shows an HRTF personalization techniques based on sparse representation.

In this work, we modify this simple approach to include the weights for every an-
thropometric feature and create a weighted-sparse representation based approach. Un-
like the previous approaches which use a huge (96) number of anthropometric features
and generate a single sparse representation for both ears, our approach uses fewer pa-
rameters. It also generates a separate sparse representation for both ears. The decision
of using separate sparse representation for both ears is based on the findings made in
Fig. 4.8, which shows that the HRTFs of left and right ears can be different and from the
Fig. 4.10, which shows the mean of the absolute differences for few of the anthropo-
metric features for ear shape. For being convinced to use the same sparse representation
for both ears, the measurements for both ears must be the same, showing zero differ-
ence between the anthropometric parameters of the left and right ears. However, as
can be seen from the presented figure, this is not the case. On average, the difference
between left and right ear parameters can be as much as 10%, while the average of
maximum differences is up to 30%. This suggests that different sparse representation
solution for left and right ears is to be found and the HRTFs for right and left ears are
different and not symmetric. Motivated from this, in this work, we used separate sparse
representations for the magnitude synthesis of the left and right ears.
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Figure 4.10: The mean of the absolute difference between the anthropometric parameters of left and
right ears of 36 subjects in the CIPIC database. This shows that the ear shapes are not symmetric
and there is difference between the size of the ear shapes.

The contributions of this work are: 1) Computation of the weights for different an-
thropometric parameters given in the CIPIC database, using a partially on-off method
proposed in [15]. 2) Using these weights and proposing a weighted sparse represen-
tation. This approach, unlike the previous approaches based on sparse representa-
tion, considers the relevance of different anthropometric parameters through the found
weights during the process of finding the sparse vector. 3) Providing an objective
comparison of the results of the weighted sparse representation and different database
matching approaches. Fig. 4.11 shows the block diagram of this work:

Database
All the experimentation conducted for this work is conducted on CIPIC database [14].
In the publicly available version, it contains acoustically measured HRIRs for 45 sub-
jects for 1250 directions. In elevation plane it has a 50 angles starting from −45◦ and
going to 230.625◦, with a uniform step of 6.525◦. While the steps in azimuth plane are
not uniform. The angles are coarser with larger steps towards the ears while are more
dense with smaller steps in other directions. The 25 azimuthal angles available in the
database are:

θ = [−80,−65,−55,−45,−40,−35, · · · , 35, 40, 45, 55, 65, 80] .

The database also comes with 27 anthropometric measurements of the subjects as
shown in Fig. 4.13. Although the database contains the HRIRs for 45 subjects it only
has the anthropometric data for 35 subjects. This study used only these subjects.
Anthropometric Feature Selection

Following the work of [15], this work suggests using only the 17 easily gatherable
anthropometric features out of the 27 anthropometric parameters provided in CIPIC
(12 for the head and torso and 7 for the pinna). Fig. 4.13 illustrates a simple setup to
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Figure 4.11: Block Diagram of HRTF Personalization using weighted sparse representation of anthro-
pometric features.

Figure 4.12: Measurement points are relative to the head of the listener in the CIPIC database. Image
taken from [14]
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Symbol Anthropometric Feature Symbol Anthropometric Feature
x1 head width d1 cavum concha height
x2 head height d2 cymba concha height
x3 head depth d3 concha width
x4 pinna offset down d4 fossa height
x5 pinna offset back d5 pinna height
x6 neck width d6 pinna width
x7 neck height d7 intertragal incisure width
x8 neck depth
x9 torso top width
x10 torso top height
x11 torso top depth
x12 shoulder width

Table 4.1: Easily gatherable anthropometric features. According to the studies presented in [15] these
19 anthropometric features can be measured from three scaled pictures.

acquire these anthropometric parameters using three scaled images. These parameters,
which can be obtained from three images, are listed in Tab. 4.1. Note that this approach
results in 19 features, but x5 (pinna offset back) is not easy to measure as it highly
depends on the flare angle of the pinna, and x7 (neck height) strongly depends on the
posture of the subject while the photograph is captured. Hence we ignore these two
features out of 19 and use only the remaining 17 features for our study. Further details
on acquiring anthropometric parameters from these three profiles are out of the scope
of this work and can be found in [15].

Calculation of weights for anthropometric features

This section highlights how the weights for the anthropometric parameters are calcu-
lated. This work calculates the relevance metric or weights for given anthropometric
parameters using the approach described in [15]. The process of weight calculation is
shown in the block diagram presented in Fig. 4.14.

Using the anthropometric parameters in their original form is not very meaningful
as different anthropometric features lie in different ranges and scales. For example, the
height of the head is much larger than the height of the cavum concha. Hence to make
these features meaningful for calculating the sparse representation, these features are
normalized. This normalization process brings all the values on a common scale. This
work uses min-max normalization to do so. For a given vector of random values x the
min-max normalized vector xN is determined as:

xN =
x−min(x)

max(x)−min(x)
. (4.9)

All the min-max normalized anthropometric parameters are arrange in an anthropome-
try matrix A, for all the listeners as:

A =




a1,1 a1,2 · · · a1,25

a2,1 a2,2 · · · a2,25
...

... . . . ...
a35,1 a35,2 · · · a35,25




(4.10)
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(a) Front View

(b) Side View (c) Pinna View

Figure 4.13: Set of anthropometric features that can be measured using three images. The above figures
show a) Front view, b) side view and c) zoomed in pinna view. Image reprinted from [15]

92



4.2. Weighted Sparse Representation

where, ai,j denotes the jth anthropometric parameter for ith listener. Using the min-
max normalization method provided in equation 4.9, the ith column in A denoted by
A{,i} is normalized as:

AN,i =
A{,i} −min(A{,i})

max(A{,i})−min(A{,i})
, (4.11)

whereAN{,i} denotes the normalized column vector containing the normalized ith anthro-
pometric parameter for all listeners. The normalized anthropometric parameter matrix
is denoted as AN .

We assume that if an anthropometric parameter is relevant to the HRTF personaliza-
tion process, two listeners having the same or closely matching values for that particular
anthropometric parameter must have relatively good agreement between their HRTFs
as well. To put this theory to test, this work uses an extensive search for relevance
metrics based on a partially on-off approach. This means that a set of 225 − 1 different
combinations is tried, where at any given time, different anthropometric parameters are
controlled by 25 on-off switches. The reason for subtracting 1 is the exclusion of the
case where all parameters are off. A mismatch matrix M is computed for each of these
combinations, which contains the difference between the anthropometric parameters
from the anthropometric parameters of all other listeners. The kth iteration of M is
calculated as:

M (i,j,k) =

∥∥∥∥∥
25∑

a=1

(ANi,a,k − ANj,a,k)
∥∥∥∥∥ ∀k = 1, 2, · · · , 225 − 1 (4.12)

where M (i,j,k) corresponds to the mismatch between anthropometric parameters of ith
and jth listener in CIPIC in the kth partial on-off combination. In total there will be
225 − 1 iterations for this process each resulting in a matrix of size 35× 35.

Next, we calculated the global average spectral distortion (GASD) matrix of HRTFs,
from each listener to all other listeners as:

SD(Hi, Hj) =

√√√√ 1

D

1

F

D∑

d=1

F∑

f=1

(
20 log10

∥∥H(i,d)(f)
∥∥

∥∥H(j,d)(f)
∥∥
)2

, (4.13)

where H(i,d)(f) and H(j,d)(f) correspond to the HRTF of ith and the jth subject in
direction d. F denotes the number of frequency bins. As we performed 256 point FFT,
the value of F in our case is 128. D is number of directions for which HRTFs are
available for and is equal to 1250. As we have 35 listeners GASD matrix will be of
size 35× 35 matrix of SD.

To see which combination is good for a given subject, we used Pearson’s correlation
between the GASD and M for all possible 225 − 1 combinations of partial on-off
anthropometric parameters as follows:

ρ(i,k) = corr

(
M (i,.,k), SDi×35

)
, (4.14)

where ρ(i,k) corresponds to the Pearson’s correlation coefficient of the ith subject in the
kth combination, andM (i,.,k) represents a column vector of the anthropometric distance
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Figure 4.14: Block Diagram for weight calculation procedure.

between subject i and all other subjects for k − th combination. We are looking for
a combination that results in a maximum value for this correlation. This combination
is selected as the best combination for the given subject i. Once we have the best
combination for all the subjects, the weight vector can be calculated by dividing the
number of occurrences of any given anthropometric parameter in different cases with
the total number of combinations which is 35 as we have 35 subjects:

W (n) =
t(n)

35
, (4.15)

where W (n) corresponds to weight of nth anthropometric feature. tn is number of
times of nth anthropometric parameter appeared in the best combinations for different
subjects.

4.2.2 Preprocessing for anthropometric features and HRTFs for Sparse Repre-
sentation

A recent study [15], investigated the effects of different preprocessing and postprocess-
ing methods on the performance of sparse representation based HRTF personalization.
The results suggest that using the standard normalization for the anthropometric param-
eters results in a better performance. Consider all the anthropometric parameters for the
listeners in the dataset are given byA as shown in Eq. 4.10, and the anthropometric fea-
tures for a new user are given as Ao, a row vector. The superset of the anthropometric
parameters is created by concatenating the matrix A with vector Ao as:

Ad =

[
A

Ao

]
(4.16)

The standard normalized anthropometric parameter matrix As and standard normalized
test listeners anthropometric parameter vector At are then found as:

As =
A−mean[Ad]

std[Ad]
, &

At =
A◦ −mean[Ad]

std[Ad]
.

(4.17)
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The preprocessing study also suggested that for acoustic data when the dB-scale
magnitude responses of HRTFs are used instead of using the time domain HRIRs, the
performance is better. So the HRTFs from the HRIR data are calculated applying 256
points Fast Fourier Transform (FFT) and dB-scale magnitudes are then obtained as:

H[dB] = 20 log10 |H|, (4.18)

where |H|, denotes the magnitude response of the HRTF H .

4.2.3 Sparse representation of anthropometric features

Having the normalized anthropometric parameter matrix of the training set and test
listener, the sparse representation based modeling of test subject’s anthropometry is
obtained as:

At ≈ Atsβ (4.19)
where As is the standard score of the anthropometric parameters A in the database.

In the sparse vector β = [β1, β2, · · · , βS]T , each element corresponds to the weight
of a subject in the linear superposition, where S is the number of subjects in training
set. Thus, the problem of looking for an optimal sparse vector can be considered as a
minimization problem:

β = argmin
β

( ∥∥(At − ATs β)TW
∥∥2
2

+ λ ‖β‖
)
, s.t. β(i) ≥ 0, (4.20)

where W represents the weights of different anthropometric parameters. In line with
[15], we added a non-negative constraint on β e.g. βi ≥ 0. Where the regularization
parameter λ of this minimization problem is a non-negative parameter.

To ensure that the synthesizing process has consistent amplitudes at the output, as
in the database, we normalized the values of β vector such that the sum of the β vector
is equal to 1, such that:

βN =
β∑25

s=1 β
(s)
. (4.21)

This changes the process of HRTF synthesis to a weighting average.

4.2.4 HRTF Synthesis

Once normalized sparse vector βm is obtained, this can directly be applied to the log-
scale HRTF data H[dB] in the database:

Ĥ[dB] = βNH[dB]. (4.22)

However, the new synthesized HRTF Ĥ[dB] is expressed in dBs. The magnitude re-
sponse of the HRTFs is found as:

Ĥ = 10
Ĥ[dB]

20 . (4.23)

4.2.5 Experiments

The performance of the proposed approach is evaluated by applying the “leave one
out cross-validation” approach proposed in [124]. Each of the 35 subjects is taken out
one-by-one as the test subject, and the remaining subset is considered as the training
set.
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Sparse representation using Left Ear Right Ear Average
17 parameters (weighted) 5.5235 5.5351 5.5293
17 parameters (traditional) 5.6298 5.6359 5.6328
27 parameters (traditional) 5.5770 5.5705 5.5738

Table 4.2: Results of sparse representation based HRTF personalization methods for traditional and
weighted cases. This table shows that weighted sparse representation provides a better performance
compared to the traditional sparse representation even when fewer number of anthropometric pa-
rameters are used.

Evaluation Criteria

For evaluating the difference between synthesized HRTFs Ĥ and the original HRTFs
H of the test subject, we employed a widely used error metric spectral distortion as our
evaluation criteria.

SD(d)(H, , Ĥ) =

√√√√ 1

N

N∑

n=1

(
20 log10

∥∥∥∥∥
H(d)(fn)

Ĥ(d)(fn)

∥∥∥∥∥
)2

(4.24)

where H(d) is the original HRTF in the d-th direction, and Ĥ(d) is the synthesized
HRTF in same direction. N is the number of frequency bins (N = 128). The SD for
all directions is combined as:

SD(H, Ĥ) =

√√√√ 1

D

D∑

d=1

(SD(d)(H, Ĥ))2 [dB], (4.25)

where D is 1250.

Results and discussion

The results of the approach are presented in Tab 4.2, and Tab. 4.3. Tab 4.2 compares the
results of weighted sparse representation based approach with the non-weighted one.
The results show that even when more anthropometric parameters are used traditional
approach can not beat the weighted one.

This study also compared the results of the proposed approach with few of the most
popular database matching personalization methods proposed in [15,102,125]. Further-
more, two baselines are created to understand the performance of database matching
method by creating “Best-baseline”, when the selected HRTF and the individualized
HRTF has the least amount of disagreement in terms of SD and the “Worst-baseline”,
when the selected HRTF and the individualized HRTF has the largest error. These two
baselines define upper and lower limits for any closest matching algorithm. The results
are reported in Tab. 4.3. These results show that none of the closes matching based
approach can outperform the proposed approach.

4.3 Chapter Conlusion

The first study presented in this chapter has provided an analysis methodology to ana-
lyze the evolution of the notch frequencies in the median plane HRTFs in two publicly
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HRTF Personalization Method Left Ear Right Ear Average
Weighted Sparse representation with 17 5.5235 5.5351 5.5293
Closes-match based on Pinna Contours [102] 7.3403 7.3403 7.3403
Closest-match based on anthropometry and PCA [125] 7.6287 7.1844 7.4065
Closest-match based on weighted anthropometry [15] 7.5451 7.2239 7.3845
Closest-match “Best” baseline 6.2306 6.0317 6.1311
Closest-match “Worst” baseline 9.5628 9.0821 9.3324

Table 4.3: Comparison of the results for weighted sparse representation and some of the most popu-
lar closest matching based HRTF personalization techniques. The results show that even for best
baseline, closest match find can not beat the performance of our work.

available databases. In particular, this work describes a technique which extracts the
pinna related notches and their center frequencies from the HRTF data and classifies
them into three clusters. These three clusters correspond to specific contours in the
pinna, namely the helix, antihelix, and outer wall of the concha, respectively. The
results of our approach are validated the proposed with acoustically measured HRTFs
from the CIPIC and SYMARE databases. We also provide a comparative analysis of the
evolution of notch frequencies in the median plane in CIPIC and SYMARE databases
showing the results for both databases side by side. Although the spatial resolution in
the median plane is different for both databases, the results somehow are still identical.
To be more specific, the results show a strong dependency of the notches in the HRTFs
on the elevation angles in the median plane. Moreover, we also studied the clusters in
both databases binaurally by analyzing the differences between the mean of the notch
frequencies for both ears. The results of this analysis revealed that not only monaural
but also binaural cues are essential for elevation perception.

Furthermore, this chapter calculates the importance metric for each of the anthropo-
metric parameters, which provides a measure of their relevance in the HRTF person-
alization method. The calculated importance vector is then used to create a weighted
sparse representation based personalization method for HRTF magnitude responses.
Unlike previous studies, this method requires only 17 anthropometric parameters, which
can all be gathered from three scaled pictures. The evaluation of the approach shows
that this approach outperforms the previous approaches of this kind. The results are
also compared with the existing closest matching based personalization solutions and
suggest that the proposed method can beat any closest matching based personalization
method.
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CHAPTER5
Studying the Morphoacoustic of Affine

Transformations on Ear Shapes

This chapter investigates if the geometric shape variations in the ear shapes and their
corresponding acoustics can be studied independently of the scale, rotation and trans-
lation variations. In order to perform this study a unique database of ear shapes is cre-
ated out of SYMARE database. In this synthetic database all the ear shapes are affine
matched using LDDMM framework to the multi-scale template ear shape calculated
using [17] to have same size, orientation and position. This was the core assumption
of [17] for using the affine matched ear shapes for the creation of morphable models. In
this work we investigate this hypothesis and propose a simple and complete 3D model
with head, ear and torso shapes, in which the ear shapes for individuals has to have
correct shape but are rigid matched to the template ear while the head and torso shapes
of the template are used. We call these 3D models as affine matched models or affine
models. The acoustic transfer functions for the affine models are then computed using
FM-BEM simulations. The detailed and step by step procedure for these BEM sim-
ulations is provided in Sec. 2.3. To the best of the authors knowledge, this dataset is
a unique dataset, one of its own kind created using powerful LDDMM framework to
study the variations in scale, rotation, translation and geometry of the ear shapes. An
outcome of this study and one of the main contribution of this chapter is the this dataset.

The study presented in section 7.2 of Ph.D. thesis [1] could be considered simi-
lar to this study, but our study differs from that study as that study simply used the
affine matched ear for the morphable model creation and did not provide any analysis
on the compensation/correction procedure for these affine transformations. Also, al-
though they studied the acoustic simplifications introduced due to affine matching the
ear shapes, they did that only for six subjects. Another difference is that they analyzed
the differences between only the ear shapes without considering the differences that can
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come from different head and torso shapes. author in that study did not analyzed the
corrections for procedure neither did performed the study for the full database.

Using the synthetic database of affine models and their corresponding acoustics, this
chapter tries to answer following research questions:

• How the acoustic transfer functions of the affine matched ear shapes vary compare
to the acoustic transfer functions of the original ears? If there have been some
simplifications introduced, can we quantify these simplifications?

• Can the introduced simplification, which are the artifacts in the individualized
HRTFs, be corrected or compensated for, through simple frequency scaling (as
proposed by [25]) and rotations of HRTFs?

• If yes, then how to find an optimal scaling for aligning the features of the HRTFs
of affine matched ear shapes for low frequency range (head contributions) and for
high frequency range (ear contributions)?

• How the obtained optimal scaling factors relate to the physical scaling factors to
propose a simple scale and rotation correction approach for future studies, where
optimal scaling factor can be derived simply from head and ear scaling factors?

The results of the studies conducted in this work suggest that the affine matchings of
the ear shape and using same head and torso shapes reduces the inter-subject variations
in the SYMARE population by almost 10%. Furthermore, the size and rotation angles
of the ear and head shapes have mean values which are very close to the values for tem-
plate. The analysis on corrections shows that the simple corrections such as frequency
scale corrections and rotation of the HRTF acoustic surfaces can result in significant
improvements in the matching of the HRTFs of the affine matched ear shapes with the
ones for original ear shapes. Finally an optimal scaling factor search method is pro-
posed which provides three optimal scaling factors for frequency axis, which best align
the HRTF features for:
1) the whole analyzed frequency range, i.e. from 0.2 to 17 kHz,
2) for the head contributed frequency range i.e. upto 5 kHz, and,
3) for ear contributed frequency range for 5-17 kHz.
Finally a simple regression based mapping between the optimal scales and the physical
scales shows that all these three scales can be approximated using the physical head
and ear scales.

