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ABSTRACT 

The continuous aging of important and strategic infrastructures that has severely affected 

the Italian Transport System during the last years and the structural degradation of many 

historical Italian buildings highlights the need for an adequate strategic plan for the 

maintenance of the structural integrity of civil structures and the preservation of 

monumental buildings in our country. In the last decades, these aspects have gained great 

relevance in Italy because the seismic hazard that adds to the normal deterioration of 

constructions and makes more difficult the protection and preservation of both modern 

structures and ancient buildings. 

In the last twenty years, many efforts have been made to find appropriate solutions to 

these issues and an increased interest has been manifested by designers and owners of 

structures on dynamic tests and vibration–based Structural Health Monitoring (SHM) 

projects aimed at enhancing the safety of old and new complex constructions. Many 

efforts have been made to merge available technologies with efficient methodologies and 

to encourage the development of automatic tools to prevent the occurrence of catastrophic 

events, especially for those constructions subjected to high seismic risk. In the last years, 

the efforts in this field have intensified remarkably providing good improvements in the 

development and application of several techniques mainly devoted to obtaining 

information about monitored structures in operational conditions. 

The structural assessment of each investigated system starts with a dynamic test 

performed to extract the modal parameters (i.e. natural frequencies, mode shapes and 

modal damping ratios) from the output response collected during the in-service condition 

and under ambient excitation without measuring the input source. This strategy is defined 

Operational Modal Analysis (OMA) and implies the use of different techniques to 

analyze signals recorded during single tests as well as in continuous dynamic monitoring, 

involving efficient algorithms able to manage and handle a large amount of data and, 

from them, to extract those meaningful features that are going to be monitored. This task 
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is not always straightforward, and some calibrations have to be made to clearly obtain the 

evolution of modal parameters over time.  

This work focuses firstly on the implementation of various state-of-the-art algorithms for 

modal identification. Specifically, two methods in the frequency domain (PP and FDD) 

and two parametric methods in the time domain (SSI-Cov and SSI-Data) were 

implemented. Since the parametric techniques are suitable to be automated due to their 

algebraic nature, they have been adopted in the development of automated tools for OMA 

purposes. It is worth noting that in OMA applications a lot of time is usually spent on 

manual analyses, necessary to tune the input parameters implying relevant user 

interaction. This is in clear contrast with the purposes of permanent dynamic monitoring, 

which require complete automation. Conversely, the removal of human intervention in 

OMA methods is still one challenging in this research field. 

Accordingly, this Thesis is devoted to providing an improvement in the development of 

automated tools. Specifically, a first strategy for Modal Parameter Estimation (MPE) 

based on the interpretation of the stabilization diagrams was implemented with the aim of 

providing a well-founded array of modal estimates from single test data. The algorithm 

involves three consecutive sub-routines aimed at: a) removing most of the spurious poles, 

b) performing the clustering approach and c) improving the accuracy of modal 

parameters, reducing the uncertainty of the obtained estimates. The efficiency of the 

presented algorithm was proven using dynamic tests data of a lively footbridge and an 

ancient masonry bridge. Afterwards, an alternative MPE algorithm based on the 

construction and the automated interpretation of tri-dimensional stabilization diagrams 

was developed. The validation of this algorithm was demonstrated with the extraction of 

the structural modes and the subsequent analysis of short monitoring period of important 

outstanding infrastructures: the Infante D. Henrique bridge in Portugal and the San 

Michele bridge in Italy.  

As stated, in the context of vibration-based SHM it is mandatory to develop efficient and 

robust tools to perform the on-line and automatic processing of large amounts of collected 
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data, avoiding any user interaction. Hence, in order to complete the implementation of a 

robust OMA methodology, capable of automatically providing the evolution in time of 

the monitored features, a new Modal Tracking (MT) procedure was developed and then 

integrated with both MPE algorithms previously described. In particular, the implemented 

tool is able to follow the seasonal fluctuations and unexpected variations of the modal 

features due to extreme environmental conditions. The validation of the tool in the 

monitoring of two important Italian Cultural Heritage structures (the Gabbia Tower in 

Mantua and the San Michele bridge) was proven with excellent results. 

Since the structural degradation or the occurrence of damage is often associated with a 

reduction of the global stiffness in the structure and with a subsequent decrease in 

frequency values, an accurate characterization of the modal parameters variations 

(especially natural frequencies) can be a robust way to detect structural problems. Despite 

this, in the classical SHM approach, damage identification is not always easy because the 

extracted modal estimates are subject to the effects of environmental factors, which could 

mask the damage. Therefore, the modal estimates are normally post-processed by routines 

that minimize the effects of external factors (frequently on the natural frequencies) in 

order to obtain results that might depend only on structural conditions. This task is 

performed by applying multivariate regression models and/or principal component 

analysis models, which should be established using the time evolution of the features 

under a significant range of variation of environmental and operational factors requiring a 

long period of training. 

The SHM approach developed herein discards the classical approach and performs the 

structural assessment using the identified modal parameters without removing the 

external effects on them. The removal of this relevant key-step from the methodology 

creates a clear distinction between the classical approach and the alternative OMA-based 

SHM strategy. Thus, a novelty damage detection approach was developed to identify 

possible structural anomalies thought slight frequency shifts and it was developed with 

two different strategies, based on: a) the Continuous Segment Analysis (CSA) strategy, 

defining the undamaged and damaged state of the system with two consecutive segments 
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of data, and b) the Separate Segment Analysis (SSA) strategy, based on a reference 

segment of data used as undamaged condition. The validation of the damage strategy was 

demonstrated using experimental data collected during a seven-month of monitoring of 

the Gabbia Tower. During the monitoring period, the tower was subjected to a far-field 

earthquake that slightly damaged the structure. The occurred damage was clearly 

identified by the application of the novelty strategy. 

The present work is completed with the application of all implemented algorithms in the 

continuous assessment of the San Gottardo bell-tower. The OMA algorithms were used 

to perform the continuous identification of the structural modes and the continuous 

assessment of the tower demonstrating its structural integrity for over two years of 

monitoring. Furthermore, some damages were simulated to test the sensitivity of the 

alternative SHM approach in the identification of small damages providing evidence of 

its usefulness and robustness. 
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SOMMARIO 

L’invecchiamento continuo di importanti strutture strategiche che ha gravemente colpito 

il sistema dei trasporti italiano negli ultimi anni ed il costante degrado strutturale degli 

edifici storici mettono in evidenza il bisogno di avere un adeguato piano strategico cha sia 

finalizzato al mantenimento dell'integrità strutturale delle costruzioni civili ma anche alla 

conservazione di edifici monumentali del nostro paese. Negli ultimi decenni, questi 

aspetti hanno acquisito grande rilevanza in Italia, anche a causa della pericolosità sismica 

del nostro territorio che si aggiunge al normale deterioramento delle costruzioni e rende 

più difficile la protezione e la conservazione di strutture moderne ed edifici storici. 

Negli ultimi vent'anni, sono stati fatti molti sforzi per trovare soluzioni appropriate a 

questi problemi e un crescente interesse è stato manifestato da progettisti e gestori di 

strutture riguardo test dinamici e progetti di Structural Health Monitoring (SHM) basati 

su misure di vibrazioni volti a migliorare la sicurezza sia delle costruzioni preesistenti che 

di quelle più moderne e complesse. Molti progressi sono stati fatti per connettere tra loro 

le attuali tecnologie con metodologie di analisi sempre più efficaci e per incoraggiare lo 

sviluppo di strumenti automatizzati per prevenire il verificarsi di eventi catastrofici, 

specialmente in quelle costruzioni soggette ad alto rischio sismico. Negli ultimi anni, gli 

sforzi in questo campo si sono intensificati notevolmente favorendo lo sviluppo e 

l'applicazione di diverse tecniche principalmente orientate al monitoraggio continuo di 

strutture in condizioni operative. 

La valutazione strutturale di ogni sistema inizia con un test dinamico che viene eseguito 

con il fine di estrarre i parametri modali (frequenze naturali, forme modali e coefficienti 

di smorzamento modale) analizzando direttamente la risposta strutturale raccolta durante 

le condizioni di servizio, senza dover misurare la sorgente di ingresso e l’eccitazione 

ambientale. Questa strategia è definita Operational Modal Analysis (OMA) ed è eseguita 

con l’ausilio di diverse tecniche che coinvolgono efficienti algoritmi in grado di gestire 

grandi quantità di dati, registrati sia durante singole prove che in contesti di monitoraggio 

continuo, e da essi estrarre le caratteristiche dinamiche più significative da monitorare. 
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Questo compito non è sempre semplice e l’utilizzo di queste tecniche richiede una elevata 

esperienza anche per eseguire corrette calibrazioni iniziale ed ottenere una evoluzione 

significativa dei parametri dinamici nel tempo. 

Il lavoro presentato in questa tesi si concentra in primo luogo sull'implementazione di 

vari algoritmi allo stato dell’arte finalizzati all'identificazione modale. Nello specifico, 

sono stati implementati due metodi nel dominio della frequenza (PP e FDD) e due metodi 

parametrici nel dominio del tempo (SSI-Cov e SSI-Data). Poiché le tecniche parametriche 

sono più adatte all’automazione a causa della loro natura algebrica, esse sono state 

adottate nello sviluppo di procedure automatiche per scopi OMA. Vale la pena ricordare 

che normalmente nelle applicazioni OMA viene dedicato molto alle analisi manuali che 

implicano una rilevante interazione dell'utente soprattutto nelle fasi di tuning per 

l’ottimizzazione dei parametri di input. Ciò è in netto contrasto con gli scopi del 

monitoraggio dinamico permanente, che invece richiede un'automazione completa del 

processo. Al contrario, la rimozione dell'intervento umano nei metodi OMA è ancora una 

sfida in questo campo di ricerca. 

Cosicché questa tesi è principalmente dedicata a fornire un contributo nello sviluppo di 

strumenti automatizzati per l’identificazione ed il monitoraggio strutturale. In particolare, 

è stata implementata una prima strategia per la stima dei parametri modali (MPE) basata 

sull'interpretazione di diagrammi di stabilizzazione con l'obiettivo principale di eseguire 

l’identificazione di un set consistente di stime modali dall’analisi di singoli test dinamici. 

L'algoritmo prevede l’uso di tre procedure consecutive volte a: a) rimuovere il maggior 

numero di poli spuri, b) eseguire un clustering delle stime e c) migliorare l'accuratezza 

dei parametri modali, riducendo l'incertezza delle stime ottenute. L'efficienza di questo 

algoritmo è stata dimostrata utilizzando dati di test dinamici di una passerella pedonale ed 

un ponte in muratura. Successivamente, è stato sviluppato un algoritmo MPE alternativo 

basato sulla costruzione e sull’interpretazione automatica di diagrammi di stabilizzazione 

tridimensionali. La validazione di questo secondo algoritmo è stata eseguita attraverso 

l'estrazione dei parametri strutturali e la successiva analisi di un breve periodo di 
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monitoraggio di due importanti infrastrutture: il ponte Infante D. Henrique in Portogallo 

ed il ponte San Michele in Italia. 

Come precedentemente dichiarato, nel contesto del monitoraggio strutturale è necessario 

sviluppare efficienti e robusti strumenti per eseguire l'elaborazione online e automatica di 

grandi quantità di dati, evitando qualsiasi interazione dell'utente. Quindi, con il fine di 

completare l'implementazione di una solida metodologia OMA, in grado di fornire 

un’accurata evoluzione dei parametri monitorati nel tempo, è stata sviluppata una nuova 

procedura di Modal Tracking (MT) da usare in maniera integrata con entrambi gli 

algoritmi di identificazione MPE precedentemente descritti. In particolare, la procedura 

implementata è in grado di tracciare sia le fluttuazioni stagionali che le improvvise 

variazioni dei parametri modali che possono verificarsi in condizioni ambientali estreme. 

La validazione di questo strumento è stata dimostrata attraverso il monitoraggio di due 

importanti strutture che appartengono al patrimonio culturale italiano (la Torre della 

Gabbia a Mantova ed il ponte di San Michele) ottenendo ottimi risultati. 

Poiché il degrado strutturale o l'insorgenza di un danno è spesso associato a una riduzione 

della rigidezza globale nella struttura e ad una conseguente diminuzione dei valori di 

frequenza, un'accurata caratterizzazione delle variazioni dei parametri modali (in 

particolare delle frequenze naturali) può essere un approccio robusto nell’identificazione 

di problemi strutturali. Nonostante ciò, nel classico approccio SHM, l'identificazione del 

danno non è sempre facile perché le stime modali sono soggette agli effetti dei fattori 

ambientali, che potrebbero mascherare l’occorrenza del danno. Pertanto, le stime modali 

sono normalmente “post-processate” con routine che riducono al minimo gli effetti di 

fattori esterni (spesso sulle frequenze naturali) al fine di ottenere risultati che dovrebbero 

essere dipendenti dalle sole condizioni strutturali. Questo compito viene eseguito 

applicando modelli di regressione multivariata e/o modelli di analisi delle componenti 

principali, che dovrebbero essere stabiliti utilizzando l'evoluzione temporale dei parametri 

modali all’interno di un intervallo significativo di variazione dei fattori ambientali e 

operativi, richiedendo un lungo periodo di training. 
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L'approccio SHM qui sviluppato scardina quello che viene definito approccio classico ed 

esegue la valutazione strutturale utilizzando i parametri modali identificati senza 

rimuovere gli effetti ambientali esterni. La rimozione di questo importante passaggio 

chiave dalla metodologia crea una chiara distinzione tra l'approccio classico e la strategia 

SHM alternativa basata sui parametri OMA. Pertanto, è stato sviluppato un nuovo 

approccio di damage detection per identificare possibili anomalie strutturali attraverso 

piccole variazioni di frequenza, questo approccio è stato sviluppato con due diverse 

strategie: a) la strategia CSA (Continuous Segment Analysis), che definisce lo stato del 

sistema non danneggiato e quello danneggiato con due segmenti consecutivi di dati e b) la 

strategia SSA (Separate Segment Analysis), basata su un segmento di dati di riferimento 

fisso utilizzato per definire la condizione non danneggiata. La validazione della strategia 

di damage detection è stata dimostrata analizzando i dati sperimentali raccolti durante 

sette mesi di monitoraggio permanente della Torre della Gabbia. Durante il periodo di 

monitoraggio, la torre ha risentito dell’effetto di un lontano terremoto che danneggiò 

leggermente la struttura. Il danno è stato chiaramente identificato dall'applicazione della 

novelty strategy. 

Il presente lavoro si completa con l'applicazione di tutti gli algoritmi implementati nella 

verifica continua del benessere strutturale della torre campanaria del San Gottardo. Gli 

algoritmi OMA sono stati utilizzati sia per eseguire l'identificazione dei modi e sia per la 

verifica strutturale della torre dimostrando la sua integrità strutturale per oltre due anni di 

monitoraggio. Infine, danni strutturali sono stati simulati per effettuare una analisi di 

sensitività della nuova metodologia nell'identificazione di piccoli danni, a dimostrazione 

della sua utilità e robustezza. 
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1.1 Research context 

The catastrophic events that severely affected the Italian transport system during the last 

year together with the general and widespread uncertainty regarding the vulnerability of 

ancient historic structures and strategic infrastructures highlighted the need to ascertain 

the structural conditions and the actual state of preservation of many constructions in our 

country. Furthermore, the continuous aging and the structural degradation of many 

ancient buildings in our country emphasizes the need for continuous assessment 

strategies to preserve the safety condition of such important constructions. 

In the last twenty years, many efforts have been made to find appropriate solutions to 

these issues, which contributed to the significant increase in support and interest 

manifested by designers and owners regarding dynamic tests and vibration–based 

Structural Health Monitoring (SHM) projects. This need can be satisfied with the use of 

several resources aimed at linking engineering skills to the built environment in order to 

capitalize on the cultural aspects and to enhance the safety of old and new constructions 

with high level of complexity. In this way, the structural condition can be defined by 

adopting actual available technologies together with efficient methodologies, in order to 

prevent the occurrence of catastrophic events. 

In the last decades, the efforts in this field have grown remarkably providing good 

improvements in the development and application of several techniques mainly devoted 

to obtaining important information about monitored constructions in so-called 

operational conditions. 

As is well known, the assessment of the structural condition of each investigated system 

should start by performing a dynamic test and recording its response, subjected to 

environmental loads (also defined as response in operational condition) or under different 

load-scenarios to which the structure is generally subjected during its life-cycle. 

In this context, dynamic tests are usually adopted to perform the identification of modal 

parameters (i.e. natural frequencies, mode shapes and modal damping ratios) of relevant 
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modes of vibration of the investigated structure but also to characterize the vibration 

amplitude associated with normal operational conditions or motivated by recreated load 

scenarios, as for instance tests done on footbridges with crowds trained to walk with a 

predefined pacing rate or controlled train passages on railway bridges. 

The identification of the modal parameters based on experimental data can be classified 

in two categories: the Forced Vibration Tests (FVT), in which the extraction of the modal 

parameters is normally performed by adopting controlled excitations and using specific 

instrumentation (e.g. hammer test in order to define the modal parameter during 

laboratory tests on small scaled prototypes, or vibrations induced by big shakers, that are 

used to provide the input excitation for full-scale tests performed on large buildings or on 

infrastructures). Meanwhile, when the civil engineering structures are tested under 

environmental and traffic loads, over or nearby the structures, and the modal parameters 

are extracted using the structural dynamic response under ambient excitation without 

measuring the input source, this kind of tests are designed as Ambient Vibration Tests 

(AVT). Furthermore, as ambient excitation is always present in the collected signals, the 

techniques used to analyze data recorded during a single test can also be adopted for the 

continuous processing of data series acquired by monitoring systems in the context of 

continuous dynamic monitoring. The application of these techniques implies the 

development of efficient algorithms and procedures able to manage and handle a large 

amount of data and, from them, to extract those meaningful features that are to be 

monitored. This task is not always straightforward. Moreover, these techniques must 

provide a correct tracking of the reference features so as to clearly identify the evolution 

of modal parameters over time.  

Since the structural degradation or the occurrence of damage is often associated with a 

reduction of the global stiffness in the structure and with a subsequent decrease in 

frequency values, an accurate characterization of the modal parameters variations  

(especially natural frequencies) can be a straightforward way to detect structural 

problems. Moreover, a gradual loss of structural properties can also be identified by 

performing a monitoring of the modal shapes associated with the structural modes. In 
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fact, the mode shapes can be adopted as reference parameters to identify the occurrence 

of structural anomalies and, consequently, also to define which part of the structure is 

affected. In both applications, dynamic tests and health monitoring systems, a crucial step 

is the accurate identification of modal parameters from measured structural responses. 

This strategy is defined as the Operational Modal Analysis (OMA) approach and it is 

performed by using several alternative techniques developed during the last decades.  

Despite this observed progress, the OMA methods are still dependent upon strong 

interaction with expert user in the initial tuning of data inputs as well as during the 

continuous monitoring process. Nowadays, the removal of human intervention in the 

definition of the boundary thresholds to make the identification analysis fully automated 

is still one of the most challenging tasks in this research field. 

At this moment, standard algorithms already implemented in commercial software 

preserve some manual selections of input parameters that have always required an expert 

user’s judgement. These choices make the analysis of data very time-consuming during 

the very initial phase and they give an implicit uncertainty about the results, which 

always depend on user sensitivity. On the other hand, the lack of automation in the 

analysis processing does not allow solving the problem related to the continuous 

identification of the dynamic parameters. In fact, this issue is particularly evident in the 

context of developing vibration-based health monitoring systems, where it is mandatory 

to develop efficient and robust routines to perform an on-line and automatic processing 

of large amounts of collected data without any user interaction. 

Presently, the continuous technological developments allow for the installing of effective 

monitoring systems, capable of collecting accurate information and easily amending 

large amounts of data. Therefore, by combining sophisticated equipment with effective 

processing routines, it is possible to implement a monitoring system capable to perform 

an on-line monitoring of the structures, but also capable to generate proper alarms in case 

of occurrence of structural anomalies. 
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It is worth noting that the identification of any structural anomalies is not always easy 

because the extracted modal estimates are subject to the effects of the environmental 

factors that affect their nominal values. In the classical approach, the routines 

implemented to perform the processing of the data acquired by a monitoring system and 

aimed at identifying structural changes are not developed only for the automatic 

identification of the modal parameters but also for the elimination of the environmental 

and operational effects on the modal features (principally on estimated frequencies). 

Therefore, the classical approach to the monitoring process based on OMA features is 

generally composed by consecutive steps that are briefly summarized as follows: 

i) measurement of structural response in operational conditions. This task is performed 

by using sensors that measure accelerations, velocity variations or displacements, 

ii) extraction of the modal parameters estimates adopting powerful techniques that 

convert the collected time series into relevant dynamic features, 

iii) tracking of the time evolution of the modal estimates (i.e. natural frequencies) and 

any other derived parameters that provide useful information about the healthy state 

of the investigated structure, 

iv) removal or minimization of environmental and operational effects on natural 

frequencies, in order to obtain results that depend only on structural conditions, 

v) development of novelty detection procedures able to recognize possible structural 

changes and to automatically flag anomalies in the normal behavior. 

A clear scheme about the classical strategy for vibration-based SHM system is provided 

by [Magalhães (2010)] and reported below: 

 
Fig. 1.1 Main processing steps of a classical vibration-based health monitoring system 
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1.2 Objective and main contributions 

The main contributions of this Dissertation can be summarized in a few points aimed at 

making the application of OMA approach more common and straightforward in the 

context of SHM purposes. Despite the complexity of these techniques, the developed 

efforts are principally oriented towards making the use of these experimental tools 

simpler and more user-friendly, reducing their dependence on human interaction and 

demonstrating, through practical evidence, their usefulness for the dynamic testing and 

monitoring process of important structures and infrastructures.  

The main objectives achieved in this work are summarized in the following: 

i) development and implementation of useful methodology based on frequency domain 

and time domain techniques capable to efficiently obtain modal parameters 

estimates from data collected during single dynamic tests; 

ii) development and validation of algorithms oriented towards the automatic extraction 

of modal features from the structural responses continuously collected by the 

monitoring system, even if composed by a reduced array of sensors; 

iii) increase of the automation level of the identification techniques reducing the 

dependence of the analysis on expert user sensitivity in the beginning and during the 

monitoring process; 

iv) removal of the post-processing performed on the modal estimates (frequently on 

natural frequencies) to minimize the effects of the environmental and operational 

conditions; 

v) development of an alternative SHM methodology based on the application of pattern 

recognition models directly on the corrupted modal parameters estimates obtained 

by the tracking process, without performing any further filtering out of the 

environmental and operational effects. 

To reach these objectives, further improvements have been made in the implementation 

of the identification methods devoted to making the process less sensitive to human user 

judgment also during the initial phase of parameters tuning. Furthermore, the continuous 
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assessment of the monitored structure is performed avoiding any training period normally 

used in the context of SHM to remove the environmental effects. The aim of the 

following efforts is definitely devoted to allowing for quasi-real time checking of the 

structural performance and to increasing the safety of the investigated civil infrastructure 

and ancient construction from the beginning of the continuous monitoring process. 

A simple and clear scheme of the alternative vibration-based SHM approach is given in  

Fig. 1.2, in which the main steps are pointed out. 

Modal Parameter Estimation Modal Tracking Damage Detection 

 

Fig. 1.2 Main processing steps of a classical vibration-based health monitoring system 

For clarity purposes, once the installed dynamic monitoring system is fully active, the 

proposed monitoring software which analyzes the collected data is composed by only two 

stages: 1) automated identification of the modal parameters and tracking of the evolution 

in time of the extracted futures  2) continuous assessment of the structure in which the 

algorithm is able to flag possible damages based on frequency shifts and mode shape 

variations. 

More specifically, the main contributions of this Dissertation are: 

i) implementation of four state-of-the-art identification algorithms: Peak Picking (PP), 

Frequency Domain Decomposition (FDD), Covariance-driven Stochastic Subspace 

Identification (SSI-Cov) and Data-driven Stochastic Subspace Identification (SSI-
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Data) using numerical simulations, and evaluation of the effect of user-defined 

variables on the accuracy of modal parameter estimates; 

ii) development and implementation of a new strategy for Modal Parameter Estimation 

(MPE) based on a sequence of three key-steps aimed at providing a well-founded 

array of modal estimates during the single test analysis. The three sub-routines are 

oriented to: a) removing most of the spurious poles, b) performing the clustering 

approach and c) improving the accuracy of the modal parameters, reducing the 

uncertainty of the obtained estimates;  

iii) testing and validation of the developed methodology firstly explained by using a 

simple numerical structure and subsequently validated by adopting experimental 

data collected during the AVTs performed on a lively footbridge and an ancient 

masonry bridge; 

iv) implementation of an alternative Modal Parameter Estimation algorithm based on 

the construction and interpretation of tri-dimensional stabilization diagrams also 

generalized to complex structural modes; 

v) validation of the developed algorithm in the analysis of databases collected during 

the continuous monitoring of important outstanding structures: the Infante D. 

Henrique Bridge in Portugal, and the San Michele Bridge in Italy;  

vi) development of a new Modal Tracking (MT) procedure capable of following 

unexpected variations of the modal features due to extreme conditions; testing and 

validation of the new MT procedure in the context of continuous dynamic 

monitoring of two important Italian Cultural Heritage structures: a) the Gabbia 

Tower located in the city of Mantua and b) the San Michele Bridge that connects the 

small cities of Paderno and Carlusco d’Adda in the neighborhood of Milan; 

vii) development of a new damage detection approach based on the use of pattern 

recognition models. The algorithm was developed in two different strategies, based 

on: a) the Continuous Segment Analysis (CSA) strategy, defining the undamaged 

and damaged state of the system with two consecutive segments of data, and b) the 

Separate Segment Analysis (SSA) strategy, based on a fixed segment of data used to 

define the reference undamaged condition of the investigate system; 
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viii) testing of both damage detection strategies using a simple numerical structure. The 

algorithm was applied to identify the structural damages in the numerical 

acceleration time series corrupted by simulated reduction of stiffness; 

ix) validation of the damage strategy using experimental data collected during the 

seven-months of continuous dynamic monitoring of the Gabbia Tower. During this 

period, the tower was subjected to a far-field earthquake that produced a damage in 

the structure. The occurred damage was clearly identified by the application of the 

implemented damage detection strategy. 

x) continuous assessment of the San Gottardo masonry bell tower with the application 

of the developed algorithms. Firstly, the OMA algorithms were adopted to perform 

the continuous identification of the structural modes of the tower for over two years 

of monitoring, creating a complete database that can be used in the future to test 

alternative monitoring methodologies. Subsequently, the application of the novelty 

detection algorithm demonstrates the structural integrity of the construction during 

the monitoring process. 

xi) some damages on the structure have been simulated through frequency shifts in 

order to test the efficiency of the implemented methodology in the identification of 

small damages. The robustness of the alternative SHM approach was proved. 

 

 

1.3 Organization of the Text 

This section is aimed at providing the most important information on the topics covered 

in this Dissertation. Moreover, a brief description of the contents and the focus on the 

arguments treated in each chapter is given. 

Chapter 1 introduces the Thesis with a contextualization of the developed research, 

followed by the description of the main objectives and contributions provided by the 

developed work and by the present description of the organization of the text. 
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Chapter 2 is devoted to providing a brief review of the mathematical models of dynamic 

systems and the theoretical basis of the modal identification analysis implemented in the 

time and frequency domain. Subsequently, an overview of the existent algorithms for 

operational modal analysis is given, followed by a detailed description and 

implementation of four state-of-the-art identification techniques, such as: PP and FDD, in 

the frequency domain, and SSI-Cov and SSI-Data implemented in the time domain. A 

simple academic structure and numerical simulations were used to exploit each 

implemented method highlighting the main aspects and advantages related to the 

application of the described methods. 

Chapter 3 synthetizes the importance of the automation aspect in the identification 

process, highlighting the main issues related to the manual extraction of the modal 

parameters during the analysis of the single dataset or, especially, in the context of 

continuous dynamic monitoring. Furthermore, the main issues related to the induced 

environmental and operational effects on the modal parameters estimates are described as 

well as the capability of the novelty detection strategy developed with the aim to detect 

possible early structural damage in the investigated constructions. 

Chapter 4 is completely dedicated to the description of the proposed methodology 

consisting of automatically performing the Operational Modal Analysis and the 

extraction of the modal parameters estimates from a single dataset of recorded time 

measurements. As will be described, the MPE algorithm can be used in those cases where 

the identification method involves the construction of stabilization diagrams. The 

algorithm was tested and validated through applying it to both a lively footbridge and an 

ancient bridge. 

Chapter 5 describes in detail the development of a second Modal Parameter Estimation 

procedure aimed at reducing the dependence of the automated process on the expert user 

choices made during the initial setting phase of the parametric methods input parameters. 

The robustness of the developed methodology is demonstrated by its application to  

sequences of permanent monitoring concerning two large infrastructures. 
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Chapter 6 is devoted to describing a new automated Modal Tracking procedure. The 

performance of the developed strategy is highlighted by its application to data collected 

during the monitoring process of two case studies. Based on the results obtained, the 

ability of the procedure in providing the modal parameters evolutions – also in case of 

high fluctuations (i.e. both natural frequencies and mode shapes) due to high variations of 

the environmental conditions – is proved. 

Chapter 7 is devoted to completing the SHM strategy presenting a new damage 

detection tool applied to modal parameters estimates obtained by the monitoring process. 

This algorithm was developed adopting a computational intelligence approach based on 

a Support Vector Machine (SVM), with the aim of automatically provide the occurrence 

of structural changes and damages in the investigated structure. This algorithm has been 

developed in two different strategies (i.e. CSA and SSA strategy) and exemplified by its 

application to a simple numerical structure. Subsequently, its accuracy was proved using 

data collected on a real structure. 

Chapter 8 focuses on the application of the previously developed automatic modal 

identification algorithms, exploring their potentiality in the context of SHM. The 

performance of the proposed methodology is firstly exemplified using data collected 

during a two-year monitoring period of the masonry tower of the Church of San Gottardo 

in Corte in Milan. Based on the automatic tracking of the natural frequencies, the novelty 

procedure was applied to a reference monitoring period (10 months) confirming that the 

structure did not suffer any damages along such period, preserving its current integrity. 

Subsequently, in order to test the robustness of the algorithm, small structural damages 

were simulated through frequency shifts on the resulting frequency data. The results 

obtained by avoiding the removal of environmental and operational effects from the 

estimates prove the capability of the novelty strategy to reveal slight damages and to 

detect anomalies in the normal behavior of the structure.. 

Chapter 9 summarizes the Thesis with conclusions and future developments of the 

presented strategy pointing out possible developments for OMA–based SHM purposes. 
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2.1 Introduction to Operational Modal Analysis 

Experimental identification of the modal parameters has been one of the most interested 

research topics during the last decades. As well known, this research topic was born 

inside the laboratories principally oriented to test and analyze small structures under 

controlled environment, typically for mechanical engineering components. This approach 

was named Experimental Modal Analysis (EMA) and it is based on the measurement of 

the structural responses collected under controlled input excitation. For the relation 

between the applied input forces and the observed output responses the modal parameters 

could be defined. Since the first practical applications until the present developments, the 

testing equipment and the processing tools evolved significantly encouraging more 

interested groups in this research field.  

EMA techniques have also been adopted for the identification of modal parameters of 

Civil Engineering structure over the years, mainly tall buildings, bridges, and dams. But 

the analysis carried out using EMA approaches required the application of additional 

measurable dynamic excitation forces that, due to the dimension of the investigated 

structures, have to be provided by large and expansive devices. Despite the complications 

due to considerable dimension of the excitation devices and prolonged closure of the in-

service condition of the structures, these tests, named Forced Vibration Tests (FVT), 

have been performed on large infrastructure as bridges and on massive dams. 

Consequently, the focus of the research turned on the performance of much practical and 

economical tests, in which the dynamic excitation provided by large devices was 

replaced by freely available ambient forces already present during such tests as: micro-

tremors induced by ambient excitation as the traffic circulating nearby the structure, wind 

forces or in-service loads that both directly insist on the investigated structure. This 

relevant advantage lead to an increased development of equipment and processing tools 

to perform the dynamic tests and the assessment of important Civil Engineering 

structures without interrupts their normal operation, which consists of an important 
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economic benefit for the owners of the infrastructures. Furthermore, the adoption of 

Ambient Vibration Test (AVT) to characterize the dynamic behavior of the structure 

allows the definition of the dynamic behavior during in-service operative conditions 

that’s means to obtain realistic results associated to real vibration conditions, with 

another advantage of highlighting possible anomalies or non-linearity of the structure that 

could not be obtained using artificially generated vibrations. 

Although the economical and practical advantages in the use of AVT compared to FVT, 

some disadvantages affect this methodology. The first issue is related to the noise content 

of the signals; in fact, if the input excitation is very low – as happened for Cultural 

Heritage constructions generally located in the central areas of the cities – becomes 

mandatory the use of very sensitive sensors with very low noise levels to obtain 

consistent data in which is possible to extract dynamic properties of the investigate 

structure. The second issue is related to the modal mass that is not estimated. On the 

other hand, is equivalent to say that the mode shapes are not unique defined, or they are 

not scaled in absolute way. Moreover, another issue could be related to the frequency 

excitation which may not cover all the band of interest, which means that not all modes 

are well excited by environmental forces. 

Despite the aforementioned issues, the identification of the dynamic characteristics in 

operative condition using AVTs received and increasing attention in the last decades, 

driving the development of new technological devices and new powerful algorithms  to 

perform the automated identification of the modal parameters and, consequently, to allow 

the continuous assessment of strategic and important infrastructure only measuring the 

response in operative conditions. In this way, as the modal information is derived from 

structural responses during the in-service condition, this process was named Operational 

Modal Analysis (OMA) or also Output-only Modal Analysis, because the measured 

outputs. This approach is based on the main hypothesis related to the input excitation that 

it is always present, and it can not be removed during the tests. The input is replaced by 

the assumption of a realization of stochastic process (even defined as white noise 



Background and implementation of Operational Modal Analysis techniques 

 

 

17 

 

process) which has a constant spectrum with constant intensity along the frequency 

interval of interest. Starting from this assumption many approaches were developed to 

determine a model that fits the response of the structure and then extract the associated 

modal feature from the measured data, also called Stochastic System Identification 

methods.    

Afterwards, new techniques have been developed in recent years to deal with those cases 

in which the frequency excitation may not cover the whole frequency band of interest 

(i.e., narrow-band ambient excitation) or when the amplitude of the ambient forces is 

weak, and consequently not all modes are well excited by environmental forces. A 

possible methodology to overcome these issues is represented by the combining an 

artificial force applied to the structure with the ambient excitation. In other words, 

measured input are added to unknown operational forces. This approach is known as 

Operational Modal Analysis with eXogenous inputs (OMAX).  

Many interesting papers regarding this topic are presented in literature, such as: 

[Guillame et al. (2007); Reynders et al. (2009a); Devriendt et al. (2011)]. The main 

differences between EMA and OMAX are given by the inclusion of (artificially 

generated) operational forces in the identified system instead of using only the ambient 

excitation and assuming that they are noise. In this way, relatively small excitation 

devices can be used during the dynamic test, checking that the amplitude of the applied 

artificial forces falls into the range of the ambient excitation. The theoretical background 

and the application of this approach to civil engineering structures can be found in 

[Reynders et al. (2009b)], where the efficiency of the OMAX algorithm was 

demonstrated by its application to data collected in FVTs that involve both large shakers 

and also small excitation devices. Meanwhile in [Reynders et al. (2011)] the performance 

of the OMAX algorithm was demonstrated in the modal testing of a two-span steel arch 

footbridge in operational conditions, with and without using an additional actuator. The 

system model was fitted by measured signals collected during the FVT of the bridge 

taking both the measured and the operational excitation into account.  
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The present work is only focused on the use of Operational Modal Analysis, therefore, in 

this Chapter, after a brief characterization of the models of dynamic system adopted by 

identification methods, it is given a deep description of the available OMA algorithms, 

followed by a detailed description of four of the most used and representative 

identification methods that are extensively used in Civil Engineering applications. 

Among many different dynamic identification techniques based on OMA procedures 

have been implemented in the last decays, usually classified as non-parametric and 

parametric methods, which operate in frequency or in time domain, some of them 

described in the previous Chapter. Then, it will be pointed out the use of modal 

techniques in the framework of dynamic monitoring purposes in operational conditions.  

In this context, the continuously measured data has to be processed automatically and so 

algorithms to perform an automatic operational modal analysis need to be developed. For 

this reason, two different approach for automated modal identification based on 

parametric methods are developed. The efficiency of the tools is demonstrated using data 

collected during several ambient vibration tests performed on civil structures and 

Cultural Heritage constructions presented in Chapters 4 and 5. Moreover in Chapter 6 the 

presentation of an alternative technique of automated Modal Tracking is provided, given 

special attention on the efficiency of the procedure even in case of structural anomalies 

and damage of the present case studies.  

After a brief overview of other available tools presented in literature, a new methodology 

for Structural Health Monitoring (SHM) purpose based on pattern recognition models 

will be presented in Chapter 7. The efficiency of the proposed SHM methodology is then 

demonstrated on the basic of the continuous monitoring applications presented in Chapter 

8, talking profit from the previously presented tools for automatic modal analysis. It is 

worth to give special attention to the performance of the new methodology for Damage 

Detection purposes aimed at ensuring the correct monitoring with really sustainable cost, 

providing a reasonable alarm in case of changes in the normal condition of the structure 

with a very short delay from the anomaly occurrence.  
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2.2 Modelling of the dynamic behavior of linear systems 

In this paragraph the main concepts concerning the solution of typical vibration problem 

will be summarized. In particular, several mathematical models used to characterize the 

dynamic behavior of linear systems will be described. Firstly, the classical formulation of 

the problem based on the resolution of a system of second order differential equations 

will be described in detail highlighting its solving in time domain and frequency domain. 

Subsequently, the state-space model will be presented in detail. Furthermore, the 

advantages derived by the use of this model in the identification problems will be 

described in detail as well as the main assumption about the input excitation that 

constitute the principal steps for the implementation of the output-only identification 

techniques.  

 

2.2.1 Spatial and modal models 

Starting from the basic assumptions of the Structural Dynamic courses, the 

characterization of a mathematical model that best fits the dynamic behavior of a 

structural system requires an adequate knowledge about the geometric and mechanical 

properties of the structural elements belong to the system as well as the actions exerted 

on the structure itself. The action, variable in time, can be classified as: deterministic or 

stochastic. In the former, the variation of the input excitation is known, and it is possible 

to quantify the response of the structure in deterministic way. On the other hand, in the 

latter case the variation of the actions has to be derived through probabilistic concepts 

because the statistical uncertainty related to their random nature and the structural 

responses can be quantified by stochastic response relations. 

As usually illustrated in several civil engineering courses, the definition of a 

mathematical model to study the dynamic response of simulated structures that is strictly 

depended on the distribution of mass, damping and stiffness. These properties are usually 
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defined using matrix representation resulting by an initial spatial discretization of the 

investigate system. Under these assumptions, the behavior of the model is defined by a 

set of differential equations of equilibrium that are related to the spatial discretization of 

the finite element structure which characterize the basis of the different models. Such 

equations can be defined in continuously or discrete time characterizing, respectively, 

continuous models, in which the response is defined in continuously manner over time, 

and discrete models, in which the response is obtained after a properly discretization. 

Spatial formulation 

The equation of motion for linear time-invariant (LTI) multi-degree-of-freedom (MDOF) 

systems in continuous time can be formulate by: 

 𝑀 ∙ �̈�(𝑡) + 𝐶 ∙ �̇�(𝑡) + 𝐾 ∙ 𝑞(𝑡) = 𝐹(𝑡) = 𝐵 ∙ 𝑓(𝑡) ( 2.1)  

This expression represents the so-called Spatial Model because it models the behavior the 

dynamic system by the distribution of the mass 𝑀, stiffness 𝐾 and damping 𝐶. The 

solution of the coupled second-order differential equation system (in Eq. 2.1) can be 

solved, in the time domain, using the impulse response functions (IRF) and considering 

the initial conditions (both displacements and velocities vectors) in the time instant t=0 as 

follows [q(t=0)=𝑞0] and [�̇�(t=0)=�̇�0].  

In Eq. 2.1 is assumed the system composed by a planar rigid body, moving in the plane 

of the body (the x–y plane), and subjected to forces and torques causing rotation only in 

this plane, so 𝑀, 𝐶 and 𝐾 are [N-by-N] square matrices, where each single element 𝑚𝑖𝑗 , 

𝑐𝑖𝑗 and 𝑘𝑖𝑗 corresponds to the generalized force in the coordinate i, when at the 

coordinate j is introduced an acceleration, a velocity or a displacement with unit value, 

respectively. Moreover, the vectors q̈(t), q̇(t) and q(t) contain the accelerations, 

velocities and displacements referred to each single degree of freedom (SDOF) of the 

structure. Meanwhile, F(t) is the vector of exciting forces applied to each SDOF and 

matrix 𝐵 maps the arbitrary inputs defined by f(t) to the corresponding well-selected 
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points in which the excitation forces are applied. All functions are expressed in the 

continuous time domain and referred to the same instant 𝑡. 

It is worth noting that a major uncertainty of Eq. 2.1 is related to the damping 

phenomenon and its modelling. Generally, proportional damping is assumed to describe 

the observed decaying responses, and it is obtained by a linear relation between the mass 

(𝑀) and stiffness (𝐾) properties of the system, as described in Eq. 2.1. This property was 

initially proposed by Rayleigh, and it permits the introduction of some simplifications in 

the mathematical approach of the dynamic system problems allowing their easier 

resolution without modify the physical meaning of the results. The proportional property 

between the damping, mass and stiffness distributions of the linear system presented in 

Eq. 2.1 is reported in the following equation: 

 𝐶 = 𝑀 ∙ ∑ 𝑎𝑏 [𝑀
−1 ∙ 𝐾]𝑏

𝑏
;         𝐶 = 𝛼𝑀 + 𝛽𝐾 ( 2.2)  

The second relation in Eq. 2.2 represents the proportional damping property of the linear 

system and it defines how the damping matrix can be obtained as linear combination 

between 𝑀 and 𝐾 [Clough and Penzien (1993)]. The Rayleigh damping (𝐶=𝛼𝑀+𝛽𝐾) is a 

particular case of a general proportional damping formula and it is obtained considering 

the values b=0 and b=1 in the above expression. The system of coupled second-order 

differential equations can be solved in the time domain by using the function of the 

impulsive response function through the application of the Duhamel integral.  

This strategy is not convenient because in a MDOF system the dynamic response of each 

SDOF is related to the motion of the previous and the consequent DOF. This means that 

the second order equations do not be solved independently, making difficult the solving 

of the problem. As widely demonstrated during Master’s Degree courses, the solution of 

a dynamic system is generally founded using the so-called Modal Domain and switching 

the problem from time domain in to frequency domain and allowing a faster and easier 

analysis. This second strategy is more interesting and easier to understand, so it will be 

introduced and described in the next paragraph.  
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Now, to explain the main concepts related to the classical representation of the dynamic 

system in the Spatial Model, it is only introduced the analysis of the dynamic response of 

a simple SDOF oscillator obtained under the hypothesis of deterministic excitation. The 

dynamic behavior of the structure is described with mass m, stiffness k and damping c, 

and it is defined by the following equation: 

 𝑚 �̈�1(𝑡) + 𝑐 �̇�1(𝑡) + 𝑘 𝑞1(𝑡) = 𝑓1(𝑡) ( 2.3)  

where 𝑞1(𝑡) is the response of the oscillator subjected to an arbitrary force 𝑓1(𝑡), and 

�̇�1(𝑡) and �̈�1(𝑡) are the two derivatives (first and second) of 𝑞1(𝑡), respectively. The 

solution of the time domain equation, considering the initial conditions (displacement and 

velocity) as null values, can be obtained by using the Duhamel convolution integral: 

 𝑞1(𝑡) = ∫ 𝑓1(𝜏) ℎ1(𝑡 − 𝜏) 𝑑𝜏   , 𝑡 > 0
𝑡

0

 ( 2.4)  

where the function h1(t − τ), defined by following relation, is the response of the system 

in the instant t − τ, caused by a unitary impulse generated in the instant τ. 

 ℎ1(𝑡 − 𝜏) =
1

𝑚 𝜔1𝑑
 𝑒−𝜔1𝜉(𝑡−𝜏) 𝑠𝑒𝑛[𝜔1𝑑  (𝑡 − 𝜏)]  ,        𝑡 > 𝜏 ( 2.5)  

This function defines the dynamic response of a 1-DOF oscillator, that strictly depends 

on its intrinsic characteristics: mass (m), stiffness (k), natural frequency (ω1) and 

damping (ξ). The damped frequency (ω1d) is given by: 

 𝜔1 = √(𝑘/𝑚)    →   𝜔1𝑑 = 𝜔1 √1 − 𝜉2 ( 2.6)  

It is worth noting that the general damping value c in Eq. 2.3 is related to the known 

damping coefficient 𝜉 of the system by the following equation:  

 𝑐 = 2 𝜉 𝑚 𝜔1 ( 2.7)  

Solving the problem using the Duhamel integral, means splitting the force acting on the 

system as a train of impulses, or rather a sequence of impulsive functions, and thus 
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calculating the response of the system through the sum of the single response due to the 

action exerted by every single impulsive function. 

Regarding the linear-invariant MDOF system described by Eq. 2.1 the solution is given 

by the system response q(t) which characterizes the dynamic behavior of the structure 

under deterministic input. In order to find the solution of the system, 𝑁 different coupled 

second-order differential equations might be written and solved simultaneously. A valid 

alternative to the classical approach based on the Spatial Model consists of performing an 

efficient strategy that permits to convert the system composed by 𝑁 coupled second-

order differential equations into a system of 𝑁 decoupled equations in which the dynamic 

behavior is defined by a single DOF and then to solve each SDOF system, separately.  

This strategy is called Modal Analysis and it is described in detail in the next paragraph. 

Furthermore, in structural analysis (e.g. Finite Element (FE) analysis) the investigated 

structure is divided in several elements and the matrices 𝑀 and 𝐾 are directly obtained by 

their geometric and material properties. In general cases, it is impossible to assemble the 

damping matrix 𝐶 in the same way as 𝑀 and 𝐾, mainly due at the lack of the reliable 

constant property of the material that represents the global damping behavior of the 

structure. So, as mentioned in Eq. 2.2, the damping matrix can be modelled following the 

ordinary way, introducing the proportional damping and, in more general way, the 

viscous damping.  

Anyway, the solution of the system described in Eq. 2.1 is given starting from the 

simplest case without considering damping. Because, as it will be demonstrated in the 

following, the dynamic solution of a linear system with proportional damping is equal to 

the same system considering the damping equal to zero. Consequently, the proportional 

damping and the general viscous damping will be also described. 
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Modal formulation 

As mentioned, the modal formulation allows transforming the system of N coupled 

second-order differential equations into an equivalent system composed by a set of N 

independent differential equations. This task can be achieved by expressing the vector of 

the displacements as linear combination of N independent vectors. These vectors are 

named as modes of vibrating and normally indicated with the notation: 𝜑𝑘. From a 

mathematical point of view, the vibration modes of a proportional damping system (see 

Eq. 2.2) have similar mode shapes to those modes extracted by a non-damping system 

with same characteristics in terms of mass and stiffness. Its dynamic behavior is defined 

by the homogeneous equation of motion that can be expressed as follows: 

 𝑀 · �̈�(𝑡) + 𝐾 · 𝑞(𝑡) = 0 ( 2.8)  

in which the matrices M and K have the same dimensions and values described for the 

system in Eq. 2.1 with not null initial conditions [q(t=0)=𝑞0≠0] and [�̇�(t=0)=�̇�0≠0]). As 

well-known, the general solution of the system described in Eq. 2.8 consists of: 

 𝑞(𝑡) = 𝜑𝑘  𝑒𝜆𝑘·𝑡 ( 2.9)  

Applying the theory of the linear systems, the eigenvalues and eigenvectors of the 

general system described in Eq. 2.8 can be extracted by the following equation: 

 𝜆𝑘
2  𝑀 · 𝜑𝑘 + 𝐾 · 𝜑𝑘 = 0 ⇔  𝐾 · 𝜑𝑘 = −𝜆𝑘

2  𝑀 · 𝜑𝑘 ( 2.10)  

By solving the eigenvalue problem, N independent equations can be used to extract the 

eigenvalues (−λk
2) and its corresponding eigenvectors (φk). As already stated, the 

dynamic properties of the system are defined by the eigenvalues (ω2) and the 

eigenvectors matrix (Φ). It is demonstrated that the eigenvalues are intimately correlated 

to the square of the non-damped angular frequencies as follows: 

 𝜆𝑘 = 𝑖 𝜔𝑘 ( 2.11)  
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Meanwhile the eigenvectors are strictly related to the vibration modes of the structure. 

Moreover, such modes φk are usually organized in a matrix Φ – defined as modal matrix 

– in which the eigenvectors correspond to the column of this matrix, as follows: 

 𝛷 = [⋯ 𝜑𝑘 ⋯]  𝑤𝑖𝑡ℎ 𝑘 = 1…𝑁 ( 2.12)  

Hence, the key issue to decouple the equations of motion lies in the orthogonality 

property of the modal matrix 𝛷 with respect to the mass matrix and the stiffness matrix. 

This leads to the fact that the eigenvectors are independent by each other and they do not 

depend on the external input forces since the frequencies and mode shapes characterize 

the free vibration problem. 

Therefore, the modal matrix described in Eq. 2.12 can be used to perform the separation 

of the equations of a general non-damped MDOF system described in Eq. 2.8. This 

operation can be performed because each vibration mode is orthogonal to the distribution 

of the mass and the stiffness and they satisfy the following conditions: 

 𝛷𝑇 ∙ 𝑀 ∙ 𝛷 = [
⋱

𝑚𝑘

⋱

]       𝛷𝑇 ∙ 𝐾 ∙ 𝛷 = [
⋱

𝑘𝑘

⋱

] ( 2.13)  

Accordingly, pre-multiply the undamped equation of motion (including now the external 

input) by ΦT, the modal matrix transforms both square matrices M and K in diagonal 

matrices; and the resulting diagonal matrices are named as: modal mass matrix (Md) and 

modal stiffness matrix (Kd) where 𝑚𝑘 and 𝑘𝑘 indicate mass and stiffness associated to the 

k-th DOF, respectively. Furthermore, pre-multiply the Eq. 2.8 with the modal matrix ΦT 

and using the conditions obtained in Eqs. 2.11 and 2.13, the non-damped angular 

frequencies associated to each SDOF of the MDOF system can be extracted by a similar 

formula used for the free response of a 1-DOF oscillator (see Eq. 2.6) as follows: 

 𝜔𝑘 = √
𝑘𝑘

𝑚𝑘
 ( 2.14)  
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For general cases (i.e. damped vibration systems) it is necessary to consider the 

orthogonality property of the vibration modes also related to the damping matrix (C) and 

to assume “proportional damping” distributed in the whole structure. In this case, the 

problem can be solved adopting the same strategy used for undamped systems, since the 

damping matrix is obtained by linear relation between the mass and stiffness matrices: 

 𝛷𝑇 ∙ 𝐶 ∙ 𝛷 = [
⋱

𝑐𝑘

⋱

] = [
⋱

2𝜉𝑘𝑚𝑘𝜔𝑘

⋱

] ( 2.15)  

In the previous equation the modal damping matrix (Cd) and modal damping coefficients 

𝑐𝑘 are defined. Again, the second equality of Eq. 2.15 also means that when the damping 

is considered proportional, the modal damping matrix (Cd) is obtained as linear 

combination between the modal mass matrix (Md) and the modal stiffness matrix (Kd). 

Accordingly with the Eq. 2.9, a general solution of the free dynamic response of MDOF 

systems with proportional damping leads to a series of individual equations as follows: 

  𝜆𝑘
2 + 2 𝜉𝑘  𝜔𝑘 𝜆𝑘 + 𝜔𝑘

2 = 0 ( 2.16)  

Solving the N expressions of Eq. 2.16 associated to the liner system of Eq. 2.8, n 

different values of  λk - in which n=2N - are provided. Thus, the obtained eigenvalues are 

related to the non-damped angular frequencies and the damping coefficients as follows:  

  𝜆𝑘 , 𝜆𝑘
∗ = −𝜉𝑘  𝜔𝑘 ± 𝑖√1 − 𝜉𝑘

2 ω𝑘 ( 2.17)  

In this way, Furthermore, the general solution of the system q(t) expressed in Eq. 2.1, 

can be defined as linear combination of the vibration modes in the Modal Space:  

  q(t) = ∑ φk · ηk(t)

N

k=1

 ( 2.18)  

Considering the superposition of the effects, a general linear equation system with 

proportional damping can be transformed into a system of independent second-order 
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differential equations in which the solution is given by a liner combination of 𝑁 

independent solutions associated to each singular vibration modes. 

 𝑚𝑘  �̈�𝑘(𝑡) + 𝑐𝑘  �̇�𝑘(𝑡) + 𝑘𝑘  𝜂𝑘(𝑡) = 𝑓𝑘(𝑡)     𝑤𝑖𝑡ℎ 𝑘 = 1…𝑁 ( 2.19)  

in which η̇k(t) and η̈k(t) are the first and second derivative of the modal coordinate η(t), 

𝑚𝑘, 𝑘𝑘 and 𝑐𝑘 are the modal components of the modal matrices described in Eqs. 2.13 

and 2.15, respectively. Meanwhile, 𝑓𝑘 is the modal component of the input excitation 

associated to k-th DOF and it is given by the product between the transpose of the each 

vibration mode 𝜑𝑘, the resulting vector (B·f(t)) of the input excitation and the identity 

matrix, respectively. This value is defined as follows: 

 𝑓𝑘(𝑡) = 𝜑𝑘
𝑇 ∙ [(𝐵 · 𝑓(𝑡))  ∙ 𝐼] ( 2.20)  

For clearness, as stated in Eq. 2.13, the modal matrix (Φ) is used to transform the mass 

matrix (M) and the stiffness matrix (K) in diagonal matrices defined as: modal mass 

matrix (Md) and modal stiffness matrix (Kd). Such relation is express by the follows: 

 𝑀𝑑 ∙ �̈�(𝑡) + 𝐾𝑑 ∙ 𝜂(𝑡) = 𝑓𝜂(𝑡)       𝑤𝑖𝑡ℎ {
𝜂(𝑡) = 𝛷−1 · 𝑞(𝑡)      

𝑓𝜂(𝑡) = 𝛷𝑇 ∙ [𝐵 ∙ 𝑓(𝑡) · 𝐼]
 ( 2.21)  

Moreover, since the vibration modes are obtained by the resolution of the eigenvalues 

problem, they can be defined up to a scale factor. Thus, it is usual to scale the modal 

mass components (with the value φT · M · φ) to obtain a unit modal mass matrix:  

  �̈�(𝑡) + [
⋱

𝜔𝜂
2

⋱

]  𝜂(𝑡) = 𝛤𝜂(𝑡)  →   �̈�(𝑡) + 𝜔𝜂
2 �̇�(𝑡) = 𝛤𝜂(𝑡) ( 2.22)  

in which ωη
2 corresponds to the square value of the undamped angular frequency 

associated to each SDOF and 𝛤𝜂(𝑡) is the participation coefficient and it identifies the 

modal component of the input associated to each SDOF after performing the modal mass 

normalization as follows 𝛤𝜂(𝑡) =  𝑓𝜂(𝑡)/[𝛷
𝑇 ∙ 𝑀 ∙ 𝛷]. Finally, the system in Eq. 2.8 is 

decoupled in N independent differential equations that can be independently solved.  
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To conclude this overview, the complete solution of an undamped SDOF system loaded 

by an arbitrary ZOH input reported in Eq. 2.3, can be solved in the time domain adopting 

the Duhamel integral defined in the Spatial Space. After the introduction of the Modal 

Model these relations can be expressed in the Modal Space as follows: 

 𝜂(𝑡) = ∫ 𝑓𝜂(𝜏) ℎ(𝑡 − 𝜏) 𝑑𝜏  , 𝑡 > 0
𝑡

0

 ( 2.23)  

 
ℎ(𝑡 − 𝜏) =

1

𝑚𝑘  𝜔𝑑𝑘
 𝑒−𝜔𝑘𝜉(𝑡−𝜏) 𝑠𝑒𝑛[𝜔𝑑𝑘 (𝑡 − 𝜏)]  ,     𝑡 > 𝜏 ( 2.24)  

Similarly, to Eqs. 2.4 and 2.5, the function h(t − τ), describes the impulse response 

function of a SDOF system in the time domain, that defines the output of this system at 

any time t to a unitary impulse generated in the instant τ. In other words, the output 

response in the Modal Space can be viewed as a filters sum of the input history fη(t), in 

which the impulse response function is completely defined by the mass (mk), the natural 

frequency (ωk) and the damping ratio ξk associated to the SDOF system as follows: 

 𝜔𝑑𝑘 = 𝜔𝑘 √1 − 𝜉2    𝑤𝑖𝑡ℎ    𝜉𝑘 =
𝑐

2𝑚𝑘𝜔𝑑
   𝑎𝑛𝑑  𝜔𝑘 = √

𝑘𝑘

𝑚𝑘
 ( 2.25)  

Concluding this paragraph, the Modal Model admits that the damping distribution along 

the structure is proportional to the mass and stiffness distributions. Adopting this 

assumption, the mathematical formulation is simplified. Since the solutions of the linear 

system with proportional damping is identical to those obtained for the simpler 

undamped system, the analysis is generally carried out using the simplest problem also 

applying the orthogonality property of the vibration modes. Besides, this assumption can 

turn out to be a restricted condition. In fact, for some structures (as Cultural Heritage or 

damaged structures) the damping is not constant distributed over the structure and this 

issue can provide several problems in the identification of modal estimates (e. g. the 

imaginary components of the mode shapes become relevant and the mode shape turn out 

to be complex).  
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2.2.2  Frequency response models  

Alternatively, the dynamic problem described in Eq. 2.1 can be solved transferring the 

problem from the time domain to the frequency domain and avoiding the use of second-

order differential equations. In this way, the problem can be solved using simpler 

algebraic equations applying the Fourier Transform to all terms of the equation.  

 

2.2.2.1  Frequency response models  

Recalling the 1-DOF system described in the Eq. 2.3 the differential equation is 

transformed in the following algebraic equation: 

 −𝑚 𝜔2 𝑄1(𝜔) + 𝑐 𝑖 𝜔 𝑄1(𝜔) + 𝑘 𝑄1(𝜔) = 𝐹1(𝜔) ( 2.26)  

in which the functions Q1(ω) and F1(ω) are the Fourier transforms functions of q1(t) 

and f1(t). Inspecting the Eq. 2.26, it is easy to understand the advantage obtained; in fact, 

it is possible to write the structural response in the explicit way as follows: 

 𝑄1(𝜔) =
𝐹1(𝜔)

−𝜔2 𝑚 + 𝑖𝜔𝑐 + 𝑘
= 𝐻1(𝜔) 𝐹1(𝜔) ( 2.27)  

where H1(ω) is the Frequency Response Function (FRF) of 1-DOF system. The FRF can 

also be written in the following form: 

 𝐻1(𝜔) =
1

−𝜔2𝑚 + 𝑖 𝜔 𝑐 + 𝑘
=

1/𝑚

𝜔1
2 − 𝜔2 + 2 𝑖 𝜉 𝜔 𝜔1

 ( 2.28)  

In the convolution of the problem from the time domain to the frequency domain the 

term H1(ω) is the Frequency Response Function (FRF) and it corresponds at the Furrier 

transform of the impulse response function h1(t − τ) of a SDOF (see Eq. 2.5). 

Moreover, dividing numerator and denominator for mass value (m), expressing the 

natural frequency as ω1 = √(k/m) and using equality c = 2 ξ m ω1, the FRF can be re-

written in order to highlight some important characteristics: 
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 𝐻1(𝜔) =
1/𝑘

1 + 2𝑖𝜉 [
𝜔1
𝜔 ] − [

𝜔1
𝜔 ]

2 ( 2.29)  

The FRF above expressed characterizes the dynamic behavior of 1-DOF oscillator 

describing how the input force is transformed in the response of the system (Eq. 2.27).  

As depicted in Fig. 2.1, the FRF represents a complex function (composed by a real part 

R and an imaginary part I), through its amplitude √𝑅2 + 𝐼2 and phase 𝑎𝑟𝑐𝑡𝑔(𝐼 𝑅)⁄ . As 

can be easily deduced from the Eq. 2.29, the amplitude of FRF has its maximum in 

correspondence of the value ω = ω1√1 − 𝜉2, that represents a good natural frequency 

estimation when the damping value is low. 

 

Fig. 2.1. Amplitude and phase of the Frequency Response Function of 1-DOF system 

Furthermore, analyzing the Eq. 2.29, it clearly appears that if the frequency excitation is 

quite low in relation to the undamped natural frequency of the system, the FRF tend to be 

1/k. This means that the mass inertial and the damping forces are negligible. Thus, the 

plot of the amplitude presents a quite constant trend and the phase remains close to 0. 

When the frequency excitation reaches the natural frequency, the response exhibits a 

maximum peak and the phase jump from 0° to 180° (Fig. 2.1), activating the so-called 

resonance phenomenon.  

In the region around the natural frequency the damping forces become dominant and the 

mass moves in opposite phase of the direction of motion. Finally, in case of resonance 
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(i.e. 𝜔 = 𝜔1) the response is purely imaginary, and it is mostly related to the damping 

forces. It also possible to estimate the damping value by the bell-shape of the amplitude 

plot. The damping coefficients are lower for the sharper graphics of the amplitude. 

Following the analogous sequence of steps used for the 1-DOF, applying the Fourier 

transform to both members of the system of Eq. 2.1, the relation between the system’s 

response and the input excitation can be defined using the following matrix expression: 

 𝑄𝑁(𝜔) = 𝐻(𝜔) ∙ 𝐹𝑁(𝜔) ( 2.30)  

where QN(ω) and FN(ω) are vectors of [N-by-1] dimension (N is the number of 

differential equations of the system), that represent the Fourier transforms of each qi(t) 

response and each fi(t) excitation, respectively. Otherwise, H(ω) is an [N-by-N] matrix 

where each  Hij(ω) component identifies the FRF of the system related to the response at 

coordinate 𝑖 subjected to a generalized force applied at coordinate 𝑗. The relation among 

this matrix and the characteristics of the structure is given by the following expression:  

 𝐻(𝜔) = [−𝜔2𝑀 + 𝑖 𝜔 𝐶 + 𝐾]−1 ( 2.31)  

 

Numerical example 

To explain in detail the basic concepts that are described in this Chapter, a simple academic 

structure is adopted as reference example. This system refers to a numerical model that 

approximates a simple building structure and it consists of 3 DOFs composed by 3 rigid 

floors each one connected with four columns. The structure is considered rigidly fixed at the 

base. Each floor is made of steel sheets with a 1 cm of thickness, meanwhile the pillars are 

made of aluminum sheets with 16 cm of inter-floor height and section dimensions equal to 2 

mm x 16 mm. The dimensions of the system are reported in the Fig. 2.2. It is worth noting 

that due to the different bending inertia of the columns, the structure can be approximate by a 

simpler 2D scheme as reported in Fig. 2.3 and the analysis can be performed only on one 

direction of motion, in particular on the most flexible one.  
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Fig. 2.2. Structural Model Fig. 2.3. Shear-type model 

This approximation means to consider the structure as a shear-type model in which Eq. 2.1 

can be re-written using the following matrix equation:  

[
𝑚

𝑚
𝑚

] [

�̈�1

�̈�2

�̈�3

] + [
2𝑐 −𝑐
−𝑐 2𝑐 −𝑐

−𝑐 𝑐

] [

�̇�1

�̇�2

�̇�3

] + [
2𝑘 −𝑘
−𝑘 2𝑘 −𝑘

−𝑘 𝑘

] [

𝑥1

𝑥2

𝑥3

] = [

𝑝1

𝑝2

𝑝3

] 

Using the relations in Eq. 2.31 and considering the mass of each floor m equal to 2,080 Kg 

(considering 2 kg the weight of the iron plate and 20 grams the weight of each connector 

between the iron plate and column) the stiffness k equal to 4*12EI/L3 (in which EI is the 

inertial bending of the section and L=16 cm is the height of the column), and the damping 

value equal to c= ξ·2·m·√𝑘 𝑚⁄ . Two different damping values were used: ξ=1% and ξ=5%. 

The FRF function of each DOF was defined for 2500 points that means 2500 inverse 

matrices (as described in Eq. 2.31) were calculated with a very high time consuming. From 

the inspection of Fig. 2.4 and Fig. 2.5 the dynamic characteristics of the system can be easily 

detected. In fact, as happened for 1-DOF system, the natural frequencies of the MDOF 

system correspond to the peaks of the amplitude plot (see Fig. 2.4) where the phase jumps 

from 0 to π (see Fig. 2.5). Furthermore, the bell-shapes of the amplitude associated to each 

mode depends on the damping coefficient value. Consequently, preliminary consideration 

can be done about the damping values. From the amplitude diagrams can be highlighted that 

the damping value is higher in the third mode than the second mode, because the bell-shape 

of the FRF of the third mode is smoother than second one. In the same way, the damping of 

the second mode is higher than one associated to the first mode. 
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Fig. 2.4. Amplitude values of the FRFs matrix (ξ=1% blue line, ξ=5% green line) 

 

 
Fig. 2.5. Phase values of the FRFs matrix (blue line if ξ=1%, green line if ξ=5%) 
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Concluding, is should be highlighted that the construction of the matrix of the FRFs 

described in Eq. 2.31 requires a high computational effort because an inverse matrix 

must be calculated for each frequency value into investigated frequency interval. To 

overcome this problem, the modal formulation allows to obtain the FRFs exploiting the 

intrinsic characteristics of the modal model delivering same results through a more 

efficient way. 

 

2.2.2.2 Frequency response models in the Modal Space 

As already stated, the modal model is one of the most efficient way to solve the dynamic 

problem of linear system, because it permits the decoupling of the differential equations 

that describe the dynamic behavior of the system and maintaining a sort of physical 

meaning among eigenvalues and eigenvectors on one side with natural frequencies and 

mode shapes on the other side. 

As already stated, the structural response of a general MDOF system expressed in modal 

coordinates (see Eq. 2.18) can be decoupled and solved in the time domain adopting the 

Duhamel integral, (Eq. 2.24). On other hand, an efficient and straightforward approach 

can be performed transporting the problem in the frequency domain. In this way, the 

solution of a general linear system expressed by Eq. 2.30 can be re-written as follows:  

 𝑄𝜂𝑘(𝜔) = 𝐻𝜂𝑘(𝜔) ∙ 𝐹𝑘(𝜔) ( 2.32)  

where the subscript 𝜂 of indicates that each component of Eq. 2.32 is expressed in modal 

coordinate and the subscript 𝑘 is referred to the number of the coordinate itself. Each 

term of the FRFs matrix Hηk(ω) in the Modal Domain is composed by the FRF 

expressed by modal parameters defined as follows: 

 𝐻𝜂𝑘(𝜔) =
1

𝜔𝑘
2 − 𝜔2 + 2 𝑖 𝜉𝑘  𝜔 𝜔𝑘

 ( 2.33)  
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The vibration modes of the dynamic system can be used to construct the “complete” 

FRFs matrix in the initial generalized coordinates (e. g. Spatial Model) as shown below: 

 𝐻(𝜔) = 𝛷 · 𝐻𝜂(𝜔) · 𝛷𝑇 = ∑ 𝐻𝜂𝑘 · 𝜑𝑘 · 𝜑𝑘
𝑇

𝑁

𝑘=1

 ( 2.34)  

in which Hη is a diagonal matrix composed by FRFs calculated in the Modal Space, 

normalized respect to the modal mass matrix. As stated, pre- and post-multiply the Hη 

matrix with the modal matrix Φ permit to construct the obtained H(ω) related to each 

principal mode of the system as described in the following equation: 

 𝐻𝜂(𝑖,𝑗)
(𝜔) = ∑

[𝜑𝑖]𝑘 · [𝜑𝑗]𝑘
𝜔𝑘

2 − 𝜔2 + 2 𝑖 𝜉𝑘 ∙ 𝜔 𝜔𝑘

𝑁

𝑘=1

 ( 2.35)  

It is worth highlighting that the construction of the matrix of the frequency response 

functions through the modal formulation is much more efficient than that one developed 

adopting the classical formulation because it involves a reduced number of mathematical 

operations and it requires a less numerical cost. 

Furthermore, the use of the FRFs matrix in the modal domain permits the analysis of the 

structural response also adopting a limited number of vibration modes. This means that 

varying the upper limit of the series expressed in Eqs. 2.34 and 2.35 it is possible to take 

into account only the contribution of the lower modes which are the most representative 

of the dynamic behavior of the investigated MDOF system.  

Finally, taking into account the response of the system in the modal space expressed by 

Eq. 2.18 and the relation in the frequency domain described by Eq. 2.33, the output 

response of the MDOF liner system subjected to known excitation forces can be provided 

by the following formula: 

 𝑄(𝜔) = ∑ 𝜑𝑘 · 𝐻𝜂𝑘(𝜔) · 𝐹𝑘(𝜔)

𝑁

𝑘=1

 ( 2.36)  
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Numerical example 

The simple numerical system previously described was adopted to extract the modal 

parameters through the modal formulation. In this case, too, the damping matrix was 

constructed respecting the proportionality property with the mass and stiffness distributions. 

The vibration modes were obtained solving the Eigen-problem expressed by Eq. 2.10. 

Subsequently, the circular frequencies and the natural frequencies were extracted by the 

relation in Eq. 2.11. Meanwhile the damping coefficients related to the principal modes were 

obtained from the relation expressed in Eq. 2.7. so, the amplitude of the FRF associated to 

each SDOF of the structure in the modal space is depicted in Fig. 2.6. The results obtained in 

the modal space are in agreement with those ones previously obtained using the full FRFs 

matrix; the natural frequencies can be defined by the abscissa value of the peak of each FRF. 

It also can be notated that the damping value increases for higher modes. 

 
Fig. 2.6. Amplitude values of the FRFs associated to each DOF in the modal space 

Table 2.1 summarizes the obtained values of the modal parameters considering the general 

damping coefficient ξ equal to 1% (𝑐 = 2𝜉𝑚√𝑘 𝑚⁄ ). In particular are reported also the mode 

shapes of each mode obtained by the matrix of eigenvectors. 

Table 2.1. Frequencies, damping values and mode shapes obtained in the modal spaces 

Mode 
Frequency 

[Hz] 

Damping 

[%] 

Mode Shape 

1st  2nd  3rd 

1 4,75 0,45 0.328 0.737 -0.591 

2 13,22 1,25 0.591 0.328 0.737 

3 19,25 1,80 0.737 -0.591 -0.328 
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Again, considering the linear time invariant system described in Eq. 2.1, the FRF can be 

also defined as the ratio of the Fourier Transform of the output data 𝑄(𝜔) and the Fourier 

Transform of the input force system 𝐹(𝜔). In other words, the FRF consists of the 

Fourier Transform of the impulse response function (IRF) defined by Duhamel integral in 

Eq. 2.4. For a simple system composed by a SDOF system excited by several harmonic 

inputs with nominal frequency equal to 𝜔𝑝, the FRF can be expressed as follows: 

 𝐻(𝜔) =
𝑄(𝜔)

𝐹(𝜔)
=

1/𝑘

1 + 2𝑖𝜉 (
𝜔𝑝

𝜔𝑛
) − (

𝜔𝑝

𝜔𝑛
)
2 

( 2.37)  

Using this notation is also evident that, when the input excitation 𝜔𝑝 approaches the 

nominal natural frequency 𝜔𝑛 of the system, the entire system is in resonance and the 

phase jumps from the 0 to π, the response is purely imaginary and related to the damping 

forces. Remarking, the matrix Hij(ω) can be obtained by the following formula: 

 𝐻𝑖𝑗(𝜔) = ∑ 𝐻𝑖𝑗𝑟

𝑁

𝑟=1

= ∑
𝑅𝑖𝑗𝑟

𝑗𝜔𝑝 − 𝜆𝑟

𝑁

𝑟=1

+
𝑅𝑖𝑗𝑟

∗

𝑗𝜔𝑝 − 𝜆𝑟
∗ ( 2.38)  

where: 

 𝜆𝑟 = −𝜉𝜔𝑛 ∓ 𝑗𝜔𝑛√1 − 𝜉2    and    𝑅𝑖𝑗𝑟 =
𝜑𝑖𝑟𝜑𝑗𝑟

𝑗2𝜔𝑑𝑟𝑚𝑟
 ( 2.39)  

in  which the values 𝜆𝑟 are the system poles, or the complex roots of the equations, which 

provide information about the damped frequencies (imaginary part) and damping ratios 

(real part), and 𝑅𝑖𝑗𝑟 are the so-called residuals that contain the mode shape coefficients. 

Detailing, the Eq. 2.38 is the general expression of the FRFs of a MDOF system, and 

generally called modal superposition equation [Bendat and Piersol (1993)], since it sums 

the contribution of the FRF of each single SDOF system. Furthermore, this matrix is a 

symmetric matrix, this means that the response measured in the i-th point by exciting j-th 

point, is equal to the response measured in the j-th point by exciting i-th point.  
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This propriety is intrinsically related to the linear nature of the MDOF system and it 

provides an important practical information about the mode shape. In fact, considering 

the symmetry of the matrix 𝐻𝑖𝑗(ω), it is possible to extract the mode shape associated to 

a specific frequency just knowing one row or one column associated to that defined 

natural frequency. More specifically, to know the mode shape associated to the first 

natural frequency of a MDOF system it is enough to know just the first row or the first 

column of the flexibility matrix 𝐻𝑖𝑗(ω). 

Concluding the paragraph, it is worth to highlight that the approach based on frequency 

response models deserves any problems in case of experimental tests, since it is not 

adequate to fit experimental data due to the high non-linearity of its inverse problem. 

Moreover, the dynamic problem referred to experimental data is quite often modelled in 

the frequency domain using the FRF through the application of the Fourier Transform 

Function (FTF) that leads to any problems from the time domain into frequency domain. 

It is worth mentioning that the FRFs and generally the frequency domain models are 

suitable for those cases in which the forces acting on the structure could be associated to 

stochastic realization, such as wind, traffic loads or waves. This condition becomes very 

important in all those experimental cases where the environmental loads can be treated as 

stochastic process as well as during the development of an Ambient Vibration Test 

(AVT) but also in the context of Continuous Dynamic Monitoring (CDM) purposes. 

