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Abstract 
 

HOMOGENIZATION is a meso-scale averaging procedure that has 

been widely used over the past decades to derive the macroscale 

mechanical characteristics of periodic masonry starting from those of its 

constitutive materials. Both the in- and out-of-plane behaviors have been 

reliably assessed, in either the linear or nonlinear range but also through 

the use of limit analysis. The application of homogenization techniques to 

old masonry structures was early recognized as interesting and promising. 

However, historical masonry buildings sometimes display a quasi-periodic, 

if not wholly random, arrangement of units which is sometimes also coupled 

with the presence of multi-leaf walls. This is apparently in disagreement 

with the very idea behind homogenization, i.e. the identification of a 

Representative Element of Volume (REV) able to generate a periodic 

pattern when translated. Nonetheless, few past works have attempted and 

eventually succeeded to overcome this issue. Still, the lack of a 

comprehensive model for non-periodic masonry is rather evident. This PhD 

thesis presents an innovative approach that comes from the combination of 

homogenization and limit analysis. This aims at investigating the in- and 

out-of-plane collapse behavior of non-periodic masonry walls through the 

derivation of homogenized failure surfaces, which represent homogenized 

macroscopic failure criteria for the considered wall. The deformed shapes 

at collapse for selected in- and out-of-plane load conditions can also be 

extracted. Moreover, an automated procedure is introduced in this PhD 

thesis that enables the creation of a finite element mesh directly from the 

image file representing the rasterized sketch of a generic masonry element. 

This procedure goes under the name “pixel strategy” if a 2D finite element 

mesh is needed, where the elements are planar and rectangular; 

conversely, its extension in the 3D case is named “voxel strategy”, and 

there the resulting finite elements are solid bricks. The finite element 

meshes so obtained represent the bases for the extraction of the 

homogenized failure surfaces. Six real case studies are extensively 

investigated in terms of both in- and out-of-plane collapse behavior; the 

influence of the rate of non-periodicity on such behaviors is also 
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investigated and critically discussed. Eventually, the proposed procedure is 

extended for application on multi-leaf walls, which represent a common 

construction technique in several European countries, especially in Italy. In 

this regard, two three-leaf case studies are investigated in terms of out-of-

plane collapse behavior, also considering the role played by the presence 

of transversal interconnection between the external layers. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Objectives and Scopes of the Thesis 

This PhD thesis presents an innovative approach aiming at the assessment of 

the in- and out-of-plane collapse behavior of non-periodic masonry. Specifically, 

this work introduces an automated procedure that takes the rasterized sketch of 

a non-periodic masonry structural element as input, and gives its in- and out-of-

plane homogenized failure surfaces as outputs – the latter acting as 

macroscopic strength criteria for the considered structural element. 

The scopes of this PhD thesis can be summarized in the following points: 

a. Devising an automated procedure for the generation of a 2D finite 

element mesh from the rasterized sketch of a generic masonry element, 

based on a “pixel strategy” that transforms each pixel of the sketch into 

a single, planar finite element; 

b. Conceiving an analogous automated procedure that allows the 

generation of a 3D finite element mesh from the rasterized sketch of a 

generic masonry element, based on a more refined “voxel strategy” 

where each pixel of the sketch is first converted into a voxel (its 3D 

counterpart), which is in turn transformed into solid finite elements; 

c. Elaborating a numerical strategy for obtaining a coarser finite element 

mesh when the number of pixels in the original sketch is too high; 

d. Elaborating a numerical strategy for correctly representing the 

tridimensional shape of the units when a 3D finite element mesh is 

created; 
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e. Devising an automated procedure for generating the 3D finite element 

mesh of a multi-leaf walls; 

f. Developing an original method for assessing the in-plane collapse 

behavior of non-periodic masonry, based on both the upper bound 

theorem of limit analysis and the meso-scale technique known as 

homogenization. The collapse behavior is addressed by extracting in-

plane homogenized failure surfaces of non-periodic masonry structural 

elements: these serve as macroscopic strength criteria capable of 

identifying the collapse value of different in-plane load conditions. The 

2D finite element mesh created with the aforementioned “pixel strategy” 

is used as input, and the method is written into a standard-form linear 

programming problem (subjected to a set of equality constraints) that 

gives the in-plane homogenized failure surfaces as outputs. The method 

also allows the extraction of deformed shapes at collapse for the 

selected structural element. 

g. Investigating the in-plane collapse behavior of six real case studies, all 

concerning buildings consisting of non-periodic masonry with different 

rates of randomness in the units’ arrangement. A suitable, general 

strategy is conceived for the identification of the Statistically Equivalent 

Periodic Unit Cell in each case study, based on the so-called “test-

window method”. In-plane homogenized failure surfaces and some 

relevant deformed shapes at collapse are extracted and critically 

commented for the six case studies. 

h. Developing an original method for assessing the out-of-plane collapse 

behavior of non-periodic masonry, again based on the upper bound 

theorem of limit analysis and on homogenization. Similarly to the in-

plane case, this collapse behavior is addressed by extracting out-of-

plane homogenized failure surfaces of non-periodic masonry structural 

elements: here, they identify the collapse value of different out-of-plane 

load conditions, enforced in terms of a combination of different 

flexural/torsional moments. The 3D finite element mesh created with the 

aforementioned “voxel strategy” is used as input, and the out-of-plane 

kinematics of the elements is governed by a Kirchhoff-Love plate model. 

The method is written again into a standard-form linear programming 

problem (subjected to a set of equality constraints) that gives the out-of-

plane homogenized failure surfaces as outputs. Once more, the method 
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allows the extraction of deformed shapes at collapse for the selected 

structural element. 

i. Validating the method for the out-of-plane collapse behavior against 

data available in literature for periodic masonry elements. Specifically, 

the out-of-plane homogenized failure surfaces extracted from the 

present method are compared to those previously derived by other 

authors that used different methods. 

j. Investigating the out-of-plane collapse behavior of the six real case 

studies previously discussed in terms of their in-plane behavior. These 

case studies are considered as single-leaf walls. Out-of-plane 

homogenized failure surfaces and relevant deformed shapes at collapse 

are extracted and critically commented for all the six case studies. 

k. Investigating the out-of-plane collapse behavior of multi-leaf walls. To 

achieve this goal, two of the previously investigated six case studies are 

considered as three-leaf walls, displaying an inner mortar layer enclosed 

by two outer masonry layers. The method for assessing the out-of-plane 

collapse behavior is then modified to account for the presence of 

multiple layers in the wall – namely, the kinematics is suitably modified. 

The influence of transversal interconnection (represented by units 

extending along the whole thickness) is also investigated. 

1.2 Structure of the Thesis 

This PhD thesis consists of seven Chapters, the first two representing a wide 

introduction that defines the motivation behind this work and its goals, and 

explores the engineering field in which this work is grounded. In particular, 

▪ The current chapter (Chapter 1) serves as the proper introduction of this 

PhD thesis, describing its motivation and detailing its scopes. 

▪ Chapter 2 offers a deep insight into the state of the art concerning the 

numerical strategies for modelling masonry. An extensive literature 

review is here presented, focusing on homogenization applied to 

masonry and with special attention given to its pairing with limit analysis. 

Several classic works in this field are recapped and summarily 

described. 
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The next four chapters of this PhD thesis extensively discuss the original tools 

and methods here developed for the assessment of the in- and out-of-plane 

collapse behavior of non-periodic masonry. In particular, 

▪ Chapter 3 offers a detailed description of the strategies adopted for 

creating a finite element mesh from the rasterized sketch of a generic 

masonry element. The first part of this chapter is devoted to presenting 

the “pixel strategy” conceived for generating a 2D finite element mesh. 

The basic idea behind this strategy is the transformation of a pixel into 

a planar finite element, so that the mesh is automatically created from 

the source image in very few steps. These are listed in a logical fashion 

and are eventually transcribed into a MATLAB script. Similarly, the 

second part of this chapter is devoted to presenting the “voxel strategy” 

conceived for generating a 3D finite element mesh. Here, the basic idea 

is the transformation of a voxel (the 3D equivalent of a pixel) into a solid 

finite element. Again, the logical steps that allow the creation of the 3D 

mesh are eventually transcribed into a MATLAB script. The third part of 

this chapter describes the so-called “coarsing strategy”, which enables 

the reduction of the number of finite elements in the mesh when the 

source image contains a huge number of pixels. The fourth and final part 

of this chapter briefly describes the strategy adopted for the creation of 

a 3D finite element mesh of a multi-leaf wall. 

▪ Chapter 4 is devoted to the full description of the procedure developed 

for assessing the in-plane collapse behavior of non-periodic masonry 

walls. The first part of this chapter broadly describes the approach on 

which this procedure is based, which combines the upper bound 

theorem of limit analysis and homogenization. This is then synthetized 

into a standard-form linear programming problem, subjected to equality 

constraints that directly come from the very mathematical formulation of 

this problem. Eventually, this problem is implemented into a MATLAB 

script that also contains the 2D mesh generating tool. This part also 

describes the method for constructing the in-plane homogenized failure 

surfaces and the deformed shapes at collapse extracted for in-plane 

load conditions. The second part of this chapter presents the numerical 

application of the procedure previously described. This application is 

represented by an extensive investigation on six case studies, which 

actually are six non-periodic masonry walls that are part of existing 

buildings located in Tuscany and Emilia-Romagna. The resulting in-
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plane homogenized failure surfaces and deformed shapes at collapse 

for each case study are critically commented and compared. 

▪ Chapter 5 is devoted to the full description of the procedure developed 

for assessing the out-plane collapse behavior of non-periodic masonry 

walls. The first part of this chapter broadly describes the approach on 

which this procedure is based, which employs a Kirchhoff-Love plate 

model for the out-of-plane kinematics, and which again combines the 

upper bound theorem of limit analysis and homogenization. This is then 

synthetized into a standard-form linear programming problem, subjected 

to equality constraints that directly come from the very mathematical 

formulation of this problem. Eventually, this problem is implemented into 

a MATLAB script that also contains the 3D mesh generating tool. This 

part also describes the method for constructing the out-of-plane 

homogenized failure surfaces and the deformed shapes at collapse 

extracted for out-of-plane load conditions (set as flexural/torsional 

moments). The second part of this chapter presents the numerical 

validation of the procedure previously described: here, the out-of-plane 

homogenized failure surfaces are extracted for two periodic masonry 

bonds (namely, running bond masonry and English bond masonry), 

which are then compared to those available in literature for the same 

masonry bonds, obtained with the use of two different methods. The 

third and final part of this chapter presents the numerical application of 

the procedure here described. This application is represented by an 

extensive investigation on the six non-periodic real case studies already 

inquired in the previous chapter. Once more, the resulting out-of-plane 

homogenized failure surfaces and deformed shapes at collapse for each 

case study are critically commented and compared. 

▪ Chapter 6 is devoted to the study of the out-of-plane collapse behavior 

of multi-leaf walls, using a modified version of the procedure developed 

in the previous chapter for single-leaf walls. The first part of this chapter 

describes the modifications needed in the mathematical formulation of 

the linear programming problem to account for the presence of several 

layers in the wall thickness. The second part of this chapter presents the 

numerical application of the modified procedure. This application is 

represented by two custom-built case studies, consisting of three-leaf 

walls that are created starting from two of the six real case studies 

previously investigated. Specifically, a rubble three-leaf masonry wall 

and a quasi-regular masonry wall are created and inquired in terms of 
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their out-of-plane collapse behavior. In the latter case, the influence of 

the transversal interconnection (simulated by the presence of bricks that 

spread throughout the whole thickness of the wall) is also investigated. 

Again, the resulting out-of-plane homogenized failure surfaces and 

deformed shapes at collapse for each case study are critically 

commented. 

The final chapter of this PhD thesis (Chapter 7) offers a brief recap of the 

contents, and is mainly devoted to discussing the future developments that may 

possibly be originated by this work – i.e. an original study solely focused on the 

collapse behavior of non-periodic multi-leaf walls, and the development of GUI-

based MATLAB app that performs all the tasks and procedures described in this 

PhD thesis, with the aim of providing researchers and practitioners with a useful 

tool for quickly assessing the collapse behavior of a non-periodic masonry wall.  
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CHAPTER 2 

 LITERATURE REVIEW 

This chapter is meant to present an extensive literature review concerning the 

state of the art of the available numerical strategies for modelling masonry. 

Section 2.1 recalls the two strategies commonly adopted, which are macro- and 

micro-modelling, and concludes by introducing a third, more recent strategy that 

is also the one employed in this PhD thesis: homogenization. The latter’s 

application to periodic masonry is thoroughly discussed in Section 2.2, where 

many classical works in this regard are examined covering a wide range of 

applications for the description of masonry’s elastic and inelastic behavior. 

Section 2.3 is entirely devoted to offering a deep insight on the pairing of 

homogenization and the theorems of limit analysis: several works in this field are 

recapped and summarily described. Finally, Section 2.4 is dedicated to the 

available statistical procedures that allow the application of homogenization to 

non-periodic masonry, with a coda focusing on multi-leaf walls. 

2.1 Numerical Strategies for Modelling Masonry 

When it comes to defining a mechanical model for construction materials, 

masonry stands out for being the trickiest one. This is due to its inherent nature, 

being it composed by two fragile materials (units and mortar) both exhibiting 

softening in tension and compression. The mutual interaction between these two 

materials must also be properly addressed. Further issues arise when dealing 

with historical masonry buildings, where both units and mortar may vary in nature 

within a wide range of different materials with their own mechanical properties. 

Moreover, the dimension of the units and the way they are assembled into 

masonry are something that cannot be ignored. All this leads to stating that, in 

general, masonry needs to be at least regarded as an orthotropic material. 

For practical applications, and for sake of simplicity, it is widely accepted to use 

a simplified isotropic model for masonry, whose properties at the macro-level 
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are directly drawn from the characteristics of units and mortar at the micro-level. 

This is achieved by using empirical formulae, which can also be found in relevant 

European building codes [1], but with an unwelcome side effect in the guise of 

high safety factors. Nonetheless, this kind of model represents a huge 

approximation of the actual behavior, especially when considering the material 

behavior at failure. 

Several rather advanced material models for masonry – including elastoplasticity 

and orthotropic damage – have been proposed in the last few decades by 

different researchers. Generally, three different modelling strategies are 

adopted, known in the technical literature as macro-modelling, micro-modelling 

and homogenization. 

2.1.1 Macro-Modelling 

A numerical strategy frequently adopted for modelling masonry is the so-called 

“macro-modelling”: the heterogeneous composite consisting of units and mortar 

is substituted with an equivalent homogeneous material (Fig. 2.1). In 

computational terms, this removes the need of separately meshing units and 

mortar. Therefore, this strategy is particularly convenient for tackling complex 

numerical analyses of large-scale structures, which require swift and efficient 

computations. 

 

Fig. 2.1. Visual representation of the macro-modelling strategy. 

This strategy has been extensively exploited in several works for describing 

masonry as a monolithic material. In one classic paper, Di Pasquale [2] develops 

a full constitutive model that considers masonry as a “no-tension” material. 

Conversely, a series of papers authored by Lourenço and co-workers [3][4] 

elaborates a complex plane-stress model for masonry as a quasi-brittle, 

orthotropic material; this model features distinct fracture energies in tension and 

compression, and independent behaviors along each material axis. Eventually, 
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the model is validated against experimental results obtained for masonry shear 

walls. 

Masonry is well-known for being highly vulnerable to seismic actions; 

unreinforced masonry buildings hit by an earthquake usually display a severe 

state of damage, which is represented by widespread crack patterns in the walls. 

Therefore, a special attention has been given to developing macro-scale models 

for masonry that are also able to simulate the formation of cracks. For instance, 

Pelà and co-workers [5] develop a localized mapped damage model that is in 

general applicable to orthotropic materials, including masonry. This 

methodology employs an orthotropic failure criterion that is linked to an isotropic 

one in a mapped space. This model is successfully validated for masonry against 

experimental data on masonry wallets and beams. Instead, Toti and co-workers 

[6] envision a non-local, isotropic damage-plastic model specifically aimed at the 

dynamic analysis of large-scale structures. The non-local approach is here 

employed to avoid experiencing strain localization and mesh sensitivity. This 

model is successfully applied to simulate the damaged state of a masonry pillar 

located in the Basilica of S. Maria di Collemaggio, hit by the disastrous 2009 

L’Aquila earthquake. A different non-local damage-plastic model is introduced 

by Gatta and co-workers [7], which is conversely focused on mirroring the cyclic 

behavior of masonry structures under static and dynamic loading. The validation 

of the proposed model is carried out against experimentally tested walls under 

cyclic actions. Furthermore, Saloustros and co-workers [8] present an algorithm 

to track multi-directional intersecting cracks that form within masonry shear walls 

under in-plane cyclic loads. Analogously to [6], this algorithm is conceived to 

remove localization of damage due to mesh-dependency and the orientation of 

finite elements; it also employs an orthotropic damage model. The validation is 

performed against experimental data obtained from the in-plane cyclic loading 

of a real masonry shear wall. Eventually, a recent paper by Clementi and co-

workers [9] makes use of the non-smooth contact dynamics (NSCD) method to 

simulate the damage formation in historical masonry buildings. The “non-

smooth” part of the NSCD method employs a peculiar formulation of the motion 

laws for modelling mechanical systems with unilateral contacts and friction. The 

NSCD method is here validated against the real damage state of five masonry 

churches located in the Italian Apennines and heavily affected by the 2016 

Central Italy seismic sequence. 

The major drawback of macro-modelling is represented by the actual calibration 

of material parameters. In fact, they may be extracted arbitrarily from ranges of 

values recommended by codes and standards, derived through empirical 



  

10 

formulae based on the constituents’ material parameters, or determined as the 

mean values resulting from experimental campaigns. The limitations are rather 

evident: in the first and second case, the parameters eventually adopted may 

questionably represent the true mechanical properties of the material; in the third 

case, it must be noted that when the level of sophistication of the model 

increases, the number of inelastic parameters grows and the experimental 

characterization may become costly and cumbersome. Moreover, as shown by 

Miccoli and co-workers in [10], simple macro-models may be unable to fully 

grasp either the non-linear behavior or the crack patterns observed in 

experimental specimens, thus resulting in an unsatisfactory reliability of the 

adopted macro-models. 

2.1.2 Micro-Modelling 

The numerical strategy opposite to macro-modelling is the so-called “micro-

modelling”: it is simply characterized by the distinct modelling of mortar joints 

and units at a structural level, with the possibility to employ a separate model 

also for the unit/mortar interfaces (Fig. 2.2). A common method to simplify the 

overall problem is represented by the reduction of mortar joints to interfaces 

between units (Fig. 2.3). Considering the heterogeneity of masonry, micro-

modelling seems the most suitable strategy to properly simulate its mechanical 

behavior in all its aspects. 

 
Fig. 2.2. Visual representation of the classic micro-modelling strategy. 
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Fig. 2.3. Visual representation of the micro-modelling strategy with mortar joints 

reduced to interfaces. 

The effectiveness of micro-modelling in simulating masonry-like materials is 

inquired by Baraldi and co-workers [11]. Here, a critical comparative review is 

presented among several strategies: one uses the Discrete Element Model 

(DEM), in which the units are rigid and the mortar joints are reduced to 

interfaces, another uses an heterogeneous Finite Element Model (FEM), and 

the last uses an equivalent homogeneous FEM. For the latter, the difference 

between Cauchy and micropolar continua is also investigated. The numerical 

applications involve masonry panels subjected to different constraints and 

loading conditions. The authors conclude that the heterogeneous FEM 

(corresponding to a micro-modelling strategy) is not the best performing model 

from both a mechanical and computational points of view. The effectiveness of 

DEM is further inquired in a separate, more recent work by Baraldi and co-

workers [12]. Here, two numerical models are compared: a discrete model 

conceived by the authors, and a mixed discrete/finite element model that is 

usually adopted in rock mechanics. The numerical applications involve masonry 

panels of two distinct shapes (rectangular or square), presenting different 

slenderness, unit dimensions, and constraints. The results show how the 

discrete model necessitates a minor computational effort but is in general less 

accurate than the mixed discrete/finite element method. Nonetheless, both 

methods are suitable for investigating the non-linear response of masonry. 

Sarhosis & Lemos [13] instead present a detailed micro-modelling approach that 

considers units and mortar as consisting of irregular particles. This enables all 

types of failure in masonry: within units, within mortar, and at their interfaces. 

The numerical validation is successfully performed against the results obtained 

for small-scale experiments. The authors deem this approach as being a useful 

tool for reliably predicting the mechanical properties of masonry without resorting 

to pricey experimental campaigns or empirical formulae. A different, detailed 

micro-modelling approach is proposed by Zheng and co-workers [14], which 

employs extrinsic cohesive elements. The numerical validation is performed on 
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diagonally compressed stone masonry panels. Eventually, Petracca and co-

workers [15] devise a continuous micro-model based on damage mechanics and 

used for representing both units and mortar. For the latter, a bi-dissipative 

damage model is employed to account for dilatancy. This model is directly 

compared and validated against two available discrete micro-models. 

Several micro-modelling approaches where mortar joints are reduced to 

interfaces have been suggested over the years. For instance, Lotfi & Shing [16] 

conceive an interface constitutive model that simulates the initiation and 

propagation of cracks under a combination of normal and shear stresses; 

dilatancy is simulated as well. The proposed model is successfully validated for 

predicting the load-carrying capacity of a concrete masonry panel. Conversely, 

Lourenço & Rots [17] develop an elastoplastic interface constitutive model that 

is formulated in terms of softening plasticity for tension, shear, and also 

compression. The model is successfully validated for predicting the experimental 

collapse load of a masonry shear wall. Furthermore, Macorini & Izzuddin [18] 

present a 2D non-linear interface element that is used for modelling mortar and 

unit-mortar interfaces – while units are modelled through a 3D solid elements. 

The interface element accounts for non-linearities in both geometry (large 

displacements) and mechanics (work-softening non-associated plasticity). The 

interface element is successfully employed in a numerical validation that 

involves experimental in- and out-of-plane loaded walls. Analogously, Nazir & 

Dhanasekar [19] propose a non-linear interface element aiming at modelling thin 

layer mortared masonry. The element employs different failure criteria in the 

shear-tension and shear-compression regimes; its plastic flow vectors are 

analytically integrated within the implicit finite element framework. This interface 

element is calibrated through experimental results coming from compression, 

flexural and shear tests; it is then successfully validated for predicting the biaxial 

behavior of thin layer mortared masonry as well as the response of a shear wall 

consisting of the same masonry type. 

The major drawback of micro-modelling is represented by its onerous 

computational requirements; even if the joints are reduced to interfaces (thus 

limiting variables, especially in the non-linear range) this approach remains very 

demanding, because units and mortar are meshed separately. In order to obtain 

sufficiently reliable solutions in terms of displacements and stresses, the 

constitutive materials should be meshed with more than one element, with the 

consequent growth in number of non-linear equations to deal with, even for small 

masonry panels. Partitioning methods have been recently proposed to 

overcome such computational limitations and speed up structural analyses (see 
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for instance Macorini & Izzuddin [20]), but it is safe to say that micro-modelling 

is at times an unfeasible numerical strategy due to its high computational costs. 

2.1.3 Homogenization 

Homogenization (Fig. 2.4) is a meso-scale averaging procedure that is 

performed on a basic cell called Representative Element of Volume (in short, 

REV). For periodic media, this is the smallest portion encompassing all the 

physical and geometrical characteristics needed for a complete description of 

the material. In fact, it must be capable of recreating the original periodic pattern 

by repetition, i.e. by translation in the 2D or 3D space. Homogenization 

represents a fair compromise between micro- and macro-modelling: in fact, it 

requires the accurate modelling of the material at the microscale – as in the 

former approach – but restricted only to the identified REV, thus greatly reducing 

the computational effort. On the other hand, homogenization aims at deriving 

macroscale properties for the considered material – as in the latter approach – 

but starting from a limited portion of the material itself (i.e. the REV), so that no 

lengthy and costly experimental campaigns are required. 

 
Fig. 2.4. Visual representation of the homogenization strategy applied to masonry. 

Generally, masonry consists of bricks and/or stones - the units - joined by mortar 

and often assembled with a periodic arrangement (e.g. English, Flemish, 

stretcher bond), thus allowing for a successful application of homogenization. 
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2.2 Homogenization Applied to Periodic Masonry 

2.2.1 Homogenization for Elastic Characteristics of Masonry 

One of the earliest attempts to employ a homogenization technique in the 

assessment of masonry’s mechanical characteristics is found in Pande and co-

workers [21]. This application is devoted to evaluating the equivalent elastic 

moduli of brick masonry, albeit in an approximate way. Here, masonry is 

considered at the macro-scale as a homogenous orthorhombic elastic material 

(borrowing the concept of orthorhombic structure from crystallography). 

A first, complete overview on the application of homogenization to periodic 

masonry is presented by Anthoine [22]. This work is remarkable because it offers 

a rigorous formulation of the homogenization problem, including the concept of 

periodic and anti-periodic fields; the strain-periodic displacement field is defined 

for both 2D and 3D periodic media. Here, the focus is on the application of 

homogenization in linear elasticity, aiming at evaluating the in-plane elastic 

characteristics; both units and mortar are considered as linear elastic materials. 

The numerical application employs the finite element method for both 2D and 

3D periodic masonry, and in the former case is performed under the hypothesis 

of plane stress. Two types of periodic masonry are here studied: stack bond 

masonry and running bond masonry. The resulting elastic constants of the 

homogenized material are very similar for both masonry bonds in the 2D and 3D 

periodic cases; the homogenized material is also found to be orthotropic, as 

expected. Eventually, some issues that have proved to be relevant in later 

applications are here pointed out, for instance the errors possibly arising in the 

non-linear range from the plane stress assumption and the role played by 

masonry bond. 

In an indirect follow-up of the previous work, Anthoine [23] presents an 

investigation on the proper assumption to be used in the homogenization of 

periodic masonry. Namely, three hypotheses are here compared: plane stress, 

generalized plane strain, and full 3D homogenization. The results show that the 

plane stress hypothesis is fairly suitable in the linear range (elasticity), whereas 

it leads to plain errors if used in the non-linear range (i.e. when introducing 

damage). Its use must also be limited if the considered periodic masonry is very 

thin. Conversely, generalized plane strain is deemed suitable for both the elastic 

linear and non-linear ranges. Eventually, it is stated that a full 3D 

homogenization should always be used in cases where the geometrical 

characteristics of masonry vary along the wall thickness. A subsequent effort 
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presented by Mistler and co-workers [24] deals with the generalization of 

homogenization for assessing also the out-of-plane behavior of periodic 

masonry, again limiting the scope to the linear range – i.e. extracting only the 

elastic in- and out-of-plane characteristics. In a more recent work, Addessi & 

Sacco [25] seek to overcome the limitations brought by the plane stress and 

generalized plane strain hypotheses. To do so, an enriched kinematic 

formulation is proposed, labelled Enriched Plate State (EPS), which introduces 

the out-of-plane strain components with non-null transversal displacements. 

Both units and mortar are considered as elastic isotropic materials. The results 

show that the proposed EPS formulation gives results that are more accurate 

than those obtained with plane stress, plane strain, and generalized plane strain; 

they are ultimately closer to those coming from a full 3D homogenization. The 

elastic domain of running bond masonry is eventually calculated. 

