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Abstract 
 

STRUCTURAL masonry and its supporting stability-based design 

techniques have the potential to become a viable and advantageous 
method for new constructions. This technique however requires a 
modernization of the design and an accessibility to the analysis for 
engineers and other practitioners. Sudden failure must be removed. 
Simplified engineering equations and procedures must be established, and 
the model must be economically competitive. Limiting the conversation to 
the masonry arch, this research presents a black box analysis approach for 
dry-stack masonry arches. Through the application of kinematic equations 
of equilibrium and the kinematic admissibility of their solutions, a simple and 
effective strategy is developed for the analysis of dry-stack masonry arches 
subjected to mechanical joint control. The kinematic equations of 
equilibrium are established through the inclusion of an applied loading 
variable into the free-body diagram that defines the kinematic condition 
which generates a determinant system and a single solution. The results of 
the solution are then used to establish the resulting thrust line that 
represents the theoretical concentration of compressive forces through the 
system. This thrust line is then evaluated against the boundaries of the 
defined kinematic state to establish admissibility of the combined kinematic 
and loading conditions. 
 
Incorporating this approach into the developed Kinematic Collapse Load 
Calculator (KCLC) establishes an accessibility and efficiency to the analysis 
through the visual representation of the condition under analysis and its 
solution with a back-end isolation of the supporting mathematics. 
Expanding beyond the traditional four hinged mechanism, the KCLC is 
adapted to incorporate limiting condition assessments for multi-mechanism 
analyses introduced from the inclusion of slip-joints. The inclusion of slip is 
accomplished through the incorporation of the coefficient of static friction. 
The inclusion of friction is balanced with a moment at the slip joint and the 
relationship between normal and parallel reactions at the mechanical joint. 
The resulting thrust lines from kinematically admissible statically unstable 
conditions are then evaluated against an arch geometry to establish the 
required joint reinforcements to maintain rigid elements between 
mechanical joints. The reinforcement magnitudes are calculated by 
determining the required moment or surface tension necessary to shift the 
thrust line back to the boundary of the arch. The accessibility and efficiency 
are then further expanded through the incorporation of a CAD based data 
extraction technique that allows the analysis structure to be applied to any 
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drawn arch model. Lastly for the black box analysis structure, the single 
degree of freedom motion of the kinematic condition is incorporated to 
evaluate mechanical deformations and their effect on capacity. This 
expands the kinematic equilibrium to static deformations and allows for the 
evaluation of conditions such as a hinge stiffness from a non-ideal joint 
reinforcement.  
 
The transformation from the focus of stability to kinematic admissibility also 
allows the characterization of an arch to be established. This 
characterization is demonstrated by the development of collapse load 
diagrams (CLDs) and the adaptation of the analysis model to experimental 
conditions. CLDs are developed from calculating the minimum mechanisms 
for the admissible configurations of the base hinges for a given arch and 
plotting the capacities against the negative tangent of the angle between 
the base hinges. These diagrams establish a first-order assessment 
strategy for comparing arches and establishing quantitative values for 
project development stages of construction. This family of mechanisms also 
highlights the behavior between capacity and hinge sets. This behavior 
provides the comparison structure necessary to establish a capacity 
adjustment equation that directly adjust the theoretical model to a real arch. 
This process was repeated with two experimental campaigns, one for an 
in-scale arch and the other for a full-scale arch, both subjected to a tilting 
plane. 
 
Lastly, the evaluation of statically deformed conditions is expanded into a 
seismic modelling structure. The kinematic equilibrium of mechanical 
deformations combined with the equivalent single point representation of 
deformation establishes required work-paths necessary to propagate the 
kinematic arch to collapse. The definition of conservative work then links 
these work-paths with kinetic energy for accelerations that exceed the static 
limit, or when the arch is in a kinematic state. The spatial establishment of 
kinetic energy in turn allows the formation of the time domain for the 
kinematic condition. This establishes the time-step propagation of position 
and kinetic energy through an acceleration sequence.  
 
Therefore, this work establishes an analysis foundation that addresses both 
the static and dynamic conditions of dry-stack masonry arches subjected to 
hinge control. It formulates a single theoretical structure that can be 
employed for every stage of a project’s development from inception and 
selection to contract execution. It links design with structural analysis and 
maintains a simplicity that can extend masonry arch analysis from the 
academic to practicing engineer. From this point the modernization of 
masonry has begun. 
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CHAPTER 1 

INTRODUCTION 

List of Abbreviations and Symbols 

BVP ─ Boundary value problem 

DOF ─ Degree of freedom 

FBG ─ Fiber Bragg grating sensor 

FRP ─ Fiber reinforced polymer 

KCLC ─ Kinematic collapse load calculator 

LA ─ Limit analysis 

RSBD ─ Reinforced stability-based design 

SBD ─ Stability-based design 

SHM ─ Structural health monitoring 

TRM ─ Textile reinforced mortar 

 

Sustainability is a fundamental concept that must be integrated into the practices 
of architects, engineers, scientists, and all other disciplines that support the 
health and wellbeing of societies and their populations. It is only as a collective 
that the issues of resource exhaustion and climate change can be combated. 
Each and every discipline must find their unique ways to contribute to this 
collective. For structural engineers and architects, significantly increasing the 
lifespan of new structures is one method. 

Currently reinforced concrete is the most common building method used. With 
cheap materials and quick construction this is a favored method, but the 
corrosive behavior of steel, which is the primary material used to withstand 
tension, compromises its longevity. Techniques that replace steel with 
alternative composite materials, and pre-stressing methods are continuously 
being developed to increase the lifespan of these structures. Their fundamental 
lifespan however is short and extending it is cumbersome. Another method for 
lifespan extension is the implementation of sensors for continuous performance 
monitoring. This instrumentation is termed structural health monitoring (SHM). 
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Appropriately applied SHM systems allow for corrective measures to be 
implemented at the onset of a problem. SHM systems applied to reinforced 
concrete structures face significant challenges from the high degree of 
approximations and assumptions incorporated into the standard design and 
construction practices [1]. These approximations and assumptions, which are 
applied conservatively to ensure safety and design efficiency, result in the 
inability to know the behavior of the structure prior to instrumentation. 
Consequently, the effective application of SHM systems to reinforced concrete 
structures require multi-step campaigns and long calibration periods that 
ultimately render their application uneconomical for all but the most critical and 
complex structures. 

Creating a more sustainable model through the concept of longevity can also be 
accomplished by starting with a construction method that has a proven track 
record, in terms of longevity, and adapting it to satisfy modern structural 
standards. One such design method that meets this criterion is the Stability-
Based Design (SBD) techniques used for constructing unreinforced masonry 
structures. The potential longevity of SBD is realized through the existence of 
structures built in the Greek through Gothic times. Unfortunately, the lack of 
structural interest that was observed during the Renaissance resulted in the near 
extinction of this design method. When the interest of structural design 
reemerged in the nineteenth century it was coupled with the integration of iron 
as a tensile material [2].  

Structural design’s reemergence was in the form of graphical analysis as 
formalized by Culmann in DIE GRAPHISCHE STATIK [3]. Graphical statics became 
the dominant method used in determining structural equilibrium for the end of 
the nineteenth and beginning of the twentieth centuries, but this method was 
replaced by the theory of elasticity by 1920 [4]. The theory of elasticity had two 
distinct advantages to graphical statics: one being its closed-form analytical 
solutions that increased design efficiency and the other being the removal of the 
drawing skills required by its counterpart. The theory of elasticity continued to 
dominate, and as iron turned into steel and then reinforced concrete, graphical 
analysis methods were abandoned, and are now no longer taught to the young 
engineer. Graphic analysis worked very well for the analysis of SBD structures, 
but the same could not be said for the theory of elasticity and its corresponding 
mathematics. Additionally, traditional SBD (i.e. unreinforced masonry) structures 
and their inability to withstand tensile forces produces collapse failures that are 
both sudden and potentially without warning. This sudden collapse is further 
exacerbated in seismic regions. Consequently, the development of the theory of 
elasticity, coupled with the inability for SBD to adapt and the possibility of a 
sudden collapse, resulted in SBD’s extinction for the modern engineer. However, 
the understanding of the technique has not been lost. Its focus and 
understanding has been directed by engineers towards the preservation, 
restoration, and rehabilitation of historical structures. 
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1.1 Modernization of Masonry 

The reintroduction of SBD techniques requires modernization of the design to 
satisfy current safety and structural standards. Additionally, a successful 
reintroduction requires that the modernization is done in a manner that is 
palatable to the practicing engineer. For this to occur, the sudden failure needs 
to be removed from the system, simplified engineering equations and 
procedures must be established, and the model must be economically 
competitive. 

1.1.1 Removal of Sudden Collapse 

The removal of the sudden collapse and assumption of no slippage between 
blocks has been proposed through the concept of Reinforced Stability-Based 
Design RSBD [5]. This RSBD technique is developed on the principle of 
maintaining the traditional SBD behavior under normal service conditions and 
designing a reinforcement system that “activates” after the loss of stability. The 
theoretical investigation into this behavior for a semi-circular arch produced a 
linear relationship between the applied load and mechanical hinge rotation for 
small angles. This linearity is transferred into a linear strength problem through 
the application of a linearly elastic tensile material. The proposed methodology 
to achieve this behavior is through the application of a woven reinforcement that 
removes the no-slip assumption without compromising the ability to rotate, and 
then applying external reinforcement only anchored to the weave (see Figure 1). 
In this manner, the rigid block motion is reinforced with negligible effects to the 
stable system. 

 

Figure 1. Diagrams showing the woven reinforcement application to four blocks, 
the demonstration of no hinge restrictions from the weave, the external 

application of reinforcement attached to the weave and the resulting hinge 
reinforcement. 



Stockdale  Chapter 1 

4 

 RSBD and Structural Health Monitoring 

The decoupling of the masonry and reinforcement in the RSBD approach allows 
for the piecewise analysis of the pre- and post-stable systems. If the loss of 
stability is defined as failure, then the two systems can be isolated into 
serviceability and safety respectively. Additionally, the inert behavior of the of 
the reinforcement under service conditions creates a natural switch condition.  

It has already been shown that the combination of Fiber Bragg Grating (FBG) 
sensors and Fiber Reinforced Polymers (FRPs) can be used to produce a set of 
limit states that can be immediately monitored regardless of their application [6]. 
Thus, if FRPs are the RSBD reinforcing material, the switch condition can be 
coupled with the generalized FGB/FRP system to create an element based SHM 
structure that requires minimal calibration and no elaborate statistical analysis 
or excessive data manipulation. Furthermore, the geometric mechanization 
requirements for the failure of curved masonry elements such as arches creates 
the potential to not only identify the onset of failure, but also a finite set of 
conditions that would cause the failure. This in turn accelerates the rehabilitation 
while minimizing labor costs.  

1.1.2 Assessment Versus Design 

RSBD addresses the fundamental flaw preventing the reintroduction of structural 
masonry and presents an advantageous SHM structure for efficient long-term 
management [5]. Now the focus must turn to the efficiency and accessibility of 
the structural analysis. In the presentation of RSBD, it was argued that the 
decoupling of the stable and mechanical systems allows for the utilization of the 
wealth of existing knowledge. This knowledge, which is discussed in Chapter 2, 
has primarily collimated in the 21st century: long after structural masonry’s 
demise. Consequently, and understandably so, the wealth of existing knowledge 
aims at the assessment of existing system and the minimum problem.  

The process of assessment is a passive process which for civil engineers 
focuses on the evaluation of something that exists and whether or not it is safe 
and functioning correctly. Intervention is performed out of necessity and must 
account for the physical and cultural complexities that exist. Design, however, is 
an active process focused on the development of something new. For civil 
engineers, this means that the quantification of failure is directly considered in 
defining the assembly of an engineered system. While it is often the case that 
processes used for assessment and design overlap, it is not guaranteed. 

The nature of unreinforced masonry discretizes the system and holds the 
potential for the formation of a hinge at any joint. This generates many kinematic 
hinge-set combinations that can potentially exist. Within the assessment context, 
the focus becomes the identification the hinge-set that produce a minimum 
capacity mechanism condition. Under the context of design, the focus is on 
optimizing the defined failure condition based upon the anticipated demands of 
the structure. This requires the ability to examine more than the minimum 
condition. 
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1.1.3 Strength Versus Stability 

For masonry arches, there exists a strong understanding of reinforcement and 
retrofitting strategies, and of those strategies FRPs and Textile Reinforced 
Mortars (TRMs) have shown adeptness for reinforcing flexural hinges and the 
ease of their installation [7], [8], [17], [9]–[16]. The application of these systems 
however has primarily focused on strengthening existing systems. This has 
resulted in the direct transformation of the arche’s failure from the SBD driven 
mechanism to a material strength problem (i.e. delamination, crushing or 
rupture) [9], [10], [12], [13], [15], [18]–[21]. This full strengthening drives the 
narrative towards the material properties which are as diverse and complex as 
the ancient structures being assessed. When combined with the curved nature 
of arches, the quantitative establishment of retrofitting standards becomes 
almost impossible as can be seen in the standardized Italian CNR 
recommendations for the external FRP strengthening of existing structures [22]. 

It is widely accepted that stable dry-stack masonry imposes at most one-tenth 
of the material’s compressive capacity upon mechanization. This allows the 
utilization of the mechanism as a defined and recoverable failure point if it is 
structurally defined. The ability to efficiently create the structural definition does 
not exist. 

1.2 Problem Statement 

The successful reintroduction of curved structural masonry requires an efficient 
and accessible design and analysis methodology. That methodology must be 
derived around the control and optimization of the system. Existing unreinforced 
masonry arch analysis has focused on the assessment of the minimum 
mechanism while the rehabilitation strategies focus on maximizing capacity. This 
assessment-strength duality is understandable and reasonable in the context of 
retrofitting and rehabilitation, but not for controlling the system. Namely, what 
happens if only the minimum mechanism is reinforced, or more importantly what 
is required to physically define a mechanism? 

RSBD introduces a simple linear condition to the post-stable strengthening of a 
dry-sack masonry arch and addresses the issue of sudden collapse and no 
slippage. Its structure however is limited to the post-stable system. The success 
of masonry, and more specifically masonry arches’ reintroduction as a modern 
structural element requires a simplicity and efficiency to analysis of both the pre- 
and post-stable systems.  

Lastly, SBD analysis is a Boundary Value Problem (BVP) who’s capacity is 
defined by the onset of a mechanism. This mechanism creation is a physical 
phenomenon that arises from the system’s transformation from a stable to 
kinematic state. Figure 2 shows the stable state and a kinematic state defined 
by the inclusion of four hinges to a masonry arch. Under traditional structural 
analysis and statics, the four-pinned arch can be idealized into three pin-
connected elements shown in Figure 3a. This generates a geometrically 
unstable condition because there are fewer reactive forces than equations of 
equilibrium, and the idealized arch will collapse as shown in Figure 3b under 
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self-weight. The collapse propagation however results in an oscillatory motion of 

the element 𝐶𝐷̅̅ ̅̅  which can be resisted through the application of an external 
force such as that seen if Figure 3c. This generates a kinematic state that is in 
equilibrium. Superimposing the four-pinned masonry arch to the idealized 
kinematic system (see Figure 3d) then highlights that the unstable failure under 
self-weight is directly resisted by the thickness of the blocks. Therefore, the 
equilibrium condition of the idealized kinematic state is the transition point 
between the stable four-pinned masonry arch and its mechanical failure. 
Unfortunately, the discussion provided to the budding engineer is a statement of 
avoidance for any system that is classified as unstable in the evaluation of 
determinacy  [23].  

 

Figure 2. Boundary representation of an arch in a (a) stable state and a (b) 
kinematic state defined by four hinges  

 

Figure 3. A (a) four-pinned truss arch, its (b) kinematic failure propagation under 
self-weight, the (c) establishment of equilibrium through an applied force, and (d) 
the superposition of the four-pinned masonry arch to the equilibrium condition 
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1.3 Objectives 

The objectives of this work are to create the foundation and blueprint of an 
efficient and accessible structural analysis methodology and software to support 
the reintroduction of curved masonry as a modern construction method. The 
foundation of this methodology is kinematic equilibrium. The blueprint is the 
black box analysis structure used for the formation of the software and the 
characterization strategies developed for first-order assessments and the 
synchronization of the theoretical model with experimental observations. 

Kinematic equilibrium is defined as: 

Kinematic Equilibrium1 – The static equilibrium analysis of a kinematic 
state superimposed on a stable condition through the incorporation of at 
least one external loading variable to the free-body diagram and 
corresponding equations of equilibrium that define the structure. 

In other words, kinematic equilibrium incorporates an applied force-mechanism 
pair into the free-body diagrams and equations of equilibrium used in standard 
statics evaluations. This formulates a database structure to the equations of 
equilibrium for the variations in force-mechanism pairs. 

The aim of the black box analysis is to access this database structure of 
developed kinematic equilibrium conditions, combine them with user defined 
arches, evaluate the admissibility of the combined system and display the 
results. A black box condition is defined as a sequence of operations that 
generates an output from a user’s input without requiring the users explicit 
understanding of the sequence employed: such as a calculator or voltage 
regulator. The terminology is employed here to emphasize that the complexities 
of the masonry arch analysis can be contained within a structure that does not 
require the explicit knowledge or involvement of the practicing engineer in order 
to obtain the information necessary for structural design. 

Lastly, the objective of the characterization strategies is to demonstrate the 
application of the analysis structure, highlight its adaptability, and its ability to 
incorporate all aspects of structural analysis from conception to creation. This 
process is accomplished through the analysis of a family of mechanisms for a 
given arch subjected to hinge control, and then through the expansion of the 
analysis structure into dynamic modelling. 

For masonry arches this static-kinematic transformation presents a singularity 
into a system that otherwise has infinite solutions. For stable masonry arches, 
the traditional mechanism is the result of the release of four degrees of freedom 
(DOF) in the form of hinges and an asymmetrically applied loading condition. 
The location of these hinges and the loading geometry generate five input 
parameters that must be applied to the arch geometry in order to obtain a 
determinant system of equations. As a compression only system the solution to 

 
1 Kinematic refers to the failure mechanism a priori assigned, then at least one external 

load variable is applied to guarantee equilibrium is satisfied under self-weight. 
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the determinant system must also abide by the rules of motion and the validity 
of the resulting thrust line. The thrust line is the line that represents the flow of 
compressive forces and was originally defined from the tension only system of 
a hanging chain [4]. In fact, the hanging chain itself is in a kinematic equilibrium 
condition as any additional load would result in motion through deformation. 
Therefore, the application of the input parameters to the arch to define a 
singularity condition and the admissibility of the resulting mechanical state 
generates a black box condition where the input and output are linked through 
equilibrium and admissibility. 

The novelty of this work begins with the formal establishment of kinematic 
equilibrium and its application to masonry arches subjected to mechanical joint 
control, and its use in all the developed static and dynamic analysis procedures, 
methodologies and software. All the work presented in this thesis, including 
theory, software and experimentation are original works developed over the 
course of the PhD program. 

1.3.1 Outline 

This thesis is divided into seven chapters beginning with the Introduction in 
Chapter 1 where the motivation, the problem and the objectives are discussed. 
Chapter 2 presents a literature review aimed at summarizing the current 
understanding of masonry. The development of the kinematic free-body 
diagrams are derived in Chapter 3. The derived equations include various 
loading geometries and the 70 potential mechanisms that exist from the 
inclusion of translational DOF releases that arises from the inclusion of friction.  
Chapter 4 develops the black box structure through the kinematic admissibility 
of the solutions obtained from the kinematic equilibrium sets. After the 
assessment of admissibility, the Kinematic Collapse Load Calculator (KCLC) is 
introduced. The KCLC is a graphical user interface that connects the user input 
with the output of the black box analysis. The incorporation of multi-mechanism 
analysis to the KCLC is presented for a discrete set of mechanisms and followed 
by the limiting condition evaluation of the mechanism set. Then the KCLC’s 
ability to analyze generic arch geometries through a CAD based data extraction 
technique is presented. After the detailed discussion of the KCLC, the capacity 
compensation requirements for non-stable kinematically admissible conditions 
is formulated and added to the KCLC. Lastly in Chapter 4, the mechanical 
deformation of the four-hinged mechanism is derived and used to evaluate the 
kinematic equilibrium of static deformations, establish equivalent systems 
through parametric plotting, and is combined with the capacity compensation 
requirements to evaluate finite hinge stiffness from non-ideal reinforcement. 
Chapter 5 applies this black box analysis to create characterization strategies 
first through the development of Collapse Load Diagrams, and then carries the 
theoretical model through two experimental results to characterize physical 
arches and customize the analysis model to them. Chapter 6 then expands the 
analysis to the kinematic state for 2D seismic modelling through the 
development of required work paths from combining the kinematic equilibrium of 
static deformations with the equivalent systems discussed in Chapter 4. These 
work paths establish kinetic energy equations from the path independence of 
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conservative work and allow the formulation of the time domain for constant 
accelerations in excess of the static limit. Lastly, this work is concluded in 
Chapter 7.  
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CHAPTER 2 

LITERATURE REVIEW 

List of Abbreviations and Symbols 

ENT ─ Elastic-no-tension 

FE ─ Finite element 

LA ─ Limit analysis 

ML ─ Masonry-like 

RNT ─ Rigid-no-tension 

SBD ─ Stability-based design 

TNM ─ Thrust network method 

 

For the field of masonry structures and especially historical ones, the breadth of 
existing work is broad and spans multiple scientific disciplines. With regards to 
analyzing and modeling however, a cohesion and consolidation of literary work 
has begun. The primary focus of this chapter is to present a general schematic 
of the current understanding of unreinforced masonry and SBD as discussed in 
two of these consolidations. An overview of masonry mechanics is first 
presented. Next, the computation methods for vaults are discussed and then 
followed by a brief discussion on the continued developments. 

2.1 Mechanics of Masonry Structures 

The cohesion and consolidation of literary work on masonry mechanics can be 
seen in the book titled MECHANICS OF MASONRY STRUCTURES [24]. In this work 
the basic facts of masonry materials are discussed and the simple and refined 
modelling methods are introduced [25].  

The simple model approach is developed through the consideration of the 
macroscopic system. Constructed from the traditional no-tension assumption 
formulated from the “pioneering work of Heyman” [26], the simple model 
comprises three simplified uniaxial models. The models are named for the 
number of parameters required for their definition (i.e. zero, one, and two) [25]. 
An evolution-type approach to the refinement of the uniaxial masonry-like 
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behavior model has been constructed with these three models. Model zero is 
the Rigid No Tension (RNT) material approximation established from the 
traditional assumptions: infinite compressive strength, zero tensile strength, and 
perfectly rigid elements. Model one replaces the perfect rigidity in model zero 
with a finite stiffness and is termed the Elastic No Tension (ENT) material. Model 
two imposes a limit to the compressive stress capacity of the masonry material. 
This removal of the infinite compressive strength assumption creates the 
Masonry-Like (ML) material [25]. Following the establishment of the simplified 
behavior models, a rigorous and detailed introduction to the mathematics behind 
the ML material and limit analysis is provided through the utilization of an 
extensive set of mechanical and mathematical tools [27]. The constitutive 
equations are then explicitly determined the for isotropic ML materials, a 
numerical method for solving the equilibrium boundary value problem for ML 
solids is established, and the explicit and numerical solutions are compared [28]. 
The simple model is then concluded through an extensive presentation on the 
practical application of the three developed unilateral models, including the 
development of a numerical approach and the comparison of that approach to 
analytical solutions and test results [29].  

The refined model approach for masonry structures is developed through the 
restriction of the mechanical system to specific masonry types where the 
materials are the combination of units (i.e. bricks, blocks, etc.) and joints (i.e. 
mortar, glue, etc.) arranged such that a periodic repetition of the microstructure 
exists [25]. The introduction to the refined model approach briefly presents four 
common techniques: (1) micro-modeling, where direct consideration of the 
geometry of units and joints is given and the constitutive laws are experimentally 
obtained; (2) macro-modelling, which maintains the experimentally obtained 
constitutive laws, but the units and joints are smeared out in the continuum; (3) 
homogenization, where geometry and material data are used to mathematically 
represent the micro-structure to obtain a smeared continuum model; and (4) 
structural component models, where the internal forces directly provide the 
constitutive laws of the structural elements. The introduction to the refined model 
is then ended with a presentation of the mechanical properties of unit and mortar, 
the interface, and the masonry through the homogenization technique [25]. Next, 
the ideas and methodologies for modeling the interfaces of masonry structures 
is presented through the phenomological modeling approach and the deductive 
modeling approach [30]. Experimental results are provided for brick-brick and 
brick-mortar interactions, dry friction masonry is modelled, and the 
phenomological model of adhesion for two interface models as well as numerical 
results is discussed [30]. After presenting the interface modelling, the 
micromechanical, multiscale, and macro-mechanical modeling approaches are 
presented: including details for various recently developed models framed in the 
2D small strain and displacement approach [31]. Finally, an in-depth look into 
the homogenization theory and assumptions, including its ability to couple with 
finite element (FE) analysis codes and extend to the structural level, is presented 
[32]. The MECHANICS OF MASONRY STRUCTURES is then conclude with 
considerations of seismic assessment, including case studies utilizing static 
(pushover) analysis, time integration analysis, and macro-block analysis 
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techniques [24], [32]. It is also worth noting that in the introduction to the refined 
model, reference is made to Lourenço [33] for a comprehensive review on the 
structural analysis of masonry structures, as well as Marques and Lourenço [34] 
and Lourenço et al. [35] for the seismic analysis of masonry with and without box 
behavior respectively. 

2.2 Computational Methods for Masonry Vaults 

Another example of the cohesion and consolidation of scientific literature on the 
analysis of masonry structures is in the paper COMPUTATIONAL METHODS FOR 

MASONRY VAULTS: A REVIEW OF RECENT RESULTS [36]. In this paper a critical 
review of the current methods and models used in the analysis of masonry vaults 
up to their collapse is organized into, (a) the development of the modern vault 
theory, and (b) computational methods. Note that prior to the development of 
those two sections Huerta [37], [38] and Benvenuto [39] are referenced with 
regards to obtaining the appropriate knowledge to understand the behavior of 
historical constructions. 

For the modern vault theory it is stated that a “sound theoretical framework 
exists,” referencing Huerta [38] and Como [40], and it is acknowledged that the 
modern theory of LA, primarily founded by Heyman [26], is the most reliable tool 
for the analysis of curved masonry structures [36]. Establishing the traditional 
conditions of the RNT material, the static (lower bound) and kinematic (upper 
bound) theorems are introduced. The static theorem states that if a statically 
admissible state of equilibrium can be found then the structure will not collapse. 
The only analysis technique presented is thrust line analysis for the explanation 
and examination of stability in 1D structures. The kinematic theory states that 
the arch will collapse if a kinematically admissible mechanism resulting in 
positive or zero work from external forces is found. Como [40] is once again 
referenced, this time for finding 1D equilibrium solutions for the different types of 
vaults through manual analysis methods. Fanning and Boothby [41] are cited for 
their critical overview of more complex analysis methods for masonry arches 
and vaults as well. The remaining discussion on the kinematic theorem is 
focused on the essentials of the materials used for masonry as highlighted by 
Huerta [37] (i.e. heterogeneity; minimal tensile resistance and good compressive 
strength; high friction coefficient; and the importance of geometry in establishing 
equilibrium). These essentials along with an extensive list of existing literature is 
presented for the development of the statements that masonry is a composite 
heterogeneous material that exhibits a non-isotropic behavior in both the elastic 
and collapse range [42]–[45]; tensile strength varies, but it can be modeled in 
the interface between mortar and brick [44], [46], [47]; the friction coefficient for 
historical masonry is between 0.4 and 0.6, but its inclusion in the system results 
in a loss of normality, a non-associate flow rule, an inability to apply limit analysis 
theorems, and complicates linear programming methods [48]–[50]; and finally 
that the overall geometry [51]–[54], inclusion of infill material [55]–[64], and 
inclusion of existing cracks are all variables that have significant impact on the 
structure’s performance [36]. 
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The computational methods discussed by Tralli et al. [36] are divided into three 
categories: (1) thrust network methods (TNM); (2) FE method developed for non-
linear incremental analysis; and (3) FE models developed for limit analysis. TNM 
addresses extending the thrust line to spatial structures. Several approaches are 
presented including the use of 3D funicular force networks introduced by 
O’Dwyer [65] and built upon by Block and co-workers [66]–[68], a 3D equilibrium 
analysis using Gaudi-inspired funicular networks [69], [70], funicular networks 
from a specific 3D extension of the lumped stress method [71], [72] including 
significant case studies [73], [74], a solving algorithm developed from the lumped 
stress method and thrust networks [75], and finally an approach involving 
membrane stress selection and a no tension constitutive equation [76], [77]. For 
FE methods using incremental non-linear analysis, two programs are listed that 
have developed specific software for studying masonry curved structures, NOSA 
CNUCE by CNR Pisa [78], developed from the constitutive assumption of no 
tension material, and DIANA by TNO Delft [79] which arose from an accurate 
modelling of the masonry mechanical behavior. It is also noted that some 
commercial FE programs designed for steel and concrete have been used in 
studies published since 2000, and the combination of the constructed 
techniques of analysis and sound engineering reasoning appear to be adequate 
as can be seen in numerous examples [54], [61], [80]–[84], but heterogeneity is 
not accounted for and isotropic behavior is assumed for both the elastic field and 
collapse. In comparison FE methods using limit analysis allow for the 
consideration of heterogeneity and anisotropy through homogenization [44], 
[45], [51]–[53], infill [55], [62], [63], and discrete and realistic crack patterns, but 
computational problems involving convergence of the no tension solution and 
friction’s violation of the limit analysis theorems do exist. Additionally, the 
adoption of rigid elements and homogenized interfaces, used to limit 
computational effort, produces the inability to provide displacements during the 
deformation process. Efforts to circumvent this limitation have begun [85]. 

