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Abstract 
 

 

Despite recent technological advances in biomedicine, the availability of model-based 

tools to support medical doctors in clinical decision-making is rather limited. The 

selection of the optimal drug dose and dosing regimen is a complex problem, which 

must take into account the physical characteristics of the patient and is constrained 

by patients’ co-morbidities and therapeutic windows of drugs. This work focuses on 

the specific fields of anesthesia and intensive care. Anesthesia-associated risks are 

mostly related to medication errors, typically associated to the administration stage. 

In the intensive care unit (ICU), wrong dosing is reported as one of the most frequent 

errors. Anesthesia and intensive care share significant challenges, such as nonlinear 

and complex dynamics of the patients’ response to drugs, uncertainty of the dose-

response relation (because of high inter- and intra-individual variability), multiplicity of 

variables characterizing and describing the response, and operative constraints 

(therapeutic windows of drugs and safe clinical ranges of patients’ physiological 

parameters). Clinical adoption of model-based tools for selection of the optimal dose 

can bring actual improvements in these fields, by providing a more rigorous and robust 

approach to inter-individual variability of the response to drugs, reducing clinicians’ 

workload and variability in practice, and limiting potential human errors. Combination 

of medical doctors’ experience and knowledge with such tools can guide the decision-

making process and enhance patients’ safety and quality of recovery. 

This work can be divided into two parts. The goal of the first part is to develop and 

evaluate in silico a physiologically-based (PB) model-predictive controller for closed-

loop administration of the anesthetic agent propofol and the analgesic opioid 

remifentanil. In clinical practice, anesthesiologists select an initial dose to induce the 

desired depth of anesthesia and then make adjustments basing on the monitored 

physiological parameters, to maintain the desired depth of anesthesia throughout the 

medical procedure that requires the anesthetic state (e.g., surgery). For the sake of 

completeness, it is worth mentioning that in many parts of the world, Target-Controlled 

Infusion (TCI) pumps (a model-based technology) are commonly used to deliver 
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intravenous anesthesia. However, their performance is totally dependent on the 

accuracy of the embedded model and does not take into account patients’ real-time 

data on physiological parameters. Anesthesiologists heavily rely on their experience 

and knowledge, setting the basis for remarkable variability of the procedure and 

potential human errors (related to the level of attention, stress and fatigue, and quality 

of communication with the rest of the operating room team). Researchers are 

investigating closed-loop solutions for automated anesthesia delivery. Proposed 

solutions differ for selected control strategy (e.g., model-free or model-based), number 

of inputs (considered physiological parameters), and number of outputs (considered 

drugs). In our work, we consider both a quantitative measure of hypnotic depth and 

hemodynamic parameters to regulate propofol and remifentanil infusion rates, for a 

complete control over the anesthetic state of patients. In addition, the use of the 

modern physiologically-based approach to pharmacokinetic-pharmacodynamic 

modeling allows facing some of the most controversial challenges of anesthesia 

delivery, i.e. (i) optimal dosing in “at-risk” categories of patients (in particular, elderly, 

obese, and pediatric patients) and (ii) investigation and inclusion of the impact of 

hemodynamic changes on the patients’ response and required dosing modifications, 

which are crucial for a smooth procedure and post-operative recovery. Special 

attention is also devoted to propofol-remifentanil synergistic effects on arterial 

pressure. 

The goal of the second part of the work is to develop a multi-route PB pharmacokinetic 

model of melatonin for administration to critically ill patients, with the purpose of 

optimizing melatonin delivery for this special category. Indeed, melatonin is a well-

known sleep regulator and is currently of great interest for its additional functions, e.g., 

anti-oxidant, immunomodulatory, and anti-carcinogenic effects. Sleep disruption is a 

common problem in ICU and has short- and long-term adverse effects on the patients, 

with the risk of further compromising their recovery. Melatonin versatility to multiple 

routes of administration and lack of toxic effects makes it extremely appealing for 

application to ICU. Researchers are investigating its pharmacokinetics in both 

experimental and simulation studies. This work moves a step forward by showing how 

the proposed PBPK model can be applied to identify (i) the optimal administration 

route depending on the goal of the clinical treatment and (ii) the most suitable dose, 

dosing regimen, and time of administration according to the selected route. Although 

the work focuses on melatonin, the proposed approach is valid for any drug for which 

an ideal pharmacokinetic profile is desirable.
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CHAPTER 1 

 
 
 
 

 

Introduction 
 
 
 
 
 
 

1.1 Background and motivation 

 

The broader scientific context of this thesis is Quantitative Pharmacology, i.e. “the field 

of biomedical research that seeks to use computer-aided modeling and simulation to 

increase our understanding of the pharmacokinetics (PK) and pharmacodynamics 

(PD) of drugs” (Leil and Ermakov, 2015). For the sake of clarity, pharmacokinetics is 

the branch of pharmacology that studies the dynamics of the processes of absorption, 

distribution, metabolism, and elimination (ADME) of drugs administered to living 

beings. It is commonly defined as “what the body does to the drug”. 

Pharmacodynamics is rather defined as “what the drug does to the body”, i.e. the 

study of drug effects along with the mechanisms leading to their manifestation. 

Medicine and pharmacology have been slower compared to other fields, e.g., 

transport and electronics, to integrate computer-aided modeling and simulation. The 

common belief that “medicine is an art based on science” (Sir William Osler, 1849-

1919) is still deeply rooted in the mind of most clinicians. In fact, medicine has intrinsic 

empirical foundations that are still present in the methods of clinicians and approaches 

to education of the medical trainees. An integration of model-based tools with 

clinicians’ expertise and knowledge is desirable to bring actual improvements in 

clinical practice and quality of patients’ care. The pharmaceutical industry is already 

going down this road, with an increasing trend of model-based drug development 
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(MBDD) implementation throughout the phases of new drugs research and 

development (R&D), also supported by regulatory agencies1. On the contrary, the use 

of model-based tools for decision-support in clinical treatments is not as common in 

routine practice. This is true even in fields attracting considerable interest and 

research funding, e.g., oncology (Buil-Bruna et al., 2016). The physicians’ experience 

and mindset, the institution (e.g., hospital) policies, and the regional or national context 

can all represent contributing factors in preventing the diffusion and adoption of 

innovative methodologies and tools. 

For a better understanding of the objectives of this thesis, it is useful to further explore 

the analogy with the innovative approaches spreading in R&D of new drugs. Leil and 

Bertz (2014) show that since the early ‘60s there has been a contrasting trend 

between the increasing number of new drugs approved by FDA and a decrease in the 

productivity of pharmaceutical industry, which is defined as the number of approved 

drugs per USD billion of expenditures in R&D. 

In brief, FDA recognized that the pharmaceutical industry was on a “Critical Path”, 

because of a decrease of productivity related on one hand to the difficulty of finding 

new therapeutic targets, and on the other to the increasing costs associated with the 

discovery and development of new drugs (i.e. average cost 1.5$ billions) (Leil and 

Bertz, 2014). Leil and Bertz found that computer-aided modeling and simulation could 

be part of the solution to this problem. In fact, pre-clinical and clinical experiments 

constitute the most time-consuming and expensive phase of new drugs R&D. 

Computer-aided modeling can potentially re-create an “infinite” number of in silico 

scenarios with the goal of identifying and removing a priori the conditions that are 

responsible for decreasing the probability of success of real experiments. This 

approach can thus lead to the reduction in duration and costs of real experiments. In 

addition, models can help increase the level of understanding of drugs 

pharmacokinetics and pharmacodynamics, for an enriched design of pre-clinical and 

clinical trials and improvement of their efficacy. 

This thesis argues that such advantages are easily transferable from R&D of new 

drugs to clinical practice. Indeed, decision-support tools based on PK-PD models of 

patients’ dose-response relation can be used to: 

➢ Enhance understanding and find new insights on the patients’ response to 

 
1 European Medicines Agency (EMA, in Europe) and Food and Drug Administration (FDA, in the United States) are the main regulatory agencies. 
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drugs; 

➢ Design individualized treatments, depending on the patients’ characteristics 

(e.g., demographics, presence of comorbidities, and genetics), via personalized 

models; 

➢ Optimize dosing and dosing regimens, with the goal of avoiding on one hand 

ineffective treatments and on the other overdosing; 

➢ Integrate and support the typically empirical approach of the teaching methods 

for medical trainees. 

Interestingly, according to the report “Fiscal Sustainability of Health Systems” (2015) 

by the Organization for Economic Co-operation and Development (OECD), the “public 

health spending in OECD countries has grown rapidly over most of the last half 

century”. Although the consequences have been positive on the population health, 

sustainability remains an undeniable challenge for the future years. Innovative 

approaches to treatments and diagnosis are required to reduce such high 

expenditures and at the same time ensure the progress of global health. In the long 

term, the introduction of new technologies in the daily routine care of patients can 

contribute solving the problem, although requiring transitional investment costs. PK-

PD model-based tools have the potential to enhance the efficiency of patients’ care 

and possibly reduce healthcare expenditures, by reducing medical errors and adverse 

outcomes, and decreasing patients’ length of stays with associated costs of 

hospitalization. Especially, if one considers that healthcare produces a remarkable 

amount of data that can and should be integrated into mathematical models to improve 

pharmacotherapy, but is most of the times unusable, either for privacy issues, or 

because of unstructured formats or simply because they are discarded or locked away 

in databases. These data are valuable information, as they can allow a better 

understanding and thus mathematical description of the patients’ dose-response 

relation. 

1.2 Application to anesthesia and intensive care and 

objectives of the thesis 

 

The work presented in this thesis focuses on anesthesia and the related field of 
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intensive care2. 

It is estimated that only in the European Union (EU), 29 million anesthetic procedures 

are carried out every year, of which approximately 10 millions are administered to 

high-risk patients (American Society of Anesthesiologists (ASA) classification3 II or 

higher). About 20% are Total Intravenous Anesthesia (TIVA), which is the core of the 

first part of the thesis. With regard to intensive care, Rhodes et al. (2012) identified 

over 70 000 critical beds in Europe. These numbers are expected to grow because of 

progressive population aging and sizing, and increase of prevalence of chronic 

diseases (e.g., cardiovascular diseases, obesity, and cancer). 

Although anesthesia is today considered a rather safe procedure (Botney, 2008), 

advances in technology have not eliminated anesthesia-associated risks yet. Such 

risks are often related to medication errors (Schiff and Wagner, 2016). Interestingly, 

Cooper et al. (2009) report that most errors occur during the administration stage. 

Insufficient experience, poor familiarity with the medical devices, and inadequate 

communication with the rest of the operating room (OR) team are listed among the 

main contributing reasons (Cooper et al., 2009). Indeed, anesthesia-associated 

incidents can lead to minor and major intra- and post-operative complications. 

Excessively deep anesthesia has been associated with mortality and delirium, 

especially in high-risk patients (Kertai et al., 2010; Watson et al., 2008). Intraoperative 

hemodynamic fluctuations have been associated to poor outcomes of clinical 

procedures (Devinney et al., 2015; Reich et al., 2005). Similarly, in the intensive care 

unit (ICU), wrong dose is one of the most frequent errors (Kiekkas et al., 2011) and 

can be detrimental for critically ill patients and compromise their recovery. 

Dr. David Gaba (Professor of Anesthesiology, Perioperative and Pain Medicine at 

Stanford University School of Medicine), a pioneer in the human factors of anesthesia, 

claims that the anesthesiologist has more in common with flight crews, fire chiefs, and 

nuclear plants operators rather than other medical doctors, except for the related field 

of intensive care (Reason, 2005). Reason (2005) lists a series of shared features 

among these fields, to support Dr. Gaba’s claim. We report, rephrase, and integrate 

some of them, especially interesting to introduce this work: 

 
2 A hospital facility for provision of intensive nursing and medical care of critically ill patients, endowed with high quality and quantity of continuous 

nursing, medical supervision, and use of sophisticated monitoring and resuscitative equipment (https://medical-

dictionary.thefreedictionary.com/intensive+care+unit). 
3 In 1963, ASA proposed a physical status classification of pre-operative patients for anesthetic risk assessment. The ASA score is a subjective 

evaluation of a patient's health status based on five classes (I, normal healthy patient to V, moribund patient not expected to survive without the 

operation) (Daabiss, 2011). 

https://medical-dictionary.thefreedictionary.com/intensive+care+unit
https://medical-dictionary.thefreedictionary.com/intensive+care+unit
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➢ Complex dynamics and uncertain behavior of the process (i.e. the patient body 

and the inter- and intra-individual variability of the dose-response relation); 

➢ Multivariate process (i.e. several variables characterize the patient dose-effect 

relation); 

➢ Intrinsic nonlinearity of the process (biological systems are nonlinear (Higgins, 

2002)); 

➢ Operative constraints (e.g., therapeutic window4 of administered drugs and safe 

clinical ranges of physiological parameters); 

➢ Presence of several sources of information (monitoring instruments), reliance 

on indirect/inferred indicators, redundant measures. 

These considerations highlight the importance of the role played by human factors 

and the potential impact of human errors on the safety and quality of recovery of 

patients involved in the fields of anesthesia and intensive care. The problem is 

relevant not only in terms of numbers (e.g., according to Kothari et al. (2010) up to 

87% of anesthesia-associated incidents are related to human errors), but also in terms 

of costs and consumption of medical resources, because medication errors leading to 

adverse drug events and severe clinical consequences increase times and costs of 

hospitalization. Mathematical models and model-based tools for optimization of drug 

dosing have the potential to reduce human error and provide significant improvements 

in clinical practice, in terms of a more rigorous and robust approach to inter-individual 

variability, clinical workload reduction and decision-support, improved patient 

outcomes, reduced length of stays and hospitalization costs, and reduction of drugs 

waste. The clinical adoption of such systems would also reduce the variability in 

medical practice, which is strictly related to medical quality (Mackey, 2012). 

Within this context, the objectives of the thesis are: 

➢ The development and in silico evaluation of a physiologically-based (PB) model-

predictive controller for closed-loop administration of the anesthetic agent 

propofol and the analgesic opioid remifentanil; 

➢ The development of a multi-route physiologically-based pharmacokinetic 

 
4 The therapeutic window is the range of dosage that produces therapeutic response without causing any significant adverse effects in patients 

(https://medimoon.com/2014/12/therapeutic-window-and-therapeutic-index/). 

https://medimoon.com/2014/12/therapeutic-window-and-therapeutic-index/
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(PBPK)5 model for optimal dosing of melatonin to critically ill patients. 

1.3 Thesis structure 

 

This thesis includes two parts that are consistent with the goals stated in Section 1.2. 

Although each chapter is self-standing, together they constitute a progressive 

development towards those two specific goals. The thesis is structured as follows. 

Chapter 1 Introduction 

Chapter 2 Closed-loop controlled aesthesia: state of the art and challenges 

Chapter 3 Model-predictive control of anesthesia with propofol and remifentanil 

Chapter 4A Tackling inter-individual variability: the influence of intra-operative 

cardiovascular changes 

Chapter 4B Tackling inter-individual variability: the influence of anatomical and 

physiological features 

Chapter 5 Anesthetic-analgesic interactions and adequate depth of anesthesia in 

high-risk patients 

Chapter 6 Melatonin benefits for the critically ill patient 

Chapter 7 Physiologically-based pharmacokinetic modeling for transdermal delivery 

Chapter 8 Physiologically-based pharmacokinetic simulations to select the optimal 

administration route 

Chapter 9 Optimal melatonin dosing for endogenous levels in ICU patients 

Chapter 10 Conclusions and future perspectives 

 

Chapters 2 and 6 provide specific introductions to the topic of the first and second 

parts of the thesis, respectively, by illustrating the state of the art and clarifying the 

objectives of that part of the research activity. 

Chapters 2 to 5 are devoted to the development of a model-based controller of TIVA 

administration with propofol and remifentanil. Particularly, Chapter 2 provides a short 

 
5 Physiologically-based pharmacokinetic (PBPK) modeling is a specific branch of pharmacokinetic modeling that combines the anatomy and 

physiology of the body with mathematical description of ADME processes. 
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introduction on the current techniques of anesthesia delivery and explains the state-

of-the-art research on closed-loop methods for anesthesia induction and 

maintenance. Some potential ethical and practical implications of their clinical 

adoption are also discussed. Chapter 3 introduces the developed model-predictive 

controller, and its evaluation based on the modern physiologically-based approach to 

PK modeling. Chapters 4A and 4B propose approaches to face inter-individual 

variability of the response to anesthesia, by (i) using real-time hemodynamic data as 

input to the model to explain part of such variability and (ii) including the effects of the 

anatomical and physiological differences among individuals within the model, 

respectively. Chapter 5 presents the modifications applied to the PD models and the 

controller features, to account for anesthetic-analgesic synergistic interactions and 

induce adequate depth of anesthesia in high-risk patients. 

Chapters 6 to 9 describe the development of a multi-route PBPK model to optimize 

melatonin dosing for critically ills. Chapter 6 introduces the features of critically ill 

patients and the reasons for interest in melatonin administration to this specific 

category. Chapter 7 focuses on the development of a PBPK model for transdermal 

(TD) delivery. Chapter 8 presents the identification and validation of the model for 

intravenous (IV) and oral (per os, PO) routes, and shows how PBPK simulations can 

be used a priori to select the optimal administration route, depending on the specific 

goal of the clinical treatment. Chapter 9 proposes a methodology for optimization of 

melatonin dosing for critically ill patients and discusses the results, also comparing 

them to dosing optimization for healthy individuals. 

Finally, Chapter 10 summarizes the main innovative aspects and conclusions and 

offers some future perspectives of the presented work. 
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CHAPTER 2 

 
 
 
 

 

Closed-loop controlled anesthesia: 

state of the art and challenges 
 
 
 
 
 
 

2.1 Author’s Note 

 

This chapter introduces the topic of closed-loop controlled anesthesia, specifically 

describing the current approach to administration of IV anesthesia and the rationale 

and state of the art of the research on closed-loop systems for anesthesia delivery. A 

short discussion on the ethical problem and the impact on clinical practice deriving 

from routinely use of these systems concludes the chapter. 

 

This work is part of a chapter prepared for the Elsevier book “Control applications for 

Biomedical Engineering Systems” edited by prof. Ahmad Taher Azar (2020). 

The chapter is entitled: 

 

Control strategies in general anesthesia administration 
Adriana Savoca, Davide Manca 

 

and provides a proper introduction to the section of the thesis concerning the research 

activity on closed-loop anesthesia delivery. 



Ph. D. Thesis of Adriana Savoca 

26 
 

2.2 Anesthesia delivery today 

 

“The practice of medicine is an art based on science” said the father of modern 

medicine Sir William Osler (1849-1919). This mindset can be partially interpreted as 

one of the reasons contributing to slowness by biomedicine and pharmacology to 

integrate computer aided modeling/simulation and control systems, compared to other 

fields such as transports and electronics (Leil and Bertz, 2014). Additional factors are 

the prejudice that biological systems are too complicated to model, and the difficulty 

of creating multidisciplinary teams that would work in this direction. Nonetheless, in 

recent years, technological advances in biomedicine and pharmacology have allowed 

making considerable steps forward (Leil and Bertz, 2014). 

One of the most interesting emerging applications of control systems in biomedicine 

is automated anesthesia delivery. At present, 230 million anesthetic procedures are 

carried out yearly all over the world (Schiff and Wagner, 2016). Anesthesia is today 

considered rather safe, and its associated risks represent a small fraction of the total 

risk of surgical procedures. Yet, with such a high number of surgical or other painful 

procedures taking place every year, those risks cannot be overlooked. Although a 

number of studies claim an ongoing decrease in the overall global anesthesia-

associated mortality, an equivalent number of studies claim the opposite and highlight 

discrepancies and differences in the statistics (Schiff and Wagner, 2016). In any case, 

researchers agree that the events leading to anesthesia-related death are often 

associated to medication errors, which result into overdose and critical side effects, 

with particular impact on the respiratory and cardiovascular systems (Schiff and 

Wagner, 2016). Conversely, awareness episodes related to underdosing are not that 

rare among patients. Indeed, selection of the optimal anesthetic dose is not an easy 

task. In fact, both anesthetic and analgesic agents feature narrow therapeutic 

windows, which mean a limited range between (i) minimum concentration levels to 

induce desired clinical effects and (ii) maximum levels to avoid undesired dangerous 

ones. The optimal dose depends not only on the patient’s physical characteristics, 

age, possible diseases, and genetics, but also on the type of surgical operation 

(Absalom and Struys, 2007). The aim of the anesthetist is on one hand to achieve the 

desired unconsciousness and pain relief levels and on the other to accomplish a 

proper post-anesthesia recovery. 

A balanced anesthesia results from the combination of three aspects, i.e. three types 

of drugs: (i) a hypnotic agent causing unconsciousness, (ii) an analgesic agent 
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producing pain relief, and (frequently) (iii) a muscle relaxant, to avoid undesired reflex 

activity that would interfere with surgery (essential in abdominal and cardiac surgery). 

Today, basing on the patient’s features and their own experience, the anesthetist 

selects an initial dose for induction of the desired depth of anesthesia (DOA). Actually, 

this level of unconsciousness is not uniquely defined among anesthetists, and neither 

standard methods nor certified technologies are available for quantitative evaluation. 

Thus, the anesthetist observes the patient response and manually adjusts the initial 

dose until the desired DOA is reached. This phase is defined as the induction of 

anesthesia. After surgery starts, intra-operative surgical stimuli are likely to produce 

disturbances of the anesthetic state. The role of the anesthetist is to maintain DOA 

against such disturbances, by making further adjustments based on patient’s vital 

parameters and electroencephalographic trace monitoring (i.e. maintenance phase of 

anesthesia) (Absalom et al., 2011). 

The required drugs can be either administered by means of (i) standard syringe pumps 

(with desired dose as input), or (ii) Target-Controlled Infusion (TCI) pumps, first 

proposed in 1983 (Absalom and Struys, 2007). In this case, rather than the dose, the 

anesthetist selects a target (i.e. desired) concentration either in plasma or in the drug 

site of action (aka effect-site), and the pump evaluates the corresponding infusion rate 

(IR) to be administered to the patient. This calculation is typically based on a three-

compartment pharmacokinetic (PK) model, which correlates the drug IR to the 

expected concentration. 

2.3 Open-loop or closed-loop anesthesia? 

 

Despite their name, TCI pumps work rather differently than conventional control 

systems. Inputs to these pumps are main physical characteristics of the patients (e.g., 

gender, body mass, height, and age), and a desired value of the drug concentration. 

Calculation of the corresponding dose is based on the analytical/numerical solution of 

a 3-equation ordinary differential system, which describes the drug concentration 

evolution in the body. Classical PK models have empirical foundation and their 

structure is not strictly related to the patient’s anatomy and physiology. Mostly, the 

models implemented in commercial TCI pumps were identified at the end of the ‘90s 

(e.g., Schnider model for propofol (Schnider et al., 1998), Minto model for remifentanil 

(Minto et al., 1997)) grounding on PK studies on a limited number of healthy 

volunteers. As a matter of fact, several authors highlighted the necessity to identify 
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specific three-compartment models in case of different populations, e.g., obese, 

children, and patients with some sort of disease (Constant and Rigouzzo, 2010; 

Cortinez et al., 2010; Marsh et al., 1991). Thus, inter-individual variability is likely to 

represent a serious concern for the anesthetist used to commercial TCI pumps. 

The most critical and limiting feature of TCI pumps is that they do not adjust IR after 

any feedback measure(s) of the patient’s anesthetic state (contrary to any real 

feedback control system). In fact, in case of total intravenous anesthesia (TIVA), it is 

not possible to measure the drug concentration in real time during the surgical 

operation. Consequently, the anesthesiologist can never be certain that the expected 

target concentration is reached within the body of the patient. In this sense, TCI pumps 

deliver an open-loop configuration, where the anesthetist acts as a human controller, 

as they physically close the loop by personally monitoring the vital parameters of the 

patient and appropriately regulating the target concentration. The same occurs in case 

of manual syringe pumps. Only, in this case, the anesthetist directly regulates the drug 

IR or chooses to administer intermittent boluses, instead of modifying the target 

concentration. In some cases, this regulation occurs before any disturbance (i.e. 

surgical stimuli) manifestation. Indeed, before a particularly stimulating procedure, the 

anesthetist may decide to increase the target concentration/drug IR to avoid possible 

alterations of the DOA and analgesia level of the patient, relying on their experience. 

It is evident that human factors play a paramount role in TIVA procedure, in terms of 

continuous monitoring, training and experience, communication with the operating 

room team, level of fatigue and stress. Because of this way of proceeding, the control 

action on the anesthetic state of the patient may result irregular and intermittent, 

characterized by rather “random” changes of the drugs IRs (Absalom et al., 2011). 

Automated anesthesia delivery systems are designed with the purpose of supporting 

medical doctors and improving their control action of the patient’s state. 

Indeed, to guarantee a safer and more stable induction and maintenance of 

anesthesia, this alternative approach was proposed for the first time by Mayo et al. 

(1950). Specifically, they experimented automated delivery of anesthesia with ether 

in patients subject to abdominal surgery, based on the electroencephalogram trace 

monitoring. They applied this methodology successfully to 50 patients and proved its 

potentiality. Since then, several studies have designed, developed, and tested closed-

loop controllers of anesthesia using different control strategies, types of inputs, and 

anesthetic/analgesic agents (El-Nagar and El-Bardini, 2014; Gentilini et al., 2002; Liu 
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et al., 2011; Nascu et al., 2015; West et al., 2013; Zhusubaliyev et al., 2015). For 

instance, West et al. (2013) and Zhusubaliyev et al. (2015) opted for a proportional 

integral derivative (PID) control strategy, whereas Nascu et al. (2015) proposed 

several model-based strategies for anesthesia control with propofol. All of these 

papers rely on classical PK modeling for either evaluation of the PID controllers or 

model-based control. Different strategies were also proposed to address inter-

individual variability issues. In a preliminary in silico study, Savoca and Manca (2019) 

proposed physiologically-based model predictive control of both analgesia and 

anesthesia components. To face inter-individual variability, El-Nagar and El-Bardini 

(2014) proposed a fuzzy neural network-based controller, which was tested over a 

wide range of patient parameters. A Monte Carlo approach was instead used by 

Soltesz et al. (2013) to individualize the patient model of the dose-response relation 

via system identification during induction. 

The basic principle of closed-loop controlled anesthesia is to regulate the drugs IRs 

automatically with limited human intervention grounding on measured indexes of the 

patient’s DOA. The main advantage is that these systems are not distractible, and 

their application allows the anesthetists focusing on the patient’s state, by reducing 

their workload. Indeed, the goal of these systems is not to replace the anesthetist in 

their task and experience, but rather to support them and reduce human error 

incidence. In fact, over the years, control systems resulted in costs decrease and 

efficiency increase in a wide variety of applications (Dumont, 2014). 

2.4 Classic feedback vs model-predictive control of 

anesthesia 

 

The strategy of a controller for anesthesia can be either (i) model-based or (ii) model-

free. In case the control strategy is based on a model, the difficulty of its development 

and the assessment of its reliability may arise concerns in medical doctors. 

Conversely, model-free design is simpler and may be based on clinical guidelines 

embedded in the controller hardware (e.g., expert system), which may result in easier 

understanding by clinicians. However, in both cases (i.e. model-based or model-free), 

a reliable model of the patient is needed whenever one wants to assess in silico the 

controller performance and/or tune the parameters with the goal of obtaining a 

reasonable trade-off between robustness and responsiveness of the control action 

(Parvinian et al., 2018). Feedback control grounds on a model-free strategy and is the 
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most employed in the industry. The reason consists in the combination of simplicity 

and efficacy (Sha'aban et al., 2013). Feedback control does not rely on any type of 

model to regulate the manipulated variable(s), but only on a proportional (P), 

proportional integral (PI), or proportional integral and differential (PID) action respect 

to the error between the set point (i.e. desired value of the controlled variable(s)) and 

the measured value of the controlled variable(s). Thus, on the plus side, the 

performance is independent of any error or uncertainty in the modeling and the 

simplicity of the working principle can enhance acceptance and understanding by 

clinicians. However, it is less efficient in managing multivariable problems with strong 

interactions among controlled variables. In addition, its intrinsic nature does not allow 

anticipating any corrective action before a disturbance has produced its effects on the 

system (this is indeed due to the feedback feature). 

Conversely, model predictive control (MPC) is certainly more complex than feedback 

control, but has been applied successfully for decades in industrial processes (Forbes 

et al., 2015). MPC is a model-based strategy and therefore features some uncertainty 

issues, which are unavoidable. Indeed, a model of the system is used to predict its 

future evolution and optimize the control actions. The real-time experimental measure 

of the process is used to correct the so-called model mismatch (between the real 

system and the modeled one). One of the main advantages of MPC is the ability to 

tackle multivariable problems (Dumont, 2014). As already discussed, general 

anesthesia is a delicate balance of multiple drugs administration. In addition, the 

anesthetists rely on different parameters and measures to assess the patient’s state, 

thus the problem cannot be fully treated by focusing on a single aspect. In addition, 

MPC ability to tackle both linear and nonlinear constraints is extremely valuable. The 

objective function (which is at the heart of the MPC mathematical formulation and 

allows identifying the optimal trajectory of the manipulated variables) can be suitably 

designed to account for therapeutic windows of drugs and critical ranges of the 

physiological variables (e.g., dangerous cerebral activity, hypotension, and 

hypertension). In addition, oscillations of the manipulated variables (i.e. drugs IRs) 

can be limited by means of an intelligent tuning of the weights that contribute to the 

objective function. The pure in silico assessment of the MPC performance and 

reliability (before any in vivo implementation and clinical application) calls for the 

implementation of a different model of the patient than the one embedded in the 

controller, for the sake of recreating the model mismatch intrinsic to real applications. 
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2.5 Ethical concerns and clinical outcomes of closed-loop 

controlled anesthesia 
 

After considering the advantages and technological aspects of automated delivery of 

anesthesia, the goal of Section 2.5 is to stimulate the interested reader to consider 

the controversial ethical and clinical outcomes. 

The introduction of any new invention in biomedicine is expected to raise ethical 

concerns. With respect to the implementation of new surgical technologies and 

techniques, the authors of Strong et al. (2014) identify six key ethical considerations 

that can be suitably transferred to the context of automated anesthesia delivery. We 

reformulate these six points into Paragraphs 2.5.1-2.5.5. Finally, Paragraph 2.5.6 

discusses potential clinical impact of control systems adoption in anesthesia. 

2.5.1 Guarantee of the safety of new technology and management 

of timing and process for implementation 

Regulatory agencies are in charge of managing the guarantee of safety of new 

technologies. The most well-known are USA FDA and EMA (European Medicines 

Agency). With similar regulatory processes, their common mission is to ensure safety 

and efficacy of new drugs and medical devices, while guaranteeing a rapid 

introduction of innovative therapies (Van Norman, 2016). This task is complicated by 

the fact that efforts of increasing safety often result into an increase in the costs and 

times for approval. It is worth underlining that there are neither universal regulatory 

frameworks nor processes. A very clear instance in the field of anesthesia is the case 

of TCI pumps. The authors of Absalom et al. (2016) identified and questioned 

commercial companies who were actively manufacturing and distributing TCI devices 

between 2004 and 2013. Despite claiming that more than 40 000 devices were sold 

in those years, such devices are still not approved/sold in all the countries. For 

instance, officially, no TCI pumps have ever been sold in the USA. 

A related issue is the timing and process for implementation of new technologies. In 

fact, there is always a conflict between different realities: (i) the national/international 

framework and (ii) the local institution. Although the national organizations provide 

guidelines on these matters, the final effective decision on the use of new technologies 

is prerogative of the local institution, e.g., the hospital, the medical staff, the academic 

department head (Sachdeva and Russell, 2007). 
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2.5.2 Patient’s informed consent 

Necessary condition for human experimentation to be both legal and ethical is the 

patient’s informed consent. According to the Declaration of Helsinki developed by the 

World Medical Association (WMA) as a statement of ethical principles for medical 

research involving human subjects, “each potential subject must be adequately 

informed of the aims, methods, sources of funding, any possible conflicts of interest, 

institutional affiliations of the researcher, the anticipated benefits and potential risks of 

the study and the discomfort it may entail, post-study provisions and any other relevant 

aspects of the study” (WMA Declaration of Helsinki, 2013). This means that the 

medical doctor must engage the patients in a discussion aimed at not only informing 

them but also educating, understanding, and listening to potential doubts and 

questions. In case of anesthesia, this is particularly important. Since the drugs 

involved in the procedure may have critical adverse effects and affect not only the 

outcome of the surgical operation, but also the post-recovery phase, the patient must 

be put in the condition of complete trust in the anesthetist and their capacity of 

judgement and use of any tools involved in the procedure. 

2.5.3 Training and credentialing physicians in new technology or 

technique 

Often neglected, training is a critical issue regarding new medical devices. In the 

specific case of anesthesia, an interesting example is again the case of TCI pumps. 

According to Absalom et al. (2016), there are no specific rules on who can or cannot 

use TCIs. In addition, there is no regulated training for the use of TCI systems. This 

delicate point is related strictly to the clinical consequences discussed in Paragraph 

2.5.6 In fact, an exhaustive and appropriate training, ideally provided by 

multidisciplinary experts (e.g., clinicians and engineers) is essential for a responsible 

and effective use of automated devices for anesthesia delivery. This may help 

avoiding on one hand excessive trust in the instrument and on the other loss of 

situational awareness of the anesthetist. 

2.5.4 Track and assessment of new technology outcomes 

During the time interval between approval and clinical adoption/application, data on 

the new technology are still limited. Thus, there is an ethical obligation for early 

adopters to track outcomes of the new technology. Once again, rules on how to 

manage this pharmacovigilance phase should be issued by regulatory agencies. 
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Indeed, it is crucial to lead to a wide acceptance of the new device. In the context of 

PCLC devices (i.e. physiological closed-loop controllers), it is especially important to 

establish common performance indexes for both their development and evaluation 

after clinical application. The authors of Parvinian et al. (2018) refer to the consensus 

standard IEC 60601-1-10 as working in this direction. In fact, this collateral standard 

specifies requirements for the development (i.e. not only analysis and design, but also 

verification and validation) of a PCLC in medical electrical equipment. Automated 

anesthesia delivery systems can be included within the PCLCS class. 

2.5.5 Balancing responsibilities to patients and society 

In relation to the cost and value of new surgical technologies, the authors of Strong et 

al. (2014) point out the possible conflict of responsibility of the medical doctors: i.e. on 

one side towards the patients’ wellbeing and on the other towards society (e.g., from 

the market and the industry) for potential pressure to introduce innovative solutions. 

They cite the American Board of Internal Medicine principle according to which the 

main priority must always consist of the health and benefit of patients. We agree that 

this principle should absolutely be extended to closed-loop control of anesthesia, as 

the aim is to support anesthetists and increase the safety and stability of patients’ 

state during anesthesia. 

2.5.6 Clinical impact and risks 

In the current concept of automated anesthesia, the anesthetist becomes a supervisor 

(i.e. a decision maker) of the procedure and can focus on monitoring the patient’s 

DOA status. As discussed in Parvinian et al. (2018), depending on the degree of 

automation, consequences can lead to loss of situational awareness, complacency, 

and skill degradation. Loss of situational awareness may occur because of the 

anesthetist that evolves from being a human manual controller to a supervisor and 

decision maker of the automated control action. The natural consequence is the 

reduction of the time and actual procedures during which the anesthetist is actively 

involved in the care of the patient’s anesthetic state. Additionally, if the control system 

proves exceptionally reliable and efficient (as it hopefully should be to guarantee a 

safe application), the anesthetist is exposed to the risk of overtrusting the tool. A 

related consequence is progressive degradation of skills. With the medical doctor less 

and less involved in the conscious procedure about dosing, future anesthetists may 

exhibit skill decay, as their skills would not be used as often as in the past, in case of 

high degree of automation. A series of issues related to engineering aspects will have 
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to be carefully assessed and analyzed in the future, such as the presence of fail-safe 

mechanisms, modeling uncertainty, and algorithms robustness. 

These considerations are common hazards introduced by the implementation of 

automated systems. However, the active involvement of clinicians in the development 

and testing of control systems for anesthesia delivery, coordinated with the 

introduction of adequate methods for the evaluation and standardization of training 

represent the key milestones to limit likely negative impacts on clinical practice. 

2.6 Conclusions 

 

This chapter provided a discussion on the application of advanced control systems in 

anesthesia. Firstly, we discussed the limitations of the current manual approach to 

anesthesia delivery, mainly related to the impact of human factors on the choice of 

the optimal dosing, and the limited use of data on the monitored vital parameters (i.e. 

only for subjective interpretation of the DOA level). Afterwards, we compared the main 

control strategies that are being studied. Finally, some ethical and clinical implications 

were discussed to stimulate the reader to make their own mind on the topic and 

propose solutions to the remaining open problems. 

We find that the “engineering” challenges of control systems applications in 

anesthesia can be summarized into two specific points: (i) inter-individual variability of 

the response to drugs and surgical stimuli and (ii) the complexity of the process that 

involves multiple drugs, and thus several effects that manifest their mechanism of 

actions and interactions. For what concerns the first issue, we believe that population 

PK/PD models are hardly adequate. Future work should focus on efforts to develop 

models able to individualize the prediction. Taking into account physiological and 

anatomical differences in the individuals, related to age, body mass and height, 

presence of disease, genetics, can make the difference. In addition, use of the on-line 

information of cardiovascular changes can help improving the prediction of drugs 

disposition within the body with consequent changes in the manifestation of their 

effects. PBPK models use blood flows as parameters, and thus can take into account 

these changes. The literature reports that PD variability is higher than PK variability 

among individuals. Adaptive control techniques can be evaluated to face this matter, 

so that the predicted PD response is adapted to the specific patients undergoing 

anesthesia. As for the second issue, it is no mystery that anesthesia is complex and 

some underlying mechanisms are still unclear. With advancing knowledge on drug-
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drug interactions mechanisms, and improved tools and methods to manage 

multivariable problems, researchers should address the issue by increasing the 

quantity of data that the controller can process and use, so that drug-drug interactions 

and several pharmacodynamic effects can be embedded into the controller problem. 

Despite difficulties related to the lack of standardization and universal regulatory 

frameworks, nowadays TCI pumps are a mature technology (Absalom et al., 2016). 

This opens an encouraging perspective for control systems application in anesthesia 

based on real time monitored measures of the patient’s anesthetic and analgesic 

state. Such systems have the potential to not only reduce anesthesia-associated risks, 

human error incidence, and anesthetist’s workload for a more efficient monitoring and 

focus on the patient’s state, but also standardize anesthesia procedure, by reducing 

subjectivity of the optimal dose selection. Obviously, clinical consequences must be 

carefully assessed and engineering aspects validated before any clinical adoption and 

application. 

It is our opinion that the only road for successful application of control systems in 

anesthesia calls for engineers and clinicians working together. In fact, on one hand 

engineers are essential for an effective design and development of the patient’s model 

and control system. On the other hand, clinicians must guide engineers by providing 

information on crucial aspects such as the key indexes for an optimal and safe 

assessment of the control system performance and the essential data required to 

quantify the DOA level. In addition, clinicians can provide useful recommendations 

and specifications for the optimal design of the graphical user interface of the 

automated delivery tool. 
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CHAPTER 3 

 
 
 
 

 

Model-predictive control of anesthesia 

with propofol and remifentanil 
 
 
 
 
 
 

3.1 Author’s Note 

 

This chapter presents the initial work on the proposed model-predictive controller of 

anesthesia delivery with the anesthetic agent propofol and the analgesic opioid 

remifentanil. Indeed, propofol-remifentanil is a widely used combination of drugs to 

administer TIVA. At this stage, the controller structure includes two controlled 

variables, i.e. (i) bispectral index (BIS) and (ii) mean arterial pressure (MAP), to control 

the patient’s levels of unconsciousness and analgesia, respectively. Propofol and 

remifentanil infusion rates are the manipulated variables. The patient model 

embedded in the in silico closed-loop framework and used for evaluation of the 

controller performance is based on a PBPK-PD model. Special focus is devoted to 

explaining the distinction between this approach and the classical three-compartment 

PK modeling approach, which is mostly used in the scientific literature related to 

anesthetic and analgesic drugs. 

 

This work was published in “Biomedical Signal Processing and Control” journal: 
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A physiologically-based approach to model-predictive control of 

anesthesia and analgesia 

Adriana Savoca, Davide Manca 

Biomedical Signal Processing and Control 53 (2019): 101553 
DOI: 10.1016/j.bspc.2019.04.030 

 

3.2 Abstract 

 

The application of closed-loop control systems in biomedicine unlocks prospects for 

optimized drug delivery based on the measurement of patients’ physiological 

variables. However, inter-individual variability and narrow therapeutic indexes are 

issues that must be carefully considered. We propose an in silico study of a model-

based controller of anesthesia and analgesia with propofol and remifentanil, based on 

bispectral index (BIS) and mean arterial pressure (MAP) measurements. A 

physiologically-based pharmacokinetic (PBPK) model, combined with a suitable 

pharmacodynamic model, allows describing and differentiating the dose-effect 

dependency for the virtual patients. The controller delivers a safe and fast induction 

of anesthesia, with mean rise-times below 3 min and controlled variables within the 

clinical safe ranges. The PBPK model allows gaining complementary information 

about the dynamics of the drugs absorption, distribution, metabolism, and elimination 

in the body. Special attention is devoted to simulating realistic intraoperative surgical 

stimuli and noise on the controlled variables. The controller successfully rejects 

disturbances on BIS and MAP related to nociceptive stimuli (e.g., intubation and 

incision) via a robust control action, and is not diverted by noise. 

 
Keywords: model-based control; anesthesia; analgesia; pharmacokinetics; 

pharmacodynamics; simulation; propofol; remifentanil. 

 

3.3 Introduction 

 

Although general anesthesia is commonly defined as “a reversible state of 

unconsciousness, during which a patient will not perceive or be responsive to noxious 

stimuli” (Sebel, 2001), anesthetists lack, on one hand, a quantitative definition of the 

required “depth of anesthesia” (DOA), and on the other hand a specific and 
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standardized method for its evaluation. A balanced anesthesia results from the 

combination of different components that account for multiple pharmacological effects, 

i.e. (i) the hypnotic for unconsciousness, (ii) the analgesic for pain relief, and (often) 

(iii) the neuro-muscular blocking agent for prevention of reflex activity. These drugs 

usually have narrow therapeutic indexes, and this characteristic makes their titration 

difficult (Absalom and Struys, 2007). 

In clinical practice, the anesthesiologist sets an initial dose manually to induce 

anesthesia, according to standardized protocols, guidelines, and experience (e.g., 

“Roberts” infusion regime (Roberts et al., 1988)). Afterwards, a constant infusion rate 

is implemented to maintain the anesthetic state, and adjustments are made depending 

on the subjective patient’s observation. Indeed, visible signs such as movement, 

shaking, and changes of hemodynamics and cerebral activity manifest the patient’s 

stress and allow identifying inadequate anesthesia and analgesia levels. As an 

alternative to manual infusion, Target Controlled Infusion (TCI) pumps are rather 

widespread for induction and maintenance of anesthesia. They rely on classical three-

compartment pharmacokinetic (PK) models that correlate desired target values of the 

drug concentration to proper infusion rates (Servin et al., 1998; Struys et al., 1998). 

Since blood and effect-site concentrations cannot be measured on-line, TCI pumps 

implement an “open-loop” approach, which does not provide any concrete certainty 

that the desired target concentration is achieved. In fact, they do not take into account 

any real-time physiological variables (e.g., arterial pressure, heart rate, and 

quantitative electroencephalogram indices), which are direct and measurable key 

indicators of the patient’s anesthetic state (i.e. the real pharmacodynamic effect on 

the patient’s body produced by the drugs infusion). In case of TCIs, the 

anesthesiologist is the real controller and TCIs are merely actuators of the control 

action, which can thus result biased and subject to both model mismatch and human 

interpretation. 

Automation of anesthesia delivery based on pharmacodynamics, which entails the 

measurement of physiological variables, would support medical expertise and allow 

safer and more regular control actions on the patient’s anesthetic state throughout the 

surgical operation. The 2015 US Food and Drug Administration Workshop about the 

application of Physiological Closed-Loop Controlled (PCLC) medical devices in critical 

care shows an increasing interest in this direction, which arises from perspectives of 

workload reduction and the fact that automated systems are not distractible (FDA 

Report on PCLC medical devices, 2015). Of course, risks related to engineering and 
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technical aspects need to be considered and assessed (e.g., fail-safe mechanisms 

and algorithm failures). Although application to biomedicine is still emerging, some 

interesting works (e.g., Gentilini et al. (2002)) recommended implementing closed-

loop control systems in this field since the first years of XXI century. Several authors 

proposed different solutions and among them, some arrived to clinical validation. For 

instance, West et al. (2013) and Zhusubaliyev et al. (2015) chose a proportional-

integral-derivative (PID) control strategy and relied on classical PK modeling for 

performance assessment. However, we claim that model predictive control (MPC) 

proved superior in several applications in terms of overshoot, settling time, and 

robustness. Indeed, a well-designed model-based control allows rejecting 

disturbances that can alter the anesthetic state of the patient, and by suitably tuning 

the weights of the objective function, it is possible to reduce the chances of having 

abrupt changes in the manipulated variables. In case of anesthesia, this would result 

in dangerous overdosing with adverse effects and longer times for recovery. Nascu 

and co-authors (Nascu et al., 2015) investigated different MPC strategies for 

anesthesia with propofol, with the controller featuring a classical three-compartment 

PK model. In case of model-based control, one of the main challenges to be 

addressed is the inter- and intra-patient variability, which are manifest in both 

pharmacokinetic and pharmacodynamic contributions. El-Nagar and El-Bardini (2014) 

tackled this problem by using a fuzzy neural network tested over a wide range of 

patient parameters, whereas Merigo and co-authors (Merigo et al., 2018) proposed a 

PID approach comprising a PK/PD model of the patient to compensate uncertainties, 

with a Monte Carlo method to account for inter-patient variability. Soltesz and co-

authors (Soltesz et al., 2013) approached the issue by individualizing the patient 

model of the dose-response relation via system identification during the induction 

phase. Although we treat the problem from a different perspective, we believe that the 

individualization of the dose-response prediction is the right path to follow. Within this 

context, physiologically-based pharmacokinetic (PBPK) modeling has great potential. 