Drougkas and co-workers [26] propose a model for the analysis of periodic 

masonry REVs that is based on detailed micro-modelling principles. The model 

aims at evaluating the orthotropic elastic characteristics of periodic masonry; 

along with the usual stack and running bond masonry, it is applied also to the 

less common Flemish bond masonry. The numerical validation of the model is 

successfully carried out through comparisons with values experimentally 

obtained in compression for stack, running, and Flemish bond masonry, which 

are available in literature. Eventually, Di Nino & Luongo [27] conceive a 

homogenization procedure that enables the derivation of closed-form expression 

for the elastic characteristics of in-plane loaded running bond masonry. Here, 

the REV is modelled through several springs that are combined in series and 

parallel. The proposed procedure is successfully validated against results 

obtained with finite element analyses and with other approximated closed-form 

expressions. 

Further elaborations on homogenization are discussed by Lourenço in a seminal 

work that extensively deals with this technique [28]. First, a novel 3D formulation 

for layered composites is proposed, not only in elasticity but also in 

elastoplasticity (namely, J2-plasticity). Then, this novel formulation is validated 

through three examples in which the results coming from the proposed 3D 

layered model are compared against those obtained with a 2D homogenization. 

Furthermore, the adequacy of two-step homogenization procedures – previously 

developed by other authors – is investigated for different stiffness ratios of the 

masonry constituents. Considerable errors are observed when the stiffness ratio 

is higher than 10 (which means being in presence of nonlinear behavior). 

Eventually, the behavior of masonry under tension parallel to the bed joints is 
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studied, which is used as an example of the application of a nonlinear 

homogenization technique. 

Cecchi & Di Marco [29] perform an investigation regarding the influence of 

certain geometrical and mechanical parameters on the elastic characteristics of 

periodic masonry. Namely, they inquire the effect produced by two perturbative 

parameters: the variations of mortar joints’ thickness with respect to that of the 

units, and the variations in stiffness of the units with respect to that of mortar 

joints. This investigation is performed for the two classical periodic masonry 

types, i.e. stack and running bond masonry. Among the results obtained from 

the investigation, running bond masonry displays greater stiffness with respect 

to stack bond masonry. Moreover, if the stiffness of only the head joints is 

increased, this has a relevant effect only on stack bond masonry. 

Cecchi & Sab [30] propose an identification procedure that enables the 

formulation of two homogenized plate models, both referring to a numerical 

discrete 3D model. This consists of blocks (considered as infinitely rigid 

elements) that are connected through thin mortar joints (considered as elastic 

interfaces). The 3D model is then compared to both a homogenized Kirchhoff-

Love plate model and a more refined Reissner-Mindlin plate model. While both 

plate models share the same bending constants, the shear parameters in the 

latter plate model are evaluated through a compatible identification procedure 

that occurs between the original discrete 3D model and the homogenized 

Reissner-Mindlin one. A case study is then considered to draw comparisons 

between the results obtained with the discrete 3D model and the two 

homogenized plate models. Namely, a series of numerical analyses is 

performed on the case study in which several parameters denoting the physical 

characteristics of the case study itself are varied. The results show that both the 

homogenized plate models ultimately coincide in an asymptotic fashion with the 

discrete 3D model, although the Reissner-Mindlin model shows a better 

convergence. 

2.2.2 Homogenization for Non-Linear Analysis of Masonry 

Homogenization is also extensively employed as a useful and reliable technique 

for applications that involve non-linear analyses of masonry. For instance, 

Reccia and co-workers [31] envision a full 3D homogenization procedure to 

perform non-linear finite element analyses of bridges. Focusing on the Venice 

trans-lagoon railway bridge as a final application, each of its components is 

modelled with rigid parallelepiped elements and quadrilateral interfaces. These 



  

17 

employ an orthotropic constitutive law with softening. The considered bridge is 

investigated both under service loads and up to failure due to the crossing of a 

train. The results are then compared with collapse loads and failure mechanisms 

predicted by limit analysis. Milani & Bertolesi [32] propose a quasi-analytical 

homogenization approach aiming at performing non-linear analysis on in-plane 

loaded running bond masonry walls. This approach uses a model for mortar 

joints that considers their softening behavior. The REV is discretized with 

triangular elastic finite elements and non-linear joints that are reduced to 

interfaces, the latter displaying a holonomic behavior. The homogenized stress-

strain diagrams are evaluated through the proposed quasi-analytical method, 

and they can be either implemented in a finite element code or a rigid element 

approach. The numerical validation is successfully performed on an 

experimentally tested windowed masonry panel. 

Milani & Bruggi [33] present a two-step procedure based on topology 

optimization and homogenization devoted to carrying out 2D pushover analyses 

in a steadfast way. The overall model employs triangular rigid finite elements 

and non-linear interfaces. The first step (topology optimization) determines the 

optimal shape of the mesh and position of the interfaces, whose mechanical 

properties are evaluated through homogenization in the non-linear range. The 

second step occurs at a structural level, where the pushover analyses are 

carried out. The validation is successfully performed on a multi-story windowed 

masonry wall. Another application aiming at performing pushover analyses is 

introduced by Casolo & Milani [34]. Here, homogenization is exploited to derive 

out-of-plane moment-curvature diagrams for masonry – two in bending and one 

in torsion – later used as constitutive models for the springs in a discrete model 

called Rigid Body and Spring Model (RBSM). This is introduced in an earlier solo 

work by Casolo [35] and is conceived for modelling the in-plane behavior of 

masonry walls. These are discretized with plane rigid elements connected 

through a system of normal and shear springs. The main advantage of RBSM is 

that the nonlinearities (of any kind) can be concentrated in the springs which are 

discrete elements and not continuous, thus simplifying the problem. The 

numerical application in [34] focuses on the pushover analysis of out-of-plane 

loaded masonry walls. Furthermore, Petracca and co-workers [36] propose a 

homogenization method grounded on the thick shell theory aiming at tackling 

the analysis of out-of-plane loaded masonry walls. The main innovation here is 

that both units and mortar are modelled with a non-linear behavior; namely, 

tension/compression continuum damage constitutive laws are employed. The 

method here presented is successfully assessed through comparisons with 
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results coming from a running bond masonry wall that is experimentally tested 

under out-of-plane actions. 

2.2.3 Homogenization for Modelling Damage in Masonry 

As already pointed out in Section 2.1.1, finding effective ways to model the 

evolution of damage for masonry is paramount to fully grasp its mechanical 

behavior in the non-linear range. Hence, several works deal with formulations of 

the homogenization approach that include or produce damage models for 

simulating the formation of cracks in masonry. An early example is provided by 

Pegon & Anthoine [37] containing a detailed discussion on how to formulate the 

homogenization problem when units and mortar are endowed with a continuum 

damage model. Plane stress and generalized plane strain are assumed as the 

two main working hypotheses. Also, suitable numerical strategies to solve this 

problem are presented, along with a numerical application on a running bond 

masonry REV. 

Luciano & Sacco [38] seek to use homogenization for developing a damage 

model that is specifically applicable to historical masonry. Here, homogenization 

is actually employed for deriving the elastic moduli of uncracked and cracked 

masonry. From this, a damage evolution law is obtained for masonry that 

considers the correct geometry and the mechanical properties of the two 

constitutive materials. Finally, two damage constitutive laws are defined for the 

homogenized material based on the strength of mortar: one uses an energy 

criterion, the other a cohesive Coulomb criterion. The numerical applications 

involve a running bond masonry REV and a full masonry wall. Similarly, Zucchini 

& Lourenço [39] propose a problem formulation that combines a micro-

mechanical homogenization model and an isotropic damage model for units and 

mortar. The definition of a crack opening width for the REV’s head joint is also 

provided. An iterative procedure is used to solve the problem and to evaluate 

the damage parameters. The numerical application again focuses on running 

bond masonry. 

Rekik & Lebon [40] devise a procedure that exploits homogenization for 

modelling interface damage in masonry. Here, the material is thought as 

consisting of three different constituents: units, mortar, and their mutual 

interfaces. The latter display small thickness, low stiffness, and a predetermined 

damage ratio. The procedure enables to extract the properties of the interface 

material, and follows three steps: in the first one, homogenization is applied to 

the undamaged unit/mortar material, obtaining a first homogeneous equivalent 
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material. In the second step, this resulting material is supposed to be damaged, 

and the assessment of its global behavior leads to defining a second 

homogeneous equivalent material. In the third and last step, an asymptotic 

analysis is carried out to this second material as an interface, thus deducing the 

properties of the interface material from those of the second material. From a 

computational point of view, the interfaces are modelled as connector finite 

elements. The procedure is successfully validating against experimental data in 

two applications: one involves a triplet of solid bricks, the other a triplet of hollow 

bricks. A different procedure is presented by Sacco & Lebon [41] aiming at 

deriving a damage-friction constitutive law for the unit/mortar interface. The 

chosen model for such interface takes several features into account: the 

evolution of cracks, the unilateral contact originating by crack closure, and the 

effect of friction. A non-linear micro-mechanical problem is then formulated; its 

solution consists in the formulation of three linear subproblems, whose solutions 

are then aptly combined to provide the solution of the original non-linear 

problem. Eventually, the procedure is applied to an analytical REV consisting of 

two layers (unit and mortar) and a micro-crack between them; the reliability of 

the interface model is investigated under mode I, mode II, and mixed mode 

numerical fracture tests. 

2.3 Homogenization and Limit Analysis 

Despite its inability to address the post-peak behavior of structures, limit analysis 

remains a quick and simple approach for assessing their structural response at 

collapse (e.g. in terms of load multiplier and failure mechanisms). Indeed, the 

combination of limit analysis and homogenization for modelling the collapse 

behavior of masonry has been explored in literature over the last twenty years. 

An early application in this regard is presented by de Buhan & de Felice [42], 

showing how the implementation of homogenization within a limit analysis 

approach is capable of providing a macroscopic strength criterion of the 

homogenized masonry. Namely, an upper-bound approach is used here on the 

limit analysis side of the problem. As a numerical application, the results 

obtained from the theoretical formulation of the combined homogenization-limit 

analysis problem are utilized to evaluate the stability of laterally loaded wall 

specimens. 
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2.3.1 In-Plane Collapse Behavior 

Comprehensibly, the combination of homogenization and limit analysis is 

exploited by some scholars to assess the in-plane collapse behavior of masonry. 

The first part of a seminal work by Milani and co-workers [43] presents a micro-

mechanical approach for the homogenized limit analysis of masonry walls 

subjected to in-plane loads. The REV is divided into 36 sub-domains (reduced 

to 9 if only one quarter is considered, see Fig. 2.5); the homogenization problem 

is formulated as a linear optimization problem for the rigid-plastic case, in which 

units and mortar joints are rigid, therefore discontinuities can only occur at their 

mutual interfaces. Mortar joints can also be reduced to interfaces for sake of 

simplicity. 

 
(a) (b) 

Fig. 2.5. (a) Division of one quarter of the REV in 9 sub-domains; (b) division of the 
whole REV in 36 sub-domains by Milani and co-workers [43]. 

The problem is also formulated under the hypothesis of plane stress; the 

expression for the 2D stress field adopts a polynomial expansion (which means 

that the limit analysis part of the problem uses a lower-bound approach). First, 

a preliminary investigation on the elastic characteristics is carried out, comparing 

the results to those obtained by Anthoine in [22]. Then, the overall problem is 

applied to the derivation of homogenized failure surfaces, which here represent 

the macroscopic strength criteria for masonry previously discussed. The 

reliability of the proposed model is tested against the results presented by de 

Buhan & de Felice [42] (see Fig. 2.6) in the tensile-tensile range, with the aim of 

draw comparisons with a closed-form solution coming from an upper-bound 

approach. Other numerical applications involve the results obtained 

experimentally by other authors. In one case, the present problem is 

reformulated using an upper-bound approach – the units are infinitely resistant, 

and the joints are reduced to interfaces are endowed with a frictional failure 

surface and a compression cut-off. Eventually, a comparison is drawn between 
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the lower- and upper-bound approaches, as shown in Fig. 2.7 for a particular 

case. 

 
Fig. 2.6. Comparison of the results obtained by Milani and co-workers for different 

polynomial expansions by Milani and co-workers [43]; the results are also compared 
to those derived by de Buhan and de Felice. 

 

 
Fig. 2.7. Comparison between the lower- and upper-bound approaches by Milani and 

co-workers [43]. 

The second part, which is the direct follow-up of the first one and is also authored 

by Milani and co-workers [44], presents a few structural applications of the micro-
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mechanical approach for the homogenized limit analysis described in the first 

part. First, the lower- and upper-bound formulations of the approach are 

recalled; then, three case studies are considered for numerical applications, 

comparing the analytical results to experimental data previously obtained for the 

same cases. Namely, the three considered applications are a masonry panel 

acting as a deep beam, a masonry shear wall, and one inner wall of a five-story 

building located in Catania, Italy. All the three case studies are investigated 

employing both the lower- and upper-bound approaches, and give satisfactory 

results – especially for the upper-bound approach. 

A further solo work by Milani [45] introduces a different homogenized model that 

considers the softening behavior of in-plane loaded masonry, aiming at 

performing non-linear analyses. The overall procedure consists of two steps; in 

the first, the considered REV is discretized into triangular elastic finite elements 

and non-linear interfaces in place of mortar joints. A standard non-linear finite 

element approach is enforced on the REV, which results in homogenized stress-

strain diagrams. In the second step (taking place at a structural level) the sought-

after non-linear analyses are performed using triangular rigid elements joined by 

non-linear interfaces to which the previously obtained homogenized diagrams 

are assigned. This discretized non-linear problem is solved through a standard 

quadratic programming algorithm. The numerical applications involve a masonry 

panel acting as a deep beam and a windowed masonry shear walls, for both of 

which the analytical results are compared to available experimental data. 

A different approach for deriving the macroscopic strength criteria is used in a 

work by Milani & Taliercio [46] combining the upper bound theorem of limit 

analysis with homogenization. This approach is analogous to the so-called 

“Method of Cells”, originally developed for fiber-reinforced unidirectional 

composites. The REV is sub-divided into rectangular cells (see Fig. 2.8a), in 

which two strain-rate periodic, piecewise differentiable velocity fields are 

employed that characterize the deformation mode for macroscopic normal 

stresses (Fig. 2.8b) and for macroscopic shear stresses (Fig. 2.8c). 
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(a) (b) 

 

 
 (c) 

Fig. 2.8. (a) Sub-division of the REV into rectangular cells; (b) strain-periodic 
kinematically admissible velocity field under macroscopic normal stresses; (c) strain-
periodic kinematically admissible velocity field under macroscopic shear stresses by 

Milani & Taliercio [46]. 

Then, in-plane homogenized failure surfaces are extracted in both the tension-

tension (a) and compression-compression (b) ranges, and are successfully 

compared against those obtained by other authors employing different, more 

refined methods. Eventually, the proposed method is validated against the 

results coming from experimental biaxial compressive tests and from an in-plane 

loaded masonry panel acting as a deep beam. 
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(a) 

 
(b) 

Fig. 2.9. (a) Homogenized failure surfaces obtained with the proposed method in the 
tension-tension range; (b) homogenized failure surfaces obtained with the proposed 

method in the compression-compression range by Milani & Taliercio [46]. 

Other relevant approaches are presented by Stefanou and co-workers [47] and 

by Godio and co-workers [48]. The former performs a full 3D homogenization 

and considers separate yield surfaces for the failure of units and mortar; the 

latter provides a procedure for the assessment of the in-plane strength domain 

of discrete media, here applied to masonry, which is formulated in the framework 

of the Cosserat continuum theory. 
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2.3.2 Out-of-Plane Collapse Behavior 

Only a few works available in literature deal with the out-of-plane collapse 

behavior of masonry. For instance, Milani and co-workers [49] present an 

approach that expands upon the one presented in [43]; here, the masonry REV 

is considered as consisting of several layers over the thickness, for which a 

Kirchhoff-Love plate model is used. An anisotropic failure surface is employed 

that is grounded on a polynomial representation of the stress tensor components 

in a predetermined number of sub-domains. This is then combined to triangular 

finite elements. The linear optimization problem is eventually formulated using 

both a lower- and an upper-bound approach. In this case, the results consist of 

the internal forces distribution in critical sections for the lower-bound approach, 

and of failure loads and collapse modes for the upper-bound approach. The 

proposed methodology is successfully validated against the results obtained for 

several experimental tests. First, an assessment of the method’s reliability is 

carried out by considering four-point bending tests performed on hollow concrete 

masonry wallets, characterized by different orientations of the bed joints. Then, 

two different sets of experimental tests are utilized for validation: one consists of 

hollow concrete masonry panels tested under out-of-plane load conditions and 

displaying different boundary conditions; the other consists of brick masonry 

walls again tested under out-of-plane load conditions and displaying the 

presence of different openings. 

Sab and co-workers [50] aim at determining the yield strength domain for out-of-

plane loaded brick masonry. Their procedure is applicable to either thin or thick 

periodic brick masonry panels, and is oriented to the usual stack and running 

bond masonry types. In both cases, units are considered infinitely rigid and are 

connected through Mohr-Coulomb interfaces. The Kirchhoff-Love plate model is 

first applied to the considered masonry panel for in- and out-of-plane load 

conditions; then, a Reissner-Mindlin plate model is also employed to grasp the 

influence of out-of-plane shear forces. The out-of-plane yield strength domains 

are eventually extracted for running bond masonry, following an upper-bound 

approach for the combined homogenization-limit analysis problem. 

A similar approach is used by Cecchi and co-workers [51] specifically devised 

for out-of-plane loaded running bond masonry; also here, an upper-bound limit 

analysis approach is employed, along with a Reissner-Mindlin plate model. The 

procedure uses the so-called “kinematic identification” previously described in 

[30]: first, a 3D system of blocks connected by interfaces is considered (Fig. 

2.10), in which the blocks are infinitely resistant and the interfaces (representing 
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the mortar joints) are provided with an associate flow rule and a Mohr-Coulomb 

failure criterion with cut-offs in tension and compression. Then, this 3D system 

of blocks is kinematically identified with a 2D Reissner-Mindlin plate. 

 
Fig. 2.10. 3D system of blocks for the kinematic identification by Cecchi & Sab [30] 

and by Cecchi and co-workers [51]. 

This work does not directly use a rigorous homogenization approach, yet it is still 

able to derive the out-of-plane homogenized failure surfaces (i.e. the 

macroscopic strength criteria) as the results of a linear programming problem in 

which the dissipated internal power is the function to minimize. The out-of-plane 

homogenized failure surfaces are expressed as functions of macroscopic 

bending and torsional moments, and are also function of the macroscopic shear 

forces. For instance, Fig. 2.11 reports the out-of-plane homogenized failure 

surface in the M11-M22 plane for different values of the macroscopic shear force 

T13, where M11 and M22 are the macroscopic horizontal and vertical bending 

moments, respectively; this failure surface is characterized by a parallelogram-

like shape. Conversely, Fig. 2.12 reports the out-of-plane homogenized failure 

surface in the M11-M12 plane, again for different values of the macroscopic shear 

force T13. M12 is the macroscopic torsional moment; unlike the previous one, this 

failure surface is characterized by a hexagonal shape. Eventually, two structural 

examples are analyzed to compare the proposed Reissner-Mindlin model to a 

Kirchhoff-Love homogenization-limit analysis approach: one consists of a 

masonry wall subjected to cylindrical bending, the other of a rectangular 

masonry plate presenting a central window. 

A distinct but related work presented by Cecchi & Milani [52] employs the same 

approach, here instead applied to English bond masonry. 
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Fig. 2.11. Out-of-plane homogenized failure surface in the M11-M22 plane, for 

different values of the macroscopic shear force T13 by Cecchi and co-workers [51]. 

 

 
Fig. 2.12. Out-of-plane homogenized failure surface in the M11-M12 plane, for 

different values of the macroscopic shear force T13 by Cecchi and co-workers [51]. 
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Finally, Milani & Taliercio [53] propose an extension to the out-of-plane case of 

the approach based on the Method of Cells previously developed for the in-plane 

case [46]. In this application, the horizontal and vertical bending moments, as 

well as the torsional one, are first defined (Fig. 2.13). 

 
Fig. 2.13. Definition of horizontal bending moment (Mxx), vertical bending moment 

(Myy), and torsional moment (Mxy) by Milani & Taliercio [53]. 

Then, the upper-bound approach for deriving the out-of-plane homogenized 

failure surfaces is described. Several features are investigated in terms of out-

of-plane response: namely, the use of interfaces in lieu of joints with finite 

thickness (Fig. 2.14 and Fig. 2.15), the 3D effects observed in masonry walls 

with thick joints, and the influence of joints’ thickness on the out-of-plane 

behavior under vertical pre-compression are each addressed. Two structural 

examples are eventually considered for the numerical validation of the proposed 

approach: one involves an orthotropic rectangular masonry wall (considered as 

a plate), the other involves several windowed masonry panels. 
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Fig. 2.14. Comparison of out-of-plane homogenized failure surfaces obtained with 

different approaches in the Mxx-Myy plane by Milani & Taliercio [53]. 

 

 
Fig. 2.15. Comparison of out-of-plane homogenized failure surfaces obtained with 

different approaches in the Mxx-Mxy plane by Milani & Taliercio [53]. 
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2.4 Homogenization Applied to Non-Periodic 
Masonry 

The application of homogenization techniques to the analysis of historical 

masonry structures appears natural and capable of producing promising results. 

For instance, the immediate applicability of homogenization to the 

representation of old masonry material is recognized by Luciano & Sacco in [38], 

already recapped in Section 2.2.3; another relevant application of 

homogenization to a historical structure (namely, the Venice trans-lagoon 

railway bridge) is the work by Reccia and co-workers cited in Section 2.2.2 [31]. 

Furthermore, Zeman and co-workers [54] employ a homogenization approach 

to obtain macro-scale mechanical characteristics for the periodic sandstone 

masonry that characterizes the vaults of the Charles Bridge in Prague; this 

represents just one part of a broader work aiming at a multi-scale and multi-

physics analysis of that monumental bridge.  

However, the founding idea behind homogenization (i.e. the identification of a 

REV) implies that its use is only limited to those masonry buildings where the 

units are periodically arranged. On the other hand, several old constructions 

consist of stone masonry in which the units are assembled randomly, or at least 

without a clear periodic pattern. Some real instances are shown in Fig. 2.16b-d, 

taken from both monumental and ordinary masonry buildings located in Italy. 

Another example is represented by the previously mentioned Charles Bridge in 

Prague, which is truly significant because it displays several types of masonry 

bonds [54]. Along with the periodic sandstone masonry of its vaults, the bridge 

consists of non-periodic sandstone masonry (located in the breast walls) and of 

irregular quarry masonry (used as infill). 

The generic term “non-periodic masonry” is used to describe all those masonry 

bonds in which the units are not arranged according to a periodic pattern. More 

specific terms exist to define the various cases: for instance, masonry displaying 

a wholly random arrangement of the units is called “rubble masonry”; masonry 

consisting of units with non-uniform geometry but clearly visible mortar bed joints 

is called “quasi-periodic masonry”; finally, masonry consisting of units with 

similar (but not equal) geometry and clearly visible mortar bed joints is called 

“quasi-regular masonry”. Nonetheless, any effective application of 

homogenization is apparently ruled out in these cases, since the identification of 

a suitable REV appears cumbersome, if not impossible. 
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(a) (b) 

  
(c) (d) 

Fig. 2.16. (a) Brick masonry tower (“Castello delle Rocche” in Finale Emilia, Modena, 
Italy); (b) rubble masonry tower (outer city walls in Norcia, Perugia, Italy); (c) 
residential rubble masonry building in Pretare, Ascoli Piceno, Italy; (d) rubble 
masonry used as infills (outside wall of the Baths of Caracalla, Rome, Italy). 

The application of homogenization to non-periodic masonry is first addressed in 

a work by Cluni & Gusella [55]. Here, the aim is the derivation of homogenized 

medium stiffness tensor coefficients for a non-periodic masonry panel. The 

presented approach is based on the concept of “test-window” – a cell of finite 

size extracted from the considered masonry panel. The stiffness tensor 

coefficients are derived from averaging those obtained for several test-windows 

of the same size that are extracted from different locations on the panel. The 

size of the test-window is then increased, and the procedure is repeated also 

evaluating the variations in terms of coefficients due to the expansion of the test-

window itself. The actual size of the REV is determined when, after a series of 

iterations, that variation becomes sufficiently small. 
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Cavalagli and co-workers [56][57] show that it is still possible to identify a REV 

through the use of statistical tools (here represented by Monte Carlo 

simulations), provided that the selected cell is a statistically acceptable 

representation of the considered non-periodic masonry. Therefore, the concept 

of Representative Element of Volume evolves into that of a Statistically 

Equivalent Periodic Unit Cell (abbreviated with the acronym SEPUC). This new 

entity is introduced in a work by Zeman & Šejnoha [58] concerning the derivation 

of a Representative Element of Volume from a random microstructure. The 

concept is further explored in a later work by Šejnoha and co-workers [59] 

devoted to the study of historical masonry, with a specific focus on the non-

periodic masonry bonds observed in the aforementioned Charles Bridge in 

Prague. Finally, it must be noted that the concept of SEPUC is sufficiently 

general to enable its application to other non-periodic media such as mastic 

asphalt mixtures [60], plain weave composites [61], and porous materials [62]. 

A different approach is presented in a series of two works authored by Milani & 

Lourenço [63][64]. These aim at deriving in- and out-of-plane homogenized 

failure surfaces for a REV consisting of a central block encircled by several 

others in a random arrangement, all connected through rigid-plastic interfaces. 

Here, a series of Monte Carlo simulations is repeated on the REV, assuming the 

length and height of each block as stochastic variables. This is equivalent to 

consider a random disposition of the mortar joints, implying that the overall 

dimensions of the REV vary at each Monte Carlo simulation. An envelope of 

homogenized failure surfaces is then obtained, and its average is deemed 

representative of the chosen geometry. 

Eventually, Cecchi & Sab use the identification procedure they previously 

presented in [30] to address the in-plane [65] and out-of-plane [66] elastic 

response of brickwork displaying a random arrangement of blocks. In both 

cases, the starting point is a cell consisting of one central block encircled by six 

other blocks, arranged with a running bond pattern. Therefore, a random 

perturbation (ultimately expressed as a parameter) is introduced into this 

discrete model by changing the position of the vertical interfaces between the 

various blocks, which implies a random variation of their length - their height and 

width are instead unaffected. The effects of the random perturbation are inquired 

in terms of the effective elastic moduli of the homogenized plate model for the 

in-plane case, and in terms of the bending stiffnesses for the out-of-plane case. 

The extension of this approach to the elastoplastic range is carried out in a work 

by Baraldi & Cecchi [67], where they add a further perturbation in which also the 

height of the blocks is changed. The structural application focuses on the 
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collapse behavior of rectangular masonry panels, expressed in terms of collapse 

load and failure mechanisms. 

2.4.1 Homogenization Applied to Non-Periodic Multi-Leaf Walls 

The literature dealing with multi-leaf walls is in general very scarce; works that 

seek to apply homogenization to such kind of walls are practically nonexistent. 

One attempt can be found in the work of Drougkas and co-workers [26], where 

the proposed model for the analysis of periodic masonry is aptly modified to 

account for a three-leaf running bond masonry wall. An application directly 

devoted to the study of multi-leaf walls is presented by Casolo & Milani [68]. 

Here, the investigation involves two three-leaf walls presenting a quasi-periodic 

arrangement of units: one wall consists of large squat blocks and weak 

transversal interconnection, whereas the other has longer clay bricks with 

slightly better transversal interconnection. Three mechanical models are devised 

for representation at the meso-scale: 

▪ One employing a simplified FE averaging procedure on a sufficiently 

large REV subject to increasing bending and torsion. 

