
DOCTORAL PROGRAMME IN COMPUTER ENGINEERING
DEPARTMENT OF ELECTRONICS, INFORMATION AND

BIOENGINEERING

MODELS, CODE GENERATION, AND
ABSTRACTION

A TRIPLE APPROACH TO ENHANCE ROBOT
SOFTWARE DEVELOPMENT

SUPERVISOR:
Prof. Matteo Matteucci

DOCTORAL DISSERTATION OF:
Gianluca Bardaro

Year 2020 - XXXI Cycle

bip, bop.

— A robot

ACKNOWLEDGMENTS

The PhD itself is a long journey, and it is the culmination of an
even longer path. To acknowledge every person that helped me
in this long experience, I would need to make this the longest
section of this thesis.

Nevertheless, I would like to start from a bit far away, and, first
and foremost, thank a person that was pivotal in the ignition of
my roboticist career. In my last semester of middle school, I took
part in an extra-curriculum activity: cutting and sewing. I do not
even remember if we did any actual cutting or sewing, but what I
remember clearly was that despite the name, the lab was all about
robotics. It was about experimenting, playing and programming
a LEGO Mindstorm robot. That is how everything started, that
is the event that began a more than fifteen-years long journey in
the world of AI and robotics. So, my first “thank you” goes to
Prof. Tina Prada, that with an improbable invitation lead me to
my first practical experience in robotics.

I want to thank my parents, Giuseppe and Roberta, that sup-
ported me during all my studies and kept supporting me after I
found my independence, that escalated more quickly than I could
possibly imagine. They gave me the little island of peace away
from the stress of the PhD where I could do literally nothing,
which is, sometimes, more important than doing something. A
special thank you to my Grandmother Luigia, for all our lovely
telephone chats, and to all the recipe suggestion to have a bit of
home far from home. Thanks to my family, because, in the end,
we are never truly grown-up in their eyes, and more often than
we would like to admit we really need their help and support.

As often happens, my PhD was not a simple and straight path.
It was split between two institutions, my alma mater, Politecnico

ii

di Milano, and the Knowledge Media Institute, that accepted me
first as a visitor and then as a member.

First, I want to thank my supervisor, Matteo Matteucci, for giv-
ing me the opportunity to embark in the life-changing experience
that is the PhD. Moreover, and most importantly, for giving me
the freedom to pursue my own ideas, topics, and challenges, and
for never complaining about me spending so much time away.
From Politecnico and the AIRLab, I would like to thank all the
people I worked with, in particular Giulio Fontana and Luca
Bascetta, that shared with me the joys and sorrows of dealing
with our beloved robots. All the students I supervised or assisted
because I learned more from you than you probably learnt from
me, thanks to Andrea, Pietro, Fabio, Carolina, Jordi, and all the
robotics class that had the misfortune of being my guinea pigs. A
big thank you to all my non-colleagues in Milan. We were such
a heterogeneous research group that we rarely talked about our
research topics but, no matter what, we always had something to
discuss or experiences to share like a big family held together by
academic struggles. Thanks to Martino, Francesco, Andrea, Marco,
Alessandro, Latta, and Luca.

An special thank you goes to Ilaria, because in a cold dark day
during the Swedish winter she offered me a place to do a visiting,
but I end up finding a place to stay. By working with her and
Manu, I rediscovered a love for robotics that the PhD was slowing
draining away. Sometimes it is only by scrambling everything up
that you find back the reason why you started. From KMi, I want
to thank Enrico Motta, for letting us work on an unconventional
topic, and all the people I worked with while juggling my thesis
and the SciRoc competition. Thanks to Enrico, Jason, and Ian. In
Milton Keynes, I met a lot of amazing people, and I shared with
them not only work but also life experiences. As often happens
in the academic world, with some of them, I only crossed paths
for a few months, but with all of them, I made memories that will
stay with me forever. Thanks to all the people I shared lunches,
dinners, parties, film nights, hikes, road trips, cooking sessions,
barbeques, concerts, weddings, and more. A unique thank you to
Thiviyan, Perla, Patrizia, Angelo, Martino, Mano, and Felice.

iii

This section is already long enough, but there is one more
person I want to thank. She should appear in many other parts
since she is a friend, a colleague, an inspiration, my other half,
my partner in crime, my chef de cusine. Thank you, Agnese, for all
the little things, for every day, and for being always by my side.

Thank you all

iv

ABSTRACT

In recent years, robotic applications have surged and the popular-
ity of robotics has increased both in academia and industry. Re-
searchers of different fields are imagining new ways to intertwine
their expertise with robotics, creating challenging and remarkable
applications. Companies are developing a new generation of ser-
vice robots targeted to the general public and meant to be part of
our everyday life. Robotics is evolving from its mechatronics roots,
more focused on the development of the ideal hardware plat-
form, to explore the advanced functionalities offered by complex
applications. We are entering a new software age for robotics. Un-
fortunately, the tools available to developers are not on par with
the expectations. Nowadays, developing an application for a robot
is more similar to craftsmanship than engineering. An all-around
robotic expert with a combined knowledge about the application,
the capabilities of the platform, and the underlying framework
is necessary to guide the design and development process. The
objective of this thesis is to provide a collection of methodolo-
gies, techniques and tools to support all the actors involved in
the development process of a robotic system. Our contribution
is threefold, with each part targeted to a specific development
role. For the system designer, we provide a modelling approach to
design, build and analyse the robot architecture, without worrying
about the underlying framework. For the component developer, we
created a code generation toolchain, which removes the burden
of implementing framework-related boilerplate and let the de-
veloper focus on the component functionalities. For the application
developer, we designed an abstraction layer on top of the robotic
platform, it decouples the robot from its capabilities, creating
the equivalent of robot APIs. All these contributions are built
for a single purpose but using self-contained technologies, hence
they are, at the same time, independent and part of a continuous
design and development process.

v

CONTENTS

1 INTRODUCTION 1

1.1 Motivations . 5

1.2 Thesis contributions . 6

1.3 Thesis outline . 9

1.4 Publications . 11

2 RELATED WORKS 12

2.1 Software engineering . 13

2.1.1 Component-based Software Engineering 13

2.1.2 Model-driven Software engineering 15

2.1.3 Software product lines 17

2.2 General-purpose modelling languages 18

2.3 Domain-specific approaches 22

2.3.1 Automotive . 23

2.3.2 Space . 24

2.4 Robot software development 25

2.4.1 Middleware and frameworks 25

2.4.2 Model-driven approaches 28

3 BACKGROUND 30

3.1 Robot Operating System 32

vi

CONTENTS vii

3.1.1 Computation graph 33

3.1.2 Components . 36

3.1.3 Communication . 44

3.1.4 Filesystem . 50

3.2 Architecture Analysis & Design Language 51

3.2.1 Software components 55

3.2.2 Execution platform components 58

3.2.3 Composite and generic components 61

3.2.4 Components interactions 62

4 MODELLING 66

4.1 The component-connector paradigm 68

4.2 AADL for robotics . 72

4.2.1 Modelling the CC paradigm in AADL 75

4.2.2 A basic example . 79

4.3 From CC to ROS . 80

4.3.1 Modelling a ROS enhanced component in AADL . . 84

4.3.2 Modelling ROS architectural elements in AADL . . . 90

4.3.3 A ROS basic example 96

4.4 Modelling templates . 97

4.5 Data Modelling . 101

4.5.1 Option 1: ASN.1 . 103

4.5.2 Option 2: JSON with schema 108

4.5.3 Comparison . 113

5 AUTOMATIC PROGRAMMING 114

CONTENTS viii

5.1 Generating ROS artefacts 116

5.2 Engineered ROS node 118

5.2.1 Life cycle . 120

5.2.2 ROS node . 121

5.2.3 Internal state . 126

5.3 Custom ROS node . 128

5.4 Two-steps code generation 131

5.4.1 From AADL to AAXML 132

5.4.2 From AAXML to ROS/C++ 139

5.5 A complete example . 144

6 ABSTRACTING THE ROBOT 148

6.1 Ontology representation 150

6.1.1 ROS description . 151

6.1.2 Capabilities extraction 157

6.1.3 Capabilities taxonomy 161

6.2 Robot APIs . 163

6.2.1 ROS-bound interface 165

6.2.2 ROS-independent interface 167

6.3 Bridge models and capabilities 169

7 EXPERIMENTAL EVALUATION 172

7.1 The PMK use case . 174

7.1.1 Model . 178

7.1.2 Automatic code generation 182

7.1.3 Special nodes . 184

CONTENTS ix

7.1.4 Comparison . 190

7.2 Web interface . 193

7.2.1 GUI description . 194

7.2.2 Experimental Setup 196

7.2.3 Results and discussion 198

8 CONCLUSIONS AND FUTURE WORKS 202

BIBLIOGRAPHY 205

L I ST OF F IGURES

Figure 1.1 A brief history of robotics. From the an-

cient automata to modern robots. 3

Figure 3.1 The “ROS Equation”. 32

Figure 3.2 The ROS Computation Graph. 33

Figure 3.3 The interaction between nodes and the Mas-

ter to start a topic-based communication. . 36

Figure 3.4 All the coordinate frames necessary to com-

pletely describe the structure of the THOR-

MANG3 . 41

Figure 3.5 An example of a complete tf tree for a mo-

bile robot. 42

Figure 3.6 Communication interface of the ROS actionlib. 48

Figure 4.1 Simplified graphical AADL modelling a

basic architecture. 78

Figure 4.2 Mapping between ROS topics and AADL

connections. 81

Figure 4.3 Graphical AADL modelling the base struc-

ture of the enhanced ROS component. . . . 85

x

LIST OF FIGURES xi

Figure 4.4 Graphical AADL modelling a complete ROS

node. 88

Figure 4.5 Graphical AADL modelling a ROS-based

teleoperation subsystem. 91

Figure 4.6 Graphical AADL modelling the ROS actions. 94

Figure 4.7 Graphical AADL modelling a basic ROS

architecture. 95

Figure 4.8 Hierarchical structure of the modelling tem-

plates. 98

Figure 5.1 The automatic programming process. . . . 116

Figure 5.2 UML diagram of a custom ROS node de-

veloped extending the engineered ROS node.119

Figure 5.3 The state machine representing the internal

life cycle of the engineered ROS node. . . . 122

Figure 5.4 The classes, and their interactions, used by

the code generator to manage a C++ method.140

Figure 5.5 Graphical AADL modelling a simple talker

node implementing a publisher. 144

Figure 5.6 Graphical AADL modelling a simple listener

node implementing a subscriber. 146

Figure 6.1 Ontological description of the ROS mid-

dleware . 152

Figure 6.2 Ontology defining capabilities and their

relation with ROS messages. 160

LIST OF FIGURES xii

Figure 6.3 Capability Taxonomy. 162

Figure 6.4 Structure of the Robot APIs system. 165

Figure 7.1 The Twist T4 2x2 wheelchair modified us-

ing the Personal Mobility Kit. 174

Figure 7.2 Graphical AADL modelling the entire autonom-

ous wheelchair architecture. 177

Figure 7.3 Graphical representation showing how a

local and a remote node interact with the

global state machine. 181

Figure 7.4 Simplified graphical representation of the

AADL description modelling the ratp_node 184

Figure 7.5 Original design of the architecture of the

autonomous wheelchair. 187

Figure 7.6 Runtime ROS graph of the hand-written

architecture. 188

Figure 7.7 Runtime ROS graph of the automatically

generated architecture. 189

Figure 7.8 Trajectory comparison. 191

Figure 7.9 The web interface used to interact with the

capabilities evoked by the robot. 194

L I ST OF TABLES

Table 3.1 Component categories 53

Table 3.2 Inter-port compatibility 64

Table 7.1 Robot capabilities for the two exercise vari-

ants. 197

Table 7.2 Results obtained by the non-experts for the

s-variant and the r-variant. 199

Table 7.3 Results obtained by the expert for the s-

variant and the r-variant. 201

xiii

L I ST INGS

Listing 4.1 Definition of ROS messages using AADL

data components. 89

Listing 4.2 Use of AADL data component to specify

the data type of a port. 89

Listing 4.3 Auto-generated AADL to model the amcl

package and the amcl node 92

Listing 4.4 Callback template definition using proto-

types. 100

Listing 4.5 Implementation of a node where proto-

types are refined to they final data type. . . 100

Listing 4.6 ROS message, service and action definition

using ASN.1. 105

Listing 4.7 Internal state of a node modelled using

ASN.1 . 107

Listing 4.8 Internal state instance defined in ASN.1 . . 107

Listing 4.9 ROS message definition using JSON schema110

Listing 4.10 ROS service definition using JSON schema 110

Listing 4.11 ROS action definition using JSON schema . 110

xiv

Listings xv

Listing 4.12 Base schema of the internal state defined

using JSON schema 111

Listing 4.13 Internal state defined using JSON schema . 112

Listing 4.14 Internal state instance defined in JSON . . 112

Listing 5.1 Minimal AADL model 134

Listing 5.2 AAXML representation of the minimal AADL

model . 134

Listing 5.3 Minimal AADL model containing features 135

Listing 5.4 AAXML description of AADL features . . 135

Listing 5.5 Minimal AADL model containing connec-

tions. 136

Listing 5.6 AAXML description of AADL connections 136

Listing 5.7 Minimal AADL model containing properties138

Listing 5.8 AAXML description of AADL properties . 138

Listing 5.9 Properties of the talker node. 145

Listing 5.10 Properties of the listener node. 146

Listing 5.11 Message and system definition. 147

Listing 6.1 Instance of a topic-based communication

according to the ontology. 155

Listing 6.2 Instance of a service-based communication

according to the ontology. 156

1 I NTRODUCT ION

The story so far: In the beginning the Universe was created. This has
made a lot of people very angry and been widely regarded as a bad move.

— The Restaurant at the End of the Universe, Douglas Adams

The popularity of robotics is growing everywhere. Not only in
the academic world, where various research activities are now ap-
plied to robotics but also in the industrial world, where companies
are providing new commercial solutions involving robots. Even
the general public is now more used to a society where robots
coexist and collaborate with humans. The first model of iRobot
Roomba was introduced in 2002, and today some young adults
grew up in a world where robots are part of the household.

The current evolution of robotics as a field is similar, in a way, to
the growth in popularity of mobile phones, first, and smartphones,
later. Originally, the idea of a personal wireless communication
system was only possible in science fiction, then scientific progress
and new technologies made it possible. At first only for very few
applications (e. g., the military, the railroad system), but later it
grew exponentially, and today it is part of our everyday life. Many
factors made this leap possible: first of all, technological advance-
ments, such as miniaturisation, battery life extension, increase
in display quality, cheaper computational power, additionally, a
sense of need, people felt that a mobile phone was a great addi-
tion to their life, lastly, standardisation, accessible development
environments, and multiple abstraction layers.

The same was for robots, initially no more than toys, mech-
anical puppets and mysterious automata. They existed, as truly
autonomous agents, only in the minds and works of writers and
directors, and even today we are not able to match those visions.
As soon as technology made it possible, the first robotic arms
were developed. Initially applied to heavy industry to replace
human in dangerous and highly specialised tasks, later, technical
refinements and functionality extensions made them suitable for

1

INTRODUCTION 2

healthcare and collaboration with humans. From here it was an
explosion of different technologies, shapes and applications. Ro-
botic arms evolved in precision, power and dexterity, from the
massive industrial arms to the agile surgical robots. Soon after
the development of the first sophisticated arms, many researchers
tried to realise the vision of a full humanoid robot, but, even
today, after much progress, we are not able to fully replicate the
complexity of the human body. Mobile platforms were the next
logical step: robots able to autonomously explore and navigate
the environment, robots able to reason on what they detect and
to react accordingly.

In the last two decades, robotics has been applied in numerous
fields, and robots assumed a myriad of shapes and functionalit-
ies. In industry, robots are used for welding, painting, drilling,
cutting, handling dangerous materials, moving heavy objects, pick-
and-place, inventory management. In healthcare, today, surgical
robots are the norm, but advancement in soft robotics made ro-
bots suitable for rehabilitation and elderly care. Most of the recent
discoveries of planetary science exist thanks to rovers, autonom-
ous mobile robots that can, unassisted, explore the surface of
planets, asteroids and comets. Moreover, maintenance in outer
space is hazardous for humans and often impossible, only robotic
arms and autonomous probes can perform it. Back on Earth, in
our houses and cities, robots are not an unusual sight. There are
robotic vacuum cleaners and lawnmowers, autonomous robots
deliver packages directly to the front door, and self-driving public
transportation is a reality in various cities. Fully autonomous cars
are still only prototypes, however not because of technological
limitations, but mostly for economic, social and legal reasons.
Thanks to the recent progress in human-robot interaction, the
sight of a robotic waiter or concierge, while marvellous, is not
completely unexpected. Lastly, unmanned autonomous vehicles
(e. g., off-road vehicles, drones, boats, submarines), have been
used successfully in search and rescue missions and to operate
in dangerous environments, such as mountain peaks, volcanos,
disaster zones, and contaminated areas.

In this brief history of robots, most of the progress and tech-
nological advancements seems related to the hardware: more
responsive motors, more precise and reliable sensors, cheaper elec-
tronics and more computational power. All these advancements

INTRODUCTION 3

Automaton
[/ɔːˈtɒmətən/; plural: automata or automatons]

Robot
[/ ˈrəʊbɒt/; plural: robots]

Karakuri (ancient Japanese automata)

Unimate

Shakey

KUKA IR series

Sojourner Honda P3

ROS PR2

iCub

Boston Dynamics Spot Mini

Figure 1.1: A brief history of robotics. From the ancient automata to
modern robots.

INTRODUCTION 4

contributed to what is robotics today. However, the software has
always been one of the main concerns of any roboticist. The im-
plementation, the logic, is what makes the difference between a
mechanism and an intelligent robot. Since their inception, robots
have spawned a series of software solutions to implement their
functionalities. For example, the Stanford Research Institute Prob-
lem Solver (STRIPS) [80] is an automated planner developed for
Shakey [89] that became the foundation of modern action lan-
guages. Modern robots are far more advanced than Shakey: they
coordinate multiple sensors and actuators, implement different
functionalities, and often operate in real-time.

For these reasons, in the last twenty-five years, various efforts
in robotic software revolved around the design of a solution to
streamline and simplify the development process. The answer
was the introduction of robotic middleware and frameworks and
to rely on component-based designs [23, 24]. This approach fits
perfectly the necessities of robotics, components encapsulate func-
tionalities and promote reusability, while a pre-defined communic-
ation layer frees the developer from the burden of micromanaging
the low-level interactions. After the first wave of ad hoc implement-
ations, few frameworks rose in popularity and become standard
de-facto for robot software development. Today, depending on the
specific application, a developer can choose various frameworks
or middleware: OROCOS [27] (or its derivation RoCK [73]), for
real-time application, SmartMDSD [39], for a more complete and
structured development environment, YARP [85], for a more light-
weight and data-centric approach, or ROS [99], for more extensive
support and development freedom.

Middleware and frameworks fuelled the progress of robotic
systems, creating the current scenario of robot design and devel-
opment. Hundreds of components are already available to anyone
who wants to implement a robot and experts can set up the most
common functionalities (i. e., teleoperation, mapping, indoor loc-
alisation and navigation) of a new system in a matter of days.
However, the learning curve to reach this kind of expertise is quite
steep and extending the functionalities of a robot beyond what
is currently available requires a considerable effort not strictly
related to the new functionality itself.

By recalling the parallel between robotics and smartphones,
we are currently in robotics in the same situation developers

1.1 MOTIVATIONS 5

were before the standardisation introduced by Android. Today, an
Android developer can bootstrap and deploy a new application
on millions of devices in few steps, thanks to abstraction layers
that separate the development environment to the underlying
hardware and operating system and thanks to advanced design,
development and simulation tools. Of course, smartphones are not
robots, and while there is a significant variability from one device
to another (e. g., screen size, quality and number of cameras,
sensors availability, type of mobile network, etc.), they cannot be
compared to the incredible range of sensors, actuators, shapes
and functionalities that exist in robotics. For this reason, while
robotics can aim to achieve the same streamlined development of
smartphones, the approach needs to be different.

1.1 MOTIVATIONS
Middleware and frameworks created the present development
landscape of robotics, but current approaches are not suitable any
more for a constantly advancing robotic field. The personal exper-
ience of an all-around robotic expert still drives robotic software
design and development. When developing a new system or ap-
plication, it is expected that a developer has total expertise on the
low-level functionalities provided by the underlying framework
and the high-level functionalities to be implemented; while this
was possible in the past, it is an unsustainable approach today.
Not only it is necessary to create a distinction between different
roles in the design and development process of a robot, but also
to provide them with the right tools to fulfil their tasks.

The system designer needs tools to outline the architecture of the
system and describe the high-level interactions and requirements
of components. This can be achieved using a modelling language
to describe components and their inner workings in an agnostic
way with respect to the underlying framework. This approach,
not only provides the right environment for the designer, but it
also provides early detection of errors, an architectural overview
of the system and system-level reusability.

The component developer should focus only on the implement-
ation of the internal logic and not on the structure of the com-

1.2 THESIS CONTRIBUTIONS 6

ponent itself, since this is the role of the designer. To do so, the
component developer needs an environment that abstracts from
the framework-related boilerplate code and provides a contained
development space. Potentially, the logic implemented should
be portable from one component to another, even if they are not
based on the same framework, given they share the same design
principles. Building on top of the modelling language used by the
system designer, it is possible to achieve the ideal development
environment by delegating to an automatic code generator most
of the boilerplate implementation, and by defining a bounded
reference component that can be used by the component developer
as a starting point.

The application developer implements high-level functionalities,
that should be independent of the underlying architecture of
the robot. In practice, this means it should exist an abstraction
layer between the low-level capabilities provided by one or more
components and the high-level applications. There are a pleth-
ora of robots, with different configurations and implementations;
however, it is possible to abstract most of the capabilities inde-
pendently from the system. An example could be teleoperation:
by defining linear and angular velocity of the mobile platform, it
is possible to control any robot, independently from their physical
configuration. The application developer should be able to imple-
ment high-level functionalities for multiple robots with minimal
modifications by using these general interfaces. To achieve this, it
is necessary to define the concept of capabilities, to identify them
in a robot architecture and to provide a framework-independent
way to interact with them.

1.2 THESIS CONTRIBUTIONS
Our proposed approach revolves around two key factors: formal-
ise the design and development of robotic software and streamline
the implementation process for the different experts involved. We
developed methodologies, techniques and tools, each one focused
on a different aspect or phase of the design and development pro-
cess to assist each role on their specific task, but all interconnected
to benefit one from another.

1.2 THESIS CONTRIBUTIONS 7

For the system designer we exploited an existing modelling lan-
guage to create a suitable description for robotic architectures.
We relayed on the fact that the most popular middleware and
frameworks adopt a component-connector paradigm to create a gen-
eralised approach. Since the aim is to cover the entire development
process by supporting all the actor involved, we then focused on
creating a more specialised description to model ROS-based archi-
tectures. The generalised approach already covers the concept of
components (i. e., nodes), ports (i. e., publishers, subscribers, ser-
vice clients and servers) and connections (i. e., topics and services).
At the same time, the specialised description goes more in details
by providing models for messages and the internal structure and
functionalities of the nodes.

The advantages for the system designer are multiple; a model
of the complete system gives an architectural overview which is
otherwise impossible to achieve before runtime, moreover it is
possible to check, before execution, the compatibility of the com-
munication channels, a functionality that is usually unavailable in
those frameworks and middleware that connect the component at
start-up time. Additionally, the designer can rely on a library of
already existing templates, and this makes the design of the sys-
tem more manageable and the resulting architecture more robust.
Lastly, by basing this work on an existing modelling language,
we allow the designer to exploit all the other tools available for
the language, such as latency estimation, computational load,
hardware allocation and fault propagation.

The component developer often works together with the domain
expert. With our work, we provide support for both roles and
their interaction. From the model created by the system designer
we provide an automatic code generation to ROS. The target
implementation is based on a reference node specifically engin-
eered to minimise the amount of boilerplate code and to provide
additional features that are usually managed by the component
developer, few examples are internal life cycle of the node, well-
defined initialisation procedure, encapsulation of parameters and
internal state, clear separation between the middleware and im-
plementation. The latter is particularly important for the role of
the domain expert; their contribution to the functionalities of a
robot is fundamental, they provide control software, local and
global planning algorithms, robot behaviours, and more. Since

1.2 THESIS CONTRIBUTIONS 8

they are expert of a specific domain and carrier of specialised and
valuable knowledge, they often do not, and ideally, should not
implement the component directly, they should have access to
a suitable interface. In our proposed model and automatic code
generation approach a domain expert can implement a functional-
ity independently and then embed it in the model, the automatic
code generator will include it in the final implementation.

Lastly, for the application developer, we developed the concept
of robot capabilities. We define them as low or medium-level
functionalities (e. g., directional movement or navigation) and a
developer can use them to interact with the robot (i. e., to send
commands of varying complexity) and to receive information
from the robot (i. e., to read sensor measurements). The capab-
ilities are defined manually by analysing the configuration and
functionalities of different types of robots (i. e., mobile platforms,
drones and manipulators), but the active capabilities on a running
system are extracted automatically by analysing the ROS graph.

On top of the concept of capabilities, we developed an ab-
straction layer to decouple the application from the underlying
middleware or framework. In our approach, we implemented
a bridge between the capabilities and, consistently, ROS-based
systems. To do so, we developed a dynamic node that can manage
bidirectional communication with an external system through dif-
ferent communication channels. We provide dynamically defined
APIs a developer can use to interact with the robot through cap-
abilities. To test the effectiveness of this approach in simplifying
robot development, we designed a web interface that can be used
to create visual algorithms to program a remote robot.

Even if it is not evident at first glance, all these methodologies,
techniques and tools are all part of a continuous design and
development process. The system designer uses the modelling tools
and templates to define the architecture of the system. He can
embed directly the reference to the source code developed by the
domain expert, and, using properties, even enrich the component
with their evoked capability. Through automatic code generation
most of the source code is already available with minimal effort, at
this point the component developer can finalise the implementation
by adding anything that cannot be automatically generated, for
example, special interfaces with the hardware components or
specific initialisation and shutdown procedures. The result is a

1.3 THESIS OUTLINE 9

robust system where all the components are known, well designed
and well implemented, and this is the suitable starting point for an
application developer to exploit safely the abstraction layer defined
using robot capabilities.

1.3 THESIS OUTLINE
This thesis is divided into eight chapters:

• Chapter 2 gives an overview of technologies, techniques,
methodologies and approaches related to the work presen-
ted in this thesis. We focus mostly on software engineering
and model-driven approaches, and how they are used in
general and robotics applications.

• Chapter 3 provides details of the two main technologies
used in this thesis: the Robot Operating System (ROS) and
the Architecture Analysis & Design Language (AADL).

• Chapter 4 presents our model-based approach. First, we
introduce a high-level description of a generic component-
based robotic architecture, and then we show how AADL
can be used to model it. The chapter continues by extending
the approach to ROS; initially by describing a single node,
and then by designing a complete architecture. We conclude
by finalising the model definition using two different and
interchangeable data modelling languages.

• Chapter 5 presents our code generation toolchain. First, we
describe the target of the code generation process, in par-
ticular, how we engineered an enhanced ROS node with
additional functionalities, and how it can be used to im-
plement custom ROS nodes. All the phases of the two-step
code generation process are described next. The chapter
closes with a complete example from the AADL model to
the ROS/C++ implementation.

• Chapter 6 presents our ontology-based robot abstraction.
The chapter opens by describing the ontology used to define
ROS, the binding between ROS elements and the capabilit-
ies, and the capabilities taxonomy. The abstraction is used

1.3 THESIS OUTLINE 10

to define robot APIs that can be used to exploit specific
capabilities. We conclude by analysing how the ontology-
based abstraction benefits the model-based approach and
vice versa.

• Chapter 7 focuses on the experimental evaluation of our
work. We present two scenarios. One uses the architecture
of an autonomous wheelchair to demonstrate the functional-
ities of our model-based development approach. The other
exploit our ontology-based abstraction to create a set of web
APIs that developer with no experience in robotics can use
to program different robotic platforms.

• Chapter 8 draws relevant conclusions of this work and
present potential extensions and future works.

1.4 PUBLICATIONS 11

1.4 PUBLICATIONS
• G. Bardaro, M. Matteucci

Using AADL to model and develop ROS-based robotic ap-
plication [10]
International Conference on Robotic Computing (IRC), 2017

• G. Bardaro, A. Semprebon, M. Matteucci
AADL for robotics: a general approach for system architec-
ture modeling and code generation [12]
Journal of Software Engineering for Robotics (JOSER), 2017

• I. Tiddi, E. Bastianelli, G. Bardaro, M. d’Aquin, E. Motta
An ontology-based approach to improve the accessibility of
ROS-based robotic systems [117]
Knowledge Capture Conference (KCap), 2018

• I. Tiddi, E. Bastianelli, G. Bardaro, E Motta
A User-friendly Interface to Control ROS Robotic Platforms [116]
International Semantic Web Conference (ISWC), 2018

• G. Bardaro, A. Semprebon, M. Matteucci
A use case in model-based robot development using AADL
and ROS [13]
International Workshop on Robotics Software Engineering (RoSE),
2018

• G. Bardaro, A. Semprebon, A. Chiatti, M. Matteucci
From Models to Software Through Automatic Transforma-
tions: An AADL to ROS End-to-End Toolchain [11]
International Conference on Robotic Computing (IRC), 2019

2 RELATED WORKS

In this chapter, we present a list of technologies, techniques, meth-
odologies and approaches related to the work presented in this
thesis. We first introduce the fundamentals concept of software
engineering, then give an overview of the approaches used in the
field that can be applied to robotics. After that, an overview of
modelling languages and how they are used in domain-specific
applications. The chapter closes by describing how the previously
discussed methodologies and techniques are directly applied to
robotics.

Contents
2.1 Software engineering 13
2.1.1 Component-based Software Engineering 13

2.1.2 Model-driven Software engineering 15

2.1.3 Software product lines 17

2.2 General-purpose modelling languages 18
2.3 Domain-specific approaches 22
2.3.1 Automotive . 23

2.3.2 Space . 24

2.4 Robot software development 25
2.4.1 Middleware and frameworks 25

2.4.2 Model-driven approaches 28

12

2.1 SOFTWARE ENGINEERING 13

2.1 SOFTWARE ENGINEERING
The definition given by the IEEE Computer Society for software
engineering is “the application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software” [2].
It is quite a broad statement, and, in fact, during the years, vari-
ous experts gave their own definition [33, 98, 111] of what makes
software engineering different from software development. In-
dependently from the specific definition used to describe the
field, it is undeniable that software engineering exists to design,
implement and manage complex computer programs.

From its humble inception in the 1960s as a label to legitimate
the work done by the programmers in the Apollo missions, today
software engineering evolved in a very complex field, including
a long list of subdisciplines. Specialised software engineers work
through the entire development process, starting from defining
the software requirements, then creating the design, supervising
the implementation, designing the testing approach, providing
maintenance, and more.

Currently, robotics may not be ready to embrace the method-
ologies and techniques provided by software engineering fully,
and at the same time, software engineers may not have all the
necessary answer for roboticists’ problems. However, given the
rising importance of software in robotics [34], the overlap of the
two worlds is inevitable. Indeed, robotics already benefited of this
intersection by adopting component-based architectures [99, 104],
software product lines [62], model-based designs [41], and auto-
matic programming [77]. Unfortunately, often these approaches
fail to prosper in the robotic community and remain relegated to
the academic world.

In this section, we analyse the software engineering side of
these approaches, to understand the foundations, which affinity
they had with robotics that pushed designers and developers to
adopt them and how they can be integrated even further.

COMPONENT-BASED SOFTWARE ENGINEERING

Component-based software engineering (CBSE), also known as
component-based development (CBD), is a software development

2.1 SOFTWARE ENGINEERING 14

approach with a strong emphasis on the separation of concerns.
The architecture is divided into components which encapsulate
specific functionalities and interact with each other using pre-
defined and clear interfaces.

The idea that software should be componentised is as old as
software engineering itself since it was originally proposed in the
first NATO conference of software engineering in 1968. However,
modern component designs build on prior theories of architec-
tures, frameworks and design patterns. In particular, they can
be seen as the natural evolution of object-oriented programming.
The two development paradigm share various characteristics, for
instance, functionality encapsulation, information hiding, and
well-defined interfaces. In fact, often a component is implemented
by a single object, or a central object defining the structure and
multiple secondary objects to implements its functionalities.

A software component is very versatile since they can be any
kind of software entity, from high-level (e. g., software package or
web service) to finer granularity (e. g., a software module or web
resource). However, the components need to be consistent inside
the same architecture since they all follow the same component
model. The component model is a specification of the concept
of the component to adapt to a given implementation. In most
cases, the definition of the model is quite loose (e. g., limited to the
interface) and not formally specified, often imposed through other
means (e. g., inheritance, forced parametrisation). However, when
the component model is strictly formalised, CBSE is a stepping
stone for model-driven software engineering, a starting point to
introduce the concept of formal methods to developers.

The advantage in the use of a component-based approach is an
extremely modular architecture, functionalities are encapsulated,
flexible, components communicates through interfaces, robust,
unit testing and limited error propagation, and reusable, compon-
ents are easy to port and replace. Robustness and reusability are
the two main characteristics of component-based architectures.
Both are boosted by the encapsulation and the use of interfaces.
Components are tested separately, and the behaviour of the archi-
tecture is simulated using the well-defined interfaces. Limiting
the number of functionalities in each component reduces the risk
of faulty behaviours, streamline the development, and provides a
clear overview of the role of the component in the architecture.

2.1 SOFTWARE ENGINEERING 15

Robotics took great advantage from the characteristics of CBSE,
the most popular approaches for robot software development use
components as their foundations [23, 24]. This is because of the
intrinsic modular nature of robots, which is perfectly aligned with
CBSE philosophy. Moreover, in robotics is quite challenging to
perform testing, given the interaction with the real world; hence,
an architecture where a sub-functionality can be replaced without
modifying the supporting infrastructure is exceptionally beneficial.
Unfortunately, the current state of the art in component-based
robot software development is polarised on one of the two aspects
of components. On one side, developers exploit the reusability
without pairing it with the expected robustness. For instance, this
is happening in ROS, since it provides a vast library of existing
components, but with total freedom left to the developer. On
the opposite extreme, component models are significantly bound
to the target architecture and framework that the reusability is
limited to that specific scenario. This is the case of SmartMDSD,
they push for a more model-driven design, but the result is a
constrained development environment.

MODEL-DRIVEN SOFTWARE ENGINEERING

Model-driven software engineering takes the paradigm that al-
gorithms and data structures [123] make a program, and evolves
it in the concept that models and transformations [20] make soft-
ware. Models are used as a foundation for software design and
to support all the phases of the development cycle. They abstract
specific aspects of the software to make it more understandable
and manageable. Transformations are a set of rules defined by
the software engineer that use the models as input to create pro-
gramming artefacts or other, more detailed and more focused,
models, in a recursive process that lead to a complete architecture.
In summary, the software engineer goes from being a program
developer to a system designer.

While this methodology seems more complicated than a tradi-
tional development approach, given it requires to learn modelling
and to introduce new steps in the development process, it is bene-
ficial to manage complexity [107], and it increases efficiency and
effectiveness in software development [3].

2.1 SOFTWARE ENGINEERING 16

The most known and used application of MDSE is software
development automation [108], where model-driven technique
are employed to automate as much as possible of the software
development process, from requirement definition to the system
deployment. The process starts by a single or a collection of mod-
els and using a sequence of model-to-model transformations,
where each phase use as an input the model (semi)automatically
generated in the previous one, eventually manually refined by the
specific domain expert. The last step is a model-to-text transform-
ation where the chain of refined models converges in the final
implementation. The model must be executable [83] to achieve
this result, which means have all the necessary information to
define an executable program.

This use case is also the focus of our work since our main
goal is to enhance and streamline robot software development by
hiding to the developer the unnecessary complexity introduced
by robotic frameworks and middleware. However, this is only
the one aspect of MDSE, since models can be used as a lingua
franca, not only between different domain expert working together
on the same architecture, extremely important in robotics, which
is often an overlap of multiple fields but also between different
technologies. For instance, ROS promotes thin implementations
to increase its interoperability with other frameworks; however,
when this happens, it is always through manually implemented
bridges that require a significant amount of ad hoc conversions.

Model-driven approaches have been successfully used to pro-
mote system interoperability [32], by abstracting relevant inter-
faces from the involved systems and providing a common commu-
nication ground. We use this strategy in this work with the support
of ontologies (strictly related to modelling techniques [66]), to cre-
ate an abstraction layer on top of an existing robot architecture to
create a generalised interface.

Another important use of MDSE is reverse engineering [25, 101].
Since models can be used to abstract software and highlight im-
portant aspects, they are the perfect tool to analyse legacy systems
and identify significant features, interfaces and functionalities
that can be ported in a new system. While, in this work, we do
not directly face this problem, our approach takes strongly into
account the already existing solutions and software artefacts for
robotics. In particular, we model all the existing ROS components

2.1 SOFTWARE ENGINEERING 17

and messages, in a platform-independent language, this repres-
entation could be used in the future to support the migration of
ROS implementations to ROS2.

SOFTWARE PRODUCT LINES

Software product lines are software-intensive systems sharing a
common, managed set of features that satisfy the specific needs
of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [91]. They
are extensively used in automotive software development and
are adopted in multiple domains. Conceptually, they are derived
from the product line approach used in manufacturing, where
products with similar characteristics are bundled together in a
family of designs. These design families are manufactured in the
same factory, where reusable parts are combined to obtain one of
the possible configurations of the product line.

In the same way, software product lines are a collection of
similar software products that share a list of configurable features.
A feature can be anything that specialises the software: a module,
an algorithm, a service, a component. The product family share
a reference architecture [86] that is used as the backbone of the
configuration and specialisation process. All the possible product
configuration and the configurable features are modelled using
feature trees [47, 84]. The features codified by the tree are usually
targeted to functionalities (e. g., different types of communication,
different planning methods, etc.), however, non-functional, yet
measurable, properties have been used in some works [15] to
specialise a product family.

Usually, a complete configuration of a product is a path from
the root to one of the leaves of the tree; however, more complex
configurations exist where two features can be implemented in
parallel in the same product. In these cases, an overlap of all the
complete root-to-leaf paths determines the final software design.

Following the same philosophy of the more constrained manu-
facturing product lines, the configuration of products in software
product lines is defined at design-time. This means that after de-
ployment, the software features are final and cannot be changed.
However, software development is more flexible than traditional

2.2 GENERAL-PURPOSE MODELLING LANGUAGES 18

manufacturing; therefore, an extension of SPLs that implements
a dynamic approach to feature definition exists called dynamic
software product lines. In DSPLs the definition of the architecture
is postponed until runtime. Additionally, depending on the target
platform, it is possible to “hot swap” the features during execu-
tion, adapting to the necessity of the software. SPLs is more in
line with a monolithic development approach, where the entire
software is completely defined before deployment, while DSPLs
are more suitable for flexible approaches such as CBSE.

In fact, component-based software engineering is not in contrast
with software product lines, and the two approaches complete
each other. CBSE promotes software reuse; however, it is often an
opportunistic approach where components are developed for a
functionality in a specific architecture and then shared with an
extended community in the hypothesis of reuse. While this oppor-
tunistic reuse is successful in many cases [71], combining CBSE
with SPLs lead to a more focused and forward-looking develop-
ment. At the same time, a component-based architecture is ideal
for implementing the philosophy proposed by SPLs, in particular
considering the dynamic version, since plenty of component-based
approaches support dynamic connections between components.

While in this work, we will not discuss SPLs directly, many of
our approaches can support and are compatible with the feature
system of SPL. For example, the bounded design of components,
the templatisation of designs and the classification of functional-
ities. Moreover, SPLs have been successfully used in robotics for
architecture modelling [22, 62], and modelling of manipulation
and grasping [14].

2.2 GENERAL-PURPOSE MODELLING
LANGUAGES

Models are an abstract representation of a real system or a phe-
nomenon [103]. They are used in all fields of engineering, and,
with no surprise, are central to model-driven software engineer-
ing. Models can appear in two forms: graphical representations
(e. g., the blueprint of a building), or textual descriptions (e. g., a
communication protocol description).

2.2 GENERAL-PURPOSE MODELLING LANGUAGES 19

Model, whether they are graphical or textual, are defined using
a modelling language, which is an artificial language that can be
used to express information and knowledge about a phenomenon
or a system using a consistent set of rules. A plethora of different
modelling languages for software development exists, they cover
different aspects of the architecture or different phases of the
development, or they are targeted to specific platforms or subsys-
tem. Often modelling languages try to provide a “one-size-fits-all”
approach by achieving different levels of generality.

UNIFIED MODELING LANGUAGE – Probably the most known, and
surely the most popular [82], general-purpose modelling lan-
guage is the Unified Modeling Language [102]. UML is defined,
developed and maintained by the Object Management Group
(OMG) [92], a not-for-profit technology standards consortium
founded in 1989. UML has been evolving since the 1990s and has
its roots in the object-oriented programming paradigm. Nowadays,
the current version of UML can be used to represent various pro-
gramming and system artefacts. This makes UML a true general-
purpose language or almost a meta-language since it can be spe-
cialised and refined for a specific domain using profiles [57].

The profile system in UML provides a generic extension mech-
anism to customise the language for specific domain or platforms.
It allows refining the standard semantic in a strictly additive way,
preventing the extension from contradicting the general semantic.
Given the extreme generality of UML and the size of the lan-
guage, profiles have been used to design more focused modelling
languages targeted to specific domains.

The Systems Modeling Language (SysML) [56] is a profile
aimed to system engineers that supports the design, analysis
and validation of system architectures and system-of-systems
designs. SysML is based only on a subset of UML, and it tries
to move away from its software-centric approach in favour of
a more system-centric design. Another example of a domain-
specific profile is Modeling and Analysis of Real-Time Embed-
ded system (MARTE) [50], where UML is specialised to model
non-functional properties, physical constraints (e. g., time, mass,
energy) or memory management in real-time and embedded sys-
tems. The list of available profiles is quite long, with applications
in web development (WebML [31]), service-oriented architectures

2.2 GENERAL-PURPOSE MODELLING LANGUAGES 20

(SoaML [46]), software product lines [124], data warehouses [81]
and many more [4, 53]. Unsurprisingly, the long list of UML pro-
files includes one specifically designed for robotics: the Robot
Modeling Language (RobotML) [40].

Given the scope of this work, we considered RobotML as a pos-
sible target modelling language for our approach. However, since
it is based on UML, it is strongly software-centric, disregarding
the importance of hardware descriptions in robotics. Moreover, the
profile is only partially defined and lacks sufficient documentation
to use it as a reliable and robust modelling language.

In summary, given its generality, UML and its profiles have
been used as a silver bullet to solve any kind of modelling prob-
lem. However, the use of general-purpose modelling languages,
especially in extreme cases such as UML, may hinder the design
approach instead of supporting it [19, 110]. Because of the addi-
tional time necessary to learn the modelling languages on top
of the domain-specific knowledge and the extreme abstraction
of the model. Moreover, in UML, the profiles are powerful tools,
but as often happen when significant customisation is available,
they inevitably expand, causing cross-dependencies [48], nested
specifications [50] and conflicts.

SIMULINK – Another well known general-purpose modelling en-
vironment is Simulink [36] developed by MathWorks and based on
MATLAB. Simulink is far beyond the definition of modelling lan-
guage since it implements a fully-fledged modelling, simulation,
and code generation system deeply integrated with MATLAB. It
can be used to model an extreme variety of systems, from elec-
tronic circuits to image processing pipelines, passing through
signal processing and analogue or digital control systems. It is
based on a graphical block diagramming tool, originally designed
to design control systems, and now extended to support a variety
of different applications. Simulink embodies the “one-size-fits-all”
approach with its generalised modelling interface, this makes
the interaction between models of similar domains simpler but
forces the designer to be extremely specialised and proficient in
its modelling approach.

The strength of Simulink is also its significant downside. The
strong integration with MATLAB makes the modelling suite ex-
tremely powerful, but also extremely limited to the functionality

2.2 GENERAL-PURPOSE MODELLING LANGUAGES 21

implemented by MathWorks. Developers have minimal freedom
of choice since all the modelling process has to happen in the
boundaries defined by MATLAB. While this approach can be
suitable for an industrial setting, specific domains or high-level
simulation, it is incompatible with the fast-changing scenario [34]
of modern robotic applications.