2.3 Continued Development 

In Sections 2.1 and 2.2 an existing understanding and analysis of masonry 
mechanics and vaults was presented to demonstrate the coupling of the wealth 
of knowledge that exists and its consolidation for masonry as a whole. Further 
works of consolidation have developed with respect to the assessments and 
experimental investigations of masonry arch bridges [86], [87]. Furthermore, 
continued success and advancements are observed with the development and 
application of numerical modelling strategies [88], [89], [98]–[106], [90]–[97] and 
LA approaches [95], [107], [116], [117], [108]–[115]. This also includes additional 
consolidation efforts for both reinforced and unreinforced systems [118]–[120], 
but as previously mentioned these works aim at the assessment, and 
rehabilitation of existing and historical systems.  

It is also clear that this comprehensive understanding of masonry and more 
specifically arches exists today and that the ability to analyze most situations 
exists, but what can also be observed is that the accessibility of the information 
and understanding is limited to academic experts. The information and 
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approaches are not structed for the practicing engineer. Additionally, the LA 
approaches are limited to the onset of a mechanization and cannot predict the 
post-stable response of the system which may recover before collapse [121]–
[123], while the numerical approaches require a high level of expertise and are 
computationally expensive [87]. 
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CHAPTER 3 

KINEMATIC EQUILIBRIUM 

List of Abbreviations and Symbols 

ax ─ Horizontal component of an applied acceleration 

ay ─ Vertical component of an applied acceleration 

αi ─ Angle relationship between the reaction vector, the ith joint line, 
and the friction angle (see Figure 19) 

[BC] ─ Balance matrix component of the equations of equilibrium 

Ci ─ Identifier for combined slip-hinge joint at the ith joint 

CM ─ Center of mass 

Δxi,j ─ Horizontal lever arm between points i and j (i.e. xi – xj) 

Δyi,j ─ Vertical lever arm between points i and j (i.e. yi – yj) 

ei ─ Thrust line eccentricity from the ith hinge position along the joint 
line 

Fh ─ Net equivalent horizontal force from a distributed load 

Fv ─ Net equivalent vertical force from a distributed load 

fgj ─ Gravitation body force of the jth element 

fhj ─ Net equivalent horizontal force component acting on the jth 
element 

fvj ─ Net equivalent vertical force component acting on the jth 
element 

g ─ Gravitational acceleration constant 

Hi ─ Identifier for the ith hinge 

hi ─ Horizontal reaction force at the ith hinge 

LA ─ Limit analysis 

λa ─ Collapse multiplier for uniform acceleration 
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λd ─ Collapse multiplier for the net equivalent force of a distributed 
load 

λp ─ Collapse multiplier for an applied point load 

Mi ─ Moment at ith mechanical joint from slip condition (i.e. Ni*ei) 

μs ─ Coefficient of static friction 

Ni ─ Normal reaction force at the ith mechanical joint 

Pi ─ Parallel reaction force at the ith mechanical joint 

Px ─ Horizontal component of an applied point load 

Py ─ Vertical component of an applied point load 

{q} ─ Constants vector component of the equations of equilibrium 

RNT ─ Rigid-no-tension model 

RSBD ─ Reinforced stability-based design 

{r} ─ Reaction vector component of the equations of equilibrium 

SBD ─ Stability-based design 

Si ─ Identifier for a slip-joint at the ith hinge 

∑Fx ─ Algebraic sum of horizontal forces 

∑Fy ─ Algebraic sum of vertical forces 

∑MO ─ Algebraic sum of moments taken about the point O 

θa ─ Polar angle of an acceleration vector 

θd ─ Polar angle of the net equivalent force vector from a distributed 
load 

θi ─ Slope angle of the ith mechanical joint line (see Figure 19) 

θp ─ Polar angle of a point load vector 

θs ─ Static friction angle 

θw ─ Polar angle of an arch segment 

vi ─ Vertical reaction force at the ith hinge 

ω(x,y) ─ Distributed load function 

(xh,yh) ─ Cartesian coordinates of a net equivalent horizontal force 

(xP,yP) ─ Cartesian coordinates of a point load 

(xv,yv) ─ Cartesian coordinates of a net equivalent vertical force 
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The modern theory of LA is argued as the most reliable tool for the analysis of 
curved masonry [26], [36].  Limit analysis for masonry arches is initially built on 
the conditions of infinite compressive strength, no slippage between blocks, and 
no tensile strength (the RNT model) and can be evaluated through the lower 
bound or upper bound theorems. The RTN model establishes the foundation of 
SBD and masonry analysis and is important for any kind of masonry [105], [116]. 
The lower bound theorem, also known as the static approach, states that if there 
exists a statically admissible state of equilibrium, then the arch will not collapse. 
The upper bound theorem, also known as the kinematic approach, states that 
the arch will not collapse as long as there are no kinematically admissible 
mechanisms that produce zero or positive work from external forces.  

In the context of structural analysis, the kinematic theorem addresses the 
beginning of the kinematic condition that propagates the arch towards collapse, 
whereas the lower bound theorem evaluates the maximum limit of stability. While 
both conditions are focused on quantifying the static-kinematic transformation 
point, the kinematic state carries the arch to collapse. For this reason, the 
kinematic theorem is the best suited for structural analysis and design. 
Traditionally this analysis method is performed through the principle of virtual 
powers. The principle of virtual powers is extrapolated from the principle of virtual 
work that is used to analyze redundant systems under elastic modelling and 
beam theory. Kinematic equilibrium however focuses directly on the equilibrium 
requirements of a defined kinematic state. Since it is assumed that the system 
is stable under normal loading conditions, the formation of a kinematic condition 
requires an external loading condition, and thus the loading condition can be 
paired with the kinematic condition. This allows the analysis to be directly 
structured into a “determinate” equilibrium problem that does not require the 
application of virtual conditions. 

In this chapter the equilibrium problem of the kinematic condition of an arch is 
derived. The derived systems are formatted into equations of equilibrium. Each 
paired kinematic and loading condition requires the formation of its own 
equations of equilibrium. Therefore, this chapter derives a comprehensive set of 
loading and kinematic conditions. It is the objective of this chapter to establish a 
database and quick reference structure of kinematic free-body diagrams and 
their associated equations of equilibrium. From these variations of equations of 
equilibrium some conclusions are made on the potential to simplify the process 
of establishing additional equations of equilibrium not directly addressed in this 
chapter. 

3.1 Equilibrium Problem 

From statics it is known that a structure or its members are in equilibrium when 
they maintain a balance of forces and moments. When the principle load carrying 
portions lie on a single plane, it reduces the equations of equilibrium to 

∑𝐹𝑥 = 0
∑𝐹𝑦 = 0

∑𝑀𝑂 = 0

        (1) 
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where ∑𝐹𝑥 and ∑𝐹𝑦 are the algebraic sums of the cartesian components of the 

forces and ∑𝑀𝑂is the sum of the moments about the point O.  

For the RNT masonry arch, a traditional kinematically admissible mechanism 
consists of the development of four hinges that alternate between the intrados 
and extrados across the span of the arch (see Figure 4). A hinge develops when 
the loading conditions result in the concentration of the normal forces near a 
curved boundary (i.e. the intrados or extrados) and can be idealized by the 
placement of concentrated point loads at the boundary. By assuming perfect 
hinges, the kinematic arch can be expressed as three rigid pin connected 
elements as shown in Figure 5. 

 

Figure 4. An example of a kinematically admissible hinge set. 

A pin connection between blocks removes the ability to carry a moment at the 
joint. Decomposing Figure 5 into the three rigid elements as seen in Figure 6 
allows the standard static equilibrium equations (i.e. Eqn. 1) to be constructed 
for the three element system. For the self-weight condition and summing the 
moments of elements 1, 2 and 3 at hinges 1, 2 and 3 respectively, the equilibrium 
equations are (in matrix form) 

[
 
 
 
 
 
 
 
 
−1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4

0
0
0
0
0
0
0
1

−∆𝑥3,4]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 

 (2) 
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where, vi and hi are the vertical and horizontal reactions at the ith hinge 
respectively, and fgj is the body force of the jth element applied at the element’s 
center of mass. The moments were calculated by the cartesian forces multiplied 
by their respective vertical, Δy and horizontal Δx, lever arms. The subscripts of, 
Δx, and Δy, in Eqn. 2 denote the hinges or center of mass locations used to 
construct the lever arms (i.e. Δy2,1 is (y2 – y1) and Δx1,CM1 is (x1 – xCM1), see 
Figure 6). The format of Eqn. 2 is the repeat of Eqn. 1 for each of the three 
elements of the arch: the first three rows correspond to the equations of 
equilibrium for Element 1, the next three for Element 2 and the last three for 
Element 3. 

 

 

Figure 5. Free-body diagram for a four-pinned arch under self-weight. 
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Figure 6. Element based forces, reactions, and lever arms used in the 
development of the equilibrium equations for the kinematic arch under self-

weight. 

The three-element representation of the arch generates nine equilibrium 
equations (three per element), but under its self-weight only eight unknowns 
exist due to the zero moment at the pin connections. In the traditional sense of 
statics, the condition of the four-pinned arch is unstable, which is true since the 
formation of the kinematic system is by definition concurrent with the loss of 
stability. In the context of mathematics and equilibrium, the four-pinned arch 
results in a system with infinite solutions. A ninth variable is required to create a 
determinate system, and with it a single solution. This ninth variable can either 
be a restriction of motion through the removal of a pin connection (i.e. the three-
pinned arch) for the static condition, or the inclusion of an applied force that 
imposes equilibrium for the kinematic state. 

Assuming the arch is stable under its self-weight therefore requires the 
application of an external load to generate a kinematic condition. Thus, the 
loading condition can be assigned a variable and incorporated into the equations 
of equilibrium to construct a kinematically determinant system with a singular 
solution. 

Expressing Eqn. 2 in matrix form generates 

[𝐵𝐶]{𝑟} = {𝑞}        (3) 

where BC is the balance matrix, r is the reaction vector, and q is the constants 
vector. The addition of a loading condition and the accompanying loading 
variable into the formation of the equations of equilibrium generates a non-zero 
determinant for BC, allowing the reaction variables to be obtained by 

{𝑟} = [𝐵𝐶]−1{𝑞}        (4) 

In the following sections, the equations of equilibrium are the combined balance 
matrix, reaction vector and constants vector group required to solve Eqn. 4.  



Kinematic Equilibrium, Black Box Analysis, and the Characterization of Dry-Stack Masonry Arches 

23 

3.2 Loading Conditions 

To introduce the loading condition as a variable in the equations of equilibrium 
a multiplier is added to the geometry of the loading condition being analyzed. 
The choice of the multiplier depends on the conditions under evaluation. For 
example, seismic assessments typically include the multiplier as a factor of the 
gravitational constant g, while multipliers for capacity evaluations from external 
loading are applied to the unity condition of the loading geometry.  Maintaining 
the traditional four-hinge mechanism, this section presents various loading 
conditions and the resulting balance matrix, reaction vector and constants vector 
that establish the equations of equilibrium. 

3.2.1 Uniform Accelerations 

Uniform accelerations are often used to perform simplified seismic assessments. 
The forces are thus driven by the density of the blocks and as such the load 
multiplier, λa, is expressed as a multiplier of g.  

The simplest uniform acceleration is horizontal where the gravity and the added 
acceleration vectors are perpendicular. This isolates the vectors onto the (x,y) 
basis of the cartesian coordinate system which simplifies the analysis. The 
perpendicular behavior is not required however, and the uniform acceleration 
can also be applied generally as a 2D vector. This diagonal consideration of 
acceleration adds an additional variable and can be expressed in polar 
coordinates as (λa*g,θa), where θa is the polar angle of the acceleration vector. 
The cartesian accelerations become 

𝑎𝑥 = 𝜆𝑎 ∙ 𝑔 ∙ cos(𝜃𝑎)

𝑎𝑦 = 𝜆𝑎 ∙ 𝑔 ∙ sin(𝜃𝑎)
       (5) 

The linear set of equations utilized in the kinematic equilibrium approach 
requires the linearity of the variables. This requires the predefinition of either the 
angle or the magnitude of the acceleration vector prior to calculating the reaction 
vector. If the acceleration angle is defined, then the variable included in the 
reaction vector is set as λa. If the multiplier if fixed the evaluation can be utilized 
to determine the rotation angle of collapse. This can represent a tilting plane 
evaluation of capacity by determining an acceleration angle that generates a unit 
multiplier. The free-body diagram and equations of equilibrium for both 
horizontal acceleration and generic 2D accelerations applied to the standard 
four-hinge mechanism are presented.  
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 Horizontal Acceleration 

 

Figure 7. Free-body diagram for constant horizontal acceleration. 

The equations of equilibrium for the condition shown in Figure 7 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4

0
0
0
0
0
0
0
1

−∆𝑥3,4

𝑓𝑔1
0
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𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3 ]
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 

     (6) 
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 2D Acceleration 

 

Figure 8. Free-body diagram for constant 2D acceleration. 

The equations of equilibrium for the condition shown in Figure 8 is 

[𝐵𝐶] =
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     (7) 
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3.2.2 Point Loads 

Asymmetric point loads represent the simplest external loading condition, and 
vertical point loads are often used for experimental testing. Typically, the 
collapse multiplier, λP, is attached to a downward unity load applied on the 
extrados of the arch. Under traditional assessment conditions the location of the 
vertical point load defines the position of hinge H3 which develops at or near its 
location when unrestricted. The defining of the mechanism and subsequent rigid 
elements removes this relationship.  

The point load can be defined by the polar pair, (λP, θp), which becomes 

𝑃𝑥 = 𝜆𝑃 ∙ cos(𝜃𝑃)

𝑃𝑦 = 𝜆𝑃 ∙ sin(𝜃𝑃)
        (8) 

The unbound positioning of the point load and mechanism requires three 
equations of equilibrium to address the interaction of the point load with each 
individual element. The point load’s position, (xP, yP), thus determines the 
equations of equilibrium to evaluate and the hinge Hi used to establish the lever 
arm lengths ΔxP,i and ΔyP,i. Also note that as with the uniform acceleration, the 
polar loading angle is a defined variable in the evaluation of an equations of 
equilibrium. Investigations into the effects of the polar loading angle require an 
iterative application of the equilibrium evaluation.  
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 Point Load at Element 1 

 

Figure 9. Free-body diagram for a point load at Element 1 

The equations of equilibrium for the condition shown in Figure 9 is 

[𝐵𝐶] =
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     (9) 
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 Point Load at Element 2 

 

Figure 10. Free-body diagram for a point load at Element 2 

The equations of equilibrium for the condition shown in Figure 10 is 
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 Point Load at Element 3 

 

Figure 11. Free-body diagram for a point load at Element 3 

The equations of equilibrium for the condition shown in Figure 11 is 
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−∆𝑥3,4

0
0
0
0
0
0

cos(𝜃𝑃)

− sin(𝜃𝑃)

−∆𝑥3,𝑃 sin(𝜃𝑃) + ∆𝑦3,𝑃 sin(𝜃𝑃)]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑝]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 

     (11) 
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3.2.3 Distributed Loads 

The final primary loading condition is distributed loads. Ranging from non-ideal 
point loads to full infill conditions, distributed loads are the most common loading 
condition applied to arches. As with the application of the point load, the structure 
of the equations of equilibrium used to evaluate capacity depends upon the 
elements on which the load is applied. The evaluation of stable capacity also 
depends on the distribution of the load itself. 

Beginning with the definition of pin-connected rigid elements allows the 
application of equivalent force systems to establish concentrated forces acting 
on the elements from the applied distributed load. For a given load distribution 
geometry, ω(x,y), the horizontal position of the net vertical component, Fv, and 
the vertical position of the net horizontal component, Fh, of the equivalent 
concentrated forces are 

𝑥𝑣 =
∫ 𝜔(𝑥,𝑦)𝑥𝑑𝑥
𝑥2
𝑥1

∫ 𝜔(𝑥,𝑦)𝑑𝑥
𝑥2
𝑥1

        (12) 

and  

𝑦ℎ =
∫ 𝜔(𝑥,𝑦)𝑦𝑑𝑦
𝑦2
𝑦1

∫ 𝜔(𝑥,𝑦)𝑑𝑦
𝑦2
𝑦1

       (13) 

respectively. The corresponding coordinate values for vertical, yv, and horizontal 

xh, force components are obtained from the extrados boundary of the arch under 
evaluation. Setting the total force to unity and multiplying by the load multiplier, 
λd, establishes the force variable and the polar form, (λd, θd), of the equivalent 
concentrated force with 

𝜃𝑑 = tan
−1 (

𝐹𝑣

𝐹ℎ
)        (14) 

As with the other loading conditions, the polar angle or force multiplier must be 
defined to obtain a solution to the reactions vector. Also, distributed loads that 
do not cross the boundaries of an element will result in a zero applied force on 
that element, and distributed loads themselves are decomposed into their 
element based net equivalent horizontal forces, fhi, and vertical forces, fvi. 
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 Left Horizontal Distribution 

 

Figure 12. Free-body diagram for a left horizontal distributed load 

The equations of equilibrium for the condition shown in Figure 12 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
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0
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0
0
0
0
0
0

1
0

−∆𝑦2,1
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0
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0
1

∆𝑥2,3
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4

0
0
0
0
0
0
0
1

−∆𝑥3,4

0
0
0
𝑓ℎ2
0

𝑓ℎ2∆𝑦ℎ2,2
𝑓ℎ3
0

𝑓ℎ3∆𝑦3,ℎ3]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑑]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 

     (15) 
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 Right Horizontal Distribution 

 

Figure 13. Free-body diagram for a right horizontal distributed load 

The equations of equilibrium for the condition shown in Figure 13 is 

[𝐵𝐶] =

[
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0
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𝑓ℎ2
0

𝑓ℎ2∆𝑦ℎ2,2
0
0
0 ]

 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑑]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 

     (16) 
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 Vertical Distribution 

 

Figure 14. Free-body diagram for a vertical distributed load 

The equations of equilibrium for the condition shown in Figure 14 is 

[𝐵𝐶] =

[
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𝑓𝑣1∆𝑥1,𝑣1
0
𝑓𝑣2

𝑓𝑣2∆𝑥2,𝑣2
0
𝑓𝑣3

𝑓𝑣3∆𝑥3,𝑣3]
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑑]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 

     (17) 
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3.2.4 Combining Loads 

For all the examined loading conditions, the incorporation of the load multiplier 
on the equations of equilibrium is isolated to a single column of BC as highlighted 
in Figure 15. If a loading condition exists and is not associated with the collapse 
multiplier, then the constants vector is subtracted by the appropriate load 
variable column times the known multiplier. In this manner equations of 
equilibrium can be efficiently established for any loading condition. 

 

Figure 15. Isolated columns of the balance condition matrix 

 Combined Loads Example 

Consider the arch-hinge-loading condition shown in Figure 16. The arch is 
subjected to a point load, a distributed load and a constant acceleration. The 
point load, λP, is vertical and applied on Element 2 near hinge H3. The distributed 
load 𝜔(𝑥, 𝑦) is applied radially across the extrados of the arch segment θω 
starting from Hinge H1. The constant acceleration is applied horizontally.  

 

Figure 16. Free-body diagram for combined loading condition 
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The net force of the distributed load sums to unity with a vector angle θd that is 
half the span angle plus the hinge H1 offset θH1. Utilizing Section 3.2.3, allows 
for the decomposition of the distributed load and the inclusion of the multiplier, 
λd, in the equivalent force structure. Figure 17 shows this decomposition for the 
final geometry used in the kinematic equilibrium evaluations. 

 

Figure 17. Free-body diagram for establishing combined equations of equilibrium 

Utilizing Eqns. 6, 10, 16, and 17, and assigning the acceleration as the loading 
variable generates the equations of equilibrium 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1
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0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
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0

−∆𝑦2,1
−1
0
0
0
0
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0
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∆𝑥1,2
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0
0
0
0

0
0
0
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∆𝑦3,2
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0
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0
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0
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∆𝑥2,3
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4

0
0
0
0
0
0
0
1

−∆𝑥3,4

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3 ]
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 

𝜆𝑑𝑓ℎ1
𝑓𝑔1 + 𝜆𝑑𝑓𝑣1

−𝑓𝑔1∆𝑥1,𝐶𝑀1 + 𝜆𝑑(𝑓ℎ1∆𝑦ℎ1,1 + 𝑓𝑣1∆𝑥1,𝑣1)

𝜆𝑑𝑓ℎ2
𝑓𝑔2 + 𝜆𝑃 + 𝜆𝑑𝑓𝑣2

𝑓𝑔2∆𝑥2,𝐶𝑀2 − 𝜆𝑃∆𝑥2,𝑃+𝜆𝑑(𝑓ℎ2∆𝑦ℎ2,2 + 𝑓𝑣2∆𝑥2,𝑣2)

0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3 ]
 
 
 
 
 
 
 
 
 
 

  (18) 
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 Switching the point load with the acceleration variables creates 

[𝐵𝐶] =

[
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0
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0
0
0
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∆𝑦3,2
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0
1

∆𝑥2,3
0
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0
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0

∆𝑦3,4

0
0
0
0
0
0
0
1

−∆𝑥3,4

0
0
0
0
1

−∆𝑥2,𝑃
0
0
0 ]

 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑃]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 

𝜆𝑎𝑓𝑔1 + 𝜆𝑑𝑓ℎ1
𝑓𝑔1 + 𝜆𝑑𝑓𝑣1

−𝑓𝑔1∆𝑥1,𝐶𝑀1 + 𝜆𝑎𝑓𝑔1∆𝑦𝐶𝑀1,1 + 𝜆𝑑(𝑓ℎ1∆𝑦ℎ1,1 + 𝑓𝑣1∆𝑥1,𝑣1)

𝜆𝑎𝑓𝑔2 + 𝜆𝑑𝑓ℎ2
𝑓𝑔2 + 𝜆𝑑𝑓𝑣2

𝑓𝑔2∆𝑥2,𝐶𝑀2+𝜆𝑎𝑓𝑔2∆𝑦𝐶𝑀2,2 + 𝜆𝑑(𝑓ℎ2∆𝑦ℎ2,2 + 𝑓𝑣2∆𝑥2,𝑣2)

𝜆𝑎𝑓𝑔3
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3 + 𝜆𝑎𝑓𝑔3∆𝑦3,𝐶𝑀3 ]
 
 
 
 
 
 
 
 
 
 

  (19) 

Lastly, assigning the distributed load as the loading variable creates the 
equations of equilibrium 

[𝐵𝐶] =

[
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0
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0
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0
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−1
0
0
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∆𝑦3,2
−1
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4

0
0
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0
0
0
1

−∆𝑥3,4

𝑓ℎ1
𝑓𝑣1

𝑓ℎ1∆𝑦ℎ1,1 + 𝑓𝑣1∆𝑥1,𝑣1
𝑓ℎ2
𝑓𝑣2

−∆𝑥2,𝑃
𝑓ℎ2∆𝑦ℎ2,2 + 𝑓𝑣2∆𝑥2,𝑣2

0
0 ]

 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑑]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 

𝜆𝑎𝑓𝑔1
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1 + 𝜆𝑎𝑓𝑔1∆𝑦𝐶𝑀1,1
𝜆𝑎𝑓𝑔2
𝑓𝑔2 + 𝜆𝑃

𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝜆𝑎𝑓𝑔2∆𝑦𝐶𝑀2,2
𝜆𝑎𝑓𝑔3
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3 + 𝜆𝑎𝑓𝑔3∆𝑦3,𝐶𝑀3]
 
 
 
 
 
 
 
 
 
 

     (20) 

Equations 18-20 highlight the simplicity and efficiency of constructing equations 
of equilibrium for the kinematic equilibrium analysis approach with multiple 
applied loads. While not presented here, it is also important to note that the 
relationship of loading conditions can be further expanded by constructing 
collapse multipliers that define relationships between different loads. This more 
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complex consideration is outside the current scope of work but will play an 
important role as the technique of designing safety factors for RSBD is explored.  

3.3 Mechanisms 

The previous section focused on the development of the equations of equilibrium 
for determining kinematic equilibrium of an arch subjected to different loading 
conditions. Each of these loading conditions was combined with the traditional 
four-hinge mechanism that forms under the assumption of no slippage. The 
removal of the no-slip assumption however introduces additional mechanisms. 
For instance, the replacement of a hinge rotation with a slip translation as shown 
in Figure 18 was experimentally observed and numerically validated (see 
Chapter 5) [124], [125]. Additionally, in the context of structural design and 
detailing it is imperative that all potential failure mechanisms are considered to 
ensure that the desired mechanism controls. Therefore, it is necessary to 
establish the equations of equilibrium for all the potential mechanism types that 
exist from the removal of the no slip assumption. 

 

Figure 18. Admissible mechanism with a slip joint 

The inclusion of slip is performed through the inclusion of an additional variable 
to the system, static friction, at the mechanical joints. This results in three 
potential conditions at each mechanical joint: hinge rotation, slip translation, or 
a combination of the two. Note that the combination of slip and rotation at a 
single joint results in two degrees of freedom and thus requires the removal of a 
different mechanical joint for the system to be balanced. Consequently, the total 
number of potential mechanisms becomes 70 including the standard. These 70 
mechanisms, identified as Type I through Type LXX, can be divided into six 
groups by their similarities. These mechanism groups are the Standard, Slip-
Hinge, Combined-Hinge, Combined-Hinge-Slip, Combined-Slip, and Combined. 
Limiting the loading condition to constant horizontal accelerations, this section 
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derives the inclusion of slip into the free-body diagrams and establishes the 
equations of equilibrium for the 70 potential mechanisms.  

For the reference of the 70 mechanism types, Hi, Si and Ci indicate a standard 
hinge rotation, a slip translation, and a hinge-slip combination for the ith 
mechanical joint respectively. 

3.3.1 Slip Replacement 

The replacement of a hinge rotation with a slip translation at a joint has the 
consequence of removing the singularity of the thrust line boundary condition at 
that joint. Remember that the thrust line is the line that represents the flow of 
concentrated forces. The development of a hinge fixes the thrust line at the 
hinge, but the slip condition releases that restraint. Without the knowledge of the 
thrust line location at the slip joint, an additional variable must be added to the 
free-body diagram. That variable is a moment and is defined as 

𝑀𝑖 = 𝑒𝑖 ∙ 𝑁𝑖        (21) 

for the ith mechanical joint. The eccentricity, ei , is taken as the distance from the 
standard hinge location and the reaction force, Ni, is the normal force at the 
mechanical joint.  

The inclusion of the moment into the reaction variables creates an indeterminate 
system. Thus, the inclusion of static friction through the relationships 

𝑃𝑖 = 𝐹𝑁𝑖 ∙ 𝜇𝑆         (22) 

and 

𝜃𝑆 = tan
−1(𝜇𝑆)        (23) 

re-establishes a determinate system. In Eqns. 22 and 23 Pi is the parallel 
reaction force at the ith joint, μS is the coefficient of static friction and θS is the 
friction angle. In terms of cartesian coordinates, the relationship between the 
horizontal and vertical reactions becomes 

𝑣𝑖 = ℎ𝑖 tan(𝛼𝑖)        (24) 

where αi is established through the reaction vector condition and the mechanical 
joint angle. Eqn. 24 provides the addition to BC required to balance the addition 
of Mi to r. 

For slip joints S1, S2, S3 and S4 the geometric relationships between the joint 
angle, the friction angle and the reaction vectors are shown in Figure 19.  
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Figure 19. Geometric relationships between the joint angle, friction angle, and 
reaction vectors for the slip-joints used in the slip replacement mechanisms 
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3.3.2 Standard Mechanism 

 Type I – H1 H2 H3 H4 

Refer to Section 3.2 for the free-body diagram and equations of equilibrium of 
the standard four-hinge mechanism. 

3.3.3 Slip-Hinge Mechanisms 

The slip-hinge mechanisms include the all the potential mechanisms that replace 
hinge rotations with slip translations. Mechanisms Type II through Type V 
replace a single hinge with a slip joint, Type VI through Type XI replace two 
hinges with slip joints, Type XII through Type XV replace three hinges with slip 
joints, and Type XVI replaces all four hinges with slip joints. 