▪ One making use of a simplified kinematics of the REV in both the outer 

wythes and the inner filler, which are treated independently. 

▪ One exploiting the RBSM with suitable nonlinear mechanical properties 

for the springs, considering limited interlocking between core and 

external layers. 

All three models are required to reproduce (1) orthotropy in bending, depending 

on texture and transversal interlocking, and (2) the influence of vertical in-plane 

pre-compression, both during pre-peak and post-peak phases. The numerical 

application employs only the RBSM for the study of a church façade damaged 

during the Friuli earthquake. 

2.5 Conclusions 

An exhaustive literature review has been carried out in this chapter, focused on 

the numerical strategies commonly adopted for modelling masonry and with a 

special attention to the technique known as homogenization in all its 

applications. Some considerations can be inferred from the presented literature 

review: 
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▪ The macro- and micro-modelling numerical strategies have found and 

still find extensive use in literature, despite their undeniable drawbacks: 

this is due to the immediate applicability to large-scale structures in the 

case of macro-modelling, and to the undeniable accuracy in 

representing the actual configuration of masonry in the case of micro-

modelling. 

▪ Over the last quarter of century, homogenization has emerged as a 

viable and reliable numerical strategy for the mechanical modelling of 

periodic masonry, representing a satisfying compromise between the 

macro- and micro-modelling. 

▪ Since the beginning of its popularity and until nowadays, the main 

application of homogenization is oriented to deriving the elastic 

characteristics of masonry, which is most commonly (and rightfully) 

modelled as an orthotropic material. 

▪ Homogenization has proved its usefulness also for non-linear 

applications, either devoted to performing non-linear analyses or to 

defining damage models. 

▪ The pairing of homogenization and the lower and upper bound theorem 

of limit analysis has been explored by some authors, giving interesting 

results in terms of in- and out-of-plane collapse behavior of masonry. 

▪ Despite an apparent contradiction to its founding concept (the 

identification of a Representative Element of Volume), some methods 

have been developed that enable the application of homogenization 

also to non-periodic masonry. 

▪ The study of multi-leaf walls is seldom addressed by the technical 

literature, let alone the application of homogenization for assessing their 

macroscopic behavior. 

From the literature review, it clearly emerges the lack of a comprehensive model 

for non-periodic masonry that combines homogenization and limit analysis. This 

model must be capable of considering the actual bond of real non-periodic 

masonry panels, therefore it requires also the implementation of a procedure 

devoted to the creation of a 2D or 3D finite element mesh from the image (or 

simply the sketch) of the real non-periodic masonry panel under consideration. 

The model must also be capable of addressing both the in- and out-of-plane 
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collapse behavior of non-periodic masonry, with the possibility to extract the 

deformed shapes at collapse for selected in- and out-of-plane load conditions. 

Eventually, the formulation of the model must be general enough to be extended 

to multi-leaf non-periodic masonry walls, for which the lack of dedicated literature 

is most evident. 
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CHAPTER 3 

 MESH GENERATOR FOR MASONRY PANELS 

Despite their obvious limitations, macroscale models do not require an accurate 

description of masonry, not even the actual arrangement of its blocks. 

Conversely, approaches which separately account for each masonry constituent 

– such as micro-, mesoscale, and homogenization-based approaches – indeed 

request the correct representation of the masonry bond, also from a geometrical 

point of view. In fact, both the creation of the actual masonry geometry for 

meshing purposes and the generation of a finite element mesh for a suitable 

representation of that geometry are two issues on their own, and have been 

seldom addressed in the past. One possible solution may be represented by the 

use of commercial computer-aided design software such as AutoCAD or 

Rhinoceros: the image representing the investigated masonry geometry is 

imported into the workspace, then the boundaries of the units are manually 

drawn using the available tools in the software. The resulting geometry is then 

exported in a suitable format in finite element software where the mesh is 

created. Another solution is the use of finite-element mesh generator, for 

instance the free software Gmsh: while it directly aims at generating a finite 

element mesh, the actual masonry geometry must first be reconstructed using 

the tools made available by the software, which makes the procedure long and 

cumbersome. It is then evident the need for a simple but straightforward 

procedure for creating a finite element mesh for a masonry bond directly from 

the image depicting the geometry. This chapter presents two similar but 

separate procedures that enable the creation of 2D and 3D finite element 

meshes; the latter is also extended for the creation of a 3D finite element mesh 

of a multi-leaf wall. Specifically, Section 3.1 describes the “pixel strategy” that 

enables the creation of a 2D finite element mesh from the rasterized sketch of a 

masonry panel with a generic bond, implemented in a MATLAB function. Section 

3.2 is devoted to presenting the “voxel strategy” that instead allows the 

generation of a 3D finite element mesh, again from the rasterized sketch of a 

masonry panel. Section 3.3 introduces the so-called “coarsing strategy” aiming 
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at reducing the number of finite element in both the 2D and 3D finite element 

meshes in cases where the original rasterized sketch contains a high number of 

pixels. Finally, Section 3.4 briefly describes the procedure for creating the 3D 

finite element mesh of a multi-leaf masonry wall. 

3.1 2D Mesh Generator 

The approach used for the generation of the 2D finite element mesh goes under 

the name “pixel strategy” because it automatically creates finite elements from 

the pixels of the picture. The source image must be the rasterized sketch of a 

masonry panel, which is easily obtained in MATLAB [1] by using the Image 

Processing Toolbox functions available in the software library. This rasterized 

sketch must either be a black-and-white or greyscale image, in which units and 

mortar are each characterized by distinct colors; a black-and-white rasterization 

is in fact preferred. The creation of the FE mesh occurs through a MATLAB 

function. The user simply needs to input the actual dimensions of the considered 

panel. The function converts the picture into an M×N×3 array, where M and N 

are the number of pixels along the vertical and horizontal directions of the image, 

and the 3 “transversal” layers each contain one entry of the pixel’s RGB triplet. 

Namely, the Red, Green, and Blue values of the triplet are listed in the first, 

second, and third layer, respectively. Then, a simple M×N matrix containing only 

the Red values of the triplet is extracted from the bigger array. Afterwards, each 

pixel is treated as the centroid of a single finite element, and is provided with XY 

coordinates determined from the input global dimensions (Fig. 3.1). These 

coordinates are evaluated according to a reference system whose origin is 

located at the centroid of the considered masonry element. This procedure 

enables the creation of planar finite elements, whose shape is generally a 

regular rectangular. The XY coordinates of each element’s four nodes are then 

calculated starting from those of its centroid. 
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Fig. 3.1. Pixel strategy for the creation of finite elements. 

Two distinct matrices are then created: one is named “node matrix” and, for each 

node, contains its XY coordinates and ID number - ordered from top to bottom 

first, and from left to right second; the other is named “element matrix” and, for 

each element, contains its ID number, the ID numbers of its four nodes (listed in 

a counterclockwise sense starting from the top-left corner), the XY coordinates 

of its centroid, and eventually its “material flag”. This indicates whether the 

element pertains to a mortar joint or a unit, depending on the Red value of its 

RGB triplet. Furthermore, a third matrix is created, named “macro element 

matrix”: through functions made available in the Image Processing Toolbox, an 

ID number is assigned to each masonry unit (“macro element”). The macro 

element representing mortar is given an ID number equal to zero. Then, the ID 

numbers of the elements belonging to each macro element are extracted, and 

the “element matrix” is updated so that each finite element is also provided with 

the ID number of its related macro element. Eventually, the “macro element 

matrix” is created, which for each macro element (excluding mortar) lists its ID 

number and the XY coordinates of its centroid. An example of the FE mesh 

resulting from the procedure - visualized through the patch function - is 

presented in Fig. 3.2 for a sample masonry element, compared to the original 

black-and-white rasterized source image. 
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(a) (b) 

Fig. 3.2. (a) Black-and-white rasterized sketch of a sample masonry element; (b) 2D 
discretization. 

3.2 3D Mesh Generator 

Like the previous case, the 3D finite element mesh is created in MATLAB from 

the rasterized image file of a masonry bond. However, the approach used here 

goes under the name “voxel approach” because it automatically generates finite 

elements from voxels, entities that are the 3D equivalent of 2D pixels. This 

approach is partially inspired by a strategy for modelling historical masonry 

buildings presented by Castellazzi and co-workers in [2]. The strategy consists 

in three steps: first, the geometrical domain – conceived as a cloud of points – 

is created in a semi-automatic way (for example via a photogrammetric survey); 

then, a FE mesh consisting of 3D brick elements is generated through structural 

discretization starting from the aforementioned cloud of points; eventually, a 

suitable characterization of FE mesh and the connection between adjacent 

structural macro-elements is assumed. 

As previously mentioned, the procedure for creating the 3D mesh starts from 

obtaining the rasterized sketch of the considered masonry bond, for instance by 

using the Image Processing Toolbox functions available in MATLAB. This sketch 

represents the source image for the procedure and must be either greyscale or 

black-and-white so that units and mortar are uniquely identified by distinct colors. 

The source image is then imported into the MATLAB function purposefully 

written for the creation of the 3D mesh; the user must also input the real 

dimensions of the considered masonry element, the number of finite elements 
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desired in the transversal direction, and the transversal configuration of the 

considered masonry element. The latter feature is a novelty of this procedure 

and enables the user to choose between a simple transversal extrusion of the 

in-plane configuration, and a more complex transversal configuration where the 

masonry units are provided with an ellipsoidal shape. In this case, the in-plane 

configuration represents the mid-plane of the 3D mesh; the ellipsoidal shape is 

obtained by conveniently reducing the mid-plane surface of the units so that their 

3D configuration resembles either a full ellipsoid or a truncated one. 

  

(a) (b) 

 

 

(c) (d) 

  

(e) (f) 

Fig. 3.3. (a) Sample image of a stone embedded in mortar; (b) mid-plane of the 3D 
FE mesh; (c) 3D FE mesh with extruded stone; (d) aerial view of the 3D FE mesh 
with ellipsoidal stone; (e) 3D FE mesh with ellipsoidal stone; (f) section of 3D FE 

mesh with ellipsoidal stone. 
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Fig. 3.3 shows an example of the aforementioned feature: specifically, Fig. 3.3a 

shows the greyscale rasterized sketch of a stone embedded in mortar; Fig. 3.3b 

shows the mid-plane of the 3D finite element mesh obtained for the stone; Fig. 

3.3c shows the 3D finite element mesh obtained considering the stone extruded 

along the transversal direction; Fig. 3.3d-e show the 3D finite element mesh 

obtained considering an ellipsoidal stone; finally, Fig. 3.3f shows a section of this 

version of the 3D finite element mesh, where inner layers of FEs pertaining to 

the ellipsoidal stone are denoted with different colors. 

The MATLAB function converts the source image into an M×N×3 array, where 

M and N are the number of pixels along the vertical and horizontal directions of 

the image, and the 3 layers each contain one entry of the pixel’s RGB triplet. 

Namely, the Red, Green, and Blue values of the triplet are listed in the first, 

second, and third layer, respectively. Then, a simple M×N matrix containing only 

the Red values of the triplet is extracted from the bigger array. Afterwards, an 

M×N×O array is constructed, where O is the number of transversal finite 

elements; each M×N layer represents the configuration related to that specific 

finite element layer, which depends on the chosen transversal configuration. 

Each single element of the M×N×O array corresponds to a voxel, which is 

treated as the centroid of a single finite element and is provided with XYZ 

coordinates that are determined from the input global dimensions (as shown in 

Fig. 3.4). These coordinates are evaluated according to a reference system 

whose origin is located at the centroid of the considered masonry element, 

where X and Y represent the horizontal and vertical axes, respectively, while Z 

is the transversal direction. This procedure enables the generation of solid brick-

shaped finite elements. The XYZ coordinates of each element’s eight nodes are 

then calculated starting from those of its centroid. 



  

48 

 

Fig. 3.4. Voxel strategy for creating the 3D finite element mesh. 

Analogously to the procedure for the 2D mesh, a subscript is included aiming at 

the identification of the masonry units (“macro element”): through functions 

made available in the Image Processing Toolbox library, each masonry unit is 

given an ID number, and the XYZ coordinates of its centroid are determined as 

well. Three distinct matrices are then created: the first is named “node matrix” 

and, for each node of the mesh, contains its XYZ coordinates and ID number – 

ordered in a top-to-bottom fashion that starts from the front-top-left corner and 

ends in the rear-bottom-right corner. The second is named “matrix element” and, 

for each finite element of the mesh, contains its ID number, the ID number of its 

eight nodes (listed in a counterclockwise sense starting from the front-top-left 

node), the XYZ coordinates of its centroid, its “material flag” that indicates 

whether it pertains to mortar or to a masonry unit (depending on the Red value 

of the original pixel’s RGB triplet), and the ID number of its related masonry unit 

(in case of mortar elements, this ID number is set to zero). The third and final 

matrix is named “macro element matrix” and, for each masonry unit, lists its ID 

number and its centroid’s XYZ coordinates. An example of the 3D finite element 

mesh resulting from this procedure – visualized through the patch function in 

MATLAB – is presented in Fig. 3.5 for the same sample masonry element shown 

earlier, for both the “extruded” and “ellipsoidal” cases. 
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(a) 

  

(b) (c) 

Fig. 3.5. (a) Black-and-white rasterized sketch of the sample masonry element; (b) 
3D discretization with extruded transversal configuration; (c) 3D discretization with 

ellipsoidal units. 
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3.3 Coarsing Strategy 

A further subscript is included in both MATLAB functions that sets a procedure 

to decrease the number of finite elements according to a “coarsing strategy” 

whose ultimate goal is to reduce the computational effort needed for the 

subsequent numerical analyses. In the original M×N matrix representing the in-

plane configuration, this subscript condensates a square consisting of n×n 

entries (n = 2÷5) into a single entry of a new Mr×Nr matrix (see Fig. 3.6), where 

Mr and Nr are the reduced number of pixels (which have increased dimensions) 

along the vertical and horizontal directions, respectively. 

 

Fig. 3.6. Coarsing strategy for reducing the mesh size. 

The physical nature of these new pixels is determined by a threshold 

representing the overall number of mortar pixels in the original configuration: if 

the number is lower than the selected threshold, the new pixel is treated as a 

unit pixel, otherwise it becomes a mortar pixel. An example of the result in terms 

of increase of the mesh size is shown in Fig. 3.7 for the four considered coarse 

cases, applied to the same sample masonry element; in this case, the coarser 

meshes represent the mid-plane configuration of the overall 3D finite element 

mesh. It can be easily noted that, as the mesh becomes coarser, its accuracy in 

representing the original geometrical layout decreases. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 3.7. (a) Black-and-white rasterized sketch of the sample masonry element; (b) 
2D discretization with a 2×2 coarsing strategy; (c) 2D discretization with a 3×3 

coarsing strategy; (d) 2D discretization with a 4×4 coarsing strategy; (e) 2D 
discretization with a 5×5 coarsing strategy. 
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3.4 3D Mesh Generator for Multi-Leaf Masonry Walls 

A further MATLAB function enables the creation of a 3D finite element mesh for 

a multi-leaf wall. The procedure is basically the same as the one for the 

generation of the 3D finite element mesh, only with different inputs: the user 

must choose the number of wythes for the considered multi-leaf wall, and is 

allowed to select a separate source image for each wythe. Moreover, the choice 

of the transversal configuration is still enabled for each wythe, as well as the 

coarsing strategy. In this case, the user must select a single coarsing strategy 

to be shared by all the wythes. Once these setups are chosen, the procedure 

runs in the same way as for the single-leaf 3D finite element mesh. An example 

of the final result is shown in Fig. 3.8 for a three-leaf wall in which the outer 

wythes are generated from the same source image of Fig. 3.2a. 

 

Fig. 3.8. 3D finite element mesh for a three-leaf wall. 
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CHAPTER 4 

 2D HOMOGENIZED LIMIT ANALYSIS OF 
NON-PERIODIC MASONRY 

This chapter presents an application of homogenized limit analysis for non-

periodic masonry that aims at deriving in-plane homogenized failure surfaces for 

this specific type of material. This procedure is implemented into a MATLAB 

function that contains an upper bound limit analysis problem combined with a 

homogenization approach, written as a linear programming problem in standard 

form. In-plane homogenized failure surfaces for masonry REVs that are 

extracted from a larger non-periodic masonry panel. The choice of a REV that 

can be deemed statistically representative of the considered masonry panel is 

partially based on the “test-window” method introduced by Cluni & Gusella [1]. 

On the other hand, the determination of the mean homogenized failure surface 

for each REV loosely follows the approach by Milani & Lourenço [2]. The 

homogenized failure surfaces are obtained for in-plane load conditions in the 

tension-tension range only. 

Section 4.1 is devoted to describing in detail the mathematical formulation of the 

in-plane upper bound limit analysis problem as conceived for this application. 

Section 4.2 presents the results in terms of in-plane homogenized failure 

surfaces and selected deformed shapes at collapse for six case studies of real 

masonry buildings, all characterized by a non-periodic bond but displaying 

various degrees of irregularity (rubble, quasi-periodic, quasi-regular). In 

particular, the suitable choice of a REV for non-periodic masonry elements is 

extensively discussed in Section 4.2.1. Finally, Section 4.3 offers conclusive 

remarks on the results presented in the previous section by drawing 

comparisons among the six case studies. 
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4.1 Problem Formulation 

This section presents the mathematical formulation behind the problem that 

aims at deriving in-plane homogenized failure surfaces for non-periodic masonry 

walls. Here, an upper bound limit analysis problem is combined with a 

homogenized approach and is formulated as a standard form linear 

programming problem in MATLAB [3] that is also subjected to some equality 

constraints coming from the mathematical formulation, and employs a finite 

element discretization. 

The use of linear programming and FEM for formulating an upper bound limit 

analysis problem is first introduced by Sloan [4]. However, in the formulation 

here proposed the discretization of the masonry test-window adopts rigid, 

rectangular 2D elements, also considered to be without rotation rate (𝜙̇ = 0) in 

order to handle more elements. This allows a huge reduction of the number of 

unknowns in the problem, thus making the 2D mesh resulting from the pixel 

strategy particularly suitable for use. 

The hypothesis of rigid elements without rotation rate means that any element 

is uniquely and fully described by the velocity field of its centroid {𝑢̇𝑥, 𝑢̇𝑦}. 

Recalling the classical formula for the displacement rate field in the 

homogenization theory [5], the two components can be expressed as: 

𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟 + 𝐸̇𝑥𝑥𝑥𝐺 + 𝐸̇𝑥𝑦𝑦𝐺  (4.1) 

𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟 + 𝐸̇𝑥𝑦𝑥𝐺 + 𝐸̇𝑦𝑦𝑦𝐺  (4.2) 

where 𝑢̇𝑥,𝑝𝑒𝑟 and 𝑢̇𝑦,𝑝𝑒𝑟 are the periodic velocities of the element, whereas 𝐸̇𝑥𝑥, 

𝐸̇𝑦𝑦, and 𝐸̇𝑥𝑦 are the components of the average strain rate tensor (with 𝐸̇𝑦𝑥 equal 

to 𝐸̇𝑥𝑦 for symmetry). In the following subsections, the complete formulation of 

the homogenization-limit analysis problem is presented (called “full approach”); 

eventually, a reduced formulation named “master-slave approach” is described, 

which aims at reducing the computational time requested for the solution of the 

problem. 

4.1.1 Velocity Jumps and Plastic Flow Constraints 

Since all the elements are rigid, plastic dissipation can only occur across their 

mutual interfaces; this is expressed as a discontinuity in the displacement rate 
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field. A formulation devoted to addressing such feature is presented by Sloan & 

Kleeman in a classic work [6]; other formulations are offered by Ferris & Tin-Loi 

[7] and Krabbenhoft and co-workers [8]. This simplification allows for a dramatic 

reduction of the number of unknowns in the problem. Because of the pixel 

strategy used for the creation of the mesh, each element has its four sides 

oriented according to the local reference system by default. Therefore, the 

tangential and normal velocity jumps for horizontal and vertical interfaces (see 

Fig. 4.1 and Fig. 4.2) are trivially evaluated according to Eqs. (4.3), (4.4) and 

(4.5), (4.6), respectively: 

 

Fig. 4.1. Velocity jumps for a generic horizontal interface. 

Δ𝑢̇𝑛 ≡ ∆𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑦,𝑝𝑒𝑟
𝑖 + 𝐸̇𝑦𝑦(𝑦𝐺

𝑗
− 𝑦𝐺

𝑖 ) (4.3) 

Δ𝑢̇𝑡 ≡ ∆𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑥,𝑝𝑒𝑟
𝑖 + 𝐸̇𝑥𝑦(𝑦𝐺

𝑗
− 𝑦𝐺

𝑖 ) (4.4) 

 

 

Fig. 4.2. Velocity jumps for a generic vertical interface. 

Δ𝑢̇𝑡 ≡ ∆𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟
𝑙 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑘 + 𝐸̇𝑥𝑦(𝑥𝐺
𝑙 − 𝑥𝐺

𝑘) (4.5) 

Δ𝑢̇𝑛 ≡ ∆𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟
𝑙 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑘 + 𝐸̇𝑥𝑥(𝑥𝐺
𝑙 − 𝑥𝐺

𝑘) (4.6) 
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As shown in [6], a kinematically admissible velocity field must satisfy constraints 

given by an associated flow rule. For the purposes of the numerical applications 

that follow, a Mohr-Coulomb failure criterion with a tension cut-off is employed. 

The related bounding yield surface can simply be expressed in terms of normal 

stress 𝜎𝑛 and tangential stress 𝜏 as: 

|𝜏| ≤ 𝑐 − 𝜎𝑛 tan𝜙 ∧ 𝜎𝑛 ≤ 𝑓𝑡 (4.7) 

Therefore, the bounding yield surface for the Mohr-Coulomb criterion employing 

the tension cut-off (Fig. 4.3) consists of three straight lines whose expressions 

are all linear both in 𝜏 and 𝜎𝑛 with the general form 𝐴𝑛
𝑞
𝜎𝑛 + 𝐴𝑡

𝑞
𝜏 − 𝐶𝐼

𝑞
= 0: 

 

Fig. 4.3. Mohr-Coulomb criterion + tension cut-off. 

𝐹(𝜏, 𝜎𝑛) = {

𝜏 + 𝜎𝑛 tan𝜙 − 𝑐
−𝜏 + 𝜎𝑛 tan 𝜙 − 𝑐

𝜎𝑛 − 𝑓𝑡

} = 0 (4.8) 

where 𝜙 is the friction angle, 𝑐 the cohesion, and 𝑓𝑡 the tensile strength assigned 

to the interfaces. It is trivial to notice that distinct parameters can in general be 

used for different interfaces (namely, unit-unit, mortar-unit, and mortar-mortar 

interfaces). 

Since the interfaces can only be either horizontal or vertical, these expressions 

do not need to be modified in any case as 𝜏 and 𝜎𝑛 are themselves sufficient to 

describe the stress state at the interfaces. For an associated flow rule the 

velocity jumps can be simply expressed as: 
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Δ𝑢̇𝑛 = ∑ 𝜆̇𝐼
𝑞 𝜕𝐹𝑞

𝜕𝜎𝑛

3

𝑞=1

= ∑ 𝜆̇𝐼
𝑞
𝐴𝑛

𝑞

3

𝑞=1

= 𝜆̇𝐼
1 tan𝜙 + 𝜆̇𝐼

2 tan𝜙 + 𝜆̇𝐼
3 (4.9) 

Δ𝑢̇𝑡 = ∑ 𝜆̇𝐼
𝑞 𝜕𝐹𝑞

𝜕𝜏

3

𝑞=1

= ∑ 𝜆̇𝐼
𝑞
𝐴𝑡

𝑞

3

𝑞=1

= 𝜆̇𝐼
1 − 𝜆̇𝐼

2 (4.10) 

where both Δ𝑢̇𝑛 and Δ𝑢̇𝑡 can be either ∆𝑢̇𝑥 or ∆𝑢̇𝑦, depending on the considered 

interface. The MATLAB script employs a function containing an algorithm that 

easily detects which type of interface is currently considered (i.e. horizontal or 

vertical) and assigns the correct expression for both Δ𝑢̇𝑛 and Δ𝑢̇𝑡. In any case, 

the two expressions for these quantities - coming from the velocity jumps and 

the plastic flow constraints - are put equal to each other. For instance, 

considering a single vertical interface 𝐼 between elements 𝑖 and 𝑗, their 

combinations become: 

Δ𝑢̇𝑛 = 𝑢̇𝑥,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑥,𝑝𝑒𝑟
𝑖 + 𝐸̇𝑥𝑥(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) = ∑ 𝜆̇𝐼
𝑞
𝐴𝑛

𝑞

3

𝑞=1

 (4.11) 

Δ𝑢̇𝑡 = 𝑢̇𝑦,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑦,𝑝𝑒𝑟
𝑖 + 𝐸̇𝑥𝑦(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) = ∑ 𝜆̇𝐼
𝑞
𝐴𝑡

𝑞

3

𝑞=1

 (4.12) 

The overall constraints can be then written as: 

𝑢̇𝑥,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑥,𝑝𝑒𝑟
𝑖 − ∑ 𝜆̇𝐼

𝑞
𝐴𝑛

𝑞

3

𝑞=1

+ 𝐸̇𝑥𝑥(𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 ) = 0 (4.13) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑦,𝑝𝑒𝑟
𝑖 − ∑ 𝜆̇𝐼

𝑞
𝐴𝑡

𝑞

3

𝑞=1

+ 𝐸̇𝑥𝑦(𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 ) = 0 (4.14) 

Using a matrix formulation to compact Eqs. (4.13) and (4.14), these become: 

[
1 −1 0 0
0 0 1 −1

]

[
 
 
 
 𝑢̇𝑥,𝑝𝑒𝑟

𝑗

𝑢̇𝑥,𝑝𝑒𝑟
𝑖

𝑢̇𝑦,𝑝𝑒𝑟
𝑗

𝑢̇𝑦,𝑝𝑒𝑟
𝑖

]
 
 
 
 

+ [
− tan𝜙 − tan 𝜙 −1

−1 1 0
] [

𝜆̇𝐼
1

𝜆̇𝐼
2

𝜆̇𝐼
3

] + (4.15) 
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+[
(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) 0 0

0 0 (𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 )
] [

𝐸̇𝑥𝑥

𝐸̇𝑦𝑦

𝐸̇𝑥𝑦

] = [
0
0
] 

This matrix formulation can be written even more compactly: 

𝑨𝟏𝟏
𝒆𝒒,𝒊𝒋

𝒖̇𝒑𝒆𝒓
𝒊𝒋

+ 𝑨𝟏𝟐
𝒆𝒒,𝒊𝒋

𝝀̇𝑰 + 𝑨𝟏𝟑
𝒆𝒒,𝒊𝒋

𝑬̇ = 𝟎 (4.16) 

From Eq. (4.16) it is trivial to observe that the unknown variables of the linear 

programming problem are the periodic velocity field of the two adjoining 

elements 𝑖 and 𝑗 (collected in the vector 𝒖̇𝒑𝒆𝒓
𝒊𝒋

), the plastic multiplier rates of 

interface 𝐼 (𝝀̇𝑰), and the components of the average strain rate tensor (𝑬̇). For 

the overall problem, some simple assemblage operations are performed and the 

constraint in its global form becomes: 

𝑨𝟏𝟏
𝒆𝒒

𝒖̇𝒑𝒆𝒓 + 𝑨𝟏𝟐
𝒆𝒒

𝝀̇𝑰,𝒂𝒔𝒔 + 𝑨𝟏𝟑
𝒆𝒒

𝑬̇ = 𝟎 (4.17) 

4.1.2 Periodicity Boundary Conditions 

To ensure consistency with the homogenization approach, the linear 

programming problem must also include constraints related to the periodicity of 

the velocity field at the boundaries. Specifically, elements on the same line at 

the opposite sides of the test-window (Fig. 4.4) must share the same periodic 

velocities. 

