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Abstract

SOcial robots are being considered to be a part of the therapy for chil-
dren with autism due to the reported efficacy of such technology in
improving the outcomes. However, children diagnosed with autism

exhibit challenging behaviors that could cause harm to themselves and to
others around them. Throwing, hitting, kicking, and self-harming are some
examples of the challenging behaviors that were reported to occur among
this population. The occurrence of such behaviors during the presence of
a social robot could raise some safety concerns. For this reason, the re-
search presented in this dissertation attempts to identify the potential for
harm due to the diffusion of social robots and investigate hardware and
software means to mitigate them. Considering the advancement in technol-
ogy and the progress made in many computer science disciplines are mak-
ing small and adaptable social robots a foreseeable possibility, the studies
presented in this dissertation focus on small robotic form factors. The first
study quantifies the potential harm to the head due to one of the identified
risky scenarios that might occur between a child and a social robot. The
results revealed that the overall harm levels based on the selected severity
indices are relatively low compared to their respective thresholds. How-
ever, the investigation of harm due to the throwing of a small social robot
to the head revealed that it could potentially cause tissue injuries, subcon-
cussive or even concussive events in extreme cases. The second two studies
are aimed to make small robots safer by optimizing their design. Hence,
studies are conducted investigating how robot design can be made safer
by investigating different design factors. The first study investigated the
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influence of the mass and shape on the linear acceleration of a developed
dummy head. The results revealed that the two design factors considered
(i.e. mass and shape) affected the resultant response significantly. The sec-
ond study investigated the influence of the storage modulus and thickness
of three different soft materials on the same response. The findings showed
that the control factors considered are not statistically significant in atten-
uating the response. Finally, the last two studies attempt to make small
robots more adaptable to promote safer interactions. This is carried out by
embedding the recognition of unwanted physical interactions into compan-
ion robot with the appropriate timing of responses. The findings of the first
study highlight the possibility of characterizing children’s negative inter-
actions with robotic toys relying on an accelerometer sensor. The second
study showed that producing a late response to an action (i.e. greater than
1.0 s) could negatively affect the children’s comprehension of the intended
message. The work presented in this dissertation is multidisciplinary that
involves the field of Mechanical Engineering and Information Technology.
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CHAPTER1
Introduction

Autism spectrum disorder (ASD) is a condition that is diagnosed during
early childhood and affects the neurodevelopment. Traditionally, inter-
vention sessions for ASD have been carried out through a human thera-
pist. However, there has been a promising potential of using social robots
in interventions based on the evidence reported by many individual stud-
ies [47], [171]. Most of the studies conducted in robot-mediated interven-
tions, if not all, did not address some of the safety concerns regarding the
diffusion of social robots into therapy. The interaction between children
with autism and social robots will introduce some safety concerns and is-
sues (Fig. 1.1).

Children with ASD often exhibit aggressive behaviors that cause a lot of
troubles to their families and caregivers. The extent of such aggressive be-
haviors could even affect their peers and the people around them. Children
diagnosed with ASD often exhibit stereotypical repetitive and stimming be-
haviors as a response to a sensory overload. When their body’s senses are
overwhelmed by too many stimuli in the environment, they might exhibit
shut down, loud outbursts or aggressive behaviors in an attempt to escape
from unpleasant sensations. This response could intensify to meltdowns,
that is the temporary loss of behavioral control. Biting, hitting, throwing
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Chapter 1. Introduction

Figure 1.1: The interaction between children with autism and social robots raises poten-
tial safety issues that need to be addressed early on.

objects, and others are physical signs that are usually associated with melt-
downs.

1.1 Overview

Many studies have been conducted on using robots in the therapy ses-
sions with children with ASD. There have been many designs with vari-
ous shapes, functionalities, sizes, and therapeutic objectives. Most of the
existing designs, if not all, were designed initially for research purposes to
target a single or a set of objectives; hence, they have been limited in terms
of functionality; were not flexible to re-adjust to target different or new ob-
jectives; and lacking the feasibility to be deployed to the end-users. When
it comes to design features of a robot, there are many important require-
ments that should be considered, such as safety, adaptability, functionality,
and autonomy [82].

Children with autism often show aggressive behaviors that should be
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accounted for when designing robots for them. The robot design should be
made safe enough not to harm the child and others in case of the occurrence
of such behaviors. Few previous designs have paid attention to that aspect,
but as a trade-off, the overall functionality of the robot has been limited.
Other than the safety of the child and people around them, the robot must
be designed to be robust enough to withstand any aggressive behaviors. The
overall robot design should be safe and robust at the same time.

Most existing social robots that have been used in therapy were either
controlled through a therapist with a hidden controller or through an oper-
ator within the same room or at a different room. The adaptability of the
robot in that case was limited to the person controlling it. They might have
to control every simple set of interactions manually and try their best to
select the next appropriate action to be performed by the robot. The robot
by itself should at least have some sort of sensing to enable more autonomy
and adaptability during the sessions, especially to unwanted and aggressive
interactions. The current state of a robot’s autonomy that is meant for ther-
apy has not reached a high level of complexity and it is still lagging. The
development in robots that sense and respond to unwanted interactions is
still needed to achieve safer interactions.

How can small social robots be made safer? In order to answer this
question, this research has three main objectives as follows:

1. To quantify the potential harm due to one of the identified potential
risky scenarios that might occur between a child and a social robot.

2. To investigate how a robot design can be made safer by investigat-
ing some design parameters and their influence on a selected severity
index.

3. To investigate the possibility of recognizing and classifying unwanted
interactions and to evaluate the influence of the emotional reaction
time of a robot’s response on the interactions.

1.2 Contributions

The three major contributions of this research are related to safety aspects
of small robotic form-factor as follows:

1. The identification of potential harm and risks due to the introduction
of social robots to children with autism. The risks are intensified due
to the challenging behaviors that exist within this population as com-
pared to neurotypical children. The risks are also dependent on the
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form-factor of the robot involved. Several severity indices were used
to quantify the potential harm due to one of the identified risky sce-
narios.

2. The investigation of hardware approaches to optimize small robotic
design to improve safety by reducing the potential harm to the head.
The influence of different design parameters on a selected severity in-
dex were considered. Two different studies were conducted that con-
sidered different parameters. The first study considered the influence
of the shape and mass of a robotic design while the second study con-
sidered the potential of incorporating soft materials in mitigating the
potential harm. The optimal settings for the investigated parameters
were identified based on Taguchi method.

3. The embedding of unwanted interactions recognition into small com-
panion robots with the appropriate timing of responses. The first study
demonstrated the application of an embedded accelerometer inside a
robotic toy to detect and classify a set of interactions based on a ma-
chine learning algorithm. The second study investigated the influence
of reaction time of the emotional response of a robot to unwanted
behavior on the interactions. This study identified the appropriate re-
action time window that should deliver the right message to the user.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows:
Chapter 2 provides a background about the core topics in this research.

This chapter starts with describing autism, the associated symptoms, and
some of the prevalence rates. Next, it moves to describe the challenging
behaviors that are exhibited by this population and the application of social
robots in therapy. Furthermore, this chapter provides the severity indices
of the head that are used to quantify the potential harm. Next, this chapter
presents Taguchi method that is used in the robotic design optimization.
Finally, this chapter provides studies on activity recognition that are related
to make a robot more adaptive in recognizing unwanted interactions.

Chapter 3 presents exploratory experiments for children with autism in-
teracting with different toys and two social robots. This chapter highlights
some key interactions between the children with the different robotic form
factors. The experiments described in this chapter reveal some behaviors
and observations that represent the motivation behind this research.
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Chapter 4 identifies the potential risky scenarios between a child and a
companion social robot. This chapter highlights some of the challenging
behaviors that could cause harm when interacting with social robots. Fur-
thermore, it provides the development of the experimental setup that is used
to conduct the impact experiments. Finally, it quantifies the potential harm
for one of the identified scenarios based on the relevant severity indices.

Chapter 5 presents two parametric studies aimed to make small robotic
design safer. Based on Taguchi’s method, the first study investigates the
influence of shape and mass of a small robot on the linear head acceleration
(i.e. severity index) of a dummy head. The second study in this chapter
explores the potential of soft materials embedded into a robotic design in
mitigating potential harm based on the same severity index. The optimal
conditions for all the investigated parameters are also discussed.

Chapter 6 explores the possibility of recognizing six different possible
interactions between a child and a small robotic toy based on an embed-
ded tri-axial accelerometer. This chapter first describes a study presenting
the adopted approach to acquire the data and the development of a neural
network algorithm to classify the unwanted interactions. The study demon-
strates the possibility of recognizing behaviors relying on low-cost and sim-
ple approaches. The influence of reaction time in the emotional response of
a companion robot to a child’s unwanted interaction is explored. The sec-
ond study in this chapter presents the findings of experiments with children
interacting with different robotic toys programmed with different reaction
timings. The study finds that the right reaction time of a robot’s response is
essential to deliver the right message to the user.

Chapter 7 provides the conclusions for all of the studies presented in
the previous chapters and their implications on safety in robotic design.
This chapter also provides directions for potential future research in this
domain.
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CHAPTER2
Background

This chapter provides a theoretical background about the core topics in this
research. This chapter starts with describing autism, the associated symp-
toms, and some of the prevalence rates. Next, it moves to describe the
challenging behaviors that are exhibited by this population and the appli-
cation of social robots in their therapy. Furthermore, this chapter provides
the severity indices of the head that are used to quantify the potential harm.
Next, this chapter presents Taguchi method that is used in the robotic design
optimization. Finally, this chapter provides studies on activity recognition
that are related to make a robot more adaptive in recognizing unwanted
interactions.

2.1 Autism

Characterized by lifelong difficulties and impairments in communication,
social interaction, and the exhibition of restricted interests or behaviors,
Autism Spectrum Disorder (ASD) is a condition that is diagnosed during
early childhood and affects the neurodevelopment [26], [203], [22]. Fur-
thermore, children face a multitude of daily behavioral challenges as com-
pared to neurotypical children [55], [61]. There has been a growing con-
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cern worldwide pertaining the rate of ASD among children. For example,
the pervasiveness rate of ASD among children is found to be 1 out of 45
in the United States [199], 1 out of 100 in the United Kingdom [85], and 1
out of 38 children in South Korea [118]. Up to date, the research to find the
exact causes of ASD is still on going.

Due to the diverse nature of ASD, the manifestation of behaviors among
children on the spectrum varies greatly in their degree. Such children face
a lot of daily behavioral challenges as compared to neurotypical children,
such as avoiding eye contact, poor motor skills, understanding gestures, in-
terpreting facial expressions, feeding problems and others. Their inability
to understand the behaviors, social cues, and feelings of others are among
the contributing factors to their impairments in social relationships and in-
teractions [55], [61]. Lack of intonation, inability to understand verbal and
nonverbal languages, repetitive and obsessive thoughts, and limited under-
standing of emotions are some of the deficits in communication among
children with ASD [55]. Early intervention, especially during the early
years, seems to play a great role in the treatment, or at least the mitigation,
of such behaviors and make them more independent in their lives [164].

2.2 Challenging Behaviors

Individuals on the spectrum are very unique and complex in their disposi-
tions and their manifestation of ASD. Autism affect such individuals and
causes a lot of deficits and challenges in their communication skills, interac-
tions with others, behaviors, sensory inputs perception, and social life [55].
Furthermore, they exhibit self-stimulatory behaviors, perfectionist tenden-
cies, meltdowns, and delayed echolalia [70]. Due to the nature of ASD,
children diagnosed with it tend to exhibit more challenging and aggressive
behaviors than their neurotypical peers. For example, those with perfec-
tionist tendencies and emotional regulation deficiencies have shown higher
level of aggressive behavior, anxiety, and depression [23], [21].

Frustration is another contributing factor toward the exhibition of more
challenging behaviors. Children with ASD might face frustration when be-
ing exposed to new unpredictable, overwhelming, and noisy environments
as that found in hospitals [115], [170]. In addition, such environments
are rich in stimuli that might overload their body’s senses, and that would
make meeting their needs even harder due to increased struggle with the
new environmental changes [142], [170]. Challenging behaviors take on
many different forms, such as withdrawal, repetitive and stereotypes habits,
aggression against others, self-injury, tantrums, meltdowns, and property
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destruction (Fig. 2.1). Not only such behaviors pose risks on the chil-
dren themselves, but also pose a lot of risk on others around them, such
as other children, nurses, patients, care givers, parents, and family mem-
bers [115], [156].

Children with ASD

Normal Behaviors Challenging Behaviors

TantrumsRepe��ve Behaviors and 
           S�mming

Obsession and
Withdrawal

Meltdowns

Oneself Others

Hitting/Banging Biting Rubbing Scratching

Biting Kicking Hitting Throwing Objects

Aggression
   

Figure 2.1: Different forms of challenging behaviors that are exhibited by children with
ASD [115], [131], [128], [77].

Among all the children without and even with developmental disabili-
ties, challenging behaviors and anxiety problems seem to have higher preva-
lence rates among children with autism [72], [88]. Even within children
on the spectrum themselves, those with more severe ASD have showed
higher rate of challenging behaviors as compared to those with less ASD
severity [141], [132]. Furthermore, studies have shown that even infants or
toddlers that are diagnosed with ASD do exhibit challenging behaviors at a
higher rate compared to their neurotypical counterparts [77], [122]. Due to
difficulties in using proper communication to satisfy their needs, children
with autism might turn to challenging behaviors as a form of communica-
tion to express themselves [106].

The pervasiveness of challenging behaviors among individual with autism
is relatively high. One study surveying 222 children reported 50% oc-
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currence rate while another study surveying 32 adults reported a rate of
69% [25], [34]. A more recent study with larger sample size of 1,380 chil-
dren has reported a high aggression prevalence rate of 68% against care-
givers and 49% against others [116]. The majority of previous studies
have reported the occurrence of at least one or more challenging behav-
iors among at least half of the individuals with ASD [77]. The existence
of such behaviors has many implications on those providing treatments and
services to individuals with ASD [106].

2.3 Social Robots

The traditional intervention sessions for ASD have been usually conducted
relying on human therapists. However, the advancement in technology is
providing added tools for improved therapeutic sessions (e.g. independent
learning, hands-on learning, and skills training [71]). Several technologies
have been explored in supporting therapeutic and educational initiatives for
children with ASD [83], [158]. Furthermore, previous studies have shown
that children on the spectrum have strong interest in technology, such as
computer applications [96], virtual environments [152], and robots [47],
[171].

There has been a growing interest in using robots clinically to assist in
the rehabilitation of children with ASD [65], [103], [31]. The usage of
technology, especially robots, for ASD therapy opens many possibilities in
the early intervention for children with ASD, and toward more personalized
rehabilitation [162], [160]. The application of robots for intervention pro-
vides many options and flexibility as it can either be used as an intervention
tool to facilitate the therapeutic session, co-therapist with turn-taking with
the main therapist or as a sole therapist [31], [68].

Social robots have also been reported to help in improving the outcomes
of therapy, such as communication, gestural responses, motor and social
skills, eye contact, imitation, and joint attention [47], [178], [53], [93], [193].
Children are found to be more intrigued to interact with robots as compared
to humans due to the limited complexity of robots [47]. Many previous
studies have demonstrated that robots can be used to elicit many behav-
iors, such as imitation, joint attention, and eye contact [121], [155], [173].
Many form factors have been developed that took on different looks and
shapes that can be broadly categorized as being either anthropomorphic,
non-anthropomorphic or non-biomimetic. Kasper (Fig. 2.2a) [62], a mini-
mally expressive robot, and Infaniod (Fig. 2.2b) [120], an upper torso hu-
manoid robot, are examples of an anthropomorphic robotic design. Keepon
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Figure 2.2: Some of the social robots that have been considered or have the potential for
ASD intervention: a) Kasper, the minimally expressive robot. b) Infanoid, the upper
torso humanoid robot. c) Keepon, the yellow snow-life robot. d) Roball, the spherical
robot. e) Milo, the humanoid robot. f) Leka, the ball-like robot. g) Nao, the humanoid
robot. h) Buddy, the companion robot.

(Fig. 2.2c) [121], a yellow snowman-like robot, is an example of a non-
anthropomorphic design while Roball (Fig. 2.2d) [134], the sepherical
robot, is an example of non-biomimetic design. There are new emerging,
promising, and commercially available robots, such as Milo (Fig. 2.2e),
Leka (Fig. 2.2f), Nao (Fig. 2.2g), and Buddy (Fig. 2.2h), that have a great
potential to be considered in ASD therapy.

2.4 Quantifying Harm

2.4.1 Overview

The human brain is protected by floating in the cerebrospinal fluid that acts
like a cushion to reduce any potential harm. However, the human head is
susceptible to traumatic brain injury (TBI) when it is receiving blows or
bumps, or subjected to impacts with projectiles, such as a baseball [33].
TBI is categorized as either being mild or severe, and could cause perma-
nent disability or, in severe cases, death. Most occurring type of mild TBI
is concussion. It is not considered a life threatening, however, the results
on the affected can be serious [79].

In the United States and in 2013 alone, a total of 2.8 million (i.e. 50,000
deaths, 282,000 hospitalizations, and 2.5 million emergency department
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visits) cases of TBI have been reported with falls being the lead cause fol-
lowed by getting struck by or against an object [188]. Furthermore, it has
been reported that 1 in 5 cases of TBI occurred among children (age < 15
years old) to the second leading cause.

TBIs among young children may impair the neurological development
and cause a multitude of challenges, such as depression, attention deficit
hyperactivity disorder, and in attaining academic achievements [16], [17],
[159], [197]. Furthermore, data showed that those affected with TBI and
ASD share some of the biologic mechanisms that cause both conditions to
have similar symptoms. Hence, studying and reducing the occurrence of
TBI is very vital.

Challenging behaviors that are exhibited by children on the spectrum
pose a potential harm to themselves and to the ones around them. With
the presence of a robot, the child might involuntary use it to harm others.
Throwing objects, especially in the case of small robots, pose a great risk
to the head and need to be quantified. One objective of this research is to
simulate objects (i.e. representing a small robot) being thrown at the head
to quantify harm levels. Hence, this section describes related studies and
relevant severity indices.

2.4.2 Related Studies

Laboratory settings using anthropomorphic test dummies (ATD) are typi-
cally used to simulate potentially dangerous scenarios to evaluate the pos-
sible harm to a human, such as that used in car crash tests. Furthermore,
similar setups have been used to quantify harm due to impacts in some
sports and to evaluate protective gears, such as helmets [133], [196], [150].
One study used similar settings to assess the influence of taekwondo kicks
and peak velocity of the foot on the dynamics of the head [76]. In that
study, a crash test dummy head was secured to an aluminum frame and it
was used as a target for the kicks performed. The head form was equipped
with an accelerometer to measure the dynamics of the head (i.e. changes in
acceleration) as it was being hit by the participants. The data generated was
used to assess the potential of concussion based on the head injury criterion
(HIC).

Similar studies were conducted in industrial robotics to quantify the po-
tential harm due to different possible impact scenarios between a human
and robotic arm. For example, few studies have conducted impact tests
of a manipulator to a dummy at a standard automobile crash test facil-
ity [90], [92], [91]. In such studies, impacts by robotic arms using flat sur-
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Table 2.1: Abbreviated Injury Scale (AIS) and the corresponding injury classification

AIS score Injury classification

1 Minor

2 Moderate

3 Serious or severe, but not life threating

4 Severe and life threating

5 Critical and uncertain survivial

6 Unsurvivable

face impactors were performed against a standard crash test dummy in three
regions (i.e. head, chest, and neck). The potential of injury or harm levels
were evaluated based on the respective severity index or indices for each re-
gion. The evaluations were based on varying some robotic-dependent vari-
ables, such as mass and velocity, and their relation on the resultant severity
indices. In some studies, low-cost body part models, such as using a head
model or an arm model, and low-cost sensors were considered and used to
carry out experimental tests to evaluate human-robot impacts [60], [91].

2.4.3 Severity Indices

Severity indices are associated with injury scaling, such as the Abbreviated
Injury Scale (AIS) [86]. AIS is a tool that provides a simple way to grade
the observed injury based on a scoring criteria (Table 2.1). AIS and together
with various severity indices give an estimation of the potential for an injury
and its respective severity.

The investigation in this study is limited to the head, hence, only rele-
vant head indices, namely, head injury criterion (HIC), 3 ms criterion, peak
linear acceleration, impact forces, and tissue injuries are summarized.