Note that for each slip joint introduced to the system, an additional variable is 
added to the equations of equilibrium. This results in the expansion of the original 
nine variables up to thirteen variables for the condition of four slip joints. As 
previously stated, the added variable is the moments at the mechanical joints 
which are balanced with friction relationship defined in Eqn. 24. Additionally, 
from Figure 19 it can be seen that  

𝛼1 =
𝜋

2
− 𝜃1 − 𝜃𝑆        (25) 

𝛼2 =
𝜋

2
− 𝜃2 − 𝜃𝑆        (26) 

𝛼3 =
𝜋

2
− 𝜃3 − 𝜃𝑆        (27) 

and 

𝛼4 =
3𝜋

2
− 𝜃4 − 𝜃𝑆       (28) 

for mechanisms that include slip joints S1, S2, S3 and S4 respectively. 
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 Type II – S1 H2 H3 H4 

 

Figure 20. Free-body diagram for the Type II mechanism 

The Equilibrium Set for the condition shown in Figure 20 is 
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{𝑟} =

[
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     (29)  
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 Type III – H1 S2 H3 H4 

 

Figure 21. Free-body diagram for the Type III mechanism 

The Equilibrium Set for the condition shown in Figure 21 is 
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∆𝑥1,2
0
1
0
0
0
0
−1

0
0
0
1
0

∆𝑦3,2
−1
0
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0

0
0
0
0
0
0
0
1

−∆𝑥3,4
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0

0
0
−1
0
0
1
0
0
0
0
]
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 
 
 
 

     (30) 
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 Type IV – H1 H2 S3 H4 

 

Figure 22. Free-body diagram for the Type IV mechanism 

The Equilibrium Set for the condition shown in Figure 22 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
−1
0
−1

0
0
0
0
0
0
1
0

∆𝑦3,4
0

0
0
0
0
0
0
0
1

−∆𝑥3,4
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0

0
0
0
0
0
1
0
0
−1
0
]
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀3]
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 
 
 
 

     (31) 



Stockdale  Chapter 3 

44 

 Type V – H1 H2 H3 S4 

 

Figure 23. Free-body diagram for the Type V mechanism 

The Equilibrium Set for the condition shown in Figure 23 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0

0
0
0
0
0
0
1
0

∆𝑦3,4
𝑡𝑎𝑛(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0

0
0
0
0
0
0
0
0
−1
0
]
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 
 
 
 

     (32) 
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 Type VI – S1 S2 H3 H4 

 

Figure 24. Free-body diagram for Type VI mechanism 

The equations of equilibrium for the condition shown in Figure 24 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
−1

0
0
0
1
0

∆𝑦3,2
−1
0
0
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
0
0
0
0
0
0

0
0
−1
0
0
1
0
0
0
0
0
]
 
 
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀2]
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 
 
 
 

     (33)  
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 Type VII – S1 H2 S3 H4 

 

Figure 25. Free-body diagram for Type VII mechanism 

The equations of equilibrium for the condition shown in Figure 25 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
−1

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
−1
0
0
]
 
 
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀3]
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 
 
 
 

     (34)  
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 Type VIII – S1 H2 H3 S4 

 

Figure 26. Free-body diagram for the Type VIII mechanism 

The equations of equilibrium for the condition shown in Figure 26 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
−1
0
0
]
 
 
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀4]
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 
 
 
 

     (35)  
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 Type IX – H1 S2 S3 H4 

 

Figure 27. Free-body diagram for the Type IX mechanism 

The equations of equilibrium for the condition shown in Figure 27 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
−1
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
−1

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
1
0
0
0
0
0

0
0
0
0
0
−1
0
0
1
0
0
]
 
 
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2

𝑀3]
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 
 
 
 

     (36) 
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 Type X – H1 S2 H3 S4 

 

Figure 28. Free-body diagram for the Type X mechanism 

The equations of equilibrium for the condition shown in Figure 28 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0

tan(𝛼1)
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
−1
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
−1
0
0
]
 
 
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2

𝑀4]
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 
 
 
 

     (37) 
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 Type XI – H1 H2 S3 S4 

 

Figure 29. Free-body diagram for the Type XI mechanism 

The equations of equilibrium for the condition shown in Figure 29 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0

tan(𝛼3)
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
0
0
0
−1
0
0
1
0
0

0
0
0
0
0
0
0
0
−1
0
0
]
 
 
 
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀3

𝑀4]
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 
 
 
 

     (38) 
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 Type XII – S1 S2 S3 H4 

 

Figure 30. Free-body diagram for the Type XII mechanism 

The equations of equilibrium for the condition shown in Figure 30 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼1)
0
0

0
1
0
0
0
0
0
0
0
−1
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
−1
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
0
−1

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0
0

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0
0
0
0

0
0
−1
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
0
0
−1
0
0
0
]
 
 
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀2

𝑀3]
 
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 

      (39) 
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 Type XIII – S1 S2 H3 S4 

 

Figure 31. Free-body diagram for the Type XIII mechanism 

The equations of equilibrium for the condition shown in Figure 31 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼1)
0
0

0
1
0
0
0
0
0
0
0
−1
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
−1
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0
0
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
0
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0
0
0
0

0
0
−1
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
−1
0
0
0
]
 
 
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀2

𝑀4]
 
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 

      (40) 
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 Type XIV – S1 H2 S3 S4 

 

Figure 32. Free-body diagram for the Type XIV mechanism 

The equations of equilibrium for the condition shown in Figure 32 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼1)
0
0

0
1
0
0
0
0
0
0
0
−1
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0

tan(𝛼3)

0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
−1
0
0
1
0
0
0

0
0
0
0
0
0
0
0
−1
0
0
0
]
 
 
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀3

𝑀4]
 
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 

      (41) 
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 Type XV – H1 S2 S3 S4 

 

Figure 33. Free-body diagram for the Type XV mechanism 

The equations of equilibrium for the condition shown in Figure 33 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0

tan(𝛼2)
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
−1
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0

tan(𝛼3)

0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
−1
0
0
1
0
0
0

0
0
0
0
0
0
0
0
−1
0
0
0
]
 
 
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2

𝑀3

𝑀4]
 
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 

      (42) 
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 Type XVI – S1 S2 S3 S4 

 

Figure 34. Free-body diagram for the Type XVI mechanism 

The equations of equilibrium for the condition shown in Figure 34 is 
[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0
0
0

tan(𝛼2)
0
0
0

0
1
0
0
0
0
0
0
0
−1
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0
0
0
0

tan(𝛼2)
0
0

0
−1
∆𝑥1,2
0
1
0
0
0
0
0
−1
0
0

0
0
0
1
0

∆𝑦3,2
−1
0
0
0
0

tan(𝛼3)
0

0
0
0
0
1

∆𝑥2,3
0
−1
0
0
0
−1
0

0
0
0
0
0
0
1
0

∆𝑦3,4
0
0
0

tan(𝛼4)

0
0
0
0
0
0
0
1

−∆𝑥3,4
0
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0
0

0
0
−1
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
−1
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
−1
0
0
0
0

0
0
0
0
0
0
0
0
−1
0
0
0
0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀2

𝑀3

𝑀4]
 
 
 
 
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

      (43)  
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3.3.4 Combined-Hinge Mechanisms 

The combined-hinge mechanisms are the result of a double release of freedom 
at one mechanical joint in exchange for another mechanical joint in the system. 
This condition is the result of the of the simultaneous development of a hinge 
and the exceedance of static friction at a mechanical joint. This removes the 
requirement of the moment variable at the combined joint since the hinge is 
initiated. The removal of a mechanical joint results in either the loss of an 
element or the combination of two elements in the free-body diagram. This 
introduces a statically determinate system without the inclusion of the loading 
variable (for example the three-pinned arch). The loading variable is necessary 
however to create the kinematic condition beginning from a stable state. The 
inclusion of the friction angle defines the relationship between orthogonal 
reactions at the joint (Eqns. 22 and 23) and its inclusion in the free-body diagram 
must be paired with the loading variable to maintain the determinacy of the 
equations of equilibrium.  

For the combined-hinge mechanisms, mechanisms Type XVII through Type XIX 
place the combination at the first joint, C1, in exchange for hinge H4, H3, and H2 
respectively. Mechanisms Type XX through Type XXII assign C2 in exchange 
for hinge H4, H3, and H1 respectively. Mechanisms Type XXIII through Type XXV 
assign C3 in exchange for hinge H4, H2, and H1 respectively. Lastly, mechanisms 
Type XXVI through Type XXVIII assign C4 in exchange for H3, H2, and H1 
respectively. 
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 Type XVII – C1 H2 H3 -- 

 

Figure 35. Free-body diagram for the Type XVII mechanism 

The equations of equilibrium for the condition shown in Figure 35 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
1

1
0

−∆𝑦2,1
−1
0
0
0

0
−1
∆𝑥1,2
0
1
0
0

0
0
0
1
0

∆𝑦3,2
0

0
0
0
0
1

∆𝑥2,3
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0 ]

 
 
 
 
 
 
 

     (44) 
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 Type XVIII – C1 H2 -- H4 

 

Figure 36. Free-body diagram for the Type XVIII mechanism 

The equations of equilibrium for the condition shown in Figure 36 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
1

1
0

−∆𝑦2,1
−1
0
0
0

0
−1
∆𝑥1,2
0
1
0
0

0
0
0
1
0

∆𝑦2,4
0

0
0
0
0
1

−∆𝑥2,4
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
−𝑓𝑔2∆𝑥2,𝐶𝑀2−𝑓𝑔3∆𝑥2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

    (45) 
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 Type XIX – C1 -- H3 H4 

 

Figure 37. Free-body diagram for the Type XIX mechanism 

The equations of equilibrium for the condition shown in Figure 37 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
1

1
0

−∆𝑦3,1
−1
0
0
0

0
−1

−∆𝑥1,3
0
1
0
0

0
0
0
1
0

∆𝑦3,4
0

0
0
0
0
1

−∆𝑥3,4
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

    (46)  
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 Type XX – H1 C2 H3 – 

 

Figure 38. Free-body diagram for the Type XX mechanism 

The equations of equilibrium for the condition shown in Figure 38 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
1

0
0
0
1
0

∆𝑦3,2
0

0
0
0
0
1

∆𝑥2,3
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0 ]

 
 
 
 
 
 
 

     (47) 
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 Type XXI – H1 C2 -- H4 

 

Figure 39. Free-body diagram for the Type XXI mechanism 

The equations of equilibrium for the condition shown in Figure 39 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
1

0
0
0
1
0

∆𝑦2,4
0

0
0
0
0
1

∆𝑥2,4
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

    (48) 
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 Type XXII –  -- C2 H3 H4 

 

Figure 40. Free-body diagram for the Type XXII mechanism 

The equations of equilibrium for the condition shown in Figure 40 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼2)

0
1
0
0
0
0
1

1
0

−∆𝑦3,2
−1
0
0
0

0
−1
∆𝑥2,3
0
1
0
0

0
0
0
1
0

∆𝑦3,2
0

0
0
0
0
1

∆𝑥2,3
0

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

     (49) 
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 Type XXIII – H1 H2 C3 – 

 

Figure 41. Free-body diagram for the Type XXIII mechanism 

The equations of equilibrium for the condition shown in Figure 41 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0

0
−1
∆𝑥1,2
0
1
0
0

0
0
0
1
0

∆𝑦3,2
tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0 ]

 
 
 
 
 
 
 

     (50) 
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 Type XXIV – H1 -- C3 H4 

 

Figure 42. Free-body diagram for the Type XXIV mechanism 

The equations of equilibrium for the condition shown in Figure 42 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦3,1
−1
0
0

tan(𝛼3)

0
−1

−∆𝑥1,3
0
1
0
1

0
0
0
1
0

∆𝑦3,4
0

0
0
0
0
1

−∆𝑥3,4
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

    (51) 
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 Type XXV – -- H2 C3 H4 

 

Figure 43. Free-body diagram for the Type XXV mechanism 

The equations of equilibrium for the condition shown in Figure 43 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦3,2
−1
0
0

tan(𝛼3)

0
−1
∆𝑥2,3
0
1
0
1

0
0
0
1
0

∆𝑦3,2
0

0
0
0
0
1

∆𝑥2,3
0

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

     (52) 
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 Type XXVI – H1 H2 -- C4 

 

Figure 44. Free-body diagram for the Type XXVI mechanism 

The equations of equilibrium for the condition shown in Figure 44 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0

0
−1
∆𝑥1,2
0
1
0
0

0
0
0
1
0

∆𝑦2,4
tan(𝛼4)

0
0
0
0
1

∆𝑥2,4
1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

    (53) 
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 Type XXVII – H1 -- H3 C4 

 

Figure 45. Free-body diagram for the Type XXVII mechanism 

The equations of equilibrium for the condition shown in Figure 45 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦3,1
−1
0
0
0

0
−1

−∆𝑥1,3
0
1
0
0

0
0
0
1
0

∆𝑦3,4
tan(𝛼4)

0
0
0
0
1

−∆𝑥3,4
1

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

    (54) 
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 Type XXVIII – -- H2 H3 C4 

 

Figure 46. Free-body diagram for the Type XXVIII mechanism 

The equations of equilibrium for the condition shown in Figure 46 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1
0
0
0
0
0
0

0
1
0
0
0
0
0

1
0

−∆𝑦3,2
−1
0
0
0

0
−1
∆𝑥2,3
0
1
0
0

0
0
0
1
0

∆𝑦3,2
tan(𝛼4)

0
0
0
0
1

∆𝑥2,3
1

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0 ]

 
 
 
 
 
 
 

     (55) 
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3.3.5 Combined-Hinge-Slip Mechanisms 

The combined-hinge-slip mechanisms take the reduced structure of the 
combined-hinge mechanisms and add the hinge-slip transformation to one of 
the non-combined mechanical joints. 

Mechanisms Type XXIX and Type XXX assign C1 in exchange for hinge H4 with 
slips S3 and S2 respectively. Mechanisms Type XXXI and Type XXXII assign C1 
in exchange for hinge H3 with slips S4 and S2 respectively. Mechanisms Type 
XXXIII and Type XXXIV assign C1 in exchange for hinge H2 with slips S4 and S3 
respectively. 

Mechanisms Type XXXV and Type XXXVI assign C2 in exchange for hinge H4 
with slips S3 and S1 respectively. Mechanisms Type XXXVII and Type XXXVIII 
assign C2 in exchange for hinge H3 with slips S4 and S1 respectively. 
Mechanisms Type XXXIX and Type XL assign C2 in exchange for hinge H1 with 
slips S4 and S3 respectively. 

Mechanisms Type XLI and Type XLII assign C3 in exchange for hinge H4 with 
slips S2 and S1 respectively. Mechanisms Type XLIII and Type XLIV assign C3 
in exchange for hinge H2 with slips S4 and S1 respectively. Mechanisms Type 
XLV and Type XLVI assign C3 in exchange for hinge H1 with slips S4 and S2 
respectively. 

Lastly, mechanisms Type XLVII and Type XLVIII assign C4 in exchange for hinge 
H3 with slips S2 and S1 respectively. Mechanisms Type XLIX and Type L assign 
C4 in exchange for hinge H2 with slips S3 and S1 respectively. Mechanisms Type 
LI and Type LII assign C4 in exchange for hinge H1 with slips S3 and S2 
respectively. 
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 Type XXIX – C1 H2 S3 – 

 

Figure 47. Free-body diagram for the Type XXIX mechanism 

The equations of equilibrium for the condition shown in Figure 47 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
1
0

1
0

−∆𝑦2,1
−1
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0

0
0
0
1
0

∆𝑦3,2
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀3]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0 ]

 
 
 
 
 
 
 

     (56) 
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 Type XXX – C1 S2 H3 – 

 

Figure 48. Free-body diagram for the Type XXX mechanism 

The equations of equilibrium for the condition shown in Figure 48 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
1
0

1
0

−∆𝑦2,1
−1
0
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
0
−1

0
0
0
1
0

∆𝑦3,2
0
0

0
0
0
0
1

∆𝑥2,3
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0 ]

 
 
 
 
 
 
 

     (57) 
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 Type XXXI – C1 H2 -- S4 

 

Figure 49. Free-body diagram for the Type XXXI mechanism 

The equations of equilibrium for the condition shown in Figure 49 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
1
0

1
0

−∆𝑦2,1
−1
0
0
0
0

0
−1

−∆𝑥1,2
0
1
0
0
0

0
0
0
1
0

∆𝑦2,4
0

tan(𝛼4)

0
0
0
0
1

−∆𝑥2,4
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦𝐶𝑀2,2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
−𝑓𝑔2∆𝑥1,𝐶𝑀2 − 𝑓𝑔3∆𝑥3,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 

    (58)  
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 Type XXXII – C1 S2 -- H4 

 

Figure 50. Free-body diagram for the Type XXXII mechanism 

The equations of equilibrium for the condition shown in Figure 50 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
1
0

1
0

−∆𝑦2,1
−1
0
0
0

tan(𝛼2)

0
−1

−∆𝑥1,2
0
1
0
0
−1

0
0
0
1
0

∆𝑦2,4
0
0

0
0
0
0
1

−∆𝑥2,4
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦𝐶𝑀2,2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
−𝑓𝑔2∆𝑥2,𝐶𝑀2 − 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 

    (59) 
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 Type XXXIII – C1 -- H3 S4 

 

Figure 51. Free-body diagram for the Type XXXIII mechanism 

The equations of equilibrium for the condition shown in Figure 51 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
1
0

1
0

−∆𝑦3,1
−1
0
0
0
0

0
−1

−∆𝑥1,3
0
1
0
0
0

0
0
0
1
0

∆𝑦3,4
0

tan(𝛼4)

0
0
0
0
1

−∆𝑥3,4
0
−1

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓

𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1−𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 

    (60) 
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 Type XXXIV – C1 -- S3 H4 

 

Figure 52. Free-body diagram for the Type XXXIV mechanism 

The equations of equilibrium for the condition shown in Figure 52 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
1
0

1
0

−∆𝑦3,1
−1
0
0
0

tan(𝛼3)

0
−1

−∆𝑥1,3
0
1
0
0
−1

0
0
0
1
0

∆𝑦3,4
0
0

0
0
0
0
1

−∆𝑥3,4
0
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓

𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔3

−𝑓𝑔2∆𝑥1,𝐶𝑀2 − 𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 
 

    (61) 
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 Type XXXV – H1 C2 S3 – 

 

Figure 53. Free-body diagram for the Type XXXV mechanism 

The equations of equilibrium for the condition shown in Figure 53 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
1
0

0
0
0
1
0

∆𝑦3,2
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀3]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0 ]

 
 
 
 
 
 
 

     (62) 
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 Type XXXVI – S1 C2 H3 – 

 

Figure 54. Free-body diagram for the Type XXXVI mechanism 

The equations of equilibrium for the condition shown in Figure 54 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
1
0

0
0
0
1
0

∆𝑦3,2
0
0

0
0
0
0
1

∆𝑥2,3
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀1]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0 ]

 
 
 
 
 
 
 

     (63) 
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 Type XXXVII – H1 C2 -- S4 

 

Figure 55. Free-body diagram for the Type XXXVII mechanism 

The equations of equilibrium for the condition shown in Figure 55 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
1
0

0
0
0
1
0

∆𝑦3,2
0

tan(𝛼4)

0
0
0
0
1

∆𝑥2,3
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 

    (64) 
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 Type XXXVIII – S1 C2 -- H4 

 

Figure 56. Free-body diagram for the Type XXXVIII mechanism 

The equations of equilibrium for the condition shown in Figure 56 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
1
0

0
0
0
1
0

∆𝑦4,2
0
0

0
0
0
0
1

∆𝑥2,4
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀1]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 

    (65) 
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 Type XXXIX –  -- C2 H3 S4 

 

Figure 57. Free-body diagram for the Type XXXIX mechanism 

The equations of equilibrium for the condition shown in Figure 57 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼2)
0

0
1
0
0
0
0
1
0

1
0

∆𝑦3,2
−1
0
0
0
0

0
−1
∆𝑥2,3
0
1
0
0
0

0
0
0
1
0

∆𝑦4,3
0

tan(𝛼4)

0
0
0
0
1

∆𝑥3,4
0
−1

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

     (66) 
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 Type XL –  -- C2 S3 H4 

 

Figure 58. Free-body diagram for the Type XL mechanism 

The equations of equilibrium for the condition shown in Figure 58 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼2)
0

0
1
0
0
0
0
1
0

1
0

∆𝑦3,2
−1
0
0
0

tan(𝛼3)

0
−1
∆𝑥2,3
0
1
0
0
−1

0
0
0
1
0

∆𝑦4,3
0
0

0
0
0
0
1

∆𝑥3,4
0
0

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀3]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

     (67) 
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 Type XLI – H1 S2 C3 – 

 

Figure 59. Free-body diagram for the Type XLI mechanism 

The equations of equilibrium for the condition shown in Figure 59 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
0
−1

0
0
0
1
0

∆𝑦3,2
tan(𝛼3)
0

0
0
0
0
1

∆𝑥2,3
1
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0 ]

 
 
 
 
 
 
 

     (68) 

 



Kinematic Equilibrium, Black Box Analysis, and the Characterization of Dry-Stack Masonry Arches 

83 

 Type XLII – S1 H2 C3 – 

 

Figure 60. Free-body diagram for the Type XLI mechanism 

The equations of equilibrium for the condition shown in Figure 60 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦2,1
−1
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0

0
0
0
1
0

∆𝑦3,2
tan(𝛼3)
0

0
0
0
0
1

∆𝑥2,3
1
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀1]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0 ]

 
 
 
 
 
 
 

     (69) 
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 Type XLIII – H1 -- C3 S4 

 

Figure 61. Free-body diagram for the Type XLIII mechanism 

The equations of equilibrium for the condition shown in Figure 61 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦3,1
−1
0
0

tan(𝛼3)
0

0
−1
∆𝑥1,3
0
1
0
1
0

0
0
0
1
0

∆𝑦3,2
0

tan(𝛼4)

0
0
0
0
1

∆𝑥2,3
0
−1

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦2,𝐶𝑀3
0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

    (70) 
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 Type XLIV – S1 -- C3 H4 

 

Figure 62. Free-body diagram for the Type XLIII mechanism 

The equations of equilibrium for the condition shown in Figure 62 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦3,1
−1
0
0

tan(𝛼3)
0

0
−1
∆𝑥1,3
0
1
0
1
0

0
0
0
1
0

∆𝑦3,2
0
0

0
0
0
0
1

∆𝑥2,3
0
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦2,𝐶𝑀3
0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

    (71) 
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 Type XLV – -- H2 C3 S4 

 

Figure 63. Free-body diagram for the Type XLV mechanism 

The equations of equilibrium for the condition shown in Figure 63 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

∆𝑦3,2
−1
0
0

tan(𝛼3)
0

0
−1
∆𝑥2,3
0
1
0
−1
0

0
0
0
1
0

∆𝑦4,3
0

tan(𝛼4)

0
0
0
0
1

∆𝑥3,4
0
−1

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀4]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

     (72) 
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 Type XLVI – -- S2 C3 H4 

 

Figure 64. Free-body diagram for the Type XLVI mechanism 

The equations of equilibrium for the condition shown in Figure 64 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼2)

0
1
0
0
0
0
0
−1

1
0

∆𝑦3,2
−1
0
0

tan(𝛼3)
0

0
−1
∆𝑥2,3
0
1
0
−1
0

0
0
0
1
0

∆𝑦4,3
0
0

0
0
0
0
1

∆𝑥3,4
0
0

𝑓𝑔2
0

−𝑓𝑔2∆𝑦𝐶𝑀2,2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

     (73) 
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 Type XLVII – H1 S2 -- C4 

 

Figure 65. Free-body diagram for the Type XLVII mechanism 

The equations of equilibrium for the condition shown in Figure 65 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦2,1
−1
0
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
0
−1

0
0
0
1
0

∆𝑦4,2
tan(𝛼4)
0

0
0
0
0
1

∆𝑥2,4
1
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 

    (74) 
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 Type XLVIII – S1 H2 -- C4 

 

Figure 66. Free-body diagram for the Type XLVIII mechanism 

The equations of equilibrium for the condition shown in Figure 66 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦2,1
−1
0
0
0
0

0
−1
∆𝑥1,2
0
1
0
0
0

0
0
0
1
0

∆𝑦4,2
tan(𝛼4)
0

0
0
0
0
1

∆𝑥2,4
1
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀1]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 

    (75) 
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 Type XLIX – H1 -- S3 C4 

 

Figure 67. Free-body diagram for the Type XLIX mechanism 

The equations of equilibrium for the condition shown in Figure 67 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦3,1
−1
0
0
0

tan(𝛼3)

0
−1
∆𝑥1,3
0
1
0
0
−1

0
0
0
1
0

∆𝑦3,2
tan(𝛼4)
0

0
0
0
0
1

∆𝑥2,3
1
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦2,𝐶𝑀3
0
0

0
0
1
0
0
−1
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀3]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

    (76) 
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 Type L – S1 -- H3 C4 

 

Figure 68. Free-body diagram for the Type L mechanism 

The equations of equilibrium for the condition shown in Figure 68 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦3,1
−1
0
0
0
0

0
−1
∆𝑥1,3
0
1
0
0
0

0
0
0
1
0

∆𝑦3,2
tan(𝛼4)
0

0
0
0
0
1

∆𝑥2,3
1
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦2,𝐶𝑀3
0
0

0
0
−1
0
0
0
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

    (77) 
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 Type LI – -- H2 S3 C4 

 

Figure 69. Free-body diagram for the Type LI mechanism 

The equations of equilibrium for the condition shown in Figure 69 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

1
0

−∆𝑦3,2
−1
0
0
0

tan(𝛼3)

0
−1
∆𝑥2,3
0
1
0
0
−1

0
0
0
1
0

∆𝑦4,3
tan(𝛼4)
0

0
0
0
0
1

∆𝑥3,4
1
0

𝑓𝑔2
0

−𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
−1
0
0
1
0
0 ]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀3]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

     (78) 
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 Type LII – -- S2 H3 C4 

 

Figure 70. Free-body diagram for the Type LII mechanism 

The equations of equilibrium for the condition shown in Figure 70 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼2)

0
1
0
0
0
0
0
−1

1
0

−∆𝑦3,2
−1
0
0
0
0

0
−1
∆𝑥2,3
0
1
0
0
0

0
0
0
1
0

∆𝑦4,3
tan(𝛼4)
0

0
0
0
0
1

∆𝑥3,4
1
0

𝑓𝑔2
0

−𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0

0
0
1
0
0
0
0
0]
 
 
 
 
 
 
 
 

  

{𝑟} =

[
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2]
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0 ]

 
 
 
 
 
 
 

     (79) 
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3.3.6 Combined-Slip Mechanisms 

The combined-slip mechanisms take the reduced structure of the combined-
hinge mechanisms and replaces both of the non-combined mechanical joints 
with slip translation. 