Indeed, PBPK models rely on the real anatomy and physiology of human body, and 

describe in detail the processes of absorption, distribution to tissues and organs, 

metabolism, and elimination of drugs (i.e. ADME processes). They are effective tools 

for simulation and prediction of pharmacokinetics, and recently their application has 

spread to various fields of pharmacology and toxicology. We believe that model 

predictive control of anesthesia supplemented by a physiologically-based approach to 

modeling can lead to more robust performances and reliable predictions of inter-
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individual variability. At the in silico level, PBPK modeling can be used to simulate 

ADME processes and inter-individual PK variability. During the in vivo surgical 

intervention, PBPK modeling can be implemented in anesthesia controllers for an 

improved prediction of the PK response of real patients. Indeed, the application of 

such models potentially allows using real-time hemodynamic data to adjust drug 

pharmacokinetics, which is affected by conditions of hypotension (i.e. hypoperfusion) 

with consequent variations of the clinical effects. To our knowledge, no authors have 

yet applied physiologically-based modeling to MPC of anesthesia based on monitored 

patient’s parameters (i.e. pharmacodynamic response of the patient). 

A main advantage of MPC is the aptitude to manage multivariable problems. While 

several authors focus on only one aspect of anesthesia, our work proposes an in silico 

study of the performance of a model-based controller of anesthesia with co-

administration of propofol and remifentanil. Indeed, we aim at accounting for both the 

essential components of hypnosis and analgesia by controlling bispectral index (BIS) 

and mean arterial pressure (MAP). To test the controller performance, we physically 

close the loop by introducing a virtual patient, whose response to changes of the input 

variables (i.e. drug infusion rates) and external disturbances (e.g., surgical stimuli) is 

simulated via a PBPK-PD model (where PD stands for pharmacodynamics). Likewise, 

the controller features a classical PK-PD model for the sake of creating a model 

mismatch (i.e. in line with the mismatch between the in vivo patient and the controller 

model in case of real surgical interventions). In addition, we test the controller 

robustness by implementing an artificially-generated noise on the monitored variables 

(to mimic the oscillations and so-called artifacts of experimental measures). 

Section 3.4 deals with the in silico control loop configuration and clarifies the choice 

of the controlled variables along with the selected setpoints. In particular, Paragraph 

3.4.1 details the modeling aspects, while Paragraph 3.4.2 describes the optimization 

problem. Finally, Paragraph 3.4.3 briefly comments on how we tested the effect of 

measurement noise. Section 3.5 presents and discusses the results on the controller 

performance. 

3.4 Control scheme and specifications 

 

The main elements of the model-based framework are: (i) the control objectives, (ii) 

the controller structure, and (iii) the virtual patient (see Figure 1). 
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Figure 1 – Block diagram of the in silico control loop of anesthesia with propofol and remifentanil. The 
main elements are: the control objectives BISSP and MAPSP; the controller block (including the optimizer 
and the PK three-compartment model combined with the Hill equation (PD)); the virtual patient block, i.e. 
PBPK model combined with Hill equation (PD). Outputs of the controller block are the manipulated 
variables IRP and IRR (propofol and remifentanil infusion rates, respectively). The PD models differ in 
terms of nominal and individual features and allow predicting the dynamics of BIS and MAP. 

The controlled variables are BIS and MAP, which are respectively representative of 

the level of hypnosis and analgesia. The manipulated variables are the infusion rates 

(IRs) of propofol and remifentanil. With reference to the controller structure, the 

controller receives as inputs both targets (i.e. setpoints and lower/upper bounds) and 

“measured” values of BIS and MAP, and evaluates the optimal IRs of propofol and 

remifentanil accordingly. 

In principle, the controlled variable referred to the analgesia component should 

quantify the pain level to assess the clinical effect of analgesic drugs. However, pain 

level is subjective (both from the patient and anesthetist perspectives) and thus is not 

particularly reliable as a controlled variable. Since opioids (especially remifentanil) 

suppress the hyperdynamic response of the cardiovascular system to painful stimuli, 

the systemic PD response can be quantified in terms of arterial pressure and heart 

rate (HR) changes (Song et al., 1999). We chose MAP, as controlled variable for 

analgesia, over HR and systolic arterial pressure (SAP) mainly because the PD model 

based on MAP response provides better results once validated with experimental data 

(see Savoca et al. (2017)). Since adequate analgesia is usually identified with MAP 

levels around 70 mmHg, and MAP < 60 mmHg is reported as hypotension (typically 

associated with hypnotics/opioids overdose), the MAP setpoint was set at 70 mmHg. 

Regarding the definition of the hypnosis-controlled variable, BIS is an effective 

quantitative index (ranging from 0 to 100 [-], i.e. awake patient) which is based on the 

EEG trace. Indeed, BIS- guided anesthesia has led to the reduction in the incidence 

of patient’s awareness and improved recovery (Bennett et al., 2009). In addition, the 

scientific literature provides a number of manuscripts including experimental data that 
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allow validating the PD model (Flaishon et al., 1997; Liu et al., 2015; Wiczling et al., 

2016). The recommended BIS range for general anesthesia in surgical interventions 

is set in the 40-60 [-] interval. Accordingly, we defined our target DOA to be BISSP = 

50 [-]. 

One of the advantages of MPC over conventional feedback control (e.g., PID loops) 

is that the concept of pairing, between manipulated and controlled variables, is 

overcome by the holistic approach to control exerted by the set of manipulated 

variables on the set of controlled ones. Indeed, this approach allows implementing not 

only square but also rectangular problems where the number of manipulated and 

controlled variables is not necessarily the same. Still, our problem features an equal 

number of manipulated and controlled variables and the two PBPK-PD models, used 

in silico to mimic the real patient, are focused on a direct and single interaction 

between the manipulated variable and the controlled one. 

For the sake of clarity, we assume that propofol acts only on BIS and remifentanil on 

MAP (thus the two unconnected PBPK-PD models). This simplifying assumption is 

equivalent to considering two independent SISO (i.e. single-input-single-output) 

configurations that conceptually clash with the MPC principles of multivariable control, 

although the intrinsic predictive nature of model-based approach is preserved and 

exploited. The reason underneath this choice is that, although pharmacodynamic 

interactions between propofol and opioids have been widely studied, little is known of 

the underlying mechanism. Indeed, there is an intrinsic difficulty in highlighting and 

quantifying the coupled contributions of each term on the complementary one (i.e. the 

mutual effects of anesthetics vs analgesics). For instance, findings on the 

electroencephalogram (EEG) effects of co-administration are controversial 

(Kortelainen et al., 2009). Some authors (Kortelainen et al., 2009) suggest that these 

differences may be ascribed to a dependency of the remifentanil-induced EEG 

changes on the anesthesia level. In any case, the effects of remifentanil administration 

on the propofol concentration corresponding to loss of consciousness are not dramatic 

(Struys et al., 2003). Furthermore, the parameters of both our BIS and MAP models 

are identified with experimental data resulting from combined administration of 

propofol and remifentanil (Liu et al., 2015; Savoca et al., 2017), and therefore indirectly 

account for their interaction. Thus, we deem that our SISO approach is acceptable, 

although future work should focus on including such interactions within the model 

structure. 
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3.4.1 Pharmacokinetic-pharmacodynamic modeling 

Since the whole anesthesia is simulated in silico, it is advisable to introduce a 

“mismatch” between (i) the model that is used for control purposes within the MPC 

procedure and (ii) the models that mimic the patient’s response (i.e. the real process). 

The controller model that simulates the patient’s dynamic response to drug infusion 

consists of: (i) a PK model based on a classical three-compartment structure that is 

also CPU efficient, as far as the numerical solution of the optimization problem is 

concerned, and (ii) a PD model (i.e. modified Hill equation) for description and 

prediction of the drug pharmacological effects (Savoca et al., 2017). Indeed, 

empirically-based three-compartment models are the most widespread for PK 

description of both opioids and intravenous anesthetics. The central compartment 

represents plasma and is interconnected to the rapidly and slowly equilibrating 

compartments (that epitomize the exchange between plasma and other 

organs/tissues). Despite not being truly related to the anatomy/physiology of the 

human body, three-compartment models can suitably describe the pharmacokinetic 

curve of many drugs employed in anesthesia. The mathematical model consists of the 

material balances on the three compartments, describing the dynamics of the 

corresponding concentrations 𝐶1, 𝐶2, and 𝐶3 (Eqs. (3.1-3)). 
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Eq. (3.1) includes the input drug infusion rate 𝐼𝑅(𝑡) and a generic elimination pathway 

represented by the 𝑘10 parameter. The compartment volumes 𝑉1, 𝑉2, and 𝑉3 and their 

clearances 𝐶𝐿1, 𝐶𝐿2, and 𝐶𝐿3 are either fixed or calculated as a function of body mass, 

height, and age of the patient. Correlations are available in Minto et al. (1997) for 

remifentanil and Schnider et al. (1998) for propofol. Transfer coefficients 𝑘𝑖𝑗 

implemented in the controller are calculated as ratios between clearances and 

volumes. 

As mentioned in Section 3.3., we adopted a PBPK modeling approach to mimic the 

ADME processes that are undertaken by the drugs in the real patient body. The PBPK 



3. Model-predictive control of anesthesia with propofol and remifentanil 

45 
 

model (Abbiati et al., 2016) is combined with a suitable PD model having the same 

structure as the one implemented in the controller. However, each simulated patient 

features different values of the PD parameters (see Eq. (3.14)) to account for inter-

individual variability of the dose-response relation. 

The PBPK model extensively discussed in Abbiati et al. (2016) features compartments 

that correspond to (possibly lumped) real tissues and organs and include physiological 

metabolic/elimination pathways. Indeed, the PBPK model embodies with a rather 

good detail both the anatomy and physiology of the patient and this facilitates the 

individualization of the prediction. As propofol and remifentanil are both administered 

intravenously, the model can be reduced to the following five compartments i.e. 

plasma, gastrointestinal circulatory system (GICS), liver, highly perfused organs (HO, 

i.e. lumping the kidneys, heart, brain, and spleen), and poorly perfused tissues (PT, 

i.e. lumping fat, muscles, bones, and skin), because the counter-diffusion to both small 

and large intestinal lumina is considered negligible. The mathematical expression of 

the model consists of Eqs. (3.4-8) that describe the drugs concentration dynamics in 

the body compartments, complemented by Eqs. (3.9-12), whose purpose is to 

describe and quantify the eliminated drug amount 𝐴𝐸𝐿 via four different pathways, i.e. 

plasma, tissues, liver metabolism, and renal excretion. 
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Three categories of parameters can be differentiated: individualized, assigned, and 

adaptive (see Table A in Appendix 3.A). Individualized parameters (i.e. compartment 

volumes 𝑉𝑖 and blood flowrates 𝑄𝑖 among them) are calculated via correlations 

available in the scientific literature (Abbiati et al., 2016). Particularly, compartment 

volumes are based on the organ/tissue mass fractions respect to the total body mass 

(depending on gender and age). Flowrates are calculated as fractions of the cardiac 

output that reach the organ/tissue, with cardiac output depending on the patient body 

surface area (BSA) (calculated as a function of patients’ body mass and height). 

Assigned parameters depend on the drug characteristics, e.g., the drug fraction 𝑅 

bound to plasma proteins. Finally, adaptive parameters are the ones that can be 

neither extrapolated from the scientific literature nor measured experimentally. Most 

of them are (i) drug transfer coefficients 𝑘𝑖−𝑗 representing diffusive and convective 

transport processes and (ii) metabolic/elimination constants 𝑘𝐸𝐿,𝑖, which are identified 

via a nonlinear regression of pharmacokinetic experimental data. In particular, we 

used adaptive parameters identified for remifentanil in Abbiati et al. (2016) with some 

modifications, whereas we regressed the adaptive parameters for propofol with 

experimental data from Schnider et al. (1998) and validated the results with Gepts et 

al. (1987). 

Adaptive parameters related to metabolism and elimination can be appropriately 

modified in case of impairments such as hepatic dysfunctions and renal insufficiency. 

In general, the number and type of adaptive parameters depend on the properties of 

the drug under investigation. For instance, according to the scientific literature (see 

Savoca et al. (2017)), remifentanil is only metabolized via plasma and tissue esterases 

(related to parameters 𝑘𝐸𝐿,𝑃 and 𝑘𝐸𝐿,𝑇). In fact, the half-life of remifentanil is shorter 

compared to other analgesic opioids, which makes its use appealing in anesthesia. 

Consequently, we did not consider the hepatic and renal routes in the PBPK model of 

remifentanil. On the contrary, since the liver is mainly responsible for propofol 

metabolism, but there is also evidence of extra-hepatic elimination, the PBPK model 

of propofol accounts for both hepatic and extra-hepatic elimination/metabolic 

pathways. For a detailed mathematical description of the model, the interested reader 

can refer to Abbiati et al. (2016) and Abbiati and Manca (2016). 
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Both propofol and remifentanil exhibit a phase lag (i.e. delay) between the time profile 

of the plasma concentration and the pharmacological effect, therefore we introduced 

Eq. (3.13) that describes the material balance on the effect-site, i.e. the drug site of 

action (Varvel et al., 1992), where 𝐶𝑝 and 𝐶𝑒 are plasma and effect-site concentration, 

respectively. 
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This effect-site is a virtual compartment that does not affect PK and allows accounting 

for the abovementioned delay. We assume that the rate constant 𝑘𝑒0 for both the 

positive and negative terms is the same. Furthermore, since different PK inputs lead 

to different values of 𝑘𝑒0, we implemented in the controller values from the literature 

concerning three-compartment PK-PD analysis (Minto et al. (1997) and Schnider et 

al. (1998) for remifentanil and propofol, respectively). The patients’ PBPK-PD model 

include 𝑘𝑒0 values obtained via regression from PD experimental data. We provide 

further details on the procedure in Savoca et al. (2017). MAP and BIS (i.e. the 

pharmacological effects 𝐸(𝑡)) are correlated to the effect-site concentrations of 

remifentanil and propofol respectively, by the modified Hill equation (Minto et al., 1997) 

as in Eq. (3.14). 
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where 𝐸0 is the baseline value of the awake patient (i.e. before anesthesia induction), 

𝐸𝑚𝑎𝑥 is the maximum drug effect, 𝐸𝐶50 is the concentration corresponding to 50% of 

the maximum effect, and Hill coefficient, 𝛾, is a fitting parameter. 

3.4.2 Optimization problem formulation and control design  

The MPC optimization problem is formulated in Eq. (3.15). The controller model is 

called to predict the future evolution of the system over the prediction horizon ℎ𝑝. This 

horizon is discretized into multiple time steps 𝑘, 𝑘 +  1, … , 𝑘 + ℎ𝑝 with a 𝑡𝑠  time 

interval. At each time step 𝑘 the controller optimizes a set of ℎ𝑐 optimal control actions 

(IR in Eq. (3.15)) based on the model predictions. Parameter ℎ𝑐 is called “control 

horizon”. The first control action of this optimal set is then implemented in silico in the 

patient (i.e. PBPK-PD model), at the following time step 𝑘 +  1. The following control 

actions iterate what was carried out at time step 𝑘. 
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The objective function in Eq. (3.15) consists of two main terms. The first term accounts 

for the distance 𝑒𝑦 between the prediction of the controlled variable 𝑦 (i.e. MAP and 

BIS) and the corresponding setpoint 𝑦𝑠𝑝 (see also Eq. (3.16)). Eq. (3.17) quantifies 

the mismatch 𝛿𝑦(𝑘) between the model prediction and the real process, since no 

model can provide a perfect representation of reality. The mismatch is kept constant 

throughout ℎ𝑝. In an in in silico-in vivo control loop, this term is the correction of the 

model prediction 𝑦 respect to the real-time measured value 𝑦𝑟 of the controlled 

variable. In our purely in silico control loop, 𝛿𝑦(𝑘) measures the distance between the 

PBPK-PD model (i.e. the in silico patient) and the controller model predictions. The 

second term of the objective function minimizes the control effort (as shown in Eq. 

(3.18)). As a result, the optimizer tries to find a compromise between distance from 

the setpoint, i.e. the desired DOA, and rates of change of the manipulated variables. 

In fact, steep changes of the drug IRs may result into dangerous overshoots of plasma 

concentration and oscillations that negatively affect the patient state. In Eq. (3.15) 𝑤 

are suitable weights, and 𝑃𝐹 are penalty functions. 
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We implemented penalty functions for the plasma concentration (Eq. (3.19)), and the 

controlled variables BIS and MAP (Eq. (3.20)). As far as plasma is concerned, the 

maximum value is chosen according to clinical ranges (Absalom and Struys, 2007). It 

is especially important in case of remifentanil IR, because of the hemodynamic 

stability risk pointed out by Gentilini et al. (2002). Such values should not be regarded 
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as fixed and rigid constraints, but more like approximate indications, because they are 

subject to inter-patient variability and conditions (e.g., type of premedication and 

combination with other drugs). Similarly, minimum and maximum values for BIS and 

MAP are chosen according to the principle of preventing critical situations, e.g., 

hypotension, hypertension, and dangerous cerebral activity (see Table 1). 

Table 1 – Minimum and maximum values of the drugs plasma concentration and controlled variables 
MAP and BIS implemented in the penalty functions of the optimization problem. 

Variable Symbol Unit of measure Min Max 

Remifentanil plasma 
concentration 

Cp,R [ng/mL] -  16 

Propofol plasma concentration Cp,P [µg/mL] -  14 

Mean arterial pressure MAP [mmHg] 60 120 

Bispectral index BIS [-] 40 60 

The choice of  ℎ𝑝 and  𝑡𝑠 is strictly related to the process characteristic times (Gentilini 

et al., 2002). We assigned the time interval for control, 𝑡𝑠, according to a trial-and-

error procedure, and finally chose 𝑡𝑠 = 1 min as a trade-off value between 

aggressiveness and responsiveness of the system. However, this parameter is 

flexible and can be reduced in case the clinical experts find it not suitable to an 

effective and fast response to surgical stimuli. In clinical practice, the time for induction 

is within 10-15 min, thus we adopted ℎ𝑝 = 15 min for the analgesia loop and ℎ𝑝 = 20 

min for the anesthesia loop. In fact, the pharmacodynamics of propofol is slower than 

the remifentanil one (i.e. slower velocity of equilibration between plasma and effect-

site). The selection of the control horizon, ℎ𝑐, followed a trial-and-error approach as 

well. In this regard, low values of ℎ𝑐 may result in too aggressive control actions. On 

the other hand, high values can jeopardize the optimization algorithm performance. 

We found that ℎ𝑐 = 4 is a suitable compromise as it limits to 8 the total number of 

degrees of freedom. 

We tuned the weights of the objective function according to the priority of the terms. 

For this reason, the weights 𝑤𝐵𝐼𝑆 and 𝑤𝑀𝐴𝑃 are the same. The weights 𝑤𝐼𝑅,𝑅 and 𝑤𝐼𝑅,𝑃 

regulate the aggressiveness of the IRs rate of change (the higher the weight the lower 

the aggressiveness). We improved the results by choosing different values for the 

induction and maintenance phases (apexes 𝑖 and 𝑚 in Table 2). 
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Table 2 – Values of the weights in the objective function. In the “Symbol” column, 𝑦 represents the 

controlled variable, 𝐼𝑅 the manipulated variable (i.e. infusion rate), 𝐶𝑝 the plasma concentration, and 𝑃𝐹 

the penalty function. 

Parameters Symbol 
Remifentanil 
(MAP) 

Propofol 
(BIS) 

Error weight 𝑤𝑦 1.e6 1.e6 

Input rate of change weight 
(induction) 

𝑤𝐼𝑅
𝑖  1.e-5 1.e-15 

Input rate of change weight 
(maintenance) 

𝑤𝐼𝑅
𝑚 1.e-4 1.e-12 

Penalty function on plasma PK 
weight 

𝑤𝐶𝑝
𝑃𝐹  1.e3 5.e4 

Penalty function (MAP/BIS) weight 𝑤𝑦
𝑃𝐹  1.e5 1.e5 

Since the propofol dynamics is slower, we set 𝑤𝐼𝑅,𝑃<𝑤𝐼𝑅,𝑅 to ensure acceptable rise-

times for BIS and make them similar to those of MAP. We recall that in clinical practice 

𝐼𝑅𝑃 is 3 orders of magnitude higher than 𝐼𝑅𝑅 (i.e. mg/min for propofol vs µg/min for 

remifentanil). Furthermore, in Eq. (3.18), the control effort term is not normalized 

respect to the infusion rate at the previous time step, 𝐼𝑅(𝑘 − 1), to avoid any numerical 

errors for 𝐼𝑅 = 0. For this reason, the values of 𝑤𝐼𝑅 display a significantly different 

order of magnitude compared to the other weights (see Table 2 which includes also 

𝑤𝐶𝑝
𝑃𝐹, 𝑤𝐵𝐼𝑆

𝑃𝐹 , 𝑤𝑀𝐴𝑃
𝑃𝐹 ). To avoid overdosing, the penalty function terms on the controlled 

variables (i.e. feasibility/safety lower and upper bounds) have similar priority to the 

distance from the setpoint. A mixed language approach to programming, based on 

Fortran 90 and C++, merges the PK/PBPK-PD and ODE routines to the optimization 

classes. The unconstrained optimization procedure is based on different algorithms to 

ensure robustness. Simplex method is the one preferentially used by the C++ 

optimizer (Buzzi-Ferraris, 1993). 

3.4.3 Implementation of disturbances and noise 

To investigate the robustness of the controller during the maintenance phase, we 

implemented disturbances (i.e. external nociceptive stimuli) in the shape of abrupt 

changes in the simulated measurements of BIS and MAP. We focused on replicating 

clinical events and physical, feasible problems, i.e. intubation, incision, and episodes 

of arousal. Since in clinical practice, the measured physiological variables show noise 

and fluctuations (aka artifacts), we investigated the robustness towards measurement 

noise. Consequently, we observed and analyzed BIS of case study 4 in Absalom and 

Struys (2007) and MAP in Gentilini et al. (2002). We decomposed the experimental 

signal into two contributions: (i) a trend line and (ii) a stochastic noise. We obtained 

the trend line by filtering the experimental data via the Savitzky-Golay procedure 
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(Press et al., 1996). Afterwards, we considered the time periods with lack of 

stimulation, and quantified the noise contribution by analyzing the residuals between 

the trend and the experimental data points. We verified that these residuals are 

Gaussian distributed. Finally, we evaluated the mean and standard deviation, and 

added a Gaussian distributed noise to both BIS and MAP of the in silico patient, via 

the Box-Muller algorithm, according to Eqs. (3.21-22). 

2log( ) cos(2 )Noise u v  = + −  (3.21) 

, ,patient patient patienty y Noise y BIS MAP=  =  (3.22) 

Where 𝑢 and 𝑣 are uniform random numbers (in the interval [0,1)), and 𝜇 and 𝜎 are 

the mean and standard deviation respectively.  

 

3.5 Results and discussion 

 

3.5.1 Induction of anesthesia 

Induction of anesthesia aims at reaching the required DOA level as fast as possible, 

usually within 10-15 min. We simulated the behavior of the controller for nine patients 

with demographic characteristics reported in Table 3. 

Table 3 – Demographic data of the simulated patients. 

Patient # BM [kg] H [cm] Gender [-] Age [y] 

1 75.5 180 M 25 

2 71.3 173 F 27 

3 94.5 195 M 50 

4 90.3 181 F 42 

5 50.5 159 F 38 

6 57.7 162 F 58 

7 56.7 163 M 75 

8 95.1 203 M 18 

9 85.2 185 M 45 

Mean 75.2 177.9 5M/4F 42 

SD 17.2 15.2 - 17.77 

Figure 2 (top) shows the dynamics of BIS and MAP (the controlled variables), and 

(bottom) IRs (the manipulated variables). Control action starts at 5 min, with the 

change of setpoint (i.e. “servo problem” in engineering terms) from baseline (MAP = 

80-90 mmHg and BIS = 90-100 [-]) to DOA. This pre-induction period shows 

consistency of the results, where a null drug concentration corresponds to the baseline 

value of awake patients. 



Ph. D. Thesis of Adriana Savoca 

52 
 

For all the simulated patients, the desired DOA level is achieved with a balanced 

control action, which is initially steep to ensure responsivity and then decreases 

gradually once the setpoint is approached. The indicators of Table 4, which assess 

the controller performance, are: rise-time 𝑡𝑟𝑖𝑠𝑒; time required for loss of consciousness 

(LOC) 𝑡𝑙𝑜𝑐; minimum values of MAP and BIS. According to Yang et al. (2016), who 

studied changes in BIS as a response to LOC for young and elderly patients, we 

defined 𝑡𝑙𝑜𝑐 as the time required to reach BIS = 60 [-]. More specifically, they found 

𝐵𝐼𝑆𝑙𝑜𝑐= 57.7 (± 12.3) [-] for young patients, and 𝐵𝐼𝑆𝑙𝑜𝑐 = 65.4 (± 9.7) [-] for elderly 

patients, who are more sensitive to anesthetics effects. In addition, similar studies 

display 𝐵𝐼𝑆𝑙𝑜𝑐 values around 60 [-], hence our choice. 

Individual rise-times are approximately 2-3 min for both MAP and BIS, whereas mean 

time to LOC is about 2 min (Table 4). The controlled variables are maintained within 

the recommended ranges throughout the investigated period, and the minimum 

values are all above the lower thresholds, i.e. MAP = 60 mmHg (hypotension, marked 

by a red dotted line in Figure 2) and BIS = 40 [-]. It is interesting to compare these 

results with similar works, also mentioned in Section 3.3. With respect to the control 

action on the hypnotic component, it is worth noticing that our rise times are 

comparable to those of Nascu et al. (2015) and Merigo et al. (2018), whose control 

strategies are model-based (in their works, the single controlled variable is BIS). It is 

also worth observing that our predicted infusion rates are lower than in Merigo et al. 

(2018). One of the reasons may be that they use the physical range of the pump 

flowrate as constraint on the maximum infusion rate value, whereas we implement 

clinical and therapeutic ranges on both controlled variables and plasma concentration, 

as discussed in Paragraph 3.4.2. Thus, from this point of view, our results can be 

considered incremental in the sense of safety and stability of the patient’s anesthetic 

state. Conversely, our settling times are higher compared to other studies. This can 

be ascribed to the lower 𝑘𝑒0 value in the patients’ model, which depends on the data 

used to identify the PD parameters. By using a fuzzy neural-network-based controller, 

El-Nagar and El-Bardini (2014) shows rise times for MAP that are near to our results. 

However, for the sake of safety, we assign/accept a lower decrease of MAP from 

baseline, to avoid hypotension. Again, we opt for constraints that are more concerned 

with preventing dangerous and adverse effects. For this reason, we dedicated the last 

section of Paragraph 3.4.2 to a detailed discussion on weights tuning and 

implemented constraints. Finally, it is important to underline that for a fair and 

exhaustive comparison, one should compare the different control strategies, reported 
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in the literature, by using the same patients’ models for evaluation of the 

performances. However, such comparison is out of the goal of this work. 

The average CPU time for the simulation of one control action (with a time interval of 

1 min as in Figure 2) is 0.25 to 0.45 s per patient (Intel® Core™ i7-3770 CPU @ 3.40 

GHz with 8 GB RAM), which makes the proposed MPC framework viable for on-line 

implementation in the operation room as a decision support system for the anesthetist. 

 
Figure 2 – Simulation of the induction phase. The black vertical dashed line marks the start of the control 
action (i.e. change of setpoint). Left panel refers to the analgesia component, right panel refers to the 
hypnotic component. (Top) Dynamics of controlled variables MAP and BIS. (Bottom) Dynamics of 
manipulated variables, i.e. remifentanil and propofol IRs. A straight red line corresponding to MAP = 60 
mmHg marks the hypotension region. The shaded area in the BIS plot denotes the recommended clinical 
range, BIS = 40-60 [-]. 

We can assume that the in vivo and online application of the MPC framework is 

feasible because the optimal solution takes decidedly less than the control time 

interval of 1 min. Being the CPU time so short, it is also possible to reduce the control 

time interval, in case it is desirable to update the infusion rates more frequently so to 

reject fast-acting disturbances. It is true that in case of real surgical intervention, one 

should account for the instrumentation and data processing delays that can be 

quantified in few additional seconds. However, this would not have a significant impact 

on the automated model-based control of anesthesia as the on-line MPC in vivo 

application would still take a relatively short time. 

Start of control action Start of control action



Ph. D. Thesis of Adriana Savoca 

54 
 

Table 4 – Performance indexes for the anesthesia simulation of nine patients: rise-times, time to loss of 
consciousness (𝑡𝑙𝑜𝑐 defined as time to reach BIS = 60 [-]), minimum values, and time to recovery (after 
the stop of control action). Last two rows list the mean and standard deviation values. 

Patient # trise,MAP [min] tloc [min] trise,BIS [min] MinMAP [mmHg] MinBIS [-] trec [min] 

1 1.897 1.982 2.387 64.9 45.7 17.031 

2 2.464 1.744 1.977 64.6 43.1 12.155 

3 1.524 2.946 3.783 67.7 45.4 30.807 

4 1.776 1.849 2.281 63.2 47.2 13.697 

5 1.922 2.221 2.917  61.2 42.5 18.868 

6 2.347 1.564 2.498 68.2 48.1 24.986 

7 3.449 2.503 3.000 69.4 42.2 22.184 

8 2.899 2.485 3.129 68.1 44.6 11.271 

9 2.728 1.701 2.008 67.3 43.6 14.141 

Mean 2.664 2.111 2.334 66.1 44.7 18.349 

SD 0.558 0.460 0.583 2.6 1.9 6.180 

Figure 3 shows that the controller maintains the setpoint with a regular and quite stable 

action, throughout the duration of the simulated surgical operation, in absence of 

disturbances. MAP dynamics settles within 15 min, whereas BIS dynamics is slower 

and takes around 20 min. This is not due to the trajectory of the manipulated variables, 

whose changes are limited for both drugs, but to the slower dynamics of propofol 

(compared to remifentanil), manifested in a lower 𝑘𝑒0 value of the corresponding 

PBPK model. In fact, the smaller 𝑘𝑒0, the greater the overshoot in the peak plasma 

concentration to increase the plasma-effect-site gradient, i.e. enhance the plasma-

effect-site equilibration velocity (Absalom et al., 2009). At t = 38 min the infusion stops 

by setting the manipulated variables to 0 (black arrow and vertical dashed line in 

Figure 3). Afterwards, the drugs are cleared from the virtual patient’s body (by means 

of metabolic and excretion mechanisms), and MAP and BIS, the pharmacological 

effects, go back to the baseline values that characterize the awoken patient. We define 

𝑡𝑟𝑒𝑐 the time to recovery that is required to exceed BIS = 90 [-] once the propofol 

infusion is over (see also Table 4). The mean 𝑡𝑟𝑒𝑐 value for nine patients is 18 min 

and 21 s, whereas the individual values exhibit a noteworthy inter-individual variability, 

which is consistent with reality. In the practice, time for awakening from anesthesia 

varies from 5 min to 1 h, depending on the administered drugs, the type of surgery, 

and the patient’s characteristics. Indeed, in case of propofol and remifentanil, blood 

levels drop fast after the end of infusion and most patients are fully conscious within 

15 min (Frost, 2014), but recovery time from opioids and hypnotics is subject to inter-

individual variability. It is worth underlining that the controller has no part in influencing 

the recovery velocity once the infusion is completed. Indeed, the recovery dynamics 

depends on the ADME processes within the patient’s body and their 
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pharmacodynamic variability, which are simulated by the PBPK-PD model. The 

recovery from anesthesia is a critical phase and in the clinical practice further 

quantitative and qualitative (e.g., movement, response to calling) factors are usually 

accounted for along with BIS and MAP for a complete and reliable assessment of the 

awareness level. To this concern, it is important to emphasize that medical know-how 

is essential, and automated control of anesthesia aims at supporting the 

anesthesiologist’s decision-making rather than replacing their role. 

 
Figure 3 – Post-induction simulation in lack of disturbances. The black vertical dashed line marks the 
stop of control action (at t = 38 min). Left panel refers to the analgesia component; right panel refers to 
the hypnotic component. (Top) Dynamics of controlled variables MAP and BIS. (Bottom) Dynamics of 
manipulated variables, i.e. remifentanil and propofol IRs. 

Figure 4 (for remifentanil) and Figure 5 (for propofol) portray the drug concentration 

time profiles in different compartments resulting from the IRs trajectories of Figure 3. 

We show the dynamics of the blood, effect-site, and liver concentration, and the 

metabolized and eliminated amounts via extra-hepatic and hepatic/renal routes. 

Although it is not possible to validate the PK results of the body compartments except 

for plasma (because measuring drug concentrations in organs and tissues is invasive 

and therefore unfeasible), such simulations provide useful and complementary bits of 

information to the anesthetist for their decision-making and situational awareness. 

This is especially true as the information is produced by adapting the PBPK model not 

only to the patient’s physical characteristics, but also to the specific properties of the 

drug, for instance in terms of metabolic/elimination pathways. 

Stop of infusion Stop of infusion

Surgery duration Surgery duration
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Figure 4 – Simulation of remifentanil pharmacokinetics. Top panel shows blood (left) and effect-site (right) 
concentrations. Bottom panel shows liver (left) and the metabolized amount via extra-hepatic route (i.e. 
plasma and tissues) (right). 

It is worth observing that remifentanil blood concentration peak falls within the 

recommended range for induction of adequate analgesia (3-8 ng/mL, (Absalom and 

Struys, 2007)). For both drugs, the effect-site concentration is delayed respect to the 

blood concentration. For in vivo patients, this delay depends on age, cerebral flow, 

cardiac output, and PK input (Cortinez, 2014). On the modeling side, different PK 

models of the same drug predict different concentration profiles and therefore display 

different lags, which result into different 𝑘𝑒0 values. For remifentanil, the controller 

value of 𝑘𝑒0 comes from Minto et al. (1997) and depends on the patient’s age (with 

values from 0.7 min-1 for a 25-year-old to 0.455 min-1 for a 60-year-old individual). For 

the in silico patient’s model, we obtained 𝑘𝑒0 = 0.33 min-1 (see Savoca et al. (2017) 

for details). 
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Figure 5 – Simulation of propofol pharmacokinetics. Top panel shows blood (left) and effect-site (right) 
concentrations. Bottom panel shows liver (left) and the eliminated amount via hepatic metabolism and 
renal elimination (right). 

With respect to propofol, it is worth underlining that early drug distribution after bolus 

is not well characterized by PK classical models (e.g., Schnider and Marsh models, 

(Cortinez, 2014)). Actually, three-compartment PK models available in the literature 

predict different 𝐶𝑚𝑎𝑥 values and portray different curves corresponding to the early 

distribution phase (Cortinez, 2014). Consequently, they also feature different values 

of 𝑘𝑒0, e.g., 0.26 min-1 in Marsh model and 0.456 min-1 in Schnider model. We believe 

that the physiologically-based approach leads to a more realistic description of the 

distribution process. Consistently with the choice of the other parameters 𝑉𝑖 and 𝑘𝑖𝑗 of 

the classical PK model, we adopted Schnider’s 𝑘_𝑒0 = 0.456 min-1 (Schnider et al., 

1998) for the propofol control loop, whilst for the in silico patients we evaluated 𝑘𝑒0 = 

0.125 min-1 from the experimental data of Liu et al. (2015). Indeed, this value is similar 

to more recent studies on propofol PD (Doufas et al., 2004). The propofol blood 

concentration of Figure 5 tends to a maintenance value that is consistent with medical 

guidelines (Absalom and Struys, 2007), i.e. target values of plasma concentration in 

between 4-5 µg/mL for unpremedicated patients and in presence of an analgesic 

component. 
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3.5.2 Response to disturbances 

The maintenance phase can be addressed as a “regulator problem”. The controller 

must reject disturbances provoked by external events, throughout the surgical 

intervention, to maintain the DOA level. 

Intubation is usually performed within few minutes from the beginning of induction and 

is an invasive procedure that stimulates the vagal nerve and provokes a 

sympathoadrenal reaction in the patient, which results in increased AP and HR. Higher 

doses of remifentanil can reduce the cardiovascular impact of intubation on the 

patient. There are several studies devoted to the investigation of the optimal dose for 

suppression of such a response (Alexander et al., 1999; Batra et al., 2004; Hall et al., 

2000; O'Hare et al., 1999) to avoid dangerous situations in susceptible patients, e.g., 

ischemia or acute heart failure (Saroj et al., 2016). Incision, among others, is a 

nociceptive stimulus that can cause arousal and movements of the patient and lead 

to significant BIS increases (Coleman et al., 2015; Yang et al., 2016). For these 

reasons, intubation and incision are carried out once the patient has reached the 

required depth of anesthesia and analgesia. In the practice, these events are currently 

treated by preventively increasing the target concentration of TCI pumps, to ensure a 

deeper level of anesthesia. It is evident that this “feed-forward” control strategy 

completely and only relies on the anesthetist’s experience, which is over-specified and 

may differ significantly among experts thus missing a universally adopted reference 

to good-practices and recommended procedures. From this perspective, an unbiased 

tool, such as the MPC framework for automated anesthesia control, can play an 

important role for standardization of the optimal approach to anesthesia delivery. At 

the same time, the anesthetist remains the supervisor as they decide and set the 

parameters of the intervention in terms of setpoints, thresholds, adopted drugs, 

administration sequence, critical times, and relative importance (i.e. weights) of the 

terms in the objective function of the control problem (see Eq. (3.15)). Other acute 

undesired disturbances, i.e. strokes, hemorrhage, and organ failure can lead to side 

effects such as bradycardia and hypotension. Furthermore, inter-individual variability 

and the intrinsic complexity of the human body can have a significant impact on the 

control robustness. 
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Figure 6 – Simulation of a surgical operation (total length 69 min). (Top) Dynamics of controlled variables 
MAP (left) and BIS (right). (Bottom) Dynamics of manipulated variables i.e. IRs of remifentanil (left) and 
propofol (right). Numbers in parentheses and black vertical dashed lines mark specific events: (0) 
induction of anesthesia, (1) intubation (4 min after start of induction), (2) incision, (3) and (4) arousal 
episodes, and (5) stop of infusion after a low-stimulation period. Red lines in the MAP diagram mark the 
hypo- and hypertension regions (i.e. MAP < 60 mmHg and MAP > 120 mmHg). 

Therefore, we are interested to investigate the controller response to external stimuli, 

by simulating the effect of undesired events that are likely to occur in intraoperative 

anesthesia. The goal is to verify whether the controller is capable of re-establishing 

the desired anesthetic state with a rapid but safe control action. Figure 6 shows the 

simulation of a surgical operation with events indicated by numbers in parentheses, 

i.e. (0) induction of anesthesia, (1) intubation (performed 4 min after the start of 

infusion), (2) incision, (3) and (4) arousal episodes associated with an increase in BIS, 

and (5) end of infusion. To reproduce believable and realistic variations of the arterial 

pressure after intubation and incision, we referred to the scientific literature on 

intraoperative stimuli (Alexander et al., 1999; Batra et al., 2004; Hall et al., 2000; 

O'Hare et al., 1999). 

(0) (1) (2) (0) (3) (4) (5)(5) (2)(4)
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Figure 7 – Simulation of a surgical operation (duration 69 min) considering noisy controlled variables. 
(Top) Dynamics of controlled variables MAP (left) and BIS (right). (Bottom) Dynamics of manipulated 
variables i.e. IRs of remifentanil (left) and propofol (right). Numbers in parentheses and black vertical 
dashed lines mark specific events: (0) induction of anesthesia, (1) intubation (4 min after start of 
induction), (2) incision, (3) and (4) arousal episodes, and (5) stop of infusion after a low-stimulation period. 
Red lines in the MAP diagram mark the hypo- and hypertension regions (i.e. MAP < 60 mmHg and MAP 
> 120 mmHg). 

We assumed that the analgesia level is sufficient to prevent peripheral noxious stimuli 

from reaching the brain. Consequently, we suppressed BIS reaction to intubation, 

because according to Nakayama et al. (2003), intubation is mediated at the subcortical 

level, and therefore may be unrelated to BIS, which is an indicator of cerebral cortical 

activity. Thus, in our simulations, only incision induces BIS changes. The controller 

reacts with steep but short increases of IRs (similar to small boluses in Figure 6) to 

avoid infringing safe boundaries. Few minutes are required to re-establish targeted 

depth of anesthesia and analgesia. There is only one patient that experiences a MAP 

value below the assigned lower bound of 60 mmHg (quantified by 𝑃𝐹𝑀𝐴𝑃, in Eq. (3.20)) 

for a rather short time interval. 

Finally, Figure 7 shows how the MPC procedure performs in case of noisy 

experimental measurements. In fact, the profiles of the controlled variables showed 

up to now are not truly realistic, as in the practice experimental measurements are 

subjected to noise and disturbances, especially with respect to BIS. Therefore, we 

repeated the simulations by adding a Gaussian-distributed noise to the patient’s 

(0) (1) (2) (0) (3) (4) (5)(5) (2)(4)
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model output. Figure 7 shows that the profiles of manipulated variables are moderately 

affected by MAP and BIS noise, however it is fair concluding that noise does not 

induce any instability in the control action. 

The controller is capable of distinguishing between noxious stimuli and noise. 

Furthermore, the noise contribution is realistic because it comes from an accurate 

analysis of the experimental signal from clinical case-studies (see Paragraph 3.4.3 for 

further details). 

The CPU time for the simulation of the whole surgical intervention (69 min of wall-

clock time) in Figure 6 and Figure 7 (with control actions taken every minute) is 50 to 

70 s for each patient on an Intel® Core™ i7-3770 CPU @ 3.40 GHz with 8 GB RAM. 

3.6 Conclusions 

 
We developed a model-predictive controller of anesthesia and tested the performance 

on in silico patients via PBPK-PD models. We considered the co-administration of 

propofol and remifentanil to embrace both the fundamental components of general 

anesthesia, i.e. hypnosis and analgesia. During the induction phase, the designed 

system is responsive, with low rise-times and settling times consistent with clinical 

requirements. The resulting controlled variables remain within the recommended 

therapeutic ranges. During the maintenance phase, the controller keeps both MAP 

and BIS within the safe regions, and displays robustness towards disturbances 

caused by simulated intraoperative stimuli and noise on measurements of the 

controlled variables. The intraoperative disturbances and noise were artificially 

generated paying attention to the reality of clinical practice. Furthermore, the time 

required for the controller calculations is short enough to make the on-line clinical 

application feasible. Indeed, the longest CPU time after several different simulations 

of surgical anesthesia never exceeded the control time interval. The CPU time issue 

is a key point that is often addressed as a disadvantage of MPC application in 

anesthesia compared to more recent machine learning approaches (Padmanabhan 

et al., 2015). However, this is not an issue for our MPC approach to total intravenous 

anesthesia. 

In addition, the purely in silico controller can be used for a priori analysis of surgical 

operations. Current research activity is devoted to model improvement by including 

further factors that contribute to inter-individual variability, e.g., pathologies, age 

changes, and pre-medication, and include other key physiological variables.  
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Our main future goal is clinical validation of the controller (i.e. in vivo implementation 

of the MPC procedure), which would adopt the PBPK-PD model. We think that the 

physiological approach could improve the predictive feature of the controller, as it 

would allow a more detailed description of the patient’s ADME processes. 

3.7 Appendix 3.A 

Table A – List of physiological parameters: symbol, description, category, and units of measure. 

Symbol Description Category 
Un. of 
measure 

𝑸𝑷𝑽 Blood flowrate in portal vein Individualized [mL/min] 

𝑸𝑯𝑨 Blood flowrate in hepatic artery Individualized [mL/min] 

𝑸𝑯𝑽 Blood flowrate in hepatic vein Individualized [mL/min] 

𝑸𝑲 Blood flowrate to kidneys Individualized [mL/min] 

𝑽𝑷 Plasma compartment volume  Individualized [mL] 

𝑽𝑳 Liver compartment volume Individualized [mL] 

𝑽𝑮𝑰𝑪𝑺 GICS compartment volume Individualized [mL] 

𝑽𝑷𝑻 Poorly perfused Tissues 
compartment volume 

Individualized [mL] 

𝑽𝑯𝑶 Highly perfused Organs 
compartment volume 

Individualized [mL] 

𝑪𝑳𝑯 Hepatic clearance, calculated as 
𝑄𝑃𝑉𝐸𝑓𝑓𝐻 

Individualized [mL/min] 

𝑪𝑳𝑲 Renal clearance, calculated as 
𝑄𝐾𝐸𝑓𝑓𝐾 

Individualized [mL/min] 

𝑹 Protein binding fraction Assigned [-] 

𝒌𝑷−𝑷𝑻 Plasma-Poorly perfused Tissues 
drug transfer coefficient 

Adaptive [min-1] 

𝒌𝑷𝑻−𝑷 Poorly perfused Tissues-Plasma 
drug transfer coefficient 

Adaptive [min-1] 

𝒌𝑷−𝑯𝑶 Plasma-Highly perfused Organs 
drug transfer coefficient 

Adaptive [min-1] 

𝒌𝑯𝑶−𝑷 Highly perfused Organs-Plasma 
drug transfer coefficient 

Adaptive [min-1] 

𝒌𝑬𝑳,𝑷𝑻 Tissues metabolic constant Adaptive [min-1] 

𝒌𝑬𝑳,𝑷 Plasma metabolic constant Adaptive [min-1] 

𝑬𝒇𝒇𝑯 Hepatic efficiency Adaptive [-] 

𝑬𝒇𝒇𝑲 Renal efficiency Adaptive [-] 
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CHAPTER 4A 

 
 
 
 

 

Tackling inter-individual variability: 

the influence of intraoperative  

cardiovascular changes 
 
 
 
 
 
 

4A.1 Author’s Note 

 

The use of PK-PD models to describe the dose-effect relation of patients administered 

with anesthetic and analgesic drugs calls for the need to improve the prediction of 

inter-individual variability. Several factors contribute to introduce uncertainty in 

patients’ response to anesthesia. Anesthesia is a complex multivariable process 

involving not only the loss of consciousness but also other concomitant body 

reactions, such as cardiovascular and respiratory depression. Intra-operative changes 

of hemodynamic parameters induce alterations of the pharmacokinetics and thus 

pharmacodynamics, resulting into less or more enhanced response to anesthesia. 