Under the hypothesis of stochastic process, the input is not known and, assuming 

properly statistical conditions, it can be associated to a stationary zero mean Gaussian 

distributed stochastic process and the system is assumed to be linear and time invariant. 

Thus, the system response can be described by its correlation function which contain all 

the dynamic information about the collected random data [Bendat and Piersol (1993)]. 

From the practical point of view, this relation becomes fundamental for the development 

of methodologies in the frequency domain. Indeed, the correlation function is used to 

calculate the power spectral density function through the Fast Fourier Transform (FFT) 

function in order to identify the frequency content of the recorded experimental data. 
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In the next paragraph, before to introduce the most powerful methods used for 

identification problem regard Civil Engineering constructions, the relation between 

correlation function and power spectral density function will be described in detail, since 

they represent the core of the most used identification methods also adopted in this 

Dissertation. This relation describes how the spectral density of stochastic input is related 

to the spectral density of the measured outputs and how it constitutes the key point of 

non-parametric frequency domain identification methods.  

Such relation is given by FRFs of each SDOF of the representative MDOF system and it 

works as a linear filter. This means that if the input is assumed a stochastic white noise 

process then the output is a stochastic process too, scaled by the FRF function which 

describes the energy content of the system in the bound frequency range. This important 

passage will be resumed in the next paragraph, but to get a more detailed view, at 

interested reader is suggested the reading of the following works present in literature: 

[Bendat and Piersol (1993); Ljung (1999)]. 

 

2.2.3  State-space models  

As already mentioned in the previous paragraph, in the classical formulation concerning 

linear-time-invariant (LTI) systems, the solution is obtained separating each differential 

equation using the orthogonality property of the eigenvectors. This operation is possible 

only if damping is considered proportional; in fact, under this hypothesis, the modes of a 

proportional damping structure are equal to those ones obtained in the same non-damped 

structure. Obviously, this does not happen for real cases where the damping distribution 

is never proportional to mass and stiffness distribution, and the presence of localized 

damping might invalidate the hypothesis. The following scheme shows the sequential 

steps apt to define the stochastic model used to solve identification problem. Hence, the 

concept of viscous damping is introduced, and the dynamic problem is reformulated as a 

linear combination of independent SDOF system through the use the state-space-model. 
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In this paragraph all fundamental steps to understand the state-space formulation are 

reported, from the general equation of the motion to define the stochastic model used to 

extract the modal parameters from experimental data collected in operational conditions. 

Moreover, the state-space model also permits to model the noise content of the signals 

always present in the experimental tests. The following scheme describes all relevant 

steps adopted to construct the stochastic state-space model used in the identification 

problems, since they consist of fundamental steps useful to understand and manage the 

identification methods based on its implementation implemented in this Dissertation.  

(1) 
 

 

 

(2) 
 

 

 
(3) 

 
 

 
(4) 

 
 

 
(5) 

 
 

 

Fig. 2.7. Genesis of the stochastic state-space-model used for general applications 

Moreover, this paragraph reports in order: the model in continuous time, the model in 

discrete time, which considers the discrete nature of collected the time series, and finally 

the discrete stochastic model. The last model permits to study the structural responses of 

the dynamic system subjected to unknown input forces and affected by random noise. 

Equation of motion for MDOF system 

𝐌�̈�(𝐭) + 𝐂�̇�(𝐭) + 𝐊𝐪(𝐭) = 𝐅(𝐭) = 𝐁𝐍𝒖(𝒕) 

Continuous-time state-space model 

�̇�(𝑡) = 𝐀c𝒙(𝑡) + 𝐁c𝒖(𝑡)

𝒚(𝑡) = 𝐂c𝒙(𝑡) + 𝐃c𝒖(𝑡)
 

Discrete-time state-space model  

𝒙𝑘+1 = 𝐀𝒙𝑘 + 𝐁𝒖𝑘

𝒚𝑘 = 𝐂𝒙𝑘 + 𝐃𝒖𝑘
 

Discrete-time stochastic state-space model 

state-space model 𝒙𝑘+1 = 𝐀𝒙𝑘 + 𝐁𝒖𝑘 + 𝒘𝑘

𝒚𝑘 = 𝐂𝒙𝑘 + 𝐃𝒖𝑘 + 𝒗𝑘
 

Approximate stochastic discrete-time state-space-model 

𝒙𝑘+1 = 𝐀𝒙𝑘 + 𝒘𝑘

𝒚𝑘 = 𝐂𝒙𝑘 + 𝒗𝑘
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2.2.3.1 Continuous-time state-space model 

In the state-space formulation, the second order equation of motion of a multi degree of 

freedom system (MDOF) characterized by N degrees of freedom can be expressed as: 

 𝑀 ∙ �̈�(𝑡) + 𝐶 ∙ �̇�(𝑡) + 𝐾𝑞 ∙ (𝑡) = 𝐹(𝑡) = 𝐵𝑁 ∙ 𝑢(𝑡) ( 2.40)  

where 𝑀, 𝐶 and 𝐾 are the [N-by-N] mass, damping and stiffness matrices, respectively, 

F(t) is the exciting force vector defined by u(t), both at continuous time t. The vector q(t) 

is the solution of the differential equation. It should be noted that, since usually not all the 

𝑁 degrees of freedom of the system are excited, the F(t) vector composed by 𝑁 elements 

can be replaced by a vector u(t) with dimensions m<N which only takes into account the 

m applied inputs. This input vector u(t) is then multiplied by a [N-by-m] matrix BN, 

mapping the m inputs with the N-DOFs of the system. 

Adopting this formulation, the N-dimensional system composed by N second-order 

differential coupled equations can be transformed into an equivalent system of n=2N 

independent differential equations of the first order. This task can be performed defining 

the state vector x(t) of n components, composed by the vector of displacements q(t) and 

velocities q̇(t) which depends on the N-DOFs of the structure and defining the matrices 

𝑃 and 𝑄 as combination of mass, stiffness and damping matrices, as shown in Eq. 2.41; 

finally, the matrix BN which has dimensions [N-by-m], is composed of zeros and ones 

values, mapping the m-DOFs of the structure and N-DOFs of the numerical model. 

 𝑥(𝑡) = [
𝑞(𝑡)

�̇�(𝑡)
] ;    𝑃 = [

𝐶 𝑀
𝑀 0

] ;    𝑄 = [
𝐾 0
0 −𝑀

] ;     𝐹(𝑡) = 𝐵𝑁(𝑡) ∙ 𝑢(𝑡) ( 2.41)  

Accordingly, the system expressed in Eq. 2.40 can be substituted by another equivalent 

system composed by first-order differential equations, which can be re-written in a 

compact form as follows: 

 𝑃 ∙ �̇�(𝑡) + 𝑄 ∙ 𝑥(𝑡) = [
𝐵𝑁

0
] ∙ 𝑢(𝑡) ( 2.42)  
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Considering q(t) as the same generic solution used of the classical formulation, 

expressed in the Eq. 2.9, the solution of the new formulation can be found solving the 

eigenvalues problem [Peeters (2000)] as shown in the following form: 

 𝑄 · 𝛹 = −𝑃 · 𝛹 · 𝛬𝐶 ( 2.43)  

The matrices ΛC and Ψ contain eigenvalues and eigenvectors expressed as follows: 

 𝛬𝐶 = [
𝛬 0
0 𝛬∗]    ,   𝛹 = [

𝛩 𝛩∗

𝛩 · 𝛬 𝛩∗ · 𝛬∗] ( 2.44)  

From these equations we can find the relationships that exist between the elements of the 

aforesaid matrices with the vibrating modes (described by φk and λk) that characterize 

the dynamic behavior of the structure (the symbols Λ* and Θ* define the complex 

conjugate values of the obtained eigenvalues and to eigenvectors): 

 𝛬 = ⌈
⋱

𝜆𝑘

⋱

  ⌉ ;      𝛩 = [⋯ 𝜑𝑘 ⋯]  with 𝑘 = 1… .𝑁 ( 2.45)  

In this formulation the matrix Θ that contains the vibration modes does not transform the 

mass, stiffness and damping matrices, such condition is given by the orthogonality 

property expressed by the following relationships: 

 𝛹𝑇 · 𝑃 · 𝛹 = [
⋱

𝑎𝑘

⋱

] ;       𝛹𝑇 · 𝑄 · 𝛹 = [
⋱

𝑏𝑘

⋱

] ( 2.46)  

These matrices are the modal matrices. If the orthogonality conditions were included in 

Eq. 2.43, the resulting matrix ΛC will be: 

 𝛬𝐶 = −[
⋱

1/𝑎𝑘

⋱

] · [
⋱

𝑏𝑘

⋱

] ( 2.47)  

As evident the matrix ΛC is a diagonal matrix in which each component is obtained by 

the product of the components belong to the diagonal modal matrices previously defined. 
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State equation 

The system described in Eq. 2.40 can be transformed into an equivalent first-order 

differential equation system applying some mathematical manipulations. One of the most 

used possibility is based on the use of so-called state-space model. This model is often 

adopted in Civil Engineering applications because it provides the modal parameters 

estimations of those structures characterized by a general viscous damping. Thus, starting 

from the Eq. 2.43 and multiplying both terms for the invers matrix 𝑃−1 the equilibrium 

equation (Eq. 2.40) can be re-written into so-called state equation: 

 �̇�(𝑡) = 𝐴𝐶 · 𝑥(𝑡) + 𝐵𝐶 · 𝑢(𝑡) ( 2.48)  

where (•)𝐶 stands for ‘continuous time’. The architecture of the matrices is: 

 

𝐴𝐶 = −𝑃−1 · 𝑄 = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] 

𝐵𝐶 = 𝑃−1 · [
𝐵𝑁

0
] = [

0
𝑀−1𝐵𝑁

] 

( 2.49)  

in which the matrix AC is a [n-by-n] square matrix defined as state matrix (with n=2N), 

meanwhile BC is named input matrix with dimension [n-by-m] and x(t) is the state vector 

with dimensions n. In this way, recalling the Eq. 2.47 the relations between the state 

matrix AC and the matrices of the eigenvalue ΛC and the eigenvectors Ψ of the linear 

system in Eq. 2.40 can be defined. Thus, pre- and post-multiply both matrices P and Q 

with the matrix Ψ, such relations are highlighted:  

 
𝐴𝐶 = −𝑃−1 · 𝑄 = −𝛹 · 𝑑𝑖𝑎𝑔[1/𝑎𝑘] ∙ 𝛹−𝑇 · 𝛹𝑇 · 𝑑𝑖𝑎𝑔[𝑏𝑘] · 𝛹−1 

 𝐴𝐶 = 𝛹 · 𝛬𝐶 · 𝛹−1  ⇔  𝐴𝐶 · 𝛹 = 𝛹 · 𝛬𝐶 

( 2.50)  

The last equality in the previous equation proves a very important concept because it 

demonstrates that eigenvalues and eigenvectors of the matrix AC are the same values of 

the eigenvalues and eigenvectors obtained solving the Eq. 2.43. This relation says that is 

possible to extract all modal characteristics of the dynamic system from the matrix AC. 
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Again, for clearness, it is worth to remember that the number of elements of the state 

vector indicates the number of independent variables that describe the state of the system, 

and its dimension corresponds to the double number of DOFs in the referred system. This 

is due by the fact that the state vector 𝑥(𝑡)contains the displacement 𝑞(𝑡)and the velocity 

�̇�(𝑡)vectors of the dynamic system. 

Observation equation 

To complete the state-space formulation, another equation must be defined to establish a 

relation between the outputs of the generalized N-DOFs of the system and the values 

directly measured. In fact, in practical applications it is not possible to measure the 

structural response associated to all DOFs, so it is usual to refer the collected data to only 

l DOFs on the investigate structure, assuming l<n instrumented points that are generally 

referred to the displacements, velocities and accelerations associated of such points. 

In this way, the so-called observation equation establishes the relation among the vector 

of system response – organized in y(t) – and considering the different contribution of the 

instrumented sensors, the relation is described in the follows: 

 𝑦(𝑡) = 𝐶𝑎 ∙ �̈�(𝑡) + 𝐶𝑣 ∙ �̇�(𝑡) + 𝐶𝑑 ∙ 𝑞(𝑡) ( 2.51)  

where y(t) is the measurement vector with dimensions l, meanwhile Ca, Cv, Cd with 

dimension [l-by-N] are the output location matrices for accelerations, velocities and 

displacements, respectively. The location matrices are composed by zero or one values to 

establish the relation between the DOF of the model with those ones measured by 

installed transducers: accelerometers, velocity and displacement sensors on the structure. 

Recalling the Eq. 2.40 and using the definition of the state vector expressed in Eq. 2.41, 

the matrices CC and DC can be re-organize as follows: 

 
𝐶𝐶 = [𝐶𝑑 − 𝐶𝑎 · 𝑀−1 · 𝐾 𝐶𝑣 − 𝐶𝑎 · 𝑀−1 · 𝐶𝑁] 

 𝐷𝐶 = 𝐶𝑎 · 𝑀−1 · 𝐵𝑁    
( 2.52)  
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So, the relationship between the outputs 𝑦(𝑡) with the state vector 𝑥(𝑡) and the inputs 

𝑢(𝑡) can be re-written in the compact form as follows: 

 𝑦(𝑡) = 𝐶𝐶 · 𝑥(𝑡) + 𝐷𝐶 · 𝑢(𝑡) ( 2.53)  

where CC is named output matrix and DC is the direct transmission matrix with 

dimensions [l-by-n] and [l-by-m], respectively. 

State-Space Model 

Pacing together the state equation (Eq. 2.48) and the observation equation (Eq. 2.53) the 

continuous-time deterministic state-space model of order N can be defined as follows: 

 �̇�(𝑡) = 𝐴𝐶 · 𝑥(𝑡) + 𝐵𝐶 · 𝑢(𝑡)

𝑦(𝑡) = 𝐶𝐶 · 𝑥(𝑡) + 𝐷𝐶 · 𝑢(𝑡)
 ( 2.54)  

This model allows for establishing the relation between the response of the system 

y(t) and the deterministic excitation u(t). Important considerations can be made on the 

AC matrix; it contains relevant information concerning the fundamental properties of the 

structure which can be extracted from it. Moreover, the order of the model is defined 

through the state vector x(t), which contains the displacements q(t) and the velocities 

q̇(t) of the system. This is the reason way that the order of the state-model is equal to 

twice the number of DOFs of the structure under analysis. 

 

2.2.3.1.1 State-space model in the Modal Domain 

To complete the discussion, the state-space model can be expressed in the modal domain 

introducing the modal coordinate in the state vector as follows:    

 𝑥𝑚(𝑡) = 𝛹−1 · 𝑥(𝑡)   ,   𝛹 = [
𝛩 𝛩∗

𝛩 · 𝛬 𝛩∗ · 𝛬∗] ( 2.55)  

After some manipulation and considering the decomposition in eigenvalues and 

eigenvectors of the matrix AC, the following relations can be obtained: 
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 𝐿𝐶
𝑇 = 𝛹−1 · 𝐵𝐶

𝑉𝐶 = 𝐶𝐶 · 𝛹
 ( 2.56)  

Therefore, the state-space model is defined in the modal domain and it called modal 

model and it can be expressed by the system equation reported below: 

 �̇�𝑚(𝑡) = 𝛬𝐶 · 𝑥𝑚(𝑡) + 𝐿𝐶
𝑇 · 𝑢(𝑡)

𝑦(𝑡)  = 𝑉𝐶 · 𝑥𝑚(𝑡) + 𝐷𝐶 · 𝑢(𝑡)
 ( 2.57)  

An important consideration needs to be highlighted about the physical meaning of the 

matrix VC. In fact, the columns of this matrix exactly contain the components of the 

vibration modes observed by the sensors installed on the structure.  

The main advantage of this model is provided by the diagonal values of matrix ΛC which 

permits the separation of the contributions of different vibration modes and then to 

construct a reduced model that takes account only those dominant modes of the structure. 

A further consideration can be done about structures with proportional damping. In this 

case the modal model described in Eq. 2.47 can be simplified adopting a similar model 

based only on the modal parameters. As it will be shown, this model, obtained by less 

computational effort, can be used to simulate experimental data. The new model is 

obtained in the similar way defined in Eq. 2.57, introducing a simpler transformation of 

the modal coordinates in the state vector: 

 𝑥𝑝(𝑡) = 𝑇𝑃
−1 · 𝑥(𝑡)  ,   𝑇𝑃 = [

𝛷 0
0 𝛷

] ( 2.58)  

remarking that the columns of the matrix 𝛷 contain only the components of the vibration 

modes, which should be real. 

Finally, the modal model obtained considering proportional damping is defined below: 

 
�̇�𝑃(𝑡) = 𝐴𝑃 · 𝑥𝑃(𝑡) + 𝐵𝑃 · 𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑃 · 𝑥𝑃(𝑡) + 𝐷𝑃 · 𝑢(𝑡)
 

 

( 2.59)  
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where all matrices can be characterized using by the modal parameters as reported below:  

 

𝐴𝑃 = 𝑇𝑃
−1𝐴𝐶  𝑇𝑃 = [

0 𝐼
−𝛺2 −𝛤

] 

𝐵𝑃 = 𝑇𝑃
−1𝐵𝐶 = [

0
𝑀𝑚

−1𝛷𝑇𝐵𝑁
] 

𝐶𝑃 = 𝐶𝐶𝑇𝑃 = [𝐶𝑑𝛷 − 𝐶𝑎𝛷𝛺2 𝐶𝑣𝛷 − 𝐶𝑎𝛷𝛤] 

𝐷𝑃 = 𝐷𝐶 = [𝐶𝑎𝛷𝑀𝑚
−1𝛷𝑇𝐵𝑁] 

( 2.60)  

obtained considering the following diagonal matrices: 

 𝛺 = [
⋱

𝜔𝑘

⋱

]    𝛤 = [
⋱

2𝜉𝑘𝜔𝑘

⋱

]   𝑀𝑚 = [
⋱

𝑚𝑘

⋱

] ( 2.61)  

 

 

Numerical example 

Using the matrices M, K and C associated to the 3-DOFs the continuous-time matrices AC, 

BC, CC and DC are composed as described in Eq. 2.49. As stated, all dynamic properties of 

the system are defined in the state matrix AC. Thus, the eigenvalues will be extracted from it. 

 

As shown AC is a [n-by-n] square matrix with double dimension of the initial system. 

Applying the eig function implemented in the commercial software MatLab, the eigenvalues 

and eigenvectors of the dynamic system are extracted obtaining the following matrices: 

Ac = x1 x2 x3 x4 x5 x6 BC = u1 u2 u3

x1 0 0 0 1 0 0 x1 0 0 0

x2 0 0 0 0 1 0 x2 0 0 0

x3 0 0 0 0 0 1 x3 0 0 0

x4 -9014.42 4507.21 0 -2.6854 1.3427 0 x4 0.4808 0 0

x5 4507.21 -9014.42 4507.21 1.3427 -2.6854 1.3427 x5 0 0.4808 0

x6 0 4507.21 -4507.21 0 1.3427 -1.3427 x6 0 0 0.4808

  CC = x1 x2 x3 x4 x5 x6 DC = u1 u2 u3

y1 -9014.42 4507.21 0 -2.6854 1.3427 0 y1 0.4808 0 0

y2 4507.21 -9014.42 4507.21 1.3427 -2.6854 1.3427 y2 0 0.4808 0

y3 0 4507.21 -4507.21 0 1.3427 -1.3427 y3 0 0 0.4808
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As previously stated, the eigenvalues are grouped in pair of complex and conjugated values, 

as well as the eigenvectors. From the values reported in ΛC using Eq. 2.17 it is possible to 

extract the damping values (ξ𝑘) and the circular frequencies (ω𝑘) and consequently the 

natural frequencies associated to investigated system from the obtained eigenvalues 𝜆𝑘.  

 

ξ = [
0.0180
0.0125
0.0045

]  → ξ = [
1.80
1.25
0.45

] [%] 

ω = [
120.935
83.704
29.877

] [rad] → f = [
19.247
13.322
4.755

] [Hz] 

It should be noted that in the last three rows of the matrix ΨC are located the vibration modes 

of the structure, each one associated to respective eigenvalues in matrix ΛC. As demonstrated 

the modes coincide with those ones obtained in the classical formulation, although 

eigenvectors are duplicated because they are reported their original values together with their 

respective conjugates. Furthermore, being the damping matrix proportional to the mass and 

the stiffness distribution, the resulting modes of the system should be real, as demonstrated 

by the columns of ΨC in which the imaginary part of the components is zero.  

Finally, to obtain the observable modal components, the matrix ΨC should be multiplied for 

the matric CC, as shown in Eq. 2.56. In this example all DOFs of the system were designed 

as reference points, therefore the resulting mode shapes provide the same modal component 

obtained through the classical formulation, which could differ only by a constant value. 

 

 

-2.180 + 120.95 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i -2.180 - -120.95 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i -1.044 + 83.71 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i -1.044 - -83.71 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i -0.133 + 29.88 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i -0.133 - -29.88 i

ΛC =

0.0001 + 0.0049 i 0.0001 - 0.0049 i -0.0001 - 0.0088 i -0.0001 + 0.0088 i 0.0000 - 0.0110 i 0.0000 + 0.0110 i

-0.0001 - 0.0061 i -0.0001 + 0.0061 i 0.0000 - 0.0039 i 0.0000 + 0.0039 i -0.0001 - 0.0198 i -0.0001 + 0.0198 i

0.0000 + 0.0027 i 0.0000 - 0.0027 i 0.0001 + 0.0071 i 0.0001 - 0.0071 i -0.0001 - 0.0247 i -0.0001 + 0.0247 i

-0.591 + 0 i -0.591 + 0 i 0.737 + 0 i 0.737 + 0 i 0.328 + 0 i 0.328 + 0 i

0.737 + 0 i 0.737 + 0 i 0.328 + 0 i 0.328 + 0 i 0.591 + 0 i 0.591 + 0 i

-0.328 + 0 i -0.328 + 0 i -0.591 + 0 i -0.591 + 0 i 0.737 + 0 i 0.737 + 0 i

ΨC =  

-2.180 + 120.95 i

-2.180 - 120.95 i

-1.044 + 83.71 i

-1.044 - 83.71 i

-0.133 + 29.88 i

-0.133 - 29.88 i

diag(ΛC)=
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2.2.3.2 Discrete-time state-space model 

The models described up to now are all continuous over time. But in real applications, 

experimental data always have discrete nature, in fact the analog signals recorded by 

different transducers are converted to digital data by an analog to digital converter (A/D) 

and then stored and processed by a computer. Therefore, all available information on 

dynamic systems is always digitalized. However, a discrete time version of the 

previously presented model is more appropriate to fit experimental data. Therefore, a 

discrete-time state-space model is characterized by the following equation: 

 𝑥𝑘+1 = 𝐴 ∙ 𝑥𝑘 + 𝐵 ∙ 𝑢𝑘

 𝑦𝑘    = 𝐶 ∙ 𝑥𝑘 + 𝐷 ∙ 𝑢𝑘
 ( 2.62)  

The continuous time function 𝑥(𝑡), 𝑦(𝑡) and 𝑢(𝑡) are replaced by series of values 𝑥𝑘, 𝑦𝑘 

and 𝑢𝑘 defined in the discrete time instant 𝑘𝛥𝑡, with k ∈ ℕ and 𝛥𝑡 is the adopted 

sampling interval: 𝑥𝑘=𝑥(𝑘 · 𝛥𝑡).  

If the time functions that connect two consecutive discrete samples are assumed to be 

constant (zero-order-hold assumption, ZOH) [Juang (1994)], the continuous-time model 

matrices 𝐴𝐶, 𝐵𝐶, 𝐶𝐶, 𝐷𝐶 are related with their owns discrete-time matrices  𝐴, 𝐵, 𝐶, 𝐷 by 

the following expressions: 

 
𝐴 = 𝑒𝐴𝑐∆𝑡         𝐵 = ∫ 𝑒𝐴𝑐𝜏𝑑𝜏

∆𝑡

0

∙ 𝐵𝑐 

 𝐶 = 𝐶𝑐                   𝐷 = 𝐷𝑐                      

( 2.63)  

In the first expression of the equations reported above, the relation between the matrices 

𝐴𝐶 and 𝐴 is described. Furthermore, performing the McLaurin decomposition of the 

second equality, it is possible to relate the model matrix in the discrete time A with its 

corresponding continuous matrix 𝐴𝐶 as follows: 

 𝐴 = 𝑒𝐴𝑐∙𝛥𝑡  = 𝐼 + (𝐴𝐶 ∙ 𝛥𝑡) +
(𝐴𝐶 ∙ 𝛥𝑡)2

2!
+

(𝐴𝐶 ∙ 𝛥𝑡)3

3!
+ ⋯   ( 2.64)  
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Recalling the Eq. 2.50 and substituting the eigenvalues decomposition, it can be stated 

that the eigenvectors of matrix 𝐴 coincide with the eigenvectors of matrix 𝐴𝐶: 

 
𝐴𝐶 = 𝛹 · 𝛬𝐶 · 𝛹−1 

𝐴 = 𝑒𝐴𝐶∙𝛥𝑡 = 𝑒𝛹·𝛬𝐶·𝛹−1∙𝛥𝑡 = 𝛹 ∙ 𝑒𝐴𝐶∙𝛥𝑡 ∙ 𝛹−1 = 𝛹 · 𝛬𝐷 · 𝛹−1  
( 2.65)  

where 𝛬𝐷 contains exactly the eigenvalues of the state matrix 𝐴 correlated as follows: 

 ΛD = ⌈
⋱

μk

⋱

  ⌉ ;       μk = eλkΔt  ↔ λk =
ln(μk)

Δt
 ( 2.66)  

Consequently, it is proven that once a discrete-time state-space model has been identified 

from experimental data; the modal parameter of the tested structure can be easily 

estimated. In particular, the natural frequencies and the modal damping ratio are obtained 

from the eigenvalues of 𝐴 using Eq. 2.11. meanwhile, as it will be demonstrated, the 

eigenvectors of 𝐴 coincide with the eigenvectors of 𝐴𝐶. 

 

Numerical example 

For the academic structure were calculated the system matrices A and C in the discrete time 

formulation starting from the matrices AC and CC of the continuous model. The new matrices 

have been obtained after transposing the system from the continuous time to discrete time 

domain applying the relation in Eq. 2.63. This task has been performed using the functions 

ss and c2d included in the MatLab and adopting a time variation Δt=0.02. As shown below, 

after the transformation the matrices A and C have a different design from their 

corresponding matrices in the continuous time (AC and CC); meanwhile, the matrices B and D 

maintain the same characteristics of BC and DC from in continuous model to discrete model.  

As stated, all dynamic properties of the investigated system are included in the state matrix 

𝐴. Therefore, inspecting the eigenvalues of 𝐴 it can be proved that they are equal to those 

ones belong to 𝐴𝐶, as described by Eq. 2.66. Therefore, using the eig function, the following 

matrices ΛD and Ψ are derived, in which eigenvalues and eigenvectors of 𝐴 are reported. 
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Consequently, extracting the non-null values from the matrix ΛD can be highlight that the 

eigenvalues of the discrete state-space model are grouped in complex and conjugate pair. 

Performing the Eq. 2.66 the modal parameters of the system can be easily defined 

confirming the relation expressed in Eq. 2.65. as shown, the eigenvalues of the state matrix 

𝐴𝐶 have the same values of 𝐴 belong to the discrete state-space model. 

 

 

From the comparison between the eigenvectors’ matrix ΨC in the continuous time and the 

eigenvectors matrix Ψ derived in the discrete time, the columns coincide (differing just for a 

constant value) and they characterize the same modes. 

  

→ ξ = [
1.80
1.25
0.45

] [%] 

→ f = [
19.247
13.322
4.755

] [Hz] 

 

 A = x1 x2 x3 x4 x5 x6 B = u1 u2 u3

x1 -0.2062 0.4466 0.1016 0.0102 0.0042 0.0005 x1 0.0001 0 0

x2 0.4466 -0.1046 0.5483 0.0042 0.0107 0.0047 x2 0 0.0001 0

x3 0.1016 0.5483 0.3421 0.0005 0.0047 0.0148 x3 0 0 0.0001

x4 -72.8500 10.4000 16.6200 -0.2279 0.4497 0.1066 x4 0.0049 0.0020 0.0002

x5 10.4000 -56.2300 27.0200 0.4497 -0.1213 0.5563 x5 0.0020 0.0051 0.0022

x6 16.6200 27.0200 -45.8300 0.1066 0.5563 0.3284 x6 0.0002 0.0022 0.0071

  C = x1 x2 x3 x4 x5 x6 D = u1 u2 u3

y1 -9014.42 4507.21 0 -2.69 1.34 0 y1 0.4808 0 0

y2 4507.21 -9014.42 4507.21 1.34 -2.69 1.34 y2 0 0.4808 0

y3 0 4507.21 -4507.21 0 1.34 -1.34 y3 0 0 0.4808

-0.718 + 0.63 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i -0.718 - 0.63 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i -0.101 + 0.97 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i -0.101 - 0.97 i 0.000 + 0.00 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.824 + 0.56 i 0.000 + 0.00 i

0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.000 + 0.00 i 0.824 - 0.56 i

Λd =

-0.0001 - 0.0049 i -0.0001 + 0.0049 i -0.0001 - 0.0088 i -0.0001 + 0.0088 i 0.0000 - 0.0110 i 0.0000 + 0.0110 i

0.0001 + 0.0061 i 0.0001 - 0.0061 i 0.0000 - 0.0039 i 0.0000 + 0.0039 i -0.0001 - 0.0198 i -0.0001 + 0.0198 i

0.0000 - 0.0027 i 0.0000 + 0.0027 i 0.0001 + 0.0071 i 0.0001 - 0.0071 i -0.0001 - 0.0247 i -0.0001 + 0.0247 i

0.591 + 0 i 0.591 + 0 i 0.737 + 0 i 0.737 + 0 i 0.328 - 0 i 0.328 + 0 i

-0.737 + 0 i -0.737 + 0 i 0.328 - 0 i 0.328 + 0 i 0.591 - 0 i 0.591 + 0 i

0.328 + 0 i 0.328 + 0 i -0.591 + 0 i -0.591 - 0 i 0.737 - 0 i 0.737 + 0 i

Ψd =  

-0.718 + 0.63 i

-0.718 - 0.63 i

-0.101 + 0.97 i

-0.101 - 0.97 i

0.824 + 0.56 i

0.824 - 0.56 i

diag(Λd) = µk =

-2.185 + 120.96 i

-2.185 - 120.96 i

-1.043 + 83.71 i

-1.043 - 83.71 i

-0.135 + 29.88 i

-0.135 - 29.88 i

→     λk =
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2.2.3.3  Introduction to stochastic process 

In the previously presented modes is assumed that the input time functions are known or 

using other words, that the input forces can be expressed in deterministic form. 

Otherwise, in the context of Operational Modal Analysis, the input excitation is 

unknown, and it is represented by a stochastic process, which also takes into account the 

noise effects in the model.  

A stochastic process is a set of n (with n → ∞) time dependent random functions, also 

designed by realizations, associated to characterize one or several variables. In this way, 

the characterization of the variables (i.e., a set of excitation forces) can be done through 

the statistical properties of the realizations themselves. In practical applications, is 

common to assume that stochastic processes are stationary, ergodic and zero mean. 

Stationary means that the statistical properties of the processes are constant over time. 

The zero-mean assumption is valid because the measured time signals are commonly de-

trended before being processed. Ergodicity means that the statistical properties (of the 

measured signals) can be calculated either considering average values over many 

realizations at a certain time instant or using the average values of just one realization 

over time. On other words, a stochastic process is called ergodic when statistical averages 

converge almost everywhere at average times. A necessary condition for ergodicity is 

therefore stationarity. In particular, the ergodicity of the mean value is obtained when the 

temporal and the statistical averaged value coincide; meanwhile, in case of correlation, 

the ergodicity is verified when the statistical auto-correlation and the temporal auto-

correlation coincide. For continuous time stochastic process 𝑦(𝑡) with ny components, the 

correlation matrix can be expresses as: 

 𝛴𝑦𝑦(𝜏) = 𝐸[𝑦(𝑡) ∙ 𝑦(𝑡 + 𝜏)𝑇] = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑦(𝑡) ∙ 𝑦(𝑡 + 𝜏)𝑇

+𝑇/2

−𝑇/2

𝑑𝑡 ( 2.67)  

where Σ𝑦𝑦(𝜏) is a [ny-by-ny] square matrix that depends on considered time-lag (𝜏). The 

elements in the diagonal are designed auto-correlations otherwise cross-correlations.  
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In the context of modal analysis, most of the dynamic identification techniques are 

directly applied to the correlation functions of the measured structural responses. In fact, 

the correlation matrix contains all the important information of the random data 

associated to the time responses of the system. Therefore, for discrete time signals the 

correlation function is only defined for t ≥ 0, the integral is replaced by a series of sum: 

 𝛴𝑦𝑦(𝜏) = 𝐸[𝑦𝑘 ·  𝑦𝑘+𝜏
𝑇] = 𝑙𝑖𝑚

𝑛𝑡→∞

1

𝑛𝑡
∑ 𝑦𝑘 · 𝑦𝑘+𝜏

𝑇

𝑛𝑡−1

𝑡=0

 ( 2.68)  

The left term of the equation is referred to the expected auto-correlation function of the 

time signals 𝑦(𝑡). In fact, E[•] is the expected value operator, which provides the average 

value when the realizations of the stochastic process approaches infinite, and yk is the 

value of 𝑦(𝑡) at the time instant k·Δt.  

Hence, the auto-correlation function provides a measure of the similarity and the 

common properties between the original signal with its time-shifted version. In other 

words, it provides the correlation of the time signal with its own past and future values. 

For stationary processes, the auto-correlation depends only on the time-shift and gives 

the information about how quickly the process changes respect to the time. Moreover, an 

infinite number of samples is not available in real applications; thus, an estimate of the 

correlation is obtained by limiting the series to a finite number of samples. In the similar 

way it is estimated the cross-correlation function. This function provides the information 

about the correlation degree of two different time signals y and x: 

 𝛴𝑦𝑥(𝜏) = 𝐸[𝑦𝑘 ·  𝑥𝑘+𝜏
𝑇] = 𝑙𝑖𝑚

𝑛𝑡→∞
 
1

𝑛𝑡
∑ 𝑦𝑘 · 𝑥𝑘+𝜏

𝑇

𝑛𝑡−1

𝑡=0

 ( 2.69)  

Concluding, the correlation function describes how an instantaneous observation depends 

upon previously occurring observations. Furthermore, due to zero mean assumption of 

the time signals, in the applications of modal analysis the covariance functions coincide 

with the correlation functions. Therefore, in the signal processing, it is common to use 

indistinctively both terms: correlation and covariance. 
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2.2.3.4  Stochastic discrete-time state-space model 

As already mentioned, when structures are subjected to a non-deterministic excitation, 

the responses can not be predicted, and it is convenient to characterize the excitation 

through the use of probabilistic concepts and to idealize it through a stochastic process. 

In general cases, experimentally collected data are always affected by noise, which can 

not be measured individually, but it has been taken into account in the models, adding a 

stochastic component that represents it. Therefore, noise has to be considered in the 

discrete-time state-space model  (see Eq. 2.62) including two statistical components. The 

obtained model is referred as stochastic discrete-time state-space model: 

 𝑥𝑘+1 = 𝐴 ∙ 𝑥𝑘 + 𝐵 ∙ 𝑢𝑘 + 𝑤𝑘

𝑦𝑘     = 𝐶 ∙ 𝑥𝑘 + 𝐷 ∙ 𝑢𝑘 + 𝑣𝑘
 ( 2.70)  

where vectors wk and vk represent two stochastic processes due to noise content in the 

signals. Specifically, the former it is due to modeling inaccuracies and the latter is due to 

measurement noise due to sensor inaccuracy. Further consideration should be done in 

order to explain exactly the final stochastic model used in the identification problems. In 

fact, it should be noted that both these immeasurable vectors are assumed to be zero-

mean realizations of stochastic processes with the following covariance matrices: 

 
([

𝑤𝑝

𝑣𝑝
] [𝑤𝑝

T 𝑣𝑝
T]) = [

Q S

R ST] 

𝐸 ([
𝑤𝑝

𝑣𝑝
] [𝑤𝑞

T 𝑣𝑞
T]) = 0  𝑝 ≠ 𝑞 

( 2.71)  

where p and q are two arbitrary time instants. Since the correlation matrices of the 

processes wk and vk are assumed to be zero for any time delay τ = q – p different from 

zero, each new observation is independent from the previous ones. Such random 

stochastic process is defined as white noise process. In the context of vibration tests and 

OMA techniques, the excitation acting on the structure is not measured and the discrete 

vector uk is unknown. Thus, a further approximation can be done assuming white noise 

excitation. Under this hypothesis, the unknown excitation is included in the noise terms 

to define the approximate stochastic discrete-time state-space model as follows: 
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 𝑥𝑘+1 = 𝐴 ∙ 𝑥𝑘 + 𝑤𝑘

𝑦𝑘    = 𝐶 ∙ 𝑥𝑘 + 𝑣𝑘
 ( 2.72)  

where the terms wk and vk are slightly different than the quantities already introduced in 

Eq. 2.70, they represent the effect of noise indeed the model under the assumption that 

the inputs are also realizations of white noise processes. Thus, vectors wk and vk are now 

representing the effect of unknown inputs, modelling inaccuracies and measured noise. It 

is worth noting that the system expressed in Eq. 2.72  is an approximation of the reality 

that has consequences on the results of the identification methods. This aspect will be 

deeply discussed during the development of the most used identification techniques in the 

next paragraphs. 

 

2.2.3.5  Properties of the stochastic model 

For clearness, some properties of the stochastic state-space model presented in Eq. 2.72 

must be explain in order to highlight the main properties of the identification techniques 

based on its development [Van Overschee and De Moore (1996), Inman (2006)].  

First, the basic assumption is that the state vector 𝑥𝑘 can be represented as a stationary 

stochastic process, this means that the expected mean values of the states (expected 

means that it is theoretically related to an infinite number of samples) is zero. Moreover, 

the expected covariance matrix in instant time τ=0 is independent of the time instant k, 

implying that the matrix A is a stable matrix (or rather it evolves within a certain bound 

related to a specific range of the response for all time instants k), and it can be defined by 

the n-dimensional matrix Σ. This information can be resumed as follows: 

 𝐸[𝑥𝑘] = 0 , 𝛴𝑥𝑥𝑘
= 𝐸[𝑥𝑘 · 𝑥𝑘

𝑇] ( 2.73)  

Furthermore, regarding the vectors 𝑤𝑘 and 𝑣𝑘 in Eq. 2.70, they are also assumed as zero 

means realization of stochastic process with the covariance matrix expressed in Eq. 2.71. 
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In addition, since these vectors are independent from the state vector, their expected 

values are zero, as described in the following equation: 

 𝐸[𝑥𝑘 · 𝑤𝑘
𝑇] = 0   ,    𝐸[𝑥𝑘 · 𝑣𝑘

𝑇] = 0 ( 2.74)  

Taking in to account the above properties and the relations in Eqs. 2.72, 2.73 and 2.74 it 

can be obtained the following relation for discrete-time stochastic state-space models:  

 

𝛴𝑥𝑥𝑘+1
= 𝐸[𝑥𝑘+1 · 𝑥𝑘+1

𝑇]                                           

      = 𝐸[(𝐴 ∙ 𝑥𝑘 + 𝑤𝑘) · (𝐴 ∙ 𝑥𝑘 + 𝑤𝑘)𝑇]   

       = 𝐴 · 𝐸[𝑥𝑘 · 𝑥𝑘
𝑇] · 𝐴𝑇 + 𝐸[𝑤𝑘 · 𝑤𝑘

𝑇]   

= 𝐴 · 𝛴𝑥𝑥𝑘
· 𝐴𝑇 + 𝑄                            

( 2.75)  

This relation is also called the Lyapunov equation for the state covariance matrix, which 

confirms the stability of the state matrix 𝐴. on other words, it means that the energy 

associated to the state in the instant k converge to the energy of the state in the successive 

instant k+1, and this is true for any time instant k. Furthermore, it is possible to define the 

output covariance matrices of the response 𝑦(𝑡). In discrete time, the output covariance 

matrix can be written as: 

 𝑅𝑖 = 𝛴𝑦𝑦𝑖
= 𝐸[𝑦𝑘+𝑖 ∙ 𝑦𝑘

𝑇] ( 2.76)  

where i=1, …, p+q is an arbitrary value of the time-lags, generally p+1=q.  

By considering the model in Eq. 2.72, and the properties in Eqs. 2.71, 2.73 and 2.74, 

Σ𝑦𝑦0
 is defined as: 

 

𝑅0 = 𝛴𝑦𝑦0
= 𝐸[𝑦𝑘 · 𝑦𝑘

𝑇]                                                               

     = 𝐸[(𝐶 ∙ 𝑥𝑘 + 𝑣𝑘) · (𝐶 ∙ 𝑥𝑘 + 𝑣𝑘)𝑇]        

= 𝐶 · 𝐸[𝑥𝑘 · 𝑥𝑘
𝑇] · 𝐶𝑇 + 𝐸[𝑣𝑘 · 𝑣𝑘

𝑇] 

= 𝐶 · 𝛴𝑥𝑥 · 𝐶𝑇 + 𝑅                                

( 2.77)  

In the same way, the use of previous equations allows to write the definition of the 

covariance matrix Σ𝑥𝑦 between the next state and the reference output as: 
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𝐺 = 𝛴𝑥𝑦 = 𝐸[𝑥𝑘+1𝑦𝑘
𝑇]                                                        

     = 𝐸[(𝐴 ∙ 𝑥𝑘 + 𝑤𝑘) · (𝐶 ∙ 𝑥𝑘 + 𝑣𝑘)𝑇]     

 = 𝐴 · 𝐸[𝑥𝑘 · 𝑥𝑘
𝑇]𝐶𝑇 + 𝐸[𝑤𝑘 · 𝑣𝑘

𝑇] 

 = 𝐴 · 𝛴𝑥𝑥 · 𝐶𝑇 + 𝑆                               

( 2.78)  

Finally, using some mathematical manipulations, as described in [Bernal (2008)], and 

exploiting the discrete-time state equation as follow: 

 

𝑥1 = 𝐴 ∙ 𝑥0 + 𝑤0 

𝑥2 = 𝐴 ∙ 𝑥1 + 𝑤1 = 𝐴 ∙ (𝐴 ∙ 𝑥0 + 𝑤0) + 𝑤1 = 𝐴2 ∙ 𝑥1 + 𝐴 ∙ 𝑤0 + 𝐴 ∙ 𝑤1 

⋮ 
𝑥𝑘+1 = 𝐴𝑖 ∙ 𝑥𝑘 + 𝐴𝑖−1 ∙ 𝑤𝑘 + 𝐴𝑖−2 ∙ 𝑤𝑘+1 + ⋯+ 𝑤𝑘+𝑖−1 

( 2.79)  

And post-multiplying by 𝑥𝑘
𝑇 and considering the covariance matrix calculated between 

different time instant k, the relation obtained is: 

 𝐸[𝑥𝑘+1 · 𝑥𝑘
𝑇] = 𝐴𝑖 · 𝐸[𝑥𝑘 · 𝑥𝑘

𝑇] = 𝐴𝑖 · 𝛴 ( 2.80)  

By substituting Eq. 2.80 in Eq. 2.77 and considering Eq. 2.78, after any mathematical 

simplification it is possible to re-write the output covariance matrix (see Eq. 2.76) as: 

 
𝑅𝑖 = 𝐶 · 𝐴𝑖−1 · 𝐺 

𝑅−𝑖 = 𝐺𝑇 · (𝐴𝑖−1)
𝑇

· 𝐶𝑇 = 𝑅𝑖
𝑇 

( 2.81)  

This last property is very important because it constitutes the solution of the stochastic 

identification methods based on state-space models. Since it relates the output covariance 

sequence, which can be estimated by the experimental data, with the state matrix A, and 

from this one to identify the modal parameters of the structure, as it will be demonstrate 

in the next paragraph. Finally, the property expressed in the last equation can be defined 

also using the modal parameters obtained the following relation: 

 

 𝛬𝑖 = 𝑅𝑖 = 𝐶 · 𝐴𝑖−1 · 𝐺  

              = 𝐶 · 𝛹𝑇 · 𝛬𝑖−1 · 𝛹𝑇 · 𝐺 

= 𝑉 · 𝛬𝑖−1 · 𝐺𝑚  

( 2.82)  

in which 𝐺𝑚 plays the role of the modal participation matrix in input-output models. 
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2.2.4 Auto-spectra and cross-spectra functions  

The models presented in the previous paragraphs have been developed adopting the main 

hypothesis of stochastic process of the input excitation with normal distribution and zero 

mean value (i.e., p → N (0, σ)). This property is very common in many natural 

phenomena, also confirmed by the Central Limit theorem which describes that the sum of 

a considerable number of independent random variables, each one composed by its own 

independent distribution, tends to a Gaussian distribution. Moreover, if the stochastic 

process is stationary and ergodic, the auto-correlation function is independent from the 

time instants ti and tj but it depends only on the time interval τ = tj - ti.  

Consequently, the stochastic process can be defined by a realization of the process 

(𝑥𝑒(𝑡)) which depends only on this time-lag. So, auto-correlation function is defined as: 

 𝑅𝑥𝑥(𝜏) = 𝑙𝑖𝑚
𝑇→∞

 
1

𝑇
∫ 𝑥𝑒(𝑡) · 𝑥𝑒(𝑡 + 𝜏)

+𝑇/2

−𝑇/2

𝑑𝑡 ( 2.83)  

It is worth to mentioning that the auto-correlation function tends to zero in relation to the 

irregularity of the time series involved, more irregularity of process means faster decay of 

the function. For clarity, the auto-correlation functions associated to zero mean stationary 

stochastic processes are symmetrical functions with maximum value in the origin (τ = 0) 

in which the ordinate is given by the standard deviation of the process.  

The auto-correlation function can be transposed in the frequency domain through the use 

of the Fourier Transform obtaining the so-called auto-spectrum function: 

 𝑆𝑥𝑥(𝜔) = ∫ 𝑅𝑥𝑥(𝜏) · 𝑒−𝑖·𝜔·𝜏

+∞

−∞

𝑑𝜏 ( 2.84)  

The auto-spectrum function quantifies the distribution of the energy content associated to 

the signal in terms of frequencies. In fact, the area underlying the function represents the 

total energy content of the signal. Furthermore, for white noise signals the energy value is 
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given by just its variance value. The concepts considered for the definition of the auto-

correlation and auto-spectrum functions defined in the Eqs. 2.83 and 2.84, can be also 

adopted to define the cross-correlation and the cross-spectrum functions: 

 𝑅𝑥1𝑥2
(𝜏) = 𝑙𝑖𝑚

𝑇→∞
 
1

𝑇
∫ 𝑥1𝑒(𝑡) · 𝑥2𝑒(𝑡 + 𝜏)

+𝑇/2

−𝑇/2

𝑑𝑡 ( 2.85)  

 𝑆𝑥1𝑥2
(𝜔) =  ∫ 𝑅𝑥1𝑥2

(𝜏) · 𝑒−𝑖·𝜔·𝜏

+∞

−∞

𝑑𝜏 ( 2.86)  

The cross-spectra function, also called cross-spectral density function, can be obtained 

using an alternative way. Applying the Fourier Transform to the realization of the 

stochastic process, as defined in the following expression: 

 𝑆𝑥1𝑥2
(𝜔) = 𝑙𝑖𝑚 

𝑇→∞
𝑛→∞

1

𝑛
∑

𝐹𝑇,𝑒[𝑥1(𝑡)]
∗ · 𝐹𝑇,𝑒[𝑥2(𝑡)]

𝑇

𝑛

𝑒=1

 ( 2.87)  

The term FT,e[x1(t)] is the Fourier Transform of the realization 𝑥𝑒 associated to the 

process 𝑥1(𝑡) in the interval [-T/2, T/2]. This expression can also be used to calculate the 

auto-spectrum function considering 𝑥2 = 𝑥1. It is worth to highlight that the auto-

spectrums are functions with real components because they are obtained from the 

multiplication between a complex number for its complex conjugate. Meanwhile, the 

cross-spectrums are complex functions as evident.  

In case of different processes associated to several physical phenomena that maintain the 

characteristics of stationarity and ergodicity, is possible to define a vector stochastic 

process. In this case, the scalar function of the auto-correlation is substituted by a 

correlation matrix in which the diagonal elements define the auto-correlations and the 

extra-diagonal ones are the cross-correlations. Grouping different stationary stochastic 

processes into vector 𝑦(𝑡), the correlation matrix can be defined by the follows: 
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 𝑅𝑦(𝜏) = 𝐸[𝑦(𝑡) ∙ 𝑦(𝑡 + 𝜏)𝑇] = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑦(𝑡) ∙ 𝑦(𝑡 + 𝜏)𝑇

+𝑇/2

−𝑇/2

𝑑𝑡 ( 2.88)  

In order to estimates the modal parameters of a dynamic system using only its output, 

special attention deserves the output-spectrum, which obviously depends on the input 

spectrum and on the characteristics of the dynamic system. Therefore, if the initial 

hypothesis on the input is verified and it is assumed as white noise process, their 

continuous-time correlation matrix function is given by: 

 𝑅𝑦(𝜏) = 𝑅𝑦 · 𝛿(𝜏) ( 2.89)  

In which 𝑅𝑦 in a [𝑛𝑖-by-𝑛𝑖] constant matrix and 𝛿(𝜏) is the Dirac delta function that has 

the following properties: 

 

𝛿(𝜏) = 0    𝑖𝑓   𝑡 = 0  

𝛿(𝜏) = 0  elsewhere 

∫ 𝑓(𝑡)𝛿(𝑡 − 𝑎)𝑑𝑡 = 𝑓(𝑎)
+∞

−∞

 

( 2.90)  

Consequently, due to the property of the 𝛿(𝜏) function, the input spectrum is a constant 

matrix equal to 𝑅𝑦. This implies that the spectrum is “flat”, which means that the energy 

associated to the input signal is uniformly distributed along the frequency axis. In the 

following equation is summarized the main concept previously described. In fact, the 

relation between the stochastic excitations and the output responses of the structure 

subjected to random actions can be expressed by relation between the spectrum of the 

output response 𝑆𝑦𝑦  and the input spectrum 𝑆𝑢𝑢 as follows: 

 𝑆𝑦𝑦(𝜔) = 𝐻(𝜔) · 𝑆𝑢𝑢(𝜔) · 𝐻𝐻(𝜔) ( 2.91)  

When the input is assumed to be a white noise process, the output spectrum of the system 

only depends on the system transfer function H(ω) and on the constant matrix 𝑅𝑝: 

 𝑆𝑦𝑦(𝜔) = 𝐻(𝜔) · 𝑅𝑝 · 𝐻𝐻(𝜔) ( 2.92)  
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Moreover, if the input signals can be defined using white noise process and they are also 

statistical independent, the cross-correlation are zero and the constant matrix becomes a 

diagonal matrix. In this case, recalling the Eq. 2.35 reported below: 

 𝐻𝑖,𝑗(𝜔) = ∑
[𝜑𝑖]𝑘 · [𝜑𝑗]𝑘

𝜔𝑘
2 − 𝜔2 + 2 𝑖 𝜉𝑘  𝜔 𝜔𝑘

𝑁

𝑘=1

 ( 2.93)  

the contribution provided by a general k-mode on any elements of the output spectrum 

can be calculated using the following expression: 

 𝑆𝑞(𝑖,𝑗)

𝑘(𝜔) = ∑
[𝜑𝑖]𝑘 · [𝜑𝑗]𝑘

𝜔𝑘
2 − 𝜔2 + 2 𝑖 𝜉𝑘  𝜔𝜔𝑘

𝑁

𝑘=1

· 𝑅𝑝 ·
[𝜑𝑖]𝑘 · [𝜑𝑗]𝑘

𝜔𝑘
2 − 𝜔2 + 2 𝑖 𝜉𝑘  𝜔 𝜔𝑘

 ( 2.94)  

This formula turns be very interesting because it divides the contribution of each mode 

for the spectrum system and it also defines the relation between the output spectra matrix 

with the modal properties of the structure. Taking into account the modal composition of 

the transfer function (see Eq. 2.38), it is possible to express the output spectrum as a 

superposition of the different contributions of the structural modes, as shown below: 

 𝑆𝑦𝑦(𝜔) = ∑
𝜑𝑘 · 𝑔𝑘

𝑇

𝑖𝜔 − 𝜆𝑘
+

𝜑𝑘
∗ · 𝑔𝑘

𝐻

𝑖𝜔 − 𝜆𝑘
+

𝑔𝑘
∗ · 𝜑𝑘

𝑇

−𝑖𝜔 − 𝜆𝑘
∗ +

𝑔𝑘
∗ · 𝜑𝑘

𝐻

−𝑖𝜔 − 𝜆𝑘
∗

𝑁

𝑘=1

 ( 2.95)  

This equation was introduced in [Peeters (2000)] and it defines the output spectral matrix 

and the structural modes and the vector gk, called operational reference vector, in which 

take place the modal participation. As it proved in [Peeters (2000)], this vector is not 

depended on the characteristic of the k-mode, but it depends on all modal parameters, on 

the input location and on the input correlation matrix. 

Again, the modal decomposition of the output spectrum shows that four different poles 

(λk,−λk, λk
∗  and −λk

∗ ) can be extracted for each structural mode. This disadvantaged can 

be avoided recurring to the use of the Positive or Half-Spectrum function that it can be 

easily obtained from the correlation matrix limiting the Discrete Fourier Transfer (DFT) 

function only to positive time-lags: 
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 𝑆𝑦𝑦
+ (𝜔𝑗) =

𝑅𝑦𝑦(0)

2
+ ∑ 𝑅𝑦𝑦(𝑘 ∆𝑡) 𝑒−𝑖𝜔𝑗𝑘∆𝑡

𝑗

𝑘=1

 ( 2.96)  

As it is demonstrated, for instance in [Cauberghe (2004)], the modal decomposition of 

the Positive Spectrum is given by: 

 𝑆𝑦𝑦
+ (𝜔) = ∑

𝜑𝑘 · 𝑔𝑘
𝑇

𝑖𝜔 − 𝜆𝑘
+

𝜑𝑘
∗ · 𝑔𝑘

𝐻

𝑖𝜔 − 𝜆𝑘

𝑁

𝑘=1

 ( 2.97)  

As can be noted, this equation has the same structure as the modal decomposition of the 

transfer function, or the FRF (see Eq. 2.38);  thus, all the previously described models 

can also be adopted to define the positive spectrum matrix. It is worth highlighting that 

this approximation on the input excitation as a stochastic process with zero-mean value is 

essential for theoretical implementation of the "output-only" identification methods, 

being based only on the measured responses of the investigated structure. It is worth 

noting that if the white noise assumption is not respected and the input contains some 

dominant frequency components, such values will result as poles of the state matrix 𝐴 

and it will not be possible to distinguish the frequencies associated to such components 

from the natural frequencies of the system.  

 

Numerical example  

The simulation of experimental data consists of a useful task to understand the concepts 

related to the state-space model and, in particular, to characterize the response of the system 

subjected to non-deterministic input excitation. Moreover, the simulation of experimental 

data also permits to define the performance of different identification methods comparing 

different obtained results with the exact solution of the problem, characterizing the level of 

accuracy of each technique by statistical properties of the results. Furthermore, the easily 

creation of numerical responses also allows the testing of the robustness of identification 

method related to more specific cases: tests with high level of noise, symmetric structures 

with closely spaced modes or structures with no-proportional damping. 



Background and implementation of Operational Modal Analysis techniques 

 

 

63 

 

Therefore, the continuous state-space models are adopted to simulate experimental data, 

since to evaluate the response of the system in continuous time requires only the definition of 

the interval period of time 𝛥𝑡 (sampling period). However, the use of continuous model 

demands that the response of the system to external excitation should be obtained in analytic 

way. In most of real applications is not possible to extract the response in continuous time, 

being necessary to solve this problem evaluating the response using discrete models. In this 

way, some routines have been developed in order to create artificial responses of the system 

and to simulate experimental data which will be used to calibrate the implemented 

algorithms presented in the next Chapters. Therefore, a procedure apt to create numerical 

accelerations referred to a simple academic structure will be used to exemplify the 

application of different identification methods based on OMA approach. 

The first step of the developed procedure consists of the definition of the different matrices 

of the continuous time state-space model. Theses ones can be directly obtained by the mass, 

stiffness and damping matrices after some simple mathematical manipulations (see Eq. 

2.49). Moreover, in the particular case of structure with proportional damping, the same 

matrices can be obtained from the modal properties of the system itself (see Eq. 2.60). 

Consequently, once the substitution of the state matrices from continuous time domain to 

discrete time domain has been performed, applying the expression in Eq. 2.63, the response 

of the structure can be obtained using series of input excitation artificially created and 

applying the relation defined in the Eq. 2.62. this last task is performed adopting the function 

dlsim present in the toolbox of MatLab. Follow this way, three different excitations have 

been created and applied to obtain the time series of horizontal accelerations related to the 

simple 3-DOFs stricture. It is worth noting that the response has been obtained forcing each 

DOF of the system with an external input. Each input force was configured as stochastic 

process characterized by a zero mean Gaussian distribution (i.e., 𝑝𝑖→ N (0, σ), with σ=1),  

To represent the inputs time series of 5 minutes long have been created, adopting a sampling 

frequency equal to 50 Hz. Each excitation is described by a zero mean normal distribution 

(defined by using randn function), and each model matrix has been obtained by mass, 

stiffness and damping matrix. In the following are reported the acceleration time series of the 

output responses associated to the three levels of the structure, in the time domain, as well as 

the frequency domain representation.  
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Fig. 2.8. Simulated output responses of the 3 system, in the time and frequency domain 

 

Fig. 2.9. Characterization of the simulated excitation in the time and frequency domain 

Furthermore, is also reported the representation of the input excitation applied to each mass 

of the structure. It should be noted as the spectra content of the input signal (in the frequency 

domain representation) is uniformly distributed, as expected. This information remarks the 

fact that the peaks of the spectral function associated to each response (then natural 

frequencies) are depended only on structural conditions of the structure being the content of 
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the input “flat” within investigated frequency interval. Again, to perform this simple 

simulation, the noise content has not been introduced to corrupt the output signals. 

Meanwhile, the noise it will be added to the vectors of structural response in the further 

applications to validate the identification methods implemented in the next Chapter. 

Before to complete this paragraph and to describe the principal techniques used in the 

Operational Modal Analysis process, some observations should be done about the main 

assumption about the stationarity property of the input signals. As proved, for Civil 

Engineering structures, this hypothesis is generally respected under certain initial 

conditions, as: micro-tremors, wind, waves and light traffic loads which constitute the 

normal operating conditions of the structure. On the contrary, the stationarity is 

compromised when the characteristics change over time due to particular environmental 

and/or operational conditions, such as: earthquakes, impacts, train passages or strong 

atmospheric turbulences as well as any occurred damages. For these cases, some methods 

described in literature provide interesting approach to face this problem: [Hammond and 

White (1996); Antoni (2009); Feldman (2011)]. 

In practical applications the white noise assumption is not always strictly respected. In 

fact, carried out in the frequency domain some spikes of the spectrum reveal that some 

low frequency components hold higher energy. Most of the stochastic techniques tend to 

be quite robust and do not provide incorrect solution indeed such violations. Conversely, 

in case of the presence of harmonic component in the recorded signal could lead to 

improper analysis described by a clear peak on the spectrum. These situations are more 

common in mechanical engineering or civil engineering structure that suffer some 

rotating and oscillation effects induced by close vibration machines. This problem is 

normal faced taking into account that the harmonic components are non-damped modes, 

hence sharp peaks that appear in the spectrum are clearly distinguishable and they can be 

easily removed. As described in some interesting papers present in literature that propose 

possible methods to remove the harmonic disturbance during the analysis performed with 

OMA procedures [Dion et al. (2012); Devriendt et al. (2009); Pintelon et al. (2008); 

Randall et al. (2013)].  
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2.3  Output-only modal identification techniques  

The identification of the dynamic characteristics of the structures can be performed 

following two paths: by relating the output response of the structure to the corresponding 

artificial input excitation also measured, or by analyzing only the structural response and 

establishing initial hypotheses about the nature of environmental excitement. As already 

stated in the introduction of this Chapter, for dynamic tests of Civil Engineering 

structures, the second approach is used to be the most followed because it involves 

substantial advantages avoiding the use of very heavy equipment whose transport and 

installation involve a very high economic cost. Since the environmental excitation is 

composed by simultaneous contribution of several factors: micro-tremors, wind, traffic 

loads above or near the structure, it is usual to admit that the action acting on the 

structure can be represented as a white noise process. Under this assumption, the methods 

aimed at identifying the modal parameters of a structural system from dynamic response 

only are known as output-only identification techniques.  

Four methods have been implemented during the development of this Dissertation, that 

will be presented in this section: i) the Peak Picking (PP), ii) the Frequency Domain 

Decomposition (FDD), iii) the Covariance-based Stochastic Subspace Identification 

(SSI-Cov) and iv) Data-driven Stochastic Subspace Identification (SSI-Data) method, 

respectively. In order to facilitate and clarify the development of each method a short 

view of the literature is given in the beginning of each subsection. Then, to better 

understand the used approach and the reading of the results, the procedures are explained 

performing the analysis using a simple academic structure composed by a few DOFs 

system. For more details about dynamic identification techniques of civil structures an 

interest reader is addressed to excellent scientific journal papers and conference 

proceedings reported in the follows: [Juang and Pappa (1985), Bendat and Piersol (1993); 

Van Overschee and De Moor (1996); Guillame et al. (1999); James et al. (1992); Brinker 

et al. (2001); Peeters et al. (2004); Peeters et al. (2005); Devriendt and Guillame (2008); 

Magalhães and Cunha (2011); Cabboi et al. (2017)]. 
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The description of the identification methods is made considering two groups: the 

methods in the frequency domain (based on the spectral estimation of the structural 

response) and the time domain methods (based on the correlations or on the projections 

of the collected output responses). 

 

2.3.1  Pre-processing and estimates 

Reference channels 

Most of output-only modal identification techniques start with the construction of a data 

matrix which organizes and contains all the information about the output responses of the 

investigate structure; the construction of such matrix consists of the basic step of each 

identification method and it is composed by two type of data: by the cross-correlations, 

or alternatively, by the spectral estimates of recorded signals, and it could have a square 

dimension if all recording channels are used as reference outputs and it contains all the 

cross-correlations or the cross-spectra between all measured outputs. Otherwise, this 

matrix can be reduced adopting only a few available channels as reference ones. In this 

way, the reduction of the size matrix leads to a faster execution and a less time 

consuming in data analysis due to a lower required computational afford.  

Correlation function 

The definition of correlation function of a discrete time signal was already presented in 

Eq. 2.68. As obvious, during dynamic tests and even for continuous monitoring only a 

finite number of samples can be recorded. So, only an estimation of the correlation (�̂�) 

can be get. Considering this limitation, the correlation function is estimated as: 

 �̂�𝑗
𝑟𝑒𝑓

=
1

𝑛𝑡 − 𝑗
∑ 𝑦𝑘 · 𝑦𝑘+𝑗

𝑟𝑒𝑓𝑇
𝑛𝑡−𝑗−1

𝑘=0

   with    𝑗 = 1,2,… 𝑗𝑚 ( 2.98)  
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where �̂�𝑗
𝑟𝑒𝑓

 is a [𝑛𝑜-by-𝑛𝑟] matrix, with 𝑛𝑜 is the number of the all output channels and 

𝑛𝑟 represents the number of the selected reference outputs. In additions,  𝑛𝑡 represent the 

total number of collected samples and 𝑗𝑚 · ∆𝑡 is the maximum time-lag of the correlation 

functions. To clarify, �̂�𝑗
𝑟𝑒𝑓

represents the estimates of the correlation matrix 𝑅𝑗 adopting 

the reference outputs in which  𝑅𝑗 is a simplification of the notation 𝑅𝑦𝑦(𝜏 = 𝑗 · ∆𝑡). The 

calculation of the correlation matrix (Eq. 2.98) is very time consuming. However, same 

accuracy can be obtained adopting a high-speed FFT- based approach, [Oppenheim and 

Shafer (1975)], implemented in the Signal Processing Toolbox of MatLab. 

 

Spectra function and Positive Spectra 

Recalling the cross-spectra functions between two stochastic realizations are obtained by 

applying the Fourier Transform to the output response signals (see Eq. 2.87). As stated 

for the correlation function (see Eq. 2.98), it is only possible to calculate an estimate of 

the spectra due to the limit number of the recorded samples (�̂�) as follows: 

 Ŝ𝑥1𝑥2
(ω) =

𝑋1(𝜔)∗ · 𝑋2(𝜔)

𝑁 ∆𝑡
 ( 2.99)  

where X(𝜔) is an estimation of the realization obtained applying the DFT. The series (see 

Eq. 2.87) in which n→∞ disappear, the total acquired points is defined by N and the 

length of the temporal segment in which the signals are collected is defined by 𝑁 · ∆𝑡. 

So, the Fourier Transform is substituted by the Discrete Fourier Transform (DFT). Due to 

the discrete nature of the acquired signals, the spectrum estimates are affected by two 

typical errors: the leakage error, that is directly due to the discretization process of the 

time series, specifically due to the discontinuity between the points of the discretized 

signal; and the aliasing error, that is related to the energy content in the discretized signal 

which is larger than the same signal defined in continuous time. So that the simple 

estimate of the spectra directly, obtained by application of the Eq. 2.97 to a discretized 

process with a finite duration, produces unacceptable errors that must be mitigated. 
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Part of the error can be minimized dividing the entire time response into shorter segments 

and perform the estimate of the spectra applying Eq. 2.99 to shorter intervals. Hence, the 

error related to the estimates is reduced, but the use of a high number of short segments 

leads to a decreasing of the variance in the average estimate and, therefore, to a general 

worsening of the leakage error. This condition affects also the frequency resolution of the 

signal that it is not acceptable. Since the linkage error is due to the discontinuity and the 

finite length of the discretized series, it can be minimized performing a “windowing” of 

the signals. Several approaches are discussed in the reference book [Maia and Silva 

(1997)]. In this case only periodogram approaches is reported. 

The Periodogram approach, also known as Welch estimator [Welch (1967)], calculates 

the spectra function directly from the collected time series involving the following steps: 

1) dividing the output response records in 𝑛𝑏 segments 𝑦𝑏 in which all segment have the 

same length (𝑛𝑏), 2) performing a windowing of the segments adopting the Hanning 

window (see Eq. 2.100), 3) calculating the DFT of the “windowed” signals and, 4) 

extracting the estimates after the averaging the resulting values with 50% of overlapping. 

 𝑤(𝑡) =
1

2
[1 + 𝑐𝑜𝑠 (

2𝜋𝑡

𝑇
)] ,   |𝑡| ≤ 𝑇 2⁄  

𝑤(𝑡) = 0                                 ,   |𝑡| > 𝑇 2⁄  

( 2.100)  

The application of the Hanning window with an overlapping of 50% does not modify the 

energy contribution of the truncated time series. In fact, as shown in Fig. 2.10, the sum of 

a series of Hanning window with an overlap of 50% leads to a horizontal line in the 

overlapping area. Hence, the frequency content is not modified. 

a) 

 

b) 

 

Fig. 2.10.  a) Hanning window, b) overlapping of 50% between Hanning windows 
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In the reference book [Bendat and Piersol (1980)], several methods used to estimate the 

spectra functions and their errors are described in detail. Meanwhile, in [Brandt et al. 

(2004)] main aspects related to these methods are exploited. 

To estimate the spectra functions in the contest of ambient vibration test in which all 

channels are considered as reference ones, it is usual to organize the auto-spectra and the 

cross-spectra into a spectral matrix (Ŝ) in which the diagonal elements correspond to the 

auto-spectra function calculated using the structural response recorded by the i-th sensor 

in the i-th DOF of the structure. Otherwise, the extra diagonal elements of the matrix 

correspond to the cross-spectra estimates related to the output responses measured by the 

i-th sensor in the j-th DOF and vice versa. If the measured of the output responses were 

recorded in the same time the matrix is a [𝑛𝑜-by-𝑛𝑜] square matrix, in which 𝑛𝑜 is the 

number of the transducers installed on the structure. The spectra matrix is also defined as 

power spectra density matrix, and it can be express in the compact form as follows: 

 �̂�𝑦𝑦(𝜔) =
𝑌(𝜔)∗ · 𝑌(𝜔)𝑇

𝑛 ∆𝑡
 ( 2.101)  

where 𝑌(𝜔) is a column vector with the number of elements equal to the number of 

instrumented points in which are contained the FFT of the 𝑦(𝑡) recorded set of responses. 

In case of multi-setups tests, it is also possible to estimates a “reduced” PSD matrix with 

[𝑛𝑜-by-𝑛𝑟] dimensions, in which 𝑛𝑟 corresponds to the number of reference channels 

used for all measurements. Therefore, the PSD matrix can be estimates as follows: 

 Ŝ𝑟𝑒𝑓
𝑦𝑦(ω) =

𝑌(𝜔)∗ · 𝑌𝑟𝑒𝑓(𝜔)𝑇

𝑛 ∆𝑡
 ( 2.102)  

where 𝑌𝑟𝑒𝑓(𝜔) corresponds to a vector with 𝑛𝑟 dimension composed by the FFTs of the 

responses collected in the reference DOFs common for all setups.  

A developed routine, implemented in MatLab code, was used to simulate the output 

responses and to calculate the spectra estimates of the simple academic system composed 

by 3-DOFs, already described in the previous paragraph. 
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Numerical example 

As reported in the previous paragraph, a simple share-type composed by 3-DOFs has been 

used to simulate a series of numerical responses of the system subjected to random excitation 

with a zero mean Gaussian distribution (white noise). The acceleration time series were 

collected on all levels of the structures when the input forces acting on the same DOFs of the 

structure. In this example, all the DOFs were selected as reference channel and the sample 

frequency adopted to collect the output response was set at 50 Hz. Each recorder time series 

is 5 min long (15000 sampled values) and the Hanning window (Eq. 2.100) was used to 

estimate the spectra matrix. Starting from the simulated accelerations, the power spectral 

density matrix was calculated varying the length of segments. The use of different length of 

the trunked segments involves the definition of different spectra estimates with different 

accuracy. In Fig. 2.11 the estimations of the auto-spectra Ŝ33(ω) is reported highlighting the 

differences between the resulting estimates varying the length of the trucked series. 

Detailing four different length of the Hanning window were adopted to estimate the spectra. 

In Fig. 2.11 the plots of the estimates obtained using a number of points equal to 512, 1024, 

2048 and 4096 are reported. As shown, the estimate obtained with low resolution (512 

points) seems to be more regular but it provides an estimate with lower accuracy because the 

high number of segments. This produces a general worsening of the leakage error that affects 

also the frequency resolution (∆f = 0.0976 Hz). Otherwise, the estimate obtained with higher 

number of points (4096 points) has a more irregular trend but the associated estimates is 

more accurate also providing a higher frequency resolution (∆f = 0.0122 Hz). 

It is worth noting that the spectral estimations reported in Fig. 2.11 have been calculated 

using the simulated output responses without include the noise in the measurements. 

Therefore, the irregularity of the spectra is only related to the estimation error. In order to 

represent a real condition test, in Chapter 4 and Chapter 5 the modal parameters of the simple 

3-DOF system are extracted including the noise content in the measurements. In this context, 

the best results can be obtained taking into account both inaccuracies related to the frequency 

resolution and to the induced error. Moreover, to mitigate the error effect, the length of the 

acquisition signals should be long enough to permit the use of a high number of values and 

to get a fair compromise between uncertainty and frequency resolution.    
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Estimate n° 1 Estimate n° 2 

L → length of the segments = 512 points 

∆f → frequency resolution = 0.0976 Hz 

T → time of each Segment = 10.24 sec 

n°→ number of segments 2928 

L → length of the segments = 1024 points 

∆f → frequency resolution = 0.0488 Hz 

T → time of each Segment = 20.48 sec 

n°→ number of segments 1462 

  

Estimate n° 3 Estimate n° 4 

L → length of the segments = 2048 points 

∆f → frequency resolution = 0.0244 Hz 

T → time of each Segment = 40.96 sec 

n°→ number of segments 732 

L → length of the segments = 4096 points 

∆f → frequency resolution = 0.0122 Hz 

T → time of each Segment = 81.92 sec 

n°→ number of segments 366 

  

Fig. 2.11. Spectra estimations obtaining using a different windowing 

 

2.3.2.  Identification methods developed in the frequency domain 

In the context of OMA applications in Civil Engineering structures and Cultural Heritage 

constructions, as: bridge, viaducts, dams, buildings and towers, the main assumption on 

the input excitation permits to represent the structural behavior through mathematical 

models establishing a relation between output spectra matrix and modal parameters. 
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In this section a brief overview of two important frequency domain identification 

techniques is presented. In particular, the Peak Picking method and the Frequency 

Domain Decomposition algorithm are described. The first one corresponds to the oldest 

developed method to extract the modal parameters, but due to its simple implementation 

and its user-friendly approach it is still used for faster analysis during dynamic tests. The 

second one was firstly presented in [Brinker et al (2000)] and even if it is based on the 

main concept of the Peack Picking method, some improvements were implemented 

allowing the separation of closely spaced modes and solving the problem related to the 

identification of the modal damping ratio. 

 

2.3.2.1  Peak Picking method  

The first identification technique described in this section is the Base Frequency Domain 

(BFD) method, also known as the Peak Picking (PP) method. It is the simplest and most 

popular used approach to estimates the modal parameters in Civil Engineering 

applications. This method is based on the analysis of the output responses collected when 

the structures are subjected to environmental forces. Currently, it is one of the most used 

methods because its easy implementation and interpretation of the results that maintain a 

clear physical meaning. 

The theoretical basis of this method was firstly introduced in [Bendat and Piersol (1980)], 

meanwhile the development for practical applications was performed in [Felber (1993)]. 

The practical implementation of this technique encouraged the use of the modal 

parameters to determine the dynamic characteristics of different kind of structures mainly 

performing ambient vibration tests, as demonstrate in [Felber and Cantieni (1996)].   