ARCHITECTURE ANALYSIS & DESIGN LANGUAGE – The Architec-
ture Analysis & Design Language (AADL) [51] is a modelling lan-
guage for architectures of safety-critical, embedded and real-time
systems. Differently from other modelling languages, which focus
on a graphical or textual description, AADL supports both. They
can be used depending on the development phase or the required
precision of the design. Due to its emphasis on the embedded
domain, AADL contains constructs for modelling both software
and hardware components. This architecture model can then be
used either as design documentation, for analyses [52] (such as
schedulability and flow control) or for code generation [69] (of
the software portion). While it is targeted to embedded systems,
AADL can be considered a general-purpose language, since its
semantic is general enough to be used for various applications,
from telecommunication [38] to space [96].

AADL has been successfully used in robotics to perform ana-
lysis on latency and error propagation, both before and after
implementation. In the former [17], an autonomous wheelchair
has been modelled to define the redundancy of the system based
on the expected error propagation. In the latter [79], an existing
robot implementing a ROS-based architecture has been modelled
to estimate the latency of the system and configure the nodes
accordingly. However, outside of the approach presented in this
work, AADL has yet to be used as a modelling language to de-
scribe robotic architectures and as a support tool for the entire
development process. This is probably related to the fact that
AADL is considered a niche modelling language with limited
applications, in contrast to approaches such as UML.

2.3 DOMAIN-SPECIFIC APPROACHES 22

2.3 DOMAIN-SPECIFIC APPROACHES
Domain-specific approaches vary in complexity and connection to
the domain depending on how much they are defined specifically
for a given domain. The most general form of domain special-
isation is the concept of a Domain-specific language (DSL) [55].
A DSL is created by defining a programming language with a
limited expressiveness designed specifically for a particular set of
tasks. Often, the level of specialisation is such that the language
is tailored to a specific category of users [121]. DSLs are often
derived from a more general language used as a guideline; a typ-
ical example is the markup meta-language XML [67] that can be
used to define specific languages following a predefined schema.
However, when used for larger domains, they are usually created
from scratch to the point that it is difficult to recognise them as
domain-specific (e. g., HTML [64] or AWK [42]).

While special-purpose computer languages have always existed,
the term “domain-specific language” has become more popular
due to the rise of domain-specific modelling. Modelling benefits
significantly from DSL, since they can be used to reduce com-
plexity and to provide a dialect of an original general-purpose
language to target a specific domain, a clear example is the use
of profiles in UML. Given the importance of DSL in modelling,
various MDSE environments enable their creation. For instance,
the Eclipse Foundation provide a collection of tools under the
Eclipse Modeling Project [65] where Ecore [106, 113] is used for
meta-modelling, Papyrus [78] for UML profiles and general mod-
elling, Xtext [49] specifically for DSL engineering, and Xtend [16]
for code-generation. Other examples are the Jetbrains Meta Pro-
gramming System (MPS) [72], specifically designed as a complete
environment for the creation of DSL, and MontiCore Language
Workbench [76], a modular workbench for the design and realisa-
tion of textual DSLs, which has been used with some degrees of
success to create robotic specific languages [115].

In this work, we recognise the usefulness of DSLs in model-
driven approaches, since we defined ourself one based on XML to
create an intermediate representation from AADL (Section 5.4.1).
Additionally, while defining our meta-model, we pondered the
possibility of defining a DSL to reduce the complexity of the
model. However, AADL already provides, through inheritance,

2.3 DOMAIN-SPECIFIC APPROACHES 23

tools to manage the complexity of the language, without hindering
the freedom of the designer.

AUTOMOTIVE

The Automotive Open System Architecture (AUTOSAR) [58] is
the perfect example of a complete domain-specific environment,
where the entire development stack (i. e., design, implementation
and ecosystem) has been designed for a specific field. AUTOSAR
is a worldwide development partnership of automotive interested
parties founded in 2003. It pursues the objective of creating and
establishing an open and standardised software architecture for
automotive electronic control units (ECUs). Goals include the
scalability to different vehicle and platform variants, transferab-
ility of software, the consideration of availability and safety re-
quirements, a collaboration between various partners, sustainable
utilisation of natural resources, and maintainability throughout
the whole product life cycle [1].

AUTOSAR is based on a three-layered architecture: the core
software, a series of standardised modules necessary to run the
functional part of the upper software layers, the runtime environ-
ment, a middleware which abstract the network topology for all
the necessary communications, and the application layer, the ap-
plication software components implementing specific functionalit-
ies. This structure is not notably different from what is currently
happening in robotics; however, two significant differences make
AUTOSAR an industry-accepted standard, while in robotics, there
is no consensus yet.

First and foremost, AUTOSAR is an industry-created and in-
dustry-imposed standard. It is a top-down approach where the
biggest actors of the automotive industry lobbied together to cre-
ate a standard. In robotics, the approaches are bottom-up and
self-emerging. Second is the superstructure of tools, methodolo-
gies, standards, and practices associated with AUTOSAR [7, 8, 63].
Robotics should learn from the results obtained by the automotive
industry, but not by copying the top-down approach of imposing
a standard, but by providing the necessary superstructure to the
existing self-emerging approaches.

2.3 DOMAIN-SPECIFIC APPROACHES 24

SPACE

The development of space applications is significantly different
from traditional development. Considering the limitation imposed
by the harsh environments, the physical constraint impacting
the software (e. g., the weight of the hardware components), the
one-time deployment, and the extreme criticality of the imple-
mentations, it comes with no surprise that approaches for space
applications are extremely domain-specific.

TASTE is a toolchain targeting heterogeneous, embedded sys-
tems using a model-driven development approach [95]. In space
applications software is usually categorised depending on the final
deployment, prototypes are often developed with fewer restric-
tions and then deployed using space-grade technologies before a
mission. In this scenario, TASTE is a laboratory platform designed
for experimenting new software technologies, based on free and
open-source solutions. TASTE has at its core the philosophy of
“not reinventing the wheel”; therefore, while it is designed for the
very restrictive space domain, all its functionalities are built on
top of existing technologies and reusable designs and approaches.

At its core, TASTE is based on AADL for the architectural mod-
els and on ASN.1 for data models [96]. Additionally, thanks to its
modular design and the property system of AADL, it supports
VHDL [87] for hardware design, SDL for behaviour modelling,
and Simulink for dynamic simulations. TASTE is a complete tool-
chain from the model definition, using a superstructure built on
top of AADL, to the execution platform, it supports code genera-
tion and deployment on real-time platforms such as Xenomai [60]
and PolyORB-HI [120].

The approach chosen by TASTE is remarkable and extremely
interesting. TASTE is developed and maintained directly by the
European Space Agency, an organisation that has the power to
impose standards to its contractors. However, they decided to ad-
opt existing approaches and use them to support their work. This
strategy is compatible with the self-emerging robotic environment,
instead of imposing new standards, exploit existing technologies
to support popular approaches.

2.4 ROBOT SOFTWARE DEVELOPMENT 25

2.4 ROBOT SOFTWARE DEVELOPMENT
Robot software development is very different with respect to other
domains. To be more precise, robotics does not face unique chal-
lenges, but it combines in a single domain multiple issues seen
and managed independently by other fields. Robot software is
bound to the hardware as much as embedded systems, and it
may require the low-latency provided by a real-time architecture.
Additionally, a wide variety of robotic systems have to perform
direct interaction with humans, facing the same challenges of
human-computer interactions and user interface development.
Robots are equipped with multiple sensors and actuators, imple-
menting multiple functionalities, and this requires architectures
to be flexible and modular. Lastly, the interaction with the en-
vironment is tightly connected with the internal execution loop
of the robot, making the intrinsic uncertainty of the real world
a guiding element of robot design. This characteristic is almost
unique to robotics, a similar level of uncertainty is found in web
applications given the interaction with the Internet. The main
difference between the two is that a robot needs to understand
and interface with the uncertainty of the real world, while a web
application tries to bound and constraint it.

MIDDLEWARE AND FRAMEWORKS

Both state of the art and the history of robot software revolves
around the concept of middleware or frameworks. Systems used
to hide the complexity of the underlying hardware platform and
to help the developers in creating, deploying and reusing modular
implementations. Right now the landscape for robot development
is quite consolidated with current technologies celebrating their
10

th anniversary and the pioneers nearing their 20
th birthday.

Player [59] is one of the first frameworks for robotics, and its
aim was to provide support for the development of device drivers.
It becomes very successful, mainly because it allowed to integrate
and reuse third party software [119]. Another critical element of
its popularity was its twin platform: the Stage simulator. A con-
temporary of the Player/Stage project is the Open Robot Control
Software Real-Time Toolkit (OROCOS-RTT) [26], a framework

2.4 ROBOT SOFTWARE DEVELOPMENT 26

designed to provide real-time capabilities for industrial robots
and manipulators. OROCOS introduced the concept of using
component-based architectures for robotics by basing its imple-
mentation on the Common Object Request Broker Architecture
(CORBA) [93]. Moreover, the OROCOS project tried to push good
practices for robotics, by creating a modular toolchain promoting
interoperability between frameworks, separation of concerns [29],
and component libraries [27].

The design choice of OROCOS of using CORBA and a com-
ponents proved to be successful, and today, the framework is
still used in applications where hard real-time is a requirement.
However, implementing real-time software is a difficult task not
needed for a fair amount of robotic applications. This spawned
new approaches based on OROCOS and CORBA to support a
wider variety of robots. Orca [21] implements a component-based
design based initially on CORBA and then migrated to the In-
ternet Communication Engine (ICE) [70]. The focus of Orca is
on component reusability, by defining a set of commonly-used
interfaces and by providing libraries with high-level APIs. An-
other framework born from the premises of OROCOS is the Robot
Construction Kit (RoCK) [73]. RoCK si built on top of OROCOS,
it provides a tool called oroGen that can be used to generate
OROCOS component skeletons automatically. RoCK tries to use
an automatic programming approach to ease the implementation
of real-time components while maintaining intact their properties.
An interesting feature of this framework is the focus on separating
the problem-specific implementation from the framework-related
code. Developers use oroGen to create the skeleton of the compon-
ents, but they implement the functionalities in separate libraries
that are connected at deployment time.

Given the variability of robots, plenty of different frameworks
and middleware specialising on a specific aspect exist.

• Yet another Robot Platform (YARP) [85] is a middleware
which focuses on providing a peer-to-peer architecture sup-
porting an extensible variety of protocols (e. g., TCP, UDP,
multicast, MPI, XML/RPC, etc.). It is used mostly in re-
search and academia for humanoid robots requiring fast
and reactive control loops.

2.4 ROBOT SOFTWARE DEVELOPMENT 27

• OpenRTM-aist [6] is a framework based on the Robotic Tech-
nology Middleware (RT-Middleware) [5]. The RT-Middleware
is a common platform standard for robot based on distrib-
uted object technology supported and maintained by the
Object Management Group. OpenRTM-aist is an implement-
ation that represents the robot as a system of systems where
components identify all the functionalities.

• Fawkes [88] is a component-based approach for robotics.
Its main design characteristics are a blackboard-based mes-
saging system, a Lua-based engine for robotic behaviours,
and a monolith plug-in architecture.

• SmartSoft [105] is a service-oriented component-based frame-
work. It revolves around the idea of providing freedom from
choice to the developer. Originally, it was done by providing
a limited amount of communication pattern to the developer.
More recently, SmartSoft has been extended into SmartM-
DSD [39] to support a model-driven approach strongly.

Currently, the most popular and most used middleware [45]
for robotic is the Robot Operating System (ROS) [99]. Like many
others, the technological core of ROS is a component-based frame-
work. Components, called nodes, are organised in a peer-to-peer
network where messages are exchanged using synchronous or
asynchronous communication channels. Practically speaking, the
framework part of ROS is deliberately thin; ROS does not provide
a component model for the description of nodes and gives to the
developer total freedom. The main reason for the popularity of
ROS is its community; the unconstrained development approach
resulted in thousands of developers adopting ROS and sharing
their implemented components.

Despite its popularity and adoption, ROS is not without flaws.
The main criticism of ROS has always been the lack of support
for real-time application and industrial setting. This has given
rise to various initiatives, first and foremost, ROS2 [122], a new
iteration of ROS adopting the Data Distribution Service (DDS) [94]
as the underlying connectivity framework. ROS Industrial [44]
is an initiative that aims to apply ROS to industrial settings by
providing certified modules compatible with a list of recognised

2.4 ROBOT SOFTWARE DEVELOPMENT 28

industrial robots. In this context, the ROSIN project [114] aims to
apply model-driven approaches to certify these modules.

MODEL-DRIVEN APPROACHES

Given the complexity of robotic systems and robot development,
various approaches based on models and software engineering
techniques have emerged in robotics during the years. They can be
divided into three different categories: domain-specific languages,
model-driven robotic frameworks, and global initiatives.

Domain-specific languages are well suited for robot develop-
ment, since a robotic system is a collection of subsystems, and
a specific DSL can tackle each of them. For example, [112] and
[74] developed a DSL for task coordination, in [68] it is used to
model and deploy ROS nodes, and [61] in combination with a
SPL to model reference architectures. An extensive overview of
DSLs for robotic can be found in [90]. Since they are designed
for a specific task, DSLs can be extremely powerful and useful.
However, given their narrow focus, they often fail to scale and to
be adaptable to the evolution of the targeted domain. Moreover,
often multiple DSLs exists to accomplish the same task since their
domain-bound nature triggers the “Not Invented Here” syndrome,
and push designers to create a new language.

Robotic frameworks are the perfect target to be extended or
built following a model-driven philosophy. They already imple-
ment a component-based architecture, which is usually completed
by a component model, with varying degrees of formality. A
complete case of a model-driven robotic framework is SmartM-
DSD [39], the most recent evolution of SmartSoft. They provide a
complete, model-driven development environment built on top
of Eclipse. They promote “freedom from choice” by limiting the
developer options through a strict design approach and automatic
code generation. A model-driven approach built on top of ROS
is ROSMOD [77]. They developed a component model for ROS
nodes to support rapid prototyping and collaborative develop-
ment. It results in a hybrid approach between ROS functionalities
and a custom-made implementation.

Robotics is a very diverse field. Robots can have a great variety
of configurations and applications, but, robotic frameworks all

2.4 ROBOT SOFTWARE DEVELOPMENT 29

share modular and component-based design. Given these sim-
ilarities, global efforts have been made to create general, and
framework-independent modelling approaches for robotics. Best
Practices in Robotics (BRICS) [18] was a European FP7 focusing
on component-based development for robot software and on the
formalisation of existing best practices through MDSE. The project
had three main outputs: the BRICS Component Model (BCM) [28],
an Integrated Development Environment (BRIDE) [30] and the
Open Code Repository (BROCRE) [75].

BCM is a component model whose aim is to provide a general
abstraction for robotic frameworks. However, to accommodate
all the most used framework at the time, the resulting model
is quite general and only covers the common structures; for in-
stance, communication details are not present at the component
level. Nevertheless, BCM succeeded in showing how closely re-
lated components from different frameworks are, and it was an
important starting point for the work of this thesis. BRIDE is a
model-driven tool for component design based on the BCM. It
provides automatic code generation for OROCOS and ROS. BRO-
CRE is an online platform to collect, search and install all the
component following the BCM.

RobMoSys (Composable Models and Software for Robotics) [100]
is a Horizon 2020 project part of the European efforts to create an
EU digital industrial platform for robotics. The project focuses on
a model-driven composition-oriented approach to system integra-
tion and ecosystem building for robotics. The current output of
the project is a collection of meta-models for components, com-
munication protocols, architecture definition, and more. While
RobMoSys presents itself as a general approach aimed at promot-
ing system composition and reusability, all of its meta-modelling
infrastructures are based on the design of SmartMDSD. This signi-
ficantly limits the interoperability with other robotic frameworks;
however, it pushes developer in creating framework-independent
tools, to be compatible both with RobMoSys and ROS.

3 BACKGROUND

Nicholas of Morimondo: “We no longer have the learning of the
ancients, the age of giants is past!”

William of Baskerville: “We are dwarfs, but dwarfs who stand on the
shoulders of those giants, and small though we are, we sometimes

manage to see farther on the horizon than they.”

— The Name of the Rose, Umberto Eco

Since the beginning of this work, the aim was always to avoid
“reinventing the wheel”. By doing our initial analysis of state
of the art in robot software development, software engineering,
embedded system, modelling languages and formal methods, we
realised that most of the necessary tooling was already available.
The effort was in combining the existing technology to produce
a result that is greater than the parts. Our target was to enhance
robot software development by integrating methods, techniques
and technologies from other fields.

This section provides to the reader all the necessary background
to understand the technologies and the tools that will be used
in this work. First, we present the Robot Operating System by
giving an overview of its main elements, functionalities and struc-
ture. Then we move to the Architecture Analysis and Design
Language (AADL), the primary modelling language that we will
use to design and describe robot architectures. We present the
main components and their significance to our work. Moreover,
we provide graphical and textual examples of how to represent
essential AADL elements.

30

BACKGROUND 31

Contents
3.1 Robot Operating System 32
3.1.1 Computation graph 33

3.1.2 Components . 36

3.1.3 Communication 44

3.1.4 Filesystem . 50

3.2 Architecture Analysis & Design Language 51
3.2.1 Software components 55

3.2.2 Execution platform components 58

3.2.3 Composite and generic components 61

3.2.4 Components interactions 62

3.1 ROBOT OPERATING SYSTEM 32

Figure 3.1: The “ROS Equation”. It shows the key element composing the
ROS environment.

3.1 ROBOT OPERATING SYSTEM
The Robot Operating System [99], as the name suggests, is an
open-source, meta-operating system (or middleware) designed
to develop robot software. By creating a meta-level on top of the
operating system, ROS provides a series of functionalities to im-
plement its distributed architecture, including hardware abstrac-
tion, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package
management. It also provides tools and libraries for obtaining,
building, writing, and running software across multiple platforms.

The main goal of ROS is to support code reuse in robotics. This
is achieved by following the philosophy of giving great freedom
to the developers and support them by providing a robust and
flexible communication architecture, by developing a collection of
tools and by creating a thriving community. Figure 3.1 perfectly
synthesize ROS: it is not a framework, and it does not provide
libraries, guidelines, or developing rules. ROS is a communication
infrastructure, a distributed network of processes to be individu-
ally designed and loosely coupled at runtime. A set of tools,
ROS provides multiple interfaces to inspect the system (e. g., rviz,
rqt_graph), log the output (e. g., rosbag), organise the components
(e. g., roslaunch), visualise data streams (e. g., rqt_plot, image_view),
navigate the file system (e. g., rospack, roscd), build the environ-
ment (e. g., catkin), and more. A repository of already available
software modules implementing functionalities from low-level
device drivers to high-level planning, navigation, or manipulation
algorithms. Lastly, ROS is the engaging community created by
thousands of developer around all world working together to

3.1 ROBOT OPERATING SYSTEM 33

Figure 3.2: The ROS Computation Graph.

develop ROS packages and sharing them using the ROS Wiki1

and supporting each other through ROS Question & Answers2.

COMPUTATION GRAPH

Central to the structure of ROS is the Computation Graph (Fig-
ure 3.2), it represents the abstract infrastructure connecting all the
elements of the ROS middleware. It should not be confused with
the runtime graph composed by the currently active elements of
a ROS architecture, which is just one of the possible instances.
The Computation Graph consists of a peer-to-peer network where
all ROS executables can connect to process, share, and exchange
data, it defines the backbone of any ROS-based architecture. The
main conceptual components connected to the abstract Compu-
tation Graph are nodes, as data generators and processors, the
Master, as coordinator and name server, the Parameter Server, as
parameter centraliser and provider, messages, as the main form of
data exchange, services and topics, as the prime communication
channels, and bags, as pure data consumer.

• Nodes. They are processes that perform computation, they
produce, process and consume data circulated in the graph.
The modular design of ROS is based on the fine-grained
functionalities implemented by the nodes. Each of them is

1 http://wiki.ros.org/
2 https://answers.ros.org/questions/

3.1 ROBOT OPERATING SYSTEM 34

in charge of a specific subsystem of the robot (e. g., a sensor,
an actuator, localisation, planning, etc.).

• Master. Its role is to provide a name registration service and
a lookup system to the rest of the Computation Graph. It
mediates the communication between nodes by initiating
the connection between them.

• Parameter Server. ROS provides a centralised location to
store all the parameters of the nodes. Parameters can be
global (e. g., /use_sim_time) or defined in the namespace of a
node (e. g., /talker/frequency).

• Messages. They can appear in various forms depending on
the specific protocol used. However, all the communication
in ROS happens through the exchange of messages. A mes-
sage is simply a data structure, comprising typed fields (e. g.,
integer, floating-point, boolean, etc.). Messages can include
arbitrarily nested structures and arrays.

• Topics. They represent the asynchronous communication
system implemented by ROS based on the publish/sub-
scribe paradigm. Topics are named channel, and nodes can
subscribe to them to receive messages, or publish on them
to produce messages.

• Services. They implement the ROS version of the synchron-
ous communication system based on the client/server para-
digm. Differently from topics, they are not a named channel,
but remote functionalities identified by a name. Commu-
nication happens through an exchange of two messages: a
request and a response.

• Bags. Bags are a format for saving and playing back ROS
message data. Bags are an important mechanism for storing
data, such as sensor data, that can be difficult to collect but
is necessary for developing and testing algorithms.

Each ROS architecture represents a runtime instantiation of
the Computation Graph where vertices are represented by nodes
and the other active elements (i. e., Master, Parameter server, and
the bag recording system), and edges are represented by com-
munication systems (i. e., service and topics). The existence of

3.1 ROBOT OPERATING SYSTEM 35

messages in the runtime version of the Computation Graph is
transient since they are generated, exchanged and then consumed.
However, when they exist, they form a temporary ternary relation
with the node and the communication channel.

While the Master acts as a coordinator to initiate the commu-
nication between nodes after it is established, they are connected
directly. For example, nodes that subscribe to a topic will request
connections from nodes that publish that topic and will create that
connection over an agreed upon connection protocol. The most
common protocol used in a ROS is called TCPROS, which uses
standard TCP/IP sockets. This architecture allows for decoupled
operation, where the names are the primary means by which
more substantial and more complex systems can be built. Names
have a crucial role in ROS: nodes, topics, services, and parameters
all have names. Every ROS client library supports command-line
remapping of names, which means a compiled program can be
reconfigured at runtime to operate in graph topologies.

For example, to read the measurements produced by a Hok-
uyo laser range-finder, it is possible to use the hokuyo_node driver,
which interfaces with the hardware component and publishes
LaserScan messages on the /scan topic. To process that data, a
developer might implement a laser_manager node that subscribes
to messages on the /scan topic. After subscription, the new node
would automatically start receiving messages from the laser. The
two sides are completely decoupled. All hokuyo_node does is
publish laser range-finder measurements, without knowledge of
which node will consume the messages. The only thing laser_mana-
ger has to do is subscribe to /scan, without knowledge of whether
the topic is active or which node is generating the messages. The
two nodes can be started, closed, and restarted, in any order,
without inducing any error conditions. Later, it may be necessary
to add a second laser range-finder to the robot; this requires to
reconfigure the architecture, easily done by remapping the names
of nodes and topics. Two instances of the hokuyo_node are now
necessary, and each of them can have its own name to coexist in
the graph as two different vertices. Moreover, since they provide
two different measurement, each /scan topic can be renamed ac-
cordingly (e. g., /left/scan and /right/scan). For the laser_manager
to reach one of the topics, it is possible to follow the same remap-

3.1 ROBOT OPERATING SYSTEM 36

Figure 3.3: The interaction between nodes and the Master to start a topic-
based communication.

ping procedure, where the /scan topic is renamed to match the
output of the driver.

COMPONENTS

In the Computation Graph, the main active elements (i. e., perform-
ing computations) are nodes. They implement the functionalities
of the robot directly and appears in the graph as a multitude
of instances. However, other actors exist that perform small, yet
crucial roles in a ROS architecture. The Master as communication
mediator, the Parameter server to configure the nodes and the
environment, and, even though it is not in the main concepts of
the Computation Graph, the Transformation Frame, a centralised
system that manages coordinate transformations in the robot.

3.1 ROBOT OPERATING SYSTEM 37

MASTER – It exists as a single instance in the runtime graph, and
it must be run before every other element of the architecture using
the command roscore. This is necessary because the Master acts
as a name service. When a node starts, the Master registers it, the
same happens every time a new topic (subscriber or publisher) or
a new service (client or server) is created. By communicating with
the Master, nodes can receive information about other registered
nodes and their advertised topics and service, and, eventually,
create the necessary point-to-point connections.

The communication between the Master and the nodes hap-
pens using an XML Remote Procedure Call (XMLRPC) protocol,
which is an HTTP-based protocol that does not maintain an active
connection. Nodes interact with the Master when they need to
register a new communication or when they need to retrieve regis-
tration information. The Master will also make callbacks to these
nodes when this registration information changes, which allows
nodes to create new dynamic connections. The non-permanent
connections, combined with the lightweight XMLRPC protocol,
let the Master manages large and complex environments.

Figure 3.3 shows an example of how the Master mediates the
connection between two nodes. In the beginning, there are two
independent nodes. A typical sequence of events starts with the
camera node notifying the Master that it wants to publish Image
messages on the topic /images. The combination of node and topic
is registered in the Master, but since there is no subscriber yet,
no data is sent. At some point, without any knowledge about
the existing nodes or topics, the image_viewer node register in
the Master a subscriber for the topic /images. Since the topic has
now both a subscriber and a publisher, the Master can notify
the two nodes so that they can establish a direct connection and
exchange messages. From this point, the Master is not involved in
the communication any more, until one of the two nodes shuts
down and its topic information is unregistered.

PARAMETER SERVER – As for the Master, only one instance of the
Parameter Server exists in the system. This is not the only trait they
share since both are started together with the roscore command.
The Parameter server is a shared, multi-variate dictionary that is
accessible via network APIs. Nodes use this server to store and
retrieve parameters at runtime. As it is not designed for high-

3.1 ROBOT OPERATING SYSTEM 38

performance, it is best used for static, non-binary data such as
configuration parameters. It is meant to be globally viewable so
that tools can quickly inspect the configuration state of the system
and modify it if necessary.

As mentioned before, names have an important role in defining
ROS architectures. The Parameter server follows the same con-
vention used when naming topics and nodes. This means that
ROS parameters have a hierarchy based on the namespace intro-
duced by the other elements of the graph. In practice, parameters
have a global identifier when using the full definition of their
names (e. g., /camera/right/exposure), while are resolved depend-
ing on the current namespace when using a partial name (e. g.,
right/exposure). The hierarchical scheme also allows parameters
to be accessed individually or as a tree. For example, let us con-
sider a system where two parameters are exposed in the same
namespace: /camera/left/exposure and /camera/left/resolution. It
is possible to access each parameter directly and get their values
or use a reference to the namespace (i. e., /camera/left) to receive
a dictionary for that namespace.

NODES – They are the main executable element active in the
graph. Multiple different nodes and various instances of the same
node can be running at any time. They represent the variability of
the system since the developer defines their implementation and
topology. The nodes aim to implement fine-grained functionalities
of the robot, for example, they can be a single device driver, or a
velocity controller, encapsulate a planning algorithm, or a local-
ization system. ROS gives absolute freedom to the developer in
the design and implementation of the nodes; however, to interact
with the Computation Graph, few standard interfaces are defined.

Nodes implement publishers and subscribers to interact with
topics. A publisher needs to be registered on a specific topic, and
then can be called at any point during execution to generate a
message and circulate it in the graph. Subscribers reference a topic
and are bound to a function as a callback. A new message on
a topic triggers the execution of the callback, with the message
itself as a parameter. Services works similarly, using clients and
servers. A node advertises a service by implementing a server and
binding it to a callback. A request message triggers the callback,
which returns a response message with the result of the execution.

3.1 ROBOT OPERATING SYSTEM 39

A node uses a service by implementing a client. After binding
it to the correct service, the client can be invoked at any time.
While the remote service is in execution, the client node is locked
waiting for the completion. A similar approach (i. e., client and
server) is used for action, with the significant difference that the
execution is non-blocking.

There is only one thing a process needs to do to be part of the
runtime graph and be considered a node: register itself to the
Master. This single requirement encompasses the philosophy of
ROS of giving basically no restriction to the developer. While not
required, there is another element that characterises a ROS node:
the spinner. The ROS spinner is the main loop of the component:
it polls all subscribers, publishers, clients, servers to detect any
new message. ROS provides a few options to implement it.

• single spin. The developer controls the frequency of the
polling by invoking the spin command when necessary. It
is useful when implementing a task that has to be repeated
periodically (e. g., fixed frequency multiplexer).

• single-thread spin. The polling activity of the main execution
thread blocks the process until a new communication event
appears. This approach is used when the action of the node
are purely reactive (e. g., a control component waiting for
set-points).

• multi-thread spin. As before, the process is locked when the
spinner is active, but instead of sequentially switching the
execution between the polling activity and the callbacks,
multiple threads are used, providing a variable level of
parallelisation. This approach has to be used when the node
implements long callback with a fixed frequency (e. g., low-
level sensor driver).

• asynchronous spinner. This is an alternative implementation
of a multi-thread spinner. In this case, the polling activity is
not blocking, since it is implemented in a separate thread,
and each callback is managed in a new thread. When imple-
menting an asynchronous spinner, the developer has to be
aware of all the potential concurrency problems introduced.
Asynchronous implementations are useful when the node

3.1 ROBOT OPERATING SYSTEM 40

has to implement fixed-frequency callbacks while maintain-
ing control on the main thread (e. g., sensor driver with
independent communication threads).

The decentralised processing architecture implemented by ROS
nodes provides several benefits to the overall system. There is ad-
ditional fault tolerance, since an unexpected shutdown of a node
may compromise the functionality of a subsystem, but not of the
entire robot. Compared to a monolithic system, code complexity
is significantly reduced, since the implementation is distributed
in the single node, and the Computation Graph manages all the
coordination and communication activities. Implementation de-
tails are also well hidden as the nodes expose a minimal API to
the rest of the graph and alternate implementations, even in other
programming languages, can easily be substituted.

ROS is designed to be a meta-operating system, and its focus
is on accessibility, component reuse and hardware abstraction.
Therefore, differently from other robotic frameworks, it does not
provide a predefined structure for nodes, and it leaves freedom
to the developer when implementing them. The ROS-specific
functionalities, publish and subscribe to topics, invoke and offer
services, access the Parameter server, are all provided by a thin
implementation layer called ROS Client Library. It is a collection
of implementations, libraries and APIs that assist the developer
in developing ROS nodes. Perfectly in line with the flexibility
promoted by ROS, such libraries can be implemented in any
programming language, since they need to implement general
protocols like XMLRPC and TCPROS (i. e., ROS transport layer
based on TCP/IP). Currently, there are three main client libraries,
with a particular focus on C++ and Python.

• roscpp.The C++ implementation of the ROS Client Library.
Given the language of choice, this library design targets effi-
ciency, high execution speed and robustness. It is the most
widely used library, and it should be used when targeting
the final deployment of a ROS-based architecture.

• rospy. This is the version of the ROS Client Library imple-
mented in Python. It is aimed at providing advantages of
an object-oriented scripting language, namely, reduce de-
velopment time and provide implementation flexibility to

3.1 ROBOT OPERATING SYSTEM 41

Figure 3.4: All the coordinate frames necessary to completely describe
the structure of the THORMANG3

promote rapid prototyping and testing. Moreover, it is ideal
for non-critical-path code, such as configuration and initial-
ization code

• roslisp. While actively supported, this implementation of the
ROS Client Library in LISP exists mostly for legacy reasons.
It is used for the development of the planning libraries.

TRANSFORMATION FRAMES – When describing the physical struc-
ture of a robot, the position of each element has to be defined
with respect to the others. For example, to estimate the position
of a mobile robot through vision, it is necessary to know where
the camera is located on the robot, to estimate then the expec-
ted position of some reference points and translate it back to the
base of the robot. The more degrees of mobility a robot has, the

3.1 ROBOT OPERATING SYSTEM 42

Figure 3.5: An example of a complete tf tree for a mobile robot.

more complex this description becomes, Figure 3.4 shows all the
possible coordinate frame in a THORMANG3 robot. Each robot
joint can move with respect to the previous one, creating a re-
lative reference system. Therefore, every point in space can be
defined with respect to a multitude of coordinate systems defined
by the chain of movements. The complexity of managing all the
coordinate systems grows dramatically every time a new one is
defined, and the number of total frames may increase dynamic-
ally during execution, since any new interactive element in the
environment (e. g., an obstacle to avoid or an object to grasp) may
create a new one. Given how central coordinate frames are when
developing a robot, ROS provides its own set of tools to manage
them: transformation frames, commonly referred as tf [54].

Of course, tf cannot replace the designer in defining the cor-
rect reference frames for each element of the robot. However, it
creates a distributed system to manage coordinates that free the
developer from worrying about conversions. Thanks to tf, at any
moment in time, the developer can define a location in space in
a specific coordinate system and easily convert it in a different
one. A consistent transformation tree is necessary to achieve this.
Figure 3.5 presents an example. tf provides conversion from any
frame to another (e. g., from map to right_wheel) at any point in
time, but only if a complete chain of transformation between the
two frames exist in the correct time frame.

3.1 ROBOT OPERATING SYSTEM 43

To maintain a consistent transformation tree, the developer can
use the many accessory tools provided. When a coordinate system
does not move with respect to its parent reference frame (e. g., the
position of a sensor on a robot), it is considered a static transform.
They can be broadcast using the static_transform_publisher node,
which can be configured to create a latched publisher that provides
an up to date static transform every time is requested. A transform
is dynamic when it changes its relative position in time (e. g., the
position of the robot with respect to the map). In this case, to
update the transformation tree, it is necessary to use the APIs
provided by tf during the execution of the node responsible for
estimating the dynamic transform. The node has to declare a tf
broadcaster, then, at any time during the execution, can be used
to notify the updated version of the dynamic transform to the
system. Since tf can estimate the chain of transformations at any
point in the past, each new dynamic transform must be broadcast
with the correct timestamp.

When a node needs to query tf to request a specific transform,
it can do that by declaring a tf listener. The listener can be used
to receive any kind of coordinate frame at any point in time, by
specifying during the invocation a parent frame, a child frame
and a timestamp. While there is no central location containing all
the coordinate systems, and tf uses a distributed architecture to
store and share them, most of the actual computation happens
in a “transformations buffer” embedded inside the listener. This
means that while, theoretically, it is possible for tf to unravel the
entire history of a coordinate system, in practice, this is limited by
the buffer created by the specific listener. However, present-time
transforms are always available at any depth of the transformation
tree. In summary, tf is one of the most powerful tools provided by
ROS, since it removes a significant burden to the developer when
designing and implementing complex robotic systems.

LAUNCH FILES – The Master, together with the Parameter server,
are run by the roscore command, nodes are activated using the
rosrun command and tf provides a special command to broadcast
static transforms. The size of architecture is directly related to
its complexity, especially regarding configurations and execution
order. To alleviate this burden, ROS provides a system called
roslaunch. A launch file processed by roslaunch is an XML file

3.1 ROBOT OPERATING SYSTEM 44

containing a list of the elements that need to be run for a specific
architecture. The roslaunch also runs the Master and the Parameter,
so, by writing a complete enough launch file, it is possible to
execute the entire architecture with a single command.

A launch file is highly configurable. Using the XML tags, a
developer can: rename nodes, remap topics, provide command-
line configuration, include complete parameter profiles through
YAML files, define global parameters, enable node restart and
include other launch files. The potentially hierarchical structure
of launch files can be used to obtain a partial description of the
runtime topology of the architecture. However, currently, there is
no tool in ROS to provide this kind of visualisation.

COMMUNICATION

As any graph, the ROS runtime graph is composed of vertices and
edges. In the previous section, we discussed the main processing
elements, the vertices, while in this section, we cover all the com-
munication protocols: the edges. One of the main characteristics
of ROS is its distributed architecture, nodes can be executed on
different machines, but the middleware functionalities hide the
complexity of transmitting messages through multiple physical
mediums. Communication in ROS happens mostly through a very
flexible protocol based on a publish/subscribe approach: the top-
ics. While this one-size-fits-all approach works for most situation,
ROS also provides alternative solutions like services and actions.

MESSAGE – Central to the communication system of ROS is the
concept of messages since they are used, in different forms, by
all protocols. Nodes communicating through topics exchange
messages directly, a pair of messages achieve the client/server
interaction implemented by services. At the same time, actions use
a more complex system that relies on a triple of explicit messages
combined with hidden messages used by the protocol.

In every aspect of its design, ROS promotes simplicity, thin ap-
proaches and straightforward implementations; messages are no
exception. They are simple data structure, composed by constants
or typed fields. The field types can be:

3.1 ROBOT OPERATING SYSTEM 45

• one of the standard built-in types. They are the common
types usually found in programming languages. The avail-
able types are: boolean, a logic value that can be true or false,
integer, there are signed and unsigned options with differ-
ent sizes (i. e., 8-bit, 16-bit, 32-bit or 64-bit), floating-point,
for any non-integer number, available as 32-bit and 64-bit,
string, any ASCII string, therefore Unicode characters are
not supported, time and duration, represented as a pair of
seconds and nanoseconds;

• other messages. ROS supports a nested structure for mes-
sage typing. This means that any other message type, pre-
defined in ROS or custom-defined by the developer, can be
used as a field type in a message. This promotes reuse of
standard, and previously defined, messages, and a hierarchy
of concepts. For example, it is natural to assume that a Poly-
gon is defined as a list of Point, or that a Pose is composed
by Position and Orientation;

• any of the previous type can be arranged in a fixed-length
array or a dynamic list. Together with the nested structure,
it makes the design of ROS message simple yet powerful;

• the special Header type. While it is defined as a message in
the package std_msgs, the Header is unique since it can be
referred directly without specifying the package and it is
meant to exist as a unique field on the root of the message
to provide a generalised ID. The Header type has three fields:
seq, an unsigned long integer designed to be an increasing
identifier of the message instance, stamp, the timestamp of
the creation of the message, and frame_id, a string contain-
ing the name of the frame of reference associated with the
message.

Messages are defined using a straightforward message defin-
ition language. Each field is described by a pair of keywords,
one defining the type and the other defining the name. To define
an array or a list, it is possible to add two square brackets near
the type, eventually specifying the size (e. g., int32[] or Point[3]).
Constants are defined in the same way as fields, except that it
also assigns a value using the equal sign (i. e., =). No other data

3.1 ROBOT OPERATING SYSTEM 46

structure is allowed in the message definition, to nest types, it is
necessary to define them in a different message and include them
as types. Multi-part messages used in services and actions are
defined following the same rules, each part is separated by the
others using “---” as a separator.

TOPIC – The central communication system of ROS is based
on an asynchronous protocol implementing an anonymous pub-
lish/subscribe paradigm. In practice, topics are named buses that
nodes can use to exchange messages. Given the publish/sub-
scribe paradigm, combined with the anonymity of message-based
communication, the use of topics decouples the production of in-
formation from its consumption. Without any explicit knowledge
in the content of the message, nodes are not aware of who they
are communicating with. Instead, nodes that are interested in a
specific data stream subscribe to the relevant topic, while nodes
that generate data publish to the appropriate topic. As for many
other design choices, ROS is very flexible and permissive in the
structure of topics. Multiple publisher and multiple subscribers
can read and write from the same topic at the same time.

Topics are intended for unidirectional, streaming communica-
tion, and they are not supposed to provide a reliable connection.
Topics do not guarantee the delivery of the messages nor have an
expected delivery time. While the communication is reliable when
the two connected nodes are executed on the same machine, the
potentially distributed nature of a ROS architecture (i. e., nodes
running on different computers) combined with the unknown
physical communication medium force the developer to treat ROS
topics as a communication channel subject to potential data loss.

While there is no limit on the number of publishers and sub-
scribers connected to a topic, they all need to write or expect the
same message. Topics are strongly typed by the ROS message
type used to publish to them, and nodes can only receive mes-
sages with a matching type. The Master does not enforce type
consistency among the publishers; however, a new publisher with
a mismatched type encounters a communication error when try-
ing to write on the topic. On the contrary, the Master will block
subscribers from establishing message transport if the types do
not match. Lastly, all ROS clients implement a client-side check to
make sure that an MD5 computed from the message file matches

3.1 ROBOT OPERATING SYSTEM 47

the signature of the topic. This check ensures that nodes are com-
piled from a consistent codebase.

To implement topic communication, ROS currently supports
message transport based on both TCP and UDP. The TCP/IP is
the default transport, known as TCPROS, and streams message
data over persistent TCP/IP connections. Since it is the default,
TCPROS is also the only transport that ROS Client libraries are
required to support. The UDP transport, which is known as UD-
PROS, is currently supported only by the C++ ROS Client Library
(i. e., roscpp). UDPROS is a low-latency, lossy transport, hence is
best suited for non-critical tasks requiring high-speed communica-
tion and faster response (e. g., teleoperation). ROS nodes negotiate
the desired transport at runtime. Therefore, a node implemented
to use the UDPROS transport can fall back on TCPROS if the des-
tination node does not support it. This negotiation model enables
new transports to be added when compelling use cases arise.

SERVICE – The publish/subscribe communication provided by
topics is exceptionally flexible and suitable for a variety of situ-
ations in a robotic architecture. However, its n-to-n, one-way, asyn-
chronous transport, combined with the inherent unreliability of
the communication, is not appropriate for all interactions. In dis-
tributed systems, it is often necessary to implement synchronous,
bi-directional, reliable interactions, in ROS, this is achieved using
services. They perform a remote procedure call (RPC) based on a
client/server paradigm. A message pair defines Services: the re-
quest sent by the client and the reply sent by the server. Differently
from topics, the name of the service advertised by a node does not
represent the communication channel, but an entry on the Master.
In practices, it means that different from topics, it is not possible
for an external entity to “listen” to service communications.

Service calls are one-shot interactions. A client starts the com-
munication by requesting to the Master who is exposing a specific
service. After that, it establishes a direct connection with the
server and sends the request message, after the service-specific
processing, the server sends back the appropriate response and
the connection is closed. Multiple servers can expose the same
service (i. e., advertise a service with the same name), there is
no way for the client to pick a specific server, and the Master
will provide one of all the available. In extreme cases, this means

3.1 ROBOT OPERATING SYSTEM 48

Figure 3.6: Communication interface of the ROS actionlib.

that different servers may answer successive calls of the same
service. To avoid this, a client can make a persistent connection
to a service, which enables higher performance at the cost of less
robustness to service provider changes.

As for topics, services are strongly typed by the service message
they use. In this case is the server that imposes the type of com-
munication, since it is the one exposing the service. Clients are
not allowed to establish a connection if the requested type does
not match the server. As an extra layer of consistency, services
are versioned by an MD5 sum of the service message file. Nodes,
both implementing server and client, are only allowed to start a
service interaction if the MD5 sum matches.

ACTION – Services implement a synchronous client/server pro-
tocol. After sending the request, the client needs to wait until the
server responds. This approach is suitable for short interactions
when the waiting time is not detrimental to the correct execution
of the client; however, it is incompatible with requests that trigger
long multi-step procedures. The ROS answer to an asynchronous
client/server protocol is the actionlib package, or “actions”.

Actions realise their asynchronous protocol by using a collec-
tion of topics, this “under the hood” implementation is hidden
to nodes by providing two interfaces: an ActionClient and an Ac-
tionServer. The client and server then provide a simple API for
developer to request goals (on the client-side) or to execute goals
(on the server-side) via function calls and callbacks. Since action
are designed to trigger complex and lengthy activities, they im-
plement a system to track the evolution and the current status of
any active task and to interrupt or pause any active action.

3.1 ROBOT OPERATING SYSTEM 49

As said before, the actual communication is implemented through
topics, to fulfil all the expected functionalities, the action protocol
uses five different communication channels. Two of them are from
the client to the server: goal, used to activate the action and send
the current goal, and cancel, used to interrupt an active action. The
remaining three are from the server to the client: status, used to
notify clients on the current state of a goal (e. g., active or paused),
feedback, used to send periodic auxiliary information about a
task, result, used to deliver to the client a one-time information
upon completion of a goal.