 

Fig. 4.4. Periodicity boundary conditions. 
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𝑢̇𝑥,𝑝𝑒𝑟
𝑎 = 𝑢̇𝑥,𝑝𝑒𝑟

𝑏 ⇒ 𝑢̇𝑥,𝑝𝑒𝑟
𝑎 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑏 = 0 (4.18) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑎 = 𝑢̇𝑦,𝑝𝑒𝑟

𝑏 ⇒ 𝑢̇𝑦,𝑝𝑒𝑟
𝑎 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑏 = 0 (4.19) 

𝑢̇𝑥,𝑝𝑒𝑟
𝑐 = 𝑢̇𝑥,𝑝𝑒𝑟

𝑑 ⇒ 𝑢̇𝑥,𝑝𝑒𝑟
𝑐 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑑 = 0 (4.20) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑐 = 𝑢̇𝑦,𝑝𝑒𝑟

𝑑 ⇒ 𝑢̇𝑦,𝑝𝑒𝑟
𝑐 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑑 = 0 (4.21) 

The global compact formulation of this constrain is trivially: 

𝑨𝟐𝟏
𝒆𝒒

𝒖̇𝒑𝒆𝒓 = 𝟎 (4.22) 

4.1.3 Normalization of Dissipated External Power 

A macroscopic tensile load condition for the test-window is defined through two 

angles, as shown in Fig. 4.5. 

 

Fig. 4.5. Angles defining the tensile in-plane load condition. 

Angle 𝜓 is named “loading angle” and represents the arctangent of the ratio 

between the principal macroscopic stresses Σ22 and Σ11; specifically, it varies 

between 0° (uniaxial horizontal tension) and 90° (uniaxial vertical tension), with 

any value within the range expressing a biaxial tensile load condition. On the 
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other hand, angle 𝜃 represents the inclination of the principal directions with 

respect to the local reference system. When 𝜃 is different from zero, the principal 

macroscopic stresses can be split in two components that are normal and 

tangential to their boundaries, thus marking the appearance of shear 

macroscopic stresses as well. The expressions of the macroscopic stresses in 

terms of 𝜓 and 𝜃 are: 

Σ𝑥𝑥 =
1

2
[cos𝜓 (1 + cos 2𝜃) + sin𝜓 (1 − cos 2𝜃)] (4.23) 

Σ𝑦𝑦 =
1

2
[cos𝜓 (1 − cos 2𝜃) + sin 𝜓 (1 + cos 2𝜃)] (4.24) 

Σ𝑥𝑦 =
1

2
(cos𝜓 − sin𝜓) cos 2𝜃 tan 2𝜃 (4.25) 

The dissipated external power is then simply given as the summation of the 

products between the macroscopic stresses and the average strain rate tensor 

components, which are associated by duality. 

𝑃𝑒𝑥𝑡 = Σ𝑥𝑥𝐸̇𝑥𝑥 + Σ𝑦𝑦𝐸̇𝑦𝑦 + Σ𝑥𝑦𝐸̇𝑥𝑦 (4.26) 

In the framework of limit analysis, it is renowned that the collapse load – despite 

being unique – is indeed associated to infinite collapse mechanisms; the 

physical meaning of such occurrence is that the motion of the collapse 

mechanism is unrestricted. One simple and popular way to identify a single 

collapse mechanism is to enforce a normalization of the dissipated external 

power, equaling it to 1 [5]: 

𝑃𝑒𝑥𝑡 = Σ𝑥𝑥𝐸̇𝑥𝑥 + Σ𝑦𝑦𝐸̇𝑦𝑦 + Σ𝑥𝑦𝐸̇𝑥𝑦 = 1 (4.27) 

In this way, the motion of the collapse mechanism is indeed restricted; similarly, 

it can be stated that the actual collapse mechanism is the one satisfying the 

normalization condition. Eventually, this becomes a further constraint for the 

linear programming problem in the form: 

𝑨𝟑𝟑
𝒆𝒒

𝑬̇ = 1 (4.28) 
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4.1.4 Power Dissipation in Velocity Discontinuities 

The expression for power dissipated across a velocity discontinuity whose length 

is 𝐿 can be written as: 

𝑃𝑖𝑛𝑡 = ∫ (𝜎𝑛Δ𝑢̇𝑛 + 𝜏Δ𝑢̇𝑡)𝑑𝐿
𝐿

 (4.29) 

Substituting Eqs. (4.9) and (4.10), this becomes: 

∫ (𝜎𝑛 ∑ 𝜆̇𝐼
𝑞
𝐴𝑛

𝑞

3

𝑞=1

+ 𝜏 ∑ 𝜆̇𝐼
𝑞
𝐴𝑡

𝑞

3

𝑞=1

)𝑑𝐿
𝐿

= ∫ ∑ 𝜆̇𝐼
𝑞
(𝜎𝑛𝐴𝑛

𝑞
+ 𝜏𝐴𝑡

𝑞
)

3

𝑞=1

𝑑𝐿
𝐿

 (4.30) 

The dissipated internal power can then be written as: 

𝑃𝑖𝑛𝑡 = 𝐿 ∑ 𝜆̇𝐼
𝑞
𝐶𝐼

𝑞

3

𝑞=1

 (4.31) 

 

In matrix formulation this becomes: 

𝑃𝑖𝑛𝑡 = 𝑪𝑰
𝑻𝝀̇𝑰 (4.32) 

For the global problem the assembled final expression is: 

𝑃𝑖𝑛𝑡 = 𝑪𝑰,𝒂𝒔𝒔
𝑻 𝝀̇𝑰,𝒂𝒔𝒔 (4.33) 

4.1.5 Assembly and Solution of the Linear Programming Problem 

The homogenized limit analysis problem is then formulated as a linear 

programming problem, in which the equality constraints are given by Eqs. (4.17), 

(4.22), and (4.28), whereas the objective function to be minimized is the 

dissipated internal power as expressed in Eq. (4.33). This problem must also be 

formulated in a standard form, which allows a smoother solution of the 

computational problem. The standard form requires that each variable is greater 

or equal to zero. In the present problem, this implies a slight modification of the 

actual variables, namely the elements’ velocity field and the average strain rate 
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tensor components. In fact, both must be expressed as the difference of two 

nonnegative quantities: 

𝑢̇𝑖,𝑝𝑒𝑟
𝐸 = 𝑢̇𝑖,𝑝𝑒𝑟

𝐸,+ − 𝑢̇𝑖,𝑝𝑒𝑟
𝐸,−

 𝑖 = 𝑥, 𝑦 (4.34) 

𝐸̇𝑖𝑗 = 𝐸̇𝑖𝑗
+ − 𝐸̇𝑖𝑗

− 𝑖, 𝑗 = 𝑥, 𝑦 (4.35) 

Eventually, the proper standard form for this linear programming problem is: 

Minimize 𝑪𝑻𝑿 (4.36) 

Subject to 𝑨𝑿 = 𝑩 (4.37) 

 𝑿 ≥ 𝟎 (4.38) 

 

  



  

64 

where 

𝑨 = [

𝑨𝟏𝟏
𝒆𝒒

−𝑨𝟏𝟏
𝒆𝒒

𝑨𝟐𝟏
𝒆𝒒

−𝑨𝟐𝟏
𝒆𝒒

𝟎 𝟎

𝑨𝟏𝟐
𝒆𝒒

𝟎
𝟎

𝑨𝟏𝟑
𝒆𝒒

−𝑨𝟏𝟑
𝒆𝒒

𝟎 𝟎
𝑨𝟑𝟑

𝒆𝒒
−𝑨𝟑𝟑

𝒆𝒒
] (4.39) 

𝑿 =

[
 
 
 
 
 
𝒖̇𝒑𝒆𝒓

+

𝒖̇𝒑𝒆𝒓
−

𝝀̇𝑰,𝒂𝒔𝒔

𝑬̇+

𝑬̇− ]
 
 
 
 
 

 (4.40) 

𝑩 = [
𝟎
𝟎
1
] (4.41) 

𝑪 =

[
 
 
 
 

𝟎
𝟎

𝑪𝑰,𝒂𝒔𝒔

𝟎
𝟎 ]

 
 
 
 

 (4.42) 

Some remarks must be done regarding the total number of variables. For a mesh 

consisting of 𝑀 × 𝑁 finite elements, where 𝑀 and 𝑁 are the number of elements 

along the vertical and horizontal directions, respectively, the number of 

interfaces is equal to 2 ∙ 𝑀 ∙ 𝑁 − (𝑀 + 𝑁). The total number of variables is given 

by the following formula: 

4 ∙ 𝑀 ∙ 𝑁 + 3 ∙ [2 ∙ 𝑀 ∙ 𝑁 − (𝑀 + 𝑁)] + 6 =  

= 10 ∙ 𝑀 ∙ 𝑁 + 6 − 3 ∙ (𝑀 + 𝑁) (4.43) 

In the initial formula, the first addendum expresses the number of periodic 

velocities (4 for each element, 2 per direction considering the standard 

substitution), the second expresses the number of interface plastic multiplier 

rates, and the third expresses the number of components of the average strain 

rate tensor (also doubled because of the standard substitution). This means that, 

for the medium-sized picture of a masonry test-window with 300 pixels on each 

side, and considering that one pixel corresponds to one finite element, the total 

number of variables is 898206, which is extremely large and leads to very long 

computational times. Therefore, a strategy aimed at the reduction of the number 
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of variables must certainly be sought: here, the simplification is implemented by 

using a master-slave approach. 

4.1.6 Master-Slave Approach 

The master-slave approach is based on the trivial consideration that in masonry 

walls, under specific conditions, failure occurs due to cracks opening within 

mortar joints and not across units. Specifically, this outcome is observed when 

masonry walls fail under tensile load conditions, as shown in a classical paper 

by Page [9] and later by Backes [10]. This is even truer when mortar presents 

weaker mechanical properties than the units: it is confirmed by experimental 

tests performed by Page, where the ratio between the mean compressive 

strengths of mortar and bricks is about 1:3 [9], and further corroborated by the 

results of shear tests performed by Borri and co-workers shown in [11]. In 

historical masonry structures, mortar often experiences degradation due to 

ageing and exposure to weather conditions, which further reduce its mechanical 

properties. Fig. 4.6 shows an explicative picture of the aforementioned type of 

failure for masonry walls: it represents the façade of a stone masonry church 

heavily damaged during the Central Italy seismic event of August 24th, 2016. It 

can be easily observed how several cracks opened on the façade, all following 

patterns that are solely contained within mortar joints. 

 
Fig. 4.6. Crack patterns within mortar joints in a stone masonry church (Arquata del 

Tronto, Ascoli Piceno, Italy). 
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Subsequently, the full approach can be simplified by solidifying each unit into a 

single macro finite element that governs the kinematics of all its related finite 

elements. In fact, the fundamental relation of this master-slave approach is the 

imposed equality between the velocity field of one macro finite element (the 

master element) and the velocity field of each of its finite elements (the slave 

element). For a generic master element 𝑀𝐸 and a generic slave element 𝐸, the 

equalities are: 

𝑢̇𝑥
𝐸 = 𝑢̇𝑥

𝑀𝐸 = 𝑢̇𝑥,𝑝𝑒𝑟
𝑀𝐸 + 𝐸̇𝑥𝑥𝑥𝐺

𝑀𝐸 + 𝐸̇𝑥𝑦𝑦𝐺
𝑀𝐸  (4.44) 

𝑢̇𝑦
𝐸 = 𝑢̇𝑦

𝑀𝐸 = 𝑢̇𝑦,𝑝𝑒𝑟
𝑀𝐸 + 𝐸̇𝑥𝑦𝑥𝐺

𝑀𝐸 + 𝐸̇𝑦𝑦𝑦𝐺
𝑀𝐸  (4.45) 

This relation is not directly used in the new formulation of the homogenized limit 

analysis problem; instead, it is employed in the post-processing phase to 

reconstruct the full velocity field for all elements. Nonetheless, this approach 

generally leads to a substantial reduction in the total number of unknowns. In 

particular, the variables directly related to the slave elements (i.e. their periodic 

velocity field and the plastic multiplier rates of unit-unit interfaces) are removed 

from the solution vector expressed by Eq. (4.40). 

In the linear programming problem representing the master-slave approach, the 

equality constraint related to velocity jumps and plastic flow for two adjacent 

mortar elements is still expressed by Eq. (4.16). In case one of the two adjacent 

elements is a slave element, Eqs. (4.13) and (4.14) are updated: the periodic 

velocity field and centroid coordinates of the slave element are replaced by those 

of its related master element according to Eqs. (4.44) and (4.45). Conversely, 

the plastic multiplier rates are still evaluated for the mortar-mortar and the unit-

mortar interfaces singularly. The substitution according to Eqs. (4.44) and (4.45) 

is also performed for the periodicity boundary conditions. The condition related 

to the normalization of dissipated external power undergoes no changes, 

whereas the power dissipation in velocity discontinuities is once again limited to 

the mortar-mortar and unit-mortar interfaces. 

4.1.7 Construction of the Homogenized Failure Surfaces 

The post-processing phase of the MATLAB script allows the construction of 

homogenized failure surfaces for the chosen test-window. First, it must be noted 

that the upper bound limit analysis problem as expressed by Eqs. (4.36)-(4.38) 

is in fact a slight modification of the kinematic theorem. Actually, the kinematic 

limit multiplier 𝜒 is the minimum among those computed for each kinematically 
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admissible collapse mechanism. It is usually expressed as the ratio between the 

dissipated internal and external powers: 

𝜇𝑘 =
𝑃𝑖𝑛𝑡

𝑃𝑒𝑥𝑡
 (4.46) 

However, the normalization of the dissipated external power introduced by Eq. 

(4.27) means that the denominator is equal to 1. It follows that: 

𝜇𝑘 = 𝑃𝑖𝑛𝑡 = 𝑪𝑰,𝒂𝒔𝒔
𝑻 𝝀̇𝑰,𝒂𝒔𝒔 (4.47) 

𝜒 = min(𝜇𝑘) = min(𝑪𝑰,𝒂𝒔𝒔
𝑻 𝝀̇𝑰,𝒂𝒔𝒔) (4.48) 

This trivially implies that the minimization of the dissipated internal power, which 

is the ultimate goal of the linear programming problem here developed, directly 

results in the determination of the kinematic limit multiplier. 

The homogenized failure surface is constructed as follows: after selecting a 

value for angles 𝜓 and 𝜃, the linear programming problem is solved and the 

kinematic limit multiplier 𝜒 for that specific load condition is obtained. The 

collapse loads are then calculated by multiplying 𝜒 to the initial macroscopic 

stresses [Σ𝑥𝑥 Σ𝑦𝑦 Σ𝑥𝑦]. Globally, 11 different values of 𝜓 are investigated, 

ranging from 0° to 90° with a sampling step of 9°, for 3 distinct values of 𝜃 (0°, 

22.5°, and 45°). This would result in a 3D homogenized failure surface, but that 

is actually split in three different diagrams representing the 2D projection for 

each 𝜃 and whose axes are Σ𝑥𝑥 and Σ𝑦𝑦. In fact, each pair of collapse loads 𝜒Σ𝑥𝑥 

and 𝜒Σ𝑦𝑦 represents a pair of coordinates in the aforementioned diagram. The 

homogenized failure surfaces are then piecewise linear, consisting of the 

segments linking each adjacent pair of collapse loads. Eventually, it must be 

remarked that it is also possible to plot the failure mode for a specific load 

condition with the MATLAB command patch, reconstructing the position of each 

finite element from the other quantities coming from the solution of the linear 

programming problem (namely, the periodic velocity field and the components 

of the average strain rate tensor) and using Eqs. (4.1) and (4.2). 
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4.2 Case Studies 

Six case studies are investigated in terms of in-plane homogenized failure 

surfaces, all representing actual masonry structures with non-periodic bonds but 

each displaying a different rate of irregularity. Specifically, these case studies 

range from rubble masonry (case study 1) to quasi-periodic masonry (2-4) and 

eventually to quasi-regular masonry (5-6). The difference between quasi-

periodic and quasi-regular is the following: in the former case, the presence of 

bed joints is clearly visible, although there is no periodicity in terms of head joints 

and also the height of the units varies within the considered panel. Conversely, 

in the latter case the units present the same height despite having different 

lengths and a non-periodic arrangement, thus strongly resembling stretcher 

bond masonry. All the case studies are selected from a wider range presented 

in [12] and [13]. 

No experimental tests on the mechanical properties of the considered masonry 

types are available; therefore, for each case the same sets of properties are 

used, which are consistent with those available in literature [14][15]. For the full 

approach, the unit-unit interfaces are supposed to be infinitely resistant. 

Conversely, for both approaches the mortar-unit and mortar-mortar interfaces 

employ a single set of mechanical parameters (cohesion, friction angle, and 

tensile strength) that is reported in Table 4.1. 

Table 4.1 
Mechanical properties for the material employed in all case studies. 

Cohesion [MPa] Friction angle [°] Tensile strength [MPa] 

0.15 30 0.1 

4.2.1 Strategy for the Identification of the Statistical REV 

Four square test-windows of the same dimensions are extracted clockwise from 

the picture of the chosen masonry panel. In the following subsections, each test-

window is denoted with a specific color that is also used for its corresponding 

homogenized failure surface; the colors are listed in Table 4.2. Also, four 

tentative sizes of growing dimensions are a priori identified for each test-window, 

which are listed in Table 4.3. These sizes correspond to different number of 

pixels for each case, since the pictures of the masonry walls of the six case 

studies differ in resolution. The actual dimensions are inferred from the masonry 

geometrical characteristics listed in [12] and [13] for each case. It must be noted 

that, for these case studies, the coarsing strategy has not been exploited. 
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Table 4.2 
Legend expressing the colors of the extracted test-windows for each case study. 

Test-window Color 

A Blue 
B Red 
C Black 
D Green 

 

Table 4.3 
Test-window sizes and corresponding number of pixels for each case study. 

Size 
Area 
[cm2] 

Pixels 

Case 
study 1 

Case 
study 2 

Case 
study 3 

Case 
study 4 

Case 
study 5 

Case 
study 6 

Small 70×70 100×100 108×108 117×117 91×91 103×103 95×95 
        

Medium 100×100 143×143 154×154 167×167 130×130 147×147 135×135 
        

Large 130×130 186×186 200×200 217×217 169×169 191×191 176×176 
        

Huge 160×160 229×229 246×246 267×267 208×208 235×235 217×217 

The homogenized failure surfaces are derived for all the test-windows of the 

same size, along with their envelope and the mean homogenized failure surface 

for the investigated size. The actual kinematic limit multiplier is evaluated for all 

the 11 pairs Σ𝑥𝑥, Σ𝑦𝑦 constituting each of the four homogenized failure surfaces. 

From these, the mean limit multiplier 𝜒̅ and the sample standard deviation 𝜎 are 

calculated, as well as the coefficient of variation 𝜎* (which is the ratio between 

𝜎 and 𝜒̅) expressed as a percentage. When all the 11 coefficients of variation for 

a test-window size are smaller than a selected threshold, then that very test-

window size is deemed to be representative of the entire panel, thus becoming 

the sought statistical REV. Conversely, if at least one 𝜎* is greater than the 

threshold, the test-window size is enlarged and the analyses are repeated until 

the above condition is respected. It is trivial to remark that not every test-window 

size is investigated: once the threshold is successfully attained, the analyses are 

stopped. Two distinct thresholds are used in the following for the six case 

studies: specifically, the threshold for case studies 1-4 is equal to 25%, whereas 

for the last two cases is equal to 12.5%. This seems an arbitrary choice, but it is 

actually based on a simple observation: in case studies 1-4 the units’ geometry 

varies in height as well as in length, while for the cases 5-6 they vary only in 

length. Then, since in the latter cases the units display uniform dimensions in 

height, the overall variation in terms of geometry is much less than in the former 

cases where also the height randomly varies, so it makes perfectly sense to 

reduce the threshold for cases 5-6. 
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4.2.2 Case Study 1: Rubble Masonry Building in Casola in Lunigiana, 
Tuscany 

The first case study is represented by a residential masonry building located in 

Casola in Lunigiana, in the Province of Massa and Carrara, Tuscany, Italy. The 

three-story structure directly faces the street with a linteled entrance and is built 

with large, smoothed ashlars, which are also placed in the corners (Fig. 4.7a). A 

portion of one of its masonry walls is sketched in Fig. 4.7b, and its black-and-

white rasterization is pictured in Fig. 4.7c. The ashlars are actually river pebbles 

of different geometry that are arranged without a clear regular pattern; in 

addition, tapered blocks and stone chips are scattered throughout the wall. It can 

then be stated that this is a shining example of rubble masonry. The test-

windows for this case study are depicted in Fig. 4.8. 

 

 

(b) 

 

(a) (c) 

Fig. 4.7. (a) Masonry type for case study 1 [12]; (b) sketch of one of its masonry 
panels; (c) black-and-white rasterization of the sketch. 
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(a) (b) 

  
(c) 

  

  
(d) 

Fig. 4.8. Test-windows extracted for case study 1: (a) small size; (b) medium size; (c) 
large size; (d) huge size. 
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Fig. 4.9, Fig. 4.10, and Fig. 4.11 show the homogenized failure surfaces for the 

small, medium, and large test-windows, respectively, along with the resulting 

envelopes and the means. Regarding the latter, the results coming from the test-

windows of large size satisfy the imposed threshold in terms of coefficient of 

variation, and so that can be considered the actual dimension of the REV for this 

specific masonry type. 

The related data are reported in Table 4.4, for growing values of the loading 

angle. In this regard, it is trivial to notice how the higher degree of isotropy due 

to the presence of rubble masonry is well reflected by the shape of the 

homogenized mean failure surface for 𝜃 equal to 0° (i.e. absence of shear). In 

fact, the typical plateau that is related to the orthotropy is not present here. 

Analogous results are obtained for 𝜃 equal to 22.5°, while for 𝜃 equal to 45° the 

shape of the mean surface clearly displays a true isotropic behavior. In terms of 

deviation from the mean values, the scatter is not very large. It must be noted 

that when 𝜃 is equal to 0°, the mean limit multiplier for uniaxial vertical tension 

(𝜓 = 90°) is lower - about 2/3 - than the one for uniaxial horizontal tension (𝜓 = 

0°). 

The reason is evident when considering the related failure modes, which are 

shown in Fig. 4.12 for the horizontal and vertical tension, respectively. In the first 

image, all the test-windows show that the random arrangement of ashlars does 

not allow the opening of true vertical cracks. Conversely, in the second image it 

is possible to observe a few clear horizontal cracks (especially in test-window 

A), meaning that the overall response for that load condition is slightly weaker 

than for the other one. 
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Fig. 4.9. Homogenized failure surfaces, means and envelopes for the small test-

window size of case study 1. 
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Fig. 4.10. Homogenized failure surfaces, means and envelopes for the medium test-

window size of case study 1. 
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Fig. 4.11. Homogenized failure surfaces, means and envelopes for the large test-

window size of case study 1. 
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Table 4.4 
Mean limit multipliers, standard deviations and coefficient of variations for the large 
test-window size of case study 1. 
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Test-
window 

Uniaxial horizontal tension Uniaxial vertical tension 

A 

 

 

B 

 

 

C 

 

 

D 

 

 

Fig. 4.12. Failure modes for the large test-window size of case study 1 when 𝜃 = 0°. 
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For this case study only, a thorough comparison is performed between the full 

and master-slave approaches. For the small, medium, and large sizes of the four 

test-windows, Table 4.5 lists the number of unknown variables and the 

computational time needed for extracting the homogenized failure surfaces. 

Table 4.5 
Comparison in terms of number of unknown variables and computational times for 
case study 1 between the two formulations (full and master-slave approaches). 

Test-
window 

Entity Approach 
Test-window size 

Small Medium Large 

A 

N° of 
unknowns 

Full 99406 203638 344850 

Master-slave 39300 80708 132336 

Computational 
time 

Full 12m 56m 3s 5h 33m 11s 

Master-slave 6m 45s 24m 50s 2h 19m 23s 

      

B 

N° of 
unknowns 

Full 99406 203638 344850 

Master-slave 42626 77708 121783 

Computational 
time 

Full 16m 22s 1h 29m 15s 4h 39m 2s 

Master-slave 8m 23s 36m 31s 1h 48m 

      

C 

N° of 
unknowns 

Full 99406 203638 344850 

Master-slave 36335 81781 128257 

Computational 
time 

Full 12m 19s 1h 27m 39s 4h 54m 52s 

Master-slave 5m 39s 37m 49s 2h 2m 12s 

      

D 

N° of 
unknowns 

Full 99406 203638 344850 

Master-slave 34550 71613 110034 

Computational 
time 

Full 10m 1s 1h 2m 3h 48m 36s 

Master-slave 4m 16s 26m 4s 1h 28m 13s 

It is easy to observe that, for all the considered test-windows, the number of 

unknown variables for the master-slave approach is always reduced and, on 

average, is equal to 37.5% of that for the full approach. Similarly, the 

computational times experience a dramatic reduction: since the number of 

unknowns for the full approach is equal for different test-windows of the same 

size, their computational times exclusively depend on the geometry of each 

considered test-window, where geometry means arrangement of units and mean 

thickness of the mortar joints. However, when the master-slave approach is 

employed, the reduction in terms of computational times directly depends on the 

actual number of unknown variables to be calculated in the linear programming 

problem. The computational time required by the master-slave approach to 

derive the homogenized failure surfaces is on average almost 44% of that 

needed by the full approach. Moreover, there are no differences in terms of 
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homogenized failure surfaces for the considered 12 test-windows, which are 

here omitted for sake of brevity. This confirms the initial hypothesis that, for 

mortar weaker than the units, failure in masonry panels due to tensile loads is 

usually bound to occur within mortar joints and not across units. 

4.2.3 Case Study 2: Quasi-Periodic Masonry Ruin in Codiponte, Tuscany 

The second case study is represented by the ruin of an abandoned residential 

masonry building located in the small hamlet of Codiponte, which is part of the 

municipality of Casola in Lunigiana. This ruin represents the south wall of a now 

derelict two-story structure (Fig. 4.13a). A portion of this wall is sketched in Fig. 

4.13b, and its black-and-white rasterization is pictured in Fig. 4.13c. The ashlars 

are roughly cut and have distinct dimensions, also showing some tapered blocks 

and occasional stone chips. Despite the presence of a few blocks spreading over 

two masonry layers, the bed joints are clearly visible in the wall; hence the 

masonry is actually quasi-periodic in this case. The test-windows for this case 

study are depicted in Fig. 4.14. 
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(b) 

 

(a) (c) 

Fig. 4.13. (a) Masonry type for case study 2 [12]; (b) sketch of the considered 
masonry panel; (c) black-and-white rasterization of the sketch. 
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(a) (b) 

  

  
(c) 

  

  
(d) 

Fig. 4.14. Test-windows extracted for case study 2: (a) small size; (b) medium size; (c) 
large size; (d) huge size. 
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Fig. 4.15 to Fig. 4.18 show the homogenized failure surfaces for all the test-

windows, along with the resulting envelopes and the means. Regarding the 

latter, the results coming from the test-windows of huge size satisfy the imposed 

threshold in terms of coefficient of variation, and so that can be considered the 

actual dimension of the REV for this specific masonry type. 