The PP method is a frequency domain identification method that permits to estimate the 

natural frequencies though a visual inspection of the pecks of the spectrum magnitude 

plotted on a magnitude vs. frequency diagram. This method provides good estimates of 
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the modal parameters when two initial conditions are respected; a) the natural frequencies 

of to the structural modes are well separated, b) the modes are slightly damped. In fact, 

the definition of the correct estimates of the natural frequencies are obtained under the 

assumption of well-separated resonant modes. Otherwise, this technique could fail to 

provide a reasonable set of modal parameters associated to the resonant modes. To better 

understand the previous assumption, it is worth remarking that nearby each natural 

frequency value, the dynamic response of the structure is essentially conditioned by the 

contribution of one resonant mode. Therefore, it is possible to say that: in the 

neighborhood of the natural frequencies, the dynamic behavior can be approximated at 

the single contribution of the resonant mode in that frequency. This means that near the 

resonant frequency the structural response can be simulated by a 1-DOF oscillator model 

characterized by the same frequency and the same damping value of the resonant mode.  

This hypothesis is even more reliable if the frequencies associated to the structural modes 

are not closely spaced. Otherwise, the method is not able to separate the contributions of 

different modes [Bendat and Piersol (1980)]. This is the main limitation of this method. 

The PP method is principally used to extract fast information about the dynamic 

characteristics of the investigated structures, and it is mainly used to provide resonant 

frequencies and the mode shapes associated to the structural modes. To better understand, 

this method is exploded using a MDOF system already used in the previous paragraph. 

Identification of the natural frequencies 

As already mentioned in the previous paragraphs (see Eq. 2.92), the spectral matrix of a 

MDOF system subjected to white noise random excitation can be estimated starting from 

the FRFs matrix (see Eq. 2.93). This strong relation is obtained because the spectral 

function of a white noise excitations is constant, and it is not depended by other factors: 

 𝑆𝑞(𝜔) = 𝐻(𝜔) · 𝑅𝑝 · 𝐻𝐻(𝜔) ( 2.103)  

As stated, the elements of the FRFs matrix have maximum values in the correspondence 

of the damped resonant frequency values that generally correspond to good estimations 
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of the natural frequencies when the damping values are low. A this point a further 

information needs to be pointed out, in fact from the Eq. 2.103  it is evident that each 

spectral function belong to the spectra matrix have maximum peaks in correspondence of 

the same frequencies values, because the white noise nature of the input. Therefore, it is 

possible to extract the natural frequencies of the system just performing the analysis of 

the auto-spectra function (also defined power spectral density function) as follows: 

 𝑃𝑆𝐷𝑖(𝜔𝑘) = ∑ 𝑃𝑆𝐷𝑖(𝜔𝑘)
𝑁

𝑘=1
 ( 2.104)  

In order to ensure the identification of the natural frequencies during the analysis of data 

recorded in a single setup, as well as in multi-setups during the any dynamic tests, a 

practical implementation of the Peak Picking method was firstly realized by Felber in 

[Felber (1993)]. In which it is suggested the use of the averaged normalized power 

spectrum density (ANPSD) of all measurement points, that means averaging the diagonal 

elements of the spectrum matrix 𝑆𝑦𝑦
+ (𝜔). In fact, the analysis of only one spectrum (one 

element in the diagonal of the spectrum matrix) is not enough to identify all resonant 

frequencies, because the reference DOF could stay on the node of one or more vibration 

modes and therefore the  identification of the mode is not permitted. So, the strategy 

developed in [Felber (1993)] implies the identification of the resonant frequencies 

estimating the auto-spectra of all registered signals. Consequently, the average value of 

the normalized PSD associated to each DOF is performed to define the averaged 

normalized power spectrum density (ANPSD) as reported in the following equation: 

 𝐴𝑁𝑃𝑆𝐷(𝜔) =
1

𝑙
∑𝑁𝑃𝑆𝐷𝑖(𝜔) =

1

𝑙
∑[

𝑃𝑆𝐷𝑖(𝜔)

∑ 𝑃𝑆𝐷𝑖(𝜔)𝑁
𝑖=1

]

𝑙

𝑖=1

𝑙

𝑖=1

 ( 2.105)  

in which l is the number of instrumented DOFs and 𝑁𝑃𝐷𝑆𝑖 are the normalized spectrum 

associated to each DOF obtained by Eq. 2.104. This strategy was very efficient and 

became one of the most important bases in the OMA analysis because it relates the modal 

parameters estimations with the energy content associated to each DOF of the structure. 



Chapter 2 

 

 

76 

 

Numerical example 

The numerical acceleration series were used to calculate the NPSD associate to each DOF of 

the share-type model. Consequently, the ANPSD has been defined using the Eq. 2.104. For 

clearness, it is worth mentioning that all estimates have been obtained using the parameters 

previously defined for the Estimation n°2 (1024 points for each segment). 

 

Fig. 2.12. Normalized auto-spectra associated to each DOF of the structure 

From the inspection of each obtained NPSD all the resonant frequencies of the numerical 

structure are well defined. This means that the measurement points are not located on the 

node of the vibration modes. Then, after averaging the NPSDs, the natural frequencies of the 

structure are obtained selecting the peak values of the ANPSD. Hence, the experimental 

values are compared with the theoretical ones as reported in the Table 2.2. 

 

Fig. 2.13. Average Normalized Power Spectral Density (ANPSD) function. 
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Table 2.2.  Comparison between natural frequency estimates and theoretical values 

Mode 
Theoretical 

values 

Experimental 

values 
Error 

1 4.755 4.736 0.40 % 

2 13.323 13.28 0.32 % 

3 19.252 19.22 0.16% 

From the comparison between the natural frequencies obtained by the application of the 

ANPSD function and the theoretical values, the scatter values are less than 1%. 

Identification of vibration modes 

From the relation that describes the FRFs matrix in modal domain expressed by Eq. 2.34.  

 𝐻(𝜔) = 𝛷 · 𝐻𝜂(𝜔) · 𝛷𝑇 = ∑ 𝐻𝜂𝑘 · 𝜑𝑘 · 𝜑𝑘
𝑇

𝑁

𝑘=1

 ( 2.106) 
 

 

in which 𝐻𝜂(𝜔) is a diagonal matrix that depends by the modal parameters as follows: 

 𝐻𝜂(𝜔) = 𝑑𝑖𝑎𝑔 ⌊
1

𝜔𝑘
2 − 𝜔2 + 2 𝑖 𝜉𝑘  𝜔 𝜔𝑘

⌋ ( 2.107)  

if the natural frequencies are well-spaced and the values of the damping coefficients are 

low, the diagonal elements of the matrix Hη have very high values in the nearby of the 

resonance frequencies. This means that in the proximity of a natural frequency ω𝑘, the 

value of the k element of 𝐻𝜂 can be approximated to the contribution of the k-th mode in 

that frequency as follow: 

 Hη(ωk) = φk ·
1

ωk
2 − ωk

2 + 2 i ξk ωk ωk

· φk
T = φk · c1 · φk

T ( 2.108)  

This means that the component in k-th position of the FRFs matrix is given by a scalar 

complex value 𝑐1 that depends on the natural frequency ω𝑘, on the damping value ξk and 

on the mode shape φk. Consequently, introducing the relation obtained in Eq. 2.108 into 

Eq. 2.103, the spectra is defined as: 

 𝑆𝑦(𝜔𝑘) = 𝜑𝑘 · 𝑐1 · 𝜑𝑘
𝑇 · 𝑅𝑢 · 𝜑𝑘 · 𝑐1

∗ · 𝜑𝑘
𝑇 = 𝑐1 · 𝑐1

∗ · 𝜑𝑘 · 𝑐2 · 𝜑𝑘
𝑇 ( 2.109)  
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in  which 𝑐2 is a constant scalar value that is obtained by a vector product between φk
𝑇 

(vector 1-by-𝑛), 𝑅𝑢 (matrix 𝑛-by-𝑛) and φk (vector 𝑛-by-1). Pacing together the three 

coefficients in the Eq. 2.108, the relation can be re-written as follows: 

 𝑆𝑦(𝜔𝑘) = 𝑐3 𝜑𝑘 · 𝜑𝑘
𝑇 ( 2.110)  

this relation reveals an important consideration about the value of the spectra estimates, 

in fact, this equation says that from a column of the spectral matrix it is possible to know 

the configuration of the mode associated to that specific natural frequency value ω𝑘, and 

vice-versa. This relation is very important because once a reference DOF is selected, the 

element in the ref position of the ref column of the 𝑆𝑦 matrix can be calculated as: 

 𝑆𝑦(𝜔𝑘)(𝑟𝑒𝑓,𝑟𝑒𝑓) = 𝑐 (𝜑𝑟𝑒𝑓)𝑘
· (𝜑𝑟𝑒𝑓)𝑘

𝑇
 ( 2.111)  

in the same way the other components are defined as:  

 𝑆𝑦(𝜔𝑘)(𝑗,𝑟𝑒𝑓) = 𝑐 · (𝜑𝑗)𝑘
· (𝜑𝑟𝑒𝑓)𝑘

𝑇
 ( 2.112)  

From the ratio between Eq. 2.111 and Eq. 2.112 the pseudo transfer function is defined: 

 𝑇𝑗,𝑟𝑒𝑓 =
𝑆𝑦(𝜔𝑘)(𝑗,𝑟𝑒𝑓)

𝑆𝑦(𝜔𝑘)(𝑟𝑒𝑓,𝑟𝑒𝑓)
=

(𝜑𝑗)𝑘

(𝜑𝑟𝑒𝑓)𝑘

 ( 2.113)  

which is a complex number and it permits to estimate, in the instrumented DOFs, the 

components of the structural modes in a selected natural frequency ωk. in this way it is 

possible to characterize the dynamic behavior of a structure adopting just two reference 

sensors. Moreover, due on the complex nature of the cross-spectra, the transfer functions 

are complex numbers in which the amplitude is related to the components of the i-th and 

the ref-th selected modes, meanwhile the phase should be equal to 0° or 180° if the i-th 

component is in phase or in opposite phase respect to the same component of the 

reference DOF. For clearness, phase=0° means that the displacement of the component of 

the i and ref DOF are in the same direction, otherwise they move in the opposite direction 

when phase=180°. 
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Numerical example 

The auto-spectra defined in the previous example have been used to estimate the vibration 

mode of the simple academic structure. In addition, for the definition of the modes the 

displacement of the highest floor was selected as reference DOF. In Fig. 2.14 the cross-

spectra and the associated transfer functions related to the third column of the spectra matrix 

are depicted. The last two diagrams represent the auto-spectra value S33 and the transfer 

function T33 obtained considering the displacement of the third floor as reference degree. 

The other diagrams represent the cross-spectra and the relative transfer functions expressed 

by amplitude and phase components.  

 
Fig. 2.14. Cross-spectra end auto-spectra function (3rd column of spectra matrix) associated 

to the 3rd DOF of the system and associated transfer functions 

Finally, when the PP method is applied to identify the mode shapes, instead of estimate 

spectrum 𝑆𝑦𝑦
+ (𝜔), only the spectrum between the reference sensor and the other ones are 
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calculated. This reason is that only one column (or row) of the spectrum matrix is enough to 

obtain the mode shape estimates. Moreover, coherence functions can assist the selection of 

the natural frequencies, because it tends to 1 nearby the resonant damped frequencies. The 

phase angles of the cross-spectra functions are also useful for determining the damped 

natural frequencies since the phase angle should be either 0° or 180° in the corresponding 

nodes of the mode shape. An interested reader is referred to [Felber (1993)] in which the 

procedure for extracting modal parameters using PP method is detailed. 

Ending, in Fig. 2.15 the amplitude and phase variation of the transfer functions considering 

the displacement of the third floor as reference DOF are reported. Detailing, the amplitude 

and the phase were determined for the modal configurations. 

 
Fig. 2.15. Extracted mode shapes of thee identified modes: amplitude (red color) phase 

(magenta) and final mode shape (blue) of each mode are depicted 

To conclude the presentation of this identification technique in the frequency domain, it 

is worth mentioning that the mode shapes obtained using the transfer functions do not 

exactly coincide with the theoretical modes, but they are defined as operational 

deformation modes. This is due on the fact that such modes are not obtained by a 

representative model that approximates the structural behavior, but they are obtained 

from a relation of the responses measured in different DOFs of the structure. 

Furthermore, in case of closely-space modes, this technique could not provide the 

contributions associate to the different modes, and the resulting operational deformation 

modes represent just a combination of the real ones. 
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2.3.2.2  Frequency Domain Decomposition method 

The Frequency Domain Decomposition (FDD) technique was first proposed in [Brincker 

et al. (2000); Brincker et al. (2001)] and an important improvement has been published in 

[Brincker et al. (2009)]. The FDD method was developed in order to remove some 

limitation in the identification problem provided by the Pick Peaking technique: such as: 

a) difficulty in the detection of the spectrum peaks, b) separation of closely spaced 

modes, c) the estimation of the modal damping ratio with higher accuracy. 

 It is worth noting that the basic concepts of the FDD method had already been adopted 

in the analysis of structures excited by ambient inputs as [Prevosto (1982] and for the 

extraction of modal parameters from the FRF in the form of Complex Mode Indication 

Function (CMIF) [Shih et al. (1989)]. The basic concepts behind FDD have already been 

proposed in the past by [Shih et al. (1989)], Brinker introduced the concept of Modal 

Domain improving the identification of the modal parameters of the existing procedure. 

Nevertheless, respect to classic spectral analysis this procedure shows any improvements 

mainly related at evaluation of the mode shapes and the possibility of identifying closely 

spaced modes with higher confidence.  

The FDD method is a frequency domain non-parametric method based on the 

construction and the factorization of the output spectrum matrices calculated with the 

Welch method [Welch (1967)]. The strategy behind this procedure is the identification, at 

each spectral line, of the contribution of each vibration mode from the total available 

spectral magnitude that are contained at that corresponding frequency. In other words, 

this method can detect the contribution of the different modes in the same frequency. 

To easily understand the basic concepts at the base of the FDD method, it is needed to 

remind the theory of the modal analysis. Remarking, the general response 𝑦(𝑡) of a 

vibrating structure can be obtained as superposition of n vibration modes (each one 

characterized by its mode shape ϕi), expressed by means of the modal coordinates ηi: 
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 𝑦(𝑡) = 𝜙1 ∙ 𝜂1(𝑡) + 𝜙2∙𝜂2(𝑡) + ⋯+ 𝜙𝑛 ∙ 𝜂𝑛(𝑡) = [Φ] ∙ {𝜂(𝑡)} ( 2.114)  

By recalling the definitions provided at the beginning of this Chapter, and computing the 

value of the correlation function as follows: 

  𝑅𝑦𝑦
+ (𝜏) = 𝐸[𝑞(𝑡 + 𝜏) ∙ 𝑞(𝑡)𝑇] = 𝐸[𝛷 ∙ 𝜂(𝑡 + 𝜏) ∙ 𝜂(𝑡)𝑇 ∙ 𝛷𝑇]

= [𝛷] ∙ 𝛴𝜂𝜂
+ (𝑡) ∙ [𝛷]𝑇 

( 2.115)  

where Rηη(τ) indicates the correlation function in the modal coordinate in the time 

domain. By applying the FTT to Eq. 2.114, the spectral matrix 𝑆𝜂𝜂(𝜔) is obtained: 

 𝑆𝑦𝑦(𝜔) = [𝛷] ∙ 𝑆𝜂𝜂(𝜔) ∙ [𝛷]𝐻 ( 2.116)  

in which 𝑆𝑦𝑦(𝜔) is defined as complete output spectrum matrix. By recalling the basic 

assumptions of the modal analysis, specifically the orthogonality property of the mode 

shapes contained in the modal matrix 𝛷 and the hypothesis on the input excitation as 

white noise stochastic process well distributed over the structure, then the modal 

coordinates can be considered as uncorrelated [Brinker et al. (2001); Peeters (2000)]. 

Therefore, the correspondent power density spectral matrix 𝑺𝜂𝜂(𝜔) is diagonal.  

Looking at Eq. 2.114 and taking into account the conditions previously mentioned, the 

power spectral density matrix can be factorized in terms of Singular Values (SV) 

performing the Singular Value Decomposition (SVD) method. In order to clarify the 

characteristic of this algorithm, the main steps are reported below. 

Singular Value Decomposition 

Singular Value Decomposition (SVD) is an algorithm that permits the decomposition of a 

generic matrix A ∈ ℂn×m (with n>m) as product of three matrices as follows: 

 A = [U] ∙ [S] ∙ [V]H     with     𝑆 = [
𝑆1

0
] ( 2.117)  

where U ∈ ℂn×n and V ∈ ℂm×m are matrices containing the right and left singular vectors of 

matrix A. S ∈ ℂn×m is a rectangular matrix and from this one is extracted contains the 

diagonal matrix S1 ∈ ℂn×n in which the non-null SVs are organized in decreasing way. The 

number of non-null SV defines the rank of the matrix A and also define the number of 
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columns, or rows, linearly independent. Moreover, SVD is related to the definition of the 

eigenvalues and eigenvectors of the matrices ATA and AAT. In fact, the eigenvalues of A are 

equal to the positive root square of the eigenvalues of ATA and AAT, the columns of the 

matrix U contain the eigenvectors of ATA, meanwhile the columns of the matrix V contain 

the eigenvectors of ATA and AAT. If A is a complex matrix, the equality is still valid but the 

transposition operation (•)T has to be replaced with the complex conjugation operation (•)H. 

Furthermore, when a general matrix A is real and symmetric or complex and Hermitian (that 

means AH=A) its SVs coincide with the eigenvalues and U and V are the same matrix. 

Therefore, the previous equation is replaced as follows:  

 A = [U] ∙ [S] ∙ [U]H ( 2.118)  

in which U, V and S ∈ ℂn×n and S is a diagonal matrix and it only contains non-null SVs. In 

this way, the definition of the SV can be obtained as a particular case of the general 

application commonly used for rectangular matrices. 

As already stated, the FDD method was firstly introduced in [Brinker et al. (2000)] in 

which the application of the SVD to the spectrum response matrix leads to a sum of 

different spectral power density functions related to each 1-DOF oscillators that have the 

same frequencies and the same damping coefficients of the modes of the structure. The 

results provided by this procedure can be considered highly reliable if the following basic 

assumptions [Brinker et al. (2000); Brinker et al. (2001)] are fulfilled: 1) the excitation is 

a white noise, 2) the mode shapes are orthogonal, and 3) the investigated structure is 

lightly damped. If such hypothesis is not satisfied, the SVD must be considered 

approximate. Nevertheless, the obtained results are still more accurate than those 

provided by traditional techniques. Some steps need to be performed before applying the 

FFD method for modal parameter estimation. The first step consists of the estimation of 

the half positive spectral matrix, named 𝑆𝑦𝑦
+ , based on the output measurements. From 

mathematical point of view, this method was implemented performing the Singular Value 

Decomposition (SVD) of the 𝑆𝑦𝑦
+  at each discrete frequency point 𝜔𝑖. Hence, the spectral 

matrix of the output can be formally re-written for the generic discrete frequency ω 

according to the SVD formulation: 
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 𝑆𝑦𝑦
+ (𝜔) = [𝑈(𝜔)] · [𝑆𝑛] · [𝑈(𝜔)] ( 2.119)  

Due on the fact that 𝑆𝑦𝑦
+ (ω) is a complex and Hermitian matrix, the matrix 𝑉 defined in 

the Eq. 2.117 coincide with the matrix 𝑈 and the SVD operation can be carried out using 

the expression defined in the Eq. 2.118. The matrix 𝑈 is a square matrix of singular 

vectors and 𝑆𝑛 is a diagonal matrix composed by n SVs (n corresponds to the 

instrumented points and to the dimension of the S+ matrix) that appear in descendent 

order. Such SVs coincide with the amplitude of each spectrum, defined for each discrete 

value of ω, of the SDOF oscillators in the correspondence of the investigated frequency.  

In more details, the performance of the SVD to the 𝑆𝑦𝑦
+  matrix allows the decomposition 

of the spectral matrix as a combination of auto-spectral density functions, each one 

corresponding to a SDOF. In this way, the first singular value contains in its ordinate of 

the auto-spectra related to the dominant mode in that specific frequency. This means that 

it is possible to identify the dominant mode looking at the peaks of the first SV, because 

the other SVs, that represent the contribution of the other modes at the same frequency 

value, are negligible. Hence, every dominant k-th mode can be detected by the bell-

shaped described by the first SV of 𝑆𝑦𝑦
+  nearby the corresponding peak.  

If there are not close spaced modes, the graphical variation of the first SV throughout the 

frequency values contains the most important segment of auto-spectrum of all SDOFs in 

the nearby the resonant frequency, which are necessary to explain the behavior of the 

structure. In this way, the plots of the remaining SVs should tend to zero. 

On the contrary, in case of closely spaced modes, the decomposition of the spectral 

matrix, in the nearby of a resonant frequency, presents several SVs with significant 

values equal to the number of modes that are present in the neighbors of that frequency. 

Hence, the first column (or row) of the matrix 𝑈 still contains the configuration of the 

dominant mode for every frequency value, but the configurations of the other modes can 

be estimated by other columns of the matrix 𝑈 and the frequency values might to be 

evaluated in the correspondence of the maximum values of other SVs. This latter 
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situation yields to some identification difficulties, even more evident in case of 

automation of the process, that still deserve more research efforts to be solved. 

Once the resonant peak (or the natural frequency) is defined, the mode shape associated 

at dominant mode is obtained taking the first singular vector 𝑢1 of the matrix 𝑈. The 

contributions of other modes provided by other SVs should be negligible. It is worth 

remarking that the singular vector is an estimation of the associated mode shape: 

 �̂� = 𝑢1 ( 2.120)  

 

Numerical example 

The numerical accelerations of the 3-DOFs system have been used to test the performance of 

the developed FDD technique, implemented in MatLab environment. In the developed 

approach, the natural frequencies values are not extracted through selecting the local maxima 

of the SVs of the spectral matrix but using the Welch method. They were used segments with 

shorter length (1024 points) to extract the spectra estimate affected by lower noise averaging 

a higher number of estimates. In this example the adopted frequency resolution was equal to 

0.0488 Hz. Fig. 2.16 shows a typical plot of the singular values of the spectral matrix 𝑆𝑦𝑦
+ (ω) 

obtained for a simple numerical system already described. As highlighted, the first singular 

value is significantly larger than others and the typical “bell-shapes” of the modal peaks 

associated to the natural frequencies are well defined.  

 

Fig. 2.16. Plot of the first SV lines obtained applying the FDD identification method 
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2.3.2.3 Enhanced Frequency Domain Decomposition method 

The main limitation of the FDD technique is represented by the high inaccuracy related 

to the damping estimation. To overcome this issue, an improved version of the algorithm 

was proposed by Brincker in [Brincker et al. (2001)], the Enhanced Frequency Domain 

Decomposition (EFDD) method. This improvement was principally developed to 

estimate the damping value with more accuracy. Moreover, the natural frequency and the 

modal configuration can be extracted with lower uncertainty defining an interval 

frequency range in which the frequency peak of the first singular values is dominant. 

A good operating strategy consists of detecting the modal domain around the resonance 

peak, defining the auto-spectral density of the dominant SDOF system in that domain.  

 
Fig. 2.17. Typical modal domains associated to structural modes [Magalhães et al. (2010)] 

Follow this way, using the correlation between the singular vector associated to the 

resonance peak and the singular vectors associated to other values around such peak, it is 

possible to define the modal domain related to that specific resonant mode. The 

correlation between such vectors is defined through the Modal Assurance Criterion 

(MAC) [Allemang and Brown (1983)]. 

 𝑀𝐴𝐶 =
(𝜙1

𝑇 ∙ 𝜙2)
2

(𝜙1
𝑇 ∙ 𝜙1)(𝜙2

𝑇 ∙ 𝜙2)
 ( 2.121)  
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The MAC index is an indicator of consistency between two mode shapes. Its value 

ranges from 0, corresponding to orthogonal mode shapes, and 1, in case of similar mode 

shapes that only differ of a scale factor, respectively. If the MAC values calculated 

between the vector of the resonant peak and each other one associated to the values 

around the resonant peak are close to 1, then all these points can be included in the modal 

domain. Obviously, a threshold of the MAC value needs to be fixed in order to define the 

modal domain associated to each resonant frequency [Brinker et al. (2001)]. Otherwise, 

those singular vectors with lower correlation degree, in term of MAC value, are 

discarded from the modal domain.  

Once the modal domain is defined for each resonant peak, the estimation of the mode 

shape is performed averaging all the singular vectors that belong to the identified modal 

domain. Therefore, when similar singular vectors are selected for a given modes, the 

segment of auto-spectrum may be re-converted to the time domain using the inverse FFT 

function. Then, the modal damping ratio of the investigated mode could be extracted 

from the auto-correlation function applying simple concepts of structural dynamic and 

considering the structure composed by 1-DOF system.  

In fact, once the modal domain has been defined, the bell-shaped auto-spectrum (of the 

SDOF model) can be converted back into the time domain separating the contribution of 

one single mode. The auto-correlation function of a SDOF system excited by white noise 

is proportional to its impulse response, defined as [Clough and Penzien (1993)]: 

 ℎ(𝑡) = 𝑐𝑒−𝜉𝑘 𝜔𝑘 𝑡 𝑠𝑖𝑛 (𝜔𝑘𝑡) ( 2.122)  

where c is a constant and ξk and ωk represent the damping ratio and the circular 

frequency, respectively. Therefore, it is possible to estimate the damping ratio of the 

SDOF system by fitting the impulse response to the auto-correlation function or 

computing the logarithmic decrement of the normalized SDOF auto-correlation function.  
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This procedure became very popular in the Civil Engineering community principally due 

to its user-friendly approach capable to provide useful information with relevant physical 

meaning strictly related to the dynamic behavior of investigate structure.  

Nevertheless, some disadvantages of this method should be pointed out. The first one 

consists of the strong dependence of the modal parameters on the frequency resolution, 

that affects the correct identification. Other conditions that may lead to any difficulties in 

the identification process are the low value of the signal-to-noise ratio or the presence of 

closely spaced modes. In these circumstances, the estimated of the mode shape might 

differ from the correct one because in structural dynamics the orthogonality between 

mode shapes is related to mass and stiffness matrices, meanwhile the SVD algorithm 

leads to singular vectors whose orthogonality is defined by the geometrical nature of the 

problem. So, in the latter case, high uncertainty could affect the mode shape estimate. 

 

2.3.3 Identification techniques implemented in the time domain 

The Stochastic Subspace Identification (SSI) methods, described in [Van Overschee and 

De Moor (1996); Peeters et al. (1999); Peeters (2000)] are parametric identification 

techniques developed in the time domain. In both cases, the modal parameter 

identification is performed adopting a discrete-time state-space representation (see Eq. 

2.72), and on the identification of the system matrix 𝐴 which contains all the dynamic 

features of the investigated system. Mainly, two subspace algorithms are usually adopted 

in OMA applications: the Covariance-driven SSI (SSI-Cov), as described in [Peeters et 

al. (1999)], [Peeters (2000)] based on the construction of the correlation matrix, and the 

Data-driven SSI (SSI-Data) introduced in [Van Overschee and De Moor (1996)] based on 

the projection of the recorded response time series.  
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2.3.3.1  Covariance-driven Stochastic Subspace Identification method 

The Covariance-driven Stochastic Subspace Identification (SSI-Cov) method is a 

parametric technique developed in time domain that identifies a stochastic state-space 

model from the output covariance matrix (or correlation, if the signal is ZOH) starting 

from the output responses collected on the structure. The algorithm presented in this 

section correspond to the version described in [Peeters et al. (1999); Peeters (2000)] in 

which the possibility of using the covariance functions between l pre-selected output 

references instead all r available channels is described. The choice of the reference 

channels is related to the redundancy of information provided by the sensors themselves 

on the structure. In fact, if the sensors are not located on a node of the mode and they are 

positioned in symmetrical position respect to the expected modes, they might provide the 

same information in terms of frequency and damping ratio. Under this condition, some 

recorded points can be omitted for the construction of the correlation matrix. 

Furthermore, as already previously mentioned, when a dynamic test is performed in 

“multi-setups" configuration, the structural responses in the instrumented DOFs are 

measured at different times. Some of these DOFs must be measured in all setups, and 

they constitute the so-called reference sensors that become the reference channels in the 

application of the identification method. Therefore, for each acquisition instant k, two 

vectors have to be defined: 𝑦𝑘
𝑟𝑒𝑓

, column vector containing the accelerations measured at 

l reference DOFs, and 𝑦𝑘, column vector containing the response measured at all r 

instrumented DOFs, at each time-instant k. 

As previously stated, the SSI-Cov method addresses the dynamic identification problem 

adopting the state-space model to fit the behavior of the investigated structure, under the 

hypothesis of white noise excitation and linear time-invariant property of the representing 

system. This task is performed estimating the system matrix 𝐴, the output matrix 𝐶 and 

the model order 𝑛 from the output responses [Peeters et al. (1999)], as also described in 

the practical application reported in [Magalhães et al. (2008)]. 
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The first step of this method consists of defining the covariance matrix of the output 

𝑦(𝑡). Recalling the equation defined in Eq. 2.76, and referring the correlation function to 

the reference channels as reported below: 

 𝐸 [𝑦𝑘+𝑖 · 𝑦𝑘
𝑟𝑒𝑓𝑇

] ( 2.123)  

The correlation functions are evaluated for positive time-lags varying its value from 1𝛥𝑡 

to (2i-1)𝛥𝑡 represented by R1
ref to R2i−1

ref  and organized into [𝑛0𝑖-by-𝑛𝑟𝑖] blocks to 

construct the following Toeplitz matrix:  

 𝑇1ǀ𝑖
𝑟𝑒𝑓

=

[
 
 
 
 𝑅𝑖

𝑟𝑒𝑓
𝑅𝑖−1

𝑟𝑒𝑓
… 𝑅1

𝑟𝑒𝑓

𝑅𝑖+1
𝑟𝑒𝑓

𝑅𝑖
𝑟𝑒𝑓

… 𝑅2
𝑟𝑒𝑓

⋮

𝑅2𝑖−1
𝑟𝑒𝑓

⋮

𝑅2𝑖−2
𝑟𝑒𝑓

⋱
…

⋮

𝑅𝑖
𝑟𝑒𝑓

]
 
 
 
 

   ( 2.124)  

Where 𝑛0 is the number of the selected outputs and 𝑛𝑟 corresponds to all channels. 

Recalling the factorization property in Eq. 2.81, the Toeplitz matrix (Eq. 2.124) can be 

expressed as: 

 𝑇1ǀ𝑖
𝑟𝑒𝑓

= [

𝐶𝐴𝑖−1𝐺𝑟𝑒𝑓 𝐶𝐴𝑖−2𝐺𝑟𝑒𝑓
… 𝐶𝐴0𝐺𝑟𝑒𝑓

𝐶𝐴𝑖𝐺𝑟𝑒𝑓 𝐶𝐴𝑖−1𝐺𝑟𝑒𝑓
… 𝐶𝐴1𝐺𝑟𝑒𝑓

⋮
𝐶𝐴2𝑖−2𝐺𝑟𝑒𝑓

⋮
𝐶𝐴2𝑖−3𝐺𝑟𝑒𝑓

⋱
…

⋮
𝐶𝐴𝑖−1𝐺𝑟𝑒𝑓

]   ( 2.125)  

Eq. 2.125 reveals that the information in the system defined by T1ǀi
ref could appear 

redundant (as the first covariance block term R1
ref contains all dynamics information on 

the system) but the single block alone is not sufficient to solve the identification problem. 

Hence, the Toeplitz matrix can be decomposed in the product of the following matrices:  

 𝑇𝑖 = [

𝐶
𝐶 ∙ 𝐴…

𝐶 ∙ 𝐴𝑖−1

] ∙ [𝐴𝑖−1 ∙ 𝐺𝑟𝑒𝑓 … 𝐴 ∙ 𝐺𝑟𝑒𝑓 𝐺𝑟𝑒𝑓] = 𝑂𝑖 ∙ 𝛤𝑖
𝑟𝑒𝑓

 ( 2.126)  

In the second equality the observability matrix Oi and the controllability matrix Γi
ref are 

defined. The first matrix is composed by a column of i blocks with [𝑛0-by-𝑛𝑟] 

dimension; the second one is formed by a row of i blocks with [𝑛𝑟-by-𝑛𝑟] dimension. 
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From the computational point of view, the factorization of the Toeplitz matrix can be 

performed by using the SVD algorithm as follow: 

 𝑇𝑖 = 𝑈 ∙ 𝑆 ∙ 𝑉𝑇 = [𝑈1 𝑈2] ∙ [
𝑆1 0
0 0

] ∙ [
𝑉1

𝑇

𝑉2
𝑇] = 𝑈1 ∙ 𝑆1 ∙ 𝑉1

𝑇 ( 2.127)  

In which, as well-known the matrices 𝑈 and 𝑉 are orthonormal matrices and 𝑆 is a 

diagonal matrix composed by positive SVs in descending order. For clarity, the index 1 is 

associated to non-zero singular values, which defines the rank of the decomposed matrix, 

which, in this case, coincide with n (assuming n<i·nr), the maximum dimension of the 

state-space model and then the maximum rank of the matrix 𝐴. 

Comparing Eq. 2.126 and Eq. 2.127 it comes out that the observability and the 

controllability matrices can be obtained splitting the outputs of the SVD into two parts:  

 𝑂𝑖 = 𝑈1 · 𝑆1
1/2

𝛤𝑖 = 𝑆1
1/2

· 𝑉1
𝑇

 ( 2.128)  

Considering the structure of the matrices presented in Eq. 2.128, once the latter have 

been obtained, the identification of the state-space model through the matrices 𝐴 and 𝐶 is 

quite straightforward solved. In fact, matrix 𝐶 can be extracted from the first n0 lines of 

the observability matrix  𝑂𝑖 . The most efficient and robust procedure to obtain matrix 𝐴 

is based on the shift structure of the observability matrix [Kung (1978)]. Thus, 𝐴 is the 

solution of a least squares problem expressed by the following equation: 

 [

𝐶
𝐶𝐴…

𝐶𝐴𝑖−2

] · 𝐴 = [

𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑖−1

] ⇔ �̅� · 𝐴 = 𝑂 ( 2.129)  

 𝐴 = [

𝐶
𝐶𝐴…

𝐶𝐴𝑖−2

]

†

· [

𝐶𝐴
𝐶𝐴2
…

𝐶𝐴𝑖−1

] ⇔ 𝐴 = �̅�† · 𝑂  ( 2.130)  

 where    𝑂 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑖−2

],      𝑂 = [

𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑖−1

] ( 2.131)  
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where 𝑂 contains the first l·(i-1) lines of 𝑂𝑖 and 𝑂 contains the last l·(i-1) lines of 𝑂𝑖. The 

symbol (•)† represents the Moore-Penrose pseudo-inverse operational function, which is 

used to solve the least squares problems of an overdetermined system of equations, 

minimizing the sum of the squared errors of the individual equations.  

Subsequently, as referred in the previous paragraph, the modal parameters can be easily 

extracted from matrices 𝐴 and 𝐶, performing the eigenvalue decomposition of the 

obtained system matrix 𝐴. In fact, recalling the Eq. 2.66, the natural frequencies 𝑓𝑘 and 

modal damping ratios 𝜉𝑘 can be extracted from the eigenvalues of the matrix 𝐴 (i.e., 𝜇𝐾), 

after removal the poles with negative imaginary component, as described below: 

 𝜆𝑘 =
𝑙𝑛 (𝜇𝑘)

𝛥𝑡
⇒ 𝑓𝑘 =

|𝜆𝑘|

2𝜋
 ;         𝜉𝑘 = −

𝑅𝑒(𝜆𝑘)

|𝜆𝑘|
 ( 2.132)  

where Abs(•) and Re(•) are the absolute value and the real part value of the complex 

number (•). 

Concluding, the mode shapes 𝜙𝑘 are evaluated by multiplying the output matrix 𝐶 and 

the corresponding eigenvectors 𝜓𝑘 of the matrix 𝐴, as shown below: 

 𝑉 = C · 𝛹  ⇔  𝜙𝑘 = C ∙ 𝜓𝑘 ( 2.133)  

It is worth noting that the eigenvectors of the matrix 𝐴 are organized in a [n0-by-n] 

dimensional matrix, which contains the columns of the observable components of the 

mode shapes. Due on the fact that the solutions of the state-space model are described by 

complex conjugate pairs, only the columns associated at eigenvectors associated to the 

eigenvalues with positive imaginary component are selected to extract the mode shape. In 

this way, a state-space model of order n provides n/2 possible solutions. 

Furthermore, in the context of practical applications, SSI-Cov outputs are based on 

estimates of the output correlation matrices that are calculated using a limited number of 

samples. Hence, possible non-linear behavior of the structure (modelling inaccuracies) 

together with the noise content in the collected signals do not permit the exact definition 
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of the state-space model. Indeed, the system matrix 𝐴 and the output matrix 𝐶 together 

with the relative modal parameters must be considered also as estimates.  

In addition, the SVD of the Toeplitz matrix does not permit the identification of a priori 

model order. Moreover, the higher singular values theoretically should be equal to zero 

but in practice they present residual values because the noise content and the inaccuracy. 

Several applications on real structures have also shown that is even not possible to 

identify any gap between consecutive singular values that permit to obtain reasonable 

estimates of the most adequate model that best fits the dynamic behavior of the system. 

The most efficient way currently used in practical applications to overcome this issue is 

defining the modal parameters through using several models with increasing orders 

(within a previously fixed interval) defined in conservative way. The interval of the order 

is defined choosing the upper limit much higher that two times the number of the 

expected physical modes within the investigate frequency range. Subsequently, the best 

model (and then the model order) is chosen to estimate the correct modal parameters. 

This strategy can be accomplished in effective way, because the SVD of the Toeplitz 

matrix, that consists of the most demanding operation, has only performed once and all 

corresponding singular values are defined during this operation. So, when the maximum 

model order is defined (during the initial tuning of the input parameters) the Toeplitz 

matrix is constructed and the SVD of the complete Toeplitz matrix is performed. At this 

point the strategy consists of extract the modal parameters defining models with 

successively increasing orders until reach the maximum available order. Thus, models 

with increasing order are estimates selecting increasing number of singular values to 

calculate the observability and controllability matrices.    

It is worth highlighting that the use of high model orders leads to a comparison of 

numerical modes (also called noise or spurious modes) that do not have physical meaning 

and they are mainly related to the noise content in the collected records. 
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At this point the separation of the physical modes from spurious modes plays an 

important role in the identification process. One of the most efficient strategy to 

overcome this problem is given by the construction of the so-called stabilization 

diagram. This diagram consists of a graphical tool in which the modal estimates 

(principally natural frequencies) provided by all state-space models defined for 

increasing order are reported. The inspection of the stabilization diagram (natural 

frequency vs. model order diagram) allows the identification of stable alignments 

composed by so-called stable poles that maintain consistency in terms of modal 

parameters for increasing model order. 

Therefore, all poles that appear for increasing model order with consistent natural 

frequency, mode shape and damping ratio values are considered as stable and are likely 

to be physical. Meanwhile, those poles that are spread out on the diagram and appear 

only in some models are classified as spurious and they should not be considered for the 

estimation of the modal parameters.  

 

Numerical simulation 

The numerical acceleration time series of the shear-type model (3-DOFs system) have been 

used to test the performance of the developed SSI-Cov technique, implemented in MatLab 

environment. Since all DOFs were considered as reference sensors (𝑛𝑟), the numerical 

series were organized in a block Hankel matrix and for each record the correlation 

functions were defined using the xcorr function belong to the MatLab toolbox. Thus, the 

three-dimensional correlation matrix with [𝑛𝑟×𝑛𝑟×(2i-1)] dimension, in which 𝑛𝑟 

represents the number of the reference sensors and i is the time-lag value, was defined. 

Then the Toeplitz matrix with [𝑛𝑟𝑖×𝑛𝑟𝑖] dimension was constructed by reshaping the 

correlation matrix. The parameter i (time-lag) limits the maximum model order (𝑛𝑥) of the 

stochastic space models: 𝑛𝑥=i×𝑛𝑟. Since, the maximum order was fixed at 30, being the 

reference channel equal to 3, the time-lag has to be set equal to i=30/3=10, which it also 

consists of the minimum values necessary to define the state-space model with 30 order. 



Background and implementation of Operational Modal Analysis techniques 

 

 

95 

 

From performance of the SVD (see Eq. 2.118). of the T1|i
ref (see Eq. 2.125), performed for 

the application of the SSI-Cov identification technique, 30 solutions can be obtained. The 

SV values are depicted in Fig. 2.18 (after scaling them by using the maximum value). 

 

Fig. 2.18. Singular values obtained by applying the SVD technique to the Toeplitz matrix  

As shown in Fig. 2.18, the dynamic behaviour of the numerical structure is well defined by 

a state-space model of order 6. This is confirmed by the main jump between the 6th and the 

7th SV. In fact, the obtained value obtained for higher model order can be considered as 

residuals. It is worth noting that this result was expected by the fact that the system is 

composed by three DOSF and all DOF have been used as reference outputs; so, the state-

space model that best fit this system has an order twice of its reference DOFs. 

(a) (b) 

  
(c) (d) 

  

Fig. 2.19. Stabilization diagrams: a) natural frequencies and b) modal damping ratios; 

zoom of the c) stable natural frequency and d) stable damping ratio values 
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Consequently, the further step performed by the SSI-Cov technique consists of 

constructing the system matrix 𝐴 adopting the Eq. 2.130 and estimating the natural 

frequencies and the modal damping ration of the system using the relations in Eq. 2.132. 

Then, the relative natural frequencies and damping ratio values are extracted and reported 

on the stabilization diagram as depicted in Fig. 2.19. 

In the diagrams of Fig. 2.19 are reported all frequencies and damping ratios estimates 

(stable and unstable) obtained referred to a model order between 2 and 30. Inspecting both 

diagrams reported in Fig. 2.19(a and b), it is not easy to detect those values that maintain 

consistency in term of modal parameters (i.e., natural frequencies and modal damping) for 

increasing model order. Meanwhile after zooming the diagrams, Fig. 2.19(c and d), the 

stable alignments are quite evident. Accordingly to the results reported in Fig. 2.19, as well 

as the SV values depicted in Fig. 2.18, a state-space model with order equal to 6, fit well 

enough the dynamic behavior of the numerical system. Therefore, the natural frequencies 

and the damping ratios associated to the selected model are reported below: 

Table 2.3. Comparison between the theoretical values and the extracted modal estimates. 

Modes 
Theoretical Experimental 

Freq. [Hz] Damp. [%] Freq. [Hz] Damp. [%] 

1 4.755 0.45 4.756 0.49 

2 13.323 1.25 13.318 1.32 

3 19.252 1.80 19.245 1.83 

Again, the matrix 𝑉 defined by the Eq. 2.133 is composed by complex conjugate vectors 

which represent the mode shapes associated to the solution of the selected model. 

Therefore, this matrix is composed by 6 columns because the solutions of the model, but in 

fact they represent 3 complex conjugated structural modes. The amplitude and the phase 

values of the extracted modes are reported in the Table 2.4.  

Table 2.4. Identified vibration modes extracted using the SSI-Cov technique 

Mode 1 Mode 2 Mode 3 

Amplitude Phase Mode Amplitude Phase Mode Amplitude Phase Mode 

9.166 1.542 0.445 17.156 3.111 -1 12.544 0.017 0.803 

16.505 1.543 0.802 7.691 3.114 -0.448 15.619 3.119 -1 

20.590 1.543 1 13.785 0.032 0.803 6.952 0.019 0.445 
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Meanwhile the graphical configuration of the mode shapes, normalized through the 

maximum floor displacement, are reported in Fig. 2.20. 

 
Fig. 2.20. Identified mode shapes of the 3-DOFs system 

Concluding, it is worth highlighting that all components of each identified mode are “in 

phase” or “in opposite phase”, this means that all components move in the same direction 

or with a difference phase equal to π, at same time. This information indicates that all 

modes are real. This result was expected because the acceleration time series have been 

simulated respecting the hypothesis of the proportional damping of the damping matrix 

between the mass ad stiffness distributions. 

 

2.3.3.2  Data-driven Stochastic Subspace Identification method 

Alternatively, the system model can be identified using the Data-driven Stochastic 

Subspace Identification (SSI-Data) method [Van Overschee and De Moor (1996)] [Ljung 

(1999)] estimating the state-space model directly using the collected response time series 

avoiding the construction of the outputs covariance matrix. This last step is replaced by 

projecting the row space of “future” outputs into the row space of “past” of the outputs 

previously organized in a Hankel matrix.  
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This identification method was implemented in two different programs: MACEC 

[(Branden et al. (1999)] and ARTeMIS (SVS 2004). The program MACEC is a “toolbox” 

developed in MatLab code in the University of Leuven. Meanwhile, ARTeMIS is a 

commercial program implemented by research group in the University of Aalborg.  

The good quality of the results obtained by the application of this last program has 

motivated its increasing use in the dynamic identification of civil engineering structures. 

Nowadays, due to the easy interpretation and the good accuracy of the results, ARTeMIS 

is generally used for preliminary modal parameters identification of AVTs. 

In this subsection, the fundamental steps of this time-domain identification method are 

illustrating referring to the algorithm presented in [Peeters (2000)] previously introduced 

in the textbook [Van Overschee and De Moore (1996)]. The efficiency of this version 

was initially confirmed by several applications in Civil Engineering structures described 

in [Peeters and De Roeck (2001)].  

In this paragraph the main concepts related to the non-stationary Kalman Filter are 

succinctly described in order to justify the implementation of the identification method. 

Consequently, the main steps related to the development of the SSI-Data technique as:  1) 

organization of the collected responses into a Hankel matrix, 2) estimation of the 

observability matrix in two consecutive time-instants, and 3) extraction of the modal 

parameters after the definition of the system matrix 𝐴 and the output matrix 𝐶, will be 

describes in detail. 

Kalman filter 

It is mandatory to mention that the Kalman filter plays a fundamental role on the 

developed of this method. For clearness, the description of the algorithm will not be done 

following the classical approach and introducing the Kalman Filter concepts, very 

important for the mathematical approach but very difficult to understand even for expert 

engineering with a normal background in the structural dynamic. In this way, the main 
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concepts related to Kalman Filter are succinctly described referred to the implementation 

of the SSI-Data method.  

The objective of the no steady Kalman filter is to provide an optimal estimation of the 

vector state 𝑥𝑘+1 using the outputs responses and the statistical properties of the matrices 

𝐴, C, 𝑅0 and 𝐺 described in the previous paragraph. The estimate of the state vector x̂k+1 

is obtained applying the expressions of the Eq. 2.134 in recursive way considering the 

observation of the outputs up at time instant k, the initial state estimate x̂0=0 and the 

initial covariance of the state estimates P0 = E[x̂k x̂k
T] = 0 

 

𝑥𝑘+1 = 𝐴 · 𝑥𝑘 + 𝐾𝑘 · (𝑦𝑘 − 𝐶 · 𝑥𝑘) 

𝐾𝑘 = (𝐺 − 𝐴 · 𝑃𝑘 · 𝐶𝑇) · (𝑅0 − 𝐶 · 𝑃𝑘 · 𝐶𝑇)−1 

𝑃𝑘+1 = 𝐴 · 𝑃 · 𝐴𝑇 + (𝐺 − 𝐴 · 𝑃𝑘 · 𝐶𝑇) · (𝑅0 − 𝐶 · 𝑃𝑘 · 𝐶𝑇)−1 · (𝐺 − 𝐴 · 𝑃𝑘 · 𝐶𝑇)𝑇 

( 2.134)  

in which 𝐾 and 𝑃 are the Kalman filter gain matrix and the Kalman state covariance 

matrix, respectively. The interested reader could find more information in the following 

references [Ljung (1987), Juang (1994), Overschee and De Moor (1996)].  

The estimates of the state vectors of the Kalman filter 𝑥𝑖 can be subsequently organized 

to form the Kalman filter �̂�𝑖 state sequence, used in the SSI-Data algorithm, defined as: 

 �̂�𝑖 = (𝑥𝑖  𝑥𝑖+1 … 𝑥𝑖+𝑁+1) ∈ ℝ𝑛×𝑁 ( 2.135)  

Such sequence can be written as linear combination of the past output measurements and 

it is generated by a bank of non-steady Kalman filters working in parallel on each column 

of the block Hankel matrix of past outputs 𝑌𝑝. This consideration implies that the bank of 

Kalman filters can be determined directly from the outputs data [Juang (1994), 

Overschee and De Moor (1996)]. 
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Factorization and Projection matrix 

The first task in the SSI-Data technique consists of organizing the output measurements 

into the block Hankel matrix (𝐻) (a matrix being constant along its anti-diagonal 

elements) of [2i-by-N] dimension; which 2i defines the number of the block-rows and N 

is the number of the columns. The value of i remarks the time-lag concept introduced for 

SSI-Cov method, and from a statistical point of view the number of columns should be 

N→∞. In practical application this value is chosen in order to use all available data in the 

projection phase and it is set as N=j-(2i-1)→j-2i+1 where j is the number of all sampling 

points of the collected response. However, if l defines the number of available channels 

the dimensions of the Hankel matrix are 2𝑖𝑙 · 𝑁 can be subdivided into two submatrices 

of the “past” 𝑌𝑝
𝑟𝑒𝑓

 and “future” 𝑌𝑓 part.  

For clearness, from this point the notation and the description of the procedure will not 

referred to the reference sensors; this does not involve any modification of the algorithm 

but only a minor computational cost due to a smaller number of rows used for the 

construction of the “past” submatrix. By the way, in this Thesis this procedure is 

implemented to be used in the context of continuous monitoring process in which all 

installed sensors are normally used as references ones. 

Before explaining the identification algorithm, the data reduction and smoothing 

procedures used to divide the experimental signals in to “past” and “future” part are 

introduced. As stated, in experimental data, only discrete samples of time signals yk 

(k=0,1…N, N→∞) are available, therefore once the sensors configuration placed at 

certain nodes of the structure are defined, the discrete samples of the output responses 𝑦𝑘 

can be described as sample matrix as follows:  

 𝑦𝑘 = [𝑦𝑚
𝑛 ] = [

𝑦1
𝑛

𝑦2
𝑛

⋮
𝑦𝑙

𝑛

] =

[
 
 
 
𝑦1

0 𝑦1
1

𝑦2
0 𝑦2

1

⋯ 𝑦1
𝑁

⋯ 𝑦2
𝑁

⋮ ⋮
𝑦𝑙

0 𝑦𝑙
1

⋱ ⋮
⋯ 𝑦𝑙

𝑁]
 
 
 

   ( 2.136)  
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where 𝑦𝑚
𝑛  refers the nth (n=0,1,2…N) samples points from the mth (m=1,2…l) available 

sensor. Once the data are organized in this way, the Hankel matrix can be construct 

dividing the data in a “past” 𝑌𝑝 and “future” 𝑌𝑓 section as described in the follows: 

 𝐻0|2𝑖−1 =
1

√𝑁∗

[
 
 
 
 
 
 
 

𝑦0

𝑦1

⋮
𝑦𝑖−1
𝑦𝑖

𝑦𝑖+1

⋮
𝑦2𝑖−1]

 
 
 
 
 
 
 

=
1

√𝑁∗

[
 
 
 
 
 
 
 

𝑦0 𝑦1
… 𝑦𝑁−1

𝑦1 𝑦2
… 𝑦𝑁

⋮
𝑦𝑖−1

⋮
𝑦𝑖

⋱
…

⋮
𝑦𝑖+𝑁−2

𝑦𝑖 𝑦𝑖+1
… 𝑦𝑖+𝑁−1

𝑦𝑖+1 𝑦𝑖+2
… 𝑦𝑖+𝑁

⋮
𝑦2𝑖−1

⋮
𝑦2𝑖

⋱
…

⋮
𝑦2𝑖+𝑁−2]

 
 
 
 
 
 
 

= [
𝑌0|𝑖−1

𝑌𝑖|2𝑖−1

] = [
𝑌𝑝

𝑌𝑓
]   ( 2.137)  

where 𝐻 ∈ ℝ2il×N∗
 is a symmetric matrix since the components are constant across the 

anti-diagonals. The number of block rows i is a user defined index which is theoretically 

larger than the maximum order of the system. It is noted that H0|2i−1 consists of 2li block 

of rows since each block includes l (number of output measurements). The number 𝑁∗ is 

typically equal to all number of samples 𝑁 defined in the previous equation reduced by 

2i-2 elements, which implies the all samples of the collected signal are used in the 

organization of the matrix.  

The subscripts of Y0|𝑖−1 Y𝑖|2𝑖−1 indicate the first and last block-element in the first 

column of the 𝐻 matrix used to define the past and future matrices dimension. Such 

matrices are obtained by splitting the 𝐻 matrix in two sub-matrices of i block rows each.  

A second step of the identification algorithm consists of another division obtained 

omitting the first block-row from the “future” matrix Y0|2𝑖−1  and adding this block-row 

as the last one in the “past” matrix Y0|𝑖 which can be explained as follows: 

 𝐻0|2𝑖−1 =
1

√𝑁∗

[
 
 
 
 
 
 
 

𝑦0

𝑦1

⋮
𝑦𝑖

𝑦𝑖+1

𝑦𝑖+1

⋮
𝑦2𝑖−1]

 
 
 
 
 
 
 

=
1

√𝑁∗

[
 
 
 
 
 
 
 

𝑦0    𝑦1   
… 𝑦𝑁−1 

𝑦1    𝑦2   
…  𝑦𝑁    

⋮  
𝑦𝑖    

⋮ 
𝑦𝑖+2

⋱
…

⋮
𝑦𝑖+𝑁−1

𝑦𝑖+1 𝑦𝑖+2
… 𝑦𝑖+𝑁

𝑦𝑖+2 𝑦𝑖+3
… 𝑦𝑖+𝑁+1

⋮
𝑦2𝑖−1

⋮
𝑦2𝑖

⋱
…

⋮
𝑦2𝑖+𝑁−2]

 
 
 
 
 
 
 

= [
𝑌0|𝑖

𝑌𝑖+1|2𝑖−1

] = [
𝑌𝑝

+

𝑌𝑓
−]   ( 2.138)  
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This operation allows the estimation of the system matrices of the adopted state-space 

model. Accordingly, Once the data are well organized, the next step of SSI-Data 

procedure is the projection of the row space of the future outputs into the row space of 

the past outputs. Namely, the projection is defined as follows: 

 𝒫𝑖 = [
𝑌𝑖|2𝑖−1

𝑌0|𝑖−1
] =

𝑌𝑓

𝑌𝑝
= 𝑌𝑓𝑌𝑝

𝑇(𝑌𝑝𝑌𝑝
𝑇)

†
𝑌𝑝 ( 2.139)  

In which, as already defined, the Yi|2i−1 and Y0|i−1 are the blocks matrix that contain the 

future and the past outputs, respectively. The main motivation behind this projection is 

that it retains all the information in the past that are useful to predict the future.  

From Eq. 2.139 it is clear how the notions of projection and covariance are closely 

related as they both aimed at removing the (uncorrelated) noise. However, the products 

Y𝑓Y𝑝
T and Y𝑝Y𝑝

T are block Toeplitz matrices that contain the covariance between output 

signals. Moreover, the projection matrix is also equal to the product of the extended 

observability matrix 𝑂𝑖 and the Kalman filter state sequence �̂�𝑖. 

 𝒫𝑖 = 𝑂𝑖 · �̂�𝑖 ( 2.140)  

This relation is based on the main theorem of SSI method and a good proof can be find in 

the appendix proved in [Van Overschee and De Moor (1996)]. Should be also highlighted 

that Eq. 2.139 is just a definition and the projection can not be computed straightforward. 

In fact, for practical applications such operation is numerically computed by using the 

QR-factorization of the 𝐻 matrix as described in [Peeters et al. (1999)]. 

 𝐻0|2𝑖−1 = [
𝑌𝑝

𝑌𝑓
] = 𝑅 · 𝑄𝑇  ( 2.141)  

The QR factorization can be viewed as a compression data step. In fact, the 𝐻 matrix, 

composed by a very large number of columns, is decomposed and compressed in a 

smaller lower triangular matrix 𝑅 which contain all information regarding the system.  
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Without going deeper in the numerical implementation details, the QR factorization is a 

simple tool used to easily calculate the projection matrix: 

 
𝐻0|2𝑖−1 =

𝑙
𝑙𝑖

𝑙(𝑖 − 1)

↕
↕
↕

(
𝑅11 0 0
𝑅21 𝑅22 0
𝑅31 𝑅32 𝑅233

) ·

     
↔
𝑙𝑖

   
↔
𝑙

↔
𝑙(𝑖 − 1)

(

𝑄1
𝑇

𝑄2
𝑇

𝑄3
𝑇

)

↔
𝑁

 

↕
↕
↕

𝑙
𝑙𝑖

𝑙(𝑖 − 1) ( 2.142)  

Substituting the Eq. 2.142 in Eq. 2.140, the projection matrix 𝒫i is expressed by the 

product of R and Q submatrices as follows: 

 𝒫𝑖 = (
𝑅21

𝑅31
) · 𝑄1

𝑇  ( 2.143)  

Similarity, the subsequent Projection matrix 𝒫i−1 is computed by alternative expression 

of the future outputs Y𝑓
− and the past outputs Y𝑝

+, both obtained as the Eq. 2.138: 

 𝒫𝑖−1 = (𝑅31 𝑅32) · (
𝑄1

𝑇

𝑄2
𝑇)  ( 2.144)  

Finally, the factorization property applied to the projection matrices pays a crucial role in 

the SSI-Data technique because the computational cost of the QR factorization is very 

time consuming. Otherwise, once the projection matrices 𝒫i and 𝒫i−1 are available, the 

system matrices and the modal parameters can be easily estimated. As detailed in 

[Overschee and De Moor (1996)], the main theorem of the SSI methods states that the 

projection 𝒫𝑖 can be factorized as the product of the previously defined observability 

matrix (see Eq. 2.126) and the Kalman filter state sequence (Eq. 2.135): 

 𝒫𝑖 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑖−1

] · [𝑥𝑖  𝑥𝑖+1 … 𝑥𝑖+𝑁+1] = 𝑂𝑖 · �̂�𝑖 ( 2.145)  

On the other side, the singular value decomposition of the obtained prediction matrix is: 

 𝒫𝑖 = 𝑈 · 𝑆 · 𝑉𝑇 = [𝑈1 𝑈2] · [
𝑆1 0
0 0

] · [
𝑉1

𝑇

𝑉2
𝑇] = 𝑈1 · 𝑆1 · 𝑉1

𝑇 ( 2.146)  



Chapter 2 

 

 

104 

 

The matrix 𝒫𝑖 has order n, since it results from the multiplication of a matrix with n 

columns (𝑂𝑖) by a matrix with lines (𝑋𝑖), so the number of different non-zero values 

resulting from its decomposition is also equal to n and it denotes the order of the model 

and it defines the dimension of the matrix 𝐴. Therefore, comparing Eqs. 2.145 and 2.146, 

the matrices 𝑂𝑖 and 𝑋𝑖 can be factorized as follow: 

 𝑂𝑖 = 𝑈1 · 𝑆1
1/2

�̇�𝑖 = 𝑂𝑖
† · 𝒫𝑖 

 ( 2.147)  

In order to identify the matrices 𝐴 and 𝐶, another projection has to be defined, shifting 

one block row down from past to future outputs of the Hankel matrix (Eq. 2.140): 

 𝒫𝑖−1 =
𝑌𝑓

−

𝑌𝑝
+ = 𝑂𝑖−1 · �̇�𝑖+1 ( 2.148)  

The new projection can be decomposed similarly to the form described in Eq. 2.145: 

 𝒫𝑖−1 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑖−2

] · [𝑥𝑖  𝑥𝑖+1 … 𝑥𝑖+𝑁] = 𝑂𝑖−1 · �̂�𝑖+1 ( 2.149)  

From this equality it is easy to obtain the sequence of the Kalman filter state �̂�𝑖+1: 

 �̂�𝑖+1 = 𝑂𝑖−1
† · 𝒫𝑖−1 ( 2.150)  

Follow this way, the Kalman filter state sequences �̂�𝑖, �̂�𝑖+1 are computed using output 

data only. Using the sequence of vectors state a system with more equations then 

unknown variables is obtained. So, the system matrices can be determined from the 

following overdetermined set of linear equations, obtained by stacking the state-space 

model for time instants i to i+N-1: 

 [
�̂�𝑖+1

𝑌𝑖|𝑖
] = [

𝐴
𝐶
] �̂�𝑖 + [

𝑊𝑖

𝑉𝑖
] ( 2.151)  

where Y𝑖|𝑖 is a Hankel matrix with only one block row and W𝑖, V𝑖 can be treated as the 

residuals of an optimization problem. Since the Kalman state sequences and the outputs 
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are known, and the residuals are uncorrelated with �̇�𝑖, the set of equations can be solved 

for 𝐴 and 𝐶 in a least square sense: 

 [
𝐴
𝐶
] = [

�̂�𝑖+1

𝑌𝑖|𝑖
] �̂�𝑖

†
 ( 2.152)  

The identification problem is now theoretically solved: based on the outputs, the system 

order n and the system matrices 𝐴 and 𝐶 are identified. Natural frequencies fk and mode 

shapes ϕk can be obtained following the same procedure previously described for the 

SSI-Cov technique. 

Furthermore, there are some variations of the method that can be useful to extract the 

modal parameters from the time series. In fact, for the algorithm presented, no matrix 

weighting was performed. However, in the more general formulation of the SSI-Data 

identification method, two weighting matrices 𝑊1 and 𝑊2 are considered, which are 

multiplied by the value of the data to be decomposed into singular values: 

 �̅�𝑖 = 𝑊1 · 𝒫𝑖 · 𝑊2 ( 2.153)  

This weighting operation introduces a transformation of state vector coordinates, such as 

those described in this Chapter, to control similar template arrays, which lead to identical 

identification results of the process. The SV resulting from each variant have different 

meanings. For example, those resulting from the CVA variant can be interpreted as the 

cosines of the principal angles between two vector spaces: the vector space generated by 

the lines of the matrix 𝑌𝑓 and the vector space generated by the lines of the matrix 𝑌𝑝. 

Table 2.5. The variant weighting matrices in: PC - main component, CVA - canonical analysis 

Variation 𝐖𝟏 (𝐢𝐥 · 𝐢𝐥) 𝐖𝟐 (𝐍 · 𝐍) 
UPC I I 

PC I Yp
T · (Yp · Yp

T)−1/2 · Yp
T 

CVA (Yf · Yf
T)−1/2 I 
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Numerical Example 

The SSI-Data technique was also applied process the experimental data previously used for 

other identification methods. The time–lag value adopted in the previous analysis (using 

the SSI-Cov technique) was maintained in conservative way to construct the block Hankel 

matrix. Thus, the parameter i was set equal to 10. The first step of the SSI-Data is to gather 

the output measurements into row blocks to construct the Hankel matrix with dimension 

equal to 2il×N*, in which N*corresponds to all number of samples N menus 2i+1 element 

(i.e., (120×45961]). Once the Hankel matrix was computed, the projecting of the row space 

of the future outputs onto row space of the past outputs was realized using the QR function. 

Thus, the Projection matrix Pi (Eq. 2.145) was created. Consequently, the second 

projection shifting a row-space-block is performed to obtain the second Projection matrix 

Pi-1 (Eq. 2.149). Therefore, once both Projection matrices (in the initial step-time (Pi) and 

in the second step-time (Pi-1) have been performed, the state sequence of X̂𝑖 (see Eq. 2.147) 

and X̂𝑖+1 (see Eq. 2.150) can be easily defined. Consequently, the system matrices A and C 

referred to the stochastic state-space model are obtained using the Eq. 2.152.   

 

Fig. 2.21. Singular values obtained from the application of the SVD algorithm to the 

projection matrix (𝑃𝑖) 

As for the SSI-Cov method, is not easy to estimates the order of the model that best fit the 

experimental data, even for numerical data. Then, a stabilization diagram is constructed by 

identifying different state-space model. In Fig. 2.22(a and b) the solutions related to a state-

space models with an  increasing order are reported. 

As shown, it is not straightforward to define the stable estimates and a manual investigation 

is required to identify those alignments composed by stable estimates that maintain 
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consistency in terms of modal parameters. Thus, a zoom of the investigation interval of 

frequency and modal damping is performed in Fig. 2.22(c and d). 

(a) (b) 

  
(c) (d) 

  

Fig. 2.22. Stabilization diagrams: a) natural frequencies and b) modal damping ratios; c) 

and d) zoom of both diagrams in the interval of investigation 

As can be easily noted, the structure composed by 3-DOFs is well represented by a state 

model of order equal to 6, (see Fig. 2.21). Hence, the modal parameters computed for the 

order n=6 have been selected and reported in the following table.  

Table 2.6. Natural frequencies, modal damping ratios and mode shapes configuration of  

  the 3-DOFs system 

Modes 
Theoretical Experimental Mode Shape 

Freq. [Hz] Damp. [%] Freq. [Hz] Damp. [%] 1 2 3 

1 4.755 0.45 4.756 0.515 0.444 1 -0.796 

2 13.323 1.25 13.328 1.289 0.802 0.444 1 

3 19.252 1.80 19.237 1.738 1 -0.803 -0.446 

Finally, the mode shapes configurations were obtained from the eigenvectors associated to 

the selected state-space model with order 6 and they are reported in Fig. 2.23. As expected, 

the mode shapes obtained by applying the SSI-Data technique coincide with those ones 

previously obtained using the SSI-Cov method.  
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Fig. 2.23. Mode shapes associated to the three natural frequencies extracted by the selected 

state-space model with order equal to 6 applying the SSI-Data technique. 

Furthermore, in Fig. 2.24 are reported the mode configuration of the 3-DOF system using 

the polar plot representation. As expected, the 3 mode are real since the mode shape 

components move in-phase (deviation phase equal to 0°) or in out-of-phase (with a 

deviation phase equal to 180°). 

 
Fig. 2.24.  Polar plot configuration of the extracted modes of the numerical structure 

It is worth remarking that for a complete system identification procedure also the matrices 

𝑅0 (Eq. 2.77) and 𝐺 (Eq. 2.78) need to be identified together with the system matrices 𝐴 

and 𝐶. However, the identification of the full state-space matrices 𝐴, 𝐶, 𝐺, 𝑅0 in the SSI-

Data technique leads to post-processing procedure including spectrum analysis, modal 

decomposition and prediction errors. For more detail to an interested read is suggested the 

paper [Peteers (2000)] in which an application of such analysis is reported.  
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2.4  Conclusions 

In this Chapter, the main theoretical concepts of linear-time-invariant systems have been 

provided to understand the main fundamental concepts behind the dynamic analysis 

useful to characterize the dynamic properties of the structures. Consequently, the 

implementation of the most used output-only identification techniques as: PP, FDD, SSI-

Cov and SSI-Data methods have been described in detail because they consist of the 

fundamental milestones of the strategies developed in this Dissertation.  

First of all, several mathematical models that are normally used to characterize the 

dynamic behavior of linear time-invariant systems have been presented; the classical and 

the modal formulation have been described to define deterministic and stochastic 

continuous models, in the time and frequency domain. Subsequently, the use of the state-

space model allowed the generalization of the identification problem to the structure with 

non-proportional damping, in both deterministic and stochastic implementation. Finally, 

the main hypothesis of white noise realization was introduced allowing the development 

of the stochastic state-space model that consists of the basic step-tool in the implement of 

the output-only identification methods. 

Consequently, four different modal identification techniques used to characterize the 

dynamic behavior of the structures subject to environmental actions have been 

implemented. The focus was on those methods that have receive most interest from the 

Civil Engineering community; as: the Peak Picking (PP), the Frequency Domain 

Decomposition (FDD) and the Subspace Identification method based on the correlation 

functions (SSI-Cov) and the other one based on the projection of the collected time series 

(SSI-Data). These techniques have been implemented in MatLab environment in order to 

fully manage of the different mathematical operations adopted in the identification 

process and to understand the physical meaning of the obtained results. Moreover, the 

application of the developed techniques to a simple structural model (composed by a few 

DOFs) was useful for testing the efficiency of the implemented algorithms.  
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The Peak Picking method is the most common used identification technique because its 

easy implementation and interpretation of the results. For this reason, it is the first 

reference method adopted in Structural Dynamics courses and also one of the most used 

in Civil Engineering applications. Due to its easy implementation, this method has some 

important limitations that lead to possible incorrect results in the case of modes with 

similar frequency (closely spaced modes) and in those cases where the coefficient of the 

damping ratio is high (highly damped modes). therefore, this method is very adequate to 

carry out primary analysis and obtain fast information about the investigate structure. 

The FDD method, in its most used developed version, solves the main problems related 

to the PP method. In fact: it is capable to estimates modes with very close frequency and 

solves the problem of estimating the modal damping coefficient by using the Enhanced-

FDD (EFDD) method. It is worth noting that this last technique – as well as other 

frequency domain methods – is affected by the error associates to the Finite Discrete 

Fourier Transform (leakage error) which generally overestimates the damping value. 

The SSI-Cov method is the first parametric method developed in time domain that lead to 

the estimation of the state-space model though the correlation function of the collected 

time series. This method it is not commonly used because its difficult implementation, 

and also the concepts related to the estimation of the system matrices in the stochastic 

model. Otherwise, the advantage of this identification method consists of a good estimate 

of results obtained with low computational cost. 

The SSI-Data method is the last technique and developed in the MatLab environment. 

Like the previous one, also this method is based on the use of a state-space model, but its 

implementation requires a higher computational cost than the SSI-Cov method, although 

this effort is compensated by a better numerical behavior. It is worth remarking that this 

method has been implemented in the well-known commercial software ARTeMIS, 

developed by the research group of the University of Aalborg. 
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3.1 Introduction to Structural Health Monitoring 

Structural Health Monitoring (SHM) is generally defined as a multi-disciplinary process 

involving: (a) the repeated or continuous measurement of the response of a structural 

system through arrays of appropriated sensors; (b) the extraction from measured data of 

features, which are representative of the health condition and (c) the statistical analysis of 

these features to detect any novelty or abnormal change in the investigated system. 

In the last decades, the SHM strategy based on vibration monitoring and operational 

modal analysis (OMA, i.e. the identification of modal parameters from output-only 

measurements) has received increasing attention in the field of Civil Engineering 

structures. The raising scientific and practical interest on dynamic monitoring and 

vibration-based SHM has many motivations, such as: (a) the ageing of existing structure 

and infrastructures and the preservation of Cultural Heritage, (b) the increasing 

complexity of new constructions (where the implementation of monitoring system is 

usually convenient because it is possible to amortize the costs within the construction 

process); (c) the technological advantages, allowing relatively cheap installation of 

monitoring systems exhibiting fully computer-based operation; (d) the possibility of 

assessing the health of the structure from the analysis of its dynamic response to 

operational and/or ambient excitation.  

In this context, after the definition of the dynamic by applying the techniques described 

in the previous Chapter, the structural response in operational conditions might be 

collected and analyzed in continuous way.  

The implementation of continuous dynamic monitoring directly led to the development 

of procedures capable to efficiently process data collected by dynamic monitoring 

systems in order to obtain accurate evolution of the modal parameters over time. For this 

reason, the development of routines able to analyze large amount of data collected during 

the continuous monitoring process become mandatory, as well as the automation of the 

OMA techniques described in Chapter 2. 
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The availability of new tools performing the automatic identification of the modal 

parameters represents a milestone for the automation of the identification process. 

Basically, this task is aimed at mimicking the choice of an expert used takes during the 

analysis of data recorded during dynamic tests or during the process of each single 

dataset collected in the contest of permanent monitoring of the structure. 

Once the baseline set of modal parameters has been estimated, those parameters are used 

as reference features to perform the comparison in the tracking process over time. Natural 

frequencies are the most used parameters adopted as sensitive features in many damage 

detection applications. On the other hand, they are subjected to external factors that 

produce periodic variations could mask the occurrence of damage. Thus, the subsequent 

challenge task consists of the removal of environmental and/or operational effects that 

affect these features. Nowadays, several approaches have been implemented and applied 

in order to remove such effects (i.e. Principal Component Analysis, Auto Regressive 

Models with exogenous input, etc.) under operational conditions, but the damage 

identification is still a challenging task, as demonstrated in several publishes present in 

the literature. 

In this Chapter a brief overview of the main steps needed to perform a correct assessment 

of Civil Engineering structures is given, highlighting the main differences between the 

procedures available in the literature and the approach to SHM adopted in this 

Dissertation.  Subsequently, a brief introduction and the main issues related to the 

automation of the identification process, mainly oriented to those parametric method 

based on the construction and interpretation of stabilization diagram are pointed out.  

Furthermore, the description of different methods nowadays adopted to remove 

environmental and operational effects on modal parameters (typically the natural 

frequencies) is also reported in this Chapter. Finally, the outcomes of selected example 

regard SHM purpose based on OMA parameters are discuss in the end of this Chapter.   
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3.2 Classical approach and alternative strategy for SHM  

In the context of development of vibration-based health monitoring system, there is an 

increased need of efficient and robust algorithms capable to manage huge quantity of 

data and to perform an automatic processing of large amounts of continuously recorded 

data. The recent technological developments have already permitted the installation of 

efficient and reliable dynamic monitoring systems on large infrastructures capable to 

provide accurate and relevant information about their dynamic characteristics.  

The installation of dynamic monitoring systems on important civil infrastructures in the 

last decays encouraged huge economical efforts in this research field, driving the 

development of innovative equipment and robust methodologies that are used to convert 

large amount of data coming from permanent monitoring into relevant information about 

structural condition of the monitored constructions. The technological advance and the 

continuous improvements in the automation of the analysis process have also allowed the 

assessment of the heath state and the normal behavior of these infrastructures providing a 

reliable alarm in case of abnormal changes or occurred damages. 

Within a Structural Health Monitoring purpose, the processing of the data collected by 

dynamic monitoring system are automatically analyzed in order to monitor the normal 

behavior of the investigated structure that comprehends not only the continuous  

identification of modal parameters but also the removal of environmental and operational 

effects on extract parameters (normally natural frequencies). In this way, the whole 

process is composed by four different steps: 

1) the recording of the structural responses through the use of different type of sensors 

(i.e., accelerometers, seismometers, etc.) installed on the structure; 

2) identification of the modal parameters applying different algorithms capable to 

provide the evolution in time of the most meaningful parameters selected for the 

continuous monitoring process. 
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3) elimination of the environmental and operational effects on the modal parameters 

(mainly performed on the natural frequency) that could mask the occurrence of small 

structural changes or damages;  

4) definition of an opportune approach or labels and design of any threshold values or 

confidence intervals to monitor the resulting features that now are not sensitive to 

external factors, but they depend only on structural changes. 