While not all topics are used directly, to implement the action
protocol, the developer needs to define an action message file. The
file is composed of three different parts, each one representing a
different phase of the protocol: activate the action, receive updates
and receive the result.

• Goal: this field represent the final goal of the task, and it is
used to activate the action. It is the asynchronous counter-
part of the service request, and ActionClient sends it to the
ActionServer. For instance, for a complex navigation task, the
goal would a PoseStamped message containing the destina-
tion of the robot.

• Feedback: this field provides incremental updates on the
current status of the goal. It is unique to the action protocol,
and it has no counterpart in a service. The server periodically
sends this message to the client. In the case of the navigation
task, a feedback message would be the current position of
the robot along the path.

• Result: this field return the result of the task and represent
the end of the action. Its synchronous counterpart is the
service response provided by the server. A result message is
sent only once by ActionServer to the ActionClient upon com-
pletion of the goal. In the example of a complex navigation
task, the result is not particularly meaningful. However, it
is significant, for instance, when the task of the action is to
calculate a complex behaviour for the robot. In this case, the
result message contains the resulting behaviour.

3.1 ROBOT OPERATING SYSTEM 50

FILESYSTEM

Given its nature as a middleware and meta-operating system, ad-
ditionally to all the communication and execution functionalities,
ROS also provides a filesystem on top of the original provided by
the native OS. It is possible to navigate this ROS filesystem using
a series of commands, for instance, roscd to move to a specific
folder, or rospack depends to list all the dependencies of a specific
component and many more.

Central to the design of the ROS filesystem is the concept of
packages. A package might contain nodes, a ROS-independent
library, a dataset, configuration files, a third-party software, or
anything that can be logically considered part of a module. The
goal of these packages is to provide useful functionalities in an
easy-to-consume manner, to promote software re-usability. In
general, ROS packages follow a "Goldilocks" principle: enough
content to be functionally complete, but without overloading the
package which becomes heavyweight and challenging to manage.

The build process of ROS is atomic with respect of packages,
this means, for instance, that is not possible to build a stand-
alone node or a loose message. This approach is connected to the
naming system of ROS, where any entity (e. g., nodes, messages,
services, etc.) is identified by a combination of entity name plus
container package name. A package is the atomic unit of build
and also the target container for release and deployment.

Packages are easy to create by hand since the only requirement
is to include a package.xml file. However, tools exist to support this
procedure, like catkin_create_pkg. While only one file is required
to define a package, usually they follow a standardised structure:

• include/pkg_name: folder dedicated to C++ include headers;

• msg: here all the msg files used to declare messages are con-
tained;

• srv: service counterpart of the msg folder, it contains all the
service definition files;

• src: main folder containing the node implementation, it is
usually dedicated to the C++ source files;

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 51

• scripts: secondary folder for the node implementation. It
contains all the source files that do not require compilation,
it is usually dedicated to the Python implementation;

• CMakeLists.txt: CMake build file;

• package.xml: the only mandatory file, it contains package
specifications and meta-data.

3.2 ARCHITECTURE ANALYSIS & DESIGN
LANGUAGE

The Architecture Analysis & Design Language [51] is a very ex-
pressive modelling language designed to capture the architecture
of embedded systems by using models that provide a well-defined
and semantically rich description. This description encompasses
multiple aspects of the system: hardware components, to encode
the underlying physical layer of the system, software components,
to define the runtime behaviour of the architecture, the interaction
between them, for example, deployment of software on specific
hardware and communication between different execution units,
and the defining properties of each modelled element, to better
characterise any particular system.

AADL defines components using a dichotomy between spe-
cification and implementation. The component type declaration is
used to define the category (see Table 3.1) and the interfaces (i. e.,
features) of the component; this correspond to a specification sheet
that describes the component as a black box. For a specific type, it
is possible to define multiple component implementation declara-
tions each of them defines the internal structure of the component
(i. e., subcomponents and their interactions). This is equivalent
to defining multiple blueprints of a component, each of them a
possible implementation of a given specification. To specify even
more the characteristics of a component, especially its runtime
behaviour, it is possible to use properties. AADL already provides
a collection of predefined properties, and more are available by
including standard annexes for specific analyses. Moreover, a user
can define new properties by defining additional property sets.

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 52

Together, these declarations (i. e., type, implementation, and set of
properties) define a component classifier.

Component types and implementations are defined and organ-
ised using packages; they are libraries of component specifications
that can be used in multiple architecture definitions. Packages
have public and private sections to support information hiding.
The public section of a package contains all the specification that
will be available to other packages, while the private section can
be used to hide the specific component implementation. AADL or-
ganise everything in packages, an exception is property sets. They
are special containers for user-defined properties, they act like
packages and can be imported in other definition, but property
sets can only contain properties.

The first step model a full architecture is to define all the ne-
cessary component classifiers or to import them from existing
packages. In the case of a robot, for example, it is essential to
define the sensors as devices and the execution platform as a
combination of processors, buses and memories. On the software
side, the designer could import a previously defined software
component as processes or define more in new packages. After
this initial definition, a complete architectural description is cre-
ated by integrating into a fully specified system implementation
instances of the previously defined component classifiers. This
hierarchy represents all the interactions between components and
the architectural structure of the modelled system.

These interactions cover multiple aspects of the system. They
encode the communication between components through data
and events, and their physical connections. They also capture
the assignment of software to hardware (e. g., on which physical
processor or processing unit a specific process will be executed).
The full model of the system under analysis is obtained by instan-
tiating this top-level system implementation. This instance model
can then be used to analyse operational properties of the system,
from syntactic compliance and basic interface consistency to the
assessment of quality attributes and behaviours.

The key characteristics that make AADL suitable for our ap-
proach are the inheritance between components and the possibility
to use partially defined components and interfaces that can be
refined later in the design process. In practice, inheritance exists
as a form of extension of existing components. A new classifier

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 53

CATEGORY DESCRIPTION

Application software

process Execution unit with a protected address
space.

thread A schedulable execution path.
thread group An abstraction to logically organise

threads.
data Abstraction for data units.
subprogram Callable sequentially executable code. It

represents call-return functions.
subprogram group An abstraction to logically organise sub-

programs.

Execution platform

processor Schedule and executes threads and vir-
tual processors.

virtual processor Logical resource that can schedule and
executes threads. It must be bound to one
or more physical processor.

memory Stores code and data.
bus Interconnects processors, memory and

devices.

Composite

system Integrates software, hardware and other
system components.

Generic

abstract Define a runtime neutral component that
can be refined into another component
category.

Table 3.1: Component categories.

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 54

(i. e., component type and implementations) can be defined by
extending an existing one; the extended classifier inherits all the
characteristics of the base one: interfaces, subcomponents, proper-
ties, internal connections and modes. The extension declaration
can be used to refine the new classifier by adding new elements,
specifying existing elements inherited from the base classifier,
restricting subcomponents to a specific mode, completing the
definition of partially defined sections.

The partial definition is achieved in two ways: by using abstract
components or by exploiting prototypes. The abstract component is
a generic category that can be used in place of any other compon-
ent type or implementation without having to specify a runtime
category. A model with an abstract component cannot be instan-
tiated, however, they are extremely useful to define the initial
conceptual description of the system during an iterating design
process, or architecture templates and patterns that can be used
as reference libraries by designers.

The prototypes act as placeholders for classifiers and they can
be referenced anywhere a classifier would typically be referenced.
The actual classifier can be specified later when referencing the
parametrised component, e. g., when extending the classifier or
when declaring a subcomponent. Prototypes are useful to create
reference architectures or configurable product line families by
providing, essentially, a parametrised classifier template that a
designer can easily specify while following the structure already
provided. An example is the data type exchanged between two
components; the template of the component defines the existence
of the communication channel, but it uses a prototype for the
actual data type. Because of the prototype, the designer needs to
define a data type to be able to instantiate the model, but there is
no restriction in the original definition of the template.

AADL is a formal declarative language described by a context-
free syntax. This well-defined semantics is a key aspect of the lan-
guage and a strong advantage, especially for quantitative system
architectural analysis. Textual AADL is the main, more straight-
forward and detailed way to interact with the language; however,
there is a standard graphical representation that corresponds to
the textual definition. During the design of an AADL model,
either of both representations can be used. A good strategy is
first to define the skeleton of the model graphically, and then

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 55

finalise the description using textual AADL. This process is sup-
ported by the Open Source AADL Tool Environment (OSATE) [52],
in this development environment a designer can easily switch
between one representation of the language and the other, and
any modification is propagated in all representations.

In the remainder of this section, we present more in details the
component categories of AADL relevant to our work. We describe
the logical meaning of each category and their interactions, to
better justify how used them to model a robotic architecture.

SOFTWARE COMPONENTS

These categories are used to model the executable architecture
of the system. They encompass functional units as processes, ex-
ecution path as thread or thread groups and executable code
such as functions, procedures and libraries as subprograms and
subprograms groups. Moreover, the data category can be used
to represent the application software artefacts, for example, data
types, configuration files, internal data structures and commu-
nication messages. In addition to the semantic provided by the
category itself, additional information associated to runtime (e. g.,
dispatch protocol and frequency of a thread) and non-runtime
(e. g., source code associated to a specific subprogram) can be
specified using properties.

PROCESS – It represents an encapsulated execution unit; the ad-
dress space, the persistent state and all internal resources are all
protected, and they are not accessible by external elements directly.
The internal functions of the process are exposed using different
kind of ports and interfaces (i. e., features): event ports can be used
to trigger a behaviour or data ports for communication. Syntactic-
ally, a designer could provide access to the persistent internal state
of the process, but, logically, processes usually represent protected
address spaces. In summary, the process category is a container
that defines an executable entity. Therefore it does not include an
implicit definition of a thread; this means that a complete process
specification has to include at least one explicitly defined thread.
The allowed subcomponent categories are thread, thread group
and data. Properties can be used to specialise the runtime beha-
viour of a process; for example, it is possible to specify the source

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 56

code associated with the process or even the actual binary that
will be executed.

THREAD – It represents an execution path through the code, that
could, potentially, be executed in parallel with other similar ex-
ecution paths. The executable code modelled by a thread exists
within the protected address space defined by the process con-
tainer. Although the name of this category suggests a direct bind-
ing between the model of a thread and a physical thread on a
system, conceptually, an AADL thread is more versatile. A thread
can be implemented by a single operating system thread, or rep-
resent one of multiple logical threads mapped on a physical one.
A thread may also represent an active object. Logically, an AADL
thread revolves around the property of being schedulable; threads
can be bound to processors or virtual processor, and they have
multiple properties to specify their scheduling behaviour. The
possible values of the Dispatch_Protocol property cover the most
common behaviour expected by a schedulable execution path.

• Periodic, a repeated fixed time interval dispatch with the as-
sumption that the execution time is shorter than the period.

• Aperiodic, a port-based dispatch triggered by an external
source, if the thread is still executing when a new dispatch
arrives a queue based system is used.

• Sporadic, the dispatch is triggered by external events on a
port, but a new dispatch cannot happen before a specific
interval of time.

• Timed, threads are dispatched after a specific amount of
time if no event triggers it before. It is an aperiodic dispatch
with a time-out.

• Hybrid, this dispatch method combines a periodic and aperi-
odic. A thread is dispatched by an external event or after a
fixed amount of time.

• Background, a thread is dispatched once, and it is executed
until completion.

A thread can exist only within a process or as a direct subcompon-
ent or as part of a thread group. The possible subcomponents of a

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 57

thread are: data, to capture a persistent local state, or subprogram
and subprogram group, to model a local call to a functionality.
The interaction between threads can happen through ports, by
accessing shared data component at process-level or by calling a
subprogram serviced by another thread.

THREAD GROUP – It can be used to organize threads within a
process in a hierarchy when they are logically related or when it is
necessary to create an encapsulated space with respect to the rest
of the process. The unified frontier presented by threads in the
same group can be used as a common interface when a designer
wants to capture, at the same time, a high-level functionality and
the low-level constituting elements. Other than threads and other
thread groups, the legal subcomponents are data, subprogram
and subprogram group. All these subcomponents are directly
accessible by the threads in the group but are reachable by any
external element only through ports.

DATA – It can be used to model any kind of data exchanged,
saved or defined in the system. Data component instances can
appear in three different forms: as data subcomponents to rep-
resent persistent data (e. g., the state of an object), included in
data or event data port to specify the type of data exchanged
in the specific communication, as parameters declaration of sub-
programs. As subcomponents, a data component can have more
data components, to model a record-like structure, or subpro-
grams, to evoke the concept of a method associated with a specific
data type or class. AADL is not a data modelling language; how-
ever, it provides enough flexibility to be used as such. The most
reasonable approach is to use the data category to map all the
information relevant to the model, and then exploit properties
to specify a more detailed description of the data using a more
suitable language.

SUBPROGRAM – It represents a callable unit of sequentially ex-
ecutable code. The subprogram type represents the function sig-
nature, procedure or method modelled, while the subprogram
implementation represents the internal functionalities. The im-
plementation is not required to instantiate a model; however, if
necessary, data components can be used to describe local variables
and nested subprograms define the execution sequence. Subpro-

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 58

grams support data access to access a shared persistent state or
outgoing ports to model exceptions and errors; moreover, data
components can be used to model parameters and the return
value. There are two ways to model subprogram calls: by referring
to the subprogram classifier, or by using a subprogram access
feature. The first approach is used when referring directly to the
subprogram (e. g., to specify the subprogram as the executable
code of a thread), while the latter is used to model indirect calls
(e. g., to model remote service/procedure calls or, in combination
with a data component, to model an object-oriented approach).
Various properties of the subprogram can be used to specify the
actual executable code to be used in the implementation (e. g.,
Source_Name, Source_Text and Source_Language), others are related
to the calling and execution of the subprogram itself (e. g., Al-
lowed_Subprogram_Call and Compute_Execution_Time).

SUBPROGRAM GROUP – It can be used to represent a collection of
callable routines. For example, a subprogram group type models
the API of a software library by using a series of subprogram ac-
cesses, while different subprogram group implementations can be
used to model multiple implementations of the same library (e. g.,
different versions or implementations in different languages). The
possible subcomponent of a subprogram group are: subprograms,
to define the actual content of the group, subprogram groups, to
create a multi-level hierarchy, and data, to define a persistent state
shared by all subprograms in the group.

EXECUTION PLATFORM COMPONENTS

These categories are used to model the resources of the computer
system and the elements of the external physical environment. To
model the physical resources of the system, a designer can use
processor, bus and memory categories. Each of these categories
represents the concept behind these physical systems and not
the actual object so that a processor can be a CPU, but also a
processor board including operating system functionalities. In
the same way, a bus component can be used to model a physical
bus on a board, or a network connection such as Ethernet or
CAN bus. Both these components have their virtual counterpart: a
virtual processor can represent a scheduler or a virtual execution

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 59

environment, while a virtual bus can model a communication
protocol or a virtual channel. Memory components represent any
kind of memory present in a system, from RAM to cache as well as
persistent memory such as hard drives. To model sensors, actuator
or physical elements of the system, it is possible to use devices.

PROCESSOR – The definition of a processor is related to the
concept of thread. A processor represents the hardware and as-
sociated software that is in charge of scheduling and executing
threads. In practice, this category can be used to model both
low-level hardware of an embedded system and the high-level
platforms together with operating system services, depending on
the nature of the model and the system. Memory and bus are pos-
sible subcomponents, and they can be used to define the internal
function of the execution platform. To correctly instantiate the
model, a processor has to be associated with memory; it can be
internal as a subcomponent or external connected via a bus. The
properties available can be used to specify the runtime characterist-
ics of the hardware (e. g., Clock_Period) or the physical description
of the component (e. g., Hardware_Description_Source_Text).

VIRTUAL PROCESSOR – It represent the logical counterpart of a
processor, a virtual resource for scheduling and executing soft-
ware. It can be used to model any kind of virtualization platform
(e. g., Java VMs, Docker containers, virtual environments), parti-
tions of physical processors or hierarchies of schedulers. A virtual
processor must be bound to or be a subcomponent of a physical
one to perform model instantiation. Properties specific to this
category are related to the binding between virtual and real pro-
cessors, the others are the same of the processor category, except
for those used to describe the physical hardware (e. g., hardware
description and clock properties).

MEMORY – It represents any kind of storage for data and execut-
able code. A memory category can be used to model randomly ac-
cessible physical storage (e. g., RAM and ROM), reflective memory,
or permanent storage. A memory component can be used as a sub-
component of a processor to model a complete execution platform
or can exist as independent in a system to define more complex
architectures or shared memories. Typically, two types of software
components are bound to memories: process and data. A pro-

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 60

cess has memory requirements for code, static and dynamic data,
while a data component bound to a memory represent persistent
data shared between different threads. Properties can be used to
define the physical characteristics of the memory, such as word
and total size, base address and access protocol.

BUS – It represents the physical connection between hardware
components and the associated communication protocols. Some
examples of the type of connection modelled by the bus category
are PCI, CAN, Ethernet and wireless network. Another use of this
category is to represent physical resources distributed to multiple
physical components such as electrical power. A bus can exist as
a subcomponent to any other execution platform category (i. e.,
processor, memory, device). However, nested buses are not permit-
ted; only a virtual bus is accepted as a subcomponent. Properties
can be used to specify details about the physical connection (e. g.,
Transmission_Time and Allowed_Message_Size).

VIRTUAL BUS – It represents a logical abstraction of a commu-
nication channel, such as a virtual partition of a physical bus,
communication protocols or hierarchies of protocols by defin-
ing dependencies between multiple virtual buses. Since this cat-
egory can be used to represent protocols, it can be referred
to in other components properties (e. g., a processor specifying
Provided_Virtual_Bus_Class) to specify their supported communic-
ation standards.

DEVICE – It represents entities that interface with or are parts of
the external environment, such as sensors (e. g., cameras, laser
rangefinder, GPS), actuators (e. g., motors, valves, pumps), or
peripheral I/O. A device component has a dual software and
hardware nature, since, as an abstraction, it can be used to model
the physical component together with its driver; this means that
a device supports both ports and subprogram accesses to com-
municate with software components and bus accesses to interact
with hardware components. The subcomponents available for the
device are used to better describe the interaction between the
external element and the system; a virtual bus can be used to
specify the protocol of the communication, a bus to model the
physical connection provided and a data component to capture
the type of the data exchanged.

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 61

COMPOSITE AND GENERIC COMPONENTS

System and abstract component categories are not directly as-
sociated neither to software nor to hardware components, and
they are used to define conceptual and generic constructs. They
provide to AADL the tools to support modular and reusable
models, by aggregating components and by providing partially
defined interfaces that can be refined later.

SYSTEM – It is an abstraction that represents a composite com-
ponent (i. e., a container for other components). It can include
software, execution platform or other system components with
no restrictions. This means that it is possible to create systems
containing only hardware components (e. g., a processor board),
only software components (e. g., a software control system), a com-
bination of software and hardware (e. g., a complete embedded
system), or a combination of all these as direct subcomponents
or as contained in other systems. Even the extreme case of a
system consisting only of system components can be used as a
generic representation of a component-based architecture. Given
its nature as a container and aggregator, any type of component
is an admitted subcomponent of a system. Although the aggrega-
tion defined by the system is only conceptual, it creates an actual
frontier between the subcomponents inside and those outside;
this means that any communication needs to go through features
(i. e.ports and accesses) defined on the system.

ABSTRACT – It is a generic component category that can be used
to declare a component type and implementation without specify-
ing a category. By using this component as the only category in
a system, it is possible to create a conceptual component-based
view of an architecture. Alternatively, by combining abstract and
standard components in a system definition, a designer can define
a reference architecture to be specialised when necessary. Lastly,
abstract components can be used to create partially defined com-
ponents that act as libraries of design patterns. Abstract categories
can be refined in any other category; for this reason, any compon-
ent (software or execution platform) is admitted as a subcompon-
ent. The same is true for properties since the abstract category
support every possible property. However, when an abstract com-

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 62

ponent is refined to an actual category, only the properties and
subcomponents admitted for that category are valid.

COMPONENTS INTERACTIONS

In AADL, there are multiple ways to define interactions between
components. In the previous section, we described software and
hardware categories and, by doing so, we introduced two ba-
sic forms of interaction: subcomponents and bindings. The most
straightforward form of interaction is the relationship between
components and subcomponents; models are described in a hier-
archical way where higher-level components are composed by
lower-level subcomponents and the designer can decide the level
of granularity for the architecture. For example, a system can be
modelled down to the executable routines, but with no hierarchy
definition in the middle (i. e., a subprogram in a thread contained
in a process inside a system), or defined only conceptually by
using a strict hierarchy of the components (i. e., system of systems
containing only processes as subcomponents), or any intermediate
combination. Components have direct access to their subcompon-
ents at any depth, using a dot notation similar to object-oriented
design (e. g., system.process.thread.subprogram).

The concept of binding is specifically designed to relate software
and hardware components. A memory component binds multiple
data components to specify the physical location of the variables
they model, or a process is bound to the processor that will execute
it. In practice, this evokes the deployment of software on specific
hardware, and it is fundamental to perform analysis of operational
properties (e. g., performance, latency, fault tolerance), simulate
the execution of the system and generate the build configuration.

The main form of interaction between different component is
the use of connections. They are a very versatile form of interac-
tion, and they can represent a multitude of types of communica-
tions (e. g., remote function call, message passing, inter-process
communication, variable access, interrupts), the differentiation of
the communication protocol is achieved by defining externally
visible features on components (i. e., interfaces on the frontier
of a component). There are five different types of feature (ports,
access, groups, abstract and parameters) and each of them has

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 63

subtypes depending on the type of information exchanged (e. g.,
data or events) or the component they are defined on (e. g., bus
access or data access). Since subprogram are used to model pro-
cedures, functions, methods or, in general, any callable routine,
they support two unique forms of communication: parameters
and calls. The former, as the name evokes, defines the relationship
between data components and subprograms; the latter represents
the sequence of execution of multiple subprograms.

PORTS – Ports are the most straightforward type of features. They
are an interface for directional transfer of data, events or both
into or out of a component. Compatible ports (see Table 3.2) can
be connected to define directional pathways for such transfers
between components. Ports are defined in the component type
declaration and are specified by name, direction, type and a data
identifier. The name has to be unique in the component and it can
be used to recall the port, both inside (directly) or outside (via dot
notation) the component to define properties and connections.

There are three possible options for the direction of a port: in,
to specify an input, a flow of data or events from outside the
component, out, represents an output, data or events coming from
the component, in out, a bidirectional port, both input and output,
this type of port supports incoming and outgoing connections.
Three different types of ports are supported, and they represent a
different type of communications between components. Event data
ports are meant for asynchronous communications, for example,
messages exchange. They model asynchronously sending and
receiving data and the presence of a queue to store unprocessed
messages while the receiving component is busy. Data ports are
similar, since they model data exchanges, but without a queue.
They are sampling ports, and they retain only the most recent
arrival. For both these types of ports, it is possible to specify a data
identifier modelling the nature of data exchanged. Event ports
represent triggers for discrete events, and they carry no data. They
can be used to model all kind of external events, from low-level
hardware interrupts, to signals from the operating system.

DATA AND BUS ACCESSES – In a system, there are multiple
shared resources, for example, memories, log files, communic-
ation channels, sensors, input and output devices. In AADL, most

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 64

From/To data event data event

data Yes Yes Yes
event data Yes Yes Yes
event Yes

Table 3.2: Inter-port compatibility.

of these resources are characterised by two-component categories:
data and bus. It is possible to use access features to model the con-
current access of components to these shared elements. Two types
of access features exist, data and bus. Their conceptual definition
and syntax are almost the same; the only exception is the use of
the right keyword when referring to one or the other type. In the
feature definition, they are identified by a unique name, that can
be used to refer to specific access in the model.

Similarly to ports, accesses have a direction, but it is achieved
by defining either a requires access feature, indicating that a
component needs access to a shared resource, or a provides access
feature, meaning that a component allows access to a shared
resource defined as a subcomponent within it. Optionally, it is
possible to specify, in the definition of the access, a component
identifier referring to a specific data or bus classifier, depending on
the type of access. Like any other feature, paths between accesses
are created using connections, differently from other features,
the chain of connections in and out components does not end in
a feature, but it continues to the shared resource. Connections
between access features can be bidirectional (↔) or directional
(→); a bidirectional connection means the access allows both
writing and reading operations, while with a directed connection,
reading is allowed if the shared resource is the source and writing
is allowed when it is the destination.

SUBPROGRAM CALLS AND ACCESSES – As described before, a
subprogram represents a unit of executable code. However, a
single one or even a collection of them is not enough to describe
the behaviour of a process; it is necessary to define the execution
sequence. With AADL, it is possible to use different approaches to
model the interaction between multiple subprograms, their local

3.2 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 65

execution order and remote triggering. The primary tool available
is the call sequence defined in the calls section of a thread, inside
the sequence, identified by a name, the reference to the subpro-
gram can be modelled in three ways. The first option is to specify
only the subprogram classifier. This approach can be used just to
identify the subprogram and leave the actual local instance im-
plicit. Alternatively, it is possible to define a binding between the
called subprogram interface and the actual instance by using the
property Actual_Subprogram_Call. This option is useful to model
remote procedure calls or to define the implementation in a single
location and then reference it in multiple places. Last option is to
reference subprogram access; this type of feature access works in
the same way as a data access or bus access, it provides or requires
access and specify the category of the referenced subprogram. The
key difference is that the connection between two subprogram
accesses is always bidirectional since the source is defined in the
call sequence and a routine is expected to return.

FEATURE GROUPS – They represent a collection of component
features or other feature groups. Feature group types, (i. e., a set
of component features) defines the internal structure of the group.
They can be composed of any type of feature with any direction
(i. e., any in and out port and any provide and require access).
Feature groups have multiple applications, for example, can be
used to simplify the model at a higher level of details, or to model
multiple communication channels always operating together, or to
provide an abstract definition of a component to be refined later.
On the component frontier, only the feature group is visible, and
connection can be defined only between groups with the same
type. Inside the component, the feature group acts as a reducing
interface where all the compatible internal features converge.

4 MODELL ING

The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct
which, with the addition of certain verbal interpretations, describes

observed phenomena.

— John von Neumann

As said by John von Neumann, science is about making models.
They can be used to simplify a phenomenon and make it easier
to define and understand; additionally, a model can be used to
quantify or visualise reality. Knowledge extracted by the process
of modelling can be reused to create a simulation of the system
under analysis. For all these reasons, and because it is one of the
most innate abilities of humans, modelling has always been the
cornerstone of science, engineering and arts.

Modelling in engineering is an essential tool for design, analysis
and simulation, models have different characteristics and take
various shapes. A collection of mathematical formulas can be
used to describe a physical phenomenon (e. g., friction between
the ground and the wheels), or the behaviour of a system (e. g., a
control system). Differently, a flow chart is a graphical model of
an execution process, while pseudo-code is a textual one. A 3D
model captures the physical shape of an object and can be used
to study the design or space occupancy.

This chapter focuses on all the analysis, considerations, and
models that we developed to create an appropriate environment
for the system designer to be able to represent a robotic architecture
at different levels of detail. First, we introduce the component-
connector paradigm, its basic concepts, and why it is used in
robotics. From there, we move to the AADL representation of the
paradigm, and an extension to cover first a ROS node and later a
complete architecture. To conclude the description of modelling a
robotic system, we introduce a series of templates to simplify the
modelling process. Lastly, since AADL is not a data modelling

66

MODELLING 67

language, we present two approaches based on Abstract Syntax
Notation One (ASN.1) and JavaScript Object Notation (JSON) to
model the data exchanged in the system (i. e., ROS messages) and
the internal state of each component.

Contents
4.1 The component-connector paradigm 68
4.2 AADL for robotics 72
4.2.1 Modelling the CC paradigm in AADL 75

4.2.2 A basic example 79

4.3 From CC to ROS 80
4.3.1 Modelling a ROS enhanced component in AADL 84

4.3.2 Modelling ROS architectural elements in AADL 90

4.3.3 A ROS basic example 96

4.4 Modelling templates 97
4.5 Data Modelling . 101
4.5.1 Option 1: ASN.1 103

4.5.2 Option 2: JSON with schema 108

4.5.3 Comparison . 113

4.1 THE COMPONENT-CONNECTOR PARADIGM 68

4.1 THE COMPONENT-CONNECTOR
PARADIGM

In robotics, the most popular middleware and frameworks are
based on a component-connector paradigm [109], and while dif-
ferent approaches implement it in different ways, the underly-
ing structure is the same. In ROS, it is the computation graph,
a peer-to-peer network of processes managing and exchanging
data. Here, following the terminology of graphs, the components
are called nodes, while asynchronous topics or synchronous ser-
vices represent the connections; in both cases, the communication
happens by exchanging messages. In SmartSoft, the underlying
technological approach of the SmartMDSD toolchain, the structure
is based on components, communication patterns and communic-
ation objects. Components communicate through four possible
patterns: two synchronous, based on a client/server paradigm
(i. e., send and query), and two asynchronous, based on a publish-
er/subscriber paradigm (i. e., push and event). All the patterns
communicate using communication objects.

Another example is the Robot Construction Kit (RoCK), based
on the component model of the OROCOS Real-Time Toolkit (RTT).
In RoCK, and consequentially in OROCOS, the architecture is,
again, based on components connected through ports. One last
example is the OpenRTM-aist middleware developed by the Ja-
panese National Institute of Advanced Industrial Science and
Technology. They fully embraced the component-based approach,
where multiple subsystems compose a robot, and each of them
is a collection of components. Components communicate using
connections established between predefined ports.

The popularity of the component-connector paradigm is not co-
incidental. In their structure, robots are a system of systems, a
hierarchical collection of components interconnected to create a
working apparatus. Physically, a robot is a collection of sensors
and actuators; same goes for the behaviour, simple low-level in-
dependent functionalities are not enough to implement even the
simplest robot. Given all these needs, the most natural approach
is to decompose the system in different and simpler subsystems
and to simplify and characterise their interactions by the use of
interfaces; the result is a component-connector paradigm.

4.1 THE COMPONENT-CONNECTOR PARADIGM 69

This work aims to provide a general and flexible representation
that can be used to model an architecture that captures the design
of a robot and it is compatible, at least at a higher level of specific-
ation, with multiple middleware and frameworks. To do so, we
defined some common design patterns often used when creating
robotic architectures. As already mentioned, the first key design
approach is the use of components and connections, but, of course,
this is a very high-level description, and it is only useful to define
the topology. To better define an architecture without including
technological details (i. e., specify a middleware or framework),
we have to define a general description for component function-
alities, and we have to specify the nature of each connection. By
analysing the existing solutions for robotics (i. e., ROS, SmartSoft
and OROCOS/RoCK), we identified four possible component
behaviours that can exist (and coexist) in a component.

SOURCE – A component expresses a source behaviour when it is a
generator of data or events. An example is a simple ROS node im-
plementing a publisher: it generates messages and circulates them
in the runtime graph. In SmartSoft there are two communication
patterns that, implemented in a component, evoke this behaviour:
push, to generate messages and send them to other components,
and event, a data-less communication to trigger action in other
components. This type of behaviour is used for device drivers
since they create and circulate a digital version of the analogue
input they detect. Coordinator components also use it since they
are in charge of initiating high-level functionalities by generating
an event or a specific message.

SINK – A sink is a component that consumes data or events.
In ROS, a node is a sink when it implements a subscriber that
receives, processes, and consumes messages. The counterpart
in SmartSoft is, again, a component that implements the same
two communication patterns (i. e., push and event), but this time
it is on the receiving side of messages and events. Component
controlling actuators implement this type of behaviour since they
receive commands from other components and consume them to
operate a physical device. Alternatively, it is used by loggers since
they simply collect all possible messages and store them. Lastly,

4.1 THE COMPONENT-CONNECTOR PARADIGM 70

any component activated by an event implements a corresponding
sink to receive and manage the trigger.

FILTER – The most common behaviour for a component is the
filter. This type of component receives messages or events as input
and processes or relays them to create an output. To describe more
precisely the internal functioning of this behaviour, we have to
distinguish two categories: without or with memory.

In the former, the component does not store in any way the data
received since they are processed and directly re-circulated in the
system. This approach is common when doing simple conversions
(e. g., change the unit of measurement or the coordinate system)
or when it is necessary to resample the data (e. g., change the
frequency or zero-pad the messages). In ROS, it is implemented
by processing the received message directly in the subscriber call-
back and publish it before leaving the callback environment. The
latter behaves similarly to a combination of a sink and a source;
messages or events are received by the component and stored
locally, then, at a later time, recalled from memory, processed
and relayed in the system. This approach is used when doing
more complex processing, for example when multiple messages
need to be processed at the same time (e. g., smoothing a velocity
set-point), or when multiple inputs need to converge in a single
output (e. g., combining multiple laser rangefinder measurements
in a single one). In ROS, this happens when messages are pro-
cessed in a callback but not completely discarded at the end, and
later, in the main loop or a different callback, they are processed
and circulated back in the graph.

REACTIVE – A component has a reactive behaviour when its func-
tionalities are synchronously triggered by a message or an event,
and it is usually implemented by using a remote function call.
In ROS, this kind of behaviour is exemplified by services; they
offer a public interface that can be called by external compon-
ents and react with synchronous execution of a function that
may return a value. SmartSoft implements a similar synchronous
system, but differentiate between one-way communications with
no answer (i. e., send and forget) and two-way communications
with a specific response. This behaviour is used to delegate to a
central component a specific functionality (e. g., centralised conver-

4.1 THE COMPONENT-CONNECTOR PARADIGM 71

sion system), to activate a remote functionality (e. g., component
re-initialisation), or to guarantee a timely answer to a request
(e. g., soft real-time functionalities).

Implicitly, by describing the possible behaviours of a compon-
ent, we already outlined the nature of the messages exchanged:
a connection can be data-based or event-based. In a data-based
connection, messages with specific content are exchanged between
components. Usually, a specific communication channel only sup-
ports a pre-defined data format, but, in theory, a data-based con-
nection can avoid the specification of the message exchanged.
Each middleware or framework uses a different language to de-
scribe data format. For example, both ROS and SmartSoft use a
domain-specific language to define communication objects. This
is the source of a substantial and unnecessary fragmentation be-
cause, in the end, all middleware and frameworks rely on basic
data types and data structures, that are already covered by numer-
ous standard data description languages. Event-based connections
fall on the opposite side of the spectrum since there is no data
exchanged: the critical element is the communication itself. The
receiver only needs to detect an active connection to collect the
event generated by the sender. In practices, it is common to imple-
ment event-based communications as data-based communication
carrying an empty message. This is the approach used by ROS,
since it does not support any pure event-only communication, but
any communication channel (i. e., topics and services) supports
standard empty messages. In SmartSoft, event-based communica-
tion is supported only paired with a publish/subscribe paradigm,
since the Event communication pattern is asynchronous.

To complete the description of an architecture based on the
component-connector paradigm, we need to analyse the cardinality
of the connections. There are four different cardinalities:

• 1-1, this is an exclusive connection where the source is dir-
ectly connected to exactly one destination.

• 1-n, in this type of connection the stream of messages or
events generated by a single source can be connected to one
or multiple destinations.

• n-1, to achieve this configuration, multiple sources need to
converge in a single destination.

4.2 AADL FOR ROBOTICS 72

• n-n, this is the most permissive of all cardinalities. In this
configuration, there is no limit in the number of sources
and destinations for a single communication channel. By
using local policy, it is possible to implement all the previous
ones, but when the communication is n-n by design, it is
impossible to guarantee other cardinalities. The result is a
very flexible yet unpredictable connection.

In practice, robotic middleware and frameworks, rarely imple-
ment all four options. In ROS, topics are implemented as pure
n-n communication channels, since they follow a publish-and-forget
paradigm. Any number of publishers can publish messages on a
topic, and each subscriber receives a copy of the message. There
is no ownership of messages after they are published on a topic.
While the communication supports a full n-n cardinality, in prac-
tice, it is never used as such, but always as multiple publishers
and a single subscriber (i. e., n-1) or a single publisher and mul-
tiple subscribers (i. e., 1-n). ROS services are inherently n-1 since
only a single server can provide a specific service, while multiple
clients can request it. SmartSoft is more strict in the definition
of the cardinality of its communication patterns: all the patterns
with a publish/subscribe structure (i. e., push and event) have a
1-n cardinality, all the patterns following a client/server approach
(i. e., query and send) support only a n-1 cardinality.

4.2 AADL FOR ROBOTICS
The Architecture Analysis & Design Language was originally
developed in the field of avionics, and then it was redesigned to
target embedded real-time systems. Therefore, never in its history,
the language was specifically designed for robotics. However,
many parallels exist between embedded and robotics systems,
consequentially, characteristics that were designed for the former
are more than suitable for the latter.

Moreover, a general design approach means the language is not
bound to a specific field, and the existing methodologies and tech-
nologies did not condition its design. Its agnostic nature makes
AADL an excellent choice to provide a general modelling lan-
guage for robotic systems, different middleware and frameworks

4.2 AADL FOR ROBOTICS 73

sharing similar design principles can be represented easily with
a common language. Additionally, AADL formal syntax and ex-
pressiveness guarantee consistency in the models and reduce the
necessity to introduce extensions and ad hoc modifications, and
even when this is necessary, the language itself regulates them.

As described in Section 3.2, AADL provides modelling tools for
both hardware and software components. This is expected from
a modelling language designed for embedded systems, where
the development of the software is tied to the hardware; however,
this characteristic is beneficial for robotics, too. Thanks to the
abstraction provided by component-based middleware, modern
robotic systems are not tightly connected to the underlying hard-
ware platform as they used to be; today an obstacle avoidance
system does not need to know precisely the data format of the
measurements provided by the laser rangefinder to work correctly.
However, this is true only for the development of single compon-
ents or compartmentalised set of components, when designing
the whole system or during execution, it is necessary to consider
the behaviour of both hardware and software.

How many and which sensors the robot uses to localise itself? Is there
a teleoperation system? How much time does it take for a measurement
to propagate in the system? How many critical functionalities are inter-
rupted by a faulty sensor or actuator? All these critical questions have
to be answered during the design phase of the system, and this
can be done by correctly modelling the hardware (sensors, actuat-
ors, connections, execution platforms, etc.), the software (drivers,
low-level interfaces, functionalities, etc.), and their interactions.

In AADL, a designer can use properties to characterise compon-
ents. Some examples are memory size, processors computational
power, processes resource consumption, or connection through-
put. These properties can be used to analyse the system before
implementation or deployment. One of the tools provided by
AADL is the concept of flow, they are a logical path through the
architecture, and they are specified from input to output of a
component. These flows can go through any feature (i. e., ports,
accesses, groups and abstracts) and can represent any logical path-
way (e. g., data, control, fault event, etc.). When modelling a flow,
it is necessary to specify the source, the sink and the complete path
of the flow; however, the definition can be done at system-level, it
is not necessary to specify the behaviour inside the components.

4.2 AADL FOR ROBOTICS 74

From this specification, it is possible to do end-to-end analysis,
for example, identify the component involved in critical commu-
nications, estimate error propagation, calculate the time necessary
for a measurement to impact on the behaviour of an actuator. The
propagation time of messages and latency are fundamental in
hard real-time applications, but even soft real-time applications
can benefit from strict performance analysis. For example, a high-
speed delta robot needs to consider communication latency to
operate with high precision. In an autonomous wheelchair, the
control system does not need high reactivity, but a correct latency
estimation will make the difference between a sudden braking
and a gentle slow down when faced with an unexpected obstacle.

On a more technological level, the detailed description of com-
ponents, their interactions, their structure and hierarchy provided
by AADL is instrumental in solving some inherent problems of
robotic middleware. For example, if we consider ROS, there is
a total absence of an architectural view of the system. A partial
representation of the interactions of the components is available
at runtime by using tools like rqt_graph, but this representation
only considers topics and does not reflect the full structure of the
system. Something similar can be achieved during deployment
by using launch files, but while they are useful to organise the
runtime of the components, there is no way to visualise the in-
teractions between them, and they do not capture the internal
connections. Both this limitations can be solved by using AADL, a
complete model of the architecture provides a view of the system
since its inception, and by using the system component is possible
to recreate the same hierarchy provided by launch files.

Even when considering middleware more focused on a model-
based approach, AADL can bring a great advantage. In the Smart-
MDSD toolchain, architectures are designed using a custom meta-
model defined via the Eclipse Modelling Framework. An approach
that limits the design process to a particular environment and
tightly connects the design phase with the implementation phase
since the model reflects exactly some specific software artefacts.
Moreover, while quite complete, the SmartMDSD meta-model,
do not consider the hardware components as part of the archi-
tecture; therefore, any analysis related to the hardware has to be
done with additional tools. In this case, AADL could be used as a
general high-level modelling language compatible with the Smart-

4.2 AADL FOR ROBOTICS 75

MDSD meta-model, to be then transformed in an intermediate
representation compatible with the existing code generators. The
AADL version of the model could be used to perform analysis
and to speculate on the possibility of using different technologies
to implement different components or to deploy the same design
on different platforms.

While not strictly related to robotics, an important feature of
the language is the active community and the available tools.
The Open Source AADL Tool Environment (OSATE) [52] is a
development environment not only to design AADL models both
graphically and textually but also to exploit all the validation
and analysis capabilities of the language. Some examples are
end-to-end latency analysis, port connections consistency checks,
computer resources budget analysis. Moreover, OSATE acts as
an interface for the capabilities provided by Ocarina [69], an
AADL model processor that supports parsing, code generation
and model checking. Ocarina uses a front end/back end paradigm,
where the front end is the AADL parser, and a back end can be
any code generator that goes from the intermediate representation
provided by the front end to executable code. Ocarina already
supports various targets for code generation, none of these is
a robotic middleware, however, thanks to the front end/back
end paradigm, we created a suitable code generator that goes
from an AADL model to a complete ROS architecture. This code
generation process will be described in details in Chapter 5.

MODELLING THE CC PARADIGM IN AADL

AADL is the perfect candidate to describe architectures based on
the component-connector paradigm because the language design
supports components and connections. AADL components, at
any level (e. g., system, process, device, subprogram, etc.) support
some form of feature (i. e., ports and accesses) to communicate
and interact with other components. In the previous section we
described all the elements useful to characterise the robotic com-
ponents and their interactions (i. e., component behaviours, type
and cardinality of connections), in this section we will describe
how AADL can model the same concepts.

4.2 AADL FOR ROBOTICS 76

First of all, it is necessary to outline which AADL artefacts
are necessary to model this kind of paradigm. As described in
Section 3.2, the general top-level container is the system category,
one step below there are three possible software categories that
could act as components: process, data and subprogram. A collection
of subprograms models libraries or sets of APIs, data as first-
level subcomponents model general storage or shared resources,
processes are used to describe an enclosed execution space and
can exist only as direct subcomponents of a system. Therefore, it is
clear that the perfect candidate to model components is the process
category. Since the process execution space is directly accessible
only by its subcomponents, the category supports all available
AADL features (i. e., interfaces).

In the previous section we introduced data and event-based
communications, AADL supports both of them thanks to the
additional type specifier when defining a feature, it can be a data
port, an event port or an event data port. Moreover, ports can have
a specific data type, defined using a data category; this is useful
to model the type of message exchanged in the connection. In
AADL, all ports have natively a n-n cardinality, except for the
input data port; since this type of port models a communication
with no queue, it does not support multiple incoming connections;
however, they are supported by the input event data port since it
includes a queue in its model. In the base language, there is no way
of restricting the cardinality of ports, but it is possible to define
new properties to specify a connection better and, eventually,
indicate its cardinality.

To model component behaviours, we go a step further in the
component hierarchy and consider process subcomponents. Again,
the data and subprogram categories are not relevant for the beha-
viour since they are used to define memory and subroutines. The
third and more suitable candidate is the thread category. They
represent an execution path through code, and their behaviour is
periodic with various characteristics or triggered by an external
input (e. g., incoming data or events). Moreover, multiple threads
can coexist in the same process and, potentially, execute in parallel.
All these characteristics make the thread a suitable category to
model component behaviours. However, as we described in the
previous section, each behaviour is related to a specific external
interaction, we achieve this by combining threads and ports.

4.2 AADL FOR ROBOTICS 77

SOURCE – In this behaviour, the components generates messages
or events. Therefore the thread needs an output port that can be of
type data or event. Since there is no external source triggering this
behaviour, it is necessary to specify the scheduling of the thread,
usually periodic.