The rest of the chapter is arranged as follows: Sec. 5.1 provides a detailed re-
view of the preliminary studies for this conducted in [1]. This background includes
on creating the affine model, extracting and analyzing the scale and rotation informa-
tion from the affine transformation matrices, and analyzing how template sits in the
SYMARE database population, and quantifying the acoustic simplicities introduced by
affine transformations for six subjects. Sec. 5.2 provides a view on the acoustic sim-
plifications achieved for the full database when the HRTFs of the affine models are
studied instead of the HRTFs of original 3D models. Sec. 5.3 provides details on a
simple yet effective method of compensations and corrections to estimate the individ-
ualized HRTF directivity patterns of the original head, torso and ear shapes from the
affine model acoustic data using simply scale factor and rotation matrices of the ear
shapes. Finally, this section discusses the process of selecting an optimal scale and an
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analysis of obtaining this scale factor from simple anthropometric measures such as
head and ear scale factors is provided.

5.1 Background

The inspiration for this work comes from the work presented in [25, 98] originally.
In [25, 98] the investigative studies were proposed which suggest that the differences
amongst the individualized HRTFs can be reduced by simply compensating the scale
differences in the ear shapes. Relying on these studies the authors in [1,17,32] used the
affine matched ear shapes for the creation of the morphable model for the ear shapes
instead of using the original ears. Another motivation for them to prefer the affine
matched ear shapes over the original ear shapes was to simplify the modeling process
for LDDMM and KPCA limiting the variations in the ear shapes only to the shape
variations excluding the size, orientation and translation.

Following these lines authors in [1] affine matched all the ear shapes in the SYMARE
database using the method provided in 2.8. The following section provides some in-
sights to the results of different analyses performed by the past thesis study to compare
the size and rotation of the created template to the other ears in the SYMARE popula-
tion.

5.1.1 Scale Factors and Rotation Angles for Ear Shapes

The scaling factor and rotation angles from the template shape to given ear shape for
subject l to template ear shape can be computed by decomposing the affine transfor-
mation matrix Ml, which contains the information for rotation and scaling to match the
two shapes. The detailed process on the extraction of the scale and rotation information
is provided in Sec. 2.3.1. Here we only report the statistics for the scale factor and
angles. The results are given in the Fig. 5.1.

Figure 5.1: Histogram for the scale factor from the template ear to 62 ear shapes.

Note that, as per the results presented in this figure, 62% of the subjects are smaller
than template ear while 38% are larger. The mean and median of scale factors are 0.97
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and 0.96 respectively, both of which are very close to unity. This shows that template
shape indeed is a good representative of the population.

The stats for the rotation information are presented in Fig. 5.2. Again these stats
show that the mean and median value for the angles θX , θY , and θZ are close to 0◦,
which shows template ear shapes orientation represents a nice representative of the
average of the ear shape population. These scale factors and rotation angles are used
to correct and compensate for the effects of affine transformations and to retrieve the
HRTF directivity patterns of original shapes.

5.1.2 Scale Factor for Head Shapes

Head shapes are much simpler compared to the ear shapes, so the scale factors for the
head shapes was directly calculated by measuring the head width, depth and height. To
do so author of [1] created a set of landmark points on the head, torso and ear models
as were created by [103]. These landmark points are shown in Fig. 5.3.

The three dimensions for the head, namely, head-height, head-width, and head-
depth, can be calculated using these points. Where the head-height, head-width and
head-depth are given by the Euclidean distances between P28 & P30, P2 & P15 and
P27 &P31 respectively. The scale factor for these three measures are then calculated by
taking the ratio of the measures of the subjects with the measures of the template ear
shape, as stated below in Eq. 5.1:

SF l
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=

√
||P l

28 − P l
30||2

||P TMS
28 − P TMS

30 ||2

SF l
HH

=
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||P l
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30||2
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28 − P TMS

30 ||2

SF l
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=

√
||P l
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||P TMS
28 − P TMS

30 ||2

(5.1)

where superscript l denotes the subject id. The distribution of three scale factor for 62
subjects are given in Fig. 5.4. These figures show that width and height of the template
head are very close to the average of head width and height of the population while the
depth of template head is not average. In fact it is 10% smaller than the average of the
population.

The analysis provided in these studies provide us with a deep insight on the physical
sizes of template with respect to the sizes of the population, it would be really nice if
we could have a single scale factor for the head shape instead of three. To do so in this
study we rely on the findings of a well known study [126], which models the head shape
using a simple sphere shape. This study performs some experiments and suggest that
the effective radius of the head can be calculated using three head measures, namely
head-width, head-depth and head-height through an expression as follows:

reff = 0.51
HW

2
+ 0.019

HH

2
+ 0.18

HD

2
+ 3.2(cm) (5.2)

In order to find a single scale for the head size we calculate the effective radius of all
the subjects and the template head and then calculate the scale factor of the head as a

102



5.1. Background

Figure 5.2: Histogram for the Tait Bryan angles θx, θy , and θz . Note that these angles are computed
according to z-axis, then y-axis, and then z-axis.
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ratio of the effective radius of the subjects and radius of the template.

SFH =
rleff
rTeff

(5.3)

The analysis of the scale factor of the head is given below in the Fig. 5.5. This figure
shows that the mean of the scale factor is close to 1.

Figure 5.3: Land mark points on the template ear and head shape used for anthropometric measure-
ments. Similar points were measured for subjects in the SYMARE database. Points P1-P13 are for
the left ear shape, points P14-P26 are for the right ear shape, and points P27-P33 are for the head
shape. (Picture taken from [1])
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5.1. Background

Figure 5.4: Histogram for the scale factors for head-height, head-width, and head-depth, along with the
µ, median, µ− σ and µ+ σ values.

The scale factors and rotation angles extracted in these studies are later used to
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Figure 5.5: Histogram for the scale factors for head, along with the µ, median, µ−σ and µ+σ values.

correct and compensate for the effects of the affine transformations on the ear shapes
and using of template head and torso shape instead of using original ones.

5.1.3 Attaching Affine Matched Ears to the Template Head and Torso

Once all the ear shapes are affine matched to template ear shape, their acoustic transfer
functions can be calculated using BEM by attaching them to head and torso shapes.
As the main aim of this chapter is to study the morphoacoustic properties of the ear
shapes, keeping any other kind of variations in both shape and acoustics minimum, the
affine matched ear shapes for all the subjects were placed on the same template head
and torso shape. This section describes how the affine matched ears are attached to the
template head and torso shape using the LDDMM framework. These head, torso, and
ear shapes are called as the affine models for the subjects. The steps to attach the affine
matched ear shapes to the template head, and torso using the LDDMM framework are
provided in Algo. 6.

Algorithm 6 Attaching affine matched subject ears on template head and torso

inputs: HTETemp, El, ETemp, σV , σW .
outputs: HTTempEAMl
EAMl ← RM(El, ETemp), will be used later for the corrections.
αAMl (t)←M(ET emp,E

AM
l , σV , σW )

EAMl ← F(ETemp, α
AM
l (t))

HTTempE
AM
l ← F(HTETemp, α

AM
l (t))

First the ear shape for subject l, denoted by El is affine matched to the multi-scale
template ear denoted by ETemp using the approach described in Sec. 2.8. The affine
matching process returns a shape denoted by EAM

l which is matched to the template
ear in size, orientation and center of mass position, along with the roto-scale matrix Ml

and translation vector bl. In the next step the template ear ETemp is mapped to the affine
matched ear EAM

l using LDDMM. This process returns the momentum vectors αl(t),
describing how each of the vertices of template are are moved to new positions to match
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the shape with the affine matched ear at different time steps t. Having these momentum
vectors and the template ear shape in hand one can easily trace all the matching process
for the vertices in template ear to the affine matched ear using the flow function of
LDDMM framework. A geodesic flow is then applied on the template HTETemp, head
and torso shape through the initial momentum vectors which will provide us with head
torso shape of template with an affine matched ear shape of subject l replacing the
template ear. This end shape is denoted as HTTempEAM

l . This shape now can be used
to run the FM-BEM simulations.

These affine models are unique and very special. By using the template head and
torso shape for all the subjects, all the inter-subject variations due to different head and
torso shapes are eliminated. While the ear scale, rotation, and position variations are
removed by affine matching all the subjects to template ear shape. This leaves in the
database the only variations due to the geometric shape variations of the ear shapes. To
the best of the author’s knowledge, this attribute of this work and the dataset produced
as a result are unique, and no work has ever attempted this before. This is one of the
biggest contributions of this study.

The transfer functions for these affine modeled shapes are then calculated using the
process described in Sec. 2.3.

5.2 Acoustic Simplification introduced by Affine Model

One of the counter product of creating the affine models is the simplifications of the
acoustics of the database. This section pursues an analytical study to answer the first
research question of the chapter, i.e. quantification of the simplifications achieved by
using the affine models instead of using the original head, ear and torso shapes. Fur-
thermore, this section also provides some basis insights on how relevant the shape vs
right scale, or rotation are, as the studies in [25], suggest that simple frequency scaling
can provide a great way of HRTF personalization. This section critically analyse these
claims.

Authors in [1] also studied the simplifications introduced due to the affine transfor-
mations for six subjects in section 7.2 of the study. However, there are two differences
in this work compared to their work. The first difference is that while studying the
simplifications they compared the acoustic responses of the affine model for six sub-
jects to the normal ears translated to template position and put on the template head and
torso. In other words for them both the original and affine transformed ear shapes were
placed on the template head and torso ears, which simplify the problem. While in our
study we are comparing the acoustic transfer functions of the original head, torso and
ear shapes with the acoustic transfer functions for the affine models. As the final aim
of this study is to see if we can compensate the process and obtain the original HRTF
of the listener, i.e. when original head, torso and ear shapes are available. The second
difference is that they analysed the variations for just six subjects while in this study
we do this analysis for the full database of 62 subjects. Otherwise the used method to
quantify the simplifications is the same.

As we have 62 (SYMARE database have only 61 subjects, but internally we have
62 subjects, the 62nd subject was not added in the database as we do not have the
acoustically measured data for this subject) ear shapes in total in SYMARE database,
pairing them up in all possible combinations we get C62

2 = 1891, combinations in total.
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The acoustic differences or similarities were calculated between all pairs when affine
matched vs non-affine matched or original shapes. More specifically we compared the
acoustic responses of the affine-matched and original shapes, i.e. in real SYMARE
database and in synthetic and simplified SYMARE database.

To calculate the simplifications in the HRTFs this work uses the same method as
was used by [1]. We use a distance measure called standard deviation of spectral dif-
ferences (SDS). SDS provides the standard deviation of the spectral difference between
the acoustic responses of two ear shapes in all frequencies for a given direction i, de-
noted by θi, φi. The SDS measure between the acoustical responses of two shapes S1

and S2 is denoted by VS1,S2 and is given by:

xn = HS1(fn, θi, φi)−HS2(fn, θi, φi)

un =
1

N

N∑

n=1

(xn)

VS1,S2(HS1(fn, θi, φi), HS2(fn, θi, φi)) =

√√√√ 1

N

N∑

n=1

(xn − un)2

(5.4)

The function VS1,S2 in equation 5.4 is the standard deviation of the difference between
the HRTFs for the two subjects and is calculated over a range of discrete frequencies
fn for the given direction i, denoted by θi, φi. We can also define a global measure as
mean SDS measure which is useful to find the overall acoustical quality of matching
between the two shapes as,

V̄S1,S2 =
1

M

M∑

i=1

VS1,S2(HS1(fn, θi, φi), HS2(fn, θi, φi)), (5.5)

where M , denotes the total number of directions. Note this measure is different from
the measure used by [25] as this doesn’t apply any preprocessing step to convert the
linear frequency range to equivalent frequency bands (ERBs) on the HRTF data, as
well as it has a unit of dB unlike the measure used by [25], which has units in dB2.
The sample plot of SDS is given in Fig. 5.6.

The SDS of 1891 pairs is calculated and the histogram of the mean SDS for all these
pairs is given below in Fig. 5.7. Fig. 5.7a, plots the histogram of the SDS for all the
pairs when they are in original condition, i.e. non-affine matched ear shapes on the
original head and torso. While Fig.5.7b show that for the HRTFs produced from the
BEM simulations ran over the meshes obtained from affine models for the same ear
shapes. Finally the Fig. 5.7c, shows the histogram for the ratios of the two. The results
show that almost 10% reduction in the variation in terms of mean SDS is observed
when the affine models are used.

The results for six subjects calculated by [1] are provided in Fig. 5.8. The results
provided in this figure are almost same as the results obtained by us. The slight differ-
ence could be due to the fact that the study in [1] compared the transfer functions of
the original and affine matched ears both put at the template head and torso while we
compared the differences between the original and affine ears when original ears are
put on the original head and torso shapes.
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Figure 5.6: A graph for function V between two subjects S1 and S2 is presented in this figure. The green
crosses point the directions for maximum values.

(a) NonAM (b) AM

(c) Ratio

Figure 5.7: The histograms of the SDS between every pair in the database are plotted when the a)Non
affine matched (original) 3D head, ear and torso shapes are used, b) When affine models of the
subjects are used, c) the ratio of a) and b).
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Figure 5.8: The histograms of the SDS between six pairs in the database are plotted when the a)Non
affine matched (original) 3D head, ear and torso shapes are used, b) When affine models of the
subjects are used, c) the ratio of a) and b). Image taken from [1].
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The results presented in these two figures refute the claims made in [25], that the
scale corrections only could be very useful in terms of personalization of HRTFs. These
results clearly suggest that although the scaling and rotation matching does provide
some sort of personalization, but the amount of provided personalization could account
for only a small amount of total personalization possible. This indirectly suggests that
the main contributors in the personalization of the HRTFs are the morphological fea-
tures defining the shape of the ear not the scale and rotation.

5.3 Studying the Corrections and Compensations for Affine Matching

This section is the main section of this chapter and answers the last three research
questions of the chapter. Which are

• Can the artifacts introduced in the process of affine matching and using the same
head, torso, and ear shapes be corrected through simple frequency scaling (as
proposed by [25]) and rotation of HRTFs?

• If yes, then how to find an optimal scaling for aligning the features of the HRTFs
of affine matched ear shapes for low-frequency range (head contributions) and for
high-frequency range (ear contributions)?

• How the obtained optimal scaling factors relate to the physical scaling factors to
propose a simple scale and rotation correction approach for future studies, where
optimal scaling factor can be derived simply from the head and ear scaling factors?

This work starts by creating an initial hypothesis on the basis of the work presented
in [25], which suggests that the scaling differences in the shape corresponding to a scal-
ing of the frequency axis. Knowing the scale in one space can help to fix the scale in
another. However, the work presented here is different from that work in [25] in two
main aspects.
1) The previous work studied the effects of the scaling factor between two subjects,
which have a different head, ear, and torso shapes. However, in this thesis work, a
unique dataset is created to study the effects of affine transformations of the same sub-
jects, thanks to the powerful LDDMM framework to enable this work, this is a unique
and novel work. 2) The second difference between the work presented in this thesis
and Middlebrooks’ work is that in this work, we run a simple simulation to identify
the frequency regions which are affected by scaling of the head only, vs. the regions
which are affected by the scaling of ears only. This helps us understand the frequency
ranges to be scaled for head scaling and for ear scaling. Following these findings this
study analyses the HRTFs for the frequency range from 0.2-17 kHz range to estimate
three optimal scales, a) the optimal scale which matches the whole frequency range
from 0.2-17 kHz, b) optimal scale which matches the frequency ranges for head, i.e.,
up to 5 kHz, c) the optimal scale which best matches the ear dependent frequencies,
i.e., from 5-17kHz. The details of the process are given below. Finally, just like [25],
we create a mapping between the obtained optimal scales and the physical scales using
regression.
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5.3.1 Understanding Head and Ear Scale Contributions

This section describes a preliminary study conducted to understand the contributions
of head and ear scaling as a function of frequency. These studies are conducted on
subject 55 in the SYMARE database as this subject has a very large head compared to
the template head, while the size of the ear is the same as the size of the template ear.
Three 3D models are created using the LDDMM framework: (i) Affine model of sub-
ject 55, i.e., actual ear shapes from the SYMARE database that are affine transformed to
the template ear shapes using the affine matching process explained in Sec. 2.8 and at-
tached on the template head. This mode is referred asHTEAM ; (ii) Affine-transformed
ear shapes on the scaled template head, HTSEAM . The head is scaled with the scale
factor corresponding to the biggest head in the dataset, which is 1.11 times or 11%
larger than the template head. The process of calculating the scale factor is described
in Sec. 5.1.2. The scale factor for the head is denoted by ξH ; and, finally (iii) HTEAc,
which are the actual ear shapes attached the template head and torso shape.

The scale factor ξE and the rotation transformation T (Rx,Ry,Rz) is obtained by
affine matching from EAM to EAc as described in Sec. 5.1.1. Here, ξE is the ratio of
the size of the actual ear to the size of the affine-transformed ear. Rx, Ry and Rz are
extrinsic rotation angles along the x, y and z axis. The x axis lies in the horizontal
plane from the center of the head towards the nose tip. The y axis passes through the
ear canals, and the z axis points upwards (see Figure 5.9). (i) and (iii) use a similar pro-
cedure to that of described in Sec. 5.1.3 to attach ears onto the template head and torso.
Here in this section, only the procedure of generating the shape for (ii) is described,
i.e., the scaled head and torso shape with affine matched ear shape.

To generate HTSEAf , the affine aligned ears EAf and the template ear E scaled
with ξH are matched. The momentum vectors calculated are:

{αn(t)}0≤t≤11≤n≤N = M (ξH · E,EAf ) . (5.6)

Next, the flow of diffeomorphisms is applied to the template ear, head and torso
HTE which is scaled by ξH = 1.11:

HTSEAf = F
(
ξH · (HTE), {αn(t)}0≤t≤11≤n≤N

)
. (5.7)

As a final result the affine matched ear shape EAM is smoothly attached to the scaled
head and torso shape as is shown in Figure 5.9.

Once these shapes are created the HRTFs for these shapes were then calculated using
Coustyx FM-BEM simulations as described in Sec. 2.3. One thing to be noted is that
in this section we are using only the directional transfer functions DTFs, by removing
the common transfer function CTFs (average of the HRTFs) from these HRTFs. To
analyse the influence of scaling the head, DHTEAf

and DHTSEAf
were compared for

four directions in the medium plane of azimuth, elevation (0◦, 45◦) and (0◦,−45◦) in
front of the head and (180◦, 45◦) and (180◦,−45◦) at the back. The results are shown in
Fig. 5.10, which shows the DTF data for (a) (45◦, 0◦), (b) (−45◦, 0◦), (c) (−45◦, 180◦)
and (d) (−45◦, 180◦); directions. In every subfigure from top to bottom we have the
DTFs of affine transformed ear on the template head; affine transformed ear on the
scaled template head; scale corrected ear on the template head and actual ear on the
template head. DHTEAf

are corrected to provide us D̃SC , which are calculated by
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     (a)                                                                       (b) 

Figure 5.9: This figure shows two of the models generated to study the contributions of the head and ear
scalings. Showing two shapes in the experiment for subject 55, (a) template head and torso shape
with affine matched ear (affine model for subject 55) (b) affine matched ear on a scaled template head
and torso.

simply scaling the frequency axis of the DTFs to compensate for the affine matching.
We first translated the coordinate system from the centre of the head to the ear canal.
Then, D̃SC , the DTFs after applying the scale correction were calculated:

D̃SC(f, θ, φ) = DHTEAf
(ξE · f, θ, φ). (5.8)

where f is the frequency. Furthermore a simple rotation correction was applied to
obtain D̃SRC :

D̃SRC(f, θ, φ) = D̃SC(f, θ, φ) ◦ T (Rx, Ry,Rz), (5.9)

where T (Rx, Ry, Rz) is the same rotation transformation that was applied to the ear.
To demonstrate the performance of the scale correction, DTFs for some directions for
subject 55 (ξE = 0.94) appear in the last two rows in Figure 5.10 These results clearly
show two things.