A clear scheme about the classical strategy for vibration-based health monitoring system 

is provided by [Magalhães (2010)] and reported below: 

 

Fig. 3.1. Main processing steps of a classical vibration-based health monitoring system 

Some remarks on the procedures available in the literature on the above steps 2-4 are 

described n the following subsections. 

As discussed in the introduction of this Dissertation, the development of processing tools 

to fully automated the identification analysis in operational conditions is still a challenge 

task. Over last years, the performance of several full-scale testing over the world and the 

constantly improving of existent processing tools demonstrate the usefulness of this 

approach in the monitor of the health state and the vulnerability condition in several type 

of constructions. Moreover, the practical evidence convinced the owners and the 

commitments of Civil Engineering structures and Cultural Heritage buildings about the 

economical relevance of the dynamic testing and permanent monitoring based on OMA. 

Efforts are also required in order to define a new strategy of SHM which is one on the 

main goals of this Dissertation. In more details, the contribution herein developed 

consists of the following steps: 
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1) Developing and implementing automated OMA procedures capable of extracting 

accurate estimates of the dynamic characteristics from a single recorded dataset. 

Improving the efficiency of the developed algorithms reducing the human interaction 

in the initial tuning phase and during the analysis of the data. 

2) Finalizing the develops OMA procedures to the complete automatization of the 

continuous monitoring process by proposing a novel modal tracking strategy, which is 

based on adaptive reference values and adaptive rejection thresholds. 

3) Implementing a damage detection strategy (based on automated OMA results and 

pattern recognition methods) that does not require the removal of environmental and 

operational effects from the damage sensitive features. The novelty damage detection 

approach has been exploited using natural frequencies, but, in case of investigated 

structures with widespread monitoring systems, it might be based on the analysis of 

mode shapes variations as well as complexity indices. 

A schema of the approach herein proposed is shown in Fig. 3.2. It can be observed that, 

once the dynamic monitoring is activated, only two steps are conceptually required: 1) 

automated identification of the modal parameters and tracking of the evolution in time of 

the extracted futures 2) analysis of the automatically identified modal parameters aimed 

at detecting the onset of possible structural anomalies or damages. 

Modal Parameter Estimation Modal Tracking Damage Detection 

 

 

 

  

Fig. 3.2. Alternative approach for vibration-based Structural Health Monitoring system 
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In the next subsection, a brief introduction about the automation of the identification 

process is given, focusing on techniques that involve the use of stabilization diagrams. 

Meanwhile, the detailed description of the developed tools to perform the automated 

identification of the modal parameters is given in Chapters 4, 5 and 6. Furthermore,  

Chapter 7 focus on the damage detection strategy presented in this Dissertation. 

Finally, in order to provide a clear information about classical SHM approach, the main 

statistical methods used for the elimination of the environmental and operational effects 

on modal parameters together with some well-known SHM applications on real 

structures are given in the end of this Chapter. 

 

3.3 Automated OMA algorithms 

The increasing diffusion of long-term dynamic monitoring systems for structural 

assessment as well as the success of different damage detection algorithms are driving 

the strong interest of the last decades towards automated procedures of output-only 

modal identification. 

The papers available in the literature on automated monitoring of structure, includes the 

following: [Andersen et al. (2007), Magalhães et al. (2009), Peters et al. (2009), Cross et 

al. (2013), Gentile et al (2015)] for large infrastructures, but also [Saisi et al. (2015), 

Ubertini et al. (2016)] for Cultural Heritage buildings.  

The large attention currently received by SSI-methods probably depends on the fact that 

these procedures are apt to accurately identify weakly excited and closely space modes 

and are especially suited to be automated. The SSI procedures can be implemented in two 

classic forms: covariance driven (SSI-Cov) and data driven (SSI-Data). Various 

strategies have been implemented for the SSI outputs interpretation [Magalhães et al. 

(2008), Reynders at al. (2011), Ubertini et al. (2013)], considering that two main 

parameters affect the obtained results: a) n, the maximum order of the stochastic model; 
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b) i, the time-lag index used to define the number of output block rows used to build the 

Toeplitz block matrix (SSI-Cov), or the size of the block Hankel matrix (SSI-Data).  

All the techniques presented in the previous Chapter require an initial “tuning” of the 

input parameters in order to perform a correct identification of the modal parameters. As 

already declared, the definition of such inputs - for both parametric and non-parametric 

methods - is not always straightforward and it needs a strong intervention of an expert 

user. This aspect is very crucial in the context of single identification tests as well as for 

the continuous monitoring and it deserve special attention. In the following Chapters 

main issues strictly related to the identification of the modal estimates and to the 

continuous monitoring of these modal estimates will be addressed in detail providing 

some significant solutions valued by excellent outcomes. 

The automation of the SSI algorithms usually involves the interpretation of the 

stabilization diagrams [Peeters et al. (1999)] focusing on four important aspects: a) 

conception of identification algorithm capable to deliver clearer stabilization diagrams, b) 

characterization of additional criteria to make well-founded the selection of stable 

alignments on stabilization diagrams,  c) development of efficient strategy aimed at 

automatically processing the information present on stabilization diagrams. 

 

3.3.1 Stabilization diagrams 

The concept related to the stabilization diagram is already introduced in Chapter 2, it 

consists of a graphical tool in which the modal estimates (principally natural frequencies) 

provided by all state-space models obtained for increasing order are reported. The 

stabilization diagram was firstly introduced by [Peeters (2000)] and it is normally used 

coupling with any parametric procedure (i.e. SSI-Cov and SSI-Data) as well as p-LSCF 

method in the output-only version presented [Peeters and Van der Auweraer (2005)]. 
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As already stated, when the state-space model that represent the dynamic of the system 

under analysis has been defined, the modal parameters of the system can be easily 

extracted from the matrices 𝐴 and 𝐶. First, the eigenvalue of 𝐴 (µ𝑘), which are the poles 

of the discrete-time state-space model, have to be related to the poles of the continuous-

time model (𝜆𝑘). Then the poles with positive imaginary component are used to obtain 

natural frequencies (𝑓𝑘) and the modal damping ratios (𝜉𝑘), as follows: 

𝜆𝑘 =
ln(𝜇𝑘)

Δ𝑡
⇒ 𝑓𝑘 =

|𝜆𝑘|

2𝜋
;𝜉𝑘 = −

Re(𝜆𝑘)

|𝜆𝑘|
 

Furthermore, the multiplication of the matrix 𝐶 by the matrix with eigenvectors of 𝐴 

provides a matrix which contain in its columns the observable components of the mode 

shapes. Furthermore, due to the existent of complex conjugate pair, only the columns 

associated to the eigenvalues with positive imaginary parts are selected. In this way, the 

state-space model of order 𝑛 provides modal parameters for 𝑛/2 modes.  

In practical application is not possible to know a-priori the model that best fit the 

dynamic response of the investigated structure, because the modelling inaccuracies, due 

to possible non-linear behavior of the tested structure, or the noise content that always 

contaminates the collected signals. Therefore, the derived state-space model matrices 

together with the obtained modal parameters have to be considered also estimates. 

Furthermore, the SVD of the Toeplitz matrix (SSI-Cov), as well as the Projection matrix 

(SSI-Data), does not permit the exact identification of the model order, because the 

higher singular values that theoretically should be zero in practice present residual values 

(as shown in § 2.4.2). Furthermore, for applications on real structures, it is not even 

possible to identify any gap in the consecutive singular values and to estimate the most 

adequate model order. Hence, in common practice the most appropriate way to overcome 

this problem is to overestimate the models using order with a selected interval, in which 

the maximum value should be much higher than two times the number of expected 

physical modes within the investigated frequency range and subsequently select the best 

model by the analysis of the corresponding modal parameters estimates. 
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In Fig. 3.3 is reported the construction of the stabilization diagrams obtained by the 

application of the SSI-Cov method to a dataset collected on the Infante D. Henrique 

bridge [Magalhães et al. (2009)]. 

 

Fig. 3.3. From the Toeplitz matrix to stabilization diagrams, selection of the best model order and 

extraction of the modal estimates (SSI-Cov) [Magalhães et al. (2009)] 

As described in Fig. 3.3, because the SVD of the Toeplitz matrix is the most demanding 

calculation task of the SSI-Cov method, it is only performed once. This means that the 

maximum order of the stochastic models needs to be fixed a-priori, taking into account 

the relation between the row-blocks of the Toeplitz matrix and the maximum time-lag of 

the correlation matrix used in this technique. Then, the SVD of the complete Toeplitz 

matrix is calculated. Consequently, models with successively increasing order (starting 

from the lowest one) are estimating by selecting successively increasing number of 

singular values and vectors obtained by the estimation of the observability and 

controllability matrices, as reported in the example in Fig. 3.3. 

All obtained solutions are reported on the diagram. However, the use of high model 

orders leads to the comparison of numerical modes (also called spurious poles or noise 
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modes), which have no physical meaning and they are strictly related to the noise content 

of the signals and model inaccuracies. Therefore, separation between physical mode and 

spurious poles is a crucial step of the identification algorithm. In this way, the most 

popular approach to achieve that is based on the creation and the interpretation of 

stabilization diagrams (Fig. 3.3).  

As shown, in this diagram the modal parameters estimates provided by all models are 

reported (in the x-axis the natural frequency of the mode estimates; in the y-axis the order 

of the model), allowing the identification of the modal parameters that are stable for 

model of increasing orders. Hence, modes that appear in most of these models generally 

maintain consistent frequency, mode shape and damping, they are called stable poles and 

are likely to be physical. Meanwhile, those poles that are spread out on the diagram and 

appear only in some models are classified as spurious and they should not be considered 

for the estimation of the modal parameters. 

In the following paragraph are reported the most used criterion to remove the spurious 

poles from the stabilization diagrams and the useful approach oriented to deliver clearer 

diagrams in which identify the dynamic characteristics of the investigated system. 

 

3.3.2 Single criterion check 

Concerning the definition of additional criteria used to separate physical poles from 

spurious ones, several works have been published in the literature aimed at providing 

solutions for this issue. For example, the procedure implemented by [Pappa et al. (1998)] 

for the ERA models uses the Consistent Mode Indicator applicable in the context of 

input-output tests (i.e., data collected during Hammer tests). Or as proposed in [Verboven 

et al. (2001)] in which the automated modal identification approach is based on the 

frequency-domain maximum likelihood and the estimation of the physical modes is 

based on the uncertainty of such estimates. Meanwhile, as described in [Verboven el al. 

(2002)], the complexity component associated to the modal vector is a useful criterion to 
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detect spurious poles, in which modes with high complexity are conceivability associated 

to noise modes and they are considered spurious. Some others additional criteria used to 

detect and remove spurious poles from stabilization diagram in [Scionti at al. (2003)] or 

in the most recent paper [Reynders at al. (2011)] that highlights the usefulness of some 

parameters related to the complexity of the modal vector for OMA approaches.   

Once most of all spurious poles are removed from stabilization diagram, the subsequent 

step is aimed at detecting the set of modal estimates related with the same model. In the 

manual identification, the simplest approach to extract the modal parameters consists of 

the choice of the model order the best represent the dynamic characteristics (in terms of 

modal parameters) of the investigate system instead analyzing a wide range of model 

order.  

Nowadays this approach is not recommendable because several reasons: a) the choice of 

the order of the stochastic model that best fit the dynamic behavior of the structure 

requires a strong interaction performed by an expert user; b) the manually selected set of 

modal parameters is always depended on user’s sensitivity and could be affected by 

human errors; c) it can happened that the selected model does not contain all structural 

estimates, or otherwise d) noise modes could be selected together with other structural 

estimates; and e) there is not guarantee that the set of modal estimates provided by that 

model order is the best one. Moreover, in the context of continuous monitoring the 

manual identification of all datasets continuously collected requires a very intensive (and 

expensive) human effort that does not allow a permanent monitoring of the structure. 

For these reasons, the most straightforward way for the interpretation of the data on the 

stabilization diagram is to develop an automated procedure capable to mimic the decision 

that an expert analyst takes during its examination. Several approaches can be adopted to 

reach this task but the best way to group poles with same characteristics is given by the 

application of the clustering algorithm. Several clustering approaches are described in the 

literature and their efficiency are related to the type of data that to be grouped. Thus, in 



Chapter 3 

 

 

124 

 

the next paragraph an overview of the main characteristics of the clustering approaches 

present in literature will be described.  

It is worth highlighting that some clustering procedure can be performed without the 

removal of spurious poles from the stabilization diagram. As described in [Magalhães et 

al. (2009)] OMA analysis was performed on full-scale structures estimating the modal 

parameters without a pre-filtering of spurious poles obtaining satisfactory results. 

Obliviously, the time consuming to scanning all poles without removal of numerical 

estimates increases and some spurious poles can be grouped with physical estimates 

affecting the mean values. Moreover, in case of limited number of sensors the 

discrimination between different mode shapes could be not always guaranteed. For this 

reason, in order to obtain a better performance, a pre-filtering of noise modes is always 

suggested. 

 

3.3.3 Clustering approaches applied to stabilization diagrams 

As stated in Chapter 2, the stabilization diagram is a graphical tool which helps the 

analyst in the identification of the dynamic characteristics of the structure under 

investigation. In fact, the solution provided overestimating the state-space model are 

reported on the diagram in which the solutions with physical maintain consistency in 

term of modal estimates for increasing model order. As reported in many papers present 

in the literature, the first step to perform the automation of the process consists of 

recognize the stable poles on the diagram and extract the modal parameters grouping all 

poles that share similar performing, in fact, a clustering process. 

The clustering procedures based on the interpretation of stabilization diagrams are 

suitable to handle outputs produced by any parametric identification techniques that 

provide estimates in terms of natural frequencies, mode shapes and modal damping ratios 

[Magalhães et al. (2009); Reynders et al. (2011)]. These procedures are mainly devoted 

to recognizing stables poles on the stabilization diagram that maintain consistency in 
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terms of natural frequency, mode shape and modal damping [Peeters (2000)]. 

Subsequently, since the damping ration has higher scattering, it has lower weight than 

other parameters in the discrimination of spurious poles from physical ones, then it is 

generally not considered for the characterization of the estimates.  

In the context of OMA, the most popular way to group stable poles is to measure the 

distance between all the pairs of estimated poles. This operation is possible because 

stable estimations are normally grouped in high density areas whereas noise modes are 

much more scattered. Such property permits the construction of the hierarchical tree as 

also well described in [Reynders at al. (2011)]. But, in order to obtain representative 

structural modes, such procedure needs to be stopped using a so-called cut-level that 

usually depends on the expected number of modes. There is not a theoretical theory to 

know a-priori the maximum threshold to cut the branches of the hierarchical tree and it is 

still a user-defined parameter which required some initial test to be tuned. Since this 

approach in based on the assumption that spurious poles have higher scattering than 

stable poles. So, it should be easy distinguishing between clusters composed by physical 

poles and clusters that contain numerical estimates [Magalhães et al. (2009)]. 

In order to avoid the introduction of many parameters to remove most of poles without 

physical meaning, it could be possible to define into the clustering procedure the number 

of maximum available clusters to construct the hierarchical tree. Such information can be 

easily obtained performing a faster analysis (using the FDD method) to identify the 

number of principals expected modes selecting the visible peaks of the first singular 

value. This strategy is a well-founded way in case of slender structures and well excited 

constructions where the environmental excitation produces visible resonant frequencies. 

On other hand, it is worth mentioning that this strategy can fail in case of simple 

monitoring system (composed by a limited array of sensors) and/or in case of low 

signal/noise ratios of the collected data. Then, this option is not adopted in the 

development of the automated algorithms of this Dissertation. 
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As it will be demonstrating the next Chapters, the clustering process is one of the most 

important steps within identification processes based on OMA parameters. The very first 

clustering approaches have been implemented using tolerance values checking the 

variability of the modal parameters for increasing model order of the state-space model. 

The check is generally performed on the variation of the natural frequencies, damping 

ratios and mode shapes (using MAC index and comparing mode shapes estimates 

obtained for consecutive model order). This approach is quite effective, and it is also 

implemented in well-known commercial software used for dynamic tests and OMA 

analysis. The main disadvantage of this approach is related to the number of the tolerance 

values that need to be tuned requiring a strong human interaction during the analysis. 

It is worth highlighting that the automated identification of the stable poles on 

stabilization diagram is still a challenging task. The application of consecutive checks on 

the modal parameters associated to each pole (SSI-output) might increase the quality of 

the results in more demanding application with, for instance, higher level of noise, if 

some additional criteria are used in the classification of the stable poles. Unfortunately, 

the use of additional criteria has the disadvantage of require a more user defined 

parameter that, as evident, does not allow the correct automation of the process.  

A first improvement was given by clustering approach proposed by [Magalhães et al. 

(2009)]. The main contribution is provided by the new metric adopted to group poles 

with same modal characteristics, reducing the number of user-defined tolerance values to 

only one distance threshold. Otherwise, the clustering approach defined by Magalhães is 

based on only two defined parameters: a) the maximum distant threshold among poles 

within the same cluster and b) the number of expected structural modes. This means that 

also this approach requires an important choice of the expert user during the analysis 

phase. Alternatively, to the definition of the number of structural modes, a-posteriori cut 

level can be used to remove noise modes. As demonstrated, noise clusters are much 

smaller of the physical ones, and accordingly at many experimental results a reasonable 

cut level can be set as one third or one fourth of the number of elements within the 
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highest cluster that stand out on the stabilization diagram. This solution is also suggested 

by [Ubertini et al. (2013)]. A further improvement in the clustering approach was given 

by the contribution described in [Cabboi et al. (2017)]. The main original aspect of the 

new procedure consists of a well-founded improvement of the previous metric in which 

the distant threshold is not applied to pair of estimates to construct the hierarchical tree 

but each representative cluster is constructed adopting a reference point obtained 

averaging the estimates that fall inside the cluster itself. In this way, the reference point is 

continuously updated when a new pole is englobing in the cluster providing more 

accurate estimates. Follow this strategy the extraction of the structural modes is 

automatically performed without define the number of expected modes, but the cutting 

level is still required. So, the resulting clusters are kept on (or removed) if the number of 

elements is more (or less) than one third of the highest cluster. Once a group of consistent 

structural modes are identified, the most representative values are extracted averaging all 

modal estimates belonging to each detected cluster. 

The clustering strategy proposed in [Cabboi et al. (2017)] is robust and it is aimed at 

interpreting the information on the stabilization diagram with a great improvement 

related on the reduction of the human intervention. In fact, the introduction of the average 

process that continuously adapt the representative reference point of the clusters is a 

useful strategy that gives more stability to the whole process.  

On other hand, as stated by the authors, the main issues of such automated procedure are 

related to the definition of the best inter-cluster distance threshold. In fact, if such 

threshold is short the cluster that defines the structural mode can be split in two minor 

clusters and might be removed from the results, otherwise if the distance is very high 

some spurious modes can fall inside the cluster and affect the modal estimates. For these 

reasons, to obtain accurate results become mandatory to perform an initial tuning of this 

parameter. Moreover, such procedure can fail in case of simple monitoring system 

composed by a low number of instrumented points, because the most weighted criterion 

to separate different poles is given by the MAC index, and if the number of sensors are 

really limited there is not a properly discrimination between close spaced modes. 
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It should be pointed out the all methodologies devoted to identification of the modal 

parameters needed of an initial tuning of the input parameters. This setting firstly 

depends on the geometrical and mechanical characteristics of the instrumented structure 

and, consequently, on the engineering judgment of the analyst during the investigation 

process. In order to avoid the strictly correlation of the classification criteria to the case 

study or to the analyst’s sensitivity, in the OMA methodology that will be proposed in the 

next Chapter the use of user-defined parameters is drastically reduced.  

 

3.4  Environmental/operational effects on modal parameters 

Any SHM strategy is developed in order to automatically detect, locate and assess the 

possible presence of damage on the monitored structure. Normally, when the damage 

occurs, a general loss of stiffness of the construction can be highlighted. This situation 

corresponds to an irreversible modification in the structural dynamic behavior that 

interests the global system under analysis.  

Unfortunately, in practical applications several issues can significantly complicate the 

damage detection process. Among these, the most relevant are the effects due to external 

factors, mainly related to environmental and operational variations, that affect the 

monitored features. Moreover, the changing environmental and operational conditions (i. 

e., temperature, wind, traffic loads, etc.) can lead to such relevant variations on the modal 

parameters that could mask the changes due to occurred damage. 

Many papers present in literature report practical examples describing the effects of 

external factor on modal parameters. Daily fluctuations of the first natural frequency due 

to temperature variations were observed during the monitoring of the Alamosa Canyon 

bridge [Farrar et al. (1997)]. The results highlighted that environmental factors could lead 

to variations of the eigenfrequencies around 5% of the nominal values. Approximately 

the same variation was detected for the first two natural frequencies of the Z24-bridge in 

Switzerland [Peeters and De Roeck 2001]. Otherwise reduction of the modal frequencies 
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of 2-3% due to the change in mass and to the traffic loads were identified on the Tamar 

bridge in Southwest England [Cross et al. 2013]. Effects of the external factors on the 

dynamic characteristics of Civil structures have also been analyzed in interesting 

publications as [Sohn (2003); Ramos et al. (2010); Magalhães et al. (2012)]. 

As it is well described in the previous papers, all those variations due external factors 

must be understood and accounted in order to manage results that depend only on 

structural conditions and to perform a robust assessment of the monitored structure. So, 

in this way, if all external effects on the modal parameters can successfully be minimized 

and removed, any variation in the monitored features will be due to structural changes, 

[Cross et al. (2013)]. 

To remove the effects of environmental and operational factors, an intensive and detailed 

analysis should be carried out in order to know the correlations of such effects on the 

controlled features. A first possibility is reproducing the relationship between external 

variables and controlled dynamic features. This class of algorithm are referred as input-

output models.  

The major drawback of these methods is related to the choice of what external factors 

have to be measured to define the correlation between them and controlled features. This 

selection is not always straightforward and sometimes the measurement of the chosen 

external factors is not even possible. To overcome this problem, some further methods 

have been developed in order to remove the external factors without the need to 

measuring any inputs; these models are known as output-only methods. Some important 

works that describe the application of the output-only techniques to removal external 

factor effects are present in literature. Most of them are based on decomposition of the 

covariance matrix of the controlled features, monitored over a long time with changing 

(but unmeasured) external conditions [Kullaa (2004); Yan et al. (2005a); Deraemaeker et 

al. (2008)]. Moreover, other application of output-only methods, based on the direct 

decomposition of time series with the extracted features or on the use of neural networks 

are present in literature as for instance in [Vanlanduit et al. (2005); Sohn et al. (2003)]. 
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3.4.1 Input-output methods 

The development of the input-output models is aimed at defining a linear regression 

relation among obtained features (i.e. natural frequencies) and external factors 

(environmental or operational) that are continuously measured through structural 

responses. Such models can be classified in two distinct groups that are strictly depended 

on how the input variables affects the features. In the first case, the relationship between 

inputs and detected features is only defined through data collected simultaneously, then 

the model is essentially governed by a static regression model. Most of times a static 

relation is not enough to describe the characteristics between external factor and obtained 

estimates, however it can be enhanced by taking into account also the influence of 

external factors measured at previous time instants. In this case the model id defined by a 

dynamic regression model.  

For both groups of input-output methods, several data-sets need to be used to define the 

relation between inputs and outputs of the defined model, It is mandatory to understand 

the influence of each factor on the resulted feature in order to properly calibrate the 

parameters governing the method. Once the model is defined, it can be used to predict the 

values of the controlled features when the measured external factors are known (static 

method) and also the output at previous time instants (dynamic method).  

In this way, when external factor and previous outputs are known it is in principle 

possible to estimate the controlled features and to detect possible variation due to 

structural conditions (e.g. the occurrence of damage). 

 

3.4.1.1 Multiple Regression Analysis 

Multiple Regression Analysis is a statistical technique that can be used to analyze the 

relation between a single dependent variable and one or more independent (predictor) 

variables, with the objective of predict the single dependent value using independent 

variables whose values are known in advance. In the context of Structural Health 
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Monitoring, it is consisting of the simplest method available to establish a model relating 

observed environmental or operational factors with estimated natural frequencies. 

Moreover, the established relation (model) is used, in an initial phase, for understanding 

the influence of each predictor (input of the model) and the dependent variable (output of 

the model) and then to predict futures values of the dependent value when the predictors 

are known. Each independent variable is weighted by the regression analysis procedure 

to ensure maximum prediction from the set of independent variables. The weights denote 

the relative contribution of the independent variables to the overall prediction. 

When a regression relationship is established between the dependent variable and a single 

predictor, the regression problem is referred to as simple regression: 

 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜀 ( 3.1)  

where y is the dependent variable, x is the predictor, θ0 and θ1 are the parameters of the 

regression relationship, respectively referred to as intercept and regression coefficient. 

So, 𝜀 is the difference between actual and predicted values of the dependent variable, 

called prediction error or residual. Nonetheless, the need to model curvilinear effects can 

arise in some applications. In such cases, it is possible to adopt transformations of an 

independent variable that add a nonlinear component for each additional the independent 

variable. Such relationships are known as polynomials: 

 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + 𝜀 ( 3.2)  

Meanwhile, when two or more independent variables are used to predict the dependent 

variable, the problem is referred as multiple regression: 

 𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 +⋯+ 𝜃𝑛𝑥𝑛 + 𝜀 ( 3.3)  

The relationships in Eqs. 3.1 and 3.3 have been established to reproduce a linear 

dependence between predictors and dependent variable. If two or more independent 

variables are involved, multivariate polynomials can be defined using the following form: 
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 𝑦 = 𝑋𝜃 + 𝜀 ( 3.4)  

where y is a [n-by-1] column vector containing the n measures (yk) of the dependent 

variable (y), X is a [n-by-p] matrix that connects n dependent values of the corresponding 

p selected predictors, θ is a [p-by-1] column vector formed by the p parameters weighting 

the contribution of each independent variable, ε is the [n-by-1] column vector of the 

prediction errors (εk) that account for measurement errors of the element of y and for the 

effects of other variables not explicitly considered in the model.  

Moreover, it is assumed that the last term in Eq. 3.4 has the following properties: 

 𝐸[𝜀] = 0 

𝐶𝑜𝑣[𝜀] = [𝜀 · 𝜀𝑇] = 𝜎𝜀
2 · 𝐼 

( 3.5)  

where E[•] is the expected value operator, and [•]T means transpose and I represent the 

identity matrix n-by-n. the relations in Eq. 3.5 represent that the mean value of 𝜀 is zero 

and that the errors are independent and also their valiance (𝜎𝜀
2) is constant.  

In order to accurately reproduce the experimental estimates of the dependent variables 

and simulate their future values, it is very important to perform a good selection of the 

input parameters that lead to the best association between measured features and values 

ŷk provided by the model. Therefore, when the independent values have been selected the 

subsequently step consists of characterizing the model through the definition of the θk 

parameters. Their estimation can be achieved by using the Least Squares (LS) method, 

minimizing the sum of the squared errors and estimating the model parameters θ as: 

 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 ( 3.6)  

It should also be noted that, in system identification, it is usual to normalize input and 

output data so that the origin of the x and y axes lies at the “center of gravity” of the data 

points and the slope of the line of regression corresponds to the correlation coefficient 

[Newland (1993)]. This is achieved by removing the mean value from each measurement 

xk and yk and dividing the results by the variable's standard deviation as follows: 
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 �̃�𝑘 =
𝑥𝑘 − �̅�

𝜎𝑥
 �̃�𝑘 =

𝑦𝑘 − �̅�

𝜎𝑦
 ( 3.7)  

As the LS method minimizes the sum of the squares of the equation errors, a first quality 

criterion is the value of the Loss Function (LF): 

 𝐿𝐹 =
1

𝑁
∑ 𝜀𝑘

2
𝑁

𝑘=1
 ( 3.8)  

where N is the total number of samples and the prediction errors are obtained as the 

difference between experimental and estimated values of the output variable: 

 𝜀 = 𝑦 − �̂� ( 3.9)  

It is the most used criterion to firstly obtain a quality indicator of the model accuracy. 

Alternatively, another important indicator adopted for testing the quality of the model is 

referred to as coefficient of determination R2 defined as [e.g. Johnson & Wichern 1992]: 

 𝑅2 = 1 −
∑ 𝜀�̂�

2𝑁
𝑘=1

∑ (𝑦𝑘 − �̅�)
2𝑁

𝑘=1

=
∑ (�̂�𝑘 − �̅�)

2𝑁
𝑘=1

∑ (𝑦𝑘 − �̅�)
2𝑁

𝑘=1

 ( 3.10)  

As reported in the previous formula, the coefficient of determination is defined by the 

ratio value between two variances. Therefore, it can be stated that R2 provides the 

percentage of the total variation in the experimental outputs yk explained by the 

predictors. If the coefficient of determination tends to zero, then the selected independent 

variables have no influence on the output, whereas when R2 tends to one the variation of 

yk is completely explained by the predictors. 

In the context of SHM, regression analysis is one of the most used available technique 

adopted to correlate the observed external factors (predictors) and the dependent values. 

identified natural frequencies (dependent variables). Temperatures measured on the 

structure and amplitude of excitation (i.e. induced by traffic loads) are the environmental 

and operational factors typically selected as predictors because of their significant 

influence on the fluctuations of the natural frequencies (dependent variables). 
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It is worth mentioning that, in practical applications, regression models can be used in 

two different forms: static and dynamic form. As previously described, static models 

establish a relationship only between simultaneously measured data and may not be able 

to accurately reproduce the effects of common dynamic processes. In this kind of 

applications, the use of dynamic regression models, accounting for the influence of inputs 

measured at previous time instants, seems to be more feasible. 

A dynamic regression relationship is established between the dependent variable at time 

𝑘 and values of a single predictor at current time k as well as at (p-1) previous time 

instants. Therefore, for dynamic regression models, Eq. 3.1 can be specified as: 

 𝑦𝑘 = 𝜃0 + 𝜃1𝑥𝑘 + 𝜃2𝑥𝑘−1 +⋯+ 𝜃𝑝𝑥𝑘−(𝑝−1) + 𝜀𝑘 ( 3.11)  

whereas matrix 𝑋 of Eq. 3.3 assumes the form: 

 𝑋 = ⌊

𝑥1 ⋯ 𝑥1−(𝑝−1)
𝑥2 ⋯ 𝑥2−(𝑝−1)
⋮
𝑥𝑛

⋱
⋯

⋮
𝑥𝑛−(𝑝−1)

⌋ ( 3.12)  

Dynamic regression models, in turns, can be viewed as special ARX models. 

 

3.4.1.2  ARX models 

Among the dynamic identification methods described in the literature, as well detailed in 

[Ljung (1999)], ARX models are probably the most widely used algorithm to estimates 

the output system features from independent variables. ARX models consist of an Auto-

Regressive output and an eXogeneous input part. Its equation can be defined by 

considering an output and an input variable designated yk and xk, respectively, and an 

error term εk defined in a general time instant 𝑘. So, it can be expressed as follows: 

 yk + a1yk−1 +⋯+ anayk−na = b1xk−nk + b2xk−nk−1 +⋯+ bnbxk−nk−nb+1 + εk 

  

 
( 3.13)  
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It should be noted that in Eq. 3.11 only one input (e.g. temperature), one output (e.g. 

natural frequency) and the error that takes into account the effects of non-modeled inputs 

and measurement noise were considered. Moreover, the Eq. 3.13 can be easily 

generalized to the case of multiple inputs by replacing 𝑏𝑘 and 𝑥𝑘 with corresponding row 

and column vectors, respectively. 

Detailing the Eq. 3.13 it is worth highlighting that ARX models are characterized by 

three model orders: the auto-regressive order na (corresponding to the number of the 

considered past measures of the dependent variable), the exogenous order nb 

(corresponding to the number of previous model inputs considered) and the pure time 

delay between input and output nk. Orders na and nb determine the number of model 

parameters: ai (i = 1, …, na), bj (j = 1, …, nb). It should be noted that classic static 

regression models represent a particular class of ARX models, obtained with the specific 

selection of parameters: na=0, nb=1, nk=0. As shown in the Eq. 3.13 the static regression 

model can be defined as ARX010 model: 

 𝑦𝑘 = 𝑏1𝑥𝑘 + 𝜀𝑘 ( 3.14)  

As reported in the excellent publication [Ljung (1999)], the ARX (see Eq. 3.14) can also 

be written using a different form: 

 𝑎(𝑞)𝑦𝑘 = 𝑏(𝑞)𝑥𝑘 + 𝜀𝑘 ( 3.15)  

In which a new relation is introduced as follows: 𝑞−1𝑦𝑘 = 𝑦𝑘−1, and where 𝑎(𝑞) and 𝑏(𝑞) 

are two polynomials defined as: 

 
𝑎(𝑞) = 1 + 𝑎1𝑞

−1 +⋯+ 𝑎𝑛𝑎𝑞
−𝑛𝑎  

𝑏(𝑞) = 𝑏1𝑞
−𝑛𝑘 + 𝑏2𝑞

−𝑛𝑘−1+. . . +𝑏𝑛𝑏𝑞
−𝑛𝑘−𝑛𝑏∓1 

( 3.16)  

Moreover, Eq.3.14 can be associated to the general expression typically used to define 

linear input-output models and it can be manipulated to obtain the following formula: 

 𝑦𝑘 = 𝐻(𝑞, 𝜃)𝑥𝑘 +𝑊(𝑞, 𝜃)𝜀𝑘 ( 3.17)  
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where 𝜃 is the vector grouping the modal parameters, 𝐻 is the transfer function and 𝑊 is 

the noise model. Comparing Eq. 3.15 to Eq. 3.17, the variables can be expresses as: 

 

𝜃T = (𝑎1…𝑎𝑛𝑎 𝑏1…𝑏𝑛𝑏) 

𝐻(𝑞, 𝜃) =
𝑏(𝑞)

𝑎(𝑞)
,𝑊(𝑞, 𝜃) =

1

𝑎(𝑞)
 

( 3.18)  

As previously described for the case of multiple regression analysis, the parameters of 

ARX models can be easily estimated by applying a LS method. Therefore, it is 

convenient to re-write the ARX model expressed in the Eq. 3.13 using a matrix form: 

 𝑦𝑘 = 𝜑
T𝜃 + 𝜀𝑘 ( 3.19)  

where 𝝋T = [−𝑦𝑘−1 …− 𝑦𝑘−𝑛𝑎 𝑥𝑘−𝑛𝑘 …𝑥𝑘−𝑛𝑘−𝑛𝑏+1]is a row vector grouping the 

past measures of dependent variables and predictors.  

Concluding the treatment of the ARX models, it is should to remark that considering N 

measured values of output and input variables, it is possible to write Eq. 3.19 for each of 

the N samples. Hence, the ARX problem can be described by the same matrix equation 

(2.88) obtained for the multiple regression analysis introducing the following vectors: 

 𝑦 = (

𝑦1
𝑦2
⋮
𝑦𝑁

) ∈ ℝ𝑁, 𝑋 =

(

 

𝜑1
𝑇

𝜑2
𝑇

⋮
𝜑𝑁
𝑇)

 ∈ ℝ𝑁×(𝑛𝑎+𝑛𝑏), 𝜀 = (

𝜀1
𝜀2
⋮
𝜀𝑁

) ∈ ℝ𝑁 ( 3.20)  

where the estimates �̂� of the model parameters are still obtained by solving the 

considered system of equations using the LS method, according to Eq. 3.6. 

Concluding, it should be noted that when multiple input candidates and choices of the 

model orders 𝑛𝑎, 𝑛𝑏, 𝑛𝑘 are available, several different ARX models can be identified 

from the data and the same quality criteria described in the previous paragraph can be 

used to compare the fitting skills of the different detected models. 
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3.4.2 Output-only methods 

As previously stated, the correct selection of those external factors that maintain the most 

relevant influence on the controlled modal parameters is often difficult and not always 

straightforward. In addition, in the context of continuous dynamic monitoring, the 

continuous measurement of such factors could be not always available or achievable 

leading to a relevant problem in the definition of the relationship between external factor 

and monitored parameters. This problem can be easily bypassed adopting the so-called 

output-only models. Adopting this strategy, the major drawback related to environmental 

and operational effects can be removed without the knowledge of the external factors is 

not required.  

In this subsection two classes on output-only methods used to remove the effects of 

environmental and operational factors on monitored features extracted from data 

collected by a dynamic monitoring system installed on the structure are described. In 

detail, this task is performed through the decomposition of a covariance or correlation 

matrix of the time variation of the structural features over a reference period of time 

(named training period). The first group is composed by the Principal Component 

Analysis (PCA) method, that are described and applied in several papers and works 

present in literature, such as: [Kullaa (2004); Yan et al. (2005a)], as well as important 

application on large infrastructures [Deraemaeker et al. (2008); Magalhães et al. (2012)] 

of ancient constructions; and the Factor Analysis (FA) method that is based on the same 

principle as detailed in [Johnson and Wichern (1992)]. 

 

3.4.2.1 Principal Component Analysis  

Principal component analysis (PCA) was firstly introduced in the 1980’s [Johnson and 

Wichern (1992)] and it consists of a multivariate statistical tool performing a linear 

transformation of data defined into an original coordinate system to a new less 

dimensional coordinate system. PCA is typically used where is convenient to reduce the 

dimension of the problem, by replacing a group of correlated variables with a new 
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smaller set of independent variables, designated as principal components [Deraemaeker 

et al. (2008)]. Basically, the goal of PCA is to find an [n-by-n] orthonormal matrix T (in 

which 𝑇𝑇=𝑇−1) which allows the coordinate transformation described as follows: 

 𝑥 = 𝑇 · 𝑦 ( 3.21)  

in which 𝑦 is a vector of n original variables, T is the transformation matrix that applies a 

rotation of the original coordinate system and x is a vector composed by n variables that 

are independent on each other. The coordinate transformation performed by matrix T 

lead to a set of variables (x – the Principal Components) with important properties: all 

variable are independent between each other and the covariance matrix of x is diagonal 

and full rank and their variance is organized in decreasing manner from 𝑥1 to 𝑥𝑛. 

Therefore, the contribution of the first PC is the most relevant to explain the variability of 

the initial dataset. Meanwhile, most of the last ones represent smaller variances and they 

could be ignored because they do not explain the variability of the original variables y. 

So, starting from the relationship described in Eq. 3.21 and the properties of matrix 𝑇, it 

is possible to re-write the relation between the original variables (𝑦) and the PC (x) as: 

 𝑦 = 𝑇𝑇𝑥 ( 3.22)  

The covariance matrix 𝛴𝑦𝑦 of 𝑦 (which coincides with the correlation matrix of 𝑦 if each 

variable is ZOH) can be related to the diagonal covariance matrix 𝛴𝑥𝑥 of 𝑥 as follows: 

 𝛴𝑦𝑦 = 𝐸[𝑦 · 𝑦
𝑇] = 𝐸[𝑇𝑇𝑥 · 𝑥𝑇𝑇] = 𝑇𝑇 · 𝛴𝑥𝑥 · 𝑇 ( 3.23)  

The singular value decomposition (SVD) of 𝛴𝑦𝑦 provides the following relationship: 

 𝛴𝑦𝑦 = 𝑈 · 𝛬 · 𝑈
𝑇 ( 3.24)  

where 𝛬 is a diagonal matrix composed by elements 𝜆𝑗 provided in descending order and 

they correspond to the eigenvalues of the covariance matrix Σyy. The matrix𝑈 is an 

orthonormal matrix in which the columns correspond to the eigenvector of the covariance 
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matrix 𝛴𝑦𝑦. It is worth mentioning that each j-th column is the eigenvector corresponding 

to the j-th eigenvalue of the covariance matrix Σyy. 

Thus, the outputs of the Eq. 3.24 can be used to obtain the transformation matric (𝑇=𝑈𝑇) 

and the variance of the component of 𝑥 from the elements in the diagonal of Λ ans since 

the SVD algorithm provides the singular value in descending order, the first element of  

𝛬 coincides with the variance of 𝑥1.  

Therefore, as mentioned before the main goal of the PCA technique is reducing the 

dimensions of the problem, considering only the first p eigenvalues out of the n ones 

collected in 𝛬 relevant to explain the variability of the original components of 𝑦, the 

matrix 𝛬 can be split in two parts: Λ1=diag(𝜆1, 𝜆2, … 𝜆p) a diagonal matrix composed by 

the first p singular values and Λ2=diag(𝜆p+1, 𝜆p+2, … 𝜆n) a diagonal matrix with the 

remain singular values on the diagonal which are not relevant to explain the variability of 

the original data y. 

Theoretically, the value of p should be selected by looking for a gap in the diagram of the 

eigenvalues. But in practical applications, a clearly drop does not frequently occur, so, 

the choice of p is usually based on the definition of ratio I: 

 𝐼 =
∑ 𝜆𝑖
𝑝
𝑖=1

∑ 𝜆𝑖
𝑛
𝑖=1

 ( 3.25)  

in which the value of the ratio I defines the percentage of the variability of the original 

variables y that is explained by the first p components of 𝑥. Therefore, once a threshold 

value of 𝐼has been chosen (e.g. 0.95), the value of p can be easily found. 

Once p has been chosen, the set of PCs 𝑥𝑗 can be obtained applying the Eq. 3.21 using 

the matrix �̂� built from the first p columns of 𝑈 (taking into account that 𝑇=𝑈𝑇). Hence, 

with the selection of the PCs, those features with a non-significant contribution on the 

variability of the original dataset (e.g. random errors in the identification of natural 

frequencies) are removed keeping into account just the effects due to relevant factors. At 
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this point, the reduction of the dimension of the problem has already achieved and the 

application of the statistical tool is ended. 

In the context of Structural Health Monitoring purposes, a further step is usually 

performed in order to re-map the selected 𝑥 components in the original space of 𝑦. Thus, 

this task consists of transforming the selected ẋ PC back to the original coordinate 

system, by means of the reduced 𝑇 matrix (�̂�) as reported in the following equation: 

 �̂� = �̂�𝑇 · 𝑥 = �̂�𝑇 · �̂� · 𝑦 ( 3.26)  

If the re-mapped values are removed from the original variables as follows: 

 𝜀 = 𝑦 − �̂� ( 3.27)  

the obtained features ε (residual) will not be affected by the factors modeled by the PC.  

In full-scale applications of Structural Health Monitoring purposes on Civil Engineering 

structures and Cultural Heritage contractions based on OMA features, the removal of the 

effects due to environmental and operational factors are often carried out on the natural 

frequency estimates extracted by the continuously collected structural responses. In this 

way, the vector𝒚 that denotes the features in the original space has many components as 

the number of the most meaningful estimated frequencies of the structure. Moreover, the 

covariance or the correlation matrix is estimated from the evolution in time of these 

features during a period that should be sufficiently large to contain the full effects of the 

environmental and operational factors on the frequency estimates, that should be 

corresponding to at least one year of continuous monitoring in which the state of the 

structures is assumed to be “healthy”. 

As previously stated, these two conditions are strongly binding for the correct application 

of this output-only method in the context of OMA-based SHM purposes. Furthermore, 

the correct monitoring of the structure is guaranteed only is case  any fundamental 

conditions  are verified: 1) the correct automation of the continuous monitoring process 

of the structure without considerable loss in the tracking of frequency estimates, 2) a full 
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year of continuous monitoring intended for the training period of the methodology, and 

3) no occurrence of structural anomalies or damage during the training period. 

Concluding the description of this output-only method is should be highlighting that the 

dimension reduction of the problem achieving with the application of the PCA is aimed 

at keeping the effects of the relevant factors (as for example the temperature) and 

eliminating the effects due to secondary factors, as could be due to the random error in 

the identification of the natural frequencies. Then, the difference obtained between the 

observed features and the re-mapped values lead to those features that are insensitive to 

the factor modelled by the PCs. 

Therefore, the application of the transformation expressed in the Eq.3.26, using �̂� matrix 

obtained from the observed data associated to the reference state (or training period), to 

new observations and the calculation of the residuals (Eq. 3.27) provides the new  

(components of) features that enhance the environmental/operational effects that are 

present in the new observation but they are not observed in the training period. 

Consequently, the post-processing of these new features can be performed to demonstrate 

to detect structural anomalies in the normal behavior of the structure that might justify 

the occurrence of a damage. 

The efficiency of this methodology is proven along the years by excellent papers present 

in literature, using data produced by numerical simulations [Yan et al. (2005a)], or by its 

application to data collected by monitoring system installed in a footbridge [Hu et al. 

2009)], or using data collected on the Infante D. Henrique bridge in Porto [Magalhães et 

al. (2012)] or also using data continuously collected on masonry towers as documented in 

[Ubertini et al. (2017)] and [Gentile et al. (2016)]. Furthermore, an extension of PCA to 

non-linear cases was proposed and applied to data collected on the Z-24 bridge as 

reported in [Yan et al. (2005b)] and also using a local-PCA approach applied to 

monitoring data as reported in [Comanducci et al. (2016)]. 
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3.4.2.2 Factor Analysis  

Factor Analysis (FA) is a multivariate statistical tool concerned with explain the 

covariance relationship among many variables in terms of a few random quantities called 

factors [Johnson and Wichern (1992)]. It can be considered as an extension of the PCA as 

both are based on the decomposition of the covariance matrix, but in this second case the 

method is based on a more elaborate model in which the factors are unobservable.  

As described for PCA, the estimate observed features that are normally expressed by 

natural frequencies can be defined by the sum of two components: 

 𝑦 = 𝑓(𝑓1, 𝑓2, 𝑓3, 𝑓4, … ) + 𝜀 ( 3.28)  

where 𝑦 is a vector of n components (the extracted natural frequencies), 𝑓 is a function 

that depends on environmental/operational factors, 𝑓𝑖 are the external factors and they 

can be selected as: 𝑓1 the temperature, 𝑓2 the humidity, 𝑓3 traffic loads, 𝑓4 the wind, …) 

and 𝜀 is a vector that quantify the influence of abnormal occurrences on each component 

of 𝑦. Instead of trying to identify the function 𝑓 it can be decomposed in two mappings as 

reported below: 

 𝑓(𝑓1, 𝑓2, 𝑓3, 𝑓4, … ) = 𝐿[𝑁𝐿(𝑓1, 𝑓2, 𝑓3, 𝑓4, … )] ( 3.29)  

a first general mapping, that might be non-linear (NL), transforms the environmental and 

operational factors into a set of unobservable factors (represented by 𝑥), using for 

instance a regression analysis, which are related with the estimated features by a linear 

mapping. In this way, the relation between n observable features (the natural frequencies) 

and p unobservable factors can be expressed by the following equation: 

 𝑦 = 𝐿 · 𝑥 + 𝜀 ( 3.30)  

in which 𝐿 is a n-by-p matrix, the elements of the matrix are designed factor loadings, the 

components of 𝑥 are named common factors and the components of 𝜀 are called specific 

factors. It is worth noting that the expression in Eq. 3.30 is similar to that one used for 
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multivariate linear regression, but in this case the 𝑥 components are not measured. Again, 

for the factor model are assumed the following properties: 

 

𝐸[𝑦] = 𝐸[𝑥] = 𝐸[𝜀] = 0 

𝐸[𝑥 · 𝑥𝑇] = 𝐼 

𝐸[𝜀 · 𝑥𝑇] = 0 

𝐸[𝜀 · 𝜀𝑇] = 𝛹 

where𝛹 = [

𝜓1 0
0 𝜓2

⋯ 0
0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜓𝑛

] 

( 3.31)  

taking into account the properties defined above, the following equation for the 

covariance matrix of the observations can be established: 

 

𝛴 = 𝐸[𝑦 · 𝑦𝑇] = 𝐸[(𝐿 · 𝑥 + 𝜀) · (𝐿 · 𝑥 + 𝜀)𝑇] 

= 𝐸[𝐿 · 𝑥 · 𝑥𝑇 · 𝐿 + 𝐿 · 𝑥 · 𝜀𝑇 + 𝜀 · 𝑥𝑇 · 𝐿𝑇 + 𝜀 · 𝜀𝑇] 

= 𝐿 · 𝐸[𝑥 · 𝑥𝑇] · 𝐿𝑇 + 𝐸[𝜀 · 𝜀𝑇] ⇔ 𝛴 = 𝐿 · 𝐿𝑇 +𝛹 

( 3.32)  

In the first instance FA defines the matrices L and that fit a set of n observation of 𝑦. 

There are two algorithms to reach this task: the principal factors method and the 

maximum likelihood method.in this section, due to its similarity to the principal 

components, only the first algorithm will be presented. Meanwhile, for the description of 

the second algorithm the interested reader is referred to the classical book [Johnson and 

Wichern (1992)]. 

As described in Eq. 3.24, the covariance matrix of the observed features can be 

decomposed using the SVD algorithm and the L matrix is defined as: 

 𝛴 = 𝑈 · 𝑆 · 𝑈𝑇 = [𝑈1 𝑈2] · [
𝑆1 0
0 𝑆2

] · [
𝑈1
𝑇

𝑈2
𝑇] ≈ 𝑈1 · 𝑆1 · 𝑈1

𝑇 

�̂� = 𝑈1 · √𝑆1 

( 3.33)  

Remarking, as described for the PCA, the covariance matrix of the observable features 

has been approximated considering only the contribution of the lower SV and neglecting 

the contribution of its last n-p values that are less representative of the variance of 𝑦. The 
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number of the relevant SV that are considered can be estimated using the formula 

expressed in Eq. 3.33. Apart the factor scale √𝑠𝑖, the factor loadings of the i-th common 

factor coincide with the coefficients of the i-th principal component of the data (this 

result is obtained considering 𝐸[𝜀 · 𝜀𝑇] = 0). Therefore, this simple version of the Factor 

Analysis is equivalent to the application of the Principal Component Analysis. 

Going deeper in the description of the Factor Analysis, it is possible to obtain a more 

accurate factor model including specific factors in order in its development. In fact, 

recalling the relationship described in Eq. 3.23, the diagonal elements of 𝛴 − 𝐿 · 𝐿𝑇 can 

be by the correlation matrix of the specific factors (being �̂� = 𝑑𝑖𝑎𝑔(𝛴 − �̂� · �̂�𝑇)), in 

which L is estimates through Eq. 3.24. Furthermore, it is possible to improve the model 

following a recursive way to estimate the matrix 𝐿. These steps can be summarized as: 

1) Application of the SVD algorithm to the correlation matrix estimated by the data: 

𝛴 = 𝑈 · 𝑆 · 𝑈𝑇 

2) Selection of the first p SVs and estimation of the matrix 𝐿: 

�̂� = 𝑈1 · √𝑆1 

3) Estimation of the correlation matrix of the specific factors �̂�: 

�̂� = 𝑑𝑖𝑎𝑔(𝛴 − �̂� · �̂�𝑇) 

4) Estimation of the product matrix �̂� · �̂�𝑇: 

�̂� · �̂�𝑇 = 𝛴 − �̂� 

5) Application of the SVD algorithm using the new estimate for �̂� · �̂�𝑇: 

�̂� · �̂�𝑇 = 𝑈 · 𝑆 · 𝑈𝑇 

6) Repetition of the steps 2-5 in a consecutive way until the estimate for L convergence.  

Therefore, given L and Ψ, the estimates of the common factors (𝑥), also called factor 

scores, can be easily performed. Different formulations are available, as primarily 

detailed in [Johnson and Wichern 1992] that differ on the way the minimization of the 

specific factors. In the present demonstration a simple last squares procedure is provided: 
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 𝑥 = (𝐿 · 𝐿𝑇)−1 · �̂�𝑇 · 𝑦 = (𝑆1)
−1/2 · 𝑈1

𝑇 · 𝑦 ( 3.34)  

The resolution of a least squares problem in which the squared errors (𝜀𝑖
2) are weighted 

by the inverse of their variances (1 𝛹𝑖⁄ ), providing the following factor scores: 

 𝑥 = (�̂�𝑇 · �̂�−1 · �̂�)
−1
· �̂�𝑇 · �̂�−1 · 𝑦 ( 3.35)  

Alternatively, as described in [Johnson and Wichern (1992)], the use of the regression 

method leads to the following equation: 

 𝑥 = (𝐼 + �̂�𝑇 · �̂�−1 · �̂�)
−1
· �̂�𝑇 · �̂�−1 · 𝑦 ( 3.36)  

As stated in the introduction of this section, the main goal of the Factor Analysis is to 

detect the variable 𝑥 that are insensitive to the environmental and operational conditions 

then they can be used as features for damage detection. Therefore, is the normal behavior 

of the structure changes and if such change could be detected by modal parameters 

variations, the factor model established using data recorded during the training period 

cannot explain the variations of the observed variable (typically natural frequencies) over 

the reference stage. Hence, these changes remain in the specific factors (𝜀𝑖), which can be 

used as damage features. Furthermore, as described for the PCA method, also the factor 

model should be constructed using data that contain the full range of operational and 

environmental conditions (typically one year). 
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3.5 Detection of structural anomalies 

In the context of SHM purposes based on OMA applications, the use of the models 

described in the previous paragraph permits the removal of the environmental and 

operational effects on the estimates allowing to obtain modal parameters no longer 

affected by the effect of external factors. Therefore, any variation of the obtained features 

can be related to only structural conditions. Follow this way, the presence of anomalous 

occurrences and possible damages on the investigated structure can be detected 

investigating the evolution in time of the obtained environment-independent features.  

A useful strategy adopted for damage detection purpose consists of exploring the trend of 

the modal parameters after the removal of the external factors, in terms of: 

1) prediction error 𝜀𝑘 between experimental estimates and predicted values (obtained 

after removal of environmental and operational effects) of the modal frequencies; 

2) depurated experimental frequencies, computed as: 

 𝑓𝑖(𝑇𝑘) = 𝑓�̅� + 𝜀𝑖𝑘 ( 3.37)  

where 𝑓�̅� is the mean value of the original i-th frequency during the reference period. 

 

3.5.1 Control chart analysis 

The most used alternative approach consists of using a statistical tool defined by a 

control chart. It consists of a graphical plot where the variation in time of data is 

represented along with user-defined variation limits. Normally, the use of the control 

chart is associated to a previous application of pre-described model apt to removal the 

environmental effects from the modal frequency estimations. Then, the variation in time 

of the monitored variables due to structural conditions is checked by means of horizontal 

lines designated control limits and computed from the experimental samples only when 

the process is assumed to be under control (during a training period when the structure is 

assumed as undamaged). In this way, any observation falling outside the control limits 
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has to be considered the result of unusual behavior of the structure that depends on 

structural anomaly (e.g. the occurrence of damage).  

In the context of SHM purposes for continuous assessment applications the control charts 

are normally used according to two different approaches. In the farmer case they are used 

to monitor the stability of a sample observations. This means that a checking is 

performed on all the samples to verify if the control limits extracted from several 

available observations is respected. In the latter case, control charts can be used to define 

a safe control region to check the quality of future observations. This requires the 

definition of an interval reference period (training period) where the process is assumed 

to be in control (no damage occurred in this period) and the properties of data collected 

during this time interval are taken into account to define the control region. It is worth to 

highlighting that this second approach is the more adequate to be implemented in a 

permanent monitoring system, where one of the main goals is to check if each new 

observation, continuously obtained by the analysis of each collected dataset, lies within a 

previously defined “safety” region. 

Furthermore, one of the most frequently used control charts is the �̅�-chart (or X-bar 

chart) this is composed by checking each new observation using three defined horizontal 

lines: the center line (CL), the upper control limit (UCL) and the lower control limit 

(LCL). Where CL is positioned at the mean of the sample and it is defined by all 

observations, indicated with �̿�, whereas the values of UCL and LCL are respectively 

given by adding and subtracting three times the sample standard deviation σ to the mean 

value �̿� and they define the limits of the safety region. 

 

𝐶𝐿 = �̿� 

𝑈𝐶𝐿 = �̿� + 3𝜎 

𝐿𝐶𝐿 = �̿� − 3𝜎 

( 3.38)  

Concluding, if the total sample is divided into subsamples of size 𝑚, σ can be computed 

as the sample standard deviation divided by √𝑚. Moreover, the three standard deviation 
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value is used assuming a normal distribution of the feature that is being controlled and it 

corresponds to a confidence interval of 99.7%. 

Furthermore, in case of SHM approach in which the observations are obtained by the 

analysis of the structural responses collected by dynamic monitoring systems, xk is 

referred to the generic observation at time tk of a one-dimensional feature after the 

removal of the operational and environmental effects. The associated feature can be 

referred to as Novelty Index (NI) [Worden and Manson (2000)] and is defined starting 

from the prediction error (ε) and using either the Euclidian norm: 

 𝑁𝐼𝑘
𝐸 = ‖𝜺𝑘‖ ( 3.39)  

or the Mahalanobis norm: 

 𝑁𝐼𝑘
𝑀 = √𝜀𝑘

𝑇 · (𝛴𝑦𝑦)
−1
· 𝜀𝑘 ( 3.40)  

where 𝛴𝑦𝑦 is the covariance matrix of the measured feature y and both the Euclidian and 

Mahalanobis indices are assumed to be normally distributed. It should be noted that when 

more than one feature is to be monitored, multivariate control charts can be applied. In 

fact, after the definition of a safety region based on the results of the training period, 

future observations can be checked by following two methodologies: i) the check is 

continuously performed for each new provided observation or ii) the check is executed 

only when a set of new observations is available. In this paragraph, only the multivariate 

control chart designated Shewhart T is covered [Montgomery (1997)], meanwhile 

alternatives approaches are described and detailed in [Johnson and Wichern (1992); 

Kullaa (2003)]. 

The formula expressed in the Eq. 3.41 characterizes the Shewhart T control chart. When 

each future observation 𝑥 (a vector with p components) is extracted, the T2-statistic 

parameter is obtained as follows: 

 𝑇2 =
𝑛

𝑛 + 1
(𝑥 − �̿�)𝑇𝑆−1(𝑥 − �̿�) ( 3.41)  
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where n is the number of observations collected during the reference period, �̿� is the 

process average and S is the covariance matrix (both calculated from the observations 

available during the reference period). Moreover, the LCL (lower limit) is set equal to 

zero, whereas the UCL (upper limit) is defined as: 

 𝑈𝐶𝐿 =
(𝑛 − 1)𝑝

𝑛 − 𝑝
𝐹(𝛾) ( 3.42)  

where F (γ) denotes the γ percentage point of the F distribution with p and (n-p) degrees 

of freedom. Otherwise, when future observations are checked by using subgroups with r 

observations of x, the T2-statistic value is calculated as: 

 𝑇2 = 𝑟(�̅� − �̿�)𝑇𝑆−1(�̅� − �̿�) ( 3.43)  

where �̅� is the subgroup average, �̿� and S are the process average and the covariance 

matrix, respectively, computed during the reference period. The LCL is set equal to zero 

whereas the UCL is defined as: 

 𝑈𝐶𝐿 =
𝑝(𝑚 + 1)(𝑟 − 1)

𝑚𝑟 −𝑚 − 𝑝 + 1
𝐹(𝛾) ( 3.44)  

where p is the dimension of the variable (components of each individual observation of 

𝑥), m is the number of subgroups collected during the reference period and 𝐹(𝛾) denotes 

the γ percentage point of the 𝐹 distribution with p and (mr-m-p+1) degrees of freedom. 

In the last decades, control charts have been successfully adopted for damage detection 

approach in several SHM practical applications. Due to its easy implementation and to 

the clear reading of the graphical results control charts approach have received an 

increasing attention in the continuous assessment of Civil Engineering structures. One of 

the most interesting contribution is given by the interesting work [Hu et al. (2015)] in 

which control charts have been successful used for the detection of progressive damage 

over 13 years of continuous monitoring of the Westend bridge in Berlin. 

In that case of studies, after the application of a polynomial regression model that 

allowed to remove the effects of temperature from the identified natural frequencies, the 
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X-bar control chart was adopted to detect possible structural modifications and anomalies 

over time. In Fig. 3.4 the results obtained by the damage detection strategy application 

can be observed. The Novelty Index, represented by the solid colorful lines, gradually 

increases over year and the upper limit are continuously scattered out. Such outcomes 

suggest that the behavior of the investigated bridge is changing, and the bridge is 

subjected to some structural modifications between 2000 and 2013. As reported in the 

work, from an engineering point of view, a possible motivation of this modification can 

lie in the variation of strain measured in the main pre-stressed cable on the east web that 

is gradually decreasing from the end of 2000 to the end of 2013. From a first 

consideration, the progressive loss of strain is suggested by a detected slight drop of the 

natural frequencies. Subsequently, this aspect is coming out from the continuous 

increasing of the ratio of mean of NI over time that is dramatically reach the UCL values 

previously defined. 

 

Fig. 3.4. Variation of NI considering four and five temperature sensors. 

The control chart approach is also successful used for the detection of possible 

numerically structural damage scenarios simulated on a representative Finite Element 

Model (FEM) of the Infante D. Henrique bridge in Porto [Magalhães et al. (2012)]. 

As reported in the paper, Shewhart T charts were used after the combined application of 

a dynamic regression model and PCA on simulated data of a numerical model calibrated 

using experimental data obtained by the permanent monitoring system installed on the 

bridge since the end of 2007. Such approach was used to detect the effects of four 

different numerically simulated damage scenarios. It is worth mentioning that subgroups 
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of consecutive observations with 48 elements were selected, corresponding to one day of 

monitoring, to check the occurrence of possible damage in the structure. Finally, from the 

results reported in Fig. 3.5 is possible to appreciate the robustness of the developed 

strategy capable to detect the occurrence of several damages located in different position 

over the structure. As reported in the graphics, in all four damage scenarios, most points 

lay outside of the previously defined control region when the damage was occurred. 

 

Fig. 3.5. Control charts associated to four damage scenarios in the Infante D. Henrique bridge 
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3.5.2 Pattern recognition models 

Support Vector Machines (SVM) are popular techniques that belong to that class of 

method called Pattern recognition methods. Such techniques are normally used for 

classification problems based on forming decision boundaries that separate data into 

different classes. Many interesting papers and excellent books present in literature 

describe these techniques and their application in different research fields. Interesting 

reading of the main concept related to SVMs can be obtained from [Schölkopf et al. 

(2000), Tax and Duin (1999)], otherwise for a deeper analysis the author suggests the 

excellent book [Bishop (2006)].  

These techniques belong to that class of methods used for classification problems called 

domain-based novelty detection that requires the definition of a boundary margin based 

on training data. Typically, they are not sensitive to specific sampling or density of the 

target class because they describe the target using a boundary, or a domain, and not 

through the class density. This means that the boundary, or better to say the novelty 

boundary, is not detected by all data-points of the input data, but it is determinate through 

the location of those data that lie closest of the boundary itself (normally detected in a 

transformed space), called support vectors. Hence, the distribution of the data-point that 

are not support vectors are not included in the identification of the decision boundary, as 

demonstrate in [Tax and Duin (1999), Hu et al. (2003)]. 

Originally, the SVM models were developed because ideally suited for binary pattern 

recognition, used to perform the classification of data linearly separable. Hence, through 

adopting support vectors these techniques can separate and classify the input data 

constructing and maximizing the separating margin between two classes. Since the 

introduction of the original idea, described in the next Section 6.2, several improvements 

have been implemented to make the algorithm more robust and efficient. As the Robust 

Support Vector Machines (RSVMs) algorithm, developed to address the overfitting 

problem caused by the noise in the training dataset [Hu et al. (2003)]. Or the strategy 

developed by [Schölkopf et al. (2000)] in which the novelty boundary condition is 
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defined through a kernel obtained transforming the input data from the original space into 

feature space. In this development the margin is a sort margin that allows the fall outside 

of same data points from the “normal” class. Another approach, the Support Vector Data 

Description (SVDD) method, proposed by [Tax and Duin (1999)], defines the novelty 

boundary adopting hyperspheres with minimum volume the cover all (or almost all) the 

“normal” class.  

Moreover, some extension of the SVDD approach have recently been proposed [Wu and 

Ye (2009)] to improve the margin boundary using small spheres and large margin. Or 

using some slack variable and set of hyperspheres with different centers and radii [Le et 

al. (2011)]. In the last decades, large amount of works presents in the literature has been 

produced on the use of SVM methods for classification and novelty detection problems, 

some of them are shown below in order to provide a more accurate view of these 

applications in very different fields [Manevitz and Yousef (2002), Sotiris et al. (2006), Li 

(2008), Li et al. (2011)]. 

Over the years, different algorithm based on SVM algorithm have been implemented and 

improved aimed to satisfy most disparate classification problems in several research 

fields. This trend has interested also the Civil Engineering field, addressing special 

attention to application regarding damage assessment. Hence, during the past years, 

several methods of novelty procedure for SHM purposes have been proposed in 

literature. In general, most of these methods consist of evaluating some indexes or 

indicators that permit to detect any possible anomalies and damages on the structure, 

possible locations and even the extension of the damaged regions [Yan et al. (2007)], 

determining if in the structure is present an abnormal behavior associating a probability 

of “true detection” (probability of detect the damage in the structure when it is affectively 

present in the mechanical system.  

On other hand, in SHM approaches for civil engineering structures the first step consists 

of detecting the occurrence of anomalies in the normal structural behavior, and 

subsequently localize such anomalies in the structure. For this purpose, several studies 



Chapter 3 

 

 

154 

 

have been performed using statistical tests and pattern recognition approach based on 

comparison of data extracted by healthy and damaged conditions [Zhang (2007), Iwasaky 

et al. (2004)]. These approaches are efficient and useful when the structural response can 

be obtained with high level of confidence. Moreover, these methods proved to be 

effective when relatively small sets of data are used for the training and testing phases, 

however large number of features and input data lead to hard time consuming [Chun et 

al. (2005)]. A proposed strategy to detect possible anomalies was described in [Guo 

(2006)]. From the results obtained by the application of this methodology was 

demonstrated how the loss of information can lead to an incorrect classification providing 

false alarms for damage detection. Many other techniques have been developed to detect 

several damage scenarios using modal parameter estimation, as described in 

[Trendafilova and Heyleno, (2003)] where an unsupervised learning classification 

algorithm was developed and used to detect several structural damage states through the 

natural frequencies extracted by vibration responses of a cantilever bean.  

SVM algorithms are aimed at separating two different classes using a discrimination 

function which is automatically computed during the classification process of the training 

datasets. Within the context of SHM and damage detection of civil engineering structures 

[Sohn et al. (2002)], two classes of data are assumed over time, corresponding to 

undamaged and damaged condition. Hence, in order to simplify the discussion about the 

proposed patter recognition algorithm some explanations have to be done: the SVM has 

to distinguish data belonging at two different classes, if it fails the classification means 

that data are not separable, then they belong to the same class and, consequently, the 

structural damage is not identified. On the contrary, the successful detection of two 

classes implies that a structural anomaly or an instantaneous damage occurred in the 

monitored system. Although SVM algorithms are normally used for two-class 

classification problems, extension to multi-classes classification can be done but this 

aspect will not be treated in this thesis, because the proposed procedure for SHM purpose 

is developed following a binary condition: absence or presence of damage and no other 

states are allowed. 
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The SVMs are generally based on a geometric approach, consisting of the construction of 

an optimal separating surface − a hyper-plane − which divides the data population in two 

groups with different statistical characteristics. The hyper-plane is equidistant from the 

two classes defining a margin zone between them. Similarly, to Neural Network 

classification, the input data are supposed to belong to different classes and the outputs 

consist of the target binary vectors (labels) corresponding to each class. In case of linear 

separable data, the SVM algorithm searches the optimal solution to classify the data by 

maximizing the distance between the hyper-plane and the extreme values of the two 

classes, so called Support Vector. 

Moreover, in order to exemplify and simplify the behavior of the SVM algorithm, the 

basic assumptions are described in Chapter 6. Furthermore, the processes used to define 

the optimal separation surface and the margin zone between the classes are exemplified 

and described in detail.  

 

3.6 Selected examples of SHM based on OMA 

Among the important and interesting application regarding the SHM of Civil Engineering 

structures present in literature, two important case studies are reported here in detail. 

  

Westend bridge 

The first author’s proposal concerning application of OMA-based SHM on large 

infrastructure is represented by Westend bridge (see Fig. 3.6) in Berlin, Germany. The 

results provided by continuous monitoring of the bridge over fourteen years (between 

2000 and 2013) is reported in the interesting papers [Hu et al. (2015); Hu et al. (2018)]. 

The bridge was built in 1963 and it is composed by a curved pre-stressed concrete box 

girder bridge divided into eight spans varying from 5.0 m to 38.0 m, with a whole length 

of 242.0 m. An integrated permanent monitoring system was initially installed in 1994 
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with the main purposes of continuously recording the structural dynamic responses of the 

bridge under normal operational conditions. The permanent system was modified and 

updated several times and currently it consists of 32 sensors including accelerometers, 

vertical velocity sensors, temperature sensors, strain gauges, inclination sensors and 

position sensitive devices. The continuous dynamic monitoring started on March 2000 

and it continuously provides the structural responses of the bridge subjected to 

environmental and operational loads with a sampling frequency equal to 128 Hz. 

 

Fig. 3.6. The Westend bridge in the A100 highway in Berlin 

From the first inspection of the temperature measurements collected and the five natural 

frequencies evolutions obtained by the tracking process over the year, a clear dependency 

of the frequency on temperature is proved by the obvious annual fluctuations reported in 

Fig. 3.7. Furthermore, from a deeper analysis of the correlation between independent 

variables (i.e. temperature recorded by all 5 sensors) and the obtained features (i.e. 

natural frequencies) shown in Fig. 3.8, a slight non-linear influence of the temperature on 

the identified modal frequencies was observed.  
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Fig. 3.7. Variation of temperature measurements and estimated natural frequencies from 

01/01/2000 to 31/12/2013 

Furthermore, the implementation of a polynomial regression relationship established 

between extracted natural frequencies and measured temperature allowed to successfully 

remove the operational and environmental effects and carry on the damage detection 

process on environment-independent features. 

 

Fig. 3.8. Effect of temperatures on the estimated frequencies 

 

Infante D. Henrique bridge 

A further important example of SHM based on OMA approach is referred to the case 

study of Infante D. Henrique bridge over the Douro River in Porto, Portugal (Fig. 3.9), in 

which a permanent monitoring system is installed for the continuous dynamic assessment 

purpose of the bridge since September 2007. The structure, opened to traffic in 2004, 

consists of a rigid pre-stressed concrete box girder supported by a thin reinforced 

concrete arch that spans 280 m between abutments.  
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Fig. 3.9. Position of the accelerometers and temperature sensors 

The dynamic behavior of the bridge has been continuously monitored since September 

2007 using a system composed by twelve accelerometers disposed in four instrumented 

sections as reported in Fig. 3.9. The monitoring of the structure is completed by an 

independent static system, installed during the construction of the bridge and comprising 

temperature sensors embedded in the concrete. The modal identification was performed 

using an automated OMA technique (developed within the DynaMo software) applied to 

data continuously collected by permanent system over the years. 

From the obtained results provided by the continuous dynamic monitoring process a clear 

yearly fluctuation of the natural frequencies is highlighted. Moreover, from the 

comparison of the evolution of the natural frequencies with the time trend of the 

corresponding temperatures the predominant effect of this factor on the frequency 

variation is established Furthermore, a second factor exhibiting relevant influence on the 

natural frequencies was the amplitude of the excitation, related to daily and weekly traffic 

intensity. 

The different methodologies adopted to remove environmental and operational effects 

were calibrated using data collected during the first year of monitoring, whereas data 

acquired during the second year were used to assess the quality of the forecasts of the 

methods. 
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An interesting application, where multiple linear regression and PCA were adopted in 

sequence in order to remove the effects of environmental and operational factors, is 

described in [Magalhães et al. (2012)]. 

In particular, a multiple dynamic regression model was used to remove the effects of the 

measured environmental and operational factors, whereas PCA was applied to eliminate 

the residual correlation between natural frequencies due to the influence of unknown 

common features. This application will be described in detail in the following §0. 

At first, three static regression models were implemented considering an increasing 

number of predictors (from two to five). The results, presented in Fig. 3.10, proved the 

best model to be the one where all the five predictors were used: temperature recorded in 

two different sections, accelerations recorded in two different sections (lateral in one case 

and vertical in the other) and the damping ratio of one natural mode to indirectly take into 

account the effect of traffic jams over the deck.  

 

Fig. 3.10. Comparison between experimental and predicted results using static regression models 

A second phase involved the adoption of dynamic regression models to further reduce the 

differences between forecasts and observations. In this context, it was assumed that the 

frequencies observed at time t was also dependent on temperatures measured at previous 

time instants. Therefore, temperatures referred to 6, 12, 18 and 24 hour-time delays were 

also considered as predictors. Again, the model providing the best results was the one 

accounting for all the considered input variables, with slight but not negligible 

improvements with respect to the static methods.  
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Fig. 3.11. Time evolution of the first natural frequency before and after the application of the 

dynamic regression model 

Finally, in order to test the damage detection skills of the dynamic method, some damage 

scenarios were simulated adopting a tuned numerical model of the structure and reducing 

the vertical bending inertia of different elements. It was observed that, after adopting the 

dynamic model to remove the influence of the factors with greater importance, the 

natural frequencies of the structure were still correlated with each other (meaning they 

were still affected by common factors). Therefore, the PCA was used to minimize the 

effect of the less relevant factors that were not monitored (e.g. humidity, wind, etc.). The 

obtained results proved the effectiveness of the adopted statistical tools, allowing to 

detect the effects of damage producing frequency variations smaller than 0.4%. 

 

3.7 Conclusions 

This Chapter was devoted to the description of two alternative approaches for Structural 

Health Monitoring (SHM) purposed based on modal parameters extracted by structural 

responses continuously recorded by dynamic system installed on investigated structure 

measured during normal operation. A comparison between the classical SHM approach 

with the new developed strategy based on pattern recognition models is given detailing 
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the advantages and disadvantages of both developments. As described, the successful 

application of the former approach depends on of two crucial tools: algorithms for the 

automated identification of modal parameters and algorithms for the elimination of 

environmental and operational effects on modal parameters. Meanwhile, the latter 

approach is mostly based on the efficiency and robustness of those algorithms apt to only 

perform the automated identification of the modal parameters. 

Due to their importance for the estimation of the modal parameters for SHM purposes, 

special emphasis about the development and application of such algorithms on data 

collected during single Ambient Vibration Test or in the context of Continuous Dynamic 

Monitoring is given in the following Chapters. On the contrary, a deeply description of 

the main approaches used to eliminate the effects of environmental and operational 

variables on modal parameters (normally natural frequencies) is provided in this section. 