SINK – In this case, the components receives and consumes mes-
sages or events. Given this, an input port needs to be modelled
as an interface of the thread. By changing the type of the input
port, it is possible to change how the sink behaves. A data port,
combined with periodic scheduling, would model a sampler that
receives a constant stream of data, an event data port would define
the subscriber of a publish/subscribe paradigm, an event port
defines a sink managing external triggers.

FILTER WITH MEMORY – For this type of behaviour it is necessary
to add the extra memory element, in AADL all memory, on a
software level, is modelled using the data category. Therefore, to
completely model this type of filter, it is necessary to define a
data component inside the process that acts as a shared memory
between two threads, one with an input port (i. e., sink equivalent)
and one with an output port (i. e., source equivalent).

FILTER WITHOUT MEMORY – This type of filter is more straight-
forward to model since there are few elements. All processing
happens directly in the thread that receives the message, and the
same thread is responsible for circulating it back in the architec-
ture. Given this, this behaviour is modelled using a single thread
with an input port of any kind and a corresponding output port.

REACTIVE – This behaviour represents a synchronous remote
execution similar to a remote function call. In AADL there are
various approaches to model an RFC, to keep the structure more
in line with the other behaviours the best option is to pair a thread
with a remote subprogram call. It is done by defining a subprogram
as a thread subcomponent and, on the frontier, declare an access
bound to that specific subprogram.

4.2
AADL

FO
R
RO

BOTICS
78

TELEOPERATION

MULTIPLEXER

LINE SENSOR DRIVER LINE FOLLOWER

JOYPAD DRIVER

CONTROLLER

Figure 4.1: Simplified graphical AADL modelling a basic architecture. Highlighted in green the data component used for
interactions between threads.

4.2 AADL FOR ROBOTICS 79

A BASIC EXAMPLE

With the paradigm described in Section 4.1 and the tool provided
by AADL presented in Section 4.2.1, it is possible to define a basic
architecture, not only the topology of the connections but also the
internal functioning of the components. As an example, let us take
the architecture defined in Figure 4.1; in this simple architecture,
we want to model a robot with two control functionalities: line
following and teleoperation.

In the top branch of the architecture, we have the line following
subsystem: a sensor driver that generates measurements indic-
ating the presence of a black line on the ground and a simple
component that directly translates the sensor input in a velocity
command. The former expresses a source behaviour, it generates
messages and circulates them in the system, it is modelled by a
process containing a periodic thread, on the frontier, there is an
output data port. The latter has a filter behaviour, it has two ports
on its frontier: one input event data port, to queue the messages
and trigger a component functionality, and one output data port,
to send to the next component the velocity commands. In this
example, the line following component is straightforward and
can estimate a set-point directly from the sensor measurements.
The component does not need to store any information: it is a
filter without memory. The internal model of the components is
a single thread with an input and an output port, both directly
connected to their corresponding ports on the process frontier.

On the bottom branch, there is the teleoperation subsystem: a
joypad driver providing readings of the input and a teleoperation
component to convert the joypad input in set-points. Similarly,
as the other branch, the driver expresses a source behaviour, it
converts the input coming from the joypad in messages compat-
ible with the architecture. The teleoperation component, however,
does not have the same filter behaviour of the line follower, since it
stores the incoming messages to smooth the set-point: it is a filter
with memory. Two ports defined on the process frontier character-
ise this model: one input event data port and one output data port.
Internally, these two ports are connected to two different threads.
The event data port triggers a thread that receives the messages
and stores them locally. The output data port is connected to a
periodic thread, on fixed intervals, it reads the two most recent

4.3 FROM CC TO ROS 80

messages and estimates a single set-point compatible with the
robot acceleration. Each thread has its data access to write or read
on the shared memory area, modelled as a data component.

In the middle of the architecture, to mediate between the two
different control systems, there is a multiplexer component. This
is an example of multiple behaviours coexisting in the same com-
ponent: there are two filters, one for each input, and a reactive
behaviour. Each of the filters relays the correct message to the
output, and only one of them is active at a given time. The remote
function call of the reactive behaviour triggers the selection of
the active input between the two available (i. e., line following or
teleoperation). This component models four different features on
its frontier: two input event data port, they are the receiving side
of the two filters, one output data port, it selectively relays the
selected input, and one subprogram access, to trigger the reactive
behaviour. Internally, each input port is connected to and trig-
gers an independent thread, which receives the inputs and stores
them in a shared memory area. The output port is connected to
a periodic thread, which reads the content of the inputs from
the shared memory and publishes the correct one. The subpro-
gram access interfaces with a thread which has the corresponding
subprogram as a subcomponent, this thread is triggered by an ex-
ternal call on the access and changes the currently selected input.
All the threads have a data access to the same data component
representing the shared memory area.

The last element of the architecture is the control component. It
is directly connected to the hardware of the robot and consumes
the set-point provided by the multiplexer to operate the motors; in
summary, it expresses a sink behaviour. It is modelled by a process
containing a single thread, which is connected and activated by
the event data port defined on the frontier of the component.

4.3 FROM CC TO ROS
In Section 4.1 we already highlighted parallels between the compo-
nent-connector paradigm and ROS. At first, it may seem the archi-
tectural model of ROS is more complex than a simple component-
based approach, since, together with the nodes, there is the extra

4.3 FROM CC TO ROS 81

(a) 1-1 (b) 1-n

(c) n-1 (d) n-n

Figure 4.2: Mapping between ROS topics and AADL connections.

element of topics, apparently, an independent and additional
factor. However, topics are nothing more than an agreed name
to establish a connection between nodes, they are defined and
treated as existing entities in the runtime graph, but they do not
mediate any communication. After two nodes agree, through the
mediation of the ROS master, on a communication channel (i. e.,
a topic), any consequential exchange of messages happens on a
direct connection between the two nodes. This means a topic is an
aggregation of point-to-point connections and not an independent
component mediating the communications.

Given the actual nature of nodes and topics, it is possible to
say that ROS completely follows a component-connector paradigm,

4.3 FROM CC TO ROS 82

where the nodes are the components, and the topics are an aggreg-
ation of one or multiple connectors sharing the same characterist-
ics. Figure 4.2 illustrates how all the possible topic configurations
(i. e., 1-1, n-1, 1-n and n-n) can be translated in an AADL-based
representation, assuming that all the output ports are data ports
and all input ports are event data port. The reason for this choice
is to model the behaviour of ROS publishers and subscribers. The
former does not produce an event notification when it creates
a message, but it just circulates them in the graph; hence, it is
a simple data port. The latter is triggered by the arrival of new
messages and supports queue, and for these reasons, it needs to
be modelled as an event data port. As shown in the figure, the
substitution process from a topic representation to a connection-
based one is quite straightforward. First, we select a topic, and
then we list all the publisher interacting with it, after removing
the topic, we directly connect each publisher to all subscribers of
the original topic.

However, by doing this substitution process, one piece of fun-
damental information is lost. In AADL, each connection and each
port requires a unique name, and this means that it is impossible
to maintain the information that a specific connection is part of
the aggregation defining the topic. An easy solution is to give
the connections a recognisable name, for example, each connec-
tion for the topic /chatter can have a name starting with chatter_,
however, easy does not translate to good, since this approach is
entirely unacceptable, it breaks the model by encoding informa-
tion in variable names. A more elegant solution compatible with
the features of AADL is to declare a new property set, in this set,
called topic_properties, it is possible to define two new properties
for connections and features. One property is the Default_name.
It applies to ports and subprogram accesses, and it is used to
specify the name of the topic (or service, for subprogram accesses)
defined during the implementation of publishers and subscribers.
The other property is Name. It applies to connections and, at
system level, it can be used characterise connections between
processes as part of the same topic. The utility of this property
is twofold, not only it captures the information of a connection
belonging to a topic, but it can be used to include in the model
dynamic renaming of topics typical of ROS.

4.3 FROM CC TO ROS 83

When introducing the concept of component behaviours, we
showed how each behaviour could be represented with a specific
ROS functionality; however, this does not mean that the relation-
ship is bidirectional. ROS imposes very few restrictions to the
developer; therefore, while the external interface of a node fol-
lows the same behaviours presented in Section 4.1, the internal
implementation may follow an arbitrary pattern. The basic im-
plementation style of a ROS node is to have the main execution
loop that periodically polls subscribers and services and pass
them the execution every time a new request arrives, similarly to
the component-connector paradigm we presented, this execution
happens in a separate environment; however, it is not independ-
ent and parallel, but sequential. Practically, this difference is not
meaningful, the conceptual structure presented by the model is
the same, and this is just an implementation detail. Nevertheless,
it is worth to explore an implementation where the actual execu-
tion matches the description of the model completely; this will be
discussed more in details in Section 5.2.

In summary, sink and reactive behaviours are related to their
counterpart in ROS by a bidirectional relationship. It is not pos-
sible to say the same when we consider source and filter beha-
viours. For reference, let us take the simplest ROS node with
publisher functionalities presented in one of the basic ROS tu-
torial1. In this example, it is possible to see how it is common
practice to define a single execution path where everything (e. g.,
initialisation, polling, publishing, etc.) happens. This approach
is sustainable for small implementations and node with simple
behaviours, but it is not suitable for more complex components.
This is especially true when implementing components that ex-
press multiple filter with memory behaviours, in this cases to
ensure maintainability, flexibility and understandability of the
design it is necessary to follow an approach more in line with
the component-connector paradigm, where an independent execu-
tion path manages each different input and output. In summary,
given the flexibility of the ROS middleware, it is not possible to
guarantee that all the implemented node will follow, internally,
the design of the component-connector paradigm. However, this
work aims to provide a general modelling approach that can be

1 http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

4.3 FROM CC TO ROS 84

used to enhance the existing design practices for robotic software;
therefore, we will present a way to model (see Section 4.3.1) and
implement (see Section 5.2) ROS nodes following a simpler, more
flexible, easier to maintain and more robust design aligned with
the component-connector paradigm.

While describing the relationship between component beha-
viours and ROS node implementations, we introduced a vital
element of any robotic component: the main execution loop. It
is in charge of multiple critical tasks of the component; some
examples are initialisation, management of incoming requests,
dynamic reconfiguration (when supported), error management,
shutdown and clean-up procedures. Its role is crucial, but it is
often left out in the modelling phase because of its inherent nature
(often hidden by the framework) as the backbone of the compon-
ent. Nevertheless, it is imperative to include it in the modelling
process because some of its tasks may need to be specialised by
the developer (e. g., initialisation, error management, etc.). In ROS,
in particular, given the freedom left to the developer, it is critical
to model the main execution loop to highlight the different func-
tionalities of the nodes, since, as described before, they are often
merged in a single execution path. This is another case where
for the sake of creating a more general approach and enhancing
the ROS design of nodes we, with our modelling approach, over-
rode the flexibility of ROS to make the main loop an independent
execution path disconnected for any other functionality-related
path. In summary, in our model, each ROS node, independently
from its behaviour, has an additional thread that manages the core
functionalities of the component.

MODELLING A ROS ENHANCED COMPONENT IN AADL

In the previous sections, we introduced all the elements we need
to model a ROS node: the component-connector paradigm, how
it applies to ROS and the missing elements to bridge from a
conceptual model to technological design, and the corresponding
AADL description. In this section, we provide a full description
of a ROS enhanced component, providing first a model of an
essential (i. e., no component behaviours) component and then
modelling additional functionalities.

4.3 FROM CC TO ROS 85

Figure 4.3: Graphical AADL modelling the base structure of the en-
hanced ROS component.

Figure 4.3 provides a graphical representation of the base struc-
ture of the enhanced ROS component. At first glance, it is clear that
the model captures more information than what we described un-
til now. The component contains a state machine that is triggered
by multiple event ports, various internal functionalities detail the
main execution path, there is a permanent internal state, and two
new features appears on the frontier of the component. Let us
analyse the model in order by starting from the state machine:
it is used to model the internal life cycle of the component. In
ROS, there is no defined evolution of the status of a node, and,
usually, it can be in only two different states: not executing and
active. Moreover, the only way to check the current status is to
trigger one of the functionalities of the node (e. g., read a topic).
However, it is common in component-based approaches to define
a definite life cycle of the component. Additionally, other robotic
middleware and frameworks have an established evolution of
the status of their components (e. g., SmartSoft and OROCOS),
therefore, modelling the internal state machine is a requirement
to guarantee the generality of our approach. Our life cycle follows
a structure with four different states.

INIT – Initial state of the life cycle, all the initialisation proced-
ures happen here. The transition from this state guarantees the
component is ready to execute all its functionalities. From init the
component can transition to running, when all the initialisation
procedure are completed successfully, error, or closing.

4.3 FROM CC TO ROS 86

RUNNING – Normal operational state of the component. In this
state, all the main functionalities are active, and the component
is working with no issues. The possible transition are: to running,
the state machine periodically triggers a self loop to ensure that
the component is alive and functional, to error, or to closing.

ERROR – The component transitions in this state when it captures
known errors. While in this state the component is not in execution
and recovery procedure can be activated to transition back to an
active state (i. e., init and running), or if the error is unmanageable
or catastrophic, to transition to the closing state.

CLOSING – Final state of the life cycle, all the cleanup and shut
down procedure happens in this state. The transition to this state
is triggered by any shutdown signal (internal or external), or when
the nodes encounter a catastrophic error that cannot be recovered
and requires the node to shut down.

Event ports on the main execution path of the component and
the external frontier trigger the transition in the state machine. The
event port on the frontier models any external signal used to force
the shutdown of the node (e. g., SIGINT signal), it triggers the
transition to the closing state from all active states. All the ports on
the main execution thread represent the normal evolution of the
system and are activated every time one of the execution phases
of the component finishes or after an error.

The main execution path of the component is modelled using
a periodic thread called main_thread. The thread has four subpro-
grams, and they represent the active functionalities during each
phase of the life cycle. AADL can enforce this relationship since
for each state it is possible to specify which subcomponent is
active, therefore, while the main_thread is always enabled, only
one of its subprograms is active at any given time. Since each
subprogram is in charge of a specific state, they are all connected
to their corresponding event port to trigger a transition to the next
state. Each subprogram has a specific functionality.

PREPARE – It is active in the init state. This subprogram is in
charge of managing node initialisation; it sets parameters, initial-
ises variables, sets up publishers and subscribers, and any other
node-specific initialisation activity. It is connected to the run and

4.3 FROM CC TO ROS 87

error event ports, to trigger the two possible transitions related
with a successful or unsuccessful initialisation.

SPIN – It is active in the running state, and here the ROS spinner
is implemented. When this subprogram is active, the main_thread
acts as a coordinator of node behaviours, it checks for incoming
events and handles potential errors. Two event ports are controlled
by this subprograms: run, to trigger the self-transition, error, to
transition to the error state when necessary.

ERROR_HANDLER – It is active in the error state. Here are imple-
mented all the functionalities to deal with known errors of the
component, for example, an incorrect initialisation or a malformed
message. From the error state it is possible to transition to any
other state, as a result this subprogram is connected to the run,
error, and init ports.

TEAR_DOWN – It is active in the closing state. This subprogram
implements all the procedures related to node shut down. For
example, in some cases, a node may need to notify another before
shutting down, or it needs to disconnect from a physical device
gracefully. Since this is the final state of the life cycle, this subpro-
gram is connected to no event port on the thread frontier, even so,
the corresponding port on the subprogram is still modelled for
flexibility and potential future extensions.

As a final note on the node life cycle, we have included in the
model of this essential node a requires subprogram access on the
frontier of the main_thread which is connected to its counterpart
on the process. This access models a remote function call to notify
an external supervisor about the current state of the node and
any transition. In this way, not only the component has a clear
life cycle that defines the execution phases, but it is possible to
monitor the evolution of the status through time and keep track
of any unexpected behaviour.

The last element to cover is the internal_state: a data compon-
ent used to model the execution memory of the component. In
Section 4.1, we described how not all the component behaviours
requires a shared memory area; therefore, it should not be neces-
sary to include a data component in an essential node. However,
in practice, only the simplest component does not require a persist-

4.3 FROM CC TO ROS 88

Figure 4.4: Graphical AADL modelling a complete ROS node. The design
includes two subscribers and two publishers.

ent internal state because this shared memory area does not exist
only as a way for different threads to exchange information. It
stores configuration parameters, error mappings, information for
shutdown procedures, etc.. For these reasons, not only it is present
in this minimal node but is directly accessible by all subprograms
in the main_thread. Since AADL is not a data modelling language
(see Section 3.2), we will not detail here the inner structure of the
internal_state, this topic will be covered in Section 4.5.

After modelling an essential node, and by using it as a starting
point, we can now add behaviours and functionalities. Figure 4.4
shows a graphical representation of a more complex node express-
ing two coexisting behaviours: a filter with memory, modelled
with a combination of a callback and a publisher, and a filter with
no memory, defined with a subscriber and a publisher in the same
thread and identified by the name callback_pub. As introduced
in Section 4.3, behaviours are modelled using a combination of
thread and corresponding ports. In the figure it possible to see
how each thread is characterised by a specific port that evokes its
functionality: the callback has an input event data port, to receive
messages and manage queues, the publisher has an output data
port, to circulate messages to the rest of the architecture, and the
callback_pub is a combination of both and has input and output
ports. Each thread port is then connected to its counterpart on
the process to relay messages between the inside and the outside
component environment. What is not visible from the figure is

4.3 FROM CC TO ROS 89

the data components associated with each port. In AADL, it is
possible to specify the data type exchanged on a connection, and
the model will automatically verify that the ports are compatible.

Listing 4.1 shows a fragment of AADL code where data com-
ponents associated with ROS messages are declared. Listing 4.2
shows how the same messages are included and used to specify
the data type of the ports of the node presented in Figure 4.4. More
details about ROS messages and their definition in the model will
be discussed in Section 4.5.

Listing 4.1: Definition of ROS messages using AADL data components.

package std_msgs

public

data String

properties

Source_Text => ("String.schema.json");

end String;

end std_msgs;

package geometry_msgs

public

data Pose

properties

Source_Text => ("Pose.asn");

end Pose;

end geometry_msgs;

Listing 4.2: Use of AADL data component to specify the data type of a
port.

package publisher_subscriber

public

with std_msgs, geometry_msgs;

process complex_node

features

callback_in: in event data port std_msgs::String;

publisher_out: out data port std_msgs::String;

callback_pub_in: in event data port geometry_msgs::Pose;

callback_pub_out: out data port geometry_msgs::Pose;

close: in event port;

notify_state: requires subprogram access state_manager;

end complex_node;

end publisher_subscriber;

4.3 FROM CC TO ROS 90

MODELLING ROS ARCHITECTURAL ELEMENTS IN AADL

In Section 4.2, we presented multiple reasons why AADL is a
suitable language for robotics, one of them was the capability
of the language to model both software and hardware compon-
ents, however, in our descriptions on how to model ROS nodes
we never mentioned any physical interface. The reason for this
is that we followed a top-down approach to describe a robotic
architecture, at a higher level of abstraction (i. e., in the component-
connector paradigm) there is no need to make a distinction between
a software component and a hardware component. However, now
that we are moving closer to the actual implementation, these
characteristics of AADL will be integrated into our model. We
will specify how hardware components can be integrated into the
architecture and how to differentiate between communications
happening on ROS topic and other physical communication chan-
nels. When describing models closer to the implementation level,
we also encounter design solutions that are not captured at a
more abstract and general level, in ROS there are three key design
features that we decided to specifically model in our approach.
First of all, existing packages and nodes, the greatest resource of
ROS is its repository of already available components, and it is
imperative to be able to model them correctly in an architecture.
Second is tf, the coordinates frame manager, backbone of various
ROS nodes, therefore it is necessary to include it in the model.
Last, actionlib, an interface to start, monitor, pre-empt and cancel
remote tasks, while it is not a commonly used design approach, it
is a useful and elegant way to delegate and coordinate complex
task between components.

PHYSICAL DEVICES – AADL offers multiple hardware categories
to model the physical aspects of a system. For elements like
processors or memories, we will not go in details, since they work
for robotic architectures in the same way of any other, it is possible
to bound a software component (e. g., processes or data) to its
physical counterpart (e. g., processor and memory) to specify the
hardware implementation of the system. In ROS this feature of
AADL can be used to model distributed architectures, by binding
components to different physical platforms, the designer can
specify where each node will be executed at runtime. This creates

4.3 FROM CC TO ROS 91

Figure 4.5: Graphical AADL modelling a ROS-based teleoperation sub-
system.

a deployment view of the system without the need of defining
a different model; moreover, AADL analysis capabilities can be
used to determine if a specific platform is suitable for a specific
subset of the components (e. g., does the target computer has
enough RAM to run the system?).

What is different in a robotic system is that sensors and actu-
ators are an integral part of it, to model them, it is possible to
use AADL devices. A device represents an interface between the
physical world and the architecture, it can be modelled as a simple
interface or to include the inner functionalities and characteristics
of the physical component (e. g., type of communication, compu-
tational power, data type). Devices can connect to processes using
ports or accesses. When modelling a ROS architecture, the fact that
physical devices and software components communicate using the
same interface rises the issue of differentiating between a topic-
based connection and other types of connections; the solution
comes in the shape of AADL physical and virtual buses. A virtual
bus can be used to model abstract communication channels, like
ROS topics, while a bus can be used for physical connections, like
Ethernet and USB. Figure 4.5 shows how this two categories, to-
gether with a device, can be used to model a simple joypad-based
teleoperation subsystem where a physical bus called usb_bus is
bound to the physical connection between the device modelling
the joypad and its driver, and a virtual bus called ROS_bus is
bound to all the connections representing topics.

4.3 FROM CC TO ROS 92

EXISTING ROS NODES – ROS is currently the most popular and
widespread robotic middleware, resulting in a very prolific and
active community, which becomes one of its greatest resources.
Given ROS component-based structure and popularity, a multi-
tude of already existing packages and nodes exist that a developer
can simply download and include in his architecture. When creat-
ing a modelling approach for ROS, it is mandatory to include the
possibility to model existing nodes, to do so we can exploit the
dual representation based on component type and implementation
provided by AADL. Existing ROS packages are modelled directly
as AADL packages while existing nodes are modelled using the
component type only. We provide an interface that appears and
behave in the same way as the already existing component, but we
do not model in any way the internal functioning. In Figure 4.5,
joy_to_cmd is a custom made node, completely modelled as visible
from the close port and the notify_state subprogram access, on the
contrary, joy_node is an existing node from the package joy, here
only topic related ports are modelled to provide an interface to
the rest of the system.

Listing 4.3 shows the textual AADL used to model the legacy
amcl ROS package and the interface of the amcl node. It is pos-
sible to see how the model descriptions follow the same naming
conventions of the original package. The ROS package name cor-
responds to the AADL package, the process name to the node,
and the topics name match the definition of ports and properties.

The only potential issue is to create all the models for the ex-
isting components, few possible solutions, when combined, can
almost automatically generate them. First, analyse the existing
nodes at runtime to detect which topics and which messages they
use, additionally it is possible to do code inspection to list all the
publisher and subscribers, lastly, most packages are documented
on the ROS wiki2 with, at least, the list and type of topics. Unfor-
tunately, sometimes this is not enough, the joypad driver is one
of those examples, to detect the connection automatically with
the physical device is extremely difficult, at this point the only
solution is the human intervention.

2 http://wiki.ros.org/joy

4.3 FROM CC TO ROS 93

Listing 4.3: Auto-generated AADL to model the amcl package and the
amcl node

-- Auto-generated process interfaces for amcl

-- Generated on: 17/11/2017 17:28:07

package amcl

public

with topic_properties, geometry_msgs, sensor_msgs, nav_msgs;

process amcl

features

amcl_pose: out data port geometry_msgs::PoseWithCovarianceStamped;

particlecloud: out data port geometry_msgs::PoseArray;

scan: in event data port sensor_msgs::LaserScan;

map: in event data port nav_msgs::OccupancyGrid;

initialpose: in event data port geometry_msgs::PoseWithCovarianceStamped;

properties

topic_properties::Default_Name => "/amcl_pose" applies to amcl_pose;

topic_properties::Default_Name => "/particlecloud" applies to particlecloud;

topic_properties::Default_Name => "/scan" applies to scan;

topic_properties::Default_Name => "/map" applies to map;

topic_properties::Default_Name => "/initialpose" applies to initialpose;

end amcl;

end amcl;

TF – This package is one of the core functionalities of ROS, and it
exists to help manage multiple coordinate frames and transforma-
tions over time. Differently from other ROS features, the access to
tf does not go through any established communication channel
(i. e., topics or services), but by using a set of APIs that directly
access the distributed coordinate system, additionally, there is no
need to start a node to enable it. Therefore, disregarding how tf
is practically implemented in the system, we can describe it as a
centralised resource where all the coordinate frames of the robot
and their evolution in time are stored, and it is possible to read
or update the content of this shared resource by using specialised
APIs. With these assumptions, the best way to model tf is to use a
single data component at system level that all the nodes can access
through data accesses when necessary. The single data component
stores the description of the coordinate frames and their evolution
in time, while the data accesses represent the bidirectional APIs.

ACTIONLIB – Actions are an extension of ROS services, created
to manage requests that are too computationally heavy for a
traditional client/server approach. An action client triggers a

4.3 FROM CC TO ROS 94

Figure 4.6: Graphical AADL modelling the ROS actions.

remote execution, then resume normal functioning while waiting
for a response, if needed. While an action is under execution, it
sends periodic updates of its status, and the original caller can
terminate it before it finishes. The actual implementation of ROS
actions is based on topics that are used to trigger or cancel the
execution, provide the result, and get updates on the status.

When implementing the action client and server in a ROS node,
a developer uses two existing classes: SimpleActionServer and Sim-
pleActionClient. These two classes act as an interface hiding the
underlying topic-based system. In AADL, it is possible to do
the same using a thread group; as the name suggests, it is a sub-
component used to group threads together and organizes them.
Fig. 4.6 shows a graphical representation of how an action can
be modelled. The client thread group has two outbound ports
representing the goal topic, used to activate the action, and the
cancel topic, used to cancel the action; these two ports have their
corresponding version on the server group as inbound ports, this
time used to trigger the callbacks. The group modelling the Sim-
pleActionServer has three outbound ports used to communicate
with the client, and these ports have their equivalent on the client
group. Modelling is about abstracting the underlying implement-
ation and representing concepts, therefore at process level, the
ports of the thread group are aggregated in a port group; this
maintains the conceptual representation of the action acting as a
single communication channel.

4.3
FRO

M
CC

TO
RO

S
95

LINE

SENSOR

JOYPAD

joy_node

MOTOR

LINE SENSOR DRIVER LINE FOLLOWER

TELEOPERATION

MULTIPLEXER

CONTROLLER

USB BUS

Figure 4.7: Graphical AADL modelling a basic ROS architecture. Highlighted in green the internal state, in yellow the life
cycle and in blue the main thread.

4.3 FROM CC TO ROS 96

A ROS BASIC EXAMPLE

In Section 4.2.2, we presented how to model a simple architecture
using AADL and following the component-connector paradigm. In
this section, we describe how that architecture can be updated to
represent a complete ROS-based system. As visible for Figure 4.7,
the functionalities of the architecture are the same: line follow-
ing and teleoperation. However, in this version, we include ROS
specific elements and model physical components of the system.

Let us start again from the top branch of the architecture: the
line following subsystem. From a pure software point of view,
the architecture is unchanged, it consists of two components, one
expressing a source behaviour and the other a filter behaviour
with no memory. The difference is in the internal representation
of the components, now nodes, which is based on the essential
node defined in Section 4.3.1; it includes the main execution loop,
the internal life cycle and the internal state. Both these nodes
are assumed to have application-specific functionalities, therefore
are fully modelled as custom nodes. From a hardware point of
view, this subsystem now includes a physical device: the line
detection sensor. It is modelled using an AADL device, and it has
a physical connection with the driver component. The connection
is modelled using an output data port on the device and the
corresponding input data port on the process, to specify that it
does not represent a ROS topic, it is bound to a physical bus that
models a USB connection.

The bottom branch is similar to the example presented in Fig-
ure 4.5. On the software side, the teleoperation component is
unchanged, but now it is modelled as a ROS node instead of a
generic filter with memory component, the driver component is
replaced by the already existing joy_node; therefore, it is modelled
only using the external interface. As for the line following sub-
system, now the teleoperation subsystem includes the physical
device; it models a USB joypad, and it is connected to the driver
through a data port. Since this connection is a physical UBS con-
nection, too, it is bound to the same physical bus as the connection
between the line detector and its driver.

The multiplexer component is now a ROS node. A set of two
subscribers now replaces the original filter behaviour, they collect
the messages coming from the two different subsystems, and one

4.4 MODELLING TEMPLATES 97

publisher, it relays the correct message to the control component.
The reactive behaviour is implemented using a ROS service. The
functionality is the same: an external client can call this service
to change the selected input from line following to teleoperation
and vice versa.

The control component is now a control subsystem. In the pre-
vious version of the architecture, there was a single component
expressing a sink behaviour, now, the component is replaced by a
custom ROS node with a subscriber to receive the set-points and
a device modelling the electrical motor. In this case, the interac-
tion between the driver and the motor goes through an Ethernet
connection; therefore, we modelled a second bus component rep-
resenting this type of connection.

The architecture includes a virtual bus representing ROS topics,
all virtual connections (i. e., topics and services) are bound to this
bus (not shown in the figure to avoid unnecessary clutter). While
not visible using graphical AADL, the architecture includes data
components for message types. Each type is represented by a
data component in the same package as defined by the existing
ROS hierarchy. The data type of a port is specified in the process
definition, and connected ports must have the same data type.

4.4 MODELLING TEMPLATES
Up until now, we built up a hierarchical model that goes from the
most straightforward, robot independent, component-connector
design, to a complete and full-fledge ROS-based architecture;
however, we did not describe how the system designer can use
these approaches. This omission is voluntary because, while the
results obtained are a powerful modelling framework, they do
not come without complications. Assuming a designer is already
familiar with AADL, the process of modelling a single architecture
is quite tedious and prone to errors, especially replicate the same
basic design for all ROS nodes. Moreover, this model aims to be a
stepping stone for automatic code generation. For this reason, the
structure of the model must be consistent. In summary, there are a
few issues that need to be addressed to transition from a collection
of models to a design tool: a) to make the modelling approach

4.4 MODELLING TEMPLATES 98

COMPONENT
BEHAVIOUR

FILTER REACTIVESINKSOURCE

INTERNAL
STATE

FUNCTION

COMPONENT

CALLBACK
PUBLISHER

SERVICECALLBACKPUBLISHER

TIMERtf MAIN LOOP

NODE

COMPONENT-AND-CONNECTOR PARADIGM

ROS

Figure 4.8: Hierarchical structure of the modelling templates.

more accessible so that it can be a reasonable alternative to the
current development process for ROS, b) enforce the presented
structure, without it being a burden to the design process, c) to
make the underlying structure self-explanatory, without the need
for lengthy accompanied documentation.

Find a complete solution to all these issues is a challenging task.
In small size projects, the process of modelling will always be
more complex and time-consuming than direct development, until
we achieve perfect code generators. Moreover, we have to consider
the trade-off between the flexibility and the number of modelled
or implemented functionalities. Nevertheless, in an effort to solve
these issues, we developed a series of modelling templates that
the system desginer can use to simplify the modelling process, to
do so, we exploited the inheritance capabilities of AADL.

4.4 MODELLING TEMPLATES 99

Figure 4.8 shows the hierarchy of packages and components
when modelling a ROS architecture. At the top of the hierarchy,
there is the component-connector paradigm. Here, the main ele-
ments of the paradigm are modelled: the component and its
implementation, the shared memory area and the inner function-
ality of behaviours. As before, we used a hierarchical approach
to model the threads of the behaviours. All behaviour interfaces
inherit from the same parent thread, which implements the access
to the shared memory area as the only common characteristic.
Then they specify their port independently to characterise the
type of behaviour, only the implementation of the common parent
exists since the internal description is always the same (i. e., a
single subprogram).

The ROS AADL package extends the component-connector pack-
ages. Here all the necessary elements to model ROS nodes and
architectures are defined. The ROS specific elements are modelled
directly with no inheritance required: the data component rep-
resenting tf, the virtual bus bound to ROS communications, the
main execution loop of the node, and the subprogram associated
with the life cycle notification. All the other elements are inherited
from the description of the component-connector package: the node
and its implementation extend the component definition, each
thread interface extends the corresponding high level behaviour
interface (e. g., service_provider extends reactive, callback extends
sink, etc.) while the thread implementation extends directly the
behaviour implementation. One exception is the ROS timer since
it does not have a corresponding behaviour (it does not interact
with the external environment), but it can be used to describe
internal functionalities of the node or to give flexibility to the
designer, it inherits directly from component_behaviour.

This creates the equivalent of a “ROS node behaviour library”.
One element that is necessary to enforce in ROS is the data type
associated with a specific topic, in contrast with AADL, where the
data type of a port is not a mandatory property. Our solution is
to use AADL prototypes; they can be used to create a placeholder
for any component or subcomponent. In the thread definition for
ROS behaviours, we specified data prototypes associated with
the input or output ports, and the designer is forced to specialise
them before instantiating the model.

4.4 MODELLING TEMPLATES 100

Listing 4.4 shows how prototypes are defined for the callback
thread, a similar approach is used for all the other pre-defined
threads. Listing 4.5 shows how they can be used to define the
implementation of the node shown in Figure 4.4 and Listings 4.1.

At the lower level of the inheritance, there is a specific package
to be designed. Other than including the ROS AADL package, it
includes all the packages associated with existing ROS nodes and
messages. When creating a new node, the designer can extend
the existing base node provided by the ROS packages, and then
add all the necessary functionalities directly from the ROS node
behaviour library. This makes the process of modelling a node
follow the defined structure, while at the same time, it creates a
more compact and easier to design model.

Listing 4.4: Callback template definition using prototypes.

thread callback extends cnc::message_sink

prototypes

message: data;

features

msg: refined to in event data port message;

tf: requires data access tf;

end callback;

Listing 4.5: Implementation of a node where prototypes are refined to
they final data type.

process implementation complex_node.impl extends ros::node.impl

subcomponents

callback: thread ros::callback.impl (message => data std_msgs::String);

publisher: thread ros::publisher.impl (message => data std_msgs::String);

callback_pub: thread ros::call_pub.impl

(message_in => data geometry_msgs::Pose,

message_out => data geometry_msgs::Pose);

connections

pub_out: port publisher.msg -> publisher_out;

cb_in: port callback_in -> callback.msg;

cb_pub_out: port callback_pub.msg_out -> callback_pub_out;

cb_pub_in: port callback_pub_in -> callback_pub.msg_in;

end listener.impl;

4.5 DATA MODELLING 101

4.5 DATA MODELLING
So far, in this chapter, we described in details how it is possible to
model component-based architectures together with their inter-
actions, and how to transition from them to fully modelled ROS
architectures. However, we only mentioned a crucial part of the de-
scription: data. This initial lack of details is because while AADL
provides some tools for data modelling (e. g., data components),
it is not a fully-fledged data description language. In a robotic
system, since they are based on a component-connector paradigm,
data play a key role to support the communication between com-
ponents that happens, most of the time, through the exchange of
messages or parametrised function calls. This role is so important
that most of the robotic frameworks and middleware develop
their language to describe data supporting communications. For
example, ROS uses a simple message definition language to put
the focus on the creation of custom messages when needed, and
the same happens for SmartSoft where the communication ob-
jects are defined using an Xtext-based DSL. These approaches
exist so the designer of the middleware or framework can have
full control on the shape and style of the message definition to
correctly implement the low-level communication between com-
ponents; however, this fragmentation makes the definition of a
general-purpose data modelling language quite challenging. Since
AADL supports data components, but it lacks tools for data de-
scription, the simplest solution would be to use data component
as type identifier and adopt the target message description lan-
guage as type descriptor. Considering that data components are
already software specific, this solution could work for everything
related to communication, but it has two important limitations.
First, while it works well for already existing messages that can be
simply imported in the model, it removes any possibility of gener-
ality in the newly defined messages; an ideal solution would use
a general description for custom messages that can be associated
with different data type depending on the target platform. Second,
communication-related data types are not the only type of data
present in a system: a comprehensive data definition language
could be used to model all data in the architectures.

Beside of communications, there is another situation where data
definitions play a crucial role: parametrisation of the component.

4.5 DATA MODELLING 102

When implementing a component, there is a series of values
that are calibrated for a specific configuration of the robot (e. g.,
maximum acceleration, camera resolution, wheel diameter, etc.).
Additionally, some of these parameters may need to change at
runtime, both for online calibration (e. g., measurement weight
during sensor fusion, obstacle avoidance threshold, etc.) and for
dynamic functionality change (e. g., indoor vs outdoor operation,
high vs low performance, etc.).

In practice, different technological solutions are used to im-
plement parametrisation. ROS relies on a centralised component
where all node parameters are stored and categorised using node-
specific namespaces, at any time during execution a node can
query the parameter server and retrieve a copy of the value. There
is no strict differentiation between initialisation and runtime para-
meters, although ROS provides a separate system3 to perform
dynamic reconfiguration. Values in the parameters server are set
or via command line before running the node or by loading a
YAML file. SmartSoft uses a more complex structure for paramet-
ers, there are configuration parameters that are set at deployment
time and cannot be changed after the component initialisation,
and there are runtime parameters that can be used to configure
the component at runtime. Definition of parameters is divided
into two categories, they can be internal, therefore defined to-
gether with and specifically for the component, and external, thus
defined as separate parameter sets that can be reused in multiple
components. The description itself of the structure of the data is
done using a DLS similar to the message definition DLS. In this
case, no cohesive and straightforward approach can be used to
easily import the existing definitions, because parameters, as a
concept, are less standardised than communication protocols.

There is one last use of data in a component that is interesting
to analyse under the lens of a data modelling approach: internal
variables. Components are, in the end, computer programs; thus,
they may have tens of variables storing any type of value neces-
sary for successful execution. Of course, it is pointless to try to
model beforehand all the variables involved in the execution of
a component, however, as we described in Section 4.1, there is a
specific component behaviour, the filter with memory, where the

3 http://wiki.ros.org/dynamic_reconfigure

4.5 DATA MODELLING 103

type of information stored in the shared memory is defined at
design time because it is part of the description of the functional-
ities of the component. For example, let us take a component in
charge of obstacle avoidance, the designer knows in advance that
the component will store the map of the environment, or a multi-
plexer component needs to store the inputs locally before relaying
them. This design approach is similar to the object-oriented pro-
gramming paradigm where, before implementation, the developer
designs the class with all the necessary attributes and methods.

By describing ports and components behaviours, we already
defined the component-equivalent of methods; thus, it is but a
short step to fully embrace this consolidated design approach by
defining the component-equivalent of attributes, too. Currently, no
middleware or framework, not even those leaning more towards
a model-driven development approach (i. e., SmartSoft and ORO-
COS/RoCK) support the definition, at design time, of internal
variables of the component. This lack of support of variables with
respect to parameters lies in the difference of complexity between
the two. Usually, parameters are basic types (e. g., string, integer,
boolean, etc.) or basic data structures (e. g., record, array, list, etc.),
while internal variables can be any kind of object or data structure
coming from internal or external libraries, moreover, often they
require special initialisations. Unfortunately, given this complex-
ity, we found no reasonable way to preserve the semantic of the
internal variables in the same way as we could do for parameters.
Nevertheless, we designed a compromise that maintains the se-
mantic for simpler variables (i. e., basic types), but, at the same
time, it allows for more complex types to be defined.

These are all the situations in which data modelling is an in-
tegral part of the design of a robotic application: communication
objects, parameters, and internal variables. In the remainder of
this section, we will cover the two options we explored to be able
to model all these features, their specific advantages and their
limitations.

OPTION 1: ASN.1

Abstract Syntax Notation One (ASN.1) [43] is an interface descrip-
tion language, and it is a broadly used standard in telecommunic-

4.5 DATA MODELLING 104

ation and computer networking. The language put much focus
on encoding and decoding, and it is designed to be completely in-
dependent of any computer or programming language. For these
reasons, we considered it as our first option when trying to model
the data exchanged in a robotic architecture.

In ASN.1, a communication protocol is defined in a module,
inside, each element of the protocol (e. g., requests, responses,
errors, etc.) is defined using a type. Usually, types are instanti-
ated by a protocol data unit (PDU), however, when describing
communication patterns, we only define modules (i. e., protocol
descriptions) since the low-level communication is then left to the
actual communication layer. Nevertheless, this general description,
based on ASN.1, could be used to create a corresponding PDU
and, eventually, an inter-protocol communication between differ-
ent platforms. Listing 4.6 shows an example of how to model a
ROS package containing all the possible user-defined communica-
tion objects, in particular, a message, a service and an action. In
this description, an ASN.1 module corresponds to a ROS package.
This binding exists for multiple reasons: first, when importing
an existing definition (Pose in Listing 4.6), the finest granularity
available is the type defined in a specific module, this mirror
the behaviour of messages defined in packages, second, modules
are the only aggregator of ASN.1; therefore, they have the same
conceptual functionality of packages. Lastly, types are the defin-
ition referenced by PDU, in the same way as message instances
reference to a message definition in a package.

Messages are the most straightforward to define since they
do not have any internal structure other than the message itself.
They are defined directly using a ANS.1 type and the fields uses
the same basic types expected in a normal ROS messages, value
ranges (e. g., INTEGER(1 .. 10) and INTEGER(-10 .. 200)) can be
used to automatically identify the correct size of the target type
(e. g., uint8 and int16). Arrays can be defined using the keyword
SEQUENCE OF, eventually specifying a minimum and maximum size.
One of the characteristics of ROS messages is their hierarchical
definition, and they can always include other messages defined
in the workspace, one typical example is the header used to
timestamp messages. This is possible in ANS.1 using the IMPORTS

keyword at the beginning of the module definition and then de-
clare a field of a type to be of the imported definition. Of course,

4.5 DATA MODELLING 105

this raises the problem of creating all the ANS.1 definitions for
ROS messages, however, given the simplicity of the message defini-
tion language used in ROS, it is a task that can be easily automated
to generate all the necessary files for the entire workspace.

Internally, service definition is identical to message definition,
and the same rules are used to define basic types, arrays and to
include existing types. The difference is in the structure of the
ANS.1 type, for service, it is necessary to differentiate between
request and response, in the former, the developer describes the
content of the request message sent by the client to the server,
the latter contains the expected answer. The description of actions
is similar, in this case the type is divided in three subsections:
goal, result, and feedback. Each subsection can have an arbitrary
number of fields defined as basic types or existing types from
other packages. For both services and actions, it is possible, in
ROS, to send empty messages, for example, a service used to
trigger a functionality has an empty request, but the result of
the functionality as a response. ASN.1 supports empty sequences;
therefore, the correct way to model a service or an action with
empty interactions is to define the subsection but leave it empty,
as seen in Listing 4.6 for the result of the action.

Listing 4.6: ROS message, service and action definition using ASN.1.

CustomPackage DEFINITIONS AUTOMATIC TAGS ::= BEGIN

IMPORTS Pose FROM Geometry_msgs;

CustomMessage ::= SEQUENCE {

x INTEGER(1 .. 10),

y REAL,

pose Pose

}

CustomService ::= SEQUENCE {

request SEQUENCE {

a INTEGER(-10 .. 200),

b SEQUENCE (SIZE (1..10)) OF INTEGER

},

response SEQUENCE { sum INTEGER }

}

CustomAction ::= SEQUENCE {

goal SEQUENCE { pose Pose },

result SEQUENCE {},

feedback SEQUENCE { pose Pose }

}

END

4.5 DATA MODELLING 106

We have to follow a different approach to model the internal
state of the node. In this case, it is necessary to define both the
module (i. e., the structure of the internal state) and the PDU (i. e.,
the specific configuration of the internal state); however, these
two specifications will be used at different times in the design,
development and deployment cycle of the architecture. As for
the communication objects, everything resides in the same ASN.1
module, but in this case, each module represents a specific node.
However, if two nodes share the same parameters and variables
configuration, they can share the same module (e. g., different
implementation of the same functionality). Listing 4.7 shows how
an hypothetical internal state of a node could be modelled using
ASN.1, while Listing 4.8 represent a possible instance. The list of
parameters and variables are defined each in their own type.