This chapter presents (i) an analysis of the extent and variability of the cardiovascular 

response in high-risk patients of a closed-loop anesthesia study, (ii) an application of 

PBPK simulations as tool to individualize the prediction basing on the patients’ 

hemodynamic data and investigate the effects of cardiovascular changes on patients’ 

depth of hypnosis. New correlations (from Stader et al. (2019)) were also introduced 

within the PBPK model presented in Chapter 3, to further improve the individualization 

aspect of the model prediction. 
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4A.2 Abstract 

 

Background and objective: Intraoperative hemodynamic stability is essential to safety 

and post-operative well-being of patients and should be optimized in closed-loop 

control of anesthesia. Cardiovascular changes inducing variations in 

pharmacokinetics may require dose modification. Rigorous investigational tools can 

strengthen current knowledge of the anesthesiologists and support clinical practice. 

We quantify the cardiovascular response of high-risk patients to closed-loop 

anesthesia and propose a new application of physiologically-based pharmacokinetic-

pharmacodynamic (PBPK-PD) simulations to examine the effect of hemodynamic 

changes on the depth of hypnosis (DoH). 

Methods: We evaluate clinical hemodynamic changes in response to anesthesia 

induction in high-risk patients from a study on closed-loop anesthesia. We develop 

and validate a PBPK-PD model to simulate the effect of changes in cardiac output 

(CO) on plasma levels and DoH. The wavelet-based anesthetic value for central 

nervous system monitoring index (WAVCNS) is used as clinical end-point of propofol 

hypnotic effect. 

Results: The median (interquartile range, IQR) changes in CO and arterial pressure 

(AP), 3 min after induction of anesthesia, are 22.43 (14.82-36.0) % and 26.60 (22.39-
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35.33) % respectively. The decrease in heart rate (HR) is less marked, i.e. 8.82 (4.94-

12.68) %. The cardiovascular response is comparable or less enhanced than in 

manual propofol induction studies. PBPK simulations show that the marked decrease 

in CO coincides with high predicted plasma levels and deep levels of hypnosis, i.e. 

WAVCNS < 40. PD model identification is improved using the PBPK model rather than 

a standard three-compartment PK model. PD simulations reveal that a 30% drop in 

CO can cause a 30% change in WAVCNS. 

Conclusions: Significant CO drops produce increased predicted plasma 

concentrations corresponding to deeper anesthesia, which is potentially dangerous 

for elderly patients. PBPK-PD model simulations allow studying and quantifying these 

effects to improve clinical practice. 

Keywords: cardiac output; hemodynamics; closed-loop anesthesia; physiologically-

based pharmacokinetic modeling; propofol; high-risk patients. 

 

4A.3 Introduction 

 

Propofol is an intravenous (IV) hypnotic agent commonly used for induction of general 

anesthesia. Along with the advantages of rapid onset of unconsciousness and short 

duration of action, propofol has adverse effects such as cardiorespiratory depression 

and hypotension. These adverse effects are characterized by slower dynamics 

compared to the hypnotic effects (Kazama et al., 1999). 

Hypotension following anesthetic drug administration in the operating room is 

common, including hypotension sufficiently severe to require an intervention such as 

vasoconstrictive drug administration to counter the hemodynamic response. 

Cardiovascular changes following propofol administration show high inter-individual 

variability and are associated with the patients’ characteristics. Age over 50 y, pre-

induction mean arterial pressure (MAP) values below 70 mmHg, and American 

Society of Anesthesiologists (ASA) classification III and IV are reported predictors of 

hemodynamic fluctuations (Reich et al., 2005). Although mild hypotension is 

considered clinically insignificant (Reich et al., 2005), association of intraoperative 

hemodynamic instability with mortality, stroke, and other adverse outcomes has been 

shown (Devinney et al., 2015; Reich et al., 2005). Currently, there is lack of evidence 

that commonly used target-controlled infusion (TCI) systems reduce the chances of 

hemodynamic fluctuations, compared to manual induction (Laso et al., 2016). One of 
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the goals of adoption of automated control systems in anesthesia is to increase the 

stability of the patients’ anesthetic state, including their hemodynamics. 

Induction of anesthesia is a challenging phase from the point of view of the 

hemodynamic response. Heart-rate (HR) and (non-invasive) blood pressure (BP) are 

routinely measured in clinical practice, during both induction and maintenance of 

anesthesia. Cardiac output (CO) monitoring on the other hand, is not as commonly 

used, and is generally employed at the discretion of the anesthetist in high-risk 

patients and/or major surgical procedures (Vincent and Fagnoul, 2012). Reports of 

CO changes following propofol induction of anesthesia often feature few observations 

(Bendel et al., 2007; Larsen et al., 1988), with limited frequency (Claeys et al., 1988; 

Potočnik et al., 2011), or over a short time horizon (Fairfield et al., 1991; Steib et al., 

1988). Evaluation of closed-loop controllers often focus on depth-of-hypnosis (DoH) 

rather than the hemodynamic aspects (e.g., Janda et al., 2011; Nogueira et al., 2014; 

Padula et al., 2017). 

Hemodynamic changes are also reported to affect the pharmacokinetics of anesthetic 

and analgesic drugs (Adachi et al., 2001; Brodie et al., 2017; Upton et al., 1999) with 

consequent variations in dosing requirements. CO is reported to be a key determinant 

of propofol pharmacokinetics (Kurita et al., 2002; Upton et al., 1999). In particular, 

pharmacokinetic studies in animals show that lower cardiac outputs lead to higher 

plasma concentrations (Kurita et al., 2002; Upton et al., 1999). This is in line with the 

clinical experience according to which reduced CO leads to lower anesthetic 

requirements (also evident in the case of critical events, such as hemorrhage (Brodie 

et al., 2017)). Thus, neglecting the effect played by CO can lead to potential 

overdosing of propofol, which can be dangerous, especially for critically ill and/or 

elderly patients. 

Physiologically-based pharmacokinetic (PBPK) models can account for the effect of 

CO changes (Upton and Ludbrook, 2005). The PBPK modeling approach is based on 

a simplified but nonetheless physiological description of the drug distribution and 

transport in the body organs and tissues, which are assimilated to homogenous 

compartments. Thus, the effect of CO on blood flowrates can be accounted for and 

the effect of CO changes on the pharmacokinetics can be studied in silico. When 

combined with a suitable pharmacodynamic (PD) model, the implications on the depth 

of hypnosis can also be investigated in silico. 

The objectives of this paper are (i) to quantify CO, MAP, and HR changes observed 
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during closed-loop induction of propofol-remifentanil anesthesia, for a high-risk subset 

of the population for whom arterial blood pressure monitoring was indicated in West 

et al. (2018), and (ii) to investigate the influence of CO changes on pharmacokinetics 

and pharmacodynamics via in silico simulations based on PBPK-PD modelling. 

4A.4 Methods 

 

4A.4.1 Clinical data 

Data were available from the clinical evaluation of closed-loop control of propofol-

remifentanil anesthesia, based on the wavelet-based anesthetic value for central 

nervous system monitoring index (WAVCNS) index provided by the NeuroSENSE NS-

701 monitor (NeuroWave Systems, Cleveland Heights, OH) (West et al., 2018). 

Ethical approval from the Research Ethics Board (FHREB 2012-056), investigational 

device approval from Health Canada (206188), and patients’ informed consent were 

previously obtained (West et al., 2018). In a subset of 15 patients, an arterial line was 

placed prior to induction of anesthesia, and continuous CO measurements during 

induction of anesthesia were available (LiDCO Rapid, LiDCO Ltd, London UK). HR 

was recorded using ECG (Carescape B850 multi-parameter monitor, GE Healthcare, 

Buckinghamshire, UK). This subset of the study population represented an “at-risk” 

population because of their conditions or type of surgery, for whom arterial line 

placement was indicated. Table 5 reports the demographics of the studied subset. 

Data on CO, BP, and HR were analyzed using MATLAB (MathWorks, Natick, MA). 

Table 5 – Demographics of the 15 patients’ cohort. Age and BMI are presented as median (interquartile 
range (IQR)). 

N 15 

Gender (F:M) 1:14 

Age (y) 67 (59-73) 

BMI (kg/m2) 28.22 (25.49-30.34) 

4A.4.2 Propofol physiologically-based pharmacokinetic model 

In silico investigation of the effect of CO changes on pharmacokinetics is performed 

using a PBPK model that was developed and validated using data available in the 

literature, and has been applied to in silico simulation of closed-loop controlled 

anesthesia (Savoca and Manca, 2019). The structure of this model is adapted from 

the more complex PBPK model described in Abbiati et al. (2018) to meet propofol 

pharmacokinetic characteristics. The absorption, distribution, metabolism, and 

elimination (ADME) processes undergone by propofol within the body are described 
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via material balances over five compartments, corresponding to specific tissues and 

organs. 

The number of compartments is a compromise between the mathematical complexity 

(along with consequent identifiability controversies) and the anatomical and 

physiological resemblance of the model. The following compartments are included: 

plasma (P), gastrointestinal circulatory system (GICS), liver (L), highly perfused 

organs (HO, which lump the kidneys, brain, heart, and spleen), and poorly perfused 

tissues (PT, which lump fat, muscles, bones, and skin). For the sake of clarity, GICS 

comprises the portal vein, the mesenteric artery, and the microvessels that are 

involved in the blood transport to and from the gastrointestinal system. The plasma 

compartment balance (Eq. (4A.1)) features the input infusion rate 𝐼𝑅(𝑡), as 

administered by the controller in West et al. (2018). The mathematical formulation of 

the model consists of Eqs. (4A.1-5) that describe the dynamics of propofol 

concentration 𝐶(𝑡) in the body compartments, complemented by Eqs. (4A.6-7), whose 

purpose is to describe and quantify the eliminated drug amount via the hepatic (H) 

and extra-hepatic (EH) routes (for propofol case, renal and tissues pathways). 

As opposed to classical three-compartment PK models, not all the parameters of the 

PBPK model are identified with PK data (i.e. measured values of blood concentration) 

of a specific population. There are three categories of parameters: (i) individualized, 

i.e. calculated from the demographics, (ii) assigned, i.e. specific values related to the 

drug physiochemical characteristics that are available in the literature, and (iii) 

regressed with PK data. Table 6 lists the model parameters and clarifies the method 

for their identification. 

The calculation of compartment volumes 𝑉𝑖 depends on the demographics 

(specifically, correlations account for patients’ body surface area, height, age, and 

gender (Stader et al., 2019)) and allows for individualization of the pharmacokinetic 

prediction. The protein binding fraction, 𝑅, is assigned according to the scientific 

literature on propofol (Mazoit and Samii, 1999). In Eqs. (4A.1-5), 𝑄𝐻𝑉, 𝑄𝑃𝑉, and 𝑄𝐻𝐴 

are the blood flows respectively through the hepatic vein (HV), the portal vein (PV), 

and the hepatic artery (HA), which are calculated as a fraction of the CO. The same 

approach is applied to renal clearance 𝐶𝐿𝐾 calculated from the total blood flowrate to 

kidneys 𝑄𝐾, which is evaluated as a fraction of CO (see Table 6). Correlations for 

calculation of blood flowrates depend on body surface area, height, age, gender 

(Stader et al., 2019). 
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The remaining parameters (i.e. transport coefficients, e.g., 𝑘𝑃−𝑃𝑇 and metabolic 

constants, e.g., 𝐸𝑓𝑓𝐻) are identified via nonlinear regression with pharmacokinetic 

data from Schnider et al. (1998). The model, with CO calculated from the 

demographics (as in Stader et al. (2019)) was validated using PK data from four 

studies in different populations (Dyck and Shafer, 1992; Gepts et al., 1987; Servin et 

al., 1993; Smuszkiewicz et al., 2016). 

Table 6 – List of PBPK model parameters, symbols, and calculation method. 

Parameter Symbol Identification6 

Organ/tissue density 𝜌𝑖 Assigned as in Valentin (2002) 

Blood weight 𝑊𝐵 Calculated from demographics (Stader et al., 
2019) 

PT weight 𝑊𝑃𝑇 Calculated from demographics (Stader et al., 
2019) 

HO weight 𝑊𝐻𝑂 Calculated from demographics (Stader et al., 
2019) 

Liver weight 𝑊𝐿 Calculated from demographics (Stader et al., 
2019) 

Blood volume 𝑉𝐵 Calculated as WB/ρB 

Hematocrit ℎ Assigned as in Stader et al. (2019) 

Plasma volume 𝑉𝑃 Calculated as VB(1 −  h) 
PT volume 𝑉𝑃𝑇 Calculated as WPT/ρPT 

HO volume 𝑉𝐻𝑂 Calculated as WHO/ρHO 

 
6 Correlations from Stader et al. (2019) account for patients’ body surface area, height, age, and gender. 
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GICS volume 𝑉𝐺𝐼𝐶𝑆 Calculated as in Abbiati et al. (2018) 

Liver volume 𝑉𝐿 Calculated as WL/ρL 
HV blood flow 𝑄𝐻𝑉 Calculated as %CO (Stader et al., 2019) 

HA blood flow 𝑄𝐻𝐴 Calculated as 25%QHV 

PV blood flow 𝑄𝑃𝑉 Calculated as 75%QHV 

Kidneys blood flow 𝑄𝐾 Calculated as %CO (Stader et al., 2019) 

Hepatic clearance 𝐶𝐿𝐻 Calculated as EffHQPV  

Renal clearance 𝐶𝐿𝐾 Calculated as EffKQK 

Protein binding fraction 𝑅 Assigned as in Mazoit and Samii (1999) 

PT-plasma transport 
coefficient 

𝑘𝑃𝑇−𝑃 Identified with data from Schnider et al. (1998) 

Plasma-PT transport 
coefficient 

𝑘𝑃−𝑃𝑇 Identified with data from Schnider et al. (1998) 

HO-plasma transport 
coefficient 

𝑘𝐻𝑂−𝑃 Identified with data from Schnider et al. (1998) 

Plasma-HO transport 
coefficient 

𝑘𝑃−𝐻𝑂 Identified with data from Schnider et al. (1998) 

GI tissue metabolic 
constant 

𝑘𝐸𝐿,𝐺𝐼 Identified with data from Schnider et al. (1998) 

Hepatic efficiency  𝐸𝑓𝑓𝐻 Identified with data from Schnider et al. (1998) 

Renal efficiency 𝐸𝑓𝑓𝐾 Identified with data from Schnider et al. (1998) 

Table 7 reports the validation results in terms of median prediction error (MDPE) and 

median absolute prediction error (MDAPE). MDPE and MDAPE are chosen as 

predictive performance indicators because they are commonly used in the scientific 

literature related to pharmacokinetic modeling of IV drugs employed in anesthesia and 

analgesia. Acceptable values are MDPE in the range within ± 20% and MDAPE 20-

40% (mean values) (Eleveld et al., 2018; Hara et al., 2017). Although some values 

are outside these target ranges, the variability of patients’ characteristics in the 

validation studies (i.e. young, elderly, healthy, critically ills, and obese) and infusion 

regimes (boluses and infusions) must be taken into account. Indeed, in case of 

critically ill patients (Smuszkiewicz et al., 2016; Gepts et al., 1987), concomitant drugs 

and comorbidities may influence propofol pharmacokinetics, with repercussions on 

the poorer predictive performance of the model. The Dyck and Shafer dataset (Dyck 

and Shafer (1992)) features a peculiar characteristic compared to other propofol 

pharmacokinetic datasets, as most blood samples were obtained up to 19 h after a 

10-min IV propofol infusion. This means that most values refer to propofol sub-

anesthetic concentrations. Likely, the model prediction would be superior if propofol 

concentrations were evaluated only during the maintenance and early elimination 

phases of the infusion, as in other propofol pharmacokinetic datasets. Future work 

should address the issue of further adapting the correlations used to identify the model 

parameters (see Table 2) to obese patients, as their condition involves anatomical 

and physiological changes that, depending on the degree of obesity, will alter propofol 

pharmacokinetics compared to healthy individuals. By doing so, the model prediction 
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of Servin’s dataset (Servin et al. (1993)) would be improved. 

The effect of CO on pharmacokinetics is evaluated using the propofol infusion rates 

as well as the measured CO data (West et al., 2018) as inputs to the PBPK model to 

simulate the pharmacokinetics of the patients. Hence, CO changes will affect the drug 

transport and final concentration within the body. Resulting PK profiles are compared 

to the Schnider-model predicted levels (Schnider et al., 1998). 

Table 7 – Validation results of the PBPK model. First column reports the PK study (number and type of 
subjects involved), second and third columns list MDPE and MDAPE (mean (SD))7. 

PK study MDPE% MDAPE% 

Servin et al. (1993) 
(N=8, obese) 

4.05 (27.1)  40.2 (28.2) 

Gepts et al. (1987) 
(N=16, critically ill) 

-26.22 (36.96) 51.06 (31.77) 

Dyck and Shafer (1992) 
(N=57, healthy) 

-14.8 (21.2) 40.6 (16.3) 

Smuszkiewicz et al. (2016) 
(N=1, critically ill) 

-29 29 

4A.4.3 Pharmacodynamic modeling and in silico evaluation 

The phase-lag between the time course of the plasma concentration and 

manifestation of the pharmacological effect is accounted for by the commonly-used 

effect-site equation approach. The PBPK model is combined with a suitable form of 

the Hill equation, whose PD parameters are identified via nonlinear regression using 

the WAVCNS data from West et al. (2018). The goodness-of-fit is evaluated via Root-

Mean-Square Error (RMSE) for the PBPK-PD and Schnider three-compartment PK-

PD models of the 15 patients. 

The effect of different extents of CO decrease on pharmacodynamics is evaluated for 

a virtual patient described by a validated PBPK-PD model. The DoH is predicted for 

three different CO profiles, representing a 35, 50, and 70% (maximum) drop. 

4A.5 Hemodynamic changes during closed-loop induction 

of anesthesia 

 

Paragraph 4A.5.1 presents the hemodynamic changes observed during induction of 

anesthesia in the high-risk subset of the patient population in West et al. (2018). 

Paragraph 4A.5.2 discusses these results and compares them to reported changes 

 
7 Values are presented as mean (SD), except for Smuszkiewicz et al. (2016), because only average data of the study population are available in the 

paper. Data from other studies are available at http://opentci.org/data/propofol. 
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following manual induction of anesthesia with propofol in similar patients. 

4A.5.1 Quantification of hemodynamic changes 

Baseline values for the 15 patients in the subpopulation are median (IQR) CO 7.24 

(5.57-8.02) L/min, MAP 106.6 (95-111.25) mmHg and HR 71 (58.75-78.25) b/min. 

27% of the patients exhibited baseline values of CO and HR lower than 5 L/min and 

60 b/min, respectively, which is not atypical considering age and ASA classes. 

Induction of anesthesia was performed in closed-loop. The end of induction of 

anesthesia was defined as the time the WAVCNS < 60 for 30 consecutive seconds. For 

the 15 patients in the subpopulation, this was achieved in a median (IQR) 4.18 min 

(3.44-4.54 min) with a propofol dose of 1.42 (1.05-1.47) mg/kg. 

Table 8 reports median (IQR) values of the drops in CO, MAP, and HR 1.5 and 3 min 

after induction of anesthesia. Whereas the drop in CO and MAP after 3 min is median 

22.4 and 26.6%, respectively, the decrease in HR is less marked. The maximum 

values of the drop (i.e. evaluated between the start of induction and the start of the 

airway management) are 43.43% and 37.5% for CO and MAP, respectively (also 

reported in Table 8). Note that median maximum MAP drop exceeds 30%, which is 

typically considered clinically significant. 

In some of the patients, the CO continued to decrease further after 3 min, in particular 

to over 50% for 1 patient and over 60% for 2 patients. However, although in some of 

these cases this enhanced reduction may have been caused by propofol overdosing, 

other factors may have contributed. 

Figure 8 shows the individual trends of CO, MAP, and HR (top panel) from the start of 

induction until induction is completed, as defined above. The bottom panel shows 

median (IQR) values over the first 5 min after the start of propofol induction. The 

individual trends of CO, MAP, and HR drop (Figure 8) and the IQR associated to the 

drop (Table 8) manifest great inter-individual variability. Variability of the profiles may 

be partly ascribed to the differences in the patients’ characteristics, diseases and 

physical conditions, timing of intubation, type of surgical procedure, and drug-drug 

interactions. 

Table 8 – Median (IQR) values of CO, MAP, and HR drop 1.5 and 3 min after the start of induction. 
Median (IQR) values of the maximum drop are also reported (N =15). 

 %ΔCO [-] %ΔMAP [-] %ΔHR [-] 

1.5 min  7.03 (1.66-17.47) 8.93 (3.11-16.1) 5.45 (2.48-9.13) 

3 min 22.43 (14.82-36.0) 26.6 (22.39-35.33) 8.82 (4.94-12.68) 
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max8 43.43 (38.57-47.74) 37.5 (32.79-52.25) 16.28 (12.99-20.36) 

 

Figure 8 – (Top panel) Individual patients’ trends of CO, MAP, and HR throughout the induction period 
(i.e. from the start of induction to completed induction). (Bottom panel) Median (IQR) values of CO, MAP, 
and HR in the first 5 min after the start of propofol induction. 

4A.5.2 Hemodynamic changes after manual induction in the 

literature and discussion 

In 15 high-risk patients scheduled for cardiac surgery, the authors in Singh et al. 

(2010) administered propofol 1.5 mg/kg and fentanyl 4 µg/kg. They recorded baseline 

and 1-min interval values of the hemodynamic variables for 3 min after induction of 

anesthesia. HR and MAP were recorded continuously, and CO was measured with 

the FloTrac-Vigileo monitor (Edwards Life Sciences, Irvine, USA), based on the 

analysis of the arterial pressure waveform. They found 18.7 and 17.3% decrease in 

CO and MAP and no statistically significant change in HR after 1 min, and mean 37.5, 

34.3, and 10.5% decrease in CO, MAP, and HR after 3 min from induction. 

Hemodynamic variables were continuously monitored in Vos et al. (2014) with the 

Nexfin monitor (Edwards LifeSciences Corporation, Irvine, CA, USA), a non-invasive 

pulse pressure analysis device, in 40 patients (ASA I-II-III) administered with propofol 

(1-3 mg/kg) and remifentanil (1 µg/kg). A decrease of mean 30, 23.8, and 26% was 

found in CO, MAP, and HR after induction. 

In Potočnik et al. (2011), CO, MAP, and HR were recorded continuously (CO was 

measured using the LiDCO Plus system (LiDCO, London, UK)) during manual 

induction of anesthesia with 1.5-2.5 mg/kg of propofol and 0.5 µg/kg of remifentanil in 

 
8 Evaluated between the start of induction and the start of airway management. 

   

   

 1 
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24 patients (ASA II-III). Baseline values as well as the value of CO, MAP, and HR after 

induction (defined as 3 min after BIS < 60) and after intubation are given. They 

observed about 29% decrease in CO, and 22% in MAP and HR (mean values). It was 

noted that the open lung surgery may have contributed to the circulatory instability 

due to tissue hypoperfusion and thus affected these results (Potočnik et al., 2011). 

In 10 elderly patients (ASA I-II) scheduled for abdominal surgery, anesthesia was 

induced with 1.5 mg/kg of propofol (Larsen et al., 1988). A catheter in the radial artery 

was inserted for continuous monitoring of arterial blood pressure, and cardiac output 

was measured by the thermodilution technique. Lowest values after induction were 

reported. There was no statistically significant change in HR, whereas a decrease of 

17.5 and 33.3% in CO and MAP (mean values) was observed. 

Reported HR changes are contradictory. HR is more affected by external stimuli, and 

differences in the study design (e.g., times to intubation and to measurement of 

baseline values) and patients’ level of anxiety are likely to produce inconsistencies. 

Although lowest values were not reported (except for one study), the median changes 

in CO and MAP observed after 1.5 and 3 min in this subpopulation of the closed-loop 

study in West et al. (2018) are comparable or smaller than the changes described in 

the literature following manual induction of anesthesia with propofol. Thus, closed-

loop induction did not introduce a higher risk of hypotension and cardiovascular 

changes compared to manual induction. In fact, despite the age and condition of the 

patients, and the procedures in this subpopulation where use of an arterial line was 

selected, the control action provides an overall adequate compromise between 

hemodynamic stability and velocity of induction. Note that patients’ characteristics, 

technology used to measure CO, drug dosing and opioid use differ among studies, 

and need to be taken into account in the interpretation of this comparison. 

4A.6 Impact on PK and PD 

 

This section presents the results of in silico evaluation of the effect of CO on 

pharmacokinetics and pharmacodynamics. The resulting pharmacokinetic profiles of 

the PBPK simulations and the commonly used three-compartment Schnider model 

(Schnider et al., 1998) are compared in Section 4A.6.1 for six representative cases. 

Paragraph 4A.6.2 presents the results of identification of PD models for DoH using 

the PBPK and the Schnider PK models. In silico simulations of one of the PBPK-PD 

models are presented to evaluate the effect of different CO changes on the DoH in 
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Paragraph 4A.6.3. 

 

Figure 9 – Panel A shows the CO trends of the individual patients (cases 1, 2, and 3). Panel B shows the 
comparison between the plasma concentration dynamics predicted by our PBPK model (red dashed line) 
and Schnider model (blue continuous line). Panel C shows corresponding trends of the WAVCNS index 
as DoH measure. The black dashed-dotted vertical line marks the start of propofol infusion. 

4A.6.1 PBPK prediction of plasma levels 

Plasma concentrations are predicted for the 15 patients described in Paragraph 

4A.4.1, using the PBPK model presented in Paragraph 4A.4.2. Input to the model are 

demographics of those patients, infusion rate as administered by the controller, and 

the measured CO. 

Figure 9 and Figure 10 show the measured CO (A panels), the simulated dynamics of 

propofol concentration (B panels), and the measured DoH (C Panels) of six 

representative cases, referred to as cases 1, 2, and 3 (in Figure 9), and cases 4, 5, 

and 6 (in Figure 10). The considered time horizon is 15 min after the start of induction 

of anesthesia. Missing data in the CO trends are due to either monitors disconnection 

or artifacts that were suitably removed in the data post-processing phase. 

   

   

   

 1 
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The PBPK-predicted plasma concentrations (red dashed line) exceed the plasma 

concentrations predicted by the Schnider model (blue continuous line). Discrepancies 

in the plasma levels prediction resulting from different PK models, are not surprising, 

and have been reported extensively (Coppens et al., 2011; Masui et al., 2010). It is 

known that early disposition propofol is not well-characterized by classical three-

compartment models (Cortinez, 2014). Concentration peaks in the range between 20-

30 µg/mL have been found after bolus administration (Struys et al., 2007). Higher 

concentrations have been found in the elderly compared to younger patients 

(Kirkpatrick et al., 1988). Although the Schnider model features age as covariate, 

studies in the elderly have shown underestimation of the Schnider PK-prediction with 

respect to the measured values (see positive MDPEs reported by Vuyk et al. (2001) 

and Cortinez et al. (2014)). Considering the patient population and the corresponding 

DoH overshoot and cardiovascular depression, PBPK-predicted levels are realistic. 

Note that the PBPK-predicted plasma concentration shows close resemblance to the 

WAVCNS data trend (see for instance the plasma peak (red dashed line) and the DoH 

drop below 40 in cases 2 and 3). In fact, cases 1, 2, and 3 (Figure 9) manifest DoH 

values that are below the recommended lower level of 40 for short periods, and display 

burst suppression behavior9. This behavior corresponds, with some delay, to high 

peaks (> 10 μg/mL) in the concentration trend as a result of the changes in CO. 

Instead, in cases 4, 5, and 6 (Figure 10), the CO drop is more gradual and limited 

(%ΔCOmax < 45) and the DoH trend does not indicate an overshoot and values < 40. 

Corresponding predicted peak plasma levels are approximately 10 μg/mL. 

These results confirm that the hypnotic effects of propofol infusion may be amplified 

by significant CO decreases, in line with the experience from the clinical practice that 

adjusts drug dosing in case of patients with low CO baseline. On the other hand, PK 

prediction according to Schnider model prediction does not manifest abnormal levels: 

in fact, levels represented by the blue continuous line are comparable in most cases, 

except case 2. 

 
9 Burst suppression is an EEG pattern characterized by high-voltage, non-periodic bursts of activity alternating with an isoelectric background 

alternating. It is usually associated with low values of quantitative EEG monitors, such as BIS or WAVCNS < 40. 
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Figure 10 – Panel A shows the CO trends of the individual patients (cases 4, 5, and 6). Panel B shows 
the comparison between the plasma concentration dynamics predicted by our PBPK model (red dashed 
line) and Schnider model (blue continuous line). Panel C shows corresponding trends of the WAVCNS 
index as DoH measure. The black dashed-dotted vertical line marks the start of propofol infusion. 

The fact that deep levels of hypnosis are found in conjunction with higher predicted 

plasma levels (Figure 9), may also suggest that significant changes in CO are a 

contributing factor to the dynamics of propofol concentration in the brain with 

consequence of burst suppression. In addition, these trends are often observed in 

presence of MAP (not shown) equal to or below 70 mmHg, which is the reference 

lower bound for preservation of cerebral blood flow autoregulation (Drummond, 2019). 

Actually, low DoH values have been reported in association with both overdosing and 

reduced cerebral perfusion (Dahaba et al., 2010), hence in this case there may be a 

concomitant effect of overdosing and low cerebral perfusion resulting in burst 

suppression. 
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4A.6.2 PD model identification 

Table 9 – RMSE values (median (IQR)) for the PBPK-PD and Schnider PK-PD models. 

Patients PBPK-PD RMSE [-] Schnider PK-PD RMSE [-] 

All (N = 15) 5.72 (4.67-5.99) 5.90 (5.07-6.84) 

%ΔCOmax > 45 (N = 6) 5.60 (5.34-5.85) 6.26 (5.54-7. 2) 

 

Figure 11 – Results of the PD model identification with DoH data of case 1 (black continuous line). 
Comparison of the DoH (left panel) and the effect-site concentration (right panel) dynamics obtained via 
PBPK-PD model (red dashed line) and the classical three-compartment PK-PD model (blue continuous 
line). 

DoH data from West et al. (2018) were used to identify PD models of the 15 patients 

via nonlinear regression. Table 9 shows RMSE values for the PBPK-PD and the three-

compartment PK-PD models. A lower value of RMSE is obtained in the cases of 

PBPK-PD models identified particularly with DoH data of patients subject to marked 

CO decreases (%ΔCOmax > 45). The differences in the concentration trends discussed 

in Paragraph 4A.6.1 allow for improving the fit, because DoH is modeled via a modified 

Hill equation, as a function of propofol effect-site concentration (Savoca and Manca, 

2019). Since the three-compartment PK model predicts less marked plasma 

concentration peaks, the slower effect-site concentration dynamics cannot describe 

significant DoH drops and overshoot (mostly evident in the six cases where %ΔCOmax 

> 45, see improved RMSE shown in Table 9). As a representative case, Figure 11 

shows the identified PBPK-PD and three-compartment PK-PD models of case 1, 

which is also used in Paragraph 4A.6.3 to simulate in silico the effect of CO on 

pharmacodynamics. Right panel in Figure 11 shows the effect-site concentration 

dynamics obtained via the two different modeling strategies to better explain such 

considerations. For the sake of completeness, Appendix 4A.A reports the comparison 

of the PBPK-PD and three-compartment PK-PD models with DoH data for the whole 

set of six representative cases whose predicted pharmacokinetics and DoH data were 

shown in Paragraph 4A.6.1. 
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4A.6.3 In silico evaluation of the effect of CO on DoH 

Three different trends of CO have been used as input to the PK simulation of case 1, 

to evaluate the effect of different CO drops on the pharmacokinetics. The PD model 

identified in 4A.6.2 is now used to simulate the effect of the three CO trends on the 

DoH. The experimental data for this patient showed a 70% drop (maximum value) in 

CO (15 min following the start of induction of anesthesia), as shown in Figure 12, 

where the CO trend is smoothed using a moving average for a better visualization and 

comparison. Figure 12 shows the impact of different magnitude of CO changes on 

plasma PK and DoH prediction. Panel A shows three different CO trends leading to 

(i) 70% (continuous black line), (ii) 50% (dashed black line), and (iii) 35% drops 

(dashed-dotted lines). Panels B and C show the corresponding predicted plasma 

concentration (in red) and DoH (in blue) dynamics, respectively. 

A 35% drop in CO produces a minimum predicted DoH value of 37, whereas additional 

CO decreases to 50% and 70% result in significant overshoots to 27 and 21, 

respectively. The difference between a drop of 35% and 70% leads to a 31% 

difference in the area under the curve (AUC, i.e. the area under the plasma drug 

concentration-time curve, reflecting the actual body exposure to drug) (see Table 10). 

These changes can be clinically relevant especially in “at-risk” patients. In fact, studies 

show that intraoperative burst suppression is associated with increased mortality 

(Andresen et al., 2014; Kertai et al., 2010; Watson et al., 2008) and post-operative 

delirium (Andresen et al., 2014; Soehle et al., 2015), with impact on lengths of stay in 

the intensive care unit and hospital costs. 

Table 10 – AUC and minimum DoH values corresponding to the three simulated CO drop extents. 

 AUC [(min mg)/mL] DoHmin [-] 

35% drop  110.47 34 

50% drop 133.30 27 

70% drop 145.58 21 

 

Figure 12 – Panel A shows different trends (black line) of CO corresponding to (i) 70% drop (as in case 
1, continuous line), (ii) 50% drop (dashed line), (iii) 35% drop (dotted-dashed line). Panel B shows 
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corresponding plasma PBPK predictions (red) and Panel C DoH predictions (blue) (simulated via 
combined Hill function). Experimental data (black continuous line) in Panel C shows DoH trend for case 
1. The black arrow points in the direction of CO decrease. 

4A.7 Discussion and study limitations 

 

Anesthesia is a complex multivariable process and some underlying mechanisms are 

to date not fully elucidated. The use of more mechanistic, detailed PK models, based 

on the anatomy and physiology of the human body, allows us to go beyond the goals 

of pharmacokinetic description and data fitting, typical of the empirically-based three-

compartment models. Interestingly, we found PBPK simulations predicted high 

plasma peaks reflective of excessively deep anesthesia, as a result of marked 

decreases in CO. The integration of clinical data with PBPK simulations can represent 

a starting point for: 

(i) hypotheses-making on how the cardiovascular changes affect the 

pharmacokinetics of anesthetic and analgesic drugs not only in plasma 

but also in the effect-site, and the resulting DoH; 

(ii) design of experimental studies with the purpose of verifying and 

supplementing current knowledge on how factors such as CO variation 

affect propofol brain uptake and transfer across the blood-brain barrier. 

Whereas we used clinical data to identify the parameters of a Hill-form equation to 

simulate DoH, the PBPK model was defined based on data from the literature 

(Schnider et al., 1998) (see Table 6). No PK data were available from West et al. 

(2018). This means that the PK results need to be confirmed with experimental data, 

and specific studies are required to better define and understand the contributions of 

overdosing and changes in CO on excessively deep anesthesia levels. 

As previously mentioned, although it is known that changes in CO and MAP affect 

drugs pharmacokinetics, three-compartment PK models commonly used to analyze 

the pharmacokinetics of IV analgesic and anesthetic drugs are not appropriate to 

investigate these effects. In fact, their parameters are either fixed or only include 

patient demographics as covariates. As far as we know, similar points have been 

discussed by only two other works: Reekers (2012) and Upton and Ludbrook (2005), 

who both employed a recirculatory model. In case of Reekers (2012), however, the 

model parameters do not seem to include any covariates (e.g., body mass, height, 

and gender). In addition, all of those parameters are identified with pharmacokinetic 

data, except for the venous lag time and CO. The model from Reekers (2012) aims to 



4A. Tackling inter-individual variability: the influence of intraoperative cardiovascular changes 

81 
 

describe propofol pharmacokinetics, rather than predicting and simulating virtual 

patients for investigation of the effects of the cardiovascular changes. In Upton and 

Ludbrook (2005), an interesting PBPK model is presented, in which blood flows are 

used to determine parameters of the final pharmacokinetic outcome. The 

methodology employed in our study attempts to improve the work from Upton and 

Ludbrook (2005) in at least two aspects. Firstly, the compartment volumes are also 

anatomically-based and estimated depending on the patients’ characteristics. This 

has a direct effect on the physiological feature of the model and makes it more flexible 

and individualized. Secondly, assumptions on propofol metabolism and elimination 

pathways are based on the literature where these pathways are hepatic, renal, and 

tissue-based (probably gastrointestinal) (Gray et al., 1992; Hiraoka et al., 2005). 

4A.8 Conclusions 

 

This study has provided quantification of the response of high-risk patients to closed-

loop induction in terms of CO, MAP, and HR. Since hemodynamics is an essential 

contributor to these patients’ safety, evaluation of such effects is extremely valuable, 

especially compared to the available data on hemodynamic effects of propofol 

induction in the literature. 

The second part of the study covered the impact of cardiovascular changes on 

propofol pharmacokinetics and pharmacodynamics, using a PBPK-PD modeling 

approach. We showed that a significant decrease in CO can lead to predicted plasma 

levels that cannot be calculated by three-compartment PK models. These traditional 

PK models, which are in routine daily use in anesthesia, may result in an amplified 

response in high-risk patients. This conclusion is supported by an improved prediction 

in the fitting of PD data with a PBPK model rather than the Schnider PK model. 

Thus, the integration of CO data with PBPK simulations sheds light on the DoH 

outcome and offers interpretations of the inter-patient variability of the response to 

propofol. Although a limited number of patients were analyzed, and no 

pharmacokinetic data were available, these results show that PBPK-PD simulations 

can be employed to study and quantify the effect of the changes in CO on the DoH 

levels, as a rigorous investigation tool with potential applications ranging from training 

and education to improvement of the clinical practice through a better understanding 

of the impact of the hemodynamic changes on the patients DoH. 

Our results may suggest that the use of PBPK model-based closed-loop systems 
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would allow accounting for hemodynamic effects during closed-loop control of 

anesthesia. Adjusting the infusion rates also based on the hemodynamic data may 

limit the chance of overdosing in critical patients. CO is not always monitored in every 

patient, thus making this feature of PBPK modeling less useful. However, the 

awareness of the importance of flow monitoring in high-risk populations is increasing 

(Green et al., 2014) and minimally invasive monitoring techniques are under 

development. In cases when CO is not directly monitored, correlations that infer CO 

from noninvasive data on either BP or perfusion can be developed and implemented 

4A.9 Appendix 4A.A 

 

   

   

Figure A. – Results of the PD model identification with DoH data (black continuous line) for the considered 
six representative cases. Comparison of the PBPK-PD (red dashed line) and three-compartment PK-PD 
(blue continuous line) models. Cases 1, 2, and 3 feature %ΔCOmax > 45 coinciding with DoH overshoots. 
Cases 4, 5, and 6 feature more gradual and limited CO drops and acceptable DoH levels. 
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CHAPTER 4B 

 
 
 
 

 

Tackling inter-individual variability: 

the influence of anatomical and  

physiological features 
 
 
 
 
 
 

4B.1 Author’s Note 

 

Inter-individual variability is one of the main issues in the selection of the optimal dose. 

Part of this variability can be ascribed to the anatomical and physiological differences 

among individuals. PBPK models can be adapted to describe alterations of ADME 

processes associated to anatomical and physiological changes of the human body in 

special categories of patients. 

This chapter proposes new correlations for the individualized parameters of the PBPK 

model and specific adaptive parameters to predict the pharmacokinetics and 

pharmacodynamics of propofol in three populations: (i) elderly, (ii) obese, and (iii) 

pediatric patients. These categories are frequently present in ORs and represent 

challenging cases from the point of view of optimal dosing because of their increased 

sensitivity to propofol side-effects. 

In silico simulations of induction of propofol anesthesia conclude this chapter and 

allow assessing the performance of the model-predictive controller in those 

categories, also compared to manual and TCI regimens. 
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Part of the work presented in this chapter is from an invited paper submitted to “The 

Canadian Journal of Chemical Engineering” in November 2019 for the special issue 

of GRICU (GRuppo di Ingegneria Chimica dell'Università) 2019 conference. 

 

Optimal dosing of anesthesia in pediatric patients: a 

physiologically-based model predictive control study 

Adriana Savoca, Davide Manca 

Under review for “The Canadian Journal of Chemical Engineering”, March 2020 

 

4B.2 Introduction 

 

Differences in the anatomical and physiological features of individuals are among the 

sources of inter-individual variability manifesting in the response to drugs. Although 

inter-individual variability is partially produced by a “natural” variability of both anatomy 

and physiology of the human body, a PBPK approach to modeling has the potential 

of predicting at least part of the variability in PK profiles related to (i) aging, (ii) 

presence of specific diseases (e.g., obesity), and (iii) body development stage (i.e. in 

infants, children, and adolescent patients). These factors produce anatomical, 

physiological, and biological changes affecting the ADME processes of drugs within 

the body and increase the difficulty of selecting the optimal dose. The problem is more 

constrained and complex in case of drugs with narrow therapeutic indexes, as is the 

case of propofol, an anesthetic agent, whose optimal titration is crucial to achieve a 

smooth intra-operative procedure and a good quality of post-operative recovery. 

Although anesthesiologists are usually well-trained to manage such inter-individual 

variability, dosing is most of the times heavily based on their personal experience and 

intuition, especially in elderly and obese patients (Servin, 2017). With the aging trend 

of the world population (UN Report “World Population Ageing 2017”, 2017), and 

increasing incidence of obesity in rich countries (OECD Report “Obesity Update 

2017”, 2017), these two categories are destined to be more and more present in ORs. 

Optimal propofol titration is critical in these categories, because they are more 

susceptible to cardiovascular and respiratory depression (Servin, 2017; Subramani et 

al., 2017). In pediatric patients, different levels of depth of hypnosis, i.e. from 
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conscious sedation, to deep sedation10, to general anesthesia levels, are required for 

both surgery and diagnostic/therapeutic medical procedures during which it is 

desirable to keep the patients still, minimize their discomfort, and possibly produce 

amnesia (Cravero et al., 2009). Propofol use in children is quite spread (Chidambaran 

et al., 2015), because of clinical and practical advantages (Rigouzzo et al., 2008), 

although there are some concerns regarding its optimal dosing, as pediatric patients 

represent an “at-risk” category among the subgroups receiving anesthesia. In fact, 

simple allometric scaling is not always suitable to account for the effects of the growth 

stage on those ADME processes that generate PK and PD differences between 

children, adolescents, and adults. 

Today TCI pumps are widely used as a tool to induce and maintain IV anesthesia. 

However, their optimal performance is not guaranteed in the above-mentioned 

populations. Indeed, the effectiveness of TCI pumps depends on the accuracy of the 

embedded PK model, as they are “open-loop” systems that do not consider any real-

time data of the monitored physiological parameters to adjust the drug dosing. Indeed, 

the anesthesiologist can choose among several TCI three-compartment PK models. 

Since each of them was identified with data of different types and numbers of patients, 

there is a significant variability among their predictions. Schnider and Marsh models 

are the most commonly used propofol PK models for adults and are both among the 

embedded PK models available in most TCI pumps, but Marsh model does not include 

age as covariate and is therefore not recommended for use in patients older than 55 

y (Servin, 2017). With respect to obese patients, some studies advice to “trick” the TCI 

pump by providing a reduced value of total body weight (TBW), to avoid excessive 

induction doses (Servin, 2017). According to Servin (2017), Schnider model is not 

recommended for obese patients (as it adopts James formula (James, 1976) for Lean 

Body Mass calculation, which performs inconsistently in case of severely obese 

patients (see also Absalom et al., 2009)) whereas, even with the Marsh model, it is 

likely that normal target concentrations will result into high induction doses. Up to now, 

we have limited the discussion to the two most used classical PK models for propofol, 

but it is evident that the availability of several PK models characterized by differences 

in their outputs, forces clinicians to know and remember which PK model is better for 

safe use of TCIs in special patients’ categories. This may lead to ambiguity and 

 
10 Deep sedation: depression of consciousness, during which patients may require assistance to breathe and do not respond to verbal commands but 

only to painful stimulation; conscious sedation: depression of consciousness, during which patients breathe spontaneously and respond to verbal 
commands, either alone or accompanied by light tactile stimulation. In both states, cardiovascular functions are maintained. Definitions from Dar and 

Shah (2010). 
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confusion and adds personal interpretation based on past experience and opinion. In 

addition, studies have shown that the predictive performance of most classical PK 

models is often poor both in the elderly (Cortínez et al., 2011; Vuyk et al., 2001) and 

the obese (Cortinez et al., 2014). 

Specific TCI PK models are available for pediatric patients and most of them have 

acceptable predictive performance (Hara et al., 2017; Sepulveda et al., 2011). 