The related data are reported in Table 4.6, for growing values of the loading 

angle. Despite bed joints are more clearly visible in this type of masonry, the 

shape of the homogenized mean failure surface for the huge test-windows when 

𝜃 equal to 0° is still not fully orthotropic, due to the presence of vertical blocks 

and stone chips. No differences are observed for 𝜃 equal to 22.5°, and once 

again for 𝜃 equal to 45° the shape of the mean surface evidently displays a true 

isotropic behavior. In terms of deviation from the mean values, the scatter is 

slightly larger than the previous case. However, when 𝜃 is equal to 0° the ratio 

between the mean limit multipliers for uniaxial vertical and horizontal tension is 

still about 2/3. This is due to the presence of vertical blocks and also to the non-

uniform vertical dimensions of the masonry courses. 
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Fig. 4.15. Homogenized failure surfaces, means and envelopes for the small test-

window size of case study 2. 
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Fig. 4.16. Homogenized failure surfaces, means and envelopes for the medium test-

window size of case study 2. 
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Fig. 4.17. Homogenized failure surfaces, means and envelopes for the large test-

window size of case study 2. 
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Fig. 4.18. Homogenized failure surfaces, means and envelopes for the huge test-

window size of case study 2. 
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Table 4.6 
Mean limit multipliers, standard deviations and coefficient of variations for the huge 
test-window size of case study 2. 
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4.2.4 Case Study 3: Quasi-Periodic Masonry Parish Church in Filattiera, 
Tuscany 

The third case study is represented by a Romanesque masonry parish church 

located in the small hamlet of Sorano, which is part of the municipality of 

Filattiera, in the Province of Massa and Carrara, Tuscany, Italy. This parish 

church is dedicated to Saint Stephen and presents three naves, each 

terminating with an apse (Fig. 4.19a). A portion of one of its masonry walls is 

sketched in Fig. 4.19b, and its black-and-white rasterization is pictured in Fig. 

4.19c. The ashlars are river pebbles of different dimensions, which are joined 

together with thick mortar joints. The bed joints are again clearly visible in the 

wall, but unlike the last case study there are no vertical elements; hence this 

masonry is again considered quasi-periodic. The test-windows for this case 

study are depicted in Fig. 4.20. 

 

 

(b) 

 

(a) (c) 

Fig. 4.19. (a) Masonry type for case study 3 [source]; (b) sketch of the considered 
masonry panel; (c) black-and-white rasterization of the sketch. 

  

http://www.turismoinlunigiana.it/ita/8/voce/83/pievedisoranofilattiera.htm
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(a) (b) 

  

  
(c) 

  

  
(d) 

Fig. 4.20. Test-windows extracted for case study 3: (a) small size; (b) medium size; (c) 
large size; (d) huge size. 
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Fig. 4.21 to Fig. 4.24 show the homogenized failure surfaces for all the test-

windows, along with the resulting envelopes and the means. Regarding the 

latter, the results coming from the test-windows of huge size satisfy the imposed 

threshold in terms of coefficient of variation, and so that can be considered the 

actual dimension of the REV for this specific masonry type. 

The related data are reported in Table 4.7, for growing values of the loading 

angle. The shape of the homogenized mean failure surface for the huge test-

windows when 𝜃 equal to 0° suggests a quasi-orthotropic behavior of this type 

of masonry. In fact, unlike the previous case, there are no vertical blocks within 

the masonry bulk; therefore, despite a general dissimilarity in terms of units’ 

geometry, the behavior is still consistent with that of a periodic masonry type. In 

terms of deviation from the mean values, the scatter is not very large except for 

the uniaxial vertical tension. Moreover, when 𝜃 is equal to 0°, the mean limit 

multiplier for uniaxial vertical tension is about 40% of the one for uniaxial 

horizontal tension, with this ratio being lower than the previous two cases. 

The reason is evident when considering the related failure modes, which are 

shown in Fig. 4.25 for horizontal and vertical tension, respectively. In particular, 

the failure modes for the latter load condition are remarkably different than those 

for the former; here, the formation of horizontal cracks is very evident for the 

uniaxial vertical tension, as no vertical blocks are inserted into the masonry bulk. 
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Fig. 4.21. Homogenized failure surfaces, means and envelopes for the small test-

window size of case study 3. 
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Fig. 4.22. Homogenized failure surfaces, means and envelopes for the medium test-

window size of case study 3. 
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Fig. 4.23. Homogenized failure surfaces, means and envelopes for the large test-

window size of case study 3. 
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Fig. 4.24. Homogenized failure surfaces, means and envelopes for the huge test-

window size of case study 3. 
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Table 4.7 
Mean limit multipliers, standard deviations and coefficient of variations for the huge 
test-window size of case study 3. 
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Test-
window 

Uniaxial horizontal tension Uniaxial vertical tension 

A 

 

 

B 

 

 

C 

 

 

D 

 

 

Fig. 4.25. Failure modes for the huge test-window size of case study 3 when 𝜃 = 0° 
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4.2.5 Case Study 4: Quasi-Periodic Masonry Tower Ruins in Mulazzo, 
Tuscany 

The fourth case study is represented by the ruins of a masonry tower located in 

Mulazzo, in the Province of Massa and Carrara, Tuscany, Italy. The tower 

presents a hexagonal shape and was the mastio of a larger castle (Fig. 4.26a). 

A portion of one of its walls is sketched in Fig. 4.26b, and its black-and-white 

rasterization is pictured in Fig. 4.26c. The ashlars are roughly cut and have 

distinct dimensions, although their height is more uniform. Some stone chips are 

also occasionally present. Once more, the bed joints are clearly visible in the 

wall, and as in the last case study there are no vertical elements; hence this 

masonry is once again considered quasi-periodic. The test-windows for this case 

study are depicted in Fig. 4.27. 

 

 

(b) 

 
(a) (c) 

Fig. 4.26. (a) Masonry type for case study 4 [source]; (b) sketch of the considered 
masonry panel; (c) black-and-white rasterization of the sketch. 

 

  

https://www.terredilunigiana.com/fototour/mulazzocastellofoto.php
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(a) (b) 

  

  
(c) 

  

  
(d) 

Fig. 4.27. Test-windows extracted for case study 4: (a) small size; (b) medium size; (c) 
large size; (d) huge size. 
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Fig. 4.28 to Fig. 4.31 show the homogenized failure surfaces for all the test-

windows, along with the resulting envelopes and the means. Regarding the 

latter, the results coming from the test-windows of huge size satisfy the imposed 

threshold in terms of coefficient of variation, and so that can be considered the 

actual dimension of the REV for this specific masonry type. 

The related data are reported in Table 4.8, for growing values of the loading 

angle. The shape of the homogenized mean failure surface for the huge test-

windows when 𝜃 equal to 0° suggests an almost complete orthotropic behavior 

of this type of masonry, even more evident than the previous case. In terms of 

deviation from the mean values, the scatter is not very large except for the 

uniaxial horizontal tension. Moreover, when 𝜃 is equal to 0°, the mean limit 

multiplier for uniaxial vertical tension is 37% of the one for uniaxial horizontal 

tension, a ratio slightly lower than the previous case but originating from the 

same causes (absence of vertical blocks). 
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Fig. 4.28. Homogenized failure surfaces, means and envelopes for the small test-

window size of case study 4. 
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Fig. 4.29. Homogenized failure surfaces, means and envelopes for the medium test-

window size of case study 4. 
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Fig. 4.30. Homogenized failure surfaces, means and envelopes for the large test-

window size of case study 4. 
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Fig. 4.31. Homogenized failure surfaces, means and envelopes for the huge test-

window size of case study 4. 
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Table 4.8 
Mean limit multipliers, standard deviations and coefficient of variations for the huge 
test-window size of case study 4. 
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4.2.6 Case Study 5: Quasi-Regular Masonry Parish Church in San 
Secondo Parmense, Emilia Romagna 

The fifth case study is represented by a Romanesque masonry parish church 

located in San Secondo Parmense, in the Province of Parma, Emilia Romagna, 

Italy. This parish church is dedicated to Saint Genesio and, similarly to the third 

case, presents three naves each terminating with an apse (Fig. 4.32a). A portion 

of one of its masonry walls is sketched in Fig. 4.32b, and its black-and-white 

rasterization is pictured in Fig. 4.32c. Unlike all the previous cases, the church 

consists of bricks presenting the same height but different lengths; some are 

also truncated or damaged. They are arranged rather regularly, hence the 

masonry is considered quasi-regular in this case. The test-windows for this case 

study are depicted in Fig. 4.33. 

 

 

(b) 

 

(a) (c) 

Fig. 4.32. (a) Masonry type for case study 5 [source]; (b) sketch of one of its masonry 
panels; (c) black-and-white rasterization of the sketch. 

https://commons.wikimedia.org/wiki/File:San_Secondo_Parmense_-_Pieve_di_San_Genesio_-_Sec._XI_-_XIII_05.JPG#/media/File:San_Secondo_Parmense_-_Pieve_di_San_Genesio_-_Sec._XI_-_XIII_05.JPG
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(a) (b) 

  

  
(c) 

  

  
(d) 

Fig. 4.33. Test-windows extracted for case study 5: (a) small size; (b) medium size; (c) 
large size; (d) huge size. 
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Fig. 4.34 and Fig. 4.35 show the homogenized failure surfaces small and 

medium test-windows, respectively, along with the resulting envelopes and the 

means. Regarding the latter, the results coming from the test-windows of 

medium size already satisfy the imposed threshold in terms of coefficient of 

variation, and so that can be considered the actual dimension of the REV for this 

specific masonry type. 

The related data are reported in Table 4.9, for growing values of the loading 

angle. The shape of the homogenized mean failure surface for the huge test-

windows when 𝜃 equal to 0° shows a true orthotropic behavior of this type of 

masonry: unlike the previous two cases, here the plateau associated to 

orthotropy is fully visible. It must be noted that the four homogenized failure 

surfaces for 𝜃 equal to 45° all coincide with their mean. In terms of deviation 

from the mean values, the scatter is not very large, and is limited for small values 

of 𝜓. In all the other cases, the four homogenized failure surfaces perfectly 

overlap with their mean. Moreover, when 𝜃 is equal to 0°, the mean limit 

multiplier for uniaxial vertical tension is again about 37% of the one for uniaxial 

horizontal tension, similarly to the last case. 

The related failure modes, which are shown in Fig. 4.36 for horizontal and 

vertical tension, respectively, show analogies to those for the case study 3. 

Horizontal cracks are once again observed for the uniaxial vertical tension, since 

vertical blocks are absent in the masonry bulk. 
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Fig. 4.34. Homogenized failure surfaces, means and envelopes for the small test-

window size of case study 5. 
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Fig. 4.35. Homogenized failure surfaces, means and envelopes for the medium test-

window size of case study 5. 
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Table 4.9 
Mean limit multipliers, standard deviations and coefficient of variations for the 
medium test-window size of case study 5. 
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Test-window Uniaxial horizontal tension Uniaxial vertical tension 

A 

 

 

B 

 

 

C 

 

 

D 

 

 

Fig. 4.36. Failure modes for the medium test-window size of case study 5 when 𝜃 = 
0°. 
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4.2.7 Case Study 6: Quasi-Regular Masonry Grand Corridor in 
Sabbioneta, Lombardy 

The sixth and final case study is represented by a masonry grand corridor 

located in Sabbioneta, in the Province of Mantua, Lombardy, Italy. This arched 

grand corridor, now named Galleria degli Antichi (“Gallery of the Ancient”), is 27 

m long and used to host ancient marbles and hunting trophies owned by the 

Duke of Sabbioneta (Fig. 4.37a). A portion of one of its masonry walls is 

sketched in Fig. 4.37b, and its black-and-white rasterization is pictured in Fig. 

4.37c. As in the previous case, the grand corridor consists of bricks presenting 

the same height and comparable lengths, with smaller brick heads occasionally 

inserted into the wall. Since they are arranged almost regularly, this masonry is 

also considered quasi-regular. The test-windows for this case study are depicted 

in Fig. 4.38. 

 

 

(b) 

 

(a) (c) 

Fig. 4.37. (a) Masonry type for case study 6 [source]; (b) sketch of the considered 
masonry panel; (c) black-and-white rasterization of the sketch. 

 

  

https://commons.wikimedia.org/wiki/File:Sabbioneta_2010_2_(8188041001).jpg#/media/File:Sabbioneta_2010_2_(8188041001).jpg
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(a) (b) 

  

  
(c) 

  

  
(d) 

Fig. 4.38. Test-windows extracted for case study 6: (a) small size; (b) medium size; (c) 
large size; (d) huge size. 
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Fig. 4.39, Fig. 4.40, and Fig. 4.41 show the homogenized failure surfaces small, 

medium, and large test-windows, respectively, along with the resulting 

envelopes and the means. Regarding the latter, the results coming from the test-

windows of large size satisfy the imposed threshold in terms of coefficient of 

variation, and so that can be considered the actual dimension of the REV for this 

specific masonry type. 

The related data are reported in Table 4.10, for growing values of the loading 

angle. The shape of the homogenized mean failure surface for the huge test-

windows when 𝜃 equal to 0° again shows a true orthotropic behavior of this type 

of masonry, similarly to the previous case. In terms of deviation from the mean 

values, the scatter is not very large, and is limited for small values of 𝜓 as in the 

previous case. When 𝜃 is equal to 0°, the mean limit multiplier for uniaxial vertical 

tension is about 27% of the one for uniaxial horizontal tension, the lowest value 

among all six cases. 
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Fig. 4.39. Homogenized failure surfaces, means and envelopes for the small test-

window size of case study 6. 
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Fig. 4.40. Homogenized failure surfaces, means and envelopes for the medium test-

window size of case study 6. 
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Fig. 4.41. Homogenized failure surfaces, means and envelopes for the large test-

window size of case study 6. 
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Table 4.10 
Mean limit multipliers, standard deviations and coefficient of variations for the large 
test-window size of case study 6. 
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4.3 Conclusions 

Fig. 4.42a-c contain the comparison of the mean homogenized failure surfaces 

for the statistical REVs of the considered six case studies when 𝜃 equal to 0°, 

22.5°, and 45°, respectively. From the first picture, it is possible to observe how 

the first two case studies offer the highest resistance to uniaxial vertical tension, 

which compensates the lower resistance to uniaxial horizontal tension with 

respect to the other cases. This is a clear sign of the greater degree of isotropy 

that characterizes the behavior of these masonry types, as previously remarked. 

On the other hand case studies 3-6, which progressively lose randomness in 

terms of units’ arrangement and geometry, show higher resistance to uniaxial 

horizontal tension but display a much lower resistance to uniaxial vertical 

tension. Their overall behavior is indeed marked by a clearly visible orthotropy. 

As angle 𝜃 increases, the behavior of all six case studies tends to be more and 

more isotropic: this is evident from the third picture, where the only difference is 

in terms of dimensions of the mean homogenized failure surfaces (namely, those 

for the first two cases is slightly larger than the others). 
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 (a) 

 

 
 (b) 

 

 
 (c) 

Fig. 4.42. Comparison of the mean homogenized failure surfaces among the six 
case studies: (a) 𝜃 = 0°; (b) 𝜃 = 22.5°; (c) 𝜃 = 45°. 
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CHAPTER 5 

 3D HOMOGENIZED LIMIT ANALYSIS OF 
SINGLE-LEAF NON-PERIODIC MASONRY 

This literature review presented in Section 2.3.2 highlights the absence of a full 

3D model combining limit analysis and homogenization. This chapter presents 

a homogenized limit analysis model that is capable of tackling the out-of-plane 

collapse behavior of masonry single-leaf walls as well as their in-plane collapse 

behavior. A Kirchhoff-Love plate model is used for representing the kinematic 

field of the considered wall, and a MATLAB script is employed for the derivation 

of both in- and out-of-plane homogenized failure surfaces, as well as the 

extraction of the deformed configurations at collapse (“failure modes”).  

This chapter is organized as follows: Section 5.1 is devoted to describing in detail 

the mathematical formulation of the upper bound limit analysis problem as 

conceived for its extension to the out-of-plane case. Section 5.2 provides the 

numerical validation of the proposed methodology, involving two periodic 

masonry bonds (namely, running bond masonry and English bond masonry). 

The results obtained in terms of out-of-plane homogenized failure surfaces are 

compared against those derived by other authors for the same periodic bonds 

using different approaches. Section 5.3 presents the results in terms of out-of-

plane homogenized failure surfaces and selected deformed shapes at collapse 

for the six case studies of real masonry buildings previously investigated in 

Section 4.2. Finally, Section 5.4 offers conclusive remarks on the results 

presented in the previous section by drawing comparisons among the six case 

studies. 
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5.1 Problem Formulation 

This section presents the mathematical formulation behind the problem that 

aims at deriving out-of-plane homogenized failure surfaces for single-leaf 

masonry walls. Like the 2D application presented in the previous chapter, an 

upper bound limit analysis problem is here combined with a homogenized 

approach and is formulated as a standard form linear programming problem in 

MATLAB [1] that is also subjected to some equality constraints coming from the 

mathematical formulation. For the purposes of this problem, the out-of-plane 

behavior of the masonry wall is assessed introducing a Kirchhoff-Love plate 

model into the displacement rate field; moreover, any investigated masonry wall 

must be discretized into a mesh consisting of rigid, regular parallelepiped 3D 

elements bereft of rotation rate (𝜙̇ = 0). This enables to handle a higher number 

of elements and entails an overall reduction of the problem unknowns; also, this 

makes the 3D mesh resulting from the voxel strategy particularly suitable for use. 

Considering the elements as rigid and devoid of rotation rate, the kinematics of 

each element is hence completely determined by the displacement rate field of 

its centroid {𝑢̇𝑥 , 𝑢̇𝑦, 𝑢̇𝑧}, where axis Z represents the transversal direction. Since 

a Kirchhoff-Love plate model is here used for a full representation of each 

element’s kinematics, the three components are expressed as: 

𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟 + 𝐸̇𝑥𝑥𝑥𝐺 + 𝐸̇𝑥𝑦𝑦𝐺 + 𝜒̇𝑥𝑥𝑧𝐺𝑥𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑦𝐺  (5.1) 

𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟 + 𝐸̇𝑥𝑦𝑥𝐺 + 𝐸̇𝑦𝑦𝑦𝐺 + 𝜒̇𝑦𝑦𝑧𝐺𝑦𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑥𝐺  (5.2) 

𝑢̇𝑧 = 𝑢̇𝑧,𝑝𝑒𝑟 − 0.5𝜒̇𝑥𝑥𝑥𝐺
2 − 0.5𝜒̇𝑦𝑦𝑦𝐺

2 − 0.5𝜒̇𝑥𝑦𝑥𝐺𝑦𝐺  (5.3) 

where {𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺} are the coordinates of the element’s centroid with respect to a 

reference system located at the center of the investigated masonry wall, 

{𝑢̇𝑥,𝑝𝑒𝑟 , 𝑢̇𝑦,𝑝𝑒𝑟 , 𝑢̇𝑧,𝑝𝑒𝑟} are the periodic velocities of the element, {𝐸̇𝑥𝑥 , 𝐸̇𝑥𝑦 , 𝐸̇𝑦𝑦} the 

components of the average strain rate tensor (with 𝐸̇𝑦𝑥 equal to 𝐸̇𝑥𝑦 for 

symmetry), and {𝜒̇𝑥𝑥 , 𝜒̇𝑥𝑦 , 𝜒̇𝑦𝑦} the components of the average curvature rate 

tensor (again, with 𝜒̇𝑦𝑥 equal to 𝜒̇𝑥𝑦 for symmetry). The choice of such kinematics 

is compatible with the hypothesis of a Kirchhoff-Love plate model; the 

requirements of 𝜒̇𝑥𝑥 = −
𝜕2𝑢̇𝑧

𝜕𝑥2 , 𝜒̇𝑦𝑦 = −
𝜕2𝑢̇𝑧

𝜕𝑦2 , and 𝜒̇𝑥𝑦 = −2
𝜕2𝑢̇𝑧

𝜕𝑥𝜕𝑦
 are all satisfied. 
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5.1.1 Velocity Jumps and Plastic Flow Constraints 

The hypothesis of rigid elements means that plastic dissipation is possible only 

across their mutual interfaces, which also implies a reduction in terms of 

unknowns. Moreover, the use of regular parallelepiped elements entails that 

their six sides are already oriented according to the reference system chosen for 

the masonry wall. The problem is further simplified even more by introducing 

three accessory hypotheses: 

▪ no dissipation occurs across interfaces that are orthogonal to the Z axis; 

▪ no shear dissipation occurs along the Z axis of all the other interfaces; 

▪ no condition is enforced with respect to the elements’ velocity along the 

Z direction. 

Therefore, the only active interfaces are those orthogonal to the X or Y axis, and 

the shear component along the Z axis is neglected. Each active interface can 

then only experience tangential and normal velocity jumps, which are evaluated 

according to Eqs. (5.4), (5.5) or (5.6), (5.7) depending on the considered 

interface (see Fig. 5.1 and Fig. 5.2): 

 

Fig. 5.1. Velocity jumps for a generic interface normal to axis X. 

Δ𝑢̇𝑛 ≡ ∆𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑥,𝑝𝑒𝑟
𝑖 + 𝐸̇𝑥𝑥(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) + 𝜒̇𝑥𝑥(𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 ) (5.4) 

Δ𝑢̇𝑡 ≡ ∆𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑦,𝑝𝑒𝑟
𝑖 + 𝐸̇𝑥𝑦(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 ) (5.5) 
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Fig. 5.2. Velocity jumps for a generic interface normal to axis Y. 

Δ𝑢̇𝑛 ≡ ∆𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟
𝑙 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑘 + 𝐸̇𝑦𝑦(𝑦𝐺
𝑙 − 𝑦𝐺

𝑘) + 𝜒̇𝑦𝑦(𝑧𝐺
𝑙 𝑦𝐺

𝑙 − 𝑧𝐺
𝑘𝑦𝐺

𝑘) (5.6) 

Δ𝑢̇𝑡 ≡ ∆𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟
𝑙 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑘 + 𝐸̇𝑥𝑦(𝑦𝐺
𝑙 − 𝑦𝐺

𝑘) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑙 𝑦𝐺

𝑙 − 𝑧𝐺
𝑘𝑦𝐺

𝑘) (5.7) 

As shown in [2], a kinematically admissible velocity field must satisfy constraints 

given by an associated flow rule. For instance, if a Mohr-Coulomb failure criterion 

with tension and compression cutoffs is employed, its bounding yield surface is 

expressed in terms of normal stress 𝜎𝑛 and tangential stress 𝜏 as: 

|𝜏| ≤ 𝑐 − 𝜎𝑛 tan 𝜙  ∧  𝜎𝑛 ≤ 𝑓𝑡  ∧  𝜎𝑛 ≥ −𝑓𝑐 (5.8) 

Four straight lines are then needed to describe the bounding yield surface for 

this failure criterion (Fig. 5.3), and their expressions are linear both in 𝜏 and 𝜎𝑛: 



  

127 

 

Fig. 5.3. Mohr-Coulomb failure criterion with tension and compression cutoffs. 

𝐹(𝜏, 𝜎𝑛) = {

𝜏 + 𝜎𝑛 tan 𝜙 − 𝑐
−𝜏 + 𝜎𝑛 tan𝜙 − 𝑐

𝜎𝑛 − 𝑓𝑡

−𝜎𝑛 − 𝑓𝑐

} = 0 (5.9) 

in which 𝜙 is the friction angle, 𝑐 the cohesion, 𝑓𝑐 the compressive strength, and 

𝑓𝑡 the tensile strength of the active interfaces. It must be noted that the bounding 

yield surface must always be expressed with the general form 𝐴𝑛
𝑞
𝜎𝑛 + 𝐴𝑡

𝑞
𝜏 −

𝐶𝐼
𝑞

= 0 regardless of the chosen failure criterion. 

Since the expressions of Eq. (5.9) are already oriented along the reference 

system chosen for the masonry panel, they are not subject to any modification. 

Therefore, when considering an associated flow rule, the velocity jumps are 

simply expressed as: 

Δ𝑢̇𝑛 = ∑ 𝜆̇𝐼
𝑞 𝜕𝐹𝑞

𝜕𝜎𝑛

4

𝑞=1

= ∑ 𝜆̇𝐼
𝑞
𝐴𝑛

𝑞

4

𝑞=1

= 𝜆̇𝐼
1 tan𝜙 + 𝜆̇𝐼

2 tan𝜙 + 𝜆̇𝐼
3 − 𝜆̇𝐼

4 (5.10) 

Δ𝑢̇𝑡 = ∑ 𝜆̇𝐼
𝑞 𝜕𝐹𝑞

𝜕𝜏

4

𝑞=1

= ∑ 𝜆̇𝐼
𝑞
𝐴𝑡

𝑞

4

𝑞=1

= 𝜆̇𝐼
1 − 𝜆̇𝐼

2 (5.11) 
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where the velocity jumps Δ𝑢̇𝑛 and Δ𝑢̇𝑡 coincide with either ∆𝑢̇𝑥 or ∆𝑢̇𝑦, depending 

on the considered active interface. A custom-built algorithm is implemented in 

the MATLAB script aiming at identifying which type of interface is considered, 

which then assigns the correct expression for both Δ𝑢̇𝑛 and Δ𝑢̇𝑡. Afterwards, 

Eqs. (5.10) and (5.11) are equaled to Eqs. (5.4) and (5.5) or (5.6) and (5.7). For 

instance, considering a single interface 𝐼 between elements 𝑖 and 𝑗 and normal 

to axis X, their combinations become: 

𝑢̇𝑥,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑥,𝑝𝑒𝑟
𝑖 − ∑ 𝜆̇𝐼

𝑞
𝐴𝑛

𝑞

4

𝑞=1

+ 𝐸̇𝑥𝑥(𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 ) + 𝜒̇𝑥𝑥(𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 ) = 0 (5.12) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑗

− 𝑢̇𝑦,𝑝𝑒𝑟
𝑖 − ∑ 𝜆̇𝐼

𝑞
𝐴𝑡

𝑞

4

𝑞=1

+ 𝐸̇𝑥𝑦(𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 ) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 ) = 0 (5.13) 

Using a matrix formulation to compact Eqs. (5.12) and (5.13), these become: 

[
1 −1 0 0
0 0 1 −1

]

[
 
 
 
 𝑢̇𝑥,𝑝𝑒𝑟

𝑗

𝑢̇𝑥,𝑝𝑒𝑟
𝑖

𝑢̇𝑦,𝑝𝑒𝑟
𝑗

𝑢̇𝑦,𝑝𝑒𝑟
𝑖

]
 
 
 
 

+ [
− tan𝜙 − tan 𝜙

−1 1
−1 1
0 0

]

[
 
 
 
 
𝜆̇𝐼
1

𝜆̇𝐼
2

𝜆̇𝐼
3

𝜆̇𝐼
4]
 
 
 
 

+ 

+[
(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) 0 0 (𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 ) 0 0

0 0 (𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 ) 0 0 0.5(𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 )

]

[
 
 
 
 
 
 
𝐸̇𝑥𝑥

𝐸̇𝑦𝑦

𝐸̇𝑥𝑦

𝜒̇𝑥𝑥

𝜒̇𝑦𝑦

𝜒̇𝑥𝑦]
 
 
 
 
 
 

= [
0
0
] 

(5.14) 

This matrix formulation can be written even more compactly: 

𝑨𝟏𝟏
𝒆𝒒,𝒊𝒋

𝒖̇𝒑𝒆𝒓
𝒊𝒋

+ 𝑨𝟏𝟑
𝒆𝒒,𝒊𝒋

𝝀̇𝑰 + 𝑨𝟏𝟒
𝒆𝒒,𝒊𝒋

𝑫̇ = 𝟎 (5.15) 

From Eq. (5.15) it is clear that the periodic velocity field of the two adjoining 

elements 𝑖 and 𝑗 (collected in the vector 𝒖̇𝒑𝒆𝒓
𝒊𝒋

), the plastic multiplier rates of 

interface 𝐼 (𝝀̇𝑰), and the components of the average strain and curvature rate 

tensors (both collected in the vector 𝑫̇) are among the unknown variables of the 

linear programming problem. It must be noted that these are not the only 

unknown variables of the overall problem, as some more are introduced in the 
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following section. After some simple assemblage operations, the constraint in its 

global form becomes: 

𝑨𝟏𝟏
𝒆𝒒

𝒖̇𝒑𝒆𝒓 + 𝑨𝟏𝟑
𝒆𝒒

𝝀̇𝑰,𝒂𝒔𝒔 + 𝑨𝟏𝟒
𝒆𝒒

𝑫̇ = 𝟎 (5.16) 

5.1.2 Master-Slave Relations for Unit Elements 

The kinematic field of the finite elements that pertain to a masonry unit is 

governed by master-slave relations that link the kinematic field of a single finite 

element (“slave element”, superscript 𝑆) and that of the masonry unit to which it 

belongs (“master element”, superscript 𝑀), as shown in Fig. 5.4. In this case, 

this is enforced to enable the rotation of a generic masonry unit, since the single 

elements cannot rotate; the kinematics of unit finite elements is expressed in 

such a way that their interfaces are not considered in the overall solution, 

mirroring what happens in real case studies where failure within masonry units 

is unlikely to occur. The master-slave relations are expressed according to Eqs. 