For parameters, the description is quite simple, since they only
use basic types and, potentially, nested records. Basic types are
matched directly with their ASN.1 counterparts, and again the
range can be used to specialise type during implementation auto-
matically or to define boundaries for the parameters. Often, para-
meters related to the same functionality (e. g., configuration values
of a planner) are grouped together in a record data structure (e. g.,
C struct), to achieve the same result it is possible to declare the
parameters as nested SEQUENCE.

For most of variables definitions, the process is the same as para-
meters, it is possible to use basic types and nested data structure
to define and organise basic variables. The difference between the
two lays in what we call “complex” variables, here the developer
is not forced to use only basic types but can use data structure of
unpredictable complexity (e. g., ROS messages for storage, maps,
point clouds, behavioural trees, etc.). It is unreasonable to try
to capture this complexity in a high-level design specification;
therefore, we defined a new ASN.1 type called Complex. This type
has two fields: type, the actual type of the variable in the tar-
get programming language (e. g., costmap_2d::Costmap2D for a ROS
costmap in C++), and include, the resource to be included to use
the specific data type (e. g., costmap_2d.h). The example and the
structure presented here is specifically targeted for a C++ imple-
mentation of a ROS node, but the concept of the complex variable
can be easily translated to different programming languages. From
a design point of view, the variable act as a conceptual placeholder

4.5 DATA MODELLING 107

for a more complex implementation, while during code genera-
tion the complex description can be used to create the internal
state of the component automatically.

For the description of the internal state, we can combine the
module with the PDU to create a complete definition of the node.
While in the module we can define default values for both para-
meters and variables, their actual values are going to change
significantly depending on the particular deployment. To capture
this, we can use the PDU to specify the current instance of the
internal state, and automatically generate a specific initialisation
for parameters and variables; complex variables, of course, are the
exception, since the information contained in the PDU are used
to define them during code generation.

Listing 4.7: Internal state of a node modelled using ASN.1

InternalState DEFINITIONS AUTOMATIC TAGS ::= BEGIN

Complex ::= SEQUENCE {

type UTF8String,

include UTF8String

}

Parameters ::= SEQUENCE {

size INTEGER DEFAULT 1,

dimensions SEQUENCE {

height REAL DEFAULT 1.0,

width REAL DEFAULT 2.0

}

}

Variables ::= SEQUENCE {

counter INTEGER,

map Complex

}

END

Listing 4.8: Internal state instance defined in ASN.1

params Parameters ::= {

size 2,

dimensions { height 2.0, width 3.0 }

}

value Variables ::= {

counter 0,

map {type "costmap_2d::Costmap2D", include "costmap_2d.h"}

}

4.5 DATA MODELLING 108

OPTION 2: JSON WITH SCHEMA

JavaScript Object Notation (JSON) [35] is an open-standard file
format, and it is a human-readable text where objects are codi-
fied in attribute-value pairs and array data types. While it was
originally derived for JavaScript, hence the name, it is a language-
independent data format, it is very common and massively used
for asynchronous browser-server communication. While JSON is
excellent to describe object instances (i. e., the actual data content),
it is normally used with the assumption that the data structure is
codified somewhere else (e. g., in the source code defining the ob-
ject). However, there are various initiatives to define the structure,
and the content of the data using JSON, the one we are using in
our approach is called JSON Schema [97]; it is a vocabulary to
annotate and validate JSON documents. The capability offered by
the schema definition, combined with the extreme popularity of
JSON made it our second option for data modelling.

A complete description based on JSON schema is composed
by the schema and an instance of the data. Following a similar
approach to ASN.1, for the description of messages, services and
actions, we are going to define only the schema, and leave the
instance to the underlying communication protocol. As before, the
general description defined using JSON schema can be used to
create JSON documents with the same meaning of the messages
exchanged by the underlying middleware or framework. This is
extremely useful since JSON is one of the most common standards
for the web; therefore, through this description, it is possible to
create a web-compatible interface for the robot.

Differently from ASN.1, each schema is not a complete package,
but a single message, service or action definition, the same as it
happens in ROS. To model the concept of packages it is possible to
follow various routes, for example, locate the schema in the same
folder, in the same way as ROS does, or exploit the unique id ($id)
to categorise the schema, in our approach we use both. Listing 4.9,
4.10 and 4.11 show three different schemas representing a message,
a service and an action, all of them defined in the same ROS
package. Physically, these three descriptions are defined in three
separate files and are stored in the same folder, exactly as it would
happen for ROS definitions in the same package. Moreover, the
$id is structured to specify both package and defition name.

4.5 DATA MODELLING 109

As before, messages are the simplest to model, since they do
not a nested structure. With JSON schema, it is possible to directly
define the list of field of the message and specify their type. The
available basic types are string, eventually matching a pattern,
number, real numbers where it is possible to specify the boundaries,
integer, a subset of integer numbers, boolean, for a true/false field,
and null, for empty fields. Additionally, a field can be of type
array when it represents an array, in JSON there is no restriction
on the type of the elements of an array; therefore, JSON schema
supports multiple options ranging from all the elements having
the same type to each element has a different type. In ROS, only
same-type array are admitted, in Listing 4.10 we modelled an
example of a 10-elements integer array. JSON schema supports
referencing external schemas, and this can be used to model how
in ROS, a message field type can be a previously defined message.

Additionally, most JSON schema validators support the use of
URL as $id and $ref, this means it is possible to use the online
location of a schema definition as the id and then use the same
location during validation. In summary, only the custom message
schema has to be parsed directly, and everything else can be
remotely checked only when necessary. As always, this raises the
problem of generating the schema of all the existing messages,
but not only this can be done automatically, they can be collected
in a single online library (e. g., ROSWiki) or hosted in the same
repository together with the ROS source code.

Regarding the description of types, services are defined in the
same way as messages. They can use basic types, arrays or refer-
ence existing messages. However, their schema is divided in two
section defined as two different objects: request and response. As
before, the former describes the message sent to the server and the
latter models the answer received. The same structure based on
sub-objects is followed by the action description, this time divided
in three different parts: goal, result and feedback. Each subsection
follows the same rules of the message, can have multiple fields
as basic types, arrays or reference existing definitions. One signi-
ficant difference between JSON schema and ASN.1 is how they
describe empty messages. In JSON schema empty brackets (i. e.,
{ }) represent the wildcard (i. e., it matches every sequence), the
correct way to specify an existing, yet empty, field is to declare it
as type null, as seen in Listing 4.11 for the result of the action.

4.5 DATA MODELLING 110

Listing 4.9: ROS message definition using JSON schema

{

"$id": "custom_package/CustomMessage.schema.json",

"type": "object",

"properties": {

"x": {"type": "integer", "minimum": 1,"maximum": 10},

"y": {"type": "number" },

"pose": {"$ref": "geometry_msgs/Pose.schema.json" }

}

}

Listing 4.10: ROS service definition using JSON schema

{

"$id": "custom_package/CustomService.schema.json",

"type": "object",

"properties": {

"request": {"type": "object",

"properties": {

"a": {"type": "integer", "minimum": 1,"maximum": 10},

"b": {"type": "array", "minItems": 1,"maxItems": 10,

"items": {"type": "number" }}

}

},

"response": {"type": "object",

"properties": {"sum": {"type": "integer" }}

}

}

}

Listing 4.11: ROS action definition using JSON schema

{

"$id": "custom_package/CustomAction.schema.json",

"type": "object",

"properties": {

"goal": {"type": "object",

"properties": {"pose": {"$ref": "geometry_msgs/Pose.schema.json"} }

},

"result": {"type": "null" },

"feedback": {"type": "object",

"properties": {"pose": {"$ref": "geometry_msgs/Pose.schema.json"} }

}

}

}

4.5 DATA MODELLING 111

As mentioned before, when describing the internal state, we
have to use both the instance and the schema. The former rep-
resents the actual values of the parameters and variables, and
the latter contains the model that validates the structure of the
instance. When using JSON schema, we opted for a hierarch-
ical approach based on a double validation. First, we validate
the instance to verify the general structure, and then we use the
component-specific schema to validate the content. Listing 4.12

shows the schema used for the first step of the validation. The
designer has to follow this model, but he does not have to imple-
ment or provide it since it is embedded in the validation and code
generation process. The base schema verifies that the instance is
divided in two, and no more (see additionalProperties set to false),
subsections: parameters, values that are initialised at the begin-
ning of the life cycle of the node and are not subject to changes,
and variables, values used to capture the evolution of the internal
state of the component.

Listing 4.12: Base schema of the internal state defined using JSON schema

{

"$ref": "#/InternalStateBase",

"InternalState": {"type": "object", "additionalProperties": false,

"properties": {

"Parameters": {"type": "object", "additionalProperties": true },

"Variables": {"type": "object", "additionalProperties": true }

}

}

}

Listing 4.13 represent the schema of a hypothetical internal state
of a component, and it is the definition used in the second step
of the validation process. Following the structure enforced by the
base schema, parameters and variables are defined each in their
own object. Since parameters are defined using basic types and
nested records, their description is quite straightforward. JSON
schema types are used to define their implementation-specific
counterparts, while the object type can be used to define nested
records. For variables definition, the process is similar, basic types
variables are defined using JSON schema types, and it is possible
to create nested structures to organise them.

Similarly to ASN.1, we defined a new object to capture “com-
plex” variables. This object has exactly (enforced by setting ad-

4.5 DATA MODELLING 112

ditionalProperties to false) two values: type, defines the actual
complex type of the variable, and include, in a C/C++ specific
implementation it provides the resource to be included to use the
complex type correctly. The complex object can be redefined to
match the requirements of different programming languages; for
example, Python does not require a type but may need to specify
which resource to import. The schema presented in Listing 4.13

represents only half of the necessary description to model the
internal state of a node completely. It is the static design, and the
JSON instance completes it. An example of an instance compatible
with the two schemas presented is in Listing 4.14.

Listing 4.13: Internal state defined using JSON schema

{

"$ref": "#/CustomInternalState",

"InternalState": {"type": "object",

"properties": {

"Parameters": {"type": "object",

"properties": {

"dimensions": {"type": "object",

"properties": {

"height": {"type": "number", "default": 1.0 },

"width": {"type": "number", "default": 2.0 }

} },

"size": {"type": "integer", "default": 1}

} },

"Variables": {"type": "object",

"properties": {

"counter": {"type": "integer" },

"map": {"$ref": "#/complex" }

} }

} },

"complex": {"type": "object", "additionalProperties": false,

"properties": {

"type": {"type": "string" },

"include": {"type": "string" }

} }

}

Listing 4.14: Internal state instance defined in JSON

{

"Parameters": {

"dimensions": {"height": 2.0, "width": 3.0 },

"size": 2

4.5 DATA MODELLING 113

},

"Variables": {

"counter": 0,

"map": {type "costmap_2d::Costmap2D", include "costmap_2d.h" }

}

}

COMPARISON

Both ASN.1 and JSON schema are powerful enough to completely
capture the description of communication objects and the internal
state of the components; therefore, they are almost interchangeable
as data description languages. Additionally, ASN.1 supports JSON
encoding rules (JER), so, in theory, it would be possible to create
a direct conversion between the two different representations.
All considered, it may not be necessary to pick a specific option
to model the data in the architecture; however, there are some
reasons one approach may be more suitable than the other. ASN.1
is a widely used protocol description language that supports
multiple encodings and can deal automatically with various low-
level communication issues (e. g., endianness, payload size, etc.),
this is extremely useful when modelling communication with
physical devices, therefore it can be used when dealing with
sensors and actuators. However, ANS.1 can be too low-level for
most applications, and while widely used, it is not a widely
known language. JSON, on the contrary, was created to encode
JavaScript objects; thus, it does not capture low-level details, but
it is a de facto standard for web communications and NoSQL
databases. This means it can be used to create communication
bridges between different technologies (e. g., ROS and SmartSoft),
web APIs for robots or advanced logging systems.

In summary, both approaches are suitable for modelling all the
data exchanged in robotic systems, but the specific characteristics
of the languages make them more or less useful when facing
specific problems.

5 AUTOMAT IC
PROGRAMMING

Writing machine code involved several tedious steps—breaking down a
process into discrete instructions, assigning specific memory locations to

all the commands, and managing the I/O buffers. [...] We needed to
understand how we might reuse tested code and have the machine help

in programming. [...] This led to the development of interpreters,
assemblers, compilers, and generators—programs designed to operate on

or produce other programs, that is, automatic programming.

— Mildred “Milly” Kross

Creating a computer program is a challenging and engaging
experience. It requires expertise, brilliance and ingenuity. At the
same time, writing code is a mundane and dull activity. It requires
to complete repetitive tasks, to manage multiple small issues and
to deal with problems unrelated to the main project.

Thankfully, today, we are not dealing with the same difficulties
that Mildred Kross faced when working on the UNIVAC I. Mul-
tiple technological advancements and progresses in Computer
Science gave us compilers, high-level programming languages,
design paradigms, frameworks, middleware, integrated devel-
opment environments, and more. All these tools exist to make
computer programming more about designing and developing a
program than writing code.

During Computer Science history, the concept of automatic
programming changed to adapt to the expectation of the time.
Initially, it was the automation of the process of punching paper
tape, later it became the transformation of high-level program-
ming languages (e. g., Fortran and ALGOL) to machine code, a
task that, nowadays, is an integral part of the build process. Today,
automatic programming mostly refers to the automatic generation
of executable code from representations that are not programming
languages. These representations may have a different level of
abstraction, from the closest to the target (e. g., domain-specific

114

AUTOMATIC PROGRAMMING 115

languages, flowcharts, etc.) to the furthest (e. g., graphical repres-
entations, models, etc.).

Here we present our approach to automatically generate a ROS
architecture from an AADL model combined with a data descrip-
tion model. The chapter starts with a description of our target,
specifically, an engineered version of a ROS node, including ad-
vanced functionalities. Then the automatic programming process
is presented with its two-steps approach. The chapter closes with
an example going from model to code.

Contents
5.1 Generating ROS artefacts 116
5.2 Engineered ROS node 118
5.2.1 Life cycle . 120

5.2.2 ROS node . 121

5.2.3 Internal state . 126

5.3 Custom ROS node 128
5.4 Two-steps code generation 131
5.4.1 From AADL to AAXML 132

5.4.2 From AAXML to ROS/C++ 139

5.5 A complete example 144

5.1 GENERATING ROS ARTEFACTS 116

Figure 5.1: The automatic programming process.

5.1 GENERATING ROS ARTEFACTS
An automatic programming approach is a collection of rules and
methods to transform an initial description to a different, more
complex output [9]. Before the definition of the transformation, it
is necessary to define the input and the output of the process. In
Chapter 4 we described in details a collection of meta-models that
can be used to define ROS architectures using AADL in combina-
tion with a data modelling language (i. e., ANS.1 or JSON schema).
A model compatible with this meta-models is the starting point
of our automatic code generation process. Since the expected out-
put of the entire process is a complete working architecture, the
model alone is not enough as an input. To have a functioning
architecture, the designer needs to pair the model definition with
the implementation of the inner node functionalities provided
by the component developer or the domain expert; this can be done
by using AADL properties. Multiple elements compose a ROS
complete architecture: existing nodes run as external resources,
custom nodes and messages, launch files to organize the archi-
tecture, parameter profiles to configure the system. The model

5.1 GENERATING ROS ARTEFACTS 117

captures all these elements, and our process can automatically
generate them.

First, the automatic programming system creates the source
code for the new custom nodes in the target language C++. ROS
supports multiple languages, mainly C++ and Python, Lisp is
officially in the list but rarely used, and there are experimental
libraries for Java and Lua. From the ROSwiki, rospy (i. e., the
Python implementation of ROS) is suggested as the approach
that promotes implementation speed (i. e., reduced development
time) over runtime performance, and it is designed specifically
for fast prototyping, testing and lightweight implementations
(e. g., configurations and initialisations), while roscpp (i. e., the C++
implementation of ROS) is considered the main library, and it is
designed with a focus on high performances and runtime speed.
Since the output of the automatic programming is at the end
of a long process involving a model-based design and carefully
development components, we decided to use roscpp, and therefore
C++, as the target library to achieve the most efficient and robust
implementation. Since C++ is a compiled language, the system
will automatically generate all the necessary files to build the node
executables; if the designer specify all the necessary information in
the model (i. e., source code of the functionalities), the final output
of the automatic programming process will be ready to compile
with no intervention required. The automatically generated code
will be placed in the correct package structure expected by ROS,
together with any custom message, service or action file.

This covers everything necessary for the execution of single
nodes, to put them together in an architecture, it is necessary to
create launch files. In launch files, the system designer specifies the
instances of the nodes and how they are connected, by renaming
all the necessary topics, and configured, by including configura-
tion files. The topology of the architecture can be automatically
extracted from the model and converted in launch files, and the
parametrisation defined using a data modelling language can be
converted in the YAML description used by ROS. Moreover, in
launch files, existing nodes are included in the architecture and
connected to the rest of the topology.

Figure 5.1 summarises the complete process. Our automatic
programming approach requires as input a model defined in
AADL, completed by a data description using ASN.1 or JSON

5.2 ENGINEERED ROS NODE 118

schema, and specialised via properties to include functionality-
specific source code. When all these conditions are met, the pro-
cess provides as an output a collection of automatically generated
and compilation-ready ROS nodes, their associated communica-
tion files (i. e., messages, service and action files) and the necessary
launch files to run the architecture. A fully complete model creates
an architecture that only needs to be compiled and run.

5.2 ENGINEERED ROS NODE
Differently from other middleware or frameworks, ROS does not
constrain the developer on the structure of the components; it was
designed to be maximally flexible following the mantra: “we don’t
wrap your main()”. While this approach certainly contributed to
the popularity and growth of ROS as middleware and de facto
standard for robotics, at the same time, it created a very heterogen-
eous landscape for ROS nodes. Some of them are well designed,
rich in functionalities, robust and configurable, while others are
cobbled together for a prototype and then used as legacy code for
one core functionality. Often this second category is created by
domain experts (e. g., vision, control, manipulation, etc.) that lack
the necessary programming and software engineering skills and
knowledge to develop a well-designed and robust node. With our
approach, we want to support this category of developers, that
possess the expertise to contribute to the robotic community but
are discouraged by the programming required.

Since ROS does not impose any structure for the node, the most
straightforward approach for automatic code generation would be
to target an essential node, covering the minimum functionalities
required to run it. There are few advantages in this approach:
more manageable by the code generator, simpler and more read-
able output, and an implementation closer to what the developer
knows and expects. However, such a direct approach would have
significant downsides: a lax relationship between the node and
its model, lack of advanced functionalities that can be hidden
in the automatic programming approach, less flexibility of the
implemented node, more work left to the component developer (e. g.,
testing, debugging, performance evaluation, etc.), more tampering

5.2 ENGINEERED ROS NODE 119

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED
UNREGISTERED

node_basepackage

rospackage custom_pkgpackage

«struct»
ParametersBase
(from node_base)

LifeCycle
(from node_base)

-valid_transition_: bool
-current_state_: State
-next_state_: State
-state_actions_: map<State, function>
-transition_list_: vector<pair<State, State>>

+LifeCycle(initial_state: State)
+Start()
#SelectNextState(next_state: State)
#GetCurrentState(): State
#AddTransition(source: State, destination: State)
#SetTransitionList(transition_list: vector<pair<State, State>>)
#AddStateAction(state: State, function: function)
#SetStateActions(state_actions: map<State, function>)
-NoValidTransition()

«enumeration»
State

(from node_base)

ROSNode
(from node_base)

#handle: ros::NodeHandle
-spinner: ros::AsyncSpinner
-stateService: ros::ServiceClient
-lastState: state_machine_msgs::SendState
-name: string
-frequency: double
-critical: bool

+ROSNode(frequency: double = 1, critical: bool = false)
+start()
#setName(name: string)
#faultDetected(e: Error)
#noError()
#prepare()
#errorHandling()
#tearDown()
-initialize()
-notifyState()
-Init()
-Running()
-Error()
-Closing()

«enumeration»
Error

(from node_base)

NO_ERROR
PARAM_ERROR
SUB_FAILED
PUB_FAILED
INVALID_MESSAGE

«struct»
VariablesBase

(from node_base)

InternalStateBase
(from node_base)

«ptr»#_params: ParametersBase {readOnly}
«ptr»#_vars: VariablesBase

+initialize(p: ParametersBase)

«struct»
Parameters

(from custom_pkg)

+custom_parametes[1..*]

«struct»
Variables

(from custom_pkg)

+custom_variables[1..*]

+Variables()

InternalState
(from custom_pkg)

+initialize(p: Parameters)
+vars(): Variables
+params(): Parameters

1

1

1

1

CustomNode
(from custom_pkg)

-is: InternalState

+CustomNode()
-prepare(): bool
-tearDown()
-errorHandling()

11

«enumeration»
State

(from node_base)

ST_INIT
ST_RUNNING
ST_ERROR
ST_CLOSING

definition

Publisher
(from ros)

Subscriber
(from ros)

Timer
(from ros)

ServiceClient
(from ros)

ServiceServer
(from ros)

* 1

* 1

*

1

*

1

*

1

package ros package custom_pkg

package node_base

Figure 5.2: UML diagram of a custom ROS node developed extending
the engineered ROS node.

with the basic structure of the node, no real benefit between a
handcrafted and an automatically generated node. For all these
reasons, we decided to create an engineered base node that can
be used as a starting point for automatic code generation.

Figure 5.2 shows a UML diagram of a custom node based on
the engineered ROS node. Immediately, it is possible to recog-
nise three main components: LifeCycle, ROSNode, and InternalState.
Each of them represents one of the main characteristics captured
by the engineered node. The LifeCycle implements an internal state
machine that controls the evolution of the node. The ROSNode is
the core implementation of the node, capture all the ROS-related
functionalities and management procedures. The InternalState cap-
ture all the developer-defined parameters and variables necessary
for the correct execution of the node.

5.2 ENGINEERED ROS NODE 120

LIFE CYCLE

When working with component-based approaches, it is important
to define a recurring and consistent behaviour of the component,
in the case of robotic components, it is even more important since
they often operate with strict timing constraints and implement
critical functionalities. In Section 4.3.1, we presented how a life
cycle of a node can be modelled in AADL, and how it can be
used to guide the initialisation, configuration and execution of
a component. To capture the same behaviour in the engineered
node, we developed the LifeCycle class to define the evolution of
the node. While various implementations of state machines in C++
already exists, a very popular one has been around for almost 20

years1, we opted to create a stripped-down version that trades
some functionalities for simplicity, understandability, and modern
development approaches. The result is a very lightweight state
machine that supports dynamically defined states and transitions,
and it is completely ROS-independent.

To maintain the generality of the implementation, the class
itself does not specify any state or transition. It only defines
an empty enumeration that the subsequent classes can extend
to define new states. The valid transitions are defined as a list
of pairs, going from one state to another, as for the states, the
list is created by classes extending or using the state machine.
The last initialisation step before running the state machine is
to bind each state to a function. In practice, the binding uses a
map with state/std::fuction as the key/value pair. Class tem-
plate std::function is a general-purpose polymorphic function
wrapper, and it can be assigned to any callable target (e. g., func-
tions, lambda expressions, pointers to member functions, etc.),
this makes this approach particularly flexible and not bound to
any specific implementation.

When the initialisation is complete, the state machine can be
started, the initial state is the one defined in the constructor, but
there is no specific definition for a termination state. At each exe-
cution loop, first, the state machine executes the function bound to
the specific state, then, it checks if there is a valid transition wait-
ing to be performed. If there is one, the loop repeats and a new

1 https://www.codeproject.com/Articles/1087619/State-Machine-Design-in-
Cplusplus-2

5.2 ENGINEERED ROS NODE 121

state-bound function is executed, otherwise, the state machine has
reached a final state, and the execution terminates. While the list
of all possible transitions is defined during the initialisation phase,
each specific change of state is defined at runtime in all the state-
bound functions. This is necessary, for example, to distinguish
between a successful component initialisation that goes from an
initial to a running state, to an unsuccessful one that would take
the component to an error state. In practice, at the end of each
state-bound function, the developer needs to specify the next state
depending on the current outcome of the execution, then the
state machine will check if the transition is valid (i. e., it is in the
transitions list) and execute it. Mirroring the model presented in
Section 4.3.1, the engineered node supports five different states:
initialisation, running, error report and closing. How they are
implemented, what is their role, and which ROS functionalities
they evoke will be detailed in the next section.

ROS NODE

The core implementation of the engineered ROS node is in the
ROSNode class, here the life cycle is defined and materialised,
and all the basic ROS-related functionalities are implemented. By
defining this class, we can streamline the development process of
a component by hiding the base initialisation procedure of a ROS
node, create a well-defined structure the developer can follow, and
enhance the base implementation by adding additional function-
alities (e. g., error detection and state report). The ROSNode class
extends the LifeCycle class directly; therefore, the first implement-
ation step is to define the states, the valid transitions and method
bound to each state. Figure 5.3 presents the complete definition of
the internal state machine, this mirrors the description provided
in Section 4.3.1. Each state is bound to a specific method of the
class, and it implements a core functionality of the node.

INIT – This method is bound to the initial state of the node
(i. e., ST_INIT). It is defined as a two-steps process, and all the
initialisation procedures of the component are implemented here.

The first step is a common initialisation that applies to every
node. It sets up the ROS environment and defines the asynchron-

5.2 ENGINEERED ROS NODE 122

Figure 5.3: The state machine representing the internal life cycle of the
engineered ROS node.

ous spinner2. In Section 4.3.1, we modelled the ROS node with an
external port to communicate the current state of the node after
every transition, in this phase of the initialisation, the base node
creates the connection with the ROS service in charge of receiving
these notifications. In ROS, a client can register to a service even if
the server is not active, and all the communications are lost until
the service is finally started. This behaviour is not a problem for
a status notification system since it exists only to supervise the
general evolution of the internal life cycle of the node.

Nevertheless, we aim to create a flexible base node that can
adapt to different situations; thus, we defined an additional con-
figuration property: the node can be critical. When a node is
critical, instead of just starting the status notification service, the
initialisation procedure will wait until the service is up, and then
registers to it. In this way, an external supervisor node in charge
of monitoring all the critical nodes can trace the entire evolution
of their life cycles and act if something does not behave as expec-
ted. After the general initialisation procedure, the first action is
to externally notify the state of the node, again the notification
method itself behaves differently for critical and non-critical nodes.
Non-critical nodes notify their new state after a transition only

2 http://wiki.ros.org/roscpp/Overview/Callbacks and Spinning

5.2 ENGINEERED ROS NODE 123

if it is different from the previous one to save bandwidth and
reduce the number of requests. In other words, they do not notify
transitions on self-loops. Critical nodes are meant to be monitored
continuously by the supervisor; therefore, they notify their state
after every transition, basically, in this case, self-loops are used as
a way to measure the liveness of the node.

If the basic initialisation is completed successfully, the second
step of the set up of the node is activated. An unsuccessful out-
come is considered a critical failure, and the node is instantly
shut down. The second part of the initialisation is an abstract
method not implemented in the ROSNode class (i. e., the prepare
method) and it is meant to be used by the child class to define any
node-specific initialization procedures. The component developer
can use this method to fill parameters and variables with their
initial values, set up publishers and subscribers, or perform any
other special initialisation (e. g., activate hardware connections,
pre-fill data structures, etc.). Successful completion of the prepara-
tion phase will trigger the transition to the main execution state.
Differently from the base initialisation, an unsuccessful prepara-
tion phase will trigger a transition in error state. This is because
we cannot anticipate what kind of procedure the developer will
implement in this second part of the initialisation, therefore issues
in this phase may be resolved in a specific error management
procedure and lead to a successful initialisation.

RUNNING – A complete and successful initialisation will transition
the state machine in the ST_RUNNING state, and this is the method
bound to it. Since the engineered ROS node is built around an
asynchronous spinner, most of the ROS-related functionalities
(i. e., checking subscribers, services and timers) are executed in
a separate thread; hence, this method only needs to check for
errors or node termination. When the node is working with no
issues, the Running method is just a low-frequency (i. e., 1 Hz)
repeating self-loop. Two things can change this condition: first,
one of the asynchronous activities (e. g., a subscriber callback) sets
an error flag, or second, an external signal triggers the shutdown
procedure. In the former case, this method interrupts its self-
loop and trigger a transition to the error state; in the latter, it
receives the signal and changes the current state of the life cycle to
shut down. In a critical node, the behaviour of Running does not

5.2 ENGINEERED ROS NODE 124

change; however, the state notification happens at every self-loop
instead of only after the first transition. Given the fundamental
functionalities implemented in this method, the developer cannot
directly modify it; however, it is possible to change the frequency
of the self-loop. Given the structure based on the asynchronous
spinner, changing the frequency will not influence the behaviour
of any ROS-related functionality, but it can change how fast the
node reacts to errors or terminations; specifically, the higher the
frequency the shortest will be the time between the generation of
errors and interrupts and their detection. Changing the frequency
of the self-loop, it is also useful to monitor the liveness of critical
nodes.

CLOSING – As any other process, ROS nodes can be closed by
sending a termination signal (i. e., SIGINT). Normally, they already
implement a handle to capture the signal and force a shutdown
of the node, in the engineered node we replace it with our own
version. Our handle does not perform any shutdown procedure,
but it just captures the signal and sets a flag. This flag will cause
the Running method to trigger a transition to the ST_CLOSING state.
In this method bound to the state is where the actual shutdown
procedure happens: first, it triggers a final state notification, so a
potential supervisor knows that the node is shutting down, then
it executes a custom tearDown method, and finally, it shuts down
any ROS-related functionality. The tearDown method is the shut-
down counterpart of the prepare method of the initialisation. It is
abstract and not implemented in the base class; any child class ex-
tending ROSNode will implement it with their specific shutdown
procedure. This is done to let the component developer gracefully
close existing connections (e. g., device drivers), propagate the
shutdown to other nodes (e. g., critically dependent components),
or provide additional shutdown notifications (e. g., specific log-
ging systems). Since this is the terminal state of the life cycle, this
method does not implement any transition.

ERROR – Natively, ROS does not provide any system to manage
errors during the execution of the node. In our engineered node,
we created an extensible structure to identify, detect and react
to errors. The ROSNode class defines an enumeration with few

5.2 ENGINEERED ROS NODE 125

predefined error codes. They cover some common issue that may
happen during the normal functioning of a node. They are:

• PARAM_ERROR: this is a typical initialisation error when a ne-
cessary parameter is not found in the parameter server. The
node cannot run correctly when partially initialised, a way
to handle this error is to wait until the parameter is available
and then restart the initialisation procedure.

• SUB_FAILED: one of the subscribers of the node fails. This may
compromise the entire node (e. g., set-point subscriber for a
control node) or just disable one of its functionalities (e. g., a
multiplexer missing one of the inputs). Depending on the
situation, this may or may not require the shutdown of the
node.

• PUB_FAILED: one of the publishers of the node fails. As for the
subscribers, this may be very impactful (e. g., a planner that
cannot publish the result) or a minor inconvenience (e. g.,
a visualisation topic not initialised), and therefore could
prompt a shutdown of the node.

• INVALID_MESSAGE: This is an error that can be triggered during
a subscriber callback or before publishing a message. A mes-
sage has an unexpected value (e. g., negative distance, out
of bound acceleration, empty path). Sometimes malformed
messages are inconsequential, and the error handler will
just record them, in other cases, they can be hazardous and
require to halt the node execution.

These error codes are mostly related to the correct execution of
ROS functionalities. On top of these, the component developer can
extend the enumeration and define his own error codes, to cover
problem-related corner cases.

At any moment during the normal execution of the node, the
developer can use the faultDetected method to notify one of the
possible error codes. After the initialisation process or during the
Running self-loop, if any error code is set, the system will trans-
ition to the ST_ERROR state. The Error method is bound to this state,
during its execution. First, it notifies the state transition, to let any
potential supervisor know that the node is in an error state, then
it calls a method to handle the error, finally, after errorHandling

5.2 ENGINEERED ROS NODE 126

returns, if the error code is still set, the error is unsolvable and the
node transition to the ST_CLOSING state, otherwise, the node can
go back to normal execution. The errorHandling method is similar
to the abstract method used during the initialisation and closing
phases, as before, it is an abstract method that the developer can
extend in the child class to manage any specifically defined error
codes. Differently from the previous two, it is not a pure abstract
method, since we provide a basic implementation in the ROS-
Node class to manage the four already defined error codes. The
developer can decide to reimplement the method (e. g., complex
nodes with articulated initialisation procedures) entirely, run it
alongside the existing one (e. g., few problem-related corner cases),
or skip error management and leave only the already defined im-
plementation (e. g., simple node requiring minimal definitions).

INTERNAL STATE

Components are meant to be reusable through composition and
parametrisation. The computation graph of ROS combined with
our model-based approach ensure the composability, by providing
deployment-time rewiring and decomposing components func-
tionalities. On the contrary, parametrisation is not embedded in
the design of the nodes. ROS provides various system-level tools
to manage parameters: a centralised system to store and collect
parameters (i. e., the parameter server), the corresponding APIs to
fetch and set them, and a system to dynamically change paramet-
ers in real-time. However, how to integrate them in the component
is left to the component developer. The result is that parametrisation
is often ignored or misused. Parameters are uncategorised and
mixed between functionalities, modified during execution creating
inconsistencies, defined conceptually but then hard-coded as con-
stants in the implementation. This issues prompted us, originally,
to exploit data modelling languages to capture the parametrisa-
tion of the component, and, in the engineered node, to design a
separate class to encapsulate the parameters of the node.

Parameters are the external-facing part of the internal state of
the component, and they codify a specific configuration defined
before execution; variables, on the opposite, are internal-facing,
they evolve with the node and exist only in the time frame of its

5.2 ENGINEERED ROS NODE 127

execution. As mentioned at the beginning of this section, ROS
does not provide any structure to support the internal state of the
node, in the case of the variables, it means there is no predefined
way to safely store and share between callbacks the information
extracted and derived from messages. Typically, there are two
approaches used when developing ROS nodes. One is for tradi-
tional imperative implementations, where variables are declared
as global and shared between callbacks, the other wraps the entire
node in a class, it uses methods as callbacks and attributes for vari-
ables. While these approaches are not inherently wrong, they have
significant downsides. They reduce the portability of the node
design by removing the distinction between ROS-specific (e. g., de-
claration of publishers and subscribers) and problem-specific (i. e.,
the necessary logic to implement the functionalities of the node)
implementations. They are harder to debug since they are not
encapsulated and may have unpredictable side effects, and they
are more difficult to extend and modify since they do not present
a common interface. Our solution is to create an overarching class
encapsulating both parameters and variables and present a single
interface that the developer can use to access, modify, share and
store the internal state of the component.

As visible from Figure 5.2, the internal state of the node is built
using a hierarchical approach. The superclass is called Internal-
StateBase, it has two members: a structure for variables of type
VariablesBase and a constant structure for parameters of type Para-
metersBase. Parameters are defined as constant, and this means
that after setting their values during the initialisation phase, it is
guaranteed they will not change. An exception to this is when the
node implements a dynamic reconfigure system. In this case, there
is a special callback in charge of managing the parameters and
changing them according to an external control panel. In general,
by defining the structure as constant, it is possible to limit any
modification of the parameters to specific procedures, and avoid
unintentional modifications using compile-time checks. Both the
parameters and variables structures are defined as shared point-
ers. This pointer-based declaration gives us the ability to treat
each structure as a single entity, while, at the same time, avoiding
useless and memory-consuming copies when accessing them in
external procedures. The superclass has only one method, a pure
abstract initialisation method that the developer has to implement

5.3 CUSTOM ROS NODE 128

in the child class; this is designed to force the initialisation of all
the parameters in the same location and to set an initial value to
all the variables. The internal state is not declared directly in the
ROSNode superclass to increase the flexibility of the base node.
In our approach, the automatic programming system extends
InternalStateBase using the information defined in the model to
create each component-specific internal state class.

5.3 CUSTOM ROS NODE
In Section 5.2, we presented the engineered node as the starting
point for the automatic programming process; however, the classes
defined are perfectly suitable to be used directly by a developer to
create their nodes. In this section, we will present how a custom
node can be implemented using the engineered node as a starting
point, using the same approaches and structures the automatic
code generator would create.

Since it is an independent class, the first step should be the
definition of the internal state, and in that, the component developer
has to start from the description of variables and parameters. This
step is not done in the implementation, but by using ASN.1 or
JSON to define the internal state, as described in Section 4.5. By
exploiting a polymorphic approach, the automatic code generator
extends the two base structures and adds a constructor to initialise
the variables to their initial values. The InitialStateBase class exists
to provide a unified interface between the node and its internal
state. Therefore, following the concepts of information hiding
used in object-oriented programming, it is necessary to implement
accessors for both parameters and variables. Since we are working
with pure data structures declared as shared pointers, the most
elegant approach is to define accessors for the entire structures
and let the developer use the fields directly. The implementation
of the abstract initialisation method completes the definition of the
internal state. A developer can create any complex initialisation,
but in our automatic programming approach, we delegate the
parameters set up to the core node functionality and use a copy
constructor, while for the variables we invoke the constructor with
no parameters defined in the structure.

5.3 CUSTOM ROS NODE 129

The next step after the definition of the internal state is the
implementation of the node itself. The engineered node wraps
all the main ROS-related functionalities in a single class; there-
fore, the custom node is an extension of the ROSNode base class.
In the custom node class declaration three abstract methods are
overridden from the superclass: prepare, tearDown and errorHand-
ling. Additionally, all the callbacks related to subscribers, services,
timers and actions are defined as class methods. Since the class
is the container of all the ROS-related code, the timer, publisher,
subscriber, client, server and action objects are all declared as class
members. Lastly, to complete the class definition, it is necessary to
declare the internal state instance. These are the necessary meth-
ods and attributes to implement the child class as an extension
of the ROSNode base class and to cover all the fundamental ROS
functionalities. These are all the methods and attributes declared
and implemented by the automatic code generator. However, there
is no restriction on the complexity of the final implementation of
the custom node class since the component developer can declare all
the additional helper methods and attributes necessary to ensure
the proper functioning of the node.

As introduced in Section 5.2, the prepare method is meant to
contain all the node-specific initialisation procedures. Here the
code generator will create all the necessary calls to collect the
parameters from the ROS parameter server and initialise the in-
ternal state of the node by setting the initial values of the variables.
Moreover, callbacks of subscribers are initialised, publishers and
services are advertised, and timers are set. At the end of this
method, the node is ready and fully functional. Since it is abstract,
it is necessary to implement the tearDown method, which executes
all the necessary procedures to gracefully shutdown the node.
ROS manages all the connections transparently with respect to
the end-user; therefore, in a generic node, there is no need for any
particular shutdown procedure. If not specified otherwise by the
component developer, the automatic code generator fills this method
only with an output message to notify the system that the node is
shutting down.

The last method that is necessary to implement to complete
the definition of the child node as an extension of the base class
is errorHandling. All the structure to manage errors is not ROS-
related, and we defined it in the base class. Since this is an extra

5.3 CUSTOM ROS NODE 130

functionality not necessary for the basic operation of the node,
we already provide a simple handler that can be called directly
and manages basic initialisation errors. However, if the component
developer needs to implement a more advanced error management
system, he can define new error codes by extending the enu-
meration defined in the ROSNode superclass, and overrides the
errorHandling method. Potentially, a developer could implement
an extension of the internal life cycle of the node, where instead
of a single error state there are multiple error states, each for a
different category of problems. This can be done by extending
the state enumerator, binding new methods to the new states,
and add all the necessary transition in the state machine. This is
possible because by overriding the errorHandling method, not only
the developer can develop different error management proced-
ures, but he can change how the internal state machine evolves
from the ST_ERROR state. Without any specification in the model,
the code generator will not override this method and use the
implementation provided in the base class. While it is possible
to specify, in the model, an implementation for the method itself,
if the developer wants to change the life cycle of the node, he
needs to do that by modifying the source code directly, since the
modifications are too radical and in-depth to be managed by an
automatic programming system.

The last step to complete the implementation of a custom node
is to define the logic related to the subscribers, timers, or actions
callbacks. As mentioned at the beginning of this section, all the
callbacks are defined as methods of the child class. ROS already
defines the signature for all the callbacks; hence, the developer
only needs to implement them. He can read parameters from the
internal state and store the output of processing in the variables
structure. Practically, there is no issue in implementing the logic
directly in the callbacks, however, with our automatic program-
ming approach, we try to push as much as possible the separation
between the problem-specific and the ROS-related implementa-
tion. The automatic code generator creates a function call for each
callback using the structure defined in the model as a reference.
The functions have access to the parameters and variables struc-
tures and to the message, but their implementation is entirely
independent of the node. These functions can be used as a bridge
between ROS and a domain-specific library and can be easily

5.4 TWO-STEPS CODE GENERATION 131

tested and debugged without the need of running the node. With
the addition of the logic, the implementation of the custom node
is complete. Of course, since this is a C++ implementation, it is
necessary to create all the configuration files to build the execut-
able. With the automatic programming approach, the compilation
profile is generated automatically, and the component developer
only needs to add additional sources that were not specified in
the model.

5.4 TWO-STEPS CODE GENERATION
In summary, the input of the process is a complete model de-
scription defined in AADL following the meta-model presented
in Chapter 4 combined with data modelled using ASN.1 or JSON
schema, and the output is the engineered ROS component com-
pleted by a list of custom functionalities. Given this framework,
we can describe all the necessary transformations to convert the
collection of models to a working architecture. In our toolchain,
we adopted a two-steps approach, first a model-to-model trans-
formation that converts the input AADL model to an intermediate
XML-based representation, then a model-to-text transformation
to automatically generate ROS-compatible C++ code.

While AADL is popular in some specific fields (e. g., space
applications, automotive and embedded hardware), it is a niche
language, and there are only a few options in terms of tools and
support. In particular, there is only one maintained and open-
source AADL model processor that supports model checking,
parsing and code generation: Ocarina [69]. Ocarina is written in
Ada and provides multiple functionalities (e. g., parsing, model
analysis, schedulability analysis, etc.), but mainly it is a parser and
code generator. With its frontend/backend structure, it separates
the parsing and syntax analysis of the AALD model (i. e., frontend)
from the code generation of a specific target (i. e., backend). This
means that a developer could implement its own backend to
exploit the parsing capability of Ocarina to create his own code
generator. In theory, we could have used this approach to create a
full code generator implemented as a backend, but we decided to
use Ocarina only to create an intermediate representation.

5.4 TWO-STEPS CODE GENERATION 132

There are multiple reasons for this choice. First of all, not only
Ocarina is implemented in Ada but is follows the Ravenscar
profile, this is necessary because some of the code generation
targets are certified for safety-critical hard real-time applications;
therefore, the toolchain itself needs the same certification. The
Ravenscar profile imposes some restrictions on the already chal-
lenging Ada language, making the development and maintenance
of a new backend a time-consuming and challenging task. By
using an intermediate representation, we can implement the most
challenging part of the code generation (i. e., ROS source code)
with our preferred approach. Additionally, using an XML-based
language, that we called AAXML, creates an intermediate artefact
that can be used as a starting point for code generation, but also as
the output of a different AADL parser. Ocarina is an independent
project that we do not control directly; therefore, we cannot base
our entire toolchain on a technological solution that could disap-
pear or change drastically. Lastly, a two-steps approach makes
the entire toolchain more flexible, for example, to extend the code
generator to support ROS2 or a different framework, or to include
additional models (e. g., a specific language to describe the com-
ponent behaviour). There is one final, more practical reason, to
adopt a two-steps approach instead of generating ROS/C++ code
directly, Ocarina already implements a backend that uses XML
as a target. Unfortunately, the existing XML backend is currently
non-functional and not maintained. It was developed as a low-
priority approach in an effort to create a bridge between AADL
and an XML-based representation. Nevertheless, we used it as a
guideline to create our backend from scratch.