Head Injury Criterion (HIC)

One of the most commonly used severity indices to measure the possi-
ble injury to the head in many applications, such as in vehicles and in
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Table 2.2: The values of population mean µ and standard deviation σ corresponding to
different scores of Abbreviated Injury Scale (AIS)

AIS score µ σ

2 6.96352 0.84664

3 7.45231 0.73998

4 7.65605 0.60580

sports [190]. HIC is defined as:

HIC = (t2 − t1)
[

1

(t2 − t1)

∫ t2

t1

a (t) dt

]2.5
(2.1)

where a(t) is based on the resultant acceleration of the head and measured
in terms of gravity acceleration (g = 9.81 m/s2) and ∆t = t2 − t1 is the
duration of the impact considered in calculating the resultant HIC. The two
most commonly used durations to evaluate the severity of injury to the head
are 36 ms and 15 ms. Because it is less restrictive, the 36 ms duration only
will be used (Fig. 2.4).

The HIC standard is converted to a corresponding AIS based on the
following relation [124]:

p (head injury) = φ

(
ln (HIC36)− µ

σ

)
(2.2)

where φ is the cumulative normal distribution, and µ is the population
mean, and σ is the standard deviation (Table 2.2). These values are orig-
inally specified for a test dummy head, hence, they will only be used for
comparison purposes. At a particular HIC value, the probability of injury
occurrence differs between each of the AIS scores (Fig. 2.3).

The 3 ms Criterion

This criterion requires that the maximum mean value over 3 ms duration of
the resultant head acceleration is less than a certain threshold when there
is no hard contact (Fig. 2.4). This criterion is used as part of the regula-
tions pertaining the safety of occupants in vehicles and also used in helmet
testing [172].
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Figure 2.3: The relationship between the Head Injury Criterion (HIC) and the probability
of injury according to different Abbreviated Injury Scales (AIS) [124].

12.8 12.82 12.84 12.86 12.88 12.9 12.92 12.94 12.96

Time (s)

0

5

10

15

20

25

L
in

e
a
r

A
c
c
e
le

ra
ti

o
n

(g
)

Head Injury Criterion (HIC)

Peak Linear Acceleration

The 3 ms Criterion

36 ms

3 ms

Figure 2.4: Sample of the generated linear acceleration data demonstrating the durations
of both, the Head Injury Criterion (HIC) and the 3 ms Criterion, and the instance of
peak linear acceleration that were considered in the data analysis.

15



Chapter 2. Background

The European National Car Assessment Protocol (EnuroNCAP) states
that the thresholds for 3 ms criterion for a child occupant should not exceed
60 g in case of frontal impact and 60 g in case of side impact [73].

Peak Linear Acceleration

Peak linear acceleration has been used as one of the biomechanical mea-
sures for head impact to investigate its association with concussion events
[87] [166]. A study investigating the head impact exposure in youth foot-
ball has reported linear accelerations due to impacts anywhere in the range
of 10 g to 111 g [198]. While that study did not report the occurrence
of any concussions, however, it is believed that concussions could occur
within that range based on the reported football-related concussions [27].
One study based on a finite element head model validated from field col-
lisions has estimated a probability of mild TBI to be 25%, 50%, and 80%
corresponding to maximum accelerations of 66 g, 82 g and 106 g, respec-
tively [200]. One study has reported the occurrence of a concussive event
at a relatively low linear acceleration value of 31.8 g [135]. Some of these
studies did not report the duration of impacts while others reported impact
durations of 30 ms or less.

Impact Forces

The HIC severity index is not enough for the assessment of head safety,
especially for what concerns any potential damage to the skull and brain
injury [191]. Contact force is another indicator to predict the fracture toler-
ance of the human bone structure. There have been many studies conducted
on heads from cadavers to measure fracture forces of the skull. Experi-
ments conducted were either by dropping heads from different heights or
impacting the head with an impactor at various velocities.

A summary of the studies conducted on facial fracture (i.e. maxilla,
zygoma, frontal bone, nasal bone, and mandible) revealed peak force tol-
erance anywhere in the range of 610 - 9,880 N [30]. An injury risk func-
tion with comparable consistency to facial fracture data has been proposed
based on Weibull distribution to identify forces that at which facial frac-
ture starts for and impactor with an area of 13.8 cm2, and it is defined
as [63], [30]:

Pfracture (F ) = 1− exp
[
−
(
F

B

)α]
(2.3)

where α = 2.27 is the Weibull shape parameter, and B = 887.7 N is Weibull
scale parameter, and F is the impact force. According to this function, a
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Figure 2.5: Injury risk function for facial fractures of the face (i.e. maxilla and zy-
goma) [63], [30]. Dashed red line represents a facial fracture probability of 50%
corresponding to a force value of 755 N.

force of 755 N would have 50% chance of fracture risk (Fig. 2.5).

Tissue Injuries

Tissue injuries as a result of impacts with objects could take on different
forms, such as skin tears, lacerations and abrasions. The magnitude and
the depth of the resultant injury depends on the geometry of impactors or
penetrators and pressure forces in effect [175]. Classification by depth is
often used as indicator for wounds and tissue injuries [183]. According to
this classification, tissue injuries could either be superficial wounds, partial-
thickness, full-thickness or subcutaneous skin loss (Table 2.3). This clas-
sification will be used as a reference and indicator for the possible tissue
injury in our investigation.

2.5 Taguchi Method

Experiments are usually conducted on processes and systems to understand
the overall performance, to deduce the most influential parameters, and to
determine the optimal settings to achieve the desired responses or overall
goals [137]. Design of experiment (DOE) is an approach aimed at using
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Table 2.3: Classification of tissue injury based on depth [183]

Classification Affected Skin Layer Depth

Superficial Only the epidermis <1 mm

Partial thickness The epidermis and into the dermis 1 - 4 mm

Full thickness Through the epidermis and the der-

mis into subcutaneous tissue

>4 mm

Subcutaneous Extends into and beyond the subcu-

taneous tissue

>4 mm

the minimum amount of resources available while maximizing the amount
of information obtained from a process through the selection of parameters
to be investigated [137]. DOE helps in collecting different information by
altering the optimal arrangement of parameters or factors to enhance prod-
uct robustness [56], [95]. There are many DOE techniques available. The
choice depends on the investigated problem and the aim of the experiments
conducted [56]. One of such techniques is the Taguchi method.

The method was developed in 1979 and was meant to be used as an
off-line quality control tool to improve manufacturing products and goods
in different applications [185], [136], [97], [187]. Taguchi DOE considers
two types of variables, namely controllable and noise (or uncontrollable).
Control factors can be controlled in production while noise factors cannot
be controlled, except experimentally. This method aims to improve the ro-
bustness of products against any variations in the noise factors by finding
the optimal values of the controllable factors. Depending on the number of
factors investigated, Taguchi DOE could take on different settings by con-
sidering different Orthogonal Arrays (OAs) [138] (Table 2.4). The crossed
array Taguchi design that was considered provides a robust solution by un-
derstanding the interaction between the control factors and the noise fac-
tors [56]. The studies reported in Chapter 5 were conducted based on this
method.
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Table 2.4: The standard L9(3
2) orthogonal array (OA).

Run Control factors

A B

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

7 3 1

8 3 2

9 3 3

2.6 Activity Recognition

The research in human activity recognition relies on different sensors, tech-
nologies and wearable devices to acquire data [19], [46], [167]. Human ac-
tivity recognition is being considered in the healthcare domain, for exam-
ple, detecting falls among the elderly [24], [108]. Previous studies on fall
detection considered wearable devices, ambient devices, and vision based
devices [140]. Different sensors were used, such as accelerometers, cam-
eras, microphones, and gyroscopes [154]. Furthermore, different classifi-
cation of falls were investigated (e.g. falls from sleeping or from walk-
ing) [140]. A recent study has considered using a wearable device on a
belt to detect falls [180]. The device contains an accelerometer that ac-
quires signals at a sampling frequency of 25 Hz. Their method was able to
achieve an accuracy of 99.4% using a non-linear classifier and a Kalman
filter.

The detection of problematic behaviors in the population with special
needs is another area in healthcare domain to consider activity recogni-
tion techniques. To facilitate the therapy for those with special needs, one
study considered using accelerometers to detect problem behaviors among
this population [157]. In this study, the data to develop the recognition
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model were simulated by trained clinic staff. Their approach was able to
achieve an accuracy of 69.7% when evaluated with realistic data. Activ-
ity recognition is also gaining attention in the area of robotics, especially
when a robot operates in close proximity with humans. In robot-assisted
living, one study introduced a wearable system that relies on the fusion of
multi-sensors to recognize human daily activities [202]. The sensor system
consisted of two nodes (i.e. on the waist and on the foot) that measure angu-
lar velocity, magnetic data, acceleration, and temperature. The system was
able to produce promising results using a combination of neural networks
and hidden Markov models. For more advanced and interactive applica-
tions, accelerometers were considered in robot games to model players and
recognize activities [148], [147]. One study considered using a tri-axial ac-
celerometer module embedded in the player’s chest to acquire the motion
data [149]. Their work showed promising results in detecting different ac-
tivities with the robot, such as running, walking or dodging, and blocking
the robot’s path.

Different sensors and wearable devices were considered in human ac-
tivity recognition research. A frequently used sensor is the accelerometer,
which is a relatively low-cost sensor that is able to detect acceleration on
three orthogonal directions. When associated to a gyroscope, the rotational
speed can be detected along the same axis. One of the earliest works classi-
fying different daily physical activities, such as walking and running, used
five wearable small accelerometers on different body parts of 20 partici-
pants [29]. The data collected were from subjects performing a sequence
of different daily tasks. The best classifier selected (i.e., a decision tree) was
able to recognize the actions with an accuracy rate of 84%. Another study
considered using accelerometer and sound data to recognize workshop re-
lated activities to develop a proactive system [127]. The data collected were
based on tasks performed in a wood shop. The system was able to recog-
nize different activities with an accuracy of 84.4% on continuous simulated
stream of data. Nowadays, accelerometers are used in smart phones to de-
tect a wide range of activities [64].

2.7 Chapter Summary

This chapter provided a background information about the core topics of
this thesis. The chapter described autism, challenging behaviors, and social
robots. Additionally, it presented the severity indices and Taguchi method.
Finally, it provided the related studies to human activity recognition. This
chapter established the main concepts that will be used throughout this dis-
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sertation.
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CHAPTER3
Design Preference for Robot Form Factors

This chapter describes exploratory experiments between children on the
spectrum interacting with different toys and two social robots. It provides
the preferences among the children toward the different robotic form fac-
tors. It also highlights some key observations about their interactions.

3.1 Introduction

Social robots are emerging to become useful assistive tools to be considered
in the therapy and education of children with Autism Spectrum Disorder
(ASD). The nature of ASD causes its symptoms and manifestations to vary
widely, resulting in a variety of robotic designs that have been developed
for this application. These robots vary in structure, shape, size, color, and
function. There was a significant variation in the types of form factors con-
sidered that were either small or large in size while taking the appearance
of either humans, animals, toys or others. Due to the heterogeneity of ASD,
the reactions of individuals with ASD toward the existing robotic designs
have varied considerably, and so are their preferences.

Over the years, many social robot designs have been developed and
tested for intervention sessions [47]. Those include humanoids, human-like
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Chapter 3. Design Preference for Robot Form Factors

robots, robotic balls, mobile robots, and animaloids. In these experiments,
the responses of children with ASD toward different toys and two social
robot (i.e. humanoid and a robotic seal) are explored. Experiments were
conducted to verify whether or not there are any effects of the different
form factors on the children’s interactions.

3.2 Methods

3.2.1 Participants

Ten English-speaking children aged 7 to 10 years (all were males) partici-
pated in this study. They have been diagnosed with mild to moderate autism
and are attending the Step By Step Center for Special Needs in Doha, Qatar.
The consent from the parents were secured by the center. The children were
accompanied by either a teacher or a caregiver. The procedures for this
work did not include invasive or potentially hazardous methods and were
in accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

3.2.2 Stimuli

There were a total of 4 experiments, where different stimuli were used for
each experiment. The details about the individual stimuli used are summa-
rized below.

1. Five different toys were used. These were a rubber ball, two metal
cymbals, a colourful plastic train, a small humanoid robot, and a wooden
truck with wooden blocks pegged into its carrier that have alphabets
and objects drawn on them (Fig. 3.1a).

2. Two interactive social robots were used (Fig. 3.1b). One was a Nao
humanoid (SoftBank Robotics, Paris, France), and the other was a
seal robot (PARO Robots U.S., Inc., IL, USA). The movements of
Paro were autonomous and were limited to the built-in functions. The
movements of Nao were initiated by the experimenter and were lim-
ited to basic activities (e.g. sit, stand up, dance).

3. Three Tank Engine toy trains were used. These included two blue
trains of different sizes (Thomas train character) and one red train
(James train character). These were used against a larger, multi-colored
toy train (Fig. 3.1c).
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Figure 3.1: The group of stimuli used during the experiments. (a) five different non-
moving toys. (b) The social robots, Nao and Paro. (c) Thomas and Friends trains (left)
and larger train (right). (d) The participant’s favorite train from the previous stimuli
group and bubbles train.

4. The child’s preferred train in Experiment 3 was used against a train
identical to the multicolored train from Experiment 1 and Experiment
3, but emits bubbles (Fig. 3.1d).

3.2.3 Procedure

There were 4 different experiments aiming at different goals (Table 3.1).
Each experiment was around 6 minutes long. Experiment 1 is an unstruc-
tured play scenario. After obtaining the results of Experiment 1, the suc-
ceeding experiments explored animating the toys and the goal was to see
the effects of these in the subjects. No instructions were given to the chil-
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dren, except encouragement to initiate interaction with different toys.

3.2.4 Monitoring Equipment

The children’s interactions were monitored with four video cameras placed
at the corners of the room. Four cameras (MyDlink DCS-931L, D-Link,
Taipei, Taiwan) were mounted on four tripods. Care was taken in the setup
of the equipment to ensure that it remained unobtrusive throughout the
length of the experiment. The cameras were positioned to ensure that the
children’s activities were captured from different angles.

3.2.5 Annotation Software

An open-source video event-logging software (BORIS, version 3.12, Torino,
Italy) was used to analyze the videos. The user environment of the software
was prepared with all the behaviors of interest.The analysis of videos was
conducted by three observers after getting well-acquainted with the soft-
ware.

The measured variables were divided to either state or point. A state
variable was used to calculate the duration of a specific event while a point
variable is used to calculate the frequency of occurrence. The measured
variables are listed as follows:

• Experiment duration: state variable to declare the duration of an ex-
periment.

• Interaction duration: state variable to declare the durations of interac-
tion during an experiment.

• Preference: experiment-dependent point variable to indicate the pref-
erence of the child based on the given stimuli for each experiment.
For example in Experiment 1, Q is pressed when the preference is the
small robot. The deduction of preferences were based on either direct
verbal communication, longest interaction duration or most preferred.

• Unclear: point variable is pressed once in case the preference implied
by the child is not clear. Unclear selections occur when the child either
prefers, selects more than one or neither of the stimuli.

3.3 Results and Discussions

Most of the children showed continuous interaction and engaging behav-
iors with the experimenter. The observed reactions varied differently across
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Table 3.1: Experimental protocol and objective of each experiment

Expt # Protocol Objective

1 Present 5 different non-moving

toys

To determine which toy is the most preferred

2 Remove all toys from Exper-

iment 1 and replace with in-

teractive social robots, such as

Nao and Paro.

To determine whether interactive robots, be-

having autonomously, appeal to the child

more than the non-moving toys from the pre-

ceding experiment, and to observe the nature

of his/her interactions with them

3 Remove all toys from Exper-

iment 2 and present the train

from Experiment 1, and add

different mechanical Thomas

and Friends trains

To determine whether the interest in trains is

limited to Thomas toys or extends to all trains

4 Remove all toys from Exper-

iment 3 except the partici-

pant’s favorite toy, and replace

them with a train that automati-

cally generates bubbles from its

chimney once switched on

To determine whether bubbles can add to the

appeal of a toy to verify their use as a reward

mechanism
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Figure 3.2: Some of the behaviors and interactions that occurred during the experiments.
(a) Nao fell after being pushed by a child. (b) A child refusing to interact with the
humanoid robot while shaking the small robot with his left hand. (c) A child is getting
excited about the train by shaking it around.

all the sessions, and the participants exhibited different responsiveness to
a given stimulus. Some interactions only occurred after a prompt from
the experimenter or caregiver while others were instantaneous and sponta-
neous. Some of the children displayed some concerning behaviors during
the experiments (Fig. 3.2). The preferences and the main features of inter-
est have been observed and recorded based on post-analysis of the videos.
The individual results and discussions are summarized below.

3.3.1 Experiment 1

In Experiment 1, five different toys were presented. The small robot scored
the highest (30%) followed by the truck with cubes (23.3%) and the ball
(16.7%) (Fig. 3.3b). The train scored 13.3% while the cymbals scored
10%. Unclear preference was around 6.7% of the participants.

Most of the interactions were limited to playing with the toys without
standing up or moving around, and without showing high level of excite-
ment. The majority of the children appeared interested to play with cubes
that comes with the truck (Fig. 3.3a). They spent some time in picking
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Figure 3.3: The preferences for the toys in Experiment 1. (a) Child playing with the cubes
of the truck. (b) Average rated preferences for each toy with the small robot scoring
the highest.

the cubes while trying to name the shapes and numbers on them with the
experimenter. When prompted, some of the children played with the ball
together with the experimenter or caregiver. The sound and reflection of
the cymbals piqued the interest of two children while three liked the fea-
tures on the train, such as the colors and wheels. Three participants enjoyed
interacting with the small humanoid robot the most while one avoided ap-
proaching it and kept his distance. This reaction could be attributed to the
human-like appearance of the small robot. One participant did not show
any interest in most of the toys in this experiment and ended up ignoring
the toys.

The interest in technology, especially to robots, is evident in Experiment
1. This cannot be generalized across all the participants and all individual
with ASD due to varying degree in their reactions to the same stimulus (e.g.
small humanoid robot) and due to the small sample involved in our experi-
ments. Some of the features and characteristics of existing toys (e.g. cubes
on the truck) seem to still get the interest of the children on the spectrum
and should be considered in any new robotic designs.

3.3.2 Experiment 2

In Experiment 2, two interactive social robots were presented (Fig. 3.4a).
Nao scored higher than Paro, 36.7% and 26.6%, respectively (Fig. 3.4b).
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Figure 3.4: The preferences for the social robots in Experiment 2. (a) Child crying and
refusing to approach Nao. (b) Average rated preferences for each social robot. Less
than half of the participants liked Nao more, while a quarter preferred Paro more. The
remaining children did not like either of these robots.

36.7% of the participants showed either refusal to interact or no definitive
selection on the preference.

The observations can be divided to three groups. The first group of
children interacted right away and showed positive reactions to the robots.
They imitated or gave instructions to Nao and they played with Paro. The
second group hesitated to interact quickly. They started by observing the
movements of the robots, and they then began to approach the robots slowly
to initiate the interactions. The last group refused to interact with either of
the robots as they seemed afraid of interacting or even approaching the
robots. Two children reacted with immediate anxiety upon the introduction
of the robots and demanded the robots to be removed from the room (Fig.
3.4a).

The increased interactions and higher levels of excitement were clear
in Experiment 2 among some of the participants. Part of that could be
attributed to the novelty effect of the presented social robots [171]. Inter-
estingly, the size of Nao being larger as compared to the smaller robot in
Experiment 1 played an important role in altering some of the reactions
negatively. This could imply that some children on the spectrum could feel
more comfortable dealing with robots relatively smaller than themselves.
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Figure 3.5: The preferences for the trains in Experiment 3. (a) A child showing interest in
the moving train. (b) Average rated preferences for the trains. The majority of children
have selected Thomas and Friends trains. Around one-third of the children were not
clear on their preference as they have interacted almost equally with all the trains
without implying their preferences.

Perhaps the smaller size gives them more sense of control over the pre-
sented stimuli. These negative reactions could also be attributed to lifelike-
ness of the presented social robots (i.e. human-like or animal-like).

3.3.3 Experiment 3

In Experiment 3, three different Thomas and Friends trains and one bigger
train were presented. Around 46.7% of the participants showed interest in
Thomas trains and 20% showed interest in the other train. The rest were
not clear on their preferences (Fig. 3.5b).