Mechanisms Type LIII through LV assign C1 in exchange of slip S4, S3 and S2 
respectively. Mechanisms Type LVI through LVIII assign C2 in exchange of slip 
S4, S3 and S1 respectively. Mechanisms Type LIX through LXI assign C3 in 
exchange of slip S4, S2 and S1 respectively. Lastly, mechanisms Type LXII 
through LXIV assign C4 in exchange of slip S3, S2 and S1 respectively. 
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 Type LIII – C1 S2 S3 – 

 

Figure 71. Free-body diagram for the Type LIII mechanism 

The equations of equilibrium for the condition shown in Figure 71 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0
0

0
1
0
0
0
0
−1
0
0

1
0

−∆𝑦2,1
−1
0
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
0
−1
0

0
0
0
1
0

∆𝑦3,2
0
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0
0

0
0
−1
0
0
1
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀2

𝑀3]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0
0 ]

 
 
 
 
 
 
 
 

     (80) 
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 Type LIV – C1 S2 -- S4 

 

Figure 72. Free-body diagram for the Type LIV mechanism 

The equations of equilibrium for the condition shown in Figure 72 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0
0

0
1
0
0
0
0
−1
0
0

1
0

−∆𝑦2,1
−1
0
0
0

tan(𝛼2)
0

0
−1
∆𝑥1,2
0
1
0
0
−1
0

0
0
0
1
0

∆𝑦4,2
0
0

tan(𝛼4)

0
0
0
0
1

∆𝑥2,4
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0
0

0
0
−1
0
0
1
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀2

𝑀4]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0
0 ]

 
 
 
 
 
 
 
 

    (81) 
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 Type LV – C1 -- S3 S4 

 

Figure 73. Free-body diagram for the Type LV mechanism 

The equations of equilibrium for the condition shown in Figure 73 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)
0
0

0
1
0
0
0
0
−1
0
0

1
0

−∆𝑦3,1
−1
0
0
0

tan(𝛼3)

0

0
−1
∆𝑥1,3
0
1
0
0
−1
0

0
0
0
1
0

∆𝑦4,3
0
0

tan(𝛼4)

0
0
0
0
1

∆𝑥3,4
0
0
−1

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
1
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀3

𝑀4]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔3∆𝑥3,𝐶𝑀3

0
0
0 ]

 
 
 
 
 
 
 
 

    (82) 
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 Type LVI – S1 C2 S3 – 

 

Figure 74. Free-body diagram for the Type LVI mechanism 

The equations of equilibrium for the condition shown in Figure 74 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)
0
0

0
−1
∆𝑥1,2
0
1
0
−1
0
0

0
0
0
1
0

∆𝑦3,2
0
0

tan(𝛼3)

0
0
0
0
1

∆𝑥2,3
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0
0

0
0
−1
0
0
0
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀1

𝑀3]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0
0 ]

 
 
 
 
 
 
 
 

     (83) 
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 Type LVII – S1 C2 -- S4 

 

Figure 75. Free-body diagram for the Type LVII mechanism 

The equations of equilibrium for the condition shown in Figure 75 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0

tan(𝛼2)
0
0

0
−1
∆𝑥1,2
0
1
0
−1
0
0

0
0
0
1
0

∆𝑦4,2
0
0

tan(𝛼4)

0
0
0
0
1

∆𝑥2,4
0
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0
0

0
0
−1
0
0
0
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀4]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0
0 ]

 
 
 
 
 
 
 
 

    (84) 
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 Type LVIII –  -- C2 S3 S4 

 

Figure 76. Free-body diagram for the Type LVIII mechanism 

The equations of equilibrium for the condition shown in Figure 76 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼2)
0
0

0
1
0
0
0
0
−1
0
0

1
0

∆𝑦3,2
−1
0
0
0

tan(𝛼3)
0

0
−1
∆𝑥2,3
0
1
0
0
−1
0

0
0
0
1
0

∆𝑦4,3
0
0

tan(𝛼4)

0
0
0
0
1

∆𝑥3,4
0
0
−1

𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
1
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀3

𝑀4]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 

     (85) 
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 Type LIX – S1 S2 C3 – 

 

Figure 77. Free-body diagram for the Type LIX mechanism 

The equations of equilibrium for the condition shown in Figure 77 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
−1
0
−1

0
0
0
1
0

∆𝑦3,2
tan(𝛼3)
0
0

0
0
0
0
1

∆𝑥2,3
−1
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1
𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
0
0
0

0
0
−1
0
0
0
0
0
0

0
0
1
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎
𝑀1

𝑀2]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2
0
0
0 ]

 
 
 
 
 
 
 
 

     (86) 
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 Type LX – S1 -- C3 S4 

 

Figure 78. Free-body diagram for the Type LX mechanism 

The equations of equilibrium for the condition shown in Figure 78 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
−1
0

1
0

−∆𝑦3,1
−1
0
0

tan(𝛼3)
0
0

0
−1
∆𝑥1,3
0
1
0
−1
0
0

0
0
0
1
0

∆𝑦4,3
0
0

tan(𝛼4)

0
0
0
0
1

∆𝑥3,4
0
0
−1

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀4]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔3∆𝑥3,𝐶𝑀3

0
0
0 ]

 
 
 
 
 
 
 
 

    (87) 
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 Type LXI – -- S2 C3 S4 

 

Figure 79. Free-body diagram for the Type LXI mechanism 

The equations of equilibrium for the condition shown in Figure 79 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼2)
0

0
1
0
0
0
0
0
−1
0

1
0

∆𝑦3,2
−1
0
0

tan(𝛼3)
0
0

0
−1
∆𝑥2,3
0
1
0
−1
0
0

0
0
0
1
0

∆𝑦4,3
0
0

tan(𝛼4)

0
0
0
0
1

∆𝑥3,4
0
0
−1

𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0

0
0
0
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2

𝑀4]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 

     (88) 

 



Stockdale  Chapter 3 

104 

 Type LXII – S1 S2 -- C4 

 

Figure 80. Free-body diagram for the Type LVII mechanism 

The equations of equilibrium for the condition shown in Figure 80 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
−1
0

1
0

−∆𝑦2,1
−1
0
0
0
0

tan(𝛼2)

0
−1
∆𝑥1,2
0
1
0
0
0
−1

0
0
0
1
0

∆𝑦4,2
tan(𝛼4)
0
0

0
0
0
0
1

∆𝑥2,4
−1
0
0

𝑓𝑔1
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1
𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0
0
0

0
0
−1
0
0
0
0
0
0

0
0
1
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀2]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔2∆𝑥2,𝐶𝑀2 + 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0
0 ]

 
 
 
 
 
 
 
 

    (89) 
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 Type LXIII – S1 -- S3 C4 

 

Figure 81. Free-body diagram for the Type LXIII mechanism 

The equations of equilibrium for the condition shown in Figure 81 is 

[𝐵𝐶]

=

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼1)
0

0
1
0
0
0
0
0
−1
0

1
0

−∆𝑦3,1
−1
0
0
0
0

tan(𝛼3)

0
−1
∆𝑥1,3
0
1
0
0
0
−1

0
0
0
1
0

∆𝑦4,3
tan(𝛼4)
0
0

0
0
0
0
1

∆𝑥3,4
−1
0
0

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦1,𝐶𝑀1 − 𝑓𝑔2∆𝑦1,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0

0
0
1
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀1

𝑀3]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2
0

𝑓𝑔2 + 𝑓𝑔3
𝑓𝑔3∆𝑥3,𝐶𝑀3

0
0
0 ]

 
 
 
 
 
 
 
 

    (90) 
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 Type LXIV – -- S2 S3 C4 

 

Figure 82. Free-body diagram for the Type LXIV mechanism 

The equations of equilibrium for the condition shown in Figure 82 is 

[𝐵𝐶] =

[
 
 
 
 
 
 
 
 
 −1

0
0
0
0
0
0

tan(𝛼2)
0

0
1
0
0
0
0
0
−1
0

1
0

∆𝑦3,2
−1
0
0
0
0

tan(𝛼3)

0
−1
∆𝑥2,3
0
1
0
0
0
−1

0
0
0
1
0

∆𝑦4,3
tan(𝛼4)
0
0

0
0
0
0
1

∆𝑥3,4
−1
0
0

𝑓𝑔2
0

𝑓𝑔2∆𝑦2,𝐶𝑀2
𝑓𝑔3
0

𝑓𝑔3∆𝑦3,𝐶𝑀3
0
0
0

0
0
−1
0
0
0
0
0
0

0
0
1
0
0
−1
0
0
0 ]
 
 
 
 
 
 
 
 
 

 

{𝑟} =

[
 
 
 
 
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎
𝑀2

𝑀3]
 
 
 
 
 
 
 
 

 {𝑞} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔2

−𝑓𝑔2∆𝑥2,𝐶𝑀2
0
𝑓𝑔3

𝑓𝑔3∆𝑥3,𝐶𝑀3
0
0
0 ]

 
 
 
 
 
 
 
 

     (91) 
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3.3.7 Combined Mechanisms 

The combined mechanisms assign two slip-hinge combination joints in 
exchange for the other two mechanical joints. This condition produces a single 
element with two mechanical joints. 

Mechanisms Type LXV through Type LXVII assign C1 with C4, C3, and C2 
respectively. Mechanisms Type LXVIII and Type LXIX assign C2 with C4 and C3 
respectively. The final mechanism, Type LXX, assigns C3 and C4. 

 Type LXV – C1 -- -- C4  

 

Figure 83. Free-body diagram for the Type LXV mechanism 

The equations of equilibrium for the condition shown in Figure 83 is 

[𝐵𝐶] =

[
 
 
 
 

−1
0
0

tan(𝛼1)
0

0
1
0
−1
0

1
0

−∆𝑦4,1
0

tan(𝛼4)

0
−1

−∆𝑥1,4
0
−1

𝑓𝑔1 + 𝑓𝑔2 + 𝑓𝑔3
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1 − 𝑓𝑔3∆𝑦𝐶𝑀3,1
0
0 ]

 
 
 
 

  

{𝑟} =

[
 
 
 
 
ℎ1
𝑣1
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 

 {𝑞} =

[
 
 
 
 

0
𝑓
𝑔1
+ 𝑓

𝑔2
+ 𝑓

𝑔3

−𝑓
𝑔1
∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2 − 𝑓𝑔3∆𝑥1,𝐶𝑀3

0
0 ]

 
 
 
 

  (92) 
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 Type LXVI – C1 -- C3 – 

 

Figure 84. Free-body diagram for the Type LXVI mechanism 

The equations of equilibrium for the condition shown in Figure 84 is 

[𝐵𝐶] =

[
 
 
 
 

−1
0
0

tan(𝛼1)
0

0
1
0
−1
0

1
0

−∆𝑦3,1
0

tan(𝛼3)

0
−1

−∆𝑥1,3
0
−1

𝑓𝑔1 + 𝑓𝑔2
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1
0
0 ]

 
 
 
 

  

{𝑟} =

[
 
 
 
 
ℎ1
𝑣1
ℎ3
𝑣3
𝜆𝑎]
 
 
 
 

 {𝑞} =

[
 
 
 
 

0
𝑓
𝑔1
+ 𝑓

𝑔2

−𝑓
𝑔1
∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2

0
0 ]

 
 
 
 

    (93) 
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 Type LXVII – C1 C2 -- -- 

 

Figure 85. Free-body diagram for the Type LXVII mechanism 

The equations of equilibrium for the condition shown in Figure 85 is 

[𝐵𝐶] =

[
 
 
 
 

−1
0
0

tan(𝛼1)
0

0
1
0
−1
0

1
0

−∆𝑦2,1
0

tan(𝛼2)

0
−1

−∆𝑥1,2
0
−1

𝑓𝑔1
0

−𝑓𝑔1∆𝑦𝐶𝑀1,1
0
0 ]

 
 
 
 

  

{𝑟} =

[
 
 
 
 
ℎ1
𝑣1
ℎ2
𝑣2
𝜆𝑎]
 
 
 
 

 {𝑞} =

[
 
 
 
 

0
𝑓
𝑔1

−𝑓
𝑔1
∆𝑥1,𝐶𝑀1

0
0 ]

 
 
 
 

     (94) 
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 Type LXVIII –  -- C2 – C4 

 

Figure 86. Free-body diagram for the Type LXVIII mechanism 

The equations of equilibrium for the condition shown in Figure 86 is 

[𝐵𝐶] =

[
 
 
 
 

−1
0
0

tan(𝛼2)
0

0
1
0
−1
0

1
0

−∆𝑦4,2
0

tan(𝛼4)

0
−1

−∆𝑥2,4
0
−1

𝑓𝑔2 + 𝑓𝑔3
0

𝑓𝑔2∆𝑦𝐶𝑀2,2 − 𝑓𝑔3∆𝑦𝐶𝑀3,2
0
0 ]

 
 
 
 

  

{𝑟} =

[
 
 
 
 
ℎ2
𝑣2
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 

 {𝑞} =

[
 
 
 
 

0
𝑓
𝑔2
+ 𝑓

𝑔3

−𝑓
𝑔2
∆𝑥2,𝐶𝑀2 − 𝑓𝑔3∆𝑥2,𝐶𝑀3

0
0 ]

 
 
 
 

    (95) 
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 Type LXIX – -- C2 C3 – 

 

Figure 87. Free-body diagram for the Type LXIX mechanism 

The equations of equilibrium for the condition shown in Figure 87 is 

[𝐵𝐶] =

[
 
 
 
 

−1
0
0

tan(𝛼2)
0

0
1
0
−1
0

1
0

−∆𝑦3,2
0

tan(𝛼3)

0
−1

−∆𝑥2,3
0
−1

𝑓𝑔2
0

𝑓𝑔2∆𝑦𝐶𝑀2,2
0
0 ]

 
 
 
 

  

{𝑟} =

[
 
 
 
 
ℎ2
𝑣2
ℎ3
𝑣3
𝜆𝑎]
 
 
 
 

 {𝑞} =

[
 
 
 
 

0
𝑓
𝑔2

−𝑓
𝑔2
∆𝑥2,𝐶𝑀2

0
0 ]

 
 
 
 

     (96) 
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 Type LXX – -- -- C3 C4 

 

Figure 88. Free-body diagram for the Type LXX mechanism 

The equations of equilibrium for the condition shown in Figure 88 is 

[𝐵𝐶] =

[
 
 
 
 

−1
0
0

tan(𝛼2)
0

0
1
0
−1
0

1
0

−∆𝑦4,3
0

tan(𝛼4)

0
−1

−∆𝑥3,4
0
−1

𝑓𝑔3
0

−𝑓𝑔3∆𝑦𝐶𝑀3,3
0
0 ]

 
 
 
 

  

{𝑟} =

[
 
 
 
 
ℎ3
𝑣3
ℎ4
𝑣4
𝜆𝑎]
 
 
 
 

 {𝑞} =

[
 
 
 
 

0
𝑓
𝑔3

−𝑓
𝑔3
∆𝑥3,𝐶𝑀3

0
0 ]

 
 
 
 

     (97) 

 

3.4 Equilibrium Matrix Construction Strategies 

Section 3.2 presented the kinematic equilibrium diagrams and the corresponding 
equations of equilibrium for various loading conditions applied to the standard 
mechanism. The loading conditions included constant accelerations, point loads 
and distributed loads. Section 3.3 presented all the potential mechanisms for 
constant horizontal acceleration loading and the inclusion of a slip potential at 
the mechanical joints. From these sections a more generalized image of the 
equilibrium matrix construction can be visualized. 

Examining the different load cases highlighted a single column in the balance 
condition that contained the information associated with the collapse multiplier 
variable (see Figure 15). The inclusion of static friction at the mechanical joints 
introduces the potential slip and slip-hinge mechanical conditions. The slip 
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condition results in the release of the pin connection and introduces an additional 
variable (i.e. moment) into the evaluation. This added moment is then balanced 
through the inclusion of the friction angle and its relationship with the parallel 
and normal reactions at the mechanical joint. The slip-hinge condition maintains 
the pin connection at the slip-joint which results in the removal of another pin 
connection in the system. In terms of the equilibrium evaluation this reduces the 
matrix by three equations through combining two elements while adding the 
friction condition relationship.  

Both the different loads and slip conditions have distinct and somewhat isolated 
effects on the equations of equilibrium. Figure 89 presents the general layout of 
the equations of equilibrium. Under this structure it can be noted that the 
inclusion of a slip joint adds friction rows and moment columns to the set. If a 
combined slip-hinge joint exists, then the added row(s) for the inclusion of friction 
are coupled with a reduction in the reaction variables and columns. Lastly, the 
effects of the applied loads accumulate in the constants vector less the loading 
variable under investigation. This generalized format for the development of 
equations of equilibrium in turn allows for the piecewise construction of 
additional conditions for evaluation. 

 
Figure 89. Breakdown of the equations of equilibrium structure 

3.5 Concluding Remarks 

In the context of determinacy and stability, the four-pinned arch is considered an 
unstable structure and modern structural analysis textbooks end the discussion 
of the unstable system with a recommendation of avoiding them. Since the 
failure of the arch is the transformation into an unstable system, kinematic 
equilibrium has been previously overlooked. Kinematic equilibrium therefore 
establishes the divergence point of masonry arch analysis, and it is the 
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foundation for all analysis tools and structures developed in the remaining 
chapters of this dissertation.  



Kinematic Equilibrium, Black Box Analysis, and the Characterization of Dry-Stack Masonry Arches 

115 

CHAPTER 4 

BLACK BOX ANALYSIS 

List of Abbreviations and Symbols 

Ai ─ Polynomial fit constants for cartesian deformation path of 
the CM 

ACSE ─ American Society of Civil Engineers 

αi ─ Rotation angle of the ith mechanical joint 

Bi ─ Polynomial fit constants for Element lever arm rotations 
versus horizontal CM position 

BVP ─ Boundary value problem 

𝐵̂0  ─ y-intercept for joint line equations used in thrust point 
calculations 

𝐵̂1  ─ Slope constant for joint line equations used in thrust point 
calculations 

CA ─ Center of area 

CM ─ Center of mass 

𝐶𝑀̂  ─ Center of mass identifier for arch segments used in the 
thrust point calculations 

∆𝛾23  ─ Polar angle change between the 2nd and 3rd mechanical joint 
after a deformation 

ei ─ Thrust line eccentricity from the ith hinge position along the 
joint line 

𝐹𝑑  ─ Net force of a distributed load 

Fn ─ Normal reaction force at the selected joint in the KCLC 

Fp ─ Parallel reaction force at the selected joint in the KCLC 

𝐹̂𝑑  ─ Net force of a partial distributed load 
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𝑓𝑔  ─ Gravitational body force for arch segment used in thrust 
point calculations 

GUI ─ Graphical user interface 

H_acc ─ Horizontal acceleration load selection parameter for the 
original KCLC 

Hi ─ Identifier for the ith hinge 

hP ─ Horizontal reaction force for determining the thrust point 
position along a joint line 

KCLC ─ Kinematic collapse load calculator 

lij ─ Rigid length between the ith and jth mechanical joints 

λa ─ Collapse multiplier for uniform acceleration 

λP ─ Collapse multiplier for an applied point load 

Mn ─ Moment required to shift the thrust line to the material 
boundary for a selected joint 

N ─ Number of Blocks input parameter for the original KCLC 

PL ─ Point load selection parameter for the original KCLC 

R ─ Intrados radius input parameter for original KCLC 

RSBD ─ Reinforced stability-based design 

r ─ Reaction vector of the equations of equilibrium 

SDOF ─ Single degree of freedom 

Si ─ Identifier for the ith slip joint 

Ti ─ Tension compensation force required at the ith joint for 
defining rigid elements 

Tn ─ Normal tension force required to shift the thrust line to the 
material boundary for a selected joint 

ti ─ Thickness of the ith joint 

T_R ─ Thickness to radius ratio input parameter for the original 
KCLC 

θEj ─ Rotation angle of the jth element’s lever arm connection to 
CM of the full arch 

θij ─ Polar angle between the undeformed position of the ith and 
jth mechanical joints 

𝜃𝑖𝑗
′   ─ Polar angle between the deformed position of the ith and jth 

mechanical joints 
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vP ─ Vertical reaction force for determining the thrust point 
position along a joint line 

(𝑥𝑏 , 𝑦𝑏)  ─ Cartesian coordinates of a joint line boundary point 

(𝑥𝑐𝑚 , 𝑦𝑐𝑚) ─ Cartesian coordinates of the CM 

(𝑥𝑑1, 𝑦𝑑1) ─ Cartesian boundary point limits of a distributed load 

(𝑥𝑑2, 𝑦𝑑2) ─ Cartesian boundary point limits of a distributed load 

(𝑥𝑑 , 𝑦𝑑)  ─ Centroid point of a distributed load applied to a surface 

(𝑥̂𝑑 , 𝑦̂𝑑)  ─ Centroid point of a partial distributed load applied to a 
surface 

(xP,yP)  ─ Cartesian coordinates of a point load 

(𝑥̂, 𝑦̂)  ─ Cartesian coordinates for a joint line equation used in thrust 
point calculations 

 

The failure of a stable dry-stack masonry arch is a BVP who’s capacity is defined 
by the onset of a mechanism. This mechanism creation is a physical 
phenomenon that arises from the destruction of the stable state and presents a 
singularity into a system that otherwise has infinite solutions. This singularity 
thus creates a black box condition to the input (loading condition) and output 
(mechanism) of the arch.  

In Chapter 3 the concept of kinematic equilibrium was derived for the masonry 
arch directly from the equations of equilibrium and the inclusion of an external 
loading variable. The free-body diagrams were defined, and the resulting 
equations of equilibrium were developed for various loading conditions and for 
the complete set of potential mechanisms that can exist with the removal of the 
traditional no-slip assumption. Every developed equations of equilibrium is a 
determinant system and its application into Eqn. 4 generates a singularity 
condition for the defined state. These solution sets however have no constraints 
on their own and do not consider the laws governing the system from which they 
were derived. They provide a link between the input and output of the arch’s 
failure, but the link itself must be evaluated to consider if it can physically exist.  

As a compression only system with fixed boundary conditions defined by the 
material’s geometry, the potential singularity must abide by the rules of motion 
and the laws governing forces. For instance, consider the point load condition 
applied to the hinge H3 side of Element 2 in the traditional mechanism structure 
(see Figure 10). If the solution to this condition resulted in a negative collapse 
load multiplier, λp, then any motion would require an overlap of the block 
boundaries which physically cannot occur. Therefore, the admissibility of the 
singularity must be evaluated to determine whether or not it can exist.  

The black box analysis of masonry arches is a direct reference to the evaluation 
of admissibility. Every determinant system has a solution, but in the context of 
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the mechanization of the masonry arch there are a distinct set of conditions that 
must exist. These conditions are physical and do not require the application of 
engineering judgement. Therefore, they can be housed under a black box 
structure. 

The objective of Chapter 4 is to introduce the kinematic admissibility 
requirements of the arch and combine them into an analysis structure that allows 
the comprehensive and efficient analysis of the kinematic condition. First, 
kinematic admissibility requirements are developed and then followed by the 
introduction of the KCLC software. The KCLC is an adaptable Graphical User 
Interface (GUI), developed in Matlab® and specifically designed to execute the 
black box analysis of dry-stack masonry arches through control of the input 
parameters required to create a determinant condition. Lastly, some 
consequences of kinematic equilibrium and admissibility are discussed. These 
consequences are the capacity compensation requirements for the existence of 
non-stable, kinematically admissible mechanisms and of mechanically deformed 
conditions with admissible solutions. 

4.1 Kinematic Admissibility 

The admissibility of a given loading-mechanism condition of a dry-stack masonry 
arch can be subdivided into a two-stage evaluation process. The first stage is a 
direct assessment of the solutions obtained for the reaction vector r. For the 
traditional four-hinged mechanism under vertical point load or uniform 
acceleration these requirements are that the collapse multiplier is positive and 
the reactions at the hinges are compressive. For more generalized loading 
conditions, the collapse multiplier must generate a force that meets the 
kinematic boundary conditions. The inclusion of the slip-hinge replacement at a 
mechanical joint adds the condition that the moment is positive as well.  

The second stage of the analysis process is an evaluation of the resulting thrust 
line geometry that is established from the calculated reactions of the singularity 
conditions. The thrust line is a theoretical line that represents the flow of 
concentrated compressive forces through the arch. For the arch to be stable, the 
line of thrust must exist within the material of the arch. In terms of admissibility 
of the solution to the kinematic equilibrium of a loading-mechanism condition 
however, the limits of the thrust line are only held at the mechanical joints. A 
hinge forms when this line reaches an arch boundary. Therefore, the 
admissibility of the traditional mechanism requires that the thrust line pass 
through each hinge. The same is true for the combined joint condition as well.  

For the slip condition, the trust line must cross the joint boundary in such a way 
that the nature of the mechanism under evaluation is maintained. Additionally, a 
negative eccentricity in Eqn. 5 would indicate that the thrust line lies outside the 
mechanical joint boundary. This limits the eccentricity between the hinge edge 
and half the joint thickness 

0 ≤ 𝑒𝑖 ≤
1

2
𝑡𝑖        (98) 
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4.1.1 Thrust Line 

Since the hinge locations or eccentricity of the slip condition are known from the 
solution to the reaction vector, the thrust line can be established at each section 
along the arch by evaluating the free-body diagram at each section against hinge 
H1 or slip S1. The flow of compressive forces can also be considered as the line 
of zero moment. Therefore, the thrust point at each joint in the arch can be 
determined by locating the point along the joint line where the vertical, vP, and 
horizontal, hP, point reactions maintain a zero moment at hinge H1 or slip S1.  

Figure 90 shows an example of the free-body diagram used to calculate the 
thrust point for the constant horizontal acceleration and hinge H1 condition. 

Through the intrados and extrados boundary points of the joint, the slope, 𝐵̂1, 
and intercept, 𝐵̂0, of the linear joint line equation 

𝑦̂ = 𝐵̂1𝑥̂ + 𝐵̂𝑜        (99) 

can be established. Calculating the sum of the moments about hinge H1 with a 
clockwise positive definition generates 

∑𝑀1 = 𝑣𝑃(𝑥̂ − 𝑥1) − ℎ𝑃(𝑦̂ − 𝑦1) + 𝑓𝑔[(𝑥𝐶𝑀̂ − 𝑥1) − 𝜆𝑎(𝑦𝐶𝑀̂ − 𝑦1)] = 0 (100) 

Combining Eqns. 99 and 100 and rearranging the terms produces the horizontal 
position of the thrust point 

𝑥̂ =
(ℎ1−𝜆𝑎𝑓̂̂𝑔)(𝑦1−𝐵̂0)+(𝑣1−𝑓̂̂𝑔)𝑥1+𝑓̂̂𝑔(𝜆𝑎∆𝑦𝐶𝑀̂,1−∆𝑥𝐶𝑀̂,1)

𝑣1+ℎ1𝐵̂0
    (101) 

Applying the solution from Eqn. 101 to Eqn. 99 establishes the cartesian 
coordinates of the thrust point (𝑥̂, 𝑦̂) along the joint line. Repeating this process 
for each joint line of the arche and connecting the calculated points generates 
the thrust line. 

 

Figure 90. Free-body diagram for calculating the thrust point position along line 

𝒚̂ = 𝑩̂𝟏𝒙̂ + 𝑩̂𝟎 for horizontal acceleration condition 
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The calculation of the thrust points requires the evaluation of imposed moments 
between hinge H1 and the joint under evaluation. Consequently, changes in 
loading conditions across an arch will result in changes to the moment 
calculation and thus the calculation of the thrust point. Therefore, the joint line 
based thrust point equations must be established for each loading condition.  

Once the thrust line is established from the calculated thrust points based upon 
the position of hinge H1 or slip S1, it can be evaluated against the remaining 
mechanical joints to determine admissibility of the kinematic condition. 

 Thrust Point Position Equations 

As stated, the thrust point at each joint of the arch can be established by 
determining the location along the joint line (Eqn. 99) that maintains a zero 
moment at either H1 or S1 depending on the mechanism being evaluated, and a 
position equation must be constructed for each loading change along the span 
of the arch. Following the same methodology used for the horizontal acceleration 
condition (see Figure 90 and Eqns. 99-101), this section presents the cartesian 
𝑥̂ coordinate thrust point equations to combine with Eqn. 99 for each of the 
loading conditions presented in Section 3.2. Note that in the construction of the 
thrust point position equations, establishing equivalent forces is done from the 
loads within the boundaries of evaluation.  

4.1.1.1.1 Horizontal Acceleration 
Constant horizontal accelerations generate a uniform loading condition across 
the arch. This results in Eqn. 101 that was derived to from condition shown in 
Figure 90 in the explanation of obtaining the thrust line. 

4.1.1.1.2 2D Acceleration 
Constant 2D accelerations maintain the uniformity of the horizontal condition, 
and thus a single equation 

𝑥̂ =
(ℎ1−𝜆𝑎𝑓̂𝑔 cos(𝜃𝑎))(𝑦1−𝐵̂0)+(𝑣1−𝑓̂𝑔(1−𝜆𝑎 sin(𝜃𝑎)))𝑥1+𝑓̂𝑔(𝜆𝑎 cos(𝜃𝑎)∆𝑦𝐶𝑀̂,1−(1−𝜆𝑎 sin(𝜃𝑎))∆𝑥𝐶𝑀̂,1)

𝑣1+ℎ1𝐵̂0
 (102) 

is structured from the condition shown in Figure 91. 
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Figure 91. Free-body diagram for 2D acceleration thrust point calculation 

4.1.1.1.3 Point Load 
The thrust point calculation for the point load condition requires two equations to 
account for the discrete positioning (xP, yP) of the point load 

𝑥 = {

(ℎ1)(𝑦1−𝐵̂0)+(𝑣1−𝑓̂𝑔)𝑥1+𝑓̂𝑔∆𝑥𝐶𝑀̂,1

𝑣1+ℎ1𝐵̂0
; 𝑥 > 𝑥𝑃

(ℎ1−𝜆𝑃 cos(𝜃𝑃))(𝑦1−𝐵̂0)+(𝑣1−𝑓̂𝑔−𝜆𝑃 sin(𝜃𝑃))𝑥1+𝑓̂𝑔∆𝑥𝐶𝑀̂,1+𝜆𝑃(sin(𝜃𝑃)∆𝑥𝑃,1−cos(𝜃𝑃)∆𝑦𝑃,1)

𝑣1+ℎ1𝐵̂0
;  𝑥 ≤ 𝑥𝑃

 (103) 

Figure 92 shows the two conditions evaluated for the thrust point calculation. 
Note that unlike the free-body diagrams (see Section 3.2.2), the arch segment 
evaluated is constructed from the results of the reaction vector. The free body 
diagram that generates the thrust point relies on the definition of a single point 
(i.e. Hinge H1 or slip S1) and the loading geometries. Equation 103 thus holds 
for all three point load free-body diagrams formulated in Section 3.2.2. 

 

Figure 92. Free-body diagram (a) before and (b) after crossing the point load for 
the thrust point calculations. 