1. The scaling of the head has no effect on the HRTFs of the higher frequencies and
scale on the frequency axis for lower frequency region, namely up to 4-5 kHz. For
example, the notch labeled as N2_i stays unchanged in its location for both cases
which have scaled or normal head and torso shape.

2. The ear scaling doesn’t work on the lower frequency content. In fact, it makes the
matching worse by scaling the frequency axis in this region. However, it manages
to align the frequency content in the high-frequency region i.e., ≥5 kHz. This
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Figure 5.10: DTFs on the medium plane of subject 055 for (a) (45◦, 0◦), (b) (−45◦, 0◦), (c) (−45◦, 180◦)
and (d) (−45◦, 180◦); from top to bottom, each figures shows DTFs of affine transformed ear on
the template head; affine transformed ear on the scaled template head; scale corrected ear on the
template head and actual ear on the template head.

clearly is against the claims made by Middlebrooks in his study, who reported
formula for the optimal scaling suggesting the contribution of head scales to be
higher than of the ear scale.

These two findings suggest that although single frequency scaling corresponding to the
ear scaling can perform very well in the higher frequency content, for lower frequen-
cies, head scaling is to be used, unlike using a single scaling as proposed by [25]. In the
following section, we provide a simple analysis to compute the optimal scaling for the
affine models for all the subjects in the SYMARE population. Furthermore, it presents
a simple mapping inferred using simple linear regression, which will let us compute the
optimal scaling for two frequency ranges based on the simple anthropometric measure.

5.3.2 Finding an Optimum Scaling Factor for Frequency Axis

Following the findings of the above-mentioned experiment, the aim of this section is to
study the optimal frequency axis scaling, which best matches the affine models HRTFs
to the original HRTFs by studying only the acoustic data. For the demonstration pur-
pose this section uses four subjects from SYMARE namely subject 21(has almost same
head and ear scale), subject 23(have the largest ears in the population with slightly large
head than of the template), subject 37 (has smaller ears while the head size is almost
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Subject number Head Scale Factor Ear Scale Factor
21 87.70 88.00
23 1.06 1.15
37 1.01 87.81
56 1.11 1.00

Table 5.1: Head and ear scale factors for subjects [21, 23, 37, 55].

same as the template), and finally subject 56 (has the largest head in the SYMARE pop-
ulation, while the ear size is same as of the template). Tab. 5.1 provides the head and
ear scale factors for these subjects. These scale factors are calculated using the meth-
ods described in Sec. 2.8.1. This section finds an optimal scale for every frequency by
studying the directivity patterns for every frequency one by one. The directivity pattern
of an HRTF for a given frequency presents gains and losses for that frequency in all
directions. An SFRS plot of a sample directivity pattern for a subject from SYMARE
is given in Fig. 5.11. To find an optimal scaling, we need to define a similarity or mis-
match measure for directivity patterns, and the optimal scaling factor will be a scaling
factor that will result in the highest similarity or lowest dissimilarity between the affine
model and original HRTFs. For this purpose, this study employed the measure called
Spatial Correlation Metric (SCM) given in [32]. The SCM is denoted mathematically
as CD1,D2(f), signifying that it is a function of frequency f , and parameterized by the
two inputs (in our case the directivity patterns D1(f) and D2(f)). The function C pro-
vides a measure of how similar two directivity patterns are D1(f) and D2(f) are across
all the directions in 3D space. It has a single scalar value, which is between 0 and 1
(which can also be translated between 0% to 100% by simply multiplying it with 100)
for any given pair of directivity patterns. A value of 0% indicates now matching at all,
while a value of 100% means to directivity patterns have the exact same shape. As we
are going to perform analysis across frequency for two sets of HRTFs, it will have a
vector of values, one for each frequency as a function of frequency. A similar kind of
metric was also used by [32, 51, 61].

Given the log-magnitude for the directivity patterns D1(f, θ, φ) and D2(f, θ, φ) the
SCM between these two directivity patterns is computed as:

D1(f, θ, φ) =
1

M

M∑

i=1

D1(f, θi, φi) (5.10)

D2(f, θ, φ) =
1

M

M∑

i=1

D2(f, θi, φi) (5.11)

ζ(D1, f) =

√√√√ 1

M

M∑

i=1

(D1(f, θi, φi)−D1(f, θ, φ))2 (5.12)

ζ(D2, f) =

√√√√ 1

M

M∑

i=1

(D2(f, θi, φi)−D2(f, θ, φ))2 (5.13)
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Figure 5.11: Directivity pattern for a random subject at 12 kHz represented as and SFRS.

The SCM between two HRTFs is then obtained as a value for every frequency using
these expressions below:

CD1(f),D2(f) =

∑M
i=1[D1 −D1(f, θ, φ)][D2 −D2(f, θ, φ)]

ζ(D1, f)ζ(D2, f)
. (5.14)

For the sake of making the differences amongst the affine matched and non-affine
matched HRTFs, we are using the Squared SCM or SSCM, which is just the square of
the SCM measure. A global measure for the whole frequency range under consideration
can be found by simply taking an average of the SCM for all the frequency bins under
consideration as:

CD1,D2 =
1

Nf

Nf∑

i=1

C2
D1(fi),D2(fi)

. (5.15)

The expression in Eq. 5.15 is referred as Global Squared Spatial Correlation Metric or
(GSSCM). Following we provide an analysis on finding the optimal scale for some sub-
jects and the improvements in terms of average SSCM achieved towards individualized
HRTFs using simple scaling and rotation corrections. Furthermore, we also show the
dependencies of these optimal scales on the head and ear scale factors. Three optimal
scales are calculated in this work:

1. optimal scale for whole frequency range, i.e., an optimal scale which results in the
highest GSSCM for the frequency range from 0.2-17 kHz.

2. optimal scale for head-dependent range, i.e., optimal scale, which results in the
highest GSSCM for the frequency range from 0.2-5 kHz.

3. and finally, the optimal scale for ear dependent range, i.e., an optimal scale which
results in the highest GSSCM for the frequency range from 5-17 kHz.

To find the optimal scaling factor, we sweep across a range of the scaling factors (51
scales to be exact). The range of scaling factors explored is from 1.01−25 = 0.78
to 1.01+25 = 1.28, with every scale to be a power of 1.01. The reason to use this
multiplication factor is that this way, we only scale for 1% at every step. Fig. 5.12,
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Fig. 5.13, Fig. 5.14 and Fig. 5.15 show the optimal frequency scaling analysis for sub-
jects [21,23,37,56]. Every figure has 17 subfigures in total. The first subfigure in top-
left presents the evolution of GSSCM as a function of scaling factors in three differ-
ent frequency ranges. The diamonds show the resulting GSSCM for given frequency
ranges for the scaling factor of the frequency range. The second subfigures in every
figure report the SSCM functions for all the frequencies for five cases each showing
SSCM between directivity patterns of actual 3D model of the subject with the (from
bottom to top) i) directivity patterns of affine model of the subject, and then scale and
rotation corrected directivity patterns when ii) only the scaling based on ear scale is ap-
plied, iii) optimal head scale is applied, iv) optimal ear scale is applied, v) optimal scale
for whole frequency range is applied. In the next 15 subfigures, the directivity patterns
corresponding to 5 frequencies (2 kHz, 4 kHz, 6 kHz, 9 kHz, and 15 kHz) are presented
with one row for each frequency, and from left to right these have directivity patterns
of actual models, affine models, and (optimal) scale and rotation corrected directivity
patterns. To generate the directivity patterns in these figures, optimal head scaling was
used for the directivity patterns at 2 kHz and 4 kHz, while for the directivity patterns at
higher frequencies, the optimal scaling for the ear is used as these frequencies belong
to head and ear regions respectively. Following, we provide an analysis of each of the
figures and see how these figures answer the posed research questions in this chapter.

It can be seen for subject 21, where the scale factors for head and ear are almost
identical with values ξh = 0.89 and ξE = 0.877, that the optimal scale factor for head
is very close to the physical scale factor for head ξH , and the optimal scale factor for ear
and overall scaling factors are (0.85) 2% smaller than that of the physical scale factor
ξE . The performance of all the four scalings is almost identical in the head range (might
be because of small differences and low-frequency range), while in the high-frequency
range, the differences start to appear and ear scaling plays a more vital role. Further-
more, in this range, the global and ear based optimal scale performs slightly better than
of the simple ear scaling. This, is also apparent while looking at the directivity patterns
for all frequencies. In lower frequency range, the changes are not as sudden as in the
higher frequencies; still, the simple rotation and scale correction manage to capture
the small subtleties in shape, and the scale corrected directivity pattern appears to be
correctly oriented and shaped. While for the directivity patterns from 4 kHz onwards,
these changes are more apparent, especially at 9 and 14 kHz, where the affine model
has a directivity pattern that looks completely different from the actual directivity pat-
terns. This shows the power of simple scale and rotation corrections and also validates
the use of our affine model with proper corrections in place.

Subject 23 is a special case as it has the largest ear shapes in the SYMARE database
with ear scaling factor ξE = 1.15, while the head size is only 6% larger than of the size
of the template head with a scaling factor ξH = 1.06. For this subject again, the global
and ear optimal scales are very close to each other and are a little bit smaller than the
physical scale of the ear with a value of 1.125. While the optimal head scale in this
region is 5% smaller than of the template head, which is exactly the opposite of what
the physical head scale indicates. The only explanation for this that came to mind is
that it may be a larger size of the ear that causes some interplay between the head and
ear shapes ending up creating this artifact. This is also clear from the second subfigure,
which clearly shows that even with the optimal head scaling, the values for SSCM are
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still worse than the affine model indicating the optimal frequency search failing for this
subject for the head. Furthermore, the scale corrections are very good in the frequency
ranges above 4 kHz, as is clear from the second figure as well as from the directivity
patterns.

Subject 37 has ear which is 13% smaller than the template ear with a scaling factor
of ζE = 0.8781 while the head size is almost the same as the template head with a
scaling factor of ζH = 1.01. The optimal scale factors and optimal ear range scale
factors again exhibit the same behavior as they did for the previous two subjects being
very close but slightly lower than the physical ear scale factor ζE , while the head factor
is smaller than 1 with a value of ζH = 0.93. Also, for this subject, the scaling does not
work in the head range i.e., up to 5 kHz, while it works very well for the ear frequency
range. This further confirms the speculation that when the scaling factor for the ear is
very large (being ears to be very small or very large), the scaling will not work in the
lower frequency range. Also, for this subject, the scaling works very nicely for higher
frequency ranges, as is shown in directivity patterns of 6, 9, and 14 kHz.

Finally, we analyze the results for subject 56, which is also a special case having
the largest head in the SYMARE database, with a scale factor of 1.12, while the size
of the ear is almost the same as the template ear with a scaling factor ζE ≈ 1. The
optimal scale factors, both global and ear region, are again in agreement with their
previous behavior being slightly smaller than that of the actual ear scaling factor and
global scaling factor to be slightly larger than the optimal ear scale. Also, the head scale
factor is the same as before smaller than that of the actual head scale. For this subject,
the optimal scaling for ears causes a little improvement in the higher frequency region.

One might have a question of why the optimal scaling for the head is resulting in
degradation of the SCM even when compared to no scaling at all. The reason for that is
the correction for rotation, which is coming from the ear shapes always and is kept the
same for all the scaling factors. This generally seems to work, so we did not remove it
from the head range as well.

5.3.3 Quantifying the Improvements Achieved through Simple Scale and Rota-
tion Corrections

This section quantifies the improvements achieved by performing simple scaling and
rotation corrections. The Fig. ?? shows the histograms of the GSCM between the actual
HRTFs and HRTFs with scale, rotation corrected for three cases:

1. simple ear scale correction.

2. optimal scale correction (with optimal global scale).

3. composite optimal scale correction (optimal scale for head until 5 kHz and optimal
scale ear after 5 kHz to 17 kHz).

The results show that the directivity patterns of the affine models, on average, match
the actual models of the subject to 61% of extent. By simply scaling the frequency axis
of HRTFs by the relative scale of the ear shapes, the matching improves by a factor
of almost 21% and becomes 74%. The optimal scaling increases this matching by 5%
more as the average GSSCM becomes 77%. Then composite optimal scaling further
improves it by providing a gain of 2% more, making the total GSSCM value 78%.
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This answers the third and fourth questions posed in this work showing how much
corrections in terms of improved matching can be achieved using simple scaling and
rotation corrections, as well as create three scaling factors for three frequency ranges.

5.3.4 Deriving Scaling Factors from simple Anthropometry

Finally this section presents a simple regression analysis on the physical scales ξE and
ξH to derive the global, ear and head optimal scaling factors ξopt, ξHopt and ξEopt . Simple
regression analysis shows that these scale factors can be estimated using the following
expressions:

ζopt = 1.0198ζE − 0.0105ζH − 0.0348C (5.16)
ζHopt = 0.6062ζE + 0.0719ζH + 0.3338 (5.17)
ζEopt = 1.0247ζE − 0.0127ζH − 0.0402 (5.18)

When estimating the optimal scale factors through these expressions, the average
error between the original and estimated scale values for global scale, ear scale, and
head scale are 0.8%, 0.8%, and 7%, respectively. The possible reason for the large
value of the estimation error for head scale could be that the rotation coming from the
ear matching is also used for the head frequency range directivity patterns while finding
an optimal scale.

119



Chapter 5. Studying the Morphoacoustic of Affine Transformations on Ear Shapes

Figure 5.12: This figure shows the optimal scale searching study for subject 21. In top row(left) GSCM
(average SCM) vs explored scale factors, (top right) cross correlation vs frequency for different scale
corrections. Row 2-6 show directivity patterns for 2, 4, 6, 9, and 14 kHz with actual, affine matched
and optimal scale corrected directivity patterns in left, middle and right column respectively.
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Figure 5.13: This figure shows the optimal scale searching study for subject 23. In top row(left) GSCM
(average SCM) vs explored scale factors, (top right) cross correlation vs frequency for different scale
corrections. Row 2-6 show directivity patterns for 2, 4, 6, 9, and 14 kHz with actual, affine matched
and optimal scale corrected directivity patterns in left, middle and right column respectively.
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Figure 5.14: This figure shows the optimal scale searching study for subject 37. In top row(left) GSCM
(average SCM) vs explored scale factors, (top right) cross correlation vs frequency for different scale
corrections. Row 2-6 show directivity patterns for 2, 4, 6, 9, and 14 kHz with actual, affine matched
and optimal scale corrected directivity patterns in left, middle and right column respectively.
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Figure 5.15: This figure shows the optimal scale searching study for subject 56. In top row(left) GSCM
(average SCM) vs explored scale factors, (top right) cross correlation vs frequency for different scale
corrections. Row 2-6 show directivity patterns for 2, 4, 6, 9, and 14 kHz with actual, affine matched
and optimal scale corrected directivity patterns in left, middle and right column respectively.
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Figure 5.16: Summary plot for SSCM between the real and scale and rotation corrected directivity
patterns of SYMARE database as a function of frequency.

5.4 Conclusion

In this chapter, we presented a simple yet powerful approach to creating a simple 3D
model for the sake of HRTF personalization. We showed how this model could be
made by just having the 3D shape and sizes of the subject without the need to capture
the full head and torso shapes. The quantification of the acoustic simplification was
also calculated, which is one of the main aims of doing this study. It showed that using
the affine model reduces the acoustic complexity of about 10% compared to original
HRTFs, which can be very useful in order to model the acoustic data. Furthermore,
affine matching of the ear shapes was performed before creating the morphable model
of the ear shapes in [17], and the corrections performed in this chapter are essential to
retrieve a good estimate of the actual ear and head shape model when this morphable
model is used. Finally, this chapter presented a simple study to find the optimal scaling
factors to be used for the whole frequency range, or for head and ear ranges separately.
The last section also shows a simple way of calculating these scale factors from the
physical scale factors of head and ear shapes compared to the template. The results
show that these scale factors mainly depend on the scaling factor of ear shape even
in the range of the head-dependent frequencies. Future studies for this work include
performing independent analysis of head and ear scale and including the rotation of
head and torso as well as torso scale factors in the studies.

5.5 Chapter Conclusion

This chapter performs a comprehensive study using LDDMM framework to analyze the
effects of the affine transformations on the ear shapes on corresponding acoustics. This
chapter answered five research questions. The findings of the chapter were followings:
the use of affine models results in 10% simplifications of the HRTFs. The template
resides well in the SYMARE database when the scale and orientation of the ear popu-
lation is analyzed compared to the template ear shape. A simple database is created to
study the ear scale, rotation, and shape morphoacoustics separately. The scaling of ear
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Figure 5.17: Histograms of the GSCM for four cases. a) GSSCM between actual and affine models of
the SYMARE population, b) GSSCM of actual and scale rotation corrected affine models (ear scale is
used for correction) models.c) GSSCM of the actual and affine model with optimal scale and rotation
correction, d) GSSCM of actual and composite optimal scale and rotation correction. i.e., the optimal
head scale is used for frequencies up to 5 kHz and after that optimal ear scale is used.

shapes only show changes in frequencies above 5 kHz. Using optimal scaling factors
simple frequency axis scaling and rotation corrections for ear shapes can result in a
28% better matching of the HRTFs for affine models with the original HRTFs. Finally
the optimal scaling can be predicted using the physical scaling factors for head and ear
shapes.
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CHAPTER6
Principal Component Analysis on Head-related

Transfer Functions

In this chapter, an end to end HRTF personalization method is proposed, which pro-
duces the HRTFs for an affine matched 3D ear shape without running the BEM simula-
tions. More specifically, this chapter models the variations in the morphology using the
proposed morphable ear shape model and models the variations in the acoustics using
PCA. Then it creates a simple linear regression-based mapping to relate the variations
in one domain to the variations of the other domain.

The research questions explored in this chapter are as follows:

• How can the inter-subject variations be modeled using PCA as a function of fre-
quency?

• How many principal components are required to model the variations for a given
frequency, and what kind of reconstruction they provide for the given frequency
in a data constrained manner? (We can not use more than one-eighth of the data).

• What kind of variations in the ear shape be captured using only one-eighth of the
data?

• Can linear regression model the relationship between morphology and acoustic
variation models to create an HRTF personalization method?

• How does morphological weighting improve the prediction, and can it be used as
a tool to understand the relative contributions of each of the ear part?