However, in this case as well, the degree of variability among the different models’ PK 

output is remarkable (Gaynor and Ansermino, 2016). Evidently, the presence of 

several available models and the issues related to their different degrees of accuracy 

depending on the patients’ characteristics, increases the difficulty of selecting optimal 

dosing, rather than reducing it, especially considering that there is no official training 

on the use of TCI pumps (Absalom et al., 2016). 

There are recent efforts of developing a “broad” model from previously published 

propofol PK data of different populations. Eleveld et al. (2018) published a three-

compartment PK model including weight, age, height, and gender as covariates. 

However, we propose PBPK modeling as a more valid alternative to tackle the 

problem, as this approach allows accounting for changes in pharmacokinetics related 

to the patients’ anatomical and physiological characteristics. This feature may also 

facilitate the understanding and thus enhance the approval by clinicians, since they 

are more familiar with these concepts rather than mere mathematical modeling and 

fitting of experimental data. In this chapter, we show how the PBPK model for propofol 

was adapted, identified, and validated for three categories of “challenging” patients. 

The adoption of this model in clinical practice would eliminate the need for 

discriminating and selecting among all the available PK models embedded in TCI 

pumps. Suitable age-dependent PD models were also identified and validated. Finally, 

once the PBPK-PD models were integrated into the model-predictive controller of 

propofol delivery, in silico experiments were carried out to verify the effect of aging, 

obesity, and growth on the control action exerted on the hypnotic effects of virtual 

patients. A specific in silico experiment, which concludes the chapter, was also 

designed to compare our closed-loop controlled infusion rate with those obtained via 

simulations of manual and TCI regimens. 

4B.3 Methods: adaptation of the PBPK model 

 

Paragraphs 4B.3.1, 4B.3.2, and 4B.3.3 discuss how the PBPK model was adapted to 
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predict the pharmacokinetics of (i) elderly, (ii) obese, and (iii) pediatric (i.e. 1-19 y) 

patients, respectively. The predictive performance of the adapted PBPK model is 

evaluated in terms of MDPE and MDAPE values, as these are the most common 

performance indicators employed in the literature related to PK modeling of propofol 

(see Eqs. (4B.1-3), in which 
,i pC  and 

,i mC  are the predicted and measured values of 

the concentration at a specific sampling time i). Specifically, MDPE is used as a 

measure of bias, while MDAPE as a measure of accuracy. Acceptable values are 

MDPE within ± 20% and MDAPE 20-40% (mean values) (Eleveld et al., 2018; Hara 

et al., 2017). MDPE and MDAPE values are compared to those obtained by using the 

most widespread classical PK models for propofol, i.e. Marsh and Schnider models. 

For the sake of clarity, in case of pediatric population, we refer to the Marsh pediatric 

model. 

As MDPE and MDAPE are not always sufficient to evaluate the overall prediction 

capability of the model, we also show (i) diagnostic plots and (ii) predicted vs 

experimental concentration dynamics of the best, median, and worst validation cases 

(in terms of model accuracy). 

𝑃𝐸𝑖 = 100
𝐶𝑖,𝑚−𝐶𝑖,𝑝

𝐶𝑖,𝑝
 (4B.1) 

( )iMDPE median PE=  (4B.2) 

(| |)iMDAPE median PE=  (4B.3) 

4B.3.1 Elderly patients 

The body changes associated with aging include hypovolemia, reduction of local 

blood flows, and functional beta-blockade (Servin, 2017). Some of these changes can 

be incorporated into the evaluation of the individualized parameters of the PBPK 

model. Compartment volumes and blood flowrates are thus estimated via correlations 

developed by Stader et al. (2019), which are suitable for healthy individuals within the 

age range 20-99 y. In fact, their analysis included 318 studies on anthropometric 

parameters and provided a database purposely meant to inform PBPK models. Such 

correlations account for body surface area (BSA), height, gender, and age of patients. 

For a better adaptation of the prediction capability of our PBPK model of propofol 

concentration in the considered patients, the model adaptive parameters were re-

identified via a nonlinear regression with data of studies featuring elderly patients, 

specifically those of Schnider et al. (1998) (N = 11 patients), and additional data from 
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5 patients of Dyck and Shafer (1992). Remaining data of Dyck and Shafer (1992) (N 

= 25 patients) were used for validation of the model predictive performance. The age 

range of the PK data for elderly patients is (i) 62-81 y in Schnider et al. (1998) and (ii) 

57-82 y in Dyck and Shafer (1992). Propofol PK data are available thanks to the “Open 

TCI Initiative” (see http://opentci.org/). 

4B.3.2 Obese adult patients 

Obese subjects feature several anatomical and physiological changes compared to 

healthy individuals. Blood volume, CO, and blood flowrates to organs and tissues are 

increased (Alexander et al., 1962; Lemmens et al., 2006). Higher weight of most 

organs in association with the increase of adipose tissue is also observed 

(Gholamzadeh et al., 2017; Mandal et al., 2012). Obesity is frequently associated with 

glomerular hyperfiltration (Hartmanshenn et al., 2016). This feature, in combination 

with increased hepatic and renal blood flowrates and higher liver weights (i.e. more 

hepatic tissue than healthy people) often lead to higher drug clearance. The heart, 

liver, and spleen are the main organs whose weight is affected by the fat increase 

(Mandal et al., 2012). Skin and fat are the main affected tissues (Fuster et al., 2016; 

Groenendaal et al., 2010). 

Although a few correlations for estimation of CO, and organs and tissues weights in 

obese individuals were available in the scientific literature (e.g., in Young et al. (2009)), 

we argue that the regressed correlations that we propose are more robust, being 

derived (when possible) from integrated data of different studies and/or validated with 

additional data. 

Correlations for CO, the volumes of blood and liver, and the weights of kidneys, 

spleen, heart, muscles, and adipose tissue were thus estimated via a nonlinear 

regression with experimental data available in the scientific literature. Table 11 lists 

the sources of the experimental data, the individualized parameters, and the 

corresponding correlation. Standard errors (SEs) associated to the regressed 

coefficients and R-squared values are also provided in Paragraph 4B.7.1. For the sake 

of clarity, when data on obese patients were not available in the literature, correlations 

from Stader et al. (2019) were used to estimate the individualized parameters (e.g., 

weight of bone tissue). Organs and tissues weights were converted to volumes by 

considering the density values associated to organs and tissues (Valentin, 2002). 

http://opentci.org/
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Table 11 – List of studies used as data sources for identification of correlations associated to obese 
subjects. Last column reports the BMI or TBW range of the study group. 

Individualized 
parameter 

Data sources 
BMI [kg/m2] or TBW 
[kg] range 

Cardiac output Danias et al. (2003); de Divitiis et al. (1981); 
Hinderliter et al. (2011) 

M: 18.39 – 61.15 [kg/m2] 

F: 15.53 – 67.56 [kg/m2] 

Blood volume Messerli et al. (1981); Messerli et al. (1982); 
Young et al. (2009) 

M/F: 65.7 – 203.87 [kg] 

Liver volume Hinderliter et al. (2011) M: 18.37 – 46.71 [kg/ m2] 

F: 15.54 – 39.89 [kg/ m2] 

Kidneys weight Young et al. (2009) M: 102.32 – 158.79 [kg]  

F: 86.00 – 203.62 [kg] 

Spleen weight Young et al. (2009) F: 39.05 – 204.51 [kg] 

Heart weight  Drenick and Fisler (1992); Kumar et al. 
(2014) 

M: 130.49 – 255.01 [kg] 

F: 102.70 – 226.47 [kg] 

Muscles weight Janssen et al. (2000); Young et al. (2009) M: 101.80 – 137.53 [kg] 

F: 85.33 – 129.52 [kg] 

Adipose tissue weight Das et al. (2003); Geliebter et al. (2013); 
Hinderliter et al. (2011); Petroni et al. (2003); 
Boneva-Asiova and Boyanov (2008)  

M: 18.33 – 55.50 [kg/m2] 

F: 15.69 – 64.62 [kg/m2] 

Depending on the available data, some correlations are based on the Body Mass 

Index (BMI)11, while others are based on the Total Body Weight (TBW). BMI is 

frequently used as a descriptor of obesity in the related scientific literature, because it 

is easy to calculate. According to the World Health Organization (WHO) classification, 

an obese individual has BMI ≥ 30 [kg/m2] (see Table 12). It is more difficult to establish 

an equivalent threshold value for obesity basing solely on TBW without considering 

both height and body composition (e.g., fat mass %). We adopted reference values 

from Adams et al. (2006), i.e. 101 kg for men and 85 kg for women. Note that, 

according to Servin (2017), the average BMI value of patients undergoing bariatric 

surgery12 is around 50 with values over 70 being quite frequent. Unfortunately, the 

scientific literature lacks anatomical data associated to BMI values above 70 [kg/m2]. 

We identified a specific set of adaptive parameters for propofol PK in the obese 

population with data of 8 patients from Servin et al. (1993) and 5 patients from Cortinez 

et al. (2010). Data from additional 14 patients of Cortinez et al. (2010) were used as 

validation cases. The BMI range of the PK data used for identification and validation 

of the adapted PBPK model is 33-50 [kg/m2] (Cortinez et al., 2010; Servin et al., 1993). 

Propofol PK data are available thanks to the “Open TCI Initiative” (see the website 

http://opentci.org/). 

 
11 BMI is calculated as total body weight [kg]/(height [m])2. 
12 Bariatric surgery includes several procedures performed on obese patients, with the goal of achieving weight loss, e.g., removal of portions of the 

stomach and/or intestine (https://medical-dictionary.thefreedictionary.com/bariatric+surgery). 

http://opentci.org/
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Table 12 – WHO BMI classification of obesity. 

Range Classification 

18.5 ≤ BMI ≤ 24.9 Normal 

25 ≤ BMI ≤ 29.9 Overweight 

30 ≤ BMI ≤ 34.9 Moderately obese, class I 

35 ≤ BMI ≤ 39.9 Severely obese, class II 

BMI ≥ 40 Morbid obese, class III 

4B.3.3 Pediatric patients 

Experimental data associated to the pediatric population are hard to find in the 

scientific literature, for both ethical and practical reasons. However, it is known that 

“children are not small adults”, as maturity and growth stages determine major 

anatomical and physiological changes and thus, dosing guidelines basing on 

allometric scaling (Anderson and Meakin, 2002) may not be effective enough. 

CO and blood volume increase with age, along with the weights of organs and tissues 

(Fernandez et al., 2011). For some organs, a constant weight increase across the age 

range can be observed, while in other cases, adult values are reached during puberty 

(around 12 y). Gender-specific differences are mostly evident after puberty (see 

reference values of organ and tissue weights available in Valentin (2002)). Available 

data in the scientific literature (see Table 13) were used to derive correlations to 

estimate the values of cardiac output, blood volume, and most organs and tissues 

weights in pediatric patients via either linear or nonlinear regressions. With respect to 

muscles, bones, and skin weight, we used reference values (derived from data) 

available in Valentin (2002), while for the other variables actual data were available 

(see Table 13). For the sake of clarity, the organ and tissue weights in Table 13 were 

converted to volumes by considering the density values associated to the organs and 

tissues, available in Valentin (2002). When possible, we integrated data from different 

studies to improve the robustness of the proposed correlations. SEs associated to the 

regressed coefficients and R-squared values are provided in Paragraph 4B.7.1. 

Table 13 – List of studies used as data sources for identification of correlations associated to pediatric 
subjects. 

Individualized parameter Data sources 

Cardiac output Williams (1994); Wu et al. (2016) 

Blood volume Brines et al. (1941) 

Liver volume Rylance et al. (1982)  
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Kidneys, spleen, heart, brain, 

weight 

Valentin (2002) 

Muscles, bones, skin weight  Valentin (2002) 

Adipose tissue weight Van der Sluis et al. (2002); Fomon et al. (1982); 

Schmidt et al. (2019); Marques-Vidal et al. (2008); 

López Sánchez et al. (2019) 

Distribution of cardiac output to tissues and organs is also subject to variations with 

age (Fernandez et al., 2011). To account for these changes, the hepatic blood flowrate 

is scaled basing on the BSA of the patients (as in Johnson et al., 2005), whereas renal 

blood flow is 15 to 25% of cardiac output by one year of age and reaches adult values 

(i.e. about 25% of cardiac output in a healthy young adult (Stader et al., 2019)) after 

two years of age (Fernandez et al., 2011). As far as binding proteins concentration 

and hematocrit are concerned, pediatric patients show comparable values to adults 

after the first year of life (Anderson, 2012; Brines et al., 1941; Fernandez et al., 2011). 

Thus, the two related model parameters are kept unchanged compared to the PBPK 

model for adults. 

In general, the activity of drug-metabolizing enzymes within the liver increases from 

birth and approaches adult values by 1–3 years of age (Lu and Rosenbaum, 2014; 

McLeod et al., 1992), while glomerular filtration of kidneys rapidly matures to adult 

levels within six months from birth (Anderson, 2012). To account for the differences 

associated to the drug elimination pathways and those related to the transport 

mechanisms, we identified the metabolic constants and drug transfer coefficients as 

adaptive parameters via a nonlinear regression with PK data of 16 patients from 

Kataria et al. (1994) (age range 3-11 y). The remaining patients of the study were 

used as validation cases of the identified PBPK model together with those from Marsh 

et al. (1991) (N = 37, age range 2-17 y). 

4B.4 Methods: PD model identification 

 

Schnider et al. (1998) showed age-dependent changes in the EEG traces of adults 

during anesthesia, and proved higher brain sensitivity in elderly patients, i.e. lower 

effect-site concentrations required to induce an adequate level of DoH. These results 

were also confirmed by other studies (Kreuer et al., 2005; Olmos et al., 2000). Indeed, 

the clinical practice confirms that propofol dosing requirements of elderly patients are 

lower than in younger patients. Age-related changes in the hypnotic effects of propofol 
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may be caused by the reduction of cerebral blood flow (CBF) and changes in the 

blood-brain barrier (BBB) permeability, which affect the two main steps of propofol 

transport to the site of action CNS, i.e. (i) convective transport via bloodstream to the 

brain and (ii) diffusion across BBB. Despite propofol high lipophilicity and thus its 

facilitated passage across BBB, PK studies in animals (Ludbrook et al., 1998) and 

humans (Peacock et al., 1995) investigating the velocity of equilibration of propofol 

concentration in plasma and jugular bulb, seem to suggest that propofol transport to 

brain cannot be assumed as actually blood-flow limited. Overall, the mechanism is still 

unclear and recent data and information on the topic lack, because of the difficulty and 

invasiveness of carrying out pharmacokinetic studies in the brain. For this reason, at 

this stage, we maintain the simplistic virtual effect-site approximation (see Chapter 3, 

Eq. (3.13)) to describe the pharmacokinetics of propofol in the effect-site. When more 

recent and mechanistic studies on propofol mechanism of transport to and within the 

brain are available, this section of the model will be modified according to a more 

physiological and individualized description of the associated transport phenomena. 

The dynamics of the effect as a function of the effect-site concentration is described 

via a modified 𝐸𝑚𝑎𝑥 equation (see Chapter 3, Eq. (3.14)). However, to account for the 

effects of age on propofol pharmacodynamics, the 𝐸𝐶50 parameter, which is the 

concentration that corresponds to 50% of the maximum drug effect, often used as a 

measure of drug potency, is reformulated as in Eq. (4B.4). 

50 50 ( )EC EC a age b= − +  (4B.4) 

By incorporating Eq. (4B.4) in the model we apply a correction factor to the 𝐸𝐶50 

parameter, so that the predicted brain sensitivity of the patient depends on age. 

Constants 𝑎  and 𝑏 (defined as positive values) are additional degrees of freedom in 

the PD model identification problem. 

With respect to pediatric patients, Gregory and Andropoulos (2012) maintain that 

adult-children PK differences are more relevant than PD ones. However, studies show 

that children are more sensitive to the anesthetic effects (Jeleazcov et al., 2008; Liu 

et al., 2008; Munoz et al., 2004). In these studies, BIS is assumed as the clinical-

endpoint to study the hypnotic effects of propofol. Main findings concern the Tpeak, 

BISLOC, and BISROC (ROC, return of consciousness) values. Specifically, Jeleazcov et 

al. (2008) and Munoz et al. (2004) both report lower values of Tpeak than those of 

adults, whereas Liu et al. (2008) report that BISLOC and BISROC are higher than in 

adults. In their TCI study, they used the same target concentrations but different PK 
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models for the children and adult groups. Since the EEG trace exhibits changes with 

age, e.g., in the dominating rhythm and amplitude of the waves (this is true for both 

elderly (Kreuer et al., 2005) and pediatric patients (Constant, 2004)), age-related 

differences in BIS values of LOC and ROC are expected. For this reason, according 

to the findings of Jeleazcov et al. (2008) and Munoz et al. (2004), we consider Eq. 

(4A.5) within the effect-site compartment equation of the pediatric PBPK-PD model, 

to account for the influence of age on the transfer rate to the effect-site, in the range 

1-19 y. In fact, the parameter 𝑘𝑒0 defines the delay between the time course of plasma 

concentration and the manifestation of the drug effect. Constant 𝑐 (defined positive) 

is an additional degree of freedom of the PD model identification problem associated 

to the considered age range. By including Eq. (4B.5) within the model, shorter time 

lags between the dynamics of the plasma and effect-site concentrations will be 

observed for younger patients. We do not include a dependence of 𝑘𝑒0 on age in the 

adult PD model, because age was found not to influence the rate of effect change, 

when BIS was used as clinical end-point in adults (Kazama et al., 1999). 

0 0 exp( )e ek k c age= −  (4B.5) 

For the sake of clarity, both the pediatric and adult models implement an assigned 

value of 𝐸𝑚𝑎𝑥 equal to 0, which is consistent with the minimum value reached by BIS 

in clinical practice. Thus, 𝐸𝑚𝑎𝑥 is not a degree of freedom of the identification problem. 

To identify the PD models, i.e. for adult and pediatric patients, we used BIS data 

collected by Eleveld et al. (2018), who gathered them from a number of previously 

published studies. The sources of data, and the associated number and age range of 

patients are listed in Table 14. The available dataset was divided into two sub-groups 

of which the first was used for identification, and the second for validation purposes. 

Specifically, data of 5 patients from Coppens et al. (2011) were used for identification 

of the pediatric PD model, while data of 11 patients from Sahinovic et al. (2014) and 

Hannivoort et al. (2013) were used for identification of the adult PD model. RMSE, 

MDPE, and MDAPE values are provided for a quantitative evaluation of the model 

predictive performance, grounding on the BIS data of the additional patients involved 

in the studies. 

Table 14 – Sources of the BIS data used for identification of age-dependent PD models, with associated 
number and age range of involved patients. 

Study (# patients) Age [y] range 
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Coppens et al. (2011), N = 28 3-11 

Sahinovic et al. (2014); Hannivoort et al. (2013), N = 55 23-74 

With respect to obese patients, Cortinez et al. (2014) and Van Kralingen et al. (2011) 

both studied the propofol PD in obese patients and did not find any significant 

influence of obesity on it. For this reason, the identified PD models account for neither 

TBW nor BMI, and we trust that the physiologically-based formulation allows 

describing ADME processes alterations associated to obesity and thus provides a 

satisfactory prediction of PK and related PD differences among healthy and obese 

individuals. Indeed, Eleveld et al. (2011) express the idea that PBPK modeling may 

be a more suitable approach to inform guidelines on propofol dosing in the obese 

population. 

4B.5 Methods: In silico simulations of closed-loop controlled 

anesthesia 

 

To test the controller behavior as a result of the proposed correlations and adaptive 

parameters, we carried out a number of in silico simulations of induction of anesthesia 

in the above-mentioned categories. At this stage, we focus on the control of the 

hypnotic effects, and thus only the propofol infusion rate is considered as manipulated 

variable. As in this chapter, BIS is the clinical endpoint of propofol hypnotic effects, 

the setpoint value is set at 50 [-]. For the sake of precision, this value is also 

appropriate for pediatric patients. In fact, firstly, although BIS is commercialized for 

use in adults, several studies investigated its application to pediatric patients 

(Coppens et al., 2011; Hsia et al., 2004; Louvet et al., 2016; Zhang et al., 2015). 

Secondly, despite the observed higher BISLOC values, Munoz et al. (2006) clearly state 

that it would be dangerous for pediatric patients to set the BIS target to values higher 

than 50 [-]. 

No substantial modifications to the formulation of the optimization problem were 

applied, compared to Chapter 3. Only, the iterative time interval 𝑡𝑠 is set to 10 s, which 

is more suitable to guarantee a fast control action in “at-risk” categories. Both the 

prediction (hp) and control (hc) horizons are set via a trial and error procedure; suitable 

values were found to be 20 and 4 respectively. These values are multiples of the time 

length of control actions, 𝑡𝑠. The PBPK model is embedded both in the controller and 

in the virtual patients to describe the ADME processes undertaken by the administered 
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drug in the body, while the “mismatch” is maintained at the pharmacodynamic level. 

This choice is also justified by the fact that PD variability is more remarkable than PK 

variability (Levy, 1998). While the PK-PD model embedded in the MPC algorithm 

features the PD models identified as detailed in Section 4B.4, the patients PD models 

were identified via a nonlinear regression with BIS data of the individual patients that 

were not included in the identification dataset (Table 15 lists their demographic 

features). The two obese patients in Table 15 are the only exception, as they feature 

the same PD parameters of patient 7, but different demographic features. This 

approach is more useful to assess the influence of solely obesity on the control action, 

so that other factors (e.g., age or inter-individual variability of the BIS data associated 

to drug-independent factors) do not affect the in silico simulation. Note that, since the 

BMI classification was developed for adults, no BMI value is provided for the listed 

pediatric patients in Table 15. Regardless, healthy children were considered in the 

simulations. 

For a realistic simulation, noise is also simulated, based on clinical data analysis (the 

same method as the one reported in Chapter 3, Paragraph 3.4.3 was used). 

Table 15 – Demographics of the simulated patients to test the effect of aging, growth, and obesity on the 
control action on propofol hypnotic effects. 

Patient # TBW [kg] H [cm] Gender [-] Age [y] BMI [kg/m2] 

1 16 99 F 3 - 

2 20 116 M 6 - 

3 29 133 M 9 - 

4 41.5 149.8 F 12 - 

5 56.0 170.1 M 15 - 

6 79.5 165 F 25 29.2 

7 66 181 F 36 20.14 

8 67 157 F 60 27.18 

9 72 165 M 73 26.4 

10 106 181 F 52 32 (class I) 

11 166 181 F 58 50.67 (class III) 

4B.6 Methods: In silico comparison with the state-of-the-art 

techniques of TIVA delivery 

 

A final in silico experiment concludes the chapter, and consists in comparing the 

closed-loop controlled infusion rates during propofol induction in a young patient (3 y 

old, see Table 15) with those resulting from (i) the manual infusion regimen proposed 

by McFarlan (McFarlan et al., 1999) (i.e. 2.5 mg/kg bolus followed by 250 µg/kg/min 

for the first 15 min, suitable for the 3-11 y age range) and Target-Controlled Infusions 

(TCIs) obtained with both the (ii) Paedfusor (Absalom and Kenny, 2005) and (iii) 
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Kataria (Kataria et al., 1994) algorithms. The goal was to compare the performances 

of both our closed-loop controller and the state-of-art techniques in TIVA delivery. In 

our comparison, TCI infusion rates were simulated with the TivaTrainer software 

(available at: https://www.eurosiva.eu/tivatrainer/TTweb/TTinfo.html). We 

implemented a target plasma concentration equal to 3 µg/mL, which is adequate to 

induce anesthesia in a 3-y-old patient (as in Gaynor and Ansermino (2016)). 

Finally, we used the PBPK- (individual) PD model of the 3-y-old patient to simulate 

the resulting BIS, plasma, and effect-site concentration dynamics as a result of the 

infusion rates obtained via (i) closed-loop controlled, (ii) manual, and (iii) TCI induction. 

4B.7 Results and discussion: PBPK-PD model changes 

 

4B.7.1 Effect of growth stage and obesity on individualized 

parameters 

Table 16 shows the derived equations for estimation of the individualized parameters 

associated to obesity. A limitation of the study is that in some cases it was not possible 

to base the correlations on BMI, but only on TBW because of the scarcity in 

experimental data (see Table 16). BMI accounts for both the height and TBW of the 

patient, and thus, the BMI-based equations include height as covariate, which is 

important to establish whether a patient falls in the classification of obese individuals. 

Depending on the available data, gender-specific differences were included in the 

derived equations. 

With regard to the increase of CO, blood volume, and most organs and tissues 

associated to obesity, we assumed that the steepness of the increase is reduced for 

high values of BMI or TBW. We looked for a suitable mathematical formulation to 

represent this behavior. This feature also allows avoiding non-physical (i.e. too high, 

inconsistent) values in case of extrapolation to BMI > 60 [kg/m2] and TBW > 200 [kg], 

for which data are limited or lacking. The mathematical formulation in Table 16 was 

found suitable in most cases, as the nonlinear regression procedure provided 

acceptable values of R-squared and low values of the parameters’ SEs. However, in 

case of the derived correlation that evaluates the heart weight, a linear model provided 

a better fitting of experimental data. Rather low values of R-squared are found for 

computation of (i) kidneys weight (male model), (ii) spleen weight, and (iii) muscles 

weight (male model). Male kidneys and muscles weight data are quite sparse (Figure 

https://www.eurosiva.eu/tivatrainer/TTweb/TTinfo.html
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15 (bottom panel)). Spleen weight data are also quite sparse, and an actual trend is 

difficult to detect. Actually, data show something more similar to a constant value in 

the range 0.2-0.4 kg. The resulting model is in fact rather flat. Nevertheless, these 

quantities are all lumped in the Highly perfused Organs and Poorly perfused Tissues 

compartment volumes, which means that the impact of spleen weight is rather low. 

The available equations in the literature provide similar values of R-squared for 

kidneys and spleen weights (Young et al., 2009). Further (less scattered) data and 

different mathematical formulations may improve fitting. 

Table 16 – Derived correlations for estimation of the individualized parameters in obese patients (SE = 
standard error associated to the regressed coefficients). 

Parameter 

[un. of 

measure] 

Model Coefficients (SE) R2 

Cardiac 

output 

[L/min]  

exp age

b
a f

BMI

 
 
   ,

,

13.55(0.50) 10.22(0.26)

14.79(1.02) 16.04(0.72)

0.01 1.3

0.005 1.15

M F

M F

age M

age F

a a

b b

f age

f age

= =

= − = −

= − +

= − +

 

M: 0.55 

F: 0.76 

Blood 

volume 

[L] 

exp
b

a
TBW

 
 
   

10.71(0.68) 56.05(7.79)a b= = −
 0.56 

Liver volume 

[L] 
exp

b
a

BMI

 
 
   

3.58(0.14) 2.83(0.11)

21.83(1.10) 19.12(1.00)

M F

M F

a a

b b

= =

= − = −
 

M: 0.71 

F: 0.81 

Kidneys 

weight 

[kg] 

exp
b

a
TBW

 
 
   

0.97(0.43) 0.72(0.097)

83.29(53.17) 82.15(15.59)

M F

M F

a a

b b

= =

= − = −
 

M: 0.08 

F: 0.46 

Spleen 

weight 

[kg] 

exp
b

a
TBW

 
 
   

0.28(0.045) 25.72(12.14)a b= = −
 0.06 

Heart weight 

[kg] 
a b TBW+

 

0.246(0.019) 0.249(0.014)

0.23 2 (0.22 3) 0.15 2(0.18 3)

M F

M F

a a

b e e b e e

= =

= − − = − −
 M: 0.40 

F: 0.29 

Adipose 

tissue weight 

[kg] 

exp
b

a
BMI

 
 
   

438.31(25.53) 242.96(8.26)

86.81(2.03) 62.88(1.30)

M F

M F

a a

b b

= =

= − = −
 

M: 0.92 

F: 0.96 

Muscles 

weight 

[kg] 

exp
b

a
TBW

 
 
   

56.68 (10.73) 46.50(7.47)

45.53(21.03) 63.98(15.95)

M F

M F

a a

b b

= =

= − = −
 

M: 0.1 

F: 0.32 

CO and blood volume are key determinants of drugs disposition within both the body 
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and the resulting PK profile. Figure 13 and Figure 14 show CO and blood volume data 

against proposed correlations for their estimation. In case of CO, the model was 

estimated basing on data of young adults (aged 30 y) from Hinderliter et al. (2011) 

(see Figure 13, circles in blue and pink colors referred to male and female individuals, 

respectively). A correction factor allows accounting for the effect of age (see Table 

16) and is based on Stader et al. (2019), who report that CO decreases by 5-10% 

every age decade. However, it is worth mentioning that the majority of obese patients 

undergoing surgery are younger than 60 y (Servin, 2017). 

  

Figure 13 – Estimated (continuous line) vs measured (circles, diamonds, stars) CO as a function of BMI. 
Correlations and data are in blue for males and in pink for females. The black arrow points in the direction 
of increasing age. Different numbers in the legend refer to different data sources. 

Figure 14 shows the model-predicted blood volume vs experimental values. 

Unfortunately, it was not possible to find gender-specific data, because a mixed group 

of patients was involved in the considered studies (references reported in Table 11). 

Nevertheless, the model provides a satisfactory goodness-of-fit. 

 

Figure 14 – Estimated (continuous line) vs measured (circles, triangles) blood volumes as a function of 
TBW. The correlation and data are gender-neutral. Different numbers in the legend refer to different data 
sources. 

Some of the correlations in Table 16 are also presented in Figure 15, specifically those 

20-30 y

40 y

50 y
60 y

20-30 y
40 y
50 y
60 y
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for liver volume and adipose tissue weights (top panel) and kidneys and muscles 

weights (bottom panel). It is worth noticing that in case of adipose tissue weight, a 

gender-neutral correlation (black line) is proposed for BMI > 40 [kg/m2]. In fact, on one 

hand, few data associated to male individuals were available for BMI > 50 [kg/m2], and 

thus the derived correlation might be biased. On the other hand, we find reasonable 

to assume that for very high BMI values, gender differences do not affect the weight 

of the adipose tissue significantly. 

  

  

Figure 15 – Estimated (continuous line) vs measured (circles, triangles, squares, diamonds, and crosses) 
liver volume and adipose tissue weight (top panel) as a function of BMI and heart and kidneys weights 
(bottom panel) as a function of TBW. Correlations and data are in blue for males and in pink for females, 
while black color denotes a gender-neutral correlation. Different numbers in the legend refer to different 
data sources. 

Table 17 shows the proposed correlations for the pediatric population. While for some 

parameters the data trend flattens after puberty (about 11-12 y) (e.g., brain and tissues 

weights), in other cases, a constant increase with age can be observed (some organs 

weights, e.g., kidneys, heart, and spleen). For this reason, different mathematical 

models are proposed, depending on the one that provides best data fitting. With 

respect to the bones, muscles, and skin weight correlations, they are suitable for age 

> 3 y, while in the 1-3 y range, fixed values available in Valentin (2002) are used. A 

limitation of these correlations is that they only depend on age, whereas TBW or BSA 
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should definitely play a role in computing the bones, muscles, and skin weights. This 

limitation is related to the available data in the scientific literature and should be 

addressed in future work, when additional and more complete datasets are available, 

to increase model accuracy and degree of individualization. In any case, it is also 

worth mentioning that these parameters are lumped together within the compartment 

of Poorly perfused Tissues, along with the adipose tissue. 

Figure 16 shows CO and blood volume predictions (left and right panel, respectively) 

against experimental data. For CO, a correlation depending on TBW was also 

considered, but the one proposed in Table 17 provided a better fitting, despite the 

data dispersion from Williams (1994) (blue and pink stars in Figure 16 (left panel)). It 

is also worth noticing that no gender differences were evident below 7 y (indeed, we 

show a continuous gender-neutral black line in Figure 16). Actually, for both CO and 

blood volume, gender-differences are mainly evident after 12 y (puberty). The 

correlation for estimation of blood volume depends on BSA (see Table 17). Similarly, 

blood volume correlations as a function of age and TBW were also tested on the same 

datasets, as complete demographic data, i.e. TBW, height, age, and gender were all 

available (see Brines et al. (1941)). The proposed one produced better results in terms 

of R-squared value. Blood volume prediction is validated with data from Williams 

(1994) (blue and pink stars in Figure 16, right panel). The dependence on BSA is the 

reason for the “broken” trend of the model-simulated blood volume. Indeed, blood 

volume is displayed as a function of age in Figure 16, but calculated basing on BSA, 

with body mass and height from charts referred to “standard” pediatric patients 

(available at https://www.disabled-world.com/calculators-charts/height-weight-

teens.php). BSA was calculated via DuBois and DuBois formula (Du Bois and Du 

Bois, 1916). 

Table 17 – Derived correlations for estimation of the individualized parameters in pediatric patients (SE 
= standard error associated to the regressed coefficients). 

Parameter 

[un. of 

measure] 

Model Coefficients (SE) R2 

Cardiac 

output 

[L/min]  

2a b age c age+ +  

1.12(0.55) 1.66(0.52)

0.508(0.08) 0.42(0.09)

0.0112(0.0028) 0.0102(0.0035)

M F

M F

M F

a a

b b

c c

= =

= =

= − = −

 
M: 0.48 

F: 0.43 

https://www.disabled-world.com/calculators-charts/height-weight-teens.php
https://www.disabled-world.com/calculators-charts/height-weight-teens.php
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Blood 

volume 

[L] 

( )expa bBSA  
0.530(0.061) 0.421(0.045)

1.286(0.076) 1.408(0.077)

M F

M F

a a

b b

= =

= =
 M: 0.95 

F: 0.95 

Liver volume 

[L] 

( )1 1

1.176

2

exp 12

12

a b age TBW age y

a BSA age y

− 


 

1 2

1

0.399(2.26 3) 0.722( )

0.032(0.007)

a e a

b

= − = −

=
 0.57 

Kidneys 

weight 

[kg] 

a bage+  
5.707 2(4.97 3) 5.570 2(5.35 3)

1.227 2(0.40 3) 1.179 2(0.42 3)

M F

M F

a e e a e e

b e e b e e

= − − = − −

= − − = − −
 M: 0.97 

F: 0.97 

Spleen 

weight 

[kg] 

a bage+  2.417 2(5.12 3) 6.63 3(0.41 3)a e e b e e= − − = − −  0.84 

Heart weight 

[kg] 
a bage+  0.056(2.45 2) 1.147 2(1.89 3)a e b e e= − = − −  0.60 

Brain weight 

[kg] 
exp

b
a

age

 
 
 

 
1.492(1.52 2) 1.362(1.543 2)

0.42(0.053) 0.36(0.040)

M F

M F

a e a e

b b

= − = −

= − = −
 M: 0.79 

F: 0.82 

Muscles 

weight 

[kg] 

. .(2002) 3

exp 3

ref from Valentinet al age y

b
a age y

age



 
 

 

 
43.444(6.892) 23.210(2.979)
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Figure 16 – Estimated (continuous line) vs measured (circles, stars) CO (left panel) and blood volume 
(right panel) as a function of age in the range 1-19 y. Correlations and data are in blue for males and in 
pink for females, while black color (see cardiac output) indicates a gender-neutral correlation. Different 
numbers in the legend refer to different data sources. 

Figure 17 shows some of the regressed correlations against experimental data used 

for identification, specifically for brain weight and liver volume (top panel) and kidneys 

weight and adipose tissue fraction (bottom panel). For consistency with the trend of 

the experimental data, two different correlations are reported to calculate the liver 

volume (see also Table 17). The correlation in the age range 12-19 y is from Johnson 

et al. (2005). This correlation was tested with data in the lower age range, evidencing 

poor predictive performance. Thus, data from Rylance et al. (1982) were used to 

identify a different correlation, as a function of age and TBW. The advantage of 

implementing a correlation with BSA (Johnson et al., 2005) in the age interval 

spanning from puberty to young adulthood is that adolescents can be characterized 

by important inter-individual differences in TBW and height values. 

R-squared values shown in Table 17 are quite satisfactory in most cases, except for 

the adipose tissue weight correlation (see also Figure 17 (bottom panel)). Different 

sources were used for the data, also including both lean and overweight individuals 

from different countries (see Table 11 for references). It is evident that a remarkable 

variability can be found in the adipose tissue fractional weight with age, and, for this 

reason, the correlation does not provide a higher R-squared value. In addition, it was 

necessary to separate the range 1-19 y in sub-ranges to obtain an acceptable fitting 

of data. It is also worth noticing that, differently from all the other anatomical 

parameters, the adipose tissue fractional weight is higher for female than male 

patients across the 1-19 y age range, and that males exhibit a peak during 

adolescence (12-15 y). 
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Figure 17 – Estimated (continuous line) vs measured (circles, diamonds, asterisks, and crosses) brain 
weight and liver volume (top panel) and kidneys weight and adipose tissue fractional weight (bottom 
panel) as a function of age in the 1-19 y range. Correlations and data are in blue for males and in pink 
for females. Different numbers in the legend refer to different data sources. 

4B.7.2 Prediction of pharmacokinetics 

In Figures 18, 19, 20, and 21, A panels refer to elderly patients, B panels to obese 

patients, and C panels to pediatric patients. Figures 18, 19, and 20 show the 

diagnostic plots associated to the identification (cyan dashed lines, pink diamonds) 

and validation (blue lines, red diamonds) of the adapted PBPK model referred to 

elderly, obese, and pediatric patients, respectively. Figure 21 shows the best, median, 

and worst validation cases associated to the three investigated categories. Table 18 

reports MDPE and MDAPE values associated to validation cases of the PBPK, 

Schnider, and Marsh models. 

Figure 18 (top panel, Schnider dataset) shows an overall satisfactory identification 

result, although there is space for improvement of the early concentration dynamics. 

Being an IV drug, propofol is directly administered into the systemic circulation. Thus, 

blood volume and protein binding fraction are major determinants of the earliest phase 

of the concentration – time curve. The employed correlation for estimation of blood 

volume is from Stader et al. (2019) and accounts for the whole age range 20-99 y. It 

is likely that the introduction of a specific correlation for the age range of elderly 
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patients (> 55-60 y) could improve the results. In addition, as propofol is highly bound 

to plasma proteins (albumin), age-related changes in protein binding, may be a 

contributing factor that would allow adjusting the model prediction in the early phase 

(e.g., albumin levels decrease with age (Grandison and Boudinot, 2000)). In fact, at 

this stage, protein binding fraction is an assigned parameter and this aspect should 

be further investigated to improve the model prediction. In Figure 18 (bottom panel, 

Dyck dataset) the model shows both positive and negative bias in the early 

concentration-time curve, while overestimation in the distribution/elimination phase of 

propofol can be observed. It is worth underlining that some peculiarities in the 

pharmacokinetic data of Dyck dataset were underlined by Coetzee et al. (1995), i.e. 

inconsistencies with other PK data from similar studies. Indeed, in Dyck and Shafer 

(1992) most blood samples were obtained up to 19 h after a 10-min IV propofol 

infusion. This means that most values refer to propofol sub-anesthetic concentrations. 

Despite this peculiarity, the MDPE and MDAPE values and PBPK predictive 

performance in the three cases displayed in Figure 21 (A panel) are acceptable, 

although they would likely be superior if propofol concentrations were evaluated only 

during the maintenance and early elimination phases of the infusion. Not only MDPE 

and MDAPE values are within the acceptable range, but also comparable to or better 

than those obtained from simulation of the patients with the most used classical PK 

models (see Table 18). Marsh model shows the worst accuracy, since it does not 

include age as covariate. 
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Figure 18 – Individual PBPK model predictions for elderly patients vs time (left panel) and measured 
propofol concentrations (right panel). Cyan dashed lines and pink diamonds are associated to data used 
for identification, while continuous blue lines and red circles are associated to the validation cases. 
Observed concentrations are from Schnider et al. (1998) (top panel) and Dyck and Shafer (1992) (bottom 
panel). 

With respect to obese patients, Figure 19 (top panel) shows the identification results 

with data from Servin et al. (1993) and Figure 19 (bottom panel) shows identification 

and validation results with data from Cortinez et al. (2010). Servin dataset showed a 

remarkable inter-patient variability and although blood samples were frequent, 

measured concentrations were quite dispersed. One of the patients manifested rather 

low values of concentration compared to the other subjects of the group. Despite this, 

the identification results are quite satisfactory (see cyan dashed lines in Figure 19 (left 

panel) and pink diamonds (right panel)). Validation results are acceptable as well, see 

Figure 19 (bottom panel). In about 6 patients from Cortinez et al. (2010), the model 

underestimates the measured values of concentration during the elimination phase. 

Two of these are shown in Figure 21 (B panel) as they resulted the median and worst 

cases, basing on model accuracy. This behavior of the model is not manifested in the 

elimination phase of Servin dataset. More focus should be devoted to the hepatic 

blood flow in obese patients, on which propofol clearance from the body mainly 

A A

A A
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depends. In obese patients, this flow is increased because of increased CO and liver 

volume (hence number and size of parenchymal cells). Indeed, maintenance propofol 

infusion rates are usually scaled on TBW rather than Lean Body Weight (LBW), as 

opposed to the induction dose (Servin, 2017). The BMI range for both studies is 30-

50 [kg/m2], thus the reason for the different model behavior should not be related to 

differences in the obesity degree between the study groups. A potential explanation 

may be related to the fact that obesity is often associated with liver pathological 

conditions (e.g., hepatic steatosis or “fatty” liver13) which may alter and reduce the 

liver function (Servin et al., 1993). 

  

  

Figure 19 – Individual PBPK model predictions for obese patients vs time (left panel) and measured 
propofol concentrations (right panel). Cyan dashed lines and pink diamonds are associated to data used 
for identification, while continuous blue lines and red circles are associated to validation cases. Observed 
concentrations are from Servin et al. (1993) (top panel) and Cortínez et al. (2010) (bottom panel). 

These pathologies may have been present in some of the patients studied by Cortinez 

et al. (2010), and this could explain the different model trends in the elimination 

phases, as absence of such diseases was not mentioned in the exclusion criteria of 

the study. Additional PK data corroborated with information about co-pathologies of 

 
13 Large droplets of fat accumulate within the liver cells, compromising the liver function in the long-term, if no treatment is applied (https://medical-

dictionary.thefreedictionary.com/fatty+liver). 

B B

B B

https://medical-dictionary.thefreedictionary.com/fatty+liver
https://medical-dictionary.thefreedictionary.com/fatty+liver
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obese patients will be needed to verify whether the hepatic metabolism description of 

the proposed PBPK model should be improved. In any case, the model prediction is 

overall acceptable (see validation results in terms of MDPE and MDAPE in Table 18) 

and especially, improved compared to Schnider and Marsh models. 

Figure 20 shows the diagnostic plots associated to Kataria (top panel) and Marsh 

dataset (bottom panel). The model prediction is quite satisfactory. A larger deviation 

of the model from the measured concentrations can be observed in the central part of 

Figure 20 (top panel) (i.e. concentration range 0.6-3 µg/mL), corresponding to model 

underestimation in the elimination phase of patients administered with either double 

or single infusions. In some of these cases from Kataria et al. (1994) (e.g., see worst 

case presented in Figure 21, C panel), the trend of experimental data suggests a 

possible mistake in the reported duration time of the second infusion. If this is true and 

there is a mistake in the information associated to the PK data, this may partially cause 

a poor model prediction. It is worth noticing that, despite the identification dataset 

belongs to patients aged 3 to 11 y, the anatomical/physiological foundation of the 

PBPK model ensures a satisfactory prediction in patients of different age ranges, 

including adolescents (see bottom panel of Figure 20, in which age range is 2-17 y). 

Indeed, MDAPE associated to the PBPK model prediction of measured 

concentrations from Marsh et al. (1991) is mean 22.04 (SD = 13.72) %. It is also worth 

mentioning that, in this study, blood samples were obtained starting from the 

maintenance phase and during the early end-of-infusion phase. 

In Table 18, we show the MDPE and MDAPE values compared to those obtained via 

Marsh pediatric model and Schnider adult model. Indeed, Marsh pediatric model 

showed the best predictive performance among the most used pediatric three-

compartment PK models (see Coppens et al. (2011)). The PBPK model performance 

in terms of MDAPE is better than Marsh pediatric model and shows a similar bias (see 

MDPE values). Interestingly, Rigouzzo et al. (2010) proved that the best PK-PD 

model, identified via regression with PD data, was the one obtained by using Schnider 

PK model for adults. In Table 18, MDAPE associated to Schnider model is over 35%. 
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Figure 20 – Individual PBPK model predictions for pediatric patients vs time (left panel) and measured 
propofol concentrations (right panel). Cyan dashed lines and pink diamonds are associated to data used 
for identification, while continuous blue lines and red circles are associated to the validation cases. 
Observed concentrations are from Kataria et al. (1994) (top panel) and Marsh et al. (1991) (bottom panel). 
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Figure 21 – Best, median, and worst validation cases according to model accuracy. The blue continuous 
line represents model-predicted concentration, red diamonds are individual propofol concentrations. 
Panel A refers to elderly patients (data from Dyck et al. 1992), panel B refers to obese patients (data from 
Cortinez et al. 2010), and panel C refers to pediatric patients (data from Kataria et al. (1994)). 

Table 18 – MDPE and MDAPE values referred to the validation of the PBPK, Marsh, and Schnider models 
are provided as mean (SD) for the different populations. 

CATEGORY 
MDPE% 

PBPK 
MDPE% 

MARSH 
MDPE% 

SCHNIDER 
MDAPE% 

PBPK 
MDAPE% 

MARSH 
MDAPE% 

SCHNIDER 

Pediatric14  

(n = 21,  

Kataria et al. 