Stockdale  Chapter 4 

122 

4.1.1.1.4 Distributed Load 
Both the horizontal and vertical distributed load conditions discussed in Section 
3.2.3 apply external loading to a section of the extrados. This generates a 
potential of three distinct free-body diagrams. The first condition is the arch 
section between hinge H1 and the boundary (𝑥𝑑2, 𝑦𝑑2) of the distributed load. 
Figure 92a shows the free-body diagram used to calculate the thrust point.  The 
second condition exists for thrust point evaluations within the boundary of the 

distributed load. This results in a floating magnitude, 𝐹̂𝑑, and position, (𝑥̂𝑑 , 𝑦̂𝑑) of 
the equivalent force for thrust point calculations between the boundaries 
(𝑥𝑑2, 𝑦𝑑2) and (𝑥𝑑1, 𝑦𝑑1). After passing through the distributed load, the full 

equivalent force, 𝐹𝑑, is fixed at position (𝑥𝑑 , 𝑦𝑑) for the remaining thrust point 
calculations. Figure 93 shows the latter two free-body diagrams for the case of 
a vertical distributed load, and the thrust point position equation can be 
established as 

𝑥 =

{
 
 

 
 

(ℎ1)(𝑦1−𝐵̂0)+(𝑣1−𝑓̂𝑔)𝑥1+𝑓̂𝑔∆𝑥𝐶𝑀̂,1

𝑣1+ℎ1𝐵̂0
; 𝑥 > 𝑥2

(ℎ1−𝜆𝑑𝐹̂𝑑 cos(𝜃𝑑))(𝑦1−𝐵̂0)+(𝑣1−𝑓̂𝑔−𝜆𝑑𝐹̂𝑑 sin(𝜃𝑑))𝑥1+𝑓̂𝑔∆𝑥𝐶𝑀̂,1+𝜆𝑑𝐹̂𝑑(sin(𝜃𝑑)∆𝑥𝑑̂,1−cos(𝜃𝑑)∆𝑦𝑑̂,1)

𝑣1+ℎ1𝐵̂0
; 𝑥1 < 𝑥 ≤ 𝑥2

(ℎ1−𝜆𝑑𝐹𝑑 cos(𝜃𝑑))(𝑦1−𝐵̂0)+(𝑣1−𝑓̂𝑔−𝜆𝑑𝐹𝑑 sin(𝜃𝑑))𝑥1+𝑓̂𝑔∆𝑥𝐶𝑀̂,1+𝜆𝑑𝐹𝑑(sin(𝜃𝑑)∆𝑥𝑑,1−cos(𝜃𝑑)∆𝑦𝑑,1)

𝑣1+ℎ1𝐵̂0
; 𝑥 ≤ 𝑥1

 (104) 

for a given distributed load. 

 

Figure 93. Free-body diagram (a) within and (b) past the boundaries of a 
distributed load for the thrust point calculations 

4.1.1.1.5 Combining Loads  
From the free-body diagrams for the thrust point position calculations it can be 
seen that the key condition to establishing the thrust line is changes to the free-
body diagram. Each change that is crossed along the arch path requires a 
change to the position equation. Therefore, combining loads requires a 
geometric discretization of the loads on the arch and corresponding thrust point 
position equations for each. 
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4.2 Kinematic Collapse Load Calculator 

Both the kinematic equations of equilibrium and the formation of the thrust line 
are highly dependent on the geometry of the arch and its block joints. 
Additionally, the solution to the reaction vector requires the inverse matrix 
calculation of the balance condition. These conditions are too labor intensive to 
regularly perform by hand. With the aid of modern computing power and drafting 
software these conditions become trivial and require almost no computation time 
to solve. Therefore, the Kinematic Collapse Load Calculator (KCLC) was 
developed. 

The KCLC is the software tool developed to perform the black box analysis of 
masonry arches. Its purpose is to provide an interactive platform to simplify and 
aid in the understanding of the mechanized failure of masonry arches, and to 
provide a platform for a robust and efficient structural analysis tool for masonry 
arches [126]. The original KCLC utilizes the kinematic equations of equilibrium 
and kinematic admissibility conditions to provide an interactive analysis of user 
defined circular arches through adjusting the locations of the hinges. 

4.2.1 KCLC Software Description 

The original KCLC is a stand-alone open source interactive GUI developed in 
MATLAB® for the limit analysis of semi-circular masonry arches with the 
standard Type I mechanism subjected to two of the most common loading 
conditions: asymmetric point load and constant horizontal acceleration. The 
KCLC takes the user-specified geometric parameters of a circular arch and 
constructs an interactive analysis through a combination of displayed output 
data and the ability to change the kinematic mechanism through adjusting the 
hinge locations. Figure 94 shows the original KCLC user interface. 
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Figure 94.  The original KCLC upon execution of the MATLAB® script [126]. 

As stated in the instructions, the input data include the arch input parameters 
and load type selection. The arch data required are the number of blocks, 
intrados radius, thickness-to-radius ratio, depth, and density. The load type is 
chosen by selecting the appropriate check box. 

When the “RUN!” button is pressed, the input data is checked against the 
allowed parameters of the program. If the input data does not meet these 
requirements an error message is displayed indicating the error. 

If there are no errors in the input data, then after pushing the “RUN!” button the 
block boundary points are established; the initial value and limits of the hinges 
are defined; the arch, hinges and loading condition are drawn in the plot window; 
and the resulting conditions are passed to the developed evaluation function 
(“Eval”) in the MATLAB® script. The “Eval” function performs the analysis on the 
set condition, displays the output data, and plots thrust line. The hinge sliders 
are then activated, and the hinge locations can be adjusted by the user. For each 
change in the hinge position, the reaction vector and the thrust line are 
recalculated and displayed. The minimum stable collapse load can then be 
determined by finding the minimum collapse load that contains the thrust line 
within the material boundaries. Figure 95 and Figure 96 show the steps involved 
with determining the minimum configuration of two semi-circular arches 
subjected to a constant horizontal acceleration and a point load at hinge H3 

respectively. 
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Figure 95. The KCLC (a) initialization and (b) minimum collapse condition 



Stockdale  Chapter 4 

126 

 



Kinematic Equilibrium, Black Box Analysis, and the Characterization of Dry-Stack Masonry Arches 

127 

 

Figure 96. The KCLC (a) initialization, (b) point load placement and (c) minimum 
collapse configuration 

The original KCLC provides a stand-alone analysis tool for the upper bound limit 
analysis of semi-circular masonry arches. It requires no understanding of the 
analysis techniques used (hence the black box designation), which enables it to 
become an effective educational tool for teaching the concepts of the kinematic 
theorem as well as the thrust line and stability. The ability to control the arch 
input parameters allows the effects these parameters have on the analysis to be 
studied. Finally, the ability to control the hinge positions provides the opportunity 
to gain an insight into the relationships between stability, kinematically 
admissible mechanisms and the overall strength of the system. 

4.2.2 KCLC and Multi-Mechanism Analysis 

In its original form, the KCLC only represents semi-circular arches with ideal 
conditions and the traditional Type I mechanism. This limits its usefulness to an 
educational application, but the structure of the software was designed to act as 
the foundation for a robust, efficient and effective structural analysis platform. In 
order for the software to be a useful structural analysis tool that can support the 
design of arches for new construction, it must adapt and expand to cover the full 
range of potential mechanisms. 

The first adaptations to the KCLC have been successfully implemented. 
Focusing on seismic capacity, and thus the horizontal acceleration condition as 
the starting point, six additional mechanism types have been incorporated into 
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the software [124]. The added mechanisms were Type II, Type VII, Type VIII, 
Type XVII, Type XVIII and Type XIX.  These mechanisms were chosen as the 
most plausible options from the observed failure of the first experimental 
campaign focusing on hinge control (see Section 5.2) [125]. A friction angle input 
parameter was included into the KCLC along with “MIN” and “MAX” buttons that 
determine the minimum and maximum friction angle, if any, that produce an 
admissible mechanism. Figure 97 through Figure 102 show each of the six 
added mechanism types, each with two different friction angles that produce 
admissible mechanisms for the given mechanical joint configurations. While 
these added mechanism types are only a fraction of the full set discussed in 
Chapter 3, they highlight the efficiency, and potential of the KCLC structure. 
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Figure 97. Admissible Type II mechanism under constant horizontal acceleration 
with friction angles of (a) 17.6° and (b) 28.13° 
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Figure 98. Admissible Type VII mechanism under constant horizontal acceleration 
with friction angles of (a) 34.48° and (b) 35.85° 
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Figure 99. Admissible Type VIII mechanism under constant horizontal 
acceleration with friction angles of (a) 26.25° and (b) 27.28° 
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Figure 100. Admissible Type XVII mechanism under constant horizontal 
acceleration with friction angles of (a) 23.89° and (b) 28.54° 
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Figure 101. Admissible Type XVIII mechanism under constant horizontal 
acceleration with friction angles of (a) 19.6° and (b) 29.66° 
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Figure 102. Admissible Type XIX mechanism under constant horizontal 
acceleration with friction angles of (a) 0.01° and (b) 37.37° 

4.2.3 KCLC and the Limiting Condition 

From the previous section it becomes clear that the KCLC can adapt and expand 
to incorporate additional mechanism types required to remove the ideal 
assumption of no slippage between blocks. With the inclusion of additional 
mechanism options and associated friction angle introduces an additional 
evaluation: the limiting mechanism condition. 

The limiting mechanism condition evaluation considers all the selected 
mechanism types and identifies the condition with the minimum collapse 
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multiplier. Deselecting the minimum condition then switches the KCLC to the 
next minimum and so on. In this way, all of the admissible mechanisms can be 
considered for a given arch-mechanical joint set in ascending order. This 
process is highlighted in Figure 103 and Figure 104 and further reinforces the 
simplicity, robustness and adaptability of the analysis approach. 
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Figure 103. Limiting condition evaluation with (a) Type XIX controlling, followed 
by (b) Type VII, (c) Type II and lastly (d) Type I 
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Figure 104. Non-admissible system at the end of the limiting condition sequence 
shown in Figure 103 

4.2.4 KCLC and Generic Arches 

Based upon the equations of equilibrium in Chapter 3, it can be seen that the 
information required to calculate capacity and admissibility through the black box 
analysis approach is the load geometry, arch block geometry, mechanical joint 
locations, and the centroid and magnitude of each blocks mass. Adding the 
assumptions of uniform depth and density as well means that the centroid of 
each elements center of mass can be determined through calculating the 
centroid of its area. AutoCAD® thus provides the ideal tool to establish these 
geometric parameters, but the simplicity of the equations of equilibrium does not 
transpose into simplified general reaction and collapse load equations, nor is 
AutoCAD® the ideal platform for matrix manipulations. The KCLC has already 
shown that MATLAB® provides an ideal space for matrix manipulations and the 
creation of simple analysis tools, but it lacks the ease and efficiency of drafting. 
In order to utilize the strengths of both programs, an AutoLISP® script was 
created to extract the arch geometry information and compile it into a text file 
that can be read in MATLAB® [127]. The script connects the selected boundary 
points into blocks with lines and executes the massprop function on each block 
[128]. The boundary points, centroid and area for each block are then compiled. 
The blocks and centroids are also drawn on the AutoCAD® file to check their 
accuracy before saving the text file. Figure 105 through Figure 108 show the 
geometric data extraction sequence applied to a tapered arch, a drop arch, a 
lancet arch with the trinity detail, and a rough arch respectively. Note that a 
simplified KCLC was employed with the minimum stable mechanism shown to 
highlight the data extraction and incorporation sequence. 



Stockdale  Chapter 4 

138 

 

Figure 105. A (a) drawn tapered arch with (b) defined block boundaries and the (c) 
resulting arch data and (d) its incorporation into a custom KCLC 
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Figure 106. A (a) drawn drop arch with (b) defined block boundaries and the (c) 
resulting arch data and (d) its incorporation into a custom KCLC 
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Figure 107. A (a) drawn lancet arch with (b) defined block boundaries and the (c) 
resulting arch data and (d) its incorporation into a custom KCLC 
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Figure 108. A (a) drawn rough arch with (b) defined block boundaries and the (c) 
resulting arch data and (d) its incorporation into a custom KCLC 
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 Generic Arches and the Limiting Condition 

The generic arches derived from the data extraction technique can also be 
incorporated into the KCLC with the limiting condition sequence for horizontal 
accelerations. Figure 109 shows the limiting condition applied to the drawn 
tapered arch after the minimum friction angle was determined for the Type II 
mechanism and the given mechanical joint set. 

Figure 110 shows another example with the limiting condition sequence applied 
to the lancet arch. Again, the minimum friction angle was determined for the 
Type II mechanism and the given mechanical joint set. This limiting sequence is 
notable in the small variances in all the admissible mechanism and that Type I 
and Type XIX have equivalent capacities. Between the various arches 
considered, both the versatility of the approach and the importance of extending 
the evaluation beyond the standard four-hinge mechanism is observed. Also 
note the non-admissible ending of the sequence is not shown. 
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Figure 109. Limiting condition sequence of the tapered arch 
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Figure 110. Limiting condition sequence applied to the drop arch 

4.3 Capacity Compensation for Non-Stable 
Mechanisms 

An arch is considered stable if a line of thrust is found to lie entirely within the 
material boundary. This traditional consideration of the thrust line is not a 
requirement of kinematic admissibility, which considers the condition of motion. 
In establishing the condition of motion through kinematic equilibrium and the 
subsequent evaluation of its admissibility, the only constraints applied are at the 
mechanical joints. This allows the thrust line in its traditional consideration to 
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exist outside the material boundaries of the arch. The thrust line however is a 
physical phenomenon as observed through the hanging chain and its existence 
outside the material of the arch violates the laws governing forces. 
Consequently, the existence of a kinematically admissible non-stable 
configuration requires an adjustment to the thrust line such that it once again lies 
entirely within the material boundary. 

The thrust line can be adjusted by imposing an eccentric shift at each block joint 
where the thrust line lies outside the material boundary and balancing it with a 
required moment. Utilizing the free-body diagrams for thrust point calculations 
(Section 4.1) in combination with the calculated thrust point position, (𝑥̂, 𝑦̂) 
allows the eccentricity to be determined by 

𝑒𝑖 = √(𝑥̂ − 𝑥𝑏)
2 + (𝑦̂ − 𝑦𝑏)

2      (105) 

where (𝑥𝑏 , 𝑦𝑏) are the nearest joint boundary coordinates to the thrust point 
position. The normal reaction force to the joint line can be determined by through 
the geometric relationships (see Figure 19) derived for the slip joint evaluations 
in Section 3.3 with the friction angle replacing α as the variable in Eqns. 25-28. 

With the normal force and eccentricity determined, the required moment to 
maintain the thrust line within the joint boundary can be obtained through Eqn. 
21. Therefore, by adjusting the thrust line through an eccentricity shift, a local 
joint-based moment capacity requirement is introduced to the system. This 
capacity requirement is necessary to maintain the rigid element assumption and 
obtain traditionally non-stable kinematically admissible failure states.  

This joint based moment requirement can be achieved through the application 
of a flexural hinge reinforcement technique such as the application of FRPs or 
TRM. If a tensile reinforcement is applied to the external surface of the arch, 
then the required tensile capacity, T, of the reinforcement can be determined by; 

𝑇𝑖 = 𝑀𝑖 ∙ 𝑡𝑖        (106)  

for the ith joint with thickness t. Thus, the minimum reinforcement configuration 
and capacity can be established for the non-stable kinematically admissible 
condition. 

Figure 111 and Figure 112 show the implementation of the capacity 
compensation into the KCLC structure for the moment and tension evaluations 
applied to the drop arch. First a Thrust Line Point Selection slider was added in 
conjunction with a blue dot on the thrust line plot indicating the location of the 
thrust point under evaluation. A Thrust Force panel displaying the normal, Fn and 
parallel, Fp, components of the thrust force at the selected thrust point was 
added to the display in order to directly obtain the forces at the joint. A Capacity 
Compensation panel was also added with a checkbox for the moment 
representation, Mn, and the tensile representation, Tn, of any capacity 
compensation requirements. Lastly, in the plot window, a small dot was added 
to the joints that require a capacity compensation in the center for the evaluation 
of moments (Figure 111) and at the boundary where the tensile resistance is 
required under the tension evaluation (Figure 112). When the selected thrust 
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point lies within the joint boundary the capacity compensation values are zero 
(see Figure 111b and Figure 112a). For joints requiring the capacity 
compensation, the required moment (Figure 111a) or tension (Figure 112b) is 
displayed. Also note that the capacity compensation requirements are an 
additive condition to the equilibrium solution and therefore the tension 
requirements must be balanced with additional compressive normal forces to 
maintain equilibrium. The additional compressive forces are directly added to 
the displayed thrust normal force (see Figure 112b). 

 

Figure 111. Moment capacity compensation for the drop arch and defined hinge 
configuration with a (a) non-stable joint and a(b) stable joint selected as indicated 

by the blue dot on the thrust line plot 
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Figure 112. Tensile capacity compensation for the drop arch and defined hinge 
configuration with a (a) stable joint and a (b) non-stable joint selected as 

indicated by the blue dot on the thrust line plot 

Combining the capacity compensation with limiting condition evaluation reveals 
the potential to reduce an arches capacity from reinforcing. Figure 113 shows 
the comparison of the Type XIX and Type I mechanisms for the tapered arch 
with the tension force selected for the capacity compensation display. From this 
figure it can be seen that the Type XIX mechanism requires the continuous 
reinforcement of over half the joints of the arch, but the resulting capacity is 
dramatically reduced when compared against the traditional Type I mechanism. 
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This highlights the importance of a reinforcing strategy and a clear definition of 
the desired mechanism to prevent unwanted collapse mechanisms. 

 

Figure 113. Comparison of the capacity compensation for the (a) Type XIX and (b) 
Type I mechanisms for the tapered arch and given hinge configuration 

4.4 Mechanical Deformations 

The final consideration in the black box analysis of dry-stack masonry arches is 
the direct incorporation of the mechanical deformations from the defined 
kinematic condition and the effects they can have on the system. It is widely 
accepted that an arch can be in a mechanically deformed condition while 
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maintaining a static state. These deformed conditions can arise from foundation 
settlements, finite reinforcement stiffness and loading conditions the initiate the 
mechanical failure but do not provide the additional force required to reach 
collapse. These mechanically deformed static states result in changes to the 
boundary conditions, but they must abide by the same kinematic equilibrium and 
admissibility conditions as their undeformed counterparts under static 
evaluations. Therefore, the ability to impose these deformations in the analysis 
structure is necessary. 

In terms of motion, the kinematic condition of a dry-stack masonry arch is a 
Single Degree of Freedom (SDOF) problem. For finite hinge stiffness and 
overloading, this SDOF is confined to the mechanical joints. This section 
examines this SDOF structure applied to the black box analysis for the traditional 
motion. 

Note that the subsequent discussions and developments in the analysis 
structure are limited to the standard Type I mechanism. The reason for this is 
that the primary motivation and subsequent focus is the reintroduction of 
structural masonry and RSBD as a modern building and design method. In this 
context, the mechanism is engineered as a Type I through reinforcing against 
non-ideal mechanisms and any capacity compensation requirements. 

4.4.1 Mechanism Motion 

To examine the mechanism based SDOF motion, a simplified KCLC was 
constructed for the dry-stack arch of the first experimental campaign were these 
static deformations were directly observed (see Section 5.2) [124], [125]. Figure 
114 shows the simplified KCLC developed to address the mechanized motion. 
The SDOF motion is applied through a Hinge Motion slider that imposes the 
rotation of hinge H1 and calculates the rotations of the remaining hinges. Also 
note that the collapse multiplier is the tilting plane rotation angle and the direction 
of the horizontal acceleration is reversed from previous discussions. These 
conditions were implemented to directly match the experimental conditions. 
Refer to Section 5.2 for a detailed description of this experimental campaign. 
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Figure 114. KCLC for the tilting plane and mechanical deformation assessment 

SDOF motion requires the definition of one degree of motion to express the total 
deformation of the system. In the context of a dry-stack arch with defined 
mechanical hinge joints, the arch-hinge configuration in Figure 114 can be 
represented by three fixed lengths connected by four pins as seen in Figure 115. 
The SDOF that bounds the motion is the horizontal displacements of hinges H2 
and H3. Hinges H1 and H4 are translationally fixed to their respective bases and 
thus are limited to rotations. For a given rotation, Δα1, at hinge H1 the rotation of 
hinge H4 can be expressed as 

∆𝛼4 = cos
−1 (

𝑙12

𝑙34
[cos(𝜃12 + ∆𝛼1) − cos(𝜃12)] + cos(𝜃43)) − 𝜃43   (107) 

where the lengths and angles are identified in Figure 115. The resulting 
translations of hinges H2 and H3 can then be used to determine the polar change, 
Δγ23, of the H2-H3 connection 

∆𝛾23 = 𝜃′23 − 𝜃23       (108) 

The rotations of hinges H2 and H3 are thus 

∆𝛼2 = ∆𝛼1 + ∆𝛾23       (109) 

and 

∆𝛼3 = ∆𝛼4 + ∆𝛾23       (110) 

respectively. Therefore, the SDOF motion can be defined solely by the rotation 
of hinge H1. 
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Figure 115. Pin-connected length representation of the standard Type I 
mechanism in its (a) initial state, and (b) after a deformation 

Equations 107-110 are incorporated into the custom KCLC for the experimental 
arch through the inclusion of a slider that imposes the Δα1 rotations to hinge H1. 
For a defined rotation, the rigid body rotations are first applied about the points 
H1 and H4 for the block elements associated with lengths l12 and l34 respectively. 
Next, the blocks associated with l23 are translated to the updated hinge H2 
position and followed by the prescribed rigid body rotations about H2. After the 
deformation is applied, the updated boundary points and block centroids are 
used in the standard kinematic equations of equilibrium and admissibility 
evaluation. Figure 116 shows the arch-hinge configuration of Figure 114 with an 
applied deformation of 2° at hinge H1. The existence of a solution to the applied 
rotation in Figure 116 indicates that the deformed state of the arch is in an 
admissible kinematic condition.  
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Figure 116. Custom KCLC with 2° rotation at hinge H1 

4.4.2 Kinematic Equilibrium of Static Deformations 

Figure 117 shows another custom and simplified KCLC constructed for the 
evaluation of static deformations under the standard horizontal acceleration 
condition. In addition to the hinge motion panel, the centroid position information 
of the mechanical arch is displayed with both the center of mass, CM, and the 
center of area, CA, provided. This is to account for non-uniform block masses. 
Each block is assumed to have a uniform density, but that assumption is not 
held for all the blocks of the arch. 
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Figure 117. Custom KCLC with hinge rotation and centroid data display. 

Figure 118 shows the KCLC and arch-hinge condition of Figure 117 with 
imposed hinge H1 rotations of 4°, 8° and 12°. From the deformation sequence, 
an admissible kinematic free-body diagram is carried through 11° of rotation at 
H1. Also note the deformation path of the centroid of the full arch. These 
conditions provide a clear and quantifiable deformation limit, the ability to 
evaluate the minimum required work necessary for collapse (see Section 6.1.1), 
and the establishment of equivalent deformation systems through parametric 
plotting. 



Kinematic Equilibrium, Black Box Analysis, and the Characterization of Dry-Stack Masonry Arches 

157 

 

Figure 118. Custom KCLC with (a) 4°, (b) 8° and (c) 12° hinge H1 rotations applied 
to the arch-hinge condition 
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4.4.3 Equivalent Systems 

The process of applying a deformation to the mechanical arch-hinge system has 
been defined for the Type I mechanism through the rigid body rotations of three 
rigid pin-connected elements. This hinge rotation deformation was applied 
through the defined hinge H1 rotation. From the defined rotation, all of the block 
boundaries and centroids of the deformed system can be obtained and 
independently evaluated for kinematic equilibrium. This relationship allows the 
establishment of equivalent systems through parametric plotting. 

 Translations 

The record of the full arch centroid position for imposed hinge H1 rotations 
generates the position (x,y) and increment (dx,dy) link between the arch element 
deformations and a single point system. Imposing the total mass at the centroid 
point and defining energy conservation generates equivalent systems bound by 
α1. Figure 119 shows the centroid deformation path for the same arch-hinge 
configuration as Figure 117 and Figure 118 for α1 between 0° and 12° with 
constant Δα1 of 0.1°. A polynomial fit of the deformation path reveals a 
reasonable representation of 

𝑦 = 𝐴1𝑥
2 + 𝐴2𝑥 + 𝐴3       (111) 

and for the slope equation 

𝑑𝑦

𝑑𝑥
=

1

2
𝐴1𝑥 + 𝐴2         (112) 

where the constants Ai are shown in the Figure 119. 

 

Figure 119. Parametric plot of the CM deformation path and the polynomial fit 

 Rotations 

The deformation of the arch involves both the translation and rotation of the three 
pin-connected elements. The simplification of the structure into a single point 
system must also carry the consequences of these rotations. Therefore, zero 
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mass lever arms are defined between the centroid of the full arch and the 
centroid of each element. Maintaining the conservation of mass in the 
deformation process requires these lever arm lengths to remain fixed within the 
bound motion of the Type I mechanism, and this results in rotational changes. 

Figure 120 shows the lever arm rotation angles, θEi, versus horizontal CM 
displacement for each element of the arch-hinge configuration in Figure 117 and 
Figure 118 for α1 between 0° and 12° with a constant Δα1 of 0.1°. A polynomial 
fit of the lever arm rotation paths reveals that each are reasonably represented 
by 

𝜃 = 𝐵1𝑥
2 + 𝐵2𝑥 + 𝐵3       (113) 

and the slope equation by 

𝑑𝜃

𝑑𝑥
=

1

2
𝐵1𝑥 + 𝐵2         (114) 

where the constants Bi are shown in the Figure 120. 

 

Figure 120. Parametric plots of lever arm rotation angles versus horizontal CM 
displacements and their polynomial fits 

The establishment of the equivalent systems for the CM point translation and 
lever arm rotation representation of the SDOF deformation sequence allows the 
simplified establishment of the work equations for a given arch-hinge set 
condition (see Section 6.1.1). 

4.4.4 Finite hinge stiffness 

In the event of a finite hinge stiffness, the deformation structure applied to the 
KCLC allows the hinge positions to be modified after implementing a 
deformation as can be seen by the transition of hinge H1 that was imposed after 
an applied deformation in Figure 121. Thus, the deformation and defined hinge 



Stockdale  Chapter 4 

160 

configuration can be decoupled in the evaluation of an arch. Also note in Figure 
121b that a deformed stable configuration is identified between the hinges. This 
phenomena was directly observed during experimentation and is further 
discussed in Section 5.2 [124], [125]  

 

Figure 121. A (a) deformed arch condition and (b) hinge adjustment for evaluation 
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4.5 Concluding Remarks 

Chapter 4 added the condition of kinematic admissibility through the 
independent calculation of the thrust line from the solutions to the equations of 
equilibrium and introduced the KCLC as a software structured to carry out the 
analysis in a black box format. The KCLC software was presented in an 
evolutionary format to highlight the versatility and adaptability of the software as 
well as the comprehensive analyses that can be performed under the kinematic 
equilibrium approach. The incorporation of non-ideal mechanisms revealed 
limiting condition evaluations amongst mechanisms. The inclusion of generic 
arch geometries connects the analysis to the most widely used computer aided 
drafting software and removes the complexity of defining the arch geometry.  

Under the context of design and control, the minimum mechanism is not a 
reasonable evaluation condition as it will change with the various loading 
conditions required by design standards such as the American Society of Civil 
Engineer’s (ASCE) MINIMUM DESIGN LOADS AND ASSOCIATED CRITERIA FOR 

BUILDINGS AND OTHER STRUCTURES, (also known as ASCE 7) [129]. This issue 
is corrected however with the capacity compensation requirements required to 
create the rigid elements between mechanical joints. It is important to note that 
the material properties have not been considered, and this includes the capacity 
compensation. The discussion of the reinforcement itself and the details of how 
it would be applied is outside the scope of this thesis which aims at establishing 
the extension to the structural analysis of free-body diagrams and equations of 
equilibrium. 

Lastly in Chapter 4, the application of static deformations of the kinematic state 
was also incorporated into the analysis structure. This allows the analysis of 
statically deformed conditions, such as those experimentally observed, and 
introduces the ability to simplify the description of motion through parametric 
plotting. Again, the additional analysis features are housed under the same black 
box structure and undergo the same kinematic equilibrium evaluation.  
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CHAPTER 5 

CHARACTERIZATION OF DRY-STACK 
MASONRY ARCHES 

List of Abbreviations and Symbols 

αi ─ Angle relationship between the reaction vector, the ith joint line, 
and the friction angle 

CDEM ─ Capacity adjustment equation between experimental and DEM 
analysis results 

CLA ─ Capacity adjustment equation between experimental and limit 
analysis results 

CLD ─ Collapse load diagram 

CM ─ Center of mass 

DEM ─ Discrete element modelling 

FRP ─ Fiber reinforced polymer 

g ─ Gravitational acceleration constant 

Hi ─ Identifier for the ith hinge 

Jk ─ Joint identification nomenclature 

Kα ─ Hinge rotation stifness 

KCLC ─ Kinematic collapse load multiplier 

Li ─ Fixed measurement length along tilting platform from rotation 
point 

li ─ Height measurements of rotated platform lengths Li 

λa ─ Collapse multiplier for uniform acceleration 

Nk ─ Block identification nomenclature 

OSB ─ Oriented standard board 

q ─ Constants vector of the equations of equilibrium 
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SDOF ─ Single degree of freedom 

TRM ─ Textile reinforced mortar 

θt ─ Tilting plane rotation capacity 

 

The kinematic equilibrium equations (Chapter 3) and their application to the 
structural analysis of dry dry-stack masonry arches through the condition of 
admissibility and the black box analysis approach (Chapter 4) have 
demonstrated a simple analysis methodology. With the aid of the KCLC any 
defined condition of dry-stack masonry arches becomes accessible to the 
practicing engineer. A foundation is established for efficient, detailed and 
comprehensive static analyses of any arch. What is lacking is the 
characterization of the element itself. Given an arch how does it behave when 
subjected to hinge control; how can arch geometry and reinforcement be 
optimized; and how is experimentation linked with the theoretical analyses? 
Therefore, the behavior of the arch must be examined.  