The contributions of this chapter are as follows:

1. A procedure to model the HRTFs for affine models of the SYMARE database
using frequency by frequency PCA of the acoustic directivity patterns. As this
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PCA model the spherical or spatial surfaces, we termed this as Spatial Principal
Component Analysis (SPCA).

2. Quantification of the number of SPCA components required to model the directiv-
ity patterns of a given frequency. The results show that even when only one-eighth
of the data is used to model the dataset, this can still provide very good results even
for 17 kHz directivity patterns.

3. An HRTF personalization method using simple multiple linear regression on the
ear parameters.

4. A novel Weighted KCPA based model to improve the personalized predictions of
the directivity patterns. This model can also be used as a potential variant of the
morphoacoustic perturbation analysis using LDDMM.

The rest of the chapter is organized as follows: Sec. 6.1 described the process of
preparing the acoustic directivity patterns to be used for this study, along with the pre-
processing steps performed. Sec. 6.2 describes the application of spatial principal com-
ponent analysis on the directivity data. Sec. 6.3 describe the process of quantifying the
number of principal components required to model the directivity patterns of a given
frequency. Sec. 6.4 starts by providing a simple way to analyze the variations of the ear
shapes using a morphable ear shape model in [17] and use the parameters in the mor-
phology domain to create a linear regression-based mapping between the morphology
and acoustic domain parameters providing a simple HRTF personalization approach.
Finally, Sec. 6.5 propose a novel yet straightforward method that uses all the devel-
oped methods in this chapter and improves the personalized prediction of the acoustic
parameters. Furthermore, its use as a potential tool to understand the contributions of
each of the ear components in the HRTF generation is explored.

6.1 Preparing the Acoustics

This work uses PCA to analyze the acoustic variation of the affine models of SYMARE
subjects. However, unlike previous studies, it studies the directivity patterns of the
acoustic data instead of studying the whole HRTFs direction by direction. For a given
frequency, the directivity patterns present the pattern of acoustic gains and attenuations
across space for a given ear shape. The ear shapes become more and more directive as
the HRTFs go high in frequency, making the directivity patterns to have more structured
features as frequency increases, as shown in Fig. 6.1. This figure shows the directivity
patterns for subject 2 for different frequencies. This gives the reader an idea of how the
directivity patterns for a given subject evolve as a function of frequency. Although we
have a very high resolution of HRTFs when we measure them using BEM simulations,
we down-sample the data to create the directivity patterns with sampling the imaginary
sphere with equally spaced sensors representing 642 positions, which means a direc-
tivity pattern will have only 642 samples. Furthermore, as the HRTFs have very low
value at the contralateral side (please refer to Sec. 2.1.1 for more details), here we only
study the ipsilateral HRTFs, where the ear has high signal-to-noise ration and does not
suffer from head shadows. Because the directivity pattern on the contralateral side can
be varied and noisy but is likely not significant [127], we have applied gentle spherical
Gaussian smoothing (std.: 5.7 degrees of spherical angle) to the directivity pattern on
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the contralateral side. The directivity pattern data is then treated mathematically as a
vector, and standard principal component analysis is applied across subjects for a given
frequency. Fig. 6.1, shows the directivity patterns of the affine model of Subject 2 in
the SYMARE database.

6.2 Spatial Principal Component Analysis

The mathematical detail on the PCA is provided in Sec. 2.5. PCA has long been used
for HRTF modeling. [30,103,105,115,128,129], are only few of these studies to men-
tion. Different studies in the past have used the PCA on different modalities of HRTF.
For example, some of the studies model the time-domain equivalent HRIRs, while other
model the complex magnitudes of the frequency domain HRTFs, and some only model
the magnitude responses of the frequency domain data relying on the findings of previ-
ous studies that the HRTFs are minimum phase filters and the phase information can be
retrieved by simply using the Hilbert transform once the magnitude response is mod-
eled.

In this work, we model the dB scale magnitude responses of the HRTFs, but unlike
the previous studies, we model the directivity patterns of the HRTFs. In previous stud-
ies, the whole HRTF of a direction is modeled as a single variable while in this work,
we model the data for each frequency separately. We think the reason for that is very
intuitive and entirely natural. While listening to a sound, we do not simply listen to
the sound of a single direction, but our brain actually works on the sound coming from
all the directions at once. Furthermore, we move our head to resolve the directional
confusion while localizing the sound source as if we are painting an acoustic pattern
with our ears. For this reason, we model the directivity patterns instead of modeling
the HRTFs of every direction separately. Another reason for doing this is that while
data at the lower frequencies are mostly similar to each other, the inter-subject varia-
tion really increases in the higher frequencies. A set of sample directivity patterns for
different frequencies for a set of subjects is shown in Fig. 6.2 So when modeling the
HRTFs for all frequencies at once using PCA, we are required to use more components
for the whole range to accurately construct the data for the higher frequencies. Finally,
as we have created a synthetic database in which the size and rotation of each of the ear
shapes are matched to template ear shape and inherently to each other, following [25]
findings the frequencies for every subject would have aligned as well. Hence we can
capture most of the variations in the directivity patterns with very few components. We
term the PCA for directivity patterns as spatial principal component analysis or SPCA.
In this section, we provide a simple analysis of applying the SPCA on the directivity
patterns of few frequencies.

As mentioned in Sec. 6.1, that we are using the directivity patterns for the affine
matched HRTFs for 642 directions. So the directivity pattern of a given frequency
for a subject can be modeled using a sequence of 642 numbers. Having data for 62
subjects, we created matrices of size 624 × 62 for a given frequency and modeled the
data with PCA. Using 62 components will result in a reconstruction with zero loss,
while if we use fewer components, we will have some loss. In Fig. 6.3 present actual
and reconstructed directivity pattern data for four subjects [3, 49, 30, 52] (from left
to right), for four different frequencies 6, 9, 12, and 15 kHz. In all of the following
cases, we used only three principal components for reconstructions. The first thing
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(a) 1000 Hz (b) 2000 Hz (c) 3000 Hz

(d) 4000 Hz (e) 5000 Hz (f) 6000 Hz

(g) 7000 Hz (h) 8000 Hz (i) 9000 Hz

(j) 10000 Hz (k) 11000 Hz (l) 12000 Hz

(m) 13000 Hz (n) 14000 Hz (o) 15000 Hz

Figure 6.1: Directivity patterns for affine model of subject 2 in SYMARE database for frequencies,
1-15 kHz.
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that I would like to point in this work is the fact that it is using just three principal
components. We capture the variance in the directivity patterns of the subjects very
well. The results for directivity patterns at 6 kHz show almost perfect reconstruction
for the presented subjects while the reconstruction starts to present the sign of a little bit
of struggle as we move higher in frequency. Despite these small signs of performance
deteriorations, the results still are very impressive. This is probably because all the
ears are affine matched to template ear shapes and have the same size, orientation,
and position, making it easier to model the directivity patterns with very few principal
components, speculation which was made in Ch. 5. Another thing to notice here is
for some frequencies; we probably need more components to model the directivity
patterns; for example, for 9 kHz, the PCA really struggles with the last two subjects.
While for some frequencies like 6 kHz, we might have done a good job even with
using fewer components. The next section talks about a simple method to quantify the
number of principal components to be used to model the directivity patterns of a given
frequency.
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Figure 6.2: Directivity patterns of four subjects from SYMARE database at 4, 6, 8, 10, 12, and 16 kHz
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Real 6000 Hz

PCA 6000 Hz

Real 9000 Hz

PCA 9000 Hz

Real 12000 Hz

PCA 12000 Hz

Real 15000 Hz

PCA 15000 Hz

Figure 6.3: Real and PCA modeled directivity patterns for subject [ 3, 49, 30, 52 ] (left to right)
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6.3 Quantification of Number of Parameters Required for Every Fre-
quency

This section provides a simple method to account for the number of principal compo-
nents required to model the directivity patterns of a given frequency reliably without
losing too much information for the sake of using lesser principal components. To find
out if we have enough components to model the variations int he data, this study re-
lies on the cumulative captured variance measure used by [103, 115, 130–132]. The
cumulative captured variance of PCA is measured by the following expression:

cumV ar(N) =

∑N
i=1 λi∑T
i=1 λi

, (6.1)

where, λi denotes the ith eigenvalue of the covariance matrix computed for the PCA,
N denotes the number of principal component under consideration and T denotes the
total number of principal components. Just like many studies in the past, we decided
to keep increasing the number of principal components until we can capture 80 % of
the variance in the data. However, one thing to be understood is that to make the PCA
more realistic, this study limits the number of the maximum principal component can
be used. As we have data for 62 subjects only, we limit ourselves to use eight principal
components at max, which is roughly one-eighth of the number of samples we have
in hand. In Fig. 6.4, we show a scaled color image plot of the cumulative variance
captured for a given frequency when we use a given number of principal components.
At the same time, the red line over it indicates the number of principal components
required to capture 80 % of the variance, and the green line shows a number of prin-
cipal components we are going to use as we can not go over eight for data limitation
reasons. The line plot in the second row of the figure shows the number of principals
components required as a function of frequency. While the third figure reports the stan-
dard spectral differences (SSD) between the real and reconstructed directivity patterns
for the SYMARE population for a given frequency. The SSD is calculated using the
expression provided in Eq. 5.4. The vertical dotted lines indicate the frequencies we
analyzed (3, 6, 9, 12, 15, and 17 kHz) in more detail further.

Fig. 6.5 present an overview of the SSD and SPCA study for the directivity patterns
at frequency 3 kHz, by digging down a little bit deeper to provide a detailed view of
what is happening at this frequency when the reconstructions for the directivity patterns
for these subjects are made by using SPCA. The first scattered plot figure in top presents
the reader with the SSDs between the real and SPCA reconstructed directivity patterns
for all the subjects in the SYMARE population. The values are pretty low and are be-
low 1 dB for all the subjects. This is astonishing when we look at the fact that only the
first principal component is being used for the reconstruction. The reason for all this is
that we are using the affine models where the head and torso shapes are the same for
all the subjects. In the following two lines of the graphs, we present the real and SPCA
based reconstructed directivity patterns of four subjects, namely subject (3,49,30,52).
The directivity patterns in the third line are the predicted directivity patterns on the ba-
sis of morphology. This will be discussed in the next section. Similarly, we present
the result for 6, 9, 12, 15 and 17 kHz data in Fig. 6.6, Fig. 6.7, Fig. 6.8, Fig. 6.9, and
Fig. 6.6 respectively. These SPCA based directivity patterns at these frequencies are re-
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constructed using four, size, eight, eight, and eight principal components, respectively.
The results show that even with using only eight principal components, one can model
the variations in the directivity pattern at very high frequencies pretty accurately, with
average SSDs always less than 3 dBs, all thanks to affine models.

6.4 Personalization of Directivity Patterns

So far, we have seen how to effectively model the HRTFs directivity patterns in a para-
metric way using SPCA. To create a mapping between the morphology of the subjects
and corresponding HRTFs, we need to model the ear shapes as well. For this reason,
we rely on the KPCA and LDDMM based morphable ear shape model proposed in [1].
At this point we ask the readers to familiarise themselves with the necessary concepts
used in LDDMM, and KPCA specifically in the context of ear shape modelling pro-
vided in 3.2, 2.7, and 3.2.2.

In this section, we use these concepts to analyze the morphological variations in the
affine matched ear shapes of a few subjects in the SYMARE database. The Fig. 6.11
shows the original and reconstructed ear shapes when only eight KPCA components
are used. This figure shows the ability of KPCA based morphable model to capture the
ear shape variations quite reasonably in most of the ear shapes even when only the first
eight KPCA components are used. However, in some cases, the reconstruction clearly
requires more components, for example, fifth and seventh ear shape in the figures (going
from left to right). This is due to the reason that these two ears have very different
features compared to other ears. For example, ear5 is very different from other ears in
the fossa region, while ear7 has a very different shape overall. Again remember all the
ear shapes are affinely matched to the template. Hence KPCA can perform well as it
only has to capture the shape variation instead of capturing shape, rotation, translation,
and scale information. We used these principal components to infer the weights for
the principal component of HRTF directivity patterns using simple linear regression.
The results for the prediction are showing in the third rows of figures Fig. 6.5, Fig. 6.6,
Fig. 6.7, Fig. 6.8, Fig. 6.9, Fig. 6.10.

6.5 Weighted Morphable Model for Ear Shapes

This section explores the potential for morphological weighting of different regions of
the ear shape to improve the prediction of HRTF directivity patterns of the listeners.
It uses the previously developed LDDMM and KPCA based morphable model [17];
however, it modifies it by applying a weighted kernel principal component analysis to
model the pinna morphology. In this process, different regions of the ear shape can be
weighted differently before the application of KPCA is applied. This section analyzes
the performance of this morphable model for prediction by varying the weights applied
to the various regions of the pinna. The results show that this study can not be just used
to get a better prediction for the HRTFs, but by varying different weights assigned to
different regions, we begin to learn the relative importance of the various regions to the
acoustic directivity of the ear shapes as a function of frequency showing us which of
the regions in the ear shape are responsible for generation of which spectral cue in the
HRTFs.
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Figure 6.4: Cumulative captured variance captured when different number of PCs are used/
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Real

PCA

Predicted

Figure 6.5: SSD plot for 62, subjects in the top, red stars indicate the subjects analyzed. In bottom two
rows we have real and PCA based directivity patterns (constructed using a single PC) for 3000 Hz
for four subjects [3, 49, 30, 52] (from left to right). The results show even with using only one
principal components one can model the variations in the directivity pattern with average SSDs less
than 3 dBs all thanks to affine models.
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Real

PCA

Predicted

Figure 6.6: SSD plot for 62, subjects in the top, red stars indicate the subjects analyzed. In bottom two
rows we have real and PCA based directivity patterns (constructed using first four single PC) for
6000 Hz for four subjects [3, 49, 30, 52] (from left to right). The results show even with using only
four principal components one can model the variations in the directivity pattern with average SSDs
less than 3 dBs all thanks to affine models.
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Real

PCA

Predicted

Figure 6.7: SSD plot for 62, subjects in the top, red stars indicate the subjects analyzed. In bottom two
rows we have real and PCA based directivity patterns (constructed using first six single PC) for
9000 Hz for four subjects [3, 49, 30, 52] (from left to right). The results show even with using only
eight principal components one can model the variations in the directivity pattern with average
SSDs less than 3 dBs all thanks to affine models.
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Figure 6.8: SSD plot for 62, subjects in the top, red stars indicate the subjects analyzed. In bottom two
rows we have real and PCA based directivity patterns (constructed using first eight PC) for
12000 Hz for four subjects [3, 49, 30, 52] (from left to right). The results show even with using only
first eight principal components one can model the variations in the directivity pattern with average
SSDs less than 3 dBs all thanks to affine models.
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Figure 6.9: SSD plot for 62, subjects in the top, red stars indicate the subjects analyzed. In bottom two
rows we have real and PCA based directivity patterns (constructed using first eight PC) for
15000 Hz for four subjects [3, 49, 30, 52] (from left to right). The results show even with using only
first eight principal components one can model the variations in the directivity pattern with average
SSDs less than 3 dBs all thanks to affine models.
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Figure 6.10: SSD plot for 62, subjects in the top, red stars indicate the subjects analyzed. In bottom
two rows we have real, PCA based directivity patterns (constructed using first eight PC), and
multiple linear regression based predicted directivity patterns for 17000 Hz for four subjects [3, 49,
30, 52] (from left to right). The results show even with using only first eight principal components
one can model the variations in the directivity pattern with average SSDs less than 3 dBs all thanks
to affine models.
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Real Ears

KPCA Ears

Figure 6.11: Ear Shapes reconstructed using morphable ear model on the basis of
just eight kernal principal components.

6.5.1 Weighted KPCA (WKPCA)

The morphable model described in [17] has a limitation. While performing the KPCA,
it assumes that each of the mesh vertexes contributes equally to the variations and is
equally important for the analysis of morphological variations in the ear shapes in the
prospect of the acoustic contribution of this vertex. Nonetheless, the previous studies
have shown that the relative areas of various regions of the ear do not necessarily ac-
curately represent the importance of their contribution to the acoustic properties of the
ear. For example, the back of the ear likely plays a role which is low to no importance
when compared with the role played by the concha region . [23]. To explore this issue
in more detail, we have apportioned the ear into various sections (refer to Fig. 6.12),
which enables a weighting to be applied during the KPCA. In this case, the kernel
function in the KPCA is modified, as shown below:

k′V (x, y) =
w(x)w(y)

1 + 1+‖x−y‖2
σ2
v

, (6.2)

where w(x) and w(y) denote the weights for vertices x and y respectively. This way
the kernel function does not just depend on the distance between two vertices but also
on the weights associated to them.
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Ear Portion Area Non-Weighted Concha Weighting Fossa Weighting
w w × area w w × area w w × area

Back of Ear 0.25 1.00 0.25 0.75 0.19 0.60 0.15
Ear Lobe 0.05 1.00 0.05 0.75 0.04 0.06 0.03

Scaphoid Fossa 0.03 1.00 0.03 0.67 0.02 5.65 0.17
Helix 0.24 1.00 0.24 0.75 0.18 0.60 0.14

Cymba Concha 0.03 1.00 0.03 1.67 0.05 0.06 0.02
Cavum Concha 0.08 1.00 0.08 1.50 0.12 0.61 0.05

Triangular Fossa 0.05 1.00 0.05 0.80 0.04 5.80 0.29
Concha Rim 0.21 1.00 0.21 1.50 0.32 0.57 0.12

Concha Ridge 0.06 1.00 0.06 0.83 0.05 0.50 0.03

Table 6.1: Relative vertex weightings, w, and region contributions, w × area, are shown for three
conditions. Note that sum of w × area column is already unity.

Figure 6.12: Various regions of the pinna are identified along with their respective fractional contribu-
tion to the total surface area.

6.5.2 Results

We explored this morphological weighting for two regions for all the affine models
for the SYMARE population. We on purpose explored two of the most important re-
gions in the intricate shape of the ears namely, the concha and the fossa. In our view
the regions with larger surface area have greater influence on the LDDMM mapping
algorithm (in original morphable model), we determined the surface area for each of
the regions created in the division of the ear (as shown in Fig. 6.12. The relative con-
tribution of the region’s contribution is then calculated by multiplying the weighting
assinged to the area with the relative contribution of the area of the region. In our view
this provides a more realistic way of assigning the contributions to different regions.
At this stage, we only used a simple approach to morphological weighting: e.g., a re-
gion’s contribution was multiplied by a small, arbitrary factor to see if this weighting
creates some improvements. As per our analysis a moderate weighting factor is gen-
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erally proved to better for regions which contribute more towards the area while the
smaller regions require a larger morphological weights to create a significant impact in
driving the weighted morphable model as is shown in Table 6.1. Another thing to be
noticed is that all the weights are normalized so that the region contributions (region
area multiplied by morphological weight) always sum up to unity.

The impact of the morphological weighting was measured simply using linear re-
gression. In this work, we have only considered the first principal component for the
acoustic directivity patterns. While this assessment is limited, it is important to keep
in mind that the ears are affine-matched, and only a few principal components are re-
quired to adequately describe the acoustic directivity patterns, as shown in Sec. 6.3. So
a given morphological weighting was evaluated by applying linear regression to find
the best linear relationship between the first principal components of the acoustic data
to the eight principal components of the weighted KPCA based LDDMM ear model.
Example results are shown in Fig. 6.13. In this case, we examine a relatively low fre-
quency (approximately 4 kHz) and find that morphological weighting applied to the
concha makes a small improvement.