Among different techniques developed to remove the external factors effects, two main 

classes can be defined: the input-output methods and the only-output methods.  

As already mentioned, the removal of environmental and operational effects is generally 

carried out on the natural frequency estimates which are affected by these factors. This is 

the first limitation of the classical OMA-based SHM purposes that tends to be avoided in 

the development of this Dissertation trying to keep on also the mode shape variation 

during the continuous monitoring of the structure as observed parameter. 

Nevertheless, in the first case (e.g. input-out methods) it is considered that all the 

variables with relevant influence on the natural frequencies can be measured. In this case, 

it is possible to establish regression models between observable variables (the estimated 

natural frequencies) and the measured operational and environmental factors using data 

recorded in a reference period (training period) during which the structure is assumed to 

be undamaged. 

On the other hand, in the second case (i.e. output-only methods) the removal of the 

external factors effects on the natural frequency estimates is carried out adopting 

multivariate statistical tools as Principal Component Analysis (PCA) and Factor Analysis 
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(FA) involving the use of implicitly models that define a sort of (linear and/or non-linear) 

relationship between environmental and operational variables and natural frequencies. 

Following this approach, the measurements of environmental and operational parameters 

is avoided. It is worth to highlighted that not all the damages that could be detected using 

regression models for instance are detectable adopting the output-only methods. In fact, 

this alternative strategy can be applied after a previous investigation of the linear 

combination between the observable variables during the training period. This hypothesis 

affects the strategy making possible the detection of the damages that produce changes 

on the natural frequencies which are orthogonal to the changes due to environmental or 

operational factors. 

In the end of this Chapter an overview of the main reference about pattern recognition 

models and Support Vector Machine model that constitutes the main step of the new 

SHM strategy is given in detail. Thoroughly, the new strategy does not require a large 

period of time which contains the full range of operational and environmental variations 

typically used in the classical SHM approaches, making this strategy attractive and 

economically advantageous for the continuous monitoring of large infrastructures as well 

as ancient constructions. 

Finally, the development of the automated modal parameters estimation (MPE) tools that 

involve the construction and the interpretation of the stabilization diagrams will be 

deeply described in the next Chapters. In particular, the first automated MPE algorithm is 

described in Chapter 4. Moreover, a generalization of the automated algorithm to 

complex modes and its main improving that avoid the initial tuning of the input 

parameters of the parametric methods is discussed in Chapter 5. The automated Modal 

Tracking (MT) procedure is fully described in Chapter 6 with its application on data 

collected on two important European bridges. 

Chapter 7 is completely devoted to the description of the new SHM approach and 

damage detection procedure that consists of the most important contribution provided by 

this Dissertation. 



4 Chapter 
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Chapter 4 

 

 

164 

 

Contents 

 

4.1 Introduction 

4.2 Proposed method of automated modal identification 

4.2.1  Automated Modal Parameter Estimation procedure 

4.2.2  Pre-filtering 

4.2.3  Clustering procedure 

4.2.4  Post-processing 

4.3 Application of the MPE algorithm to numerical data 

4.3.1  Description of the academic structure composed of 5 DOFs 

4.3.2 Extraction of the modal parameters from the numerical time series 

4.4 Application and validation of the MPE algorithm using real data  

4.4.1 Application of the algorithm to AVT data collected on a footbridge 

4.4.1.1 Description of the footbridge and the equipment used for the AVT 

4.4.1.2 Application of the automated algorithm and validation of obtained results 

4.4.2 Application of the algorithm to dynamic tests data of The Olla bridge  

4.4.2.1 Description of the bridge and historical background 

4.4.2.2 AVTs configuration and primary results using commercial software 

4.4.2.3 Application of developed algorithm to dynamic tests data 

4.5 Conclusions 

 

 

 

 

 

 

 



Development of automated Modal Parameter Estimation algorithm 

 

 

165 

 

4.1 Introduction 

The increasing diffusion of long-term dynamic monitoring systems for structural 

assessment as well as the success of different damage detection algorithms are driving 

the strong interest of the last decades towards automated procedures of output-only 

modal identification. Nowadays, different approaches of automated procedures apt to 

identify modal parameters in operational conditions have been developed, often based on 

the Stochastic Subspace Identification (SSI) methods. The main objective is to 

automatically estimate modal parameters using of investigated structures just the 

structural response measured under ambient excitation for big infrastructures [Andersen 

et al. (2007), Magalhães et al. (2008), Peters et al. (2009), Cross et al. (2013), Gentile et 

al (2015)] and Cultural Heritage buildings [Saisi et al. (2015), Ubertini et al. (2016)].  

The large attention currently received by SSI-methods probably depends on the fact that 

these procedures are apt to accurately identify weakly excited and closely space modes 

and are especially suited to be automated. Presently, SSI procedures can be implemented 

in two classic forms: covariance driven (SSI-Cov) and data driven (SSI-Data). Various 

strategies have been implemented for the SSI outputs interpretation [Magalhães et al. 

(2009), Reynders at al. (2012), Ubertini et al. (2013)], considering that two main 

parameters affect the results: a) n, the maximum order of the stochastic model; b) i, the 

time-lag index used to define the number of output block rows used to build the Toeplitz 

block matrix (SSI-Cov), or the size of the Hankel matrix (SSI-Data).  

In this Chapter, an identification algorithm of Modal Parameter Estimation (MPE) for 

OMA purpose aimed at obtaining the modal estimates from the collected structural 

responses has been developed. This algorithm consists of the application of a new 

automated identification procedure based on the adoption of a SSI method in which its 

outputs (poles), obtained for increasing model order, are used to construct the well-

known graphical tool called stabilization diagram [Peeters and De Roeck (1999); Peeter 

(2000)].  
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4.2  Proposed method of automated modal identification 

4.2.1 Automated Modal Parameter Estimation procedure 

The identified algorithm described herein consists of three “key-steps” which are 

subsequently applied to the stabilization diagram obtained from the application of a 

parametric method with the aim to easily detect the stable alignments composed of stable 

poles that maintain consistency in terms of modal parameters for increasing order of the 

state-space model. In the present application, the collected data are analyzed using the 

SSI-Cov method which is strictly correlated to the covariance matrix of the time series 

collected during each single test. Afterwards, the modal estimates are extracted by each 

pole (i.e., SSI output) solving the eigen-value problem. Thus, the estimates of the 

resonant frequencies are reported on the stabilization diagram. 

The procedure implemented herein is aimed at automatically identifying the modal 

parameters applying a series of subsequent tasks to the stabilization diagram [Reynders at 

al. (2012)]. As previously stated, the MPE algorithm is composed of three steps: 

1) Pre-filtering, i.e. the removal of certainly spurious poles that are detected by applying 

three single-mode validation criteria. As usual, validation criteria considering the 

physical consistency of damping ratios and the complexity of mode shape 

components have been adopted; 

2) Clustering, i.e. the process of detecting and grouping all the poles of the stabilization 

diagram that share same characteristics in terms of modal parameters. This step 

ideally corresponds to the inspection of the stabilization diagram, carried out by an 

expert user in a manual approach, to identify the alignments of stable poles; 

3) Post-processing, i.e. the removal of possible replications of the structural modes and 

outliers in order to conceivably increase the accuracy of the modal estimates. 
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Fig. 4.1. Flowchart of the proposed methodology  
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4.2.2  Pre-filtering 

Pre-filtering is the first part of the developed algorithm and it is composed of a series of 

applications of different single-mode validation criteria aimed at detecting and removing 

most of spurious poles from the stabilization diagram. In fact, as well known, the quality 

of the stabilization diagram can be compromised by poor signal-to-noise ratio of the data, 

even more evident in case of a simple monitoring system composed of a few sensors. In 

addition, the choice of high model order, used for detecting weakly excited modes, 

contributes to the formation of spurious modes which is related to the noise content 

present in the signal and numerical inaccuracies. Therefore, the application of modal 

validation criteria is used to reject spurious poles, cleaning the stabilization diagram and 

consequently speeding up the automatic interpretation of the chart during the clustering 

process.  

In particular, the first discrimination between spurious poles and physical ones is 

performed using a pre-selected damping ratio threshold. In fact, in normal operating 

conditions the behavior of the structure is strictly stable, and the structure is lightly 

damped. Thus, the damping ratio corresponding to a structural mode should be positive 

[Pappa et al. (1993)]. On the other hand, highly damped modes (for instance, with a 

damping ratio larger than 10%) are not realistic and conceivably associated with the 

noise content of the signal [Reynders et al. (2012), Cabboi et al. (2015)]. Therefore, poles 

associated to negative damping ratio or high damping (i.e., damping exceeding a 10% of 

threshold, which seem a conservative value for Civil Engineering structures under 

ambient and/or operational excitations) are discarded. 

Subsequently, because in operational modal analysis the identified structural mode 

shapes are complex vectors, further single-mode validation criteria aimed at quantifying 

the complexity degree of the mode shape components could be adopted to evaluate 

whether the estimated poles correspond to physical or spurious modes. In fact, when a 

structural system is proportionally damped, the mode shape components lie on a straight 

line of the complex plane. Hence, the covariance between the imaginary and real part or 
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the angle deviation of the mode components could be used to define a measure of the 

mode complexity and then the physical meaning associated of each extracted pole.  

In this way, the first single-mode validation criterion used to measure the complexity of 

the mode shapes related to the identified poles is the Modal Phase Collinearity (MPC). 

This index provides an estimation of the correlation value calculated between the 

imaginary and real part of each mode shape component. Moreover, it tends to unity in 

case of real modes. Otherwise it tends to zero for high complex modes.  

The description of this criterion can be found in [Pappa et al. (1993)] and its well-

founded application is performed in [Reynders et al. (2012)]. Following the description 

reported in [Reynders et al. (2012)], the MPC can be defined as a correlation index that 

evaluates the linear relation between the real (Re) and imaginary (Im) part of the 

identified modal vector 𝜑𝑟. Hence, if the imaginary part is strongly correlated to the real 

part, the MPC value is close to the unity indicating the mono-phase behavior of the mode 

shape. This usually occurs for real modes. Otherwise, in complex modes this value tends 

to zero as much as the complexity of the mode. The MPC is calculated as follows: 

 MPCr =
‖Re(φ̃r)‖2 + [Re(φ̃r

T)Im(φ̃r)][2(εr
2 + 1)sin2(αr) − 1]εr

−1

‖Re(φ̃r)‖2 + ‖Im(φ̃r)‖2
 ( 4.1)  

where each unknown coefficient is calculated as described in the following equations:  

 

�̃�𝑘𝑟 =
∑ 𝜑𝑘𝑟

𝑁
𝑘=1

𝑁
  

𝜀𝑟 =
‖𝐼𝑚(�̃�𝑟)‖2 − ‖𝑅𝑒(�̃�𝑟)‖2

2[𝑅𝑒(�̃�𝑟
𝑇)𝐼𝑚(�̃�𝑟)]

 

𝛼𝑟 = 𝑎𝑟𝑐𝑡𝑎𝑛 (|𝜀𝑟| + 𝑠𝑖𝑔𝑛(𝜀𝑟)√1 + 𝜀𝑟
2) 

( 4.2)  

To clarify, if the structure is proportionally damped, the mode shape components of the 

single modes lie on a straight line in the complex plane. In other words, this means that 

the real part and the imaginary part exhibit a correlation index (MPC) equal to 1. 

However, in OMA application, the resulting structural mode shapes are generally 
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complex vectors in which the imaginary part of the components are always (with a 

certain degree) correlated to the real part, indicating a kind of mono-phase behavior. 

Mono-phase behavior means that all the instrumented points of the investigate structure 

vibrate exactly in-phase or out-of-phase. In such case, the covariance matrix between the 

real and imaginary part of the mode shape vector has only one non-zero eigenvalue. 

Otherwise, in case of complex modes in which the two parts are completely uncorrelated, 

the eigenvalues of the correlation matrix are more than one and they will be 

approximately with same value. 

Another single-mode validation criterion, used for detection of noise modes in automatic 

modal identification analysis, is the Mean Phase Deviation (MPD). This index [Pappa et 

al. (1993), Verboven et al. (2002)] is a statistical indicator and it is used to define and 

quantify the mean deviation of each mode shape component from the mean phase of the 

identified mode. In other words, the MPD can be computed as the angle provided by 

scalar product between the best straight line that characterize the mode shape in the 

complex plane (i.e. the straight line associated with the large component) and every 

single (weighted) component. This indicator tends to zero degree in case of real modes. 

Therefore, as reported in [Reynders et al. (2012)], the MPD is a statistical indicator that 

measures the phase scatter (in degree) of the identified modal vector through the phase 

deviation of each modal component from the mean phase. In case of real structural 

modes, in which the imaginary parts of the components are strictly related to their real 

parts, the value should tend to 0 [Heylen et al. (2007)]. Defining the mean phase as 

reported in the following equation: 

 𝑀𝑃𝑟 =
∑ |𝜑𝑘𝑟| · 𝛼𝑘𝑟

𝑁0
𝑘=1

∑ |𝜑𝑘𝑟|𝑁0
𝑘=1

 ( 4.3)  

in which 𝜑𝑘𝑟 is the weighted factor, and it is the 𝑘𝑡ℎelement of the 𝑟𝑡ℎ identified mode 

shape, and 𝛼𝑘𝑟 is its phase angle; 𝑁0 indicates the number of the modal vector 

components. 𝑀𝑃𝑟 is the mean phase of the of the identified mode 𝜑𝑟. Thus, the mean 

phase deviation (MPD) of the identified modal vector is defined below: 



Development of automated Modal Parameter Estimation algorithm 

 

 

171 

 

 𝑀𝑃𝐷𝑟 = √
∑ |𝜑𝑘𝑟|(𝜑𝑘𝑟 − 𝑀𝑃𝑟)2𝑁0

𝑖=1

∑ 𝜑𝑘𝑟
𝑁0
𝑖=1

 ( 4.4)  

Generally, in the literature the MPD is alternatively used to the MPC (because they are 

both index used to quantify the mode shape complexity for proportionally damped 

structures) or, as reported in the recent paper [Cabboi et al. (2017)], it is suggested to 

combine the two criterion to reduce the two parameters to a one indicator of complexity. 

On the contrary, because the information provided by the two indices (i.e. MPC and 

MPD) is not completely equivalent, in the proposed methodology the two criteria have 

been performed in a consecutive way. This strategy is aimed at removing most of 

spurious poles from the stabilization charts to make easier the automated identification of 

the stable alignments in the subsequent step.  

It is worth noting that the mode complexity depends on various factors, such as 

identification issues (related to ill excited modes, noise content) or measurements errors 

(linkage error and synchronization problems) or also to the non-linear behavior of the 

structure (in case of non-proportional damping). Therefore, assuming good conditions, 

the choice of the thresholds is mainly related to the expected characteristics of the 

investigated structure and it requires a previous knowledge of the equipment used for the 

tests and also the state of preservation of the structure under investigation. Otherwise, if 

such information is not available, complexity thresholds can be safety selected in order to 

remove certain spurious poles related to noise modes and deliver a clearer stabilization 

diagram for the subsequent clustering process. 

The cleaning action exerted by the pre-filtering routine is exemplified in Fig. 4.2. 

Specifically, Fig. 4.2(a) schematically shows the results obtained by applying the SSI 

method for increasing model orders (i.e., from 4 to 30). As already described in Chapter 

2, a stochastic state-space model is used to fit the dynamic behavior of the investigated 

structures. Each solution of the stochastic model, called pole, is defined in terms of 

eigenvalue and eigenvector which are strictly related to the modal parameters of the 

structure, being the eigenvalue associated to the modal frequency and damping ratio and 
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the eigenvector being used to estimate the corresponding mode shape. afterwards, in Fig. 

4.2(b) the resulting poles obtained after the application of the first single mode validation 

criterion to SSI outputs, are reported. 

In order to provide a intuitively exemplification of the cleaning actions exerted by 

application of the selected complexity thresholds on the solutions of the stochastic model 

(poles), the performance of each complexity validation criterion (i.e., MPC and MPD) is 

reported in the following Fig. 4.2(c) and Fig. 4.2(d), respectively. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 4.2. Cleaning action exerted by the pre-filtering: (a) SSI output; (b) after the damping check; 

(c) after the MPC check and (d) after the MPD check (the “X” mark indicates the removed poles). 
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4.2.3  Clustering procedure 

As described in the previous Chapters, the use of output-only stochastic models was 

revealed a winner strategy in the context of OMA analysis. In fact, the stable solutions of 

the state-space model present high consistency for increasing order allowing for an easy 

identification of the modal features. Once most of noise and spurious poles have been 

removed through the pre-filtering, a clustering procedure needs to be applied to group all 

those poles that have same characteristics in terms of modal parameters.  

The clustering procedure developed herein is mainly inspired to the procedure described 

in [Cabboi et al. (2017)] introducing some variations to better define the reference points 

during the construction of the representative clusters. 

As demonstrated by several OMA applications, a popular way to group similar poles is to 

measure the Euclidean distance among all pairs of estimated poles: this operation can be 

performed because stable poles are generally grouped in high density areas whereas noise 

modes are much more scattered. According to [Peeters and De Roeck (1999), Magalhães 

et al. (2009)], the distance among pairs of estimates is calculated checking their similarity 

in terms of natural frequencies and corresponding mode shapes into a hierarchical 

clustering method. This approach turned out to be very effective for the modal 

identification of recent constructions as well as for permanent monitoring purposes using 

system with diffused sensors: in such instances, the generation of a high quantity of noise 

modes is avoided and an easier detection of the structural ones is allowed.  

On the other hand, applying the same strategy to ancient buildings and masonry 

constructions, in which the monitoring system is composed of a limited number of 

sensors and the recorded responses are generally characterized by a less signal/noise 

ratio, the identification process could not be always straightforward and also lead to 

important issues. Taking into account these considerations, the clustering process herein 

adopted is based on the definition and on the use of a reference point inside each cluster. 

To clarify, it is worth highlighting that the clustering process presented herein uses the 

concepts of fixed reject distance (see e.g. Magalhães et al. (2009)) and the reference pole 
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(see Cabboi et al. (2017)) to group all those poles with same characteristics. The metric 

used in the clustering procedure is described the follow equation: 

 𝑑𝑖,𝑟𝑒𝑓 =
|𝑓𝑖,𝑟𝑒𝑓 − 𝑓𝑖,𝑗|

𝑓𝑖,𝑟𝑒𝑓
+ 1 −

|𝜑𝑖,𝑟𝑒𝑓
𝐻 ·   𝜑𝑖,𝑗|²

[(𝜑𝑖,𝑟𝑒𝑓
𝐻 · 𝜑𝑖,𝑟𝑒𝑓) · (𝜑𝑖,𝑗

𝐻 · 𝜑𝑖,𝑗)]
 ( 4.5)  

where: 

- di,ref  represents the inter-cluster distance, defined as the distance between each 

candidate pole and the reference pole of the cluster (update to i-th order); 

- fi,ref and φi,ref are the mean frequency and mean mode shape of the reference pole, 

which are updated with the increased dimension of the cluster; 

- fi,j and φi,j are the modal parameters (natural frequency and mode shapes) 

corresponding to the current pole. 

The operator |•| is the absolut value, meanwhile [•]𝐻 corresponds to complex conjugate 

operator. In order to clarify the nomenclature used Eq. 4.5, the subscripts associated to 

each parameter in the formula correspond to the j-th solution of the stochastic model 

defined by i-th model order. 

The procedure is repeated in order to scan all available poles on the stabilization diagram 

and it is stopped only when all poles have been checked and grouped into clusters. The 

clustering procedure consists of the following steps: 

1) Allocation of the cluster seed. The first reference point of the first cluster is 

associated to the pole with the lowest natural frequency value of the lowest order; 

2) Checking of the similarity between the reference point and the poles obtained for 

increased orders is evaluated using Eq. 4.5 and if the Euclidean distance does not 

exceed a pre-selected inter-cluster threshold, the current pole is kept on; 

3) Detection of the closest pole among the previously detected ones; 

4) Selection and inclusion of the closest pole (in term of distance) into the cluster; 

5) Definition of the new reference cluster point (in terms of mean natural frequency and 

mean modal shape) using all poles present into the cluster; 

6) Repetition of the points 2)-5) until checking the poles in the highest model order. 



Development of automated Modal Parameter Estimation algorithm 

 

 

175 

 

A graphical representation of the generation of the first cluster is described in Fig. 4.3. 

Specifically, starting from the resulting poles provided by the pre-filtering routine (Fig. 

4.3(a)), the allocation of the first seed is performed (Fig. 4.3(b)), then the formula in Eq. 

4.5 is cursively applied for increasing model order (Fig. 4.3(c)) to reach the available 

estimates in the highest order (Fig. 4.3(d)). Therefore, when the poles in the highest order 

are scanned and possibly grouped, the first representative cluster is completed and all 

poles already assigned to the cluster are not considered in the process anymore.  

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 4.3. First cluster generation: a) available poles provided by pre-filtering. b) allocation of 

the cluster seed, c) linking between estimates of consecutive order and d) final cluster. 

Subsequently, the steps 1)-6) are recursively repeated to group all available poles with 

same dynamic characteristics into different representative clusters as depicted in Fig. 4.4. 

Hence when all poles are allocated and grouped, as it is customary, the shorter clusters 

(i.e., the clusters containing a number of elements lower than one third or one fourth of 

the elements present in the largest cluster) are considered as noise modes and discarded, 

as illustrated in Fig. 4.4(f). 

4 ● ●
6 ● ● ●
8 ● ● ● ●

10 ● ● ● ● ●
12 ● ● ● ● ●
14 ● ● ● ● ● ●
16 ● ● ● ● ●
18 ● ● ● ● ● ●
20 ● ● ● ● ● ● ●
22 ● ● ● ● ● ● ● ● ●
24 ● ● ● ● ● ● ● ●
26 ● ● ● ● ● ● ● ●
28 ● ● ● ● ● ● ● ●
30 ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIRST CLUSTER

M
O

D
E

L
 O

R
D

E
R

MODEL SOLUTION

4 ● ●
6 ● ● ●
8 ● ● ● ●

10 ● ● ● ● ●
12 ● ● ● ● ●
14 ● ● ● ● ● ●
16 ● ● ● ● ●
18 ● ● ● ● ● ●
20 ● ● ● ● ● ● ●
22 ● ● ● ● ● ● ● ● ●
24 ● ● ● ● ● ● ● ●
26 ● ● ● ● ● ● ● ●
28 ● ● ● ● ● ● ● ●
30 ● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIRST CLUSTER

M
O

D
E

L
 O

R
D

E
R

MODEL SOLUTION

4 ● ●
6 ● ● ●
8 ● ● ● ●

10 ● ● ● ● ●
12 ● ● ● ● ●
14 ● ● ● ● ● ●
16 ● ● ● ● ●
18 ● ● ● ● ● ●
20 ● ● ● ● ● ● ●
22 ● ● ● ● ● ● ● ● ●
24 ● ● ● ● ● ● ● ●
26 ● ● ● ● ● ● ● ●
28 ● ● ● ● ● ● ● ● ●
30 ● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIRST CLUSTER

M
O

D
E

L
 O

R
D

E
R

MODEL SOLUTION

4 ● ● ●
6 ● ● ● ●
8 ● ● ● ● ●

10 ● ● ● ● ● ●
12 ● ● ● ● ● ●
14 ● ● ● ● ● ● ●
16 ● ● ● ● ● ●
18 ● ● ● ● ● ● ●
20 ● ● ● ● ● ● ● ●
22 ● ● ● ● ● ● ● ● ● ●
24 ● ● ● ● ● ● ● ● ●
26 ● ● ● ● ● ● ● ● ● ●
28 ● ● ● ● ● ● ● ● ●
30 ● ● ● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
O

D
E

L
 O

R
D

E
R

FIRST CLUSTER

MODEL SOLUTION



Chapter 4 

 

 

176 

 

 

 

Fig. 4.4. Clustering procedure: a) creation of the first, b) the second, c) the third and d) the fourth 

cluster, e) allocation of all available poles and 7) removal of the shorter clusters (noise modes). 

Finally, in the end of the clustering procedure, only the clusters standing above the limit 

are not removed and saved for the next subroutine. Moreover, the mean modal estimates 

extracted by resulting clusters, become the set of reference estimates of the next key-step 

of the developed tool. 
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3.2.4  Post-processing  

The last subroutine of the proposed MPE algorithm is aimed at checking the consistency 

of the results delivered by the clustering process and at improving the accuracy of the 

modal estimates by applying simple statistical rules. The post-processing is composed of 

three different checks applied in consecutive way: 

1) The first check is performed on the modal estimates provided by clustering 

algorithm. This task is achieved performing a further clustering process in order to 

amend some possible inaccuracies occurred during the construction of the clusters in 

the previous step, as loos of estimates in beginning of the cluster generation. 

2) The second check is performed on the resulting mode shapes estimates in order to 

remove possible replications of the structural modes mainly related to the model 

inaccuracy. 

3) The third check consists of an application of simple statistical tool to remove the 

extreme values of the clusters and to extract estimates with less uncertainty. 

 
Fig. 4.5. Resulting clusters used to define the centroids and the related inter-cluster distanced used 

for the post-processing routine. 

In more details, the first check of the post-processing is performed through a new (non-

hierarchical) clustering approach in which the task of the procedure is reached without 

providing any user-defined distance thresholds. The characterization of the new clusters 

is automatically performed by the procedure itself using the statistical properties of the 

distribution of the estimates within each (previous) resulting group. 
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To better explain, the pairs of mean values (natural frequency and mode shape) obtained 

by the previous clustering tool are now used as centroids to construct new clusters 

inspired to an agglomerative approach. Furthermore, the inter-cluster distance associated 

to each centroid is now defined by the real distribution of poles inside each selected 

cluster.  

The aim of the present check is to amend possible inaccuracies occurred at the beginning 

of the cluster generation (such as loss of poles belonging to the cluster or, conversely, 

outliers fallen into the cluster) and consequently reduce the dependence of the identified 

modes on the user-defined input parameter (i.e., inter-cluster threshold) that needs to be 

tuned in the very beginning of the identification process. In other words, the checking is 

performed to improve the accuracy of extracted modal parameters estimates, generally 

highlighted by a decreased standard deviation. It is further noticed that, since the 

reference values have been already defined, the computational cost of the second 

clustering is drastically reduced. 

It is worth highlighting that in the context of automated processing this subroutine tends 

to solve the main issue related to the initial tuning of the inter-cluster threshold. In fact, 

as it will be shown in the applications on real structures, it could happen that numerical 

modes appear between the structural ones during the investigation analysis. This situation 

could happen when some numerical modes maintain a sort of consistency for increasing 

order forming groups of poles with considerable number of elements that are not 

removed by the cluster cut-level.  

Normally, such modes are manually removed from the results requiring a user 

intervention. The aim of the post-processing is to avoid the manual operation mimicking 

once again the choice of an expert analyst and providing a more robust set of structural 

modes. 
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To clarify the role of the second clustering, the main steps are reported here below: 

1) The post-processing receives as input the system matrices of poles obtained after the 

removal of spurious and noise modes (i.e., after pre-filtering), together with the mean 

values and standard deviations of the obtained clusters (i.e., after clustering). 

2) Starting from the cluster with the highest number of elements, a new agglomeration is 

performed in the sub-routine using the mean value of natural frequency and mode 

shape associated to each selected cluster as centroid of the group. 

3) The Euclidean distance between the centroid and all available poles is calculated for 

each model order, starting from the lowest order to reach the highest available one. 

4) If available, only one pole for each model order is associated to the reference centroid. 

5) Once the pole has been associated to the centroid, it is removed from the available 

ones and it is kept into the new cluster. 

6) The steps 2)-5) is repeated in order to use all available centroids provided by the 

clustering procedure 

It is worth remarking that following this strategy, the distance thresholds associated to the 

representative centroids have different values and each value is equal to four times the 

standard deviation relates to the poles distribution into the clusters previously obtained. 

Subsequently a check on the mode shapes is performed and aimed at identified any 

possible replications of the physical modes in the stabilization diagram. In fact, as 

pointed out in [Cabboi (2013)], a stable alignment could split in two close alignments 

which refer to the same structural mode.  

As described in Chapter 2, this situation is typically related to a numerical inaccuracy due 

to an incorrect choice of the input parameters of the SSI methods (i.e., the time-lag value 

for the SSI-Cov method or the number of row-block in the SSI-Data method). The 

procedure is developed to amend this issue and it is able to detect clusters representing 

the same mode (i.e. clusters in which both the natural frequency and the mode shape are 

very close) and then to remove the replication. 
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To reach this task a square matrix composed of MAC values calculated between all 

resulting mode shapes associated to the modal modes that come out from the new 

clustering is constructed. Then, the modes shapes detected by MAC values higher than a 

threshold value (usually is adopted a fixed limit of MAC index equal at 0.95) are 

selected. Among possible replications, the modal vector exhibiting lower MPC is 

considered as replication and removed from the final set of results. 

Finally, the last check is aimed at limiting the scatter possibly affecting the modal 

damping ratios. The removal of the outliers is performed by applying a simple statistical 

tool based on the box-plot rule. The box-plot graphically shows the results obtained using 

three quantities: lower quartile (Q1) median quartile (Q2) and upper quartile (Q3). In 

order to remove the outliers, the lower and the upper quartile are estimated, and the inter-

quartile range is defined as IQR=Q3-Q1. Subsequently, all poles falling outside the two 

limits Q1-(1.5IQR) and Q3+(1.5IQR) are defined as outliers and removed. Indeed, the 

extreme values are removed to improve the mean modal damping values, thus obtaining 

more stable and accurate prediction of this parameter [Marrongelli et al. (2017)]. 

The final outputs of the proposed MPE procedure are the mean values of the modal 

estimates (mean natural frequency, mean mode shape and median modal damping ratio) 

and the geometric mean value extracted considering the distribution of the MPC and 

MPD values associated to each pole belonging to each resulting cluster. 
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4.3 Application of the MPE algorithm to numerical data 

The efficiency of the proposed algorithm was initially checked using a simple academic 

system composed of five degrees of freedom. All the geometrical characteristics of the 

numerical structure are described in the numerical example described in Chapter 2.  

For clearness, a 5-DOFs structure is used along the thesis for doing simulation and for 

validating the proposed algorithms, in the context of modal parameter estimation (MPE) 

and also for continuous dynamic monitoring process and subsequently it is also adopted 

for the validation of the damage detection adopted for the SHM purpose. 

 

4.3.1  Description of the academic structure composed of 5-DOFs 

The simulated structure consists of a 2-dimensional scheme composed of five masses, 

five spring and dashpots (see Fig. 4.6), as reported below: 

            

Fig. 4.6. Scheme of the 5-DOFs system used to exploit the developed algorithms. Tri-dimensional 

representation and two-dimensional scheme  
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The values chosen for matrices 𝑀, 𝐷 and 𝐾 (see Eq. 2.1) are the following: 

• M is equal to the diagonal matrix with five rows and columns; 

• K is a square tri-diagonal matrix with same values in the extra diagonal positions; 

M=[ m   0   0   0   0;  

        0   m   0   0   0;  

        0   0   m   0   0;  

        0   0   0   m   0;  

        0   0   0   0   m]; 

K=[ 2*k   -k     0     0     0; 

        -k   2*k   -k     0     0;  

         0    -k    2*k   -k    0;  

         0     0     -k   2*k   -k; 

         0     0      0     -k     k]; 

• D is built assuming Rayleigh damping by means of  

𝐷 = 𝜉 ∙ 2𝑚 ∙ √(𝑘 𝑚⁄ )   with   ξ=0.01 (1%). 

• In real structure not all DOF can be measured. In this case, the external excitation was 

applied only on the masses 1,3 and 5.  

Bf=[ 1   0   0   0   0;  

        0   0   0   0   0;  

        0   0   1   0   0;  

        0   0   0   0   0;  

        0   0   0   0   1]; 

The matrices 𝑀, 𝐷, 𝐾 and 𝐵𝑓 are used to construct the system matrices A and C of the 

stochastic state-space model. Thus, numerical acceleration time series have been 

generated adopting the following inputs: 

• Sampling frequency 𝑓𝑠=50 Hz (sampling period Δt=0.002 s). 

• Total duration of signals, 1800 s (N=90000 time steps). 

• 𝑢(𝑡𝑘) → 𝑁(0,1). Gaussian distribution input force applied to all the DOF by mean of 

matrix 𝐵𝑓 (𝐵𝑓 is a column vector composed of ones) 

𝑀�̈�(𝑡𝑘) + 𝐷�̇�(𝑡𝑘) + 𝐾𝑞(𝑡𝑘) = 𝐵𝑓𝑢(𝑡𝑘),   k=1,2,…,N. 

where 𝑡𝑘 = {0, 𝛥𝑡, 2𝛥𝑡, … , 𝑘𝛥𝑡, … , (𝑁 − 1)𝛥𝑡}. 

• The observed values y(tk), k=1,2,…,N are the sum of the structure response at 

selected DOF, Caq̈(tk), and a sensor Gaussian noise a(tk) with variance equal to the 

20% of the largest acceleration response variance, σ2: 

𝑦(𝑡𝑘) = 𝐶𝑎�̈�(𝑡𝑘) + 𝑎(𝑡𝑘), 𝑎(𝑡𝑘) → 𝑁(0, 𝛴2),  

𝛴2 = 𝜎2𝐼𝑛0×𝑛0
,  𝜎2 = 0.20max (

1

𝑁
�̈�(𝑡𝑘)𝑇�̈�(𝑡𝑘)) 
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At this point the SSI-Cov method was applied to identified the modal parameters of the 

academic structure from the simulated acceleration, and the results are shown in the 

Table 4.1 the space order used has been 𝑛𝑠=10, twice the number of expected modes. 

Table 4.1. Theoretical and identified modal estimates of the numerical structure 

Mode 𝒇𝒕𝒉  [Hz] �̂�𝟏𝟎  [Hz] 𝝃𝒕𝒉  [%] �̂�𝟏𝟎  [%] 

1 3.195 0.28 3.195 0.28 

2 9.327 0.83 9.324 0.96 

3 14.702 1.31 14.715 1.29 

4 18.884 1.68 18.907 1.96 

5 21.536 1.92 21.554 1.78 

In this example, the theoretical system order is known in advance, and good modal 

parameters have been obtained using this order. This information can be visualized also 

on the stabilization diagram in which all modes of the structure can be defined at the 

model order equal to 10. 

In case of real structure is impossible to known in advance the system order of the 

stochastic model that best fits the dynamic behavior of the investigated structure. In this 

way two different problem can be pointed out: the underestimation or the overestimation 

of the correct model order. 

As well known, in case of underestimation of the model order, the identification method 

can compute wrong modes, as for example the model fits the response due to two closed 

modes with only one. Meanwhile, in case of overestimation, the identification method 

forces the model to compute a number of modes higher than the system effectively has, 

so spurious modes are obtained. Furthermore, spurious mode can be obtained at any 

given order because noise content in the signals or modelling errors. 

Therefore, as already stated in Chapter 2 and in the first paragraph of this one, in the 

identification analysis of real structures is common to overestimate the order of the 

stochastic model and consequently choose the model that best fit the dynamic behavior of 

the investigated structure. 
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As commonly done in practical applications, a graphical tool is used to separate physical 

modes from noise modes. The most popular tool for differentiating system modes from 

spurious modes is the stabilization diagram [Peeters (2000)]. A stabilization diagram is 

simply a plot of increasing model order versus the frequencies identified at each of these 

orders. 

The main motivation behind the use of stabilization diagram is based on the 

characteristics of the modal parameters that should show up with consistent frequency, 

damping and mode shape at a various mode orders; whereas spurious modes should show 

a more erratic behavior at different orders of the stochastic model.   

The strategy normally used to extract the modal parameters from a single dataset is 

generally based on the initial choosing of a sufficient high order for the state-space-

model, and consequently to gradually reduce the order of the model. System 

identification is performed with every model order so this procedure yields a set of modal 

parameters for each selected order.  The modal parameters referred to different model 

order are then compared according to some present criteria such as: 

 

|𝑓𝑝𝑖 − 𝑓𝑞𝑖|

𝑓𝑝𝑖
≤ 𝜀𝑓 

|𝜉𝑝𝑖 − 𝜉𝑞𝑖|

𝜉𝑝𝑖
≤ 𝜀𝜉 

1 − 𝑀𝐴𝐶(𝜑𝑝𝑖; 𝜑𝑞𝑖) ≤ 𝜀𝑀𝐴𝐶 

( 4.6)  

where 𝜀𝑓, 𝜀𝜉 and 𝜀𝑀𝐴𝐶 are tolerance limits adopted to decide if the mode i estimated from 

the model order p is the same mode j estimated from the model order q (in which q=p+1, 

used to compare consecutive model order. The MAC (Modal Assurance Criterion) index 

shows the degree of correlation between two vectors and it is computed as: 

𝑀𝐴𝐶(𝜑1; 𝜑2) =
|𝜑1

𝐻 𝜑2|²

[(𝜑1
𝐻𝜑1) · (𝜑2

𝐻𝜑2)]
 

where (•)H means Hermetian operator. 
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This procedure is repeated for all available set of modal parameters identified at each 

order in sequential manner. Consequently, only the frequency values of the selected 

modes are plotted against their corresponding model orders, distinguishing between 

stable and unstable modes.  

Fig. 4.7 shows the stabilization diagram of the simulated academic structure composed of 

five DOFs. The modal parameters were estimated using the SSI-Cov method and 

adopting an interval of order from 2 to 60 by steps of two. 

In the diagram the separation between spurious modes and physical ones is performed 

applying the checks on the natural frequencies, modal damping ratios and mode shapes 

(using MAC index) in consecutive manner as described in Eq. 4.6. In particular, stable 

modes were detected verifying εf=0.02, εξ=0.05 and εMAC=0.02, simultaneously. 

It is worth remarking that stabilization diagram is one of the most used post-processing 

tools for operational modal analysis, specially adopted with SSI procedures. Although it 

is just a graphical tool in which to report the natural frequencies, of the modes obtained 

for increasing order of the stochastic state-space model, versus the order itself, the 

stabilization diagram helps the expert user to define the best order of the model that best 

fits the dynamic behavior of the investigated system.  

 

Fig. 4.7. Stabilization diagram. Choosing of the order the best fits the dynamic behavior of the 

numerical structure 
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The MPE algorithm presented herein has been developed in order to extract her 

estimation of the modal parameters in automated way mimicking the choices of an expert 

user in the identification of the stable alignments that represent the structural modes for 

increasing model order. 

Once again, the MPE procedure used to extract the modal parameters estimates from the 

output dataset has been developed to simplify the used of the stabilization diagram 

adopting only one check (see Eq. 4.5) on the poles instead of three different checks as 

reported in Eq. 4.6 to remove the spurious poles. This means that the automated 

algorithm requires just one user-defined threshold instead three tolerance limits in the 

selection of the stable poles, furtherly reducing the user’s interaction during the 

identification process. Moreover, the choice of the best model order is completely 

removed ant the estimates are automatically extracted applying simple statistical property 

on the stable alignments that stand out on the stabilization diagram.  

 

4.3.2 Extraction of the modal parameters from the numerical time series 

The evaluation of the performance of the presented MPE algorithm was based on the 

automatic processing of several simulated response time series obtained by applying the 

white noise excitation at the first level of the structure. Several artificially generated time 

series of 30 minutes long and sampled at 100 Hz were collected to test the robustness of 

the algorithm. Thus, the recorded responses were analyzed applying the SSI-Cov method. 

Hence, some trial runs were executed in order to define the dimension of the correlation 

matrix (i.e., the time-lag value) and the interval of the model order used to extract the 

modal estimations from the collected responses. 

Fig. 4.8 shows the effects of the different steps on the stabilization diagram. In particular, 

the diagrams in the left side represent the stabilization diagrams, meanwhile the diagrams 

in the right side are the frequency vs damping diagrams. Both representations are 

depicted in order to highlight the cleaning action exerted by each step of the algorithm.  
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a) 

  
 

b) 

  
 

c) 

  
 

d) 

  
 

e) 

  
 

f) 

  

Fig. 4.8. Cleaning actions exerted by each sub-procedure of the developed MPE methodology: a) 

SSI outputs, b) after modal damping threshold, c) after complexity thresholds, d) stable 

alignments obtained by clustering process, e) stable alignments after the checking on the 

clustering results and mode shape sand f) final poles associated to identified structural modes. 
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In fact, this graphical tool is used to extract the stable alignments composed of stable 

poles (herein depicted using the natural frequency values) that maintain consistency for 

increasing model order. In the second diagrams the pair of values (frequency-damping) 

are mainly used to test the consistency and the accuracy of these estimates during the 

identification process.  

Detailing, Fig. 4.8(a) shows all the solutions (in terms of natural frequencies) provided 

by stochastic models with even orders between 2 and 60. As depicted, the number of SSI 

outputs grows when the order of the stochastic model increases. Obviously, such 

solutions contain both modes with physical meaning and numerical modes related to the 

noise content into the signals. Therefore, the task of the implement algorithm is to mimic 

the choices that an expert user take on the selection of the stable alignments, where each 

poles represent a set of modal parameters (i.e., natural frequency, mode shapes and 

modal damping ratio) associated to a structural mode of the analyzed  structure. 

In Fig. 4.8(b) the results obtained after the removal of higher damped modes are 

reported, meanwhile Fig. 4.8(c) shows the results obtained at the end of the pre-filtering 

key-step, after the removal of spurious poles with high complexity values on the mode 

shapes.  

Moreover, in the Fig. 4.8(d). the resulting stable alignments obtained after the application 

of the clustering procedure is reported. It is should to be noticed that even in case of 

numerical example the clustering procedure can provide an incorrect set of modal 

estimates. This numerical error depends on several factors, such as the definition of the 

time-lag value, the interval of the model order and also could depends on the incorrect 

setting of the user-defined thresholds that do not properly filter the numerical modes. 

Despite these, as already mentioned in the previous Chapter, the creation of the clusters is 

strictly dependent on the inter-cluster distance value. In fact, the initial tuning of this 

parameter together with the removal of the shorter clusters do not guarantee that the 

provided set of estimates is composed of only structural modes. This condition could be 

more frequent during the analysis of real data in which the collected signals contain 
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several disturbances due to environmental factors present in the surrounding of the 

investigate structure. This type of problem required the development of another routine 

for checking results and removing possible errors produced in the clustering process. 

Consecutively, the diagrams in Fig. 4.8(e) shows the stable alignments obtained after the 

execution of the second clustering and the check on the mode shapes. As shown, the 

numerical mode (with nominal frequency equal to 8.88 Hz) disappears providing the 

correct set of alignments corresponding to the five modes of the model.  

The action exerted by the check on the outliers is shown in Fig. 4.8(f). As depicted in the 

frequency vs damping representation, the removal of the extreme modal damping values 

within each cluster provides a more accurate estimation of this parameter.  

Finally, the estimations of the modal features are extracted by the resulting clusters as 

follow: mean natural frequency, mean mode shape, median modal damping ratios and 

geometric mean values for the complexity indices (MPC and MPD, respectively) of the 

poles inside each group. 

Table 4.2 summarizes the most important information and the improvement of the results 

after the application of the post-processing routine that represents the main original 

aspect of the automated algorithm presented in this Chapter. 

Table 4.2. Improvement of the results after the post-accuracy check to improve estimates 

Modes 
Before post-processing After post-processing 

f σ(f) ξ σ(ξ) f σ(f) ξ σ(ξ) 

1 3.197 0.0001 0.280 0.0001 3.197 0.0001 0.280 0.0001 

2* 8.883 0.0141 0.062 0.0949 - - - - 

2 9.328 0.0011 0.783 0.0049 9.328 0.0010 0.784 0.0025 

3 14.706 0.0071 1.319 0.0461 14.707 0.0057 1.324 0.0324 

4 18.898 0.0021 1.687 0.0205 18.898 0.0016 1.687 0.0161 

5 21.545 0.0117 1.875 0.0831 21.546 0.0071 1.871 0.0345 
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Two different aspects related to the efficiency of the third block of check have to be 

pointed out by results reported in the Table 4.2 the first one is relating to the possible 

replications of the modes that are removed delivering a consistent set of modal estimates, 

the second one is referred to the accuracy of all estimates that is generally improved.  

In order to provide the consistency of the obtained estimates, the extracted values are 

compared with the theoretical ones and also with the estimates obtained by a manual 

choice of the state-space model, as it is summarized in the Table 4.3. 

Table 4.3. Comparison between the theoretical values together with the manually identified 

values and the automatically extracted values of the natural frequency 

Mode 𝒇𝒕𝒉  [Hz] 𝝃𝒕𝒉  [%] �̂�𝟏𝟎  [Hz] �̂�𝟏𝟎  [Hz] �̂�𝑴𝑷𝑬  [Hz] 𝝃𝑴𝑷𝑬  [%] 

1 3.195 0.280 3.195 0.280 3.197 0.280 

2 9.327 0.830 9.324 0.960 9.328 0.784 

3 14.702 1.310 14.715 1.290 14.707 1.324 

4 18.884 1.680 18.907 1.960 18.898 1.687 

5 21.536 1.920 21.554 1.780 21.546 1.871 

From the inspection of the results reported in the Table 4.3 it is possible to highlight an 

excellent correspondence between the theoretical values of the resonant frequencies and 

the natural frequency estimates obtained by a manual choice of the state-space model and 

the automatically extracted estimates by applying the developed MPE algorithm.  

Furthermore, from the inspection of the damping values it is worth to notice a better 

correspondence between theoretical values and the estimates provided by the automated 

algorithm. This means that the choice of the median value calculated among all estimates 

belong to the same cluster provides a better estimate than one obtained by the manual 

selection of the stochastic model with lowest order.  

To complete the analysis of the MPE (exploited using a simple academic structure), the 

five mode shapes obtained by the automated identification are reported in Fig. 4.9.  
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Fig. 4.9. Mode shapes associated to the five identified modes of the structure 

From the comparison of the mode shapes provided by the developed algorithm and the 

theoretical values a very high correspondence is obtained with a MAC value generally 

higher than 0.99 for all five detected modes. 

 

4.4 Application and validation of the proposed algorithm using 

real data  

The current paragraph is principally focused on the application of the previous developed 

automatic model identification algorithm, exploring the potentiality of extracting the 

modal estimates without any user interaction during the identification process. The 

performance of the proposed method is exemplified on data collected during dynamic 

tests performed on a complex footbridge and on an ancient bridge both located in the 

north of Italy. 
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4.4.1 Application of the algorithm to AVT data collected on a pedestrian footbridge  

The first real structure adopted to validate the developed algorithm consists of a steel 

footbridge placed in the town of Seriate, about 50 km far from [Lai et al. (2017)]. The 

MPE algorithm is applied to the output response collected during an AVT performed to 

investigated if the vibration levels of the footbridge exceed the standard comfort limits 

during in operative conditions. This dynamic test represents an ideal benchmark for an 

automated procedure of modal parameter estimation because: 

• The dynamic characteristics of the footbridge were already extensively investigated 

using the FDD procedure [Brinker et al. (2001)] and the SSI-Data techniques 

available in the commercial software ARTeMIS. Hence, reference values of the modal 

parameters are available for validation purposes. 

• The footbridge turns out footbridge [Lai et al. (2017)] to be characterized by a very 

complex dynamic behavior and a large number of normal modes in the frequency 

range 0-8 Hz, including closely spaced and weakly-excited modes. 

4.4.1.1 Description of the footbridge and the equipment used for the AVT 

In more details, the investigated footbridge (Fig. 4.10 and Fig. 4.11) crosses the Serio 

River and has been built in the "Serio Park" to connect two cycle routes. The suspended 

deck is 63.90 m long and its width varies between 2.5 m and 5.0 m. The deck consists of 

timber planks, supported by a grid of steel stringers and floor beams (Fig. 4.10b). The 

floor beams (Fig. 4.10b) belong to two classes: (a) the main transverse beams, equally 

spaced at 3.0 m and characterized by a tapered cross-section and (b) the secondary IPE 

120 cross-beams. The stringers include a couple of IPE 330 edge beams and a central 

girder with a hollow circular section (Ø=298.5 mm). All the longitudinal beams are 

connected to the main transverse beams through bolted connections capable of restoring 

the continuity, whereas the connection between the secondary beams and the edge beams 

allows the secondary beams to rotate around the edge beam axis. The deck is completed 

by a series of X-braces and by timber planks, 5.0 cm thick and providing the walking 

surface for the pedestrians. 



Development of automated Modal Parameter Estimation algorithm 

 

 

193 

 

(a) 

 

(b) 

 

Fig. 4.10. Footbridge crossing the Serio river (Seriate): (a) General view; (b) Underside view of 

the deck. 

 
Fig. 4.11. Elevation and plan of the footbridge (dimensions in m). Sensors layout during the field 

tests. 

The suspension system supporting the deck consists of: (a) 4 steel pylons, exhibiting a 

slight slope with respect to the vertical plane and arranged to constitute two A-shaped 

portal frames; (b) 2 main suspension cables, of 60 mm diameter, supporting the deck 

through 42 hangers of 16 mm diameter; (c) 4 backstays, of 60 mm diameter, linking the 

pylons to the ground. The main suspension cables and the backstays are connected to the 

top of the pylons as it is shown in Fig. 4.10. 
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As previously pointed out, the dynamic characteristics of the footbridge and its 

serviceability were extensively investigated right after its completion and before the 

opening (July 2012). More specifically, ambient vibration tests were firstly performed 

with the objective of identifying the modal parameters of the bridge; subsequently, 

walking and running tests were carried out to verify that the human-induced vertical and 

horizontal accelerations were limited to acceptable values. The response of the footbridge 

was measured at 17 selected points (Fig. 4.11) in a single set-up, using uniaxial WR 

731A piezoelectric accelerometers (Fig. 4.12). The acceleration responses were recorded 

with a sampling frequency of 200 Hz, which is fairly larger than that required for the 

considered footbridge, whose dominant natural frequencies are below 10 Hz. Hence, low 

pass filtering and decimation were applied to the data before using the identification 

tools: data were down-sampled to 25 Hz, so to have a Nyquist frequency of 12.5 Hz. 

         

Fig. 4.12. Typical mounting of the accelerometers on site. 

4.4.1.2 Application of the automated procedure and validation of the obtained results 

Time series of 7200 sec (corresponding to more than 7000 times the fundamental period 

of the structure) were collected during the ambient vibration tests. The first 3 singular 

value (SV) lines of the spectral matrix are shown in Fig. 4.13: the inspection of the first 

SV highlights several amplification (i.e. modal) regions and closely spaced peaks of 

similar amplitude in the two largest SV lines corresponding to the frequency of about 1.9 

Hz and 7.4 Hz. Hence, closely spaced modes are likely to occur in those frequency 

intervals. The clear detection of closely spaced modes (as well as of weakly excited 

modes) is a typical issue solved by the use of parametric identification methods. 
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Fig. 4.13. Singular values (FDD) of the spectral matrix of the acceleration measured. 

Fig. 4.14 shows the action exerted by each step of the automated algorithm on the 

stabilization diagrams obtained by the application of the SSI method. Together with the 

stabilization diagram also the frequency vs. damping diagrams are reported. Specifically, 

(i) Fig. 4.14 (a) shows the poles provide by the SSI-Cov method, (ii) Fig. 4.14 (b) and 

Fig. 4.14(c) show the remaining poles after the check on modal damping ratio and on the 

mode shape complexity, respectively; (iii) Fig. 4.14 (d) highlights the cleaning effect 

exerted by the clustering process and (iv) Fig. 4.14 (e) show the results obtained after the 

check on the clustering results; (v) Fig. 4.14 (f) show the stable alignments after the 

removing of any possible repetitions of physical modes; finally, (vi) Fig. 4.14 (g) 

contains the final alignments corresponding to physical modes after the removal of the 

outliers. 

17 vibration modes of the footbridge were automatically identified in the investigated 

frequency range. The alignments of stable poles in Fig. 4.14(g) generally correspond to 

well-defined spectral peaks, reported in Fig. 4.13. The identified modal parameters of the 

footbridge (in terms of natural frequencies, damping ratios) and their standard deviations 

together with the complexity indices associates to the mode shapes are summarized in 

Table 4.4, along with the reference estimates obtained in [Lai et al. (2017)] by using a 

commercial software. It should be noticed that: (a) there is an excellent correspondence 

between the reference results and the ones of the present procedure, both in terms of 

natural frequencies and damping ratios; (b) the standard deviations of damping ratios are 

much lower than those generally obtained by other OMA techniques. 
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a) 

  
b) 

  
c) 

  
d) 

  
e) 

  
f) 

  
g) 

  

Fig. 4.14. Stabilization diagrams: (a) SSI-Cov outputs; (b) after checking on damping; (c) after 

checking on mode complexity; (d) after clustering; (e) after new clustering; (f) after checking on 

mode shapes; (g) after removing the outliers. 
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It should be noticed that Fig. 4.14 and Table 4.4 reveal the capability of the proposed 

automated algorithm in the identification of three further vibration modes that are not 

detected in previous analysis. 

Two of those modes, with nominal natural frequencies of 5.29 Hz and 6.25 Hz, 

correspond to weakly excited modes (which are only recognized for higher values of the 

model order). The third mode, having a frequency of 7.54 Hz, turns out to be very close 

to another vibration mode (7.49 Hz) of the footbridge. From a deeper inspection of the 

Fig 4.13, the presence of the two closely-spaced modes around 7.5 Hz are also suggested 

by the vicinity of the two SV lines in that frequency region.  

In Table 4.4, a comparison between the dynamic characteristics obtained by a manual 

analysis of the data (using ARTeMIS) and those ones  automatically identified applying 

the MPE procedure (in the same investigated frequency range) are reported in detail. 

Table 4.4. Comparison between modal estimates identified by previous analysis using a 

commercial software and those ones obtained performing the proposed MPE procedure. 

  Reference Values Extracted Estimates 

  FDD SSI-Data Automated Procedure - SSI-Cov 

N° Mode f  [Hz] f   [Hz] ξ  [%] f  [Hz] σ(f) [Hz] ξ  [%] σ(ξ) [%] MPC MPD 

1 1B 1.025 1.014 0.75 1.018 0.0012 0.79 0.196 0.999 1.1 

2 2B 1.475 1.474 1.58 1.474 0.0002 1.50 0.024 1.000 0.2 

3 1T 1.924 1.926 0.53 1.924 0.0008 0.74 0.012 0.996 1.6 

4 2T 1.953 1.946 0.66 1.947 0.0001 0.68 0.008 0.900 10.3 

5 3B 2.168 2.169 1.2 2.165 0.0012 1.16 0.012 0.999 0.7 

6 3T 2.754 2.756 0.74 2.755 0.0001 0.72 0.003 1.000 0.6 

7 4B 2.861 2.861 1.32 2.866 0.0004 1.06 0.036 1.000 0.1 

8 4T 3.691 3.696 0.61 3.696 0.0001 0.54 0.002 0.999 0.9 

9 5B 4.121 4.143 1.69 4.149 0.0130 1.61 0.330 0.996 1.5 

10 5T 4.385 4.408 1.11 4.408 0.0046 1.25 0.057 0.998 1.3 

11 6T - - - 5.293 0.0015 0.86 0.007 0.989 3.1 

12 6B 5.645 5.636 0.94 5.632 0.0063 1.02 0.103 0.998 1.3 

13 7T 6.006 6.011 0.75 6.004 0.0033 0.64 0.046 1.000 0.7 

14 7B - - - 6.257 0.0038 0.39 0.009 0.838 11.8 

15 8B 7.217 7.222 0.73 7.218 0.0004 0.66 0.005 0.978 3.6 

16 8T 7.490 7.488 0.78 7.489 0.0001 0.74 0.001 0.997 1.2 

17 9B - - - 7.538 0.0003 0.39 0.004 0.928 7.4 
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In Fig. 4.15 the modes shapes associated to the 17 identified modes are shown. 

(a)  f = 1.018 Hz (b)  f = 1.474 Hz (c)  f = 1.924 Hz 

   

(d)  f = 1.947 Hz (e)  f = 2.165 Hz (f)  f = 2.755 Hz 

   

(g)  f = 2.866 Hz (h)  f = 3.696 Hz (i)  f = 4.149 Hz 

   

(j)  f = 4.408 Hz (k)  f = 5.293 Hz (l)  f = 5.632 Hz 

   

(m)  f = 6.004 Hz (n)  f = 6.257 Hz (o)  f = 7.218 Hz 

   
 

(p)  f = 7.489 Hz (q)  f = 7.538 Hz 

  

Fig. 4.15. Vibration modes automatically identified by the application of the proposed MPE 

procedure (red line refers to upstream side of the footbridge, blue line refers to downstream). 
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a) 

  

b) 

  

c) 

  

Fig. 4.16. Action exerted by the post-processing on the clustering results. Specifically, the poles 

obtained by a) clustering procedure; b) new clustering; c) check on the mode shapes, are reported. 

Fig. 4.16 highlights the main original aspect related to implemented procedure aimed to 

provide a more well-founded set of estimates avoiding possible incorrect estimations 

and/or replications of the structural modes. As highlighted from the consecutive 

diagrams, any differences compare between the results provided by the cluster procedure 

shown in Fig. 4.16(a) and estimates resulting from first check shown in Fig. 4.16(b) and 

the final alignments depicted in Fig. 4.16(c). In fact, some clusters disappeared from the 

diagram. As already described, the efficiency on the removal of the numerical modes is 

due to the particular implementation of the new clustering, based on the average values 

and the standard deviations of the estimates obtained in the previous step and the mode 

shape check, based on the checking of the similarity between the resulting modes. As 

demonstrated in Fig. 4.16(a), possible numerical modes can survive to the clustering 

procedure delivering a set of modal estimates composed of also spurious modes.  
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The new clustering partially solves the issue; in fact, the sub-procedure removes the 

cluster associate to a numerical mode with frequency value close to 4 Hz. This is due to 

the shorter distance threshold that does not permit the allocation of all previous estimates 

splitting the numerical cluster in two or more subgroups. In this way the numerical mode 

is removed by the set of structural estimates. 

In such case, numerical modes maintain high consistency for increasing model order 

producing a quite exact replica of the close structural mode. This situation can occur also 

in case of high value of the time-lag parameter (in case of SSI-Cov method). The check 

on the repeated mode shape recognizes such situation through the construction of MAC 

matrix in which extra-diagonal components represent the MAC values calculated among 

all available mode shapes. Hence, if the MAC index exceeds a predetermined threshold, 

the mode with higher complexity (lower values in term of MPC) is identified as 

replication and it is removed from the set of structural modes. The outputs of the check 

on the mode shape represent the final set of structural modes automatically provided by 

the MPE procedure. The last check is performed to remove any outliers of the modal 

damping ratios that could affect the mean value of this estimate.  

From engineering standpoint, some remarks can be drawn: 

• The frequency of the fundamental mode is 1.02 Hz and the corresponding mode 

associated involves anti-symmetrical vertical bending of the deck. 

• The footbridge exhibits complex dynamic behavior characteristics (i.e., a large density 

of vibration modes, two couples of closely spaced modes and five modes in the 

frequency range 1.9-3.0 Hz), clearly suggesting the occurrence of discomfort issues 

footbridge [Lai et al. (2017)]. 

• Almost all modes can be classified as dominant bending (1sd, 2nd, 5th, 7th, 9th, 12th and 

15th mode) or dominant torsion (3rd, 6th, 8th, 10th, 11th, 13th and 16th mode). 

• There are three modes (4th, 14th and 17th mode) that exhibit coupling between vertical 

and the transversal components. Furthermore, due to its strong lateral component, it is 

difficult to plot a clear illustration of the 14th mode. 
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4.4.2 Application of the algorithm on dynamic tests data of The Olla bridge 

The MPE algorithm is used to extract the modal parameters from some dynamic tests 

performed on a multi-span ancient masonry bridge composed of five arches located 

nearby to the town of Gaiola in the neighborhood of Cuneo (Northern Italy). This second 

case study represents another important benchmark for an automated identification 

procedure because: 

• As reported in [Borlenghi et al. (2019)], the dynamic characteristics of the bridge 

were already investigated using the FDD [Brinker et al. (2001)] technique available in 

the commercial software ARTeMIS.  

• From the analysis performed on several datasets collected during the AVT of the 

bridge (named as: A, B, C, D, E). The modal parameters were extracted applying the 

MPE algorithm to dataset B. Five different peaks of the first Singular Value 

associated to the spectrum matrix of the output responses are clear visible in the 

investigated interval of frequency equal to 0-12 Hz [Borlenghi et al. (2019)], 

• Consequently, the frequency interval of investigation was extended to 20 Hz, allowing 

the identification of two further vibration modes with considerable complexity degree 

• The bridge turns out to be characterized by a complex dynamic behavior also due to 

the considerable height of the pylons that influences the fundamental modes.  

• The reference values of the modal parameters. obtained using the SSI-Data technique 

implemented in the ARTeMIS code, are available for validation purposes. 

4.4.2.1 Description of the bridge and historical background 

The Olla bridge (Fig. 4.17(a)) is an ancient masonry bridge that crosses the Stura river 

along the National Road S.S. 21, connecting the French border with the South-West part 

of Piedmont, throughout the Stura di Demonte Valley. The bridge, built in the 19th 

century, is approximately 117 m long and consists of five masonry arches, with the arch 

span being of about 10.0 m (end arches), 20.0 m (intermediate arches) and 25.0 m 

(central arch). The piers and the abutments are in a good-quality ashlar stone masonry 

while the arches and the spandrel walls are in brick masonry. As usual, the internal 
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spandrels and the backfill (i.e., the elements above the arches) are not visible from a 

direct inspection or geometry survey. Consequently, documentary research and on-site 

tests are needed to clarify the inner morphology of the structure. In 1857, the route 

between Cuneo and the French border was declared of national importance and a massive 

project of renovation and improvement was undertaken. Consequently, between 1865 and 

1883 the connection with the French border was completed and starting from 1872 the 

existing roads was renewed, involving the construction of the Olla bridge.  

a) 

 

b) 

 

Fig. 4.17. a) View of the investigated masonry bridge from the Stura river; b) Picture of the 

Olla bridge at the beginning of the 20th century. 

The design was assigned to the local chief engineer of the Royal Corp of Genio Civile 

(Italian public works office), Giovanni Delfino and the bridge was completed in 1887. 

Starting from 1912, a steam tramway route was created in the Stura valley to connect 

Cuneo and Borgo San Dalmazio to the small town of Demonte, in the upper part of the 

valley. The line was crossing the Stura river close to Gaiola, through the Olla bridge (Fig. 

4.17). The tramway worked until the 2nd World War, when the central arch of the Olla 

bridge was destroyed by a bomb in July 1944; subsequently, even if the bridge was 

repaired, but the tramway was completely close in the 1948. 

Furthermore, the identification of the construction details of Olla bridge has been 

particularly difficult, in particular the documentation in the archives of the Genio Civile 

did not lead to any results. Consequently, the focus of the documentary research moved 

from the investigated structure itself to the roadway to which the bridge belonged, from 

the proclamation of National Roads (19th century) to the evolution of the tramway, that 

for nearly 40 years used the bridge to cross the Stura river. 
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4.4.2.2 AVTs configuration and primary results using commercial software 

As stated, the ancient masonry bridge was subjected to an intense dynamic tests 

campaign carried out on the 31st of June 2018 including: ambient vibration tests, firstly 

performed with the objective of identifying the modal parameters of the bridge; 

subsequently, load tests have been performed to check if the vertical displacements in the 

center line of each arch were limited to acceptable values. 

 

Fig. 4.18. Sensors layout in the dynamic test of 31 July 2018  

The lateral responses of the bridge were measured at 11 selected points in a single set-up 

(Fig. 4.18). During the tests, only one lane was open to the traffic and the horizontal 

response was measured. According with the sensor layout shown in Fig. 4.18, 11 cross-

sections were instrumented (in correspondence of the center of each arch, pier and 

abutment) by using 11 high-sensitivity transducers (Uniaxial WR 731A piezoelectric 

accelerometers, 10 V/g sensitivity and ±0.50 g measuring range) and a multi-channel 

acquisition system with 4 DAQ modules (NI 9234, 24-bit resolution, 102 dB dynamic 

range and anti-aliasing filters) to collected the horizontal response. 

a) 

 

b) 

 
Fig. 4.19. Typical mounting of the accelerometers on site: a) biaxial accelerometer and 

seismometers, b) horizontal accelerometer. 
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The responses of the bridge to ambient and operational excitation were acquired using a 

sampling frequency of 200 Hz and 6 datasets of 2400 s. the sampling frequency is fairly 

larger than that required for the considered bridge, whose dominant natural frequencies 

are below 20 Hz. Hence, low pass filtering and decimation were applied to the data 

before using the identification tools: data were down sampled to 50 Hz, so to have a 

Nyquist frequency of 25 Hz. Firstly, the modal identification was carried out using the 

SSI-Data technique available in the commercial software ARTeMIS. 

 

Fig. 4.20. Identification of the resonant frequencies adopting the SSI-Data technique 

Fig. 4.20 shows the results of the data processing in terms of first singular value (SV) 

line obtained by using the non-parametric FDD technique as well as the stable alignments 

obtained for increasing model order applying the SSI-Data method. As previously stated, 

in order to investigate the dynamic characteristics of the bridge, several ambient vibration 

tests (AVTs) were performed on the 31st of July 2018. In this paragraph only the analysis 

carried out using on a single dataset (dataset D) are reported. 

In the frequency range of 0-20 Hz, seven vibration modes have been clearly identified by 

stable alignments that stand out on the stabilization diagram (see Fig. 4.20). The 

identified (lateral) mode shapes associated to identified structural modes are shown in 

Fig. 4.21. In Table 4.5 the natural frequencies and the modal damping ratios associated 

to the structural modes obtained by using the commercial software ARTeMIS are 
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reported. Moreover, the low value of the standard deviations related to both parameters 

proving in evidence the good quality of the estimates. 

fL1=2.625 Hz fL2= 3.833 Hz fL3= 5.750 Hz 

   
 

fL4= 7.178 Hz fL5= 8.984 Hz 

  
 

fL6= 10.67 Hz fL7= 13.42 Hz 

  
Fig. 4.21. Lateral vibration modes identified using the commercial software ARTeMIS. 

Table 4.5. Natural frequencies and damping ratios identified using ARTeMIS software. 

n° f  [Hz] σ(f)  [Hz] ξ  [%] σ(ξ)  [%] 

1 2.621 0.0022 1.958 0.1655 

2 3.835 0.0018 1.814 0.0388 

3 5.802 0.0018 2.728 0.1210 

4 7.220 0.0020 3.065 0.0554 

5 9.063 0.0049 3.157 0.0772 

6 10.67 0.0019 3.514 0.0251 

7 13.42 0.0014 3.923 0.0371 

Finally, the datasets collected during the AVT were used to validate the MPE algorithm. 

In the next paragraph the initial tuning of the input parameters and the obtained results 

are described in detail. For clearness, the MPE algorithm was adopted to extract the 

estimation of the modal parameters of all 6 collected dataset. Due to the consistency of 

the results, only the outcomes referred to dataset D are reported. 
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4.4.2.3 Application of developed algorithm to dynamic tests data 

The MPE algorithm was used to extract the modal parameter estimations performing an 

automatic interpretation of the stabilization diagram in which the SSI outputs are reported 

for increasing model order. Therefore, after an initial tuning of the input parameters of 

the SSI-Cov method (i.e., time lag value and interval of model order) the estimation of 

the modal parameters are obtained following the steps reported below. 

After some trial tests, the time-lag value was fix equal to 80 and the model order interval 

equal to 20-120. Hence, the consecutive steps have been executed setting the threshold 

values as described in the following: 

1. Pre-filtering. Removal of spurious poles applying three threshold criteria on modal 

damping ratio (i.e., damping limit equal to 5%) and on the complexity degree of the 

mode shapes (i.e., MPD and MPD equal to 0.7 and 15°, respectively). 

2. Clustering. Automated interpretation of a clearer stabilization diagram using the 

maximum value of the inter-cluster distance equal to 0.02. 

3. Post-processing. Removal of possible replications of the structural modes and extreme 

values (outliers) in order to deliver an accurate set of modal estimates. 

It should be noting that the application of the post-processing does not provide significant 

and reasonable improvements on the estimation of the modal parameters for this case 

study. This is mainly due to the high quality of the collected data (with high signal/noise 

ratio value), to the high number of sensors (high redundancy of the response) and to the 

dynamic characteristics themselves (well-separated modes). 

Fig. 4.22 shows the action exerted by each step of the d MPE algorithm on SSI outputs. 

In more details: (i) Fig. 4.22(a) shows all SSI outputs obtained for increasing model 

order, as well as on the frequency vs. damping; (ii) Fig. 4.22(b) shows the remaining 

poles after the removal of modes with negative damping and highly damped modes; (iii) 

Fig. 4.22(c) shows the action excreted by the complexity thresholds applied to the remain 

poles; (iv) Fig. 4.22(d) highlights the stable alignments obtained by applying the 
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clustering process; (v) the alignments resulting after the post-processing are reported in 

Fig. 4.22(e), associated to 7 vibration modes of the bridge 

 

a) 

  
 

b) 

  
 

c) 

  
 

d) 

  
 

e) 

  

Fig. 4.22. Stabilization diagrams: a) SSI outputs for interval order equal to 20-120; b) poles after 

removal of high damped modes, c) poles after removal high complexity modes; d) stable 

alignments after clustering process; e) final clusters after post-processing 
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Moreover, as depicted in the diagrams, the first five modes can be easily detected also by 

the local maxima of the first SV line in the correspondence of well-defined spectral 

peaks. Meanwhile, the last 2 further modes can be identified only in terms of consistency 

of the modal parameters obtained for increasing model order, since the SV line does not 

have visible local maxima for higher frequency values. In addition, the last two modes 

are characterized by a quite high complexity. All dynamic characteristics related to the 

structural modes of the bridge are summarized in the Table 4.6.   

In Table 4.6 are reported the estimates of the natural frequency and the damping ratio 

together with the corresponding standard deviations associated to each extracted mode 

are reported. Moreover, in the last columns the MPC and the MPD values associated to 

each extracted mode shape are also highlighted. 

Table 4.6. Comparison between the modal parameters identified by previous analysis carried out 

with commercial software and those ones automatically obtained by using the proposed procedure. 

Modes Automated MPE algorith using the SSI-Cov 

n° f [Hz] σ(f) [Hz] ξ [Hz] σ(ξ) [Hz] MPC MPD 

1 2.620 0.0002 1.71 0.0853 1.000 0.39 

2 3.837 0.0005 1.75 0.0550 0.999 0.85 

3 5.796 0.0010 2.41 0.1149 0.998 1.30 

4 7.206 0.0056 2.47 0.1325 0.989 2.82 

5 9.031 0.0035 2.97 0.0361 0.959 6.99 

6 10.637 0.0025 2.94 0.0936 0.847 13.47 

7 13.387 0.0034 4.07 0.2101 0.795 11.53 

Finally, the configuration of the mode shapes associated to identified modes are shown in 

Fig. 4.23, in which the first three lateral modes of the bridge respect the attendance for 

this kind of structure. The fundamental mode consists of a symmetrical mode with a 

maximum lateral displacement of the cross section of the central arch. The second and 

the third mode are quite regular antisymmetric and symmetric mode, respectively. 
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1) 

 

2) 

 

3) 

 

4) 

 

5) 

 

6) 

 
 

7) 

 

Fig. 4.23. Lateral modes of the bridge automatically identified by applying the MPE procedure 

From the comparison of the results obtained by commercial software (Table 4.5) with 

those ones obtained by the application of the MPE algorithm (Table 4.6) a very good 

correspondence can be highlighted. Furthermore, the excellent match between the 

estimates of mode shapes provided by ARTeMIS (see Fig. 4.21) and those ones 

automatically identified (see Fig. 4.23) by proven the robustness of the implemented 

MPE algorithm  

It should be noticed that: a) a good correspondence between the obtained results and 

those already published in literature [Borlenghi et al. (2019)] also provides a further 

validation of the algorithm presented in this Chapter, b) the standard deviation of the 

natural frequency estimates provided by MPE algorithm are lower than those provided by 

commercial software; c) further information can be obtained by the complexity indices 
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(i.e., MPC and MPD) regard the complexity degree of the identified modes, and d) the 

modes with higher frequency are characterized by a high complexity. 

Concluding, from engineering standpoint, some remarks can be drawn: 

• The natural frequency of the fundamental mode is 2.62 Hz and the corresponding 

mode associated involves symmetrical lateral bending of the deck with a bending of 

the central pylons and a maximum displacement of the central arch of the bridge. 

• As expected, the first 7 deformation modes present quite regular shapes. In particular, 

the first four lateral modes are characterized by symmetrical and anti-symmetrical 

geometric shapes, typically for this kind of structure. 

• The last two identified modes (over 10 Hz) have more irregular shapes with high 

complexity of the mode shape components.  

 

4.5 Conclusions 

An analysis algorithm capable of extracting modal parameters from single dataset 

collected during AVT or within a continuous dynamic monitoring purpose has been 

developed and presented in this Chapter.  

The algorithm is devoted  to analyze the collected data adopting SSI techniques (i.e., SSI-

Data or SSI-Cov method, developed in time-domain) that involve the use of correlation 

functions among the time structural responses or the projection of the time series 

recorded during the dynamic test. The MPE algorithm is exploited only using the SSI-

Cov method. It is worth noting that its performance is guaranteed also using other 

techniques involving the construction and the interpretation of stabilization diagrams. 

The development of this algorithm is based on the consequently application of three key-

steps, oriented to remove most of spurious poles before to perform the clustering process. 

This approach permits a more accurate and faster execution of the clustering process. 

Moreover, the post-processing step removes or limits the dependence of the modal 
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parameter estimations by the user-defined parameter (i.e., the inter-cluster distance 

threshold) used in the clustering process. 

Each key-step of the MPE algorithm was deeply described in this Chapter in order to 

clearly provide the main improvements developed for the automation of the identification 

process. Consequently, the performance of the developed algorithm was demonstrated by 

extraction of the modal parameters from the artificially acceleration time series generated 

using a simple numerical system composed of five DOFs.  

Subsequently, the algorithm was used to extract the modal features of two different case 

studies analyzing the output responses recorded during dynamic tests. The former was a 

lively footbridge located in the neighborhood of Milan characterized by a very complex 

behavior and by a high number of vibration modes. The latter was an ancient masonry 

bridge built in the norther of Italy (Piedmont) and composed of several archer subjected 

to the ageing effect of the environmental factors.  