1994) 

0.33 

(25.35) 

15.65 

(25.93) 

-0.05 

(29.84) 

28.79 

(11.67) 

31.12 

(10.26) 

36.45 

(15.47) 

Elderly  

(n = 25, 

Dyck and 

Shafer (1992)) 

-13.5 

(22.25) 

25.75 

(38.87) 

-4.66 

(23.58) 

34.40 

(8.21) 

59.95 

(19.81) 

33.41 

(11.35) 

Obese  

(n = 14, 

Cortinez et al. 

(2010)) 

-11.82 

(38.01) 

0.72 

(34.05) 

-22.40 

(39.56) 

35.94 

(22.65) 

38.33 

(12.87) 

43.25 

(20.79) 

4B.7.3 Prediction of pharmacodynamics 

Table 19 reports RMSE, MDPE, and MDAPE values associated to the validation of 

the combined PBPK-PD model in adult and pediatric patients. Figure 22 and Figure 

26 show the diagnostic plots associated to the validation cases and Figure 23 reports 

best, median, and worst validation cases basing on model accuracy. A panels refer to 

adult-elderly patients, whereas C panels refer to pediatric patients. 

With respect to adult patients, BIS data used to identify and validate the adult PD 

model are from (i) Sahinovic et al. (2014) and (ii) Hannivoort et al. (2013). In Sahinovic 

et al. (2014), induction was achieved via propofol IV infusion at a constant rate of 100 

 
14In case of pediatric patients, Marsh pediatric model is used for comparison of predictive performance. 

A

Worst
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mL/h in 40 patients, i.e. 20 control patients and 20 with brain frontal tumor. We 

consider data of patients from both groups, because no significant differences induced 

by the tumor were found in the BIS profiles and general response to anesthesia. After 

15 min from LOC, Sahinovic et al. (2014) induced a noxious stimulus (30 s duration) 

to study the patients’ response to the disturbance. For the sake of clarity, since our 

aim was to model the dose-effect relation, we considered BIS data previous to the 

stimulus and related BIS changes. In Hannivoort et al. (2013), BIS was monitored in 

15 patients receiving propofol at a constant rate of 40 mg/kg/h. The infusion was 

stopped once maximum burst-suppression was observed, and BIS was recorded until 

ROC. Data of 44 patients from the two studies were used for validation of the PBPK-

PD model. Reported values of RMSE, MDPE, and MDAPE in Table 19 show an 

acceptable predictive performance. 

Table 19 – RMSE, MDPE, and MDAPE values referred to the validation of the PBPK-PD adult and 
pediatric models. 

CATEGORY RMSE [-] MDPE% MDAPE% 

Adults (N = 44) 
12.94 

(4.03) 

2.68 

(22.65) 

24.06 

(10.96) 

Pediatric (N = 23) 
9.62 

(1.93) 

1.40 

(15.92) 

20.98 

(15.92) 

However, it should be noted that data were quite noisy and more affected by 

disturbances than pediatric patients’ BIS data. This feature is also reflected in the 

diagnostic plots associated to all the validation cases, shown in Figure 22. Figure 22 

(bottom panel) shows the data that were clearly affected by noise and external drug-

independent disturbances in green (left) and yellow (right). If data are processed by 

removing the parts in which they are quite clearly affected by external disturbances 

(see for instance median case provided in Figure 23, A panel), the RMSE and MDAPE 

values are reduced to mean (SD) 21.14 (9.94)% and 10.91 (3.87) [-]. In a related way, 

the worst case in Figure 23 (A panel) is affected by a disturbance after approximately 

2.5 min from start of induction, and a constant disturbance can be observed after 5 

min until the end of the data series. This kind of data trends certainly affected the 

quantification of the model predictive performance. It is also worth mentioning that in 

several cases, the first BIS measures were probably affected by the emotional state 

of the patients (e.g., anxiety, concern, fear) and a delayed response to induction could 

be observed (see observed vs predicted BIS values in top right area of Figure 22, right 

panel). In addition, in some cases, the first BIS measure was available 30+ s after 
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induction of anesthesia, which made the baseline value uncertain, and affected the 

trend of the model-predicted curve (see for instance the median case in Figure 23, A 

panel). Another interesting point is that, in some cases, the model is not able to predict 

extremely deep levels of anesthesia (BIS < 20 [-], see observed vs predicted BIS in 

the bottom left area of Figure 22, right panel). For the sake of clarity, Figure 24 shows 

three of these cases. It is worth noticing that the model actually predicts high values 

in plasma (see bottom panel, red continuous lines) but the velocity of the effect-site 

concentration (blue continuous lines) does not allow predicting such low BIS levels. 

The enhanced sensitivity to propofol cannot be ascribed to age, as two of the patients 

in which these levels are reached are quite young (i.e. 31 and 43 y). A more detailed 

analysis of the reasons why burst suppression occurs could be made basing on 

hemodynamic data (e.g., hypotension and CO drops might produce alterations of 

propofol transport to brain and low BIS values, as discussed in Chapter 4A), but such 

complementary bits of information were not available. However, a more physiological 

description of propofol brain transport corroborated by real-time data on arterial 

pressure and CO might lead to improvements in the prediction of this behavior. These 

results and those presented in Chapter 4A certainly prove the importance of focusing 

on these aspects in future works. Some further considerations will be discussed in 

Chapter 5. 
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Figure 22 – Diagnostic plots associated to the validation cases of the combined PBPK-PD model in adult 
patients. (Left panel) Individual BIS observations – predictions vs time. (Right panel) Individual BIS 
observations vs predictions. In bottom panel, the presence of BIS measurements affected by external 
disturbances are highlighted in green (left panel) and yellow (right panel). 

Regardless, the adult PD model performance is overall acceptable, also considering 

that data are coming from two quite different studies, in terms of infusion regimes and 

patients’ typology. Results are also comparable to the performance of the combined 

PK-PD model proposed by Eleveld et al. (2018), which is the only published PD model 

for “broad” use in propofol anesthesia. Unfortunately, Eleveld and coauthors neither 

present RMSE, MDPE, and MDAPE values nor report other quantitative results 

associated to PD. Thus, the only possible comparison grounds on visualizing the 

diagnostic plots. 

Figure 25 shows the identified correlation for the PD model parameter 𝐸𝐶50 associated 

to the adult age range. The age-dependent correction factor allows accounting for the 

increased sensitivity manifested by elderly patients, with a reasonable decrease of 

𝐸𝐶50. 
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Figure 23 – Best, median, and worst validation cases of the PBPK-PD models according to model 
accuracy. The blue continuous line represents model predicted BIS, red diamonds and circles are 
measured BIS values. A panel refers to adult patients (data from Sahinovic et al. (2014) and Hannivoort 
et al. (2013)), C panel refers to pediatric patients (data from Coppens et al. (2011)). 

   

   

Figure 24 – (Top panel) Predicted (blue continuous line) vs observed (red diamonds) BIS dynamics in 
three adult patients manifesting deep hypnotic levels (BIS value < 20 [-]). (Bottom panel) Plasma (red) 
and effect-site (blue) concentration dynamics. 
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Figure 25 – Identified 𝐸𝐶50 as a function of age (20-99 y age range). 

As far as the identification and validation of the combined PBPK-PD model in pediatric 

patients is concerned, we used BIS data from Coppens et al. (2011). In their study, 

28 healthy pediatric patients were given propofol anesthesia via TCI based on the 

pediatric Kataria PK model. Their regimen involved target plasma concentrations at 

(i) 7 µg/mL for 15 min, (ii) 1 µg/mL for 15 min or until awakening signs, and (iii) 5 µg/mL 

for the final 15 min. BIS data of 23 patients are used to validate the identified PD 

model. Low values of RMSE, MDPE, and MDAPE in Table 19 show a rather 

satisfactory predictive performance. Figure 23 (C panel) shows the best, median, and 

worst cases. It is worth noticing that in the worst case, the BIS signal seems to be 

affected by a disturbance at about 2 min after induction. This is likely the reason why 

the model deviates from the data and does not show a good prediction of the 

maintenance phase. For a better visualization of the results associated to all the 

validation cases, diagnostic plots are reported in Figure 26. In the early induction 

phase, BIS is probably affected by noise or the pre-induction anxiety level of the 

patient, as in some cases the first measured BIS values remain constant or increase 

even after induction (see deviations in the top right area of Figure 26, right panel) and 

we doubt that this is to be ascribed to a different velocity of drug transfer to the effect-

site. In fact, we included the dependence of 𝑘𝑒0 on age but we did not find a strong 

correlation. Indeed, the identified constant 𝑐 was rather low (10−4 order of magnitude). 

However, the mentioned deviations concern the 2-3 BIS measures within 1 min after 

the start of propofol induction. 

Another contributing factor to model deviations in the earliest phase is that for some 

patients a reliable pre-induction (i.e. baseline) value was not available, as the first BIS 

measure was available after more than 30 s from the start of induction. It is also worth 

mentioning that, similarly to the adult PD model, the pediatric PD model often 

overestimates BIS values lower than 20 [-]. 

A

𝐸𝐶50 = 0     (       𝑎 𝑒+       )



4B. Tackling inter-individual variability: the influence of anatomical and physiological features 

115 
 

  
Figure 26 – Diagnostic plots associated to the validation cases of the combined PBPK-PD model in 
pediatric patients. (Left panel) Individual BIS observations – predictions vs time. (Right panel) Individual 
BIS observations vs predictions. 

4B.8 Results and discussion: in silico experiments 

 

4B.8.1 Effect of aging on the control action 

  

  

Figure 27 – Simulation of the induction phase in 4 adult healthy patients, ranging from 25 to 73 y. The 
black vertical dashed line marks the start of propofol infusion. (Left panel) Dynamics of controlled variable 
BIS and propofol infusion rate (i.e. manipulated variable). (Right panel) Dynamics of plasma and effect-
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site concentrations. The rectangle area in the BIS graph denotes the recommended clinical range, BIS = 
40-60 [-], while the black horizontal dashed line marks the setpoint, BIS = 50 [-]. 

In Figure 27 (left panel), the BIS dynamics and corresponding optimized propofol 

infusion rates are shown for 2 young and 2 elderly patients. The weights of the 

objective function terms associated to the (i) rate of change of propofol IR and (ii) 

penalty function associated to plasma concentration are fixed at slightly higher values 

for patients with age ≥ 60 y. Figure 27 shows that, as a result of these weights and 

the implemented correlations and adaptive parameters, the proposed initial infusion 

rates are slower for older patients, consistently with literature indications (Shafer, 

2000) and standard guidelines15. Resulting plasma levels are lower and more 

sustained, which prevents dangerous plasma concentration peaks (see Figure 27, 

right panel). As the optimization problem features penalty functions to account for the 

clinical ranges, the BIS model-simulated curves are maintained within the 

recommended range 40-60 [-], despite the fact that the individual PD models of the 

elderly patients feature the Hill parameter 𝛾 > 3 [-] (see Chapter 3, Eq. (3.14)), hence 

a strong nonlinearity. In fact, the experimental BIS trends that we used to identify the 

two individual PD models of the elderly patients, feature a few burst suppression 

episodes of several minutes. Still, the model-predictive controller manages to tradeoff 

between (i) safety of the control action and (ii) distance from the setpoint value, with 

longer rise-times. The introduction of the MAP-remifentanil loop, and propofol-

remifentanil interactions within the MAP model will be discussed in Chapter 5. These 

additional innovative features of the model-predictive controller allow improving the 

safety of the control action in elderly patients, in whom hypotension associated to 

propofol overdosing and combination with opioids have clinically relevant adverse 

effects. Figure 27 (right panel) shows the dynamics of propofol concentrations in 

plasma and effect-site compartments. The different BIS settling times among the 

patients depend on the velocity of blood-brain concentrations equilibration, and thus 

on the individual 𝑘𝑒0 values. In in vivo patients, different factors affect the velocity of 

this process, e.g., CO, cerebral perfusion, presence of co-morbidities affecting 

CNS/brain, and genetics. In the virtual patients, 𝑘𝑒0 was identified with BIS data, along 

with the other individual PD parameters. The young patients feature the lowest 𝑘𝑒0 

values (see the lowest effect-site concentration levels, orange and blue continuous 

lines), therefore, the dynamics of the effect-site concentration is quite slow, which 

increases the resulting settling and response times. 

 
15 See Diprivan (propofol) dosing references available at https://reference.medscape.com/drug/diprivan-propofol-343100. 

https://reference.medscape.com/drug/diprivan-propofol-343100
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4B.8.2 Effect of obesity on the control action 

  

  

Figure 28 – Simulation of the induction phase in 3 adult patients, with BMI ranging from 20 (i.e. healthy) 
to 50 [kg/m2] (i.e. morbid obese, class III). The black vertical dashed line marks the start of the control 
action (i.e. change of setpoint). (Left panel) Dynamics of controlled variable BIS and propofol infusion 
rate (i.e. manipulated variable). (Right panel) Dynamics of plasma and effect-site concentrations. The 
rectangle area in the BIS graph denotes the recommended clinical range, BIS = 40-60 [-], while the black 
horizontal dashed line marks the setpoint, BIS = 50 [-]. 

We compare the simulations of anesthesia induction in a 36-y-old healthy patient (BMI 

~20 [kg/m2]) and two patients with obesity class I and III, respectively. Figure 28 (left 

panel) shows the dynamics of BIS and corresponding propofol infusion rate. The 

controller proposes an increasingly slower but more sustained infusion rate with 

increasing BMI. This profile is also safer from the point of view of cardio-respiratory 

depressant effects, which is a main issue in this population (Subramani et al., 2017). 

According to Subramani et al. (2017), no clear clinical data exist to guide propofol 

dosing adjustments in the morbidly obese patients (MO, class III), while Eleveld et al. 

(2011) underline that conflicting results have been reported in the literature on the 

optimal propofol dosing in the obese. Servin et al. (1993) did not find any differences 

in the required maintenance infusion rates (in mg/kg/min) among obese and control 

subjects, which is consistent with the infusion rate levels proposed by the controller 

after the BIS dynamics becomes stable. In Johnson et al. (2018), obese patients in a 
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medical ICU required lower propofol dosages (in µg/kg/min) to reach the target 

RASS16 score. These findings are consistent with the optimized infusion rates 

proposed by the controller during the first minutes of the simulation (i.e. when the 

objective is to reach the desired setpoint value). In the study of Subramani et al. 

(2017), BIS-based titration of propofol dosing during induction enhanced the stability 

of MO patients’ anesthetic state. This result is encouraging from the point of view of 

additional stability and safety resulting from the use of a closed-loop controller of BIS 

in this “at-risk” category, since, evidently, no clear guidelines exist in the literature and 

thus, the clinical outcome of the procedure will heavily depend on the experience and 

intuition of the anesthetist, and these issues set the basis for strong variability in 

medical practice and may cause human errors. 

4B.8.3 Effect of growth stage on the control action 

  

  

Figure 29 – Simulation of the induction phase in 5 pediatric patients, ranging from 3 to 15 y. The black 
vertical dashed line marks the start of the control action (i.e. change of setpoint). (Left panel) Dynamics 
of controlled variable BIS and propofol infusion rate (i.e. manipulated variable). (Right panel) Dynamics 
of plasma and effect-site concentrations. The rectangle area in the BIS graph denotes the recommended 

 
16 Richmond Agitation-Sedation Scale (RASS) Score is a medical scale used to measure the sedation level of a patient (Sessler et al. (2002)). 
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clinical range for general anesthesia, BIS = 40-60 [-], while the black horizontal dashed line marks the 
assigned setpoint, BIS = 50 [-]. 

Figure 29 shows the simulation of propofol induction in 5 virtual patients, with age 

ranging from 3 to 15 y. Consistently with guidelines on pediatric anesthesia (Gregory 

and Andropoulos, 2012), the controller simulates the highest initial infusion rate for 

the youngest patient, while differences are reduced after 6 y. Gregory and 

Andropoulos report that “[…]. The usual doses for anesthesia induction are […] 3 – 8 

years 3 – 5 mg/kg, > 8 years 3 mg/kg” (Gregory and Andropoulos, 2012). The total 

dose in mg/kg proposed by the controller within the first 5 min is approximately 3 

mg/kg for all patients, except for the 6-y-old patient. Figure 29 (right panel) shows the 

dynamics of effect-site concentrations. The PD parameters of the modified Hill 

equation differ among patients (as a result of individual PD parameters identification 

with BIS data, see Section 4B.4), and this feature results in rather different profiles of 

the effect-site concentration. The effect-site concentration dynamics is characterized 

by the transfer constant ke0, which defines the delay between the profiles of plasma 

and effect-site concentration and represents the clinically observed delay between 

drug plasma concentration dynamics and manifestation of pharmacodynamic effects. 

In case of the 6-y-old patient, the identified ke0 is quite low (i.e. 0.0875 min-1), while 

the other patients feature individual ke0 values in the 0.2-0.32 min-1 range. For this 

reason, the IR trend is rather different from the other patients. In fact, the in vivo 

observed delay between the time course of plasma concentration and the 

manifestation of pharmacological effect (in this case BIS) is affected by multiple 

factors, e.g., cardiac output changes, cerebral perfusion, age (in the pediatric range), 

and genetics (Cortinez, 2014). These results show that the model is capable of 

individualizing the prediction basing on the “real” patient-specific data, which in the in 

silico framework are simulated via the individual PD models. 

The pharmacokinetic differences predicted by the PBPK model, because of the 

implementation of proposed correlations and new adaptive parameters, result in 

different velocities of the infusion rate, with the one proposed for the 15-y-old patient 

similar to those proposed for adult patients (see Savoca and Manca, 2019). 

Adolescents are relatively less studied than other populations in anesthesia (Van Oud-

Alblas et al., 2019). Although validation of the developed model with BIS data of 

adolescents should be carried out to ensure that the implemented equations to 

estimate the individualized parameters correctly account for the influence of maturity 

stage and puberty on the pharmacokinetics and resulting pharmacodynamics, we can 
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assume that the anatomical/physiological foundation allows extrapolating the use of 

the PBPK-PD model to this patients’ category. 

4B.8.4 Comparison with induction via manual and TCI infusion 

regimens 

Figure 30 compares the dynamics of simulated BIS, plasma, and effect-site 

concentrations resulting from infusion rates obtained via (i) our MPC controller, (ii) 

Paedfusor TCI algorithm (Absalom and Kenny, 2005), (iii) Kataria model TCI algorithm 

(Kataria et al., 1994), and (iv) manual infusion regimen of McFarlan et al. (1999), to 

induce anesthesia in the virtual 3-y-old patient (see demographics in Table 15). 

  

  

Figure 30 – Simulation of the induction phase in the 3-y-old patient via (i) closed-loop controller simulation 
(blue continuous line), (ii) Paedfusor TCI simulation (orange dashed line), (iii) Kataria model TCI 
simulation (yellow dashed-dotted line), and (iv) McFarlan manual infusion regimen (purple dotted line). 
(Left panel) Dynamics of controlled variable, BIS, and of manipulated variable propofol infusion rate. 
(Right panel) Dynamics of plasma and effect-site concentrations. The black vertical dashed line marks 
the start of the control action (i.e. change of setpoint). The black horizontal dashed line in the BIS graph 
marks the setpoint, BIS = 50 [-], whereas the red horizontal continuous line in the plasma concentration 
graph marks the target concentration in TCI simulations, i.e. 3 µg/mL. 

Interestingly, manual induction (McFarlan) produces the most significant undershoot, 

although the simulated BIS value remains within the recommended clinical range 40-
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60 [-]. A rather elevated plasma peak produces the minimum BIS value. Strong 

fluctuations of plasma concentrations are undesired, especially because propofol 

produces cardiovascular depressant effects (De Wit et al., 2016), due to a decrease 

in sympathetic activity (Marik, 2004). As the receptors of the sympathetic nervous 

system are distributed in different parts of the body, high plasma levels are quite 

dangerous, considering the fast distribution of propofol. The simulated PK profile in 

plasma shows that the desired target concentration (i.e. 3 µg/mL, see red horizontal 

line in plasma concentration graph in Figure 30) is reached with neither the Paedfusor 

nor the Kataria TCIs. This result should lead the reader to reflect upon the fact that in 

clinical practice, there is not any concrete verification that target concentrations 

implemented in TCI pumps are reached and maintained. In fact, anesthetists keep 

adjusting them basing on the visual feedback and personal interpretation of data from 

monitors of the patient’s physiological variables. The proposed TCIs produce high 

plasma peaks that, as mentioned, may lead to dangerous adverse effects. 

Interestingly, BIS dynamics shows that with the Paedfusor algorithm, the target BIS 

value is not reached within 15 min from the start of induction. Such slow inductions 

may have consequences of delays and changes of the operating rooms scheduling 

and thus affect the operative costs of the institution (e.g., hospital). Indeed, it is worth 

mentioning that, ideally, induction of anesthesia should be achieved within 10-15 min. 

The results of Figure 30 would likely lead the anesthesiologist to adjust the target 

concentration to accelerate the induction phase. With the Kataria TCI algorithm, BIS 

reaches the target value and then starts increasing, producing the need to adjust the 

target concentration as well, and thus setting the basis for a strong variability in the 

clinical practice, depending on the anesthetist’s mindset, habits, experience, 

situational awareness, and level of attention. The closed-loop controller allows 

reaching and maintaining the target BIS value, and the proposed infusion rate 

changes gradually, to avoid dangerous plasma peaks with potential adverse effects, 

as a result of appropriate and careful tuning of the terms in the objective function. 

Similarly, the minimum BIS value is limited because of the presence of the penalty 

function on the controlled variable BIS. Finally, if disturbances of the anesthetic state 

manifested, the controller would react automatically, while both manual and TCI pump 

inductions would require manual adjustments of the infusion rates/target 

concentration values to maintain the patient anesthetic state. 

All of these considerations are confirmed by the total administered dose [mg/kg], 

displayed in Table 20, which shows that manual and TCI induction doses are both 
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higher than that of our MPC controller (see % increment also reported in Table 20). 

Interestingly, in this simulation, TCI induction doses are the same despite the use of 

different three-compartment models. 

Table 20 – Total propofol dose [mg//kg] over the 20 min simulation resulting from MPC closed-loop, 
manual, and TCI induction. The % increment respect to the MPC dose is also reported. 

 MPC 

CONTROLLER 
MANUAL REGIMEN 

(MCFARLAN) 
TCI 

PAEDFUSOR 
TCI 

KATARIA 

TOTAL DOSE 

[mg/kg] 5.69 9.48 8.00 8.00 

% INCREMENT 

respect to MPC 

dose [-] 0 +66.6 +40.6 +40.6 

4B.9 Conclusions 

 

The PBPK modeling approach allows tackling inter-individual variability of 

pharmacokinetics associated to the impact of age and obesity on ADME processes. 

The integration of age- and BMI-dependent correlations for estimation of the 

individualized parameters, and the identification of category-specific adaptive 

parameters allow applying the same model to normal and special patients. Not only 

the necessity of distinguishing among several classical PK models is eliminated, but 

also, it is likely that the anatomical and physiological principles beneath the model 

structure and parameters would enhance understanding and adoption by clinicians. 

Indeed, the proposed model allows predicting the PK of different categories of patients 

with either comparable or superior performance than the most used classical PK 

models for propofol, i.e. Marsh and Schnider models. The proposed model was 

combined with a suitable form of the Hill equation, whose parameters were identified 

with BIS data available in the scientific literature, after reformulation to account for the 

age-related features of propofol PD effects. The PD model proved satisfactory 

prediction of additional BIS data, with poor forecasts often caused by the presence of 

disturbances. Thus, the PBPK-PD model, corroborated with the different sets of 

individualized correlations and adaptive parameters, can be used to guide propofol 

anesthesia in normal patients and “at-risk” categories. A limitation of the study is that, 

in principle, for better consistency, PK and PD data used for identification of adaptive 

parameters should be from the same study. In addition, the PBPK-PD model 

performance still has to be validated in adolescents and geriatric (>80 y) patients. To 

our knowledge, the only PK-PD model for broad use in propofol anesthesia was 
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proposed by Eleveld et al. (2018) and shows similar limitations. However, the key 

element of distinction is that the anatomical and physiological foundation of the 

proposed PBPK-PD model allows reducing the risks of extrapolating the prediction to 

those patients’ categories, whose PK-PD data were not available in the scientific 

literature. Indeed, individualized parameters account for the age range 1 – 99 y. 

While Eleveld et al. (2018) propose an implementation of their model into a TCI pump-

like system, our goal is to embed the model in a model-predictive controller for 

automated closed-loop anesthesia as a decision-support system for anesthetists. The 

main difference and advantage is that, in case of closed-loop anesthesia, the system 

performance does not depend solely on the model accuracy, but is continuously 

corrected and adjusted by real-time data that quantify the patients’ hypnotic levels. 

Closed-loop controlled simulations of propofol anesthesia based on our PBPK-PD 

model take into account the pharmacokinetic and pharmacodynamic features of the 

elderly, pediatric, and obese patients and are in line with the recommended propofol 

dosing guidelines to avoid overdosing and adverse effects. The comparison with 

manual and TCI induction infusion rates showed improvements in both safety and 

stability of the overall in silico induction phase. 

Although this Chapter focused on propofol only, the influence of propofol-remifentanil 

combination in high-risk patients, including elderly patients, is taken into account and 

discussed in Chapter 5. While tissue- and plasma-dependent remifentanil metabolism 

help reducing the PK and PD inter-individual variability compared to propofol, MAP 

and HR data are required to verify whether the adult models are suitable for prediction 

in pediatric patients. However, it is worth stressing that intra-operative AP changes 

are less concerning in children than elderly and obese patients (Shung, 2010). At this 

stage, we assume that the implemented correlations accounting for anatomical and 

physiological changes are sufficient to account for remifentanil differences in pediatric, 

elderly, and obese patients. 
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CHAPTER 5 

 
 
 
 

 

Anesthetic-analgesic interactions and 

adequate depth of anesthesia in  

high-risk patients 
 
 
 
 
 
 

5.1 Author’s Note 

 

As discussed in Chapter 4A, patients with cardiovascular diseases and elderly are 

more exposed to risks of overdosing and increased cardio-respiratory depression. 

This chapter proposes a number of improvements of the model-predictive controller, 

with the aim of achieving a safer and more stable control of anesthesia in high-risk 

patients. Indeed, while the structure and performance of the controller proposed in 

Chapter 3 are quite suitable for a healthy adult patient and/or in case of minor 

procedures, they may result less effective in case of critical patients and major 

surgeries. 

These modifications are of crucial importance, because physiological closed-loop 

control systems are meant to reduce clinicians’ workload and improve their situational 

awareness, so that a prompter reaction to adverse events can be guaranteed. Such 

situations are more likely to occur in the management of intrinsically difficult cases, in 

which clinicians need to focus their attention on the patients’ state to ensure a positive 

outcome of the procedure and reduce the risks of intra- and post-operative 

complications. 
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5.2 Introduction 

 

Anesthetists refer to several (in some cases, redundant) physiological variables to 

monitor the patients’ anesthetic state. The minimum monitoring for anesthesia 

includes: pulse oximeter, non-invasive blood pressure (NIBP, at least every five 

minutes), continuous electrocardiogram (ECG), inspired and expired oxygen and CO2, 

and temperature (ASA Standards for Basic Anesthetic Monitoring, 2015). At the 

discretion of the anesthetist, additional monitoring can be used. In case of TIVA, 

especially when combined with neuromuscular blocking drugs, use of DoH monitors 

is recommended, i.e. electroencephalogram (EEG) or some quantitative EEG monitor 

(e.g., BISpectral Index, Spectral Entropy, and NeuroSENSE monitors) (Checketts et 

al., 2016). In some specific cases, e.g., elderly or patients with cardiac diseases, the 

anesthetist will add continuous AP measurement (and possibly blood flow monitoring) 

to monitor circulation. In such cases, continuous AP monitoring is clinically indicated, 

as limiting the hemodynamic fluctuations is essential for a positive clinical outcome 

(see Chapter 4A for a more detailed discussion). 

Optimal titration of anesthetic drugs contributes to limit hemodynamic fluctuations. As 

propofol is known to be a cardio-respiratory depressant, optimization of dosing is 

essential to avoid hypotension and extreme drops in CO, especially during induction. 

Indeed, such adverse effects can be detrimental in the high-risk patient. In clinical 

practice, intra-operative changes of the hemodynamic parameters are also employed 

as indicators of the adequacy of analgesia level. For the sake of completeness, it is 

worth mentioning that some commercialized devices are today available to monitor 

nociception, e.g., the PMD100™ (Medasense Biometrics Ltd., Ramat Yishai, Israel) 

that computes a real-time NOciception Level index (NOL), based on the re-elaboration 

of physiological data from multiple sensors. However, they are still far from being 

widespread in clinical practice and their actual clinical relevance has not been 

demonstrated yet (Ledowski, 2019). For these reasons, the use of HR and AP to 

monitor intra-operative nociception is still prevalent and thus, inclusion of 

hemodynamic variables in closed-loop controllers of anesthesia is desirable for a safe 
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and stable control action on the patients’ anesthetic state. Model-predictive control is 

the most suitable strategy to tackle such multivariable problem, with the goal of 

avoiding propofol overdosing with related adverse effects on the cardiovascular 

system and, concomitantly, rejecting the disturbances caused by noxious stimuli (i.e. 

manifested by steep increases of HR and AP). In fact, the optimization problem can 

be formulated by including (i) a correction of the model prediction based on real-time 

hemodynamic data, to detect sudden changes of the input variables, and (ii) 

appropriate constraints on the rate of change of the infusion rates and controlled 

variables, to maintain safe clinical ranges. 

While the PBPK model (at this stage embedded in the controller) is substantially 

unchanged with respect to Chapter 4A, modifications were made to the PD 

component. To account for high-risk patients’ sensitivity to propofol-opioids 

combination (Servin, 2017), AP is modeled as a function of both propofol and 

remifentanil concentrations by a response surface methodology to account for 

propofol-remifentanil synergistic interactions. HR is included as input variable to the 

controller and modeled as a function of remifentanil concentration. Since HR is more 

susceptible than AP to noxious stimuli (see the studies of Hall et al. (2000); Batra et 

al. (2004); Alexander et al. (1999)), a correlation with remifentanil infusion rate allows 

the controller adjusting the analgesic dosing if steep HR changes are detected, which 

manifest an inadequate analgesic level of the patient. The use of a PBPK modeling 

strategy within the controller also allowed investigating the effect of CO changes on 

the control action. 

Section 5.3 details (i) the mathematical formulation of the PD models, along with their 

identification and validation procedures and (ii) the modified controller structure and 

optimization problem formulation. Section 5.4 shows the validation results of the PD 

models. Section 5.5 is devoted to the discussion of the results on in silico induction of 

anesthesia. Specifically, Paragraph 5.5.1 shows the in silico assessment of the MPC 

controller performance during induction of anesthesia in eight “at-risk” patients. 

Paragraph 5.5.2 is devoted to showing the impact of including CO data as input to the 

model-predictive controller. 
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5.3 Methods 

 

5.3.1 PD models for prediction of MAP, HR, DoH, and CO 

Propofol and remifentanil are known to display synergistic interactions. Although drug-

drug interactions in anesthesia can occur at both the PK and PD levels, PD 

interactions are more interesting since anesthetists (and closed-loop controllers, as 

well) titrate dosing basing on the time course of PD effects (Van Den Berg et al., 2017). 

Interaction between opioids and IV anesthetics is less strong for hypnotic effects than 

for response to noxious stimuli, and results on remifentanil-propofol synergistic effects 

on EEG are controversial (Van Den Berg et al., 2017). In general, studies report that 

concomitant opioid-propofol administration does not seem to affect BIS (see for 

instance Guignard et al. (2000)). The reason may be that these classes of drugs have 

different site of action. Instead, there is evidence of more enhanced cardiovascular 

depressant effects in case of remifentanil boluses administered in combination with 

propofol (Guignard et al., 2000; Thompson et al., 1998). Specifically, these effects are 

more enhanced on AP and CO than HR, consistently with the results presented and 

discussed in the first section of Chapter 4A. 

For these reasons, a PD model of AP accounting for propofol-remifentanil interactions 

was identified and validated with clinical data available from West et al. (2018) (see 

Chapter 4A). In the scientific literature, PD interactions of anesthetics and opioids 

have been modeled by response surface methodology. Minto et al. (2000) proposed 

the model explicated in Eqs. (5.1-8) to describe propofol interactions with midazolam 

and alfentanil. 

50

0 0

50

max

( )

( ) ( )
( )

1

C t

EC
E t E E E

C t

EC





 
 
 = − −
 

+  
 

 (5.1) 

50,

( )
( ) ,i

i

i

C t
U t i P R

EC
= =  (5.2) 

( )
( )

( ) ( )

P

R P

U t
t

U t U t
 =

+
 (5.3) 



5. Anesthetic-analgesic interactions and adequate depth of anesthesia in high-risk patients 

129 
 

( ( ))

50

0 0 ( ( ))

50

max

( ) ( )

( ( ))
( ) ( ( ( )))

( ) ( )
1

( ( ))

t

R P

t

R P

U t U t

U t
E t E E E t

U t U t

U t

 

 






 +
 
 = − −
 +

+  
 

 (5.4) 

2 3 4

0 1 2 3 4( )f          = + + + +  (5.5) 

max max max

max max max

max max, max, max, 2, 3, 4,

2 3 4

2, 3, 4,

( ( )) ( ) ( )

( ) ( ) ( )

R P R E E E

E E E

E t E E E t

t t t

    

     

= + − − − −

+ + +
 (5.6) 

50 50

2

50 2, 2,( ( )) 1 ( ) ( )U UU t t t    = − +  (5.7) 

2 3 4

2, 3, 4, 2, 3, 4,( ( )) ( ) ( ) ( ) ( ) ( )R P Rt t t t t                   = + − − − − + + + (5.8) 

We adapted the model to describe propofol-remifentanil effect on AP (in Eqs. (5.1-8), 

P stands for propofol, R for remifentanil). As in previous chapters, the virtual effect-

site compartment approach is used, to account for the drugs transfer from plasma to 

the site of action. For the sake of clarity, the concentration 𝐶(𝑡) in Eqs. (5.1-2) refers 

to the effect-site. We do not report the notation “e” to avoid further burden on the 

reader. 

The Hill equation can be rewritten as in Eq. (5.1). In Eq. (5.2), 𝑈𝑖 is the normalized 

concentration of the drug 𝑖 and is used as measure of the drug potency17. If 𝜃 is 

defined as in Eq. (5.3), Eq. (5.1) can be rewritten to represent the concentration-

response relation of any ratio of the two drugs in combination. Such combination is 

indeed considered as a “new” drug, with concentration 𝑈𝑃 + 𝑈𝑅. Note that this model 

can be applied provided that the single drugs also exhibit a sigmoid correlation with 

the clinical effect, which is the case of both propofol and remifentanil (and in general 

most IV anesthetic/analgesic drugs). 

Basing on these assumptions, Eq. (5.4) becomes an “extension” of Eq. (5.1), where 

𝐸𝑚𝑎𝑥(𝜃) is the maximum effect at ratio 𝜃, 𝑈50(𝜃) represents the potency of the drugs 

combination, and 𝛾(𝜃) is the steepness associated to the drugs combination. To 

represent the dependence of these PD parameters on 𝜃, Minto et al. (2000) propose 

the family of fourth-order polynomials (see Eq. (5.5)) as they are flexible functions, 

because limited mechanistic information is available in the literature on these 

relations. 

 
17 Note that 𝐸𝐶50,𝑖are defined from the separate propofol and remifentanil concentration-response relations. 
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By following this procedure, the problem of identifying the PD model parameters 

𝐸𝑚𝑎𝑥,𝐸𝐶50, and 𝛾 is converted into the problem of identifying the 𝛽𝑗 parameters. Minto 

et al. (2000) show how, in a two-drug combination models, some of these 𝛽𝑗 

parameters are already defined, as they are constrained by the model formulation. 

The remaining parameters are identified via non-linear regression with PD data. The 

final correlations are reported in Eqs. (5.6-8). 𝐸𝑚𝑎𝑥,𝑃, 𝐸𝑚𝑎𝑥,𝑅, 𝛾𝑃, and 𝛾𝑅 in Eqs. (5.6-

8) and 𝐸𝐶50,𝑃 and 𝐸𝐶50,𝑅 in Eq. (5.2) are derived from the separate propofol and 

remifentanil concentration-response relations. 

As far as HR is concerned, the decrease associated to propofol induction is usually 

less significant or not present (see measured HR trends presented and discussed in 

the first section of Chapter 4A) and thus, it is not as concerning as propofol-induced 

hypotension. During the maintenance phase, rapid increases of HR are symptoms of 

inadequate level of analgesia. For these reasons, HR was modeled as a function of 

remifentanil effect-site concentration via modified Hill equation (as in Chapter 3, Eqs. 

(3.13-14)). 

For reasons of consistency with the data used for hemodynamic parameters 

modeling, we used WAVCNS data to identify and validate a PD model (i.e. modified Hill 

equation as in Chapter 3, Eqs. (3.13-14)) as a function of propofol effect-site 

concentration, to be applied within the controller to control the DoH component (for 

the sake of clarity, in this chapter the notation DoH is therefore used instead of BIS). 

Finally, CO data were used to identify and validate a propofol dose-CO model that is 

not applied within the controller but can be used to investigate in silico the effect of 

different propofol dosing regimens on CO dynamics. In this case as well, the modified 

Hill equation as a function of propofol effect-site concentration is used (Eqs. (3.13-

14)). Indeed, Chapter 4A showed the importance of limiting CO decrease, and 

because limited dedicated clinical experiments are available in the scientific literature, 

this PD model is provided as an investigational tool to study such effects. 

The clinical data used for identification and validation of the HR, CO, and DoH models 

are from West et al. (2018) and have already been detailed in Paragraph 4A.4.1. The 

baseline pre-induction values (E0 in the Hill equation formulation) are assigned as the 

values of the effect 30 s after induction (as in Van Heusden et al. (2018)). RMSE, 

MDPE, and MDAPE values are also provided as performance indicators of the PD 

models predictive performance, basing on the PD data that were not used for the 

parameters’ identification (MDPE and MDAPE are used as measure of accuracy of 
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PD models in the related scientific literature (e.g., Eleveld et al. (2018)). 

5.3.2 Controller structure and optimization problem formulation 

Figure 31 shows the in silico closed-loop controller framework. Input variables to the 

model-predictive controller are DoH, MAP, and HR. Manipulated variables are 

propofol and remifentanil infusion rates. Controlled variables are DoH and MAP. 

 

Figure 31 – In silico closed-loop framework for application to high-risk patients. The closed-loop elements 
are: (i) the control objectives (i.e. target DOA), (ii) the optimizer, (iii) the controller model, and (iv) the 
patient model. 

The wave index (WAVCNS) is used as measure of DoH in West et al. (2018). As for 

BIS, the setpoint is 50 [-], after the recommended WAVCNS clinical range 40-60 [-] that 

suggests adequate DoH. With respect to MAP, we reformulated the control objective 

of Chapter 3, where MAPSP was set at 70 [mmHg]. Although MAP = 70 [mmHg] is an 

appropriate target for healthy patients during maintenance of anesthesia, one should 

not assume that the same AP value can be maintained or is suitable to all sorts of 

patients. Depending on their characteristics and AP baseline (i.e. pre-induction) value, 

MAP = 70 mmHg may actually result too high or too low. In addition, it is not customary 

of anesthesiologists to assign a setpoint, i.e. a target desired value, for AP. Indeed, 

anesthesiologists rather think of clinical ranges for the hemodynamic parameters (G. 

Mistraletti, personal communications, Ospedale San Paolo, November 2018). The 

lower boundary value of the recommended range also depends on the patients’ 

features, especially because of the discussed critical issues related to the 

cardiovascular response (see Chapter 4A). For instance, it is not recommendable to 

keep a critically ill patient at AP values below 65 mmHg for several minutes (risk of 

hypoperfusion), while the same values would not be problematic in a young healthy 

patient. For these reasons, we reformulated the MAP control objective as a maximum 

allowed MAP % decrease respect to the baseline value in response to propofol-

remifentanil induction. From this value, which is more easily understandable for the 

anesthesiologist, the target value MAPSP is determined by the MPC controller. For the 
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in silico simulations, we set an acceptable value of 20% decrease from the baseline 

value. 

In high-risk patients, variations of the controlled variables may be faster, and it is 

desirable to promptly smooth those hemodynamic fluctuations. Hence, the controller 

operating time interval 𝑡𝑠 was set to 10 s. Suitable values of ℎ𝑝 and ℎ𝑐 were found, 

respectively 40𝑡𝑠 (i.e. less than 7 min) and 4𝑡𝑠 (i.e. 4 degrees of freedom for each 

controlled variable, with a total of 8 degrees of freedom). 

The optimization problem is formulated as in Eq. (5.9). Similarly to the optimization 

problem of Chapter 3, Eq. (5.9) accounts for (i) the controlled variables distance from 

the setpoint, 𝑒𝑦, where 𝑦 is the vector of the controlled variables DoH and MAP, (ii) 

penalty function terms for the input variables, and (iii) the rate of changes of propofol 

and remifentanil infusion rates. HR is not a controlled variable but is included in the 

objective function by means of an additional term, whose purpose is to minimize 

positive steep changes of that specific variable (see Eq. (5.10)). This choice is made 

because it is more consistent with the clinical practice. Indeed, similarly to AP, there 

are no optimal target values of HR, but variations are more important to assess the 

adequacy of the patients’ analgesic state. This term will be more important when 

disturbances of the anesthetic state due to surgical and other nociceptive stimuli (e.g., 

intubation) manifest. We also implemented constraints for HR via a penalty function 

𝑃𝐹𝐻𝑅. Note that a new term was included in the objective function (see also Eq. (5.11)), 

compared to the formulation presented in Chapter 3. This term provides the optimizer 

with a suitable profile of remifentanil infusion rate 𝐼𝑅𝑅,𝑇, which is based on the dosing 

guidelines available at https://reference.medscape.com/drug/ultiva-remifentanil-

343316, and takes into account the recommended reduction of remifentanil dosing for 

patients aged > 60 y, who are more sensitive to opioids (Servin, 2017). 

The choice of implementing this term comes from personal communications with 

clinicians (C. Carozzi, Istituto Neurologico Carlo Besta, December 2018). In fact, 

anesthesiologists accustomed to using TCI pumps usually increase preventively the 

target remifentanil concentration before stimulating procedures (e.g., intubation, 

incision), without modifying the propofol infusion rate. If a quantitative measure of 

nociception (e.g., NOL index) were clinically adopted and used within the controller as 

controlled variable, this action could be converted into a setpoint change (i.e. servo-

problem). Since in clinical practice, and thus in our controller, changes in 

hemodynamic parameters AP and HR are used as surrogate indicators of the level of 

https://reference.medscape.com/drug/ultiva-remifentanil-343316
https://reference.medscape.com/drug/ultiva-remifentanil-343316
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analgesia, an alternative approach must be proposed. By introducing this term, we 

allow the anesthesiologist, who is the final end-user of the controller, to adapt the 

controller settings by modifying the 𝐼𝑅𝑅,𝑇 before the stimulating procedure, and 

changing it back to the preferred value afterwards, hence providing an additional 

degree of freedom to operate. Tuning of the weights of the objective function followed 

the same criteria already explained in Chapter 3. 
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( ) ( ) ( )( )rHR k HR k HR k = −  (5.10) 

( ) ( ) ( ), ,R T R R TIR l IR l IR l = −  (5.11) 

The performance of the controller has been evaluated in silico for eight “at-risk” 

patients. The controller and the in silico patients feature the same individualized PBPK 

model, but the “mismatch” is preserved by using individualized PD models, obtained 

via nonlinear regression with data of individual patients from West et al. (2018). 

An additional in silico experiment was carried out to test the behavior of the MPC 

controller as a result of including CO data as input information. Specifically, three 

different CO individual models were identified from 3 patients of West et al. (2018). 

The three CO models were used to simulate three different CO dynamics for the same 

virtual patient and compare the infusion rates proposed by the controller, as a result 

of the different PBPK profiles. The goal of this experiment was to verify whether the 

controller is able to individualize the control action basing on additional information 

about hemodynamics (specifically, CO data). 

5.4 Pharmacodynamic modeling: results and discussion 

 

5.4.1 Validation of the arterial pressure model 

As mentioned in Chapter 4A, continuous MAP and CO measurements were available 

for 15 high-risk patients from West et al. (2018). For four additional patients continuous 

MAP measurements were available, while CO was not available. In all of these cases, 

AP monitoring was clinically indicated because of the patients’ conditions or the type 

of surgical procedure (see Chapter 4A and West et al. (2018) for additional details). 
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Data from ten patients were used for identification of the PD model parameters, listed 

in Table 21. Figure 32 shows the AP model predictions resulting from simulation of 

MAP dynamics of the remaining patients, who were used as validation cases. Table 

22 reports RMSE, MDPE, and MDAPE values for quantification of the model predictive 

performance. 

Table 21 – Identified parameters of the response surface model for MAP. 

 IDENTIFIED 

PARAMETERS 

ke0, R [min-1] 0.0083 

Emax,R [mmHg] 58.979 

γR [-] 1.931 

EC50,R [ng/mL] 0.145 

ke0, P [min-1] 0.0903 

Emax,P [mmHg] 49.727 

γP [-] 1.066 

EC50, P [µg/mL] 1.639 

β2, Emax[-] 1.324 

β3, Emax[-] 0.993 

β4, Emax[-] 0.472 

β2, U50[-] -5.589 

β2, ɣ[-] -2.798 

β 3, ɣ[-] 0.917 

β 4, ɣ[-] 0.092 

In Figure 32, MAP data measured using invasive arterial line (i.e. continuous 

measurements, blue circles) and NIBP (red diamonds, sampled every 1, 2 or 3 min) 

are reported for comparison to the MAP model predictions (black continuous line) of 

nine patients (A-I panels). Small stars indicate (i) stimulation (red, e.g., caused by 

surgical activity) or (ii) administration of vasopressors to treat mild/severe hypotension 

(black). The goal of our combined PBPK-PD model is to describe the functional 

dependency of AP on the infusion rates of propofol and remifentanil. The effects of 

stimulation and administration of vasopressors on AP can be assumed as external 

disturbances. For this reason, we did not consider these events in our model, and 
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thus, the effects of such disturbances provoke a deviation of the model-predicted MAP 

from its measured value, which increases because of either (i) the sympathoadrenal 

response to the stimulus or (ii) the vasopressor-induced constriction of blood vessels. 