Figure 6.13: Scatter plots show the predicted and true values for the first principal component of the
acoustic directivity patterns corresponding to a frequency of 3938 Hz. Plots are shown for data both
without (a) and with (b) morphological weighting. The respective R2 values are 0.32 and 0.52.

What is much more interesting in this study is that this simple study lets us analyze
the influence of morphological weighting as a function of frequency. An analysis of
this kind is shown in Fig. 6.14. In this analysis, we applied the linear regression-based
prediction model to predict the first principal component of the directivity patterns for
all the subjects for every frequency. Prediction errors were then measured in units of
one standard deviation for the whole SYMARE population data. Fig. 6.14a), shows the
improvements as a result of the concha weighting given in Tab. 6.1. We see that concha
weighting results in improvements at various frequencies around 3 kHz, 7 kHz, 10 kHz,
and 13 kHz. We interpret the broad range of frequencies as indicating the concha may
influence resonance modes at various frequencies. To further support these findings, we
examined the percentage of cases with improvements and found a similar pattern across
many subjects (see Fig. 6.14b). The morphological weighting for the fossa produced
similar results, albeit at slightly higher frequencies (refer to Figs. 6.14c and 6.14d. We
do not intend for these data to indicate the concha and fossa play independent roles.
Rather, the morphological weighting enables one to explore at which frequencies a
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particular region of the ear may have a particular influence on the acoustic directivity
of the ear.

Figure 6.14: Stem plots show the impact of morphological weighting as a function of frequency. Data
for the concha are shown in (a) and (b), while data for the fossa are shown in (c) and (d). The mean
reduction in prediction error is shown in (a) and (c) using the population standard deviation as a unit
measure. The percentage of ears for which the prediction improved is shown in (b) and (d).

Figure 6.15: Changes in the acoustic directivity patterns that occur based on the prediction of the first
principal component are shown. Azimuth and elevation angles are shown in degrees. The top row
shows the true data; the second row shows the data without morphological weighting, and the third
row shows the data with morphological weighting. Data are shown for the concha at frequencies: (a)
3938 Hz; (b) 7125 Hz; (c) 10312 Hz; and (d) 13313 Hz. Data are shown for the fossa at frequencies:
(e) 6938 Hz and (f) 12563 Hz. Best viewed in color online to see subtle differences.

The influences of the improvement in the prediction of the first principal component
on the resulting acoustic directivity patterns are shown in Fig. 6.15. Because we only
explore the first principal component, all other principal components are held fixed at
their true values. We find that the improved prediction of the first principal component
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does result in small, but visible improvements in the acoustic directivity patterns.

6.6 Discussion and Conclusion

In this chapter, we provided a simple method of parametrical modeling of the acoustic
directivity patterns of the HRTFs. As we are modeling the spatial directivity patterns,
we called this PCA as spatial principal component analysis or SPCA. We used SPCA
to analyze the variations in the directivity patterns as a function of frequency. Further-
more, using a simple measure of captured cumulative variance, we quantified the num-
ber of principal components required for each of the frequencies. The results show that
using only eight principal components; one can model the directivity patterns of even
very high frequencies around 4 kHz pretty accurately. The performance of the SPCA
was also evaluated using SSD, and the results show that even when we are modeling
the HRTF directivity patterns with only eight principal components average, SSD never
increases from 3 dBs, which is pretty impressive for high-frequency content. Further-
more, we showed a simple way of the HRTF personalization method based on linear
regression. We presented a simple analysis of the KPCA based morphable model for
the ear shapes and shown how using only eight principal components can effectively
model the variations in the ear shapes. We used these eight morphology principal com-
ponents and using simple linear regression derived the PCA weights for the acoustics.
The results show that even with this simple prediction method, we can efficiently pre-
dict the directivity patterns. Finally, we used all the tools used in the chapter so far and
used them to propose a simple yet powerful tool based on morphological weighting.
Morphological weighting is shown to provide an interesting tool to explore the mor-
phoacoustic properties of the human outer ear. However, it is worth to mention that at
this stage, our understanding is limited. Each frequency and each principal component
may find improvements with different morphological weightings. We do not find this
unreasonable because the acoustic properties of the outer ear result from the structure
as a whole, and the strength of any particular resonance mode may result from compli-
cated interactions between various morphological elements. We have not yet explored
a general optimization algorithm for morphological weighting, nor explored whether
additive combinations of morphological weightings would make any sense. It is not
even clear how many physical regions one should divide the ear into, nor what the pos-
sible interactions may be. Further, it is not yet clear whether a particular morphological
weighting should be applied for all ears or just a particular class of ears. Nonetheless,
we have made a start and believe there is much more to be learned and will so direct
our future attention.
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CHAPTER7
Conclusion and Future Work

This thesis provides a set of studies to understand the relationship between the morphol-
ogy of the ear shapes and its relationship to the corresponding individualized acoustic
filters called HRTFs. Based on the findings of the most recent works, this thesis work
studied two different paradigms for HRTF personalization. One of these paradigms re-
lies on the anthropometric parameters, while the other uses a morphoacoustic approach
to understand the underlying complex phenomenons generating the HRTFs.

This thesis work started by providing the reader with the introduction to the study
under review with a brief background of the problem along with motivation and prob-
lem statement and contributions in Ch. 1. In Ch. 2, it provided a general background
with the required important concepts which are essential to understand the work per-
formed in this thesis. Ch. 3 provided a comprehensive review on state of the art. The
next three chapters from Ch. 4 to Ch. 6 are the contribution chapter of this thesis in
which answers to the following questions are explored.
Question1: Given the findings of [13, 23] one knows that the notch frequencies for
CIPIC on average have a monotonically increase as the elevation angle increases and
fall in the range of 6 kHz to 9 kHz, 10 kHz to 12 kHz, and 13 kHz to 14 kHz re-
spectively, do the notches in the SYMARE database evolve similarly? Are the notch
frequency evolutions symmetric for left and right ears?
Answer: Given this question, this thesis performs a statistical analysis on the notch
frequencies of the median plane for elevation angles from −45◦ to 45◦ for CIPIC and
SYMARE databases. The results of this analysis show that the evolution of notches is
consistent in both databases. Also, the notch frequency ranges are in agreement with
the results of [23]. The comparative analysis for two ears show that the notch frequen-
cies for left and right ear are not symmetric and although the differences are not huge,
they still suggest that binaural cues can also play a part in elevation plane localization
Question2: Given a simple, sparse representation-based approach for HRTF personal-
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ization and having a hypothesis that different anthropometric features have a different
amount of importance when it comes to personalization of HRTFs, how to calculate the
weights for these anthropometric parameters, and use them to optimize and improve
the sparse representation?
Answer: Pursuing this question a simple study was conducted presented in Sec. 4.2.
The weights for every anthropometric feature is computed by using an extensive par-
tially on-off based HRTF personalization technique. These important factors are then
used to calculate the weighted-sparse representation of the anthropometric features and
then to calculate and synthesize the HRTFs. The results show that using the weighted
sparse representation not just improves the result for the performance but also requires
a fewer number of anthropometric features compared to the traditional sparse represen-
tation based approaches. This study also identifies and uses the only anthropometric
features which can be easily obtained from a set of three scaled images as proposed
by [15]. The weights calculated for the anthropometric features can be used for various
other studies.
Question3: Can the variations in the ear shape geometry, scale, and rotation separately
be studied? What are the effects of affine transformations of the ear shapes on the
corresponding acoustics? Can the effects of these affine transformation be modeled or
corrected without redoing the BEM simulations on the 3D affine model? What are the
frequency ranges which are affected by the head and ear scaling, and can an optimal
scaling be found to fix the problems in the whole HRTF frequency range?
Answer: To answer these questions, performed a comprehensive study in Ch. 5. We
created a synthetic database using the shapes in the SYMARE dataset using the LD-
DMM framework. This is a big contribution to this work and will be added to the
SYMARE database in the future. This is a unique dataset, where all the ear shapes
were affinely matched to match the scale, rotation, and position with the multi-scale
template ear shape. The results show that using the affine model simplifies the acous-
tics by 10%. The matching between the affine matched HRTFs, and original HRTFs
can be improved by almost 29% on average using simple corrections such as frequency
scaling and rotation of the directivity patterns. Furthermore, the used scaling and rota-
tion matrices can be easily obtained from the rotation and scaling of the head and ear
shapes. These ear shapes are called affine matched ear shapes.
Question4: Having this set of simplified HRTFs how to model the inter-subject varia-
tions in the HRTFS as a function of frequency?
Answer: We performed a simple study based on PCA to model the inter-subject vari-
ations amongst the HRTF directivity patterns of SYMARE subjects as a function of
frequency. As we are modeling the directivity patterns, which are like spatial surfaces,
we termed this PCA as Spatial Principal Component Analysis. The results of this study
show indeed, the affine model helps one to mode the HRTFs in a very simple way.
We are able to model the directivity patterns of the HRTFs even at 17 kHz with only
eight principal components with a standard spectral difference (SSD) error of less than
3 dBs on average. This study also uses the extracted parameters of the directivity pat-
terns and create a simple mapping between the eight parameters of the morphable ear
shape model for every affine matched ear in the SYMARE population using multiple
linear regression (MLR). This provides a simple approach for the personalization of the
HRTFs.
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With this question answered, we have a full end to end scheme for HRTF person-
alization, which provides one with the personalized HRTF of a given subject with the
shape of the ear in hand without running the lengthy and power-hungry BEM simula-
tions. However, we studied another interesting question in this thesis study with the
quest to improve the personalization method.
Question5: Having the KPCA, and LDDMM based morphable and parametric model
of the ear shapes in hand along with the linear regression-based HRTF personalization
method, can we have something like a weighted morphable model for ear shapes using
weighted KPCA similarly like weighted sparse representation to improve the perfor-
mance of the personalization?
Answer: It is well understood that different regions in the ear shapes play a different
role in producing the spectral coloration modeled by HRTFs. For example, the back
of the ear plays a much simpler role in the prediction of HRTFs when compared to
the concha or foss cavity. This gave us a notion that there is an inherent limitation in
the traditional KPCA based parametric model the ear shapes, which considers all the
vertices in the 3D mesh of the ear shapes to be equally important. To change that we
hand cut different parts of the ear shapes and created a simple weighted KPCA based
ear shape model, which allows one to assign higher weights to a given region of the
ear shape and study its effects on the corresponding acoustics obtained through either
personalization procedure or through BEM simulations. What is more interesting is to
look at the frequency wise improvements suggesting the relevance of each of the ear
region in the generation of the acoustic cues. This provides us a simple yet powerful
technique that can be used as a variant for morphoacoustic perturbation analysis.

The following section highlights the challenges faced while conducting these stud-
ies.

7.1 Challenges

Running the simulations to study the variations in the morphology and acoustics of the
outer ear shapes at this scale was a challenging task. Although the advent of multi-
core computers, large memory space and improvements in the simulations techniques,
has made the numerical simulations for HRTFs a realistic task, by cutting down the
simulation times multi-fold, but still simulating an FM-BEM simulation on a high-
resolution head-torso-ear mesh with thousands of the triangular faces for frequencies
up to 24kHz and with a spatial resolution of 3◦ takes almost a day for one subject for
one ear shape. If only the head and ear mesh are used, removing the torso mesh, this
simulation time is cut to almost half. However, for the sake of completion, we did
not do this. This essentially means that just to run the BEM simulations for our new
synthetic database, it took us over two months.

The other challenging task was to identify the portions of the ears which work the
best for weighted KPCA for a new morphable model for ear shapes and to assign
weights to these portions. The simulations and visual analysis for one weight com-
bination can very easily take more than one day. The incisions for cutting the ear
shapes were performed with hand and took us multiple iterations to find the right splits.
However, to identify the right combinations which work for most of the ears and shows
considerable improvements in capturing the variations in Concha, Conchal Ridge, and
Triangular Fossa took us many runs and was a very challenging task.
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7.2 Future Work

The future works for this thesis include studying the effects of affine transformations on
the head and torso shapes as well. In our study, we only used the rotation data coming
from the affine matching of the ear shapes, which is shown to harm some subjects
for the frequency range below 5 kHz. This demands the understanding of how the
corrections for rotation are to be performed for these frequency ranges. For the study
of HRTF personalization and modeling, there is a need to perform psycho-perceptual
tests, which not just only evaluate the performance of the SPCA based modeling but
also aid in the evaluation and refinement of the personalization methods.

In the study of a weighted KPCA based morphable model, this study demands a way
to find the optimal weighting for all the regions, which can only be assigned once the
contributions of each of the regions are understood. Here again, the psycho-perceptual
tests can be of great aid. Once the optimal scalings are chosen, this can provide good
personalization results even when only a small number of parameters are used in mod-
eling the ear shapes. Another thing that needs to be explored here is the use of weighted
LDDMM, which lets one different match surface focussing more on a given region of
the space while calculating the matching.
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ABSTRACT
The sensation of elevation in binaural audio is known to be
strongly correlated to spectral peaks and notches in HRTFs,
introduced by pinna reflections. In this work we provide an
analysis methodology that helps us to explore the relationship
between notch frequencies and elevation angles in the median
plane. In particular, we extract the portion of the HRTF due
to the presence of the pinna and we use it to extract the notch
frequencies for all the subjects and for all the considered di-
rections. The extracted notch frequencies are then clustered
using the K-means algorithm to reveal the relationship be-
tween notch frequencies and elevation angles. We present the
results of the proposed analysis methodology for all the sub-
jects in the CIPIC and SYMARE HRTFs databases.

Index Terms— Binaural audio, Elevation perception,
Head Related Transfer Function (HRTF), k-means.

1. INTRODUCTION

Sound perception is the result of the interaction between
the acoustic wavefield and the listener’s body, which causes
wave scattering, reflection and diffraction. These phenomena
alter the spectral content of the sound signal in a direction-
dependent fashion, and introduce a wide variety of cues that
enable sound localization. The interaction between sound-
field and listener’s body is encoded by a complex-valued
transfer function, usually known as Head Related Transfer
Function (HRTF), which describes the spectral modifications
that are characteristics of a source in a given location with
respect to the listener [1]. The time-domain equivalent of this
transfer function is known as Head Related Impulse Response
(HRIR).

Knowing the HRTF of a person is what enables spatial
sound reproduction using headphones. However, as con-
firmed by many studies, HRTFs are strongly dependent on
the listener’s anatomy. This means that, in order to guarantee
the best performance in terms of sound localization, individ-
ualized HRTFs need to be adopted [2, 3]. Unfortunately, the
measurement of HRTFs is so expensive and time-consuming
to prevent its use in consumer applications.

We would like to thank Prof. Craig Jin and Dr. Nicolas Epain and CAR-
Lab research team for all the help and support, as well as for the permission
to use the SYMARE database for our work.

A great deal of effort has been put into the personalization
of HRTFs. In [4, 5], for example, suggest to estimate individ-
ualized HRTFs from 3D models of the user’s pinnas. Some
techniques based on low-cost capturing devices [6] have been
proposed for this purpose, though the acquisition of a suffi-
ciently accurate 3D model is still not an easy task for the av-
erage user. An alternate solution consists of synthesizing in-
dividualized HRTFs from a structural model of the listener’s
body [7–9]. Using parametric filters that rely on a given map-
ping between parameters and anthropometric data, the au-
thors obtain computationally efficient and customizable solu-
tions that can be used to approximate individualized HRTFs.

Notches in the HRTF caused by the pinna, are known to
have significant perceptual relevance for sound localization,
particularly in the frontal region [10–13]. Some studies, e.g.
[14, 15], reported that the frequencies of the notches greatly
depend on the elevation angle of the sound source, and they
are almost independent of azimuth and distance. Recently, an
important observation has been made in [4], where the authors
related the notches in the HRTF with the three main pinna
contours.

In this manuscript we study the relation between the notch
frequencies and the elevation angles for a large number of
subjects, whose HRTFs have been acoustically measured and
stored into two databases: the CIPIC database [16] and the
SYMARE database [5]. Notch frequencies are extracted from
the collected HRTFs after removing all contributions of head,
torso, and shoulders, while retaining only the contribution of
the pinna, as described in [17]. We group the notch frequen-
cies for all the subjects under consideration into three clusters,
each corresponding to one of the three main pinna contours
identified in [4]. In this setting, we analyze the evolution of
the notch frequencies as a function of sound source elevation
in the median plane. Moreover, we analyze the correlation
between notch frequencies in the left and right ears.

2. ANALYSIS METHODOLOGY

This section introduces the methodology used in this work.
The overall methodology can be divided into two conceptual
steps: notch frequency extraction and clustering. Figure 1
shows the block diagram of the overall analysis methodology
while Fig. 2 explains the steps involved in notch extraction.
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Fig. 1 Block diagram of the proposed analysis methodology.
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Fig. 2 Detail of the notch extraction procedure.

The detailed description of each step is given below.

2.1. PRTF Extraction

The deep spectral notches are produced in HRTF due to re-
flections caused by different body parts including pinna cavi-
ties, head, torso and knees. In this study we aim to analyze the
spectral notches caused by pinna, so the first step is removing
all unnecessary components of HRIR namely the contribu-
tions of head, shoulders and knees preserving the contribu-
tions of pinna. In [17] it was reported that the delays of pinna,
torso and knee reflections are typically around 0.1 to 0.3, 1.6
and 3.2 ms [10, 17] respectively.

To get rid of shoulders, torso and knees reflection compo-
nents we shorten our HRIR by applying a half Hanning win-
dow [17] of length 1 ms, starting from onset of HRIR. This
removes the reflective components due to shoulders, torso and
knees, while preserving the reflection caused by pinna.

Given the HRIR hi,φ[n] for the user i, and elevation an-
gle φ, the PRIR pi,φ[n] can be extracted by applying a half
Hanning window w[n] starting from onset of HRIR no, i.e.
pi,φ[n] = hi,φ[n]w[n− n0]. Figure 3 illustrates the window-
ing operation. The value of n0 can be found by taking the
slope of unwrapped phase function of HRTF [17].

Once the PRIR pi,φ[n] is obtained, the PRTF (Pinna re-
lated transfer function) Pi,φ[f ] can be obtained by evaluating
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Fig. 3 HRIR windowing for PRIR extraction.

its Fourier transform, where f denotes the frequency of the
signal. Next we describe the notch frequency extraction pro-
cedure from the PRTFs Pi,φ[f ], i = 1, . . . , N , relative to all
N users.

2.2. Notch Extraction

As reported in [11], the frequency content in the range 4 kHz
to 16 kHz is the main cause of median plane localization. For
this reason, we restrict the frequency bandwidth of our analy-
sis to this range.

To extract the notches we use the negative of log-scale
magnitude function of the PRTFs, i.e.

P̊i,φ[f ] = −20 log10(|Pi,φ[f ]|). (1)

The purpose of this step is to turn the notches into peaks, so
that they can be effectively extracted by finding the local max-
ima in P̊i,φ[f ]. In order to get meaningful results, we also
have to make sure that we are considering just the significant
and prominent notches, while discarding all those which are
not relevant. For this purpose, we consider the prominence
of the local maxima. The prominence describes how much
the peak stands out from the neighboring peaks. For instance,
a low isolated peak can be more prominent than one that is
higher but is next to an other higher peak and vice-versa.