The analysis carried out on data collected on the footbridge have been compared with 

those ones previously obtained using the commercial software. The robustness of the 

procedure is also pointed in evidence by the estimation of ill-excited modes with higher 

complexity degree that they were not identified in the previously analysis [Lai et al. 

(2015)]. 

The MPE algorithm was also validated by the analysis of the structural responses 

collected during the AVTs carried out on The Olla bridge. The modal estimates obtained 

with the MPE algorithm were confirmed by those ones identified with the SSI parametric 

method available in ARTeMIS in which seven fundamental modes of the bridge have 

been detected by stable alignments that stand out on the stabilization diagram. 

Despite the high number of sensors used to carried out the AVTs of the two case studies 

described in this Chapter, the implemented MPE procedure is capable to provide a 

reasonable set of modal estimates also in case of simple dynamic system composed of a 

reduced array of sensors. As reported in [Marrongelli et al. (2019a), Marrongelli and 
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Gentile (2019)] the present algorithm was used for the identification of the modal 

parameters of ancient towers in which the structural response is recorded by just a few 

accelerometers installed on the upper part of the constructions.  

Concluding, the applications of the MPE algorithm presented in this Chapter demonstrate 

the good performance of the developed strategy based on three consecutive key-steps: on 

the pre-filtering, applied to remove certain spurious poles, on the clustering approach, 

applied to group poles belong to the same structural mode and on the post-processing, 

carried out to provide more accurate estimates with low uncertainty values. 
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5.1  Introduction 

As reported in previous Chapter, the development of efficient vibration-based Structural 

Health Monitoring (SHM) methodologies capable to timely detecting the onset of 

anomalies and possible damage in structures is still a challenging task, especially for 

large infrastructures, complex constructions and historic buildings.  

SHM based on OMA approach always requires an initial phase to calibrate the input 

parameters to perform the analysis and extract a reasonable set of modal parameters. As 

already mentioned, many approaches have been proposed in literature for the automation 

of OMA process, but the development of tools that can automatically perform a fully 

automated identification is still a crucial step.  

Within this context, this Chapter focuses on the development of a fully automated OMA 

procedure, which involves the construction and the automated interpretation of tri-

dimensional stabilization diagrams, avoiding the initial tuning of the input parameters 

that characterize the SSI techniques. In particular, the present implementation is aimed at 

provide a further improvement in the automation of the identification process avoiding: 

a) the selection of the model order used to characterize the state-space model and b) the 

initial tuning and then the choice of the time-lag parameter or the row-blocks value used 

to define the Toeplitz matrix in the SSI-Cov or the Hankel matrix in the SSI-Data, 

respectively. As it will be demonstrated in this Chapter, this initial tuning is replaced by 

selecting an appropriate interval of the parameter avoiding any human interaction.  

Therefore, a fully automated identification algorithm was developed for OMA-based 

SHM strategy that involves the use of tri-dimensional stabilization diagram. The 

developed algorithm is firstly exploited using a simple numerical structure and 

subsequently, its performance is tested adopting data collected by continuous dynamic 

monitoring system installed on two important infrastructures: the Infante D. Henrique 

bridge [Magalhães et al. (2008)], located in Portugal, and the San Michele bridge [Gentile 

and Saisi (2011), Gentile and Saisi (2015)], located in Italy. The good results obtained 

reveal the robustness of the proposed methodology.  
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5.2 Proposed algorithm of automated MPE  

As previously pointed out OMA-based SHM requires the automation of OMA, thus the 

of efficient tools apt to avoid the human interaction and mimic the user’s choice is still a 

challenge task [Reynders et al (2012)]. These reasons have led to the development of 

further complex approaches based on more sophisticated algorithms that partially solve 

such limitations, such as the parametric methods based on the fitting of a numerical 

models based on experimental data. As well known, the application of a parametric 

method requires the definition of initial input parameters that need to be tuned in the 

initial phase, to obtain a good performance of the algorithm and provide satisfactory 

results, as deeply described in [Magalhães (2010)].  

Although the developed strategy described in this Chapter can be adopted with any 

identification technique that involves the construction of stabilization diagrams. Despite 

this, in this Chapter the performance of the proposed algorithm is exemplified focusing 

its application on the outputs provided by the application of the SSI-Cov method and on 

the construction of the correlation matrix. It is worth remarking that the algorithm 

proposed herein can be also coupled with the SSI-Data identification technique based on 

the construction of projection matrix. 

As described in Chapter 2, the SSI-Cov method is a robust identification technique 

generally chosen because of its stability and convergence. The extraction of the modal 

features is performed using the collected output response signals through a sophisticated 

sequence of commands aimed at identifying the state matrix 𝐴, which contains all the 

dynamic properties of the system, and the output matrix 𝐶. These matrices are obtained 

through a series of operations that begin with the construction of the correlation matrix of 

the measured responses. Then, the resulting data is consecutively organized in a Toeplitz 

matrix, which it is decomposed by the Singular Value Decomposition (SVD) procedure, 

then the so-called observability matrix is extracted from such factorization. Adopting 

some properties concerning the stochastic linear systems and through the resolution of a 

least-square equation (using the Moore-Penrose pseudo-inverse procedure) the 
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observability matrix is used to define the matrices 𝐴 and 𝐶 [Van Overschee and De Moor 

(1996)] associated to a state-space model and then to extract the modal parameters. 

But it is worth mentioning that the selection of the state-space model requires a-priori 

definition of the time-lag value and the order of the stochastic model used to characterize 

the dynamics of the structure under analysis. In case of real structure, it is not possible to 

fix a-priori these parameters; thus, an initial “tuning” becomes mandatory to find the best 

pair of them that characterize the dynamic behavior of the investigated system.  

Initially, as described in Chapter 2, the extraction of the modal parameters was performed 

identifying a stochastic model that best fit the behavior of the system. In common 

practice, the model is defined exploring a wide interval of both input parameters (i.e. 

model order of the stochastic model and time-lag parameter of the covariance function), 

choosing that pair which provides better solutions and reasonable modal estimates. This 

task is executed manually, requiring a strong interaction of an expert user during the 

analysis of the data. 

Nowadays, in the context of automatic processing, the most appropriate way to partially 

overcome the strong user interaction during the analysis of the collect signals is to 

perform some essential tests selecting different time-lag values and overestimating the 

model order (as described in Chapter 4). Thus, the modal estimates are extracted by those 

stable alignments that stand up on the stabilization diagram at the end of the analysis 

process. 

Furthermore, in the context of continuous dynamic monitoring process, once the input 

parameters (i.e. time-lag and min/max model order) have been selected, they are 

normally used in conservative way for the entire monitoring process. This strategy is 

based on the fact that the dynamic behavior of the investigated structure does not change 

over time. This hypothesis is not always confirmed because there is no certainty that a 

selected time-lag parameter provides the most accurate solution during the whole 

monitoring process. 
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This aspect is very important to ensure a correct identification of the dynamic features 

over time [Zabel et al. (2016)]. For this reason, to provide a solution to this uncertainty, 

in the present proposed methodology the modal features are obtained exploring a wide 

interval of both input parameters characterizing the results with a high redundancy of the 

SSI outputs and involving the construction of tri-dimensional stabilization diagrams.  

 

Fig. 5.1. Construction of tri-dimensional stabilization diagram  

The main objective of the procedure described herein is to perform an automated 

estimation of the modal parameters, avoiding the initial tuning of the input parameters of 

the parametric method. To reach this task, increasing time-lag value and increasing 

model order were chosen in a conservative way to construct a tri-dimensional 

stabilization diagram as depicted in the Fig. 5.1. Hence, the automated procedure, 

composed by four different steps aimed at mimicking the choice of an expert user during 

the identification process, has been developed as follows: 

1. Application of SSI-Cov method (or other parametric method with similar outputs) 

for increasing values of the input parameters selecting a wide range of the model 

order and time-lag value (or number of block-row data in case of SSI-Data 

method) and construction of the 3D stabilization diagram. 

2. Removal of spurious poles applying three single mode validation criteria at the 

obtained poles based on modal damping ratio value and on the complexity degree 

of the mode shapes estimate associated to each pole. 

3. Interpretation of the clearer 3D stabilization diagram through an innovative 

clustering procedure generalized to complex modes. 

4. Removal of possible replications of the structural modes and extreme values in 

order to deliver a more accurate set of modal estimates. 
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Once the SSI method is performed for increasing time-lags and increasing model orders, 

and the outputs have been reported on a tri-dimensional stabilization diagram, the 

consecutive step consists of a series of checks aimed at detecting and removing spurious 

that do not have physical meaning (typically noise modes). The procedure used to extract 

the modal parameters of the tri-dimensional diagram is conceptually very similar to the 

MPE already described in Chapter 4. In fact, a sequence of consecutive checks is 

conceivability applied in order to perform a primary classification between spurious and 

physical poles using a pre-selected damping ratio threshold. So, estimates exhibiting 

negative damping and highly damped modes (i.e. modes with damping ratio larger than 

10%) are conceivably associated to the noise content and removed. 

Further single-mode validation criteria were adopted to detect noise modes using the 

MPC and the MPD index. Both indices are based on the quantification of the complexity 

degree of the mode shapes. As known, when the structural system is proportionally 

damped, the mode shapes are real and the components lie on a straight line in the 

complex plane, this means that the covariance between the imaginary and real part of 

each component can be used as a measure of the complexity degree, through the MPC 

index; in addition, the distance between the best straight line associated to the mean 

component of mode shape and every single (weighted) component can also be used as 

single-criterion check, with the MPD index, as shown in [Reynders et al. (2012)].  

Once most of spurious poles are removed from the diagram, the third step of the 

proposed algorithm is the clustering procedure. This procedure is inspired by the 

contribution firstly proposed by [Magalhães et al. (2009)] and modified in the recent 

work by [Cabboi at al. (2017)], but in the present implementation the clustering  

procedure presents a further improvement that solves some issues related to complex 

components associated to obtained mode estimates.  

A similar strategy was implemented to extract the modal parameters from a multi-setup 

ambient vibration test carried out on a non-reinforced arch bridge located in the north of 

Portugal obtaining satisfactory results [Marrongelli et al. (2017)]. 



Chapter 5 

 

 

220 

 

5.2.1 MAC vs. MACX  

In order to generalize the clustering procedure to all possible cases and to extend the 

approach to modes with relevant complex components, the limitation related to the MAC 

index was removed adopting the MACX criterion described in [Vacher et al. (2010)].  

It is worth remarking the basic assumptions regarding the dynamic properties of linear 

systems; in fact, if the conditions of linear and time invariant systems are verified (as 

described in Chapter 2), the mechanical models used to represent the dynamic behavior 

of an investigate structure are based on the fundamental equations of the dynamic in 

which the system is expressed by Eq. 2.1. If the matrices 𝑀, 𝐾 and 𝐷 are positive 

definite and symmetric and they are diagonalizable in the same basis, the eigenvectors of 

the system in Eq. 2.1 are identical to those ones of the associated undamped system 

(𝐷=0). In addition, if the damping matrix 𝐷 are composed by relatively small 

components, then the poles of the system 𝜆𝑘 are complex and stable.  

Under this assumption, each pair of conjugated poles (𝜆𝑘 and �̅�𝑘) share the common 

eigenvector 𝜓𝑘 and this vector is real-valued. This means that the eigenvector is a 

complex vector, so 𝜓𝑘 coincides with its conjugated form �̅�𝑘. The associated mode is 

defined by the pair of poles (𝜆𝑘 and �̅�𝑘) and the mode 𝜓𝑘 is defined to be real.  

On the contrary, when the above hypothesis is not complied with, each mode is complex. 

Hence, each mode of the system is characterized by a pair of conjugated poles (𝜆𝑘 and 

�̅�𝑘) and the relative pair of conjugated eigenvectors (𝜓𝑘 and �̅�𝑘) [Vacher et al. (2010)]. 

So, which one of the two vectors should be considered to compute the MAC index? The 

Modal Assurance Criterion (MAC) is a measure of the degree of linearity between two 

vectors. Thus, defining the vectors µ1 and µ2, the MAC can be defined as:  

 MACX(µ1; µ2) = (
|µ1

∗ ∙ µ2|

‖µ1‖ ‖µ2‖
)

2

= cos2(µ1; µ2) ( 5.1)  

in which (∙)∗ means conjugate-transpose of a complex vector. So, the product µ1
∗ ∙ µ2 is 

called Hermitian inner product between two vectors.  
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This definition can be interpreted geometrically since the MAC index depends on the 

angle between two vectors. Although this criterion can be applied to both real-valued and 

complex-valued vectors because it is insensitive to the modulus and the phase of the 

vectors, it is sensitive to the phase scatter between vector components. In other word, the 

MAC index is a well-suited to the analysis of mono-phase vectors but, on the contrary, it 

is sensitive to the conjugate operations of complex vectors with scattered phases.   

The solutions of a dynamic system (Eq. 2.1) described through a stochastic state-space 

model (Eq. 2.72) are defined by taking into account the sign of the imaginary part of the 

poles 𝜆1 and 𝜆2. Hence, the MAC index is calculated selecting the two vectors which are 

associated with the poles 𝜆1 and 𝜆2 with imaginary parts of the same sign. 

As described in [Vacher et al. (2010)], a complex eigenvector is computed up to a 

multiplicative complex factor. In this way the phase of an eigenvector or (in the same 

way) of a mode shape is given up an angle β. Considering to perform the normalization 

of the mode shapes of this arbitrary phase by searching the value of �̃� instead β, making 

the complex vector “as real as possible”. Remarking, the angle �̃� is not the phase 

corresponding to the component of the mode shape with larger real part. 

Defining �̂�1 and �̂�2 as the angles that solve the optimization problem reported below: 

 (β̂1; β̂2) = arg max
β1,β2

|v1
T(β1) ∙ v2(β2)|  ( 5.2)  

In which 𝑣1(𝛽1)=Re(µ1 ∙ 𝑒−𝑖𝛽1) and 𝑣2(𝛽2)=Re(µ2 ∙ 𝑒−𝑖𝛽2). From this expression, it is 

possible to derive the first expression of the MACX criterion, that is valid for any type of 

vectors (i.e., complex vectors): 

 MACX(µ1; µ2) = (
|µ̂r1

T ∙ µ̂r2|

‖µ̂r1‖ ‖µ̂r2‖
∙

‖µ̂r1‖

‖µ̃r1‖
∙

‖µ̂r2‖

‖µ̃r2‖
)

2

 ( 5.3)  

In which the value of the vectors µ̂𝑟1 and µ̂𝑟2 are described in [Vacher et al. (2010)]. 

From the Eq. 5.3, it is possible derive a simpler expression that can be directly computed 

from the original vectors µ1 and µ2 considered for the MAC index, as follows: 
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 MACX(µ1; µ2) =
(|µ1

H ∙ µ2| + |µ1
T ∙ µ2|)

2

(µ1
H ∙ µ1 + |µ1

H ∙ µ1|) (µ2
H ∙ µ2 + |µ2

H ∙ µ2|)
  ( 5.4)  

It is worth remarking that this formulation is quite similar to the classical MAC since it is 

only needed to perform the following substitution in the expression of the MAC index: 

 |µ1
H ∙ µ2| =

1

2
(|µ1

H ∙ µ2| + |µ1
T ∙ µ2|)  ( 5.5)  

Furthermore, by the results provided in [Vacher et al. (2010)], it can be notice that the 

MACX criterion generally gives greater values than MAC criterion, in fact from the 

comparison of the analysis carried out on aeroelastic models, the correlation expressed by 

the application of the MACX is much more effective of the MAC index. 

Taking into account the information reported in the well-known paper [Vacher et al. 

(2010)] as well as the criticism about the use of MAC index described in [Allemang 

(2003)] this approach was adopted for the implementation of a new clustering algorithm. 

The new clustering algorithm has been developed in order to take into account the 

possible issues related to the complex components of the mode shapes associated to the 

poles in the stabilization diagram but also of the complexity values of the mode shapes 

associated to the reference modes used in the clustering process itself. 

For clearness, the MACX criterion is used in the matric of the new clustering approach 

accordingly to the previously normalization and the roto-translation of the mode shapes 

components used in the Hermitian product. Moreover, the use of the MACX criterion in 

the clustering process should deserve a deep investigation regarding the use of the 

reference mode and its generation obtained by a mere averaging process of the mode 

shapes into the cluster even if the mode shapes are not exactly mono-phase. In practical 

situation, the mode shapes of a physical system are not exactly mono-phase vectors even 

if the above hypothesis about structural modelling are supposed fulfilled. 

This analysis is very important because the MAC criterion is not quite appropriate to 

process complex vectors. The extension of the MAC index (i.e., MACX index) is 



Automated modal identification algorithm using 3D stabilization diagram 

 

 

223 

 

constructed from a physical interpretation of the modal contribution derived by several 

measurements of a dynamic system 

Using this metric, the clustering process has been developed with the objective of 

grouping all poles that share same characteristics in terms of modal parameters (i.e., 

natural frequency and mode shape) also in case of high complexity of the mode shapes 

components. The new metric implemented in the clustering approach is defined as: 

 di,ref =
|fi,ref − fi,j|

fi,ref
+ 1 − MACX(φi,ref; φi,j) ( 5.6)  

where di,ref  represents the inter-cluster distance, obtained by the distance between each 

candidate pole and the reference pole of the cluster, fi,ref  and ϕi,ref represent the mean 

frequency and mean mode shape of the reference pole updated for increasing model 

order, whereas fi,,j and ϕi,,j are the same modal parameters corresponding to j-th “current 

pole”. The procedure is repeated in order to scan all available poles and it is stopped only 

when all poles are grouped into the clusters. As demonstrated in several works present in 

literature [Magalhães et al. (2009), Reynders et al. (2012), Ubertini et al. (2013)] the 

noise modes do not have consistency in terms of modal parameters and they are spread 

inside many small clusters, then all those clusters with dimensions less of one third of the 

tallest cluster are considered as numerical modes and then deleted. In current application, 

this condition could be really restricted, therefore in a conservative perspective this value 

has been halved, reducing this limit to n/6, where n is the number of elements belongs to 

the biggest cluster.  

The last step of the proposed methodology is aimed at improving the accuracy of the 

final modes estimations and it is already extensively described in the previous paragraph. 

Remembering, the first check consists of an agglomerative clustering approach based on 

an application of a k-mean cluster algorithm in which the centroids of the clusters are 

known, and they have been already defined by the mean frequencies and mean mode 

shapes provided by the previous cluster procedure. This operation is performed in order 

to recovering any possible estimates lost during the initial association phase and 
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removing others that fall inside the defined threshold due to continuous updating of the 

reference cluster pole. The second check is aimed at removing any possible replication of 

the physical modes in the stabilization diagram. This check tends to avoid this possibility 

recognizing possible replication and deleting that one with higher complexity component. 

In the last the main improvement of this sub-procedure. This check is aimed at reducing 

the scatter that could affect the estimates. The removal of the outliers is performed by 

applying simple rules based on the so-called box-plot tool, as reported in a practical 

application described in [Marrongelli et al. (2017)]. In case of 3D diagram this check was 

carried out on both distributions of natural frequencies and damping ratios, separately.  

Finally, the delivered outputs obtained by the application of developed methodology are: 

the mean natural frequency, the mean mode shape and the median modal damping ratio 

belonging to each detected cluster and their statistical properties provided by the standard 

deviation of the distributions associated to the aforementioned estimates. Besides this, the 

developed OMA procedure provides also the main complexity values (in term of MPC 

and MPD values) associated to the resulting modes. It is worth mentioning that these two 

indices are not obtained by a simple calculation from the resulting mode shapes (that 

should deserve some issues in the definition of the mean mode shapes) but they are 

defined by the distribution of the values associated to each estimate (i.e., pole) inside the 

final representative clusters. 

 

5.2.2 Application of the algorithm on a simple numerical structure 

The proposed algorithm was validated checking the modes of vibrating of a simple 

numerical structure composed by 5 DOFs (all the geometrical and mechanical 

characteristics of the structure are described in Chapter 4, Fig. 4.6). Several 30 min long 

datasets of acceleration time series were simulated to test the proposed identification 

algorithm. Each dataset is composed by five acceleration series related to each floor of 

the numerical structure. The extraction of the modal estimates was performed applying 

the SSI-Cov technique to the time series collected setting the frequency sample at 50 Hz. 
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Fig. 5.2. Input parameters used for the modal identification of the numerical structure 

For the testing, the interval of the time-lag parameter was defined from 50 to 100, 

meanwhile the model’s order was set in a conservative way between 10 and 50 (Fig. 5.2). 

 

a) 

  

 

b) 

  

 

c) 

  

 

d) 

  

Fig. 5.3. Tri-dimensional stabilization diagram: (a) SSI-Cov outputs; (b) after pre-filtering check; 

(c) after clustering; (d) after post-processing check. 
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Fig. 5.3 shows the consecutive 3D stabilization diagrams and the corresponding 

frequency vs damping diagrams obtained after the cleaning action exerted by the main 

key-steps of the proposed 3D-MPE algorithm. In details: Fig. 5.3(a) shows all output 

poles obtained by SSI-Cov method, Fig. 5.3(b) shows the remain poles after the checks 

on modal damping ratio and on the complexity of the mode shape, Fig. 5.3(c) highlights 

the performance of the clustering process and finally Fig. 5.3(d) contains the stable 

planes composed by only stable poles after the application of the post-processing tool.  

The good accuracy of the proposed identification algorithm is confirmed by the results of 

both sets of estimates (i.e., natural frequency and modal damping ratio) with a general 

improvement of the standard deviations associated to both estimates. Furthermore, the 

two complex indices confirm that all identified modes are real, as expected. 

Table 5.1. Modal parameters, standard deviations and complexity indices obtained 

Modes f [Hz] σ(f) [Hz] ξ [%] σ(ξ) [%] MPC MPD 

1 3.197 0.00003 0.280 0.0002 1.000 0.12 

2 9.329 0.00095 0.781 0.0037 0.999 0.23 

3 14.705 0.00371 1.325 0.0125 0.992 0.45 

4 18.892 0.00216 1.653 0.0239 0.997 0.26 

5 21.553 0.00513 1.721 0.0298 0.998 0.71 

The developed 3D-MPE algorithm has been used to extract the modal parameters of two 

important infrastructures in Europe: the Infante D. Henrique bridge located in Porto and 

the San Michele bridge located in the neighborhood of Milan. Therefore, the 

implemented algorithm has been also used to perform the continuous monitoring of two 

infrastructures obtaining good quality and lower uncertainty of the results [Marrongelli et 

al. (2018c)]. 
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5.3 Application to data collected on Infante D. Henrique bridge 

The first real structure herein considered to demonstrate the robust performance of the 

developed methodology is the Infante D. Henrique Bridge. It crosses the Duoro River 

and connects the city of Porto to Gaia. 

 

5.3.1 Description of the bridge 

The Infante D. Henrique bridge [Magalhães et al. (2008), [Magalhães (2010)] is 

composed of two mutually interacting fundamental elements: a very rigid pre-stressed 

concrete box beam supported by a reinforced concrete arch with a span of 280m that rises 

25m from abutments and crown. After its construction, a dynamic monitoring system was 

installed in the bridge. This is essentially composed by 12 force balance accelerometers 

and 2 digitizers. Due to its symmetry, the mode shapes are approximately symmetric, 

therefore it was decided to instrument just one-half of the bridge. So, the accelerometers 

were distributed along four sections between mid-span and the abutment at Porto bank 

with three sensors for each section: one to measure the lateral acceleration and other for 

vertical acceleration at downstream and upstream sides.  

 

 

Fig. 5.4. Scheme of the monitoring system and the temperature sensors installed on the Infante 

Dom Henrique bridge [Magalhães et al. (2008)] 
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5.3.2 Application of the automated procedure to a single collected dataset 

The developed 3D-MPE procedure has been used to perform the automatic identification 

of the modal parameters adopting a wide range of time-lag value to fit the operational 

responses of the bridge. In the current application the minimum value of time-lag was set 

equal to 10, with an increasing step of 10 units until reach the maximum value of 100. 

Meanwhile the model order interval was set in conservative way between 20 and 100, as 

reported in the previous works [Magalhães et al. (2008), Magalhães (2010)]. 

As mentioned before, the methodology is based on the construction and on the automatic 

interpretation of a 3D stabilization diagram composed by all outputs obtained by each run 

of the parametric method. This means that SSI-Cov method was performed for increasing 

model order and time-lag, providing a huge quantity of estimates composed by physical 

and spurious poles that need to be separated (see Fig. 5.5(a)). Thus, when the first step of 

the developed procedure is achieved, the removal of spurious poles was performed 

adopting three selected criteria based on application of three different thresholds. Such 

values were not very restrictive because the bridge may have complex modes, but they 

were fixed ensuring the elimination of noise modes with very high complexity and 

damping: 5% for damping, and 0.75 and 20° for MPC and MPD respectively. As already 

stated in several works, the clustering procedure could also be performed by avoiding the 

removal of spurious poles, because the consistency of noise modes dramatically changes 

for different model orders and they should not affect the correct classification. This 

second option is strongly discouraged in the present application, because the non-

elimination of spurious poles from the diagram and the consequently classification into 

shorter clusters make the clustering process very time-consuming without proving any 

improvements at the resulting estimates. Therefore, the removal of certain spurious poles 

is always recommended. In Fig. 5.5(b) the effect of the pre-filtering on the spurious poles 

in the analysis of a recorded dataset of Infante D. Henrique bridge is shown. 
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Fig. 5.5. Stabilization diagram: (a) obtained SSI-Cov outputs; (b) after checking on damping 

and modal complexity; (c) after clustering process; (d) after post processing check. 

Subsequently, the clustering procedure proposed herein consists of the application of the 

formula described in Eq. 5.6 to all remaining poles belong to the diagram. Its application 

is based on the similarity between possible candidate mode and the reference one (which 

is constantly updated when one estimates is linked into the cluster). The success of the 

clustering procedure is mostly depended on a selection of a distance threshold value that 

allows for the correct grouping of poles that share the same characteristics in terms of 

modal parameters. This threshold was set equal to 0.03. Hence, the distance between the 

reference pole (defined in terms of mean frequency and mean mode shape of all poles 

grouped into the cluster) and candidate pole have to be shorter than such prefixed 

distance.  
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The metric in Eq. 5.6 is used to scan all available poles until all estimates have been 

grouped. Moreover, in this procedure the single-linkage is used, this ensures that only 

one estimate can be introduced into the cluster for every model order and every time-lag 

value. In other words, two different estimates obtained with the same model order cannot 

be included in the same cluster. An application of the developed clustering algorithm is 

shown in Fig. 5.5(c). To conclude the validation, the final “stable planes” obtained after 

the application of the post-processing sub-procedure are shown in Fig. 5.5(d).  

It is worth mentioning that extending of the investigated frequency interval to 5.5 Hz, 

with regard to previously published results, four further modes of the bridge with a more 

complex behavior have been identified. To compete the first test of the developed 

procedure using real data, the automatically identified modal parameters of the bridge (in 

term of natural frequencies, modal damping ratio and standard deviations of these 

estimates) together with the complexity indices associated to the identified modes, are 

summarized in Table 5.2. Meanwhile, the mode shapes associated to the structural modes 

are shown in Fig. 5.6 and Fig. 5.7. 

Table 5.2. Modal parameters: natural frequency, modal damping ratio, standard deviations and 

complexity indices of the structural modes obtained applying the 3D-MPE to a single dataset.  

n° Mode f  [Hz] σ(f)  [Hz] ξ  [%] σ(ξ)  [%] MPC MPD 

1 L1 0.777 0.0001 0.47 0.0007 0.994 2.75 

2 V1 0.823 0.0004 0.87 0.0079 1.000 0.72 

3 V2 1.145 0.0001 0.48 0.0056 1.000 0.56 

4 V3 1.414 0.0003 0.42 0.0134 1.000 0.42 

5 L2 1.751 0.0001 0.44 0.0103 0.989 3.64 

6 V4 2.013 0.0003 0.42 0.0164 1.000 0.37 

7 T1 2.228 0.0015 0.42 0.0229 1.000 0.45 

8 V5 3.035 0.0024 0.51 0.0571 1.000 0.51 

9 T2 3.340 0.0016 0.86 0.0145 0.997 1.60 

10 V6 3.519 0.0002 0.44 0.0115 0.996 2.36 

11 T3 3.766 0.0005 0.53 0.0088 0.990 2.36 

12 V7 4.379 0.0029 0.65 0.0626 0.999 1.57 

13 V8 4.659 0.0061 0.70 0.1737 0.857 15.99 

14 T4 4.752 0.0004 0.53 0.0042 0.992 2.15 

15 T5 5.207 0.0002 0.72 0.0034 0.975 4.01 

16 V9 5.273 0.0002 0.39 0.0025 0.999 0.94 
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From the main results reported tin the Table 5.2 it should be noticed that: a) an excellent 

correspondence between the obtained results and those already published in literature, in 

terms of natural frequency and also modal damping ratio is shown, b) the standard 

deviation of the natural frequency estimates and also of the damping ratios are lower than 

those obtained with other OMA techniques, c) extending the investigated frequency 

range to 5.5 Hz, the proposed automatic algorithm detects four further modes not 

identified in the previous works. The mode shapes associated to the 16 identified mode 

are reported in Fig. 5.6 and Fig. 5.7, using different colors to highlight the lateral and the 

vertical components; in particular with the green color is reported the component on the 

lateral mode of the bridge. Alternatively, with red and blue colors are reported the 

components in the vertical direction associated to the upstream and downstream side of 

the bridge, respectively.  

It is should remarked that the dynamic system installed on the Infante D. Henrique bridge 

is composed by 12 accelerometers disposed in 4 instrumented cross-sections of the 

structure in order to measure the vibrations corresponding to an half part of the bridge 

(specifically the side toward indirection of the city of Porto). Therefore, the identified 

mode shapes depicted in both Fig. 5.6 and Fig. 5.7 are referred to half part of the bridge. 

It is worth noting that different colors have been used to describe the different behavior 

of the identified mode shapes. Hence, the components of the lateral modes were depicted 

with green line; meanwhile, for vertical components were used the red line for the 

upstream side and the blue line for the downstream line of the bridge, respectively. In this 

way, the diagram reported in Fig. 5.6(1), describes the mode shape of the first 

symmetrical fundamental lateral mode of the bridge, pointed out by the zero-values of the 

vertical components (red and blue lines). Meanwhile, the diagram in Fig. 5.6(2), the 

shows the first fundamental anti-symmetrical bending mode of the bridge, demonstrated 

by the fact that the lateral components are zero (green line) and the vertical components 

of the sensors located in both sides of the bridge (red and blue line) move in-phase.  
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1) 

 

2) 

 

3) 

 

4) 

 

5) 

 

6) 

 

7) 

 

8) 

 

9) 

 

10) 

 

11) 

 

12) 

 

Fig. 5.6. First 12 vibration modes automatically identified by the proposed methodology (green 

line, blue line and red line are referred to lateral, vertical upstream and vertical downstream 

components, respectively). See Fig. 5.4 for location of the sensors. 
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13) 

 

14) 

 
15) 

 

16) 

 
Fig. 5.7. Four further modes of the bridge detected extending the interval of investigated 

frequency to 5.5. Hz. See Fig. 5.4 for location of the sensors. 

In Fig. 5.7 are reported the identified mode shapes associated to stable alignments 

detected extending the investigation of the frequency interval to 5.5 Hz. From 

engineering standpoint, some remarks can be drawn: 

• The frequency of the fundamental lateral mode is 0.777 Hz and the corresponding 

mode involves a symmetrical lateral bending of the deck. 

• The first vertical mode of the bridge was detected with natural frequency equal to 

0.823 Hz and the corresponding mode associated involves anti-symmetrical vertical 

bending of the deck. 

• The bridge exhibits a complex dynamic behavior characterized by a large density of 

vibration modes in a reduced frequency range, closely spaced modes and one complex 

mode with nominal frequency equal to 4.66 Hz [Marrongelli et al. (2018d)]. 

• Two purely lateral modes of the bridge have been detected (1st and 5th mode). 

• Almost all identified modes can be classified as dominant bending (2nd, 3rd, 4th, 6th, 8th, 

10th, 12th, 13th and 16th mode) or dominant torsion (7th, 9th, 11th, 14th and 15th mode). 

• Four further identified modes were extracted extending the interval of investigated 

frequency to 5.5 Hz (see Fig. 5.7) that are not identified by previous analysis.  

• Furthermore, a structural mode with high complexity component was detected with 

nominal frequency equal to 4.66 Hz (13th identified bending mode). 
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5.3.3 Application of the proposed algorithm to a continuous monitoring period 

The MPE algorithm described herein has been coupled with a simple modal tracking 

procedure to automatically process data continuously collected by the monitoring system 

installed on Infante D. Henrique Bridge. As shown in the previous paragraph, the 

investigated frequency interval was extended to 5.5 Hz and four further structural modes 

were identified in addition to the 12 modes reported in previous publications. Thus, the 

new set of 16 identified modes was used as reference parameters for the tracking process. 

In the context of continuous dynamic monitoring, the most representative features 

(normally natural frequencies) are plotted over the time in order to study their evolution 

and detect any possible anomalies in the “normal” behavior of the structure. To reach this 

task, every set of modal estimates, obtained by the analysis of each dataset, is linked to 

the reference baseline list through a comparison performed among modal estimates.  

 

 

Fig. 5.8.  Evolution of the natural frequencies of the modes automatically identified during the 

period from 01/11/2017 to 30/11/2017. Overview of the natural frequencies and zoom of the lower 

frequencies of the bridge 
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There are several approaches to perform a correct tracking process [Magalhães et al. 

(2009), Reynders et al. (2012), Cabboi et al. (2017)], the most successful procedures are 

usually based on the use of a fix baseline (associated to pre-defined structural modes) or 

based on adaptive baseline (continuously updated after the analysis of each dataset). In 

this example, a fixed reference list associated to the modes extracted from the dataset 

collected on the 1st of November 2017 was used. Then, continuous monitoring process 

was achieved comparing each new set with the 16 selected modes, and their evolution are 

shown in Fig. 5.8. Moreover, the zoom of the two identified modes with lower frequency 

value highlights the robust performance of the developed methodology, capable to 

correctly identified closely spaced modes also subjected to the effects of the 

environmental and operational conditions (i.e. temperature variation and traffic loads). 

Table 5.3. Main results obtained by the continuous dynamic monitoring of the bridge 

Mode SR fmean[Hz] σ(f) [Hz] ξmedian[%] σ(ξ) [%] MACmean MACmin MPCmean MPDmean 

L1 100.00 0.78 0.001 0.43 0.104 1.00 0.94 1.00 1.51 

V1 100.00 0.82 0.004 1.16 0.389 1.00 0.98 1.00 1.31 

V2 100.00 1.15 0.002 0.45 0.086 1.00 1.00 1.00 0.30 

V3 100.00 1.42 0.002 0.45 0.106 1.00 0.99 1.00 0.41 

L2 100.00 1.75 0.003 0.47 0.096 0.99 0.92 0.99 3.09 

V4 100.00 2.02 0.003 0.49 0.146 1.00 0.98 1.00 0.90 

T1 100.00 2.23 0.004 0.47 0.141 1.00 0.98 1.00 0.50 

V5 100.00 3.05 0.006 0.48 0.132 1.00 0.98 1.00 0.63 

T2 99.86 3.34 0.006 0.50 0.110 0.99 0.94 0.99 2.22 

V6 99.79 3.52 0.005 0.41 0.100 0.99 0.92 0.99 3.12 

T3 96.46 3.77 0.006 0.47 0.107 0.98 0.84 0.96 3.20 

V7 99.93 4.39 0.008 0.57 0.145 1.00 0.98 1.00 2.10 

V8 83.61 4.66 0.020 1.18 0.311 0.91 0.73 0.93 8.31 

T4 99.44 4.76 0.009 0.63 0.115 0.99 0.90 0.99 2.50 

T5 96.32 5.23 0.008 0.55 0.094 0.98 0.85 0.97 3.09 

V9 97.22 5.28 0.006 0.46 0.070 0.98 0.87 0.97 5.18 

 

Table 5.3 summarizes the most relevant results obtained by the application of the 

developed 3D-MPE algorithm to data collected in one month of monitoring of the bridge. 

Specifically, in the first column the type of the investigated modes is reported. In the 

second column the success rate associated to each mode is quantified; as shown 10 

modes were identified in all recorded datasets (success rate of 100%), just one mode was 
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identified with a lower success rate (equal 83%); meanwhile, the success rate of other 5 

modes were identified with a rate higher than 96%. Columns 3-6 present the mean values 

with the standard deviations of the natural frequencies, and the median values with 

standard deviation of the modal damping ratios associated to each identified mode, 

respectively. In the columns 7-8, the mean and the minimum value of the MAC index 

obtained during the monitoring are reported. Finally, in the columns 9-10 the mean 

values of the two complex indices, MPC and MPD, are also reported.  

The last two columns provide relevant information about the behavior of the investigated 

modes; in fact, as reported in Table 5.3, all identified modes are strictly real except for 

the 8th vertical bending mode, in which the complex component is not negligible. Such 

information is confirmed by both complex indices but also by the graphical 

representation of the mode shapes depicted in Fig. 5.7(13), the maximum and minimum 

value of the modal displacement associated to each component in upstream and 

downstream side of the bridge are not reached at the same instant but they maintain a 

mutual delay, typically of complex modes. 

 

 

5.4 Application to real data collected on San Michele bridge 

In order to demonstrate the robustness of the MPE proposed herein, the current approach 

has been exemplified also using data continuously collected on an important Italian 

Cultural Heritage structure: the San Michele Bridge [Busatta (2012); Gentile and Saisi 

(2011), Gentile and Saisi (2015)]. 

 

5.4.1 Description of the bridge and historical background 

San Michele Bridge is one of the most important Italian Cultural Heritage monuments of 

the 19th century. It was built in 1889 and it consists of an iron arch that supports a box 

girder to links the small town of Paderno to Carlusco d’Adda in the north of Italy (about 
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50 km far from the city of Milan). It is characterized by the main parabolic iron arch with 

span of 150m long that rises 37.5m. The upper girder is 266 m long and it is supported by 

nine equally spaced bearing, Due to the difficulty of performing a regular maintenance, 

the state of preservation of the bridge is quite poor and several structural components are 

significantly damaged by corrosion. Moreover, the increase in traffic in the last decades 

is gradually worsening the maintenance of its security status; for these reasons, it was 

decided to carry out several ambient vibration tests in order to understand the dynamic 

behavior of the bridge and to plan some damage mitigation strategies to preserve the 

historic bridge [Gentile and Saisi (2011); Busatta (2012)]. Furthermore, test results 

highlighted some issues in the behavior of the bridge that need to be deeper analyzed. For 

these reasons, a permanent dynamic monitoring system was installed for SHM purposes. 

  

 

Fig. 5.9.  Layout of the monitoring system and views of the San Michele iron arch bridge (1889). 
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5.4.2 Extraction of the modal parameters estimates of the historical bridge 

The proposed methodology was initially applied to several single dataset collected during 

the first day of the selected monitoring period, in order to extract the best set of modal 

estimates that it will be used as reference list for continuous dynamic monitoring process. 

The vertical and horizontal acceleration time series recorder during the monitoring 

process were processed separately. In this paragraph, only the results related to the 

analysis of the horizontal output response of the bridge are reported. It is worth 

mentioning that collected data were initially pre-processed to remove parts of the signals 

that do not comply with the basic assumptions of OMA applications (e.g. [Gentile and 

Saisi 2015]) and then filtered and re-sampling to 20 Hz. 

Table 5.4. Modal parameters, standard deviations and complexity indices of the identified modes 

n° f  [Hz] σ(f)  [Hz] ξ   [%] σ(ξ)  [%] MPC MPD 

1 0.991 0.0001 0.33 0.0137 0.999 0.83 

2 1.345 0.0001 0.56 0.0269 0.997 1.59 

3 1.646 0.0002 0.60 0.0132 0.992 2.03 

4 2.014 0.0004 0.55 0.0076 0.983 3.60 

5 2.160 0.0004 0.78 0.0101 0.980 3.75 

6 2.508 0.0002 0.75 0.0021 0.895 8.70 

7 2.802 0.0002 0.89 0.0208 0.972 4.92 

8 3.122 0.0006 0.53 0.0051 0.895 11.26 

9 3.530 0.0013 1.12 0.0231 0.974 5.17 

10 3.800 0.0006 0.63 0.0122 0.919 8.21 

11 4.020 0.0117 0.42 0.3688 0.846 10.77 

12 4.078 0.0029 0.25 0.0321 0.898 10.96 

13 4.126 0.0014 0.35 0.0069 0.981 4.55 

14 4.383 0.0004 0.41 0.0056 0.909 6.74 

15 4.789 0.0007 0.40 0.0130 0.933 8.53 

As reported in [Busatta (2012), Gentile and Saisi (2015), Cabboi et al. (2017)] 15 lateral 

modes of the bridge were expected. The proposed algorithm was used to extract the 

evolution of these features during a winter period, setting the initial parametric inputs as 

follows: time-lag interval from 20 to 100 (increasing value equal to 10) and model’s 

order interval as 30-150 (step equal to 2). Table 5.4 shows the results automatically 

obtained by structural responses collected during the 19th of February 2012 at 9 a.m., 

where 15 different modes have been detected. A graphical representation of the identified 

modes of the bridge is provided by Fig. 5.10. 
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Moreover, the polar plot representation highlights the remarkable complexity associated 

to several investigated modes. As described in [Cabboi et al. (2017)], the complexity of 

the mode shapes could depend on various factors (i.e. linkage, synchronization problem, 

high noise ratio) and non-linear behavior of the structure (generally related to non-

proportional damping or hysteretic factors). Therefore, the choice of the thresholds 

adopted to remove most of spurious poles is still related to the expected characteristics of 

investigated structure and some trial tests are required to define them. In this application, 

the thresholds used to remove spurious poles from the tri-dimensional stabilization 

diagram were set equal to 0.4 and 25° for MPC and MPD, respectively. So, all estimates 

obtained by SSI-Cov method with complexity values lower than aforementioned limits 

were considered as noise modes and removed. 

f = 0.991 [Hz] f = 1.345 [Hz] f = 1.646 [Hz] f = 2.014 [Hz] f = 2.160 [Hz] 

ξ = 0.33 [%] ξ = 0.56 [%] ξ = 0.60 [%] ξ = 0.55 [%] ξ = 0.78 [%] 

     
f = 2.508 [Hz] f = 2.802 [Hz] f = 3.122 [Hz] f = 3.530 [Hz] f = 3.800 [Hz] 

ξ = 0.75 [%] ξ = 0.89 [%] ξ = 0.53 [%] ξ = 1.12 [%] ξ = 0.63 [%] 

     
f = 4.020 [Hz] f = 4.078 [Hz] f = 4.126 [Hz] f = 4.383 [Hz] f = 4.789 [Hz] 

ξ = 0.42 [%] ξ = 0.25 [%] ξ = 0.35 [%] ξ = 0.41 [%] ξ = 0.40 [%] 

     
Fig. 5.10. Reference parameters of the 15 modes: natural frequency, modal damping ratio and 

mode shapes represented in a polar plot 
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5.4.3 Application of the proposed algorithm to a short period of monitoring  

Once the baseline list has been defined, the identification algorithm was applied to one-

month of monitoring data collected on San Michele Bridge in order to track the natural 

frequencies evolution and to find any possible anomalies in the normal behaviour of the 

bridge. Despite modal tracking is a well-known problem for permanent monitoring 

purposes, its application is not always straightforward. The tracking process proposed 

herein exploits the similarity measurements already presented in [Cabboi et al. (2013); 

Gentile and Saisi (2015)], involving the frequency variation and the MAC index 

(necessary to separate the close spaced modes). Instead the short period of monitoring, 

the linking process was performed using static rejection thresholds applied to frequency 

variation and MAC index separately, such thresholds were fixed to 0,20 Hz and 30%, 

respectively. The results of the automated identification of the natural frequencies of the 

bridge, are shown in Fig. 5.11.  

 

Fig. 5.11.  Evolution of the natural frequencies of the lateral modes of the bridge identified during 

the period from 17/02/2012 to31/03/2012 

In order to highlight the environmental and operational effects on the natural frequency 

estimates, a zoom of the frequencies evolutions within the investigated period associated 

to modes with lower frequencies are reported in the Fig. 5.12. The daily fluctuations of 

the natural frequencies are clearly shown in the graphical representations highlighting the 

strong dependence between the extracted natural frequency estimates and environmental 

factors (i.e. temperature fluctuations). 
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Fig. 5.12.  Zoom of the natural frequency evolution associated to the first lateral mode (blue dots) 

and to the second lateral mode (red dots) of the San Michele bridge 

Moreover, main statistical information of the modal identification of the 15 detected 

identified modes of the bridge are reported in Table 5.5. As shown, also in this case the 

robust performance of the proposed methodology is confirmed by the high success rate 

(higher than 96%) for all structural modes. 

Table 5.5. Results of the continuous monitoring of San Michele Bridge 

n° SR f   [Hz] σ(f) [Hz] ξ   [%] σ(ξ) [%] MPD MPD 

1 100.00 0.995 0.0095 0.257 0.0875 0.999 1.05 

2 100.00 1.356 0.0251 0.497 0.1885 0.990 2.24 

3 100.00 1.662 0.0327 0.538 0.2088 0.973 3.73 

4 100.00 2.032 0.0409 0.509 0.2009 0.926 4.56 

5 99.80 2.201 0.0650 0.634 0.1958 0.905 6.82 

6 97.43 2.545 0.0737 0.731 0.2019 0.894 8.49 

7 99.93 2.865 0.0883 0.644 0.2143 0.869 7.90 

8 99.86 3.161 0.1003 0.526 0.2060 0.855 11.80 

9 100.00 3.623 0.1092 0.695 0.2861 0.929 5.51 

10 100.00 3.841 0.0898 0.553 0.1692 0.916 8.31 

11 100.00 4.105 0.0654 0.375 0.2215 0.838 9.72 

12 99.93 4.154 0.0331 0.277 0.1473 0.780 12.93 

13 96.75 4.405 0.0501 0.350 0.0857 0.909 12.48 

14 99.59 4.580 0.0566 0.486 0.1280 0.933 15.57 

15 92.79 4.812 0.0264 0.350 0.1378 0.999 6.77 
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In more details, in the second column of the Table 5.5 the success rate (SR) values 

referred to each investigated mode is reported. Columns 3-4 present the mean values and 

standard deviations of the identified natural frequencies. The standard deviations 

highlight the low scatter of the obtained estimates during the tracking process, as well as 

same trend is seen for the damping ratios (columns 5 and 6). Finally, in the columns 7-8 

are shown the mean values, MPC and MPD associated to all modes during the one-month 

monitoring period. It is worth mentioning the relative high values associated to the 

complexity indices, demonstrating the high complex component related to almost all 

structural modes. 

 

5.5 Conclusions 

In this Chapter a recently developed methodology for automated modal parameter 

estimation based on the construction and interpretation of tri-dimensional stabilization 

diagrams is presented. The performance of the developed algorithm is exploited 

extracting the modal parameters of a simple numerical stricture composed by 5-DOFs. 

Later, it was used to identify the modal parameters of two large infrastructures: the 

Infante Dom Henrique bridge (Portugal) and the San Michele bridge (Italy). 

Consequently, the robustness of the developed modal identification algorithm was 

demonstrated in the context of continuous monitoring applications, analyzing short 

periods of monitoring data collected on the bridges. 

The goal of the proposed methodology is based on two different aspects apt to provide a 

more generalized automated procedure for the identification problems. The first aspect is 

related to the human interaction in a very primary stage of the identification process. In 

detail, the new methodology provides a further effort in the automation of the 

identification process avoiding the user choice in the definition of the input parameter of 

SSI-Cov method (i.e. time-lag) used to construct the correlation matrix. The second 

aspect is related to a further generalization of the developed procedure to complex cases 

through a new clustering approach based on the use of MACX index. 
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From the analysis of data collected on the two cases studies, the performance of the 

developed 3D-MPE algorithm was proven by the high success rate in the identification of 

their structural modes. In the former case, 16 structural modes were identified with a 

success rate generally higher than 97%. Moreover, the obtained results also show the 

ability of the implemented algorithm in the identification of closely spaced modes, as it 

shown by the first lateral mode and the first vertical mode with frequencies of 0.78 Hz 

and 0.82 Hz, respectively. The monitoring results also show very coherent mode shapes, 

that maintain high consistency during the entire investigated period with MAC values 

generally higher than 0.98. 

In the second application, 15 lateral modes of the bridge were successfully identified and 

tracked. The good performance of the algorithm allows the high success rate in the 

tracking of the bridge modes. Moreover, the high complexity of some mode shapes 

highlights the effects of the improvement implemented in the clustering process; in fact, 

the generalization of the clustering procedure to complex modes through the use of the 

MACX index allows an efficient generation of representative clusters and, consequently, 

a better performance of the tracking process.  

From the resulting outputs concerning the analysis of both bridges, the evolution over 

time of the modal parameters (mainly natural frequencies) confirms the influence of the 

environmental factors as well as the operational loads on the dynamic behavior of both 

bridges.  

Concluding, the application of the proposed 3D-MPE algorithm could be of great interest 

in the context of continuous dynamic monitoring of real scale structures. A deeper 

analysis of the uncertainty related to obtained estimations (i.e., analysis of the evolution 

in time of the standard deviations) will be very useful to understand and quantify the 

robustness and the flexibility of the implemented methodology of delivering coherent 

sets of structural modes.  

Again, it should remark that the evolution of the natural frequencies in the referred 

monitoring periods are obtained completely avoiding the initial tuning of the input 



Chapter 5 

 

 

244 

 

parameters (i.e. time-lag and model order) of the SSI-Cov parametric methods just using 

a wide range of both parameters. This result demonstrates the great improvement in the 

automation of the identification process.  
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6.1 Introduction 

Within the context of OMA-based SHM, the tracking process deserves a special attention 

because it directly provides the input for the statistical tools adopted to detect any novelty 

or abnormal changes in the dynamic behavior of the investigated system. The efficiency 

of the Modal Tracking (MT) process is evident for SHM purposes because the good 

performance of this tool allows for the full automation of the monitoring process and, 

consequently, a relevant reduction of human interaction during the continuous 

assessment of structures. The importance of an effective design of the tracking procedure 

is crucial in order to handle correctly large amounts of collected information regarding 

the continuous dynamic monitoring of large infrastructures, generally characterized by 

widespread monitoring systems, as well as for ancient constructions, in which the 

monitoring systems (composed by a reduced array of sensors) are generally subjected to 

limited conditions that do not make the monitoring process easy and straightforward.  

In the last decades, the SHM strategy based on the vibration monitoring and operational 

modal analysis has received increased attention and many monitoring systems have been 

implemented in structures and infrastructures, all over the world. Well-known examples 

of permanently monitored structures in different countries include: the Akashi Kaikyo 

Bridge in Japan [Katsuchi et al. (1998)], the Tsing Ma Bridge in Hong Kong [Wong 

(2004)], the Seohae Bridge in Korea [Koh et al. (2004)], the Infante Dom Henrique 

Bridge in Portugal [Magalhães et al. (2008)], the Tamar Bridge in UK [Cross et al. 

(2013)] and the Oresund Bridge in Denmark [Peeters et al. (2009)]. Other applications 

concern important infrastructures [Ni et al. (2009), Ni et al. (2011)], slender footbridges 

[Caetano et al. (2010)] and Cultural Heritage constructions in Italy, such as the Gabbia 

Tower in Mantua [Saisi et al. (2015); Gentile et al. (2016)] and San Pietro Bell-Tower in 

Perugia [Ubertini et al. (2016); Ubertini et al. (2018)]. 

The growing scientific and practical interest in dynamic monitoring and OMA-based 

SHM has many motivations, such as: (a) the possibility of obtaining information on the 

health condition of the structure in quasi-real time, (b) the easy extraction of the complex 
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behavior of new constructions as well as ageing structures, (c) the monitoring of the most 

meaningful features in order to highlight the occurrence of any damage or anomalies in 

the structures. Thus, over the years, the increasingly large number of permanently 

monitored structures has driven an increase in the demand for automation of the analysis 

process devoted to the identification of modal parameters and the tracking of their time 

evolution.  

Despite this, only a few strategies have been developed in literature to manage the MT 

phase using parametric identification methods [Magalhães et al. (2009), Cabboi et al. 

(2017), Zonno et.al. (2018)] or also devoted to the use of methods based on non-

parametric techniques as developed in [Rainieri and Fabbrocino (2009)].  

One of the most popular approaches adopted to perform the tracking of the structural 

modes is based on checking the similarity of the modal parameters in terms of natural 

frequency and mode shape (through the MAC index). The aim of such strategy is to 

follow the time evolution of the investigated modes through: a) exploiting the 

consistency of the modal parameters over time, b) adopting a reference baseline set of 

modes and c) calibrating rejected thresholds to account for variations associated to the 

thermal effects or dynamic loads.  

In common practice, the reference modes are generally defined through previous ambient 

vibration tests but also by performing a one day monitoring to better characterize the 

dynamic behavior of the investigated structure. Therefore, these reference modes 

represent the initial state of the monitoring project and they are generally known as MT 

parameters. It is worth mentioning that the number of modes in the reference list plays a 

crucial role during the monitoring process because it defines the number of available 

slots for the tracked modes. Hence, their definition is very important in the beginning of 

the monitoring process and it is not always straightforward.  

Moreover, threshold values – defined as rejection thresholds – are adopted to guarantee a 

correct linking between reference modes and each candidate mode bounding the tracking 

zone associated to each reference mode in which the subsequent estimate is checked. 
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Nevertheless, the choice of the rejection thresholds is very important as well for a correct 

tracking because their definition is strictly related to both daily and seasonally evolutions 

of the modal features (more frequently natural frequencies), which are completely 

unknown in the beginning of the monitoring process. Normally, an initial tuning of these 

values is performed in the initial stage of the process, taking into account the fluctuation 

of the modal parameters in the first days of monitoring and making some assumptions on 

their future evolutions in the summer/winter period. Clearly, the use of pre-defined or 

fixed threshold values to discriminate between different modes does not guarantee the 

correct tracking of the features because of the environmental and operational effects. In 

other words, a manual updating of such bound conditions to mainly cover the seasonally 

variations are often required along the monitoring process, implying periodical user 

intervention that does not allow for the full automation of the process.  

A good solution to this issue was proposed in [Cabboi et al. (2017)], in which the 

tracking is based on the automatic definition of self-adaptive rejection thresholds. This 

strategy is oriented towards automatically establishing the values of the rejection 

thresholds scanning all distances, in terms of natural frequencies and MAC values, 

between reference modes belonging to the baseline reference list and all modes estimates 

previously tracked. This solution solves one of the main problems of the tracking process 

related to daily and seasonal temperature variations, making the procedure completely 

automated. Nevertheless, even the use of adaptive thresholds might lead to drawbacks 

when dealing with very simple monitoring systems, because the availability of a limited 

number of sensors does not always provide a good discrimination between different 

mode shapes, even more evidently in case of closely–spaced modes with similar mode 

shapes. Moreover, the design of the adaptive rejection thresholds described in [Cabboi et 

al. (2017)] is not suitable to cover the effects induced by extreme and unexpected 

environmental conditions that could suddenly change the dynamic response of the 

structure and then the modal parameters. Hence, in order to provide a more robust 

strategy for MT purposes, the presented tool introduces some aspects aiming at ensuring 

the complete automation of the process and solving the aforementioned issues.  
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Finally, to give continuity to the work developed in the previous Chapters, the 

performance of the MT algorithm was exploited adopting both automated modal 

identification algorithms described in Chapter 4 and Chapter 5. In particular, the 

automated OMA procedures (i.e., MPE and 3D-MPE) were applied to data collected 

during the continuous dynamic monitoring of two different Italian Cultural Heritage 

structures: The Gabbia masonry tower and the San Michele arch bridge.  

 

6.2 Automated algorithm for Modal Tracking 

As already stated in the introduction to this Chapter, the MT procedure herein described 

has been developed to perform the automated tracking of modal parameters in the context 

of a continuous dynamic monitoring process. This procedure can be coupled with any 

parametric and non-parametric technique that provides the estimation of both natural 

frequencies and mode shapes during the identification analysis, such as: the SSI-Cov 

[Peeters and De Roeck (1999)] and the SSI-Data method [Van Overschee and De Moore 

(1996)] developed in the time domain, as well as the p-LSCF method [Peeters et al. 

(2004)] in the frequency domain, and the FDD method [Brincker et al. (2001)] based on 

the decomposition of the spectral matrix. 

The main aspects characterizing the MT procedure proposed herein are the following: a) 

exploiting the consistency of the modal parameters over time, b) adopting a short training 

period to make the process fully automated; c) using adaptive reference values together 

with self-adaptive rejection thresholds aimed at covering the induced modal parameters 

variations due to thermal effects d) allowing for the correct tracking of the structural 

modes using a dynamic reference baseline list, that is continuously updated after the 

analysis of each dataset.  

First of all, it should be highlighted that the modal tracking procedure herein presented is 

rooted in the use of a dynamic reference list of modes, composed by a set of natural 

frequencies and a set of mode shapes associated to the selected reference modes. In this 
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way, the tracking of the selected modes is performed using the Euclidean distance in 

terms of natural frequency and MAC index, between each reference mode and the current 

identified modes obtained after the analysis of each collected dataset.  

The use of dynamic references instead of fixed reference modes seems to be very 

promising because this strategy is based on the assumption that the variation of the modal 

parameters between two consecutive datasets is very low, so this condition makes the 

tracking of two consecutive mode estimates easier. Unfortunately, this strategy could fail 

in case of closely-spaced modes with similar mode shapes or in case of outliers with 

similar characteristics to the reference ones. In these cases, if the tracking of one mode 

“jumps” to a similar close mode or to a sequence of outliers it could cause the failure of 

the process. Then, a manual intervention is needed to restore the correct reference values. 

To overcome this problem, threshold values have been introduced. Therefore, the linking 

between the current reference mode and the “new” estimate is successfully performed 

when the two conditions (thresholds) applied on the natural frequency variation and 

MAC index variation, are both satisfied. 

Subsequently, in order to avoid the manual tuning of the reference list in different periods 

of the year, an “adaptive strategy” is adopted. Thus, in order to cover the variation of the 

reference parameters (principally natural frequencies) due to periodic (seasonally) 

environmental variations, the pre-selected thresholds become adaptive after a brief period 

of monitoring allowing for the full automation of the MT process. 

For this reason, the proposed algorithm combines two different strategies to overcome 

the aforementioned issues and to allow for the correct tracking of structural modes even 

in case of closely-spaced modes with similar mode shapes. These strategies are:  

a) the use of a dynamic reference baseline list of modes, which is continuously updated 

after the analysis of each new dataset; 

b) the creation of self-adaptive thresholds, which are fully adaptive after a brief training 

and which limit the tracking zone associated to each reference mode allowing for the 

correct performance of the process. 
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Fig. 6.1 shows a schematic representation of the developed MT strategy. As shown, the 

procedure works based on two different stages: during the training period (grey slots) 

and after the training period (blues slots). Unlike other tracking approaches, in the 

present algorithm the length of the training period plays an important role because it is 

chosen to achieve a consistent population of estimates that is used to define the adaptive 

thresholds. In fact, once the defined number of estimates is reached, the threshold values 

are automatically calculated allowing for the full automation of this process. 

a) 
 

 

b) 
 

c) 
 

  

d) 
 

e) 
 

f) 
 

 

 
 

g)  

Fig. 6.1. Scheme of the new Modal Tracking strategy – Training period (grey cubes) and Tracking 

window used for the definition of adaptable thresholds (blue cubes) 

The length of the training period is determined by a parameter (i.e., N) which should be 

defined taking into account some basic aspects related to: a) the type of monitored 

structure, b) to the characteristics and the design of the dynamic system (e.g., type, 

number and configuration of sensors) and c) the quality of the collected data (i.e., 

noise/signal ratio).  

More in detail, during the training period, the modal tracking of the identified modes is 

allowed by two sets of pre-selected thresholds associated to both estimates of natural 

frequency and mode shape of each selected mode. These values are selected taking into 

account the fluctuations of the modal parameters during the first hours of monitoring. 
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Moreover, considering the assumed short period of initial training, the setting of these 

thresholds should be done without imposing restrictive conditions. From common 

practice, by adopting conservative set of thresholds equal to 𝑑𝑀𝐴𝑋
𝑓

=0.20 Hz for the 

natural frequencies variations and equal to 𝑑𝑀𝐴𝑋
𝑀𝐴𝐶=0.20 for mode shapes variations (i.e., 

MAC=0.80), the tracking should be performed successfully. 

Fig. 6.1 exemplifies and explains the automated MT algorithm presented in this section, 

in which each step of the algorithm refers to a single selected structural mode. In Fig. 

6.1(a), the “training period” is illustrated with grey cubes: this interval is defined to store 

a consistent number of modal estimates apt to ensure a properly definition of both self-

adaptive thresholds. Fig. 6.1(b) shows the first association of the structural modes 

performed after the analysis of the first collect dataset. The linking between the current 

mode and the reference mode is performed when two positive checks (in terms of 

distance rejections that might be smaller than threshold values) are obtained. In fact, the 

current pole is associated to the reference estimate if the distances in terms of natural 

frequency and MAC variation are both lower than pre-defined limits. Subsequently, Fig. 

6.1(c) illustrates how the tracking window (see blue cubes) grows after performing 

correct associations. This process goes on until the last available slot is filled completing 

the training period, as shown in Fig. 6.1(d). 

Once the training period has expired and the number of minimum estimates (i.e., n=N) is 

reached, simple statistical tools are applied to the stored estimates. Thus, the static 

thresholds previously defined become adaptive. The definition of the adaptive thresholds 

is described in the follow equations: 

 

𝑑𝑖−𝑟𝑒𝑓
𝑓

= √𝑠𝑡𝑑 (𝑑𝑖−𝑟𝑒𝑓,𝑗
𝑓

) = √𝑠𝑡𝑑 (∑ |𝑓𝑖−𝑟𝑒𝑓 − 𝑓𝑗|
𝑁

𝑗=1
) 

𝑑𝑖−𝑟𝑒𝑓
𝑀𝐴𝐶 = √𝑠𝑡𝑑(𝑑𝑖−𝑟𝑒𝑓,𝑗

𝑀𝐴𝐶 ) = √𝑠𝑡𝑑 (∑ 𝑀𝐴𝐶(𝝋𝑖−𝑟𝑒𝑓;  𝝋𝑗)
𝑁

𝑗=1
) 

 

( 6.1)  
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where 𝑠𝑡𝑑(𝑑𝑖−𝑟𝑒𝑓,𝑗
𝑓

) and 𝑠𝑡𝑑(𝑑𝑖−𝑟𝑒𝑓,𝑗
𝑀𝐴𝐶 ) are the standard deviations associated to the 

calculated distances – computed in terms of natural frequency and MAC, respectively – 

between the j-th estimates (j=1… N) related to i-th reference monitored mode. 

In order to make the procedure more sensitive to the modal parameter variations, when 

all available slots have been filled, the number of estimates (defined by N) used to define 

the adaptive thresholds is maintained in a conservative way for the subsequent analysis. 

This means that after the analysis of each new dataset (n=N+j with j>0) the tracking 

window (depicted in Fig. 6.1(e-f) with blue cubes) slides by one position, incorporating 

the last identified estimate and removing the first allocated one. This strategy makes it 

possible to obtain consistent tolerance values based on the same quantity of estimates. 

Finally, Fig. 6.1 (g) shows how the tracking window moves during the monitoring 

process, making the thresholds updating effective. It is further noted that the 

computational cost of the thresholds updating is drastically reduced, also due to the very 

compact quantity of allocated memory continuously used in the definition of the distance 

thresholds. 

Despite this improvement, the performance of this MT algorithm could fail in case of 

anomalous variations in the “normal” behavior of the monitored parameters, caused by 

extreme variations of environmental factors. For these reasons, in order to guarantee an 

accurate tracking of the structural modes also during such unexpected and extreme 

variations, a further improvement has been implemented. 

Thus, when the training period has expired (Fig. 6.1(d)), along with the static thresholds, 

the reference frequencies (defined in the static baseline list) become adaptive as well. 

This operation is performed averaging all frequency estimates stored in the blue slots of 

the tracking window. This improvement is well exemplified in Fig. 6.2.  

As depicted in Fig. 6.2, the red dash line is used to indicate the frequency reference value 

and its evolution during the tracking process. During the training phase, the reference 

frequency remains constant and equal to the initial value. Fig. 6.2(a) reports the 
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definition of self-adaptive thresholds without performing the upgrade of the frequency 

reference. As shown, in case of anomalous variation, the threshold values can grow 

exponentially and might lead to an overlap between different tracking zones. This 

condition might affect the tracking process causing loss of estimates, or possible 

incorrect associations among different modes, or its complete failure. Therefore, to 

overcome these issues the reference values of frequency have been made adaptive as 

well. As shown in Fig. 6.2(b), this improvement helps avoid the enlargement of the 

distance rejections providing a more accurate tracking of the investigated modal features.  

 

a) 

 

 

b) 

 
Fig. 6.2. Application of the new proposed MT strategy: (a) without adaptive frequency reference; 

(b) using the adaptive frequency values  

Following this strategy, the definition of adaptive thresholds and adaptive reference 

frequencies makes it possible for the MT algorithm to comply with several important 

aspects: 1) guaranteeing an accurate tracking due to the flexibility and adaptability of the 

rejected thresholds obtained from a very limited number of estimates, 2) limiting the 

enlargement of the thresholds and the overlap of the tracking zones that could lead to 

incorrect associations of modes, 3) providing an accurate evolution of the structural 

modes even in case of anomalous structural changes due to environmental and 

operational conditions, and 4) conceivably reducing the number of outliers during the 

tracking. 

As will be shown in this Chapter, the MT procedure is tuned out to be promising for 

several SHM applications for large infrastructures, with diffused monitoring systems 
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composed by high number of sensors, or also for Cultural Heritage buildings, in which 

the continuous monitoring is generally performed using a reduced number of sensors. 

In order to better understand the performance of the developed MT procedure, the main 

tasks executed during the analysis of each dataset are resumed below. It should be noted 

that the inputs provided for the MT algorithm are composed by a double array of 

reference parameters –a set of natural frequencies and a set of mode shapes – and two 

vectors of tolerance values – one vector associated to the frequency variations and one 

vector associated to the MAC variations. In the beginning of the process the first task 

performed by the MT algorithm consists of a duplication of the reference values and the 

tolerance values associated to each structural mode. Specifically, the first reference set of 

parameters and tolerances are defined  static baseline reference list and static thresholds. 

Accordingly, the second set of reference and tolerances are defined as dynamic baseline 

reference list and pre-selected or fixed thresholds, as reported in the scheme below.  

From this point on, in order to make it easier for the reader to understand each step 

carried out by the algorithm, some simplification has been introduced: the static baseline 

reference list and the dynamic baseline reference list are re-named as static list and 

dynamic list, respectively.  

Static list Static thresholds  Dynamic list Fixed thresholds 
 

Reference 

frequencies 

Reference 

modes 

Frequency 

thresholds 

MAC 

thresholds 
 

Reference 

frequencies 

Reference 

modes 

Frequency 

thresholds 

MAC 

thresholds 

[

𝑓1,𝑠

𝑓2,𝑠

𝑓3,𝑠

] [

𝜑1,𝑠

𝜑2,𝑠

𝜑3,𝑠

] [

𝛥𝑓1,𝑠

𝛥𝑓2,𝑠

𝛥𝑓3,𝑠

] [

𝛥𝑑𝑀𝐴𝐶1,𝑠

𝛥𝑑𝑀𝐴𝐶2,𝑠

𝛥𝑑𝑀𝐴𝐶3,𝑠

]  [

𝑓1,𝑑

𝑓2,𝑑

𝑓3,𝑑

] [

𝜑1,𝑑

𝜑2,𝑑

𝜑3,𝑑

] [

𝛥𝑓1,𝑑

𝛥𝑓2,𝑑

𝛥𝑓3,𝑑

] [

𝛥𝑑𝑀𝐴𝐶1,𝑑

𝛥𝑑𝑀𝐴𝐶2,𝑑

𝛥𝑑𝑀𝐴𝐶3,𝑑

] 

Furthermore, it is worth remarking that the whole process is composed by two 

consecutive stages defined as: during the training period and after the training period. 

Moreover, in the initial step, (i.e., n=0) the static list and the dynamic list coincide, as 

well as the static thresholds and the fixed thresholds. The stages are described as follows: 

1. During the training period. The monitoring process begins with the analysis of the 

first collected dataset. After the first run of the MPE algorithm, an array of mode 
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estimates (defined by both sets of natural frequencies and mode shapes) is delivered to 

the MT algorithm. Subsequently the following steps are performed: 

1.1. For n=1, each current pole belong to the set of extracted estimates is kept on only 

if two different checks are satisfied. The Euclidean distances, in terms of 

frequency and MAC, between the two sets of reference modes (for the static list 

and the dynamic list, respectively) and the current mode estimate are computed. 

The first check is satisfied when the distances between the reference mode in the 

static list and the current pole is lower than the corresponding static thresholds, 

for both parameters (natural frequency and mode shape). In the same way, the 

second check is also performed between the mode in the dynamic list and the 

same current pole. If the distances are smaller of the fixed thresholds then also 

the second condition is achieved and the current pole is retained (i.e., linked to 

the reference one in the dynamic list). 

1.2. It could be possible that various poles with similar estimates, like vibration 

modes characterized by closely-spaced frequencies and a low discriminant 

between mode shapes, could satisfy both conditions previously described and can 

be retained as possible candidates. When this condition occurs, only the pole with 

the shortest distance between the mode shape of the mode in the dynamic list and 

the mode shape of the current pole is selected. This is the most important aspect 

related to the proposed algorithm because it solves the issue related to those 

modes with closely-spaced frequencies and similar mode shapes.  

1.3. The procedure described in the points 1.1 and 1.2 is repeated for reference modes 

in order to track all structural modes. 

1.4. Hence, once all estimates provided by the MPE algorithm have been scanned and 

the reference modes successfully tracked, the modal parameters in the dynamic 

list are replaced by the last identified ones. Meanwhile, the static list and the 

fixed thresholds do not change. 

1.5. For 1<n≤N the tasks in the points 1.1, 1.2, 1.3 and 1.4 are repeated in a 

consecutive manner in order to reach the last available dataset (the N-th set of 

outputs) defined in the training period.  
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In order for the reader to better understand the performance of the MT procedure during 

the training period, it should be noted that the modes in the dynamic list are continuously 

updated and each mode is tracked to the closest mode with similar mode shape. This 

choice assumes that the variation of the mode shapes between two consecutive records 

might not change significantly as could occur for the natural frequencies. 

Moreover, during the training period, the tracking is totally entrusted to the checking 

performed on the dynamic list through the fixed thresholds, because the boundary 

conditions defined by the static thresholds have the same value as the fixed thresholds 

and also both checks are quite similar. 

2. After the training period. When the training period has expired and the N-th dataset 

has been analyzed, the static list and the static thresholds change, and their values are 

defined automatically by applying simple statistical tools (as defined in Eq. 6.1) to the 

stored modal estimates. 

2.1. For n=N+1, the modes present in the static list are subjected to a “shifting” 

consisting on a separation between the set of natural frequencies and the set of 

mode shapes. The first one becomes adaptive (adaptive list) and the second one 

remains as a fixed reference list of modes (static list). 

2.2. For n=N+1, the thresholds associated to the static list become adaptive, through 

using the statistical properties of the natural frequency values and mode shapes 

configuration: Following the Eq. 6.1 the static thresholds are now defined as 

adaptive thresholds.  

2.3. The tracking procedure does not change and continues being based on a double 

checking of the Euclidean distance, in terms of both natural frequency and MAC 

value, between the two sets of reference modes (for the adaptive/static list and 

the dynamic list) and the current possible structural mode. The first condition is 

satisfied if the Euclidean distances between the possible mode and the reference 

mode, defined by the adaptive frequency and the static mode shape, are shorter 

than the adaptive thresholds for both natural frequency and mode shape. 

Meanwhile, the second check continues to be performed in terms of the 
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Euclidean distance between the same candidate pole and the mode in the dynamic 

list. It should be remarked that this check is almost always confirmed because the 

“weight” of the first check performed by adaptive thresholds is dominant due to 

more restrictive conditions imposed by adaptive values. This second check 

continues to have an important role in the MT process because it ensures the 

tracking of the mode with the lowest variation (in terms of frequency and mode 

shapes) compared to the last identified one, avoiding the comparison of outliers. 

2.4. When all candidates have been scanned and assigned, the tracking window slides 

by one position incorporating the last set of tracked modes and removing the 

oldest one (see Fig. 6.1). 

The points 2.1, 2.2, 2.3 and 2.4 are repeated in continuous way allowing the continuous 

monitoring of the structure. 

Again, the strategy behind the developed algorithm deserves to be emphasized. In fact, as 

described, after the training period, the frequency values in the static list become 

adaptive, too, loosing, in this way, the information relating to their initial values. 

Notwithstanding this, the information can be easily recovered. Meanwhile, the baseline 

set of mode shapes does not change during the monitoring process describing the initial 

state of the structure which is supposed to be undamaged. This choice makes it possible 

to provide the evolution of the structural modes in terms of MAC indexes and then to 

develop an alternative OMA-based SHM strategy based on mode shape variation (e. g., 

[Marrongelli et al. (2019b)]) that could be very promising for the SHM of structures with 

widespread monitoring systems. 

Finally, as will be shown in the next paragraph, the presented MT algorithm was used to 

monitor the dynamic features of two different case studies.  

In the first case study (the Gabbia Tower) the evolution of the modal parameters is 

obtained by adopting a “period of training” of four days as reported in [Marrongelli et al. 

(2019a)]. As will be shown in the next paragraph, this strategy allowed for the automatic 

tracking of a local mode of the tower, which is characterized by a high fluctuation of the 
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natural frequency. Moreover, the automated monitoring was performed without any 

further adjustment to the reference values and thresholds along the monitoring period. 

Subsequently, in the second case study (the San Michele Bridge) the adaptability of this 

strategy allows for the correct automation of the tracking process adopting just two days 

of training. As demonstrated during monitoring, the good performance of the MT tool 

means that no estimates are lost during extreme thermal conditions (see [Marrongelli et 

al. (2019b)]). 