FROM AADL TO AAXML

The model-to-model transformation going from AADL to XML
is the first step of the code generation approach and preserves
the original structure of the model when it is converted in an
XML-based representation called AAXML. The Ocarina frontend
provides two outputs that can be used by the backend: an ab-
stract semantic tree, this guarantee correctness of the syntax and
semantics of the model, and an instance tree, this is the result of
the instantiation process. To implement the aaxml_ros backend, we

5.4 TWO-STEPS CODE GENERATION 133

followed the structure already established by Ocarina, with few
modifications to make the toolchain more suitable to the needs
of a robotic system. First, the backend needs to be registered to
the frontend so that it can be called by the toolchain, after this
simple initialisation phase, the automatic code generation process
can start; it is a recursive approach that analyses the root system
of the model and goes through subcomponents, features, connec-
tions, and properties. In the default Ocarina implementation of a
backend, only a single system can be parsed by the toolchain per
call. However, since in our model the hierarchy of AADL systems
represents the deployment configuration of the architecture (i. e.,
launch files in ROS), we decided to modify the backend to parse
all the root system component (i. e., system that are not subcom-
ponents of other systems) to be able to generate all the necessary
launch files at the same time.

COMPONENTS – As mentioned before, the code generation pro-
cess is recursive, and it always starts from a component. Subcom-
ponents, ports and connections are the main elements of compon-
ents. However, a few details can be extracted directly from it and
converted to AAXML. The name is a unique identifier of the actual
instance of the component, necessary when duplicates coexist in
the same architecture. The type references to the specification of
the component, depending on the level of abstraction it can be
an interface or a complete definition. The category specifies the
AADL type (e. g., process, thread, system, etc.) associated with
the component, it is guaranteed to be compatible with the con-
tainer component by the syntactic and semantic analysis done by
the frontend. The namespace identifies the package containing the
component, while this seems superfluous information, it is crucial
when referencing component not defined in the same package
of the system. The subcomponents list, AADL has a hierarchical
structure and Ocarina manages it using a recursive approach, this
list is used to perform all the recursive call and complete the
traversal of the tree.

Listing 5.1 shows a small example of a system containing a
single process as a subcomponent, and this is the minimal AADL
architecture that we can model and instantiate. In Listing 5.2
presents the AAXML counterpart of the model, where the prop-
erties described are encoded in an XML-based format. In this

5.4 TWO-STEPS CODE GENERATION 134

minimal structure, no information is lost when converting the
model from AADL to AAXML.

Listing 5.1: Minimal AADL model

system root_system

end root_system;

system implementation root_system.impl

subcomponents

main_process: process custom_process.impl;

end root_system.impl;

Listing 5.2: AAXML representation of the minimal AADL model

<system>

<type> root_system.impl </type>

<category> system </category>

<namespace> aadl_xml </namespace>

<subcomponents>

<component>

<name> main_process </name>

<type> custom_process.impl </type>

<category> process </category>

<namespace> aadl_xml </namespace>

</component>

</subcomponents>

</system>

FEATURES – The set of features define the frontier between the
component and the external environment, moreover, when work-
ing with interface-only definitions (e. g., existing ROS nodes), they
are the only element characterising the component. For these reas-
ons, it is crucial to capture all the necessary information when
converting the model from AADL to AAXML. Features have a
list of characteristics that are mandatory and are necessary to
specify them, and others that optional. First of all, it is necessary
to identify the type of feature, AADL categorises them in two
main groups: accesses (i. e., subprogram, data and bus) and ports
(i. e., data, event and event data); the category tag captures this. By
defining the type it is possible to specify the subcategory of a port
(e. g., event_data), for accesses there is no need for specialisation
since the component they are connected to determinates their
specific subcategory. Another attribute that is unique to ports and

5.4 TWO-STEPS CODE GENERATION 135

not necessary for accesses is the direction since ports can define a
specific ingoing, outgoing or bidirectional communication. While
in the model it is necessary to specify if a feature provides or re-
quires access, this specification can be dropped in this conversion
since it is important only to define the topology of the architec-
ture, which is already checked by the frontend. This covers all
the mandatory definitions for a feature; additionally, it is possible
to specify the data type. Since the data is a component, we need
two information to identify it: the package and the type. While
subprogram and bus accesses target a subprogram or bus instead
of a data component, the procedure is the same since their type
and package identify them.

Listing 5.3 show the interface model of the component included
in the system presented in Listing 5.1. It defines a single event
data port exchanging messages with a specific data type. Given
this definition the AAXML file can be extended as shown in
Listing 5.4, the features tag is a child of the component tag, while
this replicates the feature information in multiple places in the
file, it also streamlines the code generation process in the next
phase.

Listing 5.3: Minimal AADL model containing features

process custom_process

features

a_port: out event data port pkg::some_data;

end custom_process;

Listing 5.4: AAXML description of AADL features

<component>

[...]

<features>

<feature>

<name> a_port </name>

<direction> out </direction>

<type> event_data </type>

<datatype> some_data </datatype>

<datatype_namespace> pkg </datatype_namespace>

<category> K_PORT_SPEC_INSTANCE </category>

<feature>

<features>

</component>

5.4 TWO-STEPS CODE GENERATION 136

CONNECTIONS – When dealing with connections, we move out-
side the scope of a single component, and we have to consider the
interaction of multiple objects. For this reason, connections are
defined, both in AADL and in AAXML, in the container. They can
connect two components in the same subcomponents set or a com-
ponent and a frontier feature (i. e., a feature defined on the frontier
of the container component). First, there is a list of characteristics
referring directly to the connection itself. The name, an unique
identifier of the connection. The kind, a mapping in AAXML of
the original Ada node kind, currently the only possible value is
K_CONNECTION_INSTANCE. However, we decided to include it in the
AAXML file to support future extensions. The category, as for
features, connections may involve ports or accesses, this property
specifies the type of the connection, it can be: CT_PORT_CONNECTION,
for connection between two ports, CT_ACCESS_DATA when connect-
ing an access to a data component, or CT_ACCESS_SUBPROGRAM, when
modelling a connection representing a remote subprogram call.
Since connections are meant to describe the interaction between
component, they carry information related to both components
at the limits of the connection. Each description has a subsection
called port_info, and it includes the name of the source and the
destination features, and the name and the type of the parent
components.

Listing 5.5 shows the modelling of the implementation of a
system where two processes are connected, one with an output
port and the other with an input port. Listing 5.6 presents how
this connection is mapped on the AAXML file, since the system is
the root of the hierarchy, the connections tag is defined directly as
a child of the root system tag.

Listing 5.5: Minimal AADL model containing connections.

system implementation root_system.impl

subcomponents

cmpA: process pkg::processA;

cmpB: process processB.impl;

connections

con1: port cmpA.out -> cmpB.in;

end root_system.impl;

5.4 TWO-STEPS CODE GENERATION 137

Listing 5.6: AAXML description of AADL connections

<system>

[...]

<connections>

<connection>

<name> con1 </name>

<kind> K_CONNECTION_INSTANCE </kind>

<category> CT_PORT_CONNECTION </category>

<port_info>

<source> out </source>

<dest> in </dest>

<parent_source> processA </parent_source>

<parent_source_name> cmpA </parent_source_name>

<parent_dest> processB.impl </parent_dest>

<parent_dest_name> cmpB </parent_dest_name>

</port_info>

</connection>

</connections>

</system>

PROPERTIES – In AADL, properties can be applied to every ele-
ment in the model, moreover, in the definition of our meta-model,
we introduced their importance in specifying components. Proper-
ties are such an important element of the languages, that, addition-
ally to all the already existing definitions, the designer can define
his own set of new properties. Each AADL category has a set of
general properties, plus specific ones, plus all the custom-defined.
The process of adding them to the AAXML file can happen at
every point during the parsing of the tree. All properties defined
in the model have at least two fields: the name, the unique iden-
tifier of the property as defined in the language definition or in
the property set, and the value, the actual value of the property as-
signed by the designer in the specific instance of the model. Each
property has a type (e. g., number, string, etc.) that is checked by
the frontend for consistency but not replicated in the AAXML file,
additionally, in AADL it is possible to define the measurement
unit of a specific property, if present, it is included in the trans-
lated model using the unit tag. Default (e. g., Period) and custom
(e. g., the Default_name of a topic) properties are managed in the
same way, except for the name of the property set containing the
custom-defined properties; it is included in the AAXML file using
the namespace tag. In AADL it is possible to set properties at any

5.4 TWO-STEPS CODE GENERATION 138

point in the model, this means that in the property section of a
component it is possible to reference every property of its internal
parts (e. g., features, connection, subcomponents,etc.) or, through
dot notation, all the properties of the subcomponents. However, in
AAXML, properties are defined as direct children of the element
owning them.

Listing 5.7 shows a definition of the implementation of a process
component, it has a thread as a subcomponent, and this thread has
an output port on his frontier. As said before, it is possible, in the
properties section of the process to specify both the properties of
the subcomponent (i. e., Period) and of the feature (i. e., Queue_size).
Listing 5.8 presents a portion of the AAXML file modelling the
properties, while they were defined in the property section of
the process, the component tag in the listing references the thread,
since it is the owner of both the feature and the Period property.

Listing 5.7: Minimal AADL model containing properties

process implementation componentA.impl

[...]

properties

Queue_size => 1 applies to threadA.out;

Period => 50 ms applies to threadA;

end componentA.impl;

Listing 5.8: AAXML description of AADL properties

<component>

[...]

<features><feature>

<properties><property>

<name> Queue_size </name>

<value> 1 </value>

</property></properties>

</feature></features>

<properties><property>

<name> Period </name>

<value> 50 </value>

<unit> ms </unit>

</property></properties>

</component>

5.4 TWO-STEPS CODE GENERATION 139

FROM AAXML TO ROS/C++

The second step of the code generation is a model-to-text trans-
formation. Differently from the first step where the original AADL
model was converted in a different format, here multiple mod-
els (i. e., AADL and ANS.1 or JSON schema) are combined to
create code artefacts. The output of this step is a single ROS
package containing the custom messages, services and actions (if
they exist), the source code of all the nodes combined with the
problem-specific implementations, the build and configuration
files, and the launch files matching the deployment configuration
specified in the model.

The AAXML to C++ module is developed entirely in Python 3,
exploiting the lxml XML toolkit [125], a Pythonic binding for the
C libraries libxml2 and libxslt, to parse and manipulate the XML-
based input. This module is designed and developed based on a
nested structure, similarly to a recursive approach, elements call
each other in a chain, and then the model-to-text transformation is
executed from the most nested element to the root. More in details,
each target ROS/C++ artefact (e. g., methods, classes, variables,
etc.) has its own managing class in the Python implementation.
Depending on the structure of the code to be generated, each
of these classes contains all the necessary subclasses to define
the correct output source code. Figure 5.4 shows a contained
example following this approach. It presents the classes and their
interactions to create the signature of a method. The name, the list
of parameters and the return type define a C++ method signature,
the Python class managing the method contains the necessary
code to output the name, but relies on other classes (i. e., Type and
Variable) to generate the remaining components.

Differently from the first code generation step, the model-to-text
does not output a single file, but it generates multiple artefacts.
For this reason, the process is divided into multiple phases. The
first phase is the set up of all the basic elements of the ROS
package, with all the folder in place, it can create the launch
files. Messages, services and actions are next in the list when
this phase is complete, the process looks for all the nodes and
generates them. The last step is executed concurrently with the
nodes generations since it requires to fill all the configuration and
build files incrementally.

5.4 TWO-STEPS CODE GENERATION 140

METHOD

VARIABLE

Name

Return Type

Input Parameters

NameType

TYPE

Type Name

0..n

Figure 5.4: The classes, and their interactions, used by the code generator
to manage a C++ method.

PACKAGE DEFINITION – When implementing ROS nodes by hand,
the first step is the creation of the containing package. The code
generator follows the same process. By parsing the AAXML file,
it can detect the definition of the AADL package and use it to
create the corresponding ROS one. There is an important parallel
between ROS and our AADL definition that makes the creation of
packages easier; in ROS, a package is the minimal release unit, this
means that all dependencies are package-based, this is true also for
AADL, where elements can be defined in different packages and
included at the beginning using the with keyword. In summary,
from the name of the AADL package the code generator derives
the name of the ROS package, and from the with clause it creates
all the necessary package-level dependencies.

Most of the package-creation process is the same for all pack-
ages. It defines the correct folder structure (see Section 3.1), and
creates the package.xml and CMakeLists.txt files. These two files are
initially created using all the dependencies information derived
from the with clause, and they are later updated incrementally
depending on the existence of custom messages and the number
of custom nodes.

LAUNCH FILES – The second set of artefacts created by the model-
to-text process are the launch files. To create them, it is not neces-
sary for the nodes to exist, for each process only the type (i. e.,
the compile-time name of the node), the package and the instance

5.4 TWO-STEPS CODE GENERATION 141

name are necessary to set up the structure. All this information is
available in the AAXML file before generating any source file.

In our model, we defined a relationship between the hierarchical
topology defined by AADL systems and the structure of launch
files. Therefore, the code generator parses the AAXML file looking
for nested systems, and each one is converted in a launch file.
The launch files are filled with all the necessary nodes starting
from the deepest child, using the AADL instance name as runtime
name, the AADL type as reference type, and, if present, the AADL
package as the ROS package. Only the connected processes are
included in the launch files to avoid unnecessary clutter in the
architecture. Of course, this is not limited to connections represent-
ing topics but includes any kind of virtual or physical connection
that justifies the role of the component in the system.

The following step of the launch file creation is the remapping
of topics. In our model, we distinguish between two different
naming conventions, both defined using properties. One is a port
property, it is used during the generation of the source code and
specifies the default (i. e., written in the source code) name of
the topic. The other is a connection property, and it defines the
runtime name of the communication channel in the launch files.
The last step is the assignment of parameters. If the designer used
AADL properties to specify a configuration file, it is converted in
YAML and assigned to the correct node in the launch files.

MESSAGES – The next phase of the model-to-text process is the
generation of messages. Message types are modelled in AADL by
a single data component augmented with a property that specifies
its internal structure using ASN.1 or JSON Schema. Data types
related to messages are not used in the model as instances, but
only to specify the type of communication; hence they only exist
in the package definition. This “out-of-system” use makes the
code generation process simpler.

The package is analysed to detect all the data component; if they
are associated with a message description, the file specified in the
property is parsed by the specific code generator (i. e., ASN.1 or
JSON Schema) to create in the msg folder of the package all the
necessary ROS messages files. While creating the message files,
the code generator also updates package.xml and CMakeLists.txt to

5.4 TWO-STEPS CODE GENERATION 142

include all the necessary messages dependencies and the modules
to generate and build ROS message files.

NODES – The last step of the model-to-text process is the genera-
tion of the source code of the nodes. Our design of the meta-model
significantly reduces the complexity of this step. We defined a
node in AADL as a process that uses threads as subcomponents
evoking specific ROS functionalities. In particular, the main_thread
characterises a process as a ROS node, and this means that during
the automatic code generation process the code generator can
easily differentiate between ROS nodes and any other process by
identifying the main_thread as a subcomponent.

The code generator analyses the package for any process defini-
tion including the main_thread as a subcomponent. For each one
starts the process of creating all the necessary source files. Most
of the basic C++ code is already defined in the engineered node
superclass; therefore, it is included directly in the automatically
generated node. What the code generator needs to do, is to identify
all the potential inner functionalities (i. e., publishers, subscribers
and timers) of the node, to do so, it uses an AADL thread-based
approach. Currently, the AAXML to ROS/C++ code generator is
implemented to identify five different threads corresponding to
specific designs:

• ros::publisher.impl. It corresponds to the source component
behaviour. In our engineered ROS node, it is implemented
by a periodic timer that calls a publisher at the end. Given
this design, the code generator creates both the timer with
its callback and the declaration of the publisher.

• ros::callback.impl. It represent the sink component beha-
viour. In this case, there is no special design, as in any other
ROS node, it is a subscriber that triggers a callback. The
code generator needs to declare the subscriber, register it to
the correct topic, define the callback method and bind it.

• ros::call_pub.impl. This thread combines the previous two
to evoke a filter component behaviour. Since it is a combina-
tion of a subscriber that call a publisher in its callback, the
code generator needs to define and generate all the previous
elements.

5.4 TWO-STEPS CODE GENERATION 143

• ros::service_provider.impl. This thread is used to define a
reactive component behaviour. The code generator needs to
declare a service, advertise it correctly and then declare the
method used as a callback.

• ros::timer.impl. This last thread does not correspond to
any component behaviour since it is not used for external
interactions. However, ROS timers are useful to define the
internal behaviour of the node; thus, they are one of the
potential thread identified by the code generator. Timers
are defined similarly to the other elements, and trigger a
callback when they expire.

If a component contains a thread of an unknown type, the code
generation process continues by ignoring it. Often, the designer
needs to include threads implementing special interfaces. An
example is a device driver using a custom thread to interface
with low-level hardware. Since it is impossible to predict all the
possible configurations of a node, we decide to use an approach
where the designer still has the flexibility of modelling a complete
component, while the code generator will only perform a model-
to-text transformation for known designs.

The code generator will create multiple files for the same node.
All the implementation relative to the functionalities evoked by
the threads is in the main source file of the node placed in the src

folder of the package. It is necessary to add two more elements to
complete the generation of the primary source file: the decoupled
functionalities and the parameter initialisation process.

In our model and the generated code, we try to decouple the
domain-specific implementation and the middleware-related code.
In the model, we achieve this by specifying subprograms as sub-
components of threads and then using the Source_Text property
to include the specific implementation of the subprogram. The
code generation will retrieve this implementation and call it in
the timer or subscriber callbacks as an external function. However,
if the property is not specified, or the file referenced by it does
not exist, the code generator will automatically create a corres-
ponding header file that the developer can fill at a later stage.
The code generator propagates the inclusion of any external func-
tion or library to the CMakeLists.txt file to maintain the package
compilation-ready.

5.5 A COMPLETE EXAMPLE 144

Init

Running
Error

Closing

main_thread
ros::main_loop.impl

publisher
ros::publisher.impl

internal_state

<

<

msg_out
msg_out

notify_state

notify_state

close

Figure 5.5: Graphical AADL modelling a simple talker node implement-
ing a publisher.

The last step of the node generation process is the definition
of the internal state. This is done in a separate file that contains
the parameters and variables structures as defined using ANS.1 or
JSON Schema. Since they are basic types, parameters are com-
pletely defined and initialised using the default values provided,
moreover, they are propagated in the main source filed to set up
their interface to the parameters server. Variables are declared in
their own structure and initialised if they have a default value
and a basic type. However, if they are complex variables (see
Section 4.5), they are only declared, and their complex type is
included in the header and propagated in the CMakeLists.txt file.

5.5 A COMPLETE EXAMPLE
Now that we have completely defined how to model a ROS ar-
chitecture with a combination of AADL and a data modelling
language, and we presented our approach to automatic code gen-
eration, we can show a complete example, going from the model
to the source code. In this section, we will model a basic architec-
ture composed of two nodes interacting with each other, and show
the structure of the output package generated by the automatic
programming toolchain.

5.5 A COMPLETE EXAMPLE 145

The micro-architecture in question is the first introductory tu-
torial provided by the ROS wiki3, slightly modified to include
a custom message: a talker node implementing a publisher and
a listener node implementing a subscriber connected through a
topic and exchanging messages. Figure 5.5 show the graphical
representation of the model of the talker ROS node. It evokes a
source component behaviour by generating messages and publish-
ing them on a topic. Additionally to the recurring subcompon-
ents identifying our engineered ROS node (i. e., state machine,
main thread and internal state), it models a publisher thread of
type ros::publisher.impl communicating with the external envir-
onment using a data port specified by the message type. Not
visible from the graphical representation are the properties of the
node, they are shown in Listing 5.9.

Listing 5.9: Properties of the talker node.

Period => 10 ms applies to publisher;

topic_properties::Default_Name => "/out_chat" applies to msg_out;

Source_Text => ("talker.schema.json") applies to internal_state;

Source_Text => ("talker.h") applies to publisher.function;

Source_Name => "talk" applies to publisher.function;

Period defines the frequency of the publication. The thread
will generate a message every 10 ms, this is used by the code
generator to define the period of the corresponding ROS timer.
topic_properties::Default_Name represent the name assigned to the
topic during implementation when declaring the publisher. There
are two Source_Text properties, one for the internal state, to define
the structure of parameters and variables, and one specifies the
header included by the code generator to define the specific func-
tionality of the publisher. This last property is combined with
Source_Name to identify the specific function that will output the
message to be generated.

Figure 5.6 presents the listener ROS node graphical AADL
model. Since it receives the messages produced by the talker,
it implements a sink component behaviour. As before, the model
is composed by the elements characterising the engineered ROS
node plus a subscriber thread of type ros::callback.impl receiving
data from outside the component through an event data port

3 http://wiki.ros.org/ROS/Tutorials

5.5 A COMPLETE EXAMPLE 146

Init

Running
Error

Closing

main_thread
ros::main_loop.impl

subscriber
ros::callback.impl

internal_state

<

<

msg_in
msg_in

notify_state

notify_state

close

Figure 5.6: Graphical AADL modelling a simple listener node implement-
ing a subscriber.

that triggers the execution of the thread and a data component
specialises it. As for the talker node, properties are used to refine
the definition of the process. Listing 5.10 details them.

Listing 5.10: Properties of the listener node.

Queue_Size => 1 applies to subscriber.msg;

topic_properties::Default_Name => "/in_chat" applies to msg_in;

Source_Text => ("listener.schema.json") applies to internal_state;

Source_Text => ("listener.h") applies to subscriber.function;

Source_Name => "listen" applies to subscriber.function;

The properties of listener and talker are very similar. Source_Text
and Source_Name have the same role: defining the internal state of
the component and specifying the function to be called during the
callback, in this case. Since the subscriber reacts to the messages
received, the Period property is replaced by Queue_Size that specify
the size of the message queue, in this case only the newest message
is available. As before, there is a property that defines the name
of the topic at compile-time. It is the reference name used by the
code generator when it creates the definition of the subscriber.
Note how the default topic name is different in the two nodes.

Listing 5.11 shows the missing element necessary to complete
the architecture. In the beginning, the definition of the data com-
ponent representing the ROS message. The ChitChat component
is only an interface. Its internal structure is defined through a

5.5 A COMPLETE EXAMPLE 147

property that points to the JSON schema file used by the code
generator to create the ROS message. Follows the implementation
of the container, since this is a small architecture with only two
components, the root is also the only system. Here the two process
instances are declared as subcomponents of the talking.ros system,
moreover their topic communication is defined using a connection
going from the output port of the talker to the input port of the
listener. The properties of the system are used to define the specific
runtime configuration of the architecture. topic_properties::Name
applied to the connection specifies the remapping of the topic
from the original default name used in the implementations. The
two Source_Text properties applied directly to the processes are
used to define a JSON file that contains a node configuration
matching the schema applied in the definition of the components.

Listing 5.11: Message and system definition.

data ChitChat

properties

Source_Text => ("ChitChat.schema.json");

end ChitChat;

system implementation talking.ros

subcomponents

talker: process talker.impl;

listener: process listener.impl;

connections

chatter: port talker.msg_out -> listener.msg_in;

properties

topic_properties::Name => "/chatter" applies to chatter;

Source_Text => ("talker.json") applies to talker;

Source_Text => ("listener.json") applies to listener;

end talking.ros;

The AADL model, combined with all the necessary JSON and
JSON schema files, is then parsed by the automatic programming
toolchain. Since our model also included the source files contain-
ing the implementation of the functionalities of the nodes (i. e.,
talker.h and listener.h), the output of the process is a complete
package ready for compilation.

6 ABSTRACT ING THE ROBOT

The essence of abstractions is preserving information that is relevant in
a given context, and forgetting information that is irrelevant in that

context.

— John V. Guttag

In the previous chapters, we discussed extensively how to cap-
ture all the details of a robotic architecture, how to codify not only
the topology of the components but also their inner functional-
ities. We defined a collection of tools to help the system designer
and the component developer in describing, designing, realising
and implementing their vision. However, this is only the starting
point of a process to modernise the development of software for
robots, to make the creation of robotic applications as accessible
as developing a mobile app, a web page or a video game.

The shortest path to technology accessibility is through abstrac-
tion. Robot software development has already benefited from
this approach with the introduction of robotic middleware and
frameworks; for example, the ROS computational graph creates
an abstraction layer between the underlying hardware and the
components. This made robotics more accessible and triggered
a process that resulted in vast repositories of components effi-
ciently implementing basic robot functionalities (e. g., navigation,
perception, manipulation).

However, the critical element of abstraction is the context. Not
every approach is useful to achieve a specific result. Technologies
like ROS or other robotic middleware and frameworks are useful
to streamline the development of components, but a different level
of abstraction is needed to implement application at a higher level.
Because of the success of component-based approaches, robotic
systems are becoming more sophisticated and more abundant
in functionalities attracting experts with diverse backgrounds
that are more interested in the high-level capabilities expressed

148

ABSTRACTING THE ROBOT 149

by the robot as a system, instead of focusing on the low-level
functionalities implemented by each component.

These application developers need a different type of abstraction
that goes beyond the one provided by middleware and frame-
works. In this chapter, we tackle the problem of analysing the
robot as a system to capture significant high-level functionalities
and to create an abstraction that can be exploited to develop com-
plex applications. First, by defining an ontology that captures the
structure of a robot system, and then by using this framework to
identify robot capabilities. These capabilities are the starting point
for creating an abstraction layer between a set of APIs and the
underlying robot system. Lastly, we give an overview of how the
model-based approach presented before can be used as a support
for the concept of robot capabilities.

Contents
6.1 Ontology representation 150
6.1.1 ROS description 151

6.1.2 Capabilities extraction 157

6.1.3 Capabilities taxonomy 161

6.2 Robot APIs . 163
6.2.1 ROS-bound interface 165

6.2.2 ROS-independent interface 167

6.3 Bridge models and capabilities 169

6.1 ONTOLOGY REPRESENTATION 150

6.1 ONTOLOGY REPRESENTATION
Creating new abstraction layers on top of existing technology is
not a difficult task, and multiple approaches can be used: pro-
gramming interfaces, libraries, frameworks, middleware, domain-
specific languages, and more. For example programming inter-
faces usually remain in the same context of the abstracted tech-
nology and only provides controlled access to the underlying
functionalities, their aim is to hide the complexity of the imple-
mentation, not to create a decoupling layer. Frameworks push
the abstraction a bit further, not only they hide the inner func-
tionalities of the system but they provide entry points that a
developer can use to extend the framework functionalities and cre-
ate complex applications exploiting it. Domain-specific languages
represent a more agnostic form of abstraction since they present
a completely different interface with respect to the target techno-
logy; however, by definition, they are created with a narrow scope.
In conclusion, most of these solutions have the downside of being
focused vertically (e. g., programming interfaces and libraries) or
horizontally (e. g., middleware and domain-specific languages),
since the abstraction they provide is usually created to target a
specific category of user.

To achieve a more generalised abstraction from the underlying
robot system, we decide to base our approach on an ontology.
Ontologies are used successfully to limit the complexity of the
domain and to organise the information into data and knowledge.
Ontologies, with respect to the other methods mentioned, have
the advantage of providing a strong decoupling between the
original domain and the resulting classification. Ontologies are
a universal language that is not bound to physical platforms,
implementations, or design choices. All these characteristics make
an ontology the perfect tool to create an abstraction layer between
the robot as a whole and a potential application developer or any
other external actor designed to interact with it.

What we want to achieve with our abstraction is to extract
from a running robot a list of capabilities. Since our focus is on
decoupling the robot from the high-level applications, in this
work, we will not impose any specific definition of capability. In
this context, a capability is anything, at any level of complexity,
that the robot can do. For example, any form of movement or any

6.1 ONTOLOGY REPRESENTATION 151

form of sensing are capabilities. A robot arm with three joints will
have three capabilities, each one associated with one joint, plus
one evoked by the movement of the entire kinematic chain. We
adopted an ontology instead of other approaches also to provide
flexibility to our classification, in an ontological description it is
not difficult to implement horizontal or vertical relations and to
create subclasses and specialisations of the existing entities.

ROS DESCRIPTION

Before the definition of robot capabilities, it is necessary to create
a formal representation described as an ontology of the main
elements of ROS. While this is not used directly in the capability
extraction process, it creates a structure that can be used as a
reference and to contextualise the capabilities. Since the aim is not
the creation of an ontological classification of ROS, but to define
a framework for capabilities classification and extraction, we did
not capture in the ontology every element of ROS.

The final aim is to extract which capabilities are exposed by a
specific system automatically. Therefore, we can only exploit static
information provided by the source code or dynamic informa-
tion obtained from the runtime of the system. Given that ROS
support various runtime-only configuration (e. g., topic remap-
ping, parameters definition at start-up, dynamic reconfigure, etc.),
we decided to focus on all the information obtainable when the
system is running. In ROS, at execution, the main source of in-
formation comes from the runtime instance of the Computation
graph, a collection of all the active nodes and their connections.
Various elements, other than nodes, are part of the graph, for
example, the ROS master or the parameters server, to build our
ontology, we decided to focus only on those parts that are defined
by the developer, both as a topology definition and as a complete
implementation. In particular, we take into account:

• A node is a process performing a specific computation and
represent the minimal executable unit of ROS. A single node
or a collection of nodes implement a specific functionality,
therefore is connected to a potential capability of the robot.

• Messages are the typed data structures exchanged by the
nodes when communicating with each other. Here we refer

6.1 ONTOLOGY REPRESENTATION 152

(a) Core ROS functionalities (b) ROS topics

(c) ROS services

Figure 6.1: Ontological description of the ROS middleware

6.1 ONTOLOGY REPRESENTATION 153

to messages in the broader sense, including all communica-
tion object exchanged in any type of communication. Mes-
sages are often generic (e. g., Vector3 in the geometry_msgs
package), but when specific (e. g., Image in the package
sensor_msgs) they can be used to identify capabilities.

• Topics are the named channels used to exchange messages
asynchronously using a publish/subscribe paradigm. Since
they are completely user-defined, it is not possible to infer
any meaningful information from them. However, they are
fundamental to categorise capability, especially if multiple
instances of the same one are available (e. g., multiple vision
systems).

• Similarly to topics, services are named channels for syn-
chronous communication, exchanging pairs of messages
(i. e., request and response). Again, the service itself does
not provide meaningful information since it is user-defined.
However, it helps categorise the identified capabilities.

While they are an alternative communication system between
nodes, actions are not included in this analysis for multiple reas-
ons. First of all, they are rarely used; hence, any extra effort to
include them would provide little or no extra information. Addi-
tionally, given their complexity, they are, in most cases, completely
defined by the developer and not based on any pre-defined mes-
sage. Lastly, from a pure communication point of view, actions
are only a collection of topics with a specific set of rules hidden
to the developer by the action clients.

Focusing on these elements, we can define a formal representa-
tion of ROS and the interactions of its components. As said before,
this ontology supports the definition of the concept of capabilities
and their automatic extraction. Therefore, while it is based on the
Event and Situation ontology design patterns, it is not rigorously
designed for robustness, completeness or originality. Figure 6.1
show a graphical representation of the ontology describing the
main ROS elements (Figure 6.1a), and a more detailed description
of topics (Figure 6.1b) and services (Figure 6.1c).

BASIC ROS DESCRIPTION – Figure 6.1a captures the main ele-
ments of ROS and how they are conceptually interconnected. ROS

6.1 ONTOLOGY REPRESENTATION 154

revolves around the concept of the Computation graph, where
nodes (i. e., executable components) are connected through differ-
ent types of communications (i. e., topics and services). Messages
are the main carrier of information between different compon-
ents. In ROS, there is one way to loosely aggregate elements by
functionalities: packages. Nodes and messages have an assigned
package, which is user-defined; therefore, not all of them are a
reliable source of information to define the expected functional-
ities of an element. Nevertheless, some effort to create standard
packages exists, some examples are sensor_msgs for messages used
to encode sensor measurements or navigation for the planning,
mapping and control nodes.

The ontology codifies all these details. ros:Node and ros:Message
are defined as part of a specific ros:Package. The ros:ROSCommu-
nication class identifies the edges of the runtime graph. Multiple
relations exist between this class and the rest of the ontology. To
identify the type of communication, we use the ros:Mode class and
the relation ros:isRoutedVia, together they specify an asynchronous
(i. e., topic-based) or synchronous (i. e., service-based) communic-
ation. The relation between ros:Node and ros:ROSCommunication is
not direct, but it is mediated by a ros:Communication Component.
This class represent the interface implemented by the node to use
a specific pattern, and it is important to define the direction of the
communication. For example, a velocity message published by a
single node and read by a multitude is more probably related to a
speedometer, while multiple velocity publisher converging on a
single subscriber can point to a set-point multiplexer.

This ontology was defined independently from the modelling
approach defined in Chapter 4 and with no intention of establish-
ing an encompassing definition. Nevertheless, there are recurring
structures in the ontology and the model. Some are related to
the internal structure of robotic middleware and frameworks, or
to ROS itself. For example, the definition of nodes (i. e., robotic
components in the component-connector paradigm) and messages
(i. e., communication objects) appears in most component-based
approaches. However, the necessity of specifying a communica-
tion component acting as an interface between the node and the
communication system is the same as the need to define AADL
threads as a way to model the inner functioning of a component.
In summary, it is not enough to specify a component and its con-

6.1 ONTOLOGY REPRESENTATION 155

nection, it is necessary to detail the communication, its direction,
the protocol, and the management system.

TOPIC DESCRIPTION – Figure 6.1b represents the extension of the
previous ontology to describe better the communication happen-
ing through topics. The central class of this ontology is ros:Topic-
Communication, which is a subclass of ros:ROSCommunication. Here
we specify the protocol used by this type of communication by
creating a subclass of ros:Mode and defining ros:Topic. The topic-
based communication is the simplest protocol provided by ROS,
implementing an asynchronous interaction based on the pub-
lish/subscribe protocol, that uses a publish-and-forget approach.
This is translated in the ontology by defining two subclasses for
the communication component: ros:Subscriber, as the subscriber of
the protocol, in charge of receiving the messages, and ros:Publisher,
as the publisher, in charge of generating the messages. The lack of
ownership and delivery confirmation results in a simple relation
between the message and the topic.

To understand how an instance of a topic is defined with re-
spect to the corresponding nodes, we can take as an example
a simple pair of nodes implementing a local planner feeding a
control system with velocity set-points. They are connected by a
named topic (/cmd_vel) and exchange a specific type of message
(geometry_msgs/Twist). The local planner implements a publisher,
while the control system implements a subscriber. The resulting
representation is in Listing 6.1.

Listing 6.1: Instance of a topic-based communication according to the
ontology.

@prefix ros: <onto-ros/class#>

@prefix : <onto-ros/resource/>

:setpoints a ros:TopicCommunication;

ros:isRoutedVia :cmd_vel;

ros:hasMessage :twist;

ros:hasPublisher :cmd-output;

ros:hasSubscriber :cmd-input.

:twist a ros:Message.

:cmd-vel a ros:Topic.

:local-planner a ros:Node;

ros:hasComponent :cmd-output.

:controller a ros:Node;

ros:hasComponent :cmd-input.

6.1 ONTOLOGY REPRESENTATION 156

SERVICE DESCRIPTION – Figure 6.1c represent a second extension
of the basic ontology to describe the synchronous communication
approach provided by services. As for topics, the central class
is ros:ServiceCommunication as a subclass of ros:ROSCommunica-
tion. To identify the protocol implemented by services, we created
a dedicated subclass of ros:Mode called ros:Service. Messages ex-
changed during synchronous service execution are divided into
two categories: requests, sent by the client to trigger the functional-
ity provided by the service, and response, sent by the server with
the result of the computation or as a completion notification. To
capture this, we defined two subclasses of the original ros:Message:
ros:Request Message used to classify the request sent by the client,
and ros:Response Message used to identify the response sent by the
server. As for the topic, it is necessary to specify, using subclasses
of ros:Communication Component, the interfaces implemented by
the node when acting as a client or as a server. The two subclasses
are: ros:Service Client, and ros:Service Server.

Listing 6.2 provides a small example of how an instance of a
service is represented using the ontology. In the example, there is
a global planner that needs to request an occupancy grid from the
map server synchronously. They interact using a named channel
(/map), the client (i. e., the global planner) send an empty mes-
sage (std_msgs/Empty) as a request to the server (i. e., the map
server) to trigger the delivery of the map through the response
(nav_msgs/OccupancyGrid). Each node, depending on its role, im-
plements a service client or a service server.

Listing 6.2: Instance of a service-based communication according to the
ontology.

@prefix ros: <onto-ros/class#>

@prefix : <onto-ros/resource/>

:map-service a ros:ServiceCommunication;

ros:isRoutedVia :map;

ros:hasMessage :occupancy-grid;

ros:hasClient :map-request;

ros:hasServer :map-response.

:occupancy-grid a ros:Message.

:map a ros:Service.

:global-planner a ros:Node;

ros:hasComponent :map-request.

:map-server a ros:Node;

ros:hasComponent :map-response.

6.1 ONTOLOGY REPRESENTATION 157

CAPABILITIES EXTRACTION

The ontology defined in Figure 6.1 is useful to understand the
most significant and recurrent elements of a ROS-based system.
The main insight is the recurring relationship between a node,
a message and a specific communication pattern (i. e., service
or topic). These three elements together can be used to identify
the high-level capabilities of the robot and potential entry points.
To better understand how this triple (i. e., node, message, and
communication patter) can identify a capability, we can recall
the examples described in the previous section. In the following
analysis, we will refer to some information about the semantics of
ROS messages. The ontology presented so far does not include
this knowledge; however, we will use it now to reason about
the behaviour of ROS components and will be captured by the
extended ontology (see Figure 6.2).

Let us start by analysing the pair of nodes involved in a simple
control subsystem. On one side, the local planner uses a publisher
to generate a Twist message on the /cmd_vel topic. We cannot ex-
tract significant knowledge from the node itself, except for the
fact that it implements a publisher; therefore, we can infer the
direction of the communication. Since Twist is one of the stand-
ardised messages, we know that is commonly used to exchange
set-points (speed sensor usually rely on Odometry); hence, we can
conclude that it is possible to read this specific message published
by the node on a topic to have an insight on the expected velocity
of the robot. On the opposite side of the topic, there is the control
node. Since they are connected directly, it shares the same type
of message (i. e., Twist) and the same topic (i. e., /cmd_vel) of the
local planner. However, the control node implements a subscriber,
and this changes the meaning of the message completely. While
the assumption that Twist is used for set-points still stands, the
different direction of the communication (i. e., from the topic to
the node) let us know that we can use this message on this topic
to control the movement of the robot.

A similar analysis can be done for the second example involving
services. This pair of nodes implements a global planner request-
ing a map from the map server. On the provider side, there is
the map server, it implements a service server and advertises it
with the name /map. As before, the named channel is completely

6.1 ONTOLOGY REPRESENTATION 158

user-defined; therefore, there is no knowledge we can extract from
it. From the node, since it implements the server, we can infer
the direction of the communication: the map server receive the
request and provide the response. On the receiver side, the global
planner accesses the service advertised by the map server using a
service client. By this communication interface, we can infer that
the global planner will start the communication exchange. In the
synchronous protocol of the service, two messages are involved in
the communication, in this case, the request is an Empty message,
and the response is an OccupancyGrid message. Since they are
standardised messages, we already know to which functionalities
they are usually related. An Empty message carries no informa-
tion; hence, it can only be used as a trigger to activate another
functionality. OccupancyGrid is the standard message to share a
bidimensional cell-based map where each cell can have three pos-
sible values (i. e., free space, obstacle or unknown); therefore, we
can easily assume that the result of this message will be a map of
the environment. In summary, we can infer that both nodes evoke
a map representation capability, the map server as the provider,
hence we can trigger the service to receive a map, and the global
planner as the receiver, this means we can set up a compatible
service to impose a map to the planner.

By analysing these two examples, we can infer that establishing
the mapping between a ROS-based system and the capabilities
offered by the corresponding robot is equivalent to establishing a
relation between a capability and a triple created by a node inter-
face, a message and a communication protocol. In practice, there
are four types of triples that we can define, that are a specialisation
of <ros:Communication Component, ros:Message, ros:Mode>:

• <ros:Publisher, ros:Message, ros:Topic>

This triple represents a capability evoked by asynchronous
communication. Since it is a publisher, it is possible to ex-
ploit it to interact with the system (e. g., teleoperation).

• <ros:Subscriber, ros:Message, ros:Topic>

Similar to the one before, this capability is tied to an asyn-
chronous channel. However, since a subscriber evokes it, it
can be used to receive information from the system (e. g.,
sensing).

6.1 ONTOLOGY REPRESENTATION 159

• <ros:Client, ros:Request, ros:Service>

This triple represents the relation between a client and the
synchronous protocol. By abstracting the interface created by
this communication, we can control the expected response
and inject specific data in the system.

• <ros:Server, ros:Response, ros:Service>

This is the opposite side of the service-based communication
protocol. By knowing the interface of the server, we can trig-
ger its functionalities independently from the architecture.

As said before, this approach aim is to create a system to ex-
tract the capabilities of an existing architecture automatically. As
a result, it is necessary to define strict and clear rules relating a
specific element of the ROS system to a capability; unfortunately,
most of the architectural components of ROS are defined by the
developer. There is no direct relationship between functionalities
and node implementing them, for example, move_base incorpor-
ates a global and local planner in the same node, but a developer
could implement them separately. Moreover, topics are entirely
user-defined, and they can be renamed at deployment time, or
duplicated; therefore, there is no connection between the name
of the topic and its functionality. Lastly, the use of messages is
unrestricted; a very pedantic developer could decide to use only
custom messages in his architecture. Thankfully, ROS provides a
wide variety of already defined messages, and, through compon-
ent reuse, a self-standardisation process emerged. For instance,
a Pose message from the geometry_msgs package will, most of
the time, provide information about the pose of the robot in a
tridimensional space.

Given all these considerations, the resulting ontology to relate
capabilities with a portion of a given ROS architecture is presented
in Figure 6.2. On the left-hand side of the figure, we recall the three
main elements related to a specific capability: message, commu-
nication component and mode. Since the only semi-standardised
element of this triple is the message, a capability is evoked dir-
ectly by a specific message. For instance, a LaserScan message
evokes the capability of sensing the environment using a laser
sensor. Capabilities are characterised by a modality, they can be
read or write. A capability has a read modality when it can provide
information to an external user, for example, collecting the map

6.1 ONTOLOGY REPRESENTATION 160

Figure 6.2: Ontology defining capabilities and their relation with ROS
messages.

from the map server is a read capability. The write modality means
an external user can influence the behaviour of the architecture;
for example, teleoperation is a write capability. The modality of
a capability is defined by the type of communication component
associated with it: publishers and servers are associated with read
capabilities, since an external user can collect information by read-
ing their output, subscribers and clients evoke write capabilities,
it is possible to change the behaviour of a system by providing
a specific input. In some cases capabilities express both read and
write modalities. An example is all the sensing-related capabilities.
An external user can read the output of a sensor directly or act
as a sensor to change the behaviour of the system. In other cases,
only one modality is available; for instance, teleoperation is write-
only. The last part of the ontology is related to the application of
the capabilities. The objective is not to just identify them, but to
use them as an entry point for interacting with the robot. For this
reason, each capability has a set of parameters directly related to
message fields. A parameter can read from (or write to) a specific
message field to create an instance of a message to interact with
the robot architecture.

6.1 ONTOLOGY REPRESENTATION 161

CAPABILITIES TAXONOMY

In the previous sections, we defined the ontological superstructure
necessary to formalise a ROS-based system (i. e., Figure 6.1), to
define the relation between ROS elements and capabilities (i. e.,
Figure 6.2), and to extract capabilities from a running system (i. e.,
binding between messages and capabilities). This approach is
completely general and not bound to any specific definition of the
concept of capability other than “something the robot is capable of”,
it can be as high-level as “navigate to a goal” or as low-level as “last
fix of the GPS”. However, to be able to apply this approach to a real
robotic system, we defined a potential taxonomy of capabilities;
the result is presented in Figure 6.3.

The root of the taxonomy is a general unspecified capability.
From this, there are three possible subclasses: sensing, robot know-
ledge, and acting. These three subclasses are meant to recall the
sense-plan-act paradigm and focus on the three main characterist-
ics of a robot: the ability to understand the environment through
sensors, the ability of process the inputs and represent them, and
the ability to interact with the environment through actuators.