In the following, we considered those peaks in P̊i,φ[f ] that
have a prominence greater than 3 dB. These values are stored
in vectors fi,φ for each subject i and elevation φ as

fi,φ = [fi,φ,1, . . . , fi,φ,Mi,φ
], (2)

being Mi,φ the number of relevant peaks in PRTF of ith user
for elevation angle φ.

Once we have notch frequency vectors, fi,φ ∈ R1×Mi,φ

for all the users and elevations, we arrange them into the vec-
tor fφ, which contains the notch frequencies for all the users
for elevation φ, i.e.

fφ =
[
f1,φf2,φ . . . fN,φ

]
∈ R1×Mφ , with Mφ =

N∑

i=1

Mi,φ.

(3)

2.3. Clustering of Notches

The next step of the analysis is to find the meaningful infor-
mation from the frequency vectors fφ. In a recent study [4],
the authors reported that in each PRTF in CIPIC database up
to three main spectral notches can be extracted, and mapped
to three distinctive and prominent pinna contours: the helix,
anti helix and outer wall of the concha.

Based on these findings, in this study we clustered the
notch frequency vector fφ consisting of Mφ elements into
K = 3 groups, using a well known clustering algorithm K-
means [18]. At the end of the process, each element in fφ will
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be assigned to a single cluster, whose centroid is the closest
to the actual value of the element.

We evaluate the distance between each element fi,φ,j ∈
fφ and the corresponding centroid mk,φ as the euclidean dis-
tance D(f1,φ,j ,mk,φ) = |f1,φ,j −mk,φ|.

The K-means algorithm is initialized by assigning ran-
dom values to the centroids mk,φ, k = 1, 2, 3. The algorithm
is defined as an iterative two-step process. The first step is the
assignment of each notch frequency to a cluster having clos-
est centroid and label it with the number of that cluster e.g.
1, 2 or 3 according to

l̂j = arg min
k

{D(fi,φ,j ,mk,φ)} (4)

where j = 1, . . . ,Mφ and k = 1, 2, 3. Moreover, a responsi-
bility vector is defined for each cluster as

rk,j =

{
1, if l̂j = k,

0, otherwise.
(5)

The second step is to update the centroid for all the clus-
ters. The updated value for the kth centroid is

mk,φ =

∑Mφ

j=1 rk,jfi,φ,j

Rk
, Rk =

Mφ∑

j=1

rk,j (6)

whereRk is the total responsibility of cluster k, defined as the
number of points belonging to cluster k.

The process continues until no further changes occur in
the cluster centroids.

After applying the K-means algorithm, we obtain the
centroids mφ = [m1,φ,m2,φ,m3,φ], corresponding to helix,
anti-helix and outer wall of concha respectively. Moreover, in
order to associate a relevance descriptor to the clustered data,
we introduce the cluster spread as the standard deviation of
their elements, i.e.

σk,φ =

√∑Mφ

j=1 (fi,φ,j −mk,φ)
2
rk,j

Rk
(7)

The results are further analyzed in the next section.

3. RESULTS

In this section we describe the application of the analysis
methodology described in Sec. 2 to the CIPIC and SYMARE
databases.

3.1. Description of the databases

For this study we used acoustically measured HRTFs from
two well known databases of fairly large population set.

3.1.1. CIPIC

CIPIC [16] is a public-domain database of acoustically mea-
sured HRIRs with a high spatial resolution. It contains HRIRs
for 45 subjects (27 male, 16 female and two KEMAR) mea-
sured at 1250 different directions around the head of the sub-
jects. The measurements are done using Golay code as analy-
sis signals, with a sampling frequency of 44.1 kHz. Measure-
ments loudspeakers are mounted on a circular arc of radius
1 m, which is rotated around a fixed listener. The length of
each HRIR stored in the database is 200 samples. For the
purpose of this work, we consider all the HRIRs at azimuth
0° and elevations φ between −45° and 45°, with a uniform
spacing equal to 5.625°.

3.1.2. SYMARE

SYMARE [5] database was created by a collaborative team of
Sydney University Australia and University of York England.
This database contains acoustically measured HRTFs for 61
users (45 males and 16 females) measured in 393 directions
around the head at a distance of 1 m, with a non-uniform an-
gular spacing in elevation for different azimuth angles. Im-
pulse responses are recorded using Golay codes with a sam-
pling frequency equal to 48 kHz. The length of each HRIR
is 256 samples. For the purpose of this work, we consider all
the HRIRs at azimuth 0° and elevations φ between −45° and
40°.

3.2. Analysis 1

The steps defined in section 2 were applied to all the HRIR
sets in both databases. HRIRs for the mentioned elevations
were retrieved from the databases and PRIRs were extracted
from each HRIR. The PRIRs were then transformed in the
frequency domain by a zero-padded 512-point FFT.

Notches vectors fφ are estimated for each direction φ ac-
cording to the angular grid adopted by the database, and notch
frequencies are grouped into 3 clusters mk,φ, k = 1, 2, 3,
along with their corresponding spread σk,φ. Figure 4 shows
the cluster centroids and spreads as a function of the elevation
angle φ for the left and right ears of all the subjects in CIPIC
and SYMARE databases.

We notice that for φ = −45° the cluster mean for all four
cases (CIPIC and SYMARE databases, left and right ears) has
almost the same value. Another observation that we want to
point out is that all the cluster means mk,φ, k = 1, 2, ex-
hibit a monotonically increasing behavior as a function of φ,
despite of some slight irregularities. These irregularities are
more prominent in the CIPIC database. On the other hand,
m3,φ results to be almost constant in all the four considered
cases. In a more general way, we observe that the slope of the
clusters mk,φ, k = 1, 2, 3, is the highest for m1,φ and almost
null for m3,φ. This behavior suggests that the pinna reflec-
tion causing a notch in the range of m1,φ might be the most
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Fig. 4 Cluster centroids and spreads as a function of elevation angle φ.

informative one for elevation perception.
In the case of data extracted from the CIPIC database, we

observe a peak around φ = 30° for the left ear, while the right
ear exhibit a peak around φ = 40°. In the SYMARE database
these irregularities are very mild and are present in just right
ear, while the tracks for left ear are very smooth.

3.3. Analysis 2

Further, we compare the results obtained for left and right
ears in both databases. First, we convert the frequency cen-
troids mk,φ to the Bark scale [19] and then we compute their
Euclidean distance. In the following we denote by dk,φ the
distance between the centroid of left and right ears for the kth
cluster and elevation φ. Results are reported in Fig. 5.

We observe that, in both CIPIC and SYMARE, the max-
imum value for the distance between clusters is less than 0.5
Bark for all the considered cases and for all the elevations.
In case of SYMARE database distances have smaller values
and a smoother distribution, while in the CIPIC database dis-
tances are, in general, greater and less regular with respect
to φ. We would like to point out that the differences exhibit
minima in the horizontal plane (φ = 0°) in all the considered
cases and for all the clusters, suggesting that binaural cues are
not relevant in the frontal direction. On the other hand, it can
be observed that the distances are greater moving away from
the horizontal plane; this behavior suggests that both monau-

ral and binaural cues are relevant for elevation perception in
the median plane.

4. CONCLUSIONS

In this manuscript we provide a methodology to analyze
HRTFs in publicly available databases. In particular, we de-
scribe a technique to extract notch frequencies from HRTF
data and to classify them into three clusters, each corre-
sponding to a specific contour in the pinna namely the helix,
anti helix and outer wall of the concha. We validated the
proposed methodology with acoustically measured HRTFs
from the CIPIC and SYMARE databases. We performed a
comparative study on the evolution of notch frequencies in
median plane in CIPIC and SYMARE databases. Results
show the strong dependency between notches in the HRTFs
and elevation angles in the median plane. Moreover, we
also studied the binaural differences between noth frequen-
cies which revealed that not only monaural but also binaural
cues are important for elevation perception. We envision our
approach to be applied in combination with the techniques
mentioned in [20–22] for the auralization of virtual and real
sound environments.
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ABSTRACT

Personalized head-related transfer functions (HRTFs) are es-
sential for presenting authentic spatial audio through binaural
rendering. However, measuring personalized HRTFs for ev-
ery user is a tedious task and requires specialized equipment.
This paper presents an easy and efficient method for obtain-
ing personalized magnitude response of HRTFs. It treats the
problem of HRTF synthesis as finding the sparse represen-
tation of the anthropometric features of the new listener with
respect to anthropometric features of the user set in the CIPIC
database. Unlike the previous sparse representation methods,
our method assigns different weights to different anthropo-
metric features depending on their relevance. We compared
our approach with state of the art sparse representation and
closest-match based approaches. The results show that our
approach outperforms the previous approaches resulting an
average spectral distortion value of 5.53 dBs between syn-
thesized and actual HRTFs for all users present in the CIPIC
database.

Index Terms— Head-related transfer functions, HRTF
personalization, anthropometric features, weighted sparse rep-
resentation

1. INTRODUCTION

Spatial hearing is the result of the interaction between the
acoustic wavefield and the listener's anatomy, which causes
wave scattering, reflection and diffraction. These phenomena
modify the spectral content of the sound signal in a direction
dependent fashion and introduce a wide variety of cues which
enable the listener to localize the sound sources in 3D space.
Interactions between the soundfield and listener's body can
be encoded by a direction-dependent, complex-valued trans-
fer function, known as head-related transfer function (HRTF).
An HRTF describes the spectral colorations that are imposed
on a source in a given location with respect to the listener [1].
The time-domain equivalent of this transfer function is known
as the head-related impulse response (HRIR).

Availability of the HRTFs, enables spatial audio repro-
duction over headphones. However, as confirmed by many

studies, HRTFs are highly idiosyncratic due to their strong
dependence on the listener's anatomy. This means the best
performance can only be guaranteed by using individualized
HRTFs [2, 3]. However, the measurement of HRTFs is expen-
sive and time-consuming and requires specialist equipment
and trained operators. Thus it is limited to few laboratories
in the world. This prevents its use in consumer applications
[4, 5, 6]. As a result, a simple and efficient solution is needed
that can provide the personalized HRTFs for the listener with-
out going through the currently used lengthy and inconvenient
process of HRTF measurement.

Considering the dependence of HRTFs on anatomy, much
efforts has been concentrated on personalizing HRTFs based
on a selected set of anthropometric features, such as head
width, height and depth, height and width of the pinna (outer
ears), etc. The simplest possible approach, as proposed in
[7, 8], is to use these anthropometric features to select the
closest match from a database of non-individualized HRTFs.
However, the closest match does not guarantee good perfor-
mance in all cases because it simply returns the closest-match
non individualized set of HRTFs in the database and does not
let the user adjust the HRTF magnitudes.

Moreover, studies in [9, 10, 11, 12], attempt to identify
the relationship between the anthropometric and the HRTF
features by directly relating them. Other approaches [13, 14],
investigate the complex relationship using PCA and neural
networks. However, the performance of all these approaches
strongly depends on the choice of the selected features.

Recently, authors in [15] proposed a new HRTF person-
alization method based on sparse representation. They as-
sumed that the magnitude of an HRTF can be described by
the same sparse representation as the anthropometric features
in the training data. Based on this assumption, HRTFs for a
new subject, not present in the database, can be synthesized
by sparse representation of its anthropometric features and
HRTFs in a database of non-individualized HRTFs. The re-
sults show that this method can improve personalization. Re-
finements in [16] in which, post and preprocessing methods
are incorporated improve the performance further.

After studying the work of [15, 16], we introduce an HRTF



personalization method based on weighted anthropometric sparse
representation and combine it with the preprocessing and post-
processing methods described in [16]. In our work, we used
only 17 anthropometric parameters (10 for the head and torso
and 7 for each ear), all of which can be measured from three
scaled pictures of a subject, as in [17].

2. METHODOLOGY

Sparse representation based HRTF personalization schemes
begin by finding a sparse representation of the subject's an-
thropometric features, i.e finding the linear combinations of
the given anthropometric features which can generate the an-
thropometric features of the new subject. The approach is
based on a strong assumption, that the HRTFs can be repre-
sented in the same sparse representation as the anthropomet-
ric features. The second assumption is that the given training
set is sufficiently rich to encompasses the anthropometric fea-
tures of any new subject.

In previous sparse representation based HRTF personal-
ization techniques [15, 16], the anthropometric parameters are
considered equally important. However, previous studies sug-
gest that this is not the case and some features are more rel-
evant than the others. For example, ear features are the more
relevant than torso features [9].

Moreover, previous approaches combine the anthropomet-
ric measurements of left and right ears into a single vector for
determining a new subject's sparse representation. As a result,
each subject only has one sparse representation of anthropo-
metric features and this is used for both left and right HRTFs.
This may be satisfactory in the cases, where a subject has per-
fectly symmetrical ears. However, many users have asymmet-
ric ears and use of single vector may lead to a poor listening
experience.

In this study, our contributions are twofold. First, we
assign weights to the anthropometric features using a par-
tially on-off strategy approach, described in [17]. Later, these
weights are used to devise the relevance of the anthropomet-
ric feature while calculating a sparse representation. Further-
more, we compute separate sparse representations for person-
alization for both the left and the right ear.

Based on studies and experiments conducted in [16], we
applied pre- and post-processing to our anthropometric fea-
tures and HRTFs using the best combination of methods re-
ported by authors. Figure 2 shows the block diagram of the
methodology. The details of each block are provided in the
following section.

2.1. Database

All the experiments in our study are conducted on the CIPIC
(Center for Image Processing and Integrated Computing) data-
base [4]. This is a publicly available database of HRIRs that

contains measured HRIRs for 45 subjects in 1250 different di-
rections. The database also includes the measurements of 27
anthropometric parameters as shown in figure 1. As only 35
subjects have all 27 anthropometric measurements, we con-
fined our study to just this subset.

(a) side view

(b) front view (c) ear area

Fig. 1. Anthropometric parameters that can be measured from
(a) the side view, (b) front view, and (c) the pinna closeup
view respectively (picture taken from [17]).

2.2. Anthropometric feature selection

The study in [17] reported that 19 anthropometric feature (12
for the head and torso and 7 for the pinna) can be directly
measured using only the three scaled pictures, as illustrated
in Figure 1. All 19 of these anthropometric features are listed
in Table 1. Usually, x5 (pinna offset back) is not easy to mea-
sure from pictures, because it highly depends on the flair an-
gle of the pinna which can varies a lot across different users.



Fig. 2. Block diagram of HRTFs personalization using weighted sparse representation of anthropometric features

Var Measurement Var Measurement
x1 head width d1 cavum concha height
x2 head height d2 cymba concha height
x3 head depth d3 cavum concha width
x4 pinna offset down d4 fossa height
x5 pinna offset back d5 pinna height
x6 neck width d6 pinna width
x7 neck height d7 intertragal incisure width
x8 neck depth
x9 torso top width
x10 torso top height
x11 torso top depth
x12 shoulder width

Table 1. 19 Anthropometric parameters can be measured
from scaled picture.

Similarly, x7 (neck height) strongly depends on the posture
of the subject while the photograph is captured so can not be
measured. For this reason we suggest to use only the remain-
ing 17 anthropometric parameters. Further details of obtain-
ing the anthrpometric features from pictures are outside of the
scope of the study and can be found in [17]. In this study, we
directly used the anthropometric features provided in CIPIC
database rather than measuring through described method.

2.3. Calculation of weights for anthropometric features

In previous sparse representation based approaches, such as
[15, 16], all the anthropometric parameters are considered to

be equally relevant. This has been shown incorrect in past
studies and we use the approach described in [17] to calculate
the weights of each anthropometric feature. Figure 3 shows
the block diagram of the scheme. Only 17 features are ulti-
mately required at the end, but in the CIPIC database 27 fea-
tures are provided for every subject. For the relevance calcu-
lation, we used 25 of these 27 anthropometric features rather
than 17 only omitting x14 (height) and x15 (seated height),
as these features are not relevant when measuring the HRIRs.
We used 25 features instead of 17 to determine the relevance
metric for all 25 features which might be useful for future
studies. As different anthropometric features lie in different
ranges and scales, to bring them to a notionally common scale
we normalized them using a min-max method. Given the an-
thropometric feature set A = [a1, a2, · · · , a25], containing
the 25 anthropometric features of a given subject in the CIPIC
database the min-max normalization is expressed by:

A
(i)
N =

A(i) −min[A(i)]

max[A(i)]−min[A(i)]
∀i = 1, 2, · · · , 25, (1)

where A(i) and A(i)
N represent the actual and normalized i-th

anthropometric features in the feature set, respectively.
To obtain all possible combinations of 25 anthropometric

parameters, we used a partially on-off scheme. For every an-
thropometric feature, we can either include or exclude it in the
calculation which results in: 225 − 1 = 33, 554, 431 different
possible combinations, (−1 because we do not consider the
case where all features are excluded). Next, we compared the
subjects in pairs by calculating the distance between them as
follows:



D(i,j,k) = ‖
25∑

a=1

A
(i,k)
N −

25∑

a=1

A
(j,k)
N ‖, ∀k = 1, 2, ..., 225−1,

(2)
where D(i,j,k) corresponds to the difference between the sum
of the anthropometric parameters of i-th and of the j-th sub-
ject in the k-th combination.

Next, we calculated the average spectral distortions (SD)
of HRTFs between all subject pairs according to:

SD(H(i), H(j)) =

√√√√ 1

D

1

F

D∑

d=1

F∑

f=1

(20 log10
‖H(i,d)(f)‖
‖H(j,d)(f)‖ )

2,

(3)
where H(i,d) and H(j,d) correspond to the HRTF of i-th and
the j-th subject in direction d. F is the number of frequency
bins and is equal to 128 in our case as we took a 256 point
FFT. D is the number of directions for which HRTFs are
available and is equal to 1250 here. This process resulted in
an S × S matrix of SD, where S is the number of users and
is equal to 35 for our study.

We calculated the correlation between D and SD for all
possible combinations of anthropometric parameters as fol-
lows:

ρ(i,k) = corr(D(i×35,k), SDi×35)) (4)

where ρ(i,k) corresponds to the Pearson's correlation coeffi-
cient of the i-th subject in the k-th combination. The combi-
nation which resulted in the maximum value of the correlation
was selected as the best combination for the given subject. We
obtained the best combinations for all subjects. The weights
for different anthropometric features are obtained by divid-
ing the number of occurrences of any given anthropometric
feature with the total number of subjects:

W (i) =
t(i)

S
, (5)

where W (i) corresponds to weight of i-th anthropometric
feature. t(i) is number of times of i-th anthropometric param-
eter occurred in all best combinations. S is the number of best
combinations and is equal to 35.

2.4. Preprocessing for anthropometric features and HRTFs
for Sparse Representation

The authors in [16], suggest that using the standard normal-
ized anthropometric feature vectors instead of the scalar mag-
nitude vectors results in an improved sparse representation.
For this purpose, we normalized the anthropometric feature
sets calculating their standard scores as:

As =
A−mean[Ad]

std[Ad]
, (6)

At =
Ao −mean[Ad]

std[Ad]
, (7)

where A denotes the anthropometric features of all the sub-
jects in the database, Ao denotes the anthropometric features
of the new user, Ad is the superset of both and is given by
Ad = [A Ao], As and At denotes the standard normalized
vectors of anthropometric features of the users in the database
and for a new subject, respectively.