 

6.3 Validation using data collected on the Gabbia Tower  

The acceleration time series collected by a simple monitoring system installed on the 

upper part of the tower were processed using the SSI-Cov method based on the 

correlation matrices of the measured structural responses. The provided SSI-Cov outputs 

were used to extract the modal parameter estimates of the tower using the MPE algorithm 

(described in Chapter 4), that involves the construction of bi-dimensional stabilization 

diagrams, and MT algorithm described in the previous paragraph.  

Principally, this case study was used to test the performance of the implemented OMA 

tool (composed by both MPE and MT) and the accuracy of the provided results in the 

context of a permanent dynamic monitoring process.  

Afterwards, the validation of the methodology was performed through a comparison 

between the results obtained automatically and those previously extracted by the manual 

inspection of the resonant frequencies obtained using the commercial software ARTeMIS 

(see [Marrongelli et al. (2019a)]). 

Finally, the good match between the automatically obtained results and the manually 

extracted estimates demonstrates the robustness of the developed methodology capable of 

providing accurate sets of modal estimates and performing the automated modal tracking 

of the tower without any further user interactions. 
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6.3.1  Description of the tower 

The Gabbia Tower [Saisi et al. (2015), Gentile et al. (2016), Guidobaldi (2016)] with its 

54.0 m in height, is the tallest tower in Mantua. The tower was erected in 1227 and it was 

part of the defensive system of the Bonacolsi family (i.e., Lords governing Mantua 

during the 13th century). The structure is built in solid brick masonry and the load 

bearing walls are about 2.4 m thick at the base, except in the upper levels, where the wall 

thickness decreases to about 0.7 m and where a two-level lodge is hosted. As shown in 

Fig. 6.3, the tower is nowadays part of an important palace, whose load-bearing walls 

seem to be not effectively connected to the tower, whereas various vaults and floors of 

the palace are directly supported by the tower.  

(a) (b) (c) 

   

Fig. 6.3. (a) View of the Gabbia Tower in Mantua, Italy; (b) Sections of the tower (dimensions in 

m); (c) Instrumented cross-sections and layout of the accelerometers during the preliminary tests 

(November 2012) and the continuous dynamic monitoring. 

While the main part of the building, below about 46.0 m above ground level, did not 

exhibit any evident structural damage (with the materials being only affected by 

superficial decay), the upper part of the tower turned out to be in a poor state of 

preservation [Gentile et al. (2012)].  
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After the seismic sequence event that mainly affected the Garfagnana region (Tuscany) in 

June-May 2012 [Luzi et al. (2013)], the tower was subjected to an intense on-site 

inspection using a movable platform and deeper visual inspection [Saisi and Gentile 

(2015)] that highlighted the poor state of preservation of the upper part of the tower, 

exhibiting extensive masonry decay characterized by evident discontinuities mainly due 

to structural changes that had occurred over time. Meanwhile, no evident damages were 

observed in the main part of the building, up to about 46 m above ground level. 

 

6.3.2 Dynamic characteristics of the tower previously investigated 

In order to extract the principal modes of vibration of the tower two series of ambient 

vibration test were in the 2012 [Saisi and Gentile (2015)]. The first test was carried out 

between 31/07/2012 and 02/08/2012 and it was aimed at evaluating: a) the dynamic 

characteristics of the tower, b) possible effect induced by the poor state of preservation of 

the upper region of the tower on the global behavior, and c) the possible effect of the 

temperature on natural frequencies. Meanwhile, the second test was carried out on 

27/11/2012 with the objectives of evaluating: a) the possible effect of the added wooden 

roof on the dynamic characteristics of the tower and b) the modal parameters estimates to 

use for the consequently dynamic monitoring process. 

The AVT performed in the second campaign was preparatory to the continuous dynamic 

monitoring of the tower. The modal identification was performed considering time 

windows of 3600 sec and applying the SSI-Data [Peeters and De Roeck (1999)] available 

in the commercial software ARTeMIS.  

The identified dynamic characteristics of the tower [Gentile et al. (2016), Guidobaldi 

(2016)] are summarized in Fig. 6.4. The results allowing for the installation of only three 

accelerometers in the upper available level (see Fig. 6.3(c)) were considered enough for 

the identification of structural modes that are normally excited at the low amplitude of 

ambient vibration detected in the structure. In addition, one local mode was identified at 
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9.89 Hz (Fig. 6.4) and involved torsion of the upper part of the tower. The presence of a 

local mode provided further evidence of the structural effect of the change in the masonry 

quality and morphology (including un-toothed opening infillings and discontinuities) 

observed in the upper part of the tower during the visual inspection. 

(a) (b) (c) (d) (e) 

Mode B1 Mode B2 Mode B3 Mode T1 Mode L1 

f=0.918 Hz f=0.986 Hz f=3.887 Hz f=4.648 Hz f=9.893 Hz 

     

Fig. 6.4. Five vibration modes were identified in the preliminary ambient vibration tests: (a-b-c) 

bending modes, d) torsion mode and e) local mode involving the upper part of the structure.  

As shown in Fig. 6.4, five principal modes of vibration were identified in the frequency 

range 0-10 Hz, in which: 

1. Two closely-spaced modes were identified around 1 Hz with dominant bending 

behavior in two orthogonal planes of the tower, 

2. A third mode with a high bending component (second order) was identified with a 

frequency value equal to 3.88 Hz, 

3. A fourth mode characterized by a torsional component was detected at 4.65 Hz, 

4. A local mode that involves a torsional contribution of the upper part of the tower was 

extracted with the frequency value of 9.89 Hz. 

Finally, the five structural modes were used as reference for the continuous dynamic 

monitoring of the tower. The process started on 17 December 2012. The main results and 

the analysis of the whole period of monitoring of the tower are described in detail in 

[Guidobaldi (2016)] as well as in the recent publishing [Gentile et al. (2016)] in which 
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the correlations between investigated natural frequencies and measured environmental 

factors are also highlighted.   

 

6.3.3  Identification of the reference modes of the tower 

In this paragraph the main results obtained by the application of the proposed OMA 

methodology, composed by the MPE algorithm (Chapter 4) that involves 2D stabilization 

diagrams together with the proposed MT algorithm, to data collected during seven 

months of continuous monitoring of the masonry tower (from 17/12/2012 to 15/07/2013) 

are summarized [Marrongelli et al. (2019a)]. During this period more then 4600 1-hour 

long datasets where continuously collected by the monitoring system. Each dataset was 

recorded with a sampling frequency of 200 Hz and subjected to a pre-processing before 

to be analyzed. In particular, the collected datasets were low-pass filtered – using a 

classic 7th order Butterworth filter with cut-off frequency of 20 Hz – and decimated 5 

time reducing the sampling frequency from 200 Hz to a lower value of 40 Hz. 

The SSI-Cov method was adopted to process the collected acceleration time series 

through the construction of the correlation matrices of the measured responses. For the 

application of the MPE using SSI-Cov technique three input parameters need to be 

defined: the number of reference outputs, the maximum order of the stochastic model and 

the time-lag. Since the monitoring system was composed by only three sensors, all 

recorded channels were used as references. On the contrary, both maximum order of the 

stochastic model and the time-lag were selected after some preliminary tests.  

It was concluded that good quality of the stabilization diagram was achieved adopting a 

time-lag value equal to 80 (80/20 =4 seconds → 4 x 0.918 =3.67 times the fundamental 

period of the tower) and setting the maximum values of the model order equal to 100. 
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a) 

  
b) 

  
c) 

  
d) 

  

Fig. 6.5. Stabilization diagrams: (a) obtained SSI-Cov outputs; (b) after pre-filtering check; (c) 

after clustering procedure; (d) after the post-processing to improve accuracy (final results) 

[Marrongelli and Gentile (2019a)].  

Fig. 6.5 summarizes the results of the application of the newly developed MPE procedure 

to one single dataset recorded on 17/12/2012. In detail, the diagrams in Fig. 6.5 show the 

typical cleaning action exerted by the different steps of the MPE procedure on the 

stabilization diagrams. More in detail: (a) Fig. 6.5(a) shows the SSI outputs obtained for 

increasing model order; (b) Fig. 6.5(b) shows the results obtained after the pre-filtering 

step; (c) Fig. 6.5(c) shows the stable alignments obtained by the clustering process and 

(d) Fig. 6.5(d) contains the final alignments of stable poles corresponding to physical 

modes performed after the removal of a replicating mode provided in the previous step.  
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All plots in Fig. 6.5 also show the first Singular Value (SV) line of the spectral matrix, 

which is the mode indication function used in the FDD method [Brincker et al. (2011)] to 

highlight the resonant frequencies of the tower. 

In particular, the quality of the diagrams has been obtained by applying the SSI-Cov 

technique to the response time signals recorded by the monitoring system installed on the 

upper part of the tower. The identification process was performed firstly by defining the 

time-lag, equal to 80, and the interval of model order, equal to 20-100. The SSI outputs 

provided for increasing model order are shown in Fig. 6.5(a). 

Subsequently, the spurious modes were removed from the stabilization diagram applying 

single validation criteria on each pole. In this way, highly damped modes and highly 

complex modes  were removed setting the damping threshold equal to 5% and the two 

complex thresholds equal to 𝑀𝑃𝐶𝑙𝑖𝑚=0.6 and 𝑀𝑃𝐷𝑙𝑖𝑚=15°, respectively (see Fig. 

6.5(b)). Hence, the clustering process was performed adopting an inter-cluster distance 

threshold equal to 𝑑𝑙𝑖𝑚=0.025 to the remain poles providing six stable alignments stand 

out on the stabilization diagram (see Fig. 6.5(c)).  

It is worth noting that due to the reduced number of sensors of the monitoring system 

possible aliasing could affect the provided estimations. Therefore, the threshold used to 

check the similarity between mode shapes was set as: 𝑀𝐴𝐶𝑙𝑖𝑚=0.99. Finally, the 

checking performed on the outliers removes the extreme values providing a more 

accurate estimation of the modal parameters associated to the stable alignments in 

stabilization diagram (see Fig. 6.5(d)). Finally, the resulting estimates were selected as 

reference parameters and they were used in the tracking process. 

 The graphical results shown in Fig. 6.5 highlight the robust performance provided by the 

MPE procedure, with all modes of the tower (Fig. 6.4) being clearly detected, 

notwithstanding the low level of measured acceleration (which is testified by the large 

number of spurious poles in Fig. 6.5 as well as by the inspection of the first SV line) and 

the limited number of available sensors. 
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6.3.4 Continuous dynamic monitoring of the tower 

The developed tools (i.e., MPE and MT) were used to perform the continuous dynamic 

monitoring of the Gabbia masonry tower. The output responses collected during a 

monitoring period of over six months, from 12/12/2012 to 30/06/2013, were analyzed in 

order to extract the evolution in time of the modal parameters. Afterward, the automated 

process was performed using a very short training period of only four days. This means 

that after four days of continuous processing, in which at least 96 estimates for each 

reference parameters were stored, the continuous monitoring was fully automated.  

Fig. 6.6 and Fig. 6.7  report the evolution in time of the natural frequencies and the 

variation of the mode shapes (using the MAC index) related to the five structural modes 

provided by the monitoring of the tower. Specifically, the diagrams report both periods 

previously defined as: “during training” and “after training”. The dark vertical line drawn 

in all diagrams indicates the end of the short training period, in which the rejection 

thresholds associated to all natural frequencies and MAC values were set as: 𝑑𝑖,𝑚𝑎𝑥
𝑓

=0.30 

Hz and 𝑑𝑖,𝑚𝑎𝑥
𝑀𝐴𝐶 =0.30, respectively. After this period, the rejection thresholds become 

adaptive. At the same time, also the reference frequencies become adaptive. This further 

improvement allows for an easy tracking of possible modes also subjected to significant 

variations (see Fig. 6.6(e)). 

The monitoring process was performed using the SSI-Cov method, conservatively 

maintaining the values of the input parameters previously described for the modal 

parameter estimation. 

In order to better clarify the MT procedure, Fig. 6.6 reports the evolution of the identified 

frequencies with the associated adaptive thresholds for all structural modes. It is worth 

highlighting that after a short period of training, the continuous updating of the adaptive 

thresholds enables the fully automated tracking without any user interventions and 

conceivably prevents the comparison of outliers. Similarly, the threshold associated to 

the MAC values is updated as well, during the tracking phase. The variation of the MAC 

index and its threshold associated to each monitored mode are shown in Fig. 6.7. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

(e) 

 

Fig. 6.6. Time evolution (from 17/12/2012 to 30/06/2013) of the identified natural frequency and 

the corresponding adaptive thresholds: (a) First bending mode; (b) Second bending mode; (c) II 

order bending mode (d) Torsion mode; (e) Local mode. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

(e) 

 

Fig. 6.7. Time evolution (from 17/12/2012 to 30/06/2013) of the MAC value and the 

corresponding adaptive threshold: (a) First bending mode; (b) Second bending mode; (c) Third 

bending mode (II order) (d) Torsion mode; (e) Local mode. 
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6.3.5  Comparison between manually identified results and automatically provided 

outputs 

In order to demonstrate the reliability of the developed tools in real applications, the  

automatically extracted results obtained by the analysis of seven months of data 

continuously collected on the Gabbia Tower were compared with those obtained by a 

manual interpretation of the stabilization diagram provided by the SSI-Data method 

implemented in the commercial software ARTeMIS . 

The investigated monitoring period spans from 12/12/2012 to 30/06/2013 and includes 

4651 1-hour datasets, each composed of three collected acceleration time series. 

Fig. 6.8 shows the variations of the modal frequencies, obtained by the manual 

investigation (Fig. 6.8(a)) and by the automated approach (Fig. 6.8(b)), respectively. A 

comparison between the diagrams highlights a clear similarity between manually and 

automatically obtained results. Moreover, the time evolution of the local mode (blue line) 

confirms the robustness of the implemented MT algorithm able to provide the evolution 

of the modal parameters also when they exhibit a significant change over time. 

In conclusion, the main results are reported in Table 6.1. In particular, the first column 

identifies each vibration mode. In the the second and third column the success rate 

associated to manually and automatically extracted frequency is quantified, respectively. 

In the last column, the percentage of commonly identified values − within a frequency 

tolerance lower than 0.02 Hz − is reported, highlighting the goodness of the obtained 

results for the first two bending modes, the torsion mode and the local activation mode. 

Concluding this paragraph, it is worth to highlight a vertical line (violet color) in both 

graphics of Fig. 6.8. This line puts in evidence the occurrence of a far-field seismic event 

that took place on 21/07/2013 and changed the dynamic behavior of the structure 

[Gentile et al. (2016)]. This condition was pointed out through an instantaneous 

frequency shift in all investigated natural frequencies [Gentile et al. (2016)]. 
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a)  

 
 

b)  

 

Fig. 6.8. Time evolution of the identified natural frequencies: (a) Manual results from 17/12/2012 

to 30/06/2013; (b) Automatically identified results from 17/12/2012 to 15/07/2013 

Table 6.1. Comparison between manually and automatically identified natural frequencies. 

Mode Type 

Manual 

identification rate 

[%] 

Automated 

identification rate 

[%] 

Correspondences 

with Δf<0.02 Hz 

[%] 

1st bending 80.97 95.16 95.43 

2nd bending 80.56 88.11 94.22 

3rd bending 31.25 69.98 47.21 

Torsion 76.53 93.18 91.06 

Local 78.89 91.96 92.19 

This phenomenon can not be appreciated by the global scale used to represent the 

frequency evolutions reported in Fig. 6.8, so a clearer representation of the first two 

frequencies was reported in Fig. 6.9. From the inspection of the diagrams in Fig. 6.9 the 

daily fluctuation of the natural frequencies induced by temperature variations together 
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with the frequency shifts occurred during the seismic event are clearly identified [Saisi et 

al. (2015), Saisi and Gentile (2015)]. Moreover, an excellent match between the manual 

and automatically results is highlighted in the diagrams depicted in Fig. 6.9. 

 First bending mode Second bending mode 
 

a) 

  
 

b) 

  

Fig. 6.9. Zoom of the first and second natural frequency obtained during the monitoring period 

from 01/06/2013 to 30/06/2013; a) Manually detected modes (blue and olive colors, respectively); 

b) Automatically provided modes (red and green color, respectively) 

   

6.4  Application to data collected on the San Michele Bridge 

6.4.1  Brief introduction of the case study: San Michele Bridge  

The developed MT algorithm was used to extract the evolution in time of the modal 

parameters estimates obtained by the continuous analysis of the data collected on an 

important ancient Italian bridge: the San Michele Bridge [Busatta (2012), Gentile and 

Saisi (2015)]. As already described in the previous Chapter, this ancient bridge is one of 

the most important Italian Cultural Heritage monuments of the 19th century. It was built 

in 1889 and it consists of an iron arch that supports a box girder, linking two small towns 

in the neighborhood of Milan.  
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For the main characteristics and the 

relevant issues related to the poor state of 

conservation of the bridge, the reader is 

remanded to Chapter 5, in which a review 

of the main results obtained in the 

previous analysis campaign is reported in 

detail. 

 Fig. 6.10. View of the San Michele Arch Bridge  

It should be remarked that the modal parameters estimations of the bridge were extracted 

using the SSI-Cov identification technique and applying the MPE procedure that involves 

the construction and the automatic interpretation of tri-dimensional stabilization diagrams 

described in Chapter 5. 

Once again, since the acceleration time series of the lateral and the vertical components 

were collected separately, in this application only the horizontal accelerations were 

processed. Moreover, as will be demonstrated in the next paragraphs, a particular period 

of monitoring, in which the bridge was subjected to extreme environmental conditions, 

has been selected demonstrating the full adaptability of the developed methodology in the 

identification of the modal parameters even in case of high variation in the “normal” 

behavior of the structure. 

 

6.4.2  Definition of the reference modes for the continuous monitoring of the bridge 

As reported in previous works [Gentile and Saisi (2015), Cabboi et al. (2013)] 15 lateral 

modes of the bridge were expected. The input parameters of the algorithm proposed 

herein were set as follows: all 7 available channels were considered as references, the 

time-lag interval was set from 20 to 100 (increasing value equal to 10) and the model 

order interval equal to 40-140 (adopting a step value equal to 2). Moreover, the interval 

investigation frequency was maintained between 0 and 5 Hz as highlighted in Fig. 6.11. 
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a) 

  

 

b) 

  

 

c) 

  

 

d) 

  

Fig. 6.11. Stabilization diagram and frequency vs damping representation of the reference modes 

obtained by the application of the 3D-MPE algorithm: (a) SSI outputs, (b) estimates after pre-

filtering, (c) resulting clusters and (d) final outputs. 

According to the previous analysis reported in Chapter 5, in which the complexity 

component of the structural modes is highlighted, the chosen user-defined parameters 

adopted to remove most of the spurious poles in the tri-dimensional stabilization diagram 

and perform the clustering process were set in a conservative way maintaining the values 

already defined. Therefore, the thresholds were set equal to 0.4 and 25° for MPC and 

MPD respectively and adopting an inter-cluster distance tolerance limit equal to 0.025. 
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Adopting the aforementioned criteria, some trial tests were carried out in order to find the 

reference baseline list needed to perform the automated monitoring of the bridge. 

However, the most representative set of structural modes was extracted by the report 

recorded on 19/01/2012 at 4 p.m. The resulting clusters that stand out in the stabilization 

diagram, after the application of the 3D-MPE algorithm, are depicted in Fig. 6.11 

together with the corresponding frequency vs damping diagrams. 

In Fig. 6.12 the graphical representations of the 15 lateral modes of the bridge 

automatically extracted applying the 3D-MPE algorithm is shown in detail. 

1st Mode – f = 0.991 [Hz] 2nd Mode – f = 1.345 [Hz] 3rd Mode – f = 1.646 [Hz] 

   

4th Mode – f = 2.014 [Hz] 5th Mode – f = 2.160 [Hz] 6th Mode – f = 2.508 [Hz] 

   

7th Mode – f = 2.802 [Hz] 8th Mode – f = 3.122 [Hz] 9th Mode – f = 3.530 [Hz] 

   

10th Mode – f = 3.819 [Hz] 11th Mode – f = 4.020 [Hz] 12th Mode – f = 4.078 [Hz] 

   

13th Mode – f = 4.126 [Hz] 14th Mode – f = 4.574 [Hz] 15th Mode – f = 4.789 [Hz] 

   

Fig. 6.12. Vibration modes automatically identified by the proposed methodology. 
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Table 6.2 summarizes the main results in terms of natural frequency, modal damping 

ratio and complexity values automatically obtained by the application of the 3D-MPE 

algorithm to the output responses collected on the 19th of January 2012.  

Table 6.2.  Modal parameters, standard deviations and complexity values of obtained modes 

n° f   [Hz] σ(f)   [Hz] ξ  [%] σ(ξ)  [%] MPC MPD 

1 0.991 0.0001 0.33 0.0137 0.999 0.83 

2 1.345 0.0001 0.56 0.0269 0.997 1.59 

3 1.646 0.0002 0.60 0.0132 0.992 2.03 

4 2.014 0.0004 0.55 0.0076 0.983 3.60 

5 2.160 0.0004 0.78 0.0101 0.980 3.75 

6 2.508 0.0002 0.75 0.0021 0.895 8.70 

7 2.802 0.0002 0.89 0.0208 0.972 4.92 

8 3.122 0.0006 0.53 0.0051 0.895 11.26 

9 3.530 0.0013 1.12 0.0231 0.974 5.17 

10 3.819 0.0006 0.63 0.0122 0.919 8.21 

11 4.020 0.0117 0.42 0.3688 0.846 10.77 

12 4.078 0.0029 0.25 0.0321 0.898 10.96 

13 4.126 0.0014 0.35 0.0069 0.981 4.55 

14 4.574 0.0004 0.41 0.0056 0.909 6.74 

15 4.789 0.0007 0.40 0.0130 0.933 8.53 

 

Moreover, using the polar plot representation, the complexity degree associated to the 

identified structural modes is highlighted. As described in [Cabboi (2013)], the high 

complexity of the mode shapes could depend on various factors (i.e. linkage, high noise 

ratio, synchronization problem) and non-linear behavior of the structure (generally 

related to non-proportional damping or hysteretic factors). For this case study, the 

previous assumptions can be justified by the poor state of maintenance of the structure 

subjected to high corrosion of the iron components. 
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f = 0.991 [Hz] f = 1.345 [Hz] f = 1.646 [Hz] f = 2.014 [Hz] f = 2.160 [Hz] 
ξ = 0.33 [%] ξ = 0.56 [%] ξ = 0.60 [%] ξ = 0.55 [%] ξ = 0.78 [%] 

     
f = 2.508 [Hz] f = 2.802 [Hz] f = 3.122 [Hz] f = 3.530 [Hz] f = 3.819 [Hz] 
ξ = 0.75 [%] ξ = 0.89 [%] ξ = 0.53 [%] ξ = 1.12 [%] ξ = 0.63 [%] 

     
f = 4.020 [Hz] f = 4.078 [Hz] f = 4.126 [Hz] f = 4.574 [Hz] f = 4.789 [Hz] 
ξ = 0.42 [%] ξ = 0.25 [%] ξ = 0.35 [%] ξ = 0.41 [%] ξ = 0.40 [%] 

     

Fig. 6.13. Reference parameters of the first 15 modes: natural frequency, modal damping ratio and 

mode shapes represented in a polar plot 

 

6.4.3  Tracking of the natural frequencies and mode shape variations of the bridge 

As already pointed out, the input parameters provided to the automated MT algorithm 

consist of a baseline list of reference modes with the corresponding fixed thresholds. The 

modes shapes and the natural frequencies reported in Fig. 6.13 represent the reference 

modes adopted for the tracking.  

The results presented in this paragraph refer to the interval of monitoring from 

19/01/2012 to 31/03/2012, in which the bridge was subjected to an intense snowfall that 

strongly characterized the dynamic response of the bridge. In fact, in the winter period 
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(February 2012) extreme thermal conditions changed the “normal” behavior of the 

structure. The modal parameters changed dramatically and they only gradually recovered 

their previous values after a period of two weeks, when the extreme conditions 

disappeared.  

The collected data were  analyzed automatically, using the identification tools developed 

during this work. In particular, the initial thresholds were defined taking in to account the 

daily fluctuations of the modal parameters (i.e. natural frequencies and mode shapes) and 

they were set as follows: 𝑑𝑖,𝑚𝑎𝑥
𝑓

=0.20 Hz and 𝑑𝑖,𝑚𝑎𝑥
𝑀𝐴𝐶 =0.10, respectively. Meanwhile, due 

to the high number of reference sensors and the good quality of the recorded signals, the 

length of the training period was set equal to only 2 days. Hence, the reference modes 

together with the rejection thresholds became self-adaptive after only 48 hours, 

guaranteeing the full automation of the process and avoiding any further user interactions 

(see Fig. 6.15).  

The results of the automated identification based on the application of the developed 

OMA algorithms (3D-MPE and MT) are shown in Fig. 6.14. Both diagrams show the 

thermal effects of the extremely low temperatures on the natural frequencies (see Fig. 

6.14(a)) and on the mode shapes (see Fig. 6.14(b)) (through MAC value) of all 

investigated lateral modes. 

Furthermore, the inspection of the diagrams reveals a very good performance of the MT 

algorithm. In fact, all expected modes were identified exhibiting a fairly good success 

rate even in anomalous conditions and high variations of both modal parameters (i.e., 

natural frequency and mode shape) without relevant loos of identification.  

The diagrams point out the strong dependence of the modal parameters on temperature 

variations. As can be observed, the thermal effect is clearly visible on all extracted 

natural frequencies. On the contrary, the impact of the freezing temperature seems not to 

affect the mode shapes with lower frequencies; meanwhile, such effect is clearly visible 

on the mode shapes of higher structural modes. 
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a) 

 

 

b) 

 

Fig. 6.14. Tracking results of the modes automatically identified during the period from 

20/02/2012 to 31/03/2012; (a) Evolution of the natural frequencies; (b) Evolution of the MAC 

index associated to each investigated mode. 

Clearer illustrations of trends of the modal features together with the associated adaptive 

thresholds are reported in Fig. 6.15. Specifically, the plots are referred to the 4th, 7th, and 

9th identified mode of the bridge. From the outcomes obtained at the end of the freezing 

period, it is possible to point out the cyclic evolution of the natural frequencies, strongly 

driven by daily temperature fluctuations.  

On the contrary, the tracking of the MAC values reveals a non-relevant dependence of 

mode shapes estimates on daily temperature variations and this seems to demonstrate that 

mode shapes are less sensitive to environmental effects. Despite this result, during the 

ice-period the mode shapes variations are clearly highlighted.  
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a) 

 
 

 
b) 

 
 

 
c) 

 
 

 

Fig. 6.15. Evolution of the natural frequency and the MAC index in the monitoring period from 

20/01/2012 to 31/03/2012 associated to: (a) 4th, (b) 7th and (c) 9th modes. 
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6.5  Conclusions 

In the present Chapter a new strategy for MT is described and exploited in detail. The 

innovative approach introduced by the developed procedure is characterized by the 

simple design of the thresholds, calculated using only a limited array of previous 

estimates. This approach has proved to be effective allowing for the automated 

monitoring of the investigated structure with less computational effort with respect to 

other existing approaches.  

Moreover, the array of data defined as tracking window, used to continuously update the 

dynamic thresholds and the reference frequencies, ensures a greater adaptability of these 

parameters during the tracking process. It is worth highlighting the capability of the 

procedure to cover the effects induced by extreme environmental conditions or 

anomalous structural behavior, avoiding the failure of the process. 

As demonstrated in the first application, the MT procedure does not fail in the continuous 

identification of the structural modes (more specifically of the local mode) even in case 

of anomalous variations of the dynamic features. In this case, the choice of a short 

training period (only 4 days) seems to be effective for the correct tracking. Meanwhile, in 

the second case study, the procedure delivers an accurate evolution of the modal 

parameters also in case of strong changes caused by thermal effects, needing two days of 

training.  

Furthermore, the validation of the whole algorithm was carried out through a comparison 

between the results obtained by the automated algorithm and those independently 

obtained by a manual interpretation of a large number of stabilization diagrams using 

ARTeMIS. A very good match among automatically and manually extracted values is 

provided, demonstrating the robustness of the developed method. 
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7.1 Introduction 

Support Vector Machines (SVMs) are popular techniques for forming decision 

boundaries that separate data into different classes. Interesting papers and excellent books 

present in literature describe these techniques and their application in different research 

fields. Comprehensive reading of the main concept related to SVMs can be obtained from 

[Schölkopf et al. (2000), Tax and Duin (1999)], whereas for a deeper analysis the 

excellent book [Bishop (2006)] is suggested. These techniques belong to that class of 

methods used for classification problems called domain-based novelty detection that 

requires the definition of a boundary margin based on training data. Typically, they are 

not sensitive to specific sampling or density of the target class because they describe the 

target using a boundary, or a domain, and not through the class density. This means that 

the boundary, or better to say the novelty boundary, is not detected by all datapoints of 

the input data, but it is obtained through the location of those data that lie closest of the 

boundary itself (normally detected in a transformed space), called support vectors. 

Hence, the distribution of the datapoints that are not support vectors are not included in 

the identification of the decision boundary, as demonstrated in [Tax and Duin (1999), Hu 

et al. (2003)]. 

Originally, the SVM models were developed because ideally suited for binary pattern 

recognition and used to perform the classification of data linearly separable. Hence, 

through adopting support vectors these techniques can separate and classify the input data 

constructing and maximizing the separating margin between two classes.  

Since the introduction of the original idea, described in the next Section, several 

improvements have been implemented to make the algorithm more robust and efficient, 

such as: (a) the Robust Support Vector Machines (RSVMs) algorithm, developed to 

address the overfitting problem caused by the noise in the training dataset [Hu et al. 

(2003)] or (b) the strategy developed by [Schölkopf et al. (2000)] in which the novelty 

boundary condition is defined through a kernel function obtained transforming the input 
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data from the original space into a “feature space”. Another approach, the Support Vector 

Data Description (SVDD) method, proposed by [Tax and Duin (1999)], defines the 

novelty boundary adopting hyperspheres with minimum volume the cover all (or almost 

all) the “normal” class.  

Moreover, some extension of the SVDD approach have recently been proposed [Wu and 

Ye (2009)] to improve the margin boundary using small spheres and large margin or 

using some slack variable and set of hyperspheres with different centers and radii [Le et 

al (2011)]. In the last decades, large amount of works presents in the literature has been 

produced on the use of SVM methods for classification and novelty detection problems, 

some of them are shown below in order to provide a more accurate view of these 

applications in very different fields [Manevitz and Yousef (2002), Sotiris et al. (2006), Li 

(2008), Li et al. (2011)]. 

Over the years, different algorithm based on SVM have been implemented and improved 

aimed at solving most disparate classification problems in several research fields. This 

trend has also interested the Civil Engineering field, addressing special attention to 

application regarding damage assessment. Hence, during the past years, several methods 

of novelty procedure for SHM purposes have been proposed in literature. In general, 

most of these methods consist of evaluating some indexes or indicators that allow for 

detecting any possible anomalies and damages on the structure, possible locations and 

even the extension of the damaged regions [Yan et al. (2007)], determining if in the 

structure is present an abnormal behavior associating a probability of “true detection” 

(probability of detect the damage in the structure when it is affectively present in the 

mechanical system). 

On other hand, in SHM approaches for civil engineering structures the first step consists 

of detecting the occurrence of anomalies in the normal structural behavior, and 

subsequently localize such anomalies in the structure. For this purpose, several studies 

have been performed using statistical tests and pattern recognition approaches based on 

comparison of data extracted by healthy and damaged conditions [Zhang (2007), Iwasaky 
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et al. (2004)]. These approaches are efficient and useful when the structural response can 

be obtained with high level of confidence. Moreover, these methods proved to be 

effective when relatively small sets of data are used for the training and testing phase, 

however large number of features and input data lead to hard time consuming [Chun et 

al. (2005)].  

A strategy to detect possible anomalies was described in [Guo (2006)]. From the results 

obtained by the application of this methodology was demonstrated how the loss of 

information can lead to an incorrect classification providing false alarms for damage 

detection. Many other techniques have been developed to detect several damage 

scenarios using modal parameters estimations, an excellent work is described in 

[Trendafilova and Heyleno (2003)] where an unsupervised learning classification 

algorithm was developed and used to detect several structural damage states through the 

natural frequencies extracted by vibration responses of a cantilever bean. 

 

7.2 SHM procedures using pattern recognition models: 

background 

As previously pointed out, SVM algorithms are aimed at separating two different classes 

using a discrimination function which is automatically computed during the classification 

process of the training datasets. Within the context of SHM and damage detection of civil 

engineering structures [Sohn et al. (2002)], two classes of data are assumed over time, 

corresponding to undamaged and damaged condition.  

Although, SVM algorithms are normally used for two-class classification problems, 

extension to multi-classes classification can be done but this aspect will not be treated in 

this Dissertation, because the SHM procedure proposed herein is developed following a 

binary condition: absence or presence of damage, and no other states are allowed. 
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Hence, in order to simplify the discussion about the pattern recognition algorithms 

proposed herein an important clarification has to be done: the novelty detection strategy 

developed in this work was implemented in order to distinguish between and classify 

series of data belonging to two different classes. Therefore, for each run of the algorithm, 

if the classification fails it means that data are not separable, then they belong to the same 

class. Otherwise they are separable.  

In SHM applications if the classification does not provide a clear separation of the data 

means that the structural damage is not identified. On the contrary, the successful 

detection of two classes implies that an instantaneous damage or a structural anomaly 

occurred in the monitored system.  

The SVMs are generally based on a geometric approach, consisting of the construction of 

an optimal separating surface − a hyper-plane − which divides the data population in two 

groups with different statistical characteristics. The hyper-plane is equidistant from the 

two classes defining a margin zone between them. Similarly to Neural Network 

classification, the input data are supposed to belong to different classes and the outputs 

consist of the target binary vectors (labels) corresponding to each class. In case of linear 

separable data, the SVM algorithm searches the optimal solution to classify the data by 

maximizing the distance between the hyper-plane and the extreme values of the two 

classes, so called Support Vector (Fig. 7.1). 

  

Fig. 7.1. Scheme of two separated classes through hyper-plane and support vector 
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7.2.1  Support Vector Machine: maximum margin classifiers 

This paragraph begins with the construction of the separating surface between two simple 

classes of data composed by few data points that consists on the basic steps of more 

sophisticated pattern recognition models. Hence, the simplest representation of linear 

discriminant function of a vector of data x is obtained as follows: 

 y(x) = wTx + w0 ( 7.1)  

where w is called weight vector, and w0 is a bias (not be confused with bias in statistical 

sense). Defining with 𝐷 the dimensional space of the input data, the correspond decision 

boundary is defined by the relation y(x) = 0 which corresponds to a (D-1)-dimensional 

hyperplane within D-dimensional input space. So, an input vector x is assigned to class 

C1 if y(x) ≥ 0 and class C2 otherwise. Considering two points xAand xB both of which 

lie on the decision surface, because it is y(xA) =  y(xB) = 0 the vector w that is 

orthogonal to every vector lying within the decision surface if given by the equation: 

wT(xA − xB) = 0. Then, the vector w determines also the orientation of the decision 

surface. Similarly, if x is a point of the decision surface, then y(x) = 0, the normal 

distance from the origin to the decision surface is given by: 

 wTx

‖w‖
= −

w0

‖w‖
 ( 7.2)  

where the bias parameter determines the location of the decision surface. Moreover, the 

value of y(x) gives a signed measure of the perpendicular distance r of the point x from 

the decision surface. Considering an arbitrary point x and let x⏊be its orthogonal 

projection onto decision surface, the equation of x is given by: 

 x = x⏊ + r
w

‖w‖
 ( 7.3)  

Therefore, multiplying both sides of this results for 𝒘T and adding w0, using Eq. 7.1 it is 

possible to obtain: 
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 r =
y(x)

‖w‖
 ( 7.4)  

A geometrical illustration of a linear discriminant function is shown in Fig. 7.2. The 

decision surface, shown using the red line, it is perpendicular to w and its displacement 

from the origin is controlled by the w0. It is also designed the orthogonal distance from a 

general point x from the decision surface is given by y(x)/‖w‖. 

   
Fig. 7.2. Construction of a simple decision surface between the origin and a generic point 

SVM began popular some year ago for solving problem in classification and regression 

and novelty detection; an important property of support vector machines is related to the 

definition of the model parameters obtained through solving a convex optimization 

problem, in which any local solution corresponds to a global optimum. To highlight this 

property the two-class classification problem is defined using a linear model as follows: 

 y(x) = wTΦ(x) + b ( 7.5)  

where Φ(x) denotes a fixed future-space transformation and b the bias parameter. The 

dual representation is described in terms of kernel function, in which the training datasets 

comprises N input vectors x1…xN with corresponding target values t1… tN where tn =

[−1,1], and the new data points x are classified according to the sigh of  y(x). 

Assuming that the training point are linearly separable in a feature space, there is at least 

one choice of the parameters w and b that allows the function represented in the form 

expressed in Eq. 7.5 satisfies the conditions: y(xn) > 0 for points having tn = +1 and 

y(xn) < 0 for points having tn = −1, that’s means tny(xn) > 0 for all training data. 
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Follow this way, there are many solutions to perform an exact separation of the classes 

and it depend on initial values chosen of w and b as well as on the order in which the 

data points are presented. Normally, the aim is to try to find the solution that give the 

smallest generalization error. 

 

 

a) 

 

                  

 

b) 

 
Fig. 7.3. Margin between two classes of data: a) general solution, b) maximization of the margin 

The support vector machine approach tends to solve this problem thought the use of the 

concept of the margin, which is defined by the smallest distance between the decision 

boundary and any sample points. As demonstrate in Fig. 7.3, the SVM technique the 

decision boundary is chosen to be the one in such margin is maximized (see Fig. 7.3b). 

The perpendicular distance of a point x from a hyperplane defined by y(x) = 0 where 

y(x) takes form from Eq. 7.5 is given by |y(x)| ‖w‖⁄ . The optimal surface is calculated 

taking into account all the solution in which all data points are correctly classified, in 

other words, the optimal surface is detected when tny(xn) > 0 for all n. Therefore, the 

distance of a point xn to the decision surface is given by: 

 tny(xn)

‖w‖
= −

tny(wTΦ(xn) + b)

‖w‖
 ( 7.6)  

The maximum margin solution is found optimizing the parameters w and b that minimize 

the distance of the closest point xn from the data set, as follows: 

 max
w,b

{
1

‖w‖
min

n
[tny(wTΦ(xn) + b)]} ( 7.7)  
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The direct solution of this problem would be very complex; thus, it is converted into an 

equivalent problem that is much easier to solve. The simplification is performed to re-

scaling w → kw and b → kb, the decision surface is given by unchanged formula:  

 tny(wTΦ(xn) + b) = 1  ( 7.8)  

obtained scaling the formula expressed in Eq. 7.6 by the values tny(xn) ‖w‖⁄ . So, if all 

data points are close to the surface and satisfied the following constraints: 

 tny(wTΦ(xn) + b) ≥ 1          n = 1 … N  ( 7.9)  

then, Eq. 7.9 is the canonical representation of the decision surface (i.e. hyperplane) 

[Bishop (2006)]. and the optimization problem re-written in this form simply requires the 

maximization of the ‖w‖−1to be solved, which is equivalent to minimizing ‖w‖2. 

Therefore, the next equation is used to solve quadratic programming problem trying to 

minimize a quadratic function subjected to a set of linear inequality constraints: 

 min
w,b

1

2
‖w‖2 ( 7.10)  

Furthermore, to solve the constrained optimization problem, the Lagrange multipliers are 

introduced (i.e. αn ≥ 0). Follow this way, for each constraint in Eq. 7.9 the Lagrangian 

function must be solved: 

 L(w, b, α) =
1

2
‖w‖2 − ∑ αn · [tny(wTΦ(xn) + b) − 1] 

N

n=1

 ( 7.11)  

where α = (α1, α2, … , αn) where each multiplier corresponds to each constraint. In order 

to solve the problem defined in Eq. 7.11 the derivatives of L(w, b, α) with respect to w 

and b are set equal to zero, obtaining the conditions expressed in the following equations: 

 w = ∑ αntnΦ(xn) 

N

n=1

 ( 7.12)  
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 0 = ∑ αntn 

N

n=1

 ( 7.13)  

Finally, removing w and b from L(w, b, α) using the conditions in Eqs. 7.14 and 7.13, 

the dual representation of the maximum margin problem is given by: 

 L̃(α) = ∑ αn −
1

2
∑ ∑ αnαmtntmk(xn, xm)

M

m=1

N

n=1

 

N

n=1

 ( 7.14)  

in which L̃(w, b, α) subjected to the following constrains has to be minimized: 

 αn ≥ 0   n = 1, … , N ( 7.15)  

 ∑ αntn = 0 

N

n=1

 ( 7.16)  

In Eq. 7.14 it is also defined as kernel formulation [Bishop (2006)] of the dual problem, 

in which the kernel function is defined by k(x, x′) = Φ(x)TΦ(x’). Until this point the 

SVM model has been introduced under the hypothesis that training data points were 

linearly separable in the feature space Φ(x) and the resulting support vector machine 

provides the exact classification of the training data of the original input space x. The 

problem is defined as a quadratic programming problem in which a quadratic function 

needs to be optimized subjected to αn constraints. The kernel formulation also makes 

clear the role of the constraints that ensuring the kernel function be positive definite, 

which means that Lagrangian function is bounded below.  

Concluding, the new points can be evaluated through the sign of y(x) defined in Eq. 7.5 

Such equation can be re-written expressing the value of the parameters {αn} and 

substituting w (Eq. 7.12) in the kernel function, giving the following formula: 

 y(x) = ∑ αntnΦ(x, xn) + b 

N

n=1

 ( 7.17)  
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Moreover, several kernel function can be used to define the optimal separation surface 

and maximizing the margin between the two separable classes as: linear function, 

polynomial function (with different order), kriging function, radial basic function, 

Sigmoid function, etc. After some initial tests, best results in the classification of the data 

were obtained adopting Gaussian Radial Basis (GRB) function. Accordingly, the GRB 

function was adopted as kernel function of the SVM model to construct the hyper-plane 

surface for all further applications developed in this Dissertation. 

 

7.2.2 Overlapping class distribution: generalization using soft margin 

In practice, the problem of the minimum of L̃(α) (Eq. 7.14) subjected to the constraints 

described in Eq. 7.15 and Eq. 7.16 is ill-conditioned because the class-distributions are 

not always well-separated, and they may overlap, so the separating surface which 

correspond at an exact separation of the training data can lead to a poor generalization. 

Accordingly, the mathematical approach used to construct the separating surface is 

modified and improved in order to permit to any data-points be on the “wrong side” of 

the margin boundary.  

The strategic approach is developed to provide a penalty value to each misclassification 

and such penalty increases with the distance of the boundary surface. More specifically, a 

slack variable, ξn ≥ 0 with n = 1. . . N, was introduces for each training data point. For 

the data points that are inside or on the correct side of the margin boundary these variable 

values are equal to zero, meanwhile such values are equal to ξn = |tn − y(xn)| for other 

points. For those points that are on the decision boundary conditions y(xn) = 0 they have 

ξn = 1, on the contrary, points with ξn > 1 are misclassified. A simple graphical 

description is given by Fig. 7.4, where some points belong to a specific class are 

misclassified fallen in the opposite side defined by the decision surface:  y(x) = 0. 
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Fig. 7.4. Misclassified points that fallen outside decision boundary (red line) 

The classification constraints described in Eq. 7.9 are replaced with: 

 tny(xn) ≥ 1 − ξn          n = 1 … N  ( 7.18)  

in which the slack variables are constrained to satisfy ξn ≥ 0. Detailing, those data points 

that have ξn = 0 are positioned on the margin or in the right side of the margin. Data 

points which 0 < ξn ≤ 1 lie inside the margin, in the correct side of the decision 

boundary. Meanwhile, those points which ξn > 1 are positioned on the wrong side of the 

decision boundary and they are misclassified. These new defined constraints avoid the 

construction of the hard margin constraint that can lead to an incorrect generalization of 

the data training allowing the creation of a soft margin that permits the misclassification 

of some points. It is worth noting that while stack variables permit the partial overlapping 

between the class distributions, this operation is still sensitive to the outliers because the 

penalty for misclassification increase with increasing distances of the points with respect 

to decision boundary, so it increases linearly with ξ. 

Introducing the soft margin, the goal of this framework consists of minimizing the 

margin softly penalizing those points that fall outside the decision boundary. As stated, 

the formula that needs to be minimize is expressed in the following: 

 C = ∑ ξn

N

n=1

+
1

2
‖w‖2 ( 7.19)  
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where the parameter C > 0 controls the trade off between the slack variable penalty and 

the margin. 

Hence, the minimization described in Eq. 7.19 is subjected to new constraints (Eq. 7.18) 

which together with the assumptions of ξn ≥ 0 lead to Lagrangian equation as: 

 L(w, b, ξ, α, μ) =
1

2
‖w‖2 + C ∑ ξn

N

n=1

− ∑ αn · [tny(xn) − ∑ μnξn]

N

n=1

 

N

n=1

 ( 7.20)  

where {αn ≥ 0} and {μn ≥ 0} are Lagrangian multipliers that respect very restrained 

boundary conditions (see [Bishop (2006)]). Therefore, constructing the margin and 

optimizing with respect the w, b and {ξn} as follows: 

 ∂L

∂w
= 0;      w = ∑ αntnΦ(xn)

N

n=1

= 0   ( 7.21)  

 ∂L

∂b
= 0;     ∑ αntn

N

n=1

= 0  ( 7.22)  

 
∂L

∂ξn
= 0;     αn = C − μn = 0   ( 7.23)  

Using the derivatives Eq. 7.21, Eq. 7.22 and Eq. 7.23 and eliminating w, b and {ξn} 

from the Lagrangian equation, the result does not change respect to that one obtained for 

the separable data: 

 L̃(α) = ∑ αn −
1

2
∑ ∑ αnαmtntmk(xn, xm)

M

m=1

N

n=1

 

N

n=1

 ( 7.24)  

The expression described in Eq. 7.24  is identical to the one obtained for separable case - 

in which the data are well-separable in two difference classes without misclassifications 

(Eq. 7.14) except for the constraints that are somewhat different: 

 0 ≤ αn ≤ C    ( 7.25)  

 ∑ αntn = 0 

N

n=1

 ( 7.26)  
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Looking at last constraints, it is worth noting that αn ≥ 0 because Lagrangian multipliers, 

as well as also μn ≥ 0, that implies αn ≤ C. So, minimizing Eq. 7.24 the constrains in 

Eqs. 7.25 and 7.26 are obtained for n = 1 … N. Furthermore, the Eq. 7.25 is named box 

constrains. 

Concluding, the Lagrangian equation form described in Eq. 7.24 subjected to the 

constraints (Eqs. 7.25 and 7.26) and obtained minimizing Eq. 7.20 with respect the w, b 

and {ξn}, represents a quadratic programming problem. Once again, it is worth to be 

remarkable that if the equation Eq. 7.21 is substituted into Eq. 7.5 the prediction of the 

new data points can be performed using Eq. 7.17. This can be easily expressed adopting 

an easy explanation: a subset of data-points that have αn = 0 do not contribute to the 

predictive modes describe in Eq. 7.17., meanwhile the remain ones constitute the support 

vectors and they have αn > 0, hence they must satisfy the follow equation: 

 0 ≤ αn ≤ C    ( 7.27)  

At this point, αn < C if implies μn > 0 that requires ξn = 0, so the points lie on the 

margin. Otherwise, if αn = C the points fall inside the margin, and they are correctly 

classified if ξn ≤ 1 or misclassify if ξn > 1. Finally, to determine the best value of b of 

Eq. 7.5 all those points called support vectors in which 0 < αn < C and have ξn = 0 so 

that tny(xn) = 1 will satisfy the following formula: 

 tn (∑ αmtmk(xn, xm)

m∈S

+ b) = 1    ( 7.28)  

and the numerical solution can be obtained by averaging: 

 b =
1

N𝕄
∑ (tn − ∑ αmtmk(xn, xm)

m∈S

)

n∈𝕄

    ( 7.29)  

where 𝕄 denotes the set of indices of data points having 0 < αn < C. 
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7.2.3  Cross validation SVMs: k-fold technique 

The cross-validation technique is frequently used to evaluate the capability of the SVM 

model to generalize the characteristics of the input data [Kohavi (1995)]. Moreover, this 

technique is largely employed in several problems with the objective of modeling 

prediction. 

Frequently, the efficiency of the SVM models are defined through a single 

straightforward test divided into two consecutive phases: the training phase, in which a 

selected trance of input data is employed for the training of the algorithm (normally 75% 

of data are used for this first phase), and the test phase, in which the trained model is used 

to classify the remain 25% of data.  

As already mentioned, this technique is commonly used for different problem studies 

where the prediction of some characteristics belong to data-population plays an important 

role in the classification problem. In fact, its use is aiming at minimizing the prediction 

error (generally associated to a specific set of data) performing several tests on the same 

data-population and at extracting the prediction error from the average value obtained by 

several examinations of the input data. In the reference [Kohavi (1995)] also emphasizes 

the choice of 10 folds to obtain an optimal minimization of the incorrect predictions. 

Fig. 7.5 shows a graphical representation of the cross-validation technique adopting ten 

different folds. The picture clearly describes the methodology associated to this technique 

as described in the following: 1) Execution of a partition of inputs into several subgroups, 

2) selection of first available fold for the test phase, 3) performance of the training 

process of the model using the other remained folds end 4) execution of the classification 

test using the resulted model obtained by training phase. Normally, the final goal of this 

approach is to provide an average value of the predictor errors and to demonstrate if the 

model has a good accuracy level or not. 
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Fig. 7.5. Application of k-folds technique to provided dataset 

Thus, the performance of the model developed in this work is obtained by a stratified 

cross-evaluation approach of the k-fold technique choosing 10 different folds, as shown 

in Fig. 7.5. This technique is conceivability used to analyze set of data and providing the 

most appropriate prediction that is representative of the entire population.  

This task can be resumed in the following bullet points: 

1- Partition of the entire input dataset into several sub-groups as indicated by k number, 

2- Selection and hold apart the first sub-group from other folds (red color group in the 

first column of Fig. 7.5), 

3- Training of the SVM model using the remaining (k-1) subgroups of data (grey color), 

4- Testing of the SVM model on the first sub-group previously hold, 

5- Extraction of the prediction error associated to the test process, 

6- Repetition of the steps 1-5 for several times equal to k, in order to execute the test 

covering the entire input data introduced into the procedure. 

7- Provide an average value obtained by the k tests performed. 

As already stated, the estimation of the best representative SVM models is based on the 

execution of two phases aimed at characterizing the population of data with defining a 

representative separating surface and consequently performing a proper classification. 

Generally, for the first phase 75% of the input data (randomly selected) are used for the 

training process; consequently, the remaining 25% of the inputs is used to perform the 

testing phase and extract the prediction value. 
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On the contrary, using the k-fold technique the classification of the data is performed 

scanning all input data and providing an estimate of the prediction referred to the whole 

set of input data. To exemplify, using the cross-validation technique with k=5, the 

prediction error is estimated with 5 different results producing a more representative and 

homogeneous average value with respect to the input set. 

In the work developed herein, several tests were performed in order to obtain an optimal 

pair of values (i.e. length of the input data and k-fold number). The analyses were 

generally performed using a variable number of input estimates together with k-fold 

values equal to 4, 8 and 10. As it is shown in the next Section, better results are obtained 

setting the number of folds equal to 10. 

 

7.3  Developing damage detection algorithm based on OMA 

parameters and SVM models 

The identification of structural damage in Civil Engineering structures using dynamic 

measurements has led to the development of several techniques in the last decades. 

Methods based on strain energy deviation, on curvature mode shapes and on flexibility 

matrix analysis, among others they were the most mentioned and used in the first years of 

research for SHM purposes. On the other hand, methodologies based on OMA procedure 

are relatively young. They have received important attention during recent decades 

principally due to their easy execution even in operational conditions. In the last years 

many methods have been developed based on the OMA approach oriented to damage 

detection. Most of them are based on the modal analysis, specifically on the natural 

frequencies. Although these techniques are mostly efficient to identify structural 

alterations in numerical models, they have difficulties in practical applications with 

experimental data. Follow this trend, a novelty damage detection approach based on the 

application of computational intelligence and pattern recognition models on modal 

parameters estimates has been developed and it will be presented in this Section. 
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The novelty approach proposed herein is developed to automatically detect structural 

changes in the “normal behavior” of the structures using the evolution of the modal 

parameters provided by the continuous monitoring process. In fact, the modal features, 

such as: the estimates of the natural frequencies or the variations of the mode shapes 

(using MAC, MPC and MPD indices) are used as input values of the implemented 

algorithm. 

This new methodology is composed by the mathematical approach (described in the § 

7.2.1) and the cross-validation technique (explained in the § 7.2.2), which are 

implemented to provide a best classification of the input data reducing the contribution of 

possible misclassification. 

As a matter of fact, the core of the implemented strategies consists of application of SVM 

model in order to perform a classification of data in two different classes associated to 

damaged and undamaged scenario. This strategy is inspired by the so-called true damage 

approach [Santos et al. (2013)] that consists of the construction of an SVM model, 

thorough the definition of a separating margin of a specific representative system 

condition and, consequently, to use this margin to find any other possible scenario in 

which the data distribution has same (or quite similar) statistical characteristics.  

Hence, the algorithm is forced to recognize two pre-imposed classes by assigning binary 

labels to the input data, 50% of the labels as true and the other 50% false. This means 

that in case of correct classification all data-points belong to undamaged scenario should 

be associated to the true label, meanwhile all data-points belong to damage scenario 

should be associated to the false labels.  

Unlike what is generally done, in the damage detection algorithm proposed herein the 

SVM model is not developed to estimate a prediction of the experimental data, on the 

contrary, the model is defined and used to recognize a specific structural condition given 

by the occurrence of the two different scenarios. This condition is recognized only when 

a clear change (or discontinuity) occurs in the trend of the data. 
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As a matter of fact, when the damage occurs the trend of the modal parameters might 

permanently change, allowing the separation of the data into two classes. Otherwise, if 

the algorithm fails to differentiate between both classes it means that all data-points 

belong to the same class and no damage is detected. 

Two different strategies have been implemented to perform the novelty approach. A 

simple scheme of the first strategy, named as Consecutive Segment Analysis (CSA) is 

reported in Fig. 7.6. The algorithm works with two consecutive data-segments to 

investigate possible anomalies in evolutions of the adopted sensitive damage features. 

 

Fig. 7.6. Scheme of the first damage detection strategy (CSA, Consecutive Segments Analysis) 

The estimations used as sensitive features are reported in the picture with black circles. 

As shown, both data-segments move together following the identification of the modal 

parameters. Alternatively, in Fig. 7.7 is reported a simple scheme of the second strategy 

developed for the damage detection algorithm. This strategy has been implemented using 

a fix reference group of data and another group that moves accordingly to the continuous 

monitoring of the structure. The algorithm tries to find possible anomalies checking the 

statistical variations between the data provided by the two input-segments. For this 

reason, the second strategy is also named as Separate Segment Analysis (SSA). 

  

Fig. 7.7. Scheme of the second damage detection strategy (SSA, Separate Segments Analysis) 

The main objective of both novelty strategies is to automatically recognize and 

discriminate two different states: a) non-damaged and b) damaged state, associating a 

probability value to the correct classification obtained after each run of the procedure. 
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The aim of this purpose is to prove the occurrence of a structural damage through the 

accuracy of the model reached in the classification problem. In fact, the SVM model 

performs a separation of the data only when the damage is present in the input data. 

Furthermore, in order to remove any misunderstanding, it is worth remarking that the 

SVM accuracy can reach the maximum value (i.e. 100%) only if the 50% of data-points 

is associated to undamaged condition and the other 50% is associated to damage one and 

it can be possible only if the damage is located in the middle of the input data. As it will 

be described in the next Section, this information it is very relevant because it defines the 

maximum length of the data-segments and the usefulness of this algorithm to provide an 

alarm in almost real time in case of unquestionable anomaly. 

It is worth highlighting that the novelty analysis is performed directly on the estimates 

“corrupted” by environmental and operational factors, because such effects are not 

filtered out before the application of the damage detection algorithm. 

This means that the SHM purpose can be performed contextually with the automated 

identification and the continuous monitoring of the modal features avoiding any further 

manual interaction during the monitoring process. 

In this way, the most important aspect related to this approach is given by the capability 

of the algorithm to provide information about the healthy state of the structure 

overcoming of the long period of monitoring (training period) devoted to investigating 

and removal of the effects due to environmental conditions. Therefore, this alternative 

OMA-based SHM approach permits to reduce a high quantity of monitoring costs also 

improving the efficiency of the SHM purpose.  

The efficiency of the proposed strategies is firstly exploited through numerical data 

provided by a simulated continuous monitoring of the simple structure composed by 5 

DOFs. Subsequently, the validation of the novelty approach will be performed using 

experimental data collected during the continuous dynamic monitoring of the Gabbia 

tower [Gentile and Saisi (2015); Gentile et al. (2016)]. 
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Application to numerical data 

The procedure based on the pattern recognition model is exemplified adopting a simple 

MDOF system: a shear type structure composed by five masses (floors) excited by a 

Gaussian white noise applied to the first level of the structure. The structure model has been 

used for validation of the proposed technique and it consists of a system composed of five 

DOFs deformable as a two-dimensional shear-type multi-story frames as presented in Fig. 

7.8. The geometrical and mechanical properties of the numerical model have already been 

presented in Chapter 4. Therefore, five simulated numerical acceleration time series were 

recorded (one for each floor) and used in order to validate the novelty procedure. 

Furthermore, two different damage scenarios have been simulated to test the robustness of 

the developed strategies detecting possible structural anomalies.  

 

 

  

Fig. 7.8. Scheme of the numerical structure composed by 5 DOF.  Location of the damage  

The model herein presented was used to generate a set of acceleration time response signals 

associated to five DOFs. The main characteristics are reported in the following: 

1. Simulation of more than 30 days (1000 hours) with sampling frequency set at 50 Hz, 

2. Length of each dataset equal to 3600 s (90000-time steps = 30 minutes). 

3. Excitation was introduced at first level of the structure by means of a stochastic process 

described by a zero mean Gaussian distribution (𝑓(𝑡) → 𝑁(0,1)). 

4. Operational effects were simulated by using a uniform random variability of 5 % for 

masses and 2 % for damping ratios of the corresponding nominal values. 

5. Structural stiffness was considered as a function of the temperature in order to simulate 

environmental effects on the structural model. Therefore, the temperature variations 

measured on January 2018 by Osservatorio di Brera (weather station located in the 

center of Milan) were used to simulate the environmental effect on the modal parameters.  
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6. After 150 hours of the simulated monitoring a structural damage was mimicked with a 

stiffness reduction of 2% at the second level, as shown in Fig. 7.8. 

Under these conditions, numerical acceleration time series have been generated and used to 

simulate the output structural responses of a numerical structure subjected to environmental 

effects. Hence, the estimation of the modal parameters (i.e. natural frequencies, mode shapes 

and modal damping ratios) and the complex indices (i.e., MPC and MPD) have been 

extracted from the data applying the automated MPE algorithm described in Chapter 4. The 

modal parameters  modes extracted by the first generate dataset (Fig. 7.9) were used as 

reference modes for the tracking process. 

I Mode II Mode III Mode IV Mode V Mode 

f = 3.195 [Hz] 

ξ = 0.28 [%] 

f = 9.327 [Hz] 

ξ = 0.83 [%] 

f = 14.703 [Hz] 

ξ = 1.31 [%] 

f = 18.884 [Hz] 

ξ = 1.68 [%] 

f = 21.536 [Hz] 

ξ = 1.92 [%] 
 

 

Fig. 7.9. Five identified modes of vibrating of the structure. Natural frequencies and mode 

shapes representation used as reference baseline list for the monitoring process 

In Fig. 7.10 the simulated frequencies evolutions of the simple academic 5-DOFs system 

subjected to environmental factors are reported.  
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Fig. 7.10. Tracking of the natural frequencies and modal damping ratios of the five identified 

modes  

Subsequently to the tracking process, the SHM procedure proposed herein was tested. Both 

developed strategies have been adopted to identify the simulated damage during the 

monitoring process discriminating between undamaged and damaged conditions. The 

exploiting of the proposed damage detection algorithm was carried out using the natural 

frequency estimates because they are more sensitive features to structural. 

Furthermore, the data provided to the algorithm where continuously partitioned into 10 

different groups  using the k-fold function (see § 7.2.2) and performing k different tests, as 

exemplified in Fig. 7.5. The application of the k-fold technique permits to improve the 

accuracy of the results in the classification, reducing the contribution provided by possible 

outliers that are present in the data-sequences. Then, the classification rate is extracted 

averaging the 𝑘 values of accuracy associated to each performed test.   
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7.3.1  First strategy based on “consecutive segments analysis”  

In this Section the first strategy of the developed SHM procedure based on pattern 

recognition model – defined as CSA strategy – is described in detail. This approach 

consists of the use of two consecutive segments of input data (i.e., natural frequency 

estimates) directly selected from the evolution in time such parameters This means that 

after each run of the OMA procedure and the extraction of the modal features from the 

recorded output responses, the novelty procedure can be applied in automatic way 

without any further handling of the data resulting from the tracking process. 

The length of the segment is very important for the performance of the novelty analysis 

because it defines the exact number of data population that have to be provided to the 

algorithm to solve the classification problem. Such segment is continually updated 

performing a “shifting” of the input-data after the analysis of each recorded dataset. 

Exemplifying, this task is obtained removing the modal estimates associated to the oldest 

identified mode and englobing the new ones provided after each run of the OMA 

procedure. Fig. 7.11 exemplifies the CSA strategy and describes how the input data are 

provided to the novelty detection algorithm, also highlighting the time-step between the 

classification process respect with the tracking process. 

 
Fig. 7.11. Step delay between the continuous dynamic monitoring process and the damage 

detection approach performed by CSA strategy 

As explained above, after a small period required to calibrate the SVM model, the 

novelty analysis can be “hooked” at monitoring process (Fig. 7.11) in order to perform 
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the continuous damage assessment contextually with the extraction of the modal 

parameters estimates with just a short period of delay (i.e. one hour). 

In more details, the CSA strategy of the novelty detection procedure is based on a 

consecutives segments that they are used to describe to different scenarios. It means that 

the inputs on the SVM model are composed by two consecutive equal long segments of 

data. Since the natural frequencies are the most sensitive features in the context of SHM 

purpose the input data are composed by a sequence of natural frequency estimates 

referred to a selected set of vibration modes, as exemplified in Fig. 7.11. The association 

between the data-points and labels of the two reference classes is performed in very 

simple way after the definition of the length of the reference segments (i.e. 𝑁). So, each 

single label is connected to each estimate in order to assign the first segment of data to 

the first class that corresponds to the undamaged condition, and, otherwise, the second 

data-segment to the second class that is referred to the damaged condition of the structure 

(Fig. 7.11). 

The CSA strategy of the novelty detection algorithm can be detailed as follows. Defining 

with the parameter i-th a generic dataset of output responses collected by the monitoring 

system and with N the length of each segment-scenario, the first input value associated to 

the first position of the Class I corresponds to the frequency estimate extracted from the 

[(i-2N)+1]-th collected dataset previously analyzed. Meanwhile, the value located in the 

last position of the Class I is extracted by the [(i-2N)+N]-th dataset (blue cubes in Fig. 

7.11). Thus, the first value in the Class II corresponds to the estimates extracted by [(i-

2N)+N+1]-th dataset and the last value in the Class II is the estimate extracted by i-th 

dataset (red cubes in Fig. 7.11). Therefore, the last estimate in the Class I and the first 

value in the Class II belong to two consecutive recorded, this is the meaning of the 

consecutive segment scenario, as depicted also in the Fig. 7.12.. 
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Fig. 7.12. Example of the first strategy of novelty detection (CSA strategy). Association between 

Class I and Class II to undamaged and damage condition, respectively. 

To clarify this selection of the input data of the model, in the Fig. 7.13 are represented 

three consecutive time instants of the SHM process. As already explained, defining with 

𝑁 the number of estimates associated to each class and considering the generic time 

instant 𝑖 in which the i-th dataset is already analyzed; then, the inputs associated to the 

Class I of the SVM model corresponds to those estimates into the interval segment equal 

to [(i-2N)+1; i-N]. Indeed, the input values associated to the Class II correspond to the 

follow segment [(i-N)+1; i]. In additions, for the consecutive time instant 𝑖 + 1, the 

segments of data shift one position and the relative intervals are given by [(i-2N)+2; (i-

N)+1] for the Class I and [(i-N)+2; i+1] for the Class II, respectively, and so on. Hence, 

the data selecting has been implemented in order to guarantee the same number of inputs 

to the SVM model associating 𝑁 values to the Class I and 𝑁 values to the Class II. 

  
Fig. 7.13. Example of the first strategy (CSA strategy) in 3 consecutive application steps 

One of the objectives of this Chapter is to simulate a continuous dynamic process of a 

simple MDOF structure in which different damage scenarios have been introduced and to 
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test the performance of the developed novelty strategy. Accordingly, the statistical value 

is used in order to provide the accuracy of the SVM model on the classification of 1-fold 

sequence of data after the training of the model using (n-1)-folds and repeating this 

process in order to cover all available data-points.  

Then, the procedure is applied in order to perform an optimal classification of the data in 

which a probability value is associated to the performed classification and it can reach the 

maximum value equal to 100% only if a structural damage occurred. In more detail, the 

probability associated to the occurred damage can reach 100% only if the data-points 

(selected estimates) are correctly classified into two groups and when the anomaly is 

located exactly in the middle of the two classes of input. 

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 7.14. Application of the CSA strategy. Probability of occurred damage obtaining by 

analyzing each natural frequency separately. Probability values associated to the a) first, b) 

second, c) forth and d) fifth natural frequency evolution, respectively 

In Fig. 7.14 are shown the main results obtained applying the developed novelty 

procedure (CSA strategy) to the frequency estimates extracting by simulated  numerical 

acceleration time series created accordingly with the characteristics of the 5-DOFs 

system described in Chapter 4. It is worth noting that the modal estimates were obtained 

coupling the MPE algorithm (described in Chapter 4) and the MT procedure (described 

in Chapter 6) to the simulated accelerations. Moreover, in order to test the sensitivity of 

the algorithm to structural anomaly, a damage was simulated after 150 hours with a 

reduction of the stiffness value (2% of the nominal value). 
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The diagrams in Fig. 7.14 show the probability values provided by the application of the 

novelty detection algorithm to the frequencies evolutions of the 5-DOFS system (see Fig. 

7.10). As shown, a clear bell shape can be noted exactly in correspondence of the 

occurred damage. It is worth noting that to a slightly reduction of stiffness corresponds a 

slightly shift of the nominal values of natural frequencies that cannot be easily detected. 

This strategy is able to recognizes this variation and to performs a correct association of 

the estimates belong to the undamaged and damaged conditions. 

Finally, inspecting the resulting diagrams, the bell-shaped described by the probability 

value are highlighted. Moreover, the peaks exactly appear in correspondence of the 

frequency shift when the damage occurred. This result is very important because it shows 

how the anomaly (i.e., reduction of localized stiffness) can be detected in all almost 

investigated frequencies. Therefore, a combination of all probability associated to the 

monitored modes can be used as damage feature for SHM purpose based on pattern 

recognition model. 

 

7.3.2  Second strategy based on “separate segments analysis” 

In this Section the first strategy of the developed SHM procedure based on pattern 

recognition model – defined as CSA strategy – is described in detail. This second 

strategy consists of the use of two separate segments of input data in which the first 

segment does not evolve over time and it is used as a fixed reference state, meanwhile the 

second segment changes over time together with the monitoring process. To clarify this 

aspect, it is worth to notice that modal parameters in the reference state are referred to 

undamaged condition, meanwhile the estimates belong to the second segment are 

continuously updated after each run of analysis and they are referred to a moving state 

that follows the monitoring process and exploring possible changes in the structural 

response. Fig. 7.15 exemplifies the SSA strategy and describes how the input data are 

provided to the algorithm. It can be noticed as the moving state (associated to damage 

condition) is continuously updated with new estimates provided by the tracking process. 
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Fig. 7.15. Step delay between the continuous dynamic monitoring process and the damage 

detection approach performed by SSA strategy 

For the second developed strategy, the input of the model is organized into two separate 

segments (or classes) with same length and composed by series of extracted modal 

parameter. As shown in Fig. 7.16,, the undamaged scenario is associated to the Class I 

meanwhile the damaged one to Class II. Thus, under the hypothesis, the structure should 

does not suffer/have any damage during the initial reference scenario (i.e. fixed reference 

state) at the beginning of the monitoring process, in order to characterize the undamaged 

condition in the fixed segment. On the contrary, the second segment represents the 

damage scenario and it is used to find any anomalies over the time. Once the N 

parameter is defined, the values inside the Class I correspond to the frequency estimates 

extracted in the initial phase, from the analyses of the 1st to N-th dataset. Meanwhile, for 

a generic dataset defined by 𝑖, the first element in the Class II corresponds to the 

estimates extracted by [i-N+1]-th dataset and the last value is the estimate extracted by i-

th dataset. A graphical representation about this approach is shown in the Fig. 7.16. 

  
Fig. 7.16. Example of the second strategy of novelty detection (SSA strategy). Association 

between Class I and Class II to undamaged and damaged condition, respectively. 



Damage Detection strategy based on pattern recognition models 

 

 

313 

 

In order to clarify this strategy, three consecutive time instants of this SHM purpose are 

represented in Fig. 7.17. As shown, the undamaged condition is always fixed, while the 

damage condition moves following the continuous monitoring process. Again, also in 

this strategy the input data are selected in order to guarantee the same number of inputs to 

the 𝐶𝑙𝑎𝑠𝑠 𝐼 and to the 𝐶𝑙𝑎𝑠𝑠 𝐼𝐼. 

  
Fig. 7.17. Example of the second strategy (SSA strategy) in 3 consecutive application steps  

As expected, the same acceleration time series already adopted to exploiting the CSA 

strategy has been used to test the efficiency of this SSA implementation. As done for the 

first approach a simulated damage was introduced after 150 hours of the monitoring 

process. The sensitivity of the SVM model included in the SSA strategy has been tested 

in order to recognize such variation.  

a) 

 

b) 

 
c) 

 

d) 

 

Fig. 7.18. Damage prediction provided by the classification of each series of identified frequency 

using the SSA strategy. Results obtained providing as input of the SVM model: a) first, b) second, 

c) forth and d) fifth natural frequency evolution, respectively 
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An excellent classification has been achieved and the main results obtained for each 

natural frequency evolution are shown in Fig. 7.18. It can be noticed the expected trend 

of the SVM probability associated to the identification of the damage through the 

application of the SSA approach. In all four cases the performance of the algorithm is 

quite excellent. The discrimination of the two scenarios (i.e. undamaged and damage 

state) is quite perfect and the probability of the occurrence of the structural damage rises 

more than 90% in most cases. It is worth mentioning that the main idea behind the 

implementation of this second novelty detection approach (i.e., SSA strategy) is quite 

different from the first one (i.e., CSA strategy), but it is basically orientated to provide 

the same information about occurred damages in the structure during the in-service 

conditions. The main difference between both strategies is provided by a different key to 

reading the results: in the first, the probability associated to the damage describes a 

visible bell-shape with a gradual increase in the probability associated with the damage 

followed by a subsequent decreasing, with a maximum in correspondence of the occurred 

variation. On the contrary, in the implementation the second strategy, the probability 

remains constantly high after the anomaly (Fig. 7.18). This means that the statistical 

properties between the two segments of data are changed (caused by the damage) and 

such differences are maintained over time. 

Concluding, if the first approach provides a clear information about the occurrence of the 

damage in the structure, the second approach should provide information about the 

duration of such damage over time. These aspects will be deeply clarified and highlighted 

in the final conclusions of this Chapter.  

Due on the fact that the first strategy is able to provide an accurate information about the 

occurrence of consecutive damages without any further user’s interaction during the 

continuous assessment, the approach has been used to identify the structural damage 

occurred on a real structure. Experimental data collected by the simple monitoring 

system installed on the Gabbia tower have been used for the application of the proposed 

strategy confirming the damage occurred on the tower during a far-field earthquake.  
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7.4 Validation and application using experimental data 

Being the natural frequencies of vibration effective and convenient damage sensitive 

features for vibration-based SHM application, the proposed CSA strategy was used to 

detect possible anomalies in the “normal” behavior of an ancient construction, using two 

different combination of input data: the first, using only identified natural frequency 

estimates, and the second, adding to obtained frequency estimates also the collected 

temperature values.  

The combination of natural frequencies with the recorded temperatures was firstly 

introduced to avoid and manage the occurrence of false positives during the execution of 

the novelty detection algorithm. In fact, introducing also the temperature values the SVM 

model characterizes the conjunct of data taking into account the relation between 

identified frequencies and average recorded temperatures, so false positives strictly 

dependent on the temperature variation should be avoided. 

 

7.4.1 Continuous dynamic monitoring results of the Gabbia Tower 

In this Chapter the main results obtained by the application of the developed novelty 

procedure to experimental data collected on an important Italian ancient construction are 

reported. The aim is to demonstrate the robustness of the novelty detection procedure on 

detecting the structural damage using the evolution in time of the natural frequencies 

obtained by the continuous dynamic monitoring of the Gabbia tower, located in Mantua, 

Italy. As reported in Chapter 6, this masonry tower was built in the XIII century and it 

represents an important Cultural Heritage building for the city of Mantua. After a seismic 

event occurred in the 2012, the tower was subjected to an intensive study aimed at 

identifying its vulnerability, checking its state of conservation an at achieving the 

structural behavior as demonstrate by previous analysis [Saisi and Gentile (2015), Saisi et 

al. (2015)].  
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Subsequently, a second campaign of dynamic tests was carried out to deeply understand 

the state of preservation of the tower and to extract a reasonable set of modal parameters 

that it will be adopted as reference values for the continuous dynamic monitoring of the 

tower. As reported in [Saisi and Gentile (2015), Saisi et al. (2015)], five principal modes 

were clearly extracted in the frequency range between 1 and 10 Hz. 