For similar reasons, the time horizon for identification and validation is of the order of 

some minutes and differs among patients. In fact, we consider the AP dynamics before 

the start of the airway management18, which was performed at different times among 

patients and is a stimulus, which leads to an increase of the hemodynamic values. 

Indeed, modeling the relation between the drug concentrations and hemodynamic 

effects is not an easy task, as they are affected by such “external” factors. It is also 

worth noticing that the two techniques for measuring AP (i.e. invasive arterial line vs 

NIBP) sometimes produce discrepant measured values (see for instance Figure 32, 

B panel). Although both methods are often used intra-operatively, it is not uncommon 

to observe inconsistencies (Sheshadri et al., 2017). Intra-arterial line continuous 

measurements are usually considered more reliable, but a number of different factors 

may induce such discrepancies, e.g., wrong cuff size or positioning, wrong cannula 

positioning, hypothermia, and vasoconstriction. 

The significant inter-patient variability in the hemodynamic response to induction of 

anesthesia was already commented in Chapter 4A, and is evident from Figure 32. A 

systematic behavior of the model prediction cannot be detected, in some cases (e.g., 

A and E panels) the model overestimates MAP data, in others underestimation can 

be observed (e.g., D panel). However, considering the inter-individual variability also 

related to the patients’ conditions and external factors (i.e. concomitant administration 

of several drugs, stimulation, and different time of the airway management) the model 

shows acceptable performance in prediction of AP of these high-risk patients. Table 

22 shows that RMSE is lower than 20 mmHg in all cases, except for case B, and 

MDAPE is always lower than 25%. 

  

 
18 Patients in West et al. (2018) are mechanically ventilated so that they can breathe while they are anesthetized. 

A B
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Figure 32 – Validation cases for the MAP model. Blue circles are MAP measurements from the arterial 
line, while red diamonds are the NIBP data (sampled every few minutes). Black continuous line is the 
model-predicted MAP. Red stars in B, F, and I panels indicate stimulation, while the black star in H panel 
marks the administration of a vasoconstrictor agent to counter hypotension. 

Table 22 – RMSE, MDPE, and MDAPE values related to validation of the MAP model. 

 
RMSE [mmHg] MDPE% MDAPE% 

A 15.70 21.11 21.11 

C

D

E F

G H

I
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B 24.81 7.55 12.42 

C  13.61 4.34 4.71 

D 12.59 15.35 15.35 

E 15.60 22.29 22.29 

F 6.48 5.44 7.94 

G 3.80 1.07 2.83 

H 8.73 8.7 8.7 

I 6.17 0.30 5.13 

Median 

(IQR) 

10.66 

(6.4-15.63) 

7.55 

(3.52-16.79) 

8.70 

(5.02-16.79) 

5.4.2 Validation of the heart rate model 

HR data of three patients were used to identify the PD model parameters listed in 

Table 23. Figure 33 shows the validation cases (i.e. HR data of the remaining 16 

patients). HR data (blue continuous ECG signal) show remarkable inter-patient 

variability. Indeed, compared to AP, HR is more susceptible to stimulation, and is also 

more affected by the patient pre-induction state, e.g., anxiety level. This complicates 

the definition of the pre-induction baseline value (E0 in the sigmoidal 𝐸𝑚𝑎𝑥 model). 

Nociceptive or other types of stimuli (e.g., tactile) may have caused increases of the 

HR signal, evident in C, D, E, F, J, K, N, O, and P panels, and thus deviation of the 

model-predicted HR (black continuous line) from the measured values in Figure 33. 

Other factors inducing HR changes are marked with a black arrow (i.e. for particular 

events) or a red star (i.e. stimulation). For the sake of clarity, an increase in HR is 

usually observed following hypotensive episodes, because the heart will pump at a 

higher rate to contrast the effects of the pressure decrease, and maintain the blood 

flowrates to the vital organs (see G panel). In B panel, pump occlusion probably 

caused inadequate levels of analgesia and hypnosis, which results into a sustained 

increase of HR that manifests the patient stress response. As commented in Chapter 

4B, the HR response to induction of anesthesia is less marked than the AP one. In 

fact, it is almost not present in some cases (see for instance A-C panels). The model 

predictive performance is similar to the AP model. RMSE, MDPE, and MDAPE values 

are listed in Table 24. The cases in which HR disturbances are present show the 

highest RMSE values. 
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Table 23 – Identified parameters of the modified Emax model for HR. 

 IDENTIFIED 

PARAMETERS 

ke0 [min-1] 0.196 

Emax [b/min] 0.629*HRbaseline 

γ [-] 3.02 

EC50 [ng/mL] 3.531 

 

  

  

  

A

Occlusion

B

C D

E F
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Figure 33 – Validation cases for the HR model. Blue continuous line is HR from the ECG signal, while 
black continuous line is the model-predicted HR. Red stars in J and N panels indicate stimulation, while 
the black star in P panel marks the administration of a vasoconstrictor agent to counter hypotension. A 
black arrow in B and G panels marks particular episodes affecting the HR signal. 

Table 24 – RMSE, MDPE, and MDAPE values related to validation of the HR model. 

 
RMSE [b/min] MDPE% MDAPE% 

A 2.12 -3.97 3.97 

B 4.99 20.67 20.67 

C  7.23 -0.48 2.36 

D 6.96 -3.49 4.23 

E 8.76 2.09 2.09 

F 4.21 -6.31 6.31 

G 6.47 -1.30 6.01 

H 2.96 -4.96 4.96 

I 7.22 -1.95 3.30 

J 16.32 4.99 4.99 

K 5.17 -9.61 12.98 

L 6.21 4.02 4.76 

M 1.69 1.79 1.79 

N 8.63 3.49 4.47 

O 6.89 -8.49 8.49 

P 5.04 -3.01 3.01 

Median 

(IQR) 

6.34 

(4.6-7.22) 

-1.62 

(-4.46-2.79) 

4.61 

(6.16-3.15) 

O P
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5.4.3 Validation of the cardiac output model 

Propofol decreases CO via a mechanism of dilation of the venous vessels, which also 

drives the decrease in MAP (Green, 2015). Again, the dose-effect relation can be 

suitably described via modified Hill equation. Data of five patients were used to identify 

the model parameters (listed in Table 25). 

Table 25 – Identified parameters of the modified Emax model for CO. 

 IDENTIFIED 

PARAMETERS 

ke0 [min-1] 0.014 

Emax [L/min] CObaseline0.801 

γ [-] 0.588 

EC50 [µg/mL] 2.501 

Validation cases are presented in Figure 34, with CO measurements in red 

(diamonds) and model predictions in black (continuous line). Missing data are either 

due to monitor disconnections or artifacts removal. When CO is measured by pulse 

pressure analysis techniques (e.g., LiDCO Rapid, LiDCO Ltd, London UK, as in West 

et al. (2018)), CO values will be affected by AP changes. Indeed, reliability of the CO 

estimation is reduced during periods of hemodynamic instability (Alhashemi et al., 

2011). This also means that factors affecting the accuracy of AP measurement will 

also affect CO measurements, e.g., arterial line positioning, vasoconstriction, and 

hypothermia. In E and I panels, stimulation is marked with red stars. The model has 

an acceptable performance in most of the validation cases, despite the inter-patient 

variability (see also RMSE, MDPE, and MDAPE values reported in Table 26, for 

quantitative assessment of the model predictive performance). Worst cases are 

shown in A and H panels in which monitor disconnection has increased the difficulty 

of assessing a reliable pre-induction value. Although this model will not be used within 

our controller, it is reliable enough to be used for simulation of propofol effects on CO 

decrease and investigation of the optimal induction dose, as CO data are not abundant 

in the scientific literature. 
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Figure 34 – Validation cases for the CO model. Red diamonds are measured CO values from LiDCO 
system (LiDCO Rapid, LiDCO Ltd, London UK), while black continuous line is the model-predicted CO. 
Red stars in E and I panels indicate stimulation. 

Table 26 – RMSE, MDPE, and MDAPE values related to validation of the CO model. 

 
RMSE [L/min] MDPE% MDAPE% 

A 1.265 -26.05 26.05 

B 0.568 2.898 5.04 

C  0.899 -1.738 7.441 

D 0.597 2.456 4.88 

E 1.183 -5.137 7.327 

F 1.419  6.627  5.803 

G 1.547  2.261  12.948 

H 1.225 -12.28  27.31  

I 0.828  -0.651  8.873 

J 1.54 -8.728 11.574 

Median 

(IQR) 

1.204 

(0.828-1.419) 

-3.437 

(-8.728-2.456) 

7.384 

(5.803-12.948) 

5.4.4 Validation of depth of hypnosis model 

In the study of West et al. (2018), WAVCNS was used for quantitative assessment of 

DoH. A PD model featuring a functional dependency on propofol concentration was 

identified from the WAVCNS data of the high-risk subgroup of the study, with PD 

parameters reported in Table 27. For the sake of clarity, Emax is fixed and equal to 0, 

consistently with the minimum value that WAVCNS can reach in clinical practice; so it 

is not a degree of freedom in the identification problem. Figure 35 shows twelve 

validation cases. While the model performance is acceptable in “normal cases”, e.g., 

see B, C, F, H, and N panels, strong nonlinearities (i.e. burst suppression) evident in 

I J
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A, G, I, J, O, and P panels are not well-described. This model behavior was already 

highlighted in Chapter 4A and Chapter 4B, showing and commenting poor prediction 

of low BIS levels. It is worth mentioning that, in J panel case, hypertension was marked 

in concomitance with burst suppression behavior, while in all of the other cases, 

hypotension severe enough to be treated with vasopressors was observed. Despite 

the presence and robustness of the CBF autoregulation mechanism, variations of AP 

and CO affect the cerebral perfusion (Drummond, 2019). Indeed, according to 

Drummond (2019), disruption of the autoregulation and CBF reduction occur at MAP 

values below ~70 [mmHg]. Naturally, the efficacy of the autoregulation mechanism 

and this lower value of MAP differ remarkably among individuals. Studies have 

confirmed that burst suppression is often observed in concomitance with conditions 

inducing low brain perfusion (Besch et al., 2011; Diedler et al., 2009), and some 

authors have even investigated the use of BIS as an indicator of ischemia (e.g., 

Hayashida et al. (2004) and Dahaba et al. (2010)). Indeed, as mentioned in Chapter 

4A, the variation of CBF as a function of MAP changes will affect the mechanism of 

transport of propofol to brain via bloodstream. It may be speculated that the reduction 

of CBF causes a reduction of propofol to the brain, but at the same time a reduction 

in brain metabolism and, consequently, the accumulation of propofol at the effect-site. 

In summary, the observed burst suppression behavior may be attributed to propofol 

overdosing, on one hand because of its effects on MAP and CBF decrease, and on 

the other hand because of the potential accumulation of propofol in the body. In fact, 

the investigation carried out in Chapter 4A showed that part of this burst suppression 

behavior was observed in concomitance of predicted high plasma levels. The 

limitation of the currently used PD model of DoH is that the description of the effect-

site is not physiologically-based, for the reasons explained in Chapter 4B. However, 

as explanation and prediction of this behavior remains an open problem, future 

research should be devoted to modeling propofol brain transport during anesthesia 

for a better understanding of the underlying mechanisms and the influence of CBF 

changes, in combination with dedicated pre-clinical and clinical studies. It is likely that 

such investigations would lead to an improved model for prediction of this clinically 

relevant phenomenon. The worst MDAPEs are obtained in D, G, and L panels (see 

Table 28). In D and G panels, the wave index shows an unusual delay in the response 

to propofol induction that may also be related to drug-independent factors, e.g., 

problems of the monitoring device, generating inaccuracy of the measurement. 
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Table 27 – Identified parameters of the modified Emax model for DoH. 

 IDENTIFIED 

PARAMETERS 

ke0 [min-1] 0.075 

γ [-] 0.743 

EC50 [µg/mL] 5.012 
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Figure 35 – Validation cases for DoH. Black continuous line is the measured DoH, while the blue 
continuous line is the model-predicted DoH. Red stars in G and P panels indicate stimulation. 

Table 28 – RMSE, MDPE, and MDAPE values related to validation of the DoH model. 

 
RMSE [-] MDPE% MDAPE% 

A 8.88 7.28 9.88 

B 8.28 -5.60 12.05 

C  4.76 0.86 3.67 

D 16.86 -27.26 27.26 

E 10.11 -14.43 14.43 

F 9.53 -4.22 9.89 

G 15.69 -0.11 15.38 

H 5.14 -4.11 7.71 

I 10.70 0.27 13.68 

J 8.67 -0.38 8.42 

K 10.45 -5.96 10.70 

L 15.39 -28.93 28.93 

M 6.58 2.13 6.02 

N 6.56 -6.25 9.17 

O 14.03 -16.12 17.53 

P 11.09 -3.64 14.44 

Median 

(IQR) 

9.82 

(7.43-12.56) 

-4.16 

(-10.34-0.08) 

11.38 

(8.80-14.91) 

5.4.5 Individual PD models of DoH, MAP, and HR 

To test the controller performance and simulate the “mismatch” typical of real 

O P
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applications, eight PD individual models of patients were identified from the DoH, 

MAP, and HR data of the high-risk subgroup. We selected the patients trying to 

equilibrate the number of those featuring “challenging” data profiles (i.e. in which burst 

suppression and hypotension episodes were observed), and more stable cases. 

Unfortunately, the subgroup high-risk patients was mostly composed of male 

individuals, and the eight patients chosen according to these criteria are all males. 

The demographic characteristics of the patients are reported in Table 29. The eight 

models are used to simulate the dose-effect relation of in silico patients to evaluate 

the controller performance during induction of anesthesia. Identified individual PD 

parameters are reported in Appendix 5.A. 

Table 29 – Demographics of the patients whose clinical data are used to identify the individual models of 
the eight in silico patients. 

Patient # TBW [kg] H [cm] Gender [-] Age [y] 

1 98 174 M 60 

2 70 172 M 35 

3 77 182 M 76 

4 74 168 M 69 

5 108 188 M 59 

6 90 179 M 74 

7 90 188 M 54 

8 106 173 M 79 

5.5 In silico simulations of the model-predictive controller 

 in eight high-risk patients 

 

5.5.1 Induction of anesthesia 

Figure 36 shows the results of the simulations of closed-loop controlled induction of 

propofol-remifentanil anesthesia in eight high-risk patients. For a realistic simulation, 

noise is also simulated, based on the analysis of the clinical data (the same method 

as Chapter 3 was applied). Control action starts after 5 min, for a clearer visualization 

of the anesthesia-induced changes of the physiological parameters DoH, MAP, and 

HR. Figure 36 (top panel) shows the dynamics of the input variables to the controller. 

Figure 36 (bottom panel) shows the dynamics of the manipulated variables, i.e. 

propofol and remifentanil IRs.  



5. Anesthetic-analgesic interactions and adequate depth of anesthesia in high-risk patients 

149 
 

   

  

Figure 36 – Simulation of induction of propofol-remifentanil anesthesia in eight high-risk patients. (Top 
panel) Dynamics of controlled variables (DoH, MAP), and input variable HR. (Bottom panel) Dynamics 
of the manipulated variables, i.e. remifentanil and propofol IRs. A straight red line corresponding to MAP= 
60 mmHg marks the hypotension region. The rectangle area in the DoH plot denotes the recommended 
clinical range, 40-60 [-], while the dashed black line marks the setpoint = 50 [-]. 

For the sake of clarity, it is worth underlining that while DoH setpoint is set at 50 [-] 

and marked with a dashed black line and a rectangle area indicating the 

recommended clinical range, i.e. 40-60 [-], no setpoint is marked in the MAP panel. 

Indeed, each patient has a specific setpoint, which is individualized depending on their 

pre-induction value (that was set basing on the patients’ clinical data from West et al. 

(2018)). For this reason, MAP trends tend to different values after 15 min from the 

start of induction. As PD models are from “at-risk” patients, MAP rise-times are quite 

low (~2-3 min) but take longer to stabilize. Indeed, the dynamics of propofol hypnotic 

effects is faster than that of the cardiovascular effects (Kazama et al., 1999). DoH rise-

times are higher compared to those obtained for standard adult patients (see Chapter 

3), ranging from 3 to 20 min (approximately), but propofol induction infusion rates are 

lower and MAP and HR drops are contained within safe ranges. The performance is 

thus more appropriate for high-risk patients, as the controller finds a successful trade-

off among inducing and maintaining a suitable level of DoH and preventing 

hypotension/bradycardia episodes. Indeed, the horizontal red line in MAP graph 

indicates the lower boundary value that is generally 60 [mmHg]. In clinical practice, 

the lower boundary can be higher than that, depending on the patients’ conditions. In 
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any case, it is worth underlining that the MAP trends of the simulated patients do not 

actually overcome this value, except for the patient with the lowest pre-induction MAP 

value. Consistently with the analysis of clinical data shown in Chapter 4A, HR shows 

a reduced decrease compared to MAP. At this stage, neither HR nor MAP changes 

were implemented to test the controller reaction to disturbances caused by stimuli. 

For this reason, remifentanil IR shows a standard bolus-infusion trend, in accordance 

with the clinical practice of anesthesia induction. The remifentanil IRs shows different 

profiles, as they are modulated according to the patients’ age. 

5.5.2 Effect of CO changes on induction 

In Chapter 4A, we showed how the cardiovascular changes affect the 

pharmacokinetics and pharmacodynamics of propofol, and thus alter the response to 

induction of anesthesia, contributing to inter-individual variability. In this section, we 

show how by feeding CO data to the controller, the optimization routine takes into 

account this piece of information to better individualize the infusion rate profiles. 

Three individual CO models depending on the propofol infusion rate were identified 

with data of West et al. (2018). Results are shown in Table 30 and Figure 37, in which 

the black continuous line is the model-predicted CO and red diamonds are CO 

measurements of that specific patient. The model provides a satisfactory fitting in all 

cases and, interestingly, the resulting value of 𝑘𝑒0 is the same in all the three cases. 

Table 30 – Identified PD parameters of the three individual modified Emax models for CO. 

 
PATIENT 1 PATIENT 2 PATIENT 3 

ke0 [min-1] 0.011 0.011 0.011 

Emax [L/min] E0*0.809 E0*1.021 E0*0.988 

γ [-] 0.62 0.35 0.88 

EC50 [µg/mL] 2.869 3.184 1.004 
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PATIENT 1 

 

PATIENT 2 

 

PATIENT 3 

 

Figure 37 – Individual CO predictions (black continuous lines) vs measured CO (red diamonds) of three 
different patients from West et al. (2018). 

The three models are used to simulate different CO dynamics for the same virtual 

patient (see Figure 38, A panel in which the model derived from data of patients 1, 2, 

and 3 are respectively represented by the blue, yellow, and orange continuous lines) 

and test the controller performance during induction of anesthesia following the 

resulting three different pharmacokinetic profiles. In Chapter 4A, we observed that 

more enhanced CO drops correspond to higher plasma levels. As a result, the 

controller proposes a total of -12% and - 15% (yellow and orange lines, respectively) 

propofol dosing for induction (see Figure 38, B panel), while it is able to maintain an 

acceptable control action on DoH and MAP (see Figure 38, C-D panels). In fact, 

induction is slower (as in Paragraph 5.5.1) with a DoH rise-time of ~10 min for DoH, 

but MAP does not overcome the lower boundary value of 60 mmHg. 

These simulations confirm that the inclusion of CO data, when available, contributes 

to individualize the prediction and, most importantly, can help avoiding unnecessary 

overdosing. This feature is only possible as a result of PBPK modeling application 

within the controller. 
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Figure 38 – (A panel) Three different CO dynamics simulating three different trends of CO for the same 
patient. (B panel) Dynamics of propofol infusion rate proposed by the MPC controller. (C and D panels) 
Dynamics of controlled variables MAP and DoH. In C panel, red horizontal dotted line indicates lower 
limit of MAP, i.e. 60 mmHg. In D panel, the black horizontal dashed line indicates the setpoint, and the 
black continuous horizontal lines indicate the optimal range of DoH (40-60). 

5.6 Conclusions 

 

Challenging cases from the point of view of optimal dosing represent the most 

appealing and promising clinical application of closed-loop controllers of anesthesia. 

However, to provide an actual support tool for the clinicians, it is necessary to tackle 

the procedure as a multivariable problem. Closed-loop studies rarely focus on 

hemodynamic parameters, despite their impact on the outcome of the procedure and 

on the patients’ recovery. Inclusion of hemodynamic parameters within closed-loop 

controllers is indeed complicated, mainly because hemodynamic data are affected by 

several anesthetic/analgesic drug-independent events. We showed that, despite 

these intrinsic difficulties, the identified PD models exhibit acceptable predictive 

performance, and their inclusion in the model-predictive controller allows achieving a 

slower but safer induction in simulated high-risk patients. The inclusion of AP and HR 

within the model structure also opens to the guarantee of fast rejection of disturbances 

during the maintenance phase, which will be focus of further investigations. 

To our knowledge, no other study on closed-loop controllers has ever tested the use 

of CO data within a model-predictive controller of anesthesia. We showed that 

A B

DC
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inclusion of such an additional piece of information is extremely valuable from the 

point of view of avoiding unnecessary overdosing, which can provoke either minor or 

major complications in high-risk patients, e.g., it was associated to post-operative 

delirium. This kind of investigation was only possible because of the application of a 

physiologically-based approach to PK modeling. 

 

Acknowledgements: We acknowledge Profs Guy Dumont and John Ansermino for 

precious discussions and suggestions and for making their datasets available for this 

work. 

 

5.7 Appendix 5.A 

 

Table A – Individual MAP models for the eight in silico patients. 

 
1 2 3 4 5 6 7 8 

ke0, R [min-1] 2.5e-2 1.4e-2 1.97e-2 2.7e-2 9.1e-2 5.3e-2 7.4e-2 7.4e-2 

Emax,R 

[mmHg] 
51.31 37.72 57.53 30.54 28.66 61.09 31.53 27.78 

γR [-] 1.26 1.99 2.0 1.37 1.101 1.99 1.3 1.28 

EC50, R 

[ng/mL] 
2.53 0.29 0.17 2.045 1.58 0.87 1.77 1.94 

ke0, P [min-1] 0.0493 0.091 0.018 0.051 0.075 0.0503 0.059 0.0586 

Emax,P 

[mmHg] 
54.133 50.36 57.11 51.24 23.599 38.27 40.973 65.87 

γP [-] 1.152 1.20 2.029 1.11 1.50 1.4 1.243 1.18 

EC50, P 

[µg/mL] 
1.849 1.869 0.156 1.769 2.251 1.7 1.936 1.602 

β2, Emax [-] 1.773 1.713 1.033 1.983 1.764 1.53 1.517 1.773 

β3, Emax [-] 1.131 0.991 0.229 0.817 1.065 1.081 1.046 1.20 

β4, Emax [-] 0.523 0.507 0.324 0.283 0.139 0.492 0.471 0.557 

β2, U50[-] -2.356 -6.288 -5.696 -9.433 -6.845 -4.716 -4.792 -2.226 

β2, ɣ [-] -2.248 0.055 -5.006 -0.613 -3.743 -2.554 -2.288 -0.890 
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β 3, ɣ [-] 1.336 1.638 0.084 1.732 0.448 1.01 1.122 1.537 

β 4, ɣ [-] 0.104 0.092 0.142 0.052 0.072 0.101 0.106 0.098 

Table B – Individual HR models for the eight in silico patients. 

 
1 2 3 4 5 6 7 8 

ke0, R [min-1] 4.96e-1 1.15e-1 1.75e-2 1.32e-1 4.8e-2 7.1e-2 1.39e-1 3.4e-2 

Emax,R/E0[-] 0.118 0.575 0.867 0.64 0.779 0.614 0.776 0.4 

γR [-] 2.71 1.17 2.0 0.494 1.21 1.324 7.312 1.0 

EC50, R 

[ng/mL] 
12.35 1.634 0.343 1.767 1.11 2.128 2.142 2.264 

Table C – Individual DoH models for the eight in silico patients. 

 
1 2 3 4 5 6 7 8 

ke0, P [min-1] 0.0566 0.148 0.078 0.287 0.0654 0.075 0.088 0.155 

Emax,P [-] 0. 0. 0. 0. 0. 0. 0. 0. 

γP [-] 0.584 1.056 2.045 1.8 0.592 7.785 0.895 1.47 

EC50, P 

[µg/mL] 
15.47 4.630 3.458 10.106 5.824 6.303 5.114 12.012 
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CHAPTER 6 

 
 
 
 

 

Melatonin benefits for the critically ill 
 
 
 
 
 
 

6.1 Author’s Note 

 

In recent years, researchers have manifested a great enthusiasm for melatonin, as 

several beneficial effects on the human body have been emerging in addition to the 

well-known action as sleep regulator, e.g., immunomodulatory, anti-oxidant, and anti-

carcinogenic functions. This chapter introduces the main characteristics of critically ill 

patients and explains the reasons for that significant interest in applying melatonin to 

intensive care. 

 

Some parts of this chapter are re-elaborated from a work produced in collaboration 

with Ospedale San Paolo (Milan, Italy) and published in “Clinical Endocrinology” 

journal: 

 

Different routes and formulations of melatonin in critically ill 

patients. A pharmacokinetic randomized study 

Giovanni Mistraletti, Rita Paroni, Moro Salihovic, Sara Froio, Paolo Gasco, 

Adriana Savoca, Davide Manca, Russel J Reiter, Gaetano Iapichino 

Clinical Endocrinology, 91(1):209-218 
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DOI: 10.1111/cen.13993 
 

6.2 The critically ill patient and melatonin 

 

Critical illness is a life-threatening process that leads to mortality or significant 

morbidity, in lack of medical intervention. It is usually related to one or more patho-

physiological processes that compromise cardiovascular, respiratory, and 

neurological functions (Robertson and Al-Haddad, 2013). Critically ill patients require 

intensive care, and most of them need life support and intensive monitoring. Because 

of the heterogeneity and critical level of their conditions, they usually manifest 

remarkable variability in the response to drugs. 

In recent years, there has been a remarkable hype for melatonin, as testified by the 

increasing trend of the number of scientific publications on melatonin since the year 

2000 (see Figure 39). Melatonin is an endogenous substance produced by the 

mammalian pineal gland. In healthy individuals, the production process is entrained 

with the circadian (i.e. day-night) rhythm (Brzezinski, 1997). Indeed, melatonin 

endogenous production onsets with darkness, when the retinal photoreceptors 

release norepinephrine to the gland, provoking the increase of the number of α-1 and 

β-1 adrenergic receptors. Such receptors activate the enzymes involved in melatonin 

bio-synthesis from serotonin. Thus, melatonin levels are low during the day, peak 

between 2-4 AM, and return to low baseline values in the early morning (see Figure 

40). Endogenous melatonin levels also decline gradually with advancing age (see 

Figure 40). 

 

Figure 39 – Number of published scientific papers on melatonin over the years 2000-2018. Source: 
Scopus database research. 

Alterations of the circadian rhythms are associated with sleep disturbances, e.g., 
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night-shift workers and people suffering from jet-lag are among the patients presenting 

disruption of such secretion rhythm. Exogenous melatonin can be administered to 

restore the endogenous rhythm and its use as cure for sleep disorders is quite spread 

(Auld et al., 2017; Fares, 2011; Medeiros et al., 2007). However, several other 

functions are emerging when supraphysiological levels are reached, associated to 

melatonin action as an anti-oxidant and a scavenger of free radicals, among which 

anti-carcinogenic, immunomodulatory, and anti-aging effects (Karbownik et al., 2001; 

Kleszczynski and Fischer, 2012; Mehta and Kaur, 2014; Reiter et al., 2014; Srinivasan 

et al., 2006). 

 

Figure 40 – Typical endogenous melatonin levels in healthy patients as a function of age (Adapted from 
Karasek and Winczyk (2006)) 

Sleep disruption is a common problem in intensive care unit (ICU) patients and has 

adverse short- and long-term effects on their health. In fact, it is associated with 

emotional distress and mood disorders, alterations in metabolism, impairment of 

immune, hormonal and cardiovascular system, and gastrointestinal disorders 

(Mistraletti et al., 2019). Andersen et al. (2014) emphasize that the appeal of melatonin 

use in clinical practice is related not only to the beneficial clinical effects, but especially 

to the safety profile, because most used analgesics and sedatives have clinically 

relevant side-effects, i.e. respiratory depression, post-operative delirium, post-

operative nausea and vomiting (PONV), and would thus introduce risks of further 

compromising the health status of critically ill patients. In fact, in an interesting and 

complete review investigating melatonin administration to different categories of 

individuals (including the critically ills), Andersen et al. (2016a) show that exogenous 

melatonin administration to humans is safe, even at high doses (e.g., Andersen et al. 

(2016b)) and only mild adverse effects have been reported e.g., sleepiness, dizziness, 



Ph. D. Thesis of Adriana Savoca 

158 
 

nausea, and headache, but in levels corresponding to placebo treatments. 

Altered patterns of circadian melatonin secretion and/or low endogenous levels have 

been found in a number of studies on critically ills (Mundigler et al., 2002; Paul and 

Lemmer, 2007; Shilo et al., 1999). Whether this phenomenon is to be attributed to 

lower endogenous production or enhanced elimination is still unclear (Mistraletti et al., 

2019). Advanced age is a typical feature of ICU patients and is likely a contributing 

factor. In the scientific literature, different approaches have been proposed to analyze 

circadian rhythms (Refinetti et al., 2007). The cosinor method is one of the simplest 

and most well-established approaches. A model of cosine curves with 24 h period is 

fitted to the data, so that the periodicity of the circadian pattern can be analyzed, 

basing on the goodness-of-fit. In Mistraletti et al. (2019), we used this method to 

investigate the periodicity of endogenous melatonin secretion in 21 critically ill patients 

(see Figure 41). Figure 41 shows the resulting cosine curves (orange continuous lines) 

against the experimental data of endogenous melatonin concentration (blue 

diamonds) in the studied patients. Despite inter-individual variability of melatonin PK, 

the analysis confirmed a 24h-periodicity of endogenous melatonin concentration 

profile. As expected, significant inter-individual differences were found. Specifically, 

three of the patients manifested abnormal values of Cmax (> 100 pg/mL, see asterisks 

in Figure 41). Interestingly, Mistraletti et al. (2019) underline that high endogenous 

concentrations have been associated with mortality in septic patients (Lorente et al., 

2015). Interactions with other drugs, organs failure, septic state, and mechanical 

ventilation are all factors potentially contributing to such variability, which has already 

been described by other authors in the critically ills. Zero-amplitude testing revealed 

that the circadian rhythm was not significant in 85% of the patients. These results are 

consistent with literature findings on similar patients (Paul and Lemmer, 2007; Perras 

et al., 2007). However, it is worth mentioning that a limitation of this study is the limited 

number of blood samples and especially the sampling period (i.e. over 24 h) 

(Mistraletti et al., 2019). 
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Figure 41 – Regressed cosinusoidal functions (orange continuous line) against the experimental data of 
endogenous melatonin (blue diamonds) in 21 critically-ill patients. Small black asterisks indicate three 
patients whose levels are abnormally high (i.e. Cmax >100 pg/mL). 

In critically ill patients, exogenous melatonin has been proved to have hypnotic, anti-

oxidant, analgesic, and anti-septic effects, other than being a sleep regulator 

(Bellapart and Boots, 2012; Galley et al., 2014; Gitto et al., 2001; Mistraletti et al., 

2017; Mistraletti et al., 2015; Wilhelmsen et al., 2011). A number of recent PK studies 

have investigated different dosing and routes of administration with the goal of 

restoring healthy endogenous levels in these patients (Bellapart et al., 2016; Bourne 

et al., 2008; Gögenur et al., 2014; Mistraletti et al., 2019; Mistraletti et al., 2010; Shilo 

et al., 2000). 

Indeed, because of its physiochemical characteristics (i.e. high lipophilicity and small 

molecular weight), melatonin can be administered via at least three different routes: 

IV, oral (per os, PO), and transdermal (TD). The selection of the optimal route should 

take into account the features (and limitations) of each route along with the 

characteristics of the PK curve resulting from the route-specific ADME processes and 

the patients’ conditions (see Table 31). For instance, IV route may not meet 

compliance in a healthy patient, while it is more feasible in an ICU patient, who is often 

subject to enteral and parenteral nutrition and continuous administration of 

fluids/drugs. A healthy patient may prefer painless routes such as PO and TD, which 

also allow self-administration. PO and TD routes are characterized by slow absorption 

processes, because the drug has to be absorbed through gastrointestinal walls and 
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skin layers, respectively, before reaching the systemic circulation and being 

distributed to the organs and tissues, and thus the site of action. Differently, the IV 

route features the administration of the total dose to the systemic circulation and also 

avoids the so-called “first-pass” hepatic effect. As a consequence, higher levels in 

plasma are to be expected with the same dose administered via IV rather than PO or 

TD pathways. Indeed, the IV route can induce higher peaks and concentration 

oscillations that may result in a faster response to the drug but also potential adverse 

effects. The processes of (i) absorption through the intestinal walls and skin layers 

and (i) metabolism within the liver and skin, introduce remarkable inter- and intra-

individual variability (e.g., related to the digestion state, pH, and temperature in the 

gastrointestinal environment, skin characteristics, genetics, and interactions with 

concomitant medications). 

Table 31 – Some features of the three main routes of administration for melatonin. 

ORAL TRANSDERMAL INTRAVENOUS 

Easy, patient-compliant, 

not always feasible 

Easy, patient-compliant Distressing for many 

patients and expensive 

Slow absorption, “first-

pass” hepatic effect 

Very slow absorption, no “first-

pass” hepatic effect 

Directly administered to the 

systemic circulation 

High inter-individual 

variability (pH, body 

temperature, genetics) 

High-inter-individual variability 

(skin characteristics, peripheral 

perfusion, body temperature, 

genetics, location of the drug 

delivery system) 

Reduced inter-individual 

variability compared to 

other routes 

These qualitative knowledge can be supported by quantitative PK simulations to 

assess the optimal route of administration and dosing for a better design and outcome 

of the clinical experiment. In fact, Andersen et al. (2014), who discuss the 

perioperative use of melatonin, highlight that the correct time of administration in 

relation to the desired effect is still under investigation, as well as the effective dosage. 

Indeed, they report “The correct dosage of melatonin in humans seems largely 

unknown and should be investigated further, documenting dose–response curves for 

the individual indications “. PBPK simulations can thus offer support in this sense, as 

they can be used as tool for investigation of optimal dosing and time of administration 

to obtain the desired PK profile. The following chapters are thus devoted to the 

development of a PBPK model to simulate resulting pharmacokinetics of melatonin 

from the three mentioned routes, and to show a methodology for assessment of 

optimal dosing and timing of administration for critically ill subjects. 
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CHAPTER 7 

 
 
 
 

 

Physiologically-based pharmacokinetic 

modeling for transdermal delivery 
 
 
 
 
 
 

7.1 Author’s Note 

 

TD administration of drugs has the advantages of meeting patients’ compliance and 

producing sustained drug levels within the blood. This chapter focuses on the 

adaptation of a reference PBPK model to include TD administration route. Indeed, the 

typical homogenous compartmental description of PBPK modeling is combined with 

a more detailed description of the drug evolution along the skin depth coordinate to 

account for the drug absorption through skin. The model can be suitably adapted to 

any drug that is appropriate for TD administration (e.g., depending on solubility and 

molecular weight). The specific case of melatonin is used here for identification and 

validation of the model. 

 

This work was published in “Computers and Chemical Engineering” journal: 

 

A physiologically-based diffusion-compartment model for 

transdermal administration – The melatonin case study 

Adriana Savoca, Giovanni Mistraletti, Davide Manca 
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Computers and Chemical Engineering 113, 115–124, (2018) 
DOI: 10.1016/j.compchemeng.2018.03.008 

 

7.2 Abstract 

 

There is a significant hype in the medical sector for the transdermal administration of 

drugs as it allows achieving a combination of multiple advantages: non‐invasive 

procedure, pain avoidance, no first‐pass hepatic metabolism, and induction of 

sustained plasma levels. This paper proposes a model for the study and prediction of 

drug transport through skin and the following distribution to human body. This is 

achieved by an innovative combination of the physiologically‐based compartmental 

approach with Fick’s laws of diffusion. The skin model features three strata: stratum 

corneum, viable epidermis, and dermis, which have a major impact on the absorption, 

distribution, and metabolism of transdermal drugs. The combined model accounts for 

skin transport via diffusion equations, and absorption and distribution in the rest of the 

body (i.e. organs/tissues) via material balances on homogeneous compartments. 

Experimental data of transdermal melatonin allow validation. Main applications are 

optimization of the dosage and study of skin transport. 

7.3 Introduction 

 

Recent years have seen a rising interest in transdermal (TD) delivery as an efficient 

route for drug administration. Figure 42 shows the number of transdermal drugs 

approved by Food and Drug Administration (FDA, USA) since 1996 (FDA Orange 

Book, 2017). 

 

Figure 42 – Cumulative amount of transdermal drugs approved by Food and Drug Administration (FDA) 
since 1996 (FDA Orange Book, 2017). 

This interest arises from some advantages that transdermal delivery exhibits if 
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compared to other routes of administration (e.g., enteral and parenteral). From a 

practical point of view, the most evident appeal of percutaneous (i.e. TD) delivery 

consists of combining a positive patient compliance with ease of administration. In 

fact, TD delivery does not necessarily require specialized medical staff and is 

noninvasive. 

From the pharmacokinetic point of view, the main advantage is that the drug is directly 

administered to the systemic circulation. This means avoiding the first‐pass hepatic 

metabolism, which is the main cause for the characteristic low bioavailability resulting 

from oral route, although some minor metabolism or binding to cellular components 

may occur in the skin (Prausnitz and Langer, 2008). 

Therefore, skin permeation is an attractive alternative whenever factors such as 

gastrointestinal pH, drug interaction with food, and liver diseases prevent oral 

administration (Mali, 2015). Furthermore, TD delivery ensures no risks of sudden 

fluctuations or peaks of the drug concentration in plasma, which translates into 

sustained levels and reduced side effects. 

On the other hand, TD application comes with high inter‐patient variability related to 

age, gender, physical characteristics, genetic factors, and living habits (Sandby-Moller 

et al., 2003), and is not suitable for all drugs. In fact, some physicochemical 

characteristics such as molecular weight and solubility may have a significant impact 

on the pharmacokinetics, and therefore must be taken into account when selecting 

the route of administration. In addition, slow absorption is another undesired 

pharmacokinetic trait that is intrinsic to TD administration. 

In order to simulate the transdermal administration route of drugs and their distribution, 

metabolism, and excretion (i.e. ADME processes) within the human body, we 

developed a physiologically‐based diffusion-compartment pharmacokinetic 

(PBDCPK) model. This dynamic model can be useful for the assessment of the 

optimal dosage, and in general for the development of drugs/substances for TD 

delivery, evaluation of toxicity/positive effects, and analysis of skin transport 

mechanisms. 

Some authors describe skin transport by assuming stationary conditions, as their only 

goal is to either analyze or explain specific experimental data (Anissimov et al., 2013). 

Higaki et al. (2002), and Singh and Roberts (1994) developed compartment models 

that allow describing drugs pharmacokinetics in the skin layers, in the systemic 

circulation, and in some tissues of the body, e.g., muscles, adipose tissue. However, 



Ph. D. Thesis of Adriana Savoca 

166 
 

they only focused on some specific tissues and did not consider the parameters 

governing skin transport as depending on skin depth. In fact, skin was described as a 

bi‐layer homogenous concentration compartment. 

Furthermore, they did not consider the possibility of any occurring metabolism or 

binding. 

The idea of describing skin transport as a function of both time and space is not new. 

In fact, Marquez-Lago et al. (2010) proposed a noteworthy 3D porous media model of 

the stratum corneum (i.e. the most superficial layer of the skin epidermis) but did not 

investigate the distribution in the whole human body. Kretsos et al. (2004) employed 

diffusion equations focused exclusively on skin penetration. This manuscript attempts 

to combine two aspects investigated in the literature: (i) the physiologically oriented 

approach towards skin transport and (ii) the attention to ADME processes within the 

rest of the body. The proposed model is applied to the simulation and prediction of TD 

melatonin pharmacokinetics. Melatonin is a biogenic amine that is commonly found in 

animals, plants, and microbes. In mammals, melatonin is the main substance 

produced by the pineal gland (Brzezinski, 1997). In humans the endogenous 

production follows the day‐night cycle (aka “circadian rhythm”), with a baseline level 

of about 10 pg/mL during the day. Melatonin concentration starts increasing with the 

onset of darkness and peaks (60-100 pg/mL) at 2‐4 AM. Afterwards, the concentration 

gradually decreases and stabilizes on the daily baseline value. Several researchers 

are nowadays interested in melatonin numerous benefits on the human body. In 

humans, melatonin is regularly employed as a treatment for sleep disturbances (e.g., 

jet lag, nightshift workers, people suffering from insomnia) (Brzezinski, 1997). 

Melatonin proved to benefit patients suffering from mood disorders (e.g., depression, 

seasonal affective disorder), and neurological pathologies (e.g., Alzheimer’s disease) 

(Hickie and Rogers, 2011; Srinivasan et al., 2006). There is some evidence of anti-

proliferative effects in cancer and anti‐aging effects through anti‐oxidant and free‐

radical scavenging mechanisms (Karbownik et al., 2001; Kleszczynski and Fischer, 

2012; Mehta and Kaur, 2014; Srinivasan et al., 2008). A disruption of the circadian 

rhythm of melatonin can be observed in intensive care unit (ICU) patients (Mistraletti 

et al., 2010). ICU stay is thought to have a series of negative effects on patients’ sleep 

and, in general, on their health status. As ICU patients’ conditions can be improved 

by the melatonin anti-oxidant, immune-regulatory, and sleep regulatory properties, it 

is possible to administer exogenous melatonin in order to restore the endogenous 

production rhythm. Indeed, it is desirable that the pharmacokinetics of exogenous 
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melatonin mimics the sustained endogenous profile. Therefore, for this specific case, 

the previously reported advantages of the transdermal administration are convenient, 

and the slow absorption becomes actually a useful characteristic, despite being a 

drawback for most drugs. 

Furthermore, melatonin physicochemical characteristics (i.e. low molecular weight 

and lipophilicity) increase the probability of crossing the skin barrier. 

7.4 Methods 

 

7.4.1 Skin histology and transdermal devices 

An in-depth understanding of human anatomy and physiology allows driving the 

engineers’ modeling activity of the transdermal administration route and correlated 

PBDCPK. Skin is the means for transdermal release of drugs and deserves a 

comprehensive insight to recognize the main mass transfer phenomena that rule their 

percutaneous delivery to the systemic blood flow. Human skin is the largest organ of 

the body and consists of three main layers: epidermis, dermis, and hypodermis (i.e. 

subcutaneous tissue). Epidermis is the thinnest and most superficial layer, and the 

most important for its protective function. Dermis (thickness 1.5-4 mm, Anissimov et 

al. (2013)) is thicker and consists of connective tissue. It contains nerves, sweat 

glands, hair follicles, and blood and lymphatic vessels. Hypodermis mainly consists of 

adipose tissue and sweat glands. Its main function is to support epidermis and dermis. 

From the modeling point of view and according to the skin physiology, it is more 

consistent to separately consider two sublayers of the epidermis: stratum corneum 

(SC) (average thickness of fore-arms, face, abdomen 10-30 µm, Anissimov et al. 

(2013)) and viable epidermis (VE) (average thickness of fore-arms, face, and 

abdomen 50-100 µm, Anissimov et al. (2013)). In fact, SC is the outermost stratum 

and consists of a keratinized tissue, which comprises low hydrated and highly dense 

cell layers. For this reason, it is the most difficult to penetrate. VE is a more aqueous 

phase, and can be site of metabolism, binding, and active transport. In some models, 

it is merged with dermis, which is an aqueous medium as well (Jepps et al., 2013). 

Differently from topical delivery, the goal of transdermal (or percutaneous) delivery is 

to pass the skin barrier and enter systemic circulation. In this case, drugs are directly 

applied on the skin in gel or transdermal devices (TDDs), i.e. patches. Hence, the 

amount of drug and the surface of the skin area on which the drug is applied are key 
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parameters. Patches contain therapeutic amounts of drugs, and mainly consist of a 

backing for protection from the external environment and a polymeric matrix that 

controls the drug release. Patches often contain some penetration enhancement 

agents (e.g., alcohols) to improve skin penetration of the drug, and other excipients 

(e.g., adhesive). Depending on the patch, they are usually applied from one to seven 

days (Mali, 2015). 

7.4.2 Skin transport equations 

Our model accounts for three main layers to describe the drug concentration evolution 

in the skin: SC, VE, and dermis (DE). Hypodermis is neglected as the drug enters the 

systemic blood flow as soon as it reaches the dermis. Diffusion is the main 

phenomenon involved in drug transport across skin. For this reason, we consider the 

drug concentration as a function of both time and skin depth 𝑥 (Eqs. (7.1-4)). 