In the cap:Sensing subclass there are capabilities covering dif-
ferent type of sensing, both for perception (e. g., cap:Vision) and
proprioception (e. g., cap:Battery). In this taxonomy, the sensing
capabilities are directly connected to a specific sensor (e. g., a
magnetometer for cap:Magnetic Field), however, under this macro-
category it is possible to fit capabilities obtained after one or
multiple processing steps if they provide direct information about
the environment. For instance, AR tags detection could be a
cap:Sensing capability since it provides the position of a particular
object in space after processing an image. It is difficult to define
the frontier where the input has received enough processing to
lose the status of sensing; an option is to consider the need of ex-
ternal knowledge. A GPS driver processes an input stream using
a standardised process, therefore is sensing, however, estimating
the position of the robot from a velocity measurement requires
specific information about the kinematics of the robot; hence, it
cannot be sensing.

In the cap:Robot Knowledge subclass fall all those capabilities that
are related to any internal representation used by the robot (e. g.,
cap:Map representation), or any intermediate processing necessary

6.1 ONTOLOGY REPRESENTATION 162

(a) Sensing subclass

(b) Robot knowledge subclass

(c) Acting subclass

Figure 6.3: Capability Taxonomy. Each subclass is child of the general
root cap:Capability.

6.2 ROBOT APIS 163

to achieve the interaction with the environment (e. g., cap:Planning).
This is potentially the subclass with more capabilities since it
encompasses anything in between the sensors and the actuators.
In our taxonomy, we focus on mobile navigation, by including
capabilities related to robot position, mapping and the physical
shape of the robot. Most of these capabilities may not be relevant
for a different type of robot, for example, a manipulator may
include object classification, grasping configuration estimation or
inverse kinematics.

The cap:Acting subclass may be the simplest to define, any cap-
ability that causes an action of the robot falls here. Any direct or
indirect interaction with the environment or change of configura-
tion of the robot can be considered part of the cap:Acting subclass.
Again, we focus mostly on mobile navigation, therefore our tax-
onomy includes movement-related capabilities, like cap:Navigation
or cap:Teleoperation. However, any other form of interaction can
be categorised in this subclass, for instance, speech, grasping or
visualisation (e. g., a robot equipped with an onboard tablet).

6.2 ROBOT APIS
A formal definition of robot capabilities (functionalities, actions,
tasks, etc.) is a topic often discussed, but very difficult to frame
and resolve. We do not have the audacity of suggesting that our
approach is the only possible solution, and more importantly, we
know for sure that the taxonomy we presented is far from being
exhaustive. However, our aim was never to provide the definitive
classification for robot capabilities, but a more practical one: to
create an abstraction layer between the functionalities provided by
modern robotic middleware and a potential application developer.
What we want to achieve is to view the robot architecture as a
whole, a system providing a set of entry points that a developer
can use to create high-level applications.

The motivating scenario that pushed us in the direction of con-
sidering robotic platforms as abstracted entities providing a com-
mon interface is the integration of robots in smart-cities. Milton
Keynes is a city in Buckinghamshire (England) that engaged in
a series of programs to develop a “Future City”. One of this was

6.2 ROBOT APIS 164

the MK:Smart project, which has developed a state-of-the-art data
acquisition and management infrastructure (the MK Data Hub)
and an IoT network of sensors. The MK Data Hub was built with
the idea that a common facility to efficiently manage, integrate
and re-deliver data from a variety of sources could be exploited by
applications and services, reducing their development costs and
enabling intelligent data management (mining, analytics, aggrega-
tion, alignment, linking) at the scale of the entire city. Given this,
it is just a short step to introduce robots as an additional actor in
the network of sensors connected to the smart-city; to integrate
them as data collectors [118] and data consumers [37].

To better clarify the role of robots in the smart-city as actors of
the integrated data acquisition and management infrastructure,
we can provide a simple example. In Milton Keynes, a door-to-
door robot-based delivery system is currently active. These robots
travel around the cycle paths to deliver grocery upon request
and are equipped with various sensors, including cameras. At
this moment, the information collected by the robot during their
deliveries is not used for any additional task, but by integrating
them in a larger system, they could use their cameras to spot
abandoned garbage on the cycle path. Of course, the delivery robot
itself cannot pick up the trash, but it can notify the centralised
data system about its discovery, the system will then aggregate
all the information and set up a path for a garbage collector robot
to clean up the cycle path.

With the current technology landscape for robotics, this ap-
plication would require the development of a series of ad hoc
interfaces between each of the robot involved and the centralised
data management system. In the particular example presented,
there is the additional complication that the delivery robots are
owned by a private company, which is not keen to disclose the
internal functioning of its machines. All these problems can be
resolved by introducing an abstraction layer.

In this section, we present all the necessary tools we developed
to create a set of robot APIs based on our definition of capabilities
that can be used to abstract a ROS-based architecture completely.
Figure 6.4 shows an overview of the complete system. Some
elements are ROS-bound and are used to set up the abstraction
layer, while others are independent of the architecture and define
the agnostic APIs to interact with the robot.

6.2 ROBOT APIS 165

KB

ROBOT

ANALYZER
DYNAMIC

NODE

SERVER

ONTOROB

INTERFACE

WEB

INTERFACE

ROS

Figure 6.4: Structure of the Robot APIs system.

ROS-BOUND INTERFACE

Figure 6.4 presents the complete set of elements necessary to
interact with the robot. Three of them are enclosed in a container
labelled ROS. The reason for this distinction is because those three
elements require a ROS-enabled environment to work. The first
one is, reasonably, the robot, the collection of all the software and
hardware components necessary to implement the functionalities
provided by the system. There is no requirement on the structure
of the architecture to be compatible with our approach, and any
ROS-based robot can be used. The only caveat is that our process,
as described in Section 6.1.2, is based on the assumption that some
specific ROS messages are used as expected from their semantic
(e. g., Twist is used for velocity). Directly connected to the robot,
there is the Analyzer and the Dynamic node.

ANALYZER – Before being able to interact with the robot, it is
necessary to identify which functionalities it implements. In this
initial phase is where the capability ontology described in Sec-
tion 6.1 is used. While defining the relation between capabilities
and ROS elements, we highlighted how a capability is evoked and

6.2 ROBOT APIS 166

specified by three elements: communication interfaces, messages
and communication channels. The role of the Analyzer is to use a
list of binding between message types and capabilities to create
a knowledge base containing all the available functionalities of a
specific robotic platform.

Thanks to the effort spent in defining the ontology, the process
of extracting the capabilities is quite straightforward. First of
all, it is necessary to start the complete robot architecture, and
when all the nodes are up and running, we can run the Analyzer.
The Analyzer loads a list of message/capability binding, then
analyse the entire graph of the target ROS architecture. For each
topic or service and their associated communication interface
(i. e., publishers and subscribers for topics, client and servers for
services), the Analyzer adds an entry in the knowledge base. Each
entry creates a relationship between a communication channel and
a specific capability through a message. Recalling the example
of the controller introduced in Section 6.1.1, the entry in the
knowledge base would create a relation between the /cmd_vel topic,
the Directional Movement write-capability and the Twist message.

A significant upside of creating a knowledge base instead of
using a runtime approach is that the output of the Analyzer is
persistent. If the architecture configuration does not change, there
is no need to rerun the component. This means that robots with
the same configuration share the same capability knowledgebase
and that a single knowledgebase can be created at deployment-
time and shipped together with the robot.

DYNAMIC NODE – Together with the definition of the capabilities,
there is another element necessary to correctly implement an API
system: a reliable interface with the ROS architecture. Given the
structure of the ROS Computation graph (i. e., communication
channels supporting an n-to-n cardinality), it is not difficult to
inject or read messages from the architecture. In fact, ROS itself
provides various tools to interact with the system at runtime
(e. g., rostopic and rosnode family of commands). However, most
of these commands are meant to be run from a terminal and
designed for the occasional interaction, hence are not suitable to
be used as a unified interface between the robot and an external
system.

6.2 ROBOT APIS 167

For these reasons, we implemented the Dynamic node; its role in
the API system is as simple as it is crucial. It relays the interaction
coming from capability-based environment of the external user to
the ROS-enable environment of the robot by acting as a frontier
between the two. The Dynamic node implements a system to create
and destroy dynamically the suitable communication interfaces
associated with a specific capability. To better clarify, let us take
the example of the velocity controller again. From the Analyzer we
know that the node exposes a subscriber to the topic /cmd_vel and
the message exchanged is Twist. The Dynamic node can use this
information to dynamically create a publisher on the specified
topic with the specified messages, and then, upon request, publish
content on the topic.

In order to make the approach more general, the Dynamic node
does not require the content of the message to be defined as an
actual ROS message. It expects a Python dictionary with the same
structure of the message. Moreover, it supports multiple forms of
communication: one-shot interactions with the topics (i. e., publish
or read a single message), complete bidirectional relay of mes-
sages, and client and server replacement. The Dynamic node is
developed for generality, while the superstructure provided by the
capabilities makes the interaction more accessible, it can be used
directly as a dynamic interface to the architecture. In summary, it
provides a semi-agnostic (i. e., it requires a ROS-enabled environ-
ment to run and the knowledge about topics and messages) local
API to interact with a ROS-based system.

ROS-INDEPENDENT INTERFACE

By going back to Figure 6.4, it is possible to see that no other
element is inside the ROS container. This means that the rest of
the system is completely ROS-independent and can be run on
any platform. The way we structured the APIs is guided by the
smart-city and robot interaction scenario. What we wanted to
achieve was to define an interaction approach that a remote data
management system can use to receive information from the robot
and send commands and instruction without having to implement
any ROS-related (or, more in general, robotic-related) interface. By
following these specifications, we developer a Server and, finally,

6.2 ROBOT APIS 168

the OntoRob Interface. Of course, this approach can be altered by
removing the Server and integrating some of its functionalities in
the OntoRob Interface; the result is moving from a remote APIs
approach to a local one.

SERVER – The role of the Server is to create a completely ROS-
agnostic interface to the robot. Differently from the Dynamic node,
not only the the structure of the messages is not related to ROS, but
also there is the shift from the node/message/topic paradigm, to mod-
ality/capability/parameter. In summary, the Server is the capability-
centric interface to the robot.

The Server provides a list of remote APIs that can be called to
receive information or interact with the target system. Since it has
access to the knowledgebase, it can provide the list of the active
capabilities with their corresponding topic/service name. In this
case, the name is only an identifier, since the same capability can
appear multiple times in a system (e. g., two Vision capabilities
from stereo cameras), we need a way to identify them. As de-
scribed in Section 6.1.2, each capability has a list of parameters
that mirrors the fields of a ROS message. These information can
be used to activate the /read and /execute APIs of the Server.

During his normal execution, the Server subscribes through
the Dynamic node to all the topics associated with read-capabilities.
When an external user triggers the /read API using a pair capability-
topic, the Server will first check in the knowledge base that the
requested pair is legal, and then it will answer with the last
messages exchanged on the topic, suitably converted using the
parameters of that specific capability. With the opposite approach,
when an external user triggers the /execute API, the Server receive
a triple composed by a write-capability, a topic name, and the
parameters corresponding to that capability. As before, first, the
Server checks for the command validity and then converts it to
a suitable data structure to feed it to the Dynamic node. To pro-
mote flexibility and generality of the interaction, all the exchanges
between the external user and the Server use JSON.

ONTOROB INTERFACE – In theory, the Server provides a complete
enough interface to interact with the robot remotely. It gives all
the necessary capabilities, it provides the output of topics or
services, and receives commands. A centralised data management

6.3 BRIDGE MODELS AND CAPABILITIES 169

system like the MK Data Hub would directly interact with the
Server. However, our long term vision was to develop an interface
to support the development of robotic applications; hence, we
developed a Python-based interface that can be easily integrated
into a program as a developer would do for any other API.

The OntoRob Interface is a class that can be instantiated to es-
tablish a connection with the Server and hide the complexity of
the JSON-based interaction. The class provides a more stream-
lined and compact interface that can be used to integrate the
functionalities provided by the Server in a Python program. It has
methods to obtain knowledge about the current active robotic
system: the list of topic (as before, used as capability identifiers),
the list of capabilities, the relation between the two, the structure
of messages. Additionally to all these methods, it provides APIs
to retrieve information from read-capabilities and interact with the
robot through write-capabilities.

6.3 BRIDGE MODELS AND CAPABILITIES
At first glance, the connection between the abstraction provided
by capabilities and a model-based approach seems quite loose.
Surely both approaches have the same final aim: simplify and
streamline the development of robot-related software, enhance
robot architectures with support tools, and help the developer
create, design and implement complex robotic applications. How-
ever, this can be said by quite a few approaches: frameworks,
middleware, libraries, design patterns, collections of good prac-
tices. Hence the question: since they have a common goal, how
these two systems can interact and benefit from each other?

In this chapter, we described how to extract robot capabilities
we created a binding between a capability and a ROS message.
This approach allows us to analyse a running ROS architecture
and infer which capabilities are evoked. While it was successful
on the architectures we tested it, this strategy is not particularly
robust, since there is no intrinsic structure in ROS messages. For
instance, Twist is commonly used to define three linear velocities
(i. e., vx, vy, vz) and three angular velocities (i. e., ωx, ωy, ωz),
however, it is not uncommon to use ωz to define the steering

6.3 BRIDGE MODELS AND CAPABILITIES 170

angle in an Ackermann kinematic. This use against the expected
semantic still, at least, maintain the general capability; however,
nothing stops a developer for using a simple Vector3 to control
a mobile platform, breaking the expected relation between the
capability and the message.

A way to make the capability extraction process more robust is
to use the model. Instead of relying only on the runtime graph,
the designer can specify which capability is evoked by a particular
component by using a property in the model. By having a tern-
ary relation between message, component and capability, we can
verify the result of the automatic process. The related component
confirms a capability evoked by a message; moreover, this addi-
tional capabilities can be used to create a more detailed interface
with the underlying platform.

The beneficial relationship between the two approaches is bid-
irectional. Not only the capability extraction system benefits from
the existence of the model, but also the use of capabilities can
enhance the model-based design. With the current tools avail-
able to designers, it is possible to check the consistency of the
model (e. g., the correct data is exchanged on a topic), but it is not
possible to check if an architecture is functionality complete. By
extending the capability taxonomy in an ontology, it is possible to
define dependencies between capabilities. For instance, to achieve
navigation, it is necessary to know the current position of the
robot, perform global and local planning. In a capability-tagged
model, the dependencies ontology can be used to verify that a
specific capability has all its dependencies satisfied. Moreover, by
selecting before the list of target capabilities of the architecture, it
is possible to check if the system is functionality complete and if
it can fulfil all the expected task.

Tagging the model with capabilities is also useful to define a
library of reusable designs. A designer could specify a capability
and receive a list of all the components and collections of compon-
ents necessary to evoke it. This could be pushed even further, with
a complete specification of the expected capabilities of a robot
and a library of correctly tagged designs, it would be possible
to create an automatic architecture builder system. The designer
specifies all the necessary capabilities, and the dependencies onto-
logy fills the gaps, eventually with human intervention, then from
the design library, an automatic system selects all the necessary

6.3 BRIDGE MODELS AND CAPABILITIES 171

components. The designer just needs to connect the component
to finalise the architecture.

In summary, while the two approaches are aimed at two differ-
ent categories of actors involved in the design and development
of robotic architectures and applications, they are part of the same
effort and can benefit one from another by creating a complete
development stack going from the bare physical platform to the
high-level applications.

7 EXPER IMENTAL
EVALUAT ION

Conta ciò che si può contare, misura ciò che è misurabile e rendi
misurabile ciò che non lo è.

— Galileo Galilei

Usually, robotics is a prime example of applied engineering.
Everything starts with a practical problem, for instance, how to
autonomously navigate in a crowded environment. From that,
multiple technological solutions are imagined, designed and im-
plemented. When a solution is ready to be executed is deployed
on the robot and tested. A failure results in a step back, in creating
a different solution, while a success pushes the engineer to look
for a new problem.

Unfortunately, our work does not target a robotic problem, but
a robotic meta-problem. How to make the process of creating
technological solutions more streamlined and more accessible,
in a way that failures are only minor setbacks in resolving a
problem. This makes the experimental evaluation different and
more challenging since it has to include the human element.

In this chapter, we present two experimental evaluations that
we used to test and asses our approaches. First, we present a
robotic use case, where the architecture of an autonomous wheel-
chair is implemented from scratch using a model-based approach
combined with automatic code generation. Then, we push the
boundaries of our capabilities-based approach by creating a web
interface that developers with no experience in robot development
can use to design and develop algorithms to interact with different
robotic platforms.

172

EXPERIMENTAL EVALUATION 173

Contents
7.1 The PMK use case 174
7.1.1 Model . 178

7.1.2 Automatic code generation 182

7.1.3 Special nodes . 184

7.1.4 Comparison . 190

7.2 Web interface . 193
7.2.1 GUI description 194

7.2.2 Experimental Setup 196

7.2.3 Results and discussion 198

7.1 THE PMK USE CASE 174

Figure 7.1: The Twist T4 2x2 wheelchair modified using the Personal
Mobility Kit.

7.1 THE PMK USE CASE
In this section, we give a detailed description of a test use case
where a model-based approach has been used to replicate and
reimplement an existing architecture developed with traditional
techniques. We decided to start from an already implemented
and fully functional system, to show that it is possible to achieve
the same level of functionalities of the original application by
combining a model-based design with automatic programming.

The target robot is an electric wheelchair modified to be con-
trolled with a computer and equipped with various sensors to
achieve levels of autonomy and teleoperation. The wheelchair
used as the starting platform is a commercial model (Twist T4 2x2)
produced by Degonda Rehab SA. It is suitable for both indoor
and outdoor usage, and it has high manoeuvrability thanks to the
two-wheeled dynamics. The conversion from a traditional electric
wheelchair to an autonomous robotic platform is achieved using
the Personal Mobility Kit (PMK), which consists of four elements.

• Encoders connected to the electric motors controlling the
wheels, which provide odometry information.

7.1 THE PMK USE CASE 175

• Two Sick TiM 561 laser scanner distance sensors, which
provide a 360-degrees coverage around the wheelchair. They
are used to map the environment, assist in the localisation
of the robot and detect unexpected obstacles.

• Shuttle DS81L, a high-performance slim PC specifically de-
signed for automotive and robotics applications. It is the
on-board computer of the robot, and it runs ROS and all the
application code.

• The software components necessary to achieve the assisted
and autonomous functionalities.

The PMK is designed to be an add-on that is possible to mount
over any existing electric wheelchair to convert it into an autonom-
ous or semi-autonomous platform. Thus, within the architecture
we will present, the only platform-specific part is the interface
used to communicate with with on-board electronics. Everything
else is a modular design adaptable to various physical platforms.

A commercial electric wheelchair supports manual control
through a joystick placed on one of the armrests. While this is
suitable for most users, there are cases of severe disability where
the patients can only partially or cannot operate the joystick. The
objective of PMK is to extend the functionalities of an electric
wheelchair to provide assisted and autonomous control. In partic-
ular, the software supports four different drive modes.

MANUAL WITH PMK OFF – This is the native configuration of the
wheelchair. The user controls the movements directly with the
onboard joystick. It is crucial to maintain the original operational
mode even after the modification introduced by the PMK. The
electric wheelchair should remain completely functional and op-
erative even if hardware or software malfunctions cause the PMK
to stop working. This acts as a fallback emergency configuration.

MANUAL WITH PMK ON – In this configuration the PMK is active,
but the user is still completely in control of the wheelchair. When
mediated by the software system, the robotic platform can be
controlled remotely by using a wireless joypad or directly with
the onboard joystick. A priority system ensures that the input from
the joystick always has precedence over teleoperation. This is the
neutral configuration of PMK, when the system is active, but not

7.1 THE PMK USE CASE 176

performing any action. This mode is particularly useful during the
setup phases of the autonomous wheelchair (e. g., environment
mapping).

ASSISTED – In this mode, the PMK is enabled and actively med-
itates the commands coming from any input device. This config-
uration aims to help the user operate the wheelchair by avoiding
obstacles. Set-points sent from the wireless joypad or on-board joy-
stick are processed and, if necessary, modified to avoid obstacles
perceived by the two onboard laser scanners. As for the previous
mode, the commands coming from the joystick have the priority
over the wireless joypad.

AUTONOMOUS – Here, the wheelchair is fully autonomous, and
the PMK is in charge of controlling the movements. The user can
request a specific goal (e. g., “take me to the kitchen”), then the
robotic platform will automatically reach the destination avoiding
any obstacle along the way. For safety reasons, it is always possible
to override the commands sent by the PMK in autonomous mode
using the onboard joystick.

These are all the main functionalities of the electric wheel-
chair when equipped with the Personal Mobility Kit. We aim to
create a system designed and developed using a model-based
approach combined with automatic programming that exploits all
the problem-related implementations already created for the ori-
ginal architecture and combine them with automatically generated
ROS nodes while maintaining the same functionalities.

7.1
TH

E
PM

K
USE

CASE
177

Figure 7.2: Graphical AADL modelling the entire autonomous wheelchair architecture. While the virtual bus representing
the ROS communications is included, the binding with the topics are omitted for clarity.

7.1 THE PMK USE CASE 178

MODEL

The first step of the design of an architecture is to create the
model. We did so by following the definitions and meta-models
introduced in Chapter 4. Figure 7.2 shows the graphical AADL
modelling the architecture of the robotic wheelchair. To organise
and generalise the architecture, we exploited the nesting capability
of AADL by creating a hierarchical structure of system of systems.
Each subsystem captures a specific functionality of the robot,
and they are meant to be modular parts of the design that can
be replaced when necessary. For example, by going from laser
scanner to cameras, or by replacing the navigation system based
on move_base with a custom one, or by using a different electric
wheelchair as a platform.

TELEOPERATION – Similarly to the example presented in Sec-
tion 4.3.2, this subsystem captures all the hardware and software
components necessary to implement teleoperation. These specific
models include an AADL device modelling the wireless joypad
used to control the wheelchair: a Logitech Gamepad F710. Dir-
ectly connected to it, the device driver, the existing ROS node
joy_node from the package joy; it reads the input from the joypad
and converts it to ROS messages. The device/driver connection
is bound to an AADL bus modelling the physical USB interface
between the joypad and the computer. The last software com-
ponent in the subsystem is a node designed explicitly for this
application, joy_control is in charge of converting the messages
coming from the device driver to velocity set-points to directly
control the wheelchair (i. e., from Joy to Twist messages). Addition-
ally, this node controls the global state machine of the system that
selects the current driving mode (i. e., one of the four presented
in Section 7.1).

Given the criticality of this step, the communication does not
happen through ROS topics or services, but by using a shared
memory area. To capture this behaviour in the model, we use a
require data access port on the process modelling joy_control. On
its frontier, the system exposes an outgoing port associated with
the velocity command to relay the set-points generated by the
teleoperation subsystem to the rest of the architecture. Moreover, it
has a data access to bridge the connection coming from the driving

7.1 THE PMK USE CASE 179

mode selection node (i. e., joy_control) to the shared memory area
hosting the global state machine. Encapsulating the model in a
system increases the modularity of the design since it defines
precisely the expected interfaces of the subsystem and makes it
replaceable with a similar configuration (e. g., a different physical
input) without altering the entire architecture.

SENSING – For the navigation and obstacle avoidance to work cor-
rectly, they need a single measurement from the laser rangefinder.
Since the robotic platform is equipped with two sensors, the
sensing subsystem aims to unify their measurements in a single
output. For this reason, only one outgoing port is present on the
system frontier representing the merged scan topic. Here there is
a clear example of how multiple instances of the same element can
coexist as subcomponents. There are two occurrences of the same
AADL device modelling the physical sensors mounted on the
wheelchair, and consequentially, the device driver component is
duplicated too. As for the teleoperation subsystem, the connection
between each laser scanner and the corresponding driver is bound
to a model of a physical bus; but since the communication goes
through an Ethernet connection, it is a different component. All
the connections converge in a single node in charge of merging the
measurements coming from each laser rangefinder, that are then
relayed outside the subsystem through the output port present on
the frontier. In this system, there is no custom node, since all of
them come from existing packages or legacy implementations.

NAVIGATION – This subsystem mostly contains legacy nodes from
ROS Navigation. A node implementing adaptive Monte Carlo
localisation to estimate the position of the robot in a known en-
vironment (amcl), a node to store and share the current map
of the environment (map_server), and the main navigation node
(move_base) implementing global planning on the known map and
local planning on the map generated in real-time. To work, ROS
Navigation requires laser measurements and odometry inform-
ation, the former comes from the sensing subsystem, while the
custom odom node included in the navigation subsystem generates
the later; it receives the current speed from the wheelchair and
uses it to estimate the position of the platform. The odometry
node supports two types of output, as visible from the features

7.1 THE PMK USE CASE 180

of the AADL process: an Odometry message, published on a topic
and modelled using an output port, and tf modelled thorough a
data access directly connected to the data component representing
the centralised collection of all the reference frames. Since tf is the
backbone of ROS Navigation, and it is used only by nodes in this
subsystem, it was reasonable to model the data component repres-
enting tf here. Differently from the two previous subsystems (i. e.,
teleoperation and sensing), here there is no need to model any
physical bus since this is a pure software system. The frontier of
the navigation subsystem is more complex than the previous since
it has an input port for the laser measurements, another input
port for the speed of the wheelchair and an output port for the
set-point generated by move_base. Abstracting the structure and
interface of the navigation subsystem is particularly important
because it is the part of the architecture that is often subject to
changes. It is common to use the same platform to test different
algorithms and architectural solutions for navigation.

PLATFORM – All the hardware and software components related
to the physical platform are contained in this subsystem. Since
they are all platform-related, each node is a custom design cre-
ated specifically for this architecture. There are two hardware
components: a device to model the interface between the architec-
ture and the on-board electronics manufactured by Penny&Giles
Drive Technologies Ltd. (PGDT), and the bus representing the
special hardware connection used to exchange wheelchair-specific
messages. This bus and the corresponding custom device driver
(ratp_node) act as a bridge between platform-specific data streams
and ROS messages. Given the multiple driving modes of the robot
where two manual inputs, potentially mediated by the system and
with different priorities, coexists, together with an autonomous
mode, the architecture uses a combination of two multiplexers.
One is used to select the specific manual input (i. e., manual_mux),
while the other (i. e., out_mux) differentiate between the different
driving modes (i. e., manual, assisted and autonomous). The two
multiplexers have different behaviours, manual_mux is based on
priorities, the input coming from the on-board joystick will always
override the wireless joypad, while out_mux changes the output
depending on the current mode of the system. For this reason,
out_mux has a data access connected to the shared memory area

7.1 THE PMK USE CASE 181

Figure 7.3: Graphical representation showing how a local and a remote
node interact with the global state machine.

hosting the global state machine. Finally, the last component is
a node implementing local obstacle avoidance for assisted driv-
ing. Even with its peculiar configuration, the whole subsystem
is designed with a general frontier, and it exposes two inbound
ports for the velocity commands (i. e., joypad and autonomous
set-points) and one for scan messages (i. e., measurements for
obstacle avoidance). The output port relays the current velocity of
the wheelchair from the custom device driver node to the naviga-
tion subsystem. Additionally, as for the teleoperation subsystem,
the platform system has a data access on its frontier to connect
to the global state machine. By encapsulating the platform in a
system, it is possible to replace it with a different wheelchair, or
even with a completely different robotic platform.

MAIN SYSTEM – To increase clarity and use the model to evoke
the modularity of the architecture, we modelled it with different
subsystems. However, in AADL, it is necessary to define a root
system to encapsulate everything; moreover, some parts of the
architecture are too general to be fitted in a specific subsystem.
For this architecture, three components fall in this category: the
ROS communication virtual bus, the overseer node and the global
state machine. In the same way, as physical buses are used in the
teleoperation and platform subsystems, the ROS communication
virtual bus bindings are necessary to identify which connections
model ROS communication protocols (i. e., topics or services).

7.1 THE PMK USE CASE 182

As initially introduced in Section 4.3.1 and, later, detailed in
Section 5.2, the engineered nodes are designed with a strict life
cycle, and they natively support a notification system to monitor
the evolution of their state. The overseer node is in charge of
collecting all the notification coming from the custom nodes;
moreover, it has a list of all the critical nodes (i. e., nodes that are
subject to a liveness check) and trigger a transition on the global
state machine if one of them stops working. The last element
is the data component representing the shared memory area
containing the global state machine. In the implementation, the
global state machine is instantiated by the overseer. While all the
nodes in the architecture can read or modify the current state by
accessing the shared memory directly, it is also possible to interact
with the global state machine through a ROS service interface
mediated by the overseer (see Figure 7.3). The different approach
used can be encoded in the model (i. e., connected through a data
access or a subprogram call); however, in the implementation, it
is determined at deployment time. In practice if the node runs
on the same physical machine of the global state machine, then
a shared-memory approach is used; otherwise, the interaction
happens using ROS.

AUTOMATIC CODE GENERATION

In the previous section, we gave an overview of the model of the
architecture by describing in details the subsystems and which
functionalities they evoke. While the graphical representation of
Figure 7.2 provides a general understanding of the topology of
the architecture and gives some insights on the nature of the com-
ponents, it does not capture all the details necessary to perform
automatic code generation correctly. First of all, nodes belong
to three main categories: (i) already implemented nodes. They
are legacy nodes previously developed, they may come from the
standard ROS repositories (e. g., move_base) or be part of the ori-
ginal architecture (e. g., laser_merger), (ii) custom nodes, they are
completely modelled and will be automatically generated (e. g.,
odom), (iii) special custom nodes, they are modelled correctly, but
they contain unique implementation patterns that are not suppor-

7.1 THE PMK USE CASE 183

ted by the code generator (e. g., ratp_node). This last category will
be covered in details in Section 7.1.3.

As discussed in Section 4.3.2, managing existing nodes in the
architecture model is extremely important, since they are an in-
valuable resource provided by the ROS community. During the
automatic code generation, existing nodes are ignored, since they
do not provide any internal implementation but are described
only as interfaces. However, they are correctly included in the
generation of launch files describing the current configuration
of the system. Moreover, connections between components can
be specialised using properties to exploit topic remapping and
define the runtime name of each topic, including those of already
implemented nodes. Currently, the code generator supports the
use of neither ASN.1 nor JSON schema to define the parameters
of the legacy nodes. However, it is possible to use properties to
specify a standard ROS YAML file to be automatically included in
the launch file as the parameter configuration of a specific node.

To automatically generate custom nodes that are compilation-
ready, it is necessary to specify a series of properties. On a basic
level, the designer can tune the behaviour of publishers and sub-
scribers by setting the frequency, the queue size or the default
name of the topic. Moving to a domain-specific point of view, the
developer has to provide the implementations of the nodes; for
this reason, we decided to base our test use case on an existing
architecture to exploit already implemented problem-specific code
for the automatic programming phase. To understand how the
process works in practice, let us take the example of the follower
node. Without considering the domain-specific implementation,
this component evokes a combination of a sink behaviour, the
subscriber receiving the messages from the laser rangefinder, and
a filter behaviour, manual set-points are received, modified accord-
ing to the scan measurements, eventually modified and published.
This configuration is translated to the code generator to two sub-
scribers (i. e., one for the laser and one for the input commands)
and one publisher (i. e., the output set-point). Moreover, by parsing
the JSON files specified as properties in the component definition,
the code generator can create the internal state of the node and
set default and initial values for parameters and variables.

After generating all the necessary source files, it is possible to
include the domain-specific implementation as an external library,

7.1 THE PMK USE CASE 184

Figure 7.4: Simplified (i. e., focusing only on custom defined thread)
graphical representation of the AADL description modelling
the ratp_node

defined again in properties of threads and subprograms; this is
done by carefully generating all the build files that bind together
the auto-generated node skeleton and the manually implemented
problem-specific code. When all the file related to the node are
fully generated (i. e., core node implementation, internal state,
external libraries, and build configurations), it is time to create
the launch files. Since the follower node is part of the platform
subsystem, it will be included in the platform-specific launch file.
Here the runtime configuration of the node is generated from the
JSON files and included. Moreover, as for the legacy nodes, the
code generator remaps topics name using the properties defined
in the model. At this point, the generation of the node is complete,
and it is ready to be compiled and run.

SPECIAL NODES

Since all the problem-specific logic was already implemented
in the original architecture, every element of the new system is
generated using the automatic programming approach. There is
only one exception: the ratp_node; this node is the device driver
connecting the low-level electronics of the wheelchair to the ROS-
based architecture. It implements a unique interface between
ROS messages and custom data streams defined by the PGDT

7.1 THE PMK USE CASE 185

bus; therefore, it is very challenging to generate the source code
using an automatic programming approach. Since this node is
a hybrid between a ROS-based (i. e., receiving set-points and
publishing the current speed and status) and an hardware-specific
(i. e., interfacing with the PMK) implementation, we can partially
exploit the code generator to define a node skeleton to be refined
by the developer. There are two key challenges when using this
approach: first, to have a model expressive enough to capture the
peculiar design of the component, and second, to generate a node
in such a way that the hardware-specific functionalities can be
integrated without major modifications.

To tackle the first challenge, we can exploit the expressive power
provided by AADL. When not extending our base templates (see
Section 4.4) used to identify ROS elements, AADL connections,
ports and threads can be used to model any kind of communic-
ation protocol or execution flow. Figure 7.4 shows a simplified
(recurring elements of the base ROS node are omitted) graph-
ical representation of the model of the ratp_node. It is possible to
use a periodic AADL thread together with a bidirectional port
to model the communication between the component and the
low-level hardware. Additional ports model the exchange from a
problem-specific implementation to ROS

The ratp_lib thread produces two outputs that are converted
to ROS messages: one is the current set-point provided by the
on-board joystick, and the other is the current speed of the wheel-
chair. Moreover, it receives one input from the rest of the system
that is then converted to a format compatible with the low-level
hardware: the set-point of the currently active input. These port on
the frontier of the low-level communication thread are connected
using internal connections to the corresponding threads model-
ling the publishers and subscribers. However, there is a significant
distinction between this model and how ROS threads are usually
modelled. Threads behaving as subscribers are not triggered by
a message coming from outside the component, but directly by
the ratp_lib thread, moreover, the publisher thread output does
not relay its message to the rest of the architecture, but the output
port is connected directly to the low-level communication thread.

The second challenge is implicitly solved by the design of the en-
gineered node and by how the code generator manages unknown
subcomponents. As explained in Section 5.4.2, the code generator

7.1 THE PMK USE CASE 186

parses a process model and implements it as a ROS node, only if it
extends the base ROS node model, Moreover, among the threads
defined as subcomponents, those that do not extend one of the
predefined functionalities (i. e., publisher, subscriber, subscriber
with publisher or service) are ignored and not processed by the
automatic programming system. In the case of the ratp_node it
means that the code generator recognises the component as a ROS
node and generates all the basic structure. Additionally, the three
thread modelled as ROS elements (i. e., cmd_vel, joystick and speed)
but connected to the ratp_lib thread are correctly generated as
ROS subscribers or publishers.

In summary, given the model presented in Figure 7.4, the res-
ulting generated node extends the engineered node and correctly
implements the life cycle, the asynchronous spinner, the encapsu-
lated internal state and the separation between the middleware
and the problem-specific code. Moreover, it contains three pub-
lishers and three subscribers. Out of these six ROS functionalities,
three are correctly implemented: the publishers for the speed
and the on-board joystick command, and the subscriber for the
external set-point. The other three needs to be converted from
a ROS-based design to an implementation compatible with the
low-level interface. While this approach may appear as an over-
complication, it streamlines the work of the developer. The code
generator handles all the ROS-related boilerplate while defining a
structure that can be easily exploited; the developer only needs to
focus on implementing the thread interfacing with the low-level
hardware. In our implementation, we used the already created
structure as a reference and replaced the callback structure of ROS
with standard bindings. Basically, the interaction still happens
through a system of callbacks; however, they are not triggered by
ROS but controlled by the ratp_thread.

In conclusion, while this node requires a significant intervention
of the developer, it is still more efficient to model it, generate
the code to obtain a partially implemented component and then
manually insert some modifications. This is possible because of
the flexibility of the engineered node, and because ROS is still
at the core of the component design. While our code generator
cannot completely and successfully process this type of nodes,
this mixed approach gives us an insight into how to generate
automatically future nodes with the same characteristics.

7.1
TH

E
PM

K
USE

CASE
187

sick_front

sick_rear

laserscan_multi_merger

/scan_rear

/scan_front

move_base

amcl

map_server_pmk odom_pub

/map

/tf
/scan

/scan

/odom

ratp_node

/chair_odometry

joy_node

in_mux

follower

out_mux

/joy

/in_mux/xy

/follower/xy

/centerscan

/xy_cmd

/cmd_vel

dcled_node hb_manager heartbeat

/state /state

/in_mux/xy

/state/dcled_msg

Figure 7.5: Original design of the architecture of the autonomous wheelchair.

7.1
TH

E
PM

K
USE

CASE
188

Figure 7.6: Runtime ROS graph of the hand-written architecture.

7.1
TH

E
PM

K
USE

CASE
189

Figure 7.7: Runtime ROS graph of the automatically generated architecture.

7.1 THE PMK USE CASE 190

COMPARISON

This use case aimed to showcase how a complete and functional
architecture can be designed and developed entirely using a
model-based approach combined with automatic code genera-
tion. Starting from an existing architecture was useful for multiple
reasons: clear use case and requirements for the robot, existing
implementations for all the problem-specific features, precise tar-
get functionalities, reference benchmark for the behaviour of the
autonomous wheelchair. It was important for us to be able to com-
pare the result of our approach to an existing implementation. In
this section, we will analyse the original architecture to show the
similarities with the automatic generated one and also to highlight
existing problems solved by using a model-based design.

First of all, we have to compare the design of the architecture
of the wheelchair according to the documentation (Figure 7.5)
with the runtime computation graph generated by ROS (Fig-
ure 7.6). With a quick analysis, it is possible to see that they do
not match. Some nodes mentioned in the documentation are not
present in the graph (e. g., dcled_node) or vice versa (e. g., scan-
ner_multi_merger_center), while others have been replaced (e. g.,
the standard map_server in place of the custom map_server_pmk).
This is not surprising, as the PMK is an ongoing research project
where multiple people with varying experience contributed to it.
The result is a codebase with features not present in the docu-
mentation or the original design. As the project progressed, some
of the features were removed, but they left dangling dependencies
behind, as design choices and components. This problem is exacer-
bated by the fact that ROS does not provide any tool to visualise
and analyse the complete architecture before runtime. The only
way is to run the entire system and then view the ROS graph
using tools like rqt_graph. However, even this approach is limited,
since it only shows topics, but no services or actions. Of course,
a model-based approach does not automatically solve all these
problems, since a developer can, and sometimes needs to, directly
modify the codebase. However, by combining the models with the
automatic code generation, we can create an environment where
good practices and designs are encouraged and more natural.

With a deeper analysis of the runtime graph, it is possible to
identify some architectural problems that were not present in the

7.1 THE PMK USE CASE 191

Hand-written software
Generated software

Figure 7.8: Comparison between the trajectory followed by the robot
equipped with the hand-written software (in red) and the
automatically generated implementation (in blue).

original design but were introduced in sequential iterations of
the project. Three fundamental issues could cause unexpected
behaviours of the robot.

• There is a circular dependency between odom_pub and amcl.
Both nodes are in charge of estimating the position of the
robot. The former uses velocity measurement coming from
the wheelchair, while the latter matches laser rangefinder
data with a known map. The circular dependency happens
because each of them expects from the other an initial po-
sition to start the estimate. Given how the two algorithms
are implemented, an incorrect starting position would not
compromise the correct functioning of the system; however,

7.1 THE PMK USE CASE 192

it may cause unexpected behaviour, especially after the ini-
tialisation of the system.

• The odometry is estimated twice in the system. This is not
directly visible from the graph presented in Figure 7.6, since
it is not detailed enough, however, the rapt_node pre-compute
the odometry of the platform and provide it, together with
the velocity measurements, to odom_pub. The initial com-
putation is then discarded and recalculated again directly
from the velocity. While this causes no malfunction, it is not
a consistent design choice to perform specific processing
twice in the same architecture.

• The management of laser scanner measurements is flawed
in multiple ways. As explained in Section 7.1.1, the naviga-
tion subsystem requires a unified source of laser informa-
tion. In the original documentation, there was a single node
in charge of merging the two laser sources; however, in
the actual architecture, there are two nodes with the same
task: scanner_multi_merger_center and laserscan_multi_merger.
Moreover, it is not visible from the computation graph, but
the lunch file of the original architecture included a third
laser scan merger node, which is killed at startup since it
has the same name of another one, and ROS forbids it. Fi-
nally, there is a scanmatcher node that subscribes to a topic
but has no role in the architecture, a leftover dependency
from a removed functionality. Since the duplicated nodes
are functionally identical, the overall functionalities of the
architecture are preserved. However, such a configuration is
a waste of computational power and a potential source of
significant and dangerous inconsistencies.

For comparison, Figure 7.7 shows the runtime graph of the
architecture resulting from the model-based design and automatic
code generation. The overall structure of the system is very similar
to the original architecture. However, all the issues identified
before have been solved.

• There is no circular dependency between amcl and odom.
They receive the initial position independently as a para-
meter or through an external topic.

7.2 WEB INTERFACE 193

• The odometry is estimated only once in the odom node. The
ratp_node provides directly and only the current speed of
the wheelchair as a Twist message.

• Only one node is in charge of unifying the laser sources and
the scanmatcher node has been removed.

Analysing the ROS graph is useful to provide an overview of
the quality of the design of the architecture; however, it gives no
insight into the actual functionalities of the system. As seen from
the original architecture, design flaws do not always translate
in a compromised system or in faulty behaviours. The robotic
wheelchair equipped with the handcrafted architecture supported
full autonomous driving with no serious issues, except for minor
problems caused by an unstable communication with the low-
level control module. This means that we can use the behaviour of
the original architecture to provide empirical proof of the correct-
ness of the generated architecture. We performed a comparison
between the path followed by the wheelchair when running the
original system in autonomous mode, and then we gave the same
goal to the generated architecture. Figure 7.8 shows the result.
The resulting paths are extremely similar, indicating that not only
the generated architecture replicates the same results of the ori-
ginal one, but also that all the problem-specific implementations
have maintained their original functionalities even after being
transposed in the automatically generated ROS environment.

7.2 WEB INTERFACE
By decoupling the Server from the OntoRob Interface we can create
multiple interfaces that can access the functionalities of the robot
through the capability system. To explore different approaches,
push the boundaries of our implementation, and test it directly
with users in a controlled environment, we developed a new Web
Interface. An instance of this interface is visible in Figure 7.9. It
replaces the OntoRob interface and interacts directly with the Server.

Once set up, the interface is accessible from any web browser,
it was specifically designed to be simple, intuitive, easy to under-
stand, and accessible. The aim is not to implement a complete

7.2 WEB INTERFACE 194

Figure 7.9: The web interface used to interact with the capabilities evoked
by the robot.

interface to program and remotely control a robot but to create a
proof-of-concept that can be used to inspect the status of the robot
(through read-capabilities) and give a sequence of simple com-
mands (through write-capabilities). To make the interface more
complete, we implemented a simple programming language to
chain multiple commands together and to use conditional state-
ments based on the output of read-capabilities.

In this section, we describe the graphical user interface presen-
ted by the Web interface, and then we show the results obtained in
an experiment where a set of user with no previous experience in
robotics or ROS had to develop programs using the interface to
complete a simple robotic task with two different platforms.

GUI DESCRIPTION

The Web interface is designed to be essential and to show as much
information as possible without overloading the user. It is divided
into three different panels, each one focusing on a specific aspect

7.2 WEB INTERFACE 195

of our approach. The capability panel, it presents the functionality
of the robot compactly, the program panel, it is the main part
of the interface, and it contains the program created by the user,
and construct panel, it is the “toolbox” the user has to create the
program.

CAPABILITY PANEL – This panel presents the capabilities abstrac-
ted by the combined work of the Analyzer and the Server. When
activated, the Web interface contacts the Server and retrieve the
list of all the currently active and accessible capabilities. The re-
trieved list is presented to the user in various forms depending on
the nature of each capability. First of all, the distinction between
read-capabilities and write-capabilities. The former represents the
information flow form robot to the user; therefore, their value
is constantly updated and visualised in the GUI. For example,
the box connected to the Robot position capabilities contains three
fields (i. e., x, y and z coordinates) showing the current position
of the robot in space, the Web Interface periodically queries the
server to update the content of the fields with the most recent
position. The latter represent the entry points a user can exploit
to interact with the robot; therefore, they are presented only as a
list of available capabilities. For each capability, the most suitable
visualisation system is used. For instance, the velocity of the robot
is more understandable in a numerical form showing the raw
content of the original ROS message, while the video feed of the
on-board camera is better if rendered to show the actual pictures.
Each capability is associated with a description to help the user
understand the information provided, and exploit the entry point
to interact with the robot.