The HRTFs are obtained from the HRIRs by computing
a 256 point FFT. In[16], the authors state that using log-scale
magnitude can result in an improved performance. For this
reason in our work we used HRTFs on a dB scale instead of
complex amplitudes.

H[dB] = 20 log10 |H| (8)

2.5. Sparse representation of anthropometric features

We used sparse representation to estimate the standard score
of the new subject's anthropometric parameters At, as the lin-
ear superposition [15]:

At ≈ βAs (9)

where As is the standard score of the anthropometric param-
eters A in the database.

In the sparse vector β = [β(1), β(2), ..., β(S)]T , each ele-
ment corresponds to the weight of a subject in the linear su-
perposition.

Thus, the problem of looking for an optimal sparse vector
can be considered as a minimization problem:

β = argmin
β

(‖W (At − βAs)‖22 + λ‖β‖), s.t.β(i) ≥ 0,

(10)
where W represents the weights of different anthropometric
parameters. In line with [16], we added a non-negative con-
straint on β, e.g. β(i) ≥ 0. Where the regularization parame-
ter λ of this minimization problem is a non-negative parame-
ter.

2.6. Postprocessing for sparse vectors

To ensure that the synthesizing process has consistent ampli-
tudes at the output, as in the database, we normalized the val-
ues of β vector such that the sum of beta vector is equal to
1:

βN =
β∑25

s=1 β(s)
. (11)

2.7. HRTF synthesis

As in [15], we assume that the HRTFs can be represented
using the same sparse representations as the anthropometric



Fig. 3. Block diagram of weight calculation

features. Once we get the normalized sparse vector βm, we
can directly apply it to the log-scale HRTF data H[dB] in the
database

Ĥ[dB] = βNH[dB]. (12)

However, the new synthesized HRTF Ĥ[dB] is expressed
in dBs, so re-expressing the synthesized result as a scalar
magnitude gives:

Ĥ = 10
Ĥ[dB]

20 . (13)

2.8. Regularization parameter

The authors in [16] suggest that by adding only a single pa-
rameter λ into the minimization problem, one can prevent
over-fitting. Several values for λwere tested using the anthro-
pometric measurements and measured HRTFs in the database
and one was selected as the optimal value.

To find the optimum value of λ, we used the “leave one
person out” cross-validation approach [18] in the CIPIC data-
base, and chose the value for λ that results in the smallest
cross-validation error. We used the root-mean-square error as
a cross validation measure as in eq 10.

To fit the scale of λ to the preprocessed anthropometric
parameters and tune the value of λ easily, we normalized λ as
suggested in [16]:

λ =
λ0

1− λ0
‖At‖22, (14)

whereAt corresponds to the preprocessed anthropometric pa-
rameters of the new subject. In this case, by tuning the value
of λ0 from 0 to 1, we can generate any nonnegative value for
λ.

3. EXPERIMENTS

To evaluate the performance of our proposed approach, we
applied the “leave one person out cross-validation” approach
[18]. Each of the 35 subjects is taken out one-by-one as the
test subject and the remaining 34 subjects are regarded as the
training subjects.

Using the spectral distortion SD as our evaluation met-
ric as described in Equation 15. We compared the results
of our scheme with previously available sparse representa-
tion techniques and some closest-match based personalization
schemes.

3.1. Evaluation Criteria

For evaluating the difference between synthesized HRTFs Ĥ
and the original HRTFs H of the test subject, we employed a
widely used error metric spectral distortion as our evaluation
criteria [9, 15, 19].

SD(d)(H, Ĥ) =

√√√√ 1

N

N∑

n=1

(20 log10
‖H(d)(n)‖
‖Ĥ(d)(n)‖

)2 [dB]

(15)
where H(d) is the original HRTF in the d-th direction, and
Ĥ(d) is the synthesized HRTF in same direction. N is the
number of frequency bins (N = 128).

We used the root-mean-square error (RMSE) to compare
the two sets of HRTFs for all 1250 directions:

SD(H, Ĥ) =

√√√√ 1

D

D∑

d=1

(SD(d)(H, Ĥ))2 [dB] (16)

where D is 1250.



3.2. Creating performance baselines

We also compared the performance of our proposed approach
with three different closest-match methods introduced by [17,
20, 21]. For each method, we calculated average spectral dis-
tortion baselines for all 35 subjects in the CIPIC database.

The best-matched HRTF for a new subject was selected
based on finding the minimum average spectral distortion be-
tween the actual and matched HRTF. The worst-matched HRTF,
on the other hand, was selected from the result with the max-
imum average spectral distortion.

The spectral distortion values given in Table 3, for the best
and the worst matching cases defines the boundaries for the
spectral distortion values obtainable when using any of the
possible closest match based scheme.

3.3. Results and discussion

The results of our experiments are presented in Table 2 and
Table 3. The results presented in Table 2 show that the av-
erage spectral distortion using the weighted sparse represen-
tation, with 17 anthropometric parameters is 5.53dB. This is
better than value obtained by using the unweighed sparse rep-
resentation (5.57 dBs), even when 27 anthropometric param-
eters are used and also better than the SD score of (5.63dB),
when unweighed sparse representation is used with only 17
anthropometric parameters. Even though we have used fewer
anthropometric parameters, the weighted sparse representa-
tion still provides better results.

Results presented in Table 3 show that our proposed ap-
proach outperforms the three closest-match methods.

Considering “The Best” baseline, we find that the average
spectral distortion of weighted sparse representation using 17
anthropometric parameters (5.53dB) is lower than “The Best”
baseline (6.13dB), which means that our approach will per-
form better than any other closest-match methods under this
evaluation criteria.

4. CONCLUSION AND FUTURE WORK

Building on the previous sparse representation techniques, we
have introduced an easy and effective HRTF personalization
method based on a weighted sparse representation with pre-
processing and postprocessing. All anthropometric param-
eters used in our approach can be measured from scaled pic-
tures of the subject. To reflect their relative influence in sparse
representation, we have assigned weights to these anthropo-
metric parameters, using spectral distortion as the experimen-
tal evaluation criteria. Our experiments show that the pro-
posed approach has an average spectral distortion lower than
that of previous sparse representation and other closest-match
based personalization methods, indicating the effectiveness of
our approach.

Future work includes validating our approach using per-
ceptual localization tests and using non-linear higher order
sparse representations to improve the performance further.
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CONSIDERATIONS REGARDING INDIVIDUALIZATION OF HEAD-RELATED TRANSFER
FUNCTIONS

C. T. Jin, R. Zolfaghari, X. Long, A. Sebastian, S. Hossain, J. Glaun`es, A. Tew, M. Shahnawaz, A. Sarti

ABSTRACT

This paper provides some considerations regarding using individu-
alized head-related transfer functions for rendering binaural spatial
audio over headphones. It briefly considers the degree of benefit
that individualization may provide. It then examines the degree of
variation existing within the ear morphology across listeners within
the Sydney-York Morphological and Recording of Ears (SYMARE)
database using kernel principal component analysis and the large
deformation diffeomorphic metric mapping framework. The degree
of variation across listeners in the directivity patterns associated with
head-related transfer functions is also analyzed as a function of fre-
quency. The variation in ear morphology is related to the variation in
the directivity patterns using simple linear regression.

Index Terms— Morphoacoustics, LDDMM, Kernel principal
Component Analysis, Head-related transfer functions, Binaural hear-
ing, Hearables

1. INTRODUCTION

This paper focuses on individualization of head-related transfer func-
tions for rendering binaural spatial audio using headphones - a re-
search area with a long and varied history, e.g., [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12]. It is well known that ear acoustics depends on the
morphology of the periphery of the outer ear. Indeed, the study of
the relationship between ear acoustics and the shape of the outer
ear periphery has been termed morphoacoustics [13, 4, 14, 15]. Ear
acoustics is often described in terms of 3D audio filter functions, re-
ferred to as head-related impulse reponses (HRIRs). HRIRs vary for
each listener because each listener has different and uniquely shaped
ears. There is an HRIR filter for each ear and each direction in space
and these HRIR filters enable the rendering of binaural 3D audio for
a listener.

The primary contribution of this work relates to a new study based
on our recent work using the large deformation diffeomorphic metric
mapping (LDDMM) approach to model ears and the fast-multipole
boundary element method (FM-BEM) to numerically simulate ear
acoustics. More specifically, we study the morphoacoustics of a
simpler synthetic database of ear shapes which have been created
from the SYMARE database by rotating, translating and scaling the
ears to match a template ear shape. The synthetic database of ear
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shapes provides interesting viewpoints relating to the relationship
between ear morphology and ear acoustics.

In addition to the primary morphoacoustic study which is the
real focus of this paper, we also briefly consider a a psychoacoustic
experiment contrasting individualized binaural spatial audio versus
generic or non-individualized binaural spatial audio both with and
without head-tracking enabled. These experiments highlight a few
important considerations that are generally well-accepted within the
community, but which would be useful to review given the recent,
renewed interest in binaural spatial audio related to the rapid uptake
of mixed reality and virtual reality technologies [16, 17] as well
as hearable devices [18]. With regard to the psychoacoustics of
binaural spatial hearing, there have been numerous psychophysical
investigations relating to the influence of HRIRs on binaural hearing
and localization, e.g., refer to the following books and references
therein [19, 20, 21, 22].

2. BINAURAL SPATIAL RENDERING OF MUSIC

2.1. Methods

We recently conducted a binaural music listening test contrasting
individualized HRIRs and generic HRIRs. More specifically, there
were four listening conditions of relevance to this paper: (1) bin-
aural rendering with individualized HRIR filters and head-tracking;
(2) binaural rendering with generic HRIR filters and head-tracking;
(3) binaural rendering with individualized HRIR filters and no head-
tracking; and (4) normal headphone listening without binaural spatial
rendering. We had twenty-three self-reporting normally-hearing lis-
teners participate in the listening test. Listeners were asked to listen
to six sound excerpts:

• Mono: drums, Radiohead - Weird Fishes/Arpeggi

• Mono: guitar, Tarrega - Capriccio Arabe

• Stereo: Pop, Radiohead - Jigsaw Falling Into Place

• Stereo: Bossa-Nova, Stan Getz, João Gilberto - Vivo Sonhando

• 5.1 Surround: Rock, Pink Floyd - Money

• 5.1 Surround: Pop Jazz, Norah Jones - Come Away With Me

Sounds were played to the listener using the AKG 1000 open head-
phones and also a loudspeaker array consisting of 12 loudspeakers:
5 Tannoy System 15 loudspeakers forming a 5.1 arrangement and 7
additional Tannoy V6 loudspeakers forming a circular array spaced
every 45 degrees. The loudspeaker playback provided a reference for
the headphone listening. Because the headphones are open, the loud-
speakers could be heard without distortion. Every listener had HRIRs
recorded using a blocked-ear recording method [23] in an anechoic
chamber using a semi-circular robotic arm (methods were similar
to those presented here [24]). A MUSHRA-like [25] test paradigm
was used in which there was no hidden reference, but an anchor was
included. The explicit reference was loudspeaker playback and the



Fig. 1. Results from the binaural listening test are shown for the six sound stimuli. The average population scores for the four listening
conditions are shown using a bar plot. The legend labels are as follows: Indiv. + HT – Individualized HRIRs with head-tracking; Generic + HT
– generic HRIRs with head-tracking; Indiv. no HT – Individualized HRIRs with no head-tracking; No 3D – no binaural spatial rendering.

anchor was headphone presentation with no spatial audio rendering.
Listeners participated in two different trials. In one trial listeners
were asked to rate overall preference and in another trial listeners
were asked to rate the clarity of the frontal image. Head-tracking was
implemented using a Polhemus G4 head-tracking device mounted on
the headphones.

2.2. Results

Results of the listening test are shown in Fig. 1. As expected, head-
tracking contributed significantly to the listeners’ scores because it
provides a consistent listening environment in which sound sources
are robustly and consistently localized when the head moves. Inter-
estingly, listeners also showed a small, but consistent bias for indi-
vidualized binaural rendering over generic binaural rendering. The
added benefit of individualized binaural rendering is small compared
to the benefit of head-tracking. Nevertheless, in listening conditions
without a visual reference, there does seem to be a small benefit for
individualization in binaural rendering. This would suggest that indi-
vidualized binaural rendering will play some role when visual stimuli
are absent - for example, in augmented spatial hearing conditions
using hearables. We hope these data provide some background and
motivation for the continued research into morphoacoustics.

3. MORPHOACOUSTICS

We now consider an investigation relating a kernel principal compo-
nent analysis of ear morphology to a principal component analysis
of the directivity of head-related transfer functions (HRTFs) - the
spectral representation, i.e., the Fourier transform of HRIRs. We
use the SYMARE database [26] but with an interesting twist: we
rotated, scaled, and translated all of the ears to match an average,
template ear [27]. We then numerically computed the HRIRs for
the newly rotated, scaled, and translated ears using FM-BEM. The
motivation for such a manipulation is to simplify the morphoacoustic

problem. When the ears are mapped via rotation, translation and scal-
ing to the template ear, we expect the acoustics of the ears to be more
similar. An additional motivation is that it is well understood that a
scaling difference in ear sizes relates to a frequency scaling in the
HRTFs as has been well-described by John Middlebrooks [2, 28, 29].
This would indicate that a frequency scaling operation applied to the
HRTFs will correct for a scaling of the size of the ear. We have taken
a divide-and-conqueror approach to the morphoacoustics problem.
We will first consider changes in ear shape that are independent of
rotations and scaling. Later on, we will have to account for rotations
and scaling, but that is not the focus of this work.

To begin, we briefly review the LDDMM framework. LD-
DMM [30, 31] is a mathematical framework that can be employed for
the registration and morphing of three-dimensional shapes [32, 33].
It is based on theories from functional analysis, variational analysis
and reproducible kernel Hilbert spaces. We model a 3D-shape as a
mesh with triangular faces, which we refer to as S(X) where X is
the matrix specifying the mesh vertices and S represents the mesh
connectivity (the triangular faces). LDDMM models the morphing
of S1(X) to S2(Y) as a dynamic flow of diffeomorphisms of the
ambient space, R3, in which the surfaces are embedded. This flow
of diffeomorphisms, φv(t, ·), is defined via the partial differential
equation:

∂φv(t,X)

∂t
= v(t) ◦ φv(t,X) , (1)

where v(t) is a time-dependent vector field, v(t) : R3 → R3 for
t ∈ [0, 1], which models the infinitesimal efforts of the flow, and
◦ denotes function composition. This vector field belongs to a Hilbert
space of regular vector fields equipped with a kernel, kV , and a
norm ‖ · ‖V that models the infinitesimal cost of the flow. In the
LDDMM framework, we determine v(t) by minimizing the cost
function, JS1,S2 :

JS1,S2 (v(t)) = γ

∫ 1

0

‖v(t)‖2V dt+ E (S1(φ
v(1,X)), S2(Y)) ,

(2)



Fig. 2. Top row shows the original ear shapes and the bottom row shows the ear shapes derived from a KPCA representation using 8 principal
components.

where E is a norm-squared cost measuring the degree of matching
between S1(φ

v(1,X)) and S2(Y). In this work we use the Hilbert
space of currents [34, 32] to compute E because it is easier and more
natural than using landmarks. The parameter γ is a parameter that
sets the relative weight of the two terms in the cost function. In this
work γ = 5× 10−5. The optimal v(t) can be expressed as a sum of
momentum vectors, αn(t), with one momentum vector defined for
each of the N vertices in X:

v(t) =
dx(t)

dt
=

N∑

n=1

kV (xn(t),x(t))αn(t) , (3)

where in this work we use the Cauchy kernel.

3.1. Kernel Based Principal Component Analysis (KPCA)

We have previously described the details of a kernel principal com-
ponent analysis (KPCA) using the LDDMM framework [35]. The
KPCA is based on the initial momentum vectors describing the dif-
feomorphic deformation of the template ear to each ear in the dataset.
These initial momentum vectors are taken as a numerical representa-
tion of the diffeomorphic deformation. In this paper, we focus on the
interpretation of the KPCA applied to the ear morphology. To begin,
we use eight principal components to represent ear shape. As we
have a dataset of 62 ears, the eight principal components likely form
a reasonable subspace. The ability of eight numbers to characterize
ear shape is shown in Fig. 3 and works surprisingly well. Recall that
the ears have been rotated and scaled to match the template ear so we
are only considering changes in ear shape.

3.2. Results

Let us now consider how the eight principal components from the
KPCA relate to the changes in ear acoustics. We shall represent ear
acoustics based on the HRTF directivity patterns using the spatial fre-
quency response surface [36]. We use standard principal component
analysis to analyse the HRTF directivity patterns. Three principal
components provides a reasonable representation of the HRTF di-
rectivity patterns. We then use simple linear regression to relate the

eight principal components from ear morphology to the three prin-
cipal components related to the HRTF directivity patterns. In Fig. 3,
we show the results for three frequencies: 6000 Hz, 8063 Hz, and
9938 Hz. These results seem surprisingly good given the simplic-
ity of the modelling. We have kept the modelling simple to avoid
over-fitting and to provide realistic expectations.

4. CONCLUSION

This paper shows variations in ear morphology that commonly occur
across a population of ears and the associated changes in the ear
acoustics. All of the ears in the dataset have been rotated and scaled to
match a template ear. Given the simplified morphological conditions,
linear regression between the morphological and acoustic principal
components seems to model the data reasonably well.
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ABSTRACT
In this work, we explore the potential for morphological weighting
of different regions of the pinna (outer ear) to improve the prediction
of acoustic directivity patterns associated with head-related transfer
functions. Using a large deformation diffeomorphic metric map-
ping framework, we apply kernel principal component analysis to
model the pinna morphology. Different regions of the pinna can be
weighted differently prior to the kernel principal component analysis.
By varying the weights applied to the various regions of the pinna,
we begin to learn the relative importance of the various regions to the
acoustic directivity of the ear as a function of frequency. The pinna is
divided into nine parts comprising the helix, scaphoid fossa, triangu-
lar fossa, concha rim, cymba concha, cavum concha, conchal ridge,
ear lobe, and back of the ear. Results indicate that weighting the
conchal region (concha rim, cavum and cymba concha) improves the
predicted acoustic directivity for frequency bands centered around
3 kHz, 7 kHz, 10 kHz and 13 kHz. Similarly, weighting the triangu-
lar and scaphoid fossa improves the prediction of acoustic directivity
in frequency bands centered around 7 kHz, 13 kHz and 15.5 kHz.

Index Terms— Morphological weighting, Morphoacoustics,
LDDMM, Acoustic directivity patterns, Binaural hearing, HRTFs,
Kernel principal component analysis, Principal component analysis

1. INTRODUCTION

The acoustic directivity of the human outer ear varies with frequency
in an individualized manner depending on the morphological char-
acteristics of the outer ear, head and torso. The directional char-
acteristics of human outer ears are measured in the laboratory as
head-related impulse responses (HRIRs) and are described in the
frequency domain as head-related transfer functions (HRTFs) [1].
The HRIRs play an important role in developing filters for the syn-
thesis of binaural spatial audio over headphones and have gained
renewed interest with recent developments in mixed-reality systems.
The relationship between physical morphology and acoustic prop-
erties is more generally referred to as morphoacoustics [2–5] and
the individualization of binaural spatial audio has a long research
history [4, 6–18].