𝜕𝐶𝑆𝐶

𝜕𝑡
= 𝔇𝑆𝐶  

𝜕2𝐶𝑆𝐶

𝜕𝑥2
                                                                                            0 ≤ 𝑥 < ℎ𝑆𝐶 (7.1) 

𝜕𝐶𝑉𝐸′

𝜕𝑡
= (𝔇𝑉𝐸  

𝜕2𝐶𝑉𝐸′

𝜕𝑥2
) −

𝑘𝐸𝐿 𝐶𝑉𝐸′ 

𝑘𝑀+𝐶𝑉𝐸 ′
     𝐶𝑉𝐸

′ = 𝐶𝑉𝐸(1 − 𝑓𝑏)                ℎ𝑆𝐶  ≤ 𝑥 < ℎ𝑉𝐸 (7.2) 

𝜕𝐶𝐷𝐸

𝜕𝑡
= 𝔇𝐷𝐸  

𝜕2𝐶𝐷𝐸

𝜕𝑥2
                                                                                    ℎ𝑉𝐸  ≤ 𝑥 ≤ ℎ𝐷𝐸 (7.3) 

𝜕𝑄

𝜕𝑡
= −  (𝔇𝐷𝐸  

𝜕𝐶𝐷𝐸

𝜕𝑥
)
𝑥=𝐻

                                                           𝐻 =  ℎ𝑆𝐶 + ℎ𝑉𝐸 + ℎ𝐷𝐸 (7.4) 

Where 𝔇 [ 
𝑐𝑚2

 𝑚𝑖𝑛
 ] is the drug diffusivity, 𝐶 [ 

𝑛𝑔

𝑚𝐿
 ] the drug concentration, and 𝑥 [𝑐𝑚] the 

axial coordinate across skin ℎ𝑆𝐶, ℎ𝑉𝐸 , ℎ𝐷𝐸 represent the thicknesses of the three skin 

layers respectively, and 𝑘𝐸𝐿 and 𝑘𝑀 are metabolism constants. 𝑄 [ 
𝑛𝑔

𝑐𝑚2 ] refers to the 

specific amount permeated across skin. 𝑓𝑏 [−] quantifies the drug sequestration by 

viable epidermis cellular components. 

The basic assumptions of the model are that (i) drug diffusion coefficients only depend 

on the skin depth coordinate (𝑥), (ii) diffusion in SC is slower than diffusion in VE and 

DE, and (iii) diffusion velocities in VE and DE are of the same order of magnitude 

(Scheuplein, 1967). We accounted for metabolism in VE by introducing the Michaelis-

Menten equation, that can be simplified to a first order kinetics in case 𝑘𝐸𝐿 ≫ 𝑘𝑀. 

The following boundary conditions complete the previous set of equations: 

𝐶𝐷𝑂𝑁𝑂𝑅 = 𝐶𝑆𝐶                           𝑡 ≤ 𝑡𝑟𝑒𝑙                                              𝑥 = 0       (7.5) 

𝜕𝐶𝑆𝐶

𝜕𝑥
 = 0                                                                                               𝑥 = 0         (7.6) 
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𝐶𝑆𝐶 = 𝑘𝑝𝑎𝑟𝑡1𝐶𝑉𝐸            𝔇𝑆𝐶  
𝜕𝐶𝑆𝐶

𝜕𝑥
|
ℎ𝑆𝐶

−
= 𝔇𝑉𝐸  

𝜕𝐶𝑉𝐸

𝜕𝑥
|
ℎ𝑆𝐶

+
        𝑥 = ℎ𝑆𝐶              (7.7) 

𝐶𝑉𝐸 = 𝑘𝑝𝑎𝑟𝑡2𝐶𝐷𝐸          𝔇𝑉𝐸  
𝜕𝐶𝑉𝐸

𝜕𝑥
|
ℎ𝑉𝐸

−
= 𝔇𝐷𝐸  

𝜕𝐶𝐷𝐸

𝜕𝑥
|
ℎ𝑉𝐸

+
       𝑥 = ℎ𝑉𝐸             (7.8) 

𝐶𝐷𝐸 = 0                                                                                    𝑥 = ℎ𝑆𝐶 + ℎ𝑉𝐸 + ℎ𝐷𝐸   (7.9) 

Where 𝐶𝐷𝑂𝑁𝑂𝑅 [ 
𝑛𝑔

𝑚𝐿
 ] is the TDD concentration (depending on the drug amount and the 

skin surface area covered) and 𝑡𝑟𝑒𝑙  [ℎ] is the duration of the drug release from the 

patch. 𝑘𝑝𝑎𝑟𝑡1 and 𝑘𝑝𝑎𝑟𝑡2 [−] account for the phase change between layers and 

respectively represent the partition coefficients between SC and VE, and between VE 

and DE. 𝑘𝑝𝑎𝑟𝑡2 is assumed 1, since there should be no discontinuity between VE and 

DE (Scheuplein, 1967). At t = 0 (i.e. initial conditions) the drug concentration is null in 

the three skin layers. 

Eq. (7.9) is the so-called “sink condition” and accounts for the drug clearance in the 

innermost stratum DE for uptake of the systemic circulation. The diffusion process is 

in fact supported by convective transport once the drug reaches DE, which contains 

blood and lymphatic vessels. Eq. (7.4) allows calculating the specific flux of drug 

permeated across skin. This flux consists of the input term 𝑅𝑇𝐷 in the plasma 

concentration equation:  

𝑅𝑇𝐷 = 𝑆𝑝𝑎𝑡𝑐ℎ  
𝜕𝑄

𝜕𝑡
                       (7.10) 

𝑅𝑇𝐷 [ 
𝑛𝑔

𝑚𝑖𝑛
 ] is the drug input rate entering the systemic circulation, and 𝑆𝑝𝑎𝑡𝑐ℎ [𝑐𝑚

2] the 

surface area of the TDD.  

7.4.3 Numerical methods 

The remaining organs and tissues of the human body, including the cardiovascular 

system (i.e. plasma compartment), are described with a physiologically‐based 

pharmacokinetic (PBPK) approach: they are assimilated to perfectly stirred vessels in 

which the drug concentration can be considered homogenous. Thus, the 

mathematical model consists of material balances on these compartments (i.e. 

ordinary differential equations (ODEs)), and their numerical integration allows 

determining the drug pharmacokinetic evolution in the body and assessing the effect 

of ADME processes. The structure of the PBPK model is the same as the one 

proposed in Abbiati et al. (2016). However, some modifications and enhancements 

were added to adapt the model to different drugs and delivery routes. Indeed, Section 

7.5 provides details on the compartments added for the sake of the case‐study on 
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melatonin. As skin pharmacokinetics depends on both time and axial coordinate, the 

partial derivative equations (PDEs) (Eqs. (7.1‐4)) are discretized respect to the spatial 

coordinate by means of the finite differences method. The method chosen for the 

discretization is the central difference scheme for second‐order derivatives and 

forward difference for first‐order derivatives. The optimal number of discretization 

layers is 23 for each skin stratum, which results from a compromise between 

computational time and numerical consistency as well as precision of the solution (i.e. 

asymptotic spatial profile of the drug concentration as a function of time). This means 

that the final number of equations and variables (i.e. the concentration profile in the 

different strata) related to skin is 69. The complete model includes the ODEs of the 

PBPK model, whose number depends on the physical and chemical characteristics of 

the drug (e.g., 18 for melatonin, as commented in Abbiati et al. (2016)). The number 

of parameters does not change as a consequence of the discretization, because we 

assume that the diffusivity is constant for each discretization layer of the same skin 

stratum (Eq. (7.11)). Similarly, the elimination constants 𝑘𝐸𝐿(𝑗) and 𝑘𝑀(𝑗) are not 

subject to variations throughout the discretization layers of the VE (Eqs. (7.12-13)). 

𝔇𝑖(𝑗) = 𝔇𝑖(𝑗 + 1)        𝑖 = 𝑆𝐶, 𝑉𝐸, 𝐷𝐸        𝑗 = 1,  , …𝑁𝑙𝑎𝑦𝑒𝑟𝑠,𝑖 (7.11) 

𝑘𝐸𝐿(𝑗) = 𝑘𝐸𝐿(𝑗 + 1) (7.12) 

𝑘𝑀(𝑗) = 𝑘𝑀(𝑗 + 1) (7.13) 

As coordinate 𝑥 in Eqs. (7.1-9) goes from 0 to the total skin thickness, 𝐻, the spatial 

discretization step is: 

∆𝑥𝑖 =
ℎ𝑖

𝑁𝑙𝑎𝑦𝑒𝑟𝑠,𝑖
                𝑖 = 𝑆𝐶, 𝑉𝐸, 𝐷𝐸 (7.14) 

The finite differences method allows converting the mathematical skin model into a 

system of ODEs that can be combined with the ODEs of the PBPK model. As 

extensively discussed in Abbiati et al. (2016), Abbiati and Manca (2016), and Abbiati 

and Manca (2017), the parameters of the combined PBDCPK model are grouped into 

three categories: (i) individualized, (ii) assigned, and (iii) regressed. Individualized 

parameters can be calculated depending on some specific physical features of the 

patient, according to empirical correlations that can be found in the literature (e.g., the 

volumes of organs/compartments and flowrates between them). We considered as 

specific features the sex, body weight, and height. Assigned parameters are some 

drug physicochemical properties whose value can be determined from available 

scientific and literature data (e.g., protein binding). Some parameters can be neither 

found in the literature nor calculated by empirical correlations (e.g., diffusivity, transfer 
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coefficients, metabolic constants), thus they are computed via a non‐linear regression 

procedure respect to experimental data. In particular, the objective function of the non‐

linear regression procedure is the squared difference between the experimental 

(Benes et al., 1997 for the proposed case‐study) and predicted values of the 

concentrations. For the sake of correctness, we acknowledge that the value of some 

transfer coefficients might be determined from in vitro studies. However, in vitro 

experiments do not take into account the interactions among organs and tissues in 

the full living organism, which dramatically affect the resulting values. 

7.4.4 Sensitivity analysis 

We performed a local sensitivity analysis to assess the influence of the model adaptive 

parameters on the concentration of the most representative compartments. We 

calculated the normalized sensitivity matrix 𝑺 whose elements consist of the 

normalized derivatives of the concentrations 𝐶(𝑡) respect to the regressed parameters 

𝑝 of the model:  

𝑺 =
𝒑

𝑪(𝑡)

𝜕𝑪(𝑡)

𝜕𝒑
 (7.15) 

Since the model is dynamic we carried out the sensitivity analysis at the most critical 

time points from the pharmacokinetic point of view, i.e. (i) immediately after drug 

administration, (ii) at 𝑡 =  𝑡𝑚𝑎𝑥 (time corresponding to the experimental maximum 

concentration, 𝐶𝑚𝑎𝑥), and (iii) immediately after the end of the patch release time. 

Section 7.5 (see also Figure 48) discusses the most significant results at 𝑡 =  𝑡𝑚𝑎𝑥. 

The derivatives in Eq. (7.15) are approximated by means of the finite differences 

method. The perturbation on the parameters is:  

∆𝒑 = |𝒑| ∙ 휀𝑟 + 휀𝑎 (7.16) 

Where 휀𝑟, the relative tolerance, is optimally set to the square root of the macheps 

constant, and 휀𝑎, the absolute tolerance, is suitably chosen as the macheps constant.  

7.5 Case study: melatonin 

 

Several melatonin applications (e.g., ICU patients, jetlag, and insomnia) call for 

reaching sustained and physiological plasma levels of such a substance. These goals 

can be achieved by transdermal delivery. In fact, orally administered melatonin is 

characterized by short half-life of elimination (40-60 min, (DeMuro et al., 2000; 

Gooneratne et al., 2012)) and low bioavailability because of the first‐pass hepatic 
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metabolism. Furthermore, because of its lipophilic characteristics, melatonin can 

cross the SC hydrophobic barrier. Its low molecular weight (232.278 g/mol) 

contributes to ensuring fast diffusion. The skin transport equations reported above can 

therefore be adapted to melatonin. We accounted for melatonin metabolism in VE with 

a first‐order elimination constant. In fact, although skin metabolism certainly occurs 

via an enzymatic mechanism, we chose not to use the Michaelis‐Menten equation. 

Indeed, the Michaelis‐Menten parameters are related to specific enzymes involved in 

the metabolic process, but the tissue contribution to melatonin metabolism is still not 

fully assessed and clarified. Therefore, we decided upon avoiding the introduction of 

an additional adaptive parameter that should be identified via the non‐linear 

regression procedure. Furthermore, the assumption of first‐order kinetics is not 

unrealistic, as in many applications 𝑘𝐸𝐿 ≫ 𝑘𝑀   Likewise, the scientific literature 

(Slominski et al., 2012) reports the presence of melatonin receptors in skin, which are 

involved in some skin‐related physiological (e.g., regulation of skin pigmentation, hair 

growth) and pathophysiological processes (e.g., melanoma growth). 

However, there are no literature findings that quantify the melatonin binding in the 

skin. For this reason, we neglected the binding fraction 𝑓𝑏. If further details become 

available in the literature, the model will be re‐adapted accordingly. As we explain in 

Paragraph 7.4.3, ADME processes in the body are described via ODEs according to 

Abbiati et al. (2016). In particular, the PBPK model features 8 compartments: Plasma, 

Gastric Lumen (GL), Small Intestinal Lumen (SIL), Large Intestinal Lumen (LIL), Liver, 

Gastro‐Intestinal Circulatory System (GICS), Poorly perfused Tissues (PT), and 

Highly perfused Organs (HO). We added two more compartments to adapt to 

melatonin pharmacokinetic properties, i.e. the salivary glands and the pineal gland 

(Eq. (7.17) and Eq. (7.18), respectively). It is known that a non‐negligible amount of 

melatonin diffuses from plasma to saliva. Indeed, several experimental studies assess 

the melatonin amount in the human body by measuring both plasma and saliva 

concentrations or, in some cases, only saliva (Benloucif et al., 2008; Laakso et al., 

1993; Voultsios et al., 1997). The pineal gland is added because it is the source of 

endogenous melatonin in mammals (Brzezinski, 1997). Eq. (7.19) describes the 

dynamic evolution of melatonin’s main metabolite 6‐sulfatoxymelatonin (aMT6s) 

concentration in plasma. 

𝑑𝐶𝑃𝐺

𝑑𝑡
=

1

𝑉𝑃𝐺
 (𝑄𝑖𝑛𝑃𝐺𝐶𝑃 − 𝑄𝑜𝑢𝑡𝑃𝐺𝐶𝑃𝐺 + 𝑟𝑝𝑟𝑜𝑑(𝑇))                                         (7.17) 
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𝑑𝐶𝑆𝐴

𝑑𝑡
=

1

𝑉𝑆𝐴
𝑄𝑠𝑎𝑙𝐶𝑃 − 𝑘𝑠𝑎𝑙𝐶𝑆𝐴                                        (7.18) 

𝑑𝐶𝑎𝑀𝑇6𝑠

𝑑𝑡
=

1

𝑉𝑃
(0 9 ∙ 𝐶𝐿𝐻𝐶𝐿 − 𝐶𝐿𝐾𝐶𝑎𝑀𝑇6𝑠)                                        (7.19) 

Where 𝑉𝑃𝐺, 𝑉𝑆𝐴, and 𝑉𝑃 [𝑚𝐿] are the volumes of the pineal gland, salivary glands, and 

plasma compartments, respectively, 𝑄𝑖𝑛𝑃𝐺, 𝑄𝑜𝑢𝑡𝑃𝐺, 𝑄𝑠𝑎𝑙  [  
𝑚𝐿

𝑚𝑖𝑛
 ] are the blood 

flowrates entering/exiting the corresponding compartments, 𝑘𝑠𝑎𝑙  [𝑚𝑖𝑛
−1] is the saliva-

plasma transfer coefficient. 𝐶𝐿𝐻 and 𝐶𝐿𝐾 [ 
𝑚𝐿

𝑚𝑖𝑛
 ] are the hepatic and renal clearances, 

where 90% is the average percentage of melatonin that the liver converts into aMT6s 

(Karasek and Winczyk, 2006), which is eventually eliminated by kidneys. For the sake 

of simplicity, and for the lack of quantitative information in the literature, we consider 

only the hepatic metabolism, although we are aware that some aMT6s is produced in 

skin and other tissues (Pandi-Perumal et al., 2006). 𝑟𝑝𝑟𝑜𝑑(𝑇) is the production rate of 

endogenous melatonin in the pineal gland, which is entrained with the day-night cycle 

(𝑇 =    ℎ). This term consists of a Fourier series truncated to the second term to 

account for the periodicity of secretion. The Fourier coefficients are determined via a 

separate nonlinear regression respect to suitable experimental data of the 

endogenous melatonin concentration (Voultsios et al., 1997). It is possible to employ 

this strategy for any endogenous substance that follows the circadian rhythm, e.g., 

corticosteroids. 

We employed experimental data of plasma melatonin and aMT6s concentration from 

Benes et al. (1997) to identify the parameters of the diffusion-compartment model. 

They used a  0 𝑐𝑚2 patch loaded with 8 𝑚  of melatonin and administered to 12 

healthy volunteers. Averaged demographic and experimental data of the group of 

patients are available in that article. 

7.6 Results and discussion 

 

Preliminary to the regression with experimental data, we investigated the influence of 

some key parameters on the amount of permeated drug across skin and the plasma 

concentration profile. In particular, we focused our attention on the variation of the SC 

diffusivity 𝔇𝑆𝐶 and the SC/VE partition coefficient 𝑘𝑝𝑎𝑟𝑡1. Figure 43 shows the results 

of this analysis in terms of specific drug amount (A), melatonin and aMT6s plasma 

concentration (B, C), and SC layers concentration (D, E, and F) trends. 

In Figure 43 (top panel) SC diffusivity 𝔇𝑆𝐶 varies from10−6 to 10−3 [ 
𝑐𝑚2

 𝑚𝑖𝑛
 ] while the 
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partition coefficient 𝑘𝑝𝑎𝑟𝑡1 is kept constant at 2 [-]. As expected, if the diffusivity value 

is too low, no drug can permeate and reach the systemic circulation. In particular, the 

lowest value of the SC diffusivity 𝔇𝑆𝐶 (blue curve) results in such a slow absorption in 

skin that the resulting plasma concentration (Figure 43 B and C, top panels) and 

permeated drug amount (Figure 43 A, top panels) are practically null. For higher 

values, the skin absorption (Figure 43 D, E, and F, top panels) increases significantly 

and this leads to higher plasma concentration and permeated drug amount.  

Afterwards, we studied the influence of the SC/VE partition coefficient 𝑘𝑝𝑎𝑟𝑡1 (values 

from 1.5 to 3 [-]) at 𝔇𝑆𝐶 = 10−5[ 
𝑐𝑚2

𝑚𝑖𝑛
 ] (see Figure 43 bottom panels). The increase of 

the SC/VE partition coefficient lowers VE (and DE) concentrations and, consequently 

lowers the plasma levels (Figure 43 B and C, bottom panels), while having smaller 

influence on the SC concentration. 
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Figure 43 – Trends of (A) amount of drug permeated, and (B, C) resulting plasma concentration for 
increasing values of 𝔇𝑆𝐶 (top panels) and 𝑘𝑝𝑎𝑟𝑡1 (bottom panels).Graphs D, E, F show the trends of the 

concentration in specific SC layers for different values of 𝔇𝑆𝐶 (top panels) and  𝑘𝑝𝑎𝑟𝑡1 (bottom panels). 

𝔇𝑆𝐶 varies in the 10−6 to 10−3[ 𝑐𝑚
2

𝑚𝑖𝑛⁄  ] interval, while 𝑘𝑝𝑎𝑟𝑡1 varies in the 1.5 to 3 [-] interval. 

As far as the parameters identification is concerned, the nonlinear regression 

procedure achieves acceptable results (see Figure 44), as the simulated melatonin 

plasma curve is near to the central values of the experimental measures (left panel). 

On the other hand, the model simulation underestimates the experimental metabolite 

aMT6s plasma concentration (right panel) before the experimental concentration 

peak. This result can be attributed to some simplifying assumptions that we made 

about the melatonin metabolism. In fact, we considered aMT6s as the only metabolite, 

and we did not consider the intermediate reactions and products in the metabolic 

nd C, bottom panels), while having smaller influence on the 𝑆𝐶 concentration. 1 

 2 

  

 

  

 

𝔇𝑆𝐶 𝔇𝑆𝐶𝔇𝑆𝐶

A B C

𝔇𝑆𝐶 = 10−5 𝔇𝑆𝐶 = 10−3𝔇𝑆𝐶 =     10−4

D E F

𝑘𝑝𝑎𝑟𝑡1
𝑘𝑝𝑎𝑟𝑡1

𝑘𝑝𝑎𝑟𝑡1

A B C

𝑘𝑝𝑎𝑟𝑡1= 1  𝑘𝑝𝑎𝑟𝑡1=  
D FE

𝑘𝑝𝑎𝑟𝑡1= 2.25
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scheme of melatonin. The metabolite equation, Eq. (7.19), accounts for the 

metabolism in the liver, although we are aware that metabolism occurs also in skin 

and other tissues. As it is not clear which tissues play a role in melatonin metabolism, 

and to what extent, we chose to make a compromise between real physiology and 

model complexity, and consider only the liver. 

The experimental trend of Figure 44 shows that the velocity of the distribution-

elimination phase (after the experimental concentration peak Cmax the 13th hour) is 

slower compared to the velocity of the uptake in the systemic circulation (preceding 

the experimental concentration peak Cmax at the 13th hour). This occurs also because 

of the onset of melatonin endogenous secretion from the pineal gland (note the “Real 

time of day”, on the top 𝑥 axis and the black vertical dashed line), which our model 

can take into account. The wide error bars in the experimental data confirm high inter-

individual variability. 

 

Figure 44 – Results of the regression procedure for identification of PBDCPK model parameters. 
Experimental data (Benes et al., 1997) show the evolution of melatonin concentration (left panel, red 
circles) and aMT6s concentration (right panel, black diamonds) in plasma. The continuous smooth curves 
represent the corresponding simulated results. The model curve is quite near to the central values of the 
error bands for most of the experimental sampled values of melatonin plasma concentration. The 
experimental aMT6s concentration is underestimated, consistently with the simplifying mechanistic 
assumptions on the metabolism. The black vertical dashed line shows the time of onset of endogenous 
melatonin production. 

Figure 45 shows the single and total contributions of plasma melatonin as predicted 

by the proposed model: blue dash-dotted line shows the exogenous melatonin 

contribution while dashed red line shows the endogenous contribution. The black 

continuous curve comes from the combination of the two. Three black dotted vertical 

lines show (i) the end of application time of the TDD, (ii) the onset of melatonin 
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endogenous secretion by pineal gland, and (iii) the endogenous predicted peak (at 4 

AM). It is interesting to notice that after the end of the time of application of the patch 

the exogenous curve keeps increasing for a while (i.e. about 3 h) as skin behaves as 

a reservoir. The fact that we are considering the pineal gland as the only organ 

capable of secreting melatonin can contribute explaining the underestimation of the 

experimental data observable after the 20th hour (Figure 44, left panel). In fact, 

although it is acknowledged in the literature that other tissues have a smaller 

contribution to melatonin secretion (Conti et al., 2000; Huether, 1993; Kleszczynski 

and Fischer, 2012), their extent is not yet quantified. It is worth observing that the 

values of the regressed parameters are consistent with the preliminary hypotheses 

and with both the skin anatomy and physiology, as the SC diffusivity is indeed lower 

than VE and DE diffusivities, which instead assume the same order of magnitude (see 

also Table 32). 

 

Figure 45 – Trends of the single and total contributions of plasma melatonin pharmacokinetics. Dashed 
red line curve shows the endogenous melatonin pharmacokinetic profile, with onset indicated by a dash-
dotted black line. Dash-dotted blue line shows the pharmacokinetic profile of TD exogenous melatonin. 
Black vertical lines indicate respectively (i) the end of application of the TDD, (ii) the onset of endogenous 
production, and (iii) the peak of endogenous melatonin. 

Figure 46 shows the simulation of the pharmacokinetic profile resulting from 

administration of melatonin 5 mg by a 10 𝑐𝑚2 patch, which is removed after 8 h. The 

simulated patient does not exhibit endogenous melatonin production. The resulting 

model plasma concentration (Figure 46 right panel, blue continuous curve) is 

comparable to the endogenous profile of melatonin in healthy human beings 
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(experimental data in black circles from Voultsios et al. (1997)). The model can in fact 

be employed to study and simulate the resulting pharmacokinetic profile of 

transdermal melatonin for administration to patients who manifest endogenous 

production disruption, i.e. ICU patients, people suffering from insomnia or jet-lag, and 

night-shift workers. This result can be achieved by dose optimization. 

On the left panel, we show the evolution of melatonin concentration along the skin 

depth (𝑥 axis) and in time (𝑦 axis). The pharmacokinetic profile exhibits melatonin 

accumulation within SC, and very low levels in DE. The reservoir function of SC 

produces a small increase towards the end of administration, even after the end of 

release from the transdermal device. Unfortunately, it is not possible to validate the 

results of the permeated drug amount and the concentration in the skin layers (see 

Figure 46, left panel), as it is not feasible to obtain this piece of information during in 

vivo experiments in humans. However, the order of magnitude of the permeated drug 

amount is consistent with the experimental results of Dubey et al. (2007) on melatonin 

permeation across human cadaver skin (ex vivo). Consistent with expectations, we 

observed that SC is the main resistance to skin transport, while the concentration 

levels in DE are very low compared to those of the other two strata, because of the 

continuous clearance of the blood supply. Lower concentration in VE respect to 

adjacent SC is explained by the presence of metabolism. 

Table 32 – Values of the skin equations parameters identified by the regression procedure. They denote 
consistency with the basic model hypotheses and the anatomy/physiology of the human patients. Last 
two columns list the 90% bootstrap confidence intervals (CI) of the skin equations parameters. 

Parameters Description Regressed values 90% 𝑪𝑰𝒍𝒃 90% 𝑪𝑰𝒖𝒃 

𝔇𝑆𝐶[𝑐𝑚
2 𝑚𝑖𝑛⁄ ] SC Diffusivity 3.352e-5 1.269e-5 5.431e-5 

𝔇𝑉𝐸[𝑐𝑚
2 𝑚𝑖𝑛⁄ ] VE Diffusivity 5.943e-3 2.122e-3 9.763e-3 

𝔇𝐷𝐸[𝑐𝑚
2 𝑚𝑖𝑛⁄ ] DE Diffusivity 2.776e-3 1.395e-3 6.946e-3 

𝑘𝑝𝑎𝑟𝑡1[−] SC/VE Partition 

coefficient 

1.763 1.209 2.317 
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Figure 46 – (Left panel) Skin concentration profiles. x-axis represents skin depth [cm], while y-axis 
represents time [h]. z-axis shows the ratio between the drug concentration in skin strata and the donor 
concentration, i.e. TDD concentration. As expected, SC exhibits drug accumulation, while DE 
concentration is very low. We can observe the effect of SC that plays the role of reservoir towards the 
end of the simulation. (Right panel) Simulated profile of plasma concentration (blue continuous curve) 
after TD administration in a patient with no endogenous production, compared with experimental data 
(black circles) of endogenous levels in healthy human beings (Voultsios et al., 1997). It is evident that 
TD administration is a valid option to reproduce melatonin endogenous profile. 

Figure 47 shows a distinct experimental case-study for validation purposes. 

Aeschbach et al. (2009) administered melatonin 2.1 mg/1.2 cm2 as patch. The purpose 

of the study was to show that TD administration of melatonin can reduce awakening 

after sleep onset and therefore improve sleep maintenance. The reported 

demographic data consist only of averaged measures of the subjects’ group, thus the 

black continuous curve is the pharmacokinetics of an averaged individual simulated 

by the model, while the circles are the experimental values of melatonin concentration 

of the individuals who took part to the study. It is worth observing that the model curve 

is consistently near to three out of four individual trends. The most distant individual 

trend (orange circles) shows abnormal pharmacological levels, probably related to 

differences in the skin characteristics. 

 1 

Figure 1 – (Left panel) Skin concentration profiles. x-axis represents skin depth [𝑐𝑚], while y-axis represents time [ℎ]. 

z-axis shows the ratio between the drug concentration in skin strata and the donor concentration, i.e. TDD 

concentration. As expected, 𝑆𝐶 exhibits drug accumulation, while 𝐷𝐸 concentration is very low. We can observe the 

effect of 𝑆𝐶 that plays the role of reservoir towards the end of the simulation. (Right panel) Simulated profile of plasma 

concentration (blue continuous curve) after TD administration in a patient with no endogenous production, compared 

with experimental data (black circles) of endogenous levels in healthy human beings (Voultsios et al., (1997)). It is 

evident that TD administration is a valid option to reproduce melatonin endogenous profile. 
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Figure 47 – The colored circles and trends represent the plasma pharmacokinetics of transdermal 
melatonin in four healthy individuals (Aeschbach et al., 2009). The black continuous curve depicts the 
simulated melatonin pharmacokinetics of an averaged in-silico individual. 

The sensitivity analysis provided some insights on the influence of the most 

representative parameters on the model variables. Figure 48 (top panel) shows the 

sensitivity of skin diffusivities 𝔇𝑆𝐶 , 𝔇𝑉𝐸 , and 𝔇𝐷𝐸 on (i) melatonin (M) concentration (at 

𝑡 = 𝑡𝑚𝑎𝑥) in intermediate layers of SC, VE, DE, and in plasma and liver, and (ii) aMT6s 

concentration (at 𝑡 = 𝑡𝑚𝑎𝑥) in plasma. 𝔇𝑉𝐸 seems to be the most sensitive parameter 

for the concentration in skin layers, while the effect of 𝔇𝐷𝐸  is less evident. This 

particular point allows remarking that the sensitivity indexes calculation depends 

considerably on the punctual (𝑡 = 𝑡𝑚𝑎𝑥) value of the concentration (see Eq. (7.15)). 

Figure 48 (medium panel) shows the results of the sensitivity analysis of the same 

variables at same time (𝑡 = 𝑡𝑚𝑎𝑥) respect to the parameters that characterize the liver, 

hepatic, and skin metabolism. Consistently with the model structure and hypotheses, 

𝐸𝑓𝑓𝐾 is the most sensitive parameter for plasma aMT6s concentration, as it is the 

parameter governing renal clearance of the metabolized drug. Similarly, 

𝐸𝑓𝑓𝐻 variation significantly affects liver concentration, while the skin metabolic 

constant 𝑘𝐸𝐿 sensitivity index is smaller compared to the renal and kidneys 

efficiencies. In fact, the tissue contribution to melatonin metabolism/elimination 

process is less significant than the contribution exerted by the liver and kidneys. It is 

worth remarking that although VE is the stratum where skin metabolism occurs, the 

concentration in VE is not the most affected one by 𝑘𝐸𝐿 variation. 

Figure 48 (bottom panel) shows sensitivity indexes values of the partition coefficients 
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𝑘𝑝𝑎𝑟𝑡1 and 𝑘𝑝𝑎𝑟𝑡2. Both are sensitive respect to all the key model variables, especially 

plasma and liver concentration. This result may be seen as a warning, considering 

that we have assigned 𝑘𝑝𝑎𝑟𝑡2 equal to 1. Despite this result, we think that it is more 

sensible to try and reduce the degrees of freedom of the nonlinear regression by 

assigning some of the unknown parameter values based on hypotheses resting on 

physiology. Therefore, we stand by our decision of assigning 𝑘𝑝𝑎𝑟𝑡2. 

 

Figure 48 – Local sensitivity analysis of skin strata diffusivities (top panel), elimination/metabolic 
constants (medium panel), and partition coefficients (bottom panel). Model variables considered are the 
melatonin (M) concentration in SC, VE, DE, plasma, and liver, and the metabolite (aMT6s) concentration 
in plasma. The analysis is carried out at 𝑡 =  𝑡𝑚𝑎𝑥 . 

The method employed for the sensitivity analysis allows observing the influence of 

variation of only one parameter at a time. A more in-depth future investigation would 

require a global sensitivity analysis implying that all the parameters vary at the same 
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time, which may be a more likely situation in a biological system such as the human 

body subject to some clinical treatment. 

7.7 Conclusions 

 

The proposed PBDCPK model can be employed for the simulation and prediction of 

the pharmacokinetics resulting from percutaneous administration of drugs and 

specifically of melatonin. The model identification procedure based on nonlinear 

parametric regression provided results consistent with the physiology of human body. 

In spite of high inter-individual variability, the validation shows that the model can be 

used to predict averaged patient transdermal melatonin pharmacokinetics. In silico 

simulations are an effective and costless tool for studies on skin transport, dose 

optimization, and route of administration selection. In fact, compared to other models 

describing percutaneous absorption, this work overcomes some simplifying 

assumptions e.g., one- or two-layer approximation, not physiologically-based 

pharmacokinetic model (Cevc and Vierl, 2007), stationary (i.e. steady-state) 

assumptions (Anissimov et al., 2013), and homogeneous concentration in skin (Higaki 

et al., 2002). As a final remark, it would be interesting to include a release kinetics in 

our model dependent on the type of transdermal device employed. 

As a consequence of the increased interest in melatonin in several medical fields, 

such as treatment of ICU patients, it would be interesting to focus on some recurring 

features of those subjects (e.g., hypoperfusion, hepatic diseases, renal failure, gastro-

intestinal disturbs, inflammation). Indeed, the capability of the model to describe ICU 

patients for TD administration and the resulting PK would strengthen the versatility 

attribute of the proposed model and its predictive reliability. 

The main challenge is represented by inter- and intra-patient variability of the 

pharmacokinetics. Future work will see the model as a tool for the selection of the 

optimal dose/formulation. Inter-individual variability may in fact be tackled with a 

scenario-based approach for optimization. Artificially generated scenarios of virtual 

patients would help account for the stochastic uncertainty that comes from different 

physical characteristics, genetics, gender, race, and the resulting impact on 

pharmacokinetics. 
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CHAPTER 8 

 
 
 
 

 

Physiologically-based pharmacokinetic 

simulations for selection of the optimal 

administration route 
 
 
 
 
 
 

8.1 Author’s Note 

 

Because of its physiochemical characteristics, exogenous melatonin can be 

administered via at least three different pathways: IV, PO, and TD. PO route provides 

an additional degree of freedom with the possible choice between immediate and 

controlled release formulations. Depending on the desired target of clinical treatment 

(e.g., restoring the healthy secretion rhythm or providing anti-oxidant action) and the 

patients’ characteristics and conditions, an optimal route can be identified. This 

chapter investigates and compares the pharmacokinetics resulting from those 

administration routes, showing the value of PBPK simulations as a tool for a priori 

design of successful clinical treatments. 

 

This work was published in “ADMET & DMPK” journal, in a special issue on PBPK 

modeling: 
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Physiologically-based pharmacokinetic simulations in 

pharmacotherapy: selection of the optimal administration route for 

exogenous melatonin 
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8.2 Abstract 

 

The benefits of melatonin on human body are drawing increasing attention from 

several researchers in different fields. While its role as cure for sleep disturbances 

(e.g., jet lag, insomnia) is well documented and established, new functions in 

physiological and pathophysiological processes are emerging. To investigate these 

effects, there is need for the characterization of melatonin transport processes in the 

body and resulting pharmacokinetics. Although recent works propose physiologically-

based pharmacokinetic modelling of melatonin, no work has yet highlighted the 

potential of physiologically-based pharmacokinetic simulations to shed light on 

melatonin pharmacokinetic aspects and discrimination among administration routes. 

This paper presents, validates, and discusses a versatile physiologically-based 

pharmacokinetic model featuring different ways of administration and compares the 

resulting pharmacokinetic profiles of intravenous, oral, and transdermal 

administration, with the goal of understanding which is the optimal route to achieve 

either physiological and/or supraphysiological melatonin levels. 

8.3 Introduction 

 

In recent years, physiologically-based pharmacokinetic (PBPK) models have become 

widely used and accepted tools to study, simulate, and predict drugs concentration in 

the body as well as provide insight on their pharmacological effects via combination 

with pharmacodynamic models. PBPK models are currently applied throughout the 

phases of drug discovery and development with various goals, e.g., inter-species 

extrapolation, analysis of chemical toxicity or efficiency, investigation of different 

routes of administration, and study of inter-individual variability (Bois et al., 2010; Hall 

et al., 2012; Jones et al., 2011; Lin et al., 2016; Savoca et al., 2018). Indeed, PBPK 

simulations are extremely useful to study the pharmacokinetic differences among 
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individuals, from pediatric patients (Abduljalil et al., 2014) to healthy adults to special 

subjects, with particular conditions (e.g., pregnancy (Ke et al., 2012)) or specific 

diseases with high probability of affecting drugs pharmacokinetics (e.g., renal 

insufficiency or liver diseases). The reason is that PBPK models (first theorized in 

1937 by Teorell (Teorell, 1937)) incorporate the anatomy and physiology of the 

patients’ body into the mathematical description of drugs absorption, distribution, 

metabolism, and elimination (ADME) processes. Their recent success is also related 

to the current availability of modern tools to solve complex mathematical problems, 

such as systems of ordinary differential equations (ODEs) with a large number of 

parameters. In silico simulations are appealing because of the possibility to carry out 

“free” and fast experiments (Sager et al., 2015), compared to the actual clinical trials, 

whose costs and duration have increased over the past 20 years (Abbiati et al., 2018). 

Not only drug discovery and development (Del Cont et al., 2014), but also the clinical 

practice may take advantage from simulation via PBPK models, as it tackles the 

problem of selecting the optimal dose that maximizes therapeutic efficacy while 

minimizing adverse effects. On one hand, inter-individual variability and medication 

errors are significant obstacles in this decision, on the other hand, the choice of the 

optimal administration route and dosing regimen are crucial degrees of freedom of 

this problem. 

In this respect, melatonin is a useful and interesting case-study. The pleiotropic 

functions of melatonin in the human body are catalyzing the attention of several 

researchers in different fields, and its exogenous administration can follow different 

pathways. Although melatonin is particularly popular as a cure for sleep disturbances 

(i.e. jet-lag, insomnia), a number of other physiological and pathophysiological 

functions have been investigated and are still emerging. For instance, receptor-

mediated actions include regulatory functions, e.g., immune response, homeostasis, 

and blood pressure regulation (Calvo et al., 2013; Celinski et al., 2011; Pandi-Perumal 

et al., 2008; Slominski et al., 2012; Tan et al., 2002). Indeed, melatonin receptors are 

distributed in the whole body. Besides, non-receptor mediated actions are of great 

interest, especially the potency of its anti-oxidant, anti-proliferative, and anti-

inflammatory action via radical scavenging (Reiter et al., 2014). The application in 

chemotherapy in combination with other substances improves both the chances of 

survival and quality of the patients’ life (Innominato et al., 2016). 

In healthy people, melatonin is endogenously produced by the pineal gland. The 
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production rhythm is entrained with the day-night cycle, with darkness causing the 

onset around 9-10 PM, peak between 2-4 AM (with Cmax range 60-100 pg/mL), and 

baseline low values during the day at about 5-10 pg/mL (Brzezinski, 1997). However, 

this endogenous rhythm may be subject to either disruption or levels reduction, and 

medical doctors think that this has negative impact on the patients’ health status, 

especially in critically ills (Damasceno et al., 2015; Dauchy et al., 2014; Mistraletti et 

al., 2010). 

In order to identify the optimal melatonin dosage, a detailed characterization of 

exogenous melatonin ADME processes within the human body is recommended. 

Through the years, several authors have carried out pharmacokinetic studies to 

identify the most suitable dosage and route of administration to produce physiological 

and supraphysiological melatonin levels in different populations (Galley et al., 2014; 

Gooneratne et al., 2012; Markantonis et al., 2008; Mistraletti et al., 2017). Although 

some recent works exist on the PBPK modelling of melatonin in the human body (e.g., 

Peng et al. (2013)), our aim is not only to provide a valuable PBPK model but also to 

compare melatonin levels that result from different routes of administration, i.e. 

intravenous (IV), oral (per os, PO), and transdermal (TD). The first goal is to 

understand which route has the highest potential to reproduce the endogenous profile 

of healthy patients, with the purpose of restoring melatonin physiological roles. The 

second goal is to identify the routes that allow achieving higher levels, with the 

purpose of producing pharmacological effects (for instance strong anti-oxidative 

action for ICU, intensive care unit, patients). Despite high inter-individual variability 

that is typical of melatonin pharmacokinetics (e.g., related to different physical 

characteristics, genetic factors, and presence of impairments/diseases), we intend to 

show that in silico simulations can provide guidance and advice in selecting the 

optimal routes of administration and dosage, once the reliability of the employed 

model is verified. Indeed, model simulations constitute a powerful tool for optimal 

pharmacotherapy, especially in combination with experimental studies. 

8.4 Methods 

 

In general, the PBPK approach combines anatomical and physiological aspects with 

mathematical modeling, by assuming that the organs and tissues of the human body 

can be represented by compartments with homogeneous concentration. The 

reference model of this work (from Abbiati et al. (2016)) considers 8 compartments in 
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the description of the human body: Plasma, Gastric Lumen (GL), Small Intestinal 

Lumen (SIL), Large Intestinal Lumen (LIL), Liver, Gastro-Intestinal Circulatory System 

(GICS), Poorly perfused Tissues (PT), and Highly perfused Organs (HO). Actually, 

some compartments represent single organs while other compartments represent 

lumped parts so to reduce the number of model parameters. In fact, a too high number 

of parameters may lead to mathematical predicaments of over-parameterization and 

model identification (see Abbiati et al. (2018) for an exhaustive discussion on this 

topic). The HO compartment stands for organs that are highly perfused by blood, i.e. 

kidneys, brain, lungs, spleen, and heart. The PT compartment lumps tissues that are 

poorly reached by blood vessels, e.g., adipose tissue, skin, and muscles (specifically 

in ill/treated patients). The GICS compartment lumps the portal vein, the mesenteric 

artery, and the microcirculatory blood vessels of the gastrointestinal system. 

We applied some modifications to this basic structure of the model to adapt it to 

melatonin pharmacokinetic features. Particularly, we added (i) the pineal gland, and 

(ii) the salivary glands. Pineal gland is the source of endogenous melatonin. Within 

our PBPK model, the material balance on the pineal gland accounts for the production 

of endogenous melatonin with a term that exhibits a 24-h periodicity (see Savoca et 

al. (2018)). Several authors evaluate melatonin endogenous and exogenous amount 

by measuring either saliva and plasma or only saliva concentrations (Benloucif et al., 

2008; Laakso et al., 1993; Shirakawa et al., 1998; Voultsios et al., 1997). Thus, we 

found more correct (from a physiological point of view) to add the salivary glands to 

the model compartments. The drug material balances, in the form of an ODE system, 

describe the concentration dynamics of melatonin in each compartment. Finally, an 

additional equation allows accounting for the dynamics of melatonin main metabolite 

6-sulfatoxymelatonin (aMT6s). 

In case of IV route, the drug directly inputs the Plasma compartment. Conversely, in 

case of PO administration, the drug enters the GL and moves through SIL and LIL to 

be absorbed through the intestinal walls and conveyed to Liver via the portal vein. 

This results into the so called “first-pass metabolism effect”. After that, it is drained 

from the Liver to reach the systemic circulation and distributes to the other organs and 

tissues via the bloodstream. It is worth stressing that the model structure takes into 

consideration GL, SIL, and LIL only in case of PO administration. In fact, in other 

cases, we assume that the drug counter-diffusion from GICS to SIL and LIL is 

negligible, and therefore it is possible to neglect such compartments, along with GL 

and reduce significantly the number of ODEs. We do not report here the complete 
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mathematical description of the model, as it is extensively detailed in Abbiati et al. 

(2016) and Abbiati et al. (2018). 

While in case of IV and PO routes, the skin is incorporated into the PT compartment, 

in case of TD administration the skin becomes the mean for drug absorption and 

therefore calls for a specific and detailed description. In particular, melatonin evolution 

has to be considered not only in time but also along the skin depth coordinate. Thus, 

the homogenous approach (based on the perfectly mixed hypothesis) to compartment 

modeling is replaced and the resulting skin mathematical description involves partial 

differential equations (PDEs) with suitable boundary conditions (Savoca et al., 2018). 

Particularly, three skin layers are considered: (i) stratum corneum that is the most 

external and thinnest but also the main barrier, (ii) viable epidermis that may constitute 

a metabolism site, and (iii) dermis, from which the drug is supposed to reach the 

systemic circulation via the contained blood vessels, and then distribute to the rest of 

the body. 

In case of TD administration, the PDEs describing the skin and the ODEs describing 

the rest of the body are combined via the finite differences method. In fact, the PDEs 

are discretized respect to the spatial coordinate (i.e. skin depth) and therefore 

converted to ODEs (Savoca et al., 2018). 

Independently of the administration pathway, the model parameters can be divided 

into three categories: (i) individualized, (ii) assigned, and (iii) regressed. Individualized 

parameters (e.g., volumes of compartments and flowrates among them) are 

calculated according to empirical correlations that are available in the literature and 

depend on the patients’ physical characteristics. We consider as specific features the 

sex, body weight, and height. Assigned parameters are some drug physicochemical 

properties whose value can be determined from the scientific literature (e.g., protein 

binding). Some parameters, strictly related to the transport properties, can be neither 

found in the literature nor calculated by empirical correlations (e.g., diffusivity, transfer 

coefficients, metabolic constants), thus they are obtained via a nonlinear regression 

procedure respect to experimental data from the literature. Indeed, although the value 

of some transfer coefficients might be determined from in vitro studies, such 

experiments would not account for the interactions among organs and tissues in the 

living organism, and therefore would affect the reliability of the mathematical model 

and consistency/validity of the simulated results. 

Once the model transfer coefficients and metabolic constants are identified (with data 
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from DeMuro et al. (2000) for IV route, Andersen et al. (2016c) and Shirakawa et al. 