PROGRAM PANEL – The central area of the Web interface, as seen in
Figure 7.9, is dedicated to the user to create a program to send to
the robot. The user can select each sub-panel of the programming
area to interact with it. By selecting the outermost panel (i. e., the
grey border around the whole program in the figure), the user
can add a new capability or a new programming paradigm, while
by selecting internal panels (e. g., the pink border in the DO panel)
the user can define subroutines and specify conditions. When
added to the Program panel, a capability will show the available
parameters as fillable fields, so the user can specify the actual

7.2 WEB INTERFACE 196

value to send to the robot. Once the user is satisfied with the
set of commands, he can send them to the robot using the Run
button. When the button is pressed, the commands are converted
by the Web interface in a JSON file and sent to the Server. The Server
decode the list of instructions and execute them in the necessary
order through the Dynamic node.

CONSTRUCT PANEL – The rightmost panel of the Web interface
represents the “toolbox” of the user. We did not want to imple-
ment a complex and fully functional programming language;
therefore, we focused on the essential constructs to give the user
enough freedom. The first on the list is the capability: by using
this construct the user can add a special container to the program,
then, by selecting the container, add a specific write-capability by
using the add button from the capability panel. Then there are all
the constructs available to change the control flow of the program:
if-then-else, for a conditional jump, while-do, for a condition-based
loop, and repeat, to repeat a set of instructions a specific amount of
times. A program can be created as an imperative programming
language, in which the atomic blocks are either invocation of the
available robot capabilities or any conditional operator. An addi-
tional no-action construct can be used to perform a no-operation
(e. g., an if-then-else with an empty else statement), or to create
waiting loops. The parameters of a capability can be used in the
conditions, to exploit any robot output and drive the program
flow (e. g., moving forward until an object is detected).

EXPERIMENTAL SETUP

Each user was asked to perform four exercises of increasing diffi-
culty. These corresponded to creating a program allowing a robot
to achieve a specific task. To demonstrate that the ontology-based
system could allow the abstraction of robot capabilities independ-
ently from the platform, we set up two variants of each exercise,
a simulated one with a ground wheeled robot operating in an
office environment (s-variant), and a real-world one with a drone
flying in an indoor space (r-variant). Table 7.1 presents the robot
capabilities available in each setting.

7.2 WEB INTERFACE 197

MODE s-VARIANT r-VARIANT

autonomous navigation take-off
write directional movement land

directional movement

vision
current position vision

read current speed current position
map representation object recognition
object recognition

Table 7.1: Robot capabilities for the two exercise variants.

EXERCISE 1: SINGLE COMMAND – The first exercise requires the
user to send a single command to the robot (i. e., exploit a single
write-capability). The exercise was designed to let the user famil-
iarise with Web interface by focusing only on understanding the
concept of capability and how to use them to operate the robot.
In the s-variant, the user needs to exploit two capabilities: Map
representation to understand the current position of the robot and
select a potential destination, and Autonomous navigation to com-
mand the robot to reach the specified goal. For the r-variant, the
exercises start when the drone already performed a successful
take-off (i. e., the drone is already flying); therefore, the user needs
to use only the Directional movement capability to move the drone
in any direction.

EXERCISE 2: COMMAND SEQUENCE – The second exercise re-
quires the user to chain together a list of commands to send to
the robot (i. e., exploit multiple write-capabilities or the same one
multiple times). The objective of this exercise is to let the user
know that he can create a complex behaviour for the robot, and
not only send atomic actions. The s-variant is a direct extension
of the previous exercise since the user needs to instruct the robot
to navigate to two different locations, one after the other. In the
r-variant, the task will start again with a drone that has success-
fully performed a take-off, the user has to instruct the drone with

7.2 WEB INTERFACE 198

any motion command, then command the drone to land using the
Land capability.

EXERCISE 3: CONDITION-BASED HALT – The third exercise re-
quires the user to implement a sequence of actions with a termin-
ation condition (i. e., use a condition to manage the execution of a
write-capability). In this exercise, we introduce the first conditional
constructs (e. g., repeat and while-do) to the user, and we let him
discover that he can create complex programs. In the s-variant, the
robot needs to patrol three different locations, stopping only once
all the locations had been visited at least twice. This requires to
exploit the Autonomous navigation capability and to use the repeat
construct. In the r-variant, the user has to instruct the drone with
a ration of 180°, followed by a landing command. In this case
the user has to exploit both write-capabilities to pilot the drone
(i. e., Directional movement and Land) and a read-capability (i. e.,
Robot orientation) together with a conditional statement, in order
to complete the exercise.

EXERCISE 4: OBJECT RECOGNITION – In the final exercise, the
user had to combine base capabilities (e. g., Directional movement or
Navigation) with advanced capabilities based on additional func-
tionalities introduced in the robot. In particular, the user had to
create a behaviour for the robot based on the detection of ARtags.
This exercise aims to show how to extend the functionalities of
the robot with extra capabilities. In the s-variant, the robot had to
patrol a set of locations until an ARtag is detected. In the r-variant,
the user had to implement three different movement behaviours
for the drone; each of them triggered by a different ARTag.

RESULTS AND DISCUSSION

A total of fourteen users were involved in the evaluation, equally
shared between the s- and the r-variant. All the users had at least
some basic programming knowledge; however, none of them had
any robotic background or any previous experience with ROS or
other robotic middleware or framework. As a starting point, users
were first allowed to familiarise themselves with the interface,
namely through clicking on the different sections to understand
the general behaviour of the tool. To make the task of resolving

7.2 WEB INTERFACE 199

Ex. 1 Ex. 2 Ex. 3 Ex. 4

s-variant

pb 1 2 4 9.5
no. cap 1 1 1 2

t 1:22

± 42s
1:04

± 23s
1:15

± 16s
6:52

± 1:46

r-variant

pb 1 2 4 8

no. cap 1 2 4 4

t 1:16

± 3s
01:16

± 8s
4:05

± 15s
5:47

± 1:39

Table 7.2: Results obtained by the non-experts for the s-variant and the
r-variant.

the different exercises more challenging for the users, they were
prevented from reading the description of the capabilities in this
initial familiarisation phase. After this first step, they were asked to
solve all four exercises, one after the other. For every exercise, we
measured the time needed by the user to implement the program.
The timer starts after the description of the task.

Table 7.2 shows the average time (t) required by the users to
solve each exercise, along with the average number of program-
ming blocks (pb) and the number of capabilities (no. cap) required
to solve the task. All the exercises were successfully carried out by
all users. As one can see, Ex. 1 took slightly longer (especially in
the s-variant), when compared with other more complex exercises.
This can be attributed to the time users required to familiarise
themselves with the capabilities of the robot they were working
with, which they did not know beforehand. The relatively high
variance in the time taken for Ex. 4 is due to this particular ex-
ercise having multiple solutions, some of which takes longer to
implement than others.

A key, straightforward conclusion from this table is that users
of this tool, who had no experience of programming robots and
no prior knowledge of the architecture of the robot they were

7.2 WEB INTERFACE 200

manipulating, managed to successfully program such a robot to
achieve different tasks in a matter of a few minutes. Considering
the inherent complexity of robot programming and understanding
not only what a robot can do (what capabilities it possesses), but
also how to use it (how to invoke those capabilities), this can be
considered a non-trivial achievement.

A direct comparison with how the same users would have
achieved the same tasks without the tool provided is not feasible
and would turn out to be meaningless. However, given that those
users are not familiar with ROS, the process of identifying the
different components of the robot, what they do, and how to use
them, would require more than the few minutes needed with our
interface. ROS is a complex framework, requiring hours of practice
to master. Besides, analysing the runtime graph to understand
which topics and services are being used (i. e., what the tool
does through the ontology) is far from an easy task. Several ROS
nodes would need to be implemented from scratch to encapsulate
the required functionalities, and manage the correct publishers
and subscribers. Lastly, the nodes would need to be deployed
and integrated with the robot architecture. Knowledge of the
specific packages (e. g., move_base for autonomous navigation) is
also required by some of the exercises. In other words, while a
direct comparison was not feasible, achieving the same results
with ROS would have undoubtedly required a significantly higher
effort by our non-expert users compared to our tool.

As an additional point towards the validity of our claim that
our tool reduces the effort required to exploit robots’ capabilities
and therefore make them more accessible, we asked an expert in
robotics with extensive experience in ROS to achieve the same
task. Once again, the objective here is not to compare the experts
to the non-experts using two different frameworks, but to provide
an intuitive understanding of the difficulty of realizing the tasks
achieved by our users without our tool. In Table 7.3, we therefore
show for each task in each variant:

• the number of lines of code used by the ROS expert (LOC),

• the number of ROS communication components (publishers
and subscribers) employed (no. com),

• the number of message types used (no. msg).

7.2 WEB INTERFACE 201

Ex. 1 Ex. 2 Ex. 3 Ex. 4

s-variant

LOC 35 58 64 82

no. com 1 2 2 3

no. msg 1 2 2 3

r-variant

LOC 34 39 56 59

no. com 1 2 4 4

no. msg 1 2 3 3

Table 7.3: Results obtained by the expert for the s-variant and the r-
variant.

These metrics give an estimate of the effort required by a ROS
developer to solve the specified tasks. Lines of code set a lower
bound for the implementation time, while the number of compon-
ents and messages outline the complexity of the solution.

This comparison further shows how programming a robot is
made “easier” and, through abstracting capabilities from the
technical aspects of their implementation, requires less complexity.
Our approach and the associated tool represent a viable solution
to enable non-expert users to exploit robots in ways that were
before only accessible to expert ROS programmers.

8 CONCLUS IONS AND
FUTURE WORKS

I tried so hard and got so far, but in the end, it doesn’t even matter

— In the end, Linkin Park

In this thesis, we provided a collection of methodologies, tech-
niques and tools, which can be used by the multiple actors in-
volved in the design and development of robotic architectures and
applications to support, guide and assist their work. In particular,
we created a model-based approach for robotics using AADL, a
complete toolchain for automatic code generation targeting ROS,
and an ontology-based abstraction to extract robot capabilities.

The system designer can use AADL in combination with a data
modelling language (i. e., ASN.1 and JSON schema) to design the
architecture of the robot. We aimed to provide a general approach
by using an existing modelling language instead of creating a
specific one or constraining a general-purpose language. Concep-
tually, we provide a mapping between AADL concepts and robotic
architectural artefacts. Demonstrating that a modelling language
as powerful as AADL can be used to model a robotic architecture
entirely is already a contribution. However, the real achievement
of this work is to provide a hierarchy of modelling templates that
the designer can use, at the same time, to create complex robotic
architectures and to exploit the functionalities of the language.
This solves the usual training trade-off when switching from tra-
ditional development to model-driven approaches. The templates
hide the complexity of the language, leaving only the most in-
tuitive and necessary elements. Additionally, we argue that the
level of detail (i. e., modelling the internal functionalities of the
components) provided by our approach is on par with framework-
specific solutions while maintaining a general approach, which is
only loosely tied with the target platform.

The component developer takes advantage of the automatic code
generation process to start the development of the component

202

CONCLUSIONS AND FUTURE WORKS 203

from a partially implemented ROS node. The output of the gen-
erator is more than just a code skeleton; it is a full-fledged ROS
component implementing advanced functionalities, such as the
internal life cycle and a clear separation between framework code,
internal state and problem-specific implementation. In most scen-
arios, the component developer does not even need to open the
auto-generated source file but can implement all the necessary
execution code in separate libraries, automatically embedded in
the generated component. Additionally, while the code generator
targets ROS, it was designed using a two-steps approach to create
a more accessible (i. e., based on XML instead of AADL) interme-
diate representation, which can be used to implement different
generators for different targets.

The application developer can exploit capabilities as they were
high-level APIs representing robot functionalities. While the mo-
tivating scenario was ensuring the interoperability between a
robot and a centralised control system, the concept of capabilities
fits wonderfully with the necessity of an application developer. Ap-
plications do not need to be robotic applications to exploit robot
functionalities. By implementing the abstraction layer, a robot
can be used as a library, without any knowledge of the physical
configuration, nor of the underlying architecture, framework, or
any other robot-specific detail.

In summary, we created a continuous development environment
where the system designer can use AADL to model the architecture
of the robot, from the topology to the inner component func-
tionalities. This model is the input of the code generator, while
the output is used by the component developer to implement the
robot functionalities. These functionalities are abstracted using
an ontology-based approach to allow the application developer to
interact with the robot.

Given the generality and the modularity of our work, various
elements can be extended. Currently, the modelling approach uses
a hierarchy of modelling templates. At the root there is AADL,
then the description of the component-connector paradigm, and
last is ROS. This last level can be replaced to model the peculiar
characteristics of any framework. The first and most reasonable
choice is ROS2 since only small variations are needed. Another
option is to provide an AADL version of the meta-models defined
by RobMoSys. The component-and-connector layer already matches

CONCLUSIONS AND FUTURE WORKS 204

various RobMoSys definitions; however, some framework-specific
details are required (e. g., thread configuration of the component,
life cycle, etc.).

Similar extensions are possible also in the code generation tool-
chain. In Section 7.1.3, we presented how we manually managed
the automatic generation of a hybrid node. This approach can
be refined and formalised to be included in the code generator.
Moreover, currently, we use a thread-based approach to detect
the relevant elements, moving toward a port-based alternative
would give more flexibility to the toolchain. Of course, given the
two-steps design of the code generator, it is possible to implement
model-to-text transformations using other targets. The first and
most reasonable choice is again ROS2. This new iteration of ROS
uses a design approach similar to our engineered node, therefore
extending the code generator to support ROS2 is not a challenging
task. Lastly, we could modify the automatic programming tool-
chain to perform a second model-to-model transformation to con-
vert the AAXML representation to a RobMoSys compatible model,
making our approach fully compliant with their guidelines.

Regarding the abstraction layer, we already mentioned the pos-
sibility of connecting more tightly the capabilities extraction pro-
cess with the model-based approach by tagging the model with
the evoked capabilities. Additionally, in our work, we did not cre-
ate a definitive taxonomy of robot capabilities, and we believe that
this kind of classification should be a community effort instead of
the initiative of a small group of researchers. Lastly, we realised
how providing a decoupling between the robot, and a high-level
developer can be exploited for educational purposes. Writing the
first robotic component is not a difficult task; however, mastering
a specific framework is challenging. A top-down approach based
first on the robot capabilities and then on the technicalities of the
framework would help new learners in approaching robotic from
the right angle.

B IBL IOGRAPHY

[1] AUTOSAR website. https://www.autosar.org/. [Online, ac-
cessed 10-October-2019]. 2019.

[2] Alain Abran, James W Moore, Pierre Bourque, Robert
Dupuis and L Tripp. ‘Software engineering body of know-
ledge’. In: IEEE Computer Society, Angela Burgess (2004).

[3] Roberto Acerbis, Aldo Bongio, Marco Brambilla, Massimo
Tisi, Stefano Ceri and Emanuele Tosetti. ‘Developing eBus-
iness solutions with a model driven approach: the case of
acer EMEA’. In: International Conference on Web Engineering.
Springer. 2007, pp. 539–544.

[4] Omar Aldawud, Tzilla Elrad and Atef Bader. ‘A UML
profile for aspect oriented modeling’. In: OOPSLA 2001
workshop on aspect Oriented Programming. 2001.

[5] Noriaki Ando, Takashi Suehiro, Kosei Kitagaki, Tetsuo
Kotoku and Woo-Keun Yoon. ‘RT-middleware: distributed
component middleware for RT (robot technology)’. In: 2005
IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2005, pp. 3933–3938.

[6] Noriaki Ando, Takashi Suehiro and Tetsuo Kotoku. ‘A
software platform for component based rt-system devel-
opment: Openrtm-aist’. In: International Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots.
Springer. 2008, pp. 87–98.

[7] Saoussen Anssi, Sara Tucci-Piergiovanni, Stefan Kuntz, Sé-
bastien Gérard and François Terrier. ‘Enabling scheduling
analysis for AUTOSAR systems’. In: 2011 14th IEEE In-
ternational Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing. IEEE. 2011, pp. 152–159.

[8] Thomas Arts, John Hughes, Ulf Norell and Hans Svens-
son. ‘Testing AUTOSAR software with QuickCheck’. In:
2015 IEEE Eighth International Conference on Software Testing,

205

https://www.autosar.org/

BIBLIOGRAPHY 206

Verification and Validation Workshops (ICSTW). IEEE. 2015,
pp. 1–4.

[9] Robert Balzer. ‘A 15 year perspective on automatic pro-
gramming’. In: IEEE Transactions on Software Engineering 11

(1985), pp. 1257–1268.

[10] Gianluca Bardaro and Matteo Matteucci. ‘Using AADL
to model and develop ROS-based robotic application’. In:
2017 First IEEE International Conference on Robotic Computing
(IRC). IEEE. 2017, pp. 204–207.

[11] Gianluca Bardaro, Andrea Semprebon, Agnese Chiatti and
Matteo Matteucci. ‘From Models to Software Through
Automatic Transformations: An AADL to ROS End-to-End
Toolchain’. In: 2019 Third IEEE International Conference on
Robotic Computing (IRC). IEEE. 2019, pp. 580–585.

[12] Gianluca Bardaro, Andrea Semprebon and Matteo Mat-
teucci. ‘AADL for robotics: a general approach for system
architecture modeling and code generation’. In:

[13] Gianluca Bardaro, Andrea Semprebon and Matteo Mat-
teucci. ‘A use case in model-based robot development
using AADL and ROS’. In: Proceedings of the 1st Interna-
tional Workshop on Robotics Software Engineering. ACM. 2018,
pp. 9–16.

[14] Johannes Baumgartl, Thomas Buchmann, Dominik Hen-
rich and Bernhard Westfechtel. ‘Towards Easy Robot Pro-
gramming - Using DSLs, Code Generators and Software
Product Lines.’ In: ICSOFT. 2013, pp. 548–554.

[15] David Benavides, Pablo Trinidad and Antonio Ruiz-Cortés.
‘Automated reasoning on feature models’. In: International
Conference on Advanced Information Systems Engineering. Sprin-
ger. 2005, pp. 491–503.

[16] Lorenzo Bettini. Implementing domain-specific languages with
Xtext and Xtend. Packt Publishing Ltd, 2016.

[17] Geoffrey Biggs, Kiyoshi Fujiwara and Keiju Anada. ‘Model-
ling and analysis of a redundant mobile robot architecture
using aadl’. In: International Conference on Simulation, Model-
ing, and Programming for Autonomous Robots. Springer. 2014,
pp. 146–157.

BIBLIOGRAPHY 207

[18] Rainer Bischoff, Tim Guhl, Erwin Prassler, Walter Nowak,
Gerhard Kraetzschmar, Herman Bruyninckx, Peter Soetens,
Martin Haegele, Andreas Pott, Peter Breedveld et al. ‘Brics-
best practice in robotics’. In: ISR 2010 (41st International
Symposium on Robotics) and ROBOTIK 2010 (6th German
Conference on Robotics). VDE. 2010, pp. 1–8.

[19] Stéphane Bonnet, Jean-Luc Voirin, Daniel Exertier and
Véronique Normand. ‘Not (strictly) relying on sysml for
MBSE: language, tooling and development perspectives:
The arcadia/capella rationale’. In: 2016 Annual IEEE Sys-
tems Conference (SysCon). IEEE. 2016, pp. 1–6.

[20] Marco Brambilla, Jordi Cabot and Manuel Wimmer. ‘Model-
driven software engineering in practice’. In: Synthesis Lec-
tures on Software Engineering 1.1 (2012), pp. 1–182.

[21] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan Wil-
liams and Anders Orebäck. ‘Orca: A component model and
repository’. In: Software engineering for experimental robotics.
Springer, 2007, pp. 231–251.

[22] Davide Brugali and Luca Gherardi. ‘Hyperflex: A model
driven toolchain for designing and configuring software
control systems for autonomous robots’. In: Robot Operating
System (ROS). Springer, 2016, pp. 509–534.

[23] Davide Brugali and Patrizia Scandurra. ‘Component-based
robotic engineering (part i)[tutorial]’. In: IEEE Robotics &
Automation Magazine 16.4 (2009), pp. 84–96.

[24] Davide Brugali and Azamat Shakhimardanov. ‘Component-
based robotic engineering (part ii)’. In: IEEE Robotics &
Automation Magazine 17.1 (2010), pp. 100–112.

[25] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault and Frédéric
Madiot. ‘MoDisco: a generic and extensible framework for
model driven reverse engineering’. In: Proceedings of the
IEEE/ACM international conference on Automated software
engineering. ACM. 2010, pp. 173–174.

[26] Herman Bruyninckx. ‘Open robot control software: the
OROCOS project’. In: Proceedings IEEE international confer-
ence on robotics and automation. Vol. 3. IEEE. 2001, pp. 2523–
2528.

BIBLIOGRAPHY 208

[27] Herman Bruyninckx. ‘OROCOS: design and implementa-
tion of a robot control software framework’. In: Proceedings
of IEEE International Conference on Robotics and Automation.
Citeseer. 2002.

[28] Herman Bruyninckx, Markus Klotzbücher, Nico Hoch-
geschwender, Gerhard Kraetzschmar, Luca Gherardi and
Davide Brugali. ‘The BRICS component model: a model-
based development paradigm for complex robotics soft-
ware systems’. In: Proceedings of the 28th Annual ACM Sym-
posium on Applied Computing. ACM. 2013, pp. 1758–1764.

[29] Herman Bruyninckx, Peter Soetens and Bob Koninckx.
‘The real-time motion control core of the Orocos project’.
In: 2003 IEEE International Conference on Robotics and Auto-
mation (Cat. No. 03CH37422). Vol. 2. IEEE. 2003, pp. 2766–
2771.

[30] Alexander Bubeck, Florian Weisshardt and Alexander Verl.
‘Bride-a toolchain for framework-independent develop-
ment of industrial service robot applications’. In: ISR/Ro-
botik 2014; 41st International Symposium on Robotics. VDE.
2014, pp. 1–6.

[31] Stefano Ceri, Piero Fraternali and Aldo Bongio. ‘Web Mod-
eling Language (WebML): a modeling language for design-
ing Web sites’. In: Computer Networks 33.1-6 (2000), pp. 137–
157.

[32] Nitishal Chungoora, Robert I Young, George Gunendran,
Claire Palmer, Zahid Usman, Najam A Anjum, Anne-
FrançOise Cutting-Decelle, Jennifer A Harding and Keith
Case. ‘A model-driven ontology approach for manufactur-
ing system interoperability and knowledge sharing’. In:
Computers in Industry 64.4 (2013), pp. 392–401.

[33] IEEE Standards Coordinating Committee et al. ‘IEEE Stand-
ard Glossary of Software Engineering Terminology (IEEE
Std 610.12-1990). Los Alamitos’. In: CA: IEEE Computer
Society 169 (1990).

[34] Steve Cousins. ‘Exponential growth of ros [ros topics]’. In:
IEEE Robotics & Automation Magazine 1.18 (2011), pp. 19–20.

[35] Douglas Crockford. ‘The application/json media type for
javascript object notation (json)’. In: (2006).

BIBLIOGRAPHY 209

[36] James B Dabney and Thomas L Harman. Mastering simulink.
Pearson, 2004.

[37] Enrico Daga, Mathieu d’Aquin, Alessandro Adamou and
Enrico Motta. ‘Addressing exploitability of smart city data’.
In: Smart Cities Conference (ISC2), 2016 IEEE International.
IEEE. 2016, pp. 1–6.

[38] Didier Delanote, Stefan Van Baelen, Wouter Joosen and
Yolande Berbers. ‘Using AADL to model a protocol stack’.
In: 13th IEEE International Conference on Engineering of Com-
plex Computer Systems (iceccs 2008). IEEE. 2008, pp. 277–
281.

[39] Stampfer Dennis, Lotz Alex, Lutz Matthias and Schlegel
Christian. ‘The smartmdsd toolchain: An integrated mdsd
workflow and integrated development environment (ide)
for robotics software’. In: (2016).

[40] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Zi-
adi and Mikal Ziane. ‘Robotml, a domain-specific language
to design, simulate and deploy robotic applications’. In:
International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Springer. 2012, pp. 149–
160.

[41] Alonso Diego, Cristina Vicente Chicote, Ortiz Francisco,
Pastor Juan and Álvarez Bárbara. ‘V3cmm: A 3-view com-
ponent meta-model for model-driven robotic software de-
velopment’. In: (2010).

[42] Dale Dougherty and Arnold Robbins. sed & awk: UNIX
Power Tools. " O’Reilly Media, Inc.", 1997.

[43] Olivier Dubuisson. ASN. 1: communication between hetero-
geneous systems. Morgan Kaufmann, 2000.

[44] Shaun Edwards and Chris Lewis. ‘Ros-industrial: apply-
ing the robot operating system (ros) to industrial applica-
tions’. In: IEEE Int. Conference on Robotics and Automation,
ECHORD Workshop. 2012.

[45] Ayssam Elkady and Tarek Sobh. ‘Robotics middleware:
A comprehensive literature survey and attribute-based
bibliography’. In: Journal of Robotics 2012 (2012).

BIBLIOGRAPHY 210

[46] Brian Elvesæter, Cyril Carrez, Parastoo Mohagheghi, Arne-
Jørgen Berre, Svein G Johnsen and Arnor Solberg. ‘Model-
driven service engineering with SoaML’. In: Service Engin-
eering. Springer, 2011, pp. 25–54.

[47] Magnus Eriksson, Jürgen Börstler and Kjell Borg. ‘Man-
aging requirements specifications for product lines–An
approach and industry case study’. In: Journal of Systems
and Software 82.3 (2009), pp. 435–447.

[48] Huascar Espinoza, Daniela Cancila, Bran Selic and Sébas-
tien Gérard. ‘Challenges in combining SysML and MARTE
for model-based design of embedded systems’. In: European
Conference on Model Driven Architecture-Foundations and Ap-
plications. Springer. 2009, pp. 98–113.

[49] Moritz Eysholdt and Heiko Behrens. ‘Xtext: implement
your language faster than the quick and dirty way’. In:
Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applica-
tions companion. ACM. 2010, pp. 307–309.

[50] Madeleine Faugere, Thimothee Bourbeau, Robert De Si-
mone and Sebastien Gerard. ‘Marte: Also an uml profile for
modeling aadl applications’. In: 12th IEEE International Con-
ference on Engineering Complex Computer Systems (ICECCS
2007). IEEE. 2007, pp. 359–364.

[51] Peter H Feiler, David P Gluch and John J Hudak. The archi-
tecture analysis & design language (AADL): An introduction.
Tech. rep. Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, 2006.

[52] Peter Feiler. ‘Open source aadl tool environment (osate)’.
In: AADL Workshop, paris. 2004, pp. 1–40.

[53] Marcus Fontoura, Wolfgang Pree and Bernhard Rumpe.
The UML profile for framework architectures. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[54] Tully Foote. ‘tf: The transform library’. In: 2013 IEEE Confer-
ence on Technologies for Practical Robot Applications (TePRA).
IEEE. 2013, pp. 1–6.

[55] Martin Fowler. Domain-specific languages. Pearson Educa-
tion, 2010.

BIBLIOGRAPHY 211

[56] Sanford Friedenthal, Alan Moore and Rick Steiner. A prac-
tical guide to SysML: the systems modeling language. Morgan
Kaufmann, 2014.

[57] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno.
‘An introduction to UML profiles’. In: UML and Model
Engineering 2 (2004), pp. 6–13.

[58] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas
Weber, Frank Kirschke-Biller, Peter Heitkämper, Gerulf
Kinkelin, Kenji Nishikawa and Klaus Lange. ‘AUTOSAR–A
Worldwide Standard is on the Road’. In: 14th International
VDI Congress Electronic Systems for Vehicles, Baden-Baden.
Vol. 62. 2009, p. 5.

[59] Brian Gerkey, Richard T Vaughan and Andrew Howard.
‘The player/stage project: Tools for multi-robot and distrib-
uted sensor systems’. In: Proceedings of the 11th international
conference on advanced robotics. Vol. 1. 2003, pp. 317–323.

[60] Philippe Gerum. ‘Xenomai-Implementing a RTOS emula-
tion framework on GNU/Linux’. In: White Paper, Xenomai
(2004), p. 81.

[61] Luca Gherardi and Davide Brugali. ‘An eclipse-based fea-
ture diagrams toolchain’. In: Eclipse-IT 2011. The Sixth Work-
shop of the Italian Eclipse Community. 2011, pp. 242–253.

[62] Luca Gherardi and Davide Brugali. ‘Modeling and reusing
robotic software architectures: the hyperflex toolchain’. In:
2014 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2014, pp. 6414–6420.

[63] Holger Giese, Stephan Hildebrandt and Stefan Neumann.
‘Model synchronization at work: keeping SysML and AUTO-
SAR models consistent’. In: Graph transformations and model-
driven engineering. Springer, 2010, pp. 555–579.

[64] Ian S Graham et al. The HTML sourcebook. Wiley New York,
1995.

[65] Richard C Gronback. Eclipse modeling project: a domain-
specific language (DSL) toolkit. Pearson Education, 2009.

BIBLIOGRAPHY 212

[66] Giancarlo Guizzardi. ‘On ontology, ontologies, conceptu-
alizations, modeling languages, and (meta) models’. In:
Frontiers in artificial intelligence and applications 155 (2007),
p. 18.

[67] Elliotte Rusty Harold. XML: extensible markup language. IDG
Books Worldwide, Inc., 1998.

[68] Nico Hochgeschwender, Luca Gherardi, Azamat Shakhir-
mardanov, Gerhard K Kraetzschmar, Davide Brugali and
Herman Bruyninckx. ‘A model-based approach to soft-
ware deployment in robotics’. In: 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE. 2013,
pp. 3907–3914.

[69] Jerome Hugues, Bechir Zalila, Laurent Pautet and Fabrice
Kordon. ‘From the prototype to the final embedded system
using the Ocarina AADL tool suite’. In: ACM Transactions
on Embedded Computing Systems (TECS) 7.4 (2008), p. 42.

[70] Internet Communication Engine. https://github.com/zeroc-
ice/ice. [Online, accessed 11-October-2019]. 2019.

[71] Slinger Jansen, Sjaak Brinkkemper, Ivo Hunink and Cetin
Demir. ‘Pragmatic and opportunistic reuse in innovative
start-up companies’. In: IEEE software 25.6 (2008), pp. 42–
49.

[72] Jetbrains MPS. https://www.jetbrains.com/mps/. [Online,
accessed 10-October-2019]. 2019.

[73] Sylvain Joyeux and Jan Albiez. ‘Robot development: from
components to systems’. In: 6th National Conference on Con-
trol Architectures of Robots. 2011, 15–p.

[74] Markus Klotzbücher and Herman Bruyninckx. ‘Coordinat-
ing robotic tasks and systems with rFSM statecharts’. In:
(2012).

[75] Gerhard K Kraetzschmar, Azamat Shakhimardanov, Jan
Paulus, Nico Hochgeschwender and Michael Reckhaus.
‘Specifications of architectures, modules, modularity, and
interfaces for the brocre software platform and robot con-
trol architecture workbench’. In: BRICS project deliverable D
2 (2010), p. 2.

https://github.com/zeroc-ice/ice
https://github.com/zeroc-ice/ice
https://www.jetbrains.com/mps/

BIBLIOGRAPHY 213

[76] Holger Krahn, Bernhard Rumpe and Steven Völkel. ‘Monti-
Core: a framework for compositional development of do-
main specific languages’. In: International journal on software
tools for technology transfer 12.5 (2010), pp. 353–372.

[77] Pranav Kumar, William Emfinger, Gabor Karsai, Dexter
Watkins, Benjamin Gasser and Amrutur Anilkumar. ‘ROS-
MOD: a toolsuite for modeling, generating, deploying, and
managing distributed real-time component-based software
using ROS’. In: Electronics 5.3 (2016), p. 53.

[78] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri
Mraidha, Sebastien Gerard, Patrick Tessier, Remi Schnek-
enburger, Hubert Dubois and François Terrier. ‘Papyrus
UML: an open source toolset for MDA’. In: Proc. of the Fifth
European Conference on Model-Driven Architecture Founda-
tions and Applications (ECMDA-FA 2009). 2009, pp. 1–4.

[79] Morten Larsen. ‘Modelling field robot software using aadl’.
In: Technical Report Electronics and Computer Engineering 4.25

(2016).

[80] Vladimir Lifschitz. ‘On the semantics of STRIPS’. In: Reason-
ing about Actions and Plans: Proceedings of the 1986 Workshop.
1987, pp. 1–9.

[81] Sergio Luján-Mora, Juan Trujillo and Il-Yeol Song. ‘A UML
profile for multidimensional modeling in data warehouses’.
In: Data & Knowledge Engineering 59.3 (2006), pp. 725–769.

[82] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio
Pelliccione and Antony Tang. ‘What industry needs from
architectural languages: A survey’. In: IEEE Transactions on
Software Engineering 39.6 (2012), pp. 869–891.

[83] Stephen J Mellor, Marc Balcer and Ivar Jacobson. Executable
UML: A foundation for model-driven architectures. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[84] Marcilio Mendonca, Moises Branco and Donald Cowan.
‘SPLOT: software product lines online tools’. In: Proceedings
of the 24th ACM SIGPLAN conference companion on Object ori-
ented programming systems languages and applications. ACM.
2009, pp. 761–762.

BIBLIOGRAPHY 214

[85] Giorgio Metta, Paul Fitzpatrick and Lorenzo Natale. ‘YARP:
yet another robot platform’. In: International Journal of Ad-
vanced Robotic Systems 3.1 (2006), p. 8.

[86] Elisa Yumi Nakagawa, Pablo Oliveira Antonino and Mar-
tin Becker. ‘Reference architecture and product line ar-
chitecture: A subtle but critical difference’. In: European
Conference on Software Architecture. Springer. 2011, pp. 207–
211.

[87] Zainalabedin Navabi. VHDL: Analysis and modeling of digital
systems. McGraw-Hill, Inc., 1997.

[88] Tim Niemueller, Alexander Ferrein, Daniel Beck and Ger-
hard Lakemeyer. ‘Design principles of the component-
based robot software framework fawkes’. In: International
Conference on Simulation, Modeling, and Programming for
Autonomous Robots. Springer. 2010, pp. 300–311.

[89] Nils J Nilsson. Shakey the robot. Tech. rep. SRI INTERNA-
TIONAL MENLO PARK CA, 1984.

[90] Arne Nordmann, Nico Hochgeschwender and Sebastian
Wrede. ‘A survey on domain-specific languages in robotics’.
In: International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Springer. 2014, pp. 195–
206.

[91] Linda M Northrop. ‘SEI’s software product line tenets’. In:
IEEE software 19.4 (2002), pp. 32–40.

[92] Object Management Group. https://www.omg.org/. [Online,
accessed 09-October-2019]. 2019.

[93] Randy Otte, Paul Patrick and Mark Roy. Understanding
CORBA: common object request broker architecture. Vol. 19.
Prentice Hall PTR, 1996.

[94] Gerardo Pardo-Castellote. ‘Omg data-distribution service:
Architectural overview’. In: 23rd International Conference on
Distributed Computing Systems Workshops, 2003. Proceedings.
IEEE. 2003, pp. 200–206.

[95] A Perrotin, Eric Conquet, Pierre Dissaux, Thanassis Tsi-
odras and Jerome Hugues. ‘The TASTE Toolset: turning
human designed heterogeneous systems into computer
built homogeneous software’. In: 2010.

https://www.omg.org/

BIBLIOGRAPHY 215

[96] Maxime Perrotin, Eric Conquet, Julien Delange, André
Schiele and Thanassis Tsiodras. ‘TASTE: a real-time soft-
ware engineering tool-chain overview, status, and future’.
In: International SDL Forum. Springer. 2011, pp. 26–37.

[97] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín
Ugarte and Domagoj Vrgoč. ‘Foundations of JSON schema’.
In: Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences
Steering Committee. 2016, pp. 263–273.

[98] Roger S Pressman. Software engineering: a practitioner’s ap-
proach. Palgrave Macmillan, 2005.

[99] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler and Andrew Y Ng.
‘ROS: an open-source Robot Operating System’. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan.
2009, p. 5.

[100] RobMoSys. https : / / robmosys . eu/. [Online, accessed 12-
October-2019]. 2019.

[101] Spencer Rugaber and Kurt Stirewalt. ‘Model-driven reverse
engineering’. In: IEEE software 21.4 (2004), pp. 45–53.

[102] James Rumbaugh, Ivar Jacobson and Grady Booch. Uni-
fied modeling language reference manual, the. Pearson Higher
Education, 2004.

[103] Hermann Schichl. ‘Models and the history of modeling’.
In: Modeling languages in mathematical optimization. Springer,
2004, pp. 25–36.

[104] Christian Schlegel and Dennis Stampfer. ‘The SmartMDSD
Toolchain: Supporting dynamic reconfiguration by man-
aging variability in robotics software development’. In:
Tutorial on Managing Software Variability in conjunction with
the Robot Control Systems at Robotics: Science and Systems
Conference (RSS). Berkeley, CA, USA, July. 2014.

[105] Christian Schlegel and Robert Worz. ‘The software frame-
work SMARTSOFT for implementing sensorimotor sys-
tems’. In: Proceedings 1999 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Human and Environment

https://robmosys.eu/

BIBLIOGRAPHY 216

Friendly Robots with High Intelligence and Emotional Quotients
(Cat. No. 99CH36289). Vol. 3. IEEE. 1999, pp. 1610–1616.

[106] David Sciamma, Gilles Cannenterre and Jacques Lescot.
Ecore Tools. Tech. rep. Technical report, last update: May,
2013.

[107] Bran Selic. ‘The pragmatics of model-driven development’.
In: IEEE software 20.5 (2003), pp. 19–25.

[108] Shane Sendall and Wojtek Kozaczynski. ‘Model transform-
ation: The heart and soul of model-driven software devel-
opment’. In: IEEE software 20.5 (2003), pp. 42–45.

[109] Azamat Shakhimardanov, Nico Hochgeschwender and
Gerhard K Kraetzschmar. ‘Component models in robotics
software’. In: Proceedings of the 10th Performance Metrics for
Intelligent Systems Workshop. 2010, pp. 82–87.

[110] Anthony JH Simons and Ian Graham. ‘30 Things that go
wrong in object modelling with UML 1.3’. In: Behavioral Spe-
cifications of Businesses and Systems. Springer, 1999, pp. 237–
257.

[111] Ian Sommerville. ‘Software engineering 9th Edition’. In:
ISBN-10137035152 (2011).

[112] Andreas Steck and Christian Schlegel. ‘Managing execu-
tion variants in task coordination by exploiting design-time
models at run-time’. In: 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE. 2011, pp. 2064–
2069.

[113] Dave Steinberg, Frank Budinsky, Ed Merks and Marcelo
Paternostro. EMF: eclipse modeling framework. Pearson Edu-
cation, 2008.

[114] The ROSIN project. https : / / rosin - project . eu/. [Online,
accessed 11-October-2019]. 2019.

[115] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Chris-
toph Schulze and Andreas Wortmann. ‘A new skill based
robot programming language using UML/P Statecharts’.
In: 2013 IEEE International Conference on Robotics and Auto-
mation. IEEE. 2013, pp. 461–466.

https://rosin-project.eu/

BIBLIOGRAPHY 217

[116] Ilaria Tiddi, Emanuele Bastianelli, Gianluca Bardaro and
Enrico Motta. ‘A user-friendly interface to control ROS ro-
botic platforms’. In: 2018 ISWC Posters and Demonstrations,
Industry and Blue Sky Ideas Tracks, ISWC-P and D-Industry-
BlueSky 2018. CEUR. 2018.

[117] Ilaria Tiddi, Emanuele Bastianelli, Gianluca Bardaro, Math-
ieu d’Aquin and Enrico Motta. ‘An ontology-based ap-
proach to improve the accessibility of ROS-based robotic
systems’. In: Proceedings of the Knowledge Capture Conference.
ACM. 2017, p. 13.

[118] Ilaria Tiddi, Enrico Daga, Emanuele Bastianelli and Math-
ieu d’Aquin. ‘Update of time-invalid information in know-
ledge bases through mobile agents’. In: Integrating Multiple
Knowledge Representation and Reasoning Techniques in Robot-
ics (2016).

[119] Richard T Vaughan and Brian P Gerkey. ‘Reusable robot
software and the player/stage project’. In: Software Engin-
eering for Experimental Robotics. Springer, 2007, pp. 267–
289.

[120] Thomas Vergnaud, Jérôme Hugues, Laurent Pautet and
Fabrice Kordon. ‘PolyORB: a schizophrenic middleware to
build versatile reliable distributed applications’. In: Interna-
tional Conference on Reliable Software Technologies. Springer.
2004, pp. 106–119.

[121] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit
Engelmann, Mats Helander, Lennart CL Kats, Eelco Visser
and Guido Wachsmuth. DSL engineering: Designing, imple-
menting and using domain-specific languages. dslbook. org,
2013.

[122] Why ROS 2? http://design.ros2.org/articles/why_ros2.

html. [Online, accessed 11-October-2019]. 2019.

[123] Niklaus Wirth. ‘Algorithms and data structures’. In: (1986).

[124] Tewfik Ziadi, Loïc Hélouët and Jean-Marc Jézéquel. ‘To-
wards a UML profile for software product lines’. In: In-
ternational Workshop on Software Product-Family Engineering.
Springer. 2003, pp. 129–139.

http://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/why_ros2.html

BIBLIOGRAPHY 218

[125] lxml - XML and HTML with Python. http://lxml.de. [Online,
accessed 15-November-2017]. 2017.

http://lxml.de

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivations
	1.2 Thesis contributions
	1.3 Thesis outline
	1.4 Publications

	2 Related works
	2.1 Software engineering
	2.1.1 Component-based Software Engineering
	2.1.2 Model-driven Software engineering
	2.1.3 Software product lines

	2.2 General-purpose modelling languages
	2.3 Domain-specific approaches
	2.3.1 Automotive
	2.3.2 Space

	2.4 Robot software development
	2.4.1 Middleware and frameworks
	2.4.2 Model-driven approaches

	3 Background
	3.1 Robot Operating System
	3.1.1 Computation graph
	3.1.2 Components
	3.1.3 Communication
	3.1.4 Filesystem

	3.2 Architecture Analysis & Design Language
	3.2.1 Software components
	3.2.2 Execution platform components
	3.2.3 Composite and generic components
	3.2.4 Components interactions

	4 Modelling
	4.1 The component-connector paradigm
	4.2 AADL for robotics
	4.2.1 Modelling the CC paradigm in AADL
	4.2.2 A basic example

	4.3 From CC to ROS
	4.3.1 Modelling a ROS enhanced component in AADL
	4.3.2 Modelling ROS architectural elements in AADL
	4.3.3 A ROS basic example

	4.4 Modelling templates
	4.5 Data Modelling
	4.5.1 Option 1: ASN.1
	4.5.2 Option 2: JSON with schema
	4.5.3 Comparison

	5 Automatic programming
	5.1 Generating ROS artefacts
	5.2 Engineered ROS node
	5.2.1 Life cycle
	5.2.2 ROS node
	5.2.3 Internal state

	5.3 Custom ROS node
	5.4 Two-steps code generation
	5.4.1 From AADL to AAXML
	5.4.2 From AAXML to ROS/C++

	5.5 A complete example

	6 Abstracting the robot
	6.1 Ontology representation
	6.1.1 ROS description
	6.1.2 Capabilities extraction
	6.1.3 Capabilities taxonomy

	6.2 Robot APIs
	6.2.1 ROS-bound interface
	6.2.2 ROS-independent interface

	6.3 Bridge models and capabilities

	7 Experimental evaluation
	7.1 The PMK use case
	7.1.1 Model
	7.1.2 Automatic code generation
	7.1.3 Special nodes
	7.1.4 Comparison

	7.2 Web interface
	7.2.1 GUI description
	7.2.2 Experimental Setup
	7.2.3 Results and discussion

	8 Conclusions and Future works
	 Bibliography