In this work, we continue our exploration of morphable mod-
els of both outer ear shapes and outer ear acoustic directivity pat-
terns [19–22]. Our research uses the SYMARE database [23] and is
fairly unique in that we have developed a set of 61 affined-matched
ears [18]. These ears are matched in scale, rotation, and translation

and in the first instance simplify the study of outer ear morphoacous-
tics. For each of these ears we have numerically computed HRTFs
using the fast-multiple boundary element method. The primary new
contributions of this work are our demonstrations: (1) that mor-
phological weighting can improve linear regression between model
parameters of outer ear shape and model parameters of acoustic
directivity patterns and (2) that morphological weighting provides a
means to explore the acoustic significance and impact of individual
morphological regions of the outer ear.

2. METHODS

Our morphable model for the outer ear shapes is based on the large
deformation diffeomorphic metric mapping (LDDMM) framework.
Using the LDDMM framework, we have derived a kernel principal
component model of ear morphology. With regard to outer ear
acoustics, we focus on acoustic directivity patterns and not on HRTFs
per se. We derive a standard principal component model of the
acoustic directivity patterns. The focus of this work is the application
of morphological weighting to our morphable model of ear shape
in order to obtain a better understanding and prediction of acoustic
properties.

2.1. LDDMM Framework

LDDMM [24, 25] is a mathematical framework that can be em-
ployed for the registration and morphing of three-dimensional
shapes [26, 27]. In the LDDMM framework we model a 3D-shape
as a mesh with triangular faces, which we refer to as S(X), where
X is the matrix specifying the mesh vertices and S represents the
mesh connectivity (the triangular faces). Core to this work is the
operation of LDDMM mapping which consists in determining the
diffeomorphic transformation that morphs an initial shape S1(X),
with X ∈ RN×3, into a target shape S2(Y) with Y ∈ RM×3. The
result of this operation is a set of vectors, {αn(0)}1≤n≤N , defined
at the vertices X and known as the initial momentum vectors, that
characterize the diffeomorphic transformation in its entirety. We
have described the application of the LDDMM framework to the
study of ear morphology in detail previously [19–22]. Because the
exact details of the LDDMM framework do not play a significant
role in this work, we refer the interested reader to these previous
studies, rather than provide a full exposition here.

We provide a brief summary of the aspects of the LDDMM
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framework that are important to this work. LDDMM models the
mapping or morphing of S1(X) to S2(Y) as a dynamic flow of
diffeomorphisms of the ambient space, R3, in which the surfaces
are embedded. The flow of differomorphisms is characterized by a
time-dependent vector field, v(t) that is determined by minimizing
a cost function. Significantly, the time-dependent vector field, v(t),
can be expressed as a sum of momentum vectors, αn(t), with a
momentum vector defined for each of the N vertices in X:

v(t) =
dx(t)

dt
=

N∑

n=1

kV (xn(t),x(t))αn(t) , (1)

where in this work we use the Cauchy kernel defined by:

kV (x,y) =
1

1 + ‖x−y‖2
σ2
V

, (2)

for x and y in ∈ R3. The σV parameter is a scale parameter that
determines through the kernel, kV , the range of influence of the
momentum vectors αn(t). Setting σV to a larger value increases the
coupling in the motion of vertices that are further apart. In this work,
σV = 10 mm. As emphasized previously, the initial momentum
vectors, αn(0), determine the diffeomorphic mapping of S1 to S2

in its entirety [28].

2.2. Kernel Based Principal Component Analysis (KPCA)

The LDDMM framework can be used to create a morphable
model [21] of ears, the essence of which is a template or average
ear shape (the details of the calculation are described in [20]), and
a set of initial momentum vectors that describe the deformation of
the template shape to other shapes in the database. A cornerstone
to analysis using the morphable model is kernel-based Principal
Component Analysis (KPCA). We use the kernel version of PCA
because the space of deformations is Riemannian.

In order to calculate the principal components, we calculate the
covariance matrix, C, which expresses the mutual correlation of the
different ear shapes in the space of deformations. To compute this
matrix we first construct a data matrix A ∈ R3N×L which contains
the initial momentum vectors for the entire population of ears:

A = [a1, a2, . . . , aL]3N×L (3)

where al denotes the column vector containing all the initial momen-
tum vector coefficients for shape Sl, and L denotes the total number
of shapes. We then center the data by subtracting the population
average momentum vectors. The centered data matrix, Â, is given
by:

Â = [â1, â2, . . . , âL]3N×L (4)

where âl is the vector of the centered momentum vectors for the l-th
shape.

We also form the kernel matrix, K, which contains the values of
the kernel function for every pair of vertex positions that comprise
the vertices, X, of the template shape T :

K =




K11 K12 . . . K1N

K21 K22

...
...

. . .
...

KN1 . . . . . . KNN




,

Kmn = kV (xm,xn) I3×3 , (5)

where I3×3 denotes the 3× 3 identity matrix.
The correlation between two shapes is calculated as the inner

product of the initial momentum vectors in the Hilbert space of
deformations, V . The correlation between shapes Si and Sj is given
by:

cij =
〈
{αn

(i)(0)}, {αn
(j)(0)}

〉
V

= âT
iKâj , (6)

where (·)T denotes the transpose of a vector or matrix. Thus, the
covariance matrix for the entire population of ears, C, is given by:

C = ÂTKÂ (7)

In order to calculate the principal components, as well as the
coordinates of the ears in the basis of the principal components,
we perform the singular value decomposition of the covariance ma-
trix C:

C = VDVT . (8)

The matrix of the principal components, U, can be then calculated
as:

U = ÂVD−
1
2 . (9)

Note that the principal components are orthogonal in the Hilbert
space of deformations, i.e., UTKU = I. It follows from Equa-
tion (9) that Â = UD

1
2VT and therefore D

1
2VT provides the

coordinates of the different ear shapes in the basis of the principal
components.

2.3. Weighted KPCA (WKPCA)

The KPCA described above has a limitation. The calculations
are such that each mesh vertex contributes equally in the analysis.
Nonetheless, the relative areas of various regions of the ear do not
necessarily accurately represent the importance of their contribution
to the acoustic properties of the ear. For example, the back of the ear
likely plays a much less important role acoustically than the concha.
In order to explore this issue in more detail, we have apportioned the
ear into various sections (refer to Fig. 1) which enables a weighting
to be applied during the KPCA. In this case, the kernel function is
modified as shown below:

k′V (x, y) =
w(x)w(y)

1 + 1+‖x−y‖2
σ2
v

, (10)

where w(x) and w(y) denote the weights for vertices x and y re-
spectively. This way the kernel function does not just depend on the
distance between two vertices but also on the weights associated to
them.

2.4. Directivity Patterns and Principal Component Analysis

In this work, we focus on the directivity of the ear, i.e., the pattern
of acoustic gain and attenuation across space for a given frequency.
In general terms, the directivity patterns become sharper with more
features as frequency increases. For a given frequency and ear, we
are most interested in the ipsilateral hemisphere of space where the
ear has high signal-to-noise ratio and does not suffer from head
shadow. Because the directivity pattern on the contralateral side
can be varied and noisy, but is likely not significant [29], we have
applied gentle spherical Gaussian smoothing (std.: 5.7 degrees of
spherical angle) to the directivity pattern on the contralateral side.
The directivity pattern data is then treated mathematically as a vector
and standard principal component analysis is applied across subjects
for a given frequency.
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Table 1: Relative vertex weightings, w, and region contributions, w × area, are shown for three conditions.

Weighting Back of
Ear Ear Lobe Scaphoid

Fossa Helix Cymba
Concha

Cavum
Concha

Triangular
Fossa

Concha
Rim

Concha
Ridge

w w × area w w × area w w × area w w × area w w × area w w × area w w × area w w × area w w × area
Non-Weighted 1 0.25 1 0.05 1 0.03 1 0.24 1 0.03 1 0.08 1 0.05 1 0.21 1 0.06

Concha Weighting 0.75 0.19 0.75 0.04 0.67 0.02 0.75 0.18 1.67 0.05 1.50 0.12 0.80 0.04 1.50 0.32 0.83 0.05
Fossa Weighting 0.60 0.15 0.60 0.03 5.65 0.17 0.60 0.14 0.60 0.02 0.61 0.05 5.80 0.29 0.57 0.12 0.50 0.03

Figure 1: Various regions of the pinna are identified along with their
respective fractional contribution to the total surface area.

3. RESULTS

Using the SYMARE database, morphological weighting was applied
to two regions of the ear separately - the concha and the fossa.
Because it is our view that regions with larger surface area have
greater influence on the LDDMM mapping algorithm, we determined
the surface area for each of the selected regions of the ear. The
surface area multiplied by the morphological weight provides a
better indication of a region’s contribution to the LDDMM mapping.
At this stage, only a simple approach to morphological weighting
has been taken: e.g., a region’s contribution was multiplied by a
small, arbitrary factor. Moderate weighting generally proved better,
with smaller regions requiring larger morphological weights as is
shown in Table 1. It should be noted that the weights are normalized
so that the sum of the region contributions (region area multiplied
by morphological weight) is unity.

The impact of the morphological weighting was measured sim-
ply using linear regression. At this stage, we have only considered
the first principal component for the acoustic directivity pattern and
the first principal component for the LDDMM ear model. While this
assessment is limited, it is important to keep in mind that the ears are
affine-matched and only a few principal components are required to
adequately describe the acoustic directivity patterns. So a given mor-
phological weighting was evaluated by applying linear regression to
find the best linear relationship between the first principal compo-
nents for the two respective sets of data - the LDDMM ear model and
the acoustic directivity pattern. Example results are shown in Fig. 2.
In this case, we examine a relatively low frequency (approximately
4 kHz) and find that morphological weighting applied to the concha
makes a small improvement.

Figure 2: Scatter plots show the predicted and true values for the
first principal component of the acoustic directivity patterns corre-
sponding to a frequency of 3938 Hz. Plots are shown for data both
without (a) and with (b) morphological weighting. The respective
R2 values are 0.32 and 0.52.

What is much more interesting is to examine the influence of
the morphological weighting as a function of frequency. These
data are shown in Fig. 3. For each frequency, we applied the linear
regression model to predict the first principal component for a given
ear’s acoustic directivity pattern. Prediction errors were measured
in units of one standard deviation for the population data. For the
concha region (see Fig. 3a), we see that morphological weighting
results in improvements at various frequencies around 3 kHz, 7 kHz,
10 kHz, and 13 kHz. We interpret the broad range of frequencies
as indicating the concha may influence resonance modes at various
frequencies. To further support these findings we examined the
percentage of cases with improvements and found a similar pattern
(see Fig. 3b). The morphological weighting for the fossa produced
similar results albeit at slightly higher frequencies (refer to Figs. 3c
and 3d. We do not intend for these data to indicate the concha and
fossa play independent roles. Rather, the morphological weighting
enables one to explore at which frequencies a particular region of
the ear may have particular influence on the acoustic directivity of
the ear.

The influences of the improvement in the prediction of the first
principal component on the resulting acoustic directivity patterns
are shown in Fig. 4. Because we only explore the first principal
component, all other principal components are held fixed at their true
values. We find that the improved prediction of the first principal
component does result in small, but visible improvements in the
acoustic directivity patterns.

4. DISCUSSION AND CONCLUSION

Morphological weighting provides an interesting tool to explore the
morphoacoustic properties of the human outer ear. At this stage,
our understanding is limited. Each frequency and each principal
component may find improvements with different morphological
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Figure 3: Stem plots show the impact of morphological weighting as a function of frequency. Data for the concha are shown in (a) and (b),
while data for the fossa are shown in (c) and (d). The mean reduction in prediction error is shown in (a) and (c) using the population standard
deviation as a unit measure. The percentage of ears for which the prediction improved is shown in (b) and (d).

Figure 4: Changes in the acoustic directivity patterns that occur based on the prediction of the first principal component are shown. Azimuth
and elevation angles are shown in degrees. The top row shows the true data, the second row shows the data without morphological weighting
and the third row shows the data with morphological weighting. Data are shown for the concha at frequencies: (a) 3938 Hz; (b) 7125 Hz; (c)
10312 Hz; and (d) 13313 Hz. Data are shown for the fossa at frequencies: (e) 6938 Hz and (f) 12563 Hz. Best viewed in color online to see
subtle differences.

weightings. We do not find this unreasonable because the acoustic
properties of the outer ear result from the structure as a whole and
the strength of any particular resonance mode may result from com-
plicated interactions between various morphological elements. We
have not yet explored a general optimization algorithm for morpho-
logical weighting, nor explored whether additive combinations of

morphological weightings would make any sense. It is not even clear
how many physical regions one should divide the ear into, nor what
the possible interactions may be. Further, it is not yet clear whether
a particular morphological weighting should be applied for all ears
or just a particular class of ears. Nonetheless, we have made a start
and believe there is much more to be learned and will so direct our
future attention.
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Français d’Acoustique and the 2012 Annual Meeting of the Institute of
Acoustics from UK, Nantes, France, 2012, pp. 867–872.

[3] D. Y. N. Zotkin, J. Hwang, R. Duraiswaini, and L. S. Davis, “HRTF
personalization using anthropometric measurements,” in Applications
of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on.
Ieee, 2003, pp. 157–160.

[4] C. Jin, P. Leong, J. Leung, A. Corderoy, and S. Carlile, “Enabling
individualized virtual auditory space using morphological measure-
ments,” in Proceedings of the First IEEE Pacific-Rim Conference on
Multimedia (2000 International Symposium on Multimedia Information
Processing). Citeseer, 2000, pp. 235–238.

[5] P. Mokhtari, H. Takemoto, R. Nishimura, and H. Kato, “Pinna sensitiv-
ity patterns reveal reflecting and diffracting surfaces that generate the
first spectral notch in the front median plane,” in Acoustics, Speech and
Signal Processing (ICASSP), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2408–2411.

[6] J. Chen, B. D. van Veen, and K. E. Hecox, “A spatial feature extraction
and regularization model for the head-related transfer function,” J.
Acoust. Soc. of Am., vol. 97, no. 1, pp. 1493–1510, 1995.

[7] J. C. Middlebrooks, “Individual differences in external-ear transfer
functions reduced by scaling in frequency,” J. Acoust. Soc. of Am., vol.
106, no. 3, pp. 1480–1492, 1999.

[8] M. A. Ramirez and S. G. Rodriguez, “HRTF individualization by solv-
ing the least squares problem,” in Audio Engineering Society Conven-
tion 118, May 2005.

[9] S. Xu, Z. Li, and G. Salvendy, “Individualization of head-related trans-
fer function for three-dimensional virtual auditory display: A review,”
in Virtual Reality, Second Intl. Conf., ICVR 2007, 07 2007, pp. 397–407.

[10] S. Hwang, Y. Park, and Y.-s. Park, “Modeling and customization of
head-related impulse responses based on general basis functions in time
domain,” Acta Acustica united with Acustica, vol. 94, pp. 965–980, 11
2008.

[11] M. Akagi and H. Hisatsune, “Admissible range for individualization of
head-related transfer function in median plane,” in 2013 Ninth Interna-
tional Conference on Intelligent Information Hiding and Multimedia
Signal Processing, Oct 2013, pp. 326–329.

[12] Y. Luo, D. N. Zotkin, and R. Duraiswami, “Virtual autoencoder based
recommendation system for individualizing head-related transfer func-
tions,” in 2013 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, Oct 2013, pp. 1–4.

[13] J. He, W. S. Gan, and E. L. Tan, “On the preprocessing and postpro-
cessing of HRTF individualization based on sparse representation of
anthropometric features,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp.
639–643.

[14] W. Lei and Z. Xiangyang, “New method for synthesizing personalized
head-related transfer function,” in 2016 IEEE International Workshop
on Acoustic Signal Enhancement (IWAENC), Sept 2016, pp. 1–5.

[15] M. Shahnawaz, L. Bianchi, A. Sarti, and S. Tubaro, “Analyzing
notch patterns of head related transfer functions in cipic and symare
databases,” in 2016 24th European Signal Processing Conference (EU-
SIPCO). IEEE, 2016, pp. 101–105.

[16] M. Buerger, S. Meier, C. Hofmann, W. Kellermann, E. Fischer, and
H. Puder, “Retrieval of individualized head-related transfer functions
for hearing aid applications,” in 2017 25th European Signal Processing
Conference (EUSIPCO), Aug 2017, pp. 6–10.

[17] M. Zhu, M. Shahnawaz, S. Tubaro, and A. Sarti, “HRTF personalization
based on weighted sparse representation of anthropometric features,”
in 2017 International Conference on 3D Immersion (IC3D). IEEE,
2017, pp. 1–7.

[18] C. Jin, R. Zolfaghari, X. Long, A. Sebastian, S. Hossain, J. Glaun‘es,
A. Tew, M. Shahnawaz, and A. Sarti, “Considerations regarding indi-
vidualization of head-related transfer functions,” in 2018 Intl. Conf. on
Acoustics, Speech and Signal Processing, 2018, pp. 6787–6791.

[19] R. Zolfaghari, N. Epain, C. T. Jin, J. Glaunes, and A. Tew, “Large de-
formation diffeomorphic metric mapping and fast-multipole boundary
element method provide new insights for binaural acoustics,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on, May 2014, pp. 2863–2867.

[20] R. Zolfaghari, N. Epain, C. Jin, A. Tew, and J. Glaunes, “A multi-
scale lddmm template algorithm for studying ear shape variations,” in
Signal Processing and Communication Systems (ICSPCS), 2014 8th
International Conference on, Dec 2014, pp. 1–6.

[21] R. Zolfaghari, N. Epain, C. T. Jin, J. Glaunes, and A. Tew, “Generating
a morphable model of ears,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), March 2016,
pp. 1771–1775.

[22] R. Zolfaghari, N. Epain, C. T. Jin, J. Glauns, and A. Tew, “Kernel
principal component analysis of the ear morphology,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 481–485.

[23] C. Jin, P. Guillon, N. Epain, R. Zolfaghari, A. van Schaik, A. Tew,
C. Hetherington, and J. Thorpe, “Creating the sydney york morpho-
logical and acoustic recordings of ears database,” Multimedia, IEEE
Transactions on, vol. 16, no. 1, pp. 37–46, Jan 2014.

[24] U. Grenander and M. I. Miller, “Computational anatomy: An emerging
discipline,” Quarterly of applied mathematics, vol. 56, no. 4, pp. 617–
694, 1998.

[25] M. Miller and L. Younes, “Group actions, homeomorphisms, and match-
ing: A general framework,” International Journal of Computer Vision,
vol. 41, no. 1, pp. 61–84, 2001.

[26] M. Vaillant and J. A. Glaunés, “Surface matching via currents,” in
Information Processing in Medical Imaging, ser. Lecture Notes in
Computer Science, G. E. Christensen and M. Sonka, Eds. Springer
Berlin Heidelberg, 2005, vol. 3565, pp. 381–392.

[27] M. Vaillant, A. Qiu, J. A. Glaunés, and M. I. Miller, “Diffeomorphic
metric surface mapping in subregion of the superior temporal gyrus,”
NeuroImage, vol. 34, no. 3, pp. 1149 – 1159, 2007.

[28] M. Vaillant, M. Miller, L. Younes, A. Trouvé, et al., “Statistics on dif-
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