(5.17) to (5.19): 

𝑢̇𝑥
𝑆 = 𝑢̇𝑥

𝑀 + 𝜃̇𝑦𝑦
𝑀 (𝑧𝐺

𝑆 − 𝑧𝐺
𝑀) (5.17) 

𝑢̇𝑦
𝑆 = 𝑢̇𝑦

𝑀 − 𝜃̇𝑥𝑥
𝑀 (𝑧𝐺

𝑆 − 𝑧𝐺
𝑀) (5.18) 

𝑢̇𝑧
𝑆 = 𝑢̇𝑧

𝑀 + 𝜃̇𝑥𝑥
𝑀 (𝑦𝐺

𝑆 − 𝑦𝐺
𝑀) − 𝜃̇𝑦𝑦

𝑀 (𝑥𝐺
𝑆 − 𝑥𝐺

𝑀) (5.19) 

𝑢̇𝑥
𝑀, 𝑢̇𝑦

𝑀, and 𝑢̇𝑧
𝑀 are the components of the displacement rate field of a single 

masonry unit, which acts as the master macroelement, and they are expressed 

according to Eqs. (5.1) to (5.3). 𝑥𝐺
𝑀, 𝑦𝐺

𝑀, and 𝑧𝐺
𝑀 are the coordinates of the 

centroid of the considered masonry unit, which are automatically calculated by 

the MATLAB script. 𝑢̇𝑥
𝑆, 𝑢̇𝑦

𝑆, and 𝑢̇𝑧
𝑆 are the components of the displacement rate 

field of a generic finite element - in this case, the slave element - that belongs to 

the considered masonry unit; they are also expressed according to Eqs. (5.1) to 

(5.3).  The quantities 𝜃̇𝑥𝑥
𝑀  and 𝜃̇𝑦𝑦

𝑀  represent the rotations about the X and Y axes 

of the master macroelement, respectively, so that its kinematics is enriched 

enabling macroscopic rotations that are representative of the deformed shape 

associated to an out-of-plane load condition. It must be remarked that the finite 

elements do not actually rotate, but the general deformed shape of a masonry 

unit is indeed able to simulate rotations in a “pixeled” way. 
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Fig. 5.4. Graphical representation of a masonry unit (𝑀) and a unit finite element (𝑆). 

The expansions of Eqs. (5.17) to (5.19) lead to the following expressions: 

𝑢̇𝑥,𝑝𝑒𝑟
𝑆 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑀 + 𝜃̇𝑦𝑦
𝑀 (𝑧𝐺

𝑀 − 𝑧𝐺
𝑆) + 𝐸̇𝑥𝑥(𝑥𝐺

𝑆 − 𝑥𝐺
𝑀) + 𝐸̇𝑥𝑦(𝑦𝐺

𝑆 − 𝑦𝐺
𝑀) + 

+𝜒̇𝑥𝑥(𝑧𝐺
𝑆𝑥𝐺

𝑆 − 𝑧𝐺
𝑀𝑥𝐺

𝑀) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑆𝑦𝐺

𝑆 − 𝑧𝐺
𝑀𝑦𝐺

𝑀) = 0 
(5.20) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑆 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑀 + 𝜃̇𝑥𝑥
𝑀 (𝑧𝐺

𝑆 − 𝑧𝐺
𝑀) + 𝐸̇𝑥𝑦(𝑥𝐺

𝑆 − 𝑥𝐺
𝑀) + 𝐸̇𝑦𝑦(𝑦𝐺

𝑆 − 𝑦𝐺
𝑀) + 

+𝜒̇𝑦𝑦(𝑧𝐺
𝑆𝑦𝐺

𝑆 − 𝑧𝐺
𝑀𝑦𝐺

𝑀) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑆𝑥𝐺

𝑆 − 𝑧𝐺
𝑀𝑥𝐺

𝑀) = 0 
(5.21) 

𝑢̇𝑧,𝑝𝑒𝑟
𝑆 − 𝑢̇𝑧,𝑝𝑒𝑟

𝑀 + 𝜃̇𝑥𝑥
𝑀 (𝑦𝐺

𝑀 − 𝑦𝐺
𝑆) + 𝜃̇𝑦𝑦

𝑀 (𝑥𝐺
𝑆 − 𝑥𝐺

𝑀) + 

+0.5𝜒̇𝑥𝑥[(𝑥𝐺
𝑀)2 − (𝑥𝐺

𝑆)2] + 0.5𝜒̇𝑦𝑦[(𝑦𝐺
𝑀)2 − (𝑦𝐺

𝑆)2] + 

+0.5𝜒̇𝑥𝑦(𝑥𝐺
𝑀𝑦𝐺

𝑀 − 𝑥𝐺
𝑆𝑦𝐺

𝑆) = 0 

(5.22) 

These can also be written in a matrix formulation, which is here omitted for sake 

of brevity. The global compact formulation of the constraints coming from the 

master-slave relations is: 

𝑨𝟐𝟏
𝒆𝒒

𝒖̇𝒑𝒆𝒓 + 𝑨𝟐𝟐
𝒆𝒒

𝑹̇ + 𝑨𝟐𝟒
𝒆𝒒

𝑫̇ = 𝟎 (5.23) 

Eq. (5.23) gives the remaining set of unknown variables of the linear 

programming problem, represented by vector 𝑹̇ that includes the periodic 

velocity fields and macroscopic rotations of all the masonry units of the 

considered masonry panel. 
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5.1.3 Periodicity Boundary Conditions 

The homogenization approach requires the inclusion of periodicity constraints 

applied to the velocity field at the boundaries of the investigated panel. These 

must be enforced on elements lying at the external boundaries of the panel that 

are orthogonal to axes X and Y; the elements here involved are located at the 

opposite sides of each of those boundaries (Fig. 5.5). 

 

Fig. 5.5. Periodicity boundary conditions. 

𝑢̇𝑥,𝑝𝑒𝑟
𝑎 = 𝑢̇𝑥,𝑝𝑒𝑟

𝑏 ⇒ 𝑢̇𝑥,𝑝𝑒𝑟
𝑎 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑏 = 0 (5.24) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑎 = 𝑢̇𝑦,𝑝𝑒𝑟

𝑏 ⇒ 𝑢̇𝑦,𝑝𝑒𝑟
𝑎 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑏 = 0 (5.25) 

𝑢̇𝑧,𝑝𝑒𝑟
𝑎 = 𝑢̇𝑧,𝑝𝑒𝑟

𝑏 ⇒ 𝑢̇𝑧,𝑝𝑒𝑟
𝑎 − 𝑢̇𝑧,𝑝𝑒𝑟

𝑏 = 0 (5.26) 

The same applies for the generic couple of elements 𝑐 and 𝑑. The global 

compact formulation of this constraint is: 

𝑨𝟑𝟏
𝒆𝒒

𝒖̇𝒑𝒆𝒓 = 𝟎 (5.27) 

5.1.4 Normalization of Dissipated External Power 

Two sets of out-of-plane load conditions are defined through two separate 

“loading angles”, as shown in Fig. 5.6. 
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Fig. 5.6. Angles defining the out-of-plane load condition. 

Angle 𝜓𝑓𝑙𝑒𝑥 is named “flexural loading angle”: it represents the arctangent of the 

ratio between the macroscopic horizontal and vertical bending moments 𝑀𝑦𝑦 

and 𝑀𝑥𝑥, and varies between 0 and 2𝜋. Similarly, angle 𝜓𝑡𝑜𝑟𝑠 is named “torsional 

loading angle”: it represents the arctangent of the ratio between the macroscopic 

torsional moment and the vertical bending moments 𝑀𝑥𝑦 and 𝑀𝑥𝑥, again ranging 

between 0 and 2𝜋. Also, an in-plane load condition is included and defined in 

the same way as shown in Section 4.1.3. 

Overall, the dissipated external power is expressed as the summation of the 

products between the macroscopic stresses and bending moments and their 

associated average strain and curvature rate tensors components. Eventually, 

the dissipated external power is normalized and equaled to 1 to enforce a 

restriction in terms of all the possible collapse mechanisms that are associated 

to the collapse load, which is unique: 

𝑃𝑒𝑥𝑡 = Σ𝑥𝑥𝐸̇𝑥𝑥 + Σ𝑦𝑦𝐸̇𝑦𝑦 + Σ𝑥𝑦𝐸̇𝑥𝑦 + 𝑀𝑥𝑥𝜒̇𝑥𝑥 + 𝑀𝑦𝑦𝜒̇𝑦𝑦 + 𝑀𝑥𝑦𝜒̇𝑥𝑦 = 1 (5.28) 

In the end, Eq. (5.28) represents another constraint for the linear programming 

problem, concisely expressed in the form: 

𝑨𝟒𝟒
𝒆𝒒

𝑫̇ = 1 (5.29) 
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5.1.5 Power Dissipation in Velocity Discontinuities 

The expression for power dissipated across a velocity discontinuity whose area 

is 𝐴 can be written as: 

𝑃𝑖𝑛𝑡 = ∫ (𝜎𝑛Δ𝑢̇𝑛 + 𝜏Δ𝑢̇𝑡)𝑑𝐴
𝐴

 (5.30) 

Substituting Eqs. (5.10) and (5.11), this becomes: 

∫ (𝜎𝑛 ∑ 𝜆̇𝐼
𝑞
𝐴𝑛

𝑞

4

𝑞=1

+ 𝜏 ∑ 𝜆̇𝐼
𝑞
𝐴𝑡

𝑞

4

𝑞=1

)𝑑𝐴
𝐴

= ∫ ∑ 𝜆̇𝐼
𝑞
(𝜎𝑛𝐴𝑛

𝑞
+ 𝜏𝐴𝑡

𝑞
)

4

𝑞=1

𝑑𝐴
𝐴

 (5.31) 

The dissipated internal power can then be written as: 

𝑃𝑖𝑛𝑡 = 𝐴 ∑ 𝜆̇𝐼
𝑞
𝐶𝐼

𝑞

4

𝑞=1

 (5.32) 

For the global problem the assembled final expression in matrix form is: 

𝑃𝑖𝑛𝑡 = 𝑪𝑰,𝒂𝒔𝒔
𝑻 𝝀̇𝑰,𝒂𝒔𝒔 (5.33) 

5.1.6 Assembly and Solution of the Linear Programming Problem 

The homogenized limit analysis problem is eventually formulated as a linear 

programming problem. The objective function that ought to be minimized is the 

dissipated internal power as expressed in Eq. (5.33), and the equality constraints 

are given by Eqs. (5.16), (5.23), (5.27), and (5.29). For a smoother solution, this 

computational problem is formulated in a standard form, which requires that 

each unknown variable of the problem is greater or equal to zero. In particular, 

for this specific problem the following unknowns must be modified: the elements’ 

periodic velocity field, the masonry units’ periodic velocity field and macroscopic 

rotations, and the components of average strain and curvature rate tensors. All 

of them are expressed as the difference of two nonnegative quantities to satisfy 

the requirements of the standard form: 
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𝑢̇𝑖,𝑝𝑒𝑟
𝑆 = 𝑢̇𝑖,𝑝𝑒𝑟

𝑆,+ − 𝑢̇𝑖,𝑝𝑒𝑟
𝑆,−  𝑖 = 𝑥, 𝑦 (5.34) 

𝑢̇𝑖,𝑝𝑒𝑟
𝑀 = 𝑢̇𝑖,𝑝𝑒𝑟

𝑀,+ − 𝑢̇𝑖,𝑝𝑒𝑟
𝑀,−  𝑖 = 𝑥, 𝑦 (5.35) 

𝜃̇𝑖𝑖
𝑀 = 𝜃̇𝑖𝑖

𝑀,+ − 𝜃̇𝑖𝑖
𝑀,− 𝑖 = 𝑥, 𝑦 (5.36) 

𝐸̇𝑖𝑗 = 𝐸̇𝑖𝑗
+ − 𝐸̇𝑖𝑗

− 𝑖, 𝑗 = 𝑥, 𝑦 (5.37) 

𝜒̇𝑖𝑗 = 𝜒̇𝑖𝑗
+ − 𝜒̇𝑖𝑗

−  𝑖, 𝑗 = 𝑥, 𝑦 (5.38) 

The standard form for this linear programming problem is: 

Minimize 𝑪𝑻𝑿 (5.39) 

Subject to 𝑨𝑿 = 𝑩 (5.40) 

 𝑿 ≥ 𝟎 (5.41) 
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where 

𝑨 =

[
 
 
 
 
𝑨𝟏𝟏

𝒆𝒒
−𝑨𝟏𝟏

𝒆𝒒

𝑨𝟐𝟏
𝒆𝒒

−𝑨𝟐𝟏
𝒆𝒒

𝑨𝟑𝟏
𝒆𝒒

−𝑨𝟑𝟏
𝒆𝒒

𝟎 𝟎

    

𝟎
𝑨𝟐𝟐

𝒆𝒒

𝟎
𝟎

    

𝟎
−𝑨𝟐𝟐

𝒆𝒒

𝟎
𝟎

    

𝑨𝟏𝟑
𝒆𝒒

𝑨𝟏𝟒
𝒆𝒒

−𝑨𝟏𝟒
𝒆𝒒

𝟎 𝑨𝟐𝟒
𝒆𝒒

−𝑨𝟐𝟒
𝒆𝒒

𝟎 𝟎 𝟎
𝟎 𝑨𝟒𝟒

𝒆𝒒
−𝑨𝟒𝟒

𝒆𝒒
]
 
 
 
 

 (5.42) 

𝑿 =

[
 
 
 
 
 
 
 
𝒖̇𝒑𝒆𝒓

+

𝒖̇𝒑𝒆𝒓
−

𝑹̇+

𝑹̇−

𝝀̇𝑰,𝒂𝒔𝒔

𝑫̇+

𝑫̇− ]
 
 
 
 
 
 
 

 (5.43) 

𝑩 = [

𝟎
𝟎
𝟎
1

] (5.44) 

𝑪 =

[
 
 
 
 
 
 

𝟎
𝟎
𝟎
𝟎

𝑪𝑰,𝒂𝒔𝒔

𝟎
𝟎 ]

 
 
 
 
 
 

 (5.45) 

5.1.7 Construction of the Out-of-Plane Homogenized Failure Surfaces 

The MATLAB script includes a final part where the construction of the two out-

of-plane homogenized failure surfaces for the chosen single-leaf wall is actually 

performed. In the framework of the upper bound theorem of limit analysis, the 

kinematic limit multiplier 𝜒 is the minimum among those computed for each 

kinematically admissible collapse mechanism, and may be expressed as the 

ratio between the dissipated internal and external powers: 

𝜇𝑘 =
𝑃𝑖𝑛𝑡

𝑃𝑒𝑥𝑡
 (5.46) 

Introducing the normalization of the dissipated external power of Eq. (5.28) 

implies that the denominator is equal to 1, which means that: 
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𝜇𝑘 = 𝑃𝑖𝑛𝑡 = 𝑪𝑰,𝒂𝒔𝒔
𝑻 𝝀̇𝑰,𝒂𝒔𝒔 (5.47) 

𝜒 = min(𝜇𝑘) = min(𝑪𝑰,𝒂𝒔𝒔
𝑻 𝝀̇𝑰,𝒂𝒔𝒔) (5.48) 

Hence, the kinematic load multiplier is directly determined by the minimization 

of the dissipated internal power, which is correctly the objective of the linear 

programming problem here developed. 

The flexural and torsional out-of-plane homogenized failure surfaces are 

constructed as follows: after selecting a value for the loading angles 𝜓𝑓𝑙𝑒𝑥 (or 

𝜓𝑡𝑜𝑟𝑠), the linear programming problem is solved and the kinematic limit 

multiplier 𝜒 for that specific out-of-plane load condition is obtained. The collapse 

bending (or torsional) moments are then calculated by multiplying 𝜒 to the initial 

macroscopic moments [𝑀𝑥𝑥 𝑀𝑦𝑦] (or [𝑀𝑥𝑥 𝑀𝑥𝑦] for the torsional failure 

surface). Globally, 41 different values of 𝜓𝑓𝑙𝑒𝑥 (or 𝜓𝑡𝑜𝑟𝑠) are investigated, ranging 

from 0 to 2𝜋 with a sampling step of 𝜋/20. Each pair of collapse moments 𝜒𝑀𝑥𝑥 

and 𝜒𝑀𝑦𝑦 (or 𝜒𝑀𝑥𝑦) represents a pair of coordinates in the resulting out-of-plane 

homogenized failure surface, which is then piecewise linear and consists of the 

segments linking each adjacent pair of collapse moments. An analogous 

procedure is employed for extracting the in-plane homogenized failure surfaces. 

The post-processing phase also enables to plot the failure mode for a specific 

in- and out-of-plane load condition with the MATLAB command patch: the 

position of each finite element is reconstructed using the solution values of the 

remaining variables of the linear programming problem (namely, those included 

in vectors 𝒖̇𝒑𝒆𝒓, 𝑹̇, and 𝑫̇) and using Eqs. (5.1) to (5.3) and (5.17) to (5.19). 
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5.2 Numerical Validation 

In this section, the proposed approach is validated by drawing comparisons with 

three distinct models used in works available in literature to describe the in- and 

out-of-plane behavior of masonry at collapse. In particular, the results 

concerning homogenized failure surfaces are critically discussed to assess the 

reliability of the present approach in correctly representing the out-of-plane 

collapse behavior of common masonry bonds, with attention given to the in-

plane collapse behavior as well. 

In the first example, a running bond masonry test-window is investigated in terms 

of homogenized in- and out-of-plane failure surfaces. The results are then 

compared to those obtained by Milani and Taliercio in two distinct works, one 

devoted to the in-plane behavior [3], the other to the out-of-plane one [4]. As 

previously mentioned in Section 2.3.1, they use the so-called “Method of Cells” 

as a homogenizing approach, which is typical of problem involving fiber-

reinforced composites. Relevant failure modes in bending and torsion are also 

presented and discussed. 

In the second example, an English bond masonry test-window is investigated 

only in terms of homogenized out-of-plane failure surfaces. The results are then 

compared to those obtained by Cecchi and Milani [5]; as already discussed in 

Section 2.3.2, the authors do not use a rigorous homogenization approach, 

instead they enforce the equivalence between a 3D system of blocks connected 

by interfaces and a 2D Reissner-Mindlin plate through a kinematic identification. 

Also in this case, relevant failure modes in bending and torsion are presented 

and discussed. 

5.2.1 Running Bond Masonry REV 

The first case study deals with a running bond masonry REV that consists of 

standard Italian bricks (25×12×5.5 cm3) and mortar joints whose thickness is 1 

cm; the in-plane layout is shown in Fig. 5.7a. Two meshes are used for validating 

the proposed model: one is extremely refined, consisting of about 260000 

elements and displaying 48 elements over the thickness (Mesh 1, Fig. 5.7b), the 

other is extremely coarse, consisting of about 17000 elements and displaying 12 

elements over the thickness (Mesh 2, Fig. 5.7c). 
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(a) (b) (c) 

Fig. 5.7. (a) In-plane layout of the running bond masonry REV; (b) Mesh 1; (c) Mesh 
2. 

For the validation in terms of in-plane homogenized failure surfaces, a Mohr-

Coulomb failure criterion with cut-offs in tension and compression is used. The 

mechanical properties of the interfaces are the same as those used in [3] and 

are listed in Table 5.1, with the tensile and compressive strength 𝑓𝑡 and 𝑓𝑐 

evaluated according to the formulas there reported. 

Table 5.1 
Mechanical properties for the material employed in comparison with in-plane Milani-
Taliercio. 

Cohesion 𝑐 

[MPa] 
Friction angle 𝜙 [°] 

Tensile strength 
𝑓𝑡 [MPa] 

Compressive strength 
𝑓𝑐 [MPa] 

0.1 36 
2𝑐 cos 𝜙

1 + sin 𝜙
 

2𝑐 cos𝜙

1 − sin 𝜙
 

Fig. 5.8 and Fig. 5.9 show the comparison between the in-plane homogenized 

failure surfaces obtained by Milani and Taliercio in [3] and those resulting from 

the present model for Mesh 1; in particular, Fig. 5.8a-c show the failure surfaces 

in the tension-tension range for three different values of angle 𝜃 (which 

represents the inclination of the principal directions with respect to the reference 

system of the REV), whereas Fig. 5.9a-c show the failure surfaces in the 

compression-compression range. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.8. Comparison of in-plane homogenized failure surfaces in the tension-tension 
range, for different values of angle 𝜃. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.9. Comparison of in-plane homogenized failure surfaces in the compression-
compression range, for different values of angle 𝜃. 
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As far as the tension-tension range is concerned, the results obtained from the 

present model are thoroughly consistent with those obtained by Milani and 

Taliercio, despite some minor differences for the case of 𝜃 equal to 45°. 

Conversely, the results in the compression-compression range show some 

slightly more marked discrepancies, which are rather evident for the case with 𝜃 

equal to 22.5°: these may be due to the different homogenization approach 

employed in the present model. It must be noted that, regardless of the value 

assumed by 𝜃, the shape of the failure surfaces in the compression-compression 

range is more similar to those obtained by Milani and co-workers [6] (see also 

Fig. 2.7), albeit for different material properties. In fact, that work considers 

mortar joints reduced to interfaces, which more closely resembles the 

assumption of the present model (i.e. dissipation only occurs at the interfaces 

between adjacent elements). Nonetheless, the homogenized collapse stresses 

for uniaxial macroscopic loads are almost always coincident for any value of 𝜃. 

Four failure modes are also shown in Fig. 5.10 for relevant load conditions 

applied to Mesh 1. 

  
(a) (c) 

 
 

(b) (d) 

Fig. 5.10. Failure modes for in-plane load conditions on Mesh 1: (a) uniaxial 
horizontal tension; (b) uniaxial vertical tension; (c) uniaxial horizontal compression; 

(d) uniaxial vertical compression. 

As it can be seen, splitting occurs in both bed and head joints for uniaxial 

horizontal tension, whereas for uniaxial vertical tension it only takes place in bed 

joints; crushing occurs for both uniaxial horizontal and vertical compression, with 

the former also displaying some splitting in bed joints. Therefore, these results 
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are consistent with the expected deformed configurations at collapse for the four 

considered cases. 

For the validation in terms of out-of-plane homogenized failure surfaces, a 

simple Mohr-Coulomb failure criterion is used; the values of cohesion 𝑐 and 

friction angle 𝜙 are 0.132 MPa and 27°, respectively, to be consistent with the 

values used in [4]. Fig. 5.11 shows the comparison between the out-of-plane 

homogenized failure surfaces obtained by Milani and Taliercio and those 

resulting from the present model for both Mesh 1 and Mesh 2; the latter is 

included to investigate the influence of the mesh size on the results. 

 
(a) 

 
(b) 

Fig. 5.11. Comparison of out-of-plane homogenized failure surfaces with Milani-
Taliercio: (a) 𝑀𝑥𝑥-𝑀𝑦𝑦 plane; (b) 𝑀𝑥𝑥-𝑀𝑥𝑦 plane. 
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The results coming from the present model display a satisfying correspondence 

to those obtained by Milani and Taliercio; only the shape of the out-of-plane 

homogenized failure surface in the 𝑀𝑥𝑥-𝑀𝑥𝑦 plane is slightly different, but this 

may depend on the different kinematics of the two models. The use of coarser 

Mesh 2 does not affect the results in a significant way, producing only a small 

reduction of the out-of-plane failure surfaces. Three failure modes are also 

shown in Fig. 5.12 for relevant out-of-plane load conditions applied to Mesh 1. 

 
 

 

(a) (b) (c) 

Fig. 5.12. Failure modes for out-of-plane load conditions on Mesh 1: (a) 𝑀𝑥𝑥; (b) 𝑀𝑦𝑦; 

(c) 𝑀𝑥𝑦. 

As expected, the failure mode coming from the application of vertical overturning 

bending moment 𝑀𝑥𝑥 presents vertical cracks in the head joints, whereas the 

failure mode coming from the application of horizontal overturning bending 

moment 𝑀𝑦𝑦 presents horizontal cracks across the bed joints. The failure mode 

coming from the application of the twisting moment 𝑀𝑥𝑦 is also consistent with 

the expectations, displaying cracks corresponding to a clear torsional deformed 

shape. 

5.2.2 English Bond Masonry REV 

The second case study deals with an English bond masonry REV that also 

consists of standard Italian bricks (25×12×5.5 cm3) and mortar joints whose 

thickness is 1 cm. Its finite element mesh counts about 35000 elements (25 over 

the thickness), and is shown in Fig. 5.13; it must be noted that the chosen REV 

is not exactly the same as the cell used by Cecchi and Milani in [5], but it has 

been selected in order to ensure a rigorous application of homogenization. Also 

for this case study, a Mohr-Coulomb failure criterion is used; the mechanical 

properties for the interfaces are listed in Table 5.2 and are the same as those 

used in the work by Cecchi and Milani. 
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Fig. 5.13. English bond masonry REV used for validation against data from Cecchi-
Milani. 

 

Table 5.2 
Mechanical properties for the material employed in comparison with Cecchi-Milani. 