Chapter 5 focuses on the behavior and characterization of the dry-stack 
masonry arch subjected to hinge control. First, collapse load diagrams (CLD) 
are developed. These diagrams provide a first-order assessment strategy that 
can be utilized in the early stages of a project’s design. The diagrams also 
introduce the novel consideration of a family of mechanisms for an arch and lay 
the framework for experimental testing. Two experimental campaigns are then 
discussed, one for an in-scale arch and the second for a full-scale arch, both 
subjected to tilting plane tests for a family of mechanisms defined from the 
formation of a CLD. It is the objective of the experimental test descriptions to 
highlight the development and application of the characterization strategy and 
its repeatability. Additionally, the tilting plane test was chosen because it 
provides a representation to seismic loading, it is relatively simple to perform 
with minimal equipment (i.e. the test is accessible to almost anybody), and the 
uniform distribution of acceleration renders the material density irrelevant. 

5.1 Collapse Load Diagrams 

First-order strategies of assessment typically exist for modern structural 
systems. These first-order assessments provide the platform for a project’s 
planning, development, scope, cost estimates and allocation of funds. As such, 
they are a critical component to the success of any structural system.  For civil 
projects, first-order assessments for structural systems can be carried beyond 
the 60% design stage. For existing systems, first-order assessment strategies 
streamline the inspection and intervention process. The speed of the 
assessments also becomes critical in post disaster situations.  

Collapse Load Diagrams (CLD) are a first-order assessment strategy formulated 
by combining a set of capacity results with a single parameter [130]. These 
diagrams present the set of minimum collapse loads for all admissible 
combinations of the base hinges, H1 and H4, of the defined arch and plots them 
against the negative tangent of polar angle between the base hinges. The 
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construction of the diagrams is achieved by fixing the base hinges and 
determining the minimum positive collapse load multiplier for the admissible 
variations on the intermediate hinges, H2 and H3. The minimum multiplier and 
the associated hinge positions are recorded. Next, one base hinge position is 
changed, and the new minimum is determined for the variations in the 
intermittent hinges. This procedure is repeated until a minimum collapse load 
multiplier of all admissible configurations of the base hinges have been obtained. 
These values are plotted, and lines are drawn connecting the multipliers 
associated with one of the two base hinges remaining fixed. Figure 122 shows 
the schematic of the procedure for developing a CLD. Figure 123 and Figure 
124 show the CLD and arch geometry for a 27-block semi-circular arch 
subjected to constant horizontal accelerations (Eqn. 6) and a vertical point load 
at H3 (Eqn. 9) loading conditions respectively. In both loading cases, the collapse 
load diagram is accompanied by a subplot of the arch-load condition which also 
identifies the limits of admissible base hinge positions. This provides not only 
the capacity values, but a quick visualization of where the base hinges can be 
defined in the development of a hinge-controlled arch system. 

From Figure 123 and Figure 124 it becomes clear that the CLDs provide a simple 
technique to present and examine a family of kinematically admissible 
conditions. Additionally, as mentioned the full hinge set is recorded for each 
determined minimum positive collapse multiplier presented in the CLD. 
Therefore, the intermediate hinges can be identified through the base hinge pair 
associated with a collapse multiplier. This identification can be programmatically 
or manually achieved though developing tables. 
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Figure 122. CLD development procedure [130] 

 

Figure 123. CLD for circular arch subjected to constant horizontal acceleration 
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Figure 124. CLD for circular arch subjected to a vertical point load at H3 

The CLDs are developed from the same kinematic equilibrium analysis structure 
used in the KCLC, and thus also allow the incorporation of any drawn arch 
geometry through the AutoCAD® data extraction technique as can be seen in 
the following example [127]. 

5.1.1 CLD Application Example: Capacity Comparison 

Consider two double-curvature arches drawn in AutoCAD® and subjected to a 
constant horizontal acceleration. Figure 125 shows the two drawn arches. The 
two arches have the same global dimensions including a clear span of 7.5 m, a 
crown height of 3.0 m, and a general block structure of a 0.6 m thickness and a 
0.3 m intrados length. The differences in the arches is in the applied shifts to the 
rotation points of the two curves. The first double curvature arch is developed 
through diagonal shifts in the rotation point of both curves, whereas the second 
arch only applies a horizontal shift to the smaller radial arcs (see Figure 125). 
Figure 126 shows the assigned nomenclature for the blocks, Nk, and joints, Jk, 
of the two arches. 
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Figure 125. Design dimensions for two double curvature arches 
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Figure 126. Block and joint nomenclature for the two double curvature arches 

The geometric data from the AutoCAD® drawings of the two arches is used to 
construct the CLDs shown in Figure 127. From Figure 127 it can be seen that 
the diagonal shifted arch has a minimum λa of 8.83% with hinges H1 and H4 at 
joints J1 and J32 respectively, and that the horizontal shifted arch has a minimum 
λa of 38.75% with hinges H1 and H4 at joints J1 and J32 respectively. Also note 
that the rotation point for the negative tangent calculation is defined from the 
intersection of the base line and centroid of the full arch. 
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Figure 127. CLDs for the two double curvature arches 

In addition to quickly obtaining the minimum, comparing the two diagrams allows 
the equivalent capacities between the arches to be determined. For the 
diagonally shifted arch, reinforcing the first two joints against extrados hinge 
rotations creates this capacity equivalence of 36.63%. Also note that H4 shifts to 
joint J34 when H1 is defined at J3. The intermediate hinges are identified from the 
recorded hinge sets and the H1-H4 pair. Figure 128 shows these equivalent 
capacity arches and their minimum hinge configurations. Therefore, these two 
arches can be efficiently compared, and if for example they are also being 
evaluated for flow volume then the cost increase of reinforcing can be 
considered against the increase in flow capacity. Thus, the collapse load 
diagrams not only allow for a quick first-order capacity assessment, but they also 
provide the ability to efficiently compare arches, incorporate the effects of 
geometry and establish reinforcement strategies in the initial stages of planning 
and project scope development. 
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Figure 128. Equivalent capacity conditions for the two double curvature arches 

From the capacity comparison example, it is clear that the CLDs provide an 
efficient and effective strategy for the first-order analysis of dry-stack arches for 
design and comparison. Additionally, these diagrams introduce insights into the 
behavior of an arch that is subjected to hinge control.  

5.1.2 Hinge 1, Capacity, and Characterization 

A notable characteristic observed with the CLDs is the hinge H1 dominance on 
capacity. The effects of hinge H4 while distinct are bound around the positioning 
of hinge H1. This unique relationship allows the capacity behavior to be 
formulated into a single variable approximation (i.e. hinge H1’s position). This 
key variable in combination with experimental capacity measurements of a 
family of mechanisms generates a simplified link between a physical arch and 
its theoretical model. In other words, the arch can be characterized. 
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In the remaining sections of this chapter the process of characterizing an arch 
and linking the theoretical model to the experimental results is presented for two 
arches subjected to a tilting plane. The two experiments focus on a single 
loading condition to highlight the repeatability of the characterization approach. 

5.2 Tilt Test Characterization of an In-Scale Arch 

The first experimental campaign focusing on the capacity of a dry-stack masonry 
arch subjected to hinge control was carried out on an in-scale 27 block masonry 
arch undergoing quasi-static tilting plane loading [125]. This experimental 
campaign was carried out in the structure lab of the School of Engineering at 
Newcastle University, UK. A 27-block semi-circular arch was chosen for the 
campaign to ensure 25 distinct combinations of the base hinges exist so that a 
clear CLD can be established, and to formulate the characterization strategy. 

5.2.1 Arch Construction 

Timber was chosen as the material for the arch blocks. The reason timber was 
chosen was to ensure the blocks could endure a minimum of 75 collapses to 
measure the 25 mechanisms a minimum of three times each. The blocks were 
constructed from three 47mm x 75mm Canadian Lumber Standard timber 
boards. First, both 75mm sides of one board and one 75mm side on the other 
boards were planed. The planed sides were glued together. The resulting 
combined board had each surface planed to produce clean faces with sharp 
edges. The reason for combining the three boards was to increase the depth 
and create a more stable out-of-plane behavior. Finally, a trapezoid template 
was constructed with a short span of 38mm and tapered sides of 3.33° from 
square. This template was used to mark and cut each block from the combined 
board. 

After cutting the blocks, the contact faces that make the arch boundary joints 
were scarified to increase roughness. The blocks were then assembled and 
adjusted to establish the most stable configuration (see Figure 129). Next, they 
were numbered and oriented, and the exposed faces were painted white. Finally, 
a four by four grid of fixed distance points was established across each joint with 
the template which is also shown in Figure 129. The mass, dimensions and point 
grid lengths of each block were measured and recorded. 
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Figure 129. Photographs of the (a) best fit configuration; the (b) block numbering; 
the (c) parallel point grid template; and (d) the completed arch 

After finishing construction and assembly, the arch was fitted to the platform via 
the base blocks. First, the left base block was anchored to the platform by screws 
driven from underneath the platform. The arch was assembled, and shims were 
added to the extrados of the right base block to provide the most stable 
configuration. Then the right base block was anchored to the platform with 
screws as well. The final assembled arch had a clear span of 0.6695±0.0005 m 
and a rise of 0.3170±0.0005 m. The platform was made from a dense composite 
board with risers to allow the use of the negative space for anchoring. The riser 
on the left edge was placed with a straight edge running the width of the platform 
and perpendicular to the arch to ensure in-plane rotations. A threaded steel bar 
was attached parallel to the rotation edge on the opposite side of the platform 
and a lifting chain was attached to the bar at centerline with the arch plane. Nuts 
and washers were added to the threaded bar to maintain the position of the lifting 
bar and remove potential out of plane motions. Figure 130 shows this described 
setup. 



Stockdale  Chapter 5 

174 

 

Figure 130. Image and annotation of the experimental arch-platform setup with 
measured lengths L1 and L2 identified 

 Hinge Control 

The hinge control system for the experimental arch was constructed with 
Velcro®. The light weight of the blocks allows the use of the shear strength of 
Velcro® for flexural reinforcement while its own light weight creates a negligible 
effect to the stable system. Two circular hook-sided tabs were adhered on both 
the intrados and extrados of each block symmetrically about the centerline. 
Hinge control was achieved by applying loop-sided straps across all the block 
joints minus those selected for mechanization. Figure 131 highlights a defined 
mechanical joint. 

 

Figure 131. Velcro® defined mechanical joint 

5.2.2 Arch Analysis Model 

AutoCAD®  was utilized to construct the arch analysis model from a statistical 
adjustment application to the averaged block model. The justification for the 
statistical approach was the high sensitivity that is associated with the block 
angles at the scale of the constructed arch. For example, the difference between 
a 27-block and 23-block arch under the dimensions of the constructed system is 
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a 0.5 mm (the thickness of a standard bandsaw blade) change in either the 
intrados or extrados length. The dimensions of the blocks were therefore 
averaged for the development of the analysis model. The averaged block 
dimensions and their standard deviations are shown in Figure 132.  

To construct the model, the averaged block was drawn in AutoCAD® and the 
arch was constructed in the same manner as the physical system, left to right. 
Next, the extrados and intrados of random blocks were altered within the 
precision of the averaged block until the arch fit the rise, clear span, and slight 
rotation observed in the right base block. To validate the development of this 
statistical arch model, a lidar scan of the arch face was also taken. The 2D face 
of the drawn arch was compared against the point cloud from the scan. As can 
be seen in Figure 132, the two results are in strong agreement. Finally, the arch 
model data was extracted from AutoCAD® and passed to the black box analysis 
structure. Figure 133  shows the final drawn arch and defines its nomenclature 
for all further discussions. 

 

Figure 132. The (a) averaged block and the (b) developed analysis model and the 
point cloud verification 
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Figure 133. Assigned nomenclature for the arch in the first experimental 
campaign 

5.2.3 Tilting Platform 

The tilting plane was constructed from a dense composite board with a rotation 
edge and lifting chain (see Figure 130). Gravity’s constant direction and 
magnitude result in the rotation of acceleration being equal to the tilting plane’s 
rotation. Thus, a rotation of the tilting plane of θt, is equivalent to applying a 
horizontal acceleration of magnitude λa·g with 

𝜆𝑎 = tan(𝜃𝑡)        (115) 

and 

𝜃𝑡 = sin
−1 𝑙

𝐿
        (116) 

where l is the measured height after rotation of a known distance L along the 
plane of the board (see Figure 130).  

The tilting plane was used because of the simplicity and repeatability of its 
application. Additionally, the distribution of forces throughout the body of the 
arch render the material properties irrelevant in the analysis, and the tests are a 
direct evaluation of the free-body diagram and associated equations of 
equilibrium. If the theory holds for the tilting test, then it holds for the other free-
body diagrams as well. Lastly, the primary concern in the assessment of existing 
systems is their ability to withstand seismic events. This generates a direct value 
to the analysis for existing researches at the same time as validating the theory 
of kinematic equilibrium and developing the necessary characterization 
strategies for linking experimentation with the developed analysis model. 
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5.2.4 Procedure 

The procedure for this experimental program consisted of: 

• Assembling the arch 

• Applying the Velcro® loop straps to define the mechanical joints 

• Applying quasi statically tilting through a lifting chain until collapse 

• Measuring the resulting heights l1 and l2 corresponding to known lengths 
L1 and L2 respectively (see Figure 134). 

• Video recording each collapse for post-processing the collapse 
progression. 

 

Figure 134. Mechanical collapse of the in-scale arch with the measured lengths l1 
and l2 identified 

As previously mentioned, the tilting plane testing procedure was repeated three 
times for every defined hinge set tested. Twenty-five distinct hinge sets were 
evaluated which generated a minimum total of 75 collapses. The defined 
procedure was systematically prescribed to each test. 

 Hinge Selection 

The hinge selection for the experimental procedure was obtained from the 
development of a CLD from the ideal conditions of the constructed arch. The 
CLD and experimental limits are shown in Figure 135. The resulting mechanical 
joint sets are identified in Table 1.  
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Figure 135. CLD for in-scale experimental arch 

 

Table 1. Hinge joint configurations for each tested hinge set 

Hinge Set H1 H2 H3 H4 Hinge Set H1 H2 H3 H4 

1 J1 J8 J17 J26 16 J4 J10 J18 J22 

2 J1 J8 J17 J25 17 J4 J10 J19 J23 

3 J1 J8 J16 J24 18 J4 J10 J19 J24 

4 J1 J8 J16 J23 19 J4 J11 J19 J25 

5 J1 J8 J16 J22 20 J4 J11 J19 J26 

6 J2 J8 J17 J22 21 J5 J12 J20 J26 

7 J2 J9 J17 J23 22 J5 J11 J20 J25 

8 J2 J9 J17 J24 23 J5 J11 J20 J24 

9 J2 J9 J17 J25 24 J5 J11 J19 J23 

10 J2 J9 J18 J26 25 J5 J11 J19 J22 

11 J3 J10 J18 J26 Note: Refer to Figure 126 for 

identifying joint location. 12 J3 J10 J18 J25 

13 J3 J10 J17 J24 

14 J3 J9 J17 J23 

15 J3 J9 J18 J22 

 

 Collapse and Measurement 

Each collapse was performed through the manual rotation of the platform by a 
lifting chain with a reverse locking hand crank (see Figure 134). The chain was 
raised until the arch collapsed and at a quasi-static rate. At the point of collapse 
the crank was locked and the heights l1 and l2 were recorded. The platform was 
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then lowered, and the system was reassembled. Each collapse was also 
recorded with a Cannon DSLR camera. 

5.2.5 Data 

The platform lengths L1 and L2 are 0.6110±0.0005 m and 0.7880±0.0005 m 
respectively. For each collapse, the heights and observed failure methods were 
recorded. The recorded values and observations are presented in Table 2. 

Table 2. Recorded experimental data for the in-scale arch subjected to a tilting 
plane 

 

5.2.6 Results 

The calculated rotation angles and subsequent multipliers were obtained by 
averaging the ratio of the height to platform length measurements for each run 
of a hinge set, then applying the result to Eqn. 116. The average and standard 
deviations were calculated for each hinge set. The measurement error was also 
manually propagated. The propagated measurement error and deviation of the 

Platform Measurements precision * M - MACHANISM

L1 [mm] L2 [mm] +/- 0.5 mm    S - SLIP

611 788    R - ROTATION

COLLAPSE DATA

Run Hinge l1 l2 Failure type Run Hinge l1 l2 Failure type Run Hinge l1 l2 Failure type

Set [mm] [mm] * notes: Set [mm] [mm] * notes: Set [mm] [mm] * notes:

1 1 172 222 M 29 8 233 302 M

ALLIGNMENT LITTLE 

OFF AT H1 57 17 315 407.5 SM

SMALL S AT H1 THEN 

M

2 1 190 247.5 M 30 8 243.5 312 M 58 17 307 398 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS

3 1 187 245 MS SMALL S AT H1 31 8 228 295 M 59 18 301 392 SM

SMALL S AT H1 THEN 

M

4 1 188 245.5 M 32 9 238.5 309.5 M

GOOD M AND DOT 

ALLIGNMENT 60 18 314 416 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

11 1 187 245 M 33 9 237.5 309 M 61 18 275 355 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

5 2 187 245 M 34 9 235 305.5 M

ALLIGNMENT LITTLE 

OFF AT H1 AND H3 62 19 296 383.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

6 2 194 248 M 35 10 222.5 289 M

ALLIGNMENT OFF AT 

H1 63 19 300 388.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

7 2 174 227 MS SMALL S AT H1 36 10 228 296 M

ALLIGNMENT OFF AT 

H1 AND H2 64 19 273 355 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

8 2 195 254 M 37 10 225.5 293 SM

S AT H1 M BEGINS AT 

HALF BLOCK 

THICKNESS 65 20 280 363.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

9 2 174.5 227 M 38 11 248 322 M 66 20 279 363 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

10 2 189 246 MS MODERATE S AT H1 39 11 271 351 MRS

SMALL S AND R AT H1 

THEN M 67 20 282 365.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

12 3 190 247 MS MODERATE S AT H1 40 11 233 303 MS

SMALL S AT H1 FROM 

FIXED SECTION 68 21 321.5 417 M

SOME ROTATIONS AT 

J=1 RESTRAINED

13 3 191 248 MS MODERATE S AT H1 41 12 256 334 MS

SMALL SLIP/SHIFT AT 

H1 69 21 322 418 M

SOME ROTATIONS AT 

J=1 RESTRAINED

14 3 184 239.5 M 42 12 259 336 M 70 21 323 419 M

SOME ROTATIONS AT 

J=1 RESTRAINED

15 3 183 238 M 43 12 275 355.5 M

SMALL STATIC TWIST 

AT H3 AT START 71 22 339.5 439 M LESS ROT AT J=1

16 4 178.5 232.5 M 44 13 264 341.5 MS VERY SMALL S AT H1 72 22 314 406 M LESS ROT AT J=1

17 4 203 295 MS SMALL S AT H1 45 13 275 356 MS VERY SMALL S AT H1 73 22 313 404 M LESS ROT AT J=2

18 4 174 227 MSM MECH-SLIP-MECH 46 13 275 356 SM SMALL S AT H1 THEN M 74 23 324.5 423 M LESS ROT AT J=2

19 4 181 235.5 M 47 14 281 364 SM SMALL S AT H1 THEN M 75 23 351 454 M LESS ROT AT J=2

20 5 187 244 MS VERY SMALL S AT H1 48 14 281 364 SM SMALL S AT H1 THEN M 76 23 343.5 442 M LESS ROT AT J=2

21 5 177 230 M 49 14 285.5 369 SM SMALL S AT H1 THEN M 77 24 336.5 435.5 M LESS ROT AT J=1

22 5 182 238.5 MSM MECH-SLIP-MECH 50 15 292 377.5 SM SMALL S AT H1 THEN M 78 24 326.5 422.5 M

SOME ROTATIONS AT 

J=1 RESTRAINED

23 6 230 298.5 M 51 15 283 366.5 SM SMALL S AT H1 THEN M 79 24 339 439 M

SOME ROTATIONS AT 

J=1 RESTRAINED

24 6 246 320 MR

SMALL OUT OF PLANE 

ROTATION 52 15 279 362 SM SMALL S AT H1 THEN M 80 25 364 469 MSR

H4 SLIDE-ROTATE, H1 

SLIDE-ROTATE SOME 

TWIST

25 6 243 313.5 M GOOD M 53 16 346 447 MS VERY SMALL S AT H1 81 25 343 445 MSR

H4 SLIDE-ROTATE, H1 

SLIDE-ROTATE SOME 

TWIST

26 7 228 295 M 54 16 337 436.5 MS VERY SMALL S AT H1 82 25 363 468.5 MSR

H4 SLIDE-ROTATE, H1 

SLIDE-ROTATE SOME 

TWIST

27 7 243 313.5 M 55 16 337 435 MS VERY SMALL S AT H1

28 7 237 307.5 M 56 17 315.5 409 SM SMALL S AT H1 THEN M
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averaged collapse multipliers were compared to define precision and identify its 
source. Table 3 shows the resulting collapse load multipliers, precision and the 
source of the controlling error. The evaluation revealed that the variance in the 
rotation angles controlled for all cases except hinge sets 20 and 21. A minimum 
of two-digits of precision was obtained for all evaluated sets regardless of the 
controlling error. 

Table 3. Calculated collapse multipliers, error and error source for the in-scale 
arch subjected to a tilting plane  

Hinge Set λa ± source Hinge Set λa ± source 

1 0.32 0.02 stdv 16 0.67 0.01 stdv 

2 0.32 0.02 stdv 17 0.60 0.01 stdv 

3 0.323 0.008 stdv 18 0.56 0.05 stdv 

4 0.32 0.04 stdv 19 0.54 0.03 stdv 

5 0.31 0.01 stdv 20 0.519 0.003 meas 

6 0.43 0.02 stdv 21 0.623 0.004 meas 

7 0.42 0.02 stdv 22 0.62 0.04 stdv 

8 0.42 0.02 stdv 23 0.67 0.04 stdv 

9 0.423 0.004 stdv 24 0.65 0.02 stdv 

10 0.398 0.006 stdv 25 0.72 0.03 stdv 

11 0.45 0.04 stdv * meas – measurement error 
   stdv   – standard deviation 
 
Note: Refer to Table 1 for hinge 
set details. 

12 0.48 0.02 stdv 

13 0.50 0.01 stdv 

14 0.523 0.006 stdv 

15 0.53 0.02 stdv 

 

The collapse rotation angles from the experimentation and from the black box 
analysis approach are presented in Figure 136. The hinge sets are represented 
in a decision tree format with H1 at the base. Also note the inclusion of results 
form a discrete element modelling (DEM) analysis. The DEM analysis was 
performed to establish a validation trifecta with the developed analysis and 
executed experimentation. The details of the DEM analysis are presented in 
Appendix A and can also be found in the literature [124]. 

From Figure 136 it can be seen that the capacity of the experimental arch 
increased from the minimum mechanism’s 16.7° rotation capacity to a maximum 
measured capacity of 30.3°. Note that the dominating factor controlling the 
capacity of the arch is the position of H1 as observed with the CLDs. From these 
results it is clear that the arch behavior was captured but the numerical models 
overestimate capacity.  

Also note in Figure 136 the strong precision of the experimental tests results. 
This indicates a repeatability potential in the designed capacity and that the 
difference in capacities between experimental and numerical are systematic in 
nature. A portion of the systematic difference is due to geometric differences 
between the physical arch and the model, but there is a general divergence in 
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the net capacities as hinge H1 moves towards the crown. This indicates that 
additional factors are affecting the system and further analysis is required. 

 

Figure 136. Numerical and experimental results for the in-scale arch subjected to 
a tilting plane. 

 Experimental Observations 

In addition to the length measurements taken for each collapse, a video 
recording was made. These recordings revealed two non-ideal conditions in the 
experimentation. First, the Type II mechanism was clearly identified for all 
collapses with hinge H1 set at joint J4 (see Figure 137). Slip at the hinge H1 joint 
did occur in other collapses (as noted in Table 2), but it was attributed to the 
non-perfect geometry and the 2D simplification because of its inconsistency. The 
second non-ideal condition was base deformations developed through 
reinforced hinge rotations. These static deformations were observable at joint J1 
when hinge H1 was higher than J3 as can also be seen in Figure 137.  

The observed slip and static deformations are clearly contributing to the 
systematic error of the experimental results. These conditions must be further 
considered in the post-processing of the data, but also note the hinge H1 position 
dominance over capacity. This provides a strong potential to directly link the 
theoretical model the experimental arch through the H1 variable. 
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Figure 137. Image of Type II mechanism and base deformation 

5.2.7 Post-Processing 

The experimental results clearly highlight the need for capacity adjustments to 
more accurately match the models to the experimentation. Additionally, the Type 
II mechanism and base deformation must be directly assessed to justify 
observations, demonstrate the versatility of the kinematic equilibrium and black-
box analysis approach, and highlight the simplification of the capacity 
adjustment equation that arises from the evaluation of a family of mechanisms. 

 Capacity Adjustment Equation 

In the experimental results (Figure 136) the dominance of hinge H1 on the 
capacity of the system is observed. Therefore, the ratio between experimental 
and modelled results for each hinge set were calculated. These ratios were then 
averaged for fixed hinge H1 positions. Figure 138 shows the plot of these 
averaged ratios against the H1 position for both the kinematic equilibrium and 
DEM models (see Appendix A for DEM model details). From Figure 138 a strong 
linearity between capacity ratios and hinge H1’s location is observed. This 
linearity establishes a simple equation to adjust capacity. The capacity 
adjustment equation for the kinematic equilibrium model is 

𝐶𝐿𝐴 = −0.0603 ∙ 𝐻1 + 0.871      (117) 

and the capacity adjustment equation for the DEM analysis is 

 𝐶𝐷𝐸𝑀 = −0.0989 ∙ 𝐻1 + 1.142      (118) 

Note that H1 equal to J1 is not included in Figure 138 because no reinforced base 
joints exist for this condition. 
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Figure 138. Linear fits to the averaged capacity ratios against H1 position for the 
in-scale arch subjected to a tilting plane 

The strong linearity in Figure 138, the two observed non-ideal conditions (i.e. 
Slip at H1 and base deformation) and the fact that the slip condition was not 
present for all collapses, drives the postulation that the strength reduction 
relationship is driven by a non-infinite hinge stiffness of the Velcro® 
reinforcement at the left base. The linear fits thus produce capacity adjustment 
equations that are justified and can be applied to the models. Figure 139 shows 
the updated results with the capacity adjustment equations applied. 

 

Figure 139. Experimental results of the in-scale arch subjected to a tilting plane 
with the applied capacity adjustment equations (Eqns. 117 and 118) 

Figure 138 and Figure 139 highlight the observed base deformations as the 
dominate error in the capacity reduction of the system, but by evaluating a family 
of mechanisms that exist for the arch, the required compensation can be simply 
achieved through the evaluation of mechanical sets with the same H1 locations. 
Additionally, the identification of the error and the validation of the results 
indicate that an improved hinge reinforcement system, such as FRPs or TRMs, 
has the potential to increase the capacity of the arch up to a factor of 3.2 times 
its minimum with the reinforcement applied as shown in Figure 140. 
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Figure 140. Reinforcement layout for maximum capacity of the in-scale arch 
subjected to a tilting plane 

 Finite Hinge Stiffness of the Base Joint 

In the discussion of mechanical deformations and finite hinge stiffness in Section 
4.4, the potential to have a stable deformation exists at a cost to capacity. 
Comparing the capacities of Figure 114 and Figure 116 reveal that the deformed 
arch resulting from a 2° rotation at H1 decreases the tilting capacity from 19.7° 
to 15.8°. Expanding on this observed reduction, the rotation capacities versus 
rotation angle α1 (see Section 4.4) were recorded for hinge sets 1 through 5 (see 
Table 1) where H1 was located at the base (see Figure 141). From Figure 141 it 
can be seen that the capacity of the arch is reduced up to an angle between 7° 
and 10° before arriving at a non-admissible configuration. This range of 
admissibility thus reveals the limits for statically stable SDOF deformations. 

 

Figure 141. Tilting capacity versus α1 rotation angle for hinge sets 1 through 5 
from Table 1 for the in-scale arch 

Figure 142 shows the pre and post-collapse condition of the experimental arch 
for hinge set 23 (refer to Table 1 for hinge set identification). In order to 
theoretically capture this collapse state with the KCLC for hinge sets 6 through 
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25, SDOF deformations were applied at 1° intervals to the KCLC with H1 at J1. 
Then H1 was shifted to the assigned hinge set position and the capacity was 
recorded. This procedure was repeated until a non-admissible state was 
obtained. Figure 121 in Section 4.4 highlights this defined procedure. 

A geometric reduction factor, obtained from the averaged experimental-
theoretical capacities for hinge sets 1 through 5 where H1 was at J1, was applied 
to the recorded deformed capacities with H1 greater than J1. Capacity versus α1 
at J1 plots similar to Figure 141 were created and used to determine a J1 rotation 
(α1) that produced the experimental capacity. The determined rotation angles 
were averaged for fixed H1 hinge sets and plotted against hinge H1’s position 
(see Figure 143). The results show a strong linearity between the position of H1 
and α1 at J1 and provides a strong argument towards the classification and 
quantification of this systematic error observed in the experimental campaign. 