The children were more excited in this experiment as compared to Ex-
periment 1 and Experiment 2. Some children showed more excitement and
more movements when some of the trains were powered on (Fig. 3.5a).
These reactions support the idea that the implementation of simple features
could serve as reward mechanisms. Some recognized Thomas Trains and
started re-enacting crashing scenes while mimicking the sound of a train.
One child did not seem to show the same level of interest and excitement
as compared to others.

Familiarity with a presented stimuli (e.g. Thomas Trains) seems to play
a role in making interactions more fluid and spontaneous. Researchers in
social and educational robots could exploit this aspect in promoting their
designs to achieve higher effectiveness for the intended goals and purposes.
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Figure 3.6: The preferences for the trains in Experiment 4. (a) Child interacting with the
bubbles generating train. (b) Average rated preferences for the trains. Almost all the
children preferred the train with bubbles.

This could be achieved by accompanying their developed robots with inter-
active videos and books exhibiting their robots in action. The exposure to
such media prior to the presentation of the actual stimuli could help achieve
better outcomes and mitigate any potential negative reactions.

3.3.4 Experiment 4

In this experiment, the bubble-generating train and the child’s favorite train
in Experiment 3 were presented (Fig. 3.6b). Almost all the participants
showed high interest towards the train with bubbles (93.3%).

Most participants were immediately attracted to the bubbles, clapping or
jumping in excitement, attempting to catch them. The interaction durations
increased dramatically during this experiment. Children even showed more
interactions with higher level of excitement depicted by the increased phys-
ical interactions, laughters, and movements (Fig. 3.6a). These observations
support the idea of using bubbles as a reward mechanism in our proposed
model. Some showed curiosity about the train and its features that they
ended up carrying it while walking around. Few participants seemed to be
wondering why the other big train was not generating any bubbles.

32



3.4. Conclusion

3.3.5 Limitations

The number of participants in this study was limited to ten male children.
Hence, some aspects of the findings and preferences can not be generalized.
The experiments were not repeated and conducted only once. Therefore,
the effects of repeated exposure and continuous interaction over multiple
sessions were not investigated. Finally, the influence of different features
(e.g. bubbles) on different toys was not explored.

3.4 Conclusion

The results suggest diverse preferences among the participants. The most
positive reactions were observed during the sessions with the train with
bubbles. On the other hand, the instances where interactions were more
difficult occurred during the sessions with the social robots, especially with
Nao. While the humanoid robots have been reported to be a preferred can-
didate for imitation and eye-contact [173], the life-likeness of their appear-
ance, relatively large sizes or sudden motions might have been a contribut-
ing negative triggers for this difficulty. There have been some instances of
aggressive behaviors towards the social robots, such as pushing Nao and
jumping on Paro. This could suggest that social robots that resembles the
appearances of human or animal, to some degree, might not be positively
perceived equally by children on the spectrum. However, repeated exposure
and multiple sessions might alter these reactions overtime [161].

3.5 Chapter Summary

This chapter presented exploratory experiments for children with autism
interacting with different toys and two social robots. The chapter high-
lighted some key obaservations and interactions between the children and
the different stimuli.
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CHAPTER4
Severity Measures for Social Robots

This chapter identifies the potential harmful scenarios between a social
robot and a child exhibiting some challenging behaviors toward it. Ad-
ditionally, it also provides the materials and methods that were used in the
experiments to quantify possible harm levels. Finally, it presents the results
of the experiments and their implications concerning the potential harm.

4.1 Introduction

In the last few decades, the robotic research has witnessed a great changes
in the traditional paradigm as it has shifted to cover new areas, such as
entertainment, transportation, space, healthcare, and others [177]. Robots
are now being considered to be used in many applications (e.g. rehabilita-
tion and elderly care) that require direct physical human-robot interaction
[177], [80].

The rapid evolution of technology has sparked a global interest in robotics
and their prospective applications. The International Federation of Robotics
(IFR) has predicted that the number of entertainment robots, such as toy
robots, personal edutainment robots, and multi-media robots, will rise to 11
million units by 2019 [109]. This dramatic increase in the number of robots,
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especially the ones with close proximity with humans, has a lot of implica-
tions on safety concerns that emphasize the need for standardization. Some
of the standards that have been established are ISO 10218 [110], [111],
which is concerned with safety in industrial robots; ISO/TS15066 [114],
which is related to collaborative industrial robots; and the ISO 13482 [112],
which is related to personal care robots. Currently, there is no safety stan-
dard pertaining social robots or toy robots.

One of the earliest work concerning safety and harm quantification with
robotics introduced the human pain tolerance as an indicator for potential
risks [195]. In another work, the simulation of impact tests of an industrial
robot on a crash test dummy using Finite Element Method (FEM) was pro-
posed and demonstrated as means to assess safety [146]. In later works,
actual crash test dummies have been used in impact tests using industrial
robotic arms [90], [92]. Various safety indices, such as for the head, chest,
and neck, have been used in the evaluation of safety and potential injury
levels due to impacts. Up to date, limited studies have been conducted on
safety in social robotics, especially pertaining the safety of children with
ASD [189], [81], [99].

The objective of this chapter is to identify potentially harmful scenarios
that might occur between a child and a social robot due to the manifestation
of challenging behaviors. Additionally, it is aimed to quantify the harm
levels based on severity indices for one of the identified scenarios.

4.2 Robots and Potential Risks

Technology offers a lot of potential to therapeutic sessions, such as, but
not limited to, independent learning, individualizing, motivation, reinforce-
ment, social and communicative skills practice, hands-on learning, and oth-
ers [71]. The advancement in several Artificial Intelligence (AI) fields has
enabled robots to function independently and more naturally for effective
social interactions (Fig. 4.1). Social robots differ from typical toys in
many ways, such as the way they engage people at an interpersonal level
to achieve positive outcomes in different domains [37]. Furthermore, so-
cial robots should be able to convey emotions, form social relationships,
demonstrate personality, use natural communication cues, and to under-
stand their social partners [98]. Child-robot interactions are characterized
beyond traditional toys by the form of robot’s embodiment, the interface of
communication, two-ways reciprocally interaction, and the robot’s adapt-
ability to the child [78], [57].

Children interacting with social robots are prone to touching the robot.
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Figure 4.1: Some of the robots that have been considered or have the potential for ASD
intervention: a) Keepon, a yellow snowman-like robot [119]. b) Chippies, a pack of
playful puppies (With kind permission from WowWee Group Ltd). c) SPRK+, a more
than just a ball robot (With kind permission from Sphero). d) Lynx, a humanoid robot
companion (With kind permission from UBTECH). e) Cozmo, an interactive tiny robot
(With kind permission from Anki). f) Leka, an autonomous ball-like robot (With kind
permission from Leka Inc). g) Tipster, a fun and interactive robot (With kind permission
from WowWee Group Ltd).
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In some cases, they might show aggression toward the robot [13], [32], [186].
This requires that the existing design guidelines must ensure the safety of
the children and the physical integrity of the robot, especially during melt-
downs [47]. While some of the existing developed robots could meet many
of therapy objectives, they are still not adequate enough to be used with
some of the children on the spectrum that exhibit high activity and aggres-
sion levels [104]. The majority of the social robots used in the literature
are just prototypes, not commercially available, and have yet to find their
ways into therapy sessions or schools [103]. Hence, the exposure to such
technology is still very limited worldwide, and the need to identify poten-
tial safety issues arises. The wide adoption of social companions and smart
toys would introduce some concerns and ethical considerations that must
be addressed early on [174], [54], [130], [57]. Furthermore, the introduc-
tion of robots to children with ASD represents a new stimulus from their
environment that must be taken into account and consideration because of
their potentially challenging behaviors when interacting with them.

The occurrence of challenging behaviors [131], such as kicking objects,
throwing objects at others, banging on objects, and harming oneself by
hitting, when a robot is present increases the chances of potentially risky
scenarios (Fig. 4.2). Depending on the size of the social robot being used,
the magnitude of potential risks might change accordingly. For instance,
kicking a large robot will inflict an initial harm to the kicker and secondary
damage on others in case of the robot falling down on them. On the other
hand, kicking a small robot might impact on others and cause harm. An-
other challenging behavior that could inflict harm on others is throwing,
especially in the case of small and light robots. The child could use the
small robot involuntary as an object to be thrown on others. Self-inflicted
harmful behaviors, such as banging and hitting, could be increased with the
presence of a robot as it can be used by the child as an object to stimu-
late oneself. All the aforementioned scenarios must be accounted for when
designing robots and solutions to mitigate them must be investigated.

4.3 Materials and Methods

4.3.1 Dummy Head Development

A 3D-printed head form made of polylactide was augmented with clay to
reach a weight of 3.1 kg that is comparable to the weight of scaled 50th
percentile 3-6 years children dummy heads [179]. A 2 mm layer of de-
formable soft material made of silicone (Ecoflex 00-30, Smooth-On, USA)
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Potential Risky 
Scenarios

Due to hitting or 
banging

Due to throwing

Due to self-harming Due to kicking

Figure 4.2: The identified possible risky scenarios that might occur between a child and
social robot due to some challenging behaviors.
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was added to the head form to add more lifelike skin [49]. This silicon
layer will be used in estimating potential tissue injuries due to its close
shore hardness value to that of human skin [151].

A low-cost triple-axis accelerometer (ADXL 377, SparkFun Electron-
ics, Colorado, USA) was placed at the center of the head to measure the
linear acceleration of the head. A force-sensing resistor (FlexiForce Force
Sensor, Tekscan Inc, USA) was placed at the center of the forehead to mea-
sure the impact forces (Fig. 4.3). The force sensor was calibrated according
to the manufacturer’s guide and a small puck (i.e. disk-like force concen-
trator) was placed at the center of the sensing area to ensure that most of the
force applied can be detected. In case the embedded sensor failed to prop-
erly register some of the impacts, digital force gauge (FGE-100X, Shimpo
Instruments, USA) was used in separate experiments to measure the im-
pact forces by attaching it to the top of the head. Thus, increasing the total
weight of the head to 3.5 kg.

4.3.2 Experimental Setup

The experimental setup was based on a low-cost head model situated in a
dedicated frame (Fig. 4.4). The dimensions of the frame used were (94.0
x 94.0 x 94.0 cm3). Nylon coated wire ropes were used to situate the head
at the center of the frame. Both sensors (i.e. accelerometer and force)
were interfaced to a computer through a data acquisition card (PCI-6031E,
National Instrument, USA). The sampling rate was 20 kHz and signals were
filtered according to Channel Frequency Class 60 [58].

During the early years of a child, the muscles of the neck are not de-
veloped enough to dampen sudden and violent head’s movements [102].
Furthermore, for short impact durations, the effects of the neck and body
mass on the head are believed to be minimum [192]. Therefore, the devel-
oped setup focuses on the dynamics of the head only.

4.3.3 Impactor

The goal of this study is to quantify the potential harm due to the throwing
action of a small robot (i.e. impactor). Hence, to represent a small social
robot, a simple and small 3D model with minimum features was designed
and then fabricated using a 3D printer (Replicator 5th Generation, Maker-
Bot Industries, USA) (Fig. 4.5). The dimensions of the impactor are (18.0
x 8.0 x 17.0 cm3) and weighs around 0.55 kg. The surface roughness of the
printed robot model was limited to the resolution of the 3D printer.

While there are many large social robots, the smaller ones are more
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Figure 4.3: The developed low-cost 3D printed head form with the embedded sensors.
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Figure 4.4: The experimental setup used in this study.

Figure 4.5: The impactor representing a small social robot that has been used in the
experiments. a) Perspective view. b) Side view.
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Figure 4.6: Experiments that were conducted in this study. a) Validation experiment with
the 2 kg impactor b) Harm quantification experiment with the dummy robot.

affordable and are more suited for typical home users. The advancement in
technology is allowing smaller robots to be more compact and intelligent.
Hence, the size and mass of the proposed dummy robot falls according
to such projections. Furthermore, the parameters of the dummy robot are
within the potentially throwable range (i.e. light mass) for the targeted users
(i.e. children).

4.3.4 Procedures

Setup Validation

To verify the reliability of the developed setup in reporting a comparable
HIC values, six impact tests at different velocities were conducted. The im-
pactor used was a 2 kg mass attached to a beam (Fig. 4.6a). The beam was
attached to the main frame of the setup and allowed for free motion that
enabled it to hit the frontal side of the head at various velocities (See sup-
plementary material). All impact tests were recorded and the corresponding
HIC, 3 ms criterion, and impact velocities were calculated.
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Harm Quantification

Two different experiments of 15 trials each were conducted. Experiment 1
was in more controlled condition as the dummy robot was tied with a rope
to the frame to freely allow it to swing while making its left side facing the
forehead of the head (Fig. 4.6b). Experiment 2 was in a more comparable
condition to the realistic scenario, and that involved the throwing of the
dummy robot at various velocities from a distance of 1 m away from the
head model. The velocities used in both experiments were in the range of
0.5 - 8 m/s, which was within the range of a previously reported throwing
speed of tennis ball performed by children of different ages (i.e. 3 - 9
years) [168]. We believe this range is reasonable and comparable to the
throwing velocities that might be exhibited by children on the spectrum.

All experiments were recorded using a video camera (FDR-X1000V,
Sony, Japan) in slow-motion mode (240 fps, 720 pixels). All videos were
analyzed using the open-source video analysis software Tracker (v4.10.0,
Douglas Brown, Open Source Physics). A LabView (v2014, National In-
strument, USA) script was used to obtain the raw data from the data ac-
quisition card, processes it and then stores it in a worksheet file. The
data were post-processed by a Matlab (v2015, MathWorks, Massachusetts,
USA) script that generates the HIC and 3 ms criterion values.

4.4 Results

4.4.1 Setup Validation

To validate the head model setup, results were compared to previous studies
of similar nature [91], [90], where a low-cost dummy head fixed on a frame
was developed and an impactor of a mass of 1 kg was used for validation.
The impact tests were conducted using robotic arms of different masses at
different velocities and their results were then compared to that obtained
with ATD. Their setup was able to reproduce comparable numerical HIC
values.

The generated HIC values from the validation impact tests in our study
were comparable to that conducted previously (Fig. 4.7). For example,
impacting at a velocity of around 1 m/s has generated a HIC value in the
range of 3 - 10. The trend is also similar as the values of HIC obtained
have increased proportionally with the applied impacts velocities. As for
the 3 ms criterion, the values at around 1 m/s were in the range of 8 -
16 (Fig. 4.8). The differences in the values obtained are attributed to the
differences in the mass of the impactors used (i.e. 2 kg vs 1 kg) and the
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Figure 4.7: Head Injury Criterion (HIC) values generated by the developed experimental
setup due to different impact velocities with a 2 kg impactor. The results were compared
with similar impacts conducted by different industrial robots.
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Figure 4.8: The 3 ms criterion values generated due to different impact velocities with
a 2 kg impactor. The results were compared with similar impacts conducted by an
industrial robot.
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Figure 4.9: The corresponding Head Injury Criterion (HIC) values for impact experi-
ments conducted in Experiment 1 and 2. Experiment 1 where the dummy robot was
attached to the experimental setup while Experiment 2 where the experimenter con-
ducted the throwing of the dummy robot. The results were compared with HIC values
generated by an industrial robot.

mass of the developed dummy heads (i.e. 3.1 kg of a child vs 4.5 kg of an
adult) [129], [107].

4.4.2 Harm Quantification Measures

Head Injury Criterion (HIC)

In Experiment 1, there is a more consistent trend as the velocity of impact
increases the corresponding numerical HIC value increases (Fig. 4.9). The
lowest recorded HIC value was 0.013 and it occurred at a velocity of 0.6
m/s while the highest recorded HIC value was 8.568 corresponding to a
velocity of 5 m/s.

In Experiment 2, the overall trend is less consistent at certain velocities
as compared to Experiment 1, especially around 4 m/s. However, there is an
increase in the recorded HIC values as overall speed of throwing increases.
The lowest HIC value obtained was 0.114 corresponding to a velocity of
3.9 m/s while the highest recorded HIC value was 7.066 at a velocity of
7.48 m/s.

46



4.4. Results

0 1 2 3 4 5 6 7 8

Velocity (m/s)

0

10

20

30

40

50

60

70

80

90

100

3 
m

s 
C

ri
te

ri
o

n
 (

g
)

Side impact limitFrontal  

Experiment 1
Experiment 2

and
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experimental setup while Experiment 2 where the experimenter conducted the throwing
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child occupant [73].

The 3 ms Criterion

In Experiment 1, the lowest recorded 3 ms value was 1.425 g and it occurred
at a velocity of 0.6 m/s while the highest recorded 3 ms value was 21.476
g corresponding to a velocity of 5 m/s (Fig. 4.10). The trend of the 3 ms
values are linearly increasing with the applied velocities.

In Experiment 2, The lowest 3 ms value obtained was 2.96 g correspond-
ing to a velocity of 2.97 m/s while the highest recorded 3 ms value was 18 g
at a velocity of 7.48 m/s (Fig. 4.10). the trend is less consistent as compared
to Experiment 1 as evident around 4 m/s.

Peak Linear Acceleration

In Experiment 1, the lowest recorded peak linear acceleration value was 1.5
g and it occurred at a velocity of 0.6 m/s while the highest recorded peak
value was 23 g corresponding to a velocity of 5 m/s (Fig. 4.11). The peak
acceleration values are increasing linearly with throwing velocity.

In Experiment 2, the lowest peak linear acceleration value obtained was
3 g corresponding to a velocity of 2.97 m/s while the highest value was
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Figure 4.11: The corresponding peak linear acceleration values for impact experiments
conducted in Experiment 1 and 2. Experiment 1 where the dummy robot was attached
to the experimental setup while Experiment 2 where the experimenter conducted the
throwing of the dummy robot. The highlighted area represents the range of peak linear
accelerations that is associated with the occurrence of subconcussive events [165].

19 g at a velocity of 7.48 m/s (Fig. 4.10). The trend is less consistent as
compared to Experiment 1, especially around 4.0 m/s.

Impact Forces

The embedded force sensor approach has failed in registering some of the
impacts or maximum values due to the lack of sufficient contact between
the dummy robot and the effective area of the sensor. However, the maxi-
mum force recorded in all of the experiments was 28 N at a velocity of 5.75
m/s.

In order to get a better understanding of the potential impact forces in-
volved, four separate experiments at different velocities were conducted
using a stand-alone force gauge. These experiments were conducted simi-
lar to Experiment 1 method (Fig. 4.6b). The lowest value was around 30.1
N corresponding to velocity of 0.75 m/s while the maximum value was 91.3
N at a velocity of 2.15 m/s. There is a trend and linear relationship between
the applied velocities and the measured resultant peak force values (Fig.
4.12).
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Figure 4.12: The corresponding impact force values for impact experiments that were
conducted using the stand-alone digital force gauge. The right axis represents their
corresponding probabilities of causing facial fracture.

Figure 4.13: The observed tissue damage to the artificial skin. a) Abrasions-like skin
damage of depth that is less than 1 mm. b) Laceration-like skin damage of depth that
is equal or greater than 2 mm.
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Figure 4.14: Surface areas of the dummy robot that hit the head. a) Frontal edge. b)
Chimney. c) Back. d) Side.

Tissue Injuries

The evaluation of tissue injuries was based on the visual inspection of the
artificial skin and sample measurements using vernier caliper. All obser-
vations were made after conducting Experiment 1 and Experiment 2. In
terms of depth, the majority of the observed damage to the artificial skin
were less than 1 mm (Fig. 4.13a). There were some instances where the
depth of the observed damage was more than the thickness of the artificial
skin (i.e. greater than 2 mm) and piercing the dummy head (Fig. 4.13b).

4.5 Discussion

For HIC values to be meaningful, they need to be translated to a corre-
sponding metric for potential injury based on AIS scaling. From reported
equations previously, the probabilities of injury due to all impact tests con-
ducted in both Experiment 1 and 2 are negligible (i.e. close to 0%). Even
though all the estimated potential for injuries in our experiments are low,
there is still a potential for serious harm based on the reported catastrophic
injuries and fatalities that occurred due to impacts with lighter objects (e.g.
baseball) among children [125], [33]. While HIC severity index is signifi-
cant in giving an estimation of the potential for head injury, it is insufficient
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to estimate pain and assess tissue injuries.
As for the 3 ms criterion, the maximum values obtained for both sets

indicate a low potential for harm. The highest value for Experiment 1 is
around 36% of the 3 ms criterion impact limit (i.e. 60 g for frontal and
side impacts). As for Experiment 2, the corresponding percentage for the
highest 3 ms value is around 30% for the 3 ms criterion impact limit of 60
g.