Cohesion 𝑐 [MPa] Friction angle 𝜙 [°] Tensile strength 𝑓𝑡 [MPa] 

0.132 27 
𝑐

tan𝜙
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(a) 

 
(b) 

Fig. 5.14. Comparison of out-of-plane homogenized failure surfaces with Cecchi-
Milani: (a) 𝑀𝑥𝑥-𝑀𝑦𝑦 plane; (b) 𝑀𝑥𝑥-𝑀𝑥𝑦 plane. 

Fig. 5.14 shows the comparison between the out-of-plane homogenized failure 

surfaces obtained by Cecchi and Milani and those resulting from the present 

model. For the 𝑀𝑥𝑥-𝑀𝑦𝑦 plane, a satisfying overall correspondence is noted, 

despite a difference in terms of inclination of the lateral boundaries of the failure 

surface; it is highly possible that this discrepancy comes from the difference in 

terms of approach used for the evaluation of the out-of-plane failure surfaces 

between the two models. For the 𝑀𝑥𝑥-𝑀𝑥𝑦 plane, the failure surface coming from 

this model is smaller than the one obtained by Cecchi and Milani; this can also 

be due to the different approaches used in the two applications. In fact, the work 

by the aforementioned authors does not consider the actual thickness of mortar 
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joints; instead, since their cell just consists of masonry units, dissipation can only 

occur across the surfaces shared by adjoining units. Furthermore, their 

approach also enables dissipation to occur along the out-of-plane direction: this 

has an impact on the results obtained when the macroscopic torsional moment 

𝑀𝑥𝑦 is significant, since in this case the dissipation between the two central 

blocks in correspondence of the mortar joint at the cell’s midplane becomes 

relevant. 

In order to accurately assess how the results in the 𝑀𝑥𝑥-𝑀𝑥𝑦 plane are affected 

by the differences between the two approaches, the upper bound limit analysis 

problem presented in this work is suitably modified to include dissipation along 

the out-of-plane direction for those interfaces that are located in correspondence 

of the midplane mortar joint. Moreover, a second finite element mesh is created 

in which the mortar joints are extremely thin, aiming at mirroring more closely 

the cell’s configuration of Cecchi and Milani (Fig. 5.15a): this consists of about 

240000 elements, 51 over the thickness. To account for the dissipation also in 

the out-of-plane direction, it is necessary to express the Mohr-Coulomb failure 

criterion with a 3D surface in the 𝜎𝑛-𝜏1-𝜏2 plane, which in principle is a cone. 

However, since linear programming requires the bounding yield surfaces to have 

linear expressions in their variables, a piecewise linear approximation of the 

failure criterion is needed in the 𝜏1-𝜏2 plane. Fig. 5.15b shows the very refined 

one used by Cecchi and Milani; to keep the swiftness of the present model, two 

rougher approximations are instead used in this modified upper bound limit 

analysis problem, namely a box-shaped approximation of the surface (Model A, 

Fig. 5.15c) and one that circumscribes the actual surface (Model B, Fig. 5.15d). 
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(a) (c) 

 
 

(b) (d) 

Fig. 5.15. (a) Finer mesh for the English bond masonry REV; (b) piecewise linear 
approximation for the 3D Mohr-Coulomb failure criterion used by Cecchi-Milani; (c) 
Model A, box-shaped approximation in the 𝜏1-𝜏2 plane; (d) Model B, circumscribing 

approximation in the 𝜏1-𝜏2 plane. 

Fig. 5.16a and Fig. 5.16b show the out-of-plane homogenized failure surfaces 

in the 𝑀𝑥𝑥-𝑀𝑥𝑦 plane for Model A and Model B, respectively, compared against 

the results obtained by Cecchi and Milani and against those coming from the 

approach originally used in this work. It can be noted that the finer mesh better 

matches the original results for both models, especially for Model B - even 

though it still slightly underestimates the boundaries of the homogenized failure 

surfaces in correspondence of 𝑀𝑥𝑦. To this regard, it must be recalled that the 

REV used in the present work is different than the cell used by Cecchi and Milani, 

which displays three pairs of central blocks instead of just one as in this case. 

Finally, it must be remarked that the out-of-plane homogenized failure surfaces 
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in the 𝑀𝑥𝑥-𝑀𝑦𝑦 plane do not show meaningful differences among the various 

cases and finite element meshes, hence they are here omitted for sake of 

conciseness. 

 
(a) 

 
(b) 

Fig. 5.16. Comparison of different out-of-plane homogenized failure surfaces in the 
𝑀𝑥𝑥-𝑀𝑥𝑦 plane: (a) Model A; (b) Model B. 

Eventually, three failure modes are extracted for the coarser mesh in relation to 

the initial model of Fig. 5.14, and they are shown in Fig. 5.17 for relevant out-of-

plane load conditions. 
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(a) (b) (c) 

Fig. 5.17. Failure modes for out-of-plane load conditions on English bond masonry 
REV: (a) 𝑀𝑥𝑥; (b) 𝑀𝑦𝑦; (c) 𝑀𝑥𝑦. 

Similarly to the running bond masonry case, the three resulting deformed 

configurations for the selected out-of-plane load conditions are consistent with 

the expectations, thus confirming the reliability of the initial model. The failure 

modes for 𝑀𝑥𝑦 related to Model A and B and for the coarser mesh are here 

omitted for sake of brevity, since they display no relevant differences to those 

shown in Fig. 5.17. 

5.3 Case Studies 

The six case studies that are investigated in terms of out-of-plane homogenized 

failure surfaces are the same previously considered for the in-plane 

homogenized failure surfaces in Chapter 4.2 (Fig. 5.18), which are here 

recapped: 

▪ Case study 1, a rubble masonry building in Casola in Lunigiana, 

Tuscany. 

▪ Case study 2, a quasi-periodic masonry ruin in Codiponte, Tuscany. 

▪ Case study 3, a quasi-periodic masonry parish church in Filattiera, 

Tuscany. 

▪ Case study 4, quasi-periodic masonry tower ruins in Mulazzo, Tuscany. 

▪ Case study 5, a quasi-regular masonry parish church in San Secondo 

Parmense, Emilia-Romagna. 

▪ Case study 6, a quasi-regular masonry grand corridor in Sabbioneta, 

Lombardy. 
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(a) (b) (c) 

 

 

 

(d) (e) (f) 

Fig. 5.18. (a) case study 1; (b) case study 2; (c) case study 3; (d) case study 4; (e) 
case study 5; (f) case study 6. 

For the out-of-plane homogenized failure surfaces of all the six case studies, a 

Mohr-Coulomb failure criterion with cutoffs in tension and compression is 

selected. All the six case studies share the same set of mechanical parameters 

(cohesion, friction angle, tensile strength, and compressive strength) that are 

listed in Table 5.3: 

Table 5.3 
Mechanical properties for the material employed in all case studies. 

Cohesion 
[MPa] 

Friction angle 
[°] 

Tensile strength 
[MPa] 

Compressive strength 
[MPa] 

0.15 30 0.1 1.5 

5.3.1 Case Study 1: Rubble Masonry Building in Casola in Lunigiana, 
Tuscany 

The four considered test-windows are those depicted in Fig. 4.8c and their 

dimensions are 130×130×40 cm3; the transversal configuration of their masonry 

units is ellipsoidal (see Chapter 3.2), since it is consistent with that of river 

pebbles (which are present in this case) and employs 16 finite elements over the 

thickness. 

The flexural and torsional out-of-plane homogenized failure surfaces for the four 

test-windows are depicted in Fig. 5.19, along with their envelope and mean: all 
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the moment values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. It can be noted that test-

windows A and D display smaller out-of-plane failure surfaces with respect to 

the other two: this is because they contain some clearly visible bed joints 

(actually, pseudo bed joints), despite consisting of rubble masonry. In fact, test-

windows B and C show a normalized value of 𝑀𝑦𝑦 that is greater than 1: again, 

this is due to the more marked randomness in the arrangement of their masonry 

units. Nonetheless, the shape of both out-of-plane failure surfaces for the four 

test-windows reflects the high rate of randomness of this case study. Fig. 5.20 

shows the deformed shapes at collapse (“failure modes”) of the four test-

windows of this case study coming from the single application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 

𝑀𝑥𝑦. All these failure modes are consistent with what is expected to occur under 

the application of the aforementioned moments. In particular, it can be noted 

how the application of 𝑀𝑥𝑥 causes widespread cracks in all four test-windows; 

moreover, the application of 𝑀𝑦𝑦 to test-window C does not induce a single 

horizontal crack across one of the pseudo bed joints but again it generates 

widespread cracking patterns. This confirms the resulting flexural out-of-plane 

homogenized failure surface for this test-window, which is the largest of the four 

and shows the biggest normalized collapse value of 𝑀𝑦𝑦 (which is greater than 

1, also). 
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Fig. 5.19. Out-of-plane homogenized failure surfaces for case study 1. 
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 𝑴𝒙𝒙 𝑴𝒚𝒚 𝑴𝒙𝒚 
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C 

   

D 

   

Fig. 5.20. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the four test-windows of case 

study 1. 
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5.3.2 Case Study 2: Quasi-Periodic Masonry Ruin in Codiponte, Tuscany 

The four considered test-windows are those depicted in Fig. 4.14d and their 

dimensions are 160×160×40 cm3; the transversal configuration of their masonry 

units is ellipsoidal to ensure consistency with the in-plane shape of the ashlars 

in this case, and employs 16 finite elements over the thickness. 

The flexural and torsional out-of-plane homogenized failure surfaces for the four 

test-windows are depicted in Fig. 5.21, along with their envelope and mean: all 

the moment values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. Unlike the previous case, the 

shape of the flexural out-of-plane homogenized failure surfaces is very similar 

for all the four test-windows, with no differences whatsoever in the normalized 

collapse value of 𝑀𝑦𝑦. Conversely, more marked differences among the four 

test-windows can be observed in the torsional out-of-plane homogenized failure 

surfaces. Fig. 5.22 shows the failure modes of the four test-windows of this case 

study: all are consistent with what is expected to occur under the application of 

𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦. 
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Fig. 5.21. Out-of-plane homogenized failure surfaces for case study 2. 
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 𝑴𝒙𝒙 𝑴𝒚𝒚 𝑴𝒙𝒚 
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D 

   

Fig. 5.22. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the four test-windows of case 

study 2. 
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5.3.3 Case Study 3: Quasi-Periodic Masonry Parish Church in Filattiera, 
Tuscany 

The four considered test-windows are those depicted in Fig. 4.20d and their 

dimensions are 160×160×40 cm3; the transversal configuration of their masonry 

units is again ellipsoidal, and employs 16 finite elements over the thickness. 

The flexural and torsional out-of-plane homogenized failure surfaces for the four 

test-windows are depicted in Fig. 5.23, along with their envelope and mean: all 

the moment values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. As in the previous case, the 

shape of the flexural out-of-plane homogenized failure surfaces is very similar 

for all the four test-windows, whereas the torsional out-of-plane homogenized 

failure surfaces display noticeable differences. Fig. 5.24 shows the failure modes 

of the four test-windows of this case study: once again, all are consistent with 

what is expected to occur under the application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦. 
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Fig. 5.23. Out-of-plane homogenized failure surfaces for case study 3. 
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Fig. 5.24. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the four test-windows of case 

study 3. 
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5.3.4 Case Study 4: Quasi-Periodic Masonry Tower Ruins in Mulazzo, 
Tuscany 

The four considered test-windows are those depicted in Fig. 4.27d and their 

dimensions are 160×160×40 cm3; the transversal configuration of their masonry 

units is again ellipsoidal, and employs 16 finite elements over the thickness. 

The flexural and torsional out-of-plane homogenized failure surfaces for the four 

test-windows are depicted in Fig. 5.25, along with their envelope and mean: all 

the moment values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. In this case, both the flexural 

and torsional out-of-plane homogenized failure surfaces almost coincide for 

three of the four test-windows: only test-window A displays larger homogenized 

failure surfaces, probably due to the presence of stone chips within some of its 

bed joints. Fig. 5.26 shows the failure modes of the four test-windows of this 

case study: once again, all are consistent with what is expected to occur under 

the application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦. 
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Fig. 5.25. Out-of-plane homogenized failure surfaces for case study 4. 
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Fig. 5.26. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the four test-windows of case 

study 4. 
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5.3.5 Case Study 5: Quasi-Regular Masonry Parish Church in San 
Secondo Parmense, Emilia Romagna 

The four considered test-windows are those depicted in Fig. 4.33b and their 

dimensions are 100×100×15 cm3; the transversal configuration of their masonry 

units is simply the extrusion of their brick-like in-plane configuration, and 

employs 10 finite elements over the thickness. 

The flexural and torsional out-of-plane homogenized failure surfaces for the four 

test-windows are depicted in Fig. 5.27, along with their envelope and mean: all 

the moment values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. This case is particularly 

interesting due to the peculiar behavior of test-window D: it is the only test-

window containing part of the continuous head joint, which greatly affects its out-

of-plane behavior. In fact, both its out-of-plane homogenized failure surfaces are 

considerably different than those of the other three test-windows and display a 

sensibly small normalized collapse value of 𝑀𝑥𝑥, which is due to the presence of 

the continuous head joint. Fig. 5.28 shows the failure modes of the four test-

windows of this case study: they are all consistent with what is expected to occur 

under the application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦. In particular, it can be observed how 

the presence of the continuous head joint affects the failure modes of test-

window D for 𝑀𝑥𝑥 and 𝑀𝑥𝑦: in both cases the test-window displays a continuous 

vertical crack in correspondence of the aforementioned head joint, which is 

extremely marked for 𝑀𝑥𝑥 where the test-window actually splits. 
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Fig. 5.27. Out-of-plane homogenized failure surfaces for case study 5. 
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Fig. 5.28. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the four test-windows of case 

study 5. 
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5.3.6 Case Study 6: Quasi-Regular Masonry Grand Corridor in 
Sabbioneta, Lombardy 

The four considered test-windows are those depicted in Fig. 4.38c and their 

dimensions are 130×130×15 cm3; the transversal configuration of their masonry 

units is again the mere extrusion of their in-plane configuration, and employs 10 

finite elements over the thickness. 

The flexural and torsional out-of-plane homogenized failure surfaces for the four 

test-windows are depicted in Fig. 5.29, along with their envelope and mean: all 

the moment values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. Both the flexural and torsional 

out-of-plane homogenized failure surfaces for the four test-windows present an 

elongated shape that is usually associated to a running bond masonry, which 

means that the out-of-plane behavior of this case is the closest to that of periodic 

masonry among the six cases. The out-of-plane homogenized failure surfaces 

of test-window B are actually slightly smaller than those of the other three test-

windows, and this is due to the presence of a mortar spot in its top-left corner. 

Fig. 5.30 shows the failure modes of the four test-windows of this case study: 

once again, all are consistent with what is expected to occur under the 

application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦. 
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Fig. 5.29. Out-of-plane homogenized failure surfaces for case study 6. 
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Fig. 5.30. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the four test-windows of case 

study 6. 
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5.4 Conclusions 

Fig. 5.31 contains the comparison of the out-of-plane mean homogenized failure 

surfaces for the test-windows of the considered six case studies; all the moment 

values are normalized by 0.5 ∙ 𝑡2 ∙ 𝑓𝑡. In both the flexural and torsional out-of-

plane homogenized failure surfaces, it is possible to observe how the quasi-

regular sixth case study offers the highest normalized collapse value for 𝑀𝑥𝑥 and 

𝑀𝑥𝑦. As previously observed, the shape of both failure surfaces closely 

resembles that usually obtained for a running bond masonry (see Section 5.2.1). 

Although the fifth case study is itself quasi-regular, its out-of-plane mean 

homogenized failure surfaces are severely affected by the presence of the 

continuous head joint, so that they are actually reduced with respect to the 

expectations. This leads to an interesting observation: when considering 

historical masonry, the test-windows must be randomly extracted from the wall 

under investigation in order to encompass all the possible geometrical features. 

As clearly shown by the fifth case study, even though the units’ arrangement 

may be almost regular, the overall out-of-plane behavior is definitely affected by 

the presence of a feature such as the continuous head joint, and this must be 

always taken into account. As far as the other four cases are concerned, the 

quasi-periodic fourth case study offers the highest resistance to 𝑀𝑥𝑥 and 𝑀𝑥𝑦 

with respect to the other three. Conversely, the rubble first case study offers the 

lowest resistance to 𝑀𝑥𝑥 and 𝑀𝑥𝑦, but this is partially compensated by its high 

resistance to 𝑀𝑦𝑦, which is usually the out-of-plane load condition mostly 

relevant when assessing the vulnerability of masonry walls to out-of-plane 

actions, for instance induced by a seismic event. It can then be remarked how a 

rubble masonry wall offers a greater resistance to such actions with respect to 

more periodic bonds, and this helps explaining the fact that historical rubble 

masonry buildings seem to be spared from collapse more frequently than other 

masonry structures.   
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Fig. 5.31. Comparison of the flexural and torsional out-of-plane mean homogenized 
failure surfaces among the six case studies. 
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Some concluding remarks are here offered about the choice of a Kirchhoff-Love 

plate model for expressing the displacement rate field of the finite elements in 

this out-of-plane formulation. In fact, the Reissner-Mindlin model for thick plates 

could have been employed for a more accurate representation of the out-of-

plane components in the displacement rate field. However, this would have 

implied the introduction of further unknowns in the overall problem - namely, the 

components of the average shear strain rate vector. This could have led to an 

increase of the computational burden for solving the standard-form linear 

programming problem. A relevant work published by Cecchi and co-workers [7] 

offers some insight into this issue. There, the authors consider a masonry wall 

clamped at its base, simply supported at the top, and subjected to a horizontal 

load distribution that is governed by a load multiplier. The masonry wall is then 

modeled with both the Kirchhoff-Love and the Reissner-Mindlin plate models, 

and provided with two different values of the wall’s thickness (namely, 30 cm 

and 60 cm). It is then shown that, for the thinner wall, the discrepancy in terms 

of collapse load multiplier between the two plate models is negligible; 

conversely, the difference becomes more marked for the thicker wall. It must be 

considered that the six case studies presented in Section 5.3 display two 

different values for the wall’s thickness, equal to 40 cm for the first four case 

studies and to 15 cm for the last two of them. In both cases, there is no doubt 

that using a Kirchhoff-Love plate model is totally justifiable: this is especially true 

for the smaller value of thickness here considered, but surely holds also for the 

other value. Therefore, the Kirchhoff-Love plate model can be deemed as a 

realistic choice for modeling the out-of-plane behavior of masonry walls when 

the value of their thickness is reasonably small. 
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CHAPTER 6 

 3D HOMOGENIZED LIMIT ANALYSIS OF 
THREE-LEAF NON-PERIODIC MASONRY 

As already hinted at in the introductory section of the previous chapter, the out-

of-plane analysis at collapse of single-leaf masonry walls is a very important 

topic because it directly addresses one of the most vulnerable spots of such 

walls. However, the architectural heritage of several European countries 

consists also of multi-leaf walls [1]. This type of masonry walls is structured as 

follows: two external layers (or wythes) of masonry are erected, leaving an in-

between void that is usually thinner than the two outer layers; this is later filled 

with loose material such as stone chips, or with low quality mortar. Multi-leaf 

walls are often characterized by a rate of transversal interconnection that is 

either very poor or wholly absent most of the times; this entails an insufficient 

resistance against out-of-plane actions. 

As shown in Section 2.4.1, almost no papers have dealt with the study of multi-

leaf masonry walls so far, due to the complexity that is typical of this kind of 

walls, therefore it is very difficult to employ micro- or macro-modelling 

approaches. In general, these walls are characterized by peculiar geometries 

and units’ arrangements that make each of them a unique instance; an extremely 

refined analytical model at the microscale is then required, which would make 

any numerical analysis very cumbersome and computationally unfeasible. On 

the other hand, it is also very difficult to properly investigate the mechanical 

properties of the masonry constituents in these walls, not to mention the 

impossibility to run extensive and effective experimental tests, thus ruling out 

any possibility of defining a reliable macroscale model for such kind of masonry. 

Eventually, assessing the actual rate of transversal interconnection between 

adjacent layers represents another delicate issue to be addressed for these 

walls. 
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The pairing of homogenization and limit analysis seems to offer once more an 

acceptable solution to all the aforementioned issues; this is especially true when 

considering the fact that in many cases it is paramount to only assess the out-

of-plane behavior at collapse of these walls in a swift and straightforward way, 

and limit analysis with a homogenized approach is potentially a very powerful 

tool in this sense. 

Regarding the contents of this chapter, Section 6.1 describes the modifications 

implemented in the out-of-plane upper bound limit analysis problem with 

homogenization that are needed to account for the presence of multiple wythes 

in the non-periodic masonry wall. Section 6.2 presents two case studies, derived 

from the real single-leaf non-periodic masonry walls previously investigated; 

namely, a three-leaf rubble masonry wall and a three-leaf quasi-regular masonry 

wall are considered. For the latter case, the influence of transversal 

interconnection on the global out-of-plane collapse behavior is also assessed. 

Section 6.3 offers some concluding remarks on the results found in the previous 

section. 
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6.1 Problem Formulation 

This section presents the mathematical formulation of the problem that aims at 

deriving out-of-plane homogenized failure surfaces for multi-leaf masonry walls, 

which consist of two or more wythes. This requires the definition of a kinematic 

model that accounts for the presence of these different layers. In fact, the main 

difference with respect to the single-leaf formulation lies in the definition of 

separate average strain rate tensors for each wythe; conversely, the average 

curvature rate tensor is still unique for all the wythes. This modification is 

enforced to reproduce separate in-plane behaviors for each wythe, as is usually 

the case in multi-leaf walls where the wythes are not so well connected; the use 

of a single average curvature rate tensor for all the wythes instead represents a 

simplification of the out-of-plane behavior, for which the multiple wythes cannot 

bend differently with respect to each other, therefore removing the possibility of 

disconnection between the wythes along the out-of-plane direction (in this case, 

axis Z). Even though multi-leaf walls in general do not behave as a sandwich 

structures, it is also well known that their inner core usually consists of either 

loose materials such as stone chips or materials that display poor mechanical 

properties. Therefore, it is totally reasonable to suppose that there is no actual 

contact between the outer wythes and the inner core, which justifies the 

simplifications adopted in the present formulation. 

The difference between the single- and multi-leaf formulation is displayed in Fig. 

6.1, where the macroscopic quantities involved in each case are highlighted. 

 

Fig. 6.1. Difference in terms of macroscopic quantities between the single-leaf (left) 
and multi-leaf case (right). 
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Since each element of the multi-leaf wall is rigid and bereft of rotation rate, its 

kinematics is fully determined by the displacement rate field of its centroid 

{𝑢̇𝑥 , 𝑢̇𝑦, 𝑢̇𝑧}, where axis Z represents the transversal direction. The use of a 

Kirchhoff-Love plate model leads to the following expressions for the three 

components of the displacement rate field, written for each wythe in the general 

case of a three-leaf masonry wall: 

𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟 + 𝐸̇𝑥𝑥
1 𝑥𝐺 + 𝐸̇𝑥𝑦

1 𝑦𝐺 + 𝜒̇𝑥𝑥𝑧𝐺𝑥𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑦𝐺  (6.1) 

𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟 + 𝐸̇𝑥𝑦
1 𝑥𝐺 + 𝐸̇𝑦𝑦

1 𝑦𝐺 + 𝜒̇𝑦𝑦𝑧𝐺𝑦𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑥𝐺  (6.2) 

𝑢̇𝑧 = 𝑢̇𝑧,𝑝𝑒𝑟 − 0.5𝜒̇𝑥𝑥𝑥𝐺
2 − 0.5𝜒̇𝑦𝑦𝑦𝐺

2 − 0.5𝜒̇𝑥𝑦𝑥𝐺𝑦𝐺  (6.3) 

𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟 + 𝐸̇𝑥𝑥
2 𝑥𝐺 + 𝐸̇𝑥𝑦

2 𝑦𝐺 + 𝜒̇𝑥𝑥𝑧𝐺𝑥𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑦𝐺  (6.4) 

𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟 + 𝐸̇𝑥𝑦
2 𝑥𝐺 + 𝐸̇𝑦𝑦

2 𝑦𝐺 + 𝜒̇𝑦𝑦𝑧𝐺𝑦𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑥𝐺 (6.5) 

𝑢̇𝑧 = 𝑢̇𝑧,𝑝𝑒𝑟 − 0.5𝜒̇𝑥𝑥𝑥𝐺
2 − 0.5𝜒̇𝑦𝑦𝑦𝐺

2 − 0.5𝜒̇𝑥𝑦𝑥𝐺𝑦𝐺  (6.6) 

𝑢̇𝑥 = 𝑢̇𝑥,𝑝𝑒𝑟 + 𝐸̇𝑥𝑥
3 𝑥𝐺 + 𝐸̇𝑥𝑦

3 𝑦𝐺 + 𝜒̇𝑥𝑥𝑧𝐺𝑥𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑦𝐺  (6.7) 

𝑢̇𝑦 = 𝑢̇𝑦,𝑝𝑒𝑟 + 𝐸̇𝑥𝑦
3 𝑥𝐺 + 𝐸̇𝑦𝑦

3 𝑦𝐺 + 𝜒̇𝑦𝑦𝑧𝐺𝑦𝐺 + 0.5𝜒̇𝑥𝑦𝑧𝐺𝑥𝐺 (6.8) 

𝑢̇𝑧 = 𝑢̇𝑧,𝑝𝑒𝑟 − 0.5𝜒̇𝑥𝑥𝑥𝐺
2 − 0.5𝜒̇𝑦𝑦𝑦𝐺

2 − 0.5𝜒̇𝑥𝑦𝑥𝐺𝑦𝐺  (6.9) 

As previously stated, the only changes between Eqs. (5.1) to (5.3) and (6.1) to 

(6.15) are enforced in the components of the average strain rate tensor, whose 

number is here equal to 9 {𝐸̇𝑥𝑥
1 , 𝐸̇𝑥𝑦

1 , 𝐸̇𝑦𝑦
1 , 𝐸̇𝑥𝑥

2 , 𝐸̇𝑥𝑦
2 , 𝐸̇𝑦𝑦

2 , 𝐸̇𝑥𝑥
3 , 𝐸̇𝑥𝑦

3 , 𝐸̇𝑦𝑦
3 } instead of the 

only 3 components originally included in the single-leaf formulation. 

Eqs. (5.4) to (5.7) are updated as well to reflect these changes. It must be noted 

that these equations refer to interfaces that are orthogonal to axes X and Y: the 

involved adjacent finite elements then do belong to the same layer. Eq. (5.14) is 

now recalled: it expresses the matrix formulation of the constraints related to the 

velocity jumps and plastic dissipation, written for interface 𝐼 between elements 𝑖 

and 𝑗 and orthogonal to axis X. Supposing that these elements belong to the 1st 

wythe of a three-leaf wall, the equation is updated as follows: 
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[
1 −1 0 0
0 0 1 −1

]

[
 
 
 
 𝑢̇𝑥,𝑝𝑒𝑟

𝑗

𝑢̇𝑥,𝑝𝑒𝑟
𝑖

𝑢̇𝑦,𝑝𝑒𝑟
𝑗

𝑢̇𝑦,𝑝𝑒𝑟
𝑖

]
 
 
 
 

+ [
− tan𝜙 − tan 𝜙

−1 1
−1 1
0 0

]

[
 
 
 
 
𝜆̇𝐼
1

𝜆̇𝐼
2

𝜆̇𝐼
3

𝜆̇𝐼
4]
 
 
 
 

+ 

+[
(𝑥𝐺

𝑗
− 𝑥𝐺

𝑖 ) 0 0 0 0 0 0 0 0 (𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 ) 0 0

0 0 (𝑥𝐺
𝑗
− 𝑥𝐺

𝑖 ) 0 0 0 0 0 0 0 0 0.5(𝑧𝐺
𝑗
𝑥𝐺

𝑗
− 𝑧𝐺

𝑖 𝑥𝐺
𝑖 )

]

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸̇𝑥𝑥

1

𝐸̇𝑦𝑦
1

𝐸̇𝑥𝑦
1

𝐸̇𝑥𝑥
2

𝐸̇𝑦𝑦
2

𝐸̇𝑥𝑦
2

𝐸̇𝑥𝑥
3

𝐸̇𝑦𝑦
3

𝐸̇𝑥𝑦
3

𝜒̇𝑥𝑥

𝜒̇𝑦𝑦

𝜒̇𝑥𝑦]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 

= [
0
0
] 

 (6.10) 

Hence, vector 𝑫̇ now contains the components of the average strain rate tensors 

pertaining to all the wythes, as well as the three independent components of the 

average curvature rate tensor. 