 

Figure 142. (a) Deformed stable state and (b) failure mechanism for hinge set 23 
of the in-scale arch 



Stockdale  Chapter 5 

186 

 

Figure 143. Averaged α1 at J1 angles versus H1 position 

5.2.7.2.1 Joint J1 Stiffness 
In order to determine a joint stiffness for J1, a force must be established to 
evaluate against the deformed condition. To achieve this the capacity 
compensation for non-stable admissible mechanisms was incorporated into the 
custom KCLC (see Figure 121). The calculation of the tensile force was then 
obtained by applying the calculated deformation angle to J1, adjusting H1 to the 
defined position, and recording the tensile value at J1. Again, Figure 121 shows 
the procedure applied to hinge set 23. Finally, a joint J1 rotation stiffness was 
calculated by 

𝐾𝛼 = 
𝑇𝑛

𝛼1
         (119) 

for each hinge set with H1 greater than J1 and then averaged to produce a 
rotation stiffness of Kα = 0.19±0.05 [kN/°]. 

The obtained two-digit precision of the calculated stiffness further reinforces the 
dominance the base deformation has in the capacity reduction of the 
experimental arch. It is important to note however that the calculation of this 
stiffness and the examination of SDOF deformations was unnecessary. For the 
practical purposes of design, the capacity adjustment equation (Eqn. 117) was 
sufficient in transferring the measured capacity of the arch into the analysis 
platform. 

 Type II Mechanism and the Friction Angle 

Although the base deformations dominated capacity and the discrepancy 
between the models and experimental results, the observation of the Type II 
mechanism must be addressed as well. The inclusion of slip at H1 means that 
the static friction at the joint was exceeded. Therefore, a friction value must be 
obtained and compared against the theoretical wood-wood friction values. To 
obtain a friction value, the standard equations of equilibrium was adjusted such 
that a moment at H1 replaced the collapse multiplier in the reaction vector r and 
the collapse multiplier was incorporated into the constants vector q. Applying 
this modified equations of equilibrium to the hinge sets and collapse values 
associated with H1 at J4 and utilizing Eqns. 21-23 produce a resulting friction 
angle associated with the collapse condition. Averaging these calculated friction 
angles produced a value of 17.6° ± 3°. The accepted friction angles for wood-
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wood contact are between 11° and 27° and thus the calculated value falls within 
the accepted range. 

The capacity compensation equation and Type II mechanism check was 
incorporated into the custom KCLC designed for the experiment. Evaluation of 
the hinge sets revealed that with the inclusion of the Type II mechanism and the 
calculated friction angle of 17.6° produced only admissible cases for H1 greater 
than J3. Additionally, the difference between the Type II mechanism and the 
Type I with the applied capacity adjustment equation is 0.3°. In fact, for all five 
hinge sets with a H1 equal to J4 the maximum difference between the two 
collapse angles is 1°. Consequently, the equivalent capacities of the Type II and 
capacity compensation for H1 equal to J4 coupled with the calculated friction 
angle within the range accepted for wood-wood interaction provides a sound 
validation of the experiment and analysis structure. 

In the context of design, the potential for the slip joint must be removed with 
positive reinforcement, but the ability to theoretically capture this behavior with 
the developed analysis model shows a great potential for the analysis structure 
to expand beyond the simplifications necessary for efficient design. 

5.2.8 Additional Remarks 

The final remark on the in-scale arch testing is in regards the application of the 
limiting condition analysis described in Section 4.2.3. Note that Figure 103, 
which reflects the limiting condition evaluation of the generalized conditions of 
the in-scale experimental arch, the Type VII mechanism is  controlling, but this 
was not observed in the experimental results. This discrepancy is the result of 
the static deformations from the finite stiffness of the base joint. The base joint 
deformation defines hinge H4 and the intermediate hinges, H2 and H3, before the 
capacity of either the Type XIX or Type VII mechanisms is reached. Thus, they 
become non-admissible conditions through the imperfections of the 
reinforcement. The consequence of this further highlights the potential for the 
application of reinforcement to produce a weaker arch. 

5.3 Tilt Test Characterization of a Full-Scale Arch 

The second experimental campaign also focused on the characterization of a 
dry-stack arch subjected to hinge control and a tilting plane but with three key 
differences. These differences were that a full-scale arch was constructed, the 
arch blocks were engineered from a combination of materials and the friction 
angle was significantly increased to remove the admissibility of the Type II 
mechanism within the family of mechanisms evaluated. This experimental 
campaign was carried out as an independent research project in California. 

The objective of repeating the same loading condition (i.e. the tilt test) as for the 
in-scale arch is to highlight the repeatability of the characterization strategy. 

5.3.1 Arch Construction 

A 27-block arch was constructed from engineered blocks. 
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 Block Construction 

The blocks of the full-scale arch were constructed from a combination of 
Oriented Standard Board (OSB) and galvanized steel pipe (see Figure 144). 
Arcs were cut from the OSB and clamped in sets of two to cut the joint faces. 
Holes were drilled in the clamped OSB block sets to maintain alignment and the 
galvanized steel pipe risers were anchored into the front block. The back block 
was attached to the risers and adjusted with locknuts to the defined block depth. 
A floor flange was also attached at the centroid of the front block and a 
removable centroid bar was added. Lastly, 36 grit sandpaper was applied to the 
joint faces to increase the friction angle and reduce the potential of a slip 
mechanism that was observed in the in-scale arch tests. 

 

Figure 144. Constructed block for the full-scale arch 

After the construction of the 27 blocks, the dimensions and masses were 
recorded. The averaged block details and variance are shown in Figure 145. 
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Figure 145. Block details for the full-scale arch 

 Arch Assembly 

The arch was assembled block-by-block from right to left. Each block was placed 
and double-sided Velcro® straps were wrapped around the risers to reinforce the 
interface. After the first assembly of the arch, the forward faces were painted 
white. The arch was disassembled, and each block was weighed again to 
account for the added mass of the paint. Then the arch was reassembled and a 
4x4 point grid was applied at each joint using a template, compass and markers. 
Figure 146 shows the details of the point grid and its application to the arch. The 
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final constructed arch is shown in Figure 147 and the measured dimensions in 
Figure 148. 

 

Figure 146. Point grid (a) dimensions, (b) template and (c) application to the full-
scale arch 
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Figure 147. Constructed full-scale arch for the tilting plane tests 

 Hinge Reinforcement and Element Stiffening 

For each measured collapse, all joints were reinforced minus the four defined 
joints of the mechanized arch. These mechanical joints had the Velcro® straps 
removed. Then cam straps were applied to the reinforced block groups to create 
three rigid elements connected by four dry joints. A defined mechanical joint can 
be seen in Figure 149. Also note that additional cam straps were applied as 
secondary safety systems to prevent the full collapse of the arch during 
experimentation. 



Stockdale  Chapter 5 

192 

 

Figure 148. Final Dimensions of the constructed full-scale arch 

 

Figure 149. Velcro® Reinforcement, cam strap element stiffening and a defined 
mechanical joint for the full-scale arch 
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5.3.2 Arch Analysis Model 

The arch model was constructed in AutoCAD® from the averaged block method 
used to develop the in-scale arch analysis model in Section 5.2.2. The averaged 
block geometry of Figure 145 was drawn and the arch model was constructed 
in the same manner as the physical system. This time from right to left to reflect 
the switch in the rotation line of the tilting platform. Next, the extrados and 
intrados of random blocks were altered within the precision of the averaged block 
until the arch fit the rise, clear span, and slight rotation observed in the left base 
block. Figure 150 shows the drawn arch model with supporting nomenclature. 

 

Figure 150. Drawn arch model and nomenclature for the full-scale arch subjected 
to a tilting plane 

5.3.3 Tilting Platform 

The tilting platform was constructed from a combination of steel conduit pipe and 
slotted standard Unistrut® galvanized channels. One end of the pipes was 
anchored to the rotation point created from standard hinges and wooden boards. 
The other end of the pipes was anchored to wooden boards with an eye bolt 
placed along the centerline. Wooden platforms were then attached to the pipe 
via cross struts and adjusted to the clear span of the arch. Additional longitudinal 
channel struts were then applied to stiffen the frame against moments that 
develop from platform suspensions during the tilting process. The frame was 
rotated using a Teckton 5547 4-Ton Dual Gear Power Puller. Figure 151 shows 
the tilting frame. 

Four lengths were marked along the platform from the rotation point. These fixed 
lengths, Li, were used to measure the collapse rotation angle and are identified 
in Figure 152. The collapse rotation angle is again determined by Eqn. 116. 
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Figure 151. Tilting platform for full-scale arch tilt tests 
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Figure 152. Tilting plane layout for full-scale arch 

5.3.4 Procedure 

The procedure for this experimental program consisted of: 

• Assembling the arch 

• Removing Velcro® straps to define the mechanical joints 

• Applying cam straps to stiffen block groups into elements 

• Applying secondary cam straps to prevent complete collapse 

• Applying quasi statically tilting through the power puller until initiation of 
collapse mechanism 

• Measuring the resulting heights l1 through l4 corresponding to known 
lengths L1 through L4 respectively (see Figure 153). 

• Video recording each collapse for post-processing. 

Three collapses were performed for each hinge set. As with the in-scale tests, 
25 distinct hinge sets were tested which generated a total of 75 tilt tests 
performed. Note that after each test the platform was lowered to level and each 
joint was examined to ensure no deformations developed. Additionally, the 
element stiffening was fully released and then reapplied when the defined hinge 
set was changed to ensure the arch began in the same stable state. 
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Figure 153. Mechanical collapse and the associated measurement lengths for 
hinge set 21 of the full-scale arch tests. 

 Hinge Selection 

The hinge sets were selected through the development of a CLD. Figure 154 
shows the constructed CLD and highlights the 25 capacities being evaluated. 
Note that blocks N1 and N27 are fixed for the experimentation and thus the lower 
joint limits are J2 and J27. Also note that a theoretical capacity increase factor of 
3.3 exists within the group of mechanical sets. Lastly Table 4 lists the 25 
corresponding hinge set configurations. 

 

Figure 154. CLD for the full-scale arch subjected to a tilting plane 
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Table 4. The 25 hinge sets used for the full-scale arch capacity tests 

Hinge 
Set 

H1 H2 H3 H4 Hinge 
Set 

H1 H2 H3 H4 

1 J2 J8 J17 J26 16 J5 J11 J20 J26 

2 J2 J8 J17 J25 17 J5 J11 J20 J25 

3 J2 J8 J17 J24 18 J5 J11 J19 J24 

4 J2 J8 J17 J23 19 J5 J11 J19 J23 

5 J2 J8 J17 J22 20 J5 J11 J19 J22 

6 J3 J9 J18 J26 21 J6 J12 J21 J26 

7 J3 J9 J18 J25 22 J6 J12 J20 J25 

8 J3 J9 J18 J24 23 J6 J12 J20 J24 

9 J3 J9 J18 J23 24 J6 J12 J20 J23 

10 J3 J9 J17 J22 25 J6 J12 J19 J22 

11 J4 J10 J19 J26 Note: Refer to Figure 150 for 
identifying joint location. 12 J4 J10 J19 J25 

13 J4 J10 J19 J24 

14 J4 J10 J18 J23 

15 J4 J10 J18 J22 

 

 Collapse and Measurement 

For each hinge set, three collapses were executed. Each collapse was 
performed through the manual rotation of the platform by the reverse locking 
power puller (see Figure 153). The platform was rotated until the arch initiated 
the collapse mechanism and at a quasi-static rate. At the point of collapse the 
crank was locked and the heights l1 through l2 were recorded. The platform was 
then lowered, and the system was checked for deformations. Each collapse was 
also recorded. 

5.3.5 Data 

The platform lengths were 0.864 m, 2.032 m, 2.896 m, and 4.166 m for L1 
through L4 respectively. Table 5 lists the recorded data for full-sale arch tests. 
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Table 5. Recorded collapse data for the full-scale arch tests 

 

5.3.6 Results 

For each collapse, the four length height ratios are averaged and transformed to 
a rotation via Eqn. 116. These averaged rotation values were then averaged with 
the three collapses to determine a single rotation angle value. The measurement 
error was propagated through the averaging calculations and compared with the 
variance in the three collapses. This comparison revealed the variance in 

precision * M - MACHANISM

L1 [in] L2 [in] L3 [in] L4 [in] +/- 0.25 in

34 80 114 164    R - ROTATION

Run Hinge Set l1 [in] l2 [in] l3 [in] l4 [in] Run Hinge Set l1 [in] l2 [in] l3 [in] l4 [in]

1 1 4.5 11.5625 17 25 40 14 12.1875 28.875 41.625 60.625

2 1 4 9.625 14.75 21.25 41 14 12.125 28.6875 41.1875 60.125

3 1 4.4375 10.6875 15.75 23.25 42 14 11.9375 28.125 39.5625 59.0625

4 2 4.3125 10.4375 15.25 22.625 43 15 12.6875 29.625 42.6875 62.1875

5 2 4.125 9.875 14.75 21.5 44 15 12.5 29.4375 42.3125 61.8125

6 2 4.25 10.3125 15 22.25 45 15 12.125 28.875 41.625 54.5625

7 3 4.0625 9.875 14.375 21.375 46 20 15.875 37.5625 54 78.3125

8 3 3.875 9.5 13.875 20.75 47 20 16.0625 37.8125 54.5625 79.3125

9 3 4.125 10 14.375 21.25 48 20 15.9375 37.4375 54 78.75

10 4 3.125 9.375 13.75 20.8125 49 19 15.8125 36.8125 53 77.6875

11 4 4.0625 9.75 14.25 21.375 50 19 15.875 36.8125 53.4375 77.3125

12 4 3.9375 9.5625 14 20.9375 51 19 15.75 36.8125 53.3125 77.25

13 5 4.0625 9.875 14.5 21.5 52 18 15.25 36.25 52.25 75.9375

14 5 3.9375 9.5 13.9375 20.5 53 18 15.4375 36.1875 52.6875 75.8125

15 5 4 9.625 14.0625 20.875 54 18 15.25 36.125 52.125 75.8125

16 10 8.9375 21.0625 30.5625 44.8125 55 17 15.8125 36.8125 53 77.25

17 10 8.875 21 30.5 44.625 56 17 15.8125 36.8125 53 77.1375

18 10 8.875 21 30.4375 44.4375 57 17 15.8125 36.75 52.9375 77.0625

19 9 8.4375 20 28.9375 42.3125 58 16 17 40.3125 56.875 83.9375

20 9 8.4375 20 28.9375 42.375 59 16 16.1875 38.3125 55 79.9375

21 9 8.4375 20.0625 28.6875 42.3125 60 16 16.1875 38 54.625 79.4375

22 8 8.5625 19.6875 29.0625 42.4375 61 21 20 47.8125 67.9375 97.9375

23 8 8.3125 19.4375 28.5625 41.75 62 21 20 47.0625 67.5625 97.1875

24 8 8.375 19.1525 29 42.4375 63 21 19.5625 46.1875 66.6875 96.5625

25 7 8.1875 19.1525 28.125 41.3125 64 22 20.0625 48.125 68.0625 98.8125

26 7 7.9375 19.0625 27.3125 40.5625 65 22 19.8125 46.25 66.4375 96.5625

27 7 8.1875 19.3125 28.0625 41.1875 66 22 19.8125 46.25 66.4375 96

28 6 8.3125 19.9375 28.9375 42.3125 67 23 19.6875 46.1875 67.4375 97.625

29 6 8.25 19.625 28.6875 41.9375 68 23 20.125 46.625 67.3125 97.0625

30 6 8.1875 19.3125 27.8125 41.0625 69 23 19.8125 46.125 66.4375 96

31 11 12.8125 29.6875 42.6875 62.3125 70 24 20.8125 47.875 67.875 97.25

32 11 12.4375 29.4375 42.3125 61.625 71 24 20.8125 47.9375 68 97.3125

33 11 12.375 29.3125 42.25 61.375 72 24 20.8125 47.8125 67.75 97.125

34 12 12.5625 29.4375 42.75 62.0625 73 25 22.1875 51.1875 72.5625 104.0625

35 12 12.6875 29.5625 42.9375 62.5625 74 25 21.6875 50.5 72.5625 105.4375

36 12 12.5 29.4375 42.4375 61.875 75 25 21.6875 50.625 72.4375 104.625

37 13 12.5625 29.625 42.6875 62.1875

38 13 12.4375 29.3125 42.3125 61.5625

39 13 12.4375 29.4375 42.3125 61.625

   S - SLIP

Platform Measurements

COLLAPSE DATA COLLAPSE DATA
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collapse dominated the error. Nonetheless, a minimum of 3 digits of precision 
was obtained for each hinge set. Table 6 presents the results. 

Table 6. Calculated collapse angles, error and its source for the full-scale arch 

Hinge Set θt ± source Hinge Set θt ± source 

1 7.68 0.08 stdv 16 26.0 0.1 stdv 

2 7.38 0.08 stdv 17 24.9 0.1 stdv 

3 7.04 0.08 stdv 18 24.5 0.1 stdv 

4 6.84 0.08 stdv 19 25.0 0.1 stdv 

5 6.99 0.08 stdv 20 25.4 0.1 meas 

6 13.93 0.09 stdv 21 30.5 0.1 stdv 

7 13.66 0.09 stdv 22 30.4 0.1 stdv 

8 14.05 0.09 stdv 23 30.4 0.1 stdv 

9 14.17 0.09 stdv 24 31.0 0.1 stdv 

10 14.90 0.09 stdv 25 32.5 0.1 stdv 

11 20.4 0.1 meas * meas – measurement error 
   stdv   – standard deviation 
 
Note: Refer to Table 5 for hinge set 

details. 

12 20.4 0.1 stdv 

13 20.4 0.1 stdv 

14 19.7 0.1 stdv 

15 20.1 0.1 stdv 

 

The resulting rotation capacities of the experiment and their comparison with the 
black box analysis model are shown in Figure 155. The hinge sets are shown in 
a decision tree format with the minimum and maximum configurations identified. 
The black box analysis results are consistently greater than the experimental, 
but a capacity increase factor of 4.2 was experimentally obtained, nonetheless.  

 Experimental Observations 

In the hinge set transition for hinge H1 from J2 to J3 and from J3 to J4 base 
rotations were observed between the base block, N1 and the platform. The 
reasoning for this was the cam strap anchoring was insufficient to create a rigid 
base. For both instances additional strapping was applied to the base blocks in 
an attempt to establish rigidity. The increased strapping reinforcement applied 
for the J3 to J4 was repeated for the remining transitions without any observed 
base deformations. 
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Figure 155. Theoretical and experimental results for the full-scale arch subjected 
to a tilting plane 

5.3.7 Post-Processing 

The observed capacity increase of 4.2 is greater than the theoretical potential of 
3.3. One reason for this discrepancy was the existence of the observed base 
deformations under H1. When H1 was switched from J2 to J3 and from J3 to J4 
deformations were observed and the base stiffening strategy was adjusted. 

 Capacity Adjustment 

Following the same post-processing approach as for the in-scale arch tests of 
Section 5.2, the ratio between the experimental and the theoretical results for 
each hinge set were calculated. These ratios were then averaged for fixed hinge 
H1 positions. Figure 156 shows this averaged ratio between the black box 
analysis and experimental results for each H1 position.  

From Figure 156 the insufficient stiffness between the base block and the 
platform can be directly observed in the significant reduction of capacity for hinge 
H1 and joint J1. The first readjustment can also be observed by the increase in 
relative capacity for hinge H1 at joint J2. The stabilization of the base stiffness is 
also observed in the developed consistency in the relative capacity for hinge H1 
greater than joint J2. Therefore, the evaluation of the averaged relative capacities 
is able to capture these deficiencies in addition to establishing the capacity 
adjustment equation. Ignoring the data points for J1 and J2, the capacity 
adjustment equation, 

𝐶𝐿𝐴 = −0.0017 ∙ 𝐻1 + 0.71      (120) 

is established. Applying Eqn. 120 to the black box model produces the results 
shown in Figure 157. 
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Figure 156. Averaged ratios and capacity adjustment equation for the full-scale 
arch subjected to a tilting plane 

 

Figure 157. Capacity results comparison with capacity adjustment applied for the 
full-scale arch subjected to a tilting platform 

5.3.8 Additional Remarks 

The second experimental campaign focusing on hinge control and the 
characterization of dry-stack masonry arches revealed that the potential to 
control failure for a full-scale masonry arch exists and that the applied approach 
to characterize the analysis model to the experimental behavior is repeatable. 
As with the first experiment, the existence of base deformations was observed, 
but in this instance, these deformations were between the base block and the 
platform. With the first experiment, the base blocks were anchored to the 
platform with screws, and the deformations were observed in the first joint as a 
result of the Velcro’s® stiffness. This experiment however corrected that issue 
with the application of the cam straps, but the anchoring of the arch to the 
platform was insufficient to resist deformations. Nonetheless, this deformation 
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was identified, and corrective measures implemented for hinge H1 at and above 
joint J3. This can be seen in the capacity adjustment equation (see Figure 156) 
which becomes almost constant after this correction is made. Also, the inclusion 
of the 36-grit sandpaper on the block joint surfaces successfully removed the 
inclusion of additional mechanisms types. 

After the completion of the experimental testing the arch was disassembled, 
inspected and stored for future tests (see Figure 158). The inspection of the 
blocks revealed no observable damage and highlights a great benefit that arises 
from designing and defining mechanical failure as the system’s limit. 

 

Figure 158. Disassembled (a) arch and (b) reinforcing materials, and (c) the stored 
system 

5.4 Concluding Remarks 

The hinge-controlling of dry-stack arches and the examination of a family of 
admissible mechanisms allows for their characterization. The CLDs create a 
simple first-order assessment structure that can be utilized in project design and 
development. The CLDs go even further by establishing the general limits of 
admissible mechanisms that exist in an arch and provide a defined family of 
mechanisms that can exist with the implementation of hinge control.  

Utilizing the defined family of mechanisms from the CLD to perform capacity 
testing of a physical arch then allows the characterization of the analysis model 
to the physical arch through the capacity adjustment equation. This capacity 
adjustment equation extends the capacity adjustment to all admissible 
mechanisms and can be directly incorporated into the black box structure that 
governs the analysis and the KCLC. Additionally, each of the two arches faced 
non-ideal conditions that effected their capacities, and the capacity adjustment 
equations were able to adjust the model without the direct knowledge or 
intervention of the non-ideal condition into the analysis. This highlights an 
incredible versatility potential to this analysis structure and design approach.
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CHAPTER 6 

2D SEISMIC MODELLING 

List of Abbreviations and Symbols 

Ai ─ Polynomial fit constants for cartesian deformation path of the 
CM (Chapter 4) 

ap ─ Acceleration pulse magnitude for two-step pulse test 

ax ─ Horizontal component of applied acceleration 

ay ─ Vertical component of applied acceleration 

αi ─ Rotation angle of the ith mechanical joint 

Bi ─ Polynomial fit constants for Element lever arm rotations versus 
horizontal CM position (Chapter 4) 

Ci ─ Polynomial fit constants for curve fitting work equation 

CM ─ Center of Mass 

COR ─ Coefficient of Restitution 

Di ─ Polynomial fit constants for establishing the time domain 
function 

d/dt ─ Time derivative 

ΔKE ─ Change in kinetic energy 

ΔPE ─ Change in gravitational potential energy 

Δt ─ Timestep 

Facc,x ─ Net equivalent horizontal acceleration force 

Fapp ─ Net applied acceleration force 

Fmin ─ Minimum force requirement to maintain the kinematic condition 

Fx ─ Horizontal force 

Fy ─ Vertical force 

Hi ─ Identifier for the ith hinge 
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H(x) ─ Spatial function for establishing the time domain 

IEj ─ Moment of inertia of the jth element 

KEi ─ Initial kinetic energy 

KEf ─ Final kinetic energy 

lEj ─ Lever arm length between the arch and jth element centroids 

λa ─ Collapse multiplier for uniform acceleration 

mEj ─ Total mass of the jth element 

mT ─ Total mass of the arch 

ωEj ─ Angular velocity of the jth element’s lever arm 

SDOF ─ Single degree of freedom 

t0 ─ Start time 

t1 ─ First time value 

t2 ─ Second time value 

tp ─ Acceleration pulse duration 

τEj ─ Torque from the jth element applied at the CM from the 
element’s centroid 

θa ─ Polar angle of an acceleration vector 

v ─ Velocity vector 

W ─ Work 

Wapp ─ Applied work 

Wmin ─ Minimum work 

Wreq ─ Required work 

Wrot ─ Rotational work 

Wtrans ─ Translational work 

 

It is imperative in modern structural engineering that a comprehensive analysis 
model be able to address dynamic conditions. In Chapter 3 the kinematic 
equilibrium approach to limit analysis was presented through the development 
of free-body diagrams and the corresponding equations of equilibrium for 
defining kinematic conditions. In Chapter 4, the inclusion of static mechanism 
deformations revealed that under constant horizontal acceleration the arch 
maintains a kinematically admissible condition as it propagates towards 
collapse. Maintaining kinematic equilibrium through this propagation of the 
kinematic condition requires an applied force. This required force coupled with 
the deformation generates a required work. The establishment of a deformation 
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description and the required work formulates a 2D spatial domain of the 
kinematic arch. In the context of dynamic modelling the remaining component 
necessary to describe the behavior is time domain. 

The objective of this chapter is to establish a dynamic modelling methodology 
through the formation of the time domain from the application of kinematic 
equilibrium analysis to the static SDOF deformations of an arch. First the time 
domain is established for the standard Type I mechanism condition and constant 
horizontal acceleration in excess of the kinematic limit. The time domain 
formulation is expanded to constant 2D accelerations. Incorporating the time 
domain with the spatial domain then establishes the dynamic condition. This in 
turn allows for a more generalized analysis through the assumption of constant 
acceleration per time step sequence. 

6.1 Time Domain for Constant Horizontal 
Acceleration 

Utilizing the kinematic equilibrium evaluation of constant horizontal acceleration 
(Eqn. 6), the SDOF deformations of the standard mechanism (Eqns. 107-110), 
and the equivalent systems through parametric plotting (Section 4.4.3) for the 
arch shown in Figure 117, this section develops the time-displacement 
relationship through the path independence of conservative work. First, a work 
path is established and used to define the kinetic energy as a function of 
horizontal displacement. This time independent energy equation is then utilized 
with the velocity relationship of kinetic energy to formulate the time-displacement 
relationship. 

6.1.1 Work Path 

For conservative systems, the work required to travel from one position to 
another is path independent. The required work to mechanically deform an arch 
can be equated by the centroid equivalent deformations (Figure 119) and lever 
arm rotations (Figure 120) bound by α1 rotations at hinge H1 (see Section 4.4.3 
for the deformation equivalents). Converting the horizontal acceleration collapse 
multiplier into an equivalent force, Facc,x, applied to the total arch mass, mT, at 
the centroid generates the force-displacement plot shown in Figure 159. 
Converting the collapse multiplier into equivalent forces at each element’s 
centroid establishes the torque-rotation plots shown in Figure 160. 
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Figure 159. Parametric plot of acceleration force versus horizontal CM 
displacement and best fit polynomial 

 

Figure 160. Parametric plot of the element induced torque at CM versus the 
respective lever arm rotation angles 

Work can be expressed as the sum of the translational and rotational work  

𝑊 = ∫𝐹𝑑𝑥 + ∫ 𝜏𝐸1𝑑𝜃𝐸1 + ∫ 𝜏𝐸2𝑑𝜃𝐸2 + ∫ 𝜏𝐸3𝑑𝜃𝐸3    (121) 
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where τEj is the torque from the jth element force equivalence. Integrating the 

force-displacement plot and torque-rotation plots generates the work path (see 
Figure 161). The potential energy curve established from 

∆𝑃𝐸 = 𝑚𝑇𝑔∆𝑦        (122) 

is also shown in Figure 161. Note that the required work to carry the arch to 
collapse exceeds the change in potential energy. This difference is the result of 
the required thrust deformation necessary for the formation of the mechanism 
prior to and during the progression towards collapse. The required element 
rotations also add to this difference.  

 

Figure 161. Parametric plot of minimum work and potential energy versus 
horizontal CM displacement with polynomial fit 

The application of a polynomial fit evaluation to the work path identifies 

𝑊𝑚𝑖𝑛(𝑥) = 𝐶1𝑥
4 + 𝐶2𝑥

3 + 𝐶3𝑥
2 + 𝐶4𝑥 + 𝐶5    (123) 

as a reasonable equation the with constants Ci identified in Figure 161. 

6.1.2 Kinetic Energy 

The work path in Figure 161 represents the required work to maintain kinematic 
equilibrium along the deformation path to collapse. An applied acceleration 
force, Fapp, that exceeds the limit, Fmin, established from the collapse multiplier, 
transitions the system from its stable state to its mechanical state. Maintaining 
the rigid element assumption and ideal hinges results in the excess energy from 
the applied work, 

𝑊𝑎𝑝𝑝 = 𝐹𝑎𝑝𝑝∆𝑥         (124) 

be transformed into kinetic energy 

∆𝐾𝐸 = 𝑊𝑎𝑝𝑝 −𝑊𝑟𝑒𝑞        (125) 
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The required work, Wreq, to travel from position x1 to a position x is 

𝑊𝑟𝑒𝑞 = 𝑊𝑚𝑖𝑛(𝑥) −𝑊𝑚𝑖𝑛(𝑥1)      (126) 

Combining Eqns. 124-126 with the constant horizontal acceleration condition 
produces a final kinetic energy 

𝐾𝐸𝑓(𝑥) = 𝐾𝐸1 + 𝐹𝑎𝑝𝑝(𝑥 − 𝑥1) −𝑊𝑚𝑖𝑛(𝑥) +𝑊𝑚𝑖𝑛(𝑥1)   (127)   

where KE1 is the initial kinetic energy. Equation 127 therefore provides a spatial 
equation to the kinetic energy based upon the established work path of kinematic 
equilibrium (Figure 161 and Eqn. 123). 