(1998) for PO, and Benes et al. (1997) for TD), a model validation with additional 

experimental pharmacokinetic data allows assessing its prediction capability. To do 

so, we chose (i) the median squared error (MeSE) (Eq. (8.1)) over the mean squared 

error (MSE) (Peng et al., 2013) for robustness reasons, (ii) the difference between the 

experimental area under the curve AUCexp and the model predicted AUCmod (Abbiati 

et al. (2016), Eq. (8.2)), and (iii) the difference between the observed and predicted 

values of 𝐶𝑚𝑎𝑥. Comments on the difference between the observed and predicted 

values of Tmax are also present. The AUC is calculated via trapezoidal rule over the 

NM measured concentration values. We consider satisfactory MeSE values below 0.1 

[ng/mL] and %ΔAUC values below 30%. 

( ) 
2

1, ,exp mod

i iMeSE median C C i NM= − =  (8.1) 

% 100
exp mod

AUC

exp

AUC AUC

AUC

−
 =   (8.2) 

Once the prediction capability of the PBPK model is evaluated, it is interesting to 

assess in silico the optimal administration route. In particular, we investigated three 

distinct administration routes: (i) IV continuous infusion over 7 h, (ii) PO in both the 

immediate and controlled release (CR) formulations (the last one with a release time 

of 7 h), and (iii) TD with a standard patch of 10 cm2. The PO (CR) tablet release is 

modeled according to the dissolution characteristics elucidated in Lee et al. (1996) 

and employed in Lee et al. (1995). Results from all the administration routes are 

compared for an assigned dose range between 0.75-12 mg, grounding on the state-

of-art pharmacokinetic studies on exogenous melatonin administration. For this 

preliminary study, we do not consider high doses (Andersen et al., 2016b). Our virtual 

subject is a healthy adult male of 80 kg and 185 cm. To provide a quantitative 

comparison of the pharmacokinetics resulting from the three administration routes, we 

calculate and compare the AUC and the maximum concentration Cmax. Finally, we 

comment on the concentration dynamics in the different compartments of the body 

that result by simulating the administration of melatonin 3 mg via IV, PO, and TD 

routes to the same in silico patient. For an unbiased comparison of melatonin ADME, 

we intentionally neglected the endogenous melatonin production. 
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8.5 Results and Discussion 

 

We computed the prediction performance with data coming from melatonin 

pharmacokinetic studies. The validation cases for each route of administration are 

proposed and discussed. 

8.5.1 IV validation case 

Figure 49 shows the model curve resulting from the simulation of 20 µg IV infusion 

over 5 h to 6 healthy subjects (A-F panels) and 1 individual subjected to pinealectomy 

2 years earlier (G panel), as in Mallo et al. (1990). Experimental data (red diamonds) 

show the individual pharmacokinetic profiles. The model performance (i.e. the blue 

line) is acceptable, but for A panel of Figure 49. Nevertheless, the values of the 

performance indexes (see Table 33) remain quite satisfactory, as even the AUC value 

of that patient (A panel) is only slightly higher than 30%. It is worth observing that the 

experimental inter-individual variability of melatonin levels is reduced in case of IV 

administration if compared to other routes (see also Figure 50 and Figure 51). As a 

result, also confidence intervals of the IV model parameters are narrower (see values 

Tables A-C reported in Appendix 8.A). Figure 49 (G panel) shows the experimental 

trend for the pinealectomized patient where the model performance is as good as for 

the others. The IV model was further tested with experimental results of additional 

patients from the same study (subjected to bolus injection) and supplementary 

validation cases (Andersen et al., 2016b; Fourtillan et al., 2000), for which the results 

of the %ΔAUC, %ΔCmax, and MeSE (not reported) are adequate as well. In this case, 

we do not calculate the experimental/predicted Tmax and the relative error, because in 

case of IV constant rate of infusion the Tmax corresponds to the infusion duration (i.e. 

in this case study, equal to 5 h). 
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Figure 49 – Experimental data (red diamonds, (Mallo et al., 1990)) represent the pharmacokinetics of 6 
healthy subjects (A-F panels) and 1 pinealectomized patient (G panel) who received IV 20 µg infused 
over 5 h. The blue continuous line is the model-simulated pharmacokinetic profile. 

Table 33 – Performance indexes %ΔAUC, %ΔCmax, and MeSE values for the IV validation case. 

Patient % AUC  % maxC  MeSE  

A 31.2 32.1 2.4e-4 
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B 18.8 24.5 2.6e-4 

C 14.2 13.4 4.6e-5 

D 20.6 10.1 8.3e-5 

E 10.5 10.4 2.0e-5 

F 16.3 31.8 4.5e-5 

G 0.7 6.4 5.1e-5 

 

8.5.2 PO validation case 

Figure 50 shows experimental results on melatonin concentration in case of PO 

administration. The blue line in Figure 50 (A and B panels) simulates the 

pharmacokinetics after administration of 2 and 4 mg respectively, to 12 healthy 

volunteers (DeMuro et al., 2000). The experimental data (red diamonds) show mean 

concentration values of the volunteers group. Figure 50 (C panel) shows both 

individual (red circles) and median (black diamonds) concentration profiles of 5 

subjects administered with 50 mg (Galley et al., 2014). Finally, Figure 50 (D panel) 

shows the simulation (blue line) of the averaged profile of 5 healthy subjects 

administered with 2 mg (Aldhous et al., 1985). In all these cases, only a single curve 

is displayed, because the literature data report only averaged demographic and/or 

pharmacokinetic data. Despite the literature differences in features and dosages, the 

model performance is acceptable as the simulation curve is near to the average 

experimental profile in all the cases. In fact, Table 34 lists low values of MeSE, except 

for Figure 50 (C panel). It is worth observing that the simulated profile (i.e. blue line) 

anticipates the experimental data (see Figure 50 (A, B, and C panels)). The difference 

between the observed and predicted Tmax is about 30 min. This may be related to 

digestion features and to the patients’ condition (e.g., fed or fasting). Future work 

should adapt the PO model to such issues. However, the observed Tmax depends also 

on the experimental protocol, and in particular, on the blood sampling time. In addition, 

this parameter is affected by a certain degree of experimental error. The %ΔAUC in 

Table 34 is always below 15% while the relative error between the observed and 

predicted Cmax is below 15% except for case A. It is fair to acknowledge that the 

pharmacokinetics resulting from the PO route features a higher degree of inter- and 

intra-individual variability compared to the IV route, because of several interacting 

factors that affect absorption (e.g., pH, stomach emptying time, intestinal transit times, 

and variation of blood supply to stomach and intestine) and metabolism (e.g., genetic 
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factors and presence of diseases). In fact, MeSE results for the IV validation cases 

are at least one order of magnitude lower and, consistently, confidence intervals of 

the model parameters are larger (Table B in Appendix 8.A). Additional case studies 

are employed for validation, with similar results in terms of performance assessment 

(Fourtillan et al., 2000). 

 

Figure 50 – A-B panels: experimental data (red diamonds, (DeMuro et al., 2000)), represent the average 
pharmacokinetics of 12 subjects administered with melatonin PO 2 and 4 mg. C panel: experimental 
individual (red circles) and median (black diamonds) pharmacokinetics after melatonin PO 50 mg (Galley 
et al., 2014). D panel: experimental data (red diamonds) averaged over 5 healthy subjects from Aldhous 
et al. (1985) (melatonin PO 2 mg). The blue continuous line is the model-simulated pharmacokinetic 
profile. 

Table 34 – Performance indexes %ΔAUC, %ΔCmax, and MeSE values for the PO validation case. 

Panel % AUC  % maxC  MeSE  

A 2.6 40.1 0.009 

B 7.3 13.5 0.103 

C 14.3 10.7 5.68 

D 8.4 5.0 0.004 

8.5.3 TD validation case 

Figure 51 shows a validation case from Aeschbach et al. (2009) for the TD route. In 
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the study, melatonin was administered 2.1 mg/12 cm2 as TD patch. Since the reported 

demographic data consist only of averaged measures over the subjects’ group, the 

model curve (blue line) is the pharmacokinetics of an averaged individual, while red 

diamonds represent the experimental values of melatonin concentration of the 

individuals who took part to the study, connected with red lines for the sake of clarity. 

The model prediction is quite near to three out of four individual trends. The most 

distant individual trend shows atypical pharmacological levels, which may be related 

to either differences in the skin features of that specific subject and/or melatonin 

dermal deposition (Aeschbach et al., 2009). This results into a nonsensical value of 

%ΔAUC (Table 35). In general, TD pharmacokinetic data show high inter-individual 

variability having to do with the process of transdermal absorption (Aeschbach et al., 

2009). This aspect is also reflected in the confidence intervals of the model 

parameters (Table C in Appendix 8.A) and in the variability of observed Cmax and Tmax 

values, although it should be remarked that blood sampling occurred every hour. 

Thus, it is not guaranteed that the real experimental maximum value corresponds to 

the observed Cmax. In any case, the %ΔCmax is around 25-30% for the first three 

individuals. As far as the Tmax is concerned, it is worth observing that the model seems 

to predict a slower absorption compared to the experimental trend.  

 

Figure 51 – Experimental data (red diamonds, (Aeschbach et al., 2009)) are the individual 
pharmacokinetic trends, resulting from melatonin TD 2.1 mg over 12 cm2 patch administration. The blue 
continuous line is the model-simulated pharmacokinetic profile of the averaged subject. 

Table 35 – Performance indexes %ΔAUC, %ΔCmax, and MeSE values for the TD validation case. 

Patient % AUC  % maxC  MeSE  

1 39.1 34.9 8.2e-4 
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2 38.1 27.7 2.1e-4 

3 26.2 23.6 5.4e-5 

4 >100 >100 4.0e-3 

 

Despite the high values of %ΔAUC, it is likely that the reliability of the model for this 

route might further improve by relying on a higher number of experimental data sets 

for the identification of the parameters. For all the considered routes (i.e. IV, PO, and 

TD), the results are acceptable enough to continue with the analysis of melatonin 

ADME in the body as a function of the different administration pathways. 

8.5.4 In silico simulations for optimal dose selection 

A number of pharmacokinetic studies focus on selecting the optimal dose that 

produces either physiological (e.g., Mallo et al. (1990)) or supraphysiological levels. 

In fact, while physiological levels can improve sleep maintenance and resynchronize 

circadian rhythms (Reiter et al., 2014), supraphysiological levels may produce strong 

anti-oxidant action (Galley et al., 2014) and analgesic effects (Andersen et al., 2016b). 

To investigate melatonin pharmacokinetic properties, a few studies compare the in 

vivo results of different routes of administration (Andersen et al., 2016c), and/or 

specific populations (e.g., elderly (Gooneratne et al., 2012), critically ills (Mistraletti et 

al., 2010), and patients suffering from severe oxidative stress (Galley et al., 2014)). 

To prove the efficiency of in silico simulations within this context, we compare the 

pharmacokinetic profile resulting from three different routes, with doses ranging from 

0.75 to 12 mg. The selected range is considered safe as it has been covered by a 

number of pharmacokinetic studies. Figure 52 shows the results of the simulations, 

along with comparison to experimental data of endogenous profile in healthy adult 

volunteers from Voultsios et al. (1997). 

As expected, smoother and more sustained levels are achieved via TD and PO (CR) 

formulations. The slow absorption phase, which is characteristic of TD release, proves 

particularly suitable for mimicking the endogenous levels produced by the pineal 

gland. Equally, the PO (CR) solution provides sustained levels as well (Tmax about 4 

h), coupled with a steeper absorption (see especially the case of 0.75 mg). This 

difference in the velocity of absorption has to be considered in the choice of the 

administration time, as this will affect the onset time of melatonin effects. In case of 

PO (CR) 0.75 mg administration, shifting the time of administration would allow quite 
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a close imitation of the endogenous profile. The same consideration holds for the case 

of TD 6 mg administration. Thus, not only dosing, but also the time of administration 

is a key degree of freedom in the problem of melatonin delivery optimization to 

restore/produce physiological levels. Failing in considering this aspect would likely 

result into unsatisfactory outcomes in terms of pharmacodynamic effects. In this 

sense, PBPK simulations can be used as a tool for therapy design, to determine the 

time of administration that more likely leads to the desired effects. It should also be 

noted that, although the TD route produces sustained levels over 24 h, it is unlikely 

that the subject will manifest adverse effects, for instance related to sleep. Firstly, 

levels are quite similar to the endogenous pattern (see the black circles), and after 

about 10 h, they start decreasing towards the daily baseline (black dotted line). 

Secondly, doses up to 3500 mg (PO) have been administered without any acute 

adverse effects and the scientific literature does not report any toxic threshold for 

melatonin dose (Andersen et al., 2016b). For instance, in Andersen et al. (2016b) 

there is no evidence of sedative effects for doses up to 100 mg (IV), which would 

produce more than 3-order-of-magnitude higher levels than those shown in Figure 52, 

case 12 mg via TD route (according to our simulations and consistently with 

experimental results reported in the study). Predictably, even low doses of continuous 

IV infusion produce the highest levels and bioavailability, thus it is probably the most 

appropriate mean to reach prompt pharmacological (i.e. supraphysiological) levels. In 

fact, even for the lowest dose considered (i.e. 0.75 mg), the resulting plasma 

concentration is an order of magnitude higher than the endogenous one (see black 

circles compared to the blue line). On the contrary, TD administration should be 

excluded for the purpose of producing pharmacological levels (see highest doses 12 

mg in Figure 52 and Cmax value in Figure 53). Figure 52 also shows that in case of 

melatonin, PO immediate release formulation is not able to produce sustained levels. 

However, for doses higher than 5 mg, this administration route can be considered to 

reach pharmacological levels, alternatively to IV infusion. All of these considerations 

are confirmed by the values of the pharmacokinetic parameters AUC and Cmax, 

compared in Figure 53. The highest AUC is in fact associated with the IV continuous 

infusion route, whereas the other routes of administration produce lower values. 

Another possibility to be explored is the combination of oral immediate release and 

CR formulations. 
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Figure 52 – Dynamics of the melatonin plasma concentration over 24 h after IV, PO, PO (CR), and TD 
administration of 1.5 to 12 mg to a virtual subject (male, adult, 80 kg, 185 cm). Black circles describe the 
endogenous profile in healthy adult volunteers (Voultsios et al., 1997). Black horizontal dashed lines 
indicate the range of endogenous Cmax in healthy subjects (60-100 pg/mL). Black dotted line marks the 
average value of daily melatonin baseline in plasma. 

Depending on the treatment goal, for instance the attainment of either endogenous or 

pharmacological levels, it is possible to explore additional contributing factors, other 

than the route, dose, and time of administration. In fact, different dissolution curves 

can be employed in the PO (CR) formulations and can be combined with the PBPK 

model to study the resulting ADME processes. The same approach can be applied in 

case of TD route, since both the features, position, and application extent of the patch 

are degrees of freedom for the medical doctor. The main degree of freedom of the IV 

infusion route is its duration. Once the main goal is assigned (in terms of ideal 

pharmacokinetic profile for a specific application), an optimization can be carried out 

to identify the optimal dose and dosing regimen by considering those additional 

degrees of freedom.  

Since melatonin roles affect several organs and tissues, with cerebral, immune, 

gastrointestinal, cardiovascular, renal, and endocrine functions (Calvo et al., 2013), 

and melatonin receptors are distributed in the whole body, model compartment levels 

should be visualized and discussed, as well. Figure 54 shows the simulation in 
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different compartments for 3 mg administered IV, PO, PO (CR), and TD. The slow 

drug absorption, typical of TD administration, is reflected in the slow distribution to the 

organs/tissues of the body. Conversely, IV infusion induces higher levels in all the 

compartments (see Highly perfused Organs and Liver compartments in Figure 54). 

Thus, in case the goal of melatonin administration is a diffused anti-oxidant action in 

the patient body via radicals scavenging, this route should be preferred. The same 

can be stated in case of immune system enhancement (hence with potential beneficial 

effects in terms of cancer cells detection and elimination). In addition, when target 

organs are the highly perfused ones (e.g., pancreas, liver, and kidneys), this route 

should be definitely considered. When a more localized target action is required, it 

should be considered that in case of PO administration, higher levels are expected in 

the liver and gastrointestinal tract, as confirmed by the model simulation. According to 

Celinski et al. (2011), melatonin is gastro-protective at endogenous levels, whereas 

pharmacological levels of melatonin (in combination with other drugs) contribute to 

healing of gastroduodenal ulcers. The difference of goal (i.e. gastro-protection vs 

healing of local ulcer) will be the discriminating factor for selecting the most suitable 

dose to produce either endogenous or higher levels. The velocity of excretion via the 

kidneys is comparable for both the IV and PO routes, and is faster for these routes 

when compared to TD. Concluding, anatomical and physiological considerations can 

be converted into quantitative data to be carefully assessed, analyzed, and visualized 

via PBPK model simulations. This kind of information is not only useful when several 

routes of administration are viable, but also especially important when the drug target 

site is not plasma. 
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Figure 53 – Comparison of pharmacokinetic parameters Cmax (left panel) and AUC (right panel) resulting 
from the three routes of administration. The x-axis reports the simulated dose range, i.e. 0.75 to 12 mg. 

  

  

 

 

Figure 54 - Simulation of the melatonin concentration dynamics in the compartments Saliva, Liver, Highly 
and Poorly perfused Organs/Tissues, and the Kidneys-excreted amount after administration of 3 mg via 
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IV, PO, PO (CR), and TD. 

 

8.6 Conclusions 

 

While PBPK simulators allow evaluating melatonin levels in plasma and the rest of the 

body, further practical considerations should support the pharmacokinetic 

investigation with the aim of achieving optimal clinical efficacy. In fact, while IV route 

may hold the advantage of the highest bioavailability and fastest distribution to organs 

and tissues, most of the patients may find it distressing. Therefore, this route is viable 

only in case of specific categories such as critically ill patients, who usually receive 

continuous infusion of different drugs and enteral nutrition for quite long periods. On 

one hand, PO route is easy and simple but it is subject to first-pass hepatic 

metabolism, which implies a certain degree of inter-individual variability related to 

different metabolism characteristics, and different patients’ features (e.g., 

gastrointestinal pH, temperature, and other previously mentioned factors). As well as 

PO (CR) option, TD route allows obtaining sustained levels and avoids first-pass 

hepatic metabolism. On the other hand, it is subject to slow absorption through skin, 

possible metabolism within viable epidermis, and high inter- and intra-individual 

variability related to different skin features. 

In this work, we introduced and discussed a case-study to compare pharmacokinetic 

levels resulting from different doses and three administration routes, i.e. IV, PO, and 

TD, also considering both oral immediate release and CR formulations. PBPK 

simulations are particularly interesting for their intrinsic nature and structure, because 

they provide quantitative information on the drug ADME processes in the body. 

Besides, coupling with intelligent drug design and in vitro experiments enhances the 

potential to maximize their efficacy. As far as melatonin is concerned and with 

reference to both practical and pharmacokinetic aspects, it is possible to conclude that 

PO (CR) and TD routes represent the best options in case of disruption of the 

endogenous rhythm (e.g., in people suffering from either insomnia or jet-lag and 

critically ills). Equally, PO (with doses significantly higher than 3 mg) and IV infusion 

are preferable when higher concentration levels are required for other goals, for 

instance to contrast severe oxidative stress and possibly cancer, and target specific 

organs as sites of pharmacological action. This work can be extended and improved 

by focusing on one administration route and running a numerical optimization of the 
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melatonin dose respect to a target trajectory, also considering a number of degrees 

of freedom depending on the selected route. It is also worth stressing the 

transferability of the presented approach to any other drugs that are versatile from the 

point of view of the administration routes. Such investigations may become especially 

interesting in case of drugs with narrow therapeutic windows, such as chemotherapy 

drugs whose pharmacokinetics quantification is essential and critical. 
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8.7 Appendix 8.A 

 

Table A – Key model parameters in case of the PO route, correlated by 90% confidence intervals. 

Parameters Description Regressed values 90% 𝑪𝑰𝒍𝒃 90% 𝑪𝑰𝒖𝒃  

𝑘𝐴,𝑆𝐼𝐿 [𝑚𝑖𝑛
−1] SIL absorption constant 2.205 0.245 5.655 

𝑘𝐶𝐴,𝑆𝐼𝐿 [𝑚𝑖𝑛
−1] SIL counter-diffusion 

constant 
2.920 0.158 5.683 

𝑘𝐴,𝐿𝐼𝐿 [𝑚𝑖𝑛
−1] LIL absorption constant 0.167 0.003 0.337 

𝑘𝐶𝐴,𝐿𝐼𝐿 [𝑚𝑖𝑛
−1] LIL counter-diffusion 

constant 
0.455 0.059 0.851 

𝐸𝑓𝑓𝐻  [−] Hepatic metabolism 

efficiency 
0.467 0.235 0.699 

𝐸𝑓𝑓𝐾  [−] Kidneys excretion 

efficiency 
0.053 0.007 0.113 

 

Table B – Key model parameters in case of the IV route, correlated by 90% confidence intervals. 

Parameters Description Regressed values 90% 𝑪𝑰𝒍𝒃 90%𝑪𝑰𝒖𝒃 

𝑘𝑇−𝑃  [𝑚𝑖𝑛
−1] Plasma- Poorly perfused 

tissues transfer 
coefficient 

0.3955 0.373 0.418 

𝑘𝑃−𝑇 [𝑚𝑖𝑛
−1] Poorly perfused-tissues 

plasma transfer 

coefficient 

0.8 0.774 0.826 
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𝑘𝐻𝑃−𝑃 [𝑚𝑖𝑛
−1] Highly perfused organs- 

plasma transfer 
coefficient 

0.047 0.045 0.05 

𝑘𝑃−𝐻𝑃 [𝑚𝑖𝑛
−1] Plasma-highly perfused 

organs transfer 

coefficient 

1.48 1.416 1.544 

 

Table C – Key model parameters in case of the TD route, correlated by 90% confidence intervals. 

Parameters Description Regressed values 90% 𝑪𝑰𝒍𝒃 90% 𝑪𝑰𝒖𝒃 

𝔇𝑆𝐶[𝑐𝑚
2 𝑚𝑖𝑛⁄ ] SC Diffusivity 3.352e-5 1.269e-5 5.431e-5 

𝔇𝑉𝐸[𝑐𝑚
2 𝑚𝑖𝑛⁄ ] VE Diffusivity 5.943e-3 2.122e-3 9.763e-3 

𝔇𝐷𝐸[𝑐𝑚
2 𝑚𝑖𝑛⁄ ] DE Diffusivity 2.776e-3 1.395e-3 6.946e-3 

𝑘𝑝𝑎𝑟𝑡1[−] SC/VE Partition 
coefficient 

1.763 1.209 2.317 
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CHAPTER 9 

 
 
 
 

 

Optimal dosing for endogenous  

levels in ICU patients 
 
 
 
 
 
 

9.1 Author’s Note 

 

Chapter 8 showed how PBPK simulations suggest that the most suitable routes for 

producing sustained levels that mimic healthy melatonin endogenous levels are PO 

(CR formulation) and TD. This chapter focuses on PO (CR) route and compares the 

results of dosing optimization for critically ill and healthy patients. Specifically, three 

CR formulations from the scientific literature are used as inputs to the model. The 

remarkable inter-individual variability typical of critically ill patients’ pharmacokinetics 

is considered within the optimization problem formulation via a Monte Carlo approach 

applied to the model parameters. 

 

This work was published in “Computer Aided Chemical Engineering” book series and 

presented at the “European Symposium on Computer-Aided Process Engineering 

(ESCAPE-29)” conference: 
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Optimization under uncertainty of melatonin dosing for critically ill 

patients 

Adriana Savoca, Giuseppe Pesenti, Davide Manca 

Computer Aided Chemical Engineering (46) (2019) 565-570  
DOI: 10.1016/B978-0-12-818634-3.50095-3 

 

9.2 Abstract 

 

Computer-aided modelling and simulation are effective tools to provide guidance in 

the design of clinical experiments and treatments. Simulations with physiologically-

based pharmacokinetic (PBPK) models combine the drug material balances within the 

body to its real physiological and anatomical features and can be used to optimize 

drugs dosing and administration timing. We focus on melatonin administration to 

critically ill patients, a challenging population because of their high inter-individual 

variability in the pharmacokinetics (due to their heterogeneous and severe conditions). 

We show how the optimization problem can be suitably formulated to tackle this 

uncertainty, and compare the results obtained for critically ill patients and healthy 

individuals. The approach can be easily transferred to any other drug routinely 

administered in intensive care units whenever a desired pharmacokinetic profile is 

available. 

 

Keywords: optimization, modelling, simulation, uncertainty, pharmacokinetics. 

9.3 Introduction 

 

Recent years have seen an increasing interest in melatonin. Although it is particularly 

well-known as a cure for sleep disturbances and restoration of circadian rhythms, 

researchers are investigating additional physiological and pathophysiological 

functions. Indeed, there is evidence of anti-cancer, anti-oxidative, anti-inflammatory, 

and analgesic properties (Brzezinski, 1997). Healthy individuals produce melatonin 

endogenously by means of the pineal gland according to the day-night rhythm. 

Melatonin production onsets with darkness (around 9-10 PM) and peaks at 2-4 AM. 

Healthy plasma peak levels are in between 60-100 pg/mL. After the peak, melatonin 

levels settle to the low daily baseline (5-10 pg/mL). Collaboration with Intensive Care 
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Unit (ICU) of Ospedale San Paolo di Milano (Italy) allowed focusing on critically ill 

patients. Such patients exhibit disorders in melatonin secretion rhythm and/or lower 

levels compared to healthy individuals. This phenomenon is correlated to the lack of 

sleep, which likely increases both patients’ morbidity and probability of mortality. 

There is evidence that exogenous melatonin has beneficial effects on these patients, 

mainly for treatment of sleep disorder, delirium, and oxidative stress (Bourne and Mills, 

2006; Mistraletti et al., 2010). Several studies investigated the optimal dose with the 

purpose of reproducing the desired physiological levels of melatonin and proposed 

different doses (regimens) to restore the healthy endogenous rhythm. While 

physiological levels are desirable to restore circadian rhythms, pharmacological levels 

(i.e. supraphysiological levels, for instance about 3 orders of magnitude higher) are 

more suitable for anti-oxidant or anti-cancer purposes (Reiter et al., 2014). We show 

that computer simulation is an efficient tool to design and/or integrate such 

pharmacokinetic (PK) studies, with the advantage of reducing times and costs of the 

experiments. In addition, simulations using physiologically-based pharmacokinetic 

(PBPK) models allow comparing and evaluating the pharmacokinetics from not only 

different doses but also routes of administration. In fact, our first goal is to select the 

administration route that best mimics human physiological levels. Subsequently, we 

focus on that route and optimize dosing, also by comparing results for healthy 

individuals (by neglecting the endogenous contribution for the sake of clarity) and 

critically ill patients. The main issue with critically ill patients is that they are intrinsically 

rather heterogeneous, because of their different conditions (e.g., age, dysfunctions, 

organs failure) (Mistraletti et al., 2010). This feature enhances inter-individual 

variability of melatonin pharmacokinetics. To deal with this problem, we propose a 

prospective approach to drug dosing optimization. 

9.4 Methods 

 

Figure 55 shows the structure of a multi-route compartmental PBPK model. The 

reference model for this work is Abbiati et al. (2016), where organs and tissues of the 

human body are represented by homogenous compartments. We complemented 

those compartments number and model structure to melatonin features and 

administration routes, by adding (i) the pineal gland, which is the source of 

endogenous melatonin, and (ii) the salivary glands (Savoca et al., 2018). A further 

equation accounts for the dynamics of main melatonin metabolite: 6-

sulfatoxymelatonin (aMT6s) both in plasma and in urine. In case of oral administration 
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(PO, per os, see also Figure 55), the model consists of material balances on either 

single or lumped homogenous compartments. 

 
Figure 55 – Scheme of the PBPK model for description of melatonin ADME processes. Parameters in 
red are associated to the main processes responsible for inter-patient variability. While skin transport is 
described via PDEs discretized with respect to skin depth x, the other body compartments feature 
melatonin material balances in the form of ODEs. 

These are the gastric lumen (GL), the small and large intestinal lumina (SIL and LIL), 

the gastrointestinal circulatory system (GICS), the plasma, the liver, the poorly 

perfused tissues (PT, lumping adipose tissue, skin, and muscles), and the highly 

perfused organs (HO, lumping brain, lungs, and spleen). In case of intravenous (IV) 

route, the gastrointestinal compartments are neglected. Finally, in case of transdermal 

(TD) administration, skin is assumed as a separate compartment from PT and 

described by a set of partial differential equations (PDEs) with proper boundary 

conditions for skin TD absorption. The model features three skin layers: (i) stratum 

corneum, (ii) viable epidermis (also a metabolism site), and (iii) dermis, from which 

the drug is supposed to reach the systemic circulation. These PDEs are discretized 

with respect to the spatial coordinate (i.e. skin depth) and converted to ODEs and 

merged to those of the other compartments (Savoca et al., 2018). Model parameters 

include (i) individualized and assigned parameters that are either calculated as a 

function of patient’s characteristics or found in the literature, and (ii) adaptive 

parameters (e.g., diffusivities, transfer coefficients, metabolic constants) that are 

obtained via a nonlinear regression of experimental data from the literature. Firstly, 

we use the multi-route PBPK simulations to compare levels resulting from PO, IV, and 

TD administration routes. Secondly, we perform an optimization based only on PO 

controlled release (CR), as it resulted the most suitable to mimic endogenous 
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pharmacokinetics. Based on experimental release curves from the scientific literature, 

the optimal melatonin amount and time of administration are identified for three in 

silico individuals, (i) a healthy male, (ii) a healthy female, and (iii) an ICU patient. The 

PBPK model parameters for healthy individuals are identified with melatonin PK 

experimental data of healthy volunteers. Equally, the parameters that describe the PK 

of ICU patients are identified via regression with experimental data of the critically ill. 

To account for considerable inter-individual variability, the optimization problem 

considers the uncertainty related to the (patho-) physiological differences of such 

patients. The processes that most likely produce inter-subject variability are (i) 

absorption from the intestinal walls into gastrointestinal circulation (characterized by 

absorption constants 𝑘𝐴,𝑆𝐼𝐿, 𝑘𝐴,𝐿𝐼𝐿, 𝑘𝐶𝐴,𝑆𝐼𝐿, and 𝑘𝐶𝐴,𝐿𝐼𝐿 and residence times in 

gastrointestinal region 𝜏𝐺𝐿, 𝜏𝑆𝐼𝐿, and 𝜏𝐿𝐼𝐿) and (ii) hepatic metabolism (described by 

hepatic efficiency 𝐸𝑓𝑓𝐻). These model parameters are randomized within a proper 

range, which is chosen referring to physiology for the transit times, and model 

uncertainty for the others, to produce different PK profiles for the ICU virtual patient, 

VP. These additional NS “scenarios” embody the structure of the optimization problem 

in Eq. (9.1), where NM is the number of experimental data Ci
ideal that describe the 

healthy endogenous plasma concentration profile (Voultsios et al., 1997). The 

degrees of freedom are: dose and tadm (i.e. timing of administration). 

( )
2

,

1,
1

min i i
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NM
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k

C C

NM

=
=

 
− 

 
 

  (9.1) 

9.5 Results 

 

9.5.1 Comparison of administration routes 

The physiochemical properties of melatonin (e.g., lipophilicity and low molecular 

weight) make it suitable for at least three administration routes, i.e. PO, IV, and TD. 

As far as the PO route is concerned, we consider both immediate and controlled 

release (CR) formulations. Figure 56 allows comparing the pharmacokinetics of these 

different routes under the same melatonin dose (1.5 mg in the left panel, 12 mg in the 

right panel). The characteristic slowness of TD absorption is particularly appropriate 

to mimic the sustained endogenous levels produced by the pineal gland. Equally, the 

PO (CR) formulation provides continued levels (Tmax about 4 h), coupled with a steeper 

absorption. 
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Figure 56 – PK simulations of a healthy individual with IV, PO (immediate release and controlled release 
(CR) formulations), and TD administrations of melatonin. Black dashed horizontal lines show the range 
of concentration peak after healthy endogenous production (60-100 pg/mL). 

The difference in the velocity of early absorption affects the selection of the optimal 

administration timing as it affects the onset time of the pharmacological and 

physiological effects. Predictably, even low doses of continuous IV infusion produce 

the highest levels, thus it is probably the most appropriate to achieve prompt 

pharmacological (i.e. supraphysiological) levels. On the contrary, TD administration 

should be excluded for that purpose, even in case of higher doses. In case of PO 

immediate-release formulation, the melatonin concentration decreases rapidly after 

administration. However, even for low doses, this administration formulation allows 

reaching pharmacological levels, alternatively to IV infusion. This conclusion is in line 

with experimental studies where oral doses higher than 0.3 mg produce supra-

physiological levels. 

9.5.2 Optimization for PO CR route 

Panel A of Figure 57 compares three PO (CR) formulations with different percentages 

of polymer coating (5-10-20%) that generate three different release curves as in Lee 

et al. (1995). Panel B of Figure 57 shows experimental data of the endogenous profile 

of an healthy individual (red squares, from Voultsios et al. (1997)), while continuous, 

dotted, and dashed lines are the optimized pharmacokinetics of an ICU patient who 

receives tablets featuring the three different release curves. The most suitable release 

curve corresponds to the 10% coating tablet that best approaches the PK endogenous 

profile.  
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Figure 57 – (A) Experimental release curves for different formulations, as in Lee et al. (1995). (B) 
Optimized PK levels (continuous, dashed, and dotted lines) in ICU and ideal (experimental) healthy 
endogenous data (red squares). Black arrows indicate optimal timing of administration. 

Figure 58 shows the melatonin optimal doses and timing of administration. On the x-

axis, HM and HF stand for the male and female healthy individuals, while ICU stands 

for the critically ill patient. It is worth noticing that the lowest dose is associated to the 

ICU patient. Indeed, for the same dose, PK studies show higher melatonin 

concentrations in critically ill patients, compared to healthy individuals. Probably, the 

continuous enteral nutrition of ICU patients facilitates melatonin absorption. Notably, 

PBPK model simulations are consistent with this behavior. In addition, optimal dose 

values for the healthy individuals are in line with the results of experimental studies 

(as already mentioned, oral doses higher than 0.3 mg produce supraphysiological 

levels). Our results are not so far from this approximate value. 

 
Figure 58 – Optimal melatonin dose (left panel) and timing of administration (right panel) for HM and HF 
(healthy male and female individuals) and ICU (critically ill patient). Dashed horizontal line (right panel) 
indicates the desired time of onset of melatonin effects. 

Figure 59 (right panel) shows the optimal timing of administration in relation to the 

desired onset time for melatonin effects (see the horizontal dashed line at 0). In case 

of 10% coating, the optimal administration timing for the ICU patient is about 30 min 

before the desired onset, while it is shorter for healthy individuals. This is consistent 

with the fact that critically ill patients exhibit higher levels of melatonin after exogenous 

administration. In all the other cases, to mimic the endogenous profile optimally, the 

administration timing should occur after the desired onset time, which evidently makes 
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no sense. This confirms that the 10% coating formulation is the most appropriate to 

deliver physiological levels of melatonin. Finally, Figure 59 shows melatonin PK 

simulations in different compartments (i.e. Gastric Lumen, Liver, and HO, Highly 

perfused Organs) and the eliminated amount of melatonin metabolite, aMT6s, after 

the optimal administration of PO (CR) formulation to the ICU patient. Low levels in HO 

are consistent with the typical tissue hypoperfusion of critically ill patients. 

Experimentally, the eliminated melatonin is usually higher than 85%, while this 

threshold is not reached in our simulations. This may be related to two different 

reasons: (i) from the modeling point of view, our model underestimates aMT6s 

metabolic production as we consider (for simplicity) the liver contribution only, (ii) from 

the physical point of view, ICU patients may exhibit lower metabolism compared to 

healthy patients. 

 

 
Figure 59 – PBPK model simulations for the critically ill patient in Gastric Lumen, Liver, HO (Highly 
perfused Organs), and aMT6s fraction in urine. 

9.6 Conclusions 

 

PBPK model simulations are an effective tool in melatonin optimal pharmacotherapy. 

We optimized melatonin dosing by comparing healthy individuals and critically ill 

patients. As the latter ones represent an extremely heterogeneous population, we 

proposed an approach that allows accounting for inter-subject variability generated by 
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the gastrointestinal absorption and metabolic processes. Results are in line with 

conclusions from past experimental PK studies and can provide aid in future study for 

the challenging identification of melatonin optimal dose regimens in critically ill 

patients. 
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CHAPTER 10 

 
 
 
 

 

Conclusions and future perspectives 
 
 
 
 
 

10.1 Closed-loop control of anesthesia 

 

Closed-loop controllers of IV anesthesia delivery are useful to answer two main needs 

of anesthesiologists with respect to the problem of selecting the optimal anesthetic 

and analgesic drugs dose, i.e. (i) a more robust and rigorous approach to tackle inter-

individual variability of the response to drugs, and (ii) a support system capable of 

accounting for both the several variables involved and the drug-drug interactions that 

affect and describe the anesthetic state of the patient. 

The few studies on PBPK modeling applied to anesthesia have not yet focused on the 

actual use of such methodology in clinical practice. We showed how this modeling 

approach allows accounting for the anatomical and physiological differences across 

the lifespan and different conditions of individuals. Specifically, we focused on three 

populations, i.e. (i) elderly, (ii) obese, and (iii) pediatric patients, who represent a 

challenge from the point of view of optimal dosing because they are especially 

susceptible to propofol adverse effects. PK prediction via classical three-compartment 

models is often poor in these special patients, as they were mostly identified with data 

of healthy young adults. Regardless, these models feature remarkable variability of 

the PK prediction, potentially creating ambiguity and confusion among clinicians. As 

the approach one-size-fits-all is likely to fail, we proposed an individualization strategy 

for adaptation of the PBPK model, which allows overcoming the limitations of the most 
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commonly used three-compartment PK models and, in some cases, outperforming 

their predictive capability. The proposed closed-loop controller, based on the 

individualized model, proved to take into account the differences of these populations, 

providing infusion rates for induction of anesthesia in in silico patients that were 

consistent with clinical guidelines. 

The PBPK-PD model also allowed investigating the effects of hemodynamic changes 

on the response to anesthesia. These effects can indeed lead to clinically relevant 

adverse reactions in high-risk patients. This is a problem that, at the current stage, 

entirely relies on the anesthetists’ experience and intuition, as few studies are 

available on the topic. In addition, no studies have investigated the impact of 

hemodynamic changes on the alterations of pharmacokinetics and 

pharmacodynamics within the context of closed-loop anesthesia. We showed how 

inclusion of CO data helps the controller individualizing the proposed infusion rate and 

avoiding unnecessary overdosing. 

Thus, it is fair to acknowledge and underline that application of PBPK modeling has 

produced several points of innovation compared to the current methods of clinical 

practice and the state-of-art work on closed-loop anesthesia. 

Additional changes to the model-predictive controller algorithm and structure were 

made for application to high-risk patients, by considering propofol-remifentanil 

synergistic interactions on arterial pressure and including heart rate as input variable, 

to account for their sensitivity to propofol-remifentanil-induced hypotension and faster 

changes of the hemodynamic parameters. 

The introduction of both a quantitative measure of DoH and hemodynamic parameters 

within the controller structure is another key point of innovation compared to several 

published works on propofol-remifentanil closed-loop administration, and is essential 

to provide a more complete control of the anesthetic and analgesic state of the patient. 

However, this issue comes with complications from the practical point of view. In 

clinical practice, anesthesiologists in some cases administer vasopressors (e.g., 

epinephrine, phenylephrine) to treat mild to severe intra-operative hypotension. 

Therefore, in some occasions, hemodynamic parameters may increase independently 

of the patients’ analgesic level. In this case, using such parameters to monitor the 

analgesic level may be misleading as the controller would modify accordingly the 

analgesic infusion rate. On the other hand, intraoperative hypotension can have 

different interpretations, for instance it can be a result of overdosing but also a sign of 
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a blood loss, depending on the extent of the decrease. Similarly, with respect to the 

use of BIS as controlled variable, personal communications with clinicians warned us 

from overtrusting BIS to assess the patients’ DoH (C. Carozzi and D. Caldiroli, Istituto 

Neurologico Carlo Besta, December 2018). Indeed, monitoring of the EEG trace 

characteristics (e.g, frequency and amplitude of the waves) and additional parameters 

(e.g., Signal Quality Index (SQI) and electromyographic (EMG) activity) help skilled 

anesthesiologists to identify “false” BIS variations (Bennett et al., 2009; Carozzi and 

Caldiroli, 2018). 

Hence, to increase the controller robustness against those episodes, some rules 

based on the anesthesiologists’ expertise and experience may be implemented within 

the controller logic (i.e. expert system), so that the control action can be suspended 

by providing a stable infusion rate in an “open-loop” configuration, at the discretion of 

the anesthesiologist, leaving them free to operate. An example of such rules is 

represented in the decision tree of Figure 60. 

 

Figure 60 – Decision-tree to respond to hypotensive events. 

After implementation of this combined rule-based and MPC logic, the software should 

be integrated with routinely-used monitoring instruments and infusion pumps, for in 

vivo testing. 

At this stage, the controller can be used in silico to study and investigate the patients’ 

response via simulations. In the anesthesia fields, where human factors play a key 

role, the adoption of in silico investigational tools for study of the optimal dose and 

education of trainees in anesthesiology would be extremely beneficial, especially 

considering that the model we developed and validated is suitable for “at-risk” 
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categories of patients, for which standard dosing guidelines are lacking/insufficient 

and TCI pumps risk providing non-optimal infusion rates because of model 

inaccuracies.  

10.2 Optimization of melatonin dosing 

 

The combination of anatomical and physiological principles with the mathematical 

description of ADME processes allowed building a PBPK model for melatonin, 

considering administration via three main routes, i.e. IV, PO, and TD. Few changes 

can be applied to account for other less common but interesting routes, e.g., buccal 

(i.e. via the cheek oral mucosa) and sublingual (i.e. via the mucous membrane 

beneath the tongue). Oral mucosa is indeed rather vascularized, and these routes 

allow administering the drug directly into the systemic circulation, thus avoiding the 

“first-pass” hepatic metabolism. Indeed, they have the potential to induce faster drug 

onset and higher blood levels, compared to PO route. PBPK modeling of these routes 

can help designing new melatonin formulations by evaluating and quantifying their 

effectiveness via simulations of in silico patients and identifying optimal dosing ranges. 

In fact, we showed how PBPK simulations can be used to select the optimal route of 

administration, considering IV, PO (immediate and controlled release formulations), 

and TD. Melatonin treatments can have the purpose of either (i) restoring physiological 

levels, e.g., to cure sleep disorders, or (ii) inducing supra-physiological levels, e.g., to 

produce anti-oxidant or anti-proliferative effects. The safety of melatonin use, even at 

high doses, makes it extremely appealing for use in fragile individuals, such as cancer 

patients or critically ills, since most drugs used in these fields feature narrow 

therapeutic windows, which makes the identification and personalization of the dosing 

extremely difficult. The proposed use of PBPK simulations to predict and optimize 

melatonin dosing can transform pharmacotherapy, leading to the reduction of 

ineffective clinical treatments. Indeed, it is worth noticing that although this work 

focused on melatonin, the proposed approach is transferable to any other drugs for 

which (i) several routes are possible and/or (ii) a desired target level/profile of plasma 

concentration is to be achieved or maintained. This is the case of some drugs for ICU 

patients (e.g., the antibiotic vancomycin) and anti-cancer drugs with narrow 

therapeutic windows. 

From the PBPK simulations, we found that PO (CR) formulation was suitable for 

administration to critically ills with the purpose of restoring the healthy endogenous 
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levels and cure their sleep disorders. An innovative approach was also proposed to 

account for remarkable inter-individual variability of these patients, which is a main 

issue in optimal pharmacotherapy. In this work, optimal dosing and time of 

administration were identified using CR trajectories available in the scientific literature 

on melatonin. However, it is worth noticing that the methodology can be “reversed” 

into the problem of designing the ideal delivery system, i.e. the optimal “release” 

trajectory that is able to produce the desired healthy endogenous profile in either the 

generic patient or a special category (via model individualization). Coupling of the 

design of drug delivery systems (i.e. for PO and TD formulations) with PBPK 

simulations opens promising perspectives to improve efficacy, and identify faults and 

weaknesses before commercialization. 

In summary, implications of this section of the work span from improved design of 

drug delivery systems to enhancement of clinical treatments, as the methodology and 

results are easy to generalize, provided that PK data for reliable identification and 

validation of the model are available. 

10.3 Future perspectives 

 

This thesis focused on the development of PBPK model-based tools for support to 

clinical decision in optimal drug dosing in the fields of anesthesia and intensive care. 

Such fields present significant difficulties related to the inter-individual variability and 

critical conditions of patients, quantity and type of variables to consider in the definition 

of the dose-response relation, and other factors that increase the probability of 

administration errors. Several points of innovations compared to the current 

approaches and state-of-the-art research have been presented to tackle such issues. 

The developed approaches can further be improved and extended with the 

collaboration of clinicians to evolve to actual biomedical systems by integration with 

monitoring instruments and drug infusion systems (anesthesia) and development of 

dedicated user interfaces (melatonin/other drugs dosing optimization for critically ills). 

Healthcare requires new approaches and tools to face future challenges. The success 

of technological innovation and digital transformation of healthcare calls for robust 

understanding and clear visions of both the technological and medical sectors. The 

fact that by 2020, medical information about the body and health will double every 73 

d, compared to the 3.5-y doubling-time estimated in 2010 (Densen, 2011), creates a 

major obstacle. For this reason, the formation of multidisciplinary teams with mixed 
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scientific backgrounds is essential to guarantee the highest possibilities of success. 

The current hype for innovative solutions applied to the biomedical sector confirms 

the relevance and timing of the presented work, which could not have been developed 

without the support of collaborations with clinicians and gives hope for future 

improvements of clinical practice via fruitful “contamination” among clinicians and 

engineers. 
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