The values for the peak linear accelerations for both experiments were
around 20 g, which were far away from most of the reported peak acceler-
ations (e.g. 66 - 106 g) that are associated with concussive events [200].
However, most of the obtained peak acceleration values fall within the
range (i.e. 6 - 46 g) that is associated with subconcussive events (Fig.
4.11). Furthermore, two peak linear acceleration values are at or above the
reported median value of 19 g that has been associated with the occurrence
of subconcussive impacts, where the occurrence of which has been linked
to neurocognitive deficits [165]. More research need to be done to under-
stand the biomechanical variables and its relation to causing concussion or
mild TBI among children.

For HIC, 3 ms criterion, and peak linear acceleration results, there was
a noticeable disparity in Experiment 2 at a velocity of around 4 m/s. For
example, HIC values range was from 0.114 to 2.834. This discrepancy can
be attributed to the surface or area of the dummy robot that hit the head
(e.g. chimney vs side) as observed from the analysis of the recorded videos
(Fig. 4.14). This implies that at higher velocities, the harm level could even
be larger depending on the contact area.

The peak force values for all the experiments were translated to percent-
ages corresponding to the potential of causing fracture to the skull based on
the previously stated relation (Fig. 2.5). All the recorded peak forces have
low potential to cause real harm to any of the facial bones. For example,
a peak value of 91.3 N (i.e. the maximum value obtained) corresponds to
around 0.6% chance of causing fracture to the bones of the face. However,
assuming the linear relation holds true for higher velocities (Fig. 4.12), the
chance for facial fracture increases up to 20% at a hypothetical throwing
velocity of 10 m/s for the same robot.

The depth of the observed artificial skin damage were interpreted to a
corresponding tissue injuries based on the classification listed in Table 2.3.
Most of the damage caused by the impacts conducted in this study falls
into superficial category that affects the epidermis layer, and they were in
the form of abrasions. There were few lacerations that are classified as
partial-thickness skin loss that would require medical care. No instances of
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Figure 4.15: The sustained damage on the small robot after finishing all of the experi-
ments.

full-thickness (i.e. depth greater than 4 mm) skin loss were observed.
The dummy robot has sustained a considerable damage (Fig. 4.15). The

damage was more apparent after performing Experiment 2 (i.e. mimicking
real throwing scenario). Some of the lacerations on the artificial skin of the
head could have resulted from the newly formed sharp edges on the robot
due to the sustained damage from some of the initial impacts. This implies
that any robotic design should remain robust and safe, especially after being
subjected to similar impacts and conditions. Superficial injury as an indi-
cator for potential harm could serve better than some of the typical severity
indices. Similar conclusion has been reached in studies investigating the
potential harm due industrial robots [90], [89].

The safety investigations conduced in this study were limited to one po-
tential scenario that may happen between a child and a social robot, which
is harm to the head due to throwing. The developed experimental setup was
limited to the head, but to better understand the overall dynamics involved
due to impacts, a child dummy model should have been used. Quantifying
harm was limited to the head, however, the actual harm could potentially
affect other areas, such as the neck or the chest. The impact scenario con-
sidered was limited to one and did not account for any impact boundaries,
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such as against a wall. Measurements of harm to the head was limited to
the existing severity indices and to the closest available data. Thus, some
aspects can not be measured, such as pain levels. The tissue injury inves-
tigations were limited to artificial skin and not a live skin. Thus, actual
depth of lacerations on an actual live skin might differ. Finally, the study
was limited to small form factor impactor representing a small social robot,
hence, the obtained results are only applicable to closely comparable robots
in terms of mass, design, material and size.

4.6 Conclusion

The motivation of this study is to investigate the potential for harm due
to the interaction between social robots and children with ASD, especially
during the manifestation of challenging behaviors. Throwing, kicking, hit-
ting, and self-harming are some of the challenging behaviors that during
the exhibition of which, especially in the presence of a social robot, could
inflict some harm to the children themselves and those around them. Our
investigation of harm due to throwing of a small social robot revealed that
it could potentially cause tissue injuries, subconcussive or concussive event
in extreme cases.

4.7 Chapter Summary

This chapter identified the potential harmful scenarios that could occur be-
tween a child with autism and a social robot. The chapter presented the
experimental setup and methods that were used to quantify the potential for
harm due to throwing based on the severity indices. Finally, the chapter
presented the results for the impact experiments and discussed their impli-
cations on the potential harm.
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CHAPTER5
Parametric Design of Small Robots

This chapter investigates different design parameters of small robots to re-
duce the potential harm by conducting two different studies. The first sec-
tion provides a brief introduction about the problem and motivation. The
methods and materials are then presented in this chapter. The last two sec-
tions of this chapter provide the details about the two studies and their out-
comes.

5.1 Introduction

The interest in robots is increasing globally as estimated by the Interna-
tional Federation of Robotics (IFR) [109]. The application of robots is
extending to new areas, such as that in healthcare. Most notably is the ap-
plication of social robots in therapy sessions with children with autism,
which has been reported to improve the overall outcomes [47]. How-
ever, such children exhibit a multitude of challenging behaviors that could
raise some safety concerns when a robot is present in their vicinity [3].
The occurrence rates of challenging behaviors are high (e.g. 49% up to
69% [25], [34], [116]), and that have many consequences on the services
and treatments provided to them [106].
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Unlike typical toys, social robots have the ability to demonstrate emo-
tions, establish social connections, display of personalities, using cues, and
engage with partners at an interpersonal level [178], [52], [193]. The intro-
duction of robots to children with ASD represents new challenge that must
be taken into account. Some studies reported that children interacting with
social robots might show some aggression [13], [45], [94]. Furthermore,
robots are meant to elicit behaviors [66], [53]. Hence, the introduction of
such technology to children with ASD could represent a potential harm dur-
ing the manifestation of unwanted behaviors (e.g. kicking, throwing, and
banging [131]). For instance, a thrown small robot that hits the head might
cause subconcussion or superficial injuries [3]. There is a need to evaluate
social robots to achieve safe physical human-robot interaction during such
scenarios.

When the head is subjected to bumps or blows and impacts with objects,
a traumatic brain injury (TBI) might occur. In serious cases, TBI could
lead to a disability or, in extreme cases, it could cause death. The occur-
rence of TBI among children could cause challenges, such as disabilities
and impairment in daily skills [17], [159]. In 2013 alone, 2.8 million cases
of TBI have been reported in the United States [188]. The cases of TBI
among children were occurred due to getting struck by or against an ob-
ject. A study analyzing mild brain injuries among children in Sweden for
the years 1998 and 1999 has found that 47% of the cases occurred at home
and during playtime or leisure activity and due to childcare products, which
includes toys [69]. These figures have many implications on the design of
robotic toys pertaining to the safety of the head. There is a need for further
safety considerations and user-focused design to take into account the char-
acteristics of special needs users, such as children with ASD [3], [13]. The
work in social robotics safety is still limited [99], [67], especially in relation
to improving design aspects of small robots [189], [100], [41], [48].

The establishment of safety standards in different fields of robotics is
making notable advances. However, the progress in establishing safety
standards in relation to social robots and robotic toys is still lacking [99], [67].
Some of the existing safety standards in toys can be readily imported to
cover some fundamental design and safety aspects. For example, the ISO
8124 standard [113]. Safety aspects of the mechanical and physical prop-
erties of toys are covered in part one of this standard while part two and
three covers flammability and migration of certain elements, respectively.
More rigorous design considerations are needed that consider the unwanted
behaviors exhibited by children with autism. For example, considering a
scenario where the robotic toy is thrown to the head.

56



5.2. Materials and Methods

In this chapter, two studies based on Taguchi method to investigate the
influence of different design parameters on a selected severity index are pre-
sented. The first study investigates two design factors (i.e. mass and shape)
of a small robot that is subjected to different throwing velocities (i.e. noise
factor) and understand their effects on the acceleration of a dummy’s head.
Furthermore, the first study identifies the conditions of the design factors at
which the response is minimized. The second study investigates a way to
reduce the harm to the head by studying the influence of two control factors
(i.e. storage modulus of soft material and its thickness) and one noise factor
(i.e. throwing velocity) of a small form factor toy on the resultant head’s
acceleration. Furthermore, the optimal levels of the investigated control
factors that help in reducing the response are identified.

5.2 Materials and Methods

5.2.1 Impact Setup

The impact setup was used to conduct the experiments that contained a
3D-printed head that was mounted on a frame (Fig. 4.4). The mass of the
dummy head was made close to that of children’s dummy heads [179]. To
measure the linear acceleration of the head, an accelerometer was placed
inside the head. The data was acquired at 20 kHz. The impact setup has
been shown to give similar results to that of related studies. More in-depth
details about the experimental setup and validation can be found in Chapter
4 or in our earlier studies [11], [3], [12], [7].

5.2.2 Impactors

Study One

The goal of this study is to understand the influence of the mass and shape
of a small robot on the resultant peak linear head acceleration due to an
impact. Hence, 3D models of three basic shapes were considered (Fig. 5.1).
The shapes were constructed using a 3D printer (Replicator 5th Generation,
MakerBot Industries, USA). A clay material was used to adjust the mass of
each shape according to the mass levels in Table 5.1. The center of mass
was made sure to be balanced for all the objects.

Study Two

A 3D printed cylindrical object was used as an impactor in the second study
investigating the influence of adding soft materials to the robotic design.
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a) b) c)

Figure 5.1: The three basic 3D designs of the impactors that have been considered in the
study. a) Cube (10×10×10 cm3, length, width and height). b) Cylinder (10×10 cm2,
diameter and height). c) Wedge (10 × 10 cm2, length and height). For simplicity, the
three basic featureless shapes were considered to isolate the contribution of the shape
on the response.

The dimensions of the impactor were (10 × 10 cm2, height and diameter).
The 3D printer was used to build the object. Clay was used to fill the im-
pactor to reach 0.4 kg. The soft materials (Ecoflex OO-30 & Dragon skin
FX-Pro, Smooth-On, USA) were prepared according to manufacturer’s in-
structions. The soft materials were prepared in molds of different thick-
nesses and then rectangular (5 × 8 cm2) samples of each were attached to
the impactor covering the area of impacts (Fig. 5.2).

5.2.3 Procedures

Impact Experiments

All experiments were performed according to the L9(3
2) orthogonal ar-

ray (OA) (Table 2.4). For each noise level, 9 experiments were conducted
that have covered all possible combinations of the control factors (Data
available in [8], [6]). The objects were tied to the frame which provided
a controlled condition in the execution of the experiments (Fig. 5.3). Fur-
thermore, it has provided more consistent impact velocities by adjusting the
drop height of an object. Three different drop locations generated three dif-
ferent noise levels. The impact velocities were based on the video analysis
of the experiments.

The impact velocities were estimated based on the slow-motion record-
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Figure 5.2: Sample of the experiments conducted for the second study.

Figure 5.3: Samples of the experiments that were conducted in the first study [10]. a) For
the cube. b) For the cylinder. c) For the wedge.
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ings of the experiments using a video analysis software (Tracker v5.0.7
[38]). The raw readings were obtained from the data acquisition card and
then stored using a LabView script. Finally, the peak head acceleration for
each experiment was calculated based on a MATLAB script. More detailed
procedures can be found in our earlier studies [11], [3], [12], [7].

Dynamic Mechanical Analysis

For the second study, the properties of the soft materials were studied using
a dynamic mechanical analyzer (RSA-G2, TA instruments, USA ; Fig. 5.4).
The dynamic mechanical analysis (DMA) is a common test to measure the
properties (i.e. elastic and viscous) of a material. The properties were stud-
ied by applying a stress (e.g. sinusoidal) and measuring the resultant strain
and the phase difference between the input and output. A frequency sweep
tests were conducted to study the storage modulus. In these tests, the fre-
quency was varied from 0.1 Hz to 100 Hz while the strain and temperature
kept constant. The storage modulus readings for each material were gen-
erated (Fig. 5.5). The values of storage modulus at 1 Hz for each material
were considered in the analysis. This frequency is believed to be at which
the high rate of challenging behaviors might occur [157].

5.2.4 Head Severity Index

Several head severity indices were used in the literature to study the poten-
tial harm to the head, such as Head Injury Criterion, 3 ms criterion, and
peak head linear acceleration. Previous studies have considered the peak
linear acceleration of the head to investigate concussive events due to im-
pacts [166] [198]. Among hockey players, an earlier study has reported
the possibility of the occurrence of a concussion at 31.8 g [135]. Another
study investigating football impacts identified the occurance of subconcus-
sive events at 26 ± 20 g [165]. Dummies that report the head acceleration
were also considered to evaluate the potential injuries to the head (e.g. in
industrial robots and in sports [91], [196], [150]). Similarly, the experimen-
tal setup in this study will use the peak linear head acceleration to conduct
the impact experiments.

5.2.5 Data Analysis

ANOVA

To study the significance of each factor on the head’s acceleration, three-
way analysis of variance (ANOVA) test was conduced on the responses of
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Figure 5.4: The Dynamic Mechanical Analyzer device that was used to analyze the soft
materials.
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Figure 5.5: The storage modulus results for the dynamic mechanical analysis (DMA) tests
that were performed on the three materials.

all the investigated factors. The level for statistical significance was set to
p < 0.05. All analyses were performed using Minitab (v18.1, Minitab Inc.,
USA).

Signal to Noise Ratio

The optimization technique considered the signal-to-noise (S/N) ratio. The
aim of this study is reduce the head’s acceleration. Hence, the appropriate
S/N ratio was selected, and it is defined as [56]:

S/N = −10log10E
[
y2i
]

(5.1)

where E is the expectation and y2i is the head’s acceleration (i.e. the re-
sponse).

5.3 Shape and Mass of Small Robotic Design

5.3.1 Experimental Factors

The goal is to investigate whether the shape or the mass play any role in
affecting the response. Hence, two control factors are considered in this in-
vestigation for their possible influence in attenuating the peak acceleration
of the head. Twenty seven (i.e. 9 × 3) experiments must be conducted to
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Table 5.1: The experimental factors and their descriptions. The impact velocity levels are
represented by the mean and the standard deviation.

Type Factor Code Level 1 Level 2 Level 3

Control Mass A 0.3 kg 0.4 kg 0.5 kg

Control Shape B Cube Cylinder Wedge

Noise Impact X Low Medium High

velociy (m/s) (1.14 ± 0.10) (1.72 ± 0.12) (2.7 ± 0.10)

Response Peak linear head acceleration (g)

cover all the possible combination of all the factors based on the L9(3
2) OA

(Table 2.4). The considered control and noise factors are independent.
All levels of all factors have been defined (Table 5.1). The range for the

mass is comparable to that of small robotic toys. For the sake of simplicity,
the selection of the overall shapes of the form factor were limited to three
basic 3D geometric shapes while ignoring any other features. For consis-
tency, the noise levels were limited to low velocities divided into levels (i.e.
< 3 m/s) [139].

5.3.2 Results

Orthogonal Array

The Taguchi L9 orthogonal array was completed by finding the average
response, the standard deviation, and the respective S/N ratio for each com-
bination of the investigated factors (Table 5.2). The range for the linear
acceleration values was 2.72 to 13.03 g. The lowest response value was at a
mass of 0.3 kg, wedge shape, and Level 1 impact velocity (i.e. A1-B3-X1).
As for the highest response, it occurred at a mass of 0.5 kg, cylinder shape,
and at an impact velocity Level 3 (i.e. A3-B2-X3). The lowest overall av-
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Table 5.2: The complete Taguchi orthogonal array along with columns showing the av-
erage response, standard deviation (SD), and the signal to noise ratio (S/N) for each
row.

Inner

control

factors

array

Outer noise

factor

array

Average

response

Standard

deviation

Signal-to-

noise

ratio

RUN A B X1 X2 X3 Mean SD S/N

1 1 1 3.75 5.74 6.58 5.36 1.45 -14.79

2 1 2 3.25 7.28 9.24 6.59 3.05 -16.96

3 1 3 2.72 5.81 7.18 5.24 2.28 -14.90

4 2 1 4.18 7.56 8.96 6.90 2.46 -17.13

5 2 2 4.20 9.04 10.96 8.07 3.48 -18.64

6 2 3 3.72 7.04 9.04 6.60 2.69 -16.85

7 3 1 4.93 9.14 10.94 8.34 3.08 -18.80

8 3 2 4.42 9.50 13.03 8.98 4.33 -19.69

9 3 3 4.41 8.84 11.40 8.22 3.54 -18.80

erage response across all factors was 3.95 g with a S/N ratio of -12.05 and
was due to Level 1 velocity (Table 5.3 and Table 5.4). On the other hand,
Level 3 velocity scored the highest average response (ie. 9.70 g) with a S/N
ratio of -19.91.

ANOVA

The statistical significance of each factor on the average response due to
varying their levels was investigated based on three-way ANOVA test. The
inverse transformation of the response was considered in this test. A post-
hoc pairwise Tukey test was also conducted.

To understand the contribution of the mass on the head’s acceleration, a
three-way ANOVA was conducted (Table 5.5). The test revealed a statisti-
cal significance due to altering the conditions of the mass on the response
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5.3. Shape and Mass of Small Robotic Design

Table 5.3: The average response at every level of each factor.

A B X

Level Mean (SD) Mean (SD) Mean (SD)

1 5.73 (0.75) 6.86 (1.49) 3.95 (0.67)

2 7.19 (0.77) 7.88 (1.21) 7.77 (1.43)

3 8.51 (0.41) 6.69 (1.49) 9.70 (2.07)

Table 5.4: The average signal-to-noise (S/N) ratios at every level of each factor.

A B X

Level S/N S/N S/N

1 -15.55 -16.90 -12.05

2 -17.54 -18.43 -17.94

3 -19.10 -16.85 -19.91

Table 5.5: Summary of the three-way ANOVA test on the three factors.

Source df Sum of

squares

Mean

square

F-Value P-Value

A 2 0.02 0.01 46.97 0.00

B 2 0.00 0.00 7.03 0.02

X 2 0.12 0.06 289.24 0.00

A*B 4 0.00 0.00 1.22 0.374

A*X 4 0.00 0.00 2.70 0.11

B*X 4 0.00 0.00 3.91 0.05

Error 8 0.00 0.00

Total 26 0.15
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(F(2,8) = 46.97, p = 0.00) at the p< 0.05. A post-hoc Tukey test showed
that Level 1 mass (M = 5.73, SD = 0.75), Level 2 mass (M = 7.19, SD =
0.77), and Level 3 mass (M = 8.51, SD = 0.41) were statistically different
at p< 0.05.

To investigate the effects of the shape on the response, a three-way
ANOVA test was conducted (Table 5.5). There was a significant differ-
ence due to the alteration of the shape on the response (F(2,8) = 7.03, p =
0.02) at p< 0.05. A post-hoc Tukey test showed that Level 2 shape (M =
7.88, SD = 1.21) differed significantly from Level 3 shape (M = 6.69, SD =
1.49).

To understand the contribution of the impact velocity, a three-way ANOVA
was performed (Table 5.5). A significant difference was reported due to al-
tering the conditions of the impact velocity on the head acceleration (F(2,8)
= 289.24, p = 0.00) at p< 0.05. A post-hoc Tukey test showed that Level
1 impact velocity (M = 3.95, SD = 0.67), Level 2 impact velocity (M =
7.77, SD = 1.43), and Level 3 impact velocity (M = 9.70, SD = 2.07) were
statistically different at p< 0.05.

There was no significant interaction between the mass and the shape (i.e.
A and B) on the response (F(4,8) = 1.22, p = 0.37) at p< 0.05. There was
no significant interaction between the mass and the impact velocity (i.e. A
and X) on the response (F(4,8) = 2.70, at p = 0.11) at p< 0.05. There was
no significant interaction between the shape and the impact velocity (i.e. B
and X) on the response (F(4,8) = 3.91, at p = 0.05) at p< 0.05.

5.3.3 Discussion

The responses of the 27 experiments conducted suggest that the control
factors and noise factor have influenced the response. A trend between
Factor A (i.e. the mass) and the response can be observed by observing
the columns of the OA (Table 5.2). For instance, observing the average
response values in the noise factor columns (i.e. X1, X2, and X3), the
registered head acceleration value appear to increase as the mass level in-
creases (i.e. from row 1 to 9). No consistent trend can be observed for
Factor B. However, the second shape B2 (i.e. cylinder) appears to score
higher responses compared to the other two shapes as observed in the aver-
age response column. Observing the noise columns shows that the head’s
acceleration has increased with the impact velocity. The relatively large
values of the standard deviation also support that the noise factor affects
the resultant head acceleration significantly. The velocity and mass of the
impactors have been reported to affect the magnitude of the peak linear
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5.3. Shape and Mass of Small Robotic Design

Figure 5.6: The average response values and signal-to-noise (S/N) ratios for the factors
investigated in this study. a) For Factor A, the mass. b) For Factor B, the shape. c) For
Factor X, the impact velocity.
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head acceleration [107], [91]. The average responses and the results of the
ANOVA test were in accordance with these findings (Table 5.3 and Table
5.5). As for the shape factor, it appears to affect the response the least
(Table 5.3). The response for the cylinder shape reported higher average
response compared to the other shapes.

Optimization

The goal of Taguchi design in this study was to optimize the control fac-
tors in order to reduce the head linear acceleration. The optimization was
accomplished by inspecting the average response and the corresponding av-
erage S/N ratio at every level of the control factors (Table 5.3 and Table 5.4;
Fig. 5.6). The ideal case in this study is producing a lower response and
higher S/N ratio, hence, the focus is on the factor conditions that satisfies
this criterion.

The optimal conditions for the mass and shape were found (Fig. 5.6).
The mass of 0.3 kg achieved the lowest response. As for control factor of
the shape, cube (i.e. Level 1) and wedge (i.e. Level 3) scored comparably
the best. For the noise factor, Level 1 (i.e. 1.14 ± 0.10 m/s) achieved the
lowest response.

The identified conditions were 0.3 kg for the mass factor and cube or
wedge for the shape (i.e. A1-B1 and A1-B3, respectively). Compared to
other combinations, the identified optimal conditions generated relatively
lower responses, for example, the individual responses at noise Level 2 and
Level 3 (i.e. X2 and X3) for runs 1 and 3 (Table 5.2).

Confirmation Runs

The confirmation runs are needed to validate the optimal conditions that
were obtained in the previous section. To achieve that, 18 experiments were
conducted. For each of the identified conditions in the previous section,
3 runs were performed (Table 5.6). The confirmation runs showed that
the average response values were comparable to respective ones obtained
in the complete OA (Table 5.2), hence, confirming the optimal identified
conditions for the control factors.

Limitations of the Study

The investigation conducted in this study was limited to three factors con-
ducted in a laboratory developed experimental setup with controlled con-
ditions that might differ from an actual and more dynamic scenario (e.g.
potential for secondary impacts). The values of the object mass that were
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Table 5.6: The responses, the average, and standard deviation for the confirmation runs.
The conditions selected achieved relatively better responses in comparison to the other
conditions in the main experiments.

Combination X1 X2 X3

A1-B1

3.32 5.48 7.57

3.78 5.64 6.51

4.04 6.17 6.46

Mean (SD) 3.71 (0.36) 5.76 (0.36) 6.85 (0.63)

A1-B3

2.57 5.31 7.97

2.68 5.28 6.63

3.25 6.18 7.76

Mean (SD) 2.83 (0.37) 5.59 (0.51) 7.45 (0.72)

tested were limited to the range of 0.3 - 0.5 kg. In reality, lighter or heavier
robotic toys could exist. Studying the effect of shape was limited to three
basic featureless shapes. However, actual robotic forms could have other
unusual shapes with a lot of detailed features. Due to the way the exper-
imental setup was designed, the impact area for each shape was limited
to achieve consistency between the experiments. The effects of different
impact areas and their interactions with different shapes and surface’s fea-
tures were not investigated in the current work. The noise levels that were
tested were limited to low velocity impacts. Hence, the generated head’s
accelerations from our experiments were limited to a small range (i.e. <
10 g), which is unlikely to cause any potential harm. However, in an actual
scenario, the toy robot could be subjected to higher velocities generating
higher head’s accelerations. Finally, the investigated severity index was
limited to the head acceleration. Other severity indices (e.g. tissue injuries)
could be considered to investigate different effects due to different design
parameters.
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5.3.4 Conclusion

In this study, the Taguchi parameter design method was used to identify
the optimal design parameters for small form factor robotic toy in order to
reduce the peak linear head acceleration due to impacts on the head. The
investigated control factors were the mass and the shape. The impact veloc-
ity was the noise factor. Based on L9(3

2) orthogonal array, a total number
of 27 experiments were conducted covering the possible combinations of
the control factors and the noise factor. The optimal levels of the shape and
mass that minimize the peak head linear acceleration were found based on
the S/N ratio. The three-way ANOVA test revealed statistical significance
for the control factors and the noise factor in influencing the head’s acceler-
ation. The optimal levels for the control factors were as 0.3 kg for the mass
and cube or wedge for the shape. The confirmation runs at the optimal con-
ditions for the control factors provided the best responses as compared to
others.

5.4 Thickness and Storage Modulus of Soft Materials

5.4.1 Experimental Factors

In this study, the thickness and the storage modulus (i.e. two control fac-
tors) of three different soft materials are investigated for their potential in
reducing the linear acceleration of the head. Experiments are conducted
based on an L9(3

2) Taguchi OA (Table 2.4). A total of 27 (i.e. 9 × 3)
experiments have to be conducted that consider the three levels of the con-
trol and noise factors. The considered control factors can be adjusted at
the product design level while the noise factor is dependent on the real life
scenario (e.g. throwing). Finally, the selected factors are independent while
the measured output (i.e. head’s acceleration) is dependent.

The levels of the two control factors (i.e. material thickness and storage
modulus) and noise factor (i.e. impact velocity) have been defined (Table
5.7). To achieve consistency, the mass and the shape of the impactor were
kept the same throughout the experiments. The mass of the impactor was
kept at 0.4 kg, which is within the expected range of the targeted applica-
tions (i.e. small robotic toys). The shape of the impactor was cylindrical
without any features on the surface. Finally, the impact velocities used were
limited to low velocities to achieve more consistency in terms of the noise
levels.
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Table 5.7: The experimental factors and their descriptions. The impact velocity levels are
represented by the mean and the standard deviation.

Type Parameter Code Level 1 Level 2 Level 3

Control Thickness A 1 mm 3 mm 5 mm

Control
Storage

modulus

B 0.2 MPa 0.3 MPa 1.7 MPa

Noise Impact X Low Medium High

velocity (m/s) (1.1 ± 0.04) (1.81 ± 0.07) (2.75 ± 0.10)

Response Peak linear head acceleration (g)
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5.4.2 Results

Orthogonal Array

A total of 27 responses of the peak linear head acceleration were recorded
and the corresponding average value, standard deviation, and S/N ratio for
each combination were calculated to complete the Taguchi L9 orthogonal
array (Table 5.8). The obtained linear acceleration values were in the range
from 2.42 to 10.75 g due to different levels of control and noise factors.
The lowest linear acceleration value obtained corresponds to a thickness of
3 mm, Ecoflex, and Level 1 impact velocity (i.e. A2-B1-X1) while the high-
est linear acceleration value corresponds to a thickness of 1 mm, Ecoflex,
and Level 3 impact velocity (i.e. A1-B1-X3). The average response and
the S/N ratio due to varying the level of each factor were tabulated (Table
5.9 and Table 5.10). The lowest average linear head acceleration was 3.18 g
with S/N ratio of -10.10 occurred at Level 1 impact velocity while the high-
est average linear head acceleration was 10.10 g with S/N ratio of -20.09
due to Level 3 impact velocity.

ANOVA

Three-way ANOVA test was conducted to understand if there is a signifi-
cant difference due to varying the conditions on the resultant average peak
linear head acceleration. In case the ANOVA test reported a significant
difference, a post-hoc Tukey test was conducted.

A three-way ANOVA was conducted to compare the effect of varying
the three conditions of the thickness on the response (Table 5.11). The test
revealed that there was no significant difference due to varying the thickness
on the resultant average linear head acceleration for the three conditions
(F(2,8) = 2.62, p = 0.13) at the p< 0.05.

A three-way ANOVA was conducted to study the effects of the storage
modulus on the head peak acceleration (Table 5.11). The test revealed that
there was no significant difference due to changing the storage modulus
on the resultant average linear head acceleration for the three conditions
(F(2,8) = 1.30, p = 0.33) at p< 0.05.

A three-way ANOVA was conducted to compare the effect of the three
different levels of the impact velocity on the head peak acceleration (Table
5.11). The test revealed that there was a significant difference due to vary-
ing the impact velocity on the resultant average linear head acceleration for
the three conditions (F(2,8) = 697.74, p = 0.00) at the p< 0.05. A post-hoc
Tukey test showed that velocity Level 1 (M = 3.18, SD = 0.42), velocity
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Table 5.8: The complete Taguchi orthogonal array along with columns showing the av-
erage response, standard deviation (SD), and the signal to noise ratio (S/N) for each
row.

Inner

control

factors

array

Outer noise

factor

array

Average

response

Standard

deviation

Signal-to-

noise

ratio

RUN A B X1 X2 X3 Mean SD S/N

1 1 1 2.90 6.56 10.75 6.74 3.92 -17.45

2 1 2 3.98 6.04 10.23 6.75 3.18 -17.19

3 1 3 3.41 6.35 10.26 6.67 3.43 -17.19

4 2 1 2.42 5.65 9.99 6.02 3.80 -16.61

5 2 2 3.24 6.01 10.29 6.51 3.55 -17.06

6 2 3 3.13 6.06 10.18 6.46 3.54 -16.99

7 3 1 3.03 6.15 10.03 6.40 3.50 -16.92

8 3 2 3.38 6.14 10.53 6.68 3.60 -17.27

9 3 3 3.08 6.50 8.59 6.06 2.78 -16.21

Table 5.9: The average response at every level of each factor.

A B X

Level Mean (SD) Mean (SD) Mean (SD)

1 6.72 (0.04) 6.39 (0.36) 3.18 (0.42)

2 6.33 (0.27) 6.65 (0.12) 6.16 (0.28)

3 6.38 (0.31) 6.40 (0.31) 10.10 (0.61)
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Table 5.10: The average signal-to-noise (S/N) ratios at every level of each factor.

A B X

Level S/N S/N S/N

1 -17.28 -16.99 -10.10

2 -16.89 -17.17 -15.80

3 -16.8 -16.80 -20.09

Table 5.11: Summary of the three-way ANOVA test on the three factors.

Source df Sum of

squares

Mean

square

F-Value P-Value

A 2 0.82 0.41 2.62 0.13

B 2 0.40 0.20 1.30 0.33

X 2 216.63 108.31 697.74 0.00

A*B 4 0.64 0.16 1.03 0.45

A*X 4 0.62 0.16 1.00 0.46

B*X 4 1.33 0.33 2.14 0.17

Error 8 1.24 0.16

Total 26 221.67
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Level 2 (M = 6.16, SD = 0.28), and velocity Level 3 (M = 10.10, SD =
0.61) were different significantly at p< 0.05.

There was no significant interaction between the thickness and the stor-
age modulus (i.e. A and B) on the response (F(4,8) = 1.03, p = 0.45) at
p< 0.05. There was no significant interaction between the thickness and
the impact velocity (i.e. A and X) on the response (F(4,8) = 1.00, at p =
0.46) at p< 0.05. There was no significant interaction between the storage
modulus and the impact velocity (i.e. B and X) on the response (F(4,8) =
2.14, at p = 0.17) at p< 0.05.

5.4.3 Discussion

The alteration of the control factors and noise factor levels have an effect
on the resultant head accelerations (Table 5.8). No definite trend can be
observed between the thickness (i.e. Factor A) and the resultant response
by visually investigating the orthogonal array. For example, looking at the
response values in the noise factor columns X1 - X3 from row 1 to 9, the
registered head acceleration value appear to remain consistent. Similar ob-
servation can be made for Factor B. One the other hand, the noise factor
levels seem to affect the response significantly. For example, examining
columns X1, X2, and X3 reveals that the response increases proportion-
ally with the applied impact velocity (i.e. noise factor) as supported by the
relatively large standard deviations across each row.

The peak linear head acceleration has been reported to be influenced
by the impact velocity of an impactor [107], [91]. The increasing average
values of the response at each level of the impact velocity supports these
findings (Table 5.9). Furthermore, ANOVA test results and post-hoc Tukey
findings showed that the impact velocity has a significant effect on the re-
sultant peak head acceleration. On the other hand, no similar conclusion
can be made for the control factors. For example, the reported ANOVA
results for the effect of the material’s thickness revealed that there was no
statistical significance. This could be attributed to the relatively small se-
lected thickness range and to the small difference between each level.

Optimization

The second goal of this study is to find the optimal values that reduces the
response. This is achieved by investigating the mean value of the resultant
head acceleration and the corresponding mean S/N ratio for each factor
(Table 5.9 and Table 5.10). The plots were generated for the mean response
at each factor level and the corresponding mean S/N ratios for a better visual
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Figure 5.7: The average response values and signal-to-noise (S/N) ratios for the factors
investigated in this study. a) For Factor A, the material thickness. b) For Factor B, the
storage modulus. c) For Factor X, the impact velocity.

comparison (Fig. 5.7). The criterion for selecting the optimal conditions is
based on finding the levels that produce the lowest response and highest
S/N ratio.

The best conditions for the thickness and storage modulus were identi-
fied based on the lowest generated head linear acceleration and highest S/N
ratio (Fig. 5.6). For the control factor of material’s thickness (i.e. Factor
A), 3 mm (i.e. Level 2) and 5 mm (i.e. Level 3) achieved closely the best
results. As for control factor of material’s storage modulus (i.e. Factor B),
ecoflex (i.e. Level 1) and clay (i.e. Level 3) scored closely the best re-
sults. Even though ANOVA tests on both of the control factors reported
no significance in affecting the peak head acceleration, the identified lev-
els for each factor provided the lowest responses and highest S/N ratios as
compared to other conditions. Hence, these conditions were selected as the
optimal values. As for the noise factor, 1 - 1.2 m/s impact velocities (i.e
Level 1) scored the best results. The optimized conditions for the control
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5.4. Thickness and Storage Modulus of Soft Materials

factors investigated were 3 mm or 5 mm for the material’s thickness factor
and ecoflex or clay for the material’s storage modulus (i.e. A2-B1, A2-B3,
A3-B1, and A3-B3). Interestingly, the selected optimal control factors’ lev-
els produced relatively lower average peak head accelerations compared to
other conditions at even higher noise levels (Table 5.8).

Confirmation Runs

After finding the optimal levels for each control factor, the last stage of
Taguchi design is to perform the confirmation runs. The goal of this study is
to minimize the peak head acceleration due to an object being thrown at the
head by investigating the effect of two control factors, namely the material’s
thickness and its storage modulus. Hence, the optimal levels obtained in
the previous section should produce relatively smaller head accelerations
as compared to other conditions. Confirmation runs are needed to confirm
these findings. To ensure that the optimal levels are robust and applicable to
different noise scenarios, two confirmation runs will be conducted at every
noise level.

A total of 24 confirmation runs were conducted at the optimal control
factors’ levels. For each control and noise factors combination, 2 runs were
conducted and the corresponding mean values for each were calculated (Ta-
ble 5.12). Comparing the results of the confirmation runs to that obtained
from the main experiments, the average values were very close to respective
ones obtained in the complete Taguchi orthogonal array (Table 5.8). Hence,
the confirmation runs confirmed that the selected optimal levels produced
the lowest peak head accelerations.

Limitations of the Study

This study considered only the application of three soft materials while
there are many other candidates that could be considered. The effects of
the added mass of the soft materials were ignored (e.g Less than 0.05 kg).
However, this added mass might influence the results significantly, espe-
cially when larger area is covered (e.g. covering the whole object with a
soft material) or larger thickness is considered (i.e. greater than 5 mm).
For consistency, the shape of the object was limited to one shape while the
velocity of impacts was limited to low range. However, different shapes
of robotic toys exist and higher impact velocities might occur in realistic
scenarios. Other severity indices could have been considered to measure
different potential harm. For example, measuring the soft tissue injuries
and quantify the potential of soft materials in mitigating it.
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Table 5.12: The responses, the average, and standard deviation for the confirmation runs.
The conditions selected achieved relatively better responses in comparison to the other
conditions in the main experiments.

Combination X1 X2 X3

A2-B1

2.17 5.11 10.18

3.17 6.74 9.45

2.68 5.60 9.69

Mean (SD) 2.67 (0.50) 5.81 (0.83) 9.78 (0.37)

A2-B3

2.12 5.04 9.18

3.43 6.59 10.60

3.37 5.06 10.25

Mean (SD) 2.97 (0.74) 5.56 (0.89) 10.01 (0.74)

A3-B1

3.06 6.27 10.25

2.27 6.13 9.71

2.87 6.27 9.82

Mean (SD) 2.74 (0.41) 6.22 (0.08) 9.93 (0.28)

A3-B3

3.34 7.08 8.54

2.99 6.38 8.76

3.32 6.4 8.60

Mean (SD) 3.22 (0.20) 6.62 (0.40) 8.63 (0.11)
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5.4.4 Conclusion

In this study, the influence of an added soft material to an object on the
linear acceleration of the head upon impact has been investigated. The
Taguchi L9(3

2) orthogonal array design has been used to plan the 27 main
experiments that were conducted. The control factors were the thickness
and the storage modulus of three different soft materials. The noise factor
was the impact velocity. The significance of each factor has been identified
based on three-way ANOVA test while the optimal levels for the control
factors were identified based on the analysis of S/N ratio. ANOVA test
showed that the control factors were not statistically significant in influenc-
ing the linear acceleration of the head. On the other hand, ANOVA test of
the noise factor revealed that it was statistically significant. Material thick-
ness of 3 mm and 5 mm achieved the best results. This implies that the
application of a higher thickness of soft material will attenuate the head’s
acceleration better. Ecoflex and clay have achieved better response as com-
pared to dragon skin. Confirmation runs at the optimal identified conditions
achieved better responses as compared to other conditions.

5.5 Chapter Summary

This chapter presented the investigation of different design parameters (i.e.
control factors) of small robotic toys in their influence on one severity index
of the head (i.e. linear acceleration of the head). This chapter presented two
studies designed based on Taguchi method that was then used to design
the experiments and to optimize the design factors. The first study in this
chapter investigated the effects of the mass and shape of small objects on
the selected severity index while the second study investigated the influence
of the thickness and storage modulus of three different soft materials on the
same severity index. The results showed that some of the control factors are
significant in affecting the response. The confirmation runs revealed that
the identified optimal conditions for the control factors achieved relatively
better results.
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CHAPTER6
Adaptive Robot Intelligence during

Unwanted Interactions

This chapter presents two studies aimed at making a robot adaptive toward
unwanted interactions. The first study explores the possibility of embed-
ding the knowledge of unwanted physical interactions into a small robotic
toy. It highlights the feasibility of recognizing six different possible in-
teractions between a child and a small robotic toy based on an embedded
tri-axial accelerometer. The second study investigates the influence of reac-
tion time in the emotional response of a robot on the interactions between
a child and a robot.

6.1 Introduction

The recent advances in robotics accelerated the integration of robots to new
areas, such as in healthcare. More specifically, social robots or rehabili-
tation robots are being developed to monitor and improve health, to assist
with difficult tasks, and to prevent the declining of one’s health [163]. As-
sisting in therapy is an application of robots in healthcare that has shown a
promising potential. For example, social robots were found to be effective
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Figure 6.1: Some of the unwanted and aggressive interactions that might be exhibited by
children toward a companion robotic toy [5].

in improving the outcomes of therapy sessions, especially among children
with autism [47], [178].

Aggression is a behavior that is done by a living agent, such as a human
or an animal, that causes harm and violates the rights of others [59]. The
American Psychological Association (APA) defines aggression as a behav-
ior that is aimed at hurting others either physically or psychologically [15].
APA categorizes aggression as hostile aggression, which is intended to
cause harm; instrumental aggression, which is not intended to cause harm;
and affective aggression, which is emotionally motivated toward the source
of distress. The frequency of physical aggression among children was re-
ported to peak during the years before school [144]. Kicking, biting, and
hitting are examples of the physical aggressive behaviors that might oc-
cur during the early years of childhood [14]. Aggression among children
is considered as one of the most common reasons for the mental health
referrals [181]. The occurrence of aggression or disruptive behavior was
reported to be higher among children with psychiatric disorders. For ex-
ample, the prevalence rates of such behaviors was reported to reach 62.3%
among children with anxiety disorders, while it could reach 45.8% among
those with mood disorders [145].

Social robots represent new stimuli that are meant to elicit behaviors
and initiate interactions, and that might trigger unwanted ones. Previous
studies showed that children might exhibit some aggression toward the
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Figure 6.2: Overview of the proposed model to detect unwanted physical interactions
between a child and a small social robot.

robots [13], [32], [45]. In case of small robots, children might carry the
robot and mishandle it (Fig. 6.1). To date, the studies to characterize the
unwanted and aggressive interactions are limited [169], [32], [126]. Addi-
tionally, limited work has been done to investigate the proper reactions once
such behaviors are detected. The ability of a robot to detect and respond
to unwanted interactions will provide many benefits, such as the prevention
of potential harm, monitoring, promoting safety culture, and as a therapeu-
tic and teaching tool. Furthermore, it can be used by the robot to help the
child to stop the unwanted behavior and to prevent any progression [45].
For example, a child shaking or hitting a robot could be a precursor for a
meltdown episode.

In this chapter, two studies aimed at adding adaptive capabilities to a
small robotic toy are presented. The first study investigates the potential
of using an artificial neural network to develop a model that is capable
of classifying the unwanted physical interactions between a child and a
small robotic toy (Fig. 6.2). This study considers six different interaction
behaviors, namely, hitting, shaking, dropping, throwing, picking up, and
being idle (i.e. no active interaction). The second study investigates the
effects of reaction time and sound modality employed in robotic toys on the
perceived perception by children interacting with the robots. A recognition
architecture based on Long Short-term Memory Cell (LSTM) was adopted
to classify the behaviors based on the acceleration data received. Different
reactions with different timings were produced once a pickup, a shake, a
drop or a throw was detected.
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6.2 Recognition of Aggressive Interactions

6.2.1 Overview

For social robots that interact with children with ASD, there have been
some studies conducted to characterize the interactions [74], [32]. An ear-
lier study used a ball-like mobile robot (i.e. Roball [169]) embedded with
sensors to detect the direct interaction instances with the robot. The study
considered four interaction cases with the robot, namely robot being alone,
robot receiving an interaction, robot being carried, and robot being spun.
The study demonstrated the possibility of using the sensor data to make the
robot more adaptable. Another study considered different interactions with
a smaller ball-like robot (i.e. Sphero), such as holding, kicking, and picking
up [126]. Adult participants were asked to perform the behaviors. A set of
features were extracted from the data of the embedded tri-axis accelerom-
eter and gyroscope and then tested with different supervised learning algo-
rithms. The best classifier (i.e. random forest algorithm) trained on data
obtained from the adult participants achieved an accuracy of around 49%
when evaluated with data generated from children participants.

This study explores the possibility of embedding the knowledge of un-
wanted physical interactions into a small robotic toy based on an embedded
tri-axial accelerometer. The study aims to recognize six different possible
interactions between a child and a small robotic toy, namely, hitting, shak-
ing, dropping, throwing, picking up, and being idle (i.e. no active interac-
tion).

6.2.2 Materials and Methods

Experimental Setup

Robot System Design The progress in technology is enabling smaller robots
to be more intelligent and more compact. Furthermore, smaller social
robots are considered to be more affordable and suitable to be used by aver-
age home users. Hence, the toys considered in this study were selected ac-
cordingly. Three different forms of toys were used, namely a stuffed robot
(LATTJO soft toy, IKEA, Netherlands), a stuffed panda (KRAMIG Soft
toy, IKEA, Netherlands), and a toy excavator (Fig. 6.3). The dimensions of
the toys (i.e. less than (38.0 x 29.0 x 9.0 cm3)) and their masses (i.e. less
than 0.75 kg) were of the range that enable ease of interactions (e.g. car-
rying) for children. The differences in sizes, in shapes, and in materials of
the selected toys should cover any variations among different small robotic
toys. Additionally, the selected toys varied in terms of their softness. For
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Figure 6.3: The toys that have been considered as dummy robotic forms. From left to
right, a stuffed panda, a soft toy robot, and a toy excavator.

example, the stuffed robot is considered the softest while the excavator toy
is considered the least soft. Both of the stuffed toys (i.e. the robot and the
panda) were modified with zippered pockets to allow the insertion of the
data acquisition system.

Data Collection System The recognition device used was a small computing
device (Raspberry Pi 3 Model B+, Raspberry Pi Foundation, UK). This de-
vice is powered by a 1.4 GHz quad-core processor and supports wireless,
Bluetooth, and Ethernet communication. The availability of such commu-
nication channels make it easier to access, to program, and to configure
with other devices. Furthermore, it contains many peripherals that make
it possible to augment it with other devices. The official operating system
(Raspbian v4.19, Debian Project) was installed on a micro SD card (16 GB,
Edge, Sanddisk). The selected storage should provide more than enough
space for the operating system, trained recognition mode, collected data,
and for any needed packages. A remote access software (TeamViewer Host
for Raspberry Pi, US) was installed to allow ease of access to the device
and more flexibility for debugging and testing. The kernel, the firmware,
and the packages were all upgraded to their latest versions.

The standard Raspberry Pi does not contain any on board sensors, how-
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Figure 6.4: The data collection system that was based on a SenseHat board mounted on
a Raspberry Pi board.

ever, the 40-pin can support different boards with different functionalities.
A Sense Hat board (Raspberry Pi Foundation, UK), which contains differ-
ent sensors and a display, was mounted on the Raspberry pi. The built-
in accelerometer (LSM9DS1, STMicroelectronics, Switzerland) was used
in the recognition model to acquire the raw acceleration data at a rate of
around 30 Hz and up to 16 g. This rate and magnitude were shown to be
adequate enough for the recognition of human activities [36], [117]. The
entire device was placed in a dedicated enclosure with a small fan mounted
on the side for cooling (Fig. 6.4). For the experiments, the devices were
embedded inside the toys and each was powered with a dedicated power
bank (Slim 2, 5000 mAh, POWERADD).

Procedures

Acquiring sufficient data from adults is relatively easier than from chil-
dren [126], [157]. Hence, the development of the model was based on the
data acquired from adult participants. The participants who took part in
this study were asked to perform five different behaviors with each robot.
The participants were given the freedom in performing the required behav-
iors and to take breaks between experiments. No instructions were given to
the participants, especially about how a particular behavior should be per-
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Figure 6.5: A sample of the extracted features for the acceleration signal.

formed (e.g. the way to hit or shake the robot). The only instructions were
given to let the participants know the start and the end of each experiment.
A MATLAB script (v2018, MathWorks, Massachusetts, USA) was used to
analyze the data and then extract the instances of each behavior based on
the thresholds (Fig. 6.5). This data was then used in the training, testing,
and development of the neural network model.

The data to validate the model was acquired from neurotypical children.
Imaginative scenarios were told to the children to make them perform the
behaviors of interest. For example, to acquire pickup and shake behaviors,
they were told that "The robot is asleep and you need to pick it up and then
shake it to wake it up" (Fig. 6.6). The interaction durations were around
5 mins each. We believe that the characteristics of behaviors (e.g. hitting)
considered in this study are similar and comparable between neurotypical
children and those with autism. Hence, this data will be used as an indicator
for the applicability of the developed model to the targeted end-users.

Participants

Five healthy adults (one female and four males) aged 24 to 31 years old
participated in this study. Their data was used to train and test the model.
Additionally, the study acquired data from four neurotypical children (one
female and three males) aged 4 to 9 years old. The children’s data were
used to validate the developed model. The procedures for this work did not
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Figure 6.6: Samples from the sessions with the children.

include invasive or potentially hazardous methods and were in accordance
with the Code of Ethics of the World Medical Association (Declaration of
Helsinki).

Algorithm

The development of the classification algorithm was based on Scikit-learn,
a Python-based machine learning library [153]. This library includes many
supervised and unsupervised learning algorithms along with other evalu-
ation tools. Furthermore, it uses high-level language that makes the im-
plementation convenient and flexible. The classification algorithm in this
study was based on a supervised learning algorithm, the Multi-layer Per-
ceptron (MLP). To investigate the potential of the adopted methods in pro-
ducing promising results, the testing of the classification algorithms was
limited to MLP. Future work might consider other algorithms.

MLP is one of the most widely used form of neural networks. The
simplest configuration of this network consists of an input and an output
layer while a more complex configuration consists of a hidden layer or
several hidden layers between the input and the output layers. Connections
between layers follow a consecutive order starting from the input layer and
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terminating at the output layer. All connections have assigned values called
weights that are learned during the training of the network. Each neuron
has an activation function (e.g. sigmoid) that generates an output based on
the product of the inputs of the preceding layer and the weights of their
connections. More detailed mathematical description of MLP can be found
in [123].

The neurons of the input layer of the classification algorithm take the
resultant acceleration values as an input vector. In human recognition ap-
plications, there is a trade off between recognition performance, recognition
speed, and computational complexity [39]. A robot’s reaction to unwanted
interactions should be quick and comparable to that of a human. Hence, a
smaller window size (i.e. 25 samples) was selected, which is enough to cap-
ture most of the behavioral characteristics (Fig. 6.7). This size should pro-
vide a fast recognition speed while maintaining a sufficient accuracy [28].
Furthermore, minimizing the window size should reduce the overall delay
in the recognition system.

The magnitude of the resultant acceleration was based on the square
root of the sum of the squares of the individual accelerations. The relation
is represented as follows:

|A| =
√
A2
x + A2

y + A2
z (6.1)

where Ax is the magnitude of acceleration in the X direction, Ay is the
magnitude of acceleration in the Y direction, and Az is the magnitude of
acceleration in the Z direction. The classification algorithm trains to map
the resultant acceleration values into labeled outputs corresponding to dif-
ferent behaviors.

The goal is to detect the behaviors of interest regardless of the orien-
tation changes of the toy and the placement of the accelerometer within.
Hence, the magnitude of the acceleration has been considered because it is
insensitive to such changes [182]. Future work might consider the direction
of the accelerations to add more insights about the orientation of the toy in
relation to the behavior being exhibited.

Evaluation Metrics

Several metrics were used to evaluate the developed model, such as the
accuracy, classification report, and confusion matrix. Accuracy reported
the percentage of correct predictions in relation to the overall predictions
performed by the model as in (6.2). Classification report provided the pre-
cision, recall, and F1- Score, and support for the model. Precision provided
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Figure 6.7: Samples of the extracted behaviors from the accelerometer signals for adults
and children. The different colors represent different robots where R 1 (i.e in green)
stands for the excavator toy, R 2 (i.e. in red) for the panda toy, and R 3 (i.e. in black)
for the soft robot toy.

the percentage of true positives in relation to the total predicted positive as
in (6.3). Recall indicated the number of true positives in relation to the to-
tal number of actual positive as in (6.4). F1 - score provided the harmonic
mean of precision and recall as in (6.5). The confusion matrix provided a
breakdown for all the predictions (i.e. correct and incorrect) by each class.

Accuracy =
Correct Predictions

Total Predictions
(6.2)

Precision =
True Positive

True Positive+ False Positive
(6.3)

Recall =
True Positive

True Positive+ False Negative
(6.4)

F1 = 2× Precision ∗Recall
Precision+Recall

(6.5)

6.2.3 Results and Discussion

All participants have performed the requested behaviors differently. For ex-
ample, different intensities were demonstrated when shaking or hitting the
robots. The data of the behaviors were post-processed and the features were
extracted (Fig. 6.7). The selected window size was sufficient enough to
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capture the most important features of each behavior. The features of some
of the behaviors performed by the participants with the robots appeared to
have some similarities in their characteristics. For example, drop behavior
was characterized by low acceleration values followed by a large spike and
then oscillations. A hit behavior was characterized by a large spike of a
short duration. Pickup has some resemblance to hit, but the spikes were
longer in duration and smaller in amplitude. Shake behavior was charac-
terized by continuous oscillations at different amplitudes and frequencies.
Throw was characterized by a wave of low amplitude (i.e. start of throw-
ing) followed by decline in acceleration and then ending with a large spike
(i.e. upon impact).

Model Development

The extracted instances of behaviors were labeled and organized as a dataset
to be used in the model training. A total of 1,000 instances for each behav-
ior covering all robots and participants were extracted. For the idle case,
1,000 instances were added, hence, making the total instances to be 6,000.
Augmentation (i.e roll by a factor of 25) on the data was performed that
should provide more robustness to the model in terms of predicting new
data. Additionally, it should help in avoiding the learning of any specific
pattern in the data. A standard scaler was used to standardize the features
by scaling (i.e. to unit variance) and removing the mean. The data was
randomly split into 70% for training and 30% for validation. Different
network configurations were tested and evaluated. The configurations for
the best trained model (i.e. accuracy of 92%) were hidden layer settings
of (300,150), Rectifier Linear unit (i.e. ReLu) as the activation function,
alpha = 0.0001 for the regularization penalty term, and Limited-memory
Broyden Fletcher Goldfarb Shanno method (i.e. lbfgs) as the weight op-
timization solver. The performance of the model improved proportionally
with the number of iterations (Fig. 6.8a). The losses of the training and val-
idation were decreasing over iterations and converging closely (Fig. 6.8b).
This indicated a comparable performance and a good fit for the model. Fi-
nally, the entire dataset was then used to train the finalized model.

An accuracy of 88% was achieved when testing the finalized model with
unseen adult data. The confusion matrix and classification report for the
model were generated for further analysis (Fig. 6.9 and Table 6.1). Exclud-
ing the idle case, the confusion matrix reported the highest for the throw
case while the lowest recognition for pickup and hit behaviors. The model
has identified incorrectly some pickup instances mainly as hit or as shake
instances. Similar observation for the incorrect identification of some in-
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Figure 6.8: The training and validation over iterations plots for the developed model a)
Accuracy plot. b) Loss plot.

Figure 6.9: The confusion matrix for the unseen adult’s dataset.
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Table 6.1: The classification report for the evaluated unseen adult’s dataset

Behavior Precision Recall F1 - score Support

Drop 0.91 0.90 0.90 265

Hit 0.84 0.84 0.84 797

Idle 1.00 1.00 1.00 131

Pickup 0.80 0.84 0.82 747

Shake 0.91 0.86 0.88 776

Throw 0.94 0.94 0.94 614

Avg/ Total 0.88 0.88 0.88 3330

stances can be made for shake and hit behaviors. Throw behavior instances
were mainly identified incorrectly as drop behavior. These incorrect iden-
tification could be attributed to some similarities in the features of these
behaviors. Regardless, the overall evaluation metrics of the model were
promising. For example, the model has achieved an average precision of
88%, a recall of 88%, and an F1- score of 88%. Precision shows the ability
of the model not to identify an incorrect instance as correct, while recall
shows the ability of the model to find all correct instances. Finally, the F1
score takes the average of recall and precision into consideration.

Model Evaluation with Children’s Data

The main objective of this study is to develop a model that can character-
ize the interactions between a child and a small companion robot. Hence,
evaluating the developed model with children’s data is necessary to inves-
tigate the model’s feasibility and applicability to children. There are some
similarities between the acceleration characteristics of behaviors that were
exhibited by the children and the adult participants, for example, in case of
hit, drop, and shake behaviors (Fig. 6.7). Visual differences in performing
some of the behaviors were evident in pickup and throw.

The developed model has achieved an overall accuracy of 80% when
evaluated with the children’s dataset. The confusion matrix showed that the
model was able to identify drop and shake behaviors with the best results
(i.e. accuracy > 90%) followed by hit and throw behaviors (i.e. 67%)
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Figure 6.10: The confusion matrix for the evaluated children’s dataset.

(Fig. 6.10). Pickup instances were the lowest to be identified correctly with
an accuracy of 52%. One quarter of pickup instances were identified as
shake behavior. The majority for the incorrectly classified throw behaviors
were identified as either drop or shake. As for hit, they were incorrectly
identified as pickup or shake. These misclassifications could be attributed
to the differences in the behaviors’ intensities as exhibited by different age
groups that confuses the classifier. For example, a child’s pickup behavior
is more gentle and slower as compared to that of an adult, hence, it was
identified as a shake behavior. The overall precision, recall, and F1 - score
of the model were all promising (i.e. 80%; Table 6.2).

The results showed the possibility of using adult-based generated data
to develop a model that can classify some of the children’s unwanted in-
teractions with a small robotic toy. Furthermore, it showed the capabilities
of using multi-layer perceptron (MLP) in such applications as compared to
other algorithms (e.g. support vector machines and random forests).

The detection capabilities of the proposed model is limited to during the
exhibition of an unwanted behavior or after. The advantage of this approach
is that it helps in teaching the children the causation between their interac-
tions and the robot’s responses. This work was limited to the detection of
negative or unwanted interactions. However, future work might consider
the positive or desirable interactions. This work did not account for the
vibrations that are usually produced by a social companion robot due to its
functionalities. However, the idle class can be updated to account for such
vibrations to make a proper distinction. Alternatively, a rule that checks
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Table 6.2: The classification report for the evaluated children’s dataset

Behavior Precision Recall F1 - score Support

Drop 0.72 0.98 0.83 49

Hit 0.81 0.67 0.73 195

Pickup 0.44 0.52 0.48 56

Shake 0.87 0.91 0.89 377

Throw 0.78 0.67 0.72 70

Avg/ Total 0.80 0.80 0.80 747

the magnitudes of the acceleration could be implemented to discriminate
between a shake and the natural vibrations of the robot.

6.2.4 Conclusion

In this study, a Multi-layer Perceptron (MLP) based neural network was
developed and validated for its potential in classifying behaviors between
a child and a small robot. The physical interactions considered were hit,
shake, throw, drop, and pickup. These behaviors could potentially be used
to identify any unwanted interaction between a child and a robot, which
could then act to prevent the occurrence of aggressive behaviors that might
lead to harm. The data to develop the model was based on adult participants
performing the behaviors while the data used to validate the developed the
model was based on the children’s interactions. The developed model was
able to achieve a high recognition accuracy (i.e. > 80%) when tested with
children’s data. Furthermore, the classification report and the confusion
matrix showed promising results (Fig. 6.10 and Table 6.2).

6.3 Influence of Reaction Time

6.3.1 Overview

Species in nature offer a lot of biologically-inspired concepts and ideas
to roboticists. One of these mechanisms is the reflex system that can be
adopted in the design and developments of robots [2]. Reflexes are meant
to ensure the survival of the living organism externally while ensuring the
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Figure 6.11: The proposed reflex model to respond to unwanted interactions. A layer
to detect the unwanted interactions will temporarily inhibit the system to produce a
proper response.

balance of operations internally. Reaction to a stimulus is usually carried
out by the reflex arc that consists of several stages, namely, arrival of stim-
ulus, activation of sensory neuron, information process, motor neuron acti-
vation, and peripheral effector response. The implementation of reflexes in
a robotic system should operate without affecting the main objectives of the
robot (Fig. 6.11). Once an unwanted interaction is detected, the robot may
respond with the appropriate reaction to deliver the corresponding message
to the user [45]. The timing of the reaction and its modality should be felt
as natural to provide a clear implication about the interaction. Few robots
were developed that demonstrate some reactions to a human interactions.
PARO is one of the commercially available robots that reacts to physical
interactions [176]. PARO is a seal-looking interactive therapeutic toy that
is covered with white fur and emits voices similar to that of a baby seal.
Different embedded sensors enable PARO to interact with its environment.
The light sensor enables it to recognize dark and light. The audio sensor
gives PARO the ability to recognize the direction of voice. The tactile sen-
sor gives PARO the ability to feel any stroke or pressure. PARO interacts
with people by making sounds and moving some parts of its structure, such
as the head, paddle and eyelid.

Roball is another robot that was developed to react to certain physical
interactions [169]. The robot is shaped like a ball with a diameter of 0.27
m and weighs around 2 kgs. It is equipped with accelerometers and tilt
sensors that allows it to interact and navigate in its environment. Based on
the sensors readings, several interaction modes are possible, such as being
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alone, general interaction, being carried, and being spun.
Teo is a mobile, soft robot, which was developed to interact with chil-

dren with ASD [35]. It can sense distance and touch, and can distinguish
different dynamic interactions, like hug, push, punch, getting close, among
others. Based on the interpretation of sensors, the robot can react with
sounds, words, movements, and coloured lights.

This study investigates the influence of reaction time in the emotional re-
sponse of a robot on the interactions between a child and a robot. The study
considers three different interactions, namely, pickup, shake, and drop or
throw; and considers three reaction times, namely, 0.5 s, 1.0 s, and 1.5 s.