6.1.3 Time Domain 

While Eqn. 127 establishes a displacement domain equation for kinetic energy, 
it can also be expressed as 

𝐾𝐸 =
1

2
𝑚𝑇𝒗

2 +
1

2
𝐼𝐸1𝜔𝐸1

2 +
1

2
𝐼𝐸2𝜔𝐸2

2 +
1

2
𝐼𝐸3𝜔𝐸3

2     (128) 

where v is the velocity vector, and IEj and ωEj are the moment of inertia and lever 
arm angular velocity for the jth element respectively. The velocity vector is 

𝒗 =
𝑑𝒓

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
        (129) 

and the angular velocities are  

𝜔𝐸𝑖 =
𝑑𝜃𝐸𝑖

𝑑𝑡
        (130) 

Utilizing the equivalent systems Eqns. 112-114 with Eqns. 128-130 generates 

𝐾𝐸𝑓(𝑥) =
1

2
[𝑚𝑇 (1 +

1

2
𝐴1𝑥 + 𝐴2)

2

+ ∑ 𝑚𝐸𝑖𝑙𝐸𝑖
2 (

1

2
𝐵1,𝐸𝑖𝑥 + 𝐵2,𝐸𝑖)

2
3
𝑖=1 ] (

𝑑𝑥

𝑑𝑡
)
2

 (131) 

where mEi and lEi are the ith elements mass and lever arm respectively, and the 
constants B1,Ei and B2,Ei are obtained from Eqn. 114 and Figure 120. Since the 
developed kinetic energy equation (Eqn. 127) is only dependent on position, the 
relationship between time and displacement is established by the integral 

𝑡 − 𝑡0 = ∫𝐻(𝑥) 𝑑𝑥       (132) 

where 

𝐻(𝑥) = √
𝑚𝑇(1+

1

2
𝐴1𝑥+𝐴2)

2
+∑ 𝑚𝐸𝑖𝑙𝐸𝑖

2 (
1

2
𝐵1,𝐸𝑖𝑥+𝐵2,𝐸𝑖)

2
3
𝑖=1

2𝐾𝐸𝑓(𝑥)
    (133) 

Figure 162 shows a plot of H(x) and the area representation of the numeric 
evaluation of Eqn. 132 for an applied acceleration of 1.14λa. Both the initial time 
and kinetic energy are set to zero. 
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Figure 162. H(x) versus horizontal CM displacement and integration area 

Figure 163 shows the solution to Eqn. 132, thus defining the relationship 
between horizontal CM position and time. A polynomial fit evaluation to the curve 
in Figure 163 reveals the relationship 

𝑥(𝑡) =  𝐷1𝑡
4 + 𝐷2𝑡

3 + 𝐷3𝑡
2 + 𝐷4𝑡 + 𝐷5     (134) 

with the constants Di shown in the figure. Therefore, given the initial conditions 
and the applied acceleration’s magnitude and duration the horizontal CM 
displacement can be calculated. Once the displacement is known, the SDOF 
system is defined and the final energies and velocities can be obtained. 

 

Figure 163. Horizontal position versus time with polynomial fit 



Stockdale  Chapter 6 

210 

6.2 2D Accelerations 

For the non-horizontal acceleration condition the free-body diagram and 
equations of equilibrium used are shown in Figure 8 and Eqn. 7 of Section 
3.2.1.2 respectively. For the generalization of acceleration direction, the limits of 
the potential acceleration against the defined mechanism must be established 
prior to establishing the work path. 

6.2.1 Limit Line 

Figure 164 shows the cartesian and polar plots of the collapse multiplier, λa 
versus the direction angle for the undeformed arch-hinge set shown in Figure 
117. Note that a full 360° at 1° intervals with no admissibility evaluation was 
performed. From the cartesian plot the admissible angles (positive λa) are clearly 
defined between 87.5° and 267.5°. The polar plot establishes a clear line on 
which every calculated multiplier exists. This limit line creates a single boundary 
condition for the formation of the mechanism from any 2D acceleration applied 
to the arch-hinge condition. If the acceleration vector crosses the limit line, then 
the mechanism is initiated, and the kinematic system exists. Otherwise the arch 
is stable against the defined mechanism-loading condition. 

Expanding upon this limit line observation, the same analysis was performed 
through the deformation process of the mechanism. Figure 165 shows the limit 
line plots for the α1 at hinge H1 deformations of 0°, 4°, 8° and 12°. These plots 
reveal that the defined SDOF deformation process of the arch-hinge condition 
causes the limit line to pivot towards vertical about the point 1 at 90°. This 
process even highlights the loss of admissibility through the crossing of vertical 
by the limit line at the 12° rotation of α1 at hinge H1 identified in the analysis 
shown in Figure 118. The pivot point is the shift from gravity’s inclusion in the 
constants vector. 
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Figure 164. (a) Polar and (b) cartesian plots of λa versus θa 
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Figure 165. Acceleration limit lines for the α1 at hinge H1 deformations shown in 
Figure 118 

6.2.2 Work Paths 

The inclusion of a vertical force introduces a vertical work 

𝑊𝑎𝑝𝑝 = ∫𝐹𝑥𝑑𝑥 + ∫𝐹𝑦𝑑𝑦       (135) 

but utilizing the deformation relationships of Eqns 112-114 allows the work to be 
rewritten solely in terms of x 

𝑊𝑎𝑝𝑝 = ∫ [𝐹𝑥 + 𝐹𝑦 (
1

2
𝐵1𝑥 + 𝐵2)] 𝑑𝑥     (136) 

Figure 166 shows the calculated minimum work paths for various acceleration 
angles within the deformation limits identified in Figure 163. From Figure 166 
there is an observed decrease in the required work with the polar angle increase. 
In cartesian coordinates, the more vertically negative the acceleration the 
greater the work. For the angle of 90°, the multiplier is 1.0 and the translational 
work required to carry the arch to collapse is identical to the change in potential 
energy (see Figure 167). This translational equivalence provides a validation of 
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the established work-path calculation under the applied conservative energy 
assumptions. The rotational work decreases with a vertically increasing 
acceleration vector and transitions to promoting collapse (see Figure 167b). This 
rotational work transformation results in the required work being less than the 
change in potential energy for acceleration angles between 90° and 97° for the 
arch-hinge set under evaluation (see Figure 166). Additionally, Eqn. 123 holds 
with varying constants for all work paths. 

 

Figure 166. Parametric plots of minimum work versus horizontal displacement for 
acceleration vector angles, θa 
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Figure 167. Parametric Plots of the minimum (a) translational and (b) rotational 
work for various acceleration angles 

6.2.3 Kinetic Energies  

With the inclusion of the vertical component of acceleration, the final 
displacement based kinetic energy equation becomes  

𝐾𝐸𝑓(𝑥) = 𝐾𝐸1 + 𝐹𝑥(𝑥 − 𝑥1) + 𝐹𝑦 [
1

2
𝐵1(𝑥

2 − 𝑥1
2) − 𝐵2(𝑥 − 𝑥1)] −𝑊𝑚𝑖𝑛(𝑥) +𝑊𝑚𝑖𝑛(𝑥1)   (137) 

Therefore, the polynomial behavior identified with the horizontal acceleration is 
maintained for any constant acceleration that exceeds the limit line.  

6.2.4 Time Domain 

The consistency with the polynomial structure of the work paths and spatial form 
of kinetic energy results in the time domain equations (Eqns. 132-133) to hold 
for all constant accelerations. Additionally, since Eqn. 120 holds for varying 
acceleration vector angles within the admissible limits, the time-displacement 
equation (Eqn. 134) and the procedure of obtaining its constants holds. This in 
turn establishes a simple methodology for evaluating the onset of a defined 
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mechanism and obtaining the resulting time-displacement domain for any 
constant 2D acceleration. 

6.3 Time Incremental Analysis Procedure 

Beginning at rest and undeformed, consider an arch subjected to a time 
dependent acceleration sequence that exceeds the limit line at time t1. Assuming 
constant acceleration allows the formulation of the kinetic energy equation (Eqn. 
137) and the time-displacement equation (Eqn. 134). At time t2 the acceleration 
changes. Applying this timestep, Δt, to Eqn. 134 establishes the displacement 
x2 at t2. Applying the displacement position x2 to Eqn. 137 determines the kinetic 
energy at time t2. The final position and kinetic energy then become the initial 
conditions for the next constant acceleration condition. Repeating this time 
incremental calculation sequence therefore allows the arch to be dynamically 
propagated forward in a time. 

6.3.1 Kinematic Condition and the Limit Line 

If at time t2 the displacement of the arch does not exceed the admissible 
kinematic equilibrium limit of the deformed state, then the arch has not collapsed. 
The arch has also entered a kinematic state. In this kinematic state, the limit line 
identifies whether kinetic energy is added or consumed in the deformation 
propagation. If the acceleration vector still exceeds the limit line then additional 
kinetic energy will accumulate in the system, otherwise the accumulated energy 
will be spent to propagate the arch forward. 

6.3.2 Forward Facing Motion 

In the kinematic state, the arch will continue to propagate along the deformation 
path until collapse or zero kinetic energy is reached. Reaching zero kinetic 
switches the direction of motion. If the acceleration remains below the limit line 
for the next time step, then the direction change results in the reversal of the 
motion and a negative final kinetic energy. The square root of Eqn. 133 requires 
the kinetic energy equation to be positive. Therefore, motion must always be 
forward facing. This is obtained by reversing the kinetic energy equation. 

6.3.3 Crossing the Origin and the Coefficient of Restitution 

The reversed motion propagates the arch back towards its original undeformed 
condition. Upon reaching that condition, the arch elements will experience an 
impact as the mechanical joints come into contact and the hinges switch joint 
limits. This impact will result in the dissipation of energy over a finite period of 
time. The standard parameter to define energy loss during impact is the 
Coefficient of Restitution (COR), and it is typically determined through one of 
three models: kinematic, kinetic and energetic [131]. The kinematic model 
developed by Newton 

𝐶𝑂𝑅 =  
𝐾𝐸𝑓

𝐾𝐸𝑖
        (138) 

is the model considered in this developed approach. The process of establishing 
a COR falls outside the scope of this work. For the development of the dynamic 
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analysis procedure, the motion is defined incrementally with the time steps. The 
impact can be isolated by the timesteps and the COR can be applied. The 
importance for the development of this dynamic analysis procedure is that the 
COR can be directly applied in the transition between the two hinge sets that 
define motion. 

The hinge position switch reverses the mechanism. The limit line and 
deformation path are switched with the mechanism. The reduced kinetic energy 
and new constant acceleration are set, and the evaluation continues. 

6.3.4 Combining Conditions 

Figure 168 shows a flowchart representation of the dynamic analysis procedure 
developed from combining the described dynamic conditions. During each 
timestep in the defined acceleration sequence, the limit line is established and 
used to evaluate the work condition. Combining the identified work condition with 
the previous kinetic energy and position generate a final position and kinetic 
energy of the timestep. The reversal of final kinetic energy switches the motion. 
The arch’s return to its undeformed configuration causes a COR reduction to the 
final kinetic energy of the timestep, and the hinge set is switched. This 
incremental process is repeated until the end of the acceleration sequence or a 
maximum displacement resulting in collapse is reached. 

 

Figure 168. Dynamic analysis procedure flowchart 
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6.4 Half Cycle Collapse and Conservation of Energy 

The developed incremental dynamic analysis procedure was constructed from 
the principles of energy conservation, the establishment of equivalent systems 
through parametric plots, and the path independence of conservative work. The 
equivalent systems were directly defined through the fixed rotations of hinge H1 
and utilized to establish the deformation paths and work paths of the mechanism. 
The work paths were validated by the equivalence of work and potential energy 
when the applied acceleration is directly opposed to gravity. The final validations 
remaining for this time incremental analysis structure are Oppenheim’s half-
cycle collapse line benchmark and the conservation of energy [132].  

The Oppenheim arch geometry is shown in Figure 169 [132]. Note that the 
hinges switch joint limits, but the mechanical joints are defined as fixed. 
Examining the deformation sequence of the two configurations establishes the 
dynamic model for the arch. 

 

Figure 169. Oppenheim arch geometry with (a) original hinge geometry and (b) 
the hinge reversal from defined mechanical joints 

Figure 170 shows a graphical display created for monitoring the propagation of 
a dynamic sequence. This graphical display consists of the three-element arch, 
the acceleration and limit line tracker, the CM position tracker and the applied 
acceleration timeline. The arch plot displays the geometric condition through the 
dynamic sequence. The acceleration and limit line tracker identify the polar 
position of the applied acceleration and the kinematic condition at each time 
step. The kinematic condition is identified by color; red indicates a condition 
promoting collapse and blue a condition promoting recovery. The acceleration 
tracker’s color identifies the applied loads role and the limit line’s color indicates 
the direction of motion. 
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Figure 170. Dynamic monitoring display at time zero and a two-step acceleration 
pulse 

Figure 171 shows three examples of the motion conditions through the 
propagation of the horizontal two-step acceleration pulse. The first has the 
acceleration and kinematic motion promoting and propagating towards collapse 
respectively. Then the acceleration drops below the limit line and the net work is 
against collapse, but the motion is still propagating towards collapse. Lastly in 
Figure 171, both motion and acceleration are driving the arch towards its 
undeformed configuration. If the deformation of the arch reaches or exceeds the 
kinematically admissible limit, then the arch geometry and CM tracker both turn 
red and the evaluation is stopped. Figure 172 shows this kinematic limit failure 
condition for a two-step pulse in excess of recovery. 
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Figure 171. Dynamic propagation of the two-step pulse with (a) acceleration and 

motion propagating towards collapse, (b) acceleration working towards recovery, 
and (c) motion and acceleration towards recovery. 
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Figure 172. Identified collapse in the dynamic propagation 

6.4.1 Half Cycle Collapse 

In order to evaluate the half-cycle collapse, the Oppenheim two-step pulse was 
applied to a system with a COR set to zero for a perfectly plastic impact [131], 
[132]. The two-step pulse consists of applying an acceleration impulse of 
magnitude ap for a duration tp and followed by a reversed acceleration of half the 
magnitude applied for twice the duration. For each acceleration amplitude, the 
pulse time was continually increased by 0.02 seconds until a collapse was 
identified (see Figure 172). Figure 173 shows the resulting half-cycle failure 
domain developed from the described work-path approach as well as the original 
Oppenheim results. From Figure 173 it can be seen that the increase in static 
capacity from the upper bound limit is coupled with a small decrease in the 
recoverable impulse duration. The behavior of the arche’s half-cycle failure is 
nonetheless captured by this time incremental work-path approach. 



Kinematic Equilibrium, Black Box Analysis, and the Characterization of Dry-Stack Masonry Arches 

221 

 

Figure 173. Half-cycle failure domain comparison for the two-step pulse analysis 
of the Oppenheim arch [132] 

In order to examine the effects of a vertical component to the applied 
acceleration, the half-cycle collapse evaluation was repeated with the inclusion 
of constant vertical accelerations. This generates the failure domains shown in 
Figure 174. An applied vertical acceleration changes the static limit of its 
horizontal counterpart as expected. The behavior of the half-cycle failure is also 
maintained for all the shown conditions except for a vertical acceleration of 0.9g. 
As previously discussed, this strong vertical acceleration has the effect of 
reversing the rotational work. This reversal minimizes the window of recovery for 
weak horizontal pulses. This is consistent with the observations of the work 
paths shown in Figure 166 and it diminishes with the increase in the horizontal 
acceleration’s magnitude. 
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Figure 174. Half-cycle failure domains for various vertical accelerations with a 
horizontal pulse 

6.4.2 Conservation of Energy 

For the conservation of energy check, the COR was switched to unity to define 
a perfectly elastic instantaneous impacts. A 0.55g magnitude acceleration pulse 
was applied at various vector angles for a duration of 0.5 seconds. After the 
applied pulse, the analysis continued running for a total 20 seconds. The time-
steps of the analysis were set at 0.02 seconds.  

The rightward motion limit-line in Figure 170 identifies the admissible 
acceleration vector limits for a 0.55g magnitude as -17° ≤ θa ≤ 65°. Therefore 
acceleration vector angles between -10° and 50° were selected for the 
evaluation of energy conservation. For each evaluation, the horizontal CM 
displacement and kinetic energy were recorded at each time increment. Figure 
175 shows ten seconds of the displacement and kinetic energy plots for applied 
accelerations with vector angles of -10°, 0° and 10°. This figure shows the 
application of the acceleration and the resulting periodic nature of free motion 
with two distinct half-cycles resulting from the two mechanism geometries of left 
and right displacements. Additionally, as is expected the displacements and 
kinetic energies are out phase. 
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Figure 175. Horizontal CM displacement and kinetic energy versus time for 
applied 0.55g acceleration pulse with vector angles of -10°, 0°, and 10° 

Figure 176 shows the percentage of kinetic energy loss between the first and 
last recorded energy peaks for each acceleration vector angle tested. The 
average energy loss is 4.4% over the 20 second evaluation for all the tests. 
Additionally, the energy loss never exceeded 10% for any single analysis. It can 
thus be reasonably argued that energy is conserved for the ideal conditions 
prescribed to the dynamic modelling approach.  

 

Figure 176. Percent kinematic energy loss versus applied acceleration with vector 
angle with a 0.55*g magnitude applied for 0.5 seconds 

Figure 177 shows the peak horizontal displacement of the CM, the time duration 
when the peak displacement was reached, and the maximum kinetic energy for 
each of the applied acceleration vector angles with a 0.55g magnitude and a 0.5 
second application. These plots reveal the sensitivity of the arch’s response to 
the acceleration vector angle and the 20° vector angle is identified as the most 
kinematically significant angle for the single pulse applied to the given arch-
hinge configuration. 
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Figure 177. Maximum horizontal CM displacement, the time of maximum 
displacement, and the maximum kinetic energy versus the applied acceleration 
vector angle with a 0.55*g magnitude and applied for 0.5 seconds 

6.5 Concluding Remarks 

This chapter extends the application of kinematic equilibrium to the dynamic 
modelling of applied two-dimensional acceleration vectors. Using ideal 
conditions, the work path and time domain are formulated for applied 2D 
accelerations that exceed the stable limit of the arch-hinge configuration and 
they are used to construct the dynamic time incremental analysis structure from 
a defined constant acceleration at each time step of the analysis. The time 
domain and kinetic energy equations were finally coupled with a finite set of 
motions and impacts to establish the modelling structure. 

The dynamic modelling approach was then evaluated for its half cycle collapse 
response and conservation of energy. The half-cycle collapse provided a 
benchmark test to the performance of the model and was also used to highlight 
the behavior change that arises when the applied accelerations are strongly 
vertical. The conservation of energy tests revealed that this dynamic model 
maintains an acceptable level of energy conservation when left under free 
motion, and the sensitivities of the acceleration vector angle are again 
highlighted. 

With the inclusion of the dynamic modelling under the same kinematic 
equilibrium analysis structure, the foundation for a complete and comprehensive 
analysis approach has been formulated for hinge-controlled masonry arches.  
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CHAPTER 7 

CONCLUSIONS 

List of Abbreviations and Symbols 

BVP ─ Boundary value problem 

CLD ─ Collapse load diagram 

KCLC ─ Kinematic collapse load calculator 

LA ─ Limit analysis 

RSBD ─ Reinforced stability-based design 

SBD ─ Stability-based design 

 

Structural masonry and the underlying SBD techniques have the potential to 
become an advantageous building method for future constructions. This requires 
architects to be versed in their application, engineers to be educated in their 
analysis, and practitioners to be trained in their construction. While the 
understanding of structural masonry has not been lost, the focus of that 
understanding has been applied to the preservation, restoration, and 
rehabilitation of historical structures. Consequently, fundamental gaps in the 
knowledge structure exist when considering the modernization of the structural 
system for new constructions. Limiting the focus to the analysis of masonry 
arches, the objective here has been to establish the foundation of a simplified 
structural analysis approach that bridges these engineering gaps for new 
constructions. 

In Chapter 1, the motivation for the modernization of masonry was presented 
and followed with a discussion on a solution to removing sudden collapse and 
the joint slip potential through RSBD. Then it was highlighted how the objective 
of design versus assessment requires the evaluation of more than the minimum 
problem and the focus of stability instead of strength overlooks the conditions 
arising from controlling the mechanism. Lastly, SBD was described as a BVP 
whose solution is obtained through a singularity (kinematic equilibrium) 
calculation and an admissibility (thrust line geometry). This structure provides 
the typical input-output nature of a black-box analysis where the input is an arch 
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and mechanical joint configuration and the output is the loads, reactions and 
admissibility of the state’s existence.  

Chapter 2 presented a general schematic of the current understanding of 
unreinforced masonry and SBD as seen through the wealth of knowledge that 
exists and its consolidation. The mechanics of masonry and computational 
methods for vaults were discussed in this manner. From this discussion it is clear 
that most arch conditions can be analyzed. In the context of modernization for 
new constructions however, this information is not structured for the practicing 
engineer, the LA approaches are limited to the onset of mechanization, and the 
numerical approaches are computationally expensive. 

The kinematic equilibrium problem and the construction of the free-body 
diagrams and corresponding equations of equilibrium were developed in 
Chapter 3. Through the representation of the arch as three rigid elements 
connected by four pins, the basic statics problem is derived as an infinite solution 
problem under self-weight. The inclusion of a loading geometry variable into the 
free body diagram of the traditional statics problem introduces the additional 
variable necessary to establish a determinant system. This determinate system 
is represented by the equations of equilibrium which are structured to obtain the 
solution through simple matrix manipulation. While the construction of the 
equations of equilibrium is quite simple, each loading condition requires its own, 
as well as each potential mechanism that arises from the inclusion of non-ideal 
slip joints. Therefore, the remainder of Chapter 3 was dedicated to establishing 
the free-body diagrams and equations of equilibrium for the basic loading 
conditions and the 69 additional mechanisms from the inclusion of static friction. 
The creation of these equations of equilibrium and free-body diagrams also 
establishes a database analysis structure as well as simplified formation 
strategies for the equations of equilibrium from conditions not yet addressed. 

Chapter 4 developed the black box analysis structure. This analysis structure 
focuses on the assessment of kinematic admissibility primarily through the 
evaluation of the thrust line geometry against the kinematic boundary conditions 
of the arch. The thrust line geometry itself was established through thrust point 
position calculations established from the equilibrium evaluation between each 
block joint line and the first mechanical joint. After the discussion on kinematic 
admissibility, the KCLC was presented. The KCLC is a simplified interactive 
software analysis tool designed to carry out the black box analysis and display 
the results. The simplicity and adaptability of the KCLC was demonstrated 
through the inclusion of seven mechanism types and the corresponding limiting 
condition evaluation between the different mechanism capacities. The 
incorporation of non-circular arches into the KCLC was also developed through 
an AutoCAD® data extraction technique which simplifies the geometric 
development and links the analysis with one of the most widely used software in 
construction and engineering. Next, the capacity compensation for non-stable 
kinematically admissible conditions was developed and incorporated into the 
software structure. Capacity compensation is defined as the required joint 
reinforcement capacity necessary to maintain the thrust line within the material 
boundary of the arch, and it establishes the requirements for designing rigid 
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elements from a collection of rigid blocks. The last component of the black box 
analysis structure was the inclusion mechanical deformations. The SDOF nature 
of the defined kinematic condition produces a single variable requirement for 
defining a deformed state and the BVP nature of the analysis structure allows its 
synchronization. This synchronization was highlighted with the ability to evaluate 
the experimentally observed capacity reduction resulting from a finite hinge 
stiffness at a joint. 

Chapters 3 and 4 presented the foundation of the developed SBD analysis for 
hinge-controlled masonry arches. They established an input-output structure of 
a calculator. Chapter 5 began the examination of the output through 
characterization strategies. First, the CLDs were developed for a first-order 
analysis strategy necessary for a design/analysis structure to compete in the 
modern market. Then two experimental campaigns were discussed in detail 
where the capacities of a family of mechanisms were tested. The experiments 
revealed the ability to capture the capacity behavior of an arch, develop 
simplified capacity adjustment equations, and directly address observed non-
ideal conditions with the analysis structure. These non-ideal conditions were the 
inclusion of the slip-joint and static deformations resulting from a finite stiffness 
to the base blocks which were derived in Chapters 3 and 4. 

Lastly, Chapter 6 utilized the link with mechanical deformations to incorporate 
the time domain and develop a 2D seismic modelling strategy. The link between 
the mechanical deformations and kinematic equilibrium was utilized to construct 
work path equations. These work paths in combination with the path 
independence of conservative work established a spatial description of kinetic 
energy for constant accelerations and allowed the formulation of the time 
domain. Then the assumption of constant acceleration per time increment was 
introduced to establish an incremental propagation of the position and kinetic 
energy of the arch. The examination of the dynamic modelling approach was 
compared against a half-cycle collapse benchmark and evaluated for the 
conservation of energy. These conditions revealed that the ideal conditions are 
upheld by the analysis model and that kinematic equilibrium can be utilized for 
both the static and dynamic analysis of arches. 

This work establishes the foundation for a robust, efficient, adaptable, and 
accessible structural analysis model for the SBD analysis of dry-stack masonry 
arches, but it is by no means complete. The different loading conditions and all 
the mechanism types need to be incorporated into the software to form a single 
comprehensive KCLC. A simplified point grid measurement technique needs to 
be established to efficiently link theory and experiment to reduce the lag time 
between research and application. The dynamic modelling needs to expand to 
cover wind, traffic and potentially water loads as well. Lastly, a continued 
experimentation must be performed to further refine the non-ideal condition both 
for the analysis model and the development of construction techniques. While 
this list is long, this work has established the foundation (kinematic equilibrium) 
to determine the conditions requiring evaluation and the blueprint (black-box 
analysis, characterization, and dynamic modelling) to carry the condition through 
a comprehensive analysis. In essence, this work generates the minimum viable 



Stockdale  Chapter 7 

228 

product necessary to promote and advance the application of masonry in new 
constructions. Additionally, the developed analysis approach is structured to 
adapt and expand with time. So begins a new branch of structural analysis. 
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A 

APPENDIX A – DEM ANALYSIS MODEL FOR 
THE IN-SCALE ARCH EXPERIMENT 

List of Abbreviations and Symbols 

DEM ─ Discrete element modelling 

d ─ Unit weight of the voussoirs 

 

In Section 5.2 the experimentation of an in-scale arch subjected to a tilting plane 
was presented in a format that focuses on the characterization of the arch and 
the experimental observations. As discussed in the text, a DEM model was 
developed and tested under that same hinge sets in order to create a validation 
trifecta. The reason for the trifecta was that both the experimentation of a family 
of mechanisms and the developed analysis model presented in this thesis are 
novel approaches that did not have any direct benchmarks for evaluation. The 
DEM model itself however lies outside the main scope of this work. Therefore, 
for the purpose of reproducibility and completeness the DEM model details are 
presented here in Appendix A, but they can also be found in existing literature 
[124]. Refer to Section 5.2 for the details of arch model geometry creation, hinge 
set selection, and the results of the DEM analysis. 

For each of the 25 hinge sets tested an interdependent geometric model was 
created for the DEM evaluation of the experimental arch (see Figure 178). Each 
of the arch voussoirs were represented by rigid blocks. The joints were defined 
as zero-thickness interface elements behaving in accordance to the Coulomb 
failure criterion. The voussoir material properties of the arch are shown in Table 
7. These material properties were obtained through experimental testing of the 
individual voussoirs. The required material parameter to model the voussoirs is 
the unit weight (d), which was taken as 550 kg/m3. The joints between were 
presented by interfaces modelled using elastic-perfectly plastic coulomb slip 
joint area contact. Normal and shear stiffness were set high to prevent 
penetration between blocks at the joints. The interface cohesive, tensile strength 
and the dilatation angle were set to zero to represent dry-joints. Self-weight 
effects were incorporated as gravitational loads. Each analysis began by 
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establishing equilibrium under self-weight and then, a tilting plane analysis was 
undertaken until the observed collapse of the arch (Figure 178).  

Table 7. Material properties used for the dry joints in the DEM model [124] 

Joint 

Normal 

Stiffness 

[GPa/m] 

Joint 

Shear 

Stiffness 

[GPa/m] 

Joint 

Friction 

Angle 

[°] 

Joint 

Cohesive 

Strength 

[kPa] 

Joint 

Tensile 

Strength 

[MPa] 

Joint 

Dilation 

Angle 

[°] 

20 10 22 0 0 0 

 

 

Figure 178. Typical geometry (Hinge Set 11, see Section 5.2) developed for (a) the 
DEM mode, and (b) the observed failure mode [124] 
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