Eqs. (5.20) to (5.22), which are related to the master-slave relations that link the 

kinematic field of a single finite element and that of the masonry unit to which it 

belongs, are updated as well: 
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𝑢̇𝑥,𝑝𝑒𝑟
𝑆 − 𝑢̇𝑥,𝑝𝑒𝑟

𝑀 + 𝜃̇𝑦𝑦
𝑀 (𝑧𝐺

𝑀 − 𝑧𝐺
𝑆) + 𝐸̇𝑥𝑥

𝑡 (𝑥𝐺
𝑆 − 𝑥𝐺

𝑀) + 𝐸̇𝑥𝑦
𝑡 (𝑦𝐺

𝑆 − 𝑦𝐺
𝑀) + 

+𝜒̇𝑥𝑥(𝑧𝐺
𝑆𝑥𝐺

𝑆 − 𝑧𝐺
𝑀𝑥𝐺

𝑀) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑆𝑦𝐺

𝑆 − 𝑧𝐺
𝑀𝑦𝐺

𝑀) = 0 
(6.11) 

𝑢̇𝑦,𝑝𝑒𝑟
𝑆 − 𝑢̇𝑦,𝑝𝑒𝑟

𝑀 + 𝜃̇𝑥𝑥
𝑀 (𝑧𝐺

𝑆 − 𝑧𝐺
𝑀) + 𝐸̇𝑥𝑦

𝑡 (𝑥𝐺
𝑆 − 𝑥𝐺

𝑀) + 𝐸̇𝑦𝑦
𝑡 (𝑦𝐺

𝑆 − 𝑦𝐺
𝑀) + 

+𝜒̇𝑦𝑦(𝑧𝐺
𝑆𝑦𝐺

𝑆 − 𝑧𝐺
𝑀𝑦𝐺

𝑀) + 0.5𝜒̇𝑥𝑦(𝑧𝐺
𝑆𝑥𝐺

𝑆 − 𝑧𝐺
𝑀𝑥𝐺

𝑀) = 0 
(6.12) 

𝑢̇𝑧,𝑝𝑒𝑟
𝑆 − 𝑢̇𝑧,𝑝𝑒𝑟

𝑀 + 𝜃̇𝑥𝑥
𝑀 (𝑦𝐺

𝑀 − 𝑦𝐺
𝑆) + 𝜃̇𝑦𝑦

𝑀 (𝑥𝐺
𝑆 − 𝑥𝐺

𝑀) + 

+0.5𝜒̇𝑥𝑥[(𝑥𝐺
𝑀)2 − (𝑥𝐺

𝑆)2] + 0.5𝜒̇𝑦𝑦[(𝑦𝐺
𝑀)2 − (𝑦𝐺

𝑆)2] + 

+0.5𝜒̇𝑥𝑦(𝑥𝐺
𝑀𝑦𝐺

𝑀 − 𝑥𝐺
𝑆𝑦𝐺

𝑆) = 0 

(6.13) 

No modifications are needed by the constraints related to the periodicity of the 

velocity field at the boundaries. Conversely, Eq. (5.28) - which expresses the 

normalization of the dissipated external power - needs to be modified as well: 

𝑃𝑒𝑥𝑡 = Σ𝑥𝑥𝐸̇𝑥𝑥
1 + Σ𝑦𝑦𝐸̇𝑦𝑦

1 + Σ𝑥𝑦𝐸̇𝑥𝑦
1 + (… ) + Σ𝑥𝑥𝐸̇𝑥𝑥

𝑛 + Σ𝑦𝑦𝐸̇𝑦𝑦
𝑛 + Σ𝑥𝑦𝐸̇𝑥𝑦

𝑛 + 

+𝑀𝑥𝑥𝜒̇𝑥𝑥 + 𝑀𝑦𝑦𝜒̇𝑦𝑦 + 𝑀𝑥𝑦𝜒̇𝑥𝑦 = 1 

𝑃𝑒𝑥𝑡 = Σ𝑥𝑥 ∑𝐸̇𝑥𝑥
𝑡

𝑛

𝑡=1

+ Σ𝑦𝑦 ∑𝐸̇𝑦𝑦
𝑡

𝑛

𝑡=1

+ Σ𝑥𝑦 ∑𝐸̇𝑥𝑦
𝑡

𝑛

𝑡=1

+ 

+𝑀𝑥𝑥𝜒̇𝑥𝑥 + 𝑀𝑦𝑦𝜒̇𝑦𝑦 + 𝑀𝑥𝑦𝜒̇𝑥𝑦 = 1 

(6.14) 

Eventually, the homogenized limit analysis problem is once more formulated as 

a linear programming problem. The objective function that ought to be minimized 

is still the dissipated internal power as expressed in Eq. (5.33), and the equality 

constraints are still given by Eqs. (5.16), (5.23), (5.27), and (5.29), provided that 

they include the modifications introduced in Eqs. (6.10) to (6.14). In the usual 

standard form, the components of the average strain tensors are expressed as: 

𝐸̇𝑖𝑗
𝑡 = 𝐸̇𝑖𝑗

𝑡,+ − 𝐸̇𝑖𝑗
𝑡,− 𝑖, 𝑗 = 𝑥, 𝑦 (6.15) 

The standard form for this linear programming problem is: 

Minimize 𝑪𝑻𝑿 (6.16) 

Subject to 𝑨𝑿 = 𝑩 (6.17) 

 𝑿 ≥ 𝟎 (6.18) 
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where 

𝑨 =

[
 
 
 
 
𝑨𝟏𝟏

𝒆𝒒
−𝑨𝟏𝟏

𝒆𝒒

𝑨𝟐𝟏
𝒆𝒒

−𝑨𝟐𝟏
𝒆𝒒

𝑨𝟑𝟏
𝒆𝒒

−𝑨𝟑𝟏
𝒆𝒒

𝟎 𝟎

    

𝟎
𝑨𝟐𝟐

𝒆𝒒

𝟎
𝟎

    

𝟎
−𝑨𝟐𝟐

𝒆𝒒

𝟎
𝟎

    

𝑨𝟏𝟑
𝒆𝒒

𝑨𝟏𝟒
𝒆𝒒

−𝑨𝟏𝟒
𝒆𝒒

𝟎 𝑨𝟐𝟒
𝒆𝒒

−𝑨𝟐𝟒
𝒆𝒒

𝟎 𝟎 𝟎
𝟎 𝑨𝟒𝟒

𝒆𝒒
−𝑨𝟒𝟒

𝒆𝒒
]
 
 
 
 

 (6.19) 

𝑿 =

[
 
 
 
 
 
 
 
𝒖̇𝒑𝒆𝒓

+

𝒖̇𝒑𝒆𝒓
−

𝑹̇+

𝑹̇−

𝝀̇𝑰,𝒂𝒔𝒔

𝑫̇+

𝑫̇− ]
 
 
 
 
 
 
 

 (6.20) 

𝑩 = [

𝟎
𝟎
𝟎
1

] (6.21) 

𝑪 =

[
 
 
 
 
 
 

𝟎
𝟎
𝟎
𝟎

𝑪𝑰,𝒂𝒔𝒔

𝟎
𝟎 ]

 
 
 
 
 
 

 (6.22) 

6.2 Case Studies 

Two multi-leaf case studies are investigated in terms of out-of-plane 

homogenized failure surfaces. The first case study deals with a three-leaf wall 

whose outer wythes consist of rubble masonry, while the second is represented 

by a three-leaf wall whose outer wythes consist of quasi-regular masonry. In the 

latter case, the influence of the transversal interconnection on the out-of-plane 

collapse behavior is also examined.  

Two separate sets of mechanical parameters (cohesion, friction angle, tensile 

strength, and compressive strength) are employed in these case studies: one 

set is dedicated to simulate the properties of the outer wythes, where the 

mechanical parameters are equal to those assumed in Sections 4.2 and 5.3; the 
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other set is dedicated to simulate the properties of the inner wythe, which is 

supposed to consist of low quality mortar. Both sets are listed in Table 6.1. 

Table 6.1 
Mechanical properties for the material employed in all case studies. 

Type of 
interface 

Cohesion 
[MPa] 

Friction angle 
[°] 

Tensile 
strength 
[MPa] 

Compressive 
strength [MPa] 

Outer wythes 0.15 30 0.1 1.5 

Mortar inner 
wythe 

0.05 35 0.02 0.5 

6.2.1 Case Study 1: Three-Leaf Rubble Masonry Wall 

The first case study consists of a three-leaf wall whose outer wythes are rubble 

masonry walls. Two instances of such wall are created aiming at investigating 

how the possible presence of different rubble masonry bonds influences the out-

of-plane response of a three-leaf wall: specifically, one is named “Instance 1” 

and considers test-window C of case study 1 (see Fig. 4.8 of Section 4.2.2) as 

the masonry bond for both outer wythes (Fig. 6.2a), whereas the other is named 

“Instance 2” and employs the previous masonry bond for a single wythe, 

considering instead test-window B of the same case study as the masonry bond 

for the opposite wythe (Fig. 6.2b). In both instances, a 5×5 coarsing strategy is 

employed to reduce the number of finite elements in the analytical models (Fig. 

6.2c and Fig. 6.2d); the outer wythes are supposed to be 40 cm thick and the 

mortar inner one 15 cm thick. The 3D finite element meshes of the two instances 

are shown in Fig. 6.3 along with their exploded view: the outer wythes employ 

16 finite elements over the thickness, while the mortar inner one employs 6 finite 

elements over the thickness. 
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(a) (c) 

  
(b) (d) 

Fig. 6.2. (a) Test-window C of case study 1; (b) test-window B of case study 1; (c) in-
plane configuration of both the outer wythes for Instance 1, and of one wythe of 

Instance 2; (d) in-plane configuration of the other outer wythe of Instance 2. 
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(a) (b) 

  
(c) (d) 

Fig. 6.3. First case study: (a) 3D finite element mesh for Instance 1; (b) exploded 
view of the 3D finite element mesh for Instance 1; (c) 3D finite element mesh for 

Instance 2; (d) exploded view of the 3D finite element mesh for Instance 2. 

Fig. 6.4 shows the comparison between the two instances in terms of flexural 

and torsional out-of-plane homogenized failure surfaces. It is possible to observe 

that Instance 2 (the one with different rubble masonry bonds in the outer wythes) 

displays larger failure surfaces in both the flexural and torsional cases: this 

means that, when it comes to rubble masonry three-leaf walls, the presence of 

different bonds in the outer wythes somehow increases the out-of-plane 

resistance of the wall, probably due to the combined effect of the two different 

types of irregularity at the extremities. 
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The deformed shapes at collapse (“failure modes”) of the two instances of this 

case study are shown in Fig. 6.5, which come from the single application of 𝑀𝑥𝑥, 

𝑀𝑦𝑦, and 𝑀𝑥𝑦. The outcomes of both the out-of-plane homogenized failure 

surfaces are corroborated: in fact, it is possible to observe how Instance 2 shows 

less widespread crack patterns for all the applied moments, suggesting a more 

compact (and, in the end, stiffer) out-of-plane response with respect to Instance 

1. 

 

 

Fig. 6.4. Flexural and torsional out-of-plane homogenized failure surfaces for the two 
instances of the first case study. 
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 Instance 1 Instance 2 

𝑴𝒙𝒙 

  

𝑴𝒚𝒚 

  

𝑴𝒙𝒚 

  
Fig. 6.5. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the two instances of the first 

case study. 
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6.2.2 Case Study 2: Three-Leaf Quasi-Regular Masonry Wall 

The second case study consists of a three-leaf wall whose outer wythes are 

quasi-regular masonry walls; also, two numerical applications are here 

considered. Analogously to the previous case, the first investigates how the 

possible presence of different quasi-regular masonry bonds influences the out-

of-plane response of a three-leaf wall; the second aims at investigating the role 

of the possible presence of transversal bricks, which ensure interconnection 

between the outer wythes. 

For the first numerical application, two instances of the quasi-regular three-leaf 

wall are created: specifically, one is named “Instance 1” and considers test-

window C of case study 6 (see Fig. 4.38 of Section 4.2.7) as the masonry bond 

for the outer wythes (Fig. 6.6a), whereas the other is named “Instance 2” and 

employs the previous masonry bond for a single wythe, considering instead test-

window B of the same case study as the masonry bond for the opposite wythe 

in this case (Fig. 6.6b). In both instances, a 4×4 coarsing strategy is employed 

to reduce the number of finite elements in the analytical model of the three-leaf 

wall (Fig. 6.6c and Fig. 6.6d); in this case, the outer wythes are supposed to be 

15 cm thick and the inner one 6 cm thick. The 3D finite element meshes of the 

two instances are shown in Fig. 6.7 along with their exploded view: the outer 

wythes employ 7 finite elements over the thickness, while the mortar inner one 

employs 3 finite elements over the thickness. 
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(a) (c) 

   
(b) (d) 

Fig. 6.6. (a) Test-window C of case study 6; (b) test-window B of case study 6; (c) in-
plane configuration of both the outer wythes for Instance 1, and of one wythe of 

Instance 2; (d) in-plane configuration of the other outer wythe of Instance 2. 
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(a) (b) 

  
(c) (d) 

Fig. 6.7. Second case study, first numerical application: (a) 3D finite element mesh 
for Instance 1; (b) exploded view of the 3D finite element mesh for Instance 1; (c) 3D 
finite element mesh for Instance 2; (d) exploded view of the 3D finite element mesh 

for Instance 2. 

Fig. 6.8 shows the comparison between the two instances in terms of flexural 

and torsional out-of-plane homogenized failure surfaces for this first numerical 

application. Unlike what shown in Section 6.2.1 for the previous case study, it is 

possible to observe that Instance 2 (the one with different quasi-regular masonry 
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bonds in the outer wythes) displays smaller failure surfaces in the torsional case. 

This may imply that, in case of a quasi-regular three-leaf wall, the presence of 

different bonds in the outer wythes actually decreases the torsional out-of-plane 

resistance of the wall, but this should be more deeply investigated in further 

studies regarding multi-leaf walls. Nonetheless, it must be considered that one 

of the two outer wythes here presents a widespread portion of mortar in one of 

its corners, which may have an effect in the final torsional response of the three-

leaf wall. 

The deformed shapes at collapse (“failure modes”) of the two instances of this 

first numerical application are shown in Fig. 6.9, which come from the single 

application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦. It is very easy to observe that Instance 2 shows 

more widespread cracks for all the applied moments, which further proves its 

lower resistance to out-of-plane actions (albeit rather slight). 
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Fig. 6.8. Flexural and torsional out-of-plane homogenized failure surfaces for the two 
instances of the first numerical application of the second case study. 
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 Instance 1 Instance 2 

𝑴𝒙𝒙 

  

𝑴𝒚𝒚 

  

𝑴𝒙𝒚 

  
Fig. 6.9. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the two instances of the first 

numerical application of the second case study. 
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The second numerical application of this case study considers two other 

instances of the quasi-regular three-leaf wall. Specifically, one is the Instance 1 

coming from the first numerical application, here representing the case where 

the mutual interaction between the three wythes is supposed to be null (i.e. with 

the absence of transversal bricks): this mirrors a common case in multi-leaf 

walls, where the transversal interconnection is very often nonexistent [2]. 

Conversely, the other instance (here named “Instance 3”) is a slight modification 

of Instance 1 and assumes the presence of some transversal bricks that span 

the whole thickness of the three-leaf wall. This is a rarer occurrence in real multi-

leaf walls, but it can be observed in some examples where the expertise in 

erecting this type of wall was state-of-the-art and, likely, heavily influenced by 

the experience of past seismic events that taught valuable lessons on how to 

ensure a tight out-of-plane behavior of the walls. The 3D finite element mesh for 

Instance 3 is shown in Fig. 6.10 along with its exploded view; it is possible to 

observe that some of the bricks are extended over the whole transversal length 

of the quasi-regular three-leaf wall. Once more, the outer wythes employ 7 finite 

elements over the thickness, while the inner one employs 3 finite elements over 

the thickness. 

  
(a) (b) 

Fig. 6.10. (a) 3D finite element mesh for Instance 3; (b) exploded view of the 3D 
finite element mesh for Instance 3. 

Fig. 6.11 shows the comparison between the two instances in terms of flexural 

and torsional out-of-plane homogenized failure surfaces for this second 
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numerical application. It is possible to observe that Instance 3 (the one with the 

presence of transversal bricks) displays larger failure surfaces: this means that 

in cases where multi-leaf walls are provided with a good transversal 

interconnection between the outer wythes, their out-of-plane collapse behavior 

greatly improves. In this specific case, it is possible to see how the beneficial 

effect due to the presence of the transversal bricks provides the considered wall 

with a collapse value of 𝑀𝑦𝑦 that is doubled with respect to the previous case 

that presents no transversal interconnection. The collapse value of 𝑀𝑥𝑥 and 𝑀𝑥𝑦 

increase as well: in fact, a fair transversal interconnection as the one given in 

this case is enough to stiffen the wall. 

This is further confirmed by the deformed shapes at collapse (“failure modes”) 

of the two instances coming from the single application of 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦, 

which are shown in Fig. 6.12. In particular, for 𝑀𝑥𝑥 and 𝑀𝑥𝑦 it is possible to 

observe how the presence of transversal bricks gives an overall tightening of the 

three-leaf wall; moreover, for 𝑀𝑦𝑦 the failure mode changes completely, since in 

Instance 1 a single, wide crack appears across a bed joint in the lower part of 

the three-leaf wall, whereas in Instance 3 the crack pattern is more widespread 

over the wall. 
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Fig. 6.11. Flexural and torsional out-of-plane homogenized failure surfaces for the 
two instances of the second numerical application of the second case study. 
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 Instance 1 Instance 3 

𝑴𝒙𝒙 

  

𝑴𝒚𝒚 

  

𝑴𝒙𝒚 

  
Fig. 6.12. Failure modes under 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 for the two instances of the 

second numerical application of the second case study. 
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6.3 Conclusions 

This chapter has presented an investigation on two case studies involving three-

leaf masonry walls, the first consisting of a rubble masonry wall and the second 

a quasi-regular wall. For both case studies, the effects due to the possible 

presence of separate but similar masonry bonds in the outer wythes have been 

investigated; in the second case study, the influence of the transversal 

interconnection has also been inquired. The results are very interesting and 

show that, for a rubble three-leaf masonry wall, the presence of two different 

wythes increases the out-of-plane response of the wall both under flexural and 

torsional actions. Conversely, for a quasi-regular three-leaf masonry wall the 

presence of two different wythes decreases the out-of-plane response of the 

wall, albeit to a lesser extent than in the previous case. Eventually, the beneficial 

effects of a good transversal interconnection between the outer wythes - usually 

brought by the presence of transversal bricks - are confirmed by the numerical 

results both in terms of out-of-plane homogenized failure surfaces and of 

deformed shapes at collapse. 
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CHAPTER 7 

 CONCLUSIONS 

This concluding chapter is meant to provide the author’s thought about possible 

future developments of work presented in this PhD thesis. Before tackling the 

contents of the following sections, it must be remarked that all the results 

reported in previous chapters are purely numerical, albeit the case studies are 

extracted from real non-periodic masonry buildings. Indeed, a thorough 

validation of the proposed model against experimental data would surely give 

support to its overall effectiveness and reliability. However, it must be noted that 

experimental data in terms of collapse loads for non-periodic masonry are very 

scarce, and are usually only a small part of broader investigations that go beyond 

the simple characterization of the experimental collapse behavior of non-periodic 

masonry (see for instance Gattesco & Boem [1] as well as Gattesco and co-

workers [2]). Nonetheless, a modest proposal for an immediate follow-up of this 

PhD thesis is the execution of an experimental campaign oriented to studying 

the collapse behavior of non-periodic masonry, whose results can subsequently 

be used for a validation of the proposed model. 

Regarding the contents of this chapter, Section 7.1 presents a proposal 

regarding the conception of a model solely devoted to the homogenized limit 

analysis of non-periodic multi-leaf walls, whereas Section 7.2 describes a 

proposal regarding the creation of a MATLAB app provided with a GUI, whose 

goal is to undertake all the numerical steps needed for the homogenized limit 

analysis investigation on non-periodic masonry. 
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7.1 Comprehensive Study of the Collapse Behavior 
of Multi-Leaf Walls 

The results presented in Chapter 6 concerning the out-of-plane collapse 

behavior non-periodic multi-leaf walls focus on two case studies that do not 

correspond to existing buildings. They merely represent an interesting example 

of the potential provided by the proposed homogenization-limit analysis model. 

However, as discussed in the introduction of the aforementioned chapter, multi-

leaf walls are a common feature of the local architectural heritage in several 

European countries; many Italian regions also host widespread instances of 

non-periodic multi-leaf masonry walls, especially in areas rather prone to 

earthquakes. Considering the high seismic vulnerability of walls built with this 

construction technique, the correct assessment of their collapse behavior is of 

utmost importance. Unfortunately, in historical masonry buildings the presence 

of multi-leaf walls is only revealed after the local or global failure of the structure 

due to an earthquake, as shown in Fig. 7.1 where two interesting cases are 

considered. On the left, it is possible to observe the ejection of the external wythe 

caused by the seismic action; while in this case the building is still standing, this 

occurrence is often the prelude to the partial or even total collapse of the 

construction. On the right, it is possible to observe that the inner layer of the 

multi-leaf wall is basically absent, suggesting a total lack of transversal 

interconnection between the outer wythes. 

 

 
Fig. 7.1. Multi-leaf walls in two buildings located in Accumoli (RI), revealed after the 

collapse of the façade due to the 2016 Central Italy earthquake. 
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Therefore, one future development of the work presented in this PhD thesis 

should be the creation of a model solely devoted to studying non-periodic multi-

leaf walls, which must consider all their features. Specifically, this development 

should follow these propositions: 

▪ The basic mathematical formulation of the problem should be the same, 

or at least very similar, to that proposed in Section 6.1. 

▪ A needed modification of the aforementioned formulation should be 

devoted to actually represent the multiple wythes of the multi-leaf wall. 

In fact, choosing the same curvature for all the wythes is a simplification 

that proves to be useful in many cases; however, the proposed 

modification should consider each wythe as a single body. This is 

required to represent real occurrences in multi-leaf walls such as the 

ejection of the external wythe. 

▪ The actual rate of transversal interconnection should also be featured in 

the modified formulation. This entails a twofold implementation: 

o One in the MATLAB function for the creation of the 3D finite 

element mesh: the script should be provided with an automated 

procedure that recognizes the presence of transversal units, 

along with their shape and dimensions. 

o One in the equality constraint coming from velocity jumps and 

plastic dissipation. Namely, the mutual interfaces of adjacent 

elements belonging to distinct wythes should be able to 

dissipate also in the out-of-plane direction. This is equivalent in 

stating that each wythe of the multi-leaf wall is considered as a 

single Kirchhoff-Love plate, and the wall itself consists of 

several plates that are assembled together. 

▪ An alternative to the latter proposition could be a more radical 

modification of the mathematical formulation, considering the multi-leaf 

wall as a single Reissner-Mindlin plate. In this case, some simplifications 

in terms of dissipation between adjacent interfaces could also be 

enforced. 
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7.2 Development of GUI-Based MATLAB App for 
Homogenized Limit Analysis of Non-Periodic 
Masonry 

The methodology developed in this PhD thesis is built upon the idea of providing 

an instrument for assessing the in- and out-of-plane collapse behavior of non-

periodic masonry. To this end, a standard-form linear programming problem is 

devised, which represents the numerical implementation of an upper bound limit 

analysis problem coupled with a homogenization approach. Among the main 

innovations of the proposed methodology, the possibility to generate a 2D or 3D 

finite element mesh from the rasterized sketch of a generic masonry element 

must surely be highlighted. 

It can be noted that all the stages of the proposed methodology are implemented 

in MATLAB, the most prominent and versatile numerical computing environment 

available for academic purposes. The latest releases of this software (including 

R2018b, the one used for the numerical applications of this PhD thesis [3]) 

contain an App Designer; this is a self-contained program that enables the 

creation of an app and a related Graphical User Interface (GUI) where all the 

needed interactive controls are displayed. 

The proposed methodology follows a series of steps (the dark grey regions and 

arrows of Fig. 7.2) that are performed consequentially and logically: first, the 2D 

or 3D finite element mesh is created from the rasterized sketch of a source 

image representing a generic (non-periodic) masonry structural element. Then, 

the resulting mesh is used as a basis for the subsequent in- or out-of-plane 

homogenized limit analysis, from which the in- or out-of-plane failure surfaces 

are extracted as well as relevant deformed shapes at collapse (or, failure modes) 

for single in- or out-of-plane load conditions. 
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Fig. 7.2. Conceptual workflow of the procedure to develop in the MATLAB app. 

The only missing point in the proposed methodology is an initial step consisting 

of an automated and reliable procedure for the creation of the rasterized sketch 

from the picture of a real generic masonry structural element (the red region and 

arrow in Fig. 7.2). This initial step is not trivial, since it should employ dedicated 

tools for the correct identification of units and mortar in the considered masonry 

element. 

Once the automated procedure representing this initial step is originated and 

successfully validated, it should be possible to implement the whole 

methodology in a dedicated, GUI-based MATLAB app, which represents another 

future development of the work presented in this PhD thesis. The proposed GUI 

should at least include the following features: 

▪ A button for uploading the image of the real masonry structural element. 

▪ A window for displaying the uploaded image. 

▪ A button for starting the rasterization procedure. 

▪ A separate window for displaying the rasterized sketch of the source 

image. 

▪ A button for creating the finite element mesh, and a menu that enables 

the selection of a 2D/3D mesh and other requirements (dimensions of 

the masonry element, parameters for the coarsing strategy, etc.). 

▪ A separate window for displaying the 2D finite element mesh or the in-

plane configuration of the 3D finite element mesh. 
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▪ A cropping tool for selecting the position and dimensions of the test-

window directly from the depiction of the 2D/3D finite element mesh. 

▪ A button for starting the homogenized limit analysis of the considered 

test-window, and a menu for selecting the in- or out-of-plane case. 

▪ A separate window for displaying the resulting in- or out-of-plane 

homogenized failure surfaces. 

▪ A button for extracting the deformed shapes at collapse, and a menu for 

selecting the in- or out-of-plane load conditions for which the failure 

mode should be extracted. 

The proposed GUI-based MATLAB app could represent a useful and integrated 

tool for researchers and scholars needing for a quick assessment of the collapse 

behavior of non-periodic masonry walls for academic purposes, possibly after 

the occurrence of a seismic sequence. 
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