6.3.2 Materials and Methods

The Model

Recognition Architecture The recognition network that was adopted in our
work was proposed by an earlier study that relied on Long Short-term
Memory network (LSTM) in combination with bidirectional and residual
connections [201]. In their proposed model, the network was able to pro-
duce improved results (i.e. 93.5%) on the public domain (i.e. UCI Machine
Learning Repository) dataset on human activity recognition as compared
to other configurations [18]. The recognition problem in this study would
benefit from this network due to the similarity in the characteristics of the
activities that needs to be recognized. In this section, a brief description
about this recognition network is provided.

LSTM network is a special structure based on a Recurrent Neural Net-
work (RNN) that is used to process a data stream. In RNN, the prediction
depends on the history information that is maintained within the internal
memory of the network. A typical RNN consists of three layers, namely,
an input layer x, a hidden layer h, and an output layer y. The relations
among these layers are defined as follows:

h(t) = f(Ux(t) +Wh(t− 1)) (6.6)

y(t) = g(V h(h)) (6.7)

where U is the connection weights matrix from the input layer to the hidden
layer, W is the connection weights matrix within the hidden layers, and V is
the connection weights matrix between the last hidden layer and the output.
Furthermore, f and g represent the activation functions.

Compared to standard RNN structure, LSTM showed stability and pow-
erful performance in the modeling of long sequences (e.g. [184]). The
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structure of LSTM is unique due to a memory cell ct that accumulates the
state information [194]. Furthermore, this structure allows one to deal with
the vanishing gradients problem [101]. The LSTM cell contains three con-
trolling gates, namely, input gate, forget gate, and output gate (Fig. 6.12).
These gates control what information that should be kept, updated, or for-
gotten. More complex structures can be formed by combining multiple
LSTM cells. The internal parameters of an LSTM cell are defined as fol-
lows [84]:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (6.8)
ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (6.9)
ct = ftct−1 + ittanh (Wxcxt +Whcht−1 + bc) (6.10)
ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (6.11)

ht = ot tanh (ct) (6.12)
where i is the input gate, f is the forget gate, o is the output gate, σ is the
logistic sigmoid function, and c is the cell activation vectors.

The recognition network also made use of bidirectional LSTM due to
its advantages over standard LSTM. For example, the output of bidirec-
tional LSTM is related to previous and subsequent information, hence, a
better overall performance. The output of the proposed algorithm is deter-
mined by concatenating the results of the forward and backward sequences
through a hidden layer that reduces the number of features [201]. Finally,
the algorithm uses a residual network that provide different advantages,
such as efficient training and easier optimization.

Data Format The data that were used in training and testing the recognition
model were acquired from an earlier study [4]. The data for the acceleration
were in the form of the resultant acceleration computed as the square root
of the sum of the squares of the individual accelerations. The relation is
defined as in (B.2).

The training data were acquired from adult participants performing the
behaviors of interest while the test data were acquired from children partici-
pants. To create a temporal data stream from these discrete data samples, ar-
tificial sequences were created from the data samples randomly (Fig. 6.13).
The sequences were selected based on the likelihood of their occurrence in
realistic interaction scenarios. This approach will support the creation of
more variability in data and decrease subject-dependent learning. For ex-
ample, a sequence could contain samples from any of the participants and
from any of the robotic toys used. This procedure was applied to both the
training and testing data.
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Figure 6.12: A graphical representation of the Long Short-term Memory (LSTM) cell. The
LSTM cell consists of three gates, namely, the input gate i, the output gate o, and the
forget gate f. These gates control the information within the cell.

Model Evaluation Several models were trained and the best one was consid-
ered. The configuration of the selected model included a bias mean of 0.3,
weights SD of 0.3, and 28 hidden neurons per layer. The configuration of
the architecture was 2 × 2, where there are 2 hidden layers that contains 2
bidirectional layers each. More details about the architecture can be found
in [201]. The model achieved promising results that considered precision,
recall, and f1-score metrics (Table 6.3). The confusion matrix revealed that
the model might confuse some of the behaviors (Fig. 6.14). For example,
it might confuse hit as pickup. For the purpose of this study, the focus is
on detecting pickup, shake, and throw or drop. Once these behaviors are
detected, the robot will produce the corresponding responses. All other in-
teractions will be ignored and will not produce any response once they are
detected.

Experimental Setup

Three different toys embedded with recognition devices were considered.
The toys were a stuffed panda (KRAMIG Soft toy, IKEA, Sweden), a
stuffed toy robot (LATTJO soft toy, IKEA, Sweden), and an excavator
toy (Fig. 6.3). The mass and dimensions of the selected toys were in the
range that allowed the ease of carrying and manipulation for the targeted
users. The toys were equipped with the recognition device that was based
on Raspberry Pi. The same toys and the device were previously used in the
earlier study to collect the data that was then used to train the recognition
model [4].
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Figure 6.13: Five samples of the artificially created sequences from the data samples
obtained from an earlier study [4]. The sequences were selected based on their likeli-
hood of occurring in realistic scenarios. The behaviors in the sequences were obtained
randomly from the available pool of samples from each participant.
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Figure 6.14: The confusion matrix for the recognition algorithm when tested with the
children data. The recognition performance of the model is higher than 90% for drop,
idle, and shake. The recognition performance is less than 90% for hit, pickup, and
throw.

Table 6.3: The classification report for the recognition algorithm when tested with the
children’s data.

precision recall f1-score support

drop 0.98 1.00 0.99 120

hit 0.72 0.83 0.77 210

idle 0.98 1.00 0.99 390

pickup 0.86 0.73 0.79 270

shake 0.82 0.91 0.86 150

throw 0.99 0.86 0.92 120

avg / total 0.89 0.89 0.89 1260
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Robot Reactions

The robotic toys showed reactions when manipulated by the user. For ex-
ample, a robot would display discomfort when shaken. The reactions were
implemented as different short sounds. The samples were obtained from
https://freesound.org and were modified for the experiments. The sound
samples were cut and shortened to less than one second and were saved
as wav files. For the behaviors considered in the experiments, 6 different
sound samples for each behavior were selected, to provide variety. For ex-
ample, when a pickup is detected, one sound sample is randomly selected
from the pool of the available samples for pickup and then played (See
supplementary material). A Bluetooth speaker (AQL Sparkle, Cellularline,
Italy) was used to produce the sound samples for the behaviors, activated
by the system embedded in the robot. The actions triggering reactions were
limited to pickup, shake, and drop or throw.

To investigate the effects of response time on the interactions, three dif-
ferent timings were considered to generate a reaction, namely, 0.5 s, 1 s,
and 1.5 s. A scheduled task that periodically checks the detected behaviors
was used to control the tested reaction times. This task generates a reaction
based on the detected manipulation with a delay equal to the selected time.
However, a condition has been implemented that prevents the generation of
two consecutive responses in less than one second. This was designed to
make the toy more natural in terms of response rate and more pleasant to
interact with.

Participants

The experiments conducted in this study were focused on the evaluation of
the appropriateness of the reactions implemented in the robots, in particular
on the reaction timing. Subjects (9 females and 21 males) volunteering in
the experiments were students aged 8 to 13 years old (10.26 ± 1.48 years
old). The consent from the parents was secured by their school and the chil-
dren were accompanied by their teachers to the experiment site. The chil-
dren were introduced in the experimental room one at a time. In the room,
one researcher and one assistant were present. The procedures for these
experiment did not include any invasive or potentially hazardous methods
and were in accordance with the Code of Ethics of the World Medical As-
sociation (Declaration of Helsinki).
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a) b)

c)

Figure 6.15: Samples of the conducted experiments. a) A child exploring the toy. b) A
child shaking the toy. c) A child throwing the toy.

Reaction Evaluation

Robotic toys or social companion robots should provide a timely feedback,
a reaction, to the user performing an interactive act. A late and less frequent
response might render the interaction slow and uninteresting while a very
fast and more frequent response might be felt as eerie and unnatural. The
frequency and the speed of response should be natural and comfortable to
the user. To evaluate the effects of these, a set of experiments were per-
formed with a group of children individually. The three robotic toys were
configured with reactions at different timing, namely, 0.5 s, 1 s, and 1.5 s.
The participants were divided into three groups accordingly. A robotic toy
was placed on a small table and a child was encouraged to interact with it.
The evaluated behaviors were limited to pickup, shaking, and throwing or
dropping (Fig. 6.15). All tasks were requested in the form of an imagi-
native scenario that the the children need to perform with the robotic toys
(Table 6.4). After each session, a simple questionnaire containing five sim-
ple questions was given to the child (Table 6.5). The questions were related
to the interactions and the possible answers were in Likert scale showing
five different levels of agreement (from total agreement to total disagree-
ment). All sessions were recorded with a webcam (C310 HD, Logitech,
Switzerland) and then annotated with an open-source software (BORIS,
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Table 6.4: The experimental protocol for the experiments conducted in this study

Number Reaction evaluation

Task 1 Pick up the robot up and explore it

Task 2 The robot is sleeping and in order to wake it up you need to shake it

Task 3 The robot would like to be to a specific place, toss it there

Table 6.5: The questions stated in the questionnaire

Number Questionnaire statement

Q1 The robot reacted to my interaction

Q2 The robot reacted quickly to my interaction

Q3 The robot liked it when I picked it up

Q4 The robot liked it when I shook it

Q5 The robot liked it when I threw it

version 3.12, Torino, Italy).

Data analysis

The data collected from the participants were based on questionnaires con-
taining five different questions. To visualize the collected responses, his-
togram plots were generated for each question to check for the peaks, spread,
and symmetry. Furthermore, Kruskal-Wallis tests were performed on each
question to check for any statistically significant differences between the
medians of the three groups at p <0.05. Furthermore, the test was per-
formed to check for effect due to gender differences.

6.3.3 Results

In this section, a summary of all the responses for each question are pre-
sented as histogram plots for the different groups. Then, statistical analysis
is provided for the effect of gender and the response time.
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Figure 6.16: A histogram summarizing the responses for the first question of the question-
naire: “The robot reacted to my interaction.”

Summary of the questionnaire

The first statement in the questionnaire was: “The robot reacted to my in-
teraction.” The frequency of answers for each group were presented as a
histogram plot in Figure 6.16. The majority (i.e. 80%) of the responses for
each group fall into the agreement region. This clustering of the responses
created a right-skewed symmetry for all the groups. The peak of the data
was at the strongly agree response for group 3 (i.e. reaction time of 1.5
s). There was only one subject’s response in the disagreement region for
group 3. This could be due to the slow reaction time compared to other
groups (i.e. 1.5 s vs 1.0 s or 0.5 s) that gave the wrong impression of the
robot’s responses to the subject. Alternatively, this could have been simply
an outlier.

The distribution of the responses have changed when the subjects were
asked about the second statement of the questionnaire, which was: “The
robot reacted quickly to my interaction.” Similar to Q1, the majority of
participants have answered in agreement to the statement, with group 2 be-
ing the highest (i.e. 80% of the subjects) and group 3 the lowest (i.e. 60%
of the subjects)(Fig. 6.17). The data for each group appear to be skewed
to the right. There were three peaks for each group at the strongly agree
and agree scales. More responses were in the disagreement region as com-
pared to the previous question. Group 3 contained the highest number (i.e.
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Figure 6.17: A histogram summarizing the responses for the second question of the ques-
tionnaire: “The robot reacted quickly to my interaction.”

40% of the subjects) of responses in the disagreement scales. This could
be attributed to the relatively late response of the robot for this group as
compared to the other groups.

The distributions for the third question (i.e. “The robot liked it when I
picked it up”) showed different spread for each group (Fig. 6.18). The re-
sponses for group 2 (i.e., reaction time of 1.0 s) appears to be right-skewed
with 60% of the responses in the agreement region. Group 3 (i.e. reaction
time of 1.5 s) also appears to be right-skewed, but with 50% of the sub-
jects in agreement with the statement. The peak for group 2 was at Strongly
agree selection while for group 3 the peak was at the Agree selection. As
for group 1 with a reaction time of 0.5 s, the overall responses appear to be
scattered in the agreement region (i.e. 50% of the subjects), however, the
peak is at the Not sure scale. There were some responses in the disagree-
ment region mainly for reaction time of 1.0 s and 1.5 s (i.e. 20%). The
discrepancy in the responses could be attributed to the perceived under-
standing of the robot’s reactions due to the subjects’ interaction. The robot
voice reaction to being picked up was similar to that of being surprised,
but in a joyful manner. This could have confused some of the participants
which made more responses leaning toward the Not sure scale or even into
the disagreement region.

The fourth question was “The robot liked it when I shook it.” For this
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Figure 6.18: A histogram summarizing the responses for the third question of the ques-
tionnaire:“The robot liked it when I picked it up.”

case, the robot produced a voice that indicated being annoyed to being
shook. Hence, the responses are expected to be mostly in the disagree-
ment zone. More than 70% of the responses for group 1 and group 2 fall
into the disagreement region (Fig. 6.19). Group 1 and group 2 (i.e. reaction
time of 0.5 s and 1.0 s) appear to be left-skewed with two peaks occurred at
the Strongly disagree scale. The majority of the participants of group 3 (i.e.
reaction time of 1.5 s) have voted in agreement (i.e. 70% of the subjects) to
the fact that the robots have liked being shook. These results could be due
to the relatively late response time for this group that made the robot pro-
duce delayed or incorrect reactions for the current interaction being made.
For example, the robot is making the reaction for pickup while it should
produce the one for shake. Clearly, a reaction time greater than one second
could alter the perceived perception of a robot’s response.

The fifth question was related to the perceived understanding of the
robots’ response after being thrown. The robot produced a sound indicating
the feeling of pain after being thrown. The majority of the responses appear
to be clustered in the disagreement region when the participants were asked
“The robot liked it when I threw it.” The highest peak was for group 1 (i.e.
reaction time of 0.5 s) at the Strongly Disagree scale followed by group 2
(i.e. reaction time of 1.0 s) at the Disagree scale (Fig. 6.20). Group 3 with
a reaction time of 1.5 s achieved the highest number of responses (i.e. 40%
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Figure 6.19: A histogram summarizing the responses for the fourth question of the ques-
tionnaire:“The robot liked it when I shook it.”

of the subjects) in the agreement region followed by group 1 (i.e. 30% of
the subjects).

Statistical Analysis - Gender Effect

As a secondary objective, it is interesting to find if there is an effect of
gender on the responses for the different groups. For this analysis, only
group 1 and group 2 were considered because of the close number of par-
ticipants’ genders (i.e., total of 8 females vs 12 males). A Mann-Whitney
U test was run on 20 participants to determine if there were differences in
the responses between males and females. The median response score for
males (3.5) and females (4.0) was not statistically significantly different, p
= 0.948. These results were expected as the human perception of a response
should be similar regardless of the gender.

Statistical Analysis - Response Time Effect

A Kruskal-Wallis test for each item in the questionnaire was conducted to
check for any significant difference between the three groups.

For the first question, the median values for group 1 (4.0), group 2 (4.0),
and group 3 (5.0) were not statistically significantly different, p = 0.827
(Table 6.6).
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Figure 6.20: A histogram summarizing the responses for the fifth question of the question-
naire: “The robot liked it when I threw it.”

Table 6.6: Kruskal-Wallis test for the first question of the questionnaire for the three
groups

Group N Median Ave Rank Z P-value

1 10 4.00 14.8 -0.31 0.827

2 10 4.00 14.8 -0.31

3 10 5.00 16.9 0.62

Overall 30 15.5
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Table 6.7: Kruskal-Wallis test for the second question of the questionnaire for the three
groups

Group N Median Ave Rank Z P-value

1 10 4.00 15.2 -0.13 0.223

2 10 4.50 19.1 1.56

3 10 4.00 12.3 -1.43

Overall 30 15.5

Table 6.8: Kruskal-Wallis test for the third question of the questionnaire for the three
groups

Group N Median Ave Rank Z P-value

1 10 3.50 15.4 -0.02 0.666

2 10 4.00 17.3 0.79

3 10 3.50 13.8 -0.77

Overall 30 15.5

The median values for the second questions of group 1 (4.0), group 2
(4.5), and group 3 (4.0) were not statistically significantly different, p =
0.223 (Table 6.7).

As for the third question, the differences between the median values
of group 1 (3.5), group 2 (4.0), and group 3 (3.5) were not statistically
significant, p = 0.666 (Table 6.8).

The median values for the fourth question of group 1 (1.5), group 2 (1.5),
and group 3 (4.0) had statistically significant differences, p = 0.023 (Table
6.9). The average rank and median values showed that group 3 was differ-
ent compared to the other groups. Group 3 was the one with the longest
reaction time (i.e. 1.5 s) and that could explain the statistical difference.

As for the fifth question, the differences in the median values of group 1
(2.0), group 2 (2.0), and group 3 (3.0) were not statistically significant, p =
0.415 (Table 6.10). However, the average rank for group 3 (18.5) is higher
than that of group 1 (14.3) and group 2 (13.8).
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Table 6.9: Kruskal-Wallis test for the fourth question of the questionnaire for the three
groups

Group N Median Ave Rank Z P-value

1 10 1.50 12.2 -1.47 0.023

2 10 1.50 12.6 -1.28

3 10 4.00 21.8 2.75

Overall 30 15.5

Table 6.10: Kruskal-Wallis test for the fifth question of the questionnaire for the three
groups

Group N Median Ave Rank Z P-value

1 10 2.00 14.3 -0.55 0.415

2 10 2.00 13.8 -0.77

3 10 3.00 18.5 1.32

Overall 30 15.5
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6.3.4 Discussion

The participants displayed different reactions while performing the tasks
with the robotic toys. The first task was to pick up the robot and explore it,
and the robot would respond with sounds implying a joyful reaction. For
this task, many showed curiosity and laughter about the sounds that the
robots were emitting. Some of the children showed surprised expressions
and stopped temporarily to explore the robots then looked at the experi-
menters. The second task was to shake the robot, and the robot would
respond with sounds implying annoyance. For this task, many were sur-
prised, stopped shaking the robot, and then placed it back after hearing the
robots’ reactions. A few resumed shaking after stopping temporarily. The
last task was to throw the robot at a specific target, and the robot would
emit a sound, which implied pain. Many showed surprised expressions
about the responses while some of them gazed at the experimenter with
astonished looks.

The results of the questionnaire implied that there is an effect for the
reaction timings on the perceived understanding of the robots’ responses.
Group 3 (i.e. reaction time of 1.5 s) scored more incorrect responses across
most of the questions as compared to other groups. This was very evident
in the responses for the fourth item in the questionnaire (Fig. 6.19). The
delay in producing a reaction to an interaction might have given the wrong
impression about the causation effect, hence, making it difficult to under-
stand the aim or goal behind a robot’s response. In other words, the longer
the duration to make a reaction, the more likely it will deliver an incor-
rect message to the user for the intended interaction. Producing a response
within one second from detecting a stimuli should produce more favorable
results. The Kruskal-Wallis test results for the fourth question supports
these findings.

Another dimension that might have influenced the responses is the modal-
ity of the response itself. The sounds for the responses were considered
to indicate three different expressions, namely, joyful surprise, being an-
noyed, and feeling pain. These responses were selected by adults to target
children as the primary users. Some of the incorrect responses to the ques-
tions could be attributed to a possible confusion about the intended mes-
sage behind each sound (i.e. response). This implies the need for more
commonly-accepted responses that could be easily understood regardless
of age, culture, or geographical region.

The experiments in this study were limited to three different responses
corresponding to three different interactions. However, more responses
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could exist to imply different emotions and reactions. Sound was the only
modality that was considered to convey the robot’s responses. Different
modalities could be considered and integrated to provide clearer responses.
Children were the only participants in our experiments because of the tar-
geted end-users of this study. However, adults participants could be consid-
ered to obtain more comprehensive and more in-depth feedback about the
experiments. Finally, the recognition model could be improved to increase
its capabilities in recognizing more behaviors accurately and quickly.

6.3.5 Conclusion

An approach to detect and respond to three types of manipulation of robotic
toys was presented. The interactions with the toys considered were being
picked up, being shaken, and being thrown. Furthermore, the study evalu-
ated the perception of the reaction provided at different timing through the
emission of sounds. The results showed that the reaction time affect the
understanding of a robot’s response to an interaction. Ideally, the response
to an action for robotic toys should occur not more than one second after
the detection of an aggressive behavior or an unwanted interaction. Fur-
thermore, sound as a modality to a robot’s response provided a sufficient
message to be understood by the majority of the participants.

6.4 Chapter Summary

This chapter presented the finding of two studies aimed at making a robot
more adaptive once an unwanted interaction is detected. The first study
showed the possibility of recognizing unwanted physical interactions based
on the data received from an embedded tri-axial accelerometer. The second
study investigated the influence of reaction time in the emotional response
of a robot on the perceived message during interactions. This study showed
the importance of producing a timely response to an unwanted interaction
to deliver the right message to the user.
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CHAPTER7
Conclusions and Recommendations

7.1 Conclusions

Social robots have gained a lot of attention in health care generally, and
specifically in therapy, due to the increased number of studies reporting the
efficacy of using such technology. Among children with ASD, social robots
have been reported to effectively help in the elicitation of some positive
behaviors. This has been attributed to the fact that social robots are simpler
than humans, and could exhibit more coherent behaviors. The advancement
in technology has enabled robots to be more autonomous and intelligent. In
particular, it is possible to develop smaller social robots exhibiting a high
level of interaction with many capabilities. While larger social robots can
be used in therapeutic settings, especially for training, the smaller form
of social robots are more affordable and suitable options to be considered
at home for continuous support. The introduction of a new device, such
as a social robot, that is meant to evoke behaviors to the surrounding of
such children could pose as new source of harm to themselves or others,
especially during the manifestation of challenging behaviors.

Children on the spectrum lack the ability to properly communicate their
needs and the case of harm due to impacts might be problematic, especially
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during therapy sessions. Generalization of skills is usually done with other
children. Hence, being subjected to pain due to impacts might affect any
positive outcomes, and potentially cause more challenging behaviors. With
children generally, and those with ASD especially, any source of potential
harm, pain or even annoyance must be kept to a minimum or eliminated
altogether.

As for the parametric studies conducted in Chapter 5, some of the con-
trol factors investigated provided a reduction in the overall head’s acceler-
ation. For example, reducing the mass of a thrown object appear to reduce
the head acceleration considerably. This was more evident at higher impact
speed. This finding combined with the application of soft materials could
provide a better overall reduction of the potential harm.

Optimization of a robot’s design can benefit from the techniques pro-
vided by Taguchi methods, as it gives an efficient and convenient way to
assess and optimize the safe design of small social robots. Moreover, such
benefits are magnified for two reasons. On one hand, the safety require-
ments of the target users, such as children with special needs who may
have a tendency for meltdowns, are addressed. On the other hand, the man-
ufacturers have done their due diligence in optimizing their design for mini-
mizing the chances of harm to the users and avoid lawsuits or product recall
later on.

Many children show aggression toward others and animals [75], [20].
Social companion robots could be used to mitigate aggression. Being able
to detect unwanted interactions while providing timely reactions, will en-
able the robot to train the children about the culture of safety. By selecting
an appropriate response to their negative action, the robot could be used to
display that the current behavior is undesirable and unacceptable.

Companion robots would benefit from having the capability of detect-
ing and reacting to aggressive interactions. This layer to detect undesired
interactions would operate independently from the robot’s main objectives.
Having such capabilities to detect undesired behaviors could be used to
make children experiment with the consequences of their actions on others.
For example, a robot displaying sad emotion after being hit can influence a
child to believe that this behavior is not appropriate in social interactions.
Furthermore, this also has the potential to be extended to target aggression
among neurotypical and neurodivergent children.

The need for a quick response implies the need for fast recognition al-
gorithms that must provide a quick prediction about an interaction. The
modality of a response should be clear enough to provide the right message
intended from an interaction. Multiple modalities could be fused together
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to provide a stronger response and clearer message to the user. Hence, it
would reduce the likelihood of a user’s misinterpreting the intended mes-
sage behind a response.

7.2 Recommendations

More research needs to be done to investigate the potential for harm due
to different robotic shapes, and to identify means to mitigate it through
both hardware and software approaches. For small social robots, regula-
tions from standards that are concerned with the safety of toys can readily
be adopted. For example, ISO 8124-1:2014 [113], which is related to me-
chanical and physical properties safety aspects of toys. Another direction
for safer social robots is the adoption of some of the techniques and ad-
vances in soft robotics. New social robotic safety standards targeting and
tailored for special end-users, such as children with ASD, must be estab-
lished to ensure their safety and to take into consideration their needs.

The designers of small social robots or robotic toys for children with
special needs, or even for neuro-typical children, should try to minimize
the mass of their products as much as possible while adding an external
layer of a suitable soft material. Additionally, they need to investigate dif-
ferent soft materials to find suitable materials that provide robustness and
ease of application to their products while improving the safety aspects.
In addition to the optimization efforts at the design level, the manufacturers
should include special warning labels for their products that are meant to be
used by users with special needs, especially those that exhibit challenging
behaviors.

The studies presented in Chapter 6 open the possibilities for future work
on continuous online recognition that is embedded within a robotic toy with
appropriate responses. These findings provide a contribution toward im-
proved therapy sessions by anticipating some unwanted interactions and
then preventing the occurrence or progression of challenging behaviors by
the intervention of a human therapist or the social robot itself. Future stud-
ies can investigate sounds along with other modalities in the emotional re-
sponse of a robot. Moreover, further improvements on the recognition algo-
rithm should be considered to ensure smoother interactions, which should
reach a much higher performance to become acceptable as a product in the
mass market.
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APPENDIXB
Impact Test Rig

B.1 Hardware in context

Anthropomorphic test dummies (ATDs) are used to evaluate the potential harm to humans through
the simulation of risky scenarios, for example, using ATD in car crash tests. Such dummies are
equipped with sensors to measure different dynamics that occur due to impacts, such as accelerations
and forces. Severity indices are used to assess the potential for an injury based on the measured
dynamics. For example, the acceleration of the head due to impact is used to compute the Head
Injury Criterion (HIC) numerical value, which in turn is used to predict the potential for harm based
on the Abbreviated Injury Scale (AIS) [86].

The application of test dummies has been also considered in other areas, such as in sports. For
the assessment of protective gears in sports, ATDs based setups were used [196] [133]. The eval-
uation was based on simulating impacts that might occur in actual scenarios. In a study evaluating
concussion due to taekwondo kicks, a dummy head was used to measure the dynamics of the head
due to impacts [76]. In that study, a 50th percentile ATD head (i.e. Hybrid II) with a mass of 5.1 kg
attached to a neck was used. The internal structure of the head was made of aluminum covered with
an artificial skin layer while the neck was made of rubber. The head setup was fitted with a taek-
wondo head guard that was then mounted on an aluminum support frame. A tri-axial accelerometer
was embedded at the center of the head to obtain the linear acceleration of the head. The readings
of the accelerometer was acquired through a three-channel sensor signal conditioner connected to
a computer. A motion analysis system consisting of eight cameras was used to monitor the head’s
movement and to measure the peak velocity of the kicks through tracking reflective markers placed
on the test head and the foot pads. The participants were requested to perform different kicks on the
dummy head while wearing the foot pads.

Furthermore, such setups were also considered to assess harm in robotics by considering dif-
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ferent scenarios where a robot is impacting a person at different body parts [90] [92]. Alternative
approaches, such as low-cost sensors and body parts models, were also considered to conduct impact
experiments [91] [189]. One study considered a low-cost developed head model to conduct impact
experiments to characterize a safety index in robotics [60]. In that study, the impacts were performed
by robotic arm (i.e. Scara Robot-Adept Cobra 600) at different impact speed conditions (i.e. 0.4 -
1.9 m/s). The developed head model was based on a leather ball filled with sand to reach a weight
of 3 kg. A low-cost tri-axial accelerometer was placed at the head to measure the linear acceleration
of the head. Furthermore, that study has considered a low-cost sensor to measure the impact force
placed at the point of impact.

In this work, we present a low-cost method for the construction of a dummy head experimental
setup to conduct impact experiments at low velocities. The impact rig is focused on investigating
impacts due to thrown objects. The developed rig does not require expensive hardware (e.g. expen-
sive camera system) and can be constructed using typical available facilities (e.g. 3D printer). Some
suggested equipment can be substituted by cheaper alternatives.

B.2 Hardware description

The experimental setup is a device to examine the acceleration changes of the head due to impacts. It
reports the head acceleration in the X, Y, and Z directions. The setup is suitable for the examination
of low velocity impacts. The setup would be beneficial for researchers who have limited access to
more expensive test dummies. The analysis of the acceleration data can report three severity indices.
Modifications are possible to perform different forms of impact tests.

The setup offers the following:

• Reporting of the head accelerations (i.e. in X, Y, and Z axes) and the resultant acceleration

• Post processing of the raw data provides the analysis for three severity indices

• Adjustable to do different tests at different impact velocities

• The dummy head mass can be modified to meet different age groups

• The rig is adjustable to perform different tests (e.g. different impact areas)

• The artificial skin of the dummy head can be used as an indicator for tissue injuries

B.3 Design files

This section contains a summary to the design files that have been used to build the impact rig. All
files can be found in their respective links in the online repository.

B.4 Bill of materials

This section contains the complete bill of materials that were used to construct the impact rig.

B.5 Build instructions

B.5.1 Experimental setup
The two files of the head design (i.e. human-head-part1 and human-head-part2) were developed by
a 3D printer (Replicator 5th Generation, MakerBot Industries). The settings of the 3D printer were
left at default. The infill option was set at 10%. If more robustness or higher mass is required, then
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Table B.1: Design Files Summary [11]

Design
file
name

File
type

Description Open
source
license

Location
of the
file

human-
head-
part1

STL
file

The modified front
half of the original
head design (Fig.
B.1b)

CC BY
4.0

Link 1

human-
head-
part2

STL
file

The modified back
half of the original
head design (Fig.
B.1c)

CC BY
4.0

Link 2

Exp_bench PDF A reference drawing
of the experimental
bench that was used
showing the dimen-
sions.

CC BY
4.0

Link 3

labview_
script

National
instru-
ments
VI file

A script that reads the
accelerometer that is
connected to the data
acquisition card and
stores the readings.

CC BY
4.0

Link 4

Matlab_
script_multi

MATLAB
code

A code to calculate the
three severity indices,
namely, the HIC, 3
ms, and peak acceler-
ation.

CC BY
4.0

Link 5

Figure B.1: The 3D head design that was used to develop the dummy head [11]. a)
Complete view of the original design (Source: Link). b) Part 1 view (i.e. front). c) Part
2 view (i.e. back).
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Table B.2: Bill of Materials [11]

Designator Component Units Unit
Cost
(US$)

Total
cost(US$)

Source
of ma-
terials

Material
type

ACC ADXL 377 1 $
25.95

$ 25.95 SparkFun Electronics

DAQ PCI-6031E 1 $
2,895.00

$
2,895.00

National
Instru-
ment

Electronics

Camera FDR-
X1000V

1 $
500.00

$
500.00

Sony Electronics

Tripod Amazon Ba-
sics 50-Inch
Lightweight
Tripod

1 $
15.00

$ 15.00 Amazon Aluminum

Wires Ribbon Ca-
ble -6 wires
15ft

2 $
2.95

$ 5.90 SparkFun Cables

3D
printing
material

PLA Mate-
rial Large
Spool

2 $ 48 $ 96 MakerBot
Indus-
tries

Polylactic
acid

Soft ma-
terial

Ecoflex
00-30 (2 lbs)

1 $
32.21

$ 64.42 Smooth-
On

Silicone
rubber

Mass Modeling
clay

2 ∼$
10

∼$ 20 Locally Polymer
clay

Frame Custom-
made bench

1 ∼$
150

∼$ 150 Locally

Rope Coated ropes 1 $ 5 $ 5 Locally Nylon
Velcro Velcro Elas-

tic Straps
(36" x 1")

2 ∼$ 7 ∼$ 14 Locally Nylon,
Polyester

PVC Plastic Sad-
dle Elbow
(1")

2 $ 2 $ 4 Locally Plastic
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Figure B.2: The 3D printed head parts after applying the soft material [11].

this option should be set at higher percentages. However, this will increase the time required to print
the parts considerably. Soft materials can be added to make the skin more lifelike [42] [44] [50] [43]
[40]. Hence, a 2 mm layer of a soft material made of silicone was added to the head [49]. The soft
material (Ecoflex, Smooth-On, USA) was prepared by mixing equal volume (i.e. 1A:1B) of the two
material parts for around 4 mins. The soft material was then applied to both parts of the head then
left to cure for 4 hours at room temperature (Fig. B.2). Other soft materials can also be considered
(e.g. PDMS [105]). Furthermore, embedding other sensors (e.g. pressure or force [51] [167] [1])
inside the soft material is also a viable option. This will allow the detection of other modalities.

As part of our research toward safer social robots for children with autism, this experimental
setup was developed to investigate safety in social robots by considering a scenario where a small
robot is thrown to the child′s head [9]. Hence, a head mass of 3 kg was selected to make the
developed dummy head comparable to that of children’s dummy heads [179]. Both head parts were
augmented with clay to reach this mass (Fig. B.3). The masses of the parts were measured using
a weight scale (Fig. B.4). If the goal is to study an adult’s head, then a higher dummy head mass
should be considered (e.g. 4.5 kg).

A tri-axial accelerometer (ADXL 377, SparkFun Electronics, USA) was embedded inside the
clay at the center of the front part of the dummy head (Fig. B.5). This accelerometer will be used
to measure the linear acceleration of the dummy head. The ribbon cable of the accelerometer was
routed out of the head through the opening at the bottom (Fig. B.6). Pressure was applied to merge
the two parts of the head together. The plastic elbows were attached to the head with the Velcro
straps (Fig. B.6). The straps should provide more pressure to keep the head intact. Next, the dummy
head was placed inside the experimental frame with the nylon coated ropes. The ropes should be
arranged so that the head is at the center of the experimental setup.

B.5.2 Sensor calibration
The accelerometer was interfaced to a computer through a data acquisition card (DAQ). The ribbon
cable of the accelerometer was connected to the appropriate pins of the DAQ (Fig. B.7). These pins
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Figure B.3: The 3D printed head parts after adding the clay to reach the desirable
mass [11].

Figure B.4: The measured mass of the dummy head parts [11].
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Figure B.5: The accelerometer placed inside the dummy head [11].

Figure B.6: The dummy head after assembling it with the Velcro straps [11].
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Figure B.7: The mapping of the accelerometer pins to the data acquisition card (DAQ).
The analog output pin 0 of the DAQ was used to provide 3.3 V to power up the ac-
celerometer. Alternatively, an external power supply can be used [11].

were matched with the configuration of the LabView script (Fig. (B.8)). Different configurations
and pins can be considered depending on the DAQ model being used. A microcontroller-based DAQ
that is capable of acquiring the data at a high rate can also be considered [105]. The LabView script
read the voltages of the DAQ pins that were connected to the X, Y, and Z pins of the accelerometer
at a sampling rate of 20 kHz and then filtered according to Channel Frequency Class 60 [58]. The
readings were then converted to acceleration values (g) for each axis based on the following relation:

Aaxis =
|Vcurrent − Vzero|
Sensitivityaxis

(B.1)

where Vcurrent is the current reading of the voltage of an axis (e.g. X, Y, and Z), Vzero is the
voltage value of that axis at 0 g, and the sensitivity of an axis is the amount of voltage change that
corresponds to gravitational change of one unit (g). The typical sensitivity of the accelerometer is
around 6.5 mV/g based on the datasheet. More accurate sensitivity can be obtained experimentally
by finding the voltage difference at 1 g and 0 g for each axis. The 0 g voltage was found by setting
the axis studied parallel to ground surface while 1 g voltage by setting the axis perpendicular to the
ground surface, for example, making the top surface of the accelerometer facing upward will give
1 g at the z axis while rotating it 90◦ will give 0 g. The sensitivity for each axis can be obtained
accordingly. The sensitivity and Vzero values for each axis should be updated in the LabView script
(i.e. labview_script.ni) by updating the formula vi (Fig. B.9).

The magnitude of the resultant acceleration is based on the square root of the sum of the squares
of the individual accelerations. The relation is represented as follows:

|A| =
√

A2
x +A2

y +A2
z (B.2)

where Ax is the magnitude of acceleration in the X direction, Ay is the magnitude of acceleration in
the Y direction, and Az is the magnitude of acceleration in the Z direction.

B.6 Operation instructions

B.6.1 Preparation of the test rig
There are some steps that need to done before conducting any impact experiment. The steps are as
follows:
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Figure B.8: The analog input pins configuration of the data acquisition card (DAQ) within
the LabView script. Reading the analog input pin 25 is optional and it was used for
testing purposes [11].
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Figure B.9: Updating the formula vi for the X-axis [11].

• Check the connections of the DAQ and the accelerometer and their functionality. This can be
achieved by running the LabView script and performing a test experiment (e.g. light nudge
to the head) and checking the response.

• Ensure that there is a fixed reference (e.g. ruler) with a known dimension that is placed along
the direction of impacts and perpendicular to the head (Fig. B.10). An ideal location would
be under the head. This reference will be used to scale the dimensions in the video analysis
software to determine the impact velocity.

• Set up the camera on the tripod in such way so that it faces the experimental setup from the
side. The center view of the camera should be as centered and close to the head (Fig. B.10).
The reference rod and the impactor should be visible.

B.6.2 Conducting an experiment
Two experimenters are recommended to conduct an experiment. One is in charge of performing the
impact tests while the other is in charge of recording the videos. The operations involved are as
follows:

1. Load the LabView script (i.e. labview_script.ni) and configure the Write to Measurement File
to specify the folder and the appropriate file name (Fig. B.11).

2. Run the script and click Enable to write to start acquiring the acceleration data. Concurrently,
start the video recording.

3. While conducting an experiment, the experimenter, who is releasing the impactor, should be
aligned to the center of the setup and targeting the front side of the dummy head.
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Figure B.10: A video of an impact test being analyzed for the velocity of impact in the
video analysis software [11].

4. After conducting an experiment, the Enable to write should be clicked again to stop writing
to the file. The script and the video recording should be stopped.

5. Repeat the same steps for multiple experiments.

The LabView script saves the data in Technical Data Management Streaming (TDMS) file for-
mat. Hence, an Add-In package need to be installed to be able to read the file in Microsoft Ex-
cel [143].

B.6.3 Video analysis
The video recordings of experiments were analyzed to obtain the impact velocities. An open-source
video analysis software (Version 5.0.7, Douglas Brown, Open Source Physics) was used1. The steps
involved in analyzing a video are as follows:

1. Run the software and load the video file. Move the start frame arrow to the start of the
experiment and the end frame arrow after the impactor hits the dummy head. It is best to
mark the start of an experiment after the impactor passes through the frame.

2. Add the Calibration Stick and mark both ends to the reference measurement (Fig. B.10).

3. Create Point Mass by clicking Create in the menu bar. This will be used to track the object in
the next step.

4. Click Auto Tracker icon to open the menu for autotracking. Press Shift + Ctrl and click on a
feature on the impactor to select a feature to track.

5. After selecting a feature to track on the current frame, press Search to allow the software to
automatically track the feature in the next frames of the video. Manual intervention might be
needed to correctly track the feature in the next frame.

6. To view the velocity plot, change the Y-axis on the plot to v: velocity magnitude.

1Visit the software website for more details about the options and settings of the software [38].
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Figure B.11: Specifying a folder and file name in the LabView script to store the acquired
data [11].
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Figure B.12: A sample of a generated analysis for 9 experiments [11].

B.6.4 Data analysis
The data analysis involves calculating the three severity indices from the acceleration data. A MAT-
LAB script (i.e. Matlab_script_multi.m) was used to find the Head Acceleration Criterion (HIC),
3 ms criterion, and peak head acceleration. It can process multiple files and store the results in a
spreadsheet file. The steps involved to analyze the data are as follows:

1. An excel file (i.e. xlsx) should be created for each experiment that contains the time and the
resultant acceleration columns of the TDMS files from the experiments.

2. Each excel file should be named trial_%d.xlsx where %d is the experiment number (e.g. 1, 2,
etc) placed with the script in the same folder.

3. The script is set to read 9 files. However, line 5 in the MATLAB script can be changed to
match the number of files that are needed to be analyzed.

4. After running the script, the code creates a file processed_new.xlsx that contains the results of
the analysis (Fig. B.12).

B.6.5 Limitations
This test rig is a suitable platform to evaluate the level of harm due to impacts, especially when
considered for small objects (i.e. less than 3 kg) thrown at low velocities (i.e. less than 10 m/s).
Furthermore, it can be used to investigate a relationship between the severity indices employed in
the setup and some of the parameters (e.g. mass) of impactors. The artificial skin could also be used
as an indicator for tissue injuries. However, re-applying the soft material might be needed in case of
a tear or damage. Heavy impactors with sharp features should be avoided as it might penetrate the
3D printed structure of the dummy head.
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