1st Bending 2nd Bending 3rd Bending Torsion Local 

f=0.918 [Hz] f=0.986 [Hz] f=3.887 [Hz] f=4.648 [Hz] f=9.893 [Hz] 

     

Fig. 7.19. Modal parameters estimate used as reference values for the monitoring process  

In Fig. 7.19, the principal modes of vibrating identified in the second campaign and used 

as reference modes for the subsequent continuous permanent monitoring were reported. 

As shown, different colors have been associated to the identified modes aimed at clearly 

understanding and reading of the graphical results obtained by monitoring process. 

The 21st of June 2013 the monitored tower was subjected to a far-field seismic event, that 

produced a damage in the structure, already confirmed by several studies carried out in 

the period after this event [Gentile et al. (2016)]. As already mentioned in Chapter 5, the 

permanent monitoring of the Gabbia tower started on December 2012, and the 

earthquake occurred the 21st of June 2013, for this reason only a reduce period of 

monitoring was used to define and validate the new novelty approach. Thus, the 

monitoring period selected as interval time reference using to test the procedure was from 

the 1st June 2013 until the 15th of July 2013. 

It is worth mentioning that the modal parameters used to validate the novelty procedure 

were extracted from acceleration time series collected by monitoring system installed on 
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the tower. The evolution in time of the natural frequencies were obtained applying the 

implemented Modal Parameter Estimation (MPE) algorithm together with the Modal 

Tracking (MT) procedure already presented in Chapters 3 and 5, respectively. 

 

Fig. 7.20. Evolution in time of natural frequencies obtained from 01/06/2013 to 14/07/2013 

In Fig. 7.20 the evolution of the natural frequencies of the five reference modes identified 

during the second campaign [Saisi et al. (2015)] is shown. The vertical line depicted on 

the diagram highlights the seismic event occurred on the 21st of June 2013.  

 

7.4.2 Validation of the algorithm using the frequency estimates of the Gabbia Tower 

As shown in the previous Chapter, the good performance of the developed OMA tool 

(e.g. MPE and MT procedures) was demonstrated by the high values of the identification 

success rate (SR) of each structural mode of the tower. Afterward, a shorter monitoring 

period of 44 days (from the 1st of June to 14th of July 2013 (1056 hours)) was used to 

validate the novelty procedure; in particular during this period the first natural frequency 

was identified in 975 times (SR equal to 92,42%), the second natural frequency appears 

in 915 times (SR equal to 86,81%), the third frequency in 374 times (SR equal to 

36,53%), fourth and fifth frequency appear in 882 times and 921 times (SR equal to 

83,68% and 87,38%).  
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According with the results obtained by tracking process (Fig. 7.20), only the frequency 

values with higher SR were used as input for the SHM application, specifically were used 

the frequency evolution of the first and second bending mode, the torsional mode and the 

mode associated to the local mode of the upper part of the tower. 

Due to the lack of detail of the diagram shown in Fig. 7.20, the evolution of each natural 

frequency obtained in the reference period is individually reported in the following figure 

using a properly scale-factor.  

 

Fig. 7.21. Extraction of the selected natural frequency evolution of the first two bending modes, 

the torsion model and the local mode obtained from 01/06/2013 to 14/07/2013 

From the inspection of the diagrams depicted in Fig. 7.21 the frequency shift represents a 

common aspect for all investigated modes (more evident in the first and in the second 

bending mode). Therefore, as highlighted, the seismic event caused a permanent change 

(i.e. structural damage) in all frequencies’ trends. Moreover, it is worth remarking that 

frequency “gap” is not re-absorbed by the structure describing a global change of the 

dynamic and mechanical behavior of the tower.  

As already mentioned in this Thesis, at 21st of June 2013 the tower was subjected to a 

seismic event which led to a structural damage in the tower. This scenario is principally 

highlighted by a slightly decrease of the natural frequencies associated to the principal 

modes [Gentile et al. (2016)].  
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a) 

 

b) 

 

b) 

 

d) 

 

Fig. 7.22. Damage predictions observed by classification of the frequency estimates of the: a) first 

bending mode; b) second bending mode; c) torsional mode and d) local mode of the tower 

The occurrence of damage was demonstrated using a selected interval of data in which 

the SVM model is forced to recognize two difference scenarios, associating the 50% of 

input data to undamaged state and 50% to damage state (48 hours long for each scenario), 

as shown Fig. 7.22. As expected, SVM is sensitive enough to classify the two conditions 

recognizing the anomaly that appears in all fundamental modes. In fact, when the damage 

occurs, the accuracy of the SVM model clearly increases. 

When the probability reaches 100% means that all data were right associated to 

undamaged and damage scenario and this condition can be possible only if damage is 

located exactly in the middle of the input interval of data (i.e., in CSA strategy). The 

results obtained by the application of this strategy to the natural frequencies evolution of 

the tower are shown in Fig. 7.22. The accuracy of the classification performed by the 

SVM model is an indicator of anomaly behavior and the high value of its peak means that 

a damage occurred. This condition is clearly highlighted by the first two frequency 

evolutions in the present case study.   

As declared in the beginning of this paragraph, in order to have a deeper view on 

structural behavior and also to investigate any possible effects of ambient conditions (i.e. 

temperature) on modal parameters, a second implementation of the CSA strategy has 
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been developed introducing temperature values measured during the monitoring process 

[Marrongelli et al. (2018b)]. 

a) 

 

b) 

 

b) 

 

d) 

 

Fig. 7.23. Damage predictions observed by classification of the frequency estimates of the: a) first 

bending mode; b) second bending mode; c) torsional mode and d) local mode of the tower 

Basically, the analysis was performed in the same way of the previous implementation, 

adding to the sequences of frequency estimates also the average temperature collected for 

each hour of monitoring data. As shown in Fig. 7.23, in all four analysis the model 

provides a very high probability of occurred damage when the earthquake occurred. It is 

worth mentioning that high variability of temperature makes more difficult the right 

classification of the structural condition, for this reason it was necessary to use a larger 

segments of input data (240 total hours, 120 for each state). This means that possible 

damage can be fully detected only after 5 days from its occurrence making this 

implementation less effective of those ones in which only the same estimates are used as 

inputs data. 

Finally, in order to make more legible the obtained results, the accuracy values provided 

by the SVM model for each natural frequency were put together in order to use the 

average values as damage sensitive indicator. The mean value has been calculated for 

both implementations and the graphical results are shown in Fig. 7.24.  
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a) 

 

b) 

 

Fig. 7.24. Average probability value (CSA strategy) associated to occurred damage: a) first 

implementation, b) second implementation with temperature measurements 

The graphical results highlight the possibility of using the average values as damage 

sensitive feature in the implemented damage detection strategy. Although a good 

performance has also been obtained using the average temperature measurements, the 

implementation that works only with frequency estimates provides a faster identification 

of damages in the structure. Furthermore this outcome provides a further advantage 

relative to the cost of the monitoring system in which the temperature sensors could be 

avoided toward installing a compact monitoring system composed only by transducers, 

This result makes evident the straightforward possibility of using this strategy for the 

continuous assessment of historical buildings even with permanent system composed by 

limited array of sensors. Finally, in the next Chapter the estimations obtained by seven 

months of continuous dynamic monitoring of the Gabbia tower will be used to exploit 

and validate the implemented novelty strategy. 

 

7.4.3 Application of the novelty damage detection algorithm to monitoring data 

Due to the fact that the unsupervised approach seems to work better if the classification 

does not involve also the temperature values [e.g., Marrongelli et al (2018b)], only the 

frequency estimates obtained during the whole monitoring period of the tower were used 

to set the SVM model and to demonstrate the robust performance of the implemented 

strategy.  

As mentioned in Chapter 6, the permanent monitoring of the tower was performed for 

over two years starting on 17th of December 2012 [Gentile et al. (2016)]. During the 
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monitoring period the tower was subjected to a far-field earthquake that produced a 

structural change in its dynamic behavior. Therefore, the experimental data collected 

during seven months of monitoring were used to validate the implemented CSA strategy 

and to automatically detect the structural damage occurred during the seismic event. 

In Chapter 6 the automatically identified natural frequencies evolutions (from 17/12/2012 

to 15/07/2013) are reported in detail. Hence, the SVM models, defined in the previous 

Section, were adopted to analyze and classify such estimates extracted by the continuous 

monitoring application. Moreover, from the results obtained in the previous paragraph, 

the structural anomaly e is much more evident in the first frequencies instead those ones 

associated to torsion and local mode. So, only the evolution of the frequencies associated 

to the first and second bending modes have been used to test the developed damage 

detection algorithm.  

The SVM models defined by the following parameters: k-folds=10, σ=1.5 and C=10, 

have been used. In additions, the length of the data segments provided to the model were 

set equal to 96 elements (48 elements for each undamaged and damaged condition).   

Fig. 7.25 shows the application of the CSA strategy to seven months of monitoring. As 

shown, the probability value associated to the occurred damage fluctuates around its 

average value of 50%. This means that no information can be extracted by these results, 

because the SVM model can not distinguish between the undamaged and damage state, 

this means that the data are mixed. Moreover, this condition implies that no damage state 

exists in the input data. Hence, the absence of structural anomaly is clear confirmed, and 

the integrity of the structure is not compromised. 
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Fig. 7.25. Application of the novelty algorithm to continuous monitoring data: natural frequency 

estimates related to the first and second bending mode (from 17/12/2012 to 14/07/2013) 

From the inspections of the two diagram some considerations can be pointed out: 

1) The structural change due to the damaged occurred in the tower was fully identified 

by the algorithm providing a clear peak in the probability associated to the occurred 

damage. 

2) No further anomalies were detected in the previous period of monitoring. 

3) No spurious peaks of the damage probability appear during the monitoring phase, 

demonstrating the robustness of the implemented methodology. 

4) The effects of the environmental factors on the natural frequency estimates (i.e. 

temperature fluctuation) do not affect the analysis and the detection of the damage. 

5) The continuous assessment was carried out using a length of each input segment equal 

to 48 elements. This parameter permits the automated identification of the occurred 

damage in the structure after only 48 hours from its occurrence. 
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The obtained results confirm the information pointed out by previous analysis carried out 

using different damage detection approaches as already reported in other works [Gentile 

and Saisi (2015), Gentile et al. (2016), Guidobaldi (2016)]. The absence of false positive 

in the diagrams in Fig. 7.25 also confirms the robustness of the newly developed damage 

detection algorithm and its reliability on SHM applications. 

Afterward, in order to test the sensitivity of the SVM model in the automatic detection of 

structural anomalies, some artificial damages were simulated along the monitoring period 

of the tower. In particular, two frequency shifts were used in the evolution of the first two 

natural frequencies adding a drop of frequency in the winter period and at the end of the 

spring period in order to test the robustness of the algorithm in two different 

environmental conditions (with different daily temperature and humidity fluctuations).   

Moreover, the amplitude of the frequency shifts was defined by taking into account the 

real frequency drop caused by the far-field earthquake that occurred on the 21st of June 

2013. In particular, the shifts were set in order to provide a similar frequency drop to the 

one that had occurred during the seismic event (equal to 5% of the mean value of the 

frequency associated to the first and second mode, respectively). The evolution of the 

corrupted frequency estimates used to demonstrate the efficiency of the strategy 

presented herein is reported in Fig. 7.26. 

The graphical results obtained by the analysis of the whole set of monitoring data are 

provided in Fig. 7.27. From the inspection of both diagrams in Fig 7.27 the capability of 

the SVM model regarding the identification of structural anomalies by using frequency 

estimates as damage sensitive features has been demonstrated. In particular, the 

algorithm performs a correct classification of the data identifying structural damage in 

the winter period as well as in the spring period in which the structure is subjected to 

high thermal variations and different environmental conditions. 
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a) 

 
 

b) 

 
Fig. 7.26. Frequencies evolutions imposing a frequency shift: a) 1st frequency: real trend with red 

dots, corrupted values with green dots, b) 2nd frequency: real trend with blue dots, corrupted value 

with green dots. 

As shown, the probability values of the occurred damage obtained by analyzing the 

“corrupted trends” of the fundamental frequencies of the tower are reported in Fig. 7.27. 

The first and the second peak in both diagrams indicate the correct identification of the 

simulated damages in the structures.  

These results point to an important outcome related to the novelty detection strategy 

presented in this Dissertation. In fact, it is possible to define a-priori the accuracy of the 

model according to the input parameters and the population of input data provided to the 

model in order to define the boundary decision surface. As previously described in this 

Chapter, the pattern recognition model defines a soft margin obtained by penalizing some 

data-points (i.e. frequency estimates) that could fall outside the decision boundary; there 

values are treated as outliers (see § 7.2.2).  
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Following this strategy, it is possible to define a soft margin in which to find the optimal 

separation surface that could be recursively used to classify the input-data within 

continuous assessment purposes.  

 

a) 

 
 

b) 

 
Fig. 7.27. Probability values obtained applying the SCA strategy to the monitoring data of the two 

fundamental frequencies of the tower. Probability of occurred damage associated to a) 1st natural 

frequency and b) 2nd natural frequency.  

Finally, the identification of the anomalies artificially created in the fundamental 

frequencies of the tower further proves the efficiency of the developed algorithm 

regarding the damage detection approach and its capability to automatically identify 

structural anomalies without any human interventions on the data. 
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7.5 Conclusions  

This Chapter focuses on the development of an alternative OMA-based SHM approach 

based on the application of pattern recognition models on the modal parameters 

automatically identify by recently developed OMA algorithms. 

A brief review of the classification algorithms based on SVM models is given in the 

beginning of this Chapter, highlighting the main improvements obtained in different field 

of application over the years. Hence, the mathematical implementation of the classical 

SVM technique used for binary pattern classification problems is described in detail.  

Subsequently, this Chapter focuses on the implementation of the damage detection 

purpose based on OMA parameters and SVM models. The novelty approach was 

developed in two different strategies: the Continuous Segment Analysis (CSA), which 

involves the use of two consecutive segments of data associated to two different 

structural conditions, and the Separate Segments Analysis (SSA), which uses a fixed 

segment of input data to characterize the reference scenario and a moving segment 

associated to the damaged condition. Both strategies are aimed at recognizing two 

different classes of data associated at two structural conditions constructing an optimal 

surface and maximizing a separation margin. 

Both strategies (CSA and SSA) proposed herein were exploited using numerical data 

generated using a simple 5-DOFs system already used to describe the algorithms 

presented in the previous Chapters. Consequently, in order to validate the proposed 

methodologies, experimental data collected by permanent monitoring system installed on 

the Gabbia masonry tower were used. As described in previous papers [Saisi and Gentile 

(2015), Saisi et al. (2015)], after the seismic event occurred on May 2012, the tower was 

subjected to an extensive research program performed to assess its state of preservation 

and the structural condition. Then, a simple monitoring system aimed at monitoring the 

dynamic property and helping the preservation of the historic tower was installed.  
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Seven months of continuously collected data were firstly analyzed using the developed 

OMA procedures to extract the evolution in time of the modal parameters. Thus, the 

novelty CSA strategy has been applied to confirm the permanent damage occurred during 

the earthquake of 21/06/2013. Two different implementations of the CSA were applied to 

the extracted natural frequencies of the tower (i.e. using only frequency estimates or 

using pairs of frequency and temperature values). From the results obtained by both 

approaches a clear permanent change of the structural condition occurred during the 

earthquake has been highlighted.  

Concluding, the applications described in this Chapter reveal the capability of the 

damage detection approach in the context of SHM purposes making this approach very 

promising for the automated continuous assessment also for structures with monitoring 

systems composed by a limited array of sensors. In this way, the information obtained by 

continuous monitoring might be used by artificial intelligence models to generate a 

properly alarm in case of structural damage after a very short time of delay. 

Furthermore, it is worth mentioning the damage detection approach proposed herein can 

be used with several type of input data. In particular, the first strategy (i.e., CSA strategy) 

is particularly indicated to be used with natural frequency estimates because the 

environmental effects. Meanwhile, the second strategy (i.e., SSA strategy) can be used 

with the evolution in time of other parameters/indices related to the mode shapes 

variations, such as MAC index or MPC and MPD indices. Thus, the second strategy is 

particularly suitable for SHM purposes of structures with widespread monitoring 

systems. 
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8.1 Introduction 

The increased uptake of the OMA-based SHM strategy in the last decades makes this 

approach very effective for the continuous assessment of several types of constructions for 

the purposes of damage detection, as described in many works present in the literature as 

[Magalhães et al. (2012), Gentile et al. (2016), Comanducci et al. (2016)]. The recent 

improvement of the OMA-field has driven the development of powerful tools aimed at 

performing the automated identification and tracking of the dynamic features associated 

with the structural modes. In this way, the automation of the process became a mandatory 

requirement for performing an efficient long-term monitoring, which is a fundamental step 

for any damage detection applications.  

As is well known, the modal parameters estimates are affected by environmental conditions 

(typically temperature and wind) that need to be removed or at least reduced in order to 

detect possible anomalies in the structural behavior which could be masked by such effects. 

In the classical approach, these effects (principally on the natural frequencies) are removed 

using techniques typically based on multivariate statistical methods, such as multiple 

regression models or Principal Component Analysis (PCA), in order to define a “normal 

condition” of the structure and subsequently apply any novelty detection approaches 

[Worthen et al. (2002), Yan et al. (2005), Magalhães et al. (2012), Mosavi  et al. (2012), 

Dakermann et al. (2014), Comanducci et al. (2015)]. In this way, small structural changes 

should be conceivably detected; otherwise, the healthy state of the structure is confirmed 

if no significant deviation of the data from the normal condition is observed.  

Conversely, recent developments are driving the possibility to perform a continuous 

assessment of the structural condition using the modal parameters estimates without 

filtering out the external effects (see e.g. [Marrongelli et al. (2018c)]). The applications of 

these strategies have been demonstrated quite effectively also by using a reduced number 

of sensors, making these strategies very promising in the context of preserving Cultural 

Heritage (CH) constructions. 
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This Chapter focuses on the application of the developed SHM methodology on the 

monitoring data of a real structure: the San Gottardo Bell-Tower. The tower, dating back 

to the 12th century, is located in the center of Milan and its octagonal shape gives it a unique 

architectural appeal in the skyline of the historical center of the city. The data continuously 

recorded by a simple monitoring system installed on the top of the tower have been 

processed using the automated OMA algorithms, described in Chapters 4 and 6, to perform 

the continuous monitoring. Moreover, the dynamic characteristics of the tower were 

assessed by means of an ad-hoc AVT performed to confirm the set of structural modes 

previously identified during the permanent monitoring. Subsequently, the novelty damage 

detection approach (described in Chapter 7) is used to automatically detect possible 

anomalies in the normal behavior of the tower. 

It is worth mentioning that the developed SHM strategy presented herein is particularly 

suitable for the automated assessment of ancient constructions, performed by inspecting 

the evolution in time of the frequency estimates. To reach this challenging task, the 

proposed methodology combines the performance of three algorithms developed in this 

Dissertation and aimed at: 1) extracting the set of modal parameters estimates from the 

analysis of each single collected dataset, 2) ensuring the correct tracking of the most 

meaningful features over time, and 3) highlighting possible damages and anomalies 

occurred in the structure, analyzing the evolution of the modal frequencies under 

environmental conditions. It is also worth highlighting that this last task is performed by 

applying the CSA damage detection strategy to the sequence of OMA estimates without 

removing the effects of the environmental factors. From the obtained results, a promising 

approach toward a more widespread and systematic implementation of vibration-based 

SHM strategy for CH preservation will be demonstrated.  

This Chapter begins with the presentation of the case study, including the historical 

background, together with a brief description of the installed monitoring system. Then, the 

dynamic characteristic of the ancient tower, obtained by applying the developed OMA 

algorithms (i.e. 2D-MPE and MT), are presented in detail. Thus, the main results obtained 

during two years of permanent monitoring are shown in detail highlighting the evolution 
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in time of the natural frequencies associated to eight identified modes. The correlation of 

the natural frequencies with the main environmental variables is also described, pointing 

out the non-linear correlations between external factors and modal features.  

Furthermore, the structural integrity of the tower is demonstrated by the application of the 

developed SHM strategy to a wide period of monitoring (10 months from 01/01/2018 to 

30/09/2018) pointing out the absence of structural anomalies and damage.  

Finally, the robustness of the novelty approach has been demonstrated by simulating 

structural damages in the dynamic behavior of the tower through slight frequency shifts. 

As shown, the algorithm correctly identifies the small changes in the frequency evolutions 

that have been simulated in different time-periods (i.e., winter and summer period). Then, 

a sensitivity analysis has been performed in order to understand the potentiality of the 

developed strategy, obtaining very satisfactory results. 

 

8.2 Description of the San Gottardo in Corte Bell-Tower  

8.2.1 Description of the tower 

The church of San Gottardo in Corte (Milan, Italy), situated in the near vicinity of the 

Milan Cathedral, was completed in 1336. Originally, it was a chapel attached to the 

residence of the Duke of Milan. The building was initially dedicated to the Virgin, to whom 

the Milanese were very devoted at the time of the construction, and subsequently to San 

Gottardo. The church included a slender bell-tower (Fig. 8.1(a)) and the architect 

responsible for the tower was Francesco Pegorari, as testified by a stone at the base of the 

building.  

Even if a comprehensive geometric survey of the structure is not yet available, two 

different construction phases of the tower can be noted; they consist of a stone masonry 

square basement of 12.0 m, an octagonal portion in solid brick masonry up to the height of 

41.0 m and a high cusp. The internal portion of the tower is shown in Fig. 8.2. 
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a) 

 

b) 

 

Fig. 8.1. Bell-tower of the church of San Gottardo in Corte, Milan: (a) view of the bell-tower and 

the San Gottardo in Corte Church and (b) ancient drawings of the building. 

Since the tower exhibits only one wooden floor, at about 32.0 m, corresponding to the level 

of the bell chamber, the monitoring system was installed at that level. As shown in Fig. 

8.2, the architecture of the circular staircase makes it very difficult to access the tower and 

consequently to perform a dynamic test though instrumenting different levels of the tower. 

       

Fig. 8.2. Bell-tower of the church of San Gottardo in Corte: internal view of the bell-tower, the 

circular wooden staircase and the only wooden floor of the building. 
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This issue is the main reason why it was not possible to carry out a vibration test before 

the beginning of the monitoring process, and why that test was performed later. 

Meanwhile, the tower has been permanently instrumented since November 2016. 

 

8.2.2 Installed monitoring system 

The monitoring system installed in the San Gottardo Tower includes two bi-axial 

seismometers (electro-dynamic velocity transducers), one 24-bit digitizer (6 channels,  

A/D converter, 8 Gb Ram on board for data storage) and one UMTS modem for data 

transfer. 

      

Fig. 8.3. Measurement devices installed in the San Gottardo Bell-Tower. 

The automated modal identification was performed using time windows of 3600s 

(corresponding to more than 3500 times the fundamental period of the tower), in order to 

comply with the widely agreed recommendation of using an appropriate duration of the 

acquired time window to obtain accurate estimates from output-only data [Cantieni 

(2005)]. The sampling frequency was 100 Hz, which is much higher than the frequency 

required for the investigated structure, as the significative frequency content of signals is 

below 12 Hz. Hence, low pass filtering and decimation were applied to the data before the 

use of the identification tools. In more detail, after low-pass filtering the data through a 7th 

order Butterworth filter with cut-off frequency of 12.5 Hz, the velocity time series were 

down-sampled from 100 Hz to 25 Hz.   
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8.3  Definition of the reference baseline list of modes for 

 continuous dynamic monitoring  

Due to the difficulty of carrying out a dynamic test through covering several levels of the 

tower, it was firstly decided to install the monitoring system in the one wooden floor of the 

tower in order to record a few days of output response with the purpose of identifying the 

modal parameters, especially the resonant frequencies, associated to the structural modes. 

It is worth to remark that the dynamic monitoring system of the historical tower has been 

in continuous operation since the 26th of October 2016 and its dynamic response has been 

continuously collected using a sampling frequency of 100 Hz. Every hour, the signals are 

collected in a new dataset that is initially stored in the backup memory of the system and 

subsequently sent to Politecnico di Milano in order to be analyzed. Hence, the recorded 

data are firstly pre-processed (including the elimination of the offset, filtering and re-

sampling at 12.5 Hz) and consequently analyzed adopting the SSI-Cov technique to 

identify the modal parameters. 

The identification algorithms described in Chapter 4 and 6 and the damage detection 

algorithm described in Chapter 7 are then explored using the data collected on the San 

Gottardo masonry tower.  

Firstly, the MPE algorithm operating on 2D stabilization diagrams was adopted for the 

identification of the dynamic characteristics of the tower. The input parameters of the 

algorithm were tuned using the data collected during the first days of monitoring. In 

particular, the analysis of the first days of monitoring data was performed to define and 

justify the selection of the modal parameters (i.e. natural frequencies and mode shapes) 

adopted as reference values for the tracking process. Therefore, the continuous monitoring 

of the San Gottardo masonry tower effectively starts from the 1st of November 2016.  

As already stated, the SSI-Cov method was adopted as identification method. Special 

attention should be given to the selection of the user-defined parameters associated to this 
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technique (i.e. the time-lag value and the maximum order of the stochastic model) and 

those adopted to perform the 2D-MPE algorithm (i.e., the threshold values). As previously 

described, this identification method is based on the construction of the correlation matrix 

of the measured signals and on the solution of the state-space model performed for 

increasing model order. Hence, two parameters define the correlation matrix: the reference 

channels and the maximum time-lag value. After some preliminary tests, stabilization 

diagrams with good quality were obtained adopting correlation functions with 90 points 

(90/12.5 = 7.2 seconds →7.2 x 1.04 = 7.48 times of fundamental frequency). Meanwhile, 

due to the reduced number of installed sensors, all channels were used as reference and, 

after some tests, the maximum order of the state-space model was fixed at 120. This last 

value ensures the comparison of a sufficient number of stable poles in the diagram, in 

which to detect the stable alignments associated to the structural modes.  

The modal parameters resulting from the analysis carried out in the beginning of the 

monitoring phase are shown in Fig. 8.4. Due to the fact that only two points of the only 

transversal cross-section of the tower are permanently instrumented by biaxial sensors, the 

assumption of "stiff diaphragm" has been adopted in Fig. 8.4 (indeed, 3 modal deflections 

were used to draw the deformed shape and the 4th one was used to verify that the main 

assumption was basically satisfied). The inspection of Fig. 8.4 reveals that the first two 

couples of modes involve bending in two orthogonal N-S and E-W planes of the octagonal 

cross-section, whereas modes 5-6 seem to involve coupling between bending and torsion. 

The last couple of identified modes involves bending in two orthogonal planes, which are 

different from N-S and E-W.  

From the analysis carried out on a single recorded dataset, eight structural modes were 

clearly detected. Hence, from these results the main natural frequencies and the mean mode 

shapes, which define the rigid displacements of the one walk-on accessible floor (see Fig. 

8.4), were used as baseline reference list for the continuous monitoring process.  

The main values and the statistical properties of the extracted structural mode are depicted 

in Fig. 8.4 reported in A representation of the mode shapes associate to the identified 
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modes is shown in Fig. 8.5. The polar plot provides further information about the 

complexity degree associated to each extracted mode shape underlining both the real and 

imaginary part of the components. As shown, the imaginary parts are negligible, so the 

mode shapes are real. 

Table 8.1.  

(a)  f = 1.041 Hz (b)  f = 1.055 Hz (c)  f = 3.004 Hz (d)  f = 3.100 Hz 

 
(e)  f = 3.381 Hz (f)  f = 5.073 Hz (g)  f = 5.439 Hz (h)  f = 6.542 Hz 

 
Fig. 8.4. Automatically identified vibration modes (N-S: vertical axis) of the San Gottardo Bell-

Tower. Natural frequency and displacement of the wooden floor in the assumption of "stiff 

diaphragm” associated to:  (a) Mode 1;  (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) 

Mode 6; (g) Mode 7 and (f) Mode 8. 

A representation of the mode shapes associate to the identified modes is shown in Fig. 8.5. 

The polar plot provides further information about the complexity degree associated to each 

extracted mode shape underlining both the real and imaginary part of the components. As 

shown, the imaginary parts are negligible, so the mode shapes are real. 

Table 8.1. Statistics of the identified reference modes applying the MPE algorithm to structural 

response recorded on 26/10/2016. 

Modes f [Hz] σ(f) [Hz] ξ [%] σ(ξ) [%] MPC MPD 

1 1.041 0.0001 0.43 0.0013 1.00 2.36 

2 1.055 0.0001 0.41 0.0035 0.97 5.46 
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3 3.004 0.0002 0.97 0.0099 1.00 1.04 

4 3.100 0.0014 0.89 0.0575 1.00 1.34 

5 3.381 0.0006 0.71 0.0095 1.00 1.71 

6 5.073 0.0026 1.00 0.0179 1.00 1.00 

7 5.436 0.0162 3.02 0.5119 0.95 6.14 

8 6.542 0.0285 2.72 0.3265 0.99 2.50 

 

 

f = 1.041 [Hz] f = 1.055 [Hz] f = 3.004 [Hz] f = 3.100 [Hz] 

ξ = 0.43 [%] ξ = 0.41 [%] ξ = 0.97 [%] ξ = 0.89 [%] 

    
f = 3.381 [Hz] f = 5.073 [Hz] f = 5.436 [Hz] f = 6.542 [Hz] 

ξ = 0.71 [%] ξ = 1.00 [%] ξ = 3.02 [%] ξ = 2.72 [%] 

    

Fig. 8.5. Reference modal parameters of the SSI-Cov method. Natural frequencies, modal 

damping ratios and mode shapes represented in polar plot, for all identified modes. 

 

8.4  Ambient Vibration Test and principal vibration modes 

On the 21st of March 2017 the AVT was carried out to extract the modal parameters of the 

tower and, more specifically, the mode shapes associated to the natural frequency estimates 

obtained during the first months of the monitoring process. The dynamic test was 

performed using 8 high-sensitivity accelerometers (see Fig. 8.6(b)). The layout of the 

installed sensors is reported in Fig. 8.6(a).  
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The database collected during the AVT of the tower was processed using two different 

identification algorithms implemented during the development of the present work. Firstly, 

the classical FFD was used in order to have a quick estimation of the most relevant modes 

through the local peaks of the first Singular Value (SV) which is the mode indication 

function adopted in the FDD method extracted by the spectra matrix. Subsequently, the 

parametric SSI-Cov technique was also applied. 

a) 

 

b) 

   

Fig. 8.6. Ambient vibration tests performed on 21/03/2017: a) layout of the sensors used for the 

AVT; b) biaxial accelerometers positioned in the four available levels of the tower. 

The results provided by the application of both methods have been presented in 

[Marrongelli et al. (2018a)], highlighting the correspondences between the peak values of 

the first SV and the stable alignments that stand out in the stabilization diagram. 

In Fig. 8.7, the typical stabilization diagram obtained by applying the SSI-Cov method is 

reported. As shown, the diagram contains all mode estimates (spurious and physical ones) 

provided by models with even orders between 20 and 120. As is visible, models with higher 

order overestimate the solutions of the dynamic problem modelling also the noise content 

into the signals. This condition implies the comparison of spurious poles that do not have 

physical meaning characterized by high or negative damping and/or by high complex 

modal components of mode shapes. Therefore, the developed MPE [(Marrongelli et al. 

(2018b); Marrongelli et al. (2019a)] algorithm is applied in order to remove all spurious 
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poles and to obtain only the stable alignments composed by certain physical poles that 

maintain consistency in terms of modal parameters for increasing model order.  

The user-defined thresholds adopted to perform the MPE algorithm and deliver a clearer 

stabilization diagram were set as follows: damping threshold equal to 5%, complexity 

thresholds associated to MPC and MPD index equal to 0.8 and 15°, respectively. 

Meanwhile the inter-cluster distance threshold used to construct the representative clusters 

of the structural modes was defined in a conservative way equal to 0.025. These tolerance 

values allow for a clear appearance of eight vertical alignments representative of the eight 

structural modes of the tower. 

 

a) 

  
 

b) 

  
 

c) 
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d) 

  

Fig. 8.7. Stabilization diagrams (San Gottardo Bell-Tower): (a) resulting from SSI-Cov; (b) after 

the pre-filtering; (c) after the clustering; (d) after the post-processing to improve the estimate 

accuracy (final results). 

Fig. 8.7 refers to one 1-hour dataset recorded by the installed monitoring system on 

21/03/2017. It shows the typical cleaning action exerted by the various steps of the 

proposed MPE procedure on the stabilization diagrams. In particular: 1) Fig. 8.7(a) shows 

the results initially obtained applying the SSI-Cov method for increasing model order; 2) 

Fig. 8.7(b) shows the performance of the pre-filtering step on the SSI outputs (i.e., after 

the check on damping and mode shape complexity); 3) Fig. 8.7(c) illustrates the effect of 

the clustering process on the remaining poles; and 4) Fig. 8.7(d) contains the final 

alignments of stable poles corresponding to physical modes of the structure. As mentioned 

before, it is worth noting that the first SV line of the spectral matrix is depicted in all plots 

of Fig. 8.7, highlighting the correspondence between the local SV’s peaks and the stand 

out alignments of stable poles. 

   (a) (b) (c) (d) (e) (f) (g) (h) (i) 

Sensors   

layout 

f = 1.040 

Hz 

f = 1.058 

Hz 

f = 3.004 

Hz 

f = 3.110 

Hz 

f = 3.373 

Hz 

f = 5.066 

Hz 

f = 5.569 

Hz 

f = 6.495 

Hz 
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Fig. 8.8. San Gottardo Bell-Tower: (a) Sensors layout in the test of 21/03/2017 (red arrows) and 

in the permanent monitoring (green arrows); (b)-(i) Automatically identified modes (Y-axis: N-S 

direction). 

Furthermore, the inspection of Fig. 8.7 highlights that: (a) within the investigated 

frequency range (0-8 Hz), the alignments of the stable poles in the stabilization diagram 

provide a clear indication of 8 tower modes and 6 of those alignments of stable poles 

correspond to well defined local maxima in the first SV line of the FDD procedure; (b) the 

last two modes, although weakly excited, are clearly identified as the model order increases 

and (c) as it is common for historic towers [Gentile et al. (2016); Ubertini et al. (2017); 

Cabboi et al. (2017); Ubertini et al. (2018); Azzara et al. (2018)], the resonant frequencies 

of the two lower modes are closely spaced.  

The diagrams reported in Fig. 8.7 refer to the analysis of a single record collected by the 

monitoring system, meanwhile the results reported in Fig. 8.8. refer to the modes obtained 

by the dynamic test performed at the same time using 8 high-sensitivity accelerometers. 

The inspection of the representation reported in Fig. 8.8. allows for the following 

comments: (a) the first couple of modes (Fig. 8.8(b-c)) involve bending in two orthogonal 
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N-S and E-W planes of the octagonal cantilever, without significant participation of the 

square basement; (b) the higher couples of bending modes (Fig. 8.8(d-e) and Fig. 8.8(h-i)) 

occur in orthogonal planes, which are different from N-S and E-W, and do involve an 

appreciable motion of the basement; (c) modes 5 and 6 (Fig. 8.8(f-g)) involve coupling 

between bending and torsion. The complete representation of those mode shapes cannot be 

uniquely defined using the adopted sensor layout, even introducing the assumption of "stiff 

diaphragm", and is not shown in Fig. 8.8. 

 

8.5 Continuous dynamic monitoring of the historic bell-tower 

The modal parameters described in Fig. 8.5 were used as reference values for the 

continuous monitoring of the San Gottardo Bell-Tower. As reported in Chapter 5, the 

tracking of the modal parameters is performed by the MT algorithm that directly works on 

the evolution of the natural frequency estimates and on the variation of the mode shapes 

over time. Then, the developed OMA methodology composed by the 2D-MPE algorithm 

and the MT tool was used to investigate the evolution of the structural modes of the tower 

in the context of a continuous monitoring purpose.  

Once the baseline reference list of modal parameters was defined, the continuous 

monitoring was performed maintaining the same pre-selected tolerance values previously 

defined for the identification analysis and setting the threshold values for the tracking 

process, as follows: 𝑑𝑖−𝑟𝑒𝑓
𝑓

 = 0.02 Hz and 𝑑𝑖−𝑟𝑒𝑓
𝑀𝐴𝐶 =0.90. 

It is worth mentioning that, conversely to the indication reported in [Marrongelli at al. 

(2018a)] the “training period” of the tracking procedure can be greatly reduced to 5 days 

instead of the 15 days declared in [Marrongelli at al. (2018a)], improving the speed of 

process automation, using a reduced number of estimates that seems to be sufficient for 

the definition of the adaptive thresholds without reducing the efficiency of the 

implemented strategy. 
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Fig. 8.9. Time evolution of the identified natural frequencies from 01/11/2016 to 31/12/2018 

According to the previous analysis, the time-lag parameter was maintained in conservative 

manner equal to 90 and the data was fitted using stochastic subspace models of the order 

n, varying between 20 and 120. The MT procedure was finalized to track the evolution in 

time of the natural frequency estimates belonging to the 8 structural modes. The main 

results of more than two years of continuous dynamic monitoring, specifically from the 1st 

of November 2016 to the 31st of December 2018 are summarized in Fig. 8.9. 

The main statistical values associated to the evolution of the natural frequencies obtained 

during more than two years of monitoring are summarized in Table 8.2, in which the mean 

value (fave), the standard deviation (f) and the extreme values (fmin, fmax) of each modal 

frequency are reported. 

Table 8.2. Statistics of the natural frequency estimates automatically identified in the monitoring 

period from 01/11/2016 to 31/12/2018. 

Modes fave  [Hz] σ(f)  [Hz] fmin  [Hz] fmax  [Hz] 

1 1.039 0.008 1.015 1.078 

2 1.055 0.009 1.034 1.097 

3 2.976 0.036 2.871 3.079 

4 3.090 0.047 2.982 3.291 

5 3.371 0.028 3.294 3.483 

6 5.059 0.032 4.961 5.226 

7 5.510 0.155 5.252 6.182 

8 6.450 0.117 6.177 6.779 
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It should be noticed in Table 8.2 that the standard deviations: (a) are very low (0.008-0.009 

Hz) for the lower 2 modes; (b) range between 0.028 Hz and 0.047 Hz for the subsequent 4 

modes and (c) became larger than 0.1 Hz for the higher modes. 

 

8.6 Correlation between natural frequency estimates and 

environmental factors 

As stated, it should be noted that the monitoring system installed on the San Gottardo 

Tower does not include any sensors for measuring the environmental parameters since 

temperature and humidity data were available from the neighboring weather station 

Osservatorio di Brera. Thus, the temperature, the humidity and the speed of wind were 

collected and used to investigate the main correlations between these factors and the 

extracted modal features, in particular on the natural frequency estimates. 

 

Fig. 8.10. Time evolution of the outdoor temperature measured from 01/11/2016 to 31/12/2018 

Fig. 8.10 presents the evolution of the air temperature during a period of about 26 months, 

from 01/11/2016 to 31/12/2018, and shows a temperature range between −2°C and +38°C, 

with significant daily variations in sunny days.  
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The inspection of the evolution in time of the temperature (Fig. 8.10) and the modal 

frequencies (Fig. 8.9) clearly suggests that the frequency generally increases with 

increased temperature in the hot season [Gentile et al. (2016), Ubertini et al. (2017), Cabboi 

et al. (2017), Ubertini et al. (2018), Azzara et al. (2018)]. On the other hand, the correlation 

between resonant frequencies and temperature (Fig. 8.11) reveals a more complex and non-

linear dependence on temperature.  

Fig. 8.11 shows the correlations between the natural frequencies identified during the first 

year of monitoring (from 01/11/2016 to 31/12/2017) and hourly average temperatures 

recorded during the same period along with the best-fit lines. As reported, the correlations 

highlight that each best-fit line tends to be non-linear for almost all identified frequency 

trends. In fact, it is possible to notice a double behavior of the identified frequencies in 

relation to the measured temperature values. This trend is confirmed also by the results 

obtained during the second year of monitoring, as reported in Fig. 8.12. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 
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(e) 

 

 

(f) 

 

Fig. 8.11. Correlation between automatically identified frequencies during the 1st year of 

monitoring (from 01/11/2016 to 31/12/2017) and measured temperature: (a) Mode 1; (b) Mode 2; 

(c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6. 

From the inspection of the diagrams in Fig. 8.12 the non-linear correlations between the 

temperature measurements and extracted natural frequency estimates are highlighted. The 

best-fit line is non-linear for all six identified frequency trends. More in detail, the non-

linear frequency-temperature correlation (Fig. 8.11 and Fig. 8.12) turns out to be 

characterized by the increase of modal frequencies with increased temperature, when 

T15°C (in agreement with a trend that has been commonly observed on masonry towers 

[Gentile et al. (2016), Ubertini et al. (2017), Cabboi et al. (2017), Azzara et al. (2018)]), 

but also by the increasing of natural frequencies with decreased temperature, when 

T10°C. 

 

(a) 

 

 

(b) 
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(c) 

 

 

(d) 

 

 

(e) 

 

 

(f) 

 

Fig. 8.12. Correlation between automatically identified frequencies during the 2nd year of 

monitoring (from 01/01/2018 to 01/01/2019) and measured temperature: (a) Mode 1; (b) Mode 2; 

(c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6. 

As shown in the diagrams, in the first temperature range between negative values and 10°C, 

an unusual behavior of the correlation is pointed out. In fact, the frequency value slightly 

decreases with increased temperature. Afterward, this trend tends to become more stable 

in the temperature range between 10°C and 15°C, describing a local minimum of the 

frequency-temperature correlation common for the first six natural frequencies. 

Subsequently, the frequency values clearly increase with increasing temperature (T>15°C), 

as usual.  

This behavior might depend on two distinct factors: (a) the thermal effect induced by 

temperature variations produces a thermal expansion of the materials and (b) the circular 

wooden staircase anchored to the tower that might provide a sort of circling effect on the 

slender part of the tower.  

A possible motivation of the observed behavior (for T>15°C) can be explained though: (a) 

with the increase in temperature, the induced circling effect of the wooden staircase 
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becomes less dominant (due to thermal expansion), (b) the closure of the small 

discontinuities, micro-cracks and superficial cracks in the masonry, induced by the thermal 

expansion of the materials, provides a temporary increase of global stiffness in the tower. 

This behavior is clearly described by the ascending branch of the best-fit line, in which the 

frequencies increase with increased temperature, as it is described in some papers present 

in the literature, as well as [Cantieni (2014), Saisi et al. (2015)].  

On the contrary, when the temperature decreases, the effect of the thermal expansion 

becomes less evident and this behavior tends to lose its effect. Furthermore, in the interval 

(10°C-15°C), in which the frequency values are almost constant, there is an inversion trend 

of the frequencies that tend to increase with decreased temperature.  

This second behavior becomes more evident for T<10°C and it might depend on induced 

effects of the circular wooden staircase present inside the tower (due to low temperature). 

More in detail, the different mechanical characteristic of the solid bricks and the staircase 

produce two opposite effects on the identified dynamic response to the gradual loss in 

stiffness due to the opening of the superficial cracks, the staircase might induce an opposite 

behavior due to a circling effect on the slim-upper part of the tower, giving more rigidity.  

Thus, in the interval temperature between 10°C and 15°C, the gradual loss of the effect 

due to the circular wooden staircase is balanced by the increasing of stiffness provided by 

the closure of micro-fractures and cracks. This effect describes a local minimum for all 

best-fit lines associated to the frequency-temperature correlations.  

Same analyses were carried out using the measurements of the humidity recorded by the 

weather station Osservatorio di Brera on over 2 years of monitoring. 
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Fig. 8.13. Time evolution of the outdoor humidity measured from 01/11/2016 to 31/12/2018 

In Fig. 8.14, the correlations between the resonant frequencies of the tower and the 

humidity measurements collected during the two years of monitoring period are reported. 

From the inspection of the diagrams there is not a clear correlation between the sets of 

modal parameters and the humidity values. In fact, there is not a recognizable dependence 

between the humidity variation and the estimations of the natural frequency associated to 

modes 1-6. 

The lack of direct measurements of the external factors on the structure (i.e. temperature 

and humidity) and the uncertainty related to the variations induced on natural frequencies 

by these factors do not allow for a proper application of regressive techniques and methods 

to efficiently remove such effects. In fact, this lack of direct measurements does not allow 

for a correct definition of empirical laws of correlation between the resonant frequencies 

and the environmental factors that act on them. Generally, this condition could be a 

relevant issue for the continuous assessment of those constructions based on the natural 

frequencies features, because the uncertainty of these correlations does not allow a ful 

understanding of the dynamic behavior of the structure that could be masked by induced 

effects. 
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(a) 

 

 

(b) 

 
 

(c) 

 

 

(d) 

 
 

(e) 

 

 

(f) 

 

Fig. 8.14. Correlation between automatically identified frequencies and recorded humidity data: 

(a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6. 

An efficient approach generally adopted to remove the environmental effects on the natural 

frequency estimates without getting direct measures of environmental parameters consists 

of the application of the Principal Component Analysis (PCA) in order to reduce the 

dimension of the investigation problem, by substituting the group of correlated dependent 

variables (i.e., the eight resonant frequencies) with a smaller group composed by a reduced 

number of independent variables (i.e., principal components). For the correct application 

of the PCA method it is necessary to have a linear correlation degree among the structural 

features in order to perform the diagonalization of the correlation matrix and to extract the 

PCs that explain the major proportion of the variance of the original variables. The analysis 

carried out on the extracted natural frequencies points out a strong linearity, obtained 
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between the first and the second resonant frequencies, while at the same time, fewer 

correlations are obtained between the first frequencies and the others. Moreover, the 

frequencies evolution associated to the modes 7 and 8 seem to be uncorrelated with the 

first ones. This primary analysis gives rise to doubts about the correct application of the 

PCA analysis to the present case study. 

Due to these considerations, the continuous assessment of the San Gottardo Bell-Tower 

was performed adopting and applying the damage detection strategy implemented during 

the development of this Dissertation. Thus, in the following, the performance of the SHM 

strategy applied to continuous monitoring data is shown. Furthermore, in order to test the 

robustness of the developed procedure in the detection of structural anomalies, some 

damages were simulated through small frequency shifts in the evolution of the identified 

natural frequencies.  

 

8.7  Application of the damage detection algorithm to monitoring 

data 

The damage detection strategy described in Chapter 7 was adopted to perform the 

continuous assessment of the healthy state of the masonry bell-tower. This analysis was 

carried out applying the CSA (Consecutive Segments Analysis) strategy to an entire set of 

continuous monitoring results (in terms of natural frequencies evolutions) in which the 

process does not suffer any arrest and stops. The continuity of the results provided by the 

developed OMA algorithm (i.e., 2D-MPE and MT algorithms), together with the high 

success rate of the identified structural modes, should guarantee the correct performance 

of the novelty detection algorithm and avoid incorrect classifications that could appear in 

case of a persistent loss of estimates. 

As already stated in Chapter 7, the damage detection algorithm (in both CSA and SSA 

implementations) works with a series of input data selected in order to define two different 
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classes (i.e., Class I and Class II) that refer to two different structural conditions (i.e., 

undamaged and damaged) of the structure within the continuous monitoring process. 

Once again, it is worth underlining the fact that the procedure does not require a long 

training period to define the parameters of the SVM model used for damage detection 

purposes. For the present case study, two weeks of monitoring data, in which the structural 

modes were identified with a high success rate, have been enough to define the initial 

parameters of the model and carry out the investigation for structural anomalies in the 

monitoring results. In Fig. 8.15 the reference period of monitoring selected to perform the 

continuous assessment of the tower is reported. For the practical application, only the 

natural frequency estimates associated to the first six structural modes (with lower 

frequencies) were selected and used as input values. This choice is due to the success rates 

associated to the identified modes, which are close to 99%. 

 
Fig. 8.15. Reference period of monitoring selected to perform the continuous assessment of the 

tower. The implemented CSA strategy was applied to the period from 01/01/2018 to 30/09/2018 

As reported for the previous application (the Gabbia tower described in Chapter 7), after 

some initial tests the length of the data segments used as input of the SVM model was 

defined equal to 48 elements. This value indicates that the algorithm works with a 

population of modal estimates equal to 96 elements (in which 48 elements are flagged as 

undamaged and other 48 elements are flagged with damaged labels). Moreover, this value 

seems to produce the best results in the investigation for small frequency drops.  
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It is worth noting that by selecting this length for both data segments (undamaged and 

damaged), the occurrence of any damages is fully provided after 48 runs of the algorithm. 

This means that, when the damage occurs in the structure, it should be automatically and 

precisely identified after only 48 days. Furthermore, it should also be highlighted that: if 

the continuous monitoring is performed by collecting the response of the structure with 30-

minutes long datasets, a damage with the same amplitude might effectively be detected 

with a delay of only 24 hours from its occurrence. 

The main results in the continuous assessment of the San Gottardo Bell-Tower in the 

reference period, from the 1st of January 2018 to the 30th of September 2018 using the CSA 

strategy are reported in Fig. 8.16.  

 

 
Fig. 8.16.  Examples of probability values obtained by the application of the damage detection 

algorithm (CSA strategy) to the monitored features from 01/01/2018 to 30/09/2018 adopting; a) 

first frequency and b) second frequency estimates 

From the inspections of the diagrams in Fig. 8.16 the absence of any peaks of the 

probability value is highlighted. As stated in Chapter 7, this condition is obtained when the 
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algorithm fails in the classification of input data. In other words, the algorithm is not able 

to separate the population of data into two classes, thus performing a misclassification of 

the inputs. This continuous misclassification proves two important facts: 1) the data are 

not separable and 2) the input data belong to the same class of data (class with same 

statistical properties). However, if the initial condition of the investigated structure is 

supposed to be undamaged, the graphical results presented in Fig. 8.16 suggest that the 

undamaged state is changeless over time and that no damage occurred during this period. 

The results provided by the application of the novelty damage detection strategy suggest 

that the structural integrity of the masonry tower is maintained over the investigated 

monitoring period. 

 

8.8  Simulation and identification of structural damages on the 

San Gottardo Bell-Tower 

In order to demonstrate the efficiency of the proposed novelty algorithm, a structural 

damage was simulated through a frequency shift. As shown in the previous paragraph, the 

ancient construction did not suffer any anomalies during the reference investigated period 

from 01/01/2018 to 30/09/2018. Despite this result, some trial tests were carried out to 

verify the sensitivity of the models to simulated damages. The following diagrams report 

the results obtained applying a common frequency shift, with a nominal value of 0.05 Hz, 

to the evolution of the first six natural frequencies (applied on 15/02/2018). As it will be 

described in Table 8.3, the probability of the occurred damage associated to six natural 

frequencies is reported in the following. In particular, the application of the CSA algorithm 

to the first and the second natural frequency evolution is reported in Fig. 8.17. Meanwhile, 

the results related to the higher frequencies are reported in Fig. 8.18. 
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a) 

 
 

b) 

 
Fig. 8.17. Probability value associated to the occurred damage obtained applying a frequency shift 

to the a) firs and b) second frequency evolutions 

As demonstrate by the graphical results illustrated in Fig. 8.17, the simulated damaged is 

clearly detected by the SVM model, which provides one clear peak in terms of occurred 

probability, which reaches 100%. This means that the algorithm performs a perfect 

classification, allocating 50% of the data to the undamaged condition and another 50% to 

the damaged condition. On the contrary, from the inspection of the diagrams reported in 

Fig. 8.18, some spurious peaks appear in the damage probability associated to the analysis 

of higher frequencies. These spurious peaks are mainly due to a loss of estimates, which 

leads to an incorrect classification that does not depend on structural conditions. 

In fact, from a deeper investigation of the results obtained, it can be highlighted that the 

spurious peaks occurred when the mode was not identified in various consecutive datasets 

during the continuous monitoring process. This loss could provide a shift among the 

provided estimates, which the algorithm recognizes as a drop in frequency and then as a 

damage. This condition is clearly evident when the loss of information is not isolated, but 

it persists for some consecutive hours at least. This situation is not a relevant issue because 

spurious peaks (not related to changing of structural conditions) should not appear 
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simultaneously in all frequencies, and they can be removed averaging the values of 

probability obtained by each individual frequency, as shown in Fig. 8.19 

 

a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
Fig. 8.18. Probability value associated to the occurred damage obtained applying a frequency shift 

to the a) 3rd, b) 4th, c) 5th and d) 6th frequency evolutions, simultaneously  
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As depicted, averaging the values obtained independently by each singular application, the 

spurious peaks associated to false positive are almost removed. On the contrary, the peak 

associated to the occurred damage remains clearly visible on the diagram. 

 
Fig. 8.19. Damage indicator obtained averaging the probability of occurred damage obtained 

analyzing the first six natural frequencies of the tower 

Subsequently, a deeper investigation was performed to test the efficiency and the 

sensitivity of the developed algorithm in the identification of small simulated damages. 

Therefore, several shifts with increasing amplitude were introduced in the evolutions of 

the resonant frequencies as summarized in Table 8.3.  

Table 8.3. Nominal frequency shifts applied on the monitored frequencies (CSA strategy) 

Mode 
Δf 

0.05 Hz 

Δf 

0.04 Hz 

Δf 

0.03 Hz 

Δf 

0.02 Hz 

Δf 

0.015 Hz 

Δf 

0.01 Hz 

Δf 

0.005 Hz 

1 yes yes yes yes yes yes/no no 

2 yes yes yes yes yes yes/no no 

3 yes yes yes/no no no no no 

4 yes yes yes/no no no no no 

5 yes yes no no no no no 

6 yes yes no no no no no 

As reported in Table 8.3, the pattern recognition model is able to recognize anomalies with 

very small entity, if the latter is applied to the trend of lower frequencies. On the contrary, 

the same model is less effective in the analysis of higher frequencies. As is obvious, this 

result depends on the statistical properties of the frequency distribution belonging to each 

feature provided to the SVM model. In other words, when the data distribution is compact 

(with low standard deviation), the detection of small frequency variations is easier. 

Otherwise, high scatter does not allow for the correct classification of the data. It is worth 
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noting that the damage detection approach presented herein can detect structural anomalies 

with a nominal value less than 1% of the mean frequency value associated to each 

investigated mode. This outcome is a very good result for this alternative SHM strategy. 

 
Fig. 8.20. Representation of the first two natural frequencies trends in the reference monitoring 

period of eight months (from 01/01/2018 to 31/09/2018) using a different scale 

Thus, considering the previous results, only the first two frequencies were used as damage 

sensitive features for in the further applications. 

 

 
Fig. 8.21. Application of the CSA strategy to modal features: a) evolution of the first frequency 

estimates (red dots) and “corrupted estimates” (green dots); b) damage indicator obtained from the 

analysis of the corrupted values 
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In Fig. 8.20, a zoom of the first and the second frequency evolution in the reference 

monitoring period adopted for the sensitivity test is depicted. Meanwhile, Fig. 8.21 and 

Fig. 8.22 show the obtained estimates and the corrupted evolutions of the first and second 

frequency respectively, after the application of four different frequency shifts. The input 

parameters of the SVM model used by CSA algorithm are: N=96 (48 elements for each 

undamaged and damaged condition), k-folds=10, σ=0.3 and C=3, respectively. 

 

 
Fig. 8.22. Application of the CSA strategy to modal features: a) evolution of the second frequency 

estimates (blue dots) and “corrupted estimates” (green dots); b) damage indicator obtained from 

the analysis of the corrupted values 

As reported in Fig. 8.21 and Fig. 8.22, four different damages were simulated during the 

reference monitoring period of eight months (from 01/01/2018 to 31/09/2018). The 

damages were simulated with an increasing frequency shift. The first one was simulated 

during the winter period (1st of February 2018) with a minimum shift of 0.01 Hz. 

Consequently, a second damage was mimicked in the spring season (1st of April 2018) with 

a shift of 0.02 Hz. A third one equal to 0.03 Hz in the summer (1st of June 2018), and the 

last one (1st of August 2018) with a frequency shift of 0,04 Hz. 
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From both diagrams in Fig. 8.21(b) and Fig. 8.22(b), the clear bell-shapes of the probability 

appear in the correspondence of the simulated damages. Considering these results, a further 

investigation was performed in order to test the sensitivity of the implemented strategy 

applying small damages with identical amplitude (i.e., frequency drops of 0.02 Hz).  

Thus, the model was subjected to further tests in order to verify if the effect caused by 

environmental factors on the natural frequency estimates can also reflect on the sensitivity 

of the model during different seasons. Therefore, this analysis was carried out on the 

frequency evolutions obtained in the same days as the previous analysis. 

In Fig. 8.23 and Fig. 8.24, the results obtained simulating different damages with a constant 

amplitude are reported. In particular, Fig. 8.23 refers to the first natural frequency, and Fig. 

8.24 refers to the second frequency evolution.  

 

 
Fig. 8.23. Analysis of corrupted frequencies using a constant frequency shift: a) evolution of the 

first frequency estimates (red dots) and corrupted values (green dots); b) damage probability 

values obtained applying the CSA strategy 
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Fig. 8.24. Analysis of corrupted frequencies using a constant frequency shift: a) evolution of the 

first frequency estimates (blue dots) and corrupted values (green dots); b) damage probability 

values obtained applying the CSA strategy 

From the inspections of the two diagrams, some considerations can be pointed out: 

1) The algorithm is capable to recognize slight variations in the trend of the natural 

frequency during different seasonal periods of monitoring. 

2) No relevant spurious peaks of the damage probability appear during the monitoring 

phase, demonstrating the robustness of the implemented methodology. 

3) The effects of the environmental factors on the natural frequency estimates seem not to 

produce relevant issues in the detection of slight damages. 

4) Different statistical characteristics of the input estimates (i.e., between the winter and 

summer period) could affect the damage detection strategy. 

5) From the outputs obtained by the sensitivity analysis, it seems that the algorithm works 

better in the winter period than summer period. This is due to the different standard 

deviations of the input data provided to the algorithm in different periods of the year. 

This condition can be solved by varying the length of the input segments. 
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6) All analyses are carried out using a fixed length of each input segment equal to 48 

elements. This parameter indicates that the occurred damage in the structure is fully 

identified with only two days of delay. 

To conclude this paragraph, the author wants to point out the strict correlation between a 

high success rate in the identification process and the robustness of the implemented 

damage detection procedure. It is worth highlighting how the good performance of the 

implemented strategy has been obtained by simulating slight damages in the first and 

second frequency evolution, with a success rate close to 98% for both features. Meanwhile, 

for higher frequencies, the procedure could provide possible spurious peaks because of a 

loss of estimates. Moreover, to be critical, a simple averaging of all obtained accuracies 

related to all investigated structural modes might not be enough to provide a proper alarm, 

because of false positives caused by extreme variations in the environmental conditions. 

Hence, the use of pattern recognition models for SHM purposes deserves further 

investigation in order to avoid the comparison of false positives that do not depend only 

on structural conditions. 

 

8.9  Conclusions 

This Chapter describes the continuous dynamic monitoring of an historical bell-tower 

located in the center of Milan. The tower was built in the XIII century and it is part of the 

San Gottardo in Corte Church. After a brief description of this case study, the main results 

obtained by applying the developed OMA algorithm (i.e., 2D-MPE and MT tools) to the 

structural responses of the tower, collected during the first months of monitoring, are 

reported and commented in detail. 

Subsequently, from the analysis of the data recorded during the dynamic test of the tower, 

eight structural modes have been detected. These modes have been selected as reference 

and used to perform two years of permanent monitoring of tower. The natural frequencies 

associated to the eight investigated modes are reported in detail, highlighting also the main 
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correlation between the identified frequencies and the main environmental factors (such as 

temperature and humidity). 

The estimations of the natural frequencies were used as damage sensitive features for the 

continuous assessment of the structure. As expected, from the application of the alternative 

damage detection approach proposed in this Dissertation (the CSA strategy), the tower 

does not suffer any damages during its monitoring. 

Subsequently, to demonstrate the robustness of the implemented novelty detection 

algorithm, a sensitivity analysis was carried out simulating some artificial damages in the 

evolution of the natural frequencies. As demonstrated, the algorithm is capable to 

recognize possible anomalies with a nominal amplitude of about 1% of the mean value of 

the tested frequency. The excellent results prove the robustness of the developed strategy 

in the permanent assessment of the ancient tower and demonstrate its promising future in 

the context of OMA-based SHM strategies without performing the removal of 

environmental effects on the damage sensitive features.  



9 Chapter 

Chapter 9 

 

CONCLUSIONS AND FUTURE DEVELOPMENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 9 

 

 

366 

 

Contents 

 

9.1 Conclusions 

9.2 Future developments 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and future developments 

 

 

367 

 

9.1 Conclusions 

The present Dissertation focuses on the use of OMA in the context of vibration-based 

SHM of Cultural Heritage (CH) constructions and large structures. 

This work includes the development, validation and application of algorithms and 

procedures aimed at automatically estimating the dynamic features of investigated 

structures, analyzing the output responses collected in operational conditions during a 

single test or in the context of permanent monitoring. Moreover, a damage detection 

approach is developed for the continuous assessment of the monitored structures without 

any removal of the masking (environmental and operational) effects on the identified 

modal estimates. 

The Thesis starts with a brief overview of the most common OMA algorithms and 

continues with the implementation of four state-of-the-art identification techniques: Peak 

Picking and FDD methods, developed in the frequency domain, and the SSI-Cov and the 

SSI-Data methods, implemented in the time domain.  

Subsequently, a description of the classical approach of OMA-based SHM is provided, 

emphasizing the use of the modal parameters (mainly natural frequencies). Moreover, a 

brief description of the methodologies and tools normally used to reduce the effects of 

the environmental and operational factors on natural frequencies is provided. It is worth 

noting that the classical SHM based on the monitoring of natural frequencies generally 

involves a relatively long training period for an accurate setting of regression models or 

output-only techniques to remove such effects and to consequently obtain proper indices 

for damage detection applications.  

The main goals of the research project developed in this Dissertation are oriented to: a) 

increase the automation level in the methodologies adopted to extract the modal 

parameter estimates from the signals collected on the structures; b) perform the 

continuous assessment of the monitored structures avoiding the training periods used to 
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remove the external effects on the adopted sensitive features, and c)  quickly obtain  

information about the structural integrity of the monitored structures with a significantly 

reduced delay in case of occurred damage.  

To achieve these goals, automated OMA algorithms have been developed in order to 

mimic the choices performed by an expert analyst during the identification problem, 

follow the evolution in time of the modal features without any interaction and provide a 

proper alarm in case of structural anomalies. In particular, the following algorithms have 

been developed: 

1) Modal Parameter Estimation (MPE) algorithm based on the automated interpretation 

of two-dimensional stabilization diagrams, 

2) 3D Modal Parameter Estimation (3D-MPE) algorithm operating on tri-dimensional 

stabilization diagrams,  

3) Modal tracking (MT) procedure aimed at ensuring the correct tracking of the 

structural modes also in case of closely-spaced modes with similar mode shapes,  

4) Damage Detection algorithm aimed at providing a probability value associated to the 

occurred damage in the structure, working directly on the extracted modal features. 

It is worth remarking that the developed tools (1)-(2) are mainly geared toward 

identification techniques based on parametric SSI methods, being particularly suited for 

automation because of their algebraic nature, which permits the evaluation of the modal 

parameters with higher levels of accuracy than the methods based on the frequency 

domain.  

The first MPE algorithm is developed in order to extract the modal estimates from a 

single dataset collected during a dynamic test or continuous dynamic monitoring. This 

algorithm works on the outputs provided by any parametric method that involves the 

construction and the interpretation of stabilization diagrams. The original aspect of this 

tool consists of the sequence of three key-steps aimed at exerting a cleaning action on the 

stabilization diagram and at obtaining an accurate set of modal estimates with low 
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uncertainty. This procedure still requires an initial tuning of input parameters and the 

definition of pre-selected values for the processing of input data. 

Important improvements have been achieved with the implementation of the second MPE 

algorithm. In fact, the 3D-MPE is based on the construction and the automatic 

interpretation of 3D stabilization diagrams and is aimed at providing a more accurate 

estimation of the modal features without any initial tuning of the input parameters, such 

as the maximum model order of the state-space model and the input parameter of the 

adopted SSI method (i.e. the time-lag value or the number of block-rows used by SSI-

Cov and SSI-Data, respectively). Moreover, the use of the MACX criterion in the 

clustering process allows for the extension, and then generalization of the analysis also at 

modes with high complexity components. 

Thirdly, a new automated Modal Tracking (MT) tool that allows the tracking of modal 

features in the context of continuous dynamic monitoring is given. The original aspects 

that characterize this tool consist of: a) the use of a very short period of time devoted to 

storing a minimum number of estimates to achieve the full automation of the monitoring 

process, b) the use of a dynamic reference list of modes adopted to perform the correct 

tracking between the estimates provided by the analysis of consecutive datasets, and c) 

the use of self-adaptive rejection thresholds together with an adaptive baseline reference 

list that are continuously updated during the monitoring phase ensuring a correct tracking 

of the modes and conceivably avoiding the appearance of outliers. 

The set of implemented algorithms is completed by the development of a damage 

detection algorithm based on the application of pattern recognition models devoted to 

identifying the outset structural anomalies of the monitored constructions by the analysis 

of the extracted OMA features. The algorithm was firstly exploited by using the natural 

frequency evolutions provided by a simple academic structure and then validated by 

using experimental data collected on the Gabbia Tower (Mantua, Italy) during its 

monitoring process. 
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The work developed in this Dissertation has led to the achievement of the following main 

outcomes, already described in the partial conclusions at the end of each Chapter. 

▪ The identification of the modal parameters performed with data collected during the 

AVT of a lively footbridge located in Seriate (Milan) pointed out the capability of the 

first MPE algorithm in the process of identification of closely-spaced and weakly 

excited modes of the structure. The obtained results were validated by a comparison 

with reference values previously identified using the commercial software ARTeMIS. 

Moreover, the presence of a further pair of closely-spaced modes and two weakly 

excited modes of the footbridge was pointed out, that had not been identified during 

the previous campaign. The modal analysis performed on data collected during a 

dynamic test of the Olla bridge made it possible to explore the accuracy of MPE also 

for weakly excited modes characterized by higher complexity of the mode shape 

components. In this case, too, the validation of the provided results was performed by 

the analysis carried out using a commercial software (ARTeMIS) highlighting the 

good match between the sets of extracted modes. The results previously described 

demonstrate the good performance of the developed strategy given by the three key-

steps of the MPE algorithm. In particular, the third subroutine (i.e. post-processing) 

provides a more accurate identification of the stable alignments removing possible 

replications and outliers from the stabilization diagram and making the identification 

analysis less dependent on user sensitivity. 

▪ In order to reduce the dependence of the automated algorithm on the analyst’s 

sensitivity in the definition of the input parameters of the SSI methods, a further 

improvement was developed introducing the concept of tri-dimensional (3D) 

stabilization diagram. In this way, the initial tuning of the pre-selected input 

parameters is avoided entirely, improving the accuracy of the results by using a wide 

redundancy of estimates and removing the dependence in the selection of the 

structural modes on human interactions. In addition, to perform a more general 

investigation in case of complex modes, another improvement was developed in the 

clustering process using the MACX criterion instead the MAC value. 
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▪ The performance of the 3D-MPE algorithm was demonstrated by its application to the 

analysis of monitoring data collected on the Infante D. Henrique Bridge. The results 

highlight the identification of all relevant modes of the bridge. Furthermore, the 

extension of the investigated frequency interval to 5.5 Hz allowed for the 

identification of four further structural modes never investigated in the previous 

analysis. Moreover, the application of the 3D-MPE algorithm to data collected on the 

San Michele Bridge highlights the accuracy of the algorithm also in the identification 

of modes characterized by high complexity. As reported, 15 structural lateral modes 

of the bridge were identified with very low uncertainty. In both applications, the high 

success rate in the identification of the structural modes confirms the robust 

performance of the implemented algorithm in the identification process, carried out 

completely avoiding the initial tuning of the input parameters. 

▪ As shown by several works present in literature, the correct tracking of the identified 

dynamic features plays a crucial role in the context of the SHM approach based on 

OMA parameters, because the evolution of modal parameters is generally used as 

input data for the continuous assessment of the structure. Despite this, a strategy to 

perform a fully automated modal tracking is still a changeling task. Thus, a novel 

approach for Modal Tracking (MT) was developed in this Dissertation. The MT 

procedure presented herein combines the use of the self-adaptive thresholds and 

reference values with a reduced period of training for the auto-setting of such values. 

The impact of this original aspect is pointed out by performing the continuous 

dynamic monitoring of two different case studies: the Gabbia Tower, an ancient 

masonry tower built in the XIII century in the city of Mantua, and the San Michele 

Bridge, already mentioned. These case studies have been selected because of their 

peculiar behavior in the reference monitoring period. In the first case, the natural 

frequency associated to the local mode of the tower drops from a nominal value of 10 

Hz identified in the beginning of the monitoring phase (December 2012) to 8.3 Hz in 

the end of the monitoring period (July 2013). In the second case study, an intense 

temperature variation due to a heavy snowfall completely changed the dynamic 

response of the bridge for more than two weeks of monitoring. During such a period, 
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the combined variation of the natural frequencies and mode shapes associated to the 

structural modes generally involves a remarkable loss in identification rate, as 

highlighted by previous analyses. The improvements provided by the MT algorithm 

allowed for the correct tracking of all structural modes of the tower using a training 

period of only 4 days. Meanwhile, for the second case study, the efficiency of the MT 

procedure was highlighted by the fairly good identification rate of the modal 

parameters of the bridge, while subjected to extreme environmental conditions, 

adopting only 2 days for training. 

▪ The damage detection strategy based on pattern recognition models developed in this 

Dissertation performs the continuous assessment of the structure, working directly on 

the evolution of the modal estimates provided by OMA algorithms (MPE and MT 

tools) without performing the removal of the environmental and operational effects. 

Mainly, the algorithm involves the use of Support Vector Machine (SVM) models in 

the classification of the input data in order to automatically recognize the occurrence 

of structural deficiencies in the “normal” behavior of the structure during its 

monitoring. In more details, the algorithm is forced to perform the classification of the 

provided estimates into two different classes (Class I and Class II) associated to two 

structural conditions: undamaged and damaged scenario. This approach was 

developed with two different strategies: 1) the Continuous Segment Analysis (CSA) 

strategy, in which the data input are organized into two consecutive segments that are 

continuously updated after each run of the identification algorithm, 2) the Separate 

Segment Analysis (SSA) strategy, which is composed by two separate data segments, 

the first one being fixed and representing the reference undamaged state. Both 

strategies provide probability values, associated to the accuracy of the model, that in 

case of occurred damage should reach a peak value of 100% (perfect separation of the 

data into two classes). The maximum value is reached when the damage is exactly in 

the middle of the provided dataset. The algorithm was exploited analyzing numerical 

accelerations generated using a simple five DOFs system and consecutively corrupted 

by simulating structural damages. Afterwards, this strategy was successfully validated 
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by its application to the monitoring data collected on the Gabbia Tower, highlighting 

the occurrence of a structural damage to the tower due to a far-filed earthquake. 

▪ Finally, the implemented algorithms were used to perform the SHM of the San 

Gottardo masonry tower. The monitoring system has been in place since the end of 

October 2016, and the output responses have been processed by using all 

implemented tools. In fact, the MPE and the MT algorithms have been adopted for the 

automatic identification and tracking of the modal parameters of the tower for over 

two years. Thus, the damage detection (CSA) strategy is applied to natural frequency 

evolutions to perform the structural assessment of the ancient construction. As proved, 

the tower has not suffered any damages during the investigated period. 

▪ To complete this Dissertation a sensitivity analysis was carried out to test the 

robustness of the damage detection approach in the identification of simulated 

damages to the structure though frequency shifts in the obtained frequency evolutions. 

As reported, the algorithm recognizes very small drops in the frequency evolution 

(i.e., 0.01-0.02 Hz) providing a clear peak in the probability value associated to the 

occurred damage. 

 

9.2 Future developments 

The work presented in this Dissertation includes the development of important tools used 

to transform the signals collected by the installed monitoring system in useful 

information about the structural behavior of the monitored construction. In this way, the 

present developments could be the starting point for several new implementations to 

make the continuous dynamic monitoring process and the structural health monitoring 

process more strategic, accurate and advantageous for the maintenance of the structural 

integrity of ancient constructions and large infrastructures. However, some new 

developments could be implemented to make dynamic testing and monitoring even more 

advantageous.  
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Therefore, some research topics in line with the developed work are suggested below: 

▪ Implementation of further robust routines to automatically process data collected 

during Ambient Vibration Testing of large infrastructures generally performed in 

multi-setups configuration. The automatic management and reconstruction of the 

mode shapes obtained by analyzing each setup of the dynamic test. Test and 

validation of the new implementation using numerical data and full-scale tests to 

understand how the non-stationarity conditions can affect the estimates and, 

consequently, the efficiency of the algorithm. 

▪ Emphasize the useful information provided by the complexity indices associated to 

the mode shapes estimates in the context of continuous dynamic monitoring of ancient 

buildings and, in more general cases, poorly maintained constructions in which the 

high degradation of the mechanical properties could be provided by further criteria 

based on the monitoring of the complexity indices. 

▪ Adapt the second damage detection algorithm (SSA strategy) implemented in this 

work for the continuous assessment purposes operating on frequency estimates after 

the removal of the environmental effect. Test the efficiency of the new 

implementation defining the influence of temperature and other external factors in the 

masking of small damages. Compare the effective advantages (or disadvantages) of 

both strategies in terms of economic costs and safety of the whole process, with or 

without performing the post-processing on OMA outputs (removal of external 

effects). 

▪ Since the mode shapes are less affected by environmental effects, a further 

implementation dedicated to a mode-shape-variation-based SHM devoted to 

performing the monitoring of the health condition based only on the mode shape 

variation or on the variation of the complexity component of the investigated 

structural modes. This kind of approach should be really profitable for SHM purposes 

of large infrastructures with widespread dynamic systems. 

▪ The database created with the collected data in the monitoring project of the San 

Gottardo bell-tower is useful for performing benchmark studies to evaluate the 



Conclusions and future developments 

 

 

375 

 

implementation and the efficiency of further algorithms for automatic identification, 

to remove the effects of the environmental factors and to validate further damage 

detection strategies with the goal of obtaining a proper alarm in case of occurred 

anomalies.   

▪ Integrate the automated algorithms and approaches implemented in this Dissertation 

in a unique software package. Make the software user-friendly, flexible and adaptive 

to different monitoring applications, developing an intuitive and accurate graphic 

interface paying particular attention also to graphic results. Customize the software 

based on the requests of the infrastructure designer or owner and forecast the storing 

of collected data and the corresponding results from different structures that could be 

connected in an easy access